1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 using namespace ento; 31 32 namespace { 33 struct AnyArgExpr { 34 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 35 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 36 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 37 const Expr *Expression; 38 unsigned ArgumentIndex; 39 }; 40 41 struct SourceArgExpr : AnyArgExpr { 42 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 43 }; 44 45 struct DestinationArgExpr : AnyArgExpr { 46 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 47 }; 48 49 struct SizeArgExpr : AnyArgExpr { 50 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 51 }; 52 53 using ErrorMessage = SmallString<128>; 54 enum class AccessKind { write, read }; 55 56 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 57 AccessKind Access) { 58 ErrorMessage Message; 59 llvm::raw_svector_ostream Os(Message); 60 61 // Function classification like: Memory copy function 62 Os << toUppercase(FunctionDescription.front()) 63 << &FunctionDescription.data()[1]; 64 65 if (Access == AccessKind::write) { 66 Os << " overflows the destination buffer"; 67 } else { // read access 68 Os << " accesses out-of-bound array element"; 69 } 70 71 return Message; 72 } 73 74 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 75 class CStringChecker : public Checker< eval::Call, 76 check::PreStmt<DeclStmt>, 77 check::LiveSymbols, 78 check::DeadSymbols, 79 check::RegionChanges 80 > { 81 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 82 BT_NotCString, BT_AdditionOverflow; 83 84 mutable const char *CurrentFunctionDescription; 85 86 public: 87 /// The filter is used to filter out the diagnostics which are not enabled by 88 /// the user. 89 struct CStringChecksFilter { 90 DefaultBool CheckCStringNullArg; 91 DefaultBool CheckCStringOutOfBounds; 92 DefaultBool CheckCStringBufferOverlap; 93 DefaultBool CheckCStringNotNullTerm; 94 95 CheckerNameRef CheckNameCStringNullArg; 96 CheckerNameRef CheckNameCStringOutOfBounds; 97 CheckerNameRef CheckNameCStringBufferOverlap; 98 CheckerNameRef CheckNameCStringNotNullTerm; 99 }; 100 101 CStringChecksFilter Filter; 102 103 static void *getTag() { static int tag; return &tag; } 104 105 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 106 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 107 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 108 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 109 110 ProgramStateRef 111 checkRegionChanges(ProgramStateRef state, 112 const InvalidatedSymbols *, 113 ArrayRef<const MemRegion *> ExplicitRegions, 114 ArrayRef<const MemRegion *> Regions, 115 const LocationContext *LCtx, 116 const CallEvent *Call) const; 117 118 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 119 const CallExpr *) const; 120 CallDescriptionMap<FnCheck> Callbacks = { 121 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 122 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 123 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 124 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 125 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 126 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 127 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 128 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 129 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 130 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 131 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 132 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 133 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 134 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 135 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 136 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 137 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 138 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 139 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 140 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 141 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 142 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 143 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 144 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 145 }; 146 147 // These require a bit of special handling. 148 CallDescription StdCopy{{"std", "copy"}, 3}, 149 StdCopyBackward{{"std", "copy_backward"}, 3}; 150 151 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 152 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 153 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 154 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 155 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 156 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 157 ProgramStateRef state, SizeArgExpr Size, 158 DestinationArgExpr Dest, SourceArgExpr Source, 159 bool Restricted, bool IsMempcpy) const; 160 161 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 162 163 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 164 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 165 void evalstrLengthCommon(CheckerContext &C, 166 const CallExpr *CE, 167 bool IsStrnlen = false) const; 168 169 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 170 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 171 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 172 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 174 bool IsBounded, ConcatFnKind appendK, 175 bool returnPtr = true) const; 176 177 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 178 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 179 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 180 181 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 182 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 183 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 184 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrcmpCommon(CheckerContext &C, 186 const CallExpr *CE, 187 bool IsBounded = false, 188 bool IgnoreCase = false) const; 189 190 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 191 192 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 193 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 194 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 195 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 196 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 197 198 // Utility methods 199 std::pair<ProgramStateRef , ProgramStateRef > 200 static assumeZero(CheckerContext &C, 201 ProgramStateRef state, SVal V, QualType Ty); 202 203 static ProgramStateRef setCStringLength(ProgramStateRef state, 204 const MemRegion *MR, 205 SVal strLength); 206 static SVal getCStringLengthForRegion(CheckerContext &C, 207 ProgramStateRef &state, 208 const Expr *Ex, 209 const MemRegion *MR, 210 bool hypothetical); 211 SVal getCStringLength(CheckerContext &C, 212 ProgramStateRef &state, 213 const Expr *Ex, 214 SVal Buf, 215 bool hypothetical = false) const; 216 217 const StringLiteral *getCStringLiteral(CheckerContext &C, 218 ProgramStateRef &state, 219 const Expr *expr, 220 SVal val) const; 221 222 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 223 ProgramStateRef state, 224 const Expr *Ex, SVal V, 225 bool IsSourceBuffer, 226 const Expr *Size); 227 228 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 229 const MemRegion *MR); 230 231 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 232 const Expr *Size, CheckerContext &C, 233 ProgramStateRef &State); 234 235 // Re-usable checks 236 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 237 AnyArgExpr Arg, SVal l) const; 238 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 239 AnyArgExpr Buffer, SVal Element, 240 AccessKind Access) const; 241 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 242 AnyArgExpr Buffer, SizeArgExpr Size, 243 AccessKind Access) const; 244 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 245 SizeArgExpr Size, AnyArgExpr First, 246 AnyArgExpr Second) const; 247 void emitOverlapBug(CheckerContext &C, 248 ProgramStateRef state, 249 const Stmt *First, 250 const Stmt *Second) const; 251 252 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 253 StringRef WarningMsg) const; 254 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 255 const Stmt *S, StringRef WarningMsg) const; 256 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 257 const Stmt *S, StringRef WarningMsg) const; 258 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 259 260 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 261 ProgramStateRef state, 262 NonLoc left, 263 NonLoc right) const; 264 265 // Return true if the destination buffer of the copy function may be in bound. 266 // Expects SVal of Size to be positive and unsigned. 267 // Expects SVal of FirstBuf to be a FieldRegion. 268 static bool IsFirstBufInBound(CheckerContext &C, 269 ProgramStateRef state, 270 const Expr *FirstBuf, 271 const Expr *Size); 272 }; 273 274 } //end anonymous namespace 275 276 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 277 278 //===----------------------------------------------------------------------===// 279 // Individual checks and utility methods. 280 //===----------------------------------------------------------------------===// 281 282 std::pair<ProgramStateRef , ProgramStateRef > 283 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 284 QualType Ty) { 285 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 286 if (!val) 287 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 288 289 SValBuilder &svalBuilder = C.getSValBuilder(); 290 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 291 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 292 } 293 294 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 295 ProgramStateRef State, 296 AnyArgExpr Arg, SVal l) const { 297 // If a previous check has failed, propagate the failure. 298 if (!State) 299 return nullptr; 300 301 ProgramStateRef stateNull, stateNonNull; 302 std::tie(stateNull, stateNonNull) = 303 assumeZero(C, State, l, Arg.Expression->getType()); 304 305 if (stateNull && !stateNonNull) { 306 if (Filter.CheckCStringNullArg) { 307 SmallString<80> buf; 308 llvm::raw_svector_ostream OS(buf); 309 assert(CurrentFunctionDescription); 310 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 311 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 312 << CurrentFunctionDescription; 313 314 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 315 } 316 return nullptr; 317 } 318 319 // From here on, assume that the value is non-null. 320 assert(stateNonNull); 321 return stateNonNull; 322 } 323 324 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 325 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 326 ProgramStateRef state, 327 AnyArgExpr Buffer, SVal Element, 328 AccessKind Access) const { 329 330 // If a previous check has failed, propagate the failure. 331 if (!state) 332 return nullptr; 333 334 // Check for out of bound array element access. 335 const MemRegion *R = Element.getAsRegion(); 336 if (!R) 337 return state; 338 339 const auto *ER = dyn_cast<ElementRegion>(R); 340 if (!ER) 341 return state; 342 343 if (ER->getValueType() != C.getASTContext().CharTy) 344 return state; 345 346 // Get the size of the array. 347 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 348 DefinedOrUnknownSVal Size = 349 getDynamicSize(state, superReg, C.getSValBuilder()); 350 351 // Get the index of the accessed element. 352 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 353 354 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 355 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 356 if (StOutBound && !StInBound) { 357 // These checks are either enabled by the CString out-of-bounds checker 358 // explicitly or implicitly by the Malloc checker. 359 // In the latter case we only do modeling but do not emit warning. 360 if (!Filter.CheckCStringOutOfBounds) 361 return nullptr; 362 363 // Emit a bug report. 364 ErrorMessage Message = 365 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 366 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 367 return nullptr; 368 } 369 370 // Array bound check succeeded. From this point forward the array bound 371 // should always succeed. 372 return StInBound; 373 } 374 375 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 376 ProgramStateRef State, 377 AnyArgExpr Buffer, 378 SizeArgExpr Size, 379 AccessKind Access) const { 380 // If a previous check has failed, propagate the failure. 381 if (!State) 382 return nullptr; 383 384 SValBuilder &svalBuilder = C.getSValBuilder(); 385 ASTContext &Ctx = svalBuilder.getContext(); 386 387 QualType SizeTy = Size.Expression->getType(); 388 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 389 390 // Check that the first buffer is non-null. 391 SVal BufVal = C.getSVal(Buffer.Expression); 392 State = checkNonNull(C, State, Buffer, BufVal); 393 if (!State) 394 return nullptr; 395 396 // If out-of-bounds checking is turned off, skip the rest. 397 if (!Filter.CheckCStringOutOfBounds) 398 return State; 399 400 // Get the access length and make sure it is known. 401 // FIXME: This assumes the caller has already checked that the access length 402 // is positive. And that it's unsigned. 403 SVal LengthVal = C.getSVal(Size.Expression); 404 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 405 if (!Length) 406 return State; 407 408 // Compute the offset of the last element to be accessed: size-1. 409 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 410 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 411 if (Offset.isUnknown()) 412 return nullptr; 413 NonLoc LastOffset = Offset.castAs<NonLoc>(); 414 415 // Check that the first buffer is sufficiently long. 416 SVal BufStart = 417 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 418 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 419 420 SVal BufEnd = 421 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 422 423 State = CheckLocation(C, State, Buffer, BufEnd, Access); 424 425 // If the buffer isn't large enough, abort. 426 if (!State) 427 return nullptr; 428 } 429 430 // Large enough or not, return this state! 431 return State; 432 } 433 434 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 435 ProgramStateRef state, 436 SizeArgExpr Size, AnyArgExpr First, 437 AnyArgExpr Second) const { 438 if (!Filter.CheckCStringBufferOverlap) 439 return state; 440 441 // Do a simple check for overlap: if the two arguments are from the same 442 // buffer, see if the end of the first is greater than the start of the second 443 // or vice versa. 444 445 // If a previous check has failed, propagate the failure. 446 if (!state) 447 return nullptr; 448 449 ProgramStateRef stateTrue, stateFalse; 450 451 // Get the buffer values and make sure they're known locations. 452 const LocationContext *LCtx = C.getLocationContext(); 453 SVal firstVal = state->getSVal(First.Expression, LCtx); 454 SVal secondVal = state->getSVal(Second.Expression, LCtx); 455 456 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 457 if (!firstLoc) 458 return state; 459 460 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 461 if (!secondLoc) 462 return state; 463 464 // Are the two values the same? 465 SValBuilder &svalBuilder = C.getSValBuilder(); 466 std::tie(stateTrue, stateFalse) = 467 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 468 469 if (stateTrue && !stateFalse) { 470 // If the values are known to be equal, that's automatically an overlap. 471 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 472 return nullptr; 473 } 474 475 // assume the two expressions are not equal. 476 assert(stateFalse); 477 state = stateFalse; 478 479 // Which value comes first? 480 QualType cmpTy = svalBuilder.getConditionType(); 481 SVal reverse = 482 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 483 Optional<DefinedOrUnknownSVal> reverseTest = 484 reverse.getAs<DefinedOrUnknownSVal>(); 485 if (!reverseTest) 486 return state; 487 488 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 489 if (stateTrue) { 490 if (stateFalse) { 491 // If we don't know which one comes first, we can't perform this test. 492 return state; 493 } else { 494 // Switch the values so that firstVal is before secondVal. 495 std::swap(firstLoc, secondLoc); 496 497 // Switch the Exprs as well, so that they still correspond. 498 std::swap(First, Second); 499 } 500 } 501 502 // Get the length, and make sure it too is known. 503 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 504 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 505 if (!Length) 506 return state; 507 508 // Convert the first buffer's start address to char*. 509 // Bail out if the cast fails. 510 ASTContext &Ctx = svalBuilder.getContext(); 511 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 512 SVal FirstStart = 513 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 514 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 515 if (!FirstStartLoc) 516 return state; 517 518 // Compute the end of the first buffer. Bail out if THAT fails. 519 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 520 *Length, CharPtrTy); 521 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 522 if (!FirstEndLoc) 523 return state; 524 525 // Is the end of the first buffer past the start of the second buffer? 526 SVal Overlap = 527 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 528 Optional<DefinedOrUnknownSVal> OverlapTest = 529 Overlap.getAs<DefinedOrUnknownSVal>(); 530 if (!OverlapTest) 531 return state; 532 533 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 534 535 if (stateTrue && !stateFalse) { 536 // Overlap! 537 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 538 return nullptr; 539 } 540 541 // assume the two expressions don't overlap. 542 assert(stateFalse); 543 return stateFalse; 544 } 545 546 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 547 const Stmt *First, const Stmt *Second) const { 548 ExplodedNode *N = C.generateErrorNode(state); 549 if (!N) 550 return; 551 552 if (!BT_Overlap) 553 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 554 categories::UnixAPI, "Improper arguments")); 555 556 // Generate a report for this bug. 557 auto report = std::make_unique<PathSensitiveBugReport>( 558 *BT_Overlap, "Arguments must not be overlapping buffers", N); 559 report->addRange(First->getSourceRange()); 560 report->addRange(Second->getSourceRange()); 561 562 C.emitReport(std::move(report)); 563 } 564 565 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 566 const Stmt *S, StringRef WarningMsg) const { 567 if (ExplodedNode *N = C.generateErrorNode(State)) { 568 if (!BT_Null) 569 BT_Null.reset(new BuiltinBug( 570 Filter.CheckNameCStringNullArg, categories::UnixAPI, 571 "Null pointer argument in call to byte string function")); 572 573 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 574 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 575 Report->addRange(S->getSourceRange()); 576 if (const auto *Ex = dyn_cast<Expr>(S)) 577 bugreporter::trackExpressionValue(N, Ex, *Report); 578 C.emitReport(std::move(Report)); 579 } 580 } 581 582 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 583 ProgramStateRef State, const Stmt *S, 584 StringRef WarningMsg) const { 585 if (ExplodedNode *N = C.generateErrorNode(State)) { 586 if (!BT_Bounds) 587 BT_Bounds.reset(new BuiltinBug( 588 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 589 : Filter.CheckNameCStringNullArg, 590 "Out-of-bound array access", 591 "Byte string function accesses out-of-bound array element")); 592 593 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 594 595 // FIXME: It would be nice to eventually make this diagnostic more clear, 596 // e.g., by referencing the original declaration or by saying *why* this 597 // reference is outside the range. 598 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 599 Report->addRange(S->getSourceRange()); 600 C.emitReport(std::move(Report)); 601 } 602 } 603 604 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 605 const Stmt *S, 606 StringRef WarningMsg) const { 607 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 608 if (!BT_NotCString) 609 BT_NotCString.reset(new BuiltinBug( 610 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 611 "Argument is not a null-terminated string.")); 612 613 auto Report = 614 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 615 616 Report->addRange(S->getSourceRange()); 617 C.emitReport(std::move(Report)); 618 } 619 } 620 621 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 622 ProgramStateRef State) const { 623 if (ExplodedNode *N = C.generateErrorNode(State)) { 624 if (!BT_NotCString) 625 BT_NotCString.reset( 626 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 627 "Sum of expressions causes overflow.")); 628 629 // This isn't a great error message, but this should never occur in real 630 // code anyway -- you'd have to create a buffer longer than a size_t can 631 // represent, which is sort of a contradiction. 632 const char *WarningMsg = 633 "This expression will create a string whose length is too big to " 634 "be represented as a size_t"; 635 636 auto Report = 637 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 638 C.emitReport(std::move(Report)); 639 } 640 } 641 642 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 643 ProgramStateRef state, 644 NonLoc left, 645 NonLoc right) const { 646 // If out-of-bounds checking is turned off, skip the rest. 647 if (!Filter.CheckCStringOutOfBounds) 648 return state; 649 650 // If a previous check has failed, propagate the failure. 651 if (!state) 652 return nullptr; 653 654 SValBuilder &svalBuilder = C.getSValBuilder(); 655 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 656 657 QualType sizeTy = svalBuilder.getContext().getSizeType(); 658 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 659 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 660 661 SVal maxMinusRight; 662 if (right.getAs<nonloc::ConcreteInt>()) { 663 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 664 sizeTy); 665 } else { 666 // Try switching the operands. (The order of these two assignments is 667 // important!) 668 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 669 sizeTy); 670 left = right; 671 } 672 673 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 674 QualType cmpTy = svalBuilder.getConditionType(); 675 // If left > max - right, we have an overflow. 676 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 677 *maxMinusRightNL, cmpTy); 678 679 ProgramStateRef stateOverflow, stateOkay; 680 std::tie(stateOverflow, stateOkay) = 681 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 682 683 if (stateOverflow && !stateOkay) { 684 // We have an overflow. Emit a bug report. 685 emitAdditionOverflowBug(C, stateOverflow); 686 return nullptr; 687 } 688 689 // From now on, assume an overflow didn't occur. 690 assert(stateOkay); 691 state = stateOkay; 692 } 693 694 return state; 695 } 696 697 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 698 const MemRegion *MR, 699 SVal strLength) { 700 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 701 702 MR = MR->StripCasts(); 703 704 switch (MR->getKind()) { 705 case MemRegion::StringRegionKind: 706 // FIXME: This can happen if we strcpy() into a string region. This is 707 // undefined [C99 6.4.5p6], but we should still warn about it. 708 return state; 709 710 case MemRegion::SymbolicRegionKind: 711 case MemRegion::AllocaRegionKind: 712 case MemRegion::VarRegionKind: 713 case MemRegion::FieldRegionKind: 714 case MemRegion::ObjCIvarRegionKind: 715 // These are the types we can currently track string lengths for. 716 break; 717 718 case MemRegion::ElementRegionKind: 719 // FIXME: Handle element regions by upper-bounding the parent region's 720 // string length. 721 return state; 722 723 default: 724 // Other regions (mostly non-data) can't have a reliable C string length. 725 // For now, just ignore the change. 726 // FIXME: These are rare but not impossible. We should output some kind of 727 // warning for things like strcpy((char[]){'a', 0}, "b"); 728 return state; 729 } 730 731 if (strLength.isUnknown()) 732 return state->remove<CStringLength>(MR); 733 734 return state->set<CStringLength>(MR, strLength); 735 } 736 737 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 738 ProgramStateRef &state, 739 const Expr *Ex, 740 const MemRegion *MR, 741 bool hypothetical) { 742 if (!hypothetical) { 743 // If there's a recorded length, go ahead and return it. 744 const SVal *Recorded = state->get<CStringLength>(MR); 745 if (Recorded) 746 return *Recorded; 747 } 748 749 // Otherwise, get a new symbol and update the state. 750 SValBuilder &svalBuilder = C.getSValBuilder(); 751 QualType sizeTy = svalBuilder.getContext().getSizeType(); 752 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 753 MR, Ex, sizeTy, 754 C.getLocationContext(), 755 C.blockCount()); 756 757 if (!hypothetical) { 758 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 759 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 760 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 761 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 762 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 763 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 764 fourInt); 765 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 766 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 767 maxLength, sizeTy); 768 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 769 } 770 state = state->set<CStringLength>(MR, strLength); 771 } 772 773 return strLength; 774 } 775 776 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 777 const Expr *Ex, SVal Buf, 778 bool hypothetical) const { 779 const MemRegion *MR = Buf.getAsRegion(); 780 if (!MR) { 781 // If we can't get a region, see if it's something we /know/ isn't a 782 // C string. In the context of locations, the only time we can issue such 783 // a warning is for labels. 784 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 785 if (Filter.CheckCStringNotNullTerm) { 786 SmallString<120> buf; 787 llvm::raw_svector_ostream os(buf); 788 assert(CurrentFunctionDescription); 789 os << "Argument to " << CurrentFunctionDescription 790 << " is the address of the label '" << Label->getLabel()->getName() 791 << "', which is not a null-terminated string"; 792 793 emitNotCStringBug(C, state, Ex, os.str()); 794 } 795 return UndefinedVal(); 796 } 797 798 // If it's not a region and not a label, give up. 799 return UnknownVal(); 800 } 801 802 // If we have a region, strip casts from it and see if we can figure out 803 // its length. For anything we can't figure out, just return UnknownVal. 804 MR = MR->StripCasts(); 805 806 switch (MR->getKind()) { 807 case MemRegion::StringRegionKind: { 808 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 809 // so we can assume that the byte length is the correct C string length. 810 SValBuilder &svalBuilder = C.getSValBuilder(); 811 QualType sizeTy = svalBuilder.getContext().getSizeType(); 812 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 813 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 814 } 815 case MemRegion::SymbolicRegionKind: 816 case MemRegion::AllocaRegionKind: 817 case MemRegion::VarRegionKind: 818 case MemRegion::FieldRegionKind: 819 case MemRegion::ObjCIvarRegionKind: 820 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 821 case MemRegion::CompoundLiteralRegionKind: 822 // FIXME: Can we track this? Is it necessary? 823 return UnknownVal(); 824 case MemRegion::ElementRegionKind: 825 // FIXME: How can we handle this? It's not good enough to subtract the 826 // offset from the base string length; consider "123\x00567" and &a[5]. 827 return UnknownVal(); 828 default: 829 // Other regions (mostly non-data) can't have a reliable C string length. 830 // In this case, an error is emitted and UndefinedVal is returned. 831 // The caller should always be prepared to handle this case. 832 if (Filter.CheckCStringNotNullTerm) { 833 SmallString<120> buf; 834 llvm::raw_svector_ostream os(buf); 835 836 assert(CurrentFunctionDescription); 837 os << "Argument to " << CurrentFunctionDescription << " is "; 838 839 if (SummarizeRegion(os, C.getASTContext(), MR)) 840 os << ", which is not a null-terminated string"; 841 else 842 os << "not a null-terminated string"; 843 844 emitNotCStringBug(C, state, Ex, os.str()); 845 } 846 return UndefinedVal(); 847 } 848 } 849 850 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 851 ProgramStateRef &state, const Expr *expr, SVal val) const { 852 853 // Get the memory region pointed to by the val. 854 const MemRegion *bufRegion = val.getAsRegion(); 855 if (!bufRegion) 856 return nullptr; 857 858 // Strip casts off the memory region. 859 bufRegion = bufRegion->StripCasts(); 860 861 // Cast the memory region to a string region. 862 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 863 if (!strRegion) 864 return nullptr; 865 866 // Return the actual string in the string region. 867 return strRegion->getStringLiteral(); 868 } 869 870 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 871 ProgramStateRef state, 872 const Expr *FirstBuf, 873 const Expr *Size) { 874 // If we do not know that the buffer is long enough we return 'true'. 875 // Otherwise the parent region of this field region would also get 876 // invalidated, which would lead to warnings based on an unknown state. 877 878 // Originally copied from CheckBufferAccess and CheckLocation. 879 SValBuilder &svalBuilder = C.getSValBuilder(); 880 ASTContext &Ctx = svalBuilder.getContext(); 881 const LocationContext *LCtx = C.getLocationContext(); 882 883 QualType sizeTy = Size->getType(); 884 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 885 SVal BufVal = state->getSVal(FirstBuf, LCtx); 886 887 SVal LengthVal = state->getSVal(Size, LCtx); 888 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 889 if (!Length) 890 return true; // cf top comment. 891 892 // Compute the offset of the last element to be accessed: size-1. 893 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 894 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 895 if (Offset.isUnknown()) 896 return true; // cf top comment 897 NonLoc LastOffset = Offset.castAs<NonLoc>(); 898 899 // Check that the first buffer is sufficiently long. 900 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 901 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 902 if (!BufLoc) 903 return true; // cf top comment. 904 905 SVal BufEnd = 906 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 907 908 // Check for out of bound array element access. 909 const MemRegion *R = BufEnd.getAsRegion(); 910 if (!R) 911 return true; // cf top comment. 912 913 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 914 if (!ER) 915 return true; // cf top comment. 916 917 // FIXME: Does this crash when a non-standard definition 918 // of a library function is encountered? 919 assert(ER->getValueType() == C.getASTContext().CharTy && 920 "IsFirstBufInBound should only be called with char* ElementRegions"); 921 922 // Get the size of the array. 923 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 924 DefinedOrUnknownSVal SizeDV = getDynamicSize(state, superReg, svalBuilder); 925 926 // Get the index of the accessed element. 927 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 928 929 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 930 931 return static_cast<bool>(StInBound); 932 } 933 934 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 935 ProgramStateRef state, 936 const Expr *E, SVal V, 937 bool IsSourceBuffer, 938 const Expr *Size) { 939 Optional<Loc> L = V.getAs<Loc>(); 940 if (!L) 941 return state; 942 943 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 944 // some assumptions about the value that CFRefCount can't. Even so, it should 945 // probably be refactored. 946 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 947 const MemRegion *R = MR->getRegion()->StripCasts(); 948 949 // Are we dealing with an ElementRegion? If so, we should be invalidating 950 // the super-region. 951 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 952 R = ER->getSuperRegion(); 953 // FIXME: What about layers of ElementRegions? 954 } 955 956 // Invalidate this region. 957 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 958 959 bool CausesPointerEscape = false; 960 RegionAndSymbolInvalidationTraits ITraits; 961 // Invalidate and escape only indirect regions accessible through the source 962 // buffer. 963 if (IsSourceBuffer) { 964 ITraits.setTrait(R->getBaseRegion(), 965 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 966 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 967 CausesPointerEscape = true; 968 } else { 969 const MemRegion::Kind& K = R->getKind(); 970 if (K == MemRegion::FieldRegionKind) 971 if (Size && IsFirstBufInBound(C, state, E, Size)) { 972 // If destination buffer is a field region and access is in bound, 973 // do not invalidate its super region. 974 ITraits.setTrait( 975 R, 976 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 977 } 978 } 979 980 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 981 CausesPointerEscape, nullptr, nullptr, 982 &ITraits); 983 } 984 985 // If we have a non-region value by chance, just remove the binding. 986 // FIXME: is this necessary or correct? This handles the non-Region 987 // cases. Is it ever valid to store to these? 988 return state->killBinding(*L); 989 } 990 991 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 992 const MemRegion *MR) { 993 switch (MR->getKind()) { 994 case MemRegion::FunctionCodeRegionKind: { 995 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 996 os << "the address of the function '" << *FD << '\''; 997 else 998 os << "the address of a function"; 999 return true; 1000 } 1001 case MemRegion::BlockCodeRegionKind: 1002 os << "block text"; 1003 return true; 1004 case MemRegion::BlockDataRegionKind: 1005 os << "a block"; 1006 return true; 1007 case MemRegion::CXXThisRegionKind: 1008 case MemRegion::CXXTempObjectRegionKind: 1009 os << "a C++ temp object of type " 1010 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1011 return true; 1012 case MemRegion::VarRegionKind: 1013 os << "a variable of type" 1014 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1015 return true; 1016 case MemRegion::FieldRegionKind: 1017 os << "a field of type " 1018 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1019 return true; 1020 case MemRegion::ObjCIvarRegionKind: 1021 os << "an instance variable of type " 1022 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1023 return true; 1024 default: 1025 return false; 1026 } 1027 } 1028 1029 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1030 const Expr *Size, CheckerContext &C, 1031 ProgramStateRef &State) { 1032 SVal MemVal = C.getSVal(DstBuffer); 1033 SVal SizeVal = C.getSVal(Size); 1034 const MemRegion *MR = MemVal.getAsRegion(); 1035 if (!MR) 1036 return false; 1037 1038 // We're about to model memset by producing a "default binding" in the Store. 1039 // Our current implementation - RegionStore - doesn't support default bindings 1040 // that don't cover the whole base region. So we should first get the offset 1041 // and the base region to figure out whether the offset of buffer is 0. 1042 RegionOffset Offset = MR->getAsOffset(); 1043 const MemRegion *BR = Offset.getRegion(); 1044 1045 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1046 if (!SizeNL) 1047 return false; 1048 1049 SValBuilder &svalBuilder = C.getSValBuilder(); 1050 ASTContext &Ctx = C.getASTContext(); 1051 1052 // void *memset(void *dest, int ch, size_t count); 1053 // For now we can only handle the case of offset is 0 and concrete char value. 1054 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1055 Offset.getOffset() == 0) { 1056 // Get the base region's size. 1057 DefinedOrUnknownSVal SizeDV = getDynamicSize(State, BR, svalBuilder); 1058 1059 ProgramStateRef StateWholeReg, StateNotWholeReg; 1060 std::tie(StateWholeReg, StateNotWholeReg) = 1061 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1062 1063 // With the semantic of 'memset()', we should convert the CharVal to 1064 // unsigned char. 1065 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1066 1067 ProgramStateRef StateNullChar, StateNonNullChar; 1068 std::tie(StateNullChar, StateNonNullChar) = 1069 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1070 1071 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1072 !StateNonNullChar) { 1073 // If the 'memset()' acts on the whole region of destination buffer and 1074 // the value of the second argument of 'memset()' is zero, bind the second 1075 // argument's value to the destination buffer with 'default binding'. 1076 // FIXME: Since there is no perfect way to bind the non-zero character, we 1077 // can only deal with zero value here. In the future, we need to deal with 1078 // the binding of non-zero value in the case of whole region. 1079 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1080 C.getLocationContext()); 1081 } else { 1082 // If the destination buffer's extent is not equal to the value of 1083 // third argument, just invalidate buffer. 1084 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1085 /*IsSourceBuffer*/ false, Size); 1086 } 1087 1088 if (StateNullChar && !StateNonNullChar) { 1089 // If the value of the second argument of 'memset()' is zero, set the 1090 // string length of destination buffer to 0 directly. 1091 State = setCStringLength(State, MR, 1092 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1093 } else if (!StateNullChar && StateNonNullChar) { 1094 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1095 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1096 C.getLocationContext(), C.blockCount()); 1097 1098 // If the value of second argument is not zero, then the string length 1099 // is at least the size argument. 1100 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1101 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1102 1103 State = setCStringLength( 1104 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1105 MR, NewStrLen); 1106 } 1107 } else { 1108 // If the offset is not zero and char value is not concrete, we can do 1109 // nothing but invalidate the buffer. 1110 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1111 /*IsSourceBuffer*/ false, Size); 1112 } 1113 return true; 1114 } 1115 1116 //===----------------------------------------------------------------------===// 1117 // evaluation of individual function calls. 1118 //===----------------------------------------------------------------------===// 1119 1120 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1121 ProgramStateRef state, SizeArgExpr Size, 1122 DestinationArgExpr Dest, 1123 SourceArgExpr Source, bool Restricted, 1124 bool IsMempcpy) const { 1125 CurrentFunctionDescription = "memory copy function"; 1126 1127 // See if the size argument is zero. 1128 const LocationContext *LCtx = C.getLocationContext(); 1129 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1130 QualType sizeTy = Size.Expression->getType(); 1131 1132 ProgramStateRef stateZeroSize, stateNonZeroSize; 1133 std::tie(stateZeroSize, stateNonZeroSize) = 1134 assumeZero(C, state, sizeVal, sizeTy); 1135 1136 // Get the value of the Dest. 1137 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1138 1139 // If the size is zero, there won't be any actual memory access, so 1140 // just bind the return value to the destination buffer and return. 1141 if (stateZeroSize && !stateNonZeroSize) { 1142 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1143 C.addTransition(stateZeroSize); 1144 return; 1145 } 1146 1147 // If the size can be nonzero, we have to check the other arguments. 1148 if (stateNonZeroSize) { 1149 state = stateNonZeroSize; 1150 1151 // Ensure the destination is not null. If it is NULL there will be a 1152 // NULL pointer dereference. 1153 state = checkNonNull(C, state, Dest, destVal); 1154 if (!state) 1155 return; 1156 1157 // Get the value of the Src. 1158 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1159 1160 // Ensure the source is not null. If it is NULL there will be a 1161 // NULL pointer dereference. 1162 state = checkNonNull(C, state, Source, srcVal); 1163 if (!state) 1164 return; 1165 1166 // Ensure the accesses are valid and that the buffers do not overlap. 1167 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1168 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1169 1170 if (Restricted) 1171 state = CheckOverlap(C, state, Size, Dest, Source); 1172 1173 if (!state) 1174 return; 1175 1176 // If this is mempcpy, get the byte after the last byte copied and 1177 // bind the expr. 1178 if (IsMempcpy) { 1179 // Get the byte after the last byte copied. 1180 SValBuilder &SvalBuilder = C.getSValBuilder(); 1181 ASTContext &Ctx = SvalBuilder.getContext(); 1182 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1183 SVal DestRegCharVal = 1184 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1185 SVal lastElement = C.getSValBuilder().evalBinOp( 1186 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1187 // If we don't know how much we copied, we can at least 1188 // conjure a return value for later. 1189 if (lastElement.isUnknown()) 1190 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1191 C.blockCount()); 1192 1193 // The byte after the last byte copied is the return value. 1194 state = state->BindExpr(CE, LCtx, lastElement); 1195 } else { 1196 // All other copies return the destination buffer. 1197 // (Well, bcopy() has a void return type, but this won't hurt.) 1198 state = state->BindExpr(CE, LCtx, destVal); 1199 } 1200 1201 // Invalidate the destination (regular invalidation without pointer-escaping 1202 // the address of the top-level region). 1203 // FIXME: Even if we can't perfectly model the copy, we should see if we 1204 // can use LazyCompoundVals to copy the source values into the destination. 1205 // This would probably remove any existing bindings past the end of the 1206 // copied region, but that's still an improvement over blank invalidation. 1207 state = 1208 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1209 /*IsSourceBuffer*/ false, Size.Expression); 1210 1211 // Invalidate the source (const-invalidation without const-pointer-escaping 1212 // the address of the top-level region). 1213 state = InvalidateBuffer(C, state, Source.Expression, 1214 C.getSVal(Source.Expression), 1215 /*IsSourceBuffer*/ true, nullptr); 1216 1217 C.addTransition(state); 1218 } 1219 } 1220 1221 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1222 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1223 // The return value is the address of the destination buffer. 1224 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1225 SourceArgExpr Src = {CE->getArg(1), 1}; 1226 SizeArgExpr Size = {CE->getArg(2), 2}; 1227 1228 ProgramStateRef State = C.getState(); 1229 1230 constexpr bool IsRestricted = true; 1231 constexpr bool IsMempcpy = false; 1232 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1233 } 1234 1235 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1236 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1237 // The return value is a pointer to the byte following the last written byte. 1238 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1239 SourceArgExpr Src = {CE->getArg(1), 1}; 1240 SizeArgExpr Size = {CE->getArg(2), 2}; 1241 1242 constexpr bool IsRestricted = true; 1243 constexpr bool IsMempcpy = true; 1244 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1245 } 1246 1247 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1248 // void *memmove(void *dst, const void *src, size_t n); 1249 // The return value is the address of the destination buffer. 1250 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1251 SourceArgExpr Src = {CE->getArg(1), 1}; 1252 SizeArgExpr Size = {CE->getArg(2), 2}; 1253 1254 constexpr bool IsRestricted = false; 1255 constexpr bool IsMempcpy = false; 1256 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1257 } 1258 1259 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1260 // void bcopy(const void *src, void *dst, size_t n); 1261 SourceArgExpr Src(CE->getArg(0), 0); 1262 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1263 SizeArgExpr Size = {CE->getArg(2), 2}; 1264 1265 constexpr bool IsRestricted = false; 1266 constexpr bool IsMempcpy = false; 1267 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1268 } 1269 1270 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1271 // int memcmp(const void *s1, const void *s2, size_t n); 1272 CurrentFunctionDescription = "memory comparison function"; 1273 1274 AnyArgExpr Left = {CE->getArg(0), 0}; 1275 AnyArgExpr Right = {CE->getArg(1), 1}; 1276 SizeArgExpr Size = {CE->getArg(2), 2}; 1277 1278 ProgramStateRef State = C.getState(); 1279 SValBuilder &Builder = C.getSValBuilder(); 1280 const LocationContext *LCtx = C.getLocationContext(); 1281 1282 // See if the size argument is zero. 1283 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1284 QualType sizeTy = Size.Expression->getType(); 1285 1286 ProgramStateRef stateZeroSize, stateNonZeroSize; 1287 std::tie(stateZeroSize, stateNonZeroSize) = 1288 assumeZero(C, State, sizeVal, sizeTy); 1289 1290 // If the size can be zero, the result will be 0 in that case, and we don't 1291 // have to check either of the buffers. 1292 if (stateZeroSize) { 1293 State = stateZeroSize; 1294 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1295 C.addTransition(State); 1296 } 1297 1298 // If the size can be nonzero, we have to check the other arguments. 1299 if (stateNonZeroSize) { 1300 State = stateNonZeroSize; 1301 // If we know the two buffers are the same, we know the result is 0. 1302 // First, get the two buffers' addresses. Another checker will have already 1303 // made sure they're not undefined. 1304 DefinedOrUnknownSVal LV = 1305 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1306 DefinedOrUnknownSVal RV = 1307 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1308 1309 // See if they are the same. 1310 ProgramStateRef SameBuffer, NotSameBuffer; 1311 std::tie(SameBuffer, NotSameBuffer) = 1312 State->assume(Builder.evalEQ(State, LV, RV)); 1313 1314 // If the two arguments are the same buffer, we know the result is 0, 1315 // and we only need to check one size. 1316 if (SameBuffer && !NotSameBuffer) { 1317 State = SameBuffer; 1318 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1319 if (State) { 1320 State = 1321 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1322 C.addTransition(State); 1323 } 1324 return; 1325 } 1326 1327 // If the two arguments might be different buffers, we have to check 1328 // the size of both of them. 1329 assert(NotSameBuffer); 1330 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1331 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1332 if (State) { 1333 // The return value is the comparison result, which we don't know. 1334 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1335 State = State->BindExpr(CE, LCtx, CmpV); 1336 C.addTransition(State); 1337 } 1338 } 1339 } 1340 1341 void CStringChecker::evalstrLength(CheckerContext &C, 1342 const CallExpr *CE) const { 1343 // size_t strlen(const char *s); 1344 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1345 } 1346 1347 void CStringChecker::evalstrnLength(CheckerContext &C, 1348 const CallExpr *CE) const { 1349 // size_t strnlen(const char *s, size_t maxlen); 1350 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1351 } 1352 1353 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1354 bool IsStrnlen) const { 1355 CurrentFunctionDescription = "string length function"; 1356 ProgramStateRef state = C.getState(); 1357 const LocationContext *LCtx = C.getLocationContext(); 1358 1359 if (IsStrnlen) { 1360 const Expr *maxlenExpr = CE->getArg(1); 1361 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1362 1363 ProgramStateRef stateZeroSize, stateNonZeroSize; 1364 std::tie(stateZeroSize, stateNonZeroSize) = 1365 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1366 1367 // If the size can be zero, the result will be 0 in that case, and we don't 1368 // have to check the string itself. 1369 if (stateZeroSize) { 1370 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1371 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1372 C.addTransition(stateZeroSize); 1373 } 1374 1375 // If the size is GUARANTEED to be zero, we're done! 1376 if (!stateNonZeroSize) 1377 return; 1378 1379 // Otherwise, record the assumption that the size is nonzero. 1380 state = stateNonZeroSize; 1381 } 1382 1383 // Check that the string argument is non-null. 1384 AnyArgExpr Arg = {CE->getArg(0), 0}; 1385 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1386 state = checkNonNull(C, state, Arg, ArgVal); 1387 1388 if (!state) 1389 return; 1390 1391 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1392 1393 // If the argument isn't a valid C string, there's no valid state to 1394 // transition to. 1395 if (strLength.isUndef()) 1396 return; 1397 1398 DefinedOrUnknownSVal result = UnknownVal(); 1399 1400 // If the check is for strnlen() then bind the return value to no more than 1401 // the maxlen value. 1402 if (IsStrnlen) { 1403 QualType cmpTy = C.getSValBuilder().getConditionType(); 1404 1405 // It's a little unfortunate to be getting this again, 1406 // but it's not that expensive... 1407 const Expr *maxlenExpr = CE->getArg(1); 1408 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1409 1410 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1411 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1412 1413 if (strLengthNL && maxlenValNL) { 1414 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1415 1416 // Check if the strLength is greater than the maxlen. 1417 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1418 C.getSValBuilder() 1419 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1420 .castAs<DefinedOrUnknownSVal>()); 1421 1422 if (stateStringTooLong && !stateStringNotTooLong) { 1423 // If the string is longer than maxlen, return maxlen. 1424 result = *maxlenValNL; 1425 } else if (stateStringNotTooLong && !stateStringTooLong) { 1426 // If the string is shorter than maxlen, return its length. 1427 result = *strLengthNL; 1428 } 1429 } 1430 1431 if (result.isUnknown()) { 1432 // If we don't have enough information for a comparison, there's 1433 // no guarantee the full string length will actually be returned. 1434 // All we know is the return value is the min of the string length 1435 // and the limit. This is better than nothing. 1436 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1437 C.blockCount()); 1438 NonLoc resultNL = result.castAs<NonLoc>(); 1439 1440 if (strLengthNL) { 1441 state = state->assume(C.getSValBuilder().evalBinOpNN( 1442 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1443 .castAs<DefinedOrUnknownSVal>(), true); 1444 } 1445 1446 if (maxlenValNL) { 1447 state = state->assume(C.getSValBuilder().evalBinOpNN( 1448 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1449 .castAs<DefinedOrUnknownSVal>(), true); 1450 } 1451 } 1452 1453 } else { 1454 // This is a plain strlen(), not strnlen(). 1455 result = strLength.castAs<DefinedOrUnknownSVal>(); 1456 1457 // If we don't know the length of the string, conjure a return 1458 // value, so it can be used in constraints, at least. 1459 if (result.isUnknown()) { 1460 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1461 C.blockCount()); 1462 } 1463 } 1464 1465 // Bind the return value. 1466 assert(!result.isUnknown() && "Should have conjured a value by now"); 1467 state = state->BindExpr(CE, LCtx, result); 1468 C.addTransition(state); 1469 } 1470 1471 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1472 // char *strcpy(char *restrict dst, const char *restrict src); 1473 evalStrcpyCommon(C, CE, 1474 /* ReturnEnd = */ false, 1475 /* IsBounded = */ false, 1476 /* appendK = */ ConcatFnKind::none); 1477 } 1478 1479 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1480 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1481 evalStrcpyCommon(C, CE, 1482 /* ReturnEnd = */ false, 1483 /* IsBounded = */ true, 1484 /* appendK = */ ConcatFnKind::none); 1485 } 1486 1487 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1488 // char *stpcpy(char *restrict dst, const char *restrict src); 1489 evalStrcpyCommon(C, CE, 1490 /* ReturnEnd = */ true, 1491 /* IsBounded = */ false, 1492 /* appendK = */ ConcatFnKind::none); 1493 } 1494 1495 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1496 // size_t strlcpy(char *dest, const char *src, size_t size); 1497 evalStrcpyCommon(C, CE, 1498 /* ReturnEnd = */ true, 1499 /* IsBounded = */ true, 1500 /* appendK = */ ConcatFnKind::none, 1501 /* returnPtr = */ false); 1502 } 1503 1504 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1505 // char *strcat(char *restrict s1, const char *restrict s2); 1506 evalStrcpyCommon(C, CE, 1507 /* ReturnEnd = */ false, 1508 /* IsBounded = */ false, 1509 /* appendK = */ ConcatFnKind::strcat); 1510 } 1511 1512 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1513 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1514 evalStrcpyCommon(C, CE, 1515 /* ReturnEnd = */ false, 1516 /* IsBounded = */ true, 1517 /* appendK = */ ConcatFnKind::strcat); 1518 } 1519 1520 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1521 // size_t strlcat(char *dst, const char *src, size_t size); 1522 // It will append at most size - strlen(dst) - 1 bytes, 1523 // NULL-terminating the result. 1524 evalStrcpyCommon(C, CE, 1525 /* ReturnEnd = */ false, 1526 /* IsBounded = */ true, 1527 /* appendK = */ ConcatFnKind::strlcat, 1528 /* returnPtr = */ false); 1529 } 1530 1531 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1532 bool ReturnEnd, bool IsBounded, 1533 ConcatFnKind appendK, 1534 bool returnPtr) const { 1535 if (appendK == ConcatFnKind::none) 1536 CurrentFunctionDescription = "string copy function"; 1537 else 1538 CurrentFunctionDescription = "string concatenation function"; 1539 1540 ProgramStateRef state = C.getState(); 1541 const LocationContext *LCtx = C.getLocationContext(); 1542 1543 // Check that the destination is non-null. 1544 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1545 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1546 state = checkNonNull(C, state, Dst, DstVal); 1547 if (!state) 1548 return; 1549 1550 // Check that the source is non-null. 1551 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1552 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1553 state = checkNonNull(C, state, srcExpr, srcVal); 1554 if (!state) 1555 return; 1556 1557 // Get the string length of the source. 1558 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1559 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1560 1561 // Get the string length of the destination buffer. 1562 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1563 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1564 1565 // If the source isn't a valid C string, give up. 1566 if (strLength.isUndef()) 1567 return; 1568 1569 SValBuilder &svalBuilder = C.getSValBuilder(); 1570 QualType cmpTy = svalBuilder.getConditionType(); 1571 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1572 1573 // These two values allow checking two kinds of errors: 1574 // - actual overflows caused by a source that doesn't fit in the destination 1575 // - potential overflows caused by a bound that could exceed the destination 1576 SVal amountCopied = UnknownVal(); 1577 SVal maxLastElementIndex = UnknownVal(); 1578 const char *boundWarning = nullptr; 1579 1580 // FIXME: Why do we choose the srcExpr if the access has no size? 1581 // Note that the 3rd argument of the call would be the size parameter. 1582 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1583 state = CheckOverlap( 1584 C, state, 1585 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1586 srcExpr); 1587 1588 if (!state) 1589 return; 1590 1591 // If the function is strncpy, strncat, etc... it is bounded. 1592 if (IsBounded) { 1593 // Get the max number of characters to copy. 1594 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1595 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1596 1597 // Protect against misdeclared strncpy(). 1598 lenVal = 1599 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1600 1601 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1602 1603 // If we know both values, we might be able to figure out how much 1604 // we're copying. 1605 if (strLengthNL && lenValNL) { 1606 switch (appendK) { 1607 case ConcatFnKind::none: 1608 case ConcatFnKind::strcat: { 1609 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1610 // Check if the max number to copy is less than the length of the src. 1611 // If the bound is equal to the source length, strncpy won't null- 1612 // terminate the result! 1613 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1614 svalBuilder 1615 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1616 .castAs<DefinedOrUnknownSVal>()); 1617 1618 if (stateSourceTooLong && !stateSourceNotTooLong) { 1619 // Max number to copy is less than the length of the src, so the 1620 // actual strLength copied is the max number arg. 1621 state = stateSourceTooLong; 1622 amountCopied = lenVal; 1623 1624 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1625 // The source buffer entirely fits in the bound. 1626 state = stateSourceNotTooLong; 1627 amountCopied = strLength; 1628 } 1629 break; 1630 } 1631 case ConcatFnKind::strlcat: 1632 if (!dstStrLengthNL) 1633 return; 1634 1635 // amountCopied = min (size - dstLen - 1 , srcLen) 1636 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1637 *dstStrLengthNL, sizeTy); 1638 if (!freeSpace.getAs<NonLoc>()) 1639 return; 1640 freeSpace = 1641 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1642 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1643 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1644 1645 // While unlikely, it is possible that the subtraction is 1646 // too complex to compute, let's check whether it succeeded. 1647 if (!freeSpaceNL) 1648 return; 1649 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1650 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1651 1652 ProgramStateRef TrueState, FalseState; 1653 std::tie(TrueState, FalseState) = 1654 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1655 1656 // srcStrLength <= size - dstStrLength -1 1657 if (TrueState && !FalseState) { 1658 amountCopied = strLength; 1659 } 1660 1661 // srcStrLength > size - dstStrLength -1 1662 if (!TrueState && FalseState) { 1663 amountCopied = freeSpace; 1664 } 1665 1666 if (TrueState && FalseState) 1667 amountCopied = UnknownVal(); 1668 break; 1669 } 1670 } 1671 // We still want to know if the bound is known to be too large. 1672 if (lenValNL) { 1673 switch (appendK) { 1674 case ConcatFnKind::strcat: 1675 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1676 1677 // Get the string length of the destination. If the destination is 1678 // memory that can't have a string length, we shouldn't be copying 1679 // into it anyway. 1680 if (dstStrLength.isUndef()) 1681 return; 1682 1683 if (dstStrLengthNL) { 1684 maxLastElementIndex = svalBuilder.evalBinOpNN( 1685 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1686 1687 boundWarning = "Size argument is greater than the free space in the " 1688 "destination buffer"; 1689 } 1690 break; 1691 case ConcatFnKind::none: 1692 case ConcatFnKind::strlcat: 1693 // For strncpy and strlcat, this is just checking 1694 // that lenVal <= sizeof(dst). 1695 // (Yes, strncpy and strncat differ in how they treat termination. 1696 // strncat ALWAYS terminates, but strncpy doesn't.) 1697 1698 // We need a special case for when the copy size is zero, in which 1699 // case strncpy will do no work at all. Our bounds check uses n-1 1700 // as the last element accessed, so n == 0 is problematic. 1701 ProgramStateRef StateZeroSize, StateNonZeroSize; 1702 std::tie(StateZeroSize, StateNonZeroSize) = 1703 assumeZero(C, state, *lenValNL, sizeTy); 1704 1705 // If the size is known to be zero, we're done. 1706 if (StateZeroSize && !StateNonZeroSize) { 1707 if (returnPtr) { 1708 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1709 } else { 1710 if (appendK == ConcatFnKind::none) { 1711 // strlcpy returns strlen(src) 1712 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1713 } else { 1714 // strlcat returns strlen(src) + strlen(dst) 1715 SVal retSize = svalBuilder.evalBinOp( 1716 state, BO_Add, strLength, dstStrLength, sizeTy); 1717 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1718 } 1719 } 1720 C.addTransition(StateZeroSize); 1721 return; 1722 } 1723 1724 // Otherwise, go ahead and figure out the last element we'll touch. 1725 // We don't record the non-zero assumption here because we can't 1726 // be sure. We won't warn on a possible zero. 1727 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1728 maxLastElementIndex = 1729 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1730 boundWarning = "Size argument is greater than the length of the " 1731 "destination buffer"; 1732 break; 1733 } 1734 } 1735 } else { 1736 // The function isn't bounded. The amount copied should match the length 1737 // of the source buffer. 1738 amountCopied = strLength; 1739 } 1740 1741 assert(state); 1742 1743 // This represents the number of characters copied into the destination 1744 // buffer. (It may not actually be the strlen if the destination buffer 1745 // is not terminated.) 1746 SVal finalStrLength = UnknownVal(); 1747 SVal strlRetVal = UnknownVal(); 1748 1749 if (appendK == ConcatFnKind::none && !returnPtr) { 1750 // strlcpy returns the sizeof(src) 1751 strlRetVal = strLength; 1752 } 1753 1754 // If this is an appending function (strcat, strncat...) then set the 1755 // string length to strlen(src) + strlen(dst) since the buffer will 1756 // ultimately contain both. 1757 if (appendK != ConcatFnKind::none) { 1758 // Get the string length of the destination. If the destination is memory 1759 // that can't have a string length, we shouldn't be copying into it anyway. 1760 if (dstStrLength.isUndef()) 1761 return; 1762 1763 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1764 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1765 *dstStrLengthNL, sizeTy); 1766 } 1767 1768 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1769 1770 // If we know both string lengths, we might know the final string length. 1771 if (amountCopiedNL && dstStrLengthNL) { 1772 // Make sure the two lengths together don't overflow a size_t. 1773 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1774 if (!state) 1775 return; 1776 1777 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1778 *dstStrLengthNL, sizeTy); 1779 } 1780 1781 // If we couldn't get a single value for the final string length, 1782 // we can at least bound it by the individual lengths. 1783 if (finalStrLength.isUnknown()) { 1784 // Try to get a "hypothetical" string length symbol, which we can later 1785 // set as a real value if that turns out to be the case. 1786 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1787 assert(!finalStrLength.isUndef()); 1788 1789 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1790 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1791 // we overwrite dst string with the src 1792 // finalStrLength >= srcStrLength 1793 SVal sourceInResult = svalBuilder.evalBinOpNN( 1794 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1795 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1796 true); 1797 if (!state) 1798 return; 1799 } 1800 1801 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1802 // we extend the dst string with the src 1803 // finalStrLength >= dstStrLength 1804 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1805 *finalStrLengthNL, 1806 *dstStrLengthNL, 1807 cmpTy); 1808 state = 1809 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1810 if (!state) 1811 return; 1812 } 1813 } 1814 } 1815 1816 } else { 1817 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1818 // the final string length will match the input string length. 1819 finalStrLength = amountCopied; 1820 } 1821 1822 SVal Result; 1823 1824 if (returnPtr) { 1825 // The final result of the function will either be a pointer past the last 1826 // copied element, or a pointer to the start of the destination buffer. 1827 Result = (ReturnEnd ? UnknownVal() : DstVal); 1828 } else { 1829 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1830 //strlcpy, strlcat 1831 Result = strlRetVal; 1832 else 1833 Result = finalStrLength; 1834 } 1835 1836 assert(state); 1837 1838 // If the destination is a MemRegion, try to check for a buffer overflow and 1839 // record the new string length. 1840 if (Optional<loc::MemRegionVal> dstRegVal = 1841 DstVal.getAs<loc::MemRegionVal>()) { 1842 QualType ptrTy = Dst.Expression->getType(); 1843 1844 // If we have an exact value on a bounded copy, use that to check for 1845 // overflows, rather than our estimate about how much is actually copied. 1846 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1847 SVal maxLastElement = 1848 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1849 1850 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1851 if (!state) 1852 return; 1853 } 1854 1855 // Then, if the final length is known... 1856 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1857 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1858 *knownStrLength, ptrTy); 1859 1860 // ...and we haven't checked the bound, we'll check the actual copy. 1861 if (!boundWarning) { 1862 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1863 if (!state) 1864 return; 1865 } 1866 1867 // If this is a stpcpy-style copy, the last element is the return value. 1868 if (returnPtr && ReturnEnd) 1869 Result = lastElement; 1870 } 1871 1872 // Invalidate the destination (regular invalidation without pointer-escaping 1873 // the address of the top-level region). This must happen before we set the 1874 // C string length because invalidation will clear the length. 1875 // FIXME: Even if we can't perfectly model the copy, we should see if we 1876 // can use LazyCompoundVals to copy the source values into the destination. 1877 // This would probably remove any existing bindings past the end of the 1878 // string, but that's still an improvement over blank invalidation. 1879 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1880 /*IsSourceBuffer*/ false, nullptr); 1881 1882 // Invalidate the source (const-invalidation without const-pointer-escaping 1883 // the address of the top-level region). 1884 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1885 /*IsSourceBuffer*/ true, nullptr); 1886 1887 // Set the C string length of the destination, if we know it. 1888 if (IsBounded && (appendK == ConcatFnKind::none)) { 1889 // strncpy is annoying in that it doesn't guarantee to null-terminate 1890 // the result string. If the original string didn't fit entirely inside 1891 // the bound (including the null-terminator), we don't know how long the 1892 // result is. 1893 if (amountCopied != strLength) 1894 finalStrLength = UnknownVal(); 1895 } 1896 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1897 } 1898 1899 assert(state); 1900 1901 if (returnPtr) { 1902 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1903 // overflow, we still need a result. Conjure a return value. 1904 if (ReturnEnd && Result.isUnknown()) { 1905 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1906 } 1907 } 1908 // Set the return value. 1909 state = state->BindExpr(CE, LCtx, Result); 1910 C.addTransition(state); 1911 } 1912 1913 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1914 //int strcmp(const char *s1, const char *s2); 1915 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1916 } 1917 1918 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1919 //int strncmp(const char *s1, const char *s2, size_t n); 1920 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1921 } 1922 1923 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1924 const CallExpr *CE) const { 1925 //int strcasecmp(const char *s1, const char *s2); 1926 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1927 } 1928 1929 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1930 const CallExpr *CE) const { 1931 //int strncasecmp(const char *s1, const char *s2, size_t n); 1932 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1933 } 1934 1935 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1936 bool IsBounded, bool IgnoreCase) const { 1937 CurrentFunctionDescription = "string comparison function"; 1938 ProgramStateRef state = C.getState(); 1939 const LocationContext *LCtx = C.getLocationContext(); 1940 1941 // Check that the first string is non-null 1942 AnyArgExpr Left = {CE->getArg(0), 0}; 1943 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1944 state = checkNonNull(C, state, Left, LeftVal); 1945 if (!state) 1946 return; 1947 1948 // Check that the second string is non-null. 1949 AnyArgExpr Right = {CE->getArg(1), 1}; 1950 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1951 state = checkNonNull(C, state, Right, RightVal); 1952 if (!state) 1953 return; 1954 1955 // Get the string length of the first string or give up. 1956 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1957 if (LeftLength.isUndef()) 1958 return; 1959 1960 // Get the string length of the second string or give up. 1961 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 1962 if (RightLength.isUndef()) 1963 return; 1964 1965 // If we know the two buffers are the same, we know the result is 0. 1966 // First, get the two buffers' addresses. Another checker will have already 1967 // made sure they're not undefined. 1968 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 1969 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 1970 1971 // See if they are the same. 1972 SValBuilder &svalBuilder = C.getSValBuilder(); 1973 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1974 ProgramStateRef StSameBuf, StNotSameBuf; 1975 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1976 1977 // If the two arguments might be the same buffer, we know the result is 0, 1978 // and we only need to check one size. 1979 if (StSameBuf) { 1980 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1981 svalBuilder.makeZeroVal(CE->getType())); 1982 C.addTransition(StSameBuf); 1983 1984 // If the two arguments are GUARANTEED to be the same, we're done! 1985 if (!StNotSameBuf) 1986 return; 1987 } 1988 1989 assert(StNotSameBuf); 1990 state = StNotSameBuf; 1991 1992 // At this point we can go about comparing the two buffers. 1993 // For now, we only do this if they're both known string literals. 1994 1995 // Attempt to extract string literals from both expressions. 1996 const StringLiteral *LeftStrLiteral = 1997 getCStringLiteral(C, state, Left.Expression, LeftVal); 1998 const StringLiteral *RightStrLiteral = 1999 getCStringLiteral(C, state, Right.Expression, RightVal); 2000 bool canComputeResult = false; 2001 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2002 C.blockCount()); 2003 2004 if (LeftStrLiteral && RightStrLiteral) { 2005 StringRef LeftStrRef = LeftStrLiteral->getString(); 2006 StringRef RightStrRef = RightStrLiteral->getString(); 2007 2008 if (IsBounded) { 2009 // Get the max number of characters to compare. 2010 const Expr *lenExpr = CE->getArg(2); 2011 SVal lenVal = state->getSVal(lenExpr, LCtx); 2012 2013 // If the length is known, we can get the right substrings. 2014 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2015 // Create substrings of each to compare the prefix. 2016 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2017 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2018 canComputeResult = true; 2019 } 2020 } else { 2021 // This is a normal, unbounded strcmp. 2022 canComputeResult = true; 2023 } 2024 2025 if (canComputeResult) { 2026 // Real strcmp stops at null characters. 2027 size_t s1Term = LeftStrRef.find('\0'); 2028 if (s1Term != StringRef::npos) 2029 LeftStrRef = LeftStrRef.substr(0, s1Term); 2030 2031 size_t s2Term = RightStrRef.find('\0'); 2032 if (s2Term != StringRef::npos) 2033 RightStrRef = RightStrRef.substr(0, s2Term); 2034 2035 // Use StringRef's comparison methods to compute the actual result. 2036 int compareRes = IgnoreCase ? LeftStrRef.compare_lower(RightStrRef) 2037 : LeftStrRef.compare(RightStrRef); 2038 2039 // The strcmp function returns an integer greater than, equal to, or less 2040 // than zero, [c11, p7.24.4.2]. 2041 if (compareRes == 0) { 2042 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2043 } 2044 else { 2045 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2046 // Constrain strcmp's result range based on the result of StringRef's 2047 // comparison methods. 2048 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2049 SVal compareWithZero = 2050 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2051 svalBuilder.getConditionType()); 2052 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2053 state = state->assume(compareWithZeroVal, true); 2054 } 2055 } 2056 } 2057 2058 state = state->BindExpr(CE, LCtx, resultVal); 2059 2060 // Record this as a possible path. 2061 C.addTransition(state); 2062 } 2063 2064 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2065 //char *strsep(char **stringp, const char *delim); 2066 // Sanity: does the search string parameter match the return type? 2067 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2068 2069 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2070 if (CharPtrTy.isNull() || 2071 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2072 return; 2073 2074 CurrentFunctionDescription = "strsep()"; 2075 ProgramStateRef State = C.getState(); 2076 const LocationContext *LCtx = C.getLocationContext(); 2077 2078 // Check that the search string pointer is non-null (though it may point to 2079 // a null string). 2080 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2081 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2082 if (!State) 2083 return; 2084 2085 // Check that the delimiter string is non-null. 2086 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2087 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2088 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2089 if (!State) 2090 return; 2091 2092 SValBuilder &SVB = C.getSValBuilder(); 2093 SVal Result; 2094 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2095 // Get the current value of the search string pointer, as a char*. 2096 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2097 2098 // Invalidate the search string, representing the change of one delimiter 2099 // character to NUL. 2100 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2101 /*IsSourceBuffer*/ false, nullptr); 2102 2103 // Overwrite the search string pointer. The new value is either an address 2104 // further along in the same string, or NULL if there are no more tokens. 2105 State = State->bindLoc(*SearchStrLoc, 2106 SVB.conjureSymbolVal(getTag(), 2107 CE, 2108 LCtx, 2109 CharPtrTy, 2110 C.blockCount()), 2111 LCtx); 2112 } else { 2113 assert(SearchStrVal.isUnknown()); 2114 // Conjure a symbolic value. It's the best we can do. 2115 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2116 } 2117 2118 // Set the return value, and finish. 2119 State = State->BindExpr(CE, LCtx, Result); 2120 C.addTransition(State); 2121 } 2122 2123 // These should probably be moved into a C++ standard library checker. 2124 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2125 evalStdCopyCommon(C, CE); 2126 } 2127 2128 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2129 const CallExpr *CE) const { 2130 evalStdCopyCommon(C, CE); 2131 } 2132 2133 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2134 const CallExpr *CE) const { 2135 if (!CE->getArg(2)->getType()->isPointerType()) 2136 return; 2137 2138 ProgramStateRef State = C.getState(); 2139 2140 const LocationContext *LCtx = C.getLocationContext(); 2141 2142 // template <class _InputIterator, class _OutputIterator> 2143 // _OutputIterator 2144 // copy(_InputIterator __first, _InputIterator __last, 2145 // _OutputIterator __result) 2146 2147 // Invalidate the destination buffer 2148 const Expr *Dst = CE->getArg(2); 2149 SVal DstVal = State->getSVal(Dst, LCtx); 2150 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2151 /*Size=*/nullptr); 2152 2153 SValBuilder &SVB = C.getSValBuilder(); 2154 2155 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2156 State = State->BindExpr(CE, LCtx, ResultVal); 2157 2158 C.addTransition(State); 2159 } 2160 2161 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2162 // void *memset(void *s, int c, size_t n); 2163 CurrentFunctionDescription = "memory set function"; 2164 2165 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2166 AnyArgExpr CharE = {CE->getArg(1), 1}; 2167 SizeArgExpr Size = {CE->getArg(2), 2}; 2168 2169 ProgramStateRef State = C.getState(); 2170 2171 // See if the size argument is zero. 2172 const LocationContext *LCtx = C.getLocationContext(); 2173 SVal SizeVal = C.getSVal(Size.Expression); 2174 QualType SizeTy = Size.Expression->getType(); 2175 2176 ProgramStateRef ZeroSize, NonZeroSize; 2177 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2178 2179 // Get the value of the memory area. 2180 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2181 2182 // If the size is zero, there won't be any actual memory access, so 2183 // just bind the return value to the buffer and return. 2184 if (ZeroSize && !NonZeroSize) { 2185 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2186 C.addTransition(ZeroSize); 2187 return; 2188 } 2189 2190 // Ensure the memory area is not null. 2191 // If it is NULL there will be a NULL pointer dereference. 2192 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2193 if (!State) 2194 return; 2195 2196 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2197 if (!State) 2198 return; 2199 2200 // According to the values of the arguments, bind the value of the second 2201 // argument to the destination buffer and set string length, or just 2202 // invalidate the destination buffer. 2203 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2204 Size.Expression, C, State)) 2205 return; 2206 2207 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2208 C.addTransition(State); 2209 } 2210 2211 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2212 CurrentFunctionDescription = "memory clearance function"; 2213 2214 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2215 SizeArgExpr Size = {CE->getArg(1), 1}; 2216 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2217 2218 ProgramStateRef State = C.getState(); 2219 2220 // See if the size argument is zero. 2221 SVal SizeVal = C.getSVal(Size.Expression); 2222 QualType SizeTy = Size.Expression->getType(); 2223 2224 ProgramStateRef StateZeroSize, StateNonZeroSize; 2225 std::tie(StateZeroSize, StateNonZeroSize) = 2226 assumeZero(C, State, SizeVal, SizeTy); 2227 2228 // If the size is zero, there won't be any actual memory access, 2229 // In this case we just return. 2230 if (StateZeroSize && !StateNonZeroSize) { 2231 C.addTransition(StateZeroSize); 2232 return; 2233 } 2234 2235 // Get the value of the memory area. 2236 SVal MemVal = C.getSVal(Buffer.Expression); 2237 2238 // Ensure the memory area is not null. 2239 // If it is NULL there will be a NULL pointer dereference. 2240 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2241 if (!State) 2242 return; 2243 2244 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2245 if (!State) 2246 return; 2247 2248 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2249 return; 2250 2251 C.addTransition(State); 2252 } 2253 2254 //===----------------------------------------------------------------------===// 2255 // The driver method, and other Checker callbacks. 2256 //===----------------------------------------------------------------------===// 2257 2258 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2259 CheckerContext &C) const { 2260 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2261 if (!CE) 2262 return nullptr; 2263 2264 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2265 if (!FD) 2266 return nullptr; 2267 2268 if (Call.isCalled(StdCopy)) { 2269 return &CStringChecker::evalStdCopy; 2270 } else if (Call.isCalled(StdCopyBackward)) { 2271 return &CStringChecker::evalStdCopyBackward; 2272 } 2273 2274 // Pro-actively check that argument types are safe to do arithmetic upon. 2275 // We do not want to crash if someone accidentally passes a structure 2276 // into, say, a C++ overload of any of these functions. We could not check 2277 // that for std::copy because they may have arguments of other types. 2278 for (auto I : CE->arguments()) { 2279 QualType T = I->getType(); 2280 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2281 return nullptr; 2282 } 2283 2284 const FnCheck *Callback = Callbacks.lookup(Call); 2285 if (Callback) 2286 return *Callback; 2287 2288 return nullptr; 2289 } 2290 2291 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2292 FnCheck Callback = identifyCall(Call, C); 2293 2294 // If the callee isn't a string function, let another checker handle it. 2295 if (!Callback) 2296 return false; 2297 2298 // Check and evaluate the call. 2299 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2300 (this->*Callback)(C, CE); 2301 2302 // If the evaluate call resulted in no change, chain to the next eval call 2303 // handler. 2304 // Note, the custom CString evaluation calls assume that basic safety 2305 // properties are held. However, if the user chooses to turn off some of these 2306 // checks, we ignore the issues and leave the call evaluation to a generic 2307 // handler. 2308 return C.isDifferent(); 2309 } 2310 2311 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2312 // Record string length for char a[] = "abc"; 2313 ProgramStateRef state = C.getState(); 2314 2315 for (const auto *I : DS->decls()) { 2316 const VarDecl *D = dyn_cast<VarDecl>(I); 2317 if (!D) 2318 continue; 2319 2320 // FIXME: Handle array fields of structs. 2321 if (!D->getType()->isArrayType()) 2322 continue; 2323 2324 const Expr *Init = D->getInit(); 2325 if (!Init) 2326 continue; 2327 if (!isa<StringLiteral>(Init)) 2328 continue; 2329 2330 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2331 const MemRegion *MR = VarLoc.getAsRegion(); 2332 if (!MR) 2333 continue; 2334 2335 SVal StrVal = C.getSVal(Init); 2336 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2337 DefinedOrUnknownSVal strLength = 2338 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2339 2340 state = state->set<CStringLength>(MR, strLength); 2341 } 2342 2343 C.addTransition(state); 2344 } 2345 2346 ProgramStateRef 2347 CStringChecker::checkRegionChanges(ProgramStateRef state, 2348 const InvalidatedSymbols *, 2349 ArrayRef<const MemRegion *> ExplicitRegions, 2350 ArrayRef<const MemRegion *> Regions, 2351 const LocationContext *LCtx, 2352 const CallEvent *Call) const { 2353 CStringLengthTy Entries = state->get<CStringLength>(); 2354 if (Entries.isEmpty()) 2355 return state; 2356 2357 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2358 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2359 2360 // First build sets for the changed regions and their super-regions. 2361 for (ArrayRef<const MemRegion *>::iterator 2362 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2363 const MemRegion *MR = *I; 2364 Invalidated.insert(MR); 2365 2366 SuperRegions.insert(MR); 2367 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2368 MR = SR->getSuperRegion(); 2369 SuperRegions.insert(MR); 2370 } 2371 } 2372 2373 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2374 2375 // Then loop over the entries in the current state. 2376 for (CStringLengthTy::iterator I = Entries.begin(), 2377 E = Entries.end(); I != E; ++I) { 2378 const MemRegion *MR = I.getKey(); 2379 2380 // Is this entry for a super-region of a changed region? 2381 if (SuperRegions.count(MR)) { 2382 Entries = F.remove(Entries, MR); 2383 continue; 2384 } 2385 2386 // Is this entry for a sub-region of a changed region? 2387 const MemRegion *Super = MR; 2388 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2389 Super = SR->getSuperRegion(); 2390 if (Invalidated.count(Super)) { 2391 Entries = F.remove(Entries, MR); 2392 break; 2393 } 2394 } 2395 } 2396 2397 return state->set<CStringLength>(Entries); 2398 } 2399 2400 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2401 SymbolReaper &SR) const { 2402 // Mark all symbols in our string length map as valid. 2403 CStringLengthTy Entries = state->get<CStringLength>(); 2404 2405 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2406 I != E; ++I) { 2407 SVal Len = I.getData(); 2408 2409 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2410 se = Len.symbol_end(); si != se; ++si) 2411 SR.markInUse(*si); 2412 } 2413 } 2414 2415 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2416 CheckerContext &C) const { 2417 ProgramStateRef state = C.getState(); 2418 CStringLengthTy Entries = state->get<CStringLength>(); 2419 if (Entries.isEmpty()) 2420 return; 2421 2422 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2423 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2424 I != E; ++I) { 2425 SVal Len = I.getData(); 2426 if (SymbolRef Sym = Len.getAsSymbol()) { 2427 if (SR.isDead(Sym)) 2428 Entries = F.remove(Entries, I.getKey()); 2429 } 2430 } 2431 2432 state = state->set<CStringLength>(Entries); 2433 C.addTransition(state); 2434 } 2435 2436 void ento::registerCStringModeling(CheckerManager &Mgr) { 2437 Mgr.registerChecker<CStringChecker>(); 2438 } 2439 2440 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2441 return true; 2442 } 2443 2444 #define REGISTER_CHECKER(name) \ 2445 void ento::register##name(CheckerManager &mgr) { \ 2446 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2447 checker->Filter.Check##name = true; \ 2448 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2449 } \ 2450 \ 2451 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2452 2453 REGISTER_CHECKER(CStringNullArg) 2454 REGISTER_CHECKER(CStringOutOfBounds) 2455 REGISTER_CHECKER(CStringBufferOverlap) 2456 REGISTER_CHECKER(CStringNotNullTerm) 2457