1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 77 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 80 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 81 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 82 ProgramStateRef state, 83 const Expr *Size, 84 const Expr *Source, 85 const Expr *Dest, 86 bool Restricted = false, 87 bool IsMempcpy = false) const; 88 89 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 90 91 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrLengthCommon(CheckerContext &C, 94 const CallExpr *CE, 95 bool IsStrnlen = false) const; 96 97 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrcpyCommon(CheckerContext &C, 101 const CallExpr *CE, 102 bool returnEnd, 103 bool isBounded, 104 bool isAppending) const; 105 106 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 107 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 108 109 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 110 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 111 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrcmpCommon(CheckerContext &C, 114 const CallExpr *CE, 115 bool isBounded = false, 116 bool ignoreCase = false) const; 117 118 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 119 120 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 121 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 122 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 123 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 124 125 // Utility methods 126 std::pair<ProgramStateRef , ProgramStateRef > 127 static assumeZero(CheckerContext &C, 128 ProgramStateRef state, SVal V, QualType Ty); 129 130 static ProgramStateRef setCStringLength(ProgramStateRef state, 131 const MemRegion *MR, 132 SVal strLength); 133 static SVal getCStringLengthForRegion(CheckerContext &C, 134 ProgramStateRef &state, 135 const Expr *Ex, 136 const MemRegion *MR, 137 bool hypothetical); 138 SVal getCStringLength(CheckerContext &C, 139 ProgramStateRef &state, 140 const Expr *Ex, 141 SVal Buf, 142 bool hypothetical = false) const; 143 144 const StringLiteral *getCStringLiteral(CheckerContext &C, 145 ProgramStateRef &state, 146 const Expr *expr, 147 SVal val) const; 148 149 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 150 ProgramStateRef state, 151 const Expr *Ex, SVal V, 152 bool IsSourceBuffer, 153 const Expr *Size); 154 155 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 156 const MemRegion *MR); 157 158 // Re-usable checks 159 ProgramStateRef checkNonNull(CheckerContext &C, 160 ProgramStateRef state, 161 const Expr *S, 162 SVal l) const; 163 ProgramStateRef CheckLocation(CheckerContext &C, 164 ProgramStateRef state, 165 const Expr *S, 166 SVal l, 167 const char *message = nullptr) const; 168 ProgramStateRef CheckBufferAccess(CheckerContext &C, 169 ProgramStateRef state, 170 const Expr *Size, 171 const Expr *FirstBuf, 172 const Expr *SecondBuf, 173 const char *firstMessage = nullptr, 174 const char *secondMessage = nullptr, 175 bool WarnAboutSize = false) const; 176 177 ProgramStateRef CheckBufferAccess(CheckerContext &C, 178 ProgramStateRef state, 179 const Expr *Size, 180 const Expr *Buf, 181 const char *message = nullptr, 182 bool WarnAboutSize = false) const { 183 // This is a convenience override. 184 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 185 WarnAboutSize); 186 } 187 ProgramStateRef CheckOverlap(CheckerContext &C, 188 ProgramStateRef state, 189 const Expr *Size, 190 const Expr *First, 191 const Expr *Second) const; 192 void emitOverlapBug(CheckerContext &C, 193 ProgramStateRef state, 194 const Stmt *First, 195 const Stmt *Second) const; 196 197 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 198 ProgramStateRef state, 199 NonLoc left, 200 NonLoc right) const; 201 202 // Return true if the destination buffer of the copy function may be in bound. 203 // Expects SVal of Size to be positive and unsigned. 204 // Expects SVal of FirstBuf to be a FieldRegion. 205 static bool IsFirstBufInBound(CheckerContext &C, 206 ProgramStateRef state, 207 const Expr *FirstBuf, 208 const Expr *Size); 209 }; 210 211 } //end anonymous namespace 212 213 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 214 215 //===----------------------------------------------------------------------===// 216 // Individual checks and utility methods. 217 //===----------------------------------------------------------------------===// 218 219 std::pair<ProgramStateRef , ProgramStateRef > 220 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 221 QualType Ty) { 222 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 223 if (!val) 224 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 225 226 SValBuilder &svalBuilder = C.getSValBuilder(); 227 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 228 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 229 } 230 231 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 232 ProgramStateRef state, 233 const Expr *S, SVal l) const { 234 // If a previous check has failed, propagate the failure. 235 if (!state) 236 return nullptr; 237 238 ProgramStateRef stateNull, stateNonNull; 239 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 240 241 if (stateNull && !stateNonNull) { 242 if (!Filter.CheckCStringNullArg) 243 return nullptr; 244 245 ExplodedNode *N = C.generateErrorNode(stateNull); 246 if (!N) 247 return nullptr; 248 249 if (!BT_Null) 250 BT_Null.reset(new BuiltinBug( 251 Filter.CheckNameCStringNullArg, categories::UnixAPI, 252 "Null pointer argument in call to byte string function")); 253 254 SmallString<80> buf; 255 llvm::raw_svector_ostream os(buf); 256 assert(CurrentFunctionDescription); 257 os << "Null pointer argument in call to " << CurrentFunctionDescription; 258 259 // Generate a report for this bug. 260 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); 261 auto report = llvm::make_unique<BugReport>(*BT, os.str(), N); 262 263 report->addRange(S->getSourceRange()); 264 bugreporter::trackNullOrUndefValue(N, S, *report); 265 C.emitReport(std::move(report)); 266 return nullptr; 267 } 268 269 // From here on, assume that the value is non-null. 270 assert(stateNonNull); 271 return stateNonNull; 272 } 273 274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 276 ProgramStateRef state, 277 const Expr *S, SVal l, 278 const char *warningMsg) const { 279 // If a previous check has failed, propagate the failure. 280 if (!state) 281 return nullptr; 282 283 // Check for out of bound array element access. 284 const MemRegion *R = l.getAsRegion(); 285 if (!R) 286 return state; 287 288 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 289 if (!ER) 290 return state; 291 292 assert(ER->getValueType() == C.getASTContext().CharTy && 293 "CheckLocation should only be called with char* ElementRegions"); 294 295 // Get the size of the array. 296 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 297 SValBuilder &svalBuilder = C.getSValBuilder(); 298 SVal Extent = 299 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 300 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 301 302 // Get the index of the accessed element. 303 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 304 305 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 306 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 307 if (StOutBound && !StInBound) { 308 ExplodedNode *N = C.generateErrorNode(StOutBound); 309 if (!N) 310 return nullptr; 311 312 if (!BT_Bounds) { 313 BT_Bounds.reset(new BuiltinBug( 314 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access", 315 "Byte string function accesses out-of-bound array element")); 316 } 317 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); 318 319 // Generate a report for this bug. 320 std::unique_ptr<BugReport> report; 321 if (warningMsg) { 322 report = llvm::make_unique<BugReport>(*BT, warningMsg, N); 323 } else { 324 assert(CurrentFunctionDescription); 325 assert(CurrentFunctionDescription[0] != '\0'); 326 327 SmallString<80> buf; 328 llvm::raw_svector_ostream os(buf); 329 os << toUppercase(CurrentFunctionDescription[0]) 330 << &CurrentFunctionDescription[1] 331 << " accesses out-of-bound array element"; 332 report = llvm::make_unique<BugReport>(*BT, os.str(), N); 333 } 334 335 // FIXME: It would be nice to eventually make this diagnostic more clear, 336 // e.g., by referencing the original declaration or by saying *why* this 337 // reference is outside the range. 338 339 report->addRange(S->getSourceRange()); 340 C.emitReport(std::move(report)); 341 return nullptr; 342 } 343 344 // Array bound check succeeded. From this point forward the array bound 345 // should always succeed. 346 return StInBound; 347 } 348 349 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 350 ProgramStateRef state, 351 const Expr *Size, 352 const Expr *FirstBuf, 353 const Expr *SecondBuf, 354 const char *firstMessage, 355 const char *secondMessage, 356 bool WarnAboutSize) const { 357 // If a previous check has failed, propagate the failure. 358 if (!state) 359 return nullptr; 360 361 SValBuilder &svalBuilder = C.getSValBuilder(); 362 ASTContext &Ctx = svalBuilder.getContext(); 363 const LocationContext *LCtx = C.getLocationContext(); 364 365 QualType sizeTy = Size->getType(); 366 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 367 368 // Check that the first buffer is non-null. 369 SVal BufVal = state->getSVal(FirstBuf, LCtx); 370 state = checkNonNull(C, state, FirstBuf, BufVal); 371 if (!state) 372 return nullptr; 373 374 // If out-of-bounds checking is turned off, skip the rest. 375 if (!Filter.CheckCStringOutOfBounds) 376 return state; 377 378 // Get the access length and make sure it is known. 379 // FIXME: This assumes the caller has already checked that the access length 380 // is positive. And that it's unsigned. 381 SVal LengthVal = state->getSVal(Size, LCtx); 382 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 383 if (!Length) 384 return state; 385 386 // Compute the offset of the last element to be accessed: size-1. 387 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 388 NonLoc LastOffset = svalBuilder 389 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); 390 391 // Check that the first buffer is sufficiently long. 392 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 393 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 394 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 395 396 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 397 LastOffset, PtrTy); 398 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 399 400 // If the buffer isn't large enough, abort. 401 if (!state) 402 return nullptr; 403 } 404 405 // If there's a second buffer, check it as well. 406 if (SecondBuf) { 407 BufVal = state->getSVal(SecondBuf, LCtx); 408 state = checkNonNull(C, state, SecondBuf, BufVal); 409 if (!state) 410 return nullptr; 411 412 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 413 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 414 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 415 416 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 417 LastOffset, PtrTy); 418 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 419 } 420 } 421 422 // Large enough or not, return this state! 423 return state; 424 } 425 426 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 427 ProgramStateRef state, 428 const Expr *Size, 429 const Expr *First, 430 const Expr *Second) const { 431 if (!Filter.CheckCStringBufferOverlap) 432 return state; 433 434 // Do a simple check for overlap: if the two arguments are from the same 435 // buffer, see if the end of the first is greater than the start of the second 436 // or vice versa. 437 438 // If a previous check has failed, propagate the failure. 439 if (!state) 440 return nullptr; 441 442 ProgramStateRef stateTrue, stateFalse; 443 444 // Get the buffer values and make sure they're known locations. 445 const LocationContext *LCtx = C.getLocationContext(); 446 SVal firstVal = state->getSVal(First, LCtx); 447 SVal secondVal = state->getSVal(Second, LCtx); 448 449 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 450 if (!firstLoc) 451 return state; 452 453 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 454 if (!secondLoc) 455 return state; 456 457 // Are the two values the same? 458 SValBuilder &svalBuilder = C.getSValBuilder(); 459 std::tie(stateTrue, stateFalse) = 460 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 461 462 if (stateTrue && !stateFalse) { 463 // If the values are known to be equal, that's automatically an overlap. 464 emitOverlapBug(C, stateTrue, First, Second); 465 return nullptr; 466 } 467 468 // assume the two expressions are not equal. 469 assert(stateFalse); 470 state = stateFalse; 471 472 // Which value comes first? 473 QualType cmpTy = svalBuilder.getConditionType(); 474 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 475 *firstLoc, *secondLoc, cmpTy); 476 Optional<DefinedOrUnknownSVal> reverseTest = 477 reverse.getAs<DefinedOrUnknownSVal>(); 478 if (!reverseTest) 479 return state; 480 481 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 482 if (stateTrue) { 483 if (stateFalse) { 484 // If we don't know which one comes first, we can't perform this test. 485 return state; 486 } else { 487 // Switch the values so that firstVal is before secondVal. 488 std::swap(firstLoc, secondLoc); 489 490 // Switch the Exprs as well, so that they still correspond. 491 std::swap(First, Second); 492 } 493 } 494 495 // Get the length, and make sure it too is known. 496 SVal LengthVal = state->getSVal(Size, LCtx); 497 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 498 if (!Length) 499 return state; 500 501 // Convert the first buffer's start address to char*. 502 // Bail out if the cast fails. 503 ASTContext &Ctx = svalBuilder.getContext(); 504 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 505 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 506 First->getType()); 507 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 508 if (!FirstStartLoc) 509 return state; 510 511 // Compute the end of the first buffer. Bail out if THAT fails. 512 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 513 *FirstStartLoc, *Length, CharPtrTy); 514 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 515 if (!FirstEndLoc) 516 return state; 517 518 // Is the end of the first buffer past the start of the second buffer? 519 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 520 *FirstEndLoc, *secondLoc, cmpTy); 521 Optional<DefinedOrUnknownSVal> OverlapTest = 522 Overlap.getAs<DefinedOrUnknownSVal>(); 523 if (!OverlapTest) 524 return state; 525 526 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 527 528 if (stateTrue && !stateFalse) { 529 // Overlap! 530 emitOverlapBug(C, stateTrue, First, Second); 531 return nullptr; 532 } 533 534 // assume the two expressions don't overlap. 535 assert(stateFalse); 536 return stateFalse; 537 } 538 539 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 540 const Stmt *First, const Stmt *Second) const { 541 ExplodedNode *N = C.generateErrorNode(state); 542 if (!N) 543 return; 544 545 if (!BT_Overlap) 546 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 547 categories::UnixAPI, "Improper arguments")); 548 549 // Generate a report for this bug. 550 auto report = llvm::make_unique<BugReport>( 551 *BT_Overlap, "Arguments must not be overlapping buffers", N); 552 report->addRange(First->getSourceRange()); 553 report->addRange(Second->getSourceRange()); 554 555 C.emitReport(std::move(report)); 556 } 557 558 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 559 ProgramStateRef state, 560 NonLoc left, 561 NonLoc right) const { 562 // If out-of-bounds checking is turned off, skip the rest. 563 if (!Filter.CheckCStringOutOfBounds) 564 return state; 565 566 // If a previous check has failed, propagate the failure. 567 if (!state) 568 return nullptr; 569 570 SValBuilder &svalBuilder = C.getSValBuilder(); 571 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 572 573 QualType sizeTy = svalBuilder.getContext().getSizeType(); 574 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 575 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 576 577 SVal maxMinusRight; 578 if (right.getAs<nonloc::ConcreteInt>()) { 579 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 580 sizeTy); 581 } else { 582 // Try switching the operands. (The order of these two assignments is 583 // important!) 584 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 585 sizeTy); 586 left = right; 587 } 588 589 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 590 QualType cmpTy = svalBuilder.getConditionType(); 591 // If left > max - right, we have an overflow. 592 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 593 *maxMinusRightNL, cmpTy); 594 595 ProgramStateRef stateOverflow, stateOkay; 596 std::tie(stateOverflow, stateOkay) = 597 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 598 599 if (stateOverflow && !stateOkay) { 600 // We have an overflow. Emit a bug report. 601 ExplodedNode *N = C.generateErrorNode(stateOverflow); 602 if (!N) 603 return nullptr; 604 605 if (!BT_AdditionOverflow) 606 BT_AdditionOverflow.reset( 607 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 608 "Sum of expressions causes overflow")); 609 610 // This isn't a great error message, but this should never occur in real 611 // code anyway -- you'd have to create a buffer longer than a size_t can 612 // represent, which is sort of a contradiction. 613 const char *warning = 614 "This expression will create a string whose length is too big to " 615 "be represented as a size_t"; 616 617 // Generate a report for this bug. 618 C.emitReport( 619 llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N)); 620 621 return nullptr; 622 } 623 624 // From now on, assume an overflow didn't occur. 625 assert(stateOkay); 626 state = stateOkay; 627 } 628 629 return state; 630 } 631 632 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 633 const MemRegion *MR, 634 SVal strLength) { 635 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 636 637 MR = MR->StripCasts(); 638 639 switch (MR->getKind()) { 640 case MemRegion::StringRegionKind: 641 // FIXME: This can happen if we strcpy() into a string region. This is 642 // undefined [C99 6.4.5p6], but we should still warn about it. 643 return state; 644 645 case MemRegion::SymbolicRegionKind: 646 case MemRegion::AllocaRegionKind: 647 case MemRegion::VarRegionKind: 648 case MemRegion::FieldRegionKind: 649 case MemRegion::ObjCIvarRegionKind: 650 // These are the types we can currently track string lengths for. 651 break; 652 653 case MemRegion::ElementRegionKind: 654 // FIXME: Handle element regions by upper-bounding the parent region's 655 // string length. 656 return state; 657 658 default: 659 // Other regions (mostly non-data) can't have a reliable C string length. 660 // For now, just ignore the change. 661 // FIXME: These are rare but not impossible. We should output some kind of 662 // warning for things like strcpy((char[]){'a', 0}, "b"); 663 return state; 664 } 665 666 if (strLength.isUnknown()) 667 return state->remove<CStringLength>(MR); 668 669 return state->set<CStringLength>(MR, strLength); 670 } 671 672 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 673 ProgramStateRef &state, 674 const Expr *Ex, 675 const MemRegion *MR, 676 bool hypothetical) { 677 if (!hypothetical) { 678 // If there's a recorded length, go ahead and return it. 679 const SVal *Recorded = state->get<CStringLength>(MR); 680 if (Recorded) 681 return *Recorded; 682 } 683 684 // Otherwise, get a new symbol and update the state. 685 SValBuilder &svalBuilder = C.getSValBuilder(); 686 QualType sizeTy = svalBuilder.getContext().getSizeType(); 687 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 688 MR, Ex, sizeTy, 689 C.getLocationContext(), 690 C.blockCount()); 691 692 if (!hypothetical) { 693 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 694 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 695 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 696 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 697 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 698 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 699 fourInt); 700 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 701 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 702 maxLength, sizeTy); 703 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 704 } 705 state = state->set<CStringLength>(MR, strLength); 706 } 707 708 return strLength; 709 } 710 711 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 712 const Expr *Ex, SVal Buf, 713 bool hypothetical) const { 714 const MemRegion *MR = Buf.getAsRegion(); 715 if (!MR) { 716 // If we can't get a region, see if it's something we /know/ isn't a 717 // C string. In the context of locations, the only time we can issue such 718 // a warning is for labels. 719 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 720 if (!Filter.CheckCStringNotNullTerm) 721 return UndefinedVal(); 722 723 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 724 if (!BT_NotCString) 725 BT_NotCString.reset(new BuiltinBug( 726 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 727 "Argument is not a null-terminated string.")); 728 729 SmallString<120> buf; 730 llvm::raw_svector_ostream os(buf); 731 assert(CurrentFunctionDescription); 732 os << "Argument to " << CurrentFunctionDescription 733 << " is the address of the label '" << Label->getLabel()->getName() 734 << "', which is not a null-terminated string"; 735 736 // Generate a report for this bug. 737 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 738 739 report->addRange(Ex->getSourceRange()); 740 C.emitReport(std::move(report)); 741 } 742 return UndefinedVal(); 743 744 } 745 746 // If it's not a region and not a label, give up. 747 return UnknownVal(); 748 } 749 750 // If we have a region, strip casts from it and see if we can figure out 751 // its length. For anything we can't figure out, just return UnknownVal. 752 MR = MR->StripCasts(); 753 754 switch (MR->getKind()) { 755 case MemRegion::StringRegionKind: { 756 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 757 // so we can assume that the byte length is the correct C string length. 758 SValBuilder &svalBuilder = C.getSValBuilder(); 759 QualType sizeTy = svalBuilder.getContext().getSizeType(); 760 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 761 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 762 } 763 case MemRegion::SymbolicRegionKind: 764 case MemRegion::AllocaRegionKind: 765 case MemRegion::VarRegionKind: 766 case MemRegion::FieldRegionKind: 767 case MemRegion::ObjCIvarRegionKind: 768 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 769 case MemRegion::CompoundLiteralRegionKind: 770 // FIXME: Can we track this? Is it necessary? 771 return UnknownVal(); 772 case MemRegion::ElementRegionKind: 773 // FIXME: How can we handle this? It's not good enough to subtract the 774 // offset from the base string length; consider "123\x00567" and &a[5]. 775 return UnknownVal(); 776 default: 777 // Other regions (mostly non-data) can't have a reliable C string length. 778 // In this case, an error is emitted and UndefinedVal is returned. 779 // The caller should always be prepared to handle this case. 780 if (!Filter.CheckCStringNotNullTerm) 781 return UndefinedVal(); 782 783 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 784 if (!BT_NotCString) 785 BT_NotCString.reset(new BuiltinBug( 786 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 787 "Argument is not a null-terminated string.")); 788 789 SmallString<120> buf; 790 llvm::raw_svector_ostream os(buf); 791 792 assert(CurrentFunctionDescription); 793 os << "Argument to " << CurrentFunctionDescription << " is "; 794 795 if (SummarizeRegion(os, C.getASTContext(), MR)) 796 os << ", which is not a null-terminated string"; 797 else 798 os << "not a null-terminated string"; 799 800 // Generate a report for this bug. 801 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 802 803 report->addRange(Ex->getSourceRange()); 804 C.emitReport(std::move(report)); 805 } 806 807 return UndefinedVal(); 808 } 809 } 810 811 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 812 ProgramStateRef &state, const Expr *expr, SVal val) const { 813 814 // Get the memory region pointed to by the val. 815 const MemRegion *bufRegion = val.getAsRegion(); 816 if (!bufRegion) 817 return nullptr; 818 819 // Strip casts off the memory region. 820 bufRegion = bufRegion->StripCasts(); 821 822 // Cast the memory region to a string region. 823 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 824 if (!strRegion) 825 return nullptr; 826 827 // Return the actual string in the string region. 828 return strRegion->getStringLiteral(); 829 } 830 831 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 832 ProgramStateRef state, 833 const Expr *FirstBuf, 834 const Expr *Size) { 835 // If we do not know that the buffer is long enough we return 'true'. 836 // Otherwise the parent region of this field region would also get 837 // invalidated, which would lead to warnings based on an unknown state. 838 839 // Originally copied from CheckBufferAccess and CheckLocation. 840 SValBuilder &svalBuilder = C.getSValBuilder(); 841 ASTContext &Ctx = svalBuilder.getContext(); 842 const LocationContext *LCtx = C.getLocationContext(); 843 844 QualType sizeTy = Size->getType(); 845 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 846 SVal BufVal = state->getSVal(FirstBuf, LCtx); 847 848 SVal LengthVal = state->getSVal(Size, LCtx); 849 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 850 if (!Length) 851 return true; // cf top comment. 852 853 // Compute the offset of the last element to be accessed: size-1. 854 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 855 NonLoc LastOffset = 856 svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy) 857 .castAs<NonLoc>(); 858 859 // Check that the first buffer is sufficiently long. 860 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 861 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 862 if (!BufLoc) 863 return true; // cf top comment. 864 865 SVal BufEnd = 866 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 867 868 // Check for out of bound array element access. 869 const MemRegion *R = BufEnd.getAsRegion(); 870 if (!R) 871 return true; // cf top comment. 872 873 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 874 if (!ER) 875 return true; // cf top comment. 876 877 assert(ER->getValueType() == C.getASTContext().CharTy && 878 "IsFirstBufInBound should only be called with char* ElementRegions"); 879 880 // Get the size of the array. 881 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 882 SVal Extent = 883 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 884 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 885 886 // Get the index of the accessed element. 887 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 888 889 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 890 891 return static_cast<bool>(StInBound); 892 } 893 894 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 895 ProgramStateRef state, 896 const Expr *E, SVal V, 897 bool IsSourceBuffer, 898 const Expr *Size) { 899 Optional<Loc> L = V.getAs<Loc>(); 900 if (!L) 901 return state; 902 903 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 904 // some assumptions about the value that CFRefCount can't. Even so, it should 905 // probably be refactored. 906 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 907 const MemRegion *R = MR->getRegion()->StripCasts(); 908 909 // Are we dealing with an ElementRegion? If so, we should be invalidating 910 // the super-region. 911 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 912 R = ER->getSuperRegion(); 913 // FIXME: What about layers of ElementRegions? 914 } 915 916 // Invalidate this region. 917 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 918 919 bool CausesPointerEscape = false; 920 RegionAndSymbolInvalidationTraits ITraits; 921 // Invalidate and escape only indirect regions accessible through the source 922 // buffer. 923 if (IsSourceBuffer) { 924 ITraits.setTrait(R->getBaseRegion(), 925 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 926 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 927 CausesPointerEscape = true; 928 } else { 929 const MemRegion::Kind& K = R->getKind(); 930 if (K == MemRegion::FieldRegionKind) 931 if (Size && IsFirstBufInBound(C, state, E, Size)) { 932 // If destination buffer is a field region and access is in bound, 933 // do not invalidate its super region. 934 ITraits.setTrait( 935 R, 936 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 937 } 938 } 939 940 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 941 CausesPointerEscape, nullptr, nullptr, 942 &ITraits); 943 } 944 945 // If we have a non-region value by chance, just remove the binding. 946 // FIXME: is this necessary or correct? This handles the non-Region 947 // cases. Is it ever valid to store to these? 948 return state->killBinding(*L); 949 } 950 951 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 952 const MemRegion *MR) { 953 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 954 955 switch (MR->getKind()) { 956 case MemRegion::FunctionCodeRegionKind: { 957 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 958 if (FD) 959 os << "the address of the function '" << *FD << '\''; 960 else 961 os << "the address of a function"; 962 return true; 963 } 964 case MemRegion::BlockCodeRegionKind: 965 os << "block text"; 966 return true; 967 case MemRegion::BlockDataRegionKind: 968 os << "a block"; 969 return true; 970 case MemRegion::CXXThisRegionKind: 971 case MemRegion::CXXTempObjectRegionKind: 972 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 973 return true; 974 case MemRegion::VarRegionKind: 975 os << "a variable of type" << TVR->getValueType().getAsString(); 976 return true; 977 case MemRegion::FieldRegionKind: 978 os << "a field of type " << TVR->getValueType().getAsString(); 979 return true; 980 case MemRegion::ObjCIvarRegionKind: 981 os << "an instance variable of type " << TVR->getValueType().getAsString(); 982 return true; 983 default: 984 return false; 985 } 986 } 987 988 //===----------------------------------------------------------------------===// 989 // evaluation of individual function calls. 990 //===----------------------------------------------------------------------===// 991 992 void CStringChecker::evalCopyCommon(CheckerContext &C, 993 const CallExpr *CE, 994 ProgramStateRef state, 995 const Expr *Size, const Expr *Dest, 996 const Expr *Source, bool Restricted, 997 bool IsMempcpy) const { 998 CurrentFunctionDescription = "memory copy function"; 999 1000 // See if the size argument is zero. 1001 const LocationContext *LCtx = C.getLocationContext(); 1002 SVal sizeVal = state->getSVal(Size, LCtx); 1003 QualType sizeTy = Size->getType(); 1004 1005 ProgramStateRef stateZeroSize, stateNonZeroSize; 1006 std::tie(stateZeroSize, stateNonZeroSize) = 1007 assumeZero(C, state, sizeVal, sizeTy); 1008 1009 // Get the value of the Dest. 1010 SVal destVal = state->getSVal(Dest, LCtx); 1011 1012 // If the size is zero, there won't be any actual memory access, so 1013 // just bind the return value to the destination buffer and return. 1014 if (stateZeroSize && !stateNonZeroSize) { 1015 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1016 C.addTransition(stateZeroSize); 1017 return; 1018 } 1019 1020 // If the size can be nonzero, we have to check the other arguments. 1021 if (stateNonZeroSize) { 1022 state = stateNonZeroSize; 1023 1024 // Ensure the destination is not null. If it is NULL there will be a 1025 // NULL pointer dereference. 1026 state = checkNonNull(C, state, Dest, destVal); 1027 if (!state) 1028 return; 1029 1030 // Get the value of the Src. 1031 SVal srcVal = state->getSVal(Source, LCtx); 1032 1033 // Ensure the source is not null. If it is NULL there will be a 1034 // NULL pointer dereference. 1035 state = checkNonNull(C, state, Source, srcVal); 1036 if (!state) 1037 return; 1038 1039 // Ensure the accesses are valid and that the buffers do not overlap. 1040 const char * const writeWarning = 1041 "Memory copy function overflows destination buffer"; 1042 state = CheckBufferAccess(C, state, Size, Dest, Source, 1043 writeWarning, /* sourceWarning = */ nullptr); 1044 if (Restricted) 1045 state = CheckOverlap(C, state, Size, Dest, Source); 1046 1047 if (!state) 1048 return; 1049 1050 // If this is mempcpy, get the byte after the last byte copied and 1051 // bind the expr. 1052 if (IsMempcpy) { 1053 loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>(); 1054 1055 // Get the length to copy. 1056 if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) { 1057 // Get the byte after the last byte copied. 1058 SValBuilder &SvalBuilder = C.getSValBuilder(); 1059 ASTContext &Ctx = SvalBuilder.getContext(); 1060 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1061 loc::MemRegionVal DestRegCharVal = SvalBuilder.evalCast(destRegVal, 1062 CharPtrTy, Dest->getType()).castAs<loc::MemRegionVal>(); 1063 SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add, 1064 DestRegCharVal, 1065 *lenValNonLoc, 1066 Dest->getType()); 1067 1068 // The byte after the last byte copied is the return value. 1069 state = state->BindExpr(CE, LCtx, lastElement); 1070 } else { 1071 // If we don't know how much we copied, we can at least 1072 // conjure a return value for later. 1073 SVal result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1074 C.blockCount()); 1075 state = state->BindExpr(CE, LCtx, result); 1076 } 1077 1078 } else { 1079 // All other copies return the destination buffer. 1080 // (Well, bcopy() has a void return type, but this won't hurt.) 1081 state = state->BindExpr(CE, LCtx, destVal); 1082 } 1083 1084 // Invalidate the destination (regular invalidation without pointer-escaping 1085 // the address of the top-level region). 1086 // FIXME: Even if we can't perfectly model the copy, we should see if we 1087 // can use LazyCompoundVals to copy the source values into the destination. 1088 // This would probably remove any existing bindings past the end of the 1089 // copied region, but that's still an improvement over blank invalidation. 1090 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1091 /*IsSourceBuffer*/false, Size); 1092 1093 // Invalidate the source (const-invalidation without const-pointer-escaping 1094 // the address of the top-level region). 1095 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1096 /*IsSourceBuffer*/true, nullptr); 1097 1098 C.addTransition(state); 1099 } 1100 } 1101 1102 1103 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1104 if (CE->getNumArgs() < 3) 1105 return; 1106 1107 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1108 // The return value is the address of the destination buffer. 1109 const Expr *Dest = CE->getArg(0); 1110 ProgramStateRef state = C.getState(); 1111 1112 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1113 } 1114 1115 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1116 if (CE->getNumArgs() < 3) 1117 return; 1118 1119 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1120 // The return value is a pointer to the byte following the last written byte. 1121 const Expr *Dest = CE->getArg(0); 1122 ProgramStateRef state = C.getState(); 1123 1124 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1125 } 1126 1127 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1128 if (CE->getNumArgs() < 3) 1129 return; 1130 1131 // void *memmove(void *dst, const void *src, size_t n); 1132 // The return value is the address of the destination buffer. 1133 const Expr *Dest = CE->getArg(0); 1134 ProgramStateRef state = C.getState(); 1135 1136 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1137 } 1138 1139 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1140 if (CE->getNumArgs() < 3) 1141 return; 1142 1143 // void bcopy(const void *src, void *dst, size_t n); 1144 evalCopyCommon(C, CE, C.getState(), 1145 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1146 } 1147 1148 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1149 if (CE->getNumArgs() < 3) 1150 return; 1151 1152 // int memcmp(const void *s1, const void *s2, size_t n); 1153 CurrentFunctionDescription = "memory comparison function"; 1154 1155 const Expr *Left = CE->getArg(0); 1156 const Expr *Right = CE->getArg(1); 1157 const Expr *Size = CE->getArg(2); 1158 1159 ProgramStateRef state = C.getState(); 1160 SValBuilder &svalBuilder = C.getSValBuilder(); 1161 1162 // See if the size argument is zero. 1163 const LocationContext *LCtx = C.getLocationContext(); 1164 SVal sizeVal = state->getSVal(Size, LCtx); 1165 QualType sizeTy = Size->getType(); 1166 1167 ProgramStateRef stateZeroSize, stateNonZeroSize; 1168 std::tie(stateZeroSize, stateNonZeroSize) = 1169 assumeZero(C, state, sizeVal, sizeTy); 1170 1171 // If the size can be zero, the result will be 0 in that case, and we don't 1172 // have to check either of the buffers. 1173 if (stateZeroSize) { 1174 state = stateZeroSize; 1175 state = state->BindExpr(CE, LCtx, 1176 svalBuilder.makeZeroVal(CE->getType())); 1177 C.addTransition(state); 1178 } 1179 1180 // If the size can be nonzero, we have to check the other arguments. 1181 if (stateNonZeroSize) { 1182 state = stateNonZeroSize; 1183 // If we know the two buffers are the same, we know the result is 0. 1184 // First, get the two buffers' addresses. Another checker will have already 1185 // made sure they're not undefined. 1186 DefinedOrUnknownSVal LV = 1187 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1188 DefinedOrUnknownSVal RV = 1189 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1190 1191 // See if they are the same. 1192 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1193 ProgramStateRef StSameBuf, StNotSameBuf; 1194 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1195 1196 // If the two arguments might be the same buffer, we know the result is 0, 1197 // and we only need to check one size. 1198 if (StSameBuf) { 1199 state = StSameBuf; 1200 state = CheckBufferAccess(C, state, Size, Left); 1201 if (state) { 1202 state = StSameBuf->BindExpr(CE, LCtx, 1203 svalBuilder.makeZeroVal(CE->getType())); 1204 C.addTransition(state); 1205 } 1206 } 1207 1208 // If the two arguments might be different buffers, we have to check the 1209 // size of both of them. 1210 if (StNotSameBuf) { 1211 state = StNotSameBuf; 1212 state = CheckBufferAccess(C, state, Size, Left, Right); 1213 if (state) { 1214 // The return value is the comparison result, which we don't know. 1215 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1216 C.blockCount()); 1217 state = state->BindExpr(CE, LCtx, CmpV); 1218 C.addTransition(state); 1219 } 1220 } 1221 } 1222 } 1223 1224 void CStringChecker::evalstrLength(CheckerContext &C, 1225 const CallExpr *CE) const { 1226 if (CE->getNumArgs() < 1) 1227 return; 1228 1229 // size_t strlen(const char *s); 1230 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1231 } 1232 1233 void CStringChecker::evalstrnLength(CheckerContext &C, 1234 const CallExpr *CE) const { 1235 if (CE->getNumArgs() < 2) 1236 return; 1237 1238 // size_t strnlen(const char *s, size_t maxlen); 1239 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1240 } 1241 1242 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1243 bool IsStrnlen) const { 1244 CurrentFunctionDescription = "string length function"; 1245 ProgramStateRef state = C.getState(); 1246 const LocationContext *LCtx = C.getLocationContext(); 1247 1248 if (IsStrnlen) { 1249 const Expr *maxlenExpr = CE->getArg(1); 1250 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1251 1252 ProgramStateRef stateZeroSize, stateNonZeroSize; 1253 std::tie(stateZeroSize, stateNonZeroSize) = 1254 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1255 1256 // If the size can be zero, the result will be 0 in that case, and we don't 1257 // have to check the string itself. 1258 if (stateZeroSize) { 1259 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1260 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1261 C.addTransition(stateZeroSize); 1262 } 1263 1264 // If the size is GUARANTEED to be zero, we're done! 1265 if (!stateNonZeroSize) 1266 return; 1267 1268 // Otherwise, record the assumption that the size is nonzero. 1269 state = stateNonZeroSize; 1270 } 1271 1272 // Check that the string argument is non-null. 1273 const Expr *Arg = CE->getArg(0); 1274 SVal ArgVal = state->getSVal(Arg, LCtx); 1275 1276 state = checkNonNull(C, state, Arg, ArgVal); 1277 1278 if (!state) 1279 return; 1280 1281 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1282 1283 // If the argument isn't a valid C string, there's no valid state to 1284 // transition to. 1285 if (strLength.isUndef()) 1286 return; 1287 1288 DefinedOrUnknownSVal result = UnknownVal(); 1289 1290 // If the check is for strnlen() then bind the return value to no more than 1291 // the maxlen value. 1292 if (IsStrnlen) { 1293 QualType cmpTy = C.getSValBuilder().getConditionType(); 1294 1295 // It's a little unfortunate to be getting this again, 1296 // but it's not that expensive... 1297 const Expr *maxlenExpr = CE->getArg(1); 1298 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1299 1300 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1301 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1302 1303 if (strLengthNL && maxlenValNL) { 1304 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1305 1306 // Check if the strLength is greater than the maxlen. 1307 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1308 C.getSValBuilder() 1309 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1310 .castAs<DefinedOrUnknownSVal>()); 1311 1312 if (stateStringTooLong && !stateStringNotTooLong) { 1313 // If the string is longer than maxlen, return maxlen. 1314 result = *maxlenValNL; 1315 } else if (stateStringNotTooLong && !stateStringTooLong) { 1316 // If the string is shorter than maxlen, return its length. 1317 result = *strLengthNL; 1318 } 1319 } 1320 1321 if (result.isUnknown()) { 1322 // If we don't have enough information for a comparison, there's 1323 // no guarantee the full string length will actually be returned. 1324 // All we know is the return value is the min of the string length 1325 // and the limit. This is better than nothing. 1326 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1327 C.blockCount()); 1328 NonLoc resultNL = result.castAs<NonLoc>(); 1329 1330 if (strLengthNL) { 1331 state = state->assume(C.getSValBuilder().evalBinOpNN( 1332 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1333 .castAs<DefinedOrUnknownSVal>(), true); 1334 } 1335 1336 if (maxlenValNL) { 1337 state = state->assume(C.getSValBuilder().evalBinOpNN( 1338 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1339 .castAs<DefinedOrUnknownSVal>(), true); 1340 } 1341 } 1342 1343 } else { 1344 // This is a plain strlen(), not strnlen(). 1345 result = strLength.castAs<DefinedOrUnknownSVal>(); 1346 1347 // If we don't know the length of the string, conjure a return 1348 // value, so it can be used in constraints, at least. 1349 if (result.isUnknown()) { 1350 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1351 C.blockCount()); 1352 } 1353 } 1354 1355 // Bind the return value. 1356 assert(!result.isUnknown() && "Should have conjured a value by now"); 1357 state = state->BindExpr(CE, LCtx, result); 1358 C.addTransition(state); 1359 } 1360 1361 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1362 if (CE->getNumArgs() < 2) 1363 return; 1364 1365 // char *strcpy(char *restrict dst, const char *restrict src); 1366 evalStrcpyCommon(C, CE, 1367 /* returnEnd = */ false, 1368 /* isBounded = */ false, 1369 /* isAppending = */ false); 1370 } 1371 1372 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1373 if (CE->getNumArgs() < 3) 1374 return; 1375 1376 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1377 evalStrcpyCommon(C, CE, 1378 /* returnEnd = */ false, 1379 /* isBounded = */ true, 1380 /* isAppending = */ false); 1381 } 1382 1383 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1384 if (CE->getNumArgs() < 2) 1385 return; 1386 1387 // char *stpcpy(char *restrict dst, const char *restrict src); 1388 evalStrcpyCommon(C, CE, 1389 /* returnEnd = */ true, 1390 /* isBounded = */ false, 1391 /* isAppending = */ false); 1392 } 1393 1394 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1395 if (CE->getNumArgs() < 2) 1396 return; 1397 1398 //char *strcat(char *restrict s1, const char *restrict s2); 1399 evalStrcpyCommon(C, CE, 1400 /* returnEnd = */ false, 1401 /* isBounded = */ false, 1402 /* isAppending = */ true); 1403 } 1404 1405 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1406 if (CE->getNumArgs() < 3) 1407 return; 1408 1409 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1410 evalStrcpyCommon(C, CE, 1411 /* returnEnd = */ false, 1412 /* isBounded = */ true, 1413 /* isAppending = */ true); 1414 } 1415 1416 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1417 bool returnEnd, bool isBounded, 1418 bool isAppending) const { 1419 CurrentFunctionDescription = "string copy function"; 1420 ProgramStateRef state = C.getState(); 1421 const LocationContext *LCtx = C.getLocationContext(); 1422 1423 // Check that the destination is non-null. 1424 const Expr *Dst = CE->getArg(0); 1425 SVal DstVal = state->getSVal(Dst, LCtx); 1426 1427 state = checkNonNull(C, state, Dst, DstVal); 1428 if (!state) 1429 return; 1430 1431 // Check that the source is non-null. 1432 const Expr *srcExpr = CE->getArg(1); 1433 SVal srcVal = state->getSVal(srcExpr, LCtx); 1434 state = checkNonNull(C, state, srcExpr, srcVal); 1435 if (!state) 1436 return; 1437 1438 // Get the string length of the source. 1439 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1440 1441 // If the source isn't a valid C string, give up. 1442 if (strLength.isUndef()) 1443 return; 1444 1445 SValBuilder &svalBuilder = C.getSValBuilder(); 1446 QualType cmpTy = svalBuilder.getConditionType(); 1447 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1448 1449 // These two values allow checking two kinds of errors: 1450 // - actual overflows caused by a source that doesn't fit in the destination 1451 // - potential overflows caused by a bound that could exceed the destination 1452 SVal amountCopied = UnknownVal(); 1453 SVal maxLastElementIndex = UnknownVal(); 1454 const char *boundWarning = nullptr; 1455 1456 // If the function is strncpy, strncat, etc... it is bounded. 1457 if (isBounded) { 1458 // Get the max number of characters to copy. 1459 const Expr *lenExpr = CE->getArg(2); 1460 SVal lenVal = state->getSVal(lenExpr, LCtx); 1461 1462 // Protect against misdeclared strncpy(). 1463 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1464 1465 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1466 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1467 1468 // If we know both values, we might be able to figure out how much 1469 // we're copying. 1470 if (strLengthNL && lenValNL) { 1471 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1472 1473 // Check if the max number to copy is less than the length of the src. 1474 // If the bound is equal to the source length, strncpy won't null- 1475 // terminate the result! 1476 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1477 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1478 .castAs<DefinedOrUnknownSVal>()); 1479 1480 if (stateSourceTooLong && !stateSourceNotTooLong) { 1481 // Max number to copy is less than the length of the src, so the actual 1482 // strLength copied is the max number arg. 1483 state = stateSourceTooLong; 1484 amountCopied = lenVal; 1485 1486 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1487 // The source buffer entirely fits in the bound. 1488 state = stateSourceNotTooLong; 1489 amountCopied = strLength; 1490 } 1491 } 1492 1493 // We still want to know if the bound is known to be too large. 1494 if (lenValNL) { 1495 if (isAppending) { 1496 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1497 1498 // Get the string length of the destination. If the destination is 1499 // memory that can't have a string length, we shouldn't be copying 1500 // into it anyway. 1501 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1502 if (dstStrLength.isUndef()) 1503 return; 1504 1505 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1506 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1507 *lenValNL, 1508 *dstStrLengthNL, 1509 sizeTy); 1510 boundWarning = "Size argument is greater than the free space in the " 1511 "destination buffer"; 1512 } 1513 1514 } else { 1515 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1516 // (Yes, strncpy and strncat differ in how they treat termination. 1517 // strncat ALWAYS terminates, but strncpy doesn't.) 1518 1519 // We need a special case for when the copy size is zero, in which 1520 // case strncpy will do no work at all. Our bounds check uses n-1 1521 // as the last element accessed, so n == 0 is problematic. 1522 ProgramStateRef StateZeroSize, StateNonZeroSize; 1523 std::tie(StateZeroSize, StateNonZeroSize) = 1524 assumeZero(C, state, *lenValNL, sizeTy); 1525 1526 // If the size is known to be zero, we're done. 1527 if (StateZeroSize && !StateNonZeroSize) { 1528 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1529 C.addTransition(StateZeroSize); 1530 return; 1531 } 1532 1533 // Otherwise, go ahead and figure out the last element we'll touch. 1534 // We don't record the non-zero assumption here because we can't 1535 // be sure. We won't warn on a possible zero. 1536 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1537 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1538 one, sizeTy); 1539 boundWarning = "Size argument is greater than the length of the " 1540 "destination buffer"; 1541 } 1542 } 1543 1544 // If we couldn't pin down the copy length, at least bound it. 1545 // FIXME: We should actually run this code path for append as well, but 1546 // right now it creates problems with constraints (since we can end up 1547 // trying to pass constraints from symbol to symbol). 1548 if (amountCopied.isUnknown() && !isAppending) { 1549 // Try to get a "hypothetical" string length symbol, which we can later 1550 // set as a real value if that turns out to be the case. 1551 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1552 assert(!amountCopied.isUndef()); 1553 1554 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1555 if (lenValNL) { 1556 // amountCopied <= lenVal 1557 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1558 *amountCopiedNL, 1559 *lenValNL, 1560 cmpTy); 1561 state = state->assume( 1562 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1563 if (!state) 1564 return; 1565 } 1566 1567 if (strLengthNL) { 1568 // amountCopied <= strlen(source) 1569 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1570 *amountCopiedNL, 1571 *strLengthNL, 1572 cmpTy); 1573 state = state->assume( 1574 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1575 if (!state) 1576 return; 1577 } 1578 } 1579 } 1580 1581 } else { 1582 // The function isn't bounded. The amount copied should match the length 1583 // of the source buffer. 1584 amountCopied = strLength; 1585 } 1586 1587 assert(state); 1588 1589 // This represents the number of characters copied into the destination 1590 // buffer. (It may not actually be the strlen if the destination buffer 1591 // is not terminated.) 1592 SVal finalStrLength = UnknownVal(); 1593 1594 // If this is an appending function (strcat, strncat...) then set the 1595 // string length to strlen(src) + strlen(dst) since the buffer will 1596 // ultimately contain both. 1597 if (isAppending) { 1598 // Get the string length of the destination. If the destination is memory 1599 // that can't have a string length, we shouldn't be copying into it anyway. 1600 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1601 if (dstStrLength.isUndef()) 1602 return; 1603 1604 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1605 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1606 1607 // If we know both string lengths, we might know the final string length. 1608 if (srcStrLengthNL && dstStrLengthNL) { 1609 // Make sure the two lengths together don't overflow a size_t. 1610 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1611 if (!state) 1612 return; 1613 1614 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1615 *dstStrLengthNL, sizeTy); 1616 } 1617 1618 // If we couldn't get a single value for the final string length, 1619 // we can at least bound it by the individual lengths. 1620 if (finalStrLength.isUnknown()) { 1621 // Try to get a "hypothetical" string length symbol, which we can later 1622 // set as a real value if that turns out to be the case. 1623 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1624 assert(!finalStrLength.isUndef()); 1625 1626 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1627 if (srcStrLengthNL) { 1628 // finalStrLength >= srcStrLength 1629 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1630 *finalStrLengthNL, 1631 *srcStrLengthNL, 1632 cmpTy); 1633 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1634 true); 1635 if (!state) 1636 return; 1637 } 1638 1639 if (dstStrLengthNL) { 1640 // finalStrLength >= dstStrLength 1641 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1642 *finalStrLengthNL, 1643 *dstStrLengthNL, 1644 cmpTy); 1645 state = 1646 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1647 if (!state) 1648 return; 1649 } 1650 } 1651 } 1652 1653 } else { 1654 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1655 // the final string length will match the input string length. 1656 finalStrLength = amountCopied; 1657 } 1658 1659 // The final result of the function will either be a pointer past the last 1660 // copied element, or a pointer to the start of the destination buffer. 1661 SVal Result = (returnEnd ? UnknownVal() : DstVal); 1662 1663 assert(state); 1664 1665 // If the destination is a MemRegion, try to check for a buffer overflow and 1666 // record the new string length. 1667 if (Optional<loc::MemRegionVal> dstRegVal = 1668 DstVal.getAs<loc::MemRegionVal>()) { 1669 QualType ptrTy = Dst->getType(); 1670 1671 // If we have an exact value on a bounded copy, use that to check for 1672 // overflows, rather than our estimate about how much is actually copied. 1673 if (boundWarning) { 1674 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1675 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1676 *maxLastNL, ptrTy); 1677 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1678 boundWarning); 1679 if (!state) 1680 return; 1681 } 1682 } 1683 1684 // Then, if the final length is known... 1685 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1686 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1687 *knownStrLength, ptrTy); 1688 1689 // ...and we haven't checked the bound, we'll check the actual copy. 1690 if (!boundWarning) { 1691 const char * const warningMsg = 1692 "String copy function overflows destination buffer"; 1693 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1694 if (!state) 1695 return; 1696 } 1697 1698 // If this is a stpcpy-style copy, the last element is the return value. 1699 if (returnEnd) 1700 Result = lastElement; 1701 } 1702 1703 // Invalidate the destination (regular invalidation without pointer-escaping 1704 // the address of the top-level region). This must happen before we set the 1705 // C string length because invalidation will clear the length. 1706 // FIXME: Even if we can't perfectly model the copy, we should see if we 1707 // can use LazyCompoundVals to copy the source values into the destination. 1708 // This would probably remove any existing bindings past the end of the 1709 // string, but that's still an improvement over blank invalidation. 1710 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1711 /*IsSourceBuffer*/false, nullptr); 1712 1713 // Invalidate the source (const-invalidation without const-pointer-escaping 1714 // the address of the top-level region). 1715 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1716 nullptr); 1717 1718 // Set the C string length of the destination, if we know it. 1719 if (isBounded && !isAppending) { 1720 // strncpy is annoying in that it doesn't guarantee to null-terminate 1721 // the result string. If the original string didn't fit entirely inside 1722 // the bound (including the null-terminator), we don't know how long the 1723 // result is. 1724 if (amountCopied != strLength) 1725 finalStrLength = UnknownVal(); 1726 } 1727 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1728 } 1729 1730 assert(state); 1731 1732 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1733 // overflow, we still need a result. Conjure a return value. 1734 if (returnEnd && Result.isUnknown()) { 1735 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1736 } 1737 1738 // Set the return value. 1739 state = state->BindExpr(CE, LCtx, Result); 1740 C.addTransition(state); 1741 } 1742 1743 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1744 if (CE->getNumArgs() < 2) 1745 return; 1746 1747 //int strcmp(const char *s1, const char *s2); 1748 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1749 } 1750 1751 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1752 if (CE->getNumArgs() < 3) 1753 return; 1754 1755 //int strncmp(const char *s1, const char *s2, size_t n); 1756 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1757 } 1758 1759 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1760 const CallExpr *CE) const { 1761 if (CE->getNumArgs() < 2) 1762 return; 1763 1764 //int strcasecmp(const char *s1, const char *s2); 1765 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1766 } 1767 1768 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1769 const CallExpr *CE) const { 1770 if (CE->getNumArgs() < 3) 1771 return; 1772 1773 //int strncasecmp(const char *s1, const char *s2, size_t n); 1774 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1775 } 1776 1777 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1778 bool isBounded, bool ignoreCase) const { 1779 CurrentFunctionDescription = "string comparison function"; 1780 ProgramStateRef state = C.getState(); 1781 const LocationContext *LCtx = C.getLocationContext(); 1782 1783 // Check that the first string is non-null 1784 const Expr *s1 = CE->getArg(0); 1785 SVal s1Val = state->getSVal(s1, LCtx); 1786 state = checkNonNull(C, state, s1, s1Val); 1787 if (!state) 1788 return; 1789 1790 // Check that the second string is non-null. 1791 const Expr *s2 = CE->getArg(1); 1792 SVal s2Val = state->getSVal(s2, LCtx); 1793 state = checkNonNull(C, state, s2, s2Val); 1794 if (!state) 1795 return; 1796 1797 // Get the string length of the first string or give up. 1798 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1799 if (s1Length.isUndef()) 1800 return; 1801 1802 // Get the string length of the second string or give up. 1803 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1804 if (s2Length.isUndef()) 1805 return; 1806 1807 // If we know the two buffers are the same, we know the result is 0. 1808 // First, get the two buffers' addresses. Another checker will have already 1809 // made sure they're not undefined. 1810 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1811 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1812 1813 // See if they are the same. 1814 SValBuilder &svalBuilder = C.getSValBuilder(); 1815 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1816 ProgramStateRef StSameBuf, StNotSameBuf; 1817 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1818 1819 // If the two arguments might be the same buffer, we know the result is 0, 1820 // and we only need to check one size. 1821 if (StSameBuf) { 1822 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1823 svalBuilder.makeZeroVal(CE->getType())); 1824 C.addTransition(StSameBuf); 1825 1826 // If the two arguments are GUARANTEED to be the same, we're done! 1827 if (!StNotSameBuf) 1828 return; 1829 } 1830 1831 assert(StNotSameBuf); 1832 state = StNotSameBuf; 1833 1834 // At this point we can go about comparing the two buffers. 1835 // For now, we only do this if they're both known string literals. 1836 1837 // Attempt to extract string literals from both expressions. 1838 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1839 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1840 bool canComputeResult = false; 1841 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1842 C.blockCount()); 1843 1844 if (s1StrLiteral && s2StrLiteral) { 1845 StringRef s1StrRef = s1StrLiteral->getString(); 1846 StringRef s2StrRef = s2StrLiteral->getString(); 1847 1848 if (isBounded) { 1849 // Get the max number of characters to compare. 1850 const Expr *lenExpr = CE->getArg(2); 1851 SVal lenVal = state->getSVal(lenExpr, LCtx); 1852 1853 // If the length is known, we can get the right substrings. 1854 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1855 // Create substrings of each to compare the prefix. 1856 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1857 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1858 canComputeResult = true; 1859 } 1860 } else { 1861 // This is a normal, unbounded strcmp. 1862 canComputeResult = true; 1863 } 1864 1865 if (canComputeResult) { 1866 // Real strcmp stops at null characters. 1867 size_t s1Term = s1StrRef.find('\0'); 1868 if (s1Term != StringRef::npos) 1869 s1StrRef = s1StrRef.substr(0, s1Term); 1870 1871 size_t s2Term = s2StrRef.find('\0'); 1872 if (s2Term != StringRef::npos) 1873 s2StrRef = s2StrRef.substr(0, s2Term); 1874 1875 // Use StringRef's comparison methods to compute the actual result. 1876 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 1877 : s1StrRef.compare(s2StrRef); 1878 1879 // The strcmp function returns an integer greater than, equal to, or less 1880 // than zero, [c11, p7.24.4.2]. 1881 if (compareRes == 0) { 1882 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 1883 } 1884 else { 1885 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 1886 // Constrain strcmp's result range based on the result of StringRef's 1887 // comparison methods. 1888 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 1889 SVal compareWithZero = 1890 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 1891 svalBuilder.getConditionType()); 1892 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 1893 state = state->assume(compareWithZeroVal, true); 1894 } 1895 } 1896 } 1897 1898 state = state->BindExpr(CE, LCtx, resultVal); 1899 1900 // Record this as a possible path. 1901 C.addTransition(state); 1902 } 1903 1904 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 1905 //char *strsep(char **stringp, const char *delim); 1906 if (CE->getNumArgs() < 2) 1907 return; 1908 1909 // Sanity: does the search string parameter match the return type? 1910 const Expr *SearchStrPtr = CE->getArg(0); 1911 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 1912 if (CharPtrTy.isNull() || 1913 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 1914 return; 1915 1916 CurrentFunctionDescription = "strsep()"; 1917 ProgramStateRef State = C.getState(); 1918 const LocationContext *LCtx = C.getLocationContext(); 1919 1920 // Check that the search string pointer is non-null (though it may point to 1921 // a null string). 1922 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 1923 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 1924 if (!State) 1925 return; 1926 1927 // Check that the delimiter string is non-null. 1928 const Expr *DelimStr = CE->getArg(1); 1929 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 1930 State = checkNonNull(C, State, DelimStr, DelimStrVal); 1931 if (!State) 1932 return; 1933 1934 SValBuilder &SVB = C.getSValBuilder(); 1935 SVal Result; 1936 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 1937 // Get the current value of the search string pointer, as a char*. 1938 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 1939 1940 // Invalidate the search string, representing the change of one delimiter 1941 // character to NUL. 1942 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 1943 /*IsSourceBuffer*/false, nullptr); 1944 1945 // Overwrite the search string pointer. The new value is either an address 1946 // further along in the same string, or NULL if there are no more tokens. 1947 State = State->bindLoc(*SearchStrLoc, 1948 SVB.conjureSymbolVal(getTag(), 1949 CE, 1950 LCtx, 1951 CharPtrTy, 1952 C.blockCount()), 1953 LCtx); 1954 } else { 1955 assert(SearchStrVal.isUnknown()); 1956 // Conjure a symbolic value. It's the best we can do. 1957 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1958 } 1959 1960 // Set the return value, and finish. 1961 State = State->BindExpr(CE, LCtx, Result); 1962 C.addTransition(State); 1963 } 1964 1965 // These should probably be moved into a C++ standard library checker. 1966 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 1967 evalStdCopyCommon(C, CE); 1968 } 1969 1970 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 1971 const CallExpr *CE) const { 1972 evalStdCopyCommon(C, CE); 1973 } 1974 1975 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 1976 const CallExpr *CE) const { 1977 if (CE->getNumArgs() < 3) 1978 return; 1979 1980 ProgramStateRef State = C.getState(); 1981 1982 const LocationContext *LCtx = C.getLocationContext(); 1983 1984 // template <class _InputIterator, class _OutputIterator> 1985 // _OutputIterator 1986 // copy(_InputIterator __first, _InputIterator __last, 1987 // _OutputIterator __result) 1988 1989 // Invalidate the destination buffer 1990 const Expr *Dst = CE->getArg(2); 1991 SVal DstVal = State->getSVal(Dst, LCtx); 1992 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 1993 /*Size=*/nullptr); 1994 1995 SValBuilder &SVB = C.getSValBuilder(); 1996 1997 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1998 State = State->BindExpr(CE, LCtx, ResultVal); 1999 2000 C.addTransition(State); 2001 } 2002 2003 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2004 if (CE->getNumArgs() != 3) 2005 return; 2006 2007 CurrentFunctionDescription = "memory set function"; 2008 2009 const Expr *Mem = CE->getArg(0); 2010 const Expr *Size = CE->getArg(2); 2011 ProgramStateRef State = C.getState(); 2012 2013 // See if the size argument is zero. 2014 const LocationContext *LCtx = C.getLocationContext(); 2015 SVal SizeVal = State->getSVal(Size, LCtx); 2016 QualType SizeTy = Size->getType(); 2017 2018 ProgramStateRef StateZeroSize, StateNonZeroSize; 2019 std::tie(StateZeroSize, StateNonZeroSize) = 2020 assumeZero(C, State, SizeVal, SizeTy); 2021 2022 // Get the value of the memory area. 2023 SVal MemVal = State->getSVal(Mem, LCtx); 2024 2025 // If the size is zero, there won't be any actual memory access, so 2026 // just bind the return value to the Mem buffer and return. 2027 if (StateZeroSize && !StateNonZeroSize) { 2028 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2029 C.addTransition(StateZeroSize); 2030 return; 2031 } 2032 2033 // Ensure the memory area is not null. 2034 // If it is NULL there will be a NULL pointer dereference. 2035 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2036 if (!State) 2037 return; 2038 2039 State = CheckBufferAccess(C, State, Size, Mem); 2040 if (!State) 2041 return; 2042 State = InvalidateBuffer(C, State, Mem, C.getSVal(Mem), 2043 /*IsSourceBuffer*/false, Size); 2044 if (!State) 2045 return; 2046 2047 State = State->BindExpr(CE, LCtx, MemVal); 2048 C.addTransition(State); 2049 } 2050 2051 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2052 IdentifierInfo *II = FD->getIdentifier(); 2053 if (!II) 2054 return false; 2055 2056 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2057 return false; 2058 2059 if (II->getName().equals(Name)) 2060 return true; 2061 2062 return false; 2063 } 2064 //===----------------------------------------------------------------------===// 2065 // The driver method, and other Checker callbacks. 2066 //===----------------------------------------------------------------------===// 2067 2068 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2069 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2070 2071 if (!FDecl) 2072 return false; 2073 2074 // FIXME: Poorly-factored string switches are slow. 2075 FnCheck evalFunction = nullptr; 2076 if (C.isCLibraryFunction(FDecl, "memcpy")) 2077 evalFunction = &CStringChecker::evalMemcpy; 2078 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2079 evalFunction = &CStringChecker::evalMempcpy; 2080 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2081 evalFunction = &CStringChecker::evalMemcmp; 2082 else if (C.isCLibraryFunction(FDecl, "memmove")) 2083 evalFunction = &CStringChecker::evalMemmove; 2084 else if (C.isCLibraryFunction(FDecl, "memset")) 2085 evalFunction = &CStringChecker::evalMemset; 2086 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2087 evalFunction = &CStringChecker::evalStrcpy; 2088 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2089 evalFunction = &CStringChecker::evalStrncpy; 2090 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2091 evalFunction = &CStringChecker::evalStpcpy; 2092 else if (C.isCLibraryFunction(FDecl, "strcat")) 2093 evalFunction = &CStringChecker::evalStrcat; 2094 else if (C.isCLibraryFunction(FDecl, "strncat")) 2095 evalFunction = &CStringChecker::evalStrncat; 2096 else if (C.isCLibraryFunction(FDecl, "strlen")) 2097 evalFunction = &CStringChecker::evalstrLength; 2098 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2099 evalFunction = &CStringChecker::evalstrnLength; 2100 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2101 evalFunction = &CStringChecker::evalStrcmp; 2102 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2103 evalFunction = &CStringChecker::evalStrncmp; 2104 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2105 evalFunction = &CStringChecker::evalStrcasecmp; 2106 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2107 evalFunction = &CStringChecker::evalStrncasecmp; 2108 else if (C.isCLibraryFunction(FDecl, "strsep")) 2109 evalFunction = &CStringChecker::evalStrsep; 2110 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2111 evalFunction = &CStringChecker::evalBcopy; 2112 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2113 evalFunction = &CStringChecker::evalMemcmp; 2114 else if (isCPPStdLibraryFunction(FDecl, "copy")) 2115 evalFunction = &CStringChecker::evalStdCopy; 2116 else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) 2117 evalFunction = &CStringChecker::evalStdCopyBackward; 2118 2119 // If the callee isn't a string function, let another checker handle it. 2120 if (!evalFunction) 2121 return false; 2122 2123 // Check and evaluate the call. 2124 (this->*evalFunction)(C, CE); 2125 2126 // If the evaluate call resulted in no change, chain to the next eval call 2127 // handler. 2128 // Note, the custom CString evaluation calls assume that basic safety 2129 // properties are held. However, if the user chooses to turn off some of these 2130 // checks, we ignore the issues and leave the call evaluation to a generic 2131 // handler. 2132 return C.isDifferent(); 2133 } 2134 2135 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2136 // Record string length for char a[] = "abc"; 2137 ProgramStateRef state = C.getState(); 2138 2139 for (const auto *I : DS->decls()) { 2140 const VarDecl *D = dyn_cast<VarDecl>(I); 2141 if (!D) 2142 continue; 2143 2144 // FIXME: Handle array fields of structs. 2145 if (!D->getType()->isArrayType()) 2146 continue; 2147 2148 const Expr *Init = D->getInit(); 2149 if (!Init) 2150 continue; 2151 if (!isa<StringLiteral>(Init)) 2152 continue; 2153 2154 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2155 const MemRegion *MR = VarLoc.getAsRegion(); 2156 if (!MR) 2157 continue; 2158 2159 SVal StrVal = state->getSVal(Init, C.getLocationContext()); 2160 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2161 DefinedOrUnknownSVal strLength = 2162 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2163 2164 state = state->set<CStringLength>(MR, strLength); 2165 } 2166 2167 C.addTransition(state); 2168 } 2169 2170 ProgramStateRef 2171 CStringChecker::checkRegionChanges(ProgramStateRef state, 2172 const InvalidatedSymbols *, 2173 ArrayRef<const MemRegion *> ExplicitRegions, 2174 ArrayRef<const MemRegion *> Regions, 2175 const LocationContext *LCtx, 2176 const CallEvent *Call) const { 2177 CStringLengthTy Entries = state->get<CStringLength>(); 2178 if (Entries.isEmpty()) 2179 return state; 2180 2181 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2182 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2183 2184 // First build sets for the changed regions and their super-regions. 2185 for (ArrayRef<const MemRegion *>::iterator 2186 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2187 const MemRegion *MR = *I; 2188 Invalidated.insert(MR); 2189 2190 SuperRegions.insert(MR); 2191 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2192 MR = SR->getSuperRegion(); 2193 SuperRegions.insert(MR); 2194 } 2195 } 2196 2197 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2198 2199 // Then loop over the entries in the current state. 2200 for (CStringLengthTy::iterator I = Entries.begin(), 2201 E = Entries.end(); I != E; ++I) { 2202 const MemRegion *MR = I.getKey(); 2203 2204 // Is this entry for a super-region of a changed region? 2205 if (SuperRegions.count(MR)) { 2206 Entries = F.remove(Entries, MR); 2207 continue; 2208 } 2209 2210 // Is this entry for a sub-region of a changed region? 2211 const MemRegion *Super = MR; 2212 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2213 Super = SR->getSuperRegion(); 2214 if (Invalidated.count(Super)) { 2215 Entries = F.remove(Entries, MR); 2216 break; 2217 } 2218 } 2219 } 2220 2221 return state->set<CStringLength>(Entries); 2222 } 2223 2224 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2225 SymbolReaper &SR) const { 2226 // Mark all symbols in our string length map as valid. 2227 CStringLengthTy Entries = state->get<CStringLength>(); 2228 2229 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2230 I != E; ++I) { 2231 SVal Len = I.getData(); 2232 2233 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2234 se = Len.symbol_end(); si != se; ++si) 2235 SR.markInUse(*si); 2236 } 2237 } 2238 2239 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2240 CheckerContext &C) const { 2241 if (!SR.hasDeadSymbols()) 2242 return; 2243 2244 ProgramStateRef state = C.getState(); 2245 CStringLengthTy Entries = state->get<CStringLength>(); 2246 if (Entries.isEmpty()) 2247 return; 2248 2249 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2250 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2251 I != E; ++I) { 2252 SVal Len = I.getData(); 2253 if (SymbolRef Sym = Len.getAsSymbol()) { 2254 if (SR.isDead(Sym)) 2255 Entries = F.remove(Entries, I.getKey()); 2256 } 2257 } 2258 2259 state = state->set<CStringLength>(Entries); 2260 C.addTransition(state); 2261 } 2262 2263 #define REGISTER_CHECKER(name) \ 2264 void ento::register##name(CheckerManager &mgr) { \ 2265 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2266 checker->Filter.Check##name = true; \ 2267 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2268 } 2269 2270 REGISTER_CHECKER(CStringNullArg) 2271 REGISTER_CHECKER(CStringOutOfBounds) 2272 REGISTER_CHECKER(CStringBufferOverlap) 2273 REGISTER_CHECKER(CStringNotNullTerm) 2274 2275 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2276 registerCStringNullArg(Mgr); 2277 } 2278