1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "clang/StaticAnalyzer/Core/Checker.h"
17 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
19 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringSwitch.h"
24 
25 using namespace clang;
26 using namespace ento;
27 
28 namespace {
29 class CStringChecker : public Checker< eval::Call,
30                                          check::PreStmt<DeclStmt>,
31                                          check::LiveSymbols,
32                                          check::DeadSymbols,
33                                          check::RegionChanges
34                                          > {
35   mutable OwningPtr<BugType> BT_Null,
36                              BT_Bounds,
37                              BT_Overlap,
38                              BT_NotCString,
39                              BT_AdditionOverflow;
40 
41   mutable const char *CurrentFunctionDescription;
42 
43 public:
44   /// The filter is used to filter out the diagnostics which are not enabled by
45   /// the user.
46   struct CStringChecksFilter {
47     DefaultBool CheckCStringNullArg;
48     DefaultBool CheckCStringOutOfBounds;
49     DefaultBool CheckCStringBufferOverlap;
50     DefaultBool CheckCStringNotNullTerm;
51   };
52 
53   CStringChecksFilter Filter;
54 
55   static void *getTag() { static int tag; return &tag; }
56 
57   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
58   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
59   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
60   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
61   bool wantsRegionChangeUpdate(ProgramStateRef state) const;
62 
63   ProgramStateRef
64     checkRegionChanges(ProgramStateRef state,
65                        const StoreManager::InvalidatedSymbols *,
66                        ArrayRef<const MemRegion *> ExplicitRegions,
67                        ArrayRef<const MemRegion *> Regions) const;
68 
69   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
70                                           const CallExpr *) const;
71 
72   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
73   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
74   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
75   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
76   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
77                       ProgramStateRef state,
78                       const Expr *Size,
79                       const Expr *Source,
80                       const Expr *Dest,
81                       bool Restricted = false,
82                       bool IsMempcpy = false) const;
83 
84   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
85 
86   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
87   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
88   void evalstrLengthCommon(CheckerContext &C,
89                            const CallExpr *CE,
90                            bool IsStrnlen = false) const;
91 
92   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
93   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
94   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
95   void evalStrcpyCommon(CheckerContext &C,
96                         const CallExpr *CE,
97                         bool returnEnd,
98                         bool isBounded,
99                         bool isAppending) const;
100 
101   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
102   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
103 
104   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
105   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
106   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
107   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
108   void evalStrcmpCommon(CheckerContext &C,
109                         const CallExpr *CE,
110                         bool isBounded = false,
111                         bool ignoreCase = false) const;
112 
113   // Utility methods
114   std::pair<ProgramStateRef , ProgramStateRef >
115   static assumeZero(CheckerContext &C,
116                     ProgramStateRef state, SVal V, QualType Ty);
117 
118   static ProgramStateRef setCStringLength(ProgramStateRef state,
119                                               const MemRegion *MR,
120                                               SVal strLength);
121   static SVal getCStringLengthForRegion(CheckerContext &C,
122                                         ProgramStateRef &state,
123                                         const Expr *Ex,
124                                         const MemRegion *MR,
125                                         bool hypothetical);
126   SVal getCStringLength(CheckerContext &C,
127                         ProgramStateRef &state,
128                         const Expr *Ex,
129                         SVal Buf,
130                         bool hypothetical = false) const;
131 
132   const StringLiteral *getCStringLiteral(CheckerContext &C,
133                                          ProgramStateRef &state,
134                                          const Expr *expr,
135                                          SVal val) const;
136 
137   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
138                                               ProgramStateRef state,
139                                               const Expr *Ex, SVal V);
140 
141   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
142                               const MemRegion *MR);
143 
144   // Re-usable checks
145   ProgramStateRef checkNonNull(CheckerContext &C,
146                                    ProgramStateRef state,
147                                    const Expr *S,
148                                    SVal l) const;
149   ProgramStateRef CheckLocation(CheckerContext &C,
150                                     ProgramStateRef state,
151                                     const Expr *S,
152                                     SVal l,
153                                     const char *message = NULL) const;
154   ProgramStateRef CheckBufferAccess(CheckerContext &C,
155                                         ProgramStateRef state,
156                                         const Expr *Size,
157                                         const Expr *FirstBuf,
158                                         const Expr *SecondBuf,
159                                         const char *firstMessage = NULL,
160                                         const char *secondMessage = NULL,
161                                         bool WarnAboutSize = false) const;
162 
163   ProgramStateRef CheckBufferAccess(CheckerContext &C,
164                                         ProgramStateRef state,
165                                         const Expr *Size,
166                                         const Expr *Buf,
167                                         const char *message = NULL,
168                                         bool WarnAboutSize = false) const {
169     // This is a convenience override.
170     return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
171                              WarnAboutSize);
172   }
173   ProgramStateRef CheckOverlap(CheckerContext &C,
174                                    ProgramStateRef state,
175                                    const Expr *Size,
176                                    const Expr *First,
177                                    const Expr *Second) const;
178   void emitOverlapBug(CheckerContext &C,
179                       ProgramStateRef state,
180                       const Stmt *First,
181                       const Stmt *Second) const;
182 
183   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
184                                             ProgramStateRef state,
185                                             NonLoc left,
186                                             NonLoc right) const;
187 };
188 
189 class CStringLength {
190 public:
191   typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap;
192 };
193 } //end anonymous namespace
194 
195 namespace clang {
196 namespace ento {
197   template <>
198   struct ProgramStateTrait<CStringLength>
199     : public ProgramStatePartialTrait<CStringLength::EntryMap> {
200     static void *GDMIndex() { return CStringChecker::getTag(); }
201   };
202 }
203 }
204 
205 //===----------------------------------------------------------------------===//
206 // Individual checks and utility methods.
207 //===----------------------------------------------------------------------===//
208 
209 std::pair<ProgramStateRef , ProgramStateRef >
210 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
211                            QualType Ty) {
212   DefinedSVal *val = dyn_cast<DefinedSVal>(&V);
213   if (!val)
214     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
215 
216   SValBuilder &svalBuilder = C.getSValBuilder();
217   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
218   return state->assume(svalBuilder.evalEQ(state, *val, zero));
219 }
220 
221 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
222                                             ProgramStateRef state,
223                                             const Expr *S, SVal l) const {
224   // If a previous check has failed, propagate the failure.
225   if (!state)
226     return NULL;
227 
228   ProgramStateRef stateNull, stateNonNull;
229   llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
230 
231   if (stateNull && !stateNonNull) {
232     if (!Filter.CheckCStringNullArg)
233       return NULL;
234 
235     ExplodedNode *N = C.generateSink(stateNull);
236     if (!N)
237       return NULL;
238 
239     if (!BT_Null)
240       BT_Null.reset(new BuiltinBug("Unix API",
241         "Null pointer argument in call to byte string function"));
242 
243     SmallString<80> buf;
244     llvm::raw_svector_ostream os(buf);
245     assert(CurrentFunctionDescription);
246     os << "Null pointer argument in call to " << CurrentFunctionDescription;
247 
248     // Generate a report for this bug.
249     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
250     BugReport *report = new BugReport(*BT, os.str(), N);
251 
252     report->addRange(S->getSourceRange());
253     report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, S));
254     C.EmitReport(report);
255     return NULL;
256   }
257 
258   // From here on, assume that the value is non-null.
259   assert(stateNonNull);
260   return stateNonNull;
261 }
262 
263 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
264 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
265                                              ProgramStateRef state,
266                                              const Expr *S, SVal l,
267                                              const char *warningMsg) const {
268   // If a previous check has failed, propagate the failure.
269   if (!state)
270     return NULL;
271 
272   // Check for out of bound array element access.
273   const MemRegion *R = l.getAsRegion();
274   if (!R)
275     return state;
276 
277   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
278   if (!ER)
279     return state;
280 
281   assert(ER->getValueType() == C.getASTContext().CharTy &&
282     "CheckLocation should only be called with char* ElementRegions");
283 
284   // Get the size of the array.
285   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
286   SValBuilder &svalBuilder = C.getSValBuilder();
287   SVal Extent =
288     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
289   DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
290 
291   // Get the index of the accessed element.
292   DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
293 
294   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
295   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
296   if (StOutBound && !StInBound) {
297     ExplodedNode *N = C.generateSink(StOutBound);
298     if (!N)
299       return NULL;
300 
301     if (!BT_Bounds) {
302       BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
303         "Byte string function accesses out-of-bound array element"));
304     }
305     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
306 
307     // Generate a report for this bug.
308     BugReport *report;
309     if (warningMsg) {
310       report = new BugReport(*BT, warningMsg, N);
311     } else {
312       assert(CurrentFunctionDescription);
313       assert(CurrentFunctionDescription[0] != '\0');
314 
315       SmallString<80> buf;
316       llvm::raw_svector_ostream os(buf);
317       os << (char)toupper(CurrentFunctionDescription[0])
318          << &CurrentFunctionDescription[1]
319          << " accesses out-of-bound array element";
320       report = new BugReport(*BT, os.str(), N);
321     }
322 
323     // FIXME: It would be nice to eventually make this diagnostic more clear,
324     // e.g., by referencing the original declaration or by saying *why* this
325     // reference is outside the range.
326 
327     report->addRange(S->getSourceRange());
328     C.EmitReport(report);
329     return NULL;
330   }
331 
332   // Array bound check succeeded.  From this point forward the array bound
333   // should always succeed.
334   return StInBound;
335 }
336 
337 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
338                                                  ProgramStateRef state,
339                                                  const Expr *Size,
340                                                  const Expr *FirstBuf,
341                                                  const Expr *SecondBuf,
342                                                  const char *firstMessage,
343                                                  const char *secondMessage,
344                                                  bool WarnAboutSize) const {
345   // If a previous check has failed, propagate the failure.
346   if (!state)
347     return NULL;
348 
349   SValBuilder &svalBuilder = C.getSValBuilder();
350   ASTContext &Ctx = svalBuilder.getContext();
351   const LocationContext *LCtx = C.getLocationContext();
352 
353   QualType sizeTy = Size->getType();
354   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
355 
356   // Check that the first buffer is non-null.
357   SVal BufVal = state->getSVal(FirstBuf, LCtx);
358   state = checkNonNull(C, state, FirstBuf, BufVal);
359   if (!state)
360     return NULL;
361 
362   // If out-of-bounds checking is turned off, skip the rest.
363   if (!Filter.CheckCStringOutOfBounds)
364     return state;
365 
366   // Get the access length and make sure it is known.
367   // FIXME: This assumes the caller has already checked that the access length
368   // is positive. And that it's unsigned.
369   SVal LengthVal = state->getSVal(Size, LCtx);
370   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
371   if (!Length)
372     return state;
373 
374   // Compute the offset of the last element to be accessed: size-1.
375   NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
376   NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub,
377                                                     *Length, One, sizeTy));
378 
379   // Check that the first buffer is sufficiently long.
380   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
381   if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
382     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
383 
384     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
385                                           LastOffset, PtrTy);
386     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
387 
388     // If the buffer isn't large enough, abort.
389     if (!state)
390       return NULL;
391   }
392 
393   // If there's a second buffer, check it as well.
394   if (SecondBuf) {
395     BufVal = state->getSVal(SecondBuf, LCtx);
396     state = checkNonNull(C, state, SecondBuf, BufVal);
397     if (!state)
398       return NULL;
399 
400     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
401     if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
402       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
403 
404       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
405                                             LastOffset, PtrTy);
406       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
407     }
408   }
409 
410   // Large enough or not, return this state!
411   return state;
412 }
413 
414 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
415                                             ProgramStateRef state,
416                                             const Expr *Size,
417                                             const Expr *First,
418                                             const Expr *Second) const {
419   if (!Filter.CheckCStringBufferOverlap)
420     return state;
421 
422   // Do a simple check for overlap: if the two arguments are from the same
423   // buffer, see if the end of the first is greater than the start of the second
424   // or vice versa.
425 
426   // If a previous check has failed, propagate the failure.
427   if (!state)
428     return NULL;
429 
430   ProgramStateRef stateTrue, stateFalse;
431 
432   // Get the buffer values and make sure they're known locations.
433   const LocationContext *LCtx = C.getLocationContext();
434   SVal firstVal = state->getSVal(First, LCtx);
435   SVal secondVal = state->getSVal(Second, LCtx);
436 
437   Loc *firstLoc = dyn_cast<Loc>(&firstVal);
438   if (!firstLoc)
439     return state;
440 
441   Loc *secondLoc = dyn_cast<Loc>(&secondVal);
442   if (!secondLoc)
443     return state;
444 
445   // Are the two values the same?
446   SValBuilder &svalBuilder = C.getSValBuilder();
447   llvm::tie(stateTrue, stateFalse) =
448     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
449 
450   if (stateTrue && !stateFalse) {
451     // If the values are known to be equal, that's automatically an overlap.
452     emitOverlapBug(C, stateTrue, First, Second);
453     return NULL;
454   }
455 
456   // assume the two expressions are not equal.
457   assert(stateFalse);
458   state = stateFalse;
459 
460   // Which value comes first?
461   QualType cmpTy = svalBuilder.getConditionType();
462   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
463                                          *firstLoc, *secondLoc, cmpTy);
464   DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse);
465   if (!reverseTest)
466     return state;
467 
468   llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
469   if (stateTrue) {
470     if (stateFalse) {
471       // If we don't know which one comes first, we can't perform this test.
472       return state;
473     } else {
474       // Switch the values so that firstVal is before secondVal.
475       Loc *tmpLoc = firstLoc;
476       firstLoc = secondLoc;
477       secondLoc = tmpLoc;
478 
479       // Switch the Exprs as well, so that they still correspond.
480       const Expr *tmpExpr = First;
481       First = Second;
482       Second = tmpExpr;
483     }
484   }
485 
486   // Get the length, and make sure it too is known.
487   SVal LengthVal = state->getSVal(Size, LCtx);
488   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
489   if (!Length)
490     return state;
491 
492   // Convert the first buffer's start address to char*.
493   // Bail out if the cast fails.
494   ASTContext &Ctx = svalBuilder.getContext();
495   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
496   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
497                                          First->getType());
498   Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
499   if (!FirstStartLoc)
500     return state;
501 
502   // Compute the end of the first buffer. Bail out if THAT fails.
503   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
504                                  *FirstStartLoc, *Length, CharPtrTy);
505   Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
506   if (!FirstEndLoc)
507     return state;
508 
509   // Is the end of the first buffer past the start of the second buffer?
510   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
511                                 *FirstEndLoc, *secondLoc, cmpTy);
512   DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
513   if (!OverlapTest)
514     return state;
515 
516   llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
517 
518   if (stateTrue && !stateFalse) {
519     // Overlap!
520     emitOverlapBug(C, stateTrue, First, Second);
521     return NULL;
522   }
523 
524   // assume the two expressions don't overlap.
525   assert(stateFalse);
526   return stateFalse;
527 }
528 
529 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
530                                   const Stmt *First, const Stmt *Second) const {
531   ExplodedNode *N = C.generateSink(state);
532   if (!N)
533     return;
534 
535   if (!BT_Overlap)
536     BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
537 
538   // Generate a report for this bug.
539   BugReport *report =
540     new BugReport(*BT_Overlap,
541       "Arguments must not be overlapping buffers", N);
542   report->addRange(First->getSourceRange());
543   report->addRange(Second->getSourceRange());
544 
545   C.EmitReport(report);
546 }
547 
548 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
549                                                      ProgramStateRef state,
550                                                      NonLoc left,
551                                                      NonLoc right) const {
552   // If out-of-bounds checking is turned off, skip the rest.
553   if (!Filter.CheckCStringOutOfBounds)
554     return state;
555 
556   // If a previous check has failed, propagate the failure.
557   if (!state)
558     return NULL;
559 
560   SValBuilder &svalBuilder = C.getSValBuilder();
561   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
562 
563   QualType sizeTy = svalBuilder.getContext().getSizeType();
564   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
565   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
566 
567   SVal maxMinusRight;
568   if (isa<nonloc::ConcreteInt>(right)) {
569     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
570                                                  sizeTy);
571   } else {
572     // Try switching the operands. (The order of these two assignments is
573     // important!)
574     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
575                                             sizeTy);
576     left = right;
577   }
578 
579   if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) {
580     QualType cmpTy = svalBuilder.getConditionType();
581     // If left > max - right, we have an overflow.
582     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
583                                                 *maxMinusRightNL, cmpTy);
584 
585     ProgramStateRef stateOverflow, stateOkay;
586     llvm::tie(stateOverflow, stateOkay) =
587       state->assume(cast<DefinedOrUnknownSVal>(willOverflow));
588 
589     if (stateOverflow && !stateOkay) {
590       // We have an overflow. Emit a bug report.
591       ExplodedNode *N = C.generateSink(stateOverflow);
592       if (!N)
593         return NULL;
594 
595       if (!BT_AdditionOverflow)
596         BT_AdditionOverflow.reset(new BuiltinBug("API",
597           "Sum of expressions causes overflow"));
598 
599       // This isn't a great error message, but this should never occur in real
600       // code anyway -- you'd have to create a buffer longer than a size_t can
601       // represent, which is sort of a contradiction.
602       const char *warning =
603         "This expression will create a string whose length is too big to "
604         "be represented as a size_t";
605 
606       // Generate a report for this bug.
607       BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
608       C.EmitReport(report);
609 
610       return NULL;
611     }
612 
613     // From now on, assume an overflow didn't occur.
614     assert(stateOkay);
615     state = stateOkay;
616   }
617 
618   return state;
619 }
620 
621 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
622                                                 const MemRegion *MR,
623                                                 SVal strLength) {
624   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
625 
626   MR = MR->StripCasts();
627 
628   switch (MR->getKind()) {
629   case MemRegion::StringRegionKind:
630     // FIXME: This can happen if we strcpy() into a string region. This is
631     // undefined [C99 6.4.5p6], but we should still warn about it.
632     return state;
633 
634   case MemRegion::SymbolicRegionKind:
635   case MemRegion::AllocaRegionKind:
636   case MemRegion::VarRegionKind:
637   case MemRegion::FieldRegionKind:
638   case MemRegion::ObjCIvarRegionKind:
639     // These are the types we can currently track string lengths for.
640     break;
641 
642   case MemRegion::ElementRegionKind:
643     // FIXME: Handle element regions by upper-bounding the parent region's
644     // string length.
645     return state;
646 
647   default:
648     // Other regions (mostly non-data) can't have a reliable C string length.
649     // For now, just ignore the change.
650     // FIXME: These are rare but not impossible. We should output some kind of
651     // warning for things like strcpy((char[]){'a', 0}, "b");
652     return state;
653   }
654 
655   if (strLength.isUnknown())
656     return state->remove<CStringLength>(MR);
657 
658   return state->set<CStringLength>(MR, strLength);
659 }
660 
661 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
662                                                ProgramStateRef &state,
663                                                const Expr *Ex,
664                                                const MemRegion *MR,
665                                                bool hypothetical) {
666   if (!hypothetical) {
667     // If there's a recorded length, go ahead and return it.
668     const SVal *Recorded = state->get<CStringLength>(MR);
669     if (Recorded)
670       return *Recorded;
671   }
672 
673   // Otherwise, get a new symbol and update the state.
674   unsigned Count = C.getCurrentBlockCount();
675   SValBuilder &svalBuilder = C.getSValBuilder();
676   QualType sizeTy = svalBuilder.getContext().getSizeType();
677   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
678                                                     MR, Ex, sizeTy, Count);
679 
680   if (!hypothetical)
681     state = state->set<CStringLength>(MR, strLength);
682 
683   return strLength;
684 }
685 
686 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
687                                       const Expr *Ex, SVal Buf,
688                                       bool hypothetical) const {
689   const MemRegion *MR = Buf.getAsRegion();
690   if (!MR) {
691     // If we can't get a region, see if it's something we /know/ isn't a
692     // C string. In the context of locations, the only time we can issue such
693     // a warning is for labels.
694     if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
695       if (!Filter.CheckCStringNotNullTerm)
696         return UndefinedVal();
697 
698       if (ExplodedNode *N = C.addTransition(state)) {
699         if (!BT_NotCString)
700           BT_NotCString.reset(new BuiltinBug("Unix API",
701             "Argument is not a null-terminated string."));
702 
703         SmallString<120> buf;
704         llvm::raw_svector_ostream os(buf);
705         assert(CurrentFunctionDescription);
706         os << "Argument to " << CurrentFunctionDescription
707            << " is the address of the label '" << Label->getLabel()->getName()
708            << "', which is not a null-terminated string";
709 
710         // Generate a report for this bug.
711         BugReport *report = new BugReport(*BT_NotCString,
712                                                           os.str(), N);
713 
714         report->addRange(Ex->getSourceRange());
715         C.EmitReport(report);
716       }
717       return UndefinedVal();
718 
719     }
720 
721     // If it's not a region and not a label, give up.
722     return UnknownVal();
723   }
724 
725   // If we have a region, strip casts from it and see if we can figure out
726   // its length. For anything we can't figure out, just return UnknownVal.
727   MR = MR->StripCasts();
728 
729   switch (MR->getKind()) {
730   case MemRegion::StringRegionKind: {
731     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
732     // so we can assume that the byte length is the correct C string length.
733     SValBuilder &svalBuilder = C.getSValBuilder();
734     QualType sizeTy = svalBuilder.getContext().getSizeType();
735     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
736     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
737   }
738   case MemRegion::SymbolicRegionKind:
739   case MemRegion::AllocaRegionKind:
740   case MemRegion::VarRegionKind:
741   case MemRegion::FieldRegionKind:
742   case MemRegion::ObjCIvarRegionKind:
743     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
744   case MemRegion::CompoundLiteralRegionKind:
745     // FIXME: Can we track this? Is it necessary?
746     return UnknownVal();
747   case MemRegion::ElementRegionKind:
748     // FIXME: How can we handle this? It's not good enough to subtract the
749     // offset from the base string length; consider "123\x00567" and &a[5].
750     return UnknownVal();
751   default:
752     // Other regions (mostly non-data) can't have a reliable C string length.
753     // In this case, an error is emitted and UndefinedVal is returned.
754     // The caller should always be prepared to handle this case.
755     if (!Filter.CheckCStringNotNullTerm)
756       return UndefinedVal();
757 
758     if (ExplodedNode *N = C.addTransition(state)) {
759       if (!BT_NotCString)
760         BT_NotCString.reset(new BuiltinBug("Unix API",
761           "Argument is not a null-terminated string."));
762 
763       SmallString<120> buf;
764       llvm::raw_svector_ostream os(buf);
765 
766       assert(CurrentFunctionDescription);
767       os << "Argument to " << CurrentFunctionDescription << " is ";
768 
769       if (SummarizeRegion(os, C.getASTContext(), MR))
770         os << ", which is not a null-terminated string";
771       else
772         os << "not a null-terminated string";
773 
774       // Generate a report for this bug.
775       BugReport *report = new BugReport(*BT_NotCString,
776                                                         os.str(), N);
777 
778       report->addRange(Ex->getSourceRange());
779       C.EmitReport(report);
780     }
781 
782     return UndefinedVal();
783   }
784 }
785 
786 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
787   ProgramStateRef &state, const Expr *expr, SVal val) const {
788 
789   // Get the memory region pointed to by the val.
790   const MemRegion *bufRegion = val.getAsRegion();
791   if (!bufRegion)
792     return NULL;
793 
794   // Strip casts off the memory region.
795   bufRegion = bufRegion->StripCasts();
796 
797   // Cast the memory region to a string region.
798   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
799   if (!strRegion)
800     return NULL;
801 
802   // Return the actual string in the string region.
803   return strRegion->getStringLiteral();
804 }
805 
806 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
807                                                 ProgramStateRef state,
808                                                 const Expr *E, SVal V) {
809   Loc *L = dyn_cast<Loc>(&V);
810   if (!L)
811     return state;
812 
813   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
814   // some assumptions about the value that CFRefCount can't. Even so, it should
815   // probably be refactored.
816   if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
817     const MemRegion *R = MR->getRegion()->StripCasts();
818 
819     // Are we dealing with an ElementRegion?  If so, we should be invalidating
820     // the super-region.
821     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
822       R = ER->getSuperRegion();
823       // FIXME: What about layers of ElementRegions?
824     }
825 
826     // Invalidate this region.
827     unsigned Count = C.getCurrentBlockCount();
828     return state->invalidateRegions(R, E, Count);
829   }
830 
831   // If we have a non-region value by chance, just remove the binding.
832   // FIXME: is this necessary or correct? This handles the non-Region
833   //  cases.  Is it ever valid to store to these?
834   return state->unbindLoc(*L);
835 }
836 
837 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
838                                      const MemRegion *MR) {
839   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
840 
841   switch (MR->getKind()) {
842   case MemRegion::FunctionTextRegionKind: {
843     const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
844     if (FD)
845       os << "the address of the function '" << *FD << '\'';
846     else
847       os << "the address of a function";
848     return true;
849   }
850   case MemRegion::BlockTextRegionKind:
851     os << "block text";
852     return true;
853   case MemRegion::BlockDataRegionKind:
854     os << "a block";
855     return true;
856   case MemRegion::CXXThisRegionKind:
857   case MemRegion::CXXTempObjectRegionKind:
858     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
859     return true;
860   case MemRegion::VarRegionKind:
861     os << "a variable of type" << TVR->getValueType().getAsString();
862     return true;
863   case MemRegion::FieldRegionKind:
864     os << "a field of type " << TVR->getValueType().getAsString();
865     return true;
866   case MemRegion::ObjCIvarRegionKind:
867     os << "an instance variable of type " << TVR->getValueType().getAsString();
868     return true;
869   default:
870     return false;
871   }
872 }
873 
874 //===----------------------------------------------------------------------===//
875 // evaluation of individual function calls.
876 //===----------------------------------------------------------------------===//
877 
878 void CStringChecker::evalCopyCommon(CheckerContext &C,
879                                     const CallExpr *CE,
880                                     ProgramStateRef state,
881                                     const Expr *Size, const Expr *Dest,
882                                     const Expr *Source, bool Restricted,
883                                     bool IsMempcpy) const {
884   CurrentFunctionDescription = "memory copy function";
885 
886   // See if the size argument is zero.
887   const LocationContext *LCtx = C.getLocationContext();
888   SVal sizeVal = state->getSVal(Size, LCtx);
889   QualType sizeTy = Size->getType();
890 
891   ProgramStateRef stateZeroSize, stateNonZeroSize;
892   llvm::tie(stateZeroSize, stateNonZeroSize) =
893     assumeZero(C, state, sizeVal, sizeTy);
894 
895   // Get the value of the Dest.
896   SVal destVal = state->getSVal(Dest, LCtx);
897 
898   // If the size is zero, there won't be any actual memory access, so
899   // just bind the return value to the destination buffer and return.
900   if (stateZeroSize) {
901     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
902     C.addTransition(stateZeroSize);
903   }
904 
905   // If the size can be nonzero, we have to check the other arguments.
906   if (stateNonZeroSize) {
907     state = stateNonZeroSize;
908 
909     // Ensure the destination is not null. If it is NULL there will be a
910     // NULL pointer dereference.
911     state = checkNonNull(C, state, Dest, destVal);
912     if (!state)
913       return;
914 
915     // Get the value of the Src.
916     SVal srcVal = state->getSVal(Source, LCtx);
917 
918     // Ensure the source is not null. If it is NULL there will be a
919     // NULL pointer dereference.
920     state = checkNonNull(C, state, Source, srcVal);
921     if (!state)
922       return;
923 
924     // Ensure the accesses are valid and that the buffers do not overlap.
925     const char * const writeWarning =
926       "Memory copy function overflows destination buffer";
927     state = CheckBufferAccess(C, state, Size, Dest, Source,
928                               writeWarning, /* sourceWarning = */ NULL);
929     if (Restricted)
930       state = CheckOverlap(C, state, Size, Dest, Source);
931 
932     if (!state)
933       return;
934 
935     // If this is mempcpy, get the byte after the last byte copied and
936     // bind the expr.
937     if (IsMempcpy) {
938       loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal);
939       assert(destRegVal && "Destination should be a known MemRegionVal here");
940 
941       // Get the length to copy.
942       NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal);
943 
944       if (lenValNonLoc) {
945         // Get the byte after the last byte copied.
946         SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
947                                                           *destRegVal,
948                                                           *lenValNonLoc,
949                                                           Dest->getType());
950 
951         // The byte after the last byte copied is the return value.
952         state = state->BindExpr(CE, LCtx, lastElement);
953       } else {
954         // If we don't know how much we copied, we can at least
955         // conjure a return value for later.
956         unsigned Count = C.getCurrentBlockCount();
957         SVal result =
958           C.getSValBuilder().getConjuredSymbolVal(NULL, CE, Count);
959         state = state->BindExpr(CE, LCtx, result);
960       }
961 
962     } else {
963       // All other copies return the destination buffer.
964       // (Well, bcopy() has a void return type, but this won't hurt.)
965       state = state->BindExpr(CE, LCtx, destVal);
966     }
967 
968     // Invalidate the destination.
969     // FIXME: Even if we can't perfectly model the copy, we should see if we
970     // can use LazyCompoundVals to copy the source values into the destination.
971     // This would probably remove any existing bindings past the end of the
972     // copied region, but that's still an improvement over blank invalidation.
973     state = InvalidateBuffer(C, state, Dest,
974                              state->getSVal(Dest, C.getLocationContext()));
975     C.addTransition(state);
976   }
977 }
978 
979 
980 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
981   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
982   // The return value is the address of the destination buffer.
983   const Expr *Dest = CE->getArg(0);
984   ProgramStateRef state = C.getState();
985 
986   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
987 }
988 
989 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
990   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
991   // The return value is a pointer to the byte following the last written byte.
992   const Expr *Dest = CE->getArg(0);
993   ProgramStateRef state = C.getState();
994 
995   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
996 }
997 
998 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
999   // void *memmove(void *dst, const void *src, size_t n);
1000   // The return value is the address of the destination buffer.
1001   const Expr *Dest = CE->getArg(0);
1002   ProgramStateRef state = C.getState();
1003 
1004   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1005 }
1006 
1007 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1008   // void bcopy(const void *src, void *dst, size_t n);
1009   evalCopyCommon(C, CE, C.getState(),
1010                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1011 }
1012 
1013 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1014   // int memcmp(const void *s1, const void *s2, size_t n);
1015   CurrentFunctionDescription = "memory comparison function";
1016 
1017   const Expr *Left = CE->getArg(0);
1018   const Expr *Right = CE->getArg(1);
1019   const Expr *Size = CE->getArg(2);
1020 
1021   ProgramStateRef state = C.getState();
1022   SValBuilder &svalBuilder = C.getSValBuilder();
1023 
1024   // See if the size argument is zero.
1025   const LocationContext *LCtx = C.getLocationContext();
1026   SVal sizeVal = state->getSVal(Size, LCtx);
1027   QualType sizeTy = Size->getType();
1028 
1029   ProgramStateRef stateZeroSize, stateNonZeroSize;
1030   llvm::tie(stateZeroSize, stateNonZeroSize) =
1031     assumeZero(C, state, sizeVal, sizeTy);
1032 
1033   // If the size can be zero, the result will be 0 in that case, and we don't
1034   // have to check either of the buffers.
1035   if (stateZeroSize) {
1036     state = stateZeroSize;
1037     state = state->BindExpr(CE, LCtx,
1038                             svalBuilder.makeZeroVal(CE->getType()));
1039     C.addTransition(state);
1040   }
1041 
1042   // If the size can be nonzero, we have to check the other arguments.
1043   if (stateNonZeroSize) {
1044     state = stateNonZeroSize;
1045     // If we know the two buffers are the same, we know the result is 0.
1046     // First, get the two buffers' addresses. Another checker will have already
1047     // made sure they're not undefined.
1048     DefinedOrUnknownSVal LV =
1049       cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx));
1050     DefinedOrUnknownSVal RV =
1051       cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx));
1052 
1053     // See if they are the same.
1054     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1055     ProgramStateRef StSameBuf, StNotSameBuf;
1056     llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1057 
1058     // If the two arguments might be the same buffer, we know the result is 0,
1059     // and we only need to check one size.
1060     if (StSameBuf) {
1061       state = StSameBuf;
1062       state = CheckBufferAccess(C, state, Size, Left);
1063       if (state) {
1064         state = StSameBuf->BindExpr(CE, LCtx,
1065                                     svalBuilder.makeZeroVal(CE->getType()));
1066         C.addTransition(state);
1067       }
1068     }
1069 
1070     // If the two arguments might be different buffers, we have to check the
1071     // size of both of them.
1072     if (StNotSameBuf) {
1073       state = StNotSameBuf;
1074       state = CheckBufferAccess(C, state, Size, Left, Right);
1075       if (state) {
1076         // The return value is the comparison result, which we don't know.
1077         unsigned Count = C.getCurrentBlockCount();
1078         SVal CmpV = svalBuilder.getConjuredSymbolVal(NULL, CE, Count);
1079         state = state->BindExpr(CE, LCtx, CmpV);
1080         C.addTransition(state);
1081       }
1082     }
1083   }
1084 }
1085 
1086 void CStringChecker::evalstrLength(CheckerContext &C,
1087                                    const CallExpr *CE) const {
1088   // size_t strlen(const char *s);
1089   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1090 }
1091 
1092 void CStringChecker::evalstrnLength(CheckerContext &C,
1093                                     const CallExpr *CE) const {
1094   // size_t strnlen(const char *s, size_t maxlen);
1095   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1096 }
1097 
1098 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1099                                          bool IsStrnlen) const {
1100   CurrentFunctionDescription = "string length function";
1101   ProgramStateRef state = C.getState();
1102   const LocationContext *LCtx = C.getLocationContext();
1103 
1104   if (IsStrnlen) {
1105     const Expr *maxlenExpr = CE->getArg(1);
1106     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1107 
1108     ProgramStateRef stateZeroSize, stateNonZeroSize;
1109     llvm::tie(stateZeroSize, stateNonZeroSize) =
1110       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1111 
1112     // If the size can be zero, the result will be 0 in that case, and we don't
1113     // have to check the string itself.
1114     if (stateZeroSize) {
1115       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1116       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1117       C.addTransition(stateZeroSize);
1118     }
1119 
1120     // If the size is GUARANTEED to be zero, we're done!
1121     if (!stateNonZeroSize)
1122       return;
1123 
1124     // Otherwise, record the assumption that the size is nonzero.
1125     state = stateNonZeroSize;
1126   }
1127 
1128   // Check that the string argument is non-null.
1129   const Expr *Arg = CE->getArg(0);
1130   SVal ArgVal = state->getSVal(Arg, LCtx);
1131 
1132   state = checkNonNull(C, state, Arg, ArgVal);
1133 
1134   if (!state)
1135     return;
1136 
1137   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1138 
1139   // If the argument isn't a valid C string, there's no valid state to
1140   // transition to.
1141   if (strLength.isUndef())
1142     return;
1143 
1144   DefinedOrUnknownSVal result = UnknownVal();
1145 
1146   // If the check is for strnlen() then bind the return value to no more than
1147   // the maxlen value.
1148   if (IsStrnlen) {
1149     QualType cmpTy = C.getSValBuilder().getConditionType();
1150 
1151     // It's a little unfortunate to be getting this again,
1152     // but it's not that expensive...
1153     const Expr *maxlenExpr = CE->getArg(1);
1154     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1155 
1156     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1157     NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal);
1158 
1159     if (strLengthNL && maxlenValNL) {
1160       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1161 
1162       // Check if the strLength is greater than the maxlen.
1163       llvm::tie(stateStringTooLong, stateStringNotTooLong) =
1164         state->assume(cast<DefinedOrUnknownSVal>
1165                       (C.getSValBuilder().evalBinOpNN(state, BO_GT,
1166                                                       *strLengthNL,
1167                                                       *maxlenValNL,
1168                                                       cmpTy)));
1169 
1170       if (stateStringTooLong && !stateStringNotTooLong) {
1171         // If the string is longer than maxlen, return maxlen.
1172         result = *maxlenValNL;
1173       } else if (stateStringNotTooLong && !stateStringTooLong) {
1174         // If the string is shorter than maxlen, return its length.
1175         result = *strLengthNL;
1176       }
1177     }
1178 
1179     if (result.isUnknown()) {
1180       // If we don't have enough information for a comparison, there's
1181       // no guarantee the full string length will actually be returned.
1182       // All we know is the return value is the min of the string length
1183       // and the limit. This is better than nothing.
1184       unsigned Count = C.getCurrentBlockCount();
1185       result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, Count);
1186       NonLoc *resultNL = cast<NonLoc>(&result);
1187 
1188       if (strLengthNL) {
1189         state = state->assume(cast<DefinedOrUnknownSVal>
1190                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1191                                                               *resultNL,
1192                                                               *strLengthNL,
1193                                                               cmpTy)), true);
1194       }
1195 
1196       if (maxlenValNL) {
1197         state = state->assume(cast<DefinedOrUnknownSVal>
1198                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1199                                                               *resultNL,
1200                                                               *maxlenValNL,
1201                                                               cmpTy)), true);
1202       }
1203     }
1204 
1205   } else {
1206     // This is a plain strlen(), not strnlen().
1207     result = cast<DefinedOrUnknownSVal>(strLength);
1208 
1209     // If we don't know the length of the string, conjure a return
1210     // value, so it can be used in constraints, at least.
1211     if (result.isUnknown()) {
1212       unsigned Count = C.getCurrentBlockCount();
1213       result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, Count);
1214     }
1215   }
1216 
1217   // Bind the return value.
1218   assert(!result.isUnknown() && "Should have conjured a value by now");
1219   state = state->BindExpr(CE, LCtx, result);
1220   C.addTransition(state);
1221 }
1222 
1223 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1224   // char *strcpy(char *restrict dst, const char *restrict src);
1225   evalStrcpyCommon(C, CE,
1226                    /* returnEnd = */ false,
1227                    /* isBounded = */ false,
1228                    /* isAppending = */ false);
1229 }
1230 
1231 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1232   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1233   evalStrcpyCommon(C, CE,
1234                    /* returnEnd = */ false,
1235                    /* isBounded = */ true,
1236                    /* isAppending = */ false);
1237 }
1238 
1239 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1240   // char *stpcpy(char *restrict dst, const char *restrict src);
1241   evalStrcpyCommon(C, CE,
1242                    /* returnEnd = */ true,
1243                    /* isBounded = */ false,
1244                    /* isAppending = */ false);
1245 }
1246 
1247 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1248   //char *strcat(char *restrict s1, const char *restrict s2);
1249   evalStrcpyCommon(C, CE,
1250                    /* returnEnd = */ false,
1251                    /* isBounded = */ false,
1252                    /* isAppending = */ true);
1253 }
1254 
1255 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1256   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1257   evalStrcpyCommon(C, CE,
1258                    /* returnEnd = */ false,
1259                    /* isBounded = */ true,
1260                    /* isAppending = */ true);
1261 }
1262 
1263 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1264                                       bool returnEnd, bool isBounded,
1265                                       bool isAppending) const {
1266   CurrentFunctionDescription = "string copy function";
1267   ProgramStateRef state = C.getState();
1268   const LocationContext *LCtx = C.getLocationContext();
1269 
1270   // Check that the destination is non-null.
1271   const Expr *Dst = CE->getArg(0);
1272   SVal DstVal = state->getSVal(Dst, LCtx);
1273 
1274   state = checkNonNull(C, state, Dst, DstVal);
1275   if (!state)
1276     return;
1277 
1278   // Check that the source is non-null.
1279   const Expr *srcExpr = CE->getArg(1);
1280   SVal srcVal = state->getSVal(srcExpr, LCtx);
1281   state = checkNonNull(C, state, srcExpr, srcVal);
1282   if (!state)
1283     return;
1284 
1285   // Get the string length of the source.
1286   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1287 
1288   // If the source isn't a valid C string, give up.
1289   if (strLength.isUndef())
1290     return;
1291 
1292   SValBuilder &svalBuilder = C.getSValBuilder();
1293   QualType cmpTy = svalBuilder.getConditionType();
1294   QualType sizeTy = svalBuilder.getContext().getSizeType();
1295 
1296   // These two values allow checking two kinds of errors:
1297   // - actual overflows caused by a source that doesn't fit in the destination
1298   // - potential overflows caused by a bound that could exceed the destination
1299   SVal amountCopied = UnknownVal();
1300   SVal maxLastElementIndex = UnknownVal();
1301   const char *boundWarning = NULL;
1302 
1303   // If the function is strncpy, strncat, etc... it is bounded.
1304   if (isBounded) {
1305     // Get the max number of characters to copy.
1306     const Expr *lenExpr = CE->getArg(2);
1307     SVal lenVal = state->getSVal(lenExpr, LCtx);
1308 
1309     // Protect against misdeclared strncpy().
1310     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1311 
1312     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1313     NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal);
1314 
1315     // If we know both values, we might be able to figure out how much
1316     // we're copying.
1317     if (strLengthNL && lenValNL) {
1318       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1319 
1320       // Check if the max number to copy is less than the length of the src.
1321       // If the bound is equal to the source length, strncpy won't null-
1322       // terminate the result!
1323       llvm::tie(stateSourceTooLong, stateSourceNotTooLong) =
1324         state->assume(cast<DefinedOrUnknownSVal>
1325                       (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL,
1326                                                *lenValNL, cmpTy)));
1327 
1328       if (stateSourceTooLong && !stateSourceNotTooLong) {
1329         // Max number to copy is less than the length of the src, so the actual
1330         // strLength copied is the max number arg.
1331         state = stateSourceTooLong;
1332         amountCopied = lenVal;
1333 
1334       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1335         // The source buffer entirely fits in the bound.
1336         state = stateSourceNotTooLong;
1337         amountCopied = strLength;
1338       }
1339     }
1340 
1341     // We still want to know if the bound is known to be too large.
1342     if (lenValNL) {
1343       if (isAppending) {
1344         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1345 
1346         // Get the string length of the destination. If the destination is
1347         // memory that can't have a string length, we shouldn't be copying
1348         // into it anyway.
1349         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1350         if (dstStrLength.isUndef())
1351           return;
1352 
1353         if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) {
1354           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1355                                                         *lenValNL,
1356                                                         *dstStrLengthNL,
1357                                                         sizeTy);
1358           boundWarning = "Size argument is greater than the free space in the "
1359                          "destination buffer";
1360         }
1361 
1362       } else {
1363         // For strncpy, this is just checking that lenVal <= sizeof(dst)
1364         // (Yes, strncpy and strncat differ in how they treat termination.
1365         // strncat ALWAYS terminates, but strncpy doesn't.)
1366         NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
1367         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1368                                                       one, sizeTy);
1369         boundWarning = "Size argument is greater than the length of the "
1370                        "destination buffer";
1371       }
1372     }
1373 
1374     // If we couldn't pin down the copy length, at least bound it.
1375     // FIXME: We should actually run this code path for append as well, but
1376     // right now it creates problems with constraints (since we can end up
1377     // trying to pass constraints from symbol to symbol).
1378     if (amountCopied.isUnknown() && !isAppending) {
1379       // Try to get a "hypothetical" string length symbol, which we can later
1380       // set as a real value if that turns out to be the case.
1381       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1382       assert(!amountCopied.isUndef());
1383 
1384       if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) {
1385         if (lenValNL) {
1386           // amountCopied <= lenVal
1387           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1388                                                              *amountCopiedNL,
1389                                                              *lenValNL,
1390                                                              cmpTy);
1391           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound),
1392                                 true);
1393           if (!state)
1394             return;
1395         }
1396 
1397         if (strLengthNL) {
1398           // amountCopied <= strlen(source)
1399           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1400                                                            *amountCopiedNL,
1401                                                            *strLengthNL,
1402                                                            cmpTy);
1403           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc),
1404                                 true);
1405           if (!state)
1406             return;
1407         }
1408       }
1409     }
1410 
1411   } else {
1412     // The function isn't bounded. The amount copied should match the length
1413     // of the source buffer.
1414     amountCopied = strLength;
1415   }
1416 
1417   assert(state);
1418 
1419   // This represents the number of characters copied into the destination
1420   // buffer. (It may not actually be the strlen if the destination buffer
1421   // is not terminated.)
1422   SVal finalStrLength = UnknownVal();
1423 
1424   // If this is an appending function (strcat, strncat...) then set the
1425   // string length to strlen(src) + strlen(dst) since the buffer will
1426   // ultimately contain both.
1427   if (isAppending) {
1428     // Get the string length of the destination. If the destination is memory
1429     // that can't have a string length, we shouldn't be copying into it anyway.
1430     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1431     if (dstStrLength.isUndef())
1432       return;
1433 
1434     NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied);
1435     NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength);
1436 
1437     // If we know both string lengths, we might know the final string length.
1438     if (srcStrLengthNL && dstStrLengthNL) {
1439       // Make sure the two lengths together don't overflow a size_t.
1440       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1441       if (!state)
1442         return;
1443 
1444       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1445                                                *dstStrLengthNL, sizeTy);
1446     }
1447 
1448     // If we couldn't get a single value for the final string length,
1449     // we can at least bound it by the individual lengths.
1450     if (finalStrLength.isUnknown()) {
1451       // Try to get a "hypothetical" string length symbol, which we can later
1452       // set as a real value if that turns out to be the case.
1453       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1454       assert(!finalStrLength.isUndef());
1455 
1456       if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) {
1457         if (srcStrLengthNL) {
1458           // finalStrLength >= srcStrLength
1459           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1460                                                         *finalStrLengthNL,
1461                                                         *srcStrLengthNL,
1462                                                         cmpTy);
1463           state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult),
1464                                 true);
1465           if (!state)
1466             return;
1467         }
1468 
1469         if (dstStrLengthNL) {
1470           // finalStrLength >= dstStrLength
1471           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1472                                                       *finalStrLengthNL,
1473                                                       *dstStrLengthNL,
1474                                                       cmpTy);
1475           state = state->assume(cast<DefinedOrUnknownSVal>(destInResult),
1476                                 true);
1477           if (!state)
1478             return;
1479         }
1480       }
1481     }
1482 
1483   } else {
1484     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1485     // the final string length will match the input string length.
1486     finalStrLength = amountCopied;
1487   }
1488 
1489   // The final result of the function will either be a pointer past the last
1490   // copied element, or a pointer to the start of the destination buffer.
1491   SVal Result = (returnEnd ? UnknownVal() : DstVal);
1492 
1493   assert(state);
1494 
1495   // If the destination is a MemRegion, try to check for a buffer overflow and
1496   // record the new string length.
1497   if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
1498     QualType ptrTy = Dst->getType();
1499 
1500     // If we have an exact value on a bounded copy, use that to check for
1501     // overflows, rather than our estimate about how much is actually copied.
1502     if (boundWarning) {
1503       if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) {
1504         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1505                                                       *maxLastNL, ptrTy);
1506         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1507                               boundWarning);
1508         if (!state)
1509           return;
1510       }
1511     }
1512 
1513     // Then, if the final length is known...
1514     if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) {
1515       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1516                                                  *knownStrLength, ptrTy);
1517 
1518       // ...and we haven't checked the bound, we'll check the actual copy.
1519       if (!boundWarning) {
1520         const char * const warningMsg =
1521           "String copy function overflows destination buffer";
1522         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1523         if (!state)
1524           return;
1525       }
1526 
1527       // If this is a stpcpy-style copy, the last element is the return value.
1528       if (returnEnd)
1529         Result = lastElement;
1530     }
1531 
1532     // Invalidate the destination. This must happen before we set the C string
1533     // length because invalidation will clear the length.
1534     // FIXME: Even if we can't perfectly model the copy, we should see if we
1535     // can use LazyCompoundVals to copy the source values into the destination.
1536     // This would probably remove any existing bindings past the end of the
1537     // string, but that's still an improvement over blank invalidation.
1538     state = InvalidateBuffer(C, state, Dst, *dstRegVal);
1539 
1540     // Set the C string length of the destination, if we know it.
1541     if (isBounded && !isAppending) {
1542       // strncpy is annoying in that it doesn't guarantee to null-terminate
1543       // the result string. If the original string didn't fit entirely inside
1544       // the bound (including the null-terminator), we don't know how long the
1545       // result is.
1546       if (amountCopied != strLength)
1547         finalStrLength = UnknownVal();
1548     }
1549     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1550   }
1551 
1552   assert(state);
1553 
1554   // If this is a stpcpy-style copy, but we were unable to check for a buffer
1555   // overflow, we still need a result. Conjure a return value.
1556   if (returnEnd && Result.isUnknown()) {
1557     unsigned Count = C.getCurrentBlockCount();
1558     Result = svalBuilder.getConjuredSymbolVal(NULL, CE, Count);
1559   }
1560 
1561   // Set the return value.
1562   state = state->BindExpr(CE, LCtx, Result);
1563   C.addTransition(state);
1564 }
1565 
1566 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1567   //int strcmp(const char *s1, const char *s2);
1568   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1569 }
1570 
1571 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1572   //int strncmp(const char *s1, const char *s2, size_t n);
1573   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1574 }
1575 
1576 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1577                                     const CallExpr *CE) const {
1578   //int strcasecmp(const char *s1, const char *s2);
1579   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1580 }
1581 
1582 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1583                                      const CallExpr *CE) const {
1584   //int strncasecmp(const char *s1, const char *s2, size_t n);
1585   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1586 }
1587 
1588 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1589                                       bool isBounded, bool ignoreCase) const {
1590   CurrentFunctionDescription = "string comparison function";
1591   ProgramStateRef state = C.getState();
1592   const LocationContext *LCtx = C.getLocationContext();
1593 
1594   // Check that the first string is non-null
1595   const Expr *s1 = CE->getArg(0);
1596   SVal s1Val = state->getSVal(s1, LCtx);
1597   state = checkNonNull(C, state, s1, s1Val);
1598   if (!state)
1599     return;
1600 
1601   // Check that the second string is non-null.
1602   const Expr *s2 = CE->getArg(1);
1603   SVal s2Val = state->getSVal(s2, LCtx);
1604   state = checkNonNull(C, state, s2, s2Val);
1605   if (!state)
1606     return;
1607 
1608   // Get the string length of the first string or give up.
1609   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1610   if (s1Length.isUndef())
1611     return;
1612 
1613   // Get the string length of the second string or give up.
1614   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1615   if (s2Length.isUndef())
1616     return;
1617 
1618   // If we know the two buffers are the same, we know the result is 0.
1619   // First, get the two buffers' addresses. Another checker will have already
1620   // made sure they're not undefined.
1621   DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val);
1622   DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val);
1623 
1624   // See if they are the same.
1625   SValBuilder &svalBuilder = C.getSValBuilder();
1626   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1627   ProgramStateRef StSameBuf, StNotSameBuf;
1628   llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1629 
1630   // If the two arguments might be the same buffer, we know the result is 0,
1631   // and we only need to check one size.
1632   if (StSameBuf) {
1633     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1634                                     svalBuilder.makeZeroVal(CE->getType()));
1635     C.addTransition(StSameBuf);
1636 
1637     // If the two arguments are GUARANTEED to be the same, we're done!
1638     if (!StNotSameBuf)
1639       return;
1640   }
1641 
1642   assert(StNotSameBuf);
1643   state = StNotSameBuf;
1644 
1645   // At this point we can go about comparing the two buffers.
1646   // For now, we only do this if they're both known string literals.
1647 
1648   // Attempt to extract string literals from both expressions.
1649   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1650   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1651   bool canComputeResult = false;
1652 
1653   if (s1StrLiteral && s2StrLiteral) {
1654     StringRef s1StrRef = s1StrLiteral->getString();
1655     StringRef s2StrRef = s2StrLiteral->getString();
1656 
1657     if (isBounded) {
1658       // Get the max number of characters to compare.
1659       const Expr *lenExpr = CE->getArg(2);
1660       SVal lenVal = state->getSVal(lenExpr, LCtx);
1661 
1662       // If the length is known, we can get the right substrings.
1663       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1664         // Create substrings of each to compare the prefix.
1665         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1666         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1667         canComputeResult = true;
1668       }
1669     } else {
1670       // This is a normal, unbounded strcmp.
1671       canComputeResult = true;
1672     }
1673 
1674     if (canComputeResult) {
1675       // Real strcmp stops at null characters.
1676       size_t s1Term = s1StrRef.find('\0');
1677       if (s1Term != StringRef::npos)
1678         s1StrRef = s1StrRef.substr(0, s1Term);
1679 
1680       size_t s2Term = s2StrRef.find('\0');
1681       if (s2Term != StringRef::npos)
1682         s2StrRef = s2StrRef.substr(0, s2Term);
1683 
1684       // Use StringRef's comparison methods to compute the actual result.
1685       int result;
1686 
1687       if (ignoreCase) {
1688         // Compare string 1 to string 2 the same way strcasecmp() does.
1689         result = s1StrRef.compare_lower(s2StrRef);
1690       } else {
1691         // Compare string 1 to string 2 the same way strcmp() does.
1692         result = s1StrRef.compare(s2StrRef);
1693       }
1694 
1695       // Build the SVal of the comparison and bind the return value.
1696       SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1697       state = state->BindExpr(CE, LCtx, resultVal);
1698     }
1699   }
1700 
1701   if (!canComputeResult) {
1702     // Conjure a symbolic value. It's the best we can do.
1703     unsigned Count = C.getCurrentBlockCount();
1704     SVal resultVal = svalBuilder.getConjuredSymbolVal(NULL, CE, Count);
1705     state = state->BindExpr(CE, LCtx, resultVal);
1706   }
1707 
1708   // Record this as a possible path.
1709   C.addTransition(state);
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 // The driver method, and other Checker callbacks.
1714 //===----------------------------------------------------------------------===//
1715 
1716 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1717   StringRef Name = C.getCalleeName(CE);
1718   if (Name.empty())
1719     return false;
1720   if (Name.startswith("__builtin_"))
1721     Name = Name.substr(10);
1722 
1723   FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
1724     .Cases("memcpy", "__memcpy_chk", &CStringChecker::evalMemcpy)
1725     .Cases("mempcpy", "__mempcpy_chk", &CStringChecker::evalMempcpy)
1726     .Cases("memcmp", "bcmp", &CStringChecker::evalMemcmp)
1727     .Cases("memmove", "__memmove_chk", &CStringChecker::evalMemmove)
1728     .Cases("strcpy", "__strcpy_chk", &CStringChecker::evalStrcpy)
1729     .Cases("strncpy", "__strncpy_chk", &CStringChecker::evalStrncpy)
1730     .Cases("stpcpy", "__stpcpy_chk", &CStringChecker::evalStpcpy)
1731     .Cases("strcat", "__strcat_chk", &CStringChecker::evalStrcat)
1732     .Cases("strncat", "__strncat_chk", &CStringChecker::evalStrncat)
1733     .Case("strlen", &CStringChecker::evalstrLength)
1734     .Case("strnlen", &CStringChecker::evalstrnLength)
1735     .Case("strcmp", &CStringChecker::evalStrcmp)
1736     .Case("strncmp", &CStringChecker::evalStrncmp)
1737     .Case("strcasecmp", &CStringChecker::evalStrcasecmp)
1738     .Case("strncasecmp", &CStringChecker::evalStrncasecmp)
1739     .Case("bcopy", &CStringChecker::evalBcopy)
1740     .Default(NULL);
1741 
1742   // If the callee isn't a string function, let another checker handle it.
1743   if (!evalFunction)
1744     return false;
1745 
1746   // Make sure each function sets its own description.
1747   // (But don't bother in a release build.)
1748   assert(!(CurrentFunctionDescription = NULL));
1749 
1750   // Check and evaluate the call.
1751   (this->*evalFunction)(C, CE);
1752 
1753   // If the evaluate call resulted in no change, chain to the next eval call
1754   // handler.
1755   // Note, the custom CString evaluation calls assume that basic safety
1756   // properties are held. However, if the user chooses to turn off some of these
1757   // checks, we ignore the issues and leave the call evaluation to a generic
1758   // handler.
1759   if (!C.isDifferent())
1760     return false;
1761 
1762   return true;
1763 }
1764 
1765 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1766   // Record string length for char a[] = "abc";
1767   ProgramStateRef state = C.getState();
1768 
1769   for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1770        I != E; ++I) {
1771     const VarDecl *D = dyn_cast<VarDecl>(*I);
1772     if (!D)
1773       continue;
1774 
1775     // FIXME: Handle array fields of structs.
1776     if (!D->getType()->isArrayType())
1777       continue;
1778 
1779     const Expr *Init = D->getInit();
1780     if (!Init)
1781       continue;
1782     if (!isa<StringLiteral>(Init))
1783       continue;
1784 
1785     Loc VarLoc = state->getLValue(D, C.getLocationContext());
1786     const MemRegion *MR = VarLoc.getAsRegion();
1787     if (!MR)
1788       continue;
1789 
1790     SVal StrVal = state->getSVal(Init, C.getLocationContext());
1791     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1792     DefinedOrUnknownSVal strLength
1793       = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal));
1794 
1795     state = state->set<CStringLength>(MR, strLength);
1796   }
1797 
1798   C.addTransition(state);
1799 }
1800 
1801 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1802   CStringLength::EntryMap Entries = state->get<CStringLength>();
1803   return !Entries.isEmpty();
1804 }
1805 
1806 ProgramStateRef
1807 CStringChecker::checkRegionChanges(ProgramStateRef state,
1808                                    const StoreManager::InvalidatedSymbols *,
1809                                    ArrayRef<const MemRegion *> ExplicitRegions,
1810                                    ArrayRef<const MemRegion *> Regions) const {
1811   CStringLength::EntryMap Entries = state->get<CStringLength>();
1812   if (Entries.isEmpty())
1813     return state;
1814 
1815   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1816   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1817 
1818   // First build sets for the changed regions and their super-regions.
1819   for (ArrayRef<const MemRegion *>::iterator
1820        I = Regions.begin(), E = Regions.end(); I != E; ++I) {
1821     const MemRegion *MR = *I;
1822     Invalidated.insert(MR);
1823 
1824     SuperRegions.insert(MR);
1825     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
1826       MR = SR->getSuperRegion();
1827       SuperRegions.insert(MR);
1828     }
1829   }
1830 
1831   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
1832 
1833   // Then loop over the entries in the current state.
1834   for (CStringLength::EntryMap::iterator I = Entries.begin(),
1835        E = Entries.end(); I != E; ++I) {
1836     const MemRegion *MR = I.getKey();
1837 
1838     // Is this entry for a super-region of a changed region?
1839     if (SuperRegions.count(MR)) {
1840       Entries = F.remove(Entries, MR);
1841       continue;
1842     }
1843 
1844     // Is this entry for a sub-region of a changed region?
1845     const MemRegion *Super = MR;
1846     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
1847       Super = SR->getSuperRegion();
1848       if (Invalidated.count(Super)) {
1849         Entries = F.remove(Entries, MR);
1850         break;
1851       }
1852     }
1853   }
1854 
1855   return state->set<CStringLength>(Entries);
1856 }
1857 
1858 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
1859                                       SymbolReaper &SR) const {
1860   // Mark all symbols in our string length map as valid.
1861   CStringLength::EntryMap Entries = state->get<CStringLength>();
1862 
1863   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
1864        I != E; ++I) {
1865     SVal Len = I.getData();
1866 
1867     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
1868                                   se = Len.symbol_end(); si != se; ++si)
1869       SR.markInUse(*si);
1870   }
1871 }
1872 
1873 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
1874                                       CheckerContext &C) const {
1875   if (!SR.hasDeadSymbols())
1876     return;
1877 
1878   ProgramStateRef state = C.getState();
1879   CStringLength::EntryMap Entries = state->get<CStringLength>();
1880   if (Entries.isEmpty())
1881     return;
1882 
1883   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
1884   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
1885        I != E; ++I) {
1886     SVal Len = I.getData();
1887     if (SymbolRef Sym = Len.getAsSymbol()) {
1888       if (SR.isDead(Sym))
1889         Entries = F.remove(Entries, I.getKey());
1890     }
1891   }
1892 
1893   state = state->set<CStringLength>(Entries);
1894   C.addTransition(state);
1895 }
1896 
1897 #define REGISTER_CHECKER(name) \
1898 void ento::register##name(CheckerManager &mgr) {\
1899   static CStringChecker *TheChecker = 0; \
1900   if (TheChecker == 0) \
1901     TheChecker = mgr.registerChecker<CStringChecker>(); \
1902   TheChecker->Filter.Check##name = true; \
1903 }
1904 
1905 REGISTER_CHECKER(CStringNullArg)
1906 REGISTER_CHECKER(CStringOutOfBounds)
1907 REGISTER_CHECKER(CStringBufferOverlap)
1908 REGISTER_CHECKER(CStringNotNullTerm)
1909