1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides Sema routines for C++ exception specification testing. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member 39 /// swap function then tries to call std::swap unqualified from the exception 40 /// specification of that function. This function detects whether we're in 41 /// such a case and turns off delay-parsing of exception specifications. 42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 43 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 44 45 // All the problem cases are member functions named "swap" within class 46 // templates declared directly within namespace std or std::__debug or 47 // std::__profile. 48 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 49 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 50 return false; 51 52 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 53 if (!ND) 54 return false; 55 56 bool IsInStd = ND->isStdNamespace(); 57 if (!IsInStd) { 58 // This isn't a direct member of namespace std, but it might still be 59 // libstdc++'s std::__debug::array or std::__profile::array. 60 IdentifierInfo *II = ND->getIdentifier(); 61 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 62 !ND->isInStdNamespace()) 63 return false; 64 } 65 66 // Only apply this hack within a system header. 67 if (!Context.getSourceManager().isInSystemHeader(D.getLocStart())) 68 return false; 69 70 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 71 .Case("array", true) 72 .Case("pair", IsInStd) 73 .Case("priority_queue", IsInStd) 74 .Case("stack", IsInStd) 75 .Case("queue", IsInStd) 76 .Default(false); 77 } 78 79 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 80 /// exception specification. Incomplete types, or pointers to incomplete types 81 /// other than void are not allowed. 82 /// 83 /// \param[in,out] T The exception type. This will be decayed to a pointer type 84 /// when the input is an array or a function type. 85 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 86 // C++11 [except.spec]p2: 87 // A type cv T, "array of T", or "function returning T" denoted 88 // in an exception-specification is adjusted to type T, "pointer to T", or 89 // "pointer to function returning T", respectively. 90 // 91 // We also apply this rule in C++98. 92 if (T->isArrayType()) 93 T = Context.getArrayDecayedType(T); 94 else if (T->isFunctionType()) 95 T = Context.getPointerType(T); 96 97 int Kind = 0; 98 QualType PointeeT = T; 99 if (const PointerType *PT = T->getAs<PointerType>()) { 100 PointeeT = PT->getPointeeType(); 101 Kind = 1; 102 103 // cv void* is explicitly permitted, despite being a pointer to an 104 // incomplete type. 105 if (PointeeT->isVoidType()) 106 return false; 107 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 108 PointeeT = RT->getPointeeType(); 109 Kind = 2; 110 111 if (RT->isRValueReferenceType()) { 112 // C++11 [except.spec]p2: 113 // A type denoted in an exception-specification shall not denote [...] 114 // an rvalue reference type. 115 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 116 << T << Range; 117 return true; 118 } 119 } 120 121 // C++11 [except.spec]p2: 122 // A type denoted in an exception-specification shall not denote an 123 // incomplete type other than a class currently being defined [...]. 124 // A type denoted in an exception-specification shall not denote a 125 // pointer or reference to an incomplete type, other than (cv) void* or a 126 // pointer or reference to a class currently being defined. 127 // In Microsoft mode, downgrade this to a warning. 128 unsigned DiagID = diag::err_incomplete_in_exception_spec; 129 bool ReturnValueOnError = true; 130 if (getLangOpts().MicrosoftExt) { 131 DiagID = diag::ext_incomplete_in_exception_spec; 132 ReturnValueOnError = false; 133 } 134 if (!(PointeeT->isRecordType() && 135 PointeeT->getAs<RecordType>()->isBeingDefined()) && 136 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 137 return ReturnValueOnError; 138 139 return false; 140 } 141 142 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 143 /// to member to a function with an exception specification. This means that 144 /// it is invalid to add another level of indirection. 145 bool Sema::CheckDistantExceptionSpec(QualType T) { 146 // C++17 removes this rule in favor of putting exception specifications into 147 // the type system. 148 if (getLangOpts().CPlusPlus1z) 149 return false; 150 151 if (const PointerType *PT = T->getAs<PointerType>()) 152 T = PT->getPointeeType(); 153 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 154 T = PT->getPointeeType(); 155 else 156 return false; 157 158 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 159 if (!FnT) 160 return false; 161 162 return FnT->hasExceptionSpec(); 163 } 164 165 const FunctionProtoType * 166 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 167 if (FPT->getExceptionSpecType() == EST_Unparsed) { 168 Diag(Loc, diag::err_exception_spec_not_parsed); 169 return nullptr; 170 } 171 172 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 173 return FPT; 174 175 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 176 const FunctionProtoType *SourceFPT = 177 SourceDecl->getType()->castAs<FunctionProtoType>(); 178 179 // If the exception specification has already been resolved, just return it. 180 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 181 return SourceFPT; 182 183 // Compute or instantiate the exception specification now. 184 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 185 EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl)); 186 else 187 InstantiateExceptionSpec(Loc, SourceDecl); 188 189 const FunctionProtoType *Proto = 190 SourceDecl->getType()->castAs<FunctionProtoType>(); 191 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 192 Diag(Loc, diag::err_exception_spec_not_parsed); 193 Proto = nullptr; 194 } 195 return Proto; 196 } 197 198 void 199 Sema::UpdateExceptionSpec(FunctionDecl *FD, 200 const FunctionProtoType::ExceptionSpecInfo &ESI) { 201 // If we've fully resolved the exception specification, notify listeners. 202 if (!isUnresolvedExceptionSpec(ESI.Type)) 203 if (auto *Listener = getASTMutationListener()) 204 Listener->ResolvedExceptionSpec(FD); 205 206 for (auto *Redecl : FD->redecls()) 207 Context.adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI); 208 } 209 210 static bool CheckEquivalentExceptionSpecImpl( 211 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 212 const FunctionProtoType *Old, SourceLocation OldLoc, 213 const FunctionProtoType *New, SourceLocation NewLoc, 214 bool *MissingExceptionSpecification = nullptr, 215 bool *MissingEmptyExceptionSpecification = nullptr, 216 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 217 218 /// Determine whether a function has an implicitly-generated exception 219 /// specification. 220 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 221 if (!isa<CXXDestructorDecl>(Decl) && 222 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 223 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 224 return false; 225 226 // For a function that the user didn't declare: 227 // - if this is a destructor, its exception specification is implicit. 228 // - if this is 'operator delete' or 'operator delete[]', the exception 229 // specification is as-if an explicit exception specification was given 230 // (per [basic.stc.dynamic]p2). 231 if (!Decl->getTypeSourceInfo()) 232 return isa<CXXDestructorDecl>(Decl); 233 234 const FunctionProtoType *Ty = 235 Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>(); 236 return !Ty->hasExceptionSpec(); 237 } 238 239 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 240 // Just completely ignore this under -fno-exceptions prior to C++1z. 241 // In C++1z onwards, the exception specification is part of the type and 242 // we will diagnose mismatches anyway, so it's better to check for them here. 243 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus1z) 244 return false; 245 246 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 247 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 248 bool MissingExceptionSpecification = false; 249 bool MissingEmptyExceptionSpecification = false; 250 251 unsigned DiagID = diag::err_mismatched_exception_spec; 252 bool ReturnValueOnError = true; 253 if (getLangOpts().MicrosoftExt) { 254 DiagID = diag::ext_mismatched_exception_spec; 255 ReturnValueOnError = false; 256 } 257 258 // Check the types as written: they must match before any exception 259 // specification adjustment is applied. 260 if (!CheckEquivalentExceptionSpecImpl( 261 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 262 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 263 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 264 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 265 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 266 // C++11 [except.spec]p4 [DR1492]: 267 // If a declaration of a function has an implicit 268 // exception-specification, other declarations of the function shall 269 // not specify an exception-specification. 270 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 271 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 272 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 273 << hasImplicitExceptionSpec(Old); 274 if (Old->getLocation().isValid()) 275 Diag(Old->getLocation(), diag::note_previous_declaration); 276 } 277 return false; 278 } 279 280 // The failure was something other than an missing exception 281 // specification; return an error, except in MS mode where this is a warning. 282 if (!MissingExceptionSpecification) 283 return ReturnValueOnError; 284 285 const FunctionProtoType *NewProto = 286 New->getType()->castAs<FunctionProtoType>(); 287 288 // The new function declaration is only missing an empty exception 289 // specification "throw()". If the throw() specification came from a 290 // function in a system header that has C linkage, just add an empty 291 // exception specification to the "new" declaration. Note that C library 292 // implementations are permitted to add these nothrow exception 293 // specifications. 294 // 295 // Likewise if the old function is a builtin. 296 if (MissingEmptyExceptionSpecification && NewProto && 297 (Old->getLocation().isInvalid() || 298 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 299 Old->getBuiltinID()) && 300 Old->isExternC()) { 301 New->setType(Context.getFunctionType( 302 NewProto->getReturnType(), NewProto->getParamTypes(), 303 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 304 return false; 305 } 306 307 const FunctionProtoType *OldProto = 308 Old->getType()->castAs<FunctionProtoType>(); 309 310 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 311 if (ESI.Type == EST_Dynamic) { 312 ESI.Exceptions = OldProto->exceptions(); 313 } 314 315 if (ESI.Type == EST_ComputedNoexcept) { 316 // For computed noexcept, we can't just take the expression from the old 317 // prototype. It likely contains references to the old prototype's 318 // parameters. 319 New->setInvalidDecl(); 320 } else { 321 // Update the type of the function with the appropriate exception 322 // specification. 323 New->setType(Context.getFunctionType( 324 NewProto->getReturnType(), NewProto->getParamTypes(), 325 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 326 } 327 328 if (getLangOpts().MicrosoftExt && ESI.Type != EST_ComputedNoexcept) { 329 // Allow missing exception specifications in redeclarations as an extension. 330 DiagID = diag::ext_ms_missing_exception_specification; 331 ReturnValueOnError = false; 332 } else if (New->isReplaceableGlobalAllocationFunction() && 333 ESI.Type != EST_ComputedNoexcept) { 334 // Allow missing exception specifications in redeclarations as an extension, 335 // when declaring a replaceable global allocation function. 336 DiagID = diag::ext_missing_exception_specification; 337 ReturnValueOnError = false; 338 } else { 339 DiagID = diag::err_missing_exception_specification; 340 ReturnValueOnError = true; 341 } 342 343 // Warn about the lack of exception specification. 344 SmallString<128> ExceptionSpecString; 345 llvm::raw_svector_ostream OS(ExceptionSpecString); 346 switch (OldProto->getExceptionSpecType()) { 347 case EST_DynamicNone: 348 OS << "throw()"; 349 break; 350 351 case EST_Dynamic: { 352 OS << "throw("; 353 bool OnFirstException = true; 354 for (const auto &E : OldProto->exceptions()) { 355 if (OnFirstException) 356 OnFirstException = false; 357 else 358 OS << ", "; 359 360 OS << E.getAsString(getPrintingPolicy()); 361 } 362 OS << ")"; 363 break; 364 } 365 366 case EST_BasicNoexcept: 367 OS << "noexcept"; 368 break; 369 370 case EST_ComputedNoexcept: 371 OS << "noexcept("; 372 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 373 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 374 OS << ")"; 375 break; 376 377 default: 378 llvm_unreachable("This spec type is compatible with none."); 379 } 380 381 SourceLocation FixItLoc; 382 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 383 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 384 // FIXME: Preserve enough information so that we can produce a correct fixit 385 // location when there is a trailing return type. 386 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 387 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 388 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 389 } 390 391 if (FixItLoc.isInvalid()) 392 Diag(New->getLocation(), DiagID) 393 << New << OS.str(); 394 else { 395 Diag(New->getLocation(), DiagID) 396 << New << OS.str() 397 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 398 } 399 400 if (Old->getLocation().isValid()) 401 Diag(Old->getLocation(), diag::note_previous_declaration); 402 403 return ReturnValueOnError; 404 } 405 406 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 407 /// exception specifications. Exception specifications are equivalent if 408 /// they allow exactly the same set of exception types. It does not matter how 409 /// that is achieved. See C++ [except.spec]p2. 410 bool Sema::CheckEquivalentExceptionSpec( 411 const FunctionProtoType *Old, SourceLocation OldLoc, 412 const FunctionProtoType *New, SourceLocation NewLoc) { 413 if (!getLangOpts().CXXExceptions) 414 return false; 415 416 unsigned DiagID = diag::err_mismatched_exception_spec; 417 if (getLangOpts().MicrosoftExt) 418 DiagID = diag::ext_mismatched_exception_spec; 419 bool Result = CheckEquivalentExceptionSpecImpl( 420 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 421 Old, OldLoc, New, NewLoc); 422 423 // In Microsoft mode, mismatching exception specifications just cause a warning. 424 if (getLangOpts().MicrosoftExt) 425 return false; 426 return Result; 427 } 428 429 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 430 /// exception specifications. See C++ [except.spec]p3. 431 /// 432 /// \return \c false if the exception specifications match, \c true if there is 433 /// a problem. If \c true is returned, either a diagnostic has already been 434 /// produced or \c *MissingExceptionSpecification is set to \c true. 435 static bool CheckEquivalentExceptionSpecImpl( 436 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 437 const FunctionProtoType *Old, SourceLocation OldLoc, 438 const FunctionProtoType *New, SourceLocation NewLoc, 439 bool *MissingExceptionSpecification, 440 bool *MissingEmptyExceptionSpecification, 441 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 442 if (MissingExceptionSpecification) 443 *MissingExceptionSpecification = false; 444 445 if (MissingEmptyExceptionSpecification) 446 *MissingEmptyExceptionSpecification = false; 447 448 Old = S.ResolveExceptionSpec(NewLoc, Old); 449 if (!Old) 450 return false; 451 New = S.ResolveExceptionSpec(NewLoc, New); 452 if (!New) 453 return false; 454 455 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 456 // - both are non-throwing, regardless of their form, 457 // - both have the form noexcept(constant-expression) and the constant- 458 // expressions are equivalent, 459 // - both are dynamic-exception-specifications that have the same set of 460 // adjusted types. 461 // 462 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 463 // of the form throw(), noexcept, or noexcept(constant-expression) where the 464 // constant-expression yields true. 465 // 466 // C++0x [except.spec]p4: If any declaration of a function has an exception- 467 // specifier that is not a noexcept-specification allowing all exceptions, 468 // all declarations [...] of that function shall have a compatible 469 // exception-specification. 470 // 471 // That last point basically means that noexcept(false) matches no spec. 472 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 473 474 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 475 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 476 477 assert(!isUnresolvedExceptionSpec(OldEST) && 478 !isUnresolvedExceptionSpec(NewEST) && 479 "Shouldn't see unknown exception specifications here"); 480 481 // Shortcut the case where both have no spec. 482 if (OldEST == EST_None && NewEST == EST_None) 483 return false; 484 485 FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(S.Context); 486 FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(S.Context); 487 if (OldNR == FunctionProtoType::NR_BadNoexcept || 488 NewNR == FunctionProtoType::NR_BadNoexcept) 489 return false; 490 491 // Dependent noexcept specifiers are compatible with each other, but nothing 492 // else. 493 // One noexcept is compatible with another if the argument is the same 494 if (OldNR == NewNR && 495 OldNR != FunctionProtoType::NR_NoNoexcept && 496 NewNR != FunctionProtoType::NR_NoNoexcept) 497 return false; 498 if (OldNR != NewNR && 499 OldNR != FunctionProtoType::NR_NoNoexcept && 500 NewNR != FunctionProtoType::NR_NoNoexcept) { 501 S.Diag(NewLoc, DiagID); 502 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 503 S.Diag(OldLoc, NoteID); 504 return true; 505 } 506 507 // The MS extension throw(...) is compatible with itself. 508 if (OldEST == EST_MSAny && NewEST == EST_MSAny) 509 return false; 510 511 // It's also compatible with no spec. 512 if ((OldEST == EST_None && NewEST == EST_MSAny) || 513 (OldEST == EST_MSAny && NewEST == EST_None)) 514 return false; 515 516 // It's also compatible with noexcept(false). 517 if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw) 518 return false; 519 if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw) 520 return false; 521 522 // As described above, noexcept(false) matches no spec only for functions. 523 if (AllowNoexceptAllMatchWithNoSpec) { 524 if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw) 525 return false; 526 if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw) 527 return false; 528 } 529 530 // Any non-throwing specifications are compatible. 531 bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow || 532 OldEST == EST_DynamicNone; 533 bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow || 534 NewEST == EST_DynamicNone; 535 if (OldNonThrowing && NewNonThrowing) 536 return false; 537 538 // As a special compatibility feature, under C++0x we accept no spec and 539 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 540 // This is because the implicit declaration changed, but old code would break. 541 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 542 const FunctionProtoType *WithExceptions = nullptr; 543 if (OldEST == EST_None && NewEST == EST_Dynamic) 544 WithExceptions = New; 545 else if (OldEST == EST_Dynamic && NewEST == EST_None) 546 WithExceptions = Old; 547 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 548 // One has no spec, the other throw(something). If that something is 549 // std::bad_alloc, all conditions are met. 550 QualType Exception = *WithExceptions->exception_begin(); 551 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 552 IdentifierInfo* Name = ExRecord->getIdentifier(); 553 if (Name && Name->getName() == "bad_alloc") { 554 // It's called bad_alloc, but is it in std? 555 if (ExRecord->isInStdNamespace()) { 556 return false; 557 } 558 } 559 } 560 } 561 } 562 563 // At this point, the only remaining valid case is two matching dynamic 564 // specifications. We return here unless both specifications are dynamic. 565 if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) { 566 if (MissingExceptionSpecification && Old->hasExceptionSpec() && 567 !New->hasExceptionSpec()) { 568 // The old type has an exception specification of some sort, but 569 // the new type does not. 570 *MissingExceptionSpecification = true; 571 572 if (MissingEmptyExceptionSpecification && OldNonThrowing) { 573 // The old type has a throw() or noexcept(true) exception specification 574 // and the new type has no exception specification, and the caller asked 575 // to handle this itself. 576 *MissingEmptyExceptionSpecification = true; 577 } 578 579 return true; 580 } 581 582 S.Diag(NewLoc, DiagID); 583 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 584 S.Diag(OldLoc, NoteID); 585 return true; 586 } 587 588 assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic && 589 "Exception compatibility logic error: non-dynamic spec slipped through."); 590 591 bool Success = true; 592 // Both have a dynamic exception spec. Collect the first set, then compare 593 // to the second. 594 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 595 for (const auto &I : Old->exceptions()) 596 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 597 598 for (const auto &I : New->exceptions()) { 599 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 600 if (OldTypes.count(TypePtr)) 601 NewTypes.insert(TypePtr); 602 else 603 Success = false; 604 } 605 606 Success = Success && OldTypes.size() == NewTypes.size(); 607 608 if (Success) { 609 return false; 610 } 611 S.Diag(NewLoc, DiagID); 612 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 613 S.Diag(OldLoc, NoteID); 614 return true; 615 } 616 617 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 618 const PartialDiagnostic &NoteID, 619 const FunctionProtoType *Old, 620 SourceLocation OldLoc, 621 const FunctionProtoType *New, 622 SourceLocation NewLoc) { 623 if (!getLangOpts().CXXExceptions) 624 return false; 625 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 626 New, NewLoc); 627 } 628 629 /// CheckExceptionSpecSubset - Check whether the second function type's 630 /// exception specification is a subset (or equivalent) of the first function 631 /// type. This is used by override and pointer assignment checks. 632 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 633 const PartialDiagnostic &NestedDiagID, 634 const PartialDiagnostic &NoteID, 635 const FunctionProtoType *Superset, 636 SourceLocation SuperLoc, 637 const FunctionProtoType *Subset, 638 SourceLocation SubLoc) { 639 640 // Just auto-succeed under -fno-exceptions. 641 if (!getLangOpts().CXXExceptions) 642 return false; 643 644 // FIXME: As usual, we could be more specific in our error messages, but 645 // that better waits until we've got types with source locations. 646 647 if (!SubLoc.isValid()) 648 SubLoc = SuperLoc; 649 650 // Resolve the exception specifications, if needed. 651 Superset = ResolveExceptionSpec(SuperLoc, Superset); 652 if (!Superset) 653 return false; 654 Subset = ResolveExceptionSpec(SubLoc, Subset); 655 if (!Subset) 656 return false; 657 658 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 659 660 // If superset contains everything, we're done. 661 if (SuperEST == EST_None || SuperEST == EST_MSAny) 662 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 663 Subset, SubLoc); 664 665 // If there are dependent noexcept specs, assume everything is fine. Unlike 666 // with the equivalency check, this is safe in this case, because we don't 667 // want to merge declarations. Checks after instantiation will catch any 668 // omissions we make here. 669 // We also shortcut checking if a noexcept expression was bad. 670 671 FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context); 672 if (SuperNR == FunctionProtoType::NR_BadNoexcept || 673 SuperNR == FunctionProtoType::NR_Dependent) 674 return false; 675 676 // Another case of the superset containing everything. 677 if (SuperNR == FunctionProtoType::NR_Throw) 678 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 679 Subset, SubLoc); 680 681 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 682 683 assert(!isUnresolvedExceptionSpec(SuperEST) && 684 !isUnresolvedExceptionSpec(SubEST) && 685 "Shouldn't see unknown exception specifications here"); 686 687 // It does not. If the subset contains everything, we've failed. 688 if (SubEST == EST_None || SubEST == EST_MSAny) { 689 Diag(SubLoc, DiagID); 690 if (NoteID.getDiagID() != 0) 691 Diag(SuperLoc, NoteID); 692 return true; 693 } 694 695 FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context); 696 if (SubNR == FunctionProtoType::NR_BadNoexcept || 697 SubNR == FunctionProtoType::NR_Dependent) 698 return false; 699 700 // Another case of the subset containing everything. 701 if (SubNR == FunctionProtoType::NR_Throw) { 702 Diag(SubLoc, DiagID); 703 if (NoteID.getDiagID() != 0) 704 Diag(SuperLoc, NoteID); 705 return true; 706 } 707 708 // If the subset contains nothing, we're done. 709 if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow) 710 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 711 Subset, SubLoc); 712 713 // Otherwise, if the superset contains nothing, we've failed. 714 if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) { 715 Diag(SubLoc, DiagID); 716 if (NoteID.getDiagID() != 0) 717 Diag(SuperLoc, NoteID); 718 return true; 719 } 720 721 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 722 "Exception spec subset: non-dynamic case slipped through."); 723 724 // Neither contains everything or nothing. Do a proper comparison. 725 for (const auto &SubI : Subset->exceptions()) { 726 // Take one type from the subset. 727 QualType CanonicalSubT = Context.getCanonicalType(SubI); 728 // Unwrap pointers and references so that we can do checks within a class 729 // hierarchy. Don't unwrap member pointers; they don't have hierarchy 730 // conversions on the pointee. 731 bool SubIsPointer = false; 732 if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>()) 733 CanonicalSubT = RefTy->getPointeeType(); 734 if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) { 735 CanonicalSubT = PtrTy->getPointeeType(); 736 SubIsPointer = true; 737 } 738 bool SubIsClass = CanonicalSubT->isRecordType(); 739 CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType(); 740 741 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 742 /*DetectVirtual=*/false); 743 744 bool Contained = false; 745 // Make sure it's in the superset. 746 for (const auto &SuperI : Superset->exceptions()) { 747 QualType CanonicalSuperT = Context.getCanonicalType(SuperI); 748 // SubT must be SuperT or derived from it, or pointer or reference to 749 // such types. 750 if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>()) 751 CanonicalSuperT = RefTy->getPointeeType(); 752 if (SubIsPointer) { 753 if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>()) 754 CanonicalSuperT = PtrTy->getPointeeType(); 755 else { 756 continue; 757 } 758 } 759 CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType(); 760 // If the types are the same, move on to the next type in the subset. 761 if (CanonicalSubT == CanonicalSuperT) { 762 Contained = true; 763 break; 764 } 765 766 // Otherwise we need to check the inheritance. 767 if (!SubIsClass || !CanonicalSuperT->isRecordType()) 768 continue; 769 770 Paths.clear(); 771 if (!IsDerivedFrom(SubLoc, CanonicalSubT, CanonicalSuperT, Paths)) 772 continue; 773 774 if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT))) 775 continue; 776 777 // Do this check from a context without privileges. 778 switch (CheckBaseClassAccess(SourceLocation(), 779 CanonicalSuperT, CanonicalSubT, 780 Paths.front(), 781 /*Diagnostic*/ 0, 782 /*ForceCheck*/ true, 783 /*ForceUnprivileged*/ true)) { 784 case AR_accessible: break; 785 case AR_inaccessible: continue; 786 case AR_dependent: 787 llvm_unreachable("access check dependent for unprivileged context"); 788 case AR_delayed: 789 llvm_unreachable("access check delayed in non-declaration"); 790 } 791 792 Contained = true; 793 break; 794 } 795 if (!Contained) { 796 Diag(SubLoc, DiagID); 797 if (NoteID.getDiagID() != 0) 798 Diag(SuperLoc, NoteID); 799 return true; 800 } 801 } 802 // We've run half the gauntlet. 803 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 804 Subset, SubLoc); 805 } 806 807 static bool 808 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 809 const PartialDiagnostic &NoteID, QualType Target, 810 SourceLocation TargetLoc, QualType Source, 811 SourceLocation SourceLoc) { 812 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 813 if (!TFunc) 814 return false; 815 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 816 if (!SFunc) 817 return false; 818 819 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 820 SFunc, SourceLoc); 821 } 822 823 /// CheckParamExceptionSpec - Check if the parameter and return types of the 824 /// two functions have equivalent exception specs. This is part of the 825 /// assignment and override compatibility check. We do not check the parameters 826 /// of parameter function pointers recursively, as no sane programmer would 827 /// even be able to write such a function type. 828 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 829 const PartialDiagnostic &NoteID, 830 const FunctionProtoType *Target, 831 SourceLocation TargetLoc, 832 const FunctionProtoType *Source, 833 SourceLocation SourceLoc) { 834 auto RetDiag = DiagID; 835 RetDiag << 0; 836 if (CheckSpecForTypesEquivalent( 837 *this, RetDiag, PDiag(), 838 Target->getReturnType(), TargetLoc, Source->getReturnType(), 839 SourceLoc)) 840 return true; 841 842 // We shouldn't even be testing this unless the arguments are otherwise 843 // compatible. 844 assert(Target->getNumParams() == Source->getNumParams() && 845 "Functions have different argument counts."); 846 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 847 auto ParamDiag = DiagID; 848 ParamDiag << 1; 849 if (CheckSpecForTypesEquivalent( 850 *this, ParamDiag, PDiag(), 851 Target->getParamType(i), TargetLoc, Source->getParamType(i), 852 SourceLoc)) 853 return true; 854 } 855 return false; 856 } 857 858 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 859 // First we check for applicability. 860 // Target type must be a function, function pointer or function reference. 861 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 862 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 863 return false; 864 865 // SourceType must be a function or function pointer. 866 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 867 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 868 return false; 869 870 unsigned DiagID = diag::err_incompatible_exception_specs; 871 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 872 // This is not an error in C++17 onwards, unless the noexceptness doesn't 873 // match, but in that case we have a full-on type mismatch, not just a 874 // type sugar mismatch. 875 if (getLangOpts().CPlusPlus1z) { 876 DiagID = diag::warn_incompatible_exception_specs; 877 NestedDiagID = diag::warn_deep_exception_specs_differ; 878 } 879 880 // Now we've got the correct types on both sides, check their compatibility. 881 // This means that the source of the conversion can only throw a subset of 882 // the exceptions of the target, and any exception specs on arguments or 883 // return types must be equivalent. 884 // 885 // FIXME: If there is a nested dependent exception specification, we should 886 // not be checking it here. This is fine: 887 // template<typename T> void f() { 888 // void (*p)(void (*) throw(T)); 889 // void (*q)(void (*) throw(int)) = p; 890 // } 891 // ... because it might be instantiated with T=int. 892 return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(), 893 ToFunc, From->getSourceRange().getBegin(), 894 FromFunc, SourceLocation()) && 895 !getLangOpts().CPlusPlus1z; 896 } 897 898 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 899 const CXXMethodDecl *Old) { 900 // If the new exception specification hasn't been parsed yet, skip the check. 901 // We'll get called again once it's been parsed. 902 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 903 EST_Unparsed) 904 return false; 905 if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) { 906 // Don't check uninstantiated template destructors at all. We can only 907 // synthesize correct specs after the template is instantiated. 908 if (New->getParent()->isDependentType()) 909 return false; 910 if (New->getParent()->isBeingDefined()) { 911 // The destructor might be updated once the definition is finished. So 912 // remember it and check later. 913 DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old)); 914 return false; 915 } 916 } 917 // If the old exception specification hasn't been parsed yet, remember that 918 // we need to perform this check when we get to the end of the outermost 919 // lexically-surrounding class. 920 if (Old->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 921 EST_Unparsed) { 922 DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old)); 923 return false; 924 } 925 unsigned DiagID = diag::err_override_exception_spec; 926 if (getLangOpts().MicrosoftExt) 927 DiagID = diag::ext_override_exception_spec; 928 return CheckExceptionSpecSubset(PDiag(DiagID), 929 PDiag(diag::err_deep_exception_specs_differ), 930 PDiag(diag::note_overridden_virtual_function), 931 Old->getType()->getAs<FunctionProtoType>(), 932 Old->getLocation(), 933 New->getType()->getAs<FunctionProtoType>(), 934 New->getLocation()); 935 } 936 937 static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) { 938 CanThrowResult R = CT_Cannot; 939 for (const Stmt *SubStmt : E->children()) { 940 R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt))); 941 if (R == CT_Can) 942 break; 943 } 944 return R; 945 } 946 947 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) { 948 // As an extension, we assume that __attribute__((nothrow)) functions don't 949 // throw. 950 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 951 return CT_Cannot; 952 953 QualType T; 954 955 // In C++1z, just look at the function type of the callee. 956 if (S.getLangOpts().CPlusPlus1z && isa<CallExpr>(E)) { 957 E = cast<CallExpr>(E)->getCallee(); 958 T = E->getType(); 959 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 960 // Sadly we don't preserve the actual type as part of the "bound member" 961 // placeholder, so we need to reconstruct it. 962 E = E->IgnoreParenImpCasts(); 963 964 // Could be a call to a pointer-to-member or a plain member access. 965 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 966 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 967 T = Op->getRHS()->getType() 968 ->castAs<MemberPointerType>()->getPointeeType(); 969 } else { 970 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 971 } 972 } 973 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 974 T = VD->getType(); 975 else 976 // If we have no clue what we're calling, assume the worst. 977 return CT_Can; 978 979 const FunctionProtoType *FT; 980 if ((FT = T->getAs<FunctionProtoType>())) { 981 } else if (const PointerType *PT = T->getAs<PointerType>()) 982 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 983 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 984 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 985 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 986 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 987 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 988 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 989 990 if (!FT) 991 return CT_Can; 992 993 FT = S.ResolveExceptionSpec(E->getLocStart(), FT); 994 if (!FT) 995 return CT_Can; 996 997 return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can; 998 } 999 1000 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1001 if (DC->isTypeDependent()) 1002 return CT_Dependent; 1003 1004 if (!DC->getTypeAsWritten()->isReferenceType()) 1005 return CT_Cannot; 1006 1007 if (DC->getSubExpr()->isTypeDependent()) 1008 return CT_Dependent; 1009 1010 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1011 } 1012 1013 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1014 if (DC->isTypeOperand()) 1015 return CT_Cannot; 1016 1017 Expr *Op = DC->getExprOperand(); 1018 if (Op->isTypeDependent()) 1019 return CT_Dependent; 1020 1021 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1022 if (!RT) 1023 return CT_Cannot; 1024 1025 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1026 return CT_Cannot; 1027 1028 if (Op->Classify(S.Context).isPRValue()) 1029 return CT_Cannot; 1030 1031 return CT_Can; 1032 } 1033 1034 CanThrowResult Sema::canThrow(const Expr *E) { 1035 // C++ [expr.unary.noexcept]p3: 1036 // [Can throw] if in a potentially-evaluated context the expression would 1037 // contain: 1038 switch (E->getStmtClass()) { 1039 case Expr::CXXThrowExprClass: 1040 // - a potentially evaluated throw-expression 1041 return CT_Can; 1042 1043 case Expr::CXXDynamicCastExprClass: { 1044 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1045 // where T is a reference type, that requires a run-time check 1046 CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E)); 1047 if (CT == CT_Can) 1048 return CT; 1049 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1050 } 1051 1052 case Expr::CXXTypeidExprClass: 1053 // - a potentially evaluated typeid expression applied to a glvalue 1054 // expression whose type is a polymorphic class type 1055 return canTypeidThrow(*this, cast<CXXTypeidExpr>(E)); 1056 1057 // - a potentially evaluated call to a function, member function, function 1058 // pointer, or member function pointer that does not have a non-throwing 1059 // exception-specification 1060 case Expr::CallExprClass: 1061 case Expr::CXXMemberCallExprClass: 1062 case Expr::CXXOperatorCallExprClass: 1063 case Expr::UserDefinedLiteralClass: { 1064 const CallExpr *CE = cast<CallExpr>(E); 1065 CanThrowResult CT; 1066 if (E->isTypeDependent()) 1067 CT = CT_Dependent; 1068 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1069 CT = CT_Cannot; 1070 else 1071 CT = canCalleeThrow(*this, E, CE->getCalleeDecl()); 1072 if (CT == CT_Can) 1073 return CT; 1074 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1075 } 1076 1077 case Expr::CXXConstructExprClass: 1078 case Expr::CXXTemporaryObjectExprClass: { 1079 CanThrowResult CT = canCalleeThrow(*this, E, 1080 cast<CXXConstructExpr>(E)->getConstructor()); 1081 if (CT == CT_Can) 1082 return CT; 1083 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1084 } 1085 1086 case Expr::CXXInheritedCtorInitExprClass: 1087 return canCalleeThrow(*this, E, 1088 cast<CXXInheritedCtorInitExpr>(E)->getConstructor()); 1089 1090 case Expr::LambdaExprClass: { 1091 const LambdaExpr *Lambda = cast<LambdaExpr>(E); 1092 CanThrowResult CT = CT_Cannot; 1093 for (LambdaExpr::const_capture_init_iterator 1094 Cap = Lambda->capture_init_begin(), 1095 CapEnd = Lambda->capture_init_end(); 1096 Cap != CapEnd; ++Cap) 1097 CT = mergeCanThrow(CT, canThrow(*Cap)); 1098 return CT; 1099 } 1100 1101 case Expr::CXXNewExprClass: { 1102 CanThrowResult CT; 1103 if (E->isTypeDependent()) 1104 CT = CT_Dependent; 1105 else 1106 CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew()); 1107 if (CT == CT_Can) 1108 return CT; 1109 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1110 } 1111 1112 case Expr::CXXDeleteExprClass: { 1113 CanThrowResult CT; 1114 QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType(); 1115 if (DTy.isNull() || DTy->isDependentType()) { 1116 CT = CT_Dependent; 1117 } else { 1118 CT = canCalleeThrow(*this, E, 1119 cast<CXXDeleteExpr>(E)->getOperatorDelete()); 1120 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1121 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1122 const CXXDestructorDecl *DD = RD->getDestructor(); 1123 if (DD) 1124 CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD)); 1125 } 1126 if (CT == CT_Can) 1127 return CT; 1128 } 1129 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1130 } 1131 1132 case Expr::CXXBindTemporaryExprClass: { 1133 // The bound temporary has to be destroyed again, which might throw. 1134 CanThrowResult CT = canCalleeThrow(*this, E, 1135 cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor()); 1136 if (CT == CT_Can) 1137 return CT; 1138 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1139 } 1140 1141 // ObjC message sends are like function calls, but never have exception 1142 // specs. 1143 case Expr::ObjCMessageExprClass: 1144 case Expr::ObjCPropertyRefExprClass: 1145 case Expr::ObjCSubscriptRefExprClass: 1146 return CT_Can; 1147 1148 // All the ObjC literals that are implemented as calls are 1149 // potentially throwing unless we decide to close off that 1150 // possibility. 1151 case Expr::ObjCArrayLiteralClass: 1152 case Expr::ObjCDictionaryLiteralClass: 1153 case Expr::ObjCBoxedExprClass: 1154 return CT_Can; 1155 1156 // Many other things have subexpressions, so we have to test those. 1157 // Some are simple: 1158 case Expr::CoawaitExprClass: 1159 case Expr::ConditionalOperatorClass: 1160 case Expr::CompoundLiteralExprClass: 1161 case Expr::CoyieldExprClass: 1162 case Expr::CXXConstCastExprClass: 1163 case Expr::CXXReinterpretCastExprClass: 1164 case Expr::CXXStdInitializerListExprClass: 1165 case Expr::DesignatedInitExprClass: 1166 case Expr::DesignatedInitUpdateExprClass: 1167 case Expr::ExprWithCleanupsClass: 1168 case Expr::ExtVectorElementExprClass: 1169 case Expr::InitListExprClass: 1170 case Expr::ArrayInitLoopExprClass: 1171 case Expr::MemberExprClass: 1172 case Expr::ObjCIsaExprClass: 1173 case Expr::ObjCIvarRefExprClass: 1174 case Expr::ParenExprClass: 1175 case Expr::ParenListExprClass: 1176 case Expr::ShuffleVectorExprClass: 1177 case Expr::ConvertVectorExprClass: 1178 case Expr::VAArgExprClass: 1179 return canSubExprsThrow(*this, E); 1180 1181 // Some might be dependent for other reasons. 1182 case Expr::ArraySubscriptExprClass: 1183 case Expr::OMPArraySectionExprClass: 1184 case Expr::BinaryOperatorClass: 1185 case Expr::CompoundAssignOperatorClass: 1186 case Expr::CStyleCastExprClass: 1187 case Expr::CXXStaticCastExprClass: 1188 case Expr::CXXFunctionalCastExprClass: 1189 case Expr::ImplicitCastExprClass: 1190 case Expr::MaterializeTemporaryExprClass: 1191 case Expr::UnaryOperatorClass: { 1192 CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot; 1193 return mergeCanThrow(CT, canSubExprsThrow(*this, E)); 1194 } 1195 1196 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. 1197 case Expr::StmtExprClass: 1198 return CT_Can; 1199 1200 case Expr::CXXDefaultArgExprClass: 1201 return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr()); 1202 1203 case Expr::CXXDefaultInitExprClass: 1204 return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr()); 1205 1206 case Expr::ChooseExprClass: 1207 if (E->isTypeDependent() || E->isValueDependent()) 1208 return CT_Dependent; 1209 return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr()); 1210 1211 case Expr::GenericSelectionExprClass: 1212 if (cast<GenericSelectionExpr>(E)->isResultDependent()) 1213 return CT_Dependent; 1214 return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr()); 1215 1216 // Some expressions are always dependent. 1217 case Expr::CXXDependentScopeMemberExprClass: 1218 case Expr::CXXUnresolvedConstructExprClass: 1219 case Expr::DependentScopeDeclRefExprClass: 1220 case Expr::CXXFoldExprClass: 1221 return CT_Dependent; 1222 1223 case Expr::AsTypeExprClass: 1224 case Expr::BinaryConditionalOperatorClass: 1225 case Expr::BlockExprClass: 1226 case Expr::CUDAKernelCallExprClass: 1227 case Expr::DeclRefExprClass: 1228 case Expr::ObjCBridgedCastExprClass: 1229 case Expr::ObjCIndirectCopyRestoreExprClass: 1230 case Expr::ObjCProtocolExprClass: 1231 case Expr::ObjCSelectorExprClass: 1232 case Expr::ObjCAvailabilityCheckExprClass: 1233 case Expr::OffsetOfExprClass: 1234 case Expr::PackExpansionExprClass: 1235 case Expr::PseudoObjectExprClass: 1236 case Expr::SubstNonTypeTemplateParmExprClass: 1237 case Expr::SubstNonTypeTemplateParmPackExprClass: 1238 case Expr::FunctionParmPackExprClass: 1239 case Expr::UnaryExprOrTypeTraitExprClass: 1240 case Expr::UnresolvedLookupExprClass: 1241 case Expr::UnresolvedMemberExprClass: 1242 case Expr::TypoExprClass: 1243 // FIXME: Can any of the above throw? If so, when? 1244 return CT_Cannot; 1245 1246 case Expr::AddrLabelExprClass: 1247 case Expr::ArrayTypeTraitExprClass: 1248 case Expr::AtomicExprClass: 1249 case Expr::TypeTraitExprClass: 1250 case Expr::CXXBoolLiteralExprClass: 1251 case Expr::CXXNoexceptExprClass: 1252 case Expr::CXXNullPtrLiteralExprClass: 1253 case Expr::CXXPseudoDestructorExprClass: 1254 case Expr::CXXScalarValueInitExprClass: 1255 case Expr::CXXThisExprClass: 1256 case Expr::CXXUuidofExprClass: 1257 case Expr::CharacterLiteralClass: 1258 case Expr::ExpressionTraitExprClass: 1259 case Expr::FloatingLiteralClass: 1260 case Expr::GNUNullExprClass: 1261 case Expr::ImaginaryLiteralClass: 1262 case Expr::ImplicitValueInitExprClass: 1263 case Expr::IntegerLiteralClass: 1264 case Expr::ArrayInitIndexExprClass: 1265 case Expr::NoInitExprClass: 1266 case Expr::ObjCEncodeExprClass: 1267 case Expr::ObjCStringLiteralClass: 1268 case Expr::ObjCBoolLiteralExprClass: 1269 case Expr::OpaqueValueExprClass: 1270 case Expr::PredefinedExprClass: 1271 case Expr::SizeOfPackExprClass: 1272 case Expr::StringLiteralClass: 1273 // These expressions can never throw. 1274 return CT_Cannot; 1275 1276 case Expr::MSPropertyRefExprClass: 1277 case Expr::MSPropertySubscriptExprClass: 1278 llvm_unreachable("Invalid class for expression"); 1279 1280 #define STMT(CLASS, PARENT) case Expr::CLASS##Class: 1281 #define STMT_RANGE(Base, First, Last) 1282 #define LAST_STMT_RANGE(BASE, FIRST, LAST) 1283 #define EXPR(CLASS, PARENT) 1284 #define ABSTRACT_STMT(STMT) 1285 #include "clang/AST/StmtNodes.inc" 1286 case Expr::NoStmtClass: 1287 llvm_unreachable("Invalid class for expression"); 1288 } 1289 llvm_unreachable("Bogus StmtClass"); 1290 } 1291 1292 } // end namespace clang 1293