1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24
25 namespace clang {
26
GetUnderlyingFunction(QualType T)27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28 {
29 if (const PointerType *PtrTy = T->getAs<PointerType>())
30 T = PtrTy->getPointeeType();
31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32 T = RefTy->getPointeeType();
33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34 T = MPTy->getPointeeType();
35 return T->getAs<FunctionProtoType>();
36 }
37
38 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
39 /// member swap function then tries to call std::swap unqualified from the
40 /// exception specification of that function. This function detects whether
41 /// we're in such a case and turns off delay-parsing of exception
42 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
43 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
isLibstdcxxEagerExceptionSpecHack(const Declarator & D)44 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
45 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
46
47 // All the problem cases are member functions named "swap" within class
48 // templates declared directly within namespace std or std::__debug or
49 // std::__profile.
50 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
51 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
52 return false;
53
54 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
55 if (!ND)
56 return false;
57
58 bool IsInStd = ND->isStdNamespace();
59 if (!IsInStd) {
60 // This isn't a direct member of namespace std, but it might still be
61 // libstdc++'s std::__debug::array or std::__profile::array.
62 IdentifierInfo *II = ND->getIdentifier();
63 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
64 !ND->isInStdNamespace())
65 return false;
66 }
67
68 // Only apply this hack within a system header.
69 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
70 return false;
71
72 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
73 .Case("array", true)
74 .Case("pair", IsInStd)
75 .Case("priority_queue", IsInStd)
76 .Case("stack", IsInStd)
77 .Case("queue", IsInStd)
78 .Default(false);
79 }
80
ActOnNoexceptSpec(Expr * NoexceptExpr,ExceptionSpecificationType & EST)81 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
82 ExceptionSpecificationType &EST) {
83
84 if (NoexceptExpr->isTypeDependent() ||
85 NoexceptExpr->containsUnexpandedParameterPack()) {
86 EST = EST_DependentNoexcept;
87 return NoexceptExpr;
88 }
89
90 llvm::APSInt Result;
91 ExprResult Converted = CheckConvertedConstantExpression(
92 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
93
94 if (Converted.isInvalid()) {
95 EST = EST_NoexceptFalse;
96 // Fill in an expression of 'false' as a fixup.
97 auto *BoolExpr = new (Context)
98 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
99 llvm::APSInt Value{1};
100 Value = 0;
101 return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
102 }
103
104 if (Converted.get()->isValueDependent()) {
105 EST = EST_DependentNoexcept;
106 return Converted;
107 }
108
109 if (!Converted.isInvalid())
110 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
111 return Converted;
112 }
113
114 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
115 /// exception specification. Incomplete types, or pointers to incomplete types
116 /// other than void are not allowed.
117 ///
118 /// \param[in,out] T The exception type. This will be decayed to a pointer type
119 /// when the input is an array or a function type.
CheckSpecifiedExceptionType(QualType & T,SourceRange Range)120 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
121 // C++11 [except.spec]p2:
122 // A type cv T, "array of T", or "function returning T" denoted
123 // in an exception-specification is adjusted to type T, "pointer to T", or
124 // "pointer to function returning T", respectively.
125 //
126 // We also apply this rule in C++98.
127 if (T->isArrayType())
128 T = Context.getArrayDecayedType(T);
129 else if (T->isFunctionType())
130 T = Context.getPointerType(T);
131
132 int Kind = 0;
133 QualType PointeeT = T;
134 if (const PointerType *PT = T->getAs<PointerType>()) {
135 PointeeT = PT->getPointeeType();
136 Kind = 1;
137
138 // cv void* is explicitly permitted, despite being a pointer to an
139 // incomplete type.
140 if (PointeeT->isVoidType())
141 return false;
142 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
143 PointeeT = RT->getPointeeType();
144 Kind = 2;
145
146 if (RT->isRValueReferenceType()) {
147 // C++11 [except.spec]p2:
148 // A type denoted in an exception-specification shall not denote [...]
149 // an rvalue reference type.
150 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
151 << T << Range;
152 return true;
153 }
154 }
155
156 // C++11 [except.spec]p2:
157 // A type denoted in an exception-specification shall not denote an
158 // incomplete type other than a class currently being defined [...].
159 // A type denoted in an exception-specification shall not denote a
160 // pointer or reference to an incomplete type, other than (cv) void* or a
161 // pointer or reference to a class currently being defined.
162 // In Microsoft mode, downgrade this to a warning.
163 unsigned DiagID = diag::err_incomplete_in_exception_spec;
164 bool ReturnValueOnError = true;
165 if (getLangOpts().MSVCCompat) {
166 DiagID = diag::ext_incomplete_in_exception_spec;
167 ReturnValueOnError = false;
168 }
169 if (!(PointeeT->isRecordType() &&
170 PointeeT->castAs<RecordType>()->isBeingDefined()) &&
171 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
172 return ReturnValueOnError;
173
174 // The MSVC compatibility mode doesn't extend to sizeless types,
175 // so diagnose them separately.
176 if (PointeeT->isSizelessType() && Kind != 1) {
177 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
178 << (Kind == 2 ? 1 : 0) << PointeeT << Range;
179 return true;
180 }
181
182 return false;
183 }
184
185 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
186 /// to member to a function with an exception specification. This means that
187 /// it is invalid to add another level of indirection.
CheckDistantExceptionSpec(QualType T)188 bool Sema::CheckDistantExceptionSpec(QualType T) {
189 // C++17 removes this rule in favor of putting exception specifications into
190 // the type system.
191 if (getLangOpts().CPlusPlus17)
192 return false;
193
194 if (const PointerType *PT = T->getAs<PointerType>())
195 T = PT->getPointeeType();
196 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
197 T = PT->getPointeeType();
198 else
199 return false;
200
201 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
202 if (!FnT)
203 return false;
204
205 return FnT->hasExceptionSpec();
206 }
207
208 const FunctionProtoType *
ResolveExceptionSpec(SourceLocation Loc,const FunctionProtoType * FPT)209 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
210 if (FPT->getExceptionSpecType() == EST_Unparsed) {
211 Diag(Loc, diag::err_exception_spec_not_parsed);
212 return nullptr;
213 }
214
215 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
216 return FPT;
217
218 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
219 const FunctionProtoType *SourceFPT =
220 SourceDecl->getType()->castAs<FunctionProtoType>();
221
222 // If the exception specification has already been resolved, just return it.
223 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
224 return SourceFPT;
225
226 // Compute or instantiate the exception specification now.
227 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
228 EvaluateImplicitExceptionSpec(Loc, SourceDecl);
229 else
230 InstantiateExceptionSpec(Loc, SourceDecl);
231
232 const FunctionProtoType *Proto =
233 SourceDecl->getType()->castAs<FunctionProtoType>();
234 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
235 Diag(Loc, diag::err_exception_spec_not_parsed);
236 Proto = nullptr;
237 }
238 return Proto;
239 }
240
241 void
UpdateExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI)242 Sema::UpdateExceptionSpec(FunctionDecl *FD,
243 const FunctionProtoType::ExceptionSpecInfo &ESI) {
244 // If we've fully resolved the exception specification, notify listeners.
245 if (!isUnresolvedExceptionSpec(ESI.Type))
246 if (auto *Listener = getASTMutationListener())
247 Listener->ResolvedExceptionSpec(FD);
248
249 for (FunctionDecl *Redecl : FD->redecls())
250 Context.adjustExceptionSpec(Redecl, ESI);
251 }
252
exceptionSpecNotKnownYet(const FunctionDecl * FD)253 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
254 auto *MD = dyn_cast<CXXMethodDecl>(FD);
255 if (!MD)
256 return false;
257
258 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
259 return EST == EST_Unparsed ||
260 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
261 }
262
263 static bool CheckEquivalentExceptionSpecImpl(
264 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
265 const FunctionProtoType *Old, SourceLocation OldLoc,
266 const FunctionProtoType *New, SourceLocation NewLoc,
267 bool *MissingExceptionSpecification = nullptr,
268 bool *MissingEmptyExceptionSpecification = nullptr,
269 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
270
271 /// Determine whether a function has an implicitly-generated exception
272 /// specification.
hasImplicitExceptionSpec(FunctionDecl * Decl)273 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
274 if (!isa<CXXDestructorDecl>(Decl) &&
275 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
276 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
277 return false;
278
279 // For a function that the user didn't declare:
280 // - if this is a destructor, its exception specification is implicit.
281 // - if this is 'operator delete' or 'operator delete[]', the exception
282 // specification is as-if an explicit exception specification was given
283 // (per [basic.stc.dynamic]p2).
284 if (!Decl->getTypeSourceInfo())
285 return isa<CXXDestructorDecl>(Decl);
286
287 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
288 return !Ty->hasExceptionSpec();
289 }
290
CheckEquivalentExceptionSpec(FunctionDecl * Old,FunctionDecl * New)291 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
292 // Just completely ignore this under -fno-exceptions prior to C++17.
293 // In C++17 onwards, the exception specification is part of the type and
294 // we will diagnose mismatches anyway, so it's better to check for them here.
295 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
296 return false;
297
298 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
299 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
300 bool MissingExceptionSpecification = false;
301 bool MissingEmptyExceptionSpecification = false;
302
303 unsigned DiagID = diag::err_mismatched_exception_spec;
304 bool ReturnValueOnError = true;
305 if (getLangOpts().MSVCCompat) {
306 DiagID = diag::ext_mismatched_exception_spec;
307 ReturnValueOnError = false;
308 }
309
310 // If we're befriending a member function of a class that's currently being
311 // defined, we might not be able to work out its exception specification yet.
312 // If not, defer the check until later.
313 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
314 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
315 return false;
316 }
317
318 // Check the types as written: they must match before any exception
319 // specification adjustment is applied.
320 if (!CheckEquivalentExceptionSpecImpl(
321 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
322 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
323 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
324 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
325 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
326 // C++11 [except.spec]p4 [DR1492]:
327 // If a declaration of a function has an implicit
328 // exception-specification, other declarations of the function shall
329 // not specify an exception-specification.
330 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
331 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
332 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
333 << hasImplicitExceptionSpec(Old);
334 if (Old->getLocation().isValid())
335 Diag(Old->getLocation(), diag::note_previous_declaration);
336 }
337 return false;
338 }
339
340 // The failure was something other than an missing exception
341 // specification; return an error, except in MS mode where this is a warning.
342 if (!MissingExceptionSpecification)
343 return ReturnValueOnError;
344
345 const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
346
347 // The new function declaration is only missing an empty exception
348 // specification "throw()". If the throw() specification came from a
349 // function in a system header that has C linkage, just add an empty
350 // exception specification to the "new" declaration. Note that C library
351 // implementations are permitted to add these nothrow exception
352 // specifications.
353 //
354 // Likewise if the old function is a builtin.
355 if (MissingEmptyExceptionSpecification &&
356 (Old->getLocation().isInvalid() ||
357 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
358 Old->getBuiltinID()) &&
359 Old->isExternC()) {
360 New->setType(Context.getFunctionType(
361 NewProto->getReturnType(), NewProto->getParamTypes(),
362 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
363 return false;
364 }
365
366 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
367
368 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
369 if (ESI.Type == EST_Dynamic) {
370 // FIXME: What if the exceptions are described in terms of the old
371 // prototype's parameters?
372 ESI.Exceptions = OldProto->exceptions();
373 }
374
375 if (ESI.Type == EST_NoexceptFalse)
376 ESI.Type = EST_None;
377 if (ESI.Type == EST_NoexceptTrue)
378 ESI.Type = EST_BasicNoexcept;
379
380 // For dependent noexcept, we can't just take the expression from the old
381 // prototype. It likely contains references to the old prototype's parameters.
382 if (ESI.Type == EST_DependentNoexcept) {
383 New->setInvalidDecl();
384 } else {
385 // Update the type of the function with the appropriate exception
386 // specification.
387 New->setType(Context.getFunctionType(
388 NewProto->getReturnType(), NewProto->getParamTypes(),
389 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
390 }
391
392 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
393 DiagID = diag::ext_missing_exception_specification;
394 ReturnValueOnError = false;
395 } else if (New->isReplaceableGlobalAllocationFunction() &&
396 ESI.Type != EST_DependentNoexcept) {
397 // Allow missing exception specifications in redeclarations as an extension,
398 // when declaring a replaceable global allocation function.
399 DiagID = diag::ext_missing_exception_specification;
400 ReturnValueOnError = false;
401 } else if (ESI.Type == EST_NoThrow) {
402 // Don't emit any warning for missing 'nothrow' in MSVC.
403 if (getLangOpts().MSVCCompat) {
404 return false;
405 }
406 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
407 // common omission.
408 DiagID = diag::ext_missing_exception_specification;
409 ReturnValueOnError = false;
410 } else {
411 DiagID = diag::err_missing_exception_specification;
412 ReturnValueOnError = true;
413 }
414
415 // Warn about the lack of exception specification.
416 SmallString<128> ExceptionSpecString;
417 llvm::raw_svector_ostream OS(ExceptionSpecString);
418 switch (OldProto->getExceptionSpecType()) {
419 case EST_DynamicNone:
420 OS << "throw()";
421 break;
422
423 case EST_Dynamic: {
424 OS << "throw(";
425 bool OnFirstException = true;
426 for (const auto &E : OldProto->exceptions()) {
427 if (OnFirstException)
428 OnFirstException = false;
429 else
430 OS << ", ";
431
432 OS << E.getAsString(getPrintingPolicy());
433 }
434 OS << ")";
435 break;
436 }
437
438 case EST_BasicNoexcept:
439 OS << "noexcept";
440 break;
441
442 case EST_DependentNoexcept:
443 case EST_NoexceptFalse:
444 case EST_NoexceptTrue:
445 OS << "noexcept(";
446 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
447 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
448 OS << ")";
449 break;
450 case EST_NoThrow:
451 OS <<"__attribute__((nothrow))";
452 break;
453 case EST_None:
454 case EST_MSAny:
455 case EST_Unevaluated:
456 case EST_Uninstantiated:
457 case EST_Unparsed:
458 llvm_unreachable("This spec type is compatible with none.");
459 }
460
461 SourceLocation FixItLoc;
462 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
463 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
464 // FIXME: Preserve enough information so that we can produce a correct fixit
465 // location when there is a trailing return type.
466 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
467 if (!FTLoc.getTypePtr()->hasTrailingReturn())
468 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
469 }
470
471 if (FixItLoc.isInvalid())
472 Diag(New->getLocation(), DiagID)
473 << New << OS.str();
474 else {
475 Diag(New->getLocation(), DiagID)
476 << New << OS.str()
477 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
478 }
479
480 if (Old->getLocation().isValid())
481 Diag(Old->getLocation(), diag::note_previous_declaration);
482
483 return ReturnValueOnError;
484 }
485
486 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
487 /// exception specifications. Exception specifications are equivalent if
488 /// they allow exactly the same set of exception types. It does not matter how
489 /// that is achieved. See C++ [except.spec]p2.
CheckEquivalentExceptionSpec(const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)490 bool Sema::CheckEquivalentExceptionSpec(
491 const FunctionProtoType *Old, SourceLocation OldLoc,
492 const FunctionProtoType *New, SourceLocation NewLoc) {
493 if (!getLangOpts().CXXExceptions)
494 return false;
495
496 unsigned DiagID = diag::err_mismatched_exception_spec;
497 if (getLangOpts().MSVCCompat)
498 DiagID = diag::ext_mismatched_exception_spec;
499 bool Result = CheckEquivalentExceptionSpecImpl(
500 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
501 Old, OldLoc, New, NewLoc);
502
503 // In Microsoft mode, mismatching exception specifications just cause a warning.
504 if (getLangOpts().MSVCCompat)
505 return false;
506 return Result;
507 }
508
509 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
510 /// exception specifications. See C++ [except.spec]p3.
511 ///
512 /// \return \c false if the exception specifications match, \c true if there is
513 /// a problem. If \c true is returned, either a diagnostic has already been
514 /// produced or \c *MissingExceptionSpecification is set to \c true.
CheckEquivalentExceptionSpecImpl(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc,bool * MissingExceptionSpecification,bool * MissingEmptyExceptionSpecification,bool AllowNoexceptAllMatchWithNoSpec,bool IsOperatorNew)515 static bool CheckEquivalentExceptionSpecImpl(
516 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
517 const FunctionProtoType *Old, SourceLocation OldLoc,
518 const FunctionProtoType *New, SourceLocation NewLoc,
519 bool *MissingExceptionSpecification,
520 bool *MissingEmptyExceptionSpecification,
521 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
522 if (MissingExceptionSpecification)
523 *MissingExceptionSpecification = false;
524
525 if (MissingEmptyExceptionSpecification)
526 *MissingEmptyExceptionSpecification = false;
527
528 Old = S.ResolveExceptionSpec(NewLoc, Old);
529 if (!Old)
530 return false;
531 New = S.ResolveExceptionSpec(NewLoc, New);
532 if (!New)
533 return false;
534
535 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
536 // - both are non-throwing, regardless of their form,
537 // - both have the form noexcept(constant-expression) and the constant-
538 // expressions are equivalent,
539 // - both are dynamic-exception-specifications that have the same set of
540 // adjusted types.
541 //
542 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
543 // of the form throw(), noexcept, or noexcept(constant-expression) where the
544 // constant-expression yields true.
545 //
546 // C++0x [except.spec]p4: If any declaration of a function has an exception-
547 // specifier that is not a noexcept-specification allowing all exceptions,
548 // all declarations [...] of that function shall have a compatible
549 // exception-specification.
550 //
551 // That last point basically means that noexcept(false) matches no spec.
552 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
553
554 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
555 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
556
557 assert(!isUnresolvedExceptionSpec(OldEST) &&
558 !isUnresolvedExceptionSpec(NewEST) &&
559 "Shouldn't see unknown exception specifications here");
560
561 CanThrowResult OldCanThrow = Old->canThrow();
562 CanThrowResult NewCanThrow = New->canThrow();
563
564 // Any non-throwing specifications are compatible.
565 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
566 return false;
567
568 // Any throws-anything specifications are usually compatible.
569 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
570 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
571 // The exception is that the absence of an exception specification only
572 // matches noexcept(false) for functions, as described above.
573 if (!AllowNoexceptAllMatchWithNoSpec &&
574 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
575 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
576 // This is the disallowed case.
577 } else {
578 return false;
579 }
580 }
581
582 // C++14 [except.spec]p3:
583 // Two exception-specifications are compatible if [...] both have the form
584 // noexcept(constant-expression) and the constant-expressions are equivalent
585 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
586 llvm::FoldingSetNodeID OldFSN, NewFSN;
587 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
588 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
589 if (OldFSN == NewFSN)
590 return false;
591 }
592
593 // Dynamic exception specifications with the same set of adjusted types
594 // are compatible.
595 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
596 bool Success = true;
597 // Both have a dynamic exception spec. Collect the first set, then compare
598 // to the second.
599 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
600 for (const auto &I : Old->exceptions())
601 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
602
603 for (const auto &I : New->exceptions()) {
604 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
605 if (OldTypes.count(TypePtr))
606 NewTypes.insert(TypePtr);
607 else {
608 Success = false;
609 break;
610 }
611 }
612
613 if (Success && OldTypes.size() == NewTypes.size())
614 return false;
615 }
616
617 // As a special compatibility feature, under C++0x we accept no spec and
618 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
619 // This is because the implicit declaration changed, but old code would break.
620 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
621 const FunctionProtoType *WithExceptions = nullptr;
622 if (OldEST == EST_None && NewEST == EST_Dynamic)
623 WithExceptions = New;
624 else if (OldEST == EST_Dynamic && NewEST == EST_None)
625 WithExceptions = Old;
626 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
627 // One has no spec, the other throw(something). If that something is
628 // std::bad_alloc, all conditions are met.
629 QualType Exception = *WithExceptions->exception_begin();
630 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
631 IdentifierInfo* Name = ExRecord->getIdentifier();
632 if (Name && Name->getName() == "bad_alloc") {
633 // It's called bad_alloc, but is it in std?
634 if (ExRecord->isInStdNamespace()) {
635 return false;
636 }
637 }
638 }
639 }
640 }
641
642 // If the caller wants to handle the case that the new function is
643 // incompatible due to a missing exception specification, let it.
644 if (MissingExceptionSpecification && OldEST != EST_None &&
645 NewEST == EST_None) {
646 // The old type has an exception specification of some sort, but
647 // the new type does not.
648 *MissingExceptionSpecification = true;
649
650 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
651 // The old type has a throw() or noexcept(true) exception specification
652 // and the new type has no exception specification, and the caller asked
653 // to handle this itself.
654 *MissingEmptyExceptionSpecification = true;
655 }
656
657 return true;
658 }
659
660 S.Diag(NewLoc, DiagID);
661 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
662 S.Diag(OldLoc, NoteID);
663 return true;
664 }
665
CheckEquivalentExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)666 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
667 const PartialDiagnostic &NoteID,
668 const FunctionProtoType *Old,
669 SourceLocation OldLoc,
670 const FunctionProtoType *New,
671 SourceLocation NewLoc) {
672 if (!getLangOpts().CXXExceptions)
673 return false;
674 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
675 New, NewLoc);
676 }
677
handlerCanCatch(QualType HandlerType,QualType ExceptionType)678 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
679 // [except.handle]p3:
680 // A handler is a match for an exception object of type E if:
681
682 // HandlerType must be ExceptionType or derived from it, or pointer or
683 // reference to such types.
684 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
685 if (RefTy)
686 HandlerType = RefTy->getPointeeType();
687
688 // -- the handler is of type cv T or cv T& and E and T are the same type
689 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
690 return true;
691
692 // FIXME: ObjC pointer types?
693 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
694 if (RefTy && (!HandlerType.isConstQualified() ||
695 HandlerType.isVolatileQualified()))
696 return false;
697
698 // -- the handler is of type cv T or const T& where T is a pointer or
699 // pointer to member type and E is std::nullptr_t
700 if (ExceptionType->isNullPtrType())
701 return true;
702
703 // -- the handler is of type cv T or const T& where T is a pointer or
704 // pointer to member type and E is a pointer or pointer to member type
705 // that can be converted to T by one or more of
706 // -- a qualification conversion
707 // -- a function pointer conversion
708 bool LifetimeConv;
709 QualType Result;
710 // FIXME: Should we treat the exception as catchable if a lifetime
711 // conversion is required?
712 if (IsQualificationConversion(ExceptionType, HandlerType, false,
713 LifetimeConv) ||
714 IsFunctionConversion(ExceptionType, HandlerType, Result))
715 return true;
716
717 // -- a standard pointer conversion [...]
718 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
719 return false;
720
721 // Handle the "qualification conversion" portion.
722 Qualifiers EQuals, HQuals;
723 ExceptionType = Context.getUnqualifiedArrayType(
724 ExceptionType->getPointeeType(), EQuals);
725 HandlerType = Context.getUnqualifiedArrayType(
726 HandlerType->getPointeeType(), HQuals);
727 if (!HQuals.compatiblyIncludes(EQuals))
728 return false;
729
730 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
731 return true;
732
733 // The only remaining case is a derived-to-base conversion.
734 }
735
736 // -- the handler is of type cg T or cv T& and T is an unambiguous public
737 // base class of E
738 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
739 return false;
740 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
741 /*DetectVirtual=*/false);
742 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
743 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
744 return false;
745
746 // Do this check from a context without privileges.
747 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
748 Paths.front(),
749 /*Diagnostic*/ 0,
750 /*ForceCheck*/ true,
751 /*ForceUnprivileged*/ true)) {
752 case AR_accessible: return true;
753 case AR_inaccessible: return false;
754 case AR_dependent:
755 llvm_unreachable("access check dependent for unprivileged context");
756 case AR_delayed:
757 llvm_unreachable("access check delayed in non-declaration");
758 }
759 llvm_unreachable("unexpected access check result");
760 }
761
762 /// CheckExceptionSpecSubset - Check whether the second function type's
763 /// exception specification is a subset (or equivalent) of the first function
764 /// type. This is used by override and pointer assignment checks.
CheckExceptionSpecSubset(const PartialDiagnostic & DiagID,const PartialDiagnostic & NestedDiagID,const PartialDiagnostic & NoteID,const PartialDiagnostic & NoThrowDiagID,const FunctionProtoType * Superset,SourceLocation SuperLoc,const FunctionProtoType * Subset,SourceLocation SubLoc)765 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
766 const PartialDiagnostic &NestedDiagID,
767 const PartialDiagnostic &NoteID,
768 const PartialDiagnostic &NoThrowDiagID,
769 const FunctionProtoType *Superset,
770 SourceLocation SuperLoc,
771 const FunctionProtoType *Subset,
772 SourceLocation SubLoc) {
773
774 // Just auto-succeed under -fno-exceptions.
775 if (!getLangOpts().CXXExceptions)
776 return false;
777
778 // FIXME: As usual, we could be more specific in our error messages, but
779 // that better waits until we've got types with source locations.
780
781 if (!SubLoc.isValid())
782 SubLoc = SuperLoc;
783
784 // Resolve the exception specifications, if needed.
785 Superset = ResolveExceptionSpec(SuperLoc, Superset);
786 if (!Superset)
787 return false;
788 Subset = ResolveExceptionSpec(SubLoc, Subset);
789 if (!Subset)
790 return false;
791
792 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
793 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
794 assert(!isUnresolvedExceptionSpec(SuperEST) &&
795 !isUnresolvedExceptionSpec(SubEST) &&
796 "Shouldn't see unknown exception specifications here");
797
798 // If there are dependent noexcept specs, assume everything is fine. Unlike
799 // with the equivalency check, this is safe in this case, because we don't
800 // want to merge declarations. Checks after instantiation will catch any
801 // omissions we make here.
802 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
803 return false;
804
805 CanThrowResult SuperCanThrow = Superset->canThrow();
806 CanThrowResult SubCanThrow = Subset->canThrow();
807
808 // If the superset contains everything or the subset contains nothing, we're
809 // done.
810 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
811 SubCanThrow == CT_Cannot)
812 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
813 Subset, SubLoc);
814
815 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
816 // some cases.
817 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
818 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
819 Diag(SubLoc, NoThrowDiagID);
820 if (NoteID.getDiagID() != 0)
821 Diag(SuperLoc, NoteID);
822 return true;
823 }
824
825 // If the subset contains everything or the superset contains nothing, we've
826 // failed.
827 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
828 SuperCanThrow == CT_Cannot) {
829 Diag(SubLoc, DiagID);
830 if (NoteID.getDiagID() != 0)
831 Diag(SuperLoc, NoteID);
832 return true;
833 }
834
835 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
836 "Exception spec subset: non-dynamic case slipped through.");
837
838 // Neither contains everything or nothing. Do a proper comparison.
839 for (QualType SubI : Subset->exceptions()) {
840 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
841 SubI = RefTy->getPointeeType();
842
843 // Make sure it's in the superset.
844 bool Contained = false;
845 for (QualType SuperI : Superset->exceptions()) {
846 // [except.spec]p5:
847 // the target entity shall allow at least the exceptions allowed by the
848 // source
849 //
850 // We interpret this as meaning that a handler for some target type would
851 // catch an exception of each source type.
852 if (handlerCanCatch(SuperI, SubI)) {
853 Contained = true;
854 break;
855 }
856 }
857 if (!Contained) {
858 Diag(SubLoc, DiagID);
859 if (NoteID.getDiagID() != 0)
860 Diag(SuperLoc, NoteID);
861 return true;
862 }
863 }
864 // We've run half the gauntlet.
865 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
866 Subset, SubLoc);
867 }
868
869 static bool
CheckSpecForTypesEquivalent(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,QualType Target,SourceLocation TargetLoc,QualType Source,SourceLocation SourceLoc)870 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
871 const PartialDiagnostic &NoteID, QualType Target,
872 SourceLocation TargetLoc, QualType Source,
873 SourceLocation SourceLoc) {
874 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
875 if (!TFunc)
876 return false;
877 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
878 if (!SFunc)
879 return false;
880
881 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
882 SFunc, SourceLoc);
883 }
884
885 /// CheckParamExceptionSpec - Check if the parameter and return types of the
886 /// two functions have equivalent exception specs. This is part of the
887 /// assignment and override compatibility check. We do not check the parameters
888 /// of parameter function pointers recursively, as no sane programmer would
889 /// even be able to write such a function type.
CheckParamExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Target,SourceLocation TargetLoc,const FunctionProtoType * Source,SourceLocation SourceLoc)890 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
891 const PartialDiagnostic &NoteID,
892 const FunctionProtoType *Target,
893 SourceLocation TargetLoc,
894 const FunctionProtoType *Source,
895 SourceLocation SourceLoc) {
896 auto RetDiag = DiagID;
897 RetDiag << 0;
898 if (CheckSpecForTypesEquivalent(
899 *this, RetDiag, PDiag(),
900 Target->getReturnType(), TargetLoc, Source->getReturnType(),
901 SourceLoc))
902 return true;
903
904 // We shouldn't even be testing this unless the arguments are otherwise
905 // compatible.
906 assert(Target->getNumParams() == Source->getNumParams() &&
907 "Functions have different argument counts.");
908 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
909 auto ParamDiag = DiagID;
910 ParamDiag << 1;
911 if (CheckSpecForTypesEquivalent(
912 *this, ParamDiag, PDiag(),
913 Target->getParamType(i), TargetLoc, Source->getParamType(i),
914 SourceLoc))
915 return true;
916 }
917 return false;
918 }
919
CheckExceptionSpecCompatibility(Expr * From,QualType ToType)920 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
921 // First we check for applicability.
922 // Target type must be a function, function pointer or function reference.
923 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
924 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
925 return false;
926
927 // SourceType must be a function or function pointer.
928 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
929 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
930 return false;
931
932 unsigned DiagID = diag::err_incompatible_exception_specs;
933 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
934 // This is not an error in C++17 onwards, unless the noexceptness doesn't
935 // match, but in that case we have a full-on type mismatch, not just a
936 // type sugar mismatch.
937 if (getLangOpts().CPlusPlus17) {
938 DiagID = diag::warn_incompatible_exception_specs;
939 NestedDiagID = diag::warn_deep_exception_specs_differ;
940 }
941
942 // Now we've got the correct types on both sides, check their compatibility.
943 // This means that the source of the conversion can only throw a subset of
944 // the exceptions of the target, and any exception specs on arguments or
945 // return types must be equivalent.
946 //
947 // FIXME: If there is a nested dependent exception specification, we should
948 // not be checking it here. This is fine:
949 // template<typename T> void f() {
950 // void (*p)(void (*) throw(T));
951 // void (*q)(void (*) throw(int)) = p;
952 // }
953 // ... because it might be instantiated with T=int.
954 return CheckExceptionSpecSubset(
955 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
956 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
957 !getLangOpts().CPlusPlus17;
958 }
959
CheckOverridingFunctionExceptionSpec(const CXXMethodDecl * New,const CXXMethodDecl * Old)960 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
961 const CXXMethodDecl *Old) {
962 // If the new exception specification hasn't been parsed yet, skip the check.
963 // We'll get called again once it's been parsed.
964 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
965 EST_Unparsed)
966 return false;
967
968 // Don't check uninstantiated template destructors at all. We can only
969 // synthesize correct specs after the template is instantiated.
970 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
971 return false;
972
973 // If the old exception specification hasn't been parsed yet, or the new
974 // exception specification can't be computed yet, remember that we need to
975 // perform this check when we get to the end of the outermost
976 // lexically-surrounding class.
977 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
978 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
979 return false;
980 }
981
982 unsigned DiagID = diag::err_override_exception_spec;
983 if (getLangOpts().MSVCCompat)
984 DiagID = diag::ext_override_exception_spec;
985 return CheckExceptionSpecSubset(PDiag(DiagID),
986 PDiag(diag::err_deep_exception_specs_differ),
987 PDiag(diag::note_overridden_virtual_function),
988 PDiag(diag::ext_override_exception_spec),
989 Old->getType()->castAs<FunctionProtoType>(),
990 Old->getLocation(),
991 New->getType()->castAs<FunctionProtoType>(),
992 New->getLocation());
993 }
994
canSubStmtsThrow(Sema & Self,const Stmt * S)995 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
996 CanThrowResult R = CT_Cannot;
997 for (const Stmt *SubStmt : S->children()) {
998 if (!SubStmt)
999 continue;
1000 R = mergeCanThrow(R, Self.canThrow(SubStmt));
1001 if (R == CT_Can)
1002 break;
1003 }
1004 return R;
1005 }
1006
canCalleeThrow(Sema & S,const Expr * E,const Decl * D,SourceLocation Loc)1007 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1008 SourceLocation Loc) {
1009 // As an extension, we assume that __attribute__((nothrow)) functions don't
1010 // throw.
1011 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1012 return CT_Cannot;
1013
1014 QualType T;
1015
1016 // In C++1z, just look at the function type of the callee.
1017 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1018 E = cast<CallExpr>(E)->getCallee();
1019 T = E->getType();
1020 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1021 // Sadly we don't preserve the actual type as part of the "bound member"
1022 // placeholder, so we need to reconstruct it.
1023 E = E->IgnoreParenImpCasts();
1024
1025 // Could be a call to a pointer-to-member or a plain member access.
1026 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1027 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1028 T = Op->getRHS()->getType()
1029 ->castAs<MemberPointerType>()->getPointeeType();
1030 } else {
1031 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1032 }
1033 }
1034 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1035 T = VD->getType();
1036 else
1037 // If we have no clue what we're calling, assume the worst.
1038 return CT_Can;
1039
1040 const FunctionProtoType *FT;
1041 if ((FT = T->getAs<FunctionProtoType>())) {
1042 } else if (const PointerType *PT = T->getAs<PointerType>())
1043 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1044 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1045 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1046 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1047 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1048 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1049 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1050
1051 if (!FT)
1052 return CT_Can;
1053
1054 if (Loc.isValid() || (Loc.isInvalid() && E))
1055 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1056 if (!FT)
1057 return CT_Can;
1058
1059 return FT->canThrow();
1060 }
1061
canVarDeclThrow(Sema & Self,const VarDecl * VD)1062 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1063 CanThrowResult CT = CT_Cannot;
1064
1065 // Initialization might throw.
1066 if (!VD->isUsableInConstantExpressions(Self.Context))
1067 if (const Expr *Init = VD->getInit())
1068 CT = mergeCanThrow(CT, Self.canThrow(Init));
1069
1070 // Destructor might throw.
1071 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1072 if (auto *RD =
1073 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1074 if (auto *Dtor = RD->getDestructor()) {
1075 CT = mergeCanThrow(
1076 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1077 }
1078 }
1079 }
1080
1081 // If this is a decomposition declaration, bindings might throw.
1082 if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1083 for (auto *B : DD->bindings())
1084 if (auto *HD = B->getHoldingVar())
1085 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1086
1087 return CT;
1088 }
1089
canDynamicCastThrow(const CXXDynamicCastExpr * DC)1090 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1091 if (DC->isTypeDependent())
1092 return CT_Dependent;
1093
1094 if (!DC->getTypeAsWritten()->isReferenceType())
1095 return CT_Cannot;
1096
1097 if (DC->getSubExpr()->isTypeDependent())
1098 return CT_Dependent;
1099
1100 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1101 }
1102
canTypeidThrow(Sema & S,const CXXTypeidExpr * DC)1103 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1104 if (DC->isTypeOperand())
1105 return CT_Cannot;
1106
1107 Expr *Op = DC->getExprOperand();
1108 if (Op->isTypeDependent())
1109 return CT_Dependent;
1110
1111 const RecordType *RT = Op->getType()->getAs<RecordType>();
1112 if (!RT)
1113 return CT_Cannot;
1114
1115 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1116 return CT_Cannot;
1117
1118 if (Op->Classify(S.Context).isPRValue())
1119 return CT_Cannot;
1120
1121 return CT_Can;
1122 }
1123
canThrow(const Stmt * S)1124 CanThrowResult Sema::canThrow(const Stmt *S) {
1125 // C++ [expr.unary.noexcept]p3:
1126 // [Can throw] if in a potentially-evaluated context the expression would
1127 // contain:
1128 switch (S->getStmtClass()) {
1129 case Expr::ConstantExprClass:
1130 return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1131
1132 case Expr::CXXThrowExprClass:
1133 // - a potentially evaluated throw-expression
1134 return CT_Can;
1135
1136 case Expr::CXXDynamicCastExprClass: {
1137 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1138 // where T is a reference type, that requires a run-time check
1139 auto *CE = cast<CXXDynamicCastExpr>(S);
1140 // FIXME: Properly determine whether a variably-modified type can throw.
1141 if (CE->getType()->isVariablyModifiedType())
1142 return CT_Can;
1143 CanThrowResult CT = canDynamicCastThrow(CE);
1144 if (CT == CT_Can)
1145 return CT;
1146 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1147 }
1148
1149 case Expr::CXXTypeidExprClass:
1150 // - a potentially evaluated typeid expression applied to a glvalue
1151 // expression whose type is a polymorphic class type
1152 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1153
1154 // - a potentially evaluated call to a function, member function, function
1155 // pointer, or member function pointer that does not have a non-throwing
1156 // exception-specification
1157 case Expr::CallExprClass:
1158 case Expr::CXXMemberCallExprClass:
1159 case Expr::CXXOperatorCallExprClass:
1160 case Expr::UserDefinedLiteralClass: {
1161 const CallExpr *CE = cast<CallExpr>(S);
1162 CanThrowResult CT;
1163 if (CE->isTypeDependent())
1164 CT = CT_Dependent;
1165 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1166 CT = CT_Cannot;
1167 else
1168 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1169 if (CT == CT_Can)
1170 return CT;
1171 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1172 }
1173
1174 case Expr::CXXConstructExprClass:
1175 case Expr::CXXTemporaryObjectExprClass: {
1176 auto *CE = cast<CXXConstructExpr>(S);
1177 // FIXME: Properly determine whether a variably-modified type can throw.
1178 if (CE->getType()->isVariablyModifiedType())
1179 return CT_Can;
1180 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1181 if (CT == CT_Can)
1182 return CT;
1183 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1184 }
1185
1186 case Expr::CXXInheritedCtorInitExprClass: {
1187 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1188 return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1189 }
1190
1191 case Expr::LambdaExprClass: {
1192 const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1193 CanThrowResult CT = CT_Cannot;
1194 for (LambdaExpr::const_capture_init_iterator
1195 Cap = Lambda->capture_init_begin(),
1196 CapEnd = Lambda->capture_init_end();
1197 Cap != CapEnd; ++Cap)
1198 CT = mergeCanThrow(CT, canThrow(*Cap));
1199 return CT;
1200 }
1201
1202 case Expr::CXXNewExprClass: {
1203 auto *NE = cast<CXXNewExpr>(S);
1204 CanThrowResult CT;
1205 if (NE->isTypeDependent())
1206 CT = CT_Dependent;
1207 else
1208 CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1209 if (CT == CT_Can)
1210 return CT;
1211 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1212 }
1213
1214 case Expr::CXXDeleteExprClass: {
1215 auto *DE = cast<CXXDeleteExpr>(S);
1216 CanThrowResult CT;
1217 QualType DTy = DE->getDestroyedType();
1218 if (DTy.isNull() || DTy->isDependentType()) {
1219 CT = CT_Dependent;
1220 } else {
1221 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1222 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1223 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1224 const CXXDestructorDecl *DD = RD->getDestructor();
1225 if (DD)
1226 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1227 }
1228 if (CT == CT_Can)
1229 return CT;
1230 }
1231 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1232 }
1233
1234 case Expr::CXXBindTemporaryExprClass: {
1235 auto *BTE = cast<CXXBindTemporaryExpr>(S);
1236 // The bound temporary has to be destroyed again, which might throw.
1237 CanThrowResult CT =
1238 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1239 if (CT == CT_Can)
1240 return CT;
1241 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1242 }
1243
1244 case Expr::PseudoObjectExprClass: {
1245 auto *POE = cast<PseudoObjectExpr>(S);
1246 CanThrowResult CT = CT_Cannot;
1247 for (const Expr *E : POE->semantics()) {
1248 CT = mergeCanThrow(CT, canThrow(E));
1249 if (CT == CT_Can)
1250 break;
1251 }
1252 return CT;
1253 }
1254
1255 // ObjC message sends are like function calls, but never have exception
1256 // specs.
1257 case Expr::ObjCMessageExprClass:
1258 case Expr::ObjCPropertyRefExprClass:
1259 case Expr::ObjCSubscriptRefExprClass:
1260 return CT_Can;
1261
1262 // All the ObjC literals that are implemented as calls are
1263 // potentially throwing unless we decide to close off that
1264 // possibility.
1265 case Expr::ObjCArrayLiteralClass:
1266 case Expr::ObjCDictionaryLiteralClass:
1267 case Expr::ObjCBoxedExprClass:
1268 return CT_Can;
1269
1270 // Many other things have subexpressions, so we have to test those.
1271 // Some are simple:
1272 case Expr::CoawaitExprClass:
1273 case Expr::ConditionalOperatorClass:
1274 case Expr::CoyieldExprClass:
1275 case Expr::CXXRewrittenBinaryOperatorClass:
1276 case Expr::CXXStdInitializerListExprClass:
1277 case Expr::DesignatedInitExprClass:
1278 case Expr::DesignatedInitUpdateExprClass:
1279 case Expr::ExprWithCleanupsClass:
1280 case Expr::ExtVectorElementExprClass:
1281 case Expr::InitListExprClass:
1282 case Expr::ArrayInitLoopExprClass:
1283 case Expr::MemberExprClass:
1284 case Expr::ObjCIsaExprClass:
1285 case Expr::ObjCIvarRefExprClass:
1286 case Expr::ParenExprClass:
1287 case Expr::ParenListExprClass:
1288 case Expr::ShuffleVectorExprClass:
1289 case Expr::StmtExprClass:
1290 case Expr::ConvertVectorExprClass:
1291 case Expr::VAArgExprClass:
1292 return canSubStmtsThrow(*this, S);
1293
1294 case Expr::CompoundLiteralExprClass:
1295 case Expr::CXXConstCastExprClass:
1296 case Expr::CXXAddrspaceCastExprClass:
1297 case Expr::CXXReinterpretCastExprClass:
1298 case Expr::BuiltinBitCastExprClass:
1299 // FIXME: Properly determine whether a variably-modified type can throw.
1300 if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1301 return CT_Can;
1302 return canSubStmtsThrow(*this, S);
1303
1304 // Some might be dependent for other reasons.
1305 case Expr::ArraySubscriptExprClass:
1306 case Expr::MatrixSubscriptExprClass:
1307 case Expr::OMPArraySectionExprClass:
1308 case Expr::OMPArrayShapingExprClass:
1309 case Expr::OMPIteratorExprClass:
1310 case Expr::BinaryOperatorClass:
1311 case Expr::DependentCoawaitExprClass:
1312 case Expr::CompoundAssignOperatorClass:
1313 case Expr::CStyleCastExprClass:
1314 case Expr::CXXStaticCastExprClass:
1315 case Expr::CXXFunctionalCastExprClass:
1316 case Expr::ImplicitCastExprClass:
1317 case Expr::MaterializeTemporaryExprClass:
1318 case Expr::UnaryOperatorClass: {
1319 // FIXME: Properly determine whether a variably-modified type can throw.
1320 if (auto *CE = dyn_cast<CastExpr>(S))
1321 if (CE->getType()->isVariablyModifiedType())
1322 return CT_Can;
1323 CanThrowResult CT =
1324 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1325 return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1326 }
1327
1328 case Expr::CXXDefaultArgExprClass:
1329 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1330
1331 case Expr::CXXDefaultInitExprClass:
1332 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1333
1334 case Expr::ChooseExprClass: {
1335 auto *CE = cast<ChooseExpr>(S);
1336 if (CE->isTypeDependent() || CE->isValueDependent())
1337 return CT_Dependent;
1338 return canThrow(CE->getChosenSubExpr());
1339 }
1340
1341 case Expr::GenericSelectionExprClass:
1342 if (cast<GenericSelectionExpr>(S)->isResultDependent())
1343 return CT_Dependent;
1344 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1345
1346 // Some expressions are always dependent.
1347 case Expr::CXXDependentScopeMemberExprClass:
1348 case Expr::CXXUnresolvedConstructExprClass:
1349 case Expr::DependentScopeDeclRefExprClass:
1350 case Expr::CXXFoldExprClass:
1351 case Expr::RecoveryExprClass:
1352 return CT_Dependent;
1353
1354 case Expr::AsTypeExprClass:
1355 case Expr::BinaryConditionalOperatorClass:
1356 case Expr::BlockExprClass:
1357 case Expr::CUDAKernelCallExprClass:
1358 case Expr::DeclRefExprClass:
1359 case Expr::ObjCBridgedCastExprClass:
1360 case Expr::ObjCIndirectCopyRestoreExprClass:
1361 case Expr::ObjCProtocolExprClass:
1362 case Expr::ObjCSelectorExprClass:
1363 case Expr::ObjCAvailabilityCheckExprClass:
1364 case Expr::OffsetOfExprClass:
1365 case Expr::PackExpansionExprClass:
1366 case Expr::SubstNonTypeTemplateParmExprClass:
1367 case Expr::SubstNonTypeTemplateParmPackExprClass:
1368 case Expr::FunctionParmPackExprClass:
1369 case Expr::UnaryExprOrTypeTraitExprClass:
1370 case Expr::UnresolvedLookupExprClass:
1371 case Expr::UnresolvedMemberExprClass:
1372 case Expr::TypoExprClass:
1373 // FIXME: Many of the above can throw.
1374 return CT_Cannot;
1375
1376 case Expr::AddrLabelExprClass:
1377 case Expr::ArrayTypeTraitExprClass:
1378 case Expr::AtomicExprClass:
1379 case Expr::TypeTraitExprClass:
1380 case Expr::CXXBoolLiteralExprClass:
1381 case Expr::CXXNoexceptExprClass:
1382 case Expr::CXXNullPtrLiteralExprClass:
1383 case Expr::CXXPseudoDestructorExprClass:
1384 case Expr::CXXScalarValueInitExprClass:
1385 case Expr::CXXThisExprClass:
1386 case Expr::CXXUuidofExprClass:
1387 case Expr::CharacterLiteralClass:
1388 case Expr::ExpressionTraitExprClass:
1389 case Expr::FloatingLiteralClass:
1390 case Expr::GNUNullExprClass:
1391 case Expr::ImaginaryLiteralClass:
1392 case Expr::ImplicitValueInitExprClass:
1393 case Expr::IntegerLiteralClass:
1394 case Expr::FixedPointLiteralClass:
1395 case Expr::ArrayInitIndexExprClass:
1396 case Expr::NoInitExprClass:
1397 case Expr::ObjCEncodeExprClass:
1398 case Expr::ObjCStringLiteralClass:
1399 case Expr::ObjCBoolLiteralExprClass:
1400 case Expr::OpaqueValueExprClass:
1401 case Expr::PredefinedExprClass:
1402 case Expr::SizeOfPackExprClass:
1403 case Expr::StringLiteralClass:
1404 case Expr::SourceLocExprClass:
1405 case Expr::ConceptSpecializationExprClass:
1406 case Expr::RequiresExprClass:
1407 // These expressions can never throw.
1408 return CT_Cannot;
1409
1410 case Expr::MSPropertyRefExprClass:
1411 case Expr::MSPropertySubscriptExprClass:
1412 llvm_unreachable("Invalid class for expression");
1413
1414 // Most statements can throw if any substatement can throw.
1415 case Stmt::AttributedStmtClass:
1416 case Stmt::BreakStmtClass:
1417 case Stmt::CapturedStmtClass:
1418 case Stmt::CaseStmtClass:
1419 case Stmt::CompoundStmtClass:
1420 case Stmt::ContinueStmtClass:
1421 case Stmt::CoreturnStmtClass:
1422 case Stmt::CoroutineBodyStmtClass:
1423 case Stmt::CXXCatchStmtClass:
1424 case Stmt::CXXForRangeStmtClass:
1425 case Stmt::DefaultStmtClass:
1426 case Stmt::DoStmtClass:
1427 case Stmt::ForStmtClass:
1428 case Stmt::GCCAsmStmtClass:
1429 case Stmt::GotoStmtClass:
1430 case Stmt::IndirectGotoStmtClass:
1431 case Stmt::LabelStmtClass:
1432 case Stmt::MSAsmStmtClass:
1433 case Stmt::MSDependentExistsStmtClass:
1434 case Stmt::NullStmtClass:
1435 case Stmt::ObjCAtCatchStmtClass:
1436 case Stmt::ObjCAtFinallyStmtClass:
1437 case Stmt::ObjCAtSynchronizedStmtClass:
1438 case Stmt::ObjCAutoreleasePoolStmtClass:
1439 case Stmt::ObjCForCollectionStmtClass:
1440 case Stmt::OMPAtomicDirectiveClass:
1441 case Stmt::OMPBarrierDirectiveClass:
1442 case Stmt::OMPCancelDirectiveClass:
1443 case Stmt::OMPCancellationPointDirectiveClass:
1444 case Stmt::OMPCriticalDirectiveClass:
1445 case Stmt::OMPDistributeDirectiveClass:
1446 case Stmt::OMPDistributeParallelForDirectiveClass:
1447 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1448 case Stmt::OMPDistributeSimdDirectiveClass:
1449 case Stmt::OMPFlushDirectiveClass:
1450 case Stmt::OMPDepobjDirectiveClass:
1451 case Stmt::OMPScanDirectiveClass:
1452 case Stmt::OMPForDirectiveClass:
1453 case Stmt::OMPForSimdDirectiveClass:
1454 case Stmt::OMPMasterDirectiveClass:
1455 case Stmt::OMPMasterTaskLoopDirectiveClass:
1456 case Stmt::OMPMaskedTaskLoopDirectiveClass:
1457 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1458 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1459 case Stmt::OMPOrderedDirectiveClass:
1460 case Stmt::OMPCanonicalLoopClass:
1461 case Stmt::OMPParallelDirectiveClass:
1462 case Stmt::OMPParallelForDirectiveClass:
1463 case Stmt::OMPParallelForSimdDirectiveClass:
1464 case Stmt::OMPParallelMasterDirectiveClass:
1465 case Stmt::OMPParallelMaskedDirectiveClass:
1466 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1467 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1468 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1469 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1470 case Stmt::OMPParallelSectionsDirectiveClass:
1471 case Stmt::OMPSectionDirectiveClass:
1472 case Stmt::OMPSectionsDirectiveClass:
1473 case Stmt::OMPSimdDirectiveClass:
1474 case Stmt::OMPTileDirectiveClass:
1475 case Stmt::OMPUnrollDirectiveClass:
1476 case Stmt::OMPSingleDirectiveClass:
1477 case Stmt::OMPTargetDataDirectiveClass:
1478 case Stmt::OMPTargetDirectiveClass:
1479 case Stmt::OMPTargetEnterDataDirectiveClass:
1480 case Stmt::OMPTargetExitDataDirectiveClass:
1481 case Stmt::OMPTargetParallelDirectiveClass:
1482 case Stmt::OMPTargetParallelForDirectiveClass:
1483 case Stmt::OMPTargetParallelForSimdDirectiveClass:
1484 case Stmt::OMPTargetSimdDirectiveClass:
1485 case Stmt::OMPTargetTeamsDirectiveClass:
1486 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1487 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1488 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1489 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1490 case Stmt::OMPTargetUpdateDirectiveClass:
1491 case Stmt::OMPTaskDirectiveClass:
1492 case Stmt::OMPTaskgroupDirectiveClass:
1493 case Stmt::OMPTaskLoopDirectiveClass:
1494 case Stmt::OMPTaskLoopSimdDirectiveClass:
1495 case Stmt::OMPTaskwaitDirectiveClass:
1496 case Stmt::OMPTaskyieldDirectiveClass:
1497 case Stmt::OMPTeamsDirectiveClass:
1498 case Stmt::OMPTeamsDistributeDirectiveClass:
1499 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1500 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1501 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1502 case Stmt::OMPInteropDirectiveClass:
1503 case Stmt::OMPDispatchDirectiveClass:
1504 case Stmt::OMPMaskedDirectiveClass:
1505 case Stmt::OMPMetaDirectiveClass:
1506 case Stmt::OMPGenericLoopDirectiveClass:
1507 case Stmt::OMPTeamsGenericLoopDirectiveClass:
1508 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1509 case Stmt::OMPParallelGenericLoopDirectiveClass:
1510 case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1511 case Stmt::ReturnStmtClass:
1512 case Stmt::SEHExceptStmtClass:
1513 case Stmt::SEHFinallyStmtClass:
1514 case Stmt::SEHLeaveStmtClass:
1515 case Stmt::SEHTryStmtClass:
1516 case Stmt::SwitchStmtClass:
1517 case Stmt::WhileStmtClass:
1518 return canSubStmtsThrow(*this, S);
1519
1520 case Stmt::DeclStmtClass: {
1521 CanThrowResult CT = CT_Cannot;
1522 for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1523 if (auto *VD = dyn_cast<VarDecl>(D))
1524 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1525
1526 // FIXME: Properly determine whether a variably-modified type can throw.
1527 if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1528 if (TND->getUnderlyingType()->isVariablyModifiedType())
1529 return CT_Can;
1530 if (auto *VD = dyn_cast<ValueDecl>(D))
1531 if (VD->getType()->isVariablyModifiedType())
1532 return CT_Can;
1533 }
1534 return CT;
1535 }
1536
1537 case Stmt::IfStmtClass: {
1538 auto *IS = cast<IfStmt>(S);
1539 CanThrowResult CT = CT_Cannot;
1540 if (const Stmt *Init = IS->getInit())
1541 CT = mergeCanThrow(CT, canThrow(Init));
1542 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1543 CT = mergeCanThrow(CT, canThrow(CondDS));
1544 CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1545
1546 // For 'if constexpr', consider only the non-discarded case.
1547 // FIXME: We should add a DiscardedStmt marker to the AST.
1548 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1549 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1550
1551 CanThrowResult Then = canThrow(IS->getThen());
1552 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1553 if (Then == Else)
1554 return mergeCanThrow(CT, Then);
1555
1556 // For a dependent 'if constexpr', the result is dependent if it depends on
1557 // the value of the condition.
1558 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1559 : mergeCanThrow(Then, Else));
1560 }
1561
1562 case Stmt::CXXTryStmtClass: {
1563 auto *TS = cast<CXXTryStmt>(S);
1564 // try /*...*/ catch (...) { H } can throw only if H can throw.
1565 // Any other try-catch can throw if any substatement can throw.
1566 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1567 if (!FinalHandler->getExceptionDecl())
1568 return canThrow(FinalHandler->getHandlerBlock());
1569 return canSubStmtsThrow(*this, S);
1570 }
1571
1572 case Stmt::ObjCAtThrowStmtClass:
1573 return CT_Can;
1574
1575 case Stmt::ObjCAtTryStmtClass: {
1576 auto *TS = cast<ObjCAtTryStmt>(S);
1577
1578 // @catch(...) need not be last in Objective-C. Walk backwards until we
1579 // see one or hit the @try.
1580 CanThrowResult CT = CT_Cannot;
1581 if (const Stmt *Finally = TS->getFinallyStmt())
1582 CT = mergeCanThrow(CT, canThrow(Finally));
1583 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1584 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1585 CT = mergeCanThrow(CT, canThrow(Catch));
1586 // If we reach a @catch(...), no earlier exceptions can escape.
1587 if (Catch->hasEllipsis())
1588 return CT;
1589 }
1590
1591 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1592 return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1593 }
1594
1595 case Stmt::SYCLUniqueStableNameExprClass:
1596 return CT_Cannot;
1597 case Stmt::NoStmtClass:
1598 llvm_unreachable("Invalid class for statement");
1599 }
1600 llvm_unreachable("Bogus StmtClass");
1601 }
1602
1603 } // end namespace clang
1604