1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member 39 /// swap function then tries to call std::swap unqualified from the exception 40 /// specification of that function. This function detects whether we're in 41 /// such a case and turns off delay-parsing of exception specifications. 42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 43 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 44 45 // All the problem cases are member functions named "swap" within class 46 // templates declared directly within namespace std or std::__debug or 47 // std::__profile. 48 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 49 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 50 return false; 51 52 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 53 if (!ND) 54 return false; 55 56 bool IsInStd = ND->isStdNamespace(); 57 if (!IsInStd) { 58 // This isn't a direct member of namespace std, but it might still be 59 // libstdc++'s std::__debug::array or std::__profile::array. 60 IdentifierInfo *II = ND->getIdentifier(); 61 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 62 !ND->isInStdNamespace()) 63 return false; 64 } 65 66 // Only apply this hack within a system header. 67 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 68 return false; 69 70 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 71 .Case("array", true) 72 .Case("pair", IsInStd) 73 .Case("priority_queue", IsInStd) 74 .Case("stack", IsInStd) 75 .Case("queue", IsInStd) 76 .Default(false); 77 } 78 79 ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc, 80 Expr *NoexceptExpr, 81 ExceptionSpecificationType &EST) { 82 // FIXME: This is bogus, a noexcept expression is not a condition. 83 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr); 84 if (Converted.isInvalid()) { 85 EST = EST_NoexceptFalse; 86 87 // Fill in an expression of 'false' as a fixup. 88 auto *BoolExpr = new (Context) 89 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 90 llvm::APSInt Value{1}; 91 Value = 0; 92 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 93 } 94 95 if (Converted.get()->isValueDependent()) { 96 EST = EST_DependentNoexcept; 97 return Converted; 98 } 99 100 llvm::APSInt Result; 101 Converted = VerifyIntegerConstantExpression( 102 Converted.get(), &Result, 103 diag::err_noexcept_needs_constant_expression, 104 /*AllowFold*/ false); 105 if (!Converted.isInvalid()) 106 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 107 return Converted; 108 } 109 110 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 111 /// exception specification. Incomplete types, or pointers to incomplete types 112 /// other than void are not allowed. 113 /// 114 /// \param[in,out] T The exception type. This will be decayed to a pointer type 115 /// when the input is an array or a function type. 116 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 117 // C++11 [except.spec]p2: 118 // A type cv T, "array of T", or "function returning T" denoted 119 // in an exception-specification is adjusted to type T, "pointer to T", or 120 // "pointer to function returning T", respectively. 121 // 122 // We also apply this rule in C++98. 123 if (T->isArrayType()) 124 T = Context.getArrayDecayedType(T); 125 else if (T->isFunctionType()) 126 T = Context.getPointerType(T); 127 128 int Kind = 0; 129 QualType PointeeT = T; 130 if (const PointerType *PT = T->getAs<PointerType>()) { 131 PointeeT = PT->getPointeeType(); 132 Kind = 1; 133 134 // cv void* is explicitly permitted, despite being a pointer to an 135 // incomplete type. 136 if (PointeeT->isVoidType()) 137 return false; 138 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 139 PointeeT = RT->getPointeeType(); 140 Kind = 2; 141 142 if (RT->isRValueReferenceType()) { 143 // C++11 [except.spec]p2: 144 // A type denoted in an exception-specification shall not denote [...] 145 // an rvalue reference type. 146 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 147 << T << Range; 148 return true; 149 } 150 } 151 152 // C++11 [except.spec]p2: 153 // A type denoted in an exception-specification shall not denote an 154 // incomplete type other than a class currently being defined [...]. 155 // A type denoted in an exception-specification shall not denote a 156 // pointer or reference to an incomplete type, other than (cv) void* or a 157 // pointer or reference to a class currently being defined. 158 // In Microsoft mode, downgrade this to a warning. 159 unsigned DiagID = diag::err_incomplete_in_exception_spec; 160 bool ReturnValueOnError = true; 161 if (getLangOpts().MSVCCompat) { 162 DiagID = diag::ext_incomplete_in_exception_spec; 163 ReturnValueOnError = false; 164 } 165 if (!(PointeeT->isRecordType() && 166 PointeeT->castAs<RecordType>()->isBeingDefined()) && 167 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 168 return ReturnValueOnError; 169 170 // The MSVC compatibility mode doesn't extend to sizeless types, 171 // so diagnose them separately. 172 if (PointeeT->isSizelessType() && Kind != 1) { 173 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 174 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 175 return true; 176 } 177 178 return false; 179 } 180 181 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 182 /// to member to a function with an exception specification. This means that 183 /// it is invalid to add another level of indirection. 184 bool Sema::CheckDistantExceptionSpec(QualType T) { 185 // C++17 removes this rule in favor of putting exception specifications into 186 // the type system. 187 if (getLangOpts().CPlusPlus17) 188 return false; 189 190 if (const PointerType *PT = T->getAs<PointerType>()) 191 T = PT->getPointeeType(); 192 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 193 T = PT->getPointeeType(); 194 else 195 return false; 196 197 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 198 if (!FnT) 199 return false; 200 201 return FnT->hasExceptionSpec(); 202 } 203 204 const FunctionProtoType * 205 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 206 if (FPT->getExceptionSpecType() == EST_Unparsed) { 207 Diag(Loc, diag::err_exception_spec_not_parsed); 208 return nullptr; 209 } 210 211 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 212 return FPT; 213 214 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 215 const FunctionProtoType *SourceFPT = 216 SourceDecl->getType()->castAs<FunctionProtoType>(); 217 218 // If the exception specification has already been resolved, just return it. 219 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 220 return SourceFPT; 221 222 // Compute or instantiate the exception specification now. 223 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 224 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 225 else 226 InstantiateExceptionSpec(Loc, SourceDecl); 227 228 const FunctionProtoType *Proto = 229 SourceDecl->getType()->castAs<FunctionProtoType>(); 230 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 231 Diag(Loc, diag::err_exception_spec_not_parsed); 232 Proto = nullptr; 233 } 234 return Proto; 235 } 236 237 void 238 Sema::UpdateExceptionSpec(FunctionDecl *FD, 239 const FunctionProtoType::ExceptionSpecInfo &ESI) { 240 // If we've fully resolved the exception specification, notify listeners. 241 if (!isUnresolvedExceptionSpec(ESI.Type)) 242 if (auto *Listener = getASTMutationListener()) 243 Listener->ResolvedExceptionSpec(FD); 244 245 for (FunctionDecl *Redecl : FD->redecls()) 246 Context.adjustExceptionSpec(Redecl, ESI); 247 } 248 249 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 250 auto *MD = dyn_cast<CXXMethodDecl>(FD); 251 if (!MD) 252 return false; 253 254 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 255 return EST == EST_Unparsed || 256 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 257 } 258 259 static bool CheckEquivalentExceptionSpecImpl( 260 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 261 const FunctionProtoType *Old, SourceLocation OldLoc, 262 const FunctionProtoType *New, SourceLocation NewLoc, 263 bool *MissingExceptionSpecification = nullptr, 264 bool *MissingEmptyExceptionSpecification = nullptr, 265 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 266 267 /// Determine whether a function has an implicitly-generated exception 268 /// specification. 269 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 270 if (!isa<CXXDestructorDecl>(Decl) && 271 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 272 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 273 return false; 274 275 // For a function that the user didn't declare: 276 // - if this is a destructor, its exception specification is implicit. 277 // - if this is 'operator delete' or 'operator delete[]', the exception 278 // specification is as-if an explicit exception specification was given 279 // (per [basic.stc.dynamic]p2). 280 if (!Decl->getTypeSourceInfo()) 281 return isa<CXXDestructorDecl>(Decl); 282 283 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 284 return !Ty->hasExceptionSpec(); 285 } 286 287 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 288 // Just completely ignore this under -fno-exceptions prior to C++17. 289 // In C++17 onwards, the exception specification is part of the type and 290 // we will diagnose mismatches anyway, so it's better to check for them here. 291 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 292 return false; 293 294 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 295 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 296 bool MissingExceptionSpecification = false; 297 bool MissingEmptyExceptionSpecification = false; 298 299 unsigned DiagID = diag::err_mismatched_exception_spec; 300 bool ReturnValueOnError = true; 301 if (getLangOpts().MSVCCompat) { 302 DiagID = diag::ext_mismatched_exception_spec; 303 ReturnValueOnError = false; 304 } 305 306 // If we're befriending a member function of a class that's currently being 307 // defined, we might not be able to work out its exception specification yet. 308 // If not, defer the check until later. 309 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 310 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 311 return false; 312 } 313 314 // Check the types as written: they must match before any exception 315 // specification adjustment is applied. 316 if (!CheckEquivalentExceptionSpecImpl( 317 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 318 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 319 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 320 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 321 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 322 // C++11 [except.spec]p4 [DR1492]: 323 // If a declaration of a function has an implicit 324 // exception-specification, other declarations of the function shall 325 // not specify an exception-specification. 326 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 327 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 328 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 329 << hasImplicitExceptionSpec(Old); 330 if (Old->getLocation().isValid()) 331 Diag(Old->getLocation(), diag::note_previous_declaration); 332 } 333 return false; 334 } 335 336 // The failure was something other than an missing exception 337 // specification; return an error, except in MS mode where this is a warning. 338 if (!MissingExceptionSpecification) 339 return ReturnValueOnError; 340 341 const FunctionProtoType *NewProto = 342 New->getType()->castAs<FunctionProtoType>(); 343 344 // The new function declaration is only missing an empty exception 345 // specification "throw()". If the throw() specification came from a 346 // function in a system header that has C linkage, just add an empty 347 // exception specification to the "new" declaration. Note that C library 348 // implementations are permitted to add these nothrow exception 349 // specifications. 350 // 351 // Likewise if the old function is a builtin. 352 if (MissingEmptyExceptionSpecification && NewProto && 353 (Old->getLocation().isInvalid() || 354 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 355 Old->getBuiltinID()) && 356 Old->isExternC()) { 357 New->setType(Context.getFunctionType( 358 NewProto->getReturnType(), NewProto->getParamTypes(), 359 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 360 return false; 361 } 362 363 const FunctionProtoType *OldProto = 364 Old->getType()->castAs<FunctionProtoType>(); 365 366 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 367 if (ESI.Type == EST_Dynamic) { 368 // FIXME: What if the exceptions are described in terms of the old 369 // prototype's parameters? 370 ESI.Exceptions = OldProto->exceptions(); 371 } 372 373 if (ESI.Type == EST_NoexceptFalse) 374 ESI.Type = EST_None; 375 if (ESI.Type == EST_NoexceptTrue) 376 ESI.Type = EST_BasicNoexcept; 377 378 // For dependent noexcept, we can't just take the expression from the old 379 // prototype. It likely contains references to the old prototype's parameters. 380 if (ESI.Type == EST_DependentNoexcept) { 381 New->setInvalidDecl(); 382 } else { 383 // Update the type of the function with the appropriate exception 384 // specification. 385 New->setType(Context.getFunctionType( 386 NewProto->getReturnType(), NewProto->getParamTypes(), 387 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 388 } 389 390 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) { 391 // Allow missing exception specifications in redeclarations as an extension. 392 DiagID = diag::ext_ms_missing_exception_specification; 393 ReturnValueOnError = false; 394 } else if (New->isReplaceableGlobalAllocationFunction() && 395 ESI.Type != EST_DependentNoexcept) { 396 // Allow missing exception specifications in redeclarations as an extension, 397 // when declaring a replaceable global allocation function. 398 DiagID = diag::ext_missing_exception_specification; 399 ReturnValueOnError = false; 400 } else if (ESI.Type == EST_NoThrow) { 401 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 402 // common omission. 403 DiagID = diag::ext_missing_exception_specification; 404 ReturnValueOnError = false; 405 } else { 406 DiagID = diag::err_missing_exception_specification; 407 ReturnValueOnError = true; 408 } 409 410 // Warn about the lack of exception specification. 411 SmallString<128> ExceptionSpecString; 412 llvm::raw_svector_ostream OS(ExceptionSpecString); 413 switch (OldProto->getExceptionSpecType()) { 414 case EST_DynamicNone: 415 OS << "throw()"; 416 break; 417 418 case EST_Dynamic: { 419 OS << "throw("; 420 bool OnFirstException = true; 421 for (const auto &E : OldProto->exceptions()) { 422 if (OnFirstException) 423 OnFirstException = false; 424 else 425 OS << ", "; 426 427 OS << E.getAsString(getPrintingPolicy()); 428 } 429 OS << ")"; 430 break; 431 } 432 433 case EST_BasicNoexcept: 434 OS << "noexcept"; 435 break; 436 437 case EST_DependentNoexcept: 438 case EST_NoexceptFalse: 439 case EST_NoexceptTrue: 440 OS << "noexcept("; 441 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 442 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 443 OS << ")"; 444 break; 445 case EST_NoThrow: 446 OS <<"__attribute__((nothrow))"; 447 break; 448 case EST_None: 449 case EST_MSAny: 450 case EST_Unevaluated: 451 case EST_Uninstantiated: 452 case EST_Unparsed: 453 llvm_unreachable("This spec type is compatible with none."); 454 } 455 456 SourceLocation FixItLoc; 457 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 458 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 459 // FIXME: Preserve enough information so that we can produce a correct fixit 460 // location when there is a trailing return type. 461 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 462 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 463 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 464 } 465 466 if (FixItLoc.isInvalid()) 467 Diag(New->getLocation(), DiagID) 468 << New << OS.str(); 469 else { 470 Diag(New->getLocation(), DiagID) 471 << New << OS.str() 472 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 473 } 474 475 if (Old->getLocation().isValid()) 476 Diag(Old->getLocation(), diag::note_previous_declaration); 477 478 return ReturnValueOnError; 479 } 480 481 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 482 /// exception specifications. Exception specifications are equivalent if 483 /// they allow exactly the same set of exception types. It does not matter how 484 /// that is achieved. See C++ [except.spec]p2. 485 bool Sema::CheckEquivalentExceptionSpec( 486 const FunctionProtoType *Old, SourceLocation OldLoc, 487 const FunctionProtoType *New, SourceLocation NewLoc) { 488 if (!getLangOpts().CXXExceptions) 489 return false; 490 491 unsigned DiagID = diag::err_mismatched_exception_spec; 492 if (getLangOpts().MSVCCompat) 493 DiagID = diag::ext_mismatched_exception_spec; 494 bool Result = CheckEquivalentExceptionSpecImpl( 495 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 496 Old, OldLoc, New, NewLoc); 497 498 // In Microsoft mode, mismatching exception specifications just cause a warning. 499 if (getLangOpts().MSVCCompat) 500 return false; 501 return Result; 502 } 503 504 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 505 /// exception specifications. See C++ [except.spec]p3. 506 /// 507 /// \return \c false if the exception specifications match, \c true if there is 508 /// a problem. If \c true is returned, either a diagnostic has already been 509 /// produced or \c *MissingExceptionSpecification is set to \c true. 510 static bool CheckEquivalentExceptionSpecImpl( 511 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 512 const FunctionProtoType *Old, SourceLocation OldLoc, 513 const FunctionProtoType *New, SourceLocation NewLoc, 514 bool *MissingExceptionSpecification, 515 bool *MissingEmptyExceptionSpecification, 516 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 517 if (MissingExceptionSpecification) 518 *MissingExceptionSpecification = false; 519 520 if (MissingEmptyExceptionSpecification) 521 *MissingEmptyExceptionSpecification = false; 522 523 Old = S.ResolveExceptionSpec(NewLoc, Old); 524 if (!Old) 525 return false; 526 New = S.ResolveExceptionSpec(NewLoc, New); 527 if (!New) 528 return false; 529 530 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 531 // - both are non-throwing, regardless of their form, 532 // - both have the form noexcept(constant-expression) and the constant- 533 // expressions are equivalent, 534 // - both are dynamic-exception-specifications that have the same set of 535 // adjusted types. 536 // 537 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 538 // of the form throw(), noexcept, or noexcept(constant-expression) where the 539 // constant-expression yields true. 540 // 541 // C++0x [except.spec]p4: If any declaration of a function has an exception- 542 // specifier that is not a noexcept-specification allowing all exceptions, 543 // all declarations [...] of that function shall have a compatible 544 // exception-specification. 545 // 546 // That last point basically means that noexcept(false) matches no spec. 547 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 548 549 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 550 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 551 552 assert(!isUnresolvedExceptionSpec(OldEST) && 553 !isUnresolvedExceptionSpec(NewEST) && 554 "Shouldn't see unknown exception specifications here"); 555 556 CanThrowResult OldCanThrow = Old->canThrow(); 557 CanThrowResult NewCanThrow = New->canThrow(); 558 559 // Any non-throwing specifications are compatible. 560 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 561 return false; 562 563 // Any throws-anything specifications are usually compatible. 564 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 565 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 566 // The exception is that the absence of an exception specification only 567 // matches noexcept(false) for functions, as described above. 568 if (!AllowNoexceptAllMatchWithNoSpec && 569 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 570 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 571 // This is the disallowed case. 572 } else { 573 return false; 574 } 575 } 576 577 // C++14 [except.spec]p3: 578 // Two exception-specifications are compatible if [...] both have the form 579 // noexcept(constant-expression) and the constant-expressions are equivalent 580 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 581 llvm::FoldingSetNodeID OldFSN, NewFSN; 582 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 583 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 584 if (OldFSN == NewFSN) 585 return false; 586 } 587 588 // Dynamic exception specifications with the same set of adjusted types 589 // are compatible. 590 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 591 bool Success = true; 592 // Both have a dynamic exception spec. Collect the first set, then compare 593 // to the second. 594 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 595 for (const auto &I : Old->exceptions()) 596 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 597 598 for (const auto &I : New->exceptions()) { 599 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 600 if (OldTypes.count(TypePtr)) 601 NewTypes.insert(TypePtr); 602 else { 603 Success = false; 604 break; 605 } 606 } 607 608 if (Success && OldTypes.size() == NewTypes.size()) 609 return false; 610 } 611 612 // As a special compatibility feature, under C++0x we accept no spec and 613 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 614 // This is because the implicit declaration changed, but old code would break. 615 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 616 const FunctionProtoType *WithExceptions = nullptr; 617 if (OldEST == EST_None && NewEST == EST_Dynamic) 618 WithExceptions = New; 619 else if (OldEST == EST_Dynamic && NewEST == EST_None) 620 WithExceptions = Old; 621 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 622 // One has no spec, the other throw(something). If that something is 623 // std::bad_alloc, all conditions are met. 624 QualType Exception = *WithExceptions->exception_begin(); 625 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 626 IdentifierInfo* Name = ExRecord->getIdentifier(); 627 if (Name && Name->getName() == "bad_alloc") { 628 // It's called bad_alloc, but is it in std? 629 if (ExRecord->isInStdNamespace()) { 630 return false; 631 } 632 } 633 } 634 } 635 } 636 637 // If the caller wants to handle the case that the new function is 638 // incompatible due to a missing exception specification, let it. 639 if (MissingExceptionSpecification && OldEST != EST_None && 640 NewEST == EST_None) { 641 // The old type has an exception specification of some sort, but 642 // the new type does not. 643 *MissingExceptionSpecification = true; 644 645 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 646 // The old type has a throw() or noexcept(true) exception specification 647 // and the new type has no exception specification, and the caller asked 648 // to handle this itself. 649 *MissingEmptyExceptionSpecification = true; 650 } 651 652 return true; 653 } 654 655 S.Diag(NewLoc, DiagID); 656 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 657 S.Diag(OldLoc, NoteID); 658 return true; 659 } 660 661 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 662 const PartialDiagnostic &NoteID, 663 const FunctionProtoType *Old, 664 SourceLocation OldLoc, 665 const FunctionProtoType *New, 666 SourceLocation NewLoc) { 667 if (!getLangOpts().CXXExceptions) 668 return false; 669 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 670 New, NewLoc); 671 } 672 673 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 674 // [except.handle]p3: 675 // A handler is a match for an exception object of type E if: 676 677 // HandlerType must be ExceptionType or derived from it, or pointer or 678 // reference to such types. 679 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 680 if (RefTy) 681 HandlerType = RefTy->getPointeeType(); 682 683 // -- the handler is of type cv T or cv T& and E and T are the same type 684 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 685 return true; 686 687 // FIXME: ObjC pointer types? 688 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 689 if (RefTy && (!HandlerType.isConstQualified() || 690 HandlerType.isVolatileQualified())) 691 return false; 692 693 // -- the handler is of type cv T or const T& where T is a pointer or 694 // pointer to member type and E is std::nullptr_t 695 if (ExceptionType->isNullPtrType()) 696 return true; 697 698 // -- the handler is of type cv T or const T& where T is a pointer or 699 // pointer to member type and E is a pointer or pointer to member type 700 // that can be converted to T by one or more of 701 // -- a qualification conversion 702 // -- a function pointer conversion 703 bool LifetimeConv; 704 QualType Result; 705 // FIXME: Should we treat the exception as catchable if a lifetime 706 // conversion is required? 707 if (IsQualificationConversion(ExceptionType, HandlerType, false, 708 LifetimeConv) || 709 IsFunctionConversion(ExceptionType, HandlerType, Result)) 710 return true; 711 712 // -- a standard pointer conversion [...] 713 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 714 return false; 715 716 // Handle the "qualification conversion" portion. 717 Qualifiers EQuals, HQuals; 718 ExceptionType = Context.getUnqualifiedArrayType( 719 ExceptionType->getPointeeType(), EQuals); 720 HandlerType = Context.getUnqualifiedArrayType( 721 HandlerType->getPointeeType(), HQuals); 722 if (!HQuals.compatiblyIncludes(EQuals)) 723 return false; 724 725 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 726 return true; 727 728 // The only remaining case is a derived-to-base conversion. 729 } 730 731 // -- the handler is of type cg T or cv T& and T is an unambiguous public 732 // base class of E 733 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 734 return false; 735 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 736 /*DetectVirtual=*/false); 737 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 738 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 739 return false; 740 741 // Do this check from a context without privileges. 742 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 743 Paths.front(), 744 /*Diagnostic*/ 0, 745 /*ForceCheck*/ true, 746 /*ForceUnprivileged*/ true)) { 747 case AR_accessible: return true; 748 case AR_inaccessible: return false; 749 case AR_dependent: 750 llvm_unreachable("access check dependent for unprivileged context"); 751 case AR_delayed: 752 llvm_unreachable("access check delayed in non-declaration"); 753 } 754 llvm_unreachable("unexpected access check result"); 755 } 756 757 /// CheckExceptionSpecSubset - Check whether the second function type's 758 /// exception specification is a subset (or equivalent) of the first function 759 /// type. This is used by override and pointer assignment checks. 760 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 761 const PartialDiagnostic &NestedDiagID, 762 const PartialDiagnostic &NoteID, 763 const PartialDiagnostic &NoThrowDiagID, 764 const FunctionProtoType *Superset, 765 SourceLocation SuperLoc, 766 const FunctionProtoType *Subset, 767 SourceLocation SubLoc) { 768 769 // Just auto-succeed under -fno-exceptions. 770 if (!getLangOpts().CXXExceptions) 771 return false; 772 773 // FIXME: As usual, we could be more specific in our error messages, but 774 // that better waits until we've got types with source locations. 775 776 if (!SubLoc.isValid()) 777 SubLoc = SuperLoc; 778 779 // Resolve the exception specifications, if needed. 780 Superset = ResolveExceptionSpec(SuperLoc, Superset); 781 if (!Superset) 782 return false; 783 Subset = ResolveExceptionSpec(SubLoc, Subset); 784 if (!Subset) 785 return false; 786 787 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 788 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 789 assert(!isUnresolvedExceptionSpec(SuperEST) && 790 !isUnresolvedExceptionSpec(SubEST) && 791 "Shouldn't see unknown exception specifications here"); 792 793 // If there are dependent noexcept specs, assume everything is fine. Unlike 794 // with the equivalency check, this is safe in this case, because we don't 795 // want to merge declarations. Checks after instantiation will catch any 796 // omissions we make here. 797 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 798 return false; 799 800 CanThrowResult SuperCanThrow = Superset->canThrow(); 801 CanThrowResult SubCanThrow = Subset->canThrow(); 802 803 // If the superset contains everything or the subset contains nothing, we're 804 // done. 805 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 806 SubCanThrow == CT_Cannot) 807 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 808 Subset, SubLoc); 809 810 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 811 // some cases. 812 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 813 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 814 Diag(SubLoc, NoThrowDiagID); 815 if (NoteID.getDiagID() != 0) 816 Diag(SuperLoc, NoteID); 817 return true; 818 } 819 820 // If the subset contains everything or the superset contains nothing, we've 821 // failed. 822 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 823 SuperCanThrow == CT_Cannot) { 824 Diag(SubLoc, DiagID); 825 if (NoteID.getDiagID() != 0) 826 Diag(SuperLoc, NoteID); 827 return true; 828 } 829 830 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 831 "Exception spec subset: non-dynamic case slipped through."); 832 833 // Neither contains everything or nothing. Do a proper comparison. 834 for (QualType SubI : Subset->exceptions()) { 835 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 836 SubI = RefTy->getPointeeType(); 837 838 // Make sure it's in the superset. 839 bool Contained = false; 840 for (QualType SuperI : Superset->exceptions()) { 841 // [except.spec]p5: 842 // the target entity shall allow at least the exceptions allowed by the 843 // source 844 // 845 // We interpret this as meaning that a handler for some target type would 846 // catch an exception of each source type. 847 if (handlerCanCatch(SuperI, SubI)) { 848 Contained = true; 849 break; 850 } 851 } 852 if (!Contained) { 853 Diag(SubLoc, DiagID); 854 if (NoteID.getDiagID() != 0) 855 Diag(SuperLoc, NoteID); 856 return true; 857 } 858 } 859 // We've run half the gauntlet. 860 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 861 Subset, SubLoc); 862 } 863 864 static bool 865 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 866 const PartialDiagnostic &NoteID, QualType Target, 867 SourceLocation TargetLoc, QualType Source, 868 SourceLocation SourceLoc) { 869 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 870 if (!TFunc) 871 return false; 872 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 873 if (!SFunc) 874 return false; 875 876 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 877 SFunc, SourceLoc); 878 } 879 880 /// CheckParamExceptionSpec - Check if the parameter and return types of the 881 /// two functions have equivalent exception specs. This is part of the 882 /// assignment and override compatibility check. We do not check the parameters 883 /// of parameter function pointers recursively, as no sane programmer would 884 /// even be able to write such a function type. 885 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 886 const PartialDiagnostic &NoteID, 887 const FunctionProtoType *Target, 888 SourceLocation TargetLoc, 889 const FunctionProtoType *Source, 890 SourceLocation SourceLoc) { 891 auto RetDiag = DiagID; 892 RetDiag << 0; 893 if (CheckSpecForTypesEquivalent( 894 *this, RetDiag, PDiag(), 895 Target->getReturnType(), TargetLoc, Source->getReturnType(), 896 SourceLoc)) 897 return true; 898 899 // We shouldn't even be testing this unless the arguments are otherwise 900 // compatible. 901 assert(Target->getNumParams() == Source->getNumParams() && 902 "Functions have different argument counts."); 903 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 904 auto ParamDiag = DiagID; 905 ParamDiag << 1; 906 if (CheckSpecForTypesEquivalent( 907 *this, ParamDiag, PDiag(), 908 Target->getParamType(i), TargetLoc, Source->getParamType(i), 909 SourceLoc)) 910 return true; 911 } 912 return false; 913 } 914 915 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 916 // First we check for applicability. 917 // Target type must be a function, function pointer or function reference. 918 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 919 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 920 return false; 921 922 // SourceType must be a function or function pointer. 923 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 924 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 925 return false; 926 927 unsigned DiagID = diag::err_incompatible_exception_specs; 928 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 929 // This is not an error in C++17 onwards, unless the noexceptness doesn't 930 // match, but in that case we have a full-on type mismatch, not just a 931 // type sugar mismatch. 932 if (getLangOpts().CPlusPlus17) { 933 DiagID = diag::warn_incompatible_exception_specs; 934 NestedDiagID = diag::warn_deep_exception_specs_differ; 935 } 936 937 // Now we've got the correct types on both sides, check their compatibility. 938 // This means that the source of the conversion can only throw a subset of 939 // the exceptions of the target, and any exception specs on arguments or 940 // return types must be equivalent. 941 // 942 // FIXME: If there is a nested dependent exception specification, we should 943 // not be checking it here. This is fine: 944 // template<typename T> void f() { 945 // void (*p)(void (*) throw(T)); 946 // void (*q)(void (*) throw(int)) = p; 947 // } 948 // ... because it might be instantiated with T=int. 949 return CheckExceptionSpecSubset( 950 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 951 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 952 !getLangOpts().CPlusPlus17; 953 } 954 955 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 956 const CXXMethodDecl *Old) { 957 // If the new exception specification hasn't been parsed yet, skip the check. 958 // We'll get called again once it's been parsed. 959 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 960 EST_Unparsed) 961 return false; 962 963 // Don't check uninstantiated template destructors at all. We can only 964 // synthesize correct specs after the template is instantiated. 965 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 966 return false; 967 968 // If the old exception specification hasn't been parsed yet, or the new 969 // exception specification can't be computed yet, remember that we need to 970 // perform this check when we get to the end of the outermost 971 // lexically-surrounding class. 972 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 973 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 974 return false; 975 } 976 977 unsigned DiagID = diag::err_override_exception_spec; 978 if (getLangOpts().MSVCCompat) 979 DiagID = diag::ext_override_exception_spec; 980 return CheckExceptionSpecSubset(PDiag(DiagID), 981 PDiag(diag::err_deep_exception_specs_differ), 982 PDiag(diag::note_overridden_virtual_function), 983 PDiag(diag::ext_override_exception_spec), 984 Old->getType()->castAs<FunctionProtoType>(), 985 Old->getLocation(), 986 New->getType()->castAs<FunctionProtoType>(), 987 New->getLocation()); 988 } 989 990 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 991 CanThrowResult R = CT_Cannot; 992 for (const Stmt *SubStmt : S->children()) { 993 if (!SubStmt) 994 continue; 995 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 996 if (R == CT_Can) 997 break; 998 } 999 return R; 1000 } 1001 1002 /// Determine whether the callee of a particular function call can throw. 1003 /// E and D are both optional, but at least one of E and Loc must be specified. 1004 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1005 SourceLocation Loc = SourceLocation()) { 1006 // As an extension, we assume that __attribute__((nothrow)) functions don't 1007 // throw. 1008 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1009 return CT_Cannot; 1010 1011 QualType T; 1012 1013 // In C++1z, just look at the function type of the callee. 1014 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1015 E = cast<CallExpr>(E)->getCallee(); 1016 T = E->getType(); 1017 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1018 // Sadly we don't preserve the actual type as part of the "bound member" 1019 // placeholder, so we need to reconstruct it. 1020 E = E->IgnoreParenImpCasts(); 1021 1022 // Could be a call to a pointer-to-member or a plain member access. 1023 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1024 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1025 T = Op->getRHS()->getType() 1026 ->castAs<MemberPointerType>()->getPointeeType(); 1027 } else { 1028 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1029 } 1030 } 1031 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1032 T = VD->getType(); 1033 else 1034 // If we have no clue what we're calling, assume the worst. 1035 return CT_Can; 1036 1037 const FunctionProtoType *FT; 1038 if ((FT = T->getAs<FunctionProtoType>())) { 1039 } else if (const PointerType *PT = T->getAs<PointerType>()) 1040 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1041 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1042 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1043 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1044 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1045 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1046 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1047 1048 if (!FT) 1049 return CT_Can; 1050 1051 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1052 if (!FT) 1053 return CT_Can; 1054 1055 return FT->canThrow(); 1056 } 1057 1058 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1059 CanThrowResult CT = CT_Cannot; 1060 1061 // Initialization might throw. 1062 if (!VD->isUsableInConstantExpressions(Self.Context)) 1063 if (const Expr *Init = VD->getInit()) 1064 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1065 1066 // Destructor might throw. 1067 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1068 if (auto *RD = 1069 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1070 if (auto *Dtor = RD->getDestructor()) { 1071 CT = mergeCanThrow( 1072 CT, canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1073 } 1074 } 1075 } 1076 1077 // If this is a decomposition declaration, bindings might throw. 1078 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1079 for (auto *B : DD->bindings()) 1080 if (auto *HD = B->getHoldingVar()) 1081 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1082 1083 return CT; 1084 } 1085 1086 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1087 if (DC->isTypeDependent()) 1088 return CT_Dependent; 1089 1090 if (!DC->getTypeAsWritten()->isReferenceType()) 1091 return CT_Cannot; 1092 1093 if (DC->getSubExpr()->isTypeDependent()) 1094 return CT_Dependent; 1095 1096 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1097 } 1098 1099 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1100 if (DC->isTypeOperand()) 1101 return CT_Cannot; 1102 1103 Expr *Op = DC->getExprOperand(); 1104 if (Op->isTypeDependent()) 1105 return CT_Dependent; 1106 1107 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1108 if (!RT) 1109 return CT_Cannot; 1110 1111 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1112 return CT_Cannot; 1113 1114 if (Op->Classify(S.Context).isPRValue()) 1115 return CT_Cannot; 1116 1117 return CT_Can; 1118 } 1119 1120 CanThrowResult Sema::canThrow(const Stmt *S) { 1121 // C++ [expr.unary.noexcept]p3: 1122 // [Can throw] if in a potentially-evaluated context the expression would 1123 // contain: 1124 switch (S->getStmtClass()) { 1125 case Expr::ConstantExprClass: 1126 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1127 1128 case Expr::CXXThrowExprClass: 1129 // - a potentially evaluated throw-expression 1130 return CT_Can; 1131 1132 case Expr::CXXDynamicCastExprClass: { 1133 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1134 // where T is a reference type, that requires a run-time check 1135 auto *CE = cast<CXXDynamicCastExpr>(S); 1136 // FIXME: Properly determine whether a variably-modified type can throw. 1137 if (CE->getType()->isVariablyModifiedType()) 1138 return CT_Can; 1139 CanThrowResult CT = canDynamicCastThrow(CE); 1140 if (CT == CT_Can) 1141 return CT; 1142 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1143 } 1144 1145 case Expr::CXXTypeidExprClass: 1146 // - a potentially evaluated typeid expression applied to a glvalue 1147 // expression whose type is a polymorphic class type 1148 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1149 1150 // - a potentially evaluated call to a function, member function, function 1151 // pointer, or member function pointer that does not have a non-throwing 1152 // exception-specification 1153 case Expr::CallExprClass: 1154 case Expr::CXXMemberCallExprClass: 1155 case Expr::CXXOperatorCallExprClass: 1156 case Expr::UserDefinedLiteralClass: { 1157 const CallExpr *CE = cast<CallExpr>(S); 1158 CanThrowResult CT; 1159 if (CE->isTypeDependent()) 1160 CT = CT_Dependent; 1161 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1162 CT = CT_Cannot; 1163 else 1164 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1165 if (CT == CT_Can) 1166 return CT; 1167 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1168 } 1169 1170 case Expr::CXXConstructExprClass: 1171 case Expr::CXXTemporaryObjectExprClass: { 1172 auto *CE = cast<CXXConstructExpr>(S); 1173 // FIXME: Properly determine whether a variably-modified type can throw. 1174 if (CE->getType()->isVariablyModifiedType()) 1175 return CT_Can; 1176 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1177 if (CT == CT_Can) 1178 return CT; 1179 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1180 } 1181 1182 case Expr::CXXInheritedCtorInitExprClass: { 1183 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1184 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1185 } 1186 1187 case Expr::LambdaExprClass: { 1188 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1189 CanThrowResult CT = CT_Cannot; 1190 for (LambdaExpr::const_capture_init_iterator 1191 Cap = Lambda->capture_init_begin(), 1192 CapEnd = Lambda->capture_init_end(); 1193 Cap != CapEnd; ++Cap) 1194 CT = mergeCanThrow(CT, canThrow(*Cap)); 1195 return CT; 1196 } 1197 1198 case Expr::CXXNewExprClass: { 1199 auto *NE = cast<CXXNewExpr>(S); 1200 CanThrowResult CT; 1201 if (NE->isTypeDependent()) 1202 CT = CT_Dependent; 1203 else 1204 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1205 if (CT == CT_Can) 1206 return CT; 1207 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1208 } 1209 1210 case Expr::CXXDeleteExprClass: { 1211 auto *DE = cast<CXXDeleteExpr>(S); 1212 CanThrowResult CT; 1213 QualType DTy = DE->getDestroyedType(); 1214 if (DTy.isNull() || DTy->isDependentType()) { 1215 CT = CT_Dependent; 1216 } else { 1217 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1218 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1219 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1220 const CXXDestructorDecl *DD = RD->getDestructor(); 1221 if (DD) 1222 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1223 } 1224 if (CT == CT_Can) 1225 return CT; 1226 } 1227 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1228 } 1229 1230 case Expr::CXXBindTemporaryExprClass: { 1231 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1232 // The bound temporary has to be destroyed again, which might throw. 1233 CanThrowResult CT = 1234 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1235 if (CT == CT_Can) 1236 return CT; 1237 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1238 } 1239 1240 case Expr::PseudoObjectExprClass: { 1241 auto *POE = cast<PseudoObjectExpr>(S); 1242 CanThrowResult CT = CT_Cannot; 1243 for (const Expr *E : POE->semantics()) { 1244 CT = mergeCanThrow(CT, canThrow(E)); 1245 if (CT == CT_Can) 1246 break; 1247 } 1248 return CT; 1249 } 1250 1251 // ObjC message sends are like function calls, but never have exception 1252 // specs. 1253 case Expr::ObjCMessageExprClass: 1254 case Expr::ObjCPropertyRefExprClass: 1255 case Expr::ObjCSubscriptRefExprClass: 1256 return CT_Can; 1257 1258 // All the ObjC literals that are implemented as calls are 1259 // potentially throwing unless we decide to close off that 1260 // possibility. 1261 case Expr::ObjCArrayLiteralClass: 1262 case Expr::ObjCDictionaryLiteralClass: 1263 case Expr::ObjCBoxedExprClass: 1264 return CT_Can; 1265 1266 // Many other things have subexpressions, so we have to test those. 1267 // Some are simple: 1268 case Expr::CoawaitExprClass: 1269 case Expr::ConditionalOperatorClass: 1270 case Expr::CoyieldExprClass: 1271 case Expr::CXXRewrittenBinaryOperatorClass: 1272 case Expr::CXXStdInitializerListExprClass: 1273 case Expr::DesignatedInitExprClass: 1274 case Expr::DesignatedInitUpdateExprClass: 1275 case Expr::ExprWithCleanupsClass: 1276 case Expr::ExtVectorElementExprClass: 1277 case Expr::InitListExprClass: 1278 case Expr::ArrayInitLoopExprClass: 1279 case Expr::MemberExprClass: 1280 case Expr::ObjCIsaExprClass: 1281 case Expr::ObjCIvarRefExprClass: 1282 case Expr::ParenExprClass: 1283 case Expr::ParenListExprClass: 1284 case Expr::ShuffleVectorExprClass: 1285 case Expr::StmtExprClass: 1286 case Expr::ConvertVectorExprClass: 1287 case Expr::VAArgExprClass: 1288 return canSubStmtsThrow(*this, S); 1289 1290 case Expr::CompoundLiteralExprClass: 1291 case Expr::CXXConstCastExprClass: 1292 case Expr::CXXAddrspaceCastExprClass: 1293 case Expr::CXXReinterpretCastExprClass: 1294 case Expr::BuiltinBitCastExprClass: 1295 // FIXME: Properly determine whether a variably-modified type can throw. 1296 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1297 return CT_Can; 1298 return canSubStmtsThrow(*this, S); 1299 1300 // Some might be dependent for other reasons. 1301 case Expr::ArraySubscriptExprClass: 1302 case Expr::MatrixSubscriptExprClass: 1303 case Expr::OMPArraySectionExprClass: 1304 case Expr::OMPArrayShapingExprClass: 1305 case Expr::OMPIteratorExprClass: 1306 case Expr::BinaryOperatorClass: 1307 case Expr::DependentCoawaitExprClass: 1308 case Expr::CompoundAssignOperatorClass: 1309 case Expr::CStyleCastExprClass: 1310 case Expr::CXXStaticCastExprClass: 1311 case Expr::CXXFunctionalCastExprClass: 1312 case Expr::ImplicitCastExprClass: 1313 case Expr::MaterializeTemporaryExprClass: 1314 case Expr::UnaryOperatorClass: { 1315 // FIXME: Properly determine whether a variably-modified type can throw. 1316 if (auto *CE = dyn_cast<CastExpr>(S)) 1317 if (CE->getType()->isVariablyModifiedType()) 1318 return CT_Can; 1319 CanThrowResult CT = 1320 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1321 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1322 } 1323 1324 case Expr::CXXDefaultArgExprClass: 1325 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1326 1327 case Expr::CXXDefaultInitExprClass: 1328 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1329 1330 case Expr::ChooseExprClass: { 1331 auto *CE = cast<ChooseExpr>(S); 1332 if (CE->isTypeDependent() || CE->isValueDependent()) 1333 return CT_Dependent; 1334 return canThrow(CE->getChosenSubExpr()); 1335 } 1336 1337 case Expr::GenericSelectionExprClass: 1338 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1339 return CT_Dependent; 1340 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1341 1342 // Some expressions are always dependent. 1343 case Expr::CXXDependentScopeMemberExprClass: 1344 case Expr::CXXUnresolvedConstructExprClass: 1345 case Expr::DependentScopeDeclRefExprClass: 1346 case Expr::CXXFoldExprClass: 1347 case Expr::RecoveryExprClass: 1348 return CT_Dependent; 1349 1350 case Expr::AsTypeExprClass: 1351 case Expr::BinaryConditionalOperatorClass: 1352 case Expr::BlockExprClass: 1353 case Expr::CUDAKernelCallExprClass: 1354 case Expr::DeclRefExprClass: 1355 case Expr::ObjCBridgedCastExprClass: 1356 case Expr::ObjCIndirectCopyRestoreExprClass: 1357 case Expr::ObjCProtocolExprClass: 1358 case Expr::ObjCSelectorExprClass: 1359 case Expr::ObjCAvailabilityCheckExprClass: 1360 case Expr::OffsetOfExprClass: 1361 case Expr::PackExpansionExprClass: 1362 case Expr::SubstNonTypeTemplateParmExprClass: 1363 case Expr::SubstNonTypeTemplateParmPackExprClass: 1364 case Expr::FunctionParmPackExprClass: 1365 case Expr::UnaryExprOrTypeTraitExprClass: 1366 case Expr::UnresolvedLookupExprClass: 1367 case Expr::UnresolvedMemberExprClass: 1368 case Expr::TypoExprClass: 1369 // FIXME: Many of the above can throw. 1370 return CT_Cannot; 1371 1372 case Expr::AddrLabelExprClass: 1373 case Expr::ArrayTypeTraitExprClass: 1374 case Expr::AtomicExprClass: 1375 case Expr::TypeTraitExprClass: 1376 case Expr::CXXBoolLiteralExprClass: 1377 case Expr::CXXNoexceptExprClass: 1378 case Expr::CXXNullPtrLiteralExprClass: 1379 case Expr::CXXPseudoDestructorExprClass: 1380 case Expr::CXXScalarValueInitExprClass: 1381 case Expr::CXXThisExprClass: 1382 case Expr::CXXUuidofExprClass: 1383 case Expr::CharacterLiteralClass: 1384 case Expr::ExpressionTraitExprClass: 1385 case Expr::FloatingLiteralClass: 1386 case Expr::GNUNullExprClass: 1387 case Expr::ImaginaryLiteralClass: 1388 case Expr::ImplicitValueInitExprClass: 1389 case Expr::IntegerLiteralClass: 1390 case Expr::FixedPointLiteralClass: 1391 case Expr::ArrayInitIndexExprClass: 1392 case Expr::NoInitExprClass: 1393 case Expr::ObjCEncodeExprClass: 1394 case Expr::ObjCStringLiteralClass: 1395 case Expr::ObjCBoolLiteralExprClass: 1396 case Expr::OpaqueValueExprClass: 1397 case Expr::PredefinedExprClass: 1398 case Expr::SizeOfPackExprClass: 1399 case Expr::StringLiteralClass: 1400 case Expr::SourceLocExprClass: 1401 case Expr::ConceptSpecializationExprClass: 1402 case Expr::RequiresExprClass: 1403 // These expressions can never throw. 1404 return CT_Cannot; 1405 1406 case Expr::MSPropertyRefExprClass: 1407 case Expr::MSPropertySubscriptExprClass: 1408 llvm_unreachable("Invalid class for expression"); 1409 1410 // Most statements can throw if any substatement can throw. 1411 case Stmt::AttributedStmtClass: 1412 case Stmt::BreakStmtClass: 1413 case Stmt::CapturedStmtClass: 1414 case Stmt::CaseStmtClass: 1415 case Stmt::CompoundStmtClass: 1416 case Stmt::ContinueStmtClass: 1417 case Stmt::CoreturnStmtClass: 1418 case Stmt::CoroutineBodyStmtClass: 1419 case Stmt::CXXCatchStmtClass: 1420 case Stmt::CXXForRangeStmtClass: 1421 case Stmt::DefaultStmtClass: 1422 case Stmt::DoStmtClass: 1423 case Stmt::ForStmtClass: 1424 case Stmt::GCCAsmStmtClass: 1425 case Stmt::GotoStmtClass: 1426 case Stmt::IndirectGotoStmtClass: 1427 case Stmt::LabelStmtClass: 1428 case Stmt::MSAsmStmtClass: 1429 case Stmt::MSDependentExistsStmtClass: 1430 case Stmt::NullStmtClass: 1431 case Stmt::ObjCAtCatchStmtClass: 1432 case Stmt::ObjCAtFinallyStmtClass: 1433 case Stmt::ObjCAtSynchronizedStmtClass: 1434 case Stmt::ObjCAutoreleasePoolStmtClass: 1435 case Stmt::ObjCForCollectionStmtClass: 1436 case Stmt::OMPAtomicDirectiveClass: 1437 case Stmt::OMPBarrierDirectiveClass: 1438 case Stmt::OMPCancelDirectiveClass: 1439 case Stmt::OMPCancellationPointDirectiveClass: 1440 case Stmt::OMPCriticalDirectiveClass: 1441 case Stmt::OMPDistributeDirectiveClass: 1442 case Stmt::OMPDistributeParallelForDirectiveClass: 1443 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1444 case Stmt::OMPDistributeSimdDirectiveClass: 1445 case Stmt::OMPFlushDirectiveClass: 1446 case Stmt::OMPDepobjDirectiveClass: 1447 case Stmt::OMPScanDirectiveClass: 1448 case Stmt::OMPForDirectiveClass: 1449 case Stmt::OMPForSimdDirectiveClass: 1450 case Stmt::OMPMasterDirectiveClass: 1451 case Stmt::OMPMasterTaskLoopDirectiveClass: 1452 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1453 case Stmt::OMPOrderedDirectiveClass: 1454 case Stmt::OMPParallelDirectiveClass: 1455 case Stmt::OMPParallelForDirectiveClass: 1456 case Stmt::OMPParallelForSimdDirectiveClass: 1457 case Stmt::OMPParallelMasterDirectiveClass: 1458 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1459 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1460 case Stmt::OMPParallelSectionsDirectiveClass: 1461 case Stmt::OMPSectionDirectiveClass: 1462 case Stmt::OMPSectionsDirectiveClass: 1463 case Stmt::OMPSimdDirectiveClass: 1464 case Stmt::OMPSingleDirectiveClass: 1465 case Stmt::OMPTargetDataDirectiveClass: 1466 case Stmt::OMPTargetDirectiveClass: 1467 case Stmt::OMPTargetEnterDataDirectiveClass: 1468 case Stmt::OMPTargetExitDataDirectiveClass: 1469 case Stmt::OMPTargetParallelDirectiveClass: 1470 case Stmt::OMPTargetParallelForDirectiveClass: 1471 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1472 case Stmt::OMPTargetSimdDirectiveClass: 1473 case Stmt::OMPTargetTeamsDirectiveClass: 1474 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1475 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1476 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1477 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1478 case Stmt::OMPTargetUpdateDirectiveClass: 1479 case Stmt::OMPTaskDirectiveClass: 1480 case Stmt::OMPTaskgroupDirectiveClass: 1481 case Stmt::OMPTaskLoopDirectiveClass: 1482 case Stmt::OMPTaskLoopSimdDirectiveClass: 1483 case Stmt::OMPTaskwaitDirectiveClass: 1484 case Stmt::OMPTaskyieldDirectiveClass: 1485 case Stmt::OMPTeamsDirectiveClass: 1486 case Stmt::OMPTeamsDistributeDirectiveClass: 1487 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1488 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1489 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1490 case Stmt::ReturnStmtClass: 1491 case Stmt::SEHExceptStmtClass: 1492 case Stmt::SEHFinallyStmtClass: 1493 case Stmt::SEHLeaveStmtClass: 1494 case Stmt::SEHTryStmtClass: 1495 case Stmt::SwitchStmtClass: 1496 case Stmt::WhileStmtClass: 1497 return canSubStmtsThrow(*this, S); 1498 1499 case Stmt::DeclStmtClass: { 1500 CanThrowResult CT = CT_Cannot; 1501 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1502 if (auto *VD = dyn_cast<VarDecl>(D)) 1503 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1504 1505 // FIXME: Properly determine whether a variably-modified type can throw. 1506 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1507 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1508 return CT_Can; 1509 if (auto *VD = dyn_cast<ValueDecl>(D)) 1510 if (VD->getType()->isVariablyModifiedType()) 1511 return CT_Can; 1512 } 1513 return CT; 1514 } 1515 1516 case Stmt::IfStmtClass: { 1517 auto *IS = cast<IfStmt>(S); 1518 CanThrowResult CT = CT_Cannot; 1519 if (const Stmt *Init = IS->getInit()) 1520 CT = mergeCanThrow(CT, canThrow(Init)); 1521 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1522 CT = mergeCanThrow(CT, canThrow(CondDS)); 1523 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1524 1525 // For 'if constexpr', consider only the non-discarded case. 1526 // FIXME: We should add a DiscardedStmt marker to the AST. 1527 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1528 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1529 1530 CanThrowResult Then = canThrow(IS->getThen()); 1531 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1532 if (Then == Else) 1533 return mergeCanThrow(CT, Then); 1534 1535 // For a dependent 'if constexpr', the result is dependent if it depends on 1536 // the value of the condition. 1537 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1538 : mergeCanThrow(Then, Else)); 1539 } 1540 1541 case Stmt::CXXTryStmtClass: { 1542 auto *TS = cast<CXXTryStmt>(S); 1543 // try /*...*/ catch (...) { H } can throw only if H can throw. 1544 // Any other try-catch can throw if any substatement can throw. 1545 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1546 if (!FinalHandler->getExceptionDecl()) 1547 return canThrow(FinalHandler->getHandlerBlock()); 1548 return canSubStmtsThrow(*this, S); 1549 } 1550 1551 case Stmt::ObjCAtThrowStmtClass: 1552 return CT_Can; 1553 1554 case Stmt::ObjCAtTryStmtClass: { 1555 auto *TS = cast<ObjCAtTryStmt>(S); 1556 1557 // @catch(...) need not be last in Objective-C. Walk backwards until we 1558 // see one or hit the @try. 1559 CanThrowResult CT = CT_Cannot; 1560 if (const Stmt *Finally = TS->getFinallyStmt()) 1561 CT = mergeCanThrow(CT, canThrow(Finally)); 1562 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1563 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1564 CT = mergeCanThrow(CT, canThrow(Catch)); 1565 // If we reach a @catch(...), no earlier exceptions can escape. 1566 if (Catch->hasEllipsis()) 1567 return CT; 1568 } 1569 1570 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1571 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1572 } 1573 1574 case Stmt::NoStmtClass: 1575 llvm_unreachable("Invalid class for statement"); 1576 } 1577 llvm_unreachable("Bogus StmtClass"); 1578 } 1579 1580 } // end namespace clang 1581