1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ Coroutines.
10 //
11 // This file contains references to sections of the Coroutines TS, which
12 // can be found at http://wg21.link/coroutines.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Overload.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallSet.h"
28
29 using namespace clang;
30 using namespace sema;
31
lookupMember(Sema & S,const char * Name,CXXRecordDecl * RD,SourceLocation Loc,bool & Res)32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
41 }
42
lookupMember(Sema & S,const char * Name,CXXRecordDecl * RD,SourceLocation Loc)43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
48 }
49
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
lookupPromiseType(Sema & S,const FunctionDecl * FD,SourceLocation KwLoc)52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
56
57 NamespaceDecl *CoroNamespace = nullptr;
58 ClassTemplateDecl *CoroTraits =
59 S.lookupCoroutineTraits(KwLoc, FuncLoc, CoroNamespace);
60 if (!CoroTraits) {
61 return QualType();
62 }
63
64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65 // to [dcl.fct.def.coroutine]3
66 TemplateArgumentListInfo Args(KwLoc, KwLoc);
67 auto AddArg = [&](QualType T) {
68 Args.addArgument(TemplateArgumentLoc(
69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
70 };
71 AddArg(FnType->getReturnType());
72 // If the function is a non-static member function, add the type
73 // of the implicit object parameter before the formal parameters.
74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
75 if (MD->isInstance()) {
76 // [over.match.funcs]4
77 // For non-static member functions, the type of the implicit object
78 // parameter is
79 // -- "lvalue reference to cv X" for functions declared without a
80 // ref-qualifier or with the & ref-qualifier
81 // -- "rvalue reference to cv X" for functions declared with the &&
82 // ref-qualifier
83 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
84 T = FnType->getRefQualifier() == RQ_RValue
85 ? S.Context.getRValueReferenceType(T)
86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87 AddArg(T);
88 }
89 }
90 for (QualType T : FnType->getParamTypes())
91 AddArg(T);
92
93 // Build the template-id.
94 QualType CoroTrait =
95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
96 if (CoroTrait.isNull())
97 return QualType();
98 if (S.RequireCompleteType(KwLoc, CoroTrait,
99 diag::err_coroutine_type_missing_specialization))
100 return QualType();
101
102 auto *RD = CoroTrait->getAsCXXRecordDecl();
103 assert(RD && "specialization of class template is not a class?");
104
105 // Look up the ::promise_type member.
106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
107 Sema::LookupOrdinaryName);
108 S.LookupQualifiedName(R, RD);
109 auto *Promise = R.getAsSingle<TypeDecl>();
110 if (!Promise) {
111 S.Diag(FuncLoc,
112 diag::err_implied_std_coroutine_traits_promise_type_not_found)
113 << RD;
114 return QualType();
115 }
116 // The promise type is required to be a class type.
117 QualType PromiseType = S.Context.getTypeDeclType(Promise);
118
119 auto buildElaboratedType = [&]() {
120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, CoroNamespace);
121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
122 CoroTrait.getTypePtr());
123 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
124 };
125
126 if (!PromiseType->getAsCXXRecordDecl()) {
127 S.Diag(FuncLoc,
128 diag::err_implied_std_coroutine_traits_promise_type_not_class)
129 << buildElaboratedType();
130 return QualType();
131 }
132 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
133 diag::err_coroutine_promise_type_incomplete))
134 return QualType();
135
136 return PromiseType;
137 }
138
139 /// Look up the std::coroutine_handle<PromiseType>.
lookupCoroutineHandleType(Sema & S,QualType PromiseType,SourceLocation Loc)140 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
141 SourceLocation Loc) {
142 if (PromiseType.isNull())
143 return QualType();
144
145 NamespaceDecl *CoroNamespace = S.getCachedCoroNamespace();
146 assert(CoroNamespace && "Should already be diagnosed");
147
148 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
149 Loc, Sema::LookupOrdinaryName);
150 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
151 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
152 << "std::coroutine_handle";
153 return QualType();
154 }
155
156 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
157 if (!CoroHandle) {
158 Result.suppressDiagnostics();
159 // We found something weird. Complain about the first thing we found.
160 NamedDecl *Found = *Result.begin();
161 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
162 return QualType();
163 }
164
165 // Form template argument list for coroutine_handle<Promise>.
166 TemplateArgumentListInfo Args(Loc, Loc);
167 Args.addArgument(TemplateArgumentLoc(
168 TemplateArgument(PromiseType),
169 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
170
171 // Build the template-id.
172 QualType CoroHandleType =
173 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
174 if (CoroHandleType.isNull())
175 return QualType();
176 if (S.RequireCompleteType(Loc, CoroHandleType,
177 diag::err_coroutine_type_missing_specialization))
178 return QualType();
179
180 return CoroHandleType;
181 }
182
isValidCoroutineContext(Sema & S,SourceLocation Loc,StringRef Keyword)183 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
184 StringRef Keyword) {
185 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
186 // a function body.
187 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
188 // appear in a default argument." But the diagnostic QoI here could be
189 // improved to inform the user that default arguments specifically are not
190 // allowed.
191 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
192 if (!FD) {
193 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
194 ? diag::err_coroutine_objc_method
195 : diag::err_coroutine_outside_function) << Keyword;
196 return false;
197 }
198
199 // An enumeration for mapping the diagnostic type to the correct diagnostic
200 // selection index.
201 enum InvalidFuncDiag {
202 DiagCtor = 0,
203 DiagDtor,
204 DiagMain,
205 DiagConstexpr,
206 DiagAutoRet,
207 DiagVarargs,
208 DiagConsteval,
209 };
210 bool Diagnosed = false;
211 auto DiagInvalid = [&](InvalidFuncDiag ID) {
212 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
213 Diagnosed = true;
214 return false;
215 };
216
217 // Diagnose when a constructor, destructor
218 // or the function 'main' are declared as a coroutine.
219 auto *MD = dyn_cast<CXXMethodDecl>(FD);
220 // [class.ctor]p11: "A constructor shall not be a coroutine."
221 if (MD && isa<CXXConstructorDecl>(MD))
222 return DiagInvalid(DiagCtor);
223 // [class.dtor]p17: "A destructor shall not be a coroutine."
224 else if (MD && isa<CXXDestructorDecl>(MD))
225 return DiagInvalid(DiagDtor);
226 // [basic.start.main]p3: "The function main shall not be a coroutine."
227 else if (FD->isMain())
228 return DiagInvalid(DiagMain);
229
230 // Emit a diagnostics for each of the following conditions which is not met.
231 // [expr.const]p2: "An expression e is a core constant expression unless the
232 // evaluation of e [...] would evaluate one of the following expressions:
233 // [...] an await-expression [...] a yield-expression."
234 if (FD->isConstexpr())
235 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
236 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
237 // placeholder type shall not be a coroutine."
238 if (FD->getReturnType()->isUndeducedType())
239 DiagInvalid(DiagAutoRet);
240 // [dcl.fct.def.coroutine]p1
241 // The parameter-declaration-clause of the coroutine shall not terminate with
242 // an ellipsis that is not part of a parameter-declaration.
243 if (FD->isVariadic())
244 DiagInvalid(DiagVarargs);
245
246 return !Diagnosed;
247 }
248
249 /// Build a call to 'operator co_await' if there is a suitable operator for
250 /// the given expression.
BuildOperatorCoawaitCall(SourceLocation Loc,Expr * E,UnresolvedLookupExpr * Lookup)251 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
252 UnresolvedLookupExpr *Lookup) {
253 UnresolvedSet<16> Functions;
254 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
255 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
256 }
257
buildOperatorCoawaitCall(Sema & SemaRef,Scope * S,SourceLocation Loc,Expr * E)258 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
259 SourceLocation Loc, Expr *E) {
260 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
261 if (R.isInvalid())
262 return ExprError();
263 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
264 cast<UnresolvedLookupExpr>(R.get()));
265 }
266
buildCoroutineHandle(Sema & S,QualType PromiseType,SourceLocation Loc)267 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
268 SourceLocation Loc) {
269 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
270 if (CoroHandleType.isNull())
271 return ExprError();
272
273 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
274 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
275 Sema::LookupOrdinaryName);
276 if (!S.LookupQualifiedName(Found, LookupCtx)) {
277 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
278 << "from_address";
279 return ExprError();
280 }
281
282 Expr *FramePtr =
283 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
284
285 CXXScopeSpec SS;
286 ExprResult FromAddr =
287 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
288 if (FromAddr.isInvalid())
289 return ExprError();
290
291 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
292 }
293
294 struct ReadySuspendResumeResult {
295 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
296 Expr *Results[3];
297 OpaqueValueExpr *OpaqueValue;
298 bool IsInvalid;
299 };
300
buildMemberCall(Sema & S,Expr * Base,SourceLocation Loc,StringRef Name,MultiExprArg Args)301 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
302 StringRef Name, MultiExprArg Args) {
303 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
304
305 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
306 CXXScopeSpec SS;
307 ExprResult Result = S.BuildMemberReferenceExpr(
308 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
309 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
310 /*Scope=*/nullptr);
311 if (Result.isInvalid())
312 return ExprError();
313
314 // We meant exactly what we asked for. No need for typo correction.
315 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
316 S.clearDelayedTypo(TE);
317 S.Diag(Loc, diag::err_no_member)
318 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
319 << Base->getSourceRange();
320 return ExprError();
321 }
322
323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr);
324 }
325
326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
327 // on its address. This is to enable experimental support for coroutine-handle
328 // returning await_suspend that results in a guaranteed tail call to the target
329 // coroutine.
maybeTailCall(Sema & S,QualType RetType,Expr * E,SourceLocation Loc)330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
331 SourceLocation Loc) {
332 if (RetType->isReferenceType())
333 return nullptr;
334 Type const *T = RetType.getTypePtr();
335 if (!T->isClassType() && !T->isStructureType())
336 return nullptr;
337
338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
340 // a private function in SemaExprCXX.cpp
341
342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", None);
343 if (AddressExpr.isInvalid())
344 return nullptr;
345
346 Expr *JustAddress = AddressExpr.get();
347
348 // Check that the type of AddressExpr is void*
349 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
350 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
351 diag::warn_coroutine_handle_address_invalid_return_type)
352 << JustAddress->getType();
353
354 // Clean up temporary objects so that they don't live across suspension points
355 // unnecessarily. We choose to clean up before the call to
356 // __builtin_coro_resume so that the cleanup code are not inserted in-between
357 // the resume call and return instruction, which would interfere with the
358 // musttail call contract.
359 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
360 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
361 JustAddress);
362 }
363
364 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
365 /// expression.
366 /// The generated AST tries to clean up temporary objects as early as
367 /// possible so that they don't live across suspension points if possible.
368 /// Having temporary objects living across suspension points unnecessarily can
369 /// lead to large frame size, and also lead to memory corruptions if the
370 /// coroutine frame is destroyed after coming back from suspension. This is done
371 /// by wrapping both the await_ready call and the await_suspend call with
372 /// ExprWithCleanups. In the end of this function, we also need to explicitly
373 /// set cleanup state so that the CoawaitExpr is also wrapped with an
374 /// ExprWithCleanups to clean up the awaiter associated with the co_await
375 /// expression.
buildCoawaitCalls(Sema & S,VarDecl * CoroPromise,SourceLocation Loc,Expr * E)376 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
377 SourceLocation Loc, Expr *E) {
378 OpaqueValueExpr *Operand = new (S.Context)
379 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
380
381 // Assume valid until we see otherwise.
382 // Further operations are responsible for setting IsInalid to true.
383 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
384
385 using ACT = ReadySuspendResumeResult::AwaitCallType;
386
387 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
388 MultiExprArg Arg) -> Expr * {
389 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
390 if (Result.isInvalid()) {
391 Calls.IsInvalid = true;
392 return nullptr;
393 }
394 Calls.Results[CallType] = Result.get();
395 return Result.get();
396 };
397
398 CallExpr *AwaitReady =
399 cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", None));
400 if (!AwaitReady)
401 return Calls;
402 if (!AwaitReady->getType()->isDependentType()) {
403 // [expr.await]p3 [...]
404 // — await-ready is the expression e.await_ready(), contextually converted
405 // to bool.
406 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
407 if (Conv.isInvalid()) {
408 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
409 diag::note_await_ready_no_bool_conversion);
410 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
411 << AwaitReady->getDirectCallee() << E->getSourceRange();
412 Calls.IsInvalid = true;
413 } else
414 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
415 }
416
417 ExprResult CoroHandleRes =
418 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
419 if (CoroHandleRes.isInvalid()) {
420 Calls.IsInvalid = true;
421 return Calls;
422 }
423 Expr *CoroHandle = CoroHandleRes.get();
424 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
425 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
426 if (!AwaitSuspend)
427 return Calls;
428 if (!AwaitSuspend->getType()->isDependentType()) {
429 // [expr.await]p3 [...]
430 // - await-suspend is the expression e.await_suspend(h), which shall be
431 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
432 // type Z.
433 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
434
435 // Experimental support for coroutine_handle returning await_suspend.
436 if (Expr *TailCallSuspend =
437 maybeTailCall(S, RetType, AwaitSuspend, Loc))
438 // Note that we don't wrap the expression with ExprWithCleanups here
439 // because that might interfere with tailcall contract (e.g. inserting
440 // clean up instructions in-between tailcall and return). Instead
441 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
442 // call.
443 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
444 else {
445 // non-class prvalues always have cv-unqualified types
446 if (RetType->isReferenceType() ||
447 (!RetType->isBooleanType() && !RetType->isVoidType())) {
448 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
449 diag::err_await_suspend_invalid_return_type)
450 << RetType;
451 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
452 << AwaitSuspend->getDirectCallee();
453 Calls.IsInvalid = true;
454 } else
455 Calls.Results[ACT::ACT_Suspend] =
456 S.MaybeCreateExprWithCleanups(AwaitSuspend);
457 }
458 }
459
460 BuildSubExpr(ACT::ACT_Resume, "await_resume", None);
461
462 // Make sure the awaiter object gets a chance to be cleaned up.
463 S.Cleanup.setExprNeedsCleanups(true);
464
465 return Calls;
466 }
467
buildPromiseCall(Sema & S,VarDecl * Promise,SourceLocation Loc,StringRef Name,MultiExprArg Args)468 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
469 SourceLocation Loc, StringRef Name,
470 MultiExprArg Args) {
471
472 // Form a reference to the promise.
473 ExprResult PromiseRef = S.BuildDeclRefExpr(
474 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
475 if (PromiseRef.isInvalid())
476 return ExprError();
477
478 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
479 }
480
buildCoroutinePromise(SourceLocation Loc)481 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
482 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
483 auto *FD = cast<FunctionDecl>(CurContext);
484 bool IsThisDependentType = [&] {
485 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
486 return MD->isInstance() && MD->getThisType()->isDependentType();
487 else
488 return false;
489 }();
490
491 QualType T = FD->getType()->isDependentType() || IsThisDependentType
492 ? Context.DependentTy
493 : lookupPromiseType(*this, FD, Loc);
494 if (T.isNull())
495 return nullptr;
496
497 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
498 &PP.getIdentifierTable().get("__promise"), T,
499 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
500 VD->setImplicit();
501 CheckVariableDeclarationType(VD);
502 if (VD->isInvalidDecl())
503 return nullptr;
504
505 auto *ScopeInfo = getCurFunction();
506
507 // Build a list of arguments, based on the coroutine function's arguments,
508 // that if present will be passed to the promise type's constructor.
509 llvm::SmallVector<Expr *, 4> CtorArgExprs;
510
511 // Add implicit object parameter.
512 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
513 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
514 ExprResult ThisExpr = ActOnCXXThis(Loc);
515 if (ThisExpr.isInvalid())
516 return nullptr;
517 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
518 if (ThisExpr.isInvalid())
519 return nullptr;
520 CtorArgExprs.push_back(ThisExpr.get());
521 }
522 }
523
524 // Add the coroutine function's parameters.
525 auto &Moves = ScopeInfo->CoroutineParameterMoves;
526 for (auto *PD : FD->parameters()) {
527 if (PD->getType()->isDependentType())
528 continue;
529
530 auto RefExpr = ExprEmpty();
531 auto Move = Moves.find(PD);
532 assert(Move != Moves.end() &&
533 "Coroutine function parameter not inserted into move map");
534 // If a reference to the function parameter exists in the coroutine
535 // frame, use that reference.
536 auto *MoveDecl =
537 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
538 RefExpr =
539 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
540 ExprValueKind::VK_LValue, FD->getLocation());
541 if (RefExpr.isInvalid())
542 return nullptr;
543 CtorArgExprs.push_back(RefExpr.get());
544 }
545
546 // If we have a non-zero number of constructor arguments, try to use them.
547 // Otherwise, fall back to the promise type's default constructor.
548 if (!CtorArgExprs.empty()) {
549 // Create an initialization sequence for the promise type using the
550 // constructor arguments, wrapped in a parenthesized list expression.
551 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
552 CtorArgExprs, FD->getLocation());
553 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
554 InitializationKind Kind = InitializationKind::CreateForInit(
555 VD->getLocation(), /*DirectInit=*/true, PLE);
556 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
557 /*TopLevelOfInitList=*/false,
558 /*TreatUnavailableAsInvalid=*/false);
559
560 // [dcl.fct.def.coroutine]5.7
561 // promise-constructor-arguments is determined as follows: overload
562 // resolution is performed on a promise constructor call created by
563 // assembling an argument list q_1 ... q_n . If a viable constructor is
564 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
565 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
566 if (InitSeq) {
567 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
568 if (Result.isInvalid()) {
569 VD->setInvalidDecl();
570 } else if (Result.get()) {
571 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
572 VD->setInitStyle(VarDecl::CallInit);
573 CheckCompleteVariableDeclaration(VD);
574 }
575 } else
576 ActOnUninitializedDecl(VD);
577 } else
578 ActOnUninitializedDecl(VD);
579
580 FD->addDecl(VD);
581 return VD;
582 }
583
584 /// Check that this is a context in which a coroutine suspension can appear.
checkCoroutineContext(Sema & S,SourceLocation Loc,StringRef Keyword,bool IsImplicit=false)585 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
586 StringRef Keyword,
587 bool IsImplicit = false) {
588 if (!isValidCoroutineContext(S, Loc, Keyword))
589 return nullptr;
590
591 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
592
593 auto *ScopeInfo = S.getCurFunction();
594 assert(ScopeInfo && "missing function scope for function");
595
596 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
597 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
598
599 if (ScopeInfo->CoroutinePromise)
600 return ScopeInfo;
601
602 if (!S.buildCoroutineParameterMoves(Loc))
603 return nullptr;
604
605 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
606 if (!ScopeInfo->CoroutinePromise)
607 return nullptr;
608
609 return ScopeInfo;
610 }
611
612 /// Recursively check \p E and all its children to see if any call target
613 /// (including constructor call) is declared noexcept. Also any value returned
614 /// from the call has a noexcept destructor.
checkNoThrow(Sema & S,const Stmt * E,llvm::SmallPtrSetImpl<const Decl * > & ThrowingDecls)615 static void checkNoThrow(Sema &S, const Stmt *E,
616 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
617 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
618 // In the case of dtor, the call to dtor is implicit and hence we should
619 // pass nullptr to canCalleeThrow.
620 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
621 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
622 // co_await promise.final_suspend() could end up calling
623 // __builtin_coro_resume for symmetric transfer if await_suspend()
624 // returns a handle. In that case, even __builtin_coro_resume is not
625 // declared as noexcept and may throw, it does not throw _into_ the
626 // coroutine that just suspended, but rather throws back out from
627 // whoever called coroutine_handle::resume(), hence we claim that
628 // logically it does not throw.
629 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
630 return;
631 }
632 if (ThrowingDecls.empty()) {
633 // [dcl.fct.def.coroutine]p15
634 // The expression co_await promise.final_suspend() shall not be
635 // potentially-throwing ([except.spec]).
636 //
637 // First time seeing an error, emit the error message.
638 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
639 diag::err_coroutine_promise_final_suspend_requires_nothrow);
640 }
641 ThrowingDecls.insert(D);
642 }
643 };
644
645 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
646 CXXConstructorDecl *Ctor = CE->getConstructor();
647 checkDeclNoexcept(Ctor);
648 // Check the corresponding destructor of the constructor.
649 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
650 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
651 if (CE->isTypeDependent())
652 return;
653
654 checkDeclNoexcept(CE->getCalleeDecl());
655 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
656 // Check the destructor of the call return type, if any.
657 if (ReturnType.isDestructedType() ==
658 QualType::DestructionKind::DK_cxx_destructor) {
659 const auto *T =
660 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
661 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
662 /*IsDtor=*/true);
663 }
664 } else
665 for (const auto *Child : E->children()) {
666 if (!Child)
667 continue;
668 checkNoThrow(S, Child, ThrowingDecls);
669 }
670 }
671
checkFinalSuspendNoThrow(const Stmt * FinalSuspend)672 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
673 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
674 // We first collect all declarations that should not throw but not declared
675 // with noexcept. We then sort them based on the location before printing.
676 // This is to avoid emitting the same note multiple times on the same
677 // declaration, and also provide a deterministic order for the messages.
678 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
679 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
680 ThrowingDecls.end()};
681 sort(SortedDecls, [](const Decl *A, const Decl *B) {
682 return A->getEndLoc() < B->getEndLoc();
683 });
684 for (const auto *D : SortedDecls) {
685 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
686 }
687 return ThrowingDecls.empty();
688 }
689
ActOnCoroutineBodyStart(Scope * SC,SourceLocation KWLoc,StringRef Keyword)690 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
691 StringRef Keyword) {
692 if (!checkCoroutineContext(*this, KWLoc, Keyword))
693 return false;
694 auto *ScopeInfo = getCurFunction();
695 assert(ScopeInfo->CoroutinePromise);
696
697 // If we have existing coroutine statements then we have already built
698 // the initial and final suspend points.
699 if (!ScopeInfo->NeedsCoroutineSuspends)
700 return true;
701
702 ScopeInfo->setNeedsCoroutineSuspends(false);
703
704 auto *Fn = cast<FunctionDecl>(CurContext);
705 SourceLocation Loc = Fn->getLocation();
706 // Build the initial suspend point
707 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
708 ExprResult Operand =
709 buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, None);
710 if (Operand.isInvalid())
711 return StmtError();
712 ExprResult Suspend =
713 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
714 if (Suspend.isInvalid())
715 return StmtError();
716 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
717 /*IsImplicit*/ true);
718 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
719 if (Suspend.isInvalid()) {
720 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
721 << ((Name == "initial_suspend") ? 0 : 1);
722 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
723 return StmtError();
724 }
725 return cast<Stmt>(Suspend.get());
726 };
727
728 StmtResult InitSuspend = buildSuspends("initial_suspend");
729 if (InitSuspend.isInvalid())
730 return true;
731
732 StmtResult FinalSuspend = buildSuspends("final_suspend");
733 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
734 return true;
735
736 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
737
738 return true;
739 }
740
741 // Recursively walks up the scope hierarchy until either a 'catch' or a function
742 // scope is found, whichever comes first.
isWithinCatchScope(Scope * S)743 static bool isWithinCatchScope(Scope *S) {
744 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
745 // lambdas that use 'co_await' are allowed. The loop below ends when a
746 // function scope is found in order to ensure the following behavior:
747 //
748 // void foo() { // <- function scope
749 // try { //
750 // co_await x; // <- 'co_await' is OK within a function scope
751 // } catch { // <- catch scope
752 // co_await x; // <- 'co_await' is not OK within a catch scope
753 // []() { // <- function scope
754 // co_await x; // <- 'co_await' is OK within a function scope
755 // }();
756 // }
757 // }
758 while (S && !S->isFunctionScope()) {
759 if (S->isCatchScope())
760 return true;
761 S = S->getParent();
762 }
763 return false;
764 }
765
766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
767 // a *potentially evaluated* expression within the compound-statement of a
768 // function-body *outside of a handler* [...] A context within a function
769 // where an await-expression can appear is called a suspension context of the
770 // function."
checkSuspensionContext(Sema & S,SourceLocation Loc,StringRef Keyword)771 static void checkSuspensionContext(Sema &S, SourceLocation Loc,
772 StringRef Keyword) {
773 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
774 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
775 // \c sizeof.
776 if (S.isUnevaluatedContext())
777 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
778
779 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
780 if (isWithinCatchScope(S.getCurScope()))
781 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
782 }
783
ActOnCoawaitExpr(Scope * S,SourceLocation Loc,Expr * E)784 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
785 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
786 CorrectDelayedTyposInExpr(E);
787 return ExprError();
788 }
789
790 checkSuspensionContext(*this, Loc, "co_await");
791
792 if (E->hasPlaceholderType()) {
793 ExprResult R = CheckPlaceholderExpr(E);
794 if (R.isInvalid()) return ExprError();
795 E = R.get();
796 }
797 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
798 if (Lookup.isInvalid())
799 return ExprError();
800 return BuildUnresolvedCoawaitExpr(Loc, E,
801 cast<UnresolvedLookupExpr>(Lookup.get()));
802 }
803
BuildOperatorCoawaitLookupExpr(Scope * S,SourceLocation Loc)804 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
805 DeclarationName OpName =
806 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
807 LookupResult Operators(*this, OpName, SourceLocation(),
808 Sema::LookupOperatorName);
809 LookupName(Operators, S);
810
811 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
812 const auto &Functions = Operators.asUnresolvedSet();
813 bool IsOverloaded =
814 Functions.size() > 1 ||
815 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
816 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
817 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
818 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
819 Functions.begin(), Functions.end());
820 assert(CoawaitOp);
821 return CoawaitOp;
822 }
823
824 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
825 // DependentCoawaitExpr if needed.
BuildUnresolvedCoawaitExpr(SourceLocation Loc,Expr * Operand,UnresolvedLookupExpr * Lookup)826 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
827 UnresolvedLookupExpr *Lookup) {
828 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
829 if (!FSI)
830 return ExprError();
831
832 if (Operand->hasPlaceholderType()) {
833 ExprResult R = CheckPlaceholderExpr(Operand);
834 if (R.isInvalid())
835 return ExprError();
836 Operand = R.get();
837 }
838
839 auto *Promise = FSI->CoroutinePromise;
840 if (Promise->getType()->isDependentType()) {
841 Expr *Res = new (Context)
842 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
843 return Res;
844 }
845
846 auto *RD = Promise->getType()->getAsCXXRecordDecl();
847 auto *Transformed = Operand;
848 if (lookupMember(*this, "await_transform", RD, Loc)) {
849 ExprResult R =
850 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
851 if (R.isInvalid()) {
852 Diag(Loc,
853 diag::note_coroutine_promise_implicit_await_transform_required_here)
854 << Operand->getSourceRange();
855 return ExprError();
856 }
857 Transformed = R.get();
858 }
859 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
860 if (Awaiter.isInvalid())
861 return ExprError();
862
863 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
864 }
865
BuildResolvedCoawaitExpr(SourceLocation Loc,Expr * Operand,Expr * Awaiter,bool IsImplicit)866 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
867 Expr *Awaiter, bool IsImplicit) {
868 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
869 if (!Coroutine)
870 return ExprError();
871
872 if (Awaiter->hasPlaceholderType()) {
873 ExprResult R = CheckPlaceholderExpr(Awaiter);
874 if (R.isInvalid()) return ExprError();
875 Awaiter = R.get();
876 }
877
878 if (Awaiter->getType()->isDependentType()) {
879 Expr *Res = new (Context)
880 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
881 return Res;
882 }
883
884 // If the expression is a temporary, materialize it as an lvalue so that we
885 // can use it multiple times.
886 if (Awaiter->isPRValue())
887 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
888
889 // The location of the `co_await` token cannot be used when constructing
890 // the member call expressions since it's before the location of `Expr`, which
891 // is used as the start of the member call expression.
892 SourceLocation CallLoc = Awaiter->getExprLoc();
893
894 // Build the await_ready, await_suspend, await_resume calls.
895 ReadySuspendResumeResult RSS =
896 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
897 if (RSS.IsInvalid)
898 return ExprError();
899
900 Expr *Res = new (Context)
901 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
902 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
903
904 return Res;
905 }
906
ActOnCoyieldExpr(Scope * S,SourceLocation Loc,Expr * E)907 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
908 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
909 CorrectDelayedTyposInExpr(E);
910 return ExprError();
911 }
912
913 checkSuspensionContext(*this, Loc, "co_yield");
914
915 // Build yield_value call.
916 ExprResult Awaitable = buildPromiseCall(
917 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
918 if (Awaitable.isInvalid())
919 return ExprError();
920
921 // Build 'operator co_await' call.
922 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
923 if (Awaitable.isInvalid())
924 return ExprError();
925
926 return BuildCoyieldExpr(Loc, Awaitable.get());
927 }
BuildCoyieldExpr(SourceLocation Loc,Expr * E)928 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
929 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
930 if (!Coroutine)
931 return ExprError();
932
933 if (E->hasPlaceholderType()) {
934 ExprResult R = CheckPlaceholderExpr(E);
935 if (R.isInvalid()) return ExprError();
936 E = R.get();
937 }
938
939 Expr *Operand = E;
940
941 if (E->getType()->isDependentType()) {
942 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
943 return Res;
944 }
945
946 // If the expression is a temporary, materialize it as an lvalue so that we
947 // can use it multiple times.
948 if (E->isPRValue())
949 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
950
951 // Build the await_ready, await_suspend, await_resume calls.
952 ReadySuspendResumeResult RSS = buildCoawaitCalls(
953 *this, Coroutine->CoroutinePromise, Loc, E);
954 if (RSS.IsInvalid)
955 return ExprError();
956
957 Expr *Res =
958 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
959 RSS.Results[2], RSS.OpaqueValue);
960
961 return Res;
962 }
963
ActOnCoreturnStmt(Scope * S,SourceLocation Loc,Expr * E)964 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
965 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
966 CorrectDelayedTyposInExpr(E);
967 return StmtError();
968 }
969 return BuildCoreturnStmt(Loc, E);
970 }
971
BuildCoreturnStmt(SourceLocation Loc,Expr * E,bool IsImplicit)972 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
973 bool IsImplicit) {
974 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
975 if (!FSI)
976 return StmtError();
977
978 if (E && E->hasPlaceholderType() &&
979 !E->hasPlaceholderType(BuiltinType::Overload)) {
980 ExprResult R = CheckPlaceholderExpr(E);
981 if (R.isInvalid()) return StmtError();
982 E = R.get();
983 }
984
985 VarDecl *Promise = FSI->CoroutinePromise;
986 ExprResult PC;
987 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
988 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
989 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
990 } else {
991 E = MakeFullDiscardedValueExpr(E).get();
992 PC = buildPromiseCall(*this, Promise, Loc, "return_void", None);
993 }
994 if (PC.isInvalid())
995 return StmtError();
996
997 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
998
999 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1000 return Res;
1001 }
1002
1003 /// Look up the std::nothrow object.
buildStdNoThrowDeclRef(Sema & S,SourceLocation Loc)1004 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1005 NamespaceDecl *Std = S.getStdNamespace();
1006 assert(Std && "Should already be diagnosed");
1007
1008 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1009 Sema::LookupOrdinaryName);
1010 if (!S.LookupQualifiedName(Result, Std)) {
1011 // <coroutine> is not requred to include <new>, so we couldn't omit
1012 // the check here.
1013 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1014 return nullptr;
1015 }
1016
1017 auto *VD = Result.getAsSingle<VarDecl>();
1018 if (!VD) {
1019 Result.suppressDiagnostics();
1020 // We found something weird. Complain about the first thing we found.
1021 NamedDecl *Found = *Result.begin();
1022 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1023 return nullptr;
1024 }
1025
1026 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1027 if (DR.isInvalid())
1028 return nullptr;
1029
1030 return DR.get();
1031 }
1032
1033 // Find an appropriate delete for the promise.
findDeleteForPromise(Sema & S,SourceLocation Loc,QualType PromiseType)1034 static FunctionDecl *findDeleteForPromise(Sema &S, SourceLocation Loc,
1035 QualType PromiseType) {
1036 FunctionDecl *OperatorDelete = nullptr;
1037
1038 DeclarationName DeleteName =
1039 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1040
1041 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1042 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1043
1044 // [dcl.fct.def.coroutine]p12
1045 // The deallocation function's name is looked up by searching for it in the
1046 // scope of the promise type. If nothing is found, a search is performed in
1047 // the global scope.
1048 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete))
1049 return nullptr;
1050
1051 // FIXME: We didn't implement following selection:
1052 // [dcl.fct.def.coroutine]p12
1053 // If both a usual deallocation function with only a pointer parameter and a
1054 // usual deallocation function with both a pointer parameter and a size
1055 // parameter are found, then the selected deallocation function shall be the
1056 // one with two parameters. Otherwise, the selected deallocation function
1057 // shall be the function with one parameter.
1058
1059 if (!OperatorDelete) {
1060 // Look for a global declaration.
1061 const bool CanProvideSize = S.isCompleteType(Loc, PromiseType);
1062 const bool Overaligned = false;
1063 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1064 Overaligned, DeleteName);
1065 }
1066 S.MarkFunctionReferenced(Loc, OperatorDelete);
1067 return OperatorDelete;
1068 }
1069
1070
CheckCompletedCoroutineBody(FunctionDecl * FD,Stmt * & Body)1071 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1072 FunctionScopeInfo *Fn = getCurFunction();
1073 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1074 if (!Body) {
1075 assert(FD->isInvalidDecl() &&
1076 "a null body is only allowed for invalid declarations");
1077 return;
1078 }
1079 // We have a function that uses coroutine keywords, but we failed to build
1080 // the promise type.
1081 if (!Fn->CoroutinePromise)
1082 return FD->setInvalidDecl();
1083
1084 if (isa<CoroutineBodyStmt>(Body)) {
1085 // Nothing todo. the body is already a transformed coroutine body statement.
1086 return;
1087 }
1088
1089 // The always_inline attribute doesn't reliably apply to a coroutine,
1090 // because the coroutine will be split into pieces and some pieces
1091 // might be called indirectly, as in a virtual call. Even the ramp
1092 // function cannot be inlined at -O0, due to pipeline ordering
1093 // problems (see https://llvm.org/PR53413). Tell the user about it.
1094 if (FD->hasAttr<AlwaysInlineAttr>())
1095 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1096
1097 // [stmt.return.coroutine]p1:
1098 // A coroutine shall not enclose a return statement ([stmt.return]).
1099 if (Fn->FirstReturnLoc.isValid()) {
1100 assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1101 "first coroutine location not set");
1102 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1103 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1104 << Fn->getFirstCoroutineStmtKeyword();
1105 }
1106 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1107 if (Builder.isInvalid() || !Builder.buildStatements())
1108 return FD->setInvalidDecl();
1109
1110 // Build body for the coroutine wrapper statement.
1111 Body = CoroutineBodyStmt::Create(Context, Builder);
1112 }
1113
CoroutineStmtBuilder(Sema & S,FunctionDecl & FD,sema::FunctionScopeInfo & Fn,Stmt * Body)1114 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1115 sema::FunctionScopeInfo &Fn,
1116 Stmt *Body)
1117 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1118 IsPromiseDependentType(
1119 !Fn.CoroutinePromise ||
1120 Fn.CoroutinePromise->getType()->isDependentType()) {
1121 this->Body = Body;
1122
1123 for (auto KV : Fn.CoroutineParameterMoves)
1124 this->ParamMovesVector.push_back(KV.second);
1125 this->ParamMoves = this->ParamMovesVector;
1126
1127 if (!IsPromiseDependentType) {
1128 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1129 assert(PromiseRecordDecl && "Type should have already been checked");
1130 }
1131 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1132 }
1133
buildStatements()1134 bool CoroutineStmtBuilder::buildStatements() {
1135 assert(this->IsValid && "coroutine already invalid");
1136 this->IsValid = makeReturnObject();
1137 if (this->IsValid && !IsPromiseDependentType)
1138 buildDependentStatements();
1139 return this->IsValid;
1140 }
1141
buildDependentStatements()1142 bool CoroutineStmtBuilder::buildDependentStatements() {
1143 assert(this->IsValid && "coroutine already invalid");
1144 assert(!this->IsPromiseDependentType &&
1145 "coroutine cannot have a dependent promise type");
1146 this->IsValid = makeOnException() && makeOnFallthrough() &&
1147 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1148 makeNewAndDeleteExpr();
1149 return this->IsValid;
1150 }
1151
makePromiseStmt()1152 bool CoroutineStmtBuilder::makePromiseStmt() {
1153 // Form a declaration statement for the promise declaration, so that AST
1154 // visitors can more easily find it.
1155 StmtResult PromiseStmt =
1156 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1157 if (PromiseStmt.isInvalid())
1158 return false;
1159
1160 this->Promise = PromiseStmt.get();
1161 return true;
1162 }
1163
makeInitialAndFinalSuspend()1164 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1165 if (Fn.hasInvalidCoroutineSuspends())
1166 return false;
1167 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1168 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1169 return true;
1170 }
1171
diagReturnOnAllocFailure(Sema & S,Expr * E,CXXRecordDecl * PromiseRecordDecl,FunctionScopeInfo & Fn)1172 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1173 CXXRecordDecl *PromiseRecordDecl,
1174 FunctionScopeInfo &Fn) {
1175 auto Loc = E->getExprLoc();
1176 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1177 auto *Decl = DeclRef->getDecl();
1178 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1179 if (Method->isStatic())
1180 return true;
1181 else
1182 Loc = Decl->getLocation();
1183 }
1184 }
1185
1186 S.Diag(
1187 Loc,
1188 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1189 << PromiseRecordDecl;
1190 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1191 << Fn.getFirstCoroutineStmtKeyword();
1192 return false;
1193 }
1194
makeReturnOnAllocFailure()1195 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1196 assert(!IsPromiseDependentType &&
1197 "cannot make statement while the promise type is dependent");
1198
1199 // [dcl.fct.def.coroutine]p10
1200 // If a search for the name get_return_object_on_allocation_failure in
1201 // the scope of the promise type ([class.member.lookup]) finds any
1202 // declarations, then the result of a call to an allocation function used to
1203 // obtain storage for the coroutine state is assumed to return nullptr if it
1204 // fails to obtain storage, ... If the allocation function returns nullptr,
1205 // ... and the return value is obtained by a call to
1206 // T::get_return_object_on_allocation_failure(), where T is the
1207 // promise type.
1208 DeclarationName DN =
1209 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1210 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1211 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1212 return true;
1213
1214 CXXScopeSpec SS;
1215 ExprResult DeclNameExpr =
1216 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1217 if (DeclNameExpr.isInvalid())
1218 return false;
1219
1220 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1221 return false;
1222
1223 ExprResult ReturnObjectOnAllocationFailure =
1224 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1225 if (ReturnObjectOnAllocationFailure.isInvalid())
1226 return false;
1227
1228 StmtResult ReturnStmt =
1229 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1230 if (ReturnStmt.isInvalid()) {
1231 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1232 << DN;
1233 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1234 << Fn.getFirstCoroutineStmtKeyword();
1235 return false;
1236 }
1237
1238 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1239 return true;
1240 }
1241
1242 // Collect placement arguments for allocation function of coroutine FD.
1243 // Return true if we collect placement arguments succesfully. Return false,
1244 // otherwise.
collectPlacementArgs(Sema & S,FunctionDecl & FD,SourceLocation Loc,SmallVectorImpl<Expr * > & PlacementArgs)1245 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1246 SmallVectorImpl<Expr *> &PlacementArgs) {
1247 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1248 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1249 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1250 if (ThisExpr.isInvalid())
1251 return false;
1252 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1253 if (ThisExpr.isInvalid())
1254 return false;
1255 PlacementArgs.push_back(ThisExpr.get());
1256 }
1257 }
1258
1259 for (auto *PD : FD.parameters()) {
1260 if (PD->getType()->isDependentType())
1261 continue;
1262
1263 // Build a reference to the parameter.
1264 auto PDLoc = PD->getLocation();
1265 ExprResult PDRefExpr =
1266 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1267 ExprValueKind::VK_LValue, PDLoc);
1268 if (PDRefExpr.isInvalid())
1269 return false;
1270
1271 PlacementArgs.push_back(PDRefExpr.get());
1272 }
1273
1274 return true;
1275 }
1276
makeNewAndDeleteExpr()1277 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1278 // Form and check allocation and deallocation calls.
1279 assert(!IsPromiseDependentType &&
1280 "cannot make statement while the promise type is dependent");
1281 QualType PromiseType = Fn.CoroutinePromise->getType();
1282
1283 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1284 return false;
1285
1286 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1287
1288 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1289 // parameter list composed of the requested size of the coroutine state being
1290 // allocated, followed by the coroutine function's arguments. If a matching
1291 // allocation function exists, use it. Otherwise, use an allocation function
1292 // that just takes the requested size.
1293 //
1294 // [dcl.fct.def.coroutine]p9
1295 // An implementation may need to allocate additional storage for a
1296 // coroutine.
1297 // This storage is known as the coroutine state and is obtained by calling a
1298 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1299 // allocation function's name is looked up by searching for it in the scope of
1300 // the promise type.
1301 // - If any declarations are found, overload resolution is performed on a
1302 // function call created by assembling an argument list. The first argument is
1303 // the amount of space requested, and has type std::size_t. The
1304 // lvalues p1 ... pn are the succeeding arguments.
1305 //
1306 // ...where "p1 ... pn" are defined earlier as:
1307 //
1308 // [dcl.fct.def.coroutine]p3
1309 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1310 // Pn>`
1311 // , where R is the return type of the function, and `P1, ..., Pn` are the
1312 // sequence of types of the non-object function parameters, preceded by the
1313 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1314 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1315 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1316 // the i-th non-object function parameter for a non-static member function,
1317 // and p_i denotes the i-th function parameter otherwise. For a non-static
1318 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1319 // lvalue that denotes the parameter copy corresponding to p_i.
1320
1321 FunctionDecl *OperatorNew = nullptr;
1322 FunctionDecl *OperatorDelete = nullptr;
1323 FunctionDecl *UnusedResult = nullptr;
1324 bool PassAlignment = false;
1325 SmallVector<Expr *, 1> PlacementArgs;
1326
1327 bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1328 DeclarationName NewName =
1329 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1330 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1331
1332 if (PromiseType->isRecordType())
1333 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1334
1335 return !R.empty() && !R.isAmbiguous();
1336 }();
1337
1338 auto LookupAllocationFunction = [&]() {
1339 // [dcl.fct.def.coroutine]p9
1340 // The allocation function's name is looked up by searching for it in the
1341 // scope of the promise type.
1342 // - If any declarations are found, ...
1343 // - If no declarations are found in the scope of the promise type, a search
1344 // is performed in the global scope.
1345 Sema::AllocationFunctionScope NewScope =
1346 PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1347 S.FindAllocationFunctions(Loc, SourceRange(),
1348 NewScope,
1349 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1350 /*isArray*/ false, PassAlignment, PlacementArgs,
1351 OperatorNew, UnusedResult, /*Diagnose*/ false);
1352 };
1353
1354 // We don't expect to call to global operator new with (size, p0, …, pn).
1355 // So if we choose to lookup the allocation function in global scope, we
1356 // shouldn't lookup placement arguments.
1357 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1358 return false;
1359
1360 LookupAllocationFunction();
1361
1362 // [dcl.fct.def.coroutine]p9
1363 // If no viable function is found ([over.match.viable]), overload resolution
1364 // is performed again on a function call created by passing just the amount of
1365 // space required as an argument of type std::size_t.
1366 if (!OperatorNew && !PlacementArgs.empty() && PromiseContainsNew) {
1367 PlacementArgs.clear();
1368 LookupAllocationFunction();
1369 }
1370
1371 bool IsGlobalOverload =
1372 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1373 // If we didn't find a class-local new declaration and non-throwing new
1374 // was is required then we need to lookup the non-throwing global operator
1375 // instead.
1376 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1377 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1378 if (!StdNoThrow)
1379 return false;
1380 PlacementArgs = {StdNoThrow};
1381 OperatorNew = nullptr;
1382 S.FindAllocationFunctions(Loc, SourceRange(), /*NewScope*/ Sema::AFS_Both,
1383 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1384 /*isArray*/ false, PassAlignment, PlacementArgs,
1385 OperatorNew, UnusedResult);
1386 }
1387
1388 if (!OperatorNew) {
1389 if (PromiseContainsNew)
1390 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1391
1392 return false;
1393 }
1394
1395 if (RequiresNoThrowAlloc) {
1396 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1397 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1398 S.Diag(OperatorNew->getLocation(),
1399 diag::err_coroutine_promise_new_requires_nothrow)
1400 << OperatorNew;
1401 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1402 << OperatorNew;
1403 return false;
1404 }
1405 }
1406
1407 if ((OperatorDelete = findDeleteForPromise(S, Loc, PromiseType)) == nullptr) {
1408 // FIXME: We should add an error here. According to:
1409 // [dcl.fct.def.coroutine]p12
1410 // If no usual deallocation function is found, the program is ill-formed.
1411 return false;
1412 }
1413
1414 Expr *FramePtr =
1415 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1416
1417 Expr *FrameSize =
1418 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1419
1420 // Make new call.
1421
1422 ExprResult NewRef =
1423 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1424 if (NewRef.isInvalid())
1425 return false;
1426
1427 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1428 llvm::append_range(NewArgs, PlacementArgs);
1429
1430 ExprResult NewExpr =
1431 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1432 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1433 if (NewExpr.isInvalid())
1434 return false;
1435
1436 // Make delete call.
1437
1438 QualType OpDeleteQualType = OperatorDelete->getType();
1439
1440 ExprResult DeleteRef =
1441 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1442 if (DeleteRef.isInvalid())
1443 return false;
1444
1445 Expr *CoroFree =
1446 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1447
1448 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1449
1450 // [dcl.fct.def.coroutine]p12
1451 // The selected deallocation function shall be called with the address of
1452 // the block of storage to be reclaimed as its first argument. If a
1453 // deallocation function with a parameter of type std::size_t is
1454 // used, the size of the block is passed as the corresponding argument.
1455 const auto *OpDeleteType =
1456 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1457 if (OpDeleteType->getNumParams() > 1)
1458 DeleteArgs.push_back(FrameSize);
1459
1460 ExprResult DeleteExpr =
1461 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1462 DeleteExpr =
1463 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1464 if (DeleteExpr.isInvalid())
1465 return false;
1466
1467 this->Allocate = NewExpr.get();
1468 this->Deallocate = DeleteExpr.get();
1469
1470 return true;
1471 }
1472
makeOnFallthrough()1473 bool CoroutineStmtBuilder::makeOnFallthrough() {
1474 assert(!IsPromiseDependentType &&
1475 "cannot make statement while the promise type is dependent");
1476
1477 // [dcl.fct.def.coroutine]/p6
1478 // If searches for the names return_void and return_value in the scope of
1479 // the promise type each find any declarations, the program is ill-formed.
1480 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1481 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1482 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1483 // end note]
1484 bool HasRVoid, HasRValue;
1485 LookupResult LRVoid =
1486 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1487 LookupResult LRValue =
1488 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1489
1490 StmtResult Fallthrough;
1491 if (HasRVoid && HasRValue) {
1492 // FIXME Improve this diagnostic
1493 S.Diag(FD.getLocation(),
1494 diag::err_coroutine_promise_incompatible_return_functions)
1495 << PromiseRecordDecl;
1496 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1497 diag::note_member_first_declared_here)
1498 << LRVoid.getLookupName();
1499 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1500 diag::note_member_first_declared_here)
1501 << LRValue.getLookupName();
1502 return false;
1503 } else if (!HasRVoid && !HasRValue) {
1504 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1505 // think the coroutine has defined a return_value method. So it might emit
1506 // **false** positive warning. e.g.,
1507 //
1508 // promise_without_return_func foo() {
1509 // co_await something();
1510 // }
1511 //
1512 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1513 // co_return statements, which isn't correct.
1514 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1515 if (Fallthrough.isInvalid())
1516 return false;
1517 } else if (HasRVoid) {
1518 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1519 /*IsImplicit*/false);
1520 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1521 if (Fallthrough.isInvalid())
1522 return false;
1523 }
1524
1525 this->OnFallthrough = Fallthrough.get();
1526 return true;
1527 }
1528
makeOnException()1529 bool CoroutineStmtBuilder::makeOnException() {
1530 // Try to form 'p.unhandled_exception();'
1531 assert(!IsPromiseDependentType &&
1532 "cannot make statement while the promise type is dependent");
1533
1534 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1535
1536 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1537 auto DiagID =
1538 RequireUnhandledException
1539 ? diag::err_coroutine_promise_unhandled_exception_required
1540 : diag::
1541 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1542 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1543 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1544 << PromiseRecordDecl;
1545 return !RequireUnhandledException;
1546 }
1547
1548 // If exceptions are disabled, don't try to build OnException.
1549 if (!S.getLangOpts().CXXExceptions)
1550 return true;
1551
1552 ExprResult UnhandledException = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1553 "unhandled_exception", None);
1554 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1555 /*DiscardedValue*/ false);
1556 if (UnhandledException.isInvalid())
1557 return false;
1558
1559 // Since the body of the coroutine will be wrapped in try-catch, it will
1560 // be incompatible with SEH __try if present in a function.
1561 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1562 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1563 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1564 << Fn.getFirstCoroutineStmtKeyword();
1565 return false;
1566 }
1567
1568 this->OnException = UnhandledException.get();
1569 return true;
1570 }
1571
makeReturnObject()1572 bool CoroutineStmtBuilder::makeReturnObject() {
1573 // [dcl.fct.def.coroutine]p7
1574 // The expression promise.get_return_object() is used to initialize the
1575 // returned reference or prvalue result object of a call to a coroutine.
1576 ExprResult ReturnObject =
1577 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", None);
1578 if (ReturnObject.isInvalid())
1579 return false;
1580
1581 this->ReturnValue = ReturnObject.get();
1582 return true;
1583 }
1584
noteMemberDeclaredHere(Sema & S,Expr * E,FunctionScopeInfo & Fn)1585 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1586 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1587 auto *MethodDecl = MbrRef->getMethodDecl();
1588 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1589 << MethodDecl;
1590 }
1591 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1592 << Fn.getFirstCoroutineStmtKeyword();
1593 }
1594
makeGroDeclAndReturnStmt()1595 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1596 assert(!IsPromiseDependentType &&
1597 "cannot make statement while the promise type is dependent");
1598 assert(this->ReturnValue && "ReturnValue must be already formed");
1599
1600 QualType const GroType = this->ReturnValue->getType();
1601 assert(!GroType->isDependentType() &&
1602 "get_return_object type must no longer be dependent");
1603
1604 QualType const FnRetType = FD.getReturnType();
1605 assert(!FnRetType->isDependentType() &&
1606 "get_return_object type must no longer be dependent");
1607
1608 if (FnRetType->isVoidType()) {
1609 ExprResult Res =
1610 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1611 if (Res.isInvalid())
1612 return false;
1613
1614 return true;
1615 }
1616
1617 if (GroType->isVoidType()) {
1618 // Trigger a nice error message.
1619 InitializedEntity Entity =
1620 InitializedEntity::InitializeResult(Loc, FnRetType);
1621 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1622 noteMemberDeclaredHere(S, ReturnValue, Fn);
1623 return false;
1624 }
1625
1626 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1627 if (ReturnStmt.isInvalid()) {
1628 noteMemberDeclaredHere(S, ReturnValue, Fn);
1629 return false;
1630 }
1631
1632 this->ReturnStmt = ReturnStmt.get();
1633 return true;
1634 }
1635
1636 // Create a static_cast\<T&&>(expr).
castForMoving(Sema & S,Expr * E,QualType T=QualType ())1637 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1638 if (T.isNull())
1639 T = E->getType();
1640 QualType TargetType = S.BuildReferenceType(
1641 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1642 SourceLocation ExprLoc = E->getBeginLoc();
1643 TypeSourceInfo *TargetLoc =
1644 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1645
1646 return S
1647 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1648 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1649 .get();
1650 }
1651
1652 /// Build a variable declaration for move parameter.
buildVarDecl(Sema & S,SourceLocation Loc,QualType Type,IdentifierInfo * II)1653 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1654 IdentifierInfo *II) {
1655 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1656 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1657 TInfo, SC_None);
1658 Decl->setImplicit();
1659 return Decl;
1660 }
1661
1662 // Build statements that move coroutine function parameters to the coroutine
1663 // frame, and store them on the function scope info.
buildCoroutineParameterMoves(SourceLocation Loc)1664 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1665 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1666 auto *FD = cast<FunctionDecl>(CurContext);
1667
1668 auto *ScopeInfo = getCurFunction();
1669 if (!ScopeInfo->CoroutineParameterMoves.empty())
1670 return false;
1671
1672 // [dcl.fct.def.coroutine]p13
1673 // When a coroutine is invoked, after initializing its parameters
1674 // ([expr.call]), a copy is created for each coroutine parameter. For a
1675 // parameter of type cv T, the copy is a variable of type cv T with
1676 // automatic storage duration that is direct-initialized from an xvalue of
1677 // type T referring to the parameter.
1678 for (auto *PD : FD->parameters()) {
1679 if (PD->getType()->isDependentType())
1680 continue;
1681
1682 ExprResult PDRefExpr =
1683 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1684 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1685 if (PDRefExpr.isInvalid())
1686 return false;
1687
1688 Expr *CExpr = nullptr;
1689 if (PD->getType()->getAsCXXRecordDecl() ||
1690 PD->getType()->isRValueReferenceType())
1691 CExpr = castForMoving(*this, PDRefExpr.get());
1692 else
1693 CExpr = PDRefExpr.get();
1694 // [dcl.fct.def.coroutine]p13
1695 // The initialization and destruction of each parameter copy occurs in the
1696 // context of the called coroutine.
1697 auto D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1698 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1699
1700 // Convert decl to a statement.
1701 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1702 if (Stmt.isInvalid())
1703 return false;
1704
1705 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1706 }
1707 return true;
1708 }
1709
BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args)1710 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1711 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1712 if (!Res)
1713 return StmtError();
1714 return Res;
1715 }
1716
lookupCoroutineTraits(SourceLocation KwLoc,SourceLocation FuncLoc,NamespaceDecl * & Namespace)1717 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1718 SourceLocation FuncLoc,
1719 NamespaceDecl *&Namespace) {
1720 if (!StdCoroutineTraitsCache) {
1721 // Because coroutines moved from std::experimental in the TS to std in
1722 // C++20, we look in both places to give users time to transition their
1723 // TS-specific code to C++20. Diagnostics are given when the TS usage is
1724 // discovered.
1725 // TODO: Become stricter when <experimental/coroutine> is removed.
1726
1727 auto const &TraitIdent = PP.getIdentifierTable().get("coroutine_traits");
1728
1729 NamespaceDecl *StdSpace = getStdNamespace();
1730 LookupResult ResStd(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1731 bool InStd = StdSpace && LookupQualifiedName(ResStd, StdSpace);
1732
1733 NamespaceDecl *ExpSpace = lookupStdExperimentalNamespace();
1734 LookupResult ResExp(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1735 bool InExp = ExpSpace && LookupQualifiedName(ResExp, ExpSpace);
1736
1737 if (!InStd && !InExp) {
1738 // The goggles, they found nothing!
1739 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1740 << "std::coroutine_traits";
1741 return nullptr;
1742 }
1743
1744 // Prefer ::std to std::experimental.
1745 auto &Result = InStd ? ResStd : ResExp;
1746 CoroTraitsNamespaceCache = InStd ? StdSpace : ExpSpace;
1747
1748 // coroutine_traits is required to be a class template.
1749 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1750 if (!StdCoroutineTraitsCache) {
1751 Result.suppressDiagnostics();
1752 NamedDecl *Found = *Result.begin();
1753 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1754 return nullptr;
1755 }
1756
1757 if (InExp) {
1758 // Found in std::experimental
1759 Diag(KwLoc, diag::warn_deprecated_coroutine_namespace)
1760 << "coroutine_traits";
1761 ResExp.suppressDiagnostics();
1762 auto *Found = *ResExp.begin();
1763 Diag(Found->getLocation(), diag::note_entity_declared_at) << Found;
1764
1765 if (InStd &&
1766 StdCoroutineTraitsCache != ResExp.getAsSingle<ClassTemplateDecl>()) {
1767 // Also found something different in std
1768 Diag(KwLoc,
1769 diag::err_mixed_use_std_and_experimental_namespace_for_coroutine);
1770 Diag(StdCoroutineTraitsCache->getLocation(),
1771 diag::note_entity_declared_at)
1772 << StdCoroutineTraitsCache;
1773
1774 return nullptr;
1775 }
1776 }
1777 }
1778 Namespace = CoroTraitsNamespaceCache;
1779 return StdCoroutineTraitsCache;
1780 }
1781