1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/Stmt.h" 34 #include "clang/AST/TemplateBase.h" 35 #include "clang/AST/Type.h" 36 #include "clang/AST/TypeLoc.h" 37 #include "clang/AST/UnresolvedSet.h" 38 #include "clang/Basic/AddressSpaces.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/OpenCLOptions.h" 45 #include "clang/Basic/OperatorKinds.h" 46 #include "clang/Basic/PartialDiagnostic.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/SyncScope.h" 51 #include "clang/Basic/TargetBuiltins.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/TypeTraits.h" 55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 56 #include "clang/Sema/Initialization.h" 57 #include "clang/Sema/Lookup.h" 58 #include "clang/Sema/Ownership.h" 59 #include "clang/Sema/Scope.h" 60 #include "clang/Sema/ScopeInfo.h" 61 #include "clang/Sema/Sema.h" 62 #include "clang/Sema/SemaInternal.h" 63 #include "llvm/ADT/APFloat.h" 64 #include "llvm/ADT/APInt.h" 65 #include "llvm/ADT/APSInt.h" 66 #include "llvm/ADT/ArrayRef.h" 67 #include "llvm/ADT/DenseMap.h" 68 #include "llvm/ADT/FoldingSet.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallBitVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallString.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/StringSwitch.h" 78 #include "llvm/ADT/Triple.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/ConvertUTF.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/Format.h" 85 #include "llvm/Support/Locale.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstddef> 91 #include <cstdint> 92 #include <functional> 93 #include <limits> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 98 using namespace clang; 99 using namespace sema; 100 101 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 102 unsigned ByteNo) const { 103 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 104 Context.getTargetInfo()); 105 } 106 107 /// Checks that a call expression's argument count is the desired number. 108 /// This is useful when doing custom type-checking. Returns true on error. 109 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 110 unsigned argCount = call->getNumArgs(); 111 if (argCount == desiredArgCount) return false; 112 113 if (argCount < desiredArgCount) 114 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 115 << 0 /*function call*/ << desiredArgCount << argCount 116 << call->getSourceRange(); 117 118 // Highlight all the excess arguments. 119 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 120 call->getArg(argCount - 1)->getEndLoc()); 121 122 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 123 << 0 /*function call*/ << desiredArgCount << argCount 124 << call->getArg(1)->getSourceRange(); 125 } 126 127 /// Check that the first argument to __builtin_annotation is an integer 128 /// and the second argument is a non-wide string literal. 129 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 130 if (checkArgCount(S, TheCall, 2)) 131 return true; 132 133 // First argument should be an integer. 134 Expr *ValArg = TheCall->getArg(0); 135 QualType Ty = ValArg->getType(); 136 if (!Ty->isIntegerType()) { 137 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 138 << ValArg->getSourceRange(); 139 return true; 140 } 141 142 // Second argument should be a constant string. 143 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 144 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 145 if (!Literal || !Literal->isAscii()) { 146 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 147 << StrArg->getSourceRange(); 148 return true; 149 } 150 151 TheCall->setType(Ty); 152 return false; 153 } 154 155 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 156 // We need at least one argument. 157 if (TheCall->getNumArgs() < 1) { 158 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 159 << 0 << 1 << TheCall->getNumArgs() 160 << TheCall->getCallee()->getSourceRange(); 161 return true; 162 } 163 164 // All arguments should be wide string literals. 165 for (Expr *Arg : TheCall->arguments()) { 166 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 167 if (!Literal || !Literal->isWide()) { 168 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 169 << Arg->getSourceRange(); 170 return true; 171 } 172 } 173 174 return false; 175 } 176 177 /// Check that the argument to __builtin_addressof is a glvalue, and set the 178 /// result type to the corresponding pointer type. 179 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 180 if (checkArgCount(S, TheCall, 1)) 181 return true; 182 183 ExprResult Arg(TheCall->getArg(0)); 184 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 185 if (ResultType.isNull()) 186 return true; 187 188 TheCall->setArg(0, Arg.get()); 189 TheCall->setType(ResultType); 190 return false; 191 } 192 193 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) { 194 if (checkArgCount(S, TheCall, 3)) 195 return true; 196 197 // First two arguments should be integers. 198 for (unsigned I = 0; I < 2; ++I) { 199 ExprResult Arg = TheCall->getArg(I); 200 QualType Ty = Arg.get()->getType(); 201 if (!Ty->isIntegerType()) { 202 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 203 << Ty << Arg.get()->getSourceRange(); 204 return true; 205 } 206 InitializedEntity Entity = InitializedEntity::InitializeParameter( 207 S.getASTContext(), Ty, /*consume*/ false); 208 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 209 if (Arg.isInvalid()) 210 return true; 211 TheCall->setArg(I, Arg.get()); 212 } 213 214 // Third argument should be a pointer to a non-const integer. 215 // IRGen correctly handles volatile, restrict, and address spaces, and 216 // the other qualifiers aren't possible. 217 { 218 ExprResult Arg = TheCall->getArg(2); 219 QualType Ty = Arg.get()->getType(); 220 const auto *PtrTy = Ty->getAs<PointerType>(); 221 if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() && 222 !PtrTy->getPointeeType().isConstQualified())) { 223 S.Diag(Arg.get()->getBeginLoc(), 224 diag::err_overflow_builtin_must_be_ptr_int) 225 << Ty << Arg.get()->getSourceRange(); 226 return true; 227 } 228 InitializedEntity Entity = InitializedEntity::InitializeParameter( 229 S.getASTContext(), Ty, /*consume*/ false); 230 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 231 if (Arg.isInvalid()) 232 return true; 233 TheCall->setArg(2, Arg.get()); 234 } 235 return false; 236 } 237 238 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 239 if (checkArgCount(S, BuiltinCall, 2)) 240 return true; 241 242 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 243 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 244 Expr *Call = BuiltinCall->getArg(0); 245 Expr *Chain = BuiltinCall->getArg(1); 246 247 if (Call->getStmtClass() != Stmt::CallExprClass) { 248 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 249 << Call->getSourceRange(); 250 return true; 251 } 252 253 auto CE = cast<CallExpr>(Call); 254 if (CE->getCallee()->getType()->isBlockPointerType()) { 255 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 256 << Call->getSourceRange(); 257 return true; 258 } 259 260 const Decl *TargetDecl = CE->getCalleeDecl(); 261 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 262 if (FD->getBuiltinID()) { 263 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 264 << Call->getSourceRange(); 265 return true; 266 } 267 268 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 269 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 270 << Call->getSourceRange(); 271 return true; 272 } 273 274 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 275 if (ChainResult.isInvalid()) 276 return true; 277 if (!ChainResult.get()->getType()->isPointerType()) { 278 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 279 << Chain->getSourceRange(); 280 return true; 281 } 282 283 QualType ReturnTy = CE->getCallReturnType(S.Context); 284 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 285 QualType BuiltinTy = S.Context.getFunctionType( 286 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 287 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 288 289 Builtin = 290 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 291 292 BuiltinCall->setType(CE->getType()); 293 BuiltinCall->setValueKind(CE->getValueKind()); 294 BuiltinCall->setObjectKind(CE->getObjectKind()); 295 BuiltinCall->setCallee(Builtin); 296 BuiltinCall->setArg(1, ChainResult.get()); 297 298 return false; 299 } 300 301 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 302 /// __builtin_*_chk function, then use the object size argument specified in the 303 /// source. Otherwise, infer the object size using __builtin_object_size. 304 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 305 CallExpr *TheCall) { 306 // FIXME: There are some more useful checks we could be doing here: 307 // - Analyze the format string of sprintf to see how much of buffer is used. 308 // - Evaluate strlen of strcpy arguments, use as object size. 309 310 if (TheCall->isValueDependent() || TheCall->isTypeDependent()) 311 return; 312 313 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 314 if (!BuiltinID) 315 return; 316 317 unsigned DiagID = 0; 318 bool IsChkVariant = false; 319 unsigned SizeIndex, ObjectIndex; 320 switch (BuiltinID) { 321 default: 322 return; 323 case Builtin::BI__builtin___memcpy_chk: 324 case Builtin::BI__builtin___memmove_chk: 325 case Builtin::BI__builtin___memset_chk: 326 case Builtin::BI__builtin___strlcat_chk: 327 case Builtin::BI__builtin___strlcpy_chk: 328 case Builtin::BI__builtin___strncat_chk: 329 case Builtin::BI__builtin___strncpy_chk: 330 case Builtin::BI__builtin___stpncpy_chk: 331 case Builtin::BI__builtin___memccpy_chk: { 332 DiagID = diag::warn_builtin_chk_overflow; 333 IsChkVariant = true; 334 SizeIndex = TheCall->getNumArgs() - 2; 335 ObjectIndex = TheCall->getNumArgs() - 1; 336 break; 337 } 338 339 case Builtin::BI__builtin___snprintf_chk: 340 case Builtin::BI__builtin___vsnprintf_chk: { 341 DiagID = diag::warn_builtin_chk_overflow; 342 IsChkVariant = true; 343 SizeIndex = 1; 344 ObjectIndex = 3; 345 break; 346 } 347 348 case Builtin::BIstrncat: 349 case Builtin::BI__builtin_strncat: 350 case Builtin::BIstrncpy: 351 case Builtin::BI__builtin_strncpy: 352 case Builtin::BIstpncpy: 353 case Builtin::BI__builtin_stpncpy: { 354 // Whether these functions overflow depends on the runtime strlen of the 355 // string, not just the buffer size, so emitting the "always overflow" 356 // diagnostic isn't quite right. We should still diagnose passing a buffer 357 // size larger than the destination buffer though; this is a runtime abort 358 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 359 DiagID = diag::warn_fortify_source_size_mismatch; 360 SizeIndex = TheCall->getNumArgs() - 1; 361 ObjectIndex = 0; 362 break; 363 } 364 365 case Builtin::BImemcpy: 366 case Builtin::BI__builtin_memcpy: 367 case Builtin::BImemmove: 368 case Builtin::BI__builtin_memmove: 369 case Builtin::BImemset: 370 case Builtin::BI__builtin_memset: { 371 DiagID = diag::warn_fortify_source_overflow; 372 SizeIndex = TheCall->getNumArgs() - 1; 373 ObjectIndex = 0; 374 break; 375 } 376 case Builtin::BIsnprintf: 377 case Builtin::BI__builtin_snprintf: 378 case Builtin::BIvsnprintf: 379 case Builtin::BI__builtin_vsnprintf: { 380 DiagID = diag::warn_fortify_source_size_mismatch; 381 SizeIndex = 1; 382 ObjectIndex = 0; 383 break; 384 } 385 } 386 387 llvm::APSInt ObjectSize; 388 // For __builtin___*_chk, the object size is explicitly provided by the caller 389 // (usually using __builtin_object_size). Use that value to check this call. 390 if (IsChkVariant) { 391 Expr::EvalResult Result; 392 Expr *SizeArg = TheCall->getArg(ObjectIndex); 393 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 394 return; 395 ObjectSize = Result.Val.getInt(); 396 397 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 398 } else { 399 // If the parameter has a pass_object_size attribute, then we should use its 400 // (potentially) more strict checking mode. Otherwise, conservatively assume 401 // type 0. 402 int BOSType = 0; 403 if (const auto *POS = 404 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 405 BOSType = POS->getType(); 406 407 Expr *ObjArg = TheCall->getArg(ObjectIndex); 408 uint64_t Result; 409 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 410 return; 411 // Get the object size in the target's size_t width. 412 const TargetInfo &TI = getASTContext().getTargetInfo(); 413 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 414 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 415 } 416 417 // Evaluate the number of bytes of the object that this call will use. 418 Expr::EvalResult Result; 419 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 420 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 421 return; 422 llvm::APSInt UsedSize = Result.Val.getInt(); 423 424 if (UsedSize.ule(ObjectSize)) 425 return; 426 427 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 428 // Skim off the details of whichever builtin was called to produce a better 429 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 430 if (IsChkVariant) { 431 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 432 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 433 } else if (FunctionName.startswith("__builtin_")) { 434 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 435 } 436 437 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 438 PDiag(DiagID) 439 << FunctionName << ObjectSize.toString(/*Radix=*/10) 440 << UsedSize.toString(/*Radix=*/10)); 441 } 442 443 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 444 Scope::ScopeFlags NeededScopeFlags, 445 unsigned DiagID) { 446 // Scopes aren't available during instantiation. Fortunately, builtin 447 // functions cannot be template args so they cannot be formed through template 448 // instantiation. Therefore checking once during the parse is sufficient. 449 if (SemaRef.inTemplateInstantiation()) 450 return false; 451 452 Scope *S = SemaRef.getCurScope(); 453 while (S && !S->isSEHExceptScope()) 454 S = S->getParent(); 455 if (!S || !(S->getFlags() & NeededScopeFlags)) { 456 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 457 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 458 << DRE->getDecl()->getIdentifier(); 459 return true; 460 } 461 462 return false; 463 } 464 465 static inline bool isBlockPointer(Expr *Arg) { 466 return Arg->getType()->isBlockPointerType(); 467 } 468 469 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 470 /// void*, which is a requirement of device side enqueue. 471 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 472 const BlockPointerType *BPT = 473 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 474 ArrayRef<QualType> Params = 475 BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes(); 476 unsigned ArgCounter = 0; 477 bool IllegalParams = false; 478 // Iterate through the block parameters until either one is found that is not 479 // a local void*, or the block is valid. 480 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 481 I != E; ++I, ++ArgCounter) { 482 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 483 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 484 LangAS::opencl_local) { 485 // Get the location of the error. If a block literal has been passed 486 // (BlockExpr) then we can point straight to the offending argument, 487 // else we just point to the variable reference. 488 SourceLocation ErrorLoc; 489 if (isa<BlockExpr>(BlockArg)) { 490 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 491 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 492 } else if (isa<DeclRefExpr>(BlockArg)) { 493 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 494 } 495 S.Diag(ErrorLoc, 496 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 497 IllegalParams = true; 498 } 499 } 500 501 return IllegalParams; 502 } 503 504 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 505 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 506 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 507 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 508 return true; 509 } 510 return false; 511 } 512 513 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 514 if (checkArgCount(S, TheCall, 2)) 515 return true; 516 517 if (checkOpenCLSubgroupExt(S, TheCall)) 518 return true; 519 520 // First argument is an ndrange_t type. 521 Expr *NDRangeArg = TheCall->getArg(0); 522 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 523 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 524 << TheCall->getDirectCallee() << "'ndrange_t'"; 525 return true; 526 } 527 528 Expr *BlockArg = TheCall->getArg(1); 529 if (!isBlockPointer(BlockArg)) { 530 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 531 << TheCall->getDirectCallee() << "block"; 532 return true; 533 } 534 return checkOpenCLBlockArgs(S, BlockArg); 535 } 536 537 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 538 /// get_kernel_work_group_size 539 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 540 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 541 if (checkArgCount(S, TheCall, 1)) 542 return true; 543 544 Expr *BlockArg = TheCall->getArg(0); 545 if (!isBlockPointer(BlockArg)) { 546 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 547 << TheCall->getDirectCallee() << "block"; 548 return true; 549 } 550 return checkOpenCLBlockArgs(S, BlockArg); 551 } 552 553 /// Diagnose integer type and any valid implicit conversion to it. 554 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 555 const QualType &IntType); 556 557 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 558 unsigned Start, unsigned End) { 559 bool IllegalParams = false; 560 for (unsigned I = Start; I <= End; ++I) 561 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 562 S.Context.getSizeType()); 563 return IllegalParams; 564 } 565 566 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 567 /// 'local void*' parameter of passed block. 568 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 569 Expr *BlockArg, 570 unsigned NumNonVarArgs) { 571 const BlockPointerType *BPT = 572 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 573 unsigned NumBlockParams = 574 BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams(); 575 unsigned TotalNumArgs = TheCall->getNumArgs(); 576 577 // For each argument passed to the block, a corresponding uint needs to 578 // be passed to describe the size of the local memory. 579 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 580 S.Diag(TheCall->getBeginLoc(), 581 diag::err_opencl_enqueue_kernel_local_size_args); 582 return true; 583 } 584 585 // Check that the sizes of the local memory are specified by integers. 586 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 587 TotalNumArgs - 1); 588 } 589 590 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 591 /// overload formats specified in Table 6.13.17.1. 592 /// int enqueue_kernel(queue_t queue, 593 /// kernel_enqueue_flags_t flags, 594 /// const ndrange_t ndrange, 595 /// void (^block)(void)) 596 /// int enqueue_kernel(queue_t queue, 597 /// kernel_enqueue_flags_t flags, 598 /// const ndrange_t ndrange, 599 /// uint num_events_in_wait_list, 600 /// clk_event_t *event_wait_list, 601 /// clk_event_t *event_ret, 602 /// void (^block)(void)) 603 /// int enqueue_kernel(queue_t queue, 604 /// kernel_enqueue_flags_t flags, 605 /// const ndrange_t ndrange, 606 /// void (^block)(local void*, ...), 607 /// uint size0, ...) 608 /// int enqueue_kernel(queue_t queue, 609 /// kernel_enqueue_flags_t flags, 610 /// const ndrange_t ndrange, 611 /// uint num_events_in_wait_list, 612 /// clk_event_t *event_wait_list, 613 /// clk_event_t *event_ret, 614 /// void (^block)(local void*, ...), 615 /// uint size0, ...) 616 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 617 unsigned NumArgs = TheCall->getNumArgs(); 618 619 if (NumArgs < 4) { 620 S.Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_few_args); 621 return true; 622 } 623 624 Expr *Arg0 = TheCall->getArg(0); 625 Expr *Arg1 = TheCall->getArg(1); 626 Expr *Arg2 = TheCall->getArg(2); 627 Expr *Arg3 = TheCall->getArg(3); 628 629 // First argument always needs to be a queue_t type. 630 if (!Arg0->getType()->isQueueT()) { 631 S.Diag(TheCall->getArg(0)->getBeginLoc(), 632 diag::err_opencl_builtin_expected_type) 633 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 634 return true; 635 } 636 637 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 638 if (!Arg1->getType()->isIntegerType()) { 639 S.Diag(TheCall->getArg(1)->getBeginLoc(), 640 diag::err_opencl_builtin_expected_type) 641 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 642 return true; 643 } 644 645 // Third argument is always an ndrange_t type. 646 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 647 S.Diag(TheCall->getArg(2)->getBeginLoc(), 648 diag::err_opencl_builtin_expected_type) 649 << TheCall->getDirectCallee() << "'ndrange_t'"; 650 return true; 651 } 652 653 // With four arguments, there is only one form that the function could be 654 // called in: no events and no variable arguments. 655 if (NumArgs == 4) { 656 // check that the last argument is the right block type. 657 if (!isBlockPointer(Arg3)) { 658 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 659 << TheCall->getDirectCallee() << "block"; 660 return true; 661 } 662 // we have a block type, check the prototype 663 const BlockPointerType *BPT = 664 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 665 if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) { 666 S.Diag(Arg3->getBeginLoc(), 667 diag::err_opencl_enqueue_kernel_blocks_no_args); 668 return true; 669 } 670 return false; 671 } 672 // we can have block + varargs. 673 if (isBlockPointer(Arg3)) 674 return (checkOpenCLBlockArgs(S, Arg3) || 675 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 676 // last two cases with either exactly 7 args or 7 args and varargs. 677 if (NumArgs >= 7) { 678 // check common block argument. 679 Expr *Arg6 = TheCall->getArg(6); 680 if (!isBlockPointer(Arg6)) { 681 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 682 << TheCall->getDirectCallee() << "block"; 683 return true; 684 } 685 if (checkOpenCLBlockArgs(S, Arg6)) 686 return true; 687 688 // Forth argument has to be any integer type. 689 if (!Arg3->getType()->isIntegerType()) { 690 S.Diag(TheCall->getArg(3)->getBeginLoc(), 691 diag::err_opencl_builtin_expected_type) 692 << TheCall->getDirectCallee() << "integer"; 693 return true; 694 } 695 // check remaining common arguments. 696 Expr *Arg4 = TheCall->getArg(4); 697 Expr *Arg5 = TheCall->getArg(5); 698 699 // Fifth argument is always passed as a pointer to clk_event_t. 700 if (!Arg4->isNullPointerConstant(S.Context, 701 Expr::NPC_ValueDependentIsNotNull) && 702 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 703 S.Diag(TheCall->getArg(4)->getBeginLoc(), 704 diag::err_opencl_builtin_expected_type) 705 << TheCall->getDirectCallee() 706 << S.Context.getPointerType(S.Context.OCLClkEventTy); 707 return true; 708 } 709 710 // Sixth argument is always passed as a pointer to clk_event_t. 711 if (!Arg5->isNullPointerConstant(S.Context, 712 Expr::NPC_ValueDependentIsNotNull) && 713 !(Arg5->getType()->isPointerType() && 714 Arg5->getType()->getPointeeType()->isClkEventT())) { 715 S.Diag(TheCall->getArg(5)->getBeginLoc(), 716 diag::err_opencl_builtin_expected_type) 717 << TheCall->getDirectCallee() 718 << S.Context.getPointerType(S.Context.OCLClkEventTy); 719 return true; 720 } 721 722 if (NumArgs == 7) 723 return false; 724 725 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 726 } 727 728 // None of the specific case has been detected, give generic error 729 S.Diag(TheCall->getBeginLoc(), 730 diag::err_opencl_enqueue_kernel_incorrect_args); 731 return true; 732 } 733 734 /// Returns OpenCL access qual. 735 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 736 return D->getAttr<OpenCLAccessAttr>(); 737 } 738 739 /// Returns true if pipe element type is different from the pointer. 740 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 741 const Expr *Arg0 = Call->getArg(0); 742 // First argument type should always be pipe. 743 if (!Arg0->getType()->isPipeType()) { 744 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 745 << Call->getDirectCallee() << Arg0->getSourceRange(); 746 return true; 747 } 748 OpenCLAccessAttr *AccessQual = 749 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 750 // Validates the access qualifier is compatible with the call. 751 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 752 // read_only and write_only, and assumed to be read_only if no qualifier is 753 // specified. 754 switch (Call->getDirectCallee()->getBuiltinID()) { 755 case Builtin::BIread_pipe: 756 case Builtin::BIreserve_read_pipe: 757 case Builtin::BIcommit_read_pipe: 758 case Builtin::BIwork_group_reserve_read_pipe: 759 case Builtin::BIsub_group_reserve_read_pipe: 760 case Builtin::BIwork_group_commit_read_pipe: 761 case Builtin::BIsub_group_commit_read_pipe: 762 if (!(!AccessQual || AccessQual->isReadOnly())) { 763 S.Diag(Arg0->getBeginLoc(), 764 diag::err_opencl_builtin_pipe_invalid_access_modifier) 765 << "read_only" << Arg0->getSourceRange(); 766 return true; 767 } 768 break; 769 case Builtin::BIwrite_pipe: 770 case Builtin::BIreserve_write_pipe: 771 case Builtin::BIcommit_write_pipe: 772 case Builtin::BIwork_group_reserve_write_pipe: 773 case Builtin::BIsub_group_reserve_write_pipe: 774 case Builtin::BIwork_group_commit_write_pipe: 775 case Builtin::BIsub_group_commit_write_pipe: 776 if (!(AccessQual && AccessQual->isWriteOnly())) { 777 S.Diag(Arg0->getBeginLoc(), 778 diag::err_opencl_builtin_pipe_invalid_access_modifier) 779 << "write_only" << Arg0->getSourceRange(); 780 return true; 781 } 782 break; 783 default: 784 break; 785 } 786 return false; 787 } 788 789 /// Returns true if pipe element type is different from the pointer. 790 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 791 const Expr *Arg0 = Call->getArg(0); 792 const Expr *ArgIdx = Call->getArg(Idx); 793 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 794 const QualType EltTy = PipeTy->getElementType(); 795 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 796 // The Idx argument should be a pointer and the type of the pointer and 797 // the type of pipe element should also be the same. 798 if (!ArgTy || 799 !S.Context.hasSameType( 800 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 801 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 802 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 803 << ArgIdx->getType() << ArgIdx->getSourceRange(); 804 return true; 805 } 806 return false; 807 } 808 809 // Performs semantic analysis for the read/write_pipe call. 810 // \param S Reference to the semantic analyzer. 811 // \param Call A pointer to the builtin call. 812 // \return True if a semantic error has been found, false otherwise. 813 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 814 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 815 // functions have two forms. 816 switch (Call->getNumArgs()) { 817 case 2: 818 if (checkOpenCLPipeArg(S, Call)) 819 return true; 820 // The call with 2 arguments should be 821 // read/write_pipe(pipe T, T*). 822 // Check packet type T. 823 if (checkOpenCLPipePacketType(S, Call, 1)) 824 return true; 825 break; 826 827 case 4: { 828 if (checkOpenCLPipeArg(S, Call)) 829 return true; 830 // The call with 4 arguments should be 831 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 832 // Check reserve_id_t. 833 if (!Call->getArg(1)->getType()->isReserveIDT()) { 834 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 835 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 836 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 837 return true; 838 } 839 840 // Check the index. 841 const Expr *Arg2 = Call->getArg(2); 842 if (!Arg2->getType()->isIntegerType() && 843 !Arg2->getType()->isUnsignedIntegerType()) { 844 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 845 << Call->getDirectCallee() << S.Context.UnsignedIntTy 846 << Arg2->getType() << Arg2->getSourceRange(); 847 return true; 848 } 849 850 // Check packet type T. 851 if (checkOpenCLPipePacketType(S, Call, 3)) 852 return true; 853 } break; 854 default: 855 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 856 << Call->getDirectCallee() << Call->getSourceRange(); 857 return true; 858 } 859 860 return false; 861 } 862 863 // Performs a semantic analysis on the {work_group_/sub_group_ 864 // /_}reserve_{read/write}_pipe 865 // \param S Reference to the semantic analyzer. 866 // \param Call The call to the builtin function to be analyzed. 867 // \return True if a semantic error was found, false otherwise. 868 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 869 if (checkArgCount(S, Call, 2)) 870 return true; 871 872 if (checkOpenCLPipeArg(S, Call)) 873 return true; 874 875 // Check the reserve size. 876 if (!Call->getArg(1)->getType()->isIntegerType() && 877 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 878 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 879 << Call->getDirectCallee() << S.Context.UnsignedIntTy 880 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 881 return true; 882 } 883 884 // Since return type of reserve_read/write_pipe built-in function is 885 // reserve_id_t, which is not defined in the builtin def file , we used int 886 // as return type and need to override the return type of these functions. 887 Call->setType(S.Context.OCLReserveIDTy); 888 889 return false; 890 } 891 892 // Performs a semantic analysis on {work_group_/sub_group_ 893 // /_}commit_{read/write}_pipe 894 // \param S Reference to the semantic analyzer. 895 // \param Call The call to the builtin function to be analyzed. 896 // \return True if a semantic error was found, false otherwise. 897 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 898 if (checkArgCount(S, Call, 2)) 899 return true; 900 901 if (checkOpenCLPipeArg(S, Call)) 902 return true; 903 904 // Check reserve_id_t. 905 if (!Call->getArg(1)->getType()->isReserveIDT()) { 906 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 907 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 908 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 909 return true; 910 } 911 912 return false; 913 } 914 915 // Performs a semantic analysis on the call to built-in Pipe 916 // Query Functions. 917 // \param S Reference to the semantic analyzer. 918 // \param Call The call to the builtin function to be analyzed. 919 // \return True if a semantic error was found, false otherwise. 920 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 921 if (checkArgCount(S, Call, 1)) 922 return true; 923 924 if (!Call->getArg(0)->getType()->isPipeType()) { 925 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 926 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 927 return true; 928 } 929 930 return false; 931 } 932 933 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 934 // Performs semantic analysis for the to_global/local/private call. 935 // \param S Reference to the semantic analyzer. 936 // \param BuiltinID ID of the builtin function. 937 // \param Call A pointer to the builtin call. 938 // \return True if a semantic error has been found, false otherwise. 939 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 940 CallExpr *Call) { 941 if (Call->getNumArgs() != 1) { 942 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) 943 << Call->getDirectCallee() << Call->getSourceRange(); 944 return true; 945 } 946 947 auto RT = Call->getArg(0)->getType(); 948 if (!RT->isPointerType() || RT->getPointeeType() 949 .getAddressSpace() == LangAS::opencl_constant) { 950 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 951 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 952 return true; 953 } 954 955 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 956 S.Diag(Call->getArg(0)->getBeginLoc(), 957 diag::warn_opencl_generic_address_space_arg) 958 << Call->getDirectCallee()->getNameInfo().getAsString() 959 << Call->getArg(0)->getSourceRange(); 960 } 961 962 RT = RT->getPointeeType(); 963 auto Qual = RT.getQualifiers(); 964 switch (BuiltinID) { 965 case Builtin::BIto_global: 966 Qual.setAddressSpace(LangAS::opencl_global); 967 break; 968 case Builtin::BIto_local: 969 Qual.setAddressSpace(LangAS::opencl_local); 970 break; 971 case Builtin::BIto_private: 972 Qual.setAddressSpace(LangAS::opencl_private); 973 break; 974 default: 975 llvm_unreachable("Invalid builtin function"); 976 } 977 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 978 RT.getUnqualifiedType(), Qual))); 979 980 return false; 981 } 982 983 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 984 if (checkArgCount(S, TheCall, 1)) 985 return ExprError(); 986 987 // Compute __builtin_launder's parameter type from the argument. 988 // The parameter type is: 989 // * The type of the argument if it's not an array or function type, 990 // Otherwise, 991 // * The decayed argument type. 992 QualType ParamTy = [&]() { 993 QualType ArgTy = TheCall->getArg(0)->getType(); 994 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 995 return S.Context.getPointerType(Ty->getElementType()); 996 if (ArgTy->isFunctionType()) { 997 return S.Context.getPointerType(ArgTy); 998 } 999 return ArgTy; 1000 }(); 1001 1002 TheCall->setType(ParamTy); 1003 1004 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1005 if (!ParamTy->isPointerType()) 1006 return 0; 1007 if (ParamTy->isFunctionPointerType()) 1008 return 1; 1009 if (ParamTy->isVoidPointerType()) 1010 return 2; 1011 return llvm::Optional<unsigned>{}; 1012 }(); 1013 if (DiagSelect.hasValue()) { 1014 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1015 << DiagSelect.getValue() << TheCall->getSourceRange(); 1016 return ExprError(); 1017 } 1018 1019 // We either have an incomplete class type, or we have a class template 1020 // whose instantiation has not been forced. Example: 1021 // 1022 // template <class T> struct Foo { T value; }; 1023 // Foo<int> *p = nullptr; 1024 // auto *d = __builtin_launder(p); 1025 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1026 diag::err_incomplete_type)) 1027 return ExprError(); 1028 1029 assert(ParamTy->getPointeeType()->isObjectType() && 1030 "Unhandled non-object pointer case"); 1031 1032 InitializedEntity Entity = 1033 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1034 ExprResult Arg = 1035 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1036 if (Arg.isInvalid()) 1037 return ExprError(); 1038 TheCall->setArg(0, Arg.get()); 1039 1040 return TheCall; 1041 } 1042 1043 // Emit an error and return true if the current architecture is not in the list 1044 // of supported architectures. 1045 static bool 1046 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1047 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1048 llvm::Triple::ArchType CurArch = 1049 S.getASTContext().getTargetInfo().getTriple().getArch(); 1050 if (llvm::is_contained(SupportedArchs, CurArch)) 1051 return false; 1052 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1053 << TheCall->getSourceRange(); 1054 return true; 1055 } 1056 1057 ExprResult 1058 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1059 CallExpr *TheCall) { 1060 ExprResult TheCallResult(TheCall); 1061 1062 // Find out if any arguments are required to be integer constant expressions. 1063 unsigned ICEArguments = 0; 1064 ASTContext::GetBuiltinTypeError Error; 1065 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1066 if (Error != ASTContext::GE_None) 1067 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1068 1069 // If any arguments are required to be ICE's, check and diagnose. 1070 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1071 // Skip arguments not required to be ICE's. 1072 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1073 1074 llvm::APSInt Result; 1075 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1076 return true; 1077 ICEArguments &= ~(1 << ArgNo); 1078 } 1079 1080 switch (BuiltinID) { 1081 case Builtin::BI__builtin___CFStringMakeConstantString: 1082 assert(TheCall->getNumArgs() == 1 && 1083 "Wrong # arguments to builtin CFStringMakeConstantString"); 1084 if (CheckObjCString(TheCall->getArg(0))) 1085 return ExprError(); 1086 break; 1087 case Builtin::BI__builtin_ms_va_start: 1088 case Builtin::BI__builtin_stdarg_start: 1089 case Builtin::BI__builtin_va_start: 1090 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1091 return ExprError(); 1092 break; 1093 case Builtin::BI__va_start: { 1094 switch (Context.getTargetInfo().getTriple().getArch()) { 1095 case llvm::Triple::aarch64: 1096 case llvm::Triple::arm: 1097 case llvm::Triple::thumb: 1098 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1099 return ExprError(); 1100 break; 1101 default: 1102 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1103 return ExprError(); 1104 break; 1105 } 1106 break; 1107 } 1108 1109 // The acquire, release, and no fence variants are ARM and AArch64 only. 1110 case Builtin::BI_interlockedbittestandset_acq: 1111 case Builtin::BI_interlockedbittestandset_rel: 1112 case Builtin::BI_interlockedbittestandset_nf: 1113 case Builtin::BI_interlockedbittestandreset_acq: 1114 case Builtin::BI_interlockedbittestandreset_rel: 1115 case Builtin::BI_interlockedbittestandreset_nf: 1116 if (CheckBuiltinTargetSupport( 1117 *this, BuiltinID, TheCall, 1118 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1119 return ExprError(); 1120 break; 1121 1122 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1123 case Builtin::BI_bittest64: 1124 case Builtin::BI_bittestandcomplement64: 1125 case Builtin::BI_bittestandreset64: 1126 case Builtin::BI_bittestandset64: 1127 case Builtin::BI_interlockedbittestandreset64: 1128 case Builtin::BI_interlockedbittestandset64: 1129 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1130 {llvm::Triple::x86_64, llvm::Triple::arm, 1131 llvm::Triple::thumb, llvm::Triple::aarch64})) 1132 return ExprError(); 1133 break; 1134 1135 case Builtin::BI__builtin_isgreater: 1136 case Builtin::BI__builtin_isgreaterequal: 1137 case Builtin::BI__builtin_isless: 1138 case Builtin::BI__builtin_islessequal: 1139 case Builtin::BI__builtin_islessgreater: 1140 case Builtin::BI__builtin_isunordered: 1141 if (SemaBuiltinUnorderedCompare(TheCall)) 1142 return ExprError(); 1143 break; 1144 case Builtin::BI__builtin_fpclassify: 1145 if (SemaBuiltinFPClassification(TheCall, 6)) 1146 return ExprError(); 1147 break; 1148 case Builtin::BI__builtin_isfinite: 1149 case Builtin::BI__builtin_isinf: 1150 case Builtin::BI__builtin_isinf_sign: 1151 case Builtin::BI__builtin_isnan: 1152 case Builtin::BI__builtin_isnormal: 1153 case Builtin::BI__builtin_signbit: 1154 case Builtin::BI__builtin_signbitf: 1155 case Builtin::BI__builtin_signbitl: 1156 if (SemaBuiltinFPClassification(TheCall, 1)) 1157 return ExprError(); 1158 break; 1159 case Builtin::BI__builtin_shufflevector: 1160 return SemaBuiltinShuffleVector(TheCall); 1161 // TheCall will be freed by the smart pointer here, but that's fine, since 1162 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1163 case Builtin::BI__builtin_prefetch: 1164 if (SemaBuiltinPrefetch(TheCall)) 1165 return ExprError(); 1166 break; 1167 case Builtin::BI__builtin_alloca_with_align: 1168 if (SemaBuiltinAllocaWithAlign(TheCall)) 1169 return ExprError(); 1170 break; 1171 case Builtin::BI__assume: 1172 case Builtin::BI__builtin_assume: 1173 if (SemaBuiltinAssume(TheCall)) 1174 return ExprError(); 1175 break; 1176 case Builtin::BI__builtin_assume_aligned: 1177 if (SemaBuiltinAssumeAligned(TheCall)) 1178 return ExprError(); 1179 break; 1180 case Builtin::BI__builtin_dynamic_object_size: 1181 case Builtin::BI__builtin_object_size: 1182 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1183 return ExprError(); 1184 break; 1185 case Builtin::BI__builtin_longjmp: 1186 if (SemaBuiltinLongjmp(TheCall)) 1187 return ExprError(); 1188 break; 1189 case Builtin::BI__builtin_setjmp: 1190 if (SemaBuiltinSetjmp(TheCall)) 1191 return ExprError(); 1192 break; 1193 case Builtin::BI_setjmp: 1194 case Builtin::BI_setjmpex: 1195 if (checkArgCount(*this, TheCall, 1)) 1196 return true; 1197 break; 1198 case Builtin::BI__builtin_classify_type: 1199 if (checkArgCount(*this, TheCall, 1)) return true; 1200 TheCall->setType(Context.IntTy); 1201 break; 1202 case Builtin::BI__builtin_constant_p: { 1203 if (checkArgCount(*this, TheCall, 1)) return true; 1204 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1205 if (Arg.isInvalid()) return true; 1206 TheCall->setArg(0, Arg.get()); 1207 TheCall->setType(Context.IntTy); 1208 break; 1209 } 1210 case Builtin::BI__builtin_launder: 1211 return SemaBuiltinLaunder(*this, TheCall); 1212 case Builtin::BI__sync_fetch_and_add: 1213 case Builtin::BI__sync_fetch_and_add_1: 1214 case Builtin::BI__sync_fetch_and_add_2: 1215 case Builtin::BI__sync_fetch_and_add_4: 1216 case Builtin::BI__sync_fetch_and_add_8: 1217 case Builtin::BI__sync_fetch_and_add_16: 1218 case Builtin::BI__sync_fetch_and_sub: 1219 case Builtin::BI__sync_fetch_and_sub_1: 1220 case Builtin::BI__sync_fetch_and_sub_2: 1221 case Builtin::BI__sync_fetch_and_sub_4: 1222 case Builtin::BI__sync_fetch_and_sub_8: 1223 case Builtin::BI__sync_fetch_and_sub_16: 1224 case Builtin::BI__sync_fetch_and_or: 1225 case Builtin::BI__sync_fetch_and_or_1: 1226 case Builtin::BI__sync_fetch_and_or_2: 1227 case Builtin::BI__sync_fetch_and_or_4: 1228 case Builtin::BI__sync_fetch_and_or_8: 1229 case Builtin::BI__sync_fetch_and_or_16: 1230 case Builtin::BI__sync_fetch_and_and: 1231 case Builtin::BI__sync_fetch_and_and_1: 1232 case Builtin::BI__sync_fetch_and_and_2: 1233 case Builtin::BI__sync_fetch_and_and_4: 1234 case Builtin::BI__sync_fetch_and_and_8: 1235 case Builtin::BI__sync_fetch_and_and_16: 1236 case Builtin::BI__sync_fetch_and_xor: 1237 case Builtin::BI__sync_fetch_and_xor_1: 1238 case Builtin::BI__sync_fetch_and_xor_2: 1239 case Builtin::BI__sync_fetch_and_xor_4: 1240 case Builtin::BI__sync_fetch_and_xor_8: 1241 case Builtin::BI__sync_fetch_and_xor_16: 1242 case Builtin::BI__sync_fetch_and_nand: 1243 case Builtin::BI__sync_fetch_and_nand_1: 1244 case Builtin::BI__sync_fetch_and_nand_2: 1245 case Builtin::BI__sync_fetch_and_nand_4: 1246 case Builtin::BI__sync_fetch_and_nand_8: 1247 case Builtin::BI__sync_fetch_and_nand_16: 1248 case Builtin::BI__sync_add_and_fetch: 1249 case Builtin::BI__sync_add_and_fetch_1: 1250 case Builtin::BI__sync_add_and_fetch_2: 1251 case Builtin::BI__sync_add_and_fetch_4: 1252 case Builtin::BI__sync_add_and_fetch_8: 1253 case Builtin::BI__sync_add_and_fetch_16: 1254 case Builtin::BI__sync_sub_and_fetch: 1255 case Builtin::BI__sync_sub_and_fetch_1: 1256 case Builtin::BI__sync_sub_and_fetch_2: 1257 case Builtin::BI__sync_sub_and_fetch_4: 1258 case Builtin::BI__sync_sub_and_fetch_8: 1259 case Builtin::BI__sync_sub_and_fetch_16: 1260 case Builtin::BI__sync_and_and_fetch: 1261 case Builtin::BI__sync_and_and_fetch_1: 1262 case Builtin::BI__sync_and_and_fetch_2: 1263 case Builtin::BI__sync_and_and_fetch_4: 1264 case Builtin::BI__sync_and_and_fetch_8: 1265 case Builtin::BI__sync_and_and_fetch_16: 1266 case Builtin::BI__sync_or_and_fetch: 1267 case Builtin::BI__sync_or_and_fetch_1: 1268 case Builtin::BI__sync_or_and_fetch_2: 1269 case Builtin::BI__sync_or_and_fetch_4: 1270 case Builtin::BI__sync_or_and_fetch_8: 1271 case Builtin::BI__sync_or_and_fetch_16: 1272 case Builtin::BI__sync_xor_and_fetch: 1273 case Builtin::BI__sync_xor_and_fetch_1: 1274 case Builtin::BI__sync_xor_and_fetch_2: 1275 case Builtin::BI__sync_xor_and_fetch_4: 1276 case Builtin::BI__sync_xor_and_fetch_8: 1277 case Builtin::BI__sync_xor_and_fetch_16: 1278 case Builtin::BI__sync_nand_and_fetch: 1279 case Builtin::BI__sync_nand_and_fetch_1: 1280 case Builtin::BI__sync_nand_and_fetch_2: 1281 case Builtin::BI__sync_nand_and_fetch_4: 1282 case Builtin::BI__sync_nand_and_fetch_8: 1283 case Builtin::BI__sync_nand_and_fetch_16: 1284 case Builtin::BI__sync_val_compare_and_swap: 1285 case Builtin::BI__sync_val_compare_and_swap_1: 1286 case Builtin::BI__sync_val_compare_and_swap_2: 1287 case Builtin::BI__sync_val_compare_and_swap_4: 1288 case Builtin::BI__sync_val_compare_and_swap_8: 1289 case Builtin::BI__sync_val_compare_and_swap_16: 1290 case Builtin::BI__sync_bool_compare_and_swap: 1291 case Builtin::BI__sync_bool_compare_and_swap_1: 1292 case Builtin::BI__sync_bool_compare_and_swap_2: 1293 case Builtin::BI__sync_bool_compare_and_swap_4: 1294 case Builtin::BI__sync_bool_compare_and_swap_8: 1295 case Builtin::BI__sync_bool_compare_and_swap_16: 1296 case Builtin::BI__sync_lock_test_and_set: 1297 case Builtin::BI__sync_lock_test_and_set_1: 1298 case Builtin::BI__sync_lock_test_and_set_2: 1299 case Builtin::BI__sync_lock_test_and_set_4: 1300 case Builtin::BI__sync_lock_test_and_set_8: 1301 case Builtin::BI__sync_lock_test_and_set_16: 1302 case Builtin::BI__sync_lock_release: 1303 case Builtin::BI__sync_lock_release_1: 1304 case Builtin::BI__sync_lock_release_2: 1305 case Builtin::BI__sync_lock_release_4: 1306 case Builtin::BI__sync_lock_release_8: 1307 case Builtin::BI__sync_lock_release_16: 1308 case Builtin::BI__sync_swap: 1309 case Builtin::BI__sync_swap_1: 1310 case Builtin::BI__sync_swap_2: 1311 case Builtin::BI__sync_swap_4: 1312 case Builtin::BI__sync_swap_8: 1313 case Builtin::BI__sync_swap_16: 1314 return SemaBuiltinAtomicOverloaded(TheCallResult); 1315 case Builtin::BI__sync_synchronize: 1316 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1317 << TheCall->getCallee()->getSourceRange(); 1318 break; 1319 case Builtin::BI__builtin_nontemporal_load: 1320 case Builtin::BI__builtin_nontemporal_store: 1321 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1322 #define BUILTIN(ID, TYPE, ATTRS) 1323 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1324 case Builtin::BI##ID: \ 1325 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1326 #include "clang/Basic/Builtins.def" 1327 case Builtin::BI__annotation: 1328 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1329 return ExprError(); 1330 break; 1331 case Builtin::BI__builtin_annotation: 1332 if (SemaBuiltinAnnotation(*this, TheCall)) 1333 return ExprError(); 1334 break; 1335 case Builtin::BI__builtin_addressof: 1336 if (SemaBuiltinAddressof(*this, TheCall)) 1337 return ExprError(); 1338 break; 1339 case Builtin::BI__builtin_add_overflow: 1340 case Builtin::BI__builtin_sub_overflow: 1341 case Builtin::BI__builtin_mul_overflow: 1342 if (SemaBuiltinOverflow(*this, TheCall)) 1343 return ExprError(); 1344 break; 1345 case Builtin::BI__builtin_operator_new: 1346 case Builtin::BI__builtin_operator_delete: { 1347 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1348 ExprResult Res = 1349 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1350 if (Res.isInvalid()) 1351 CorrectDelayedTyposInExpr(TheCallResult.get()); 1352 return Res; 1353 } 1354 case Builtin::BI__builtin_dump_struct: { 1355 // We first want to ensure we are called with 2 arguments 1356 if (checkArgCount(*this, TheCall, 2)) 1357 return ExprError(); 1358 // Ensure that the first argument is of type 'struct XX *' 1359 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1360 const QualType PtrArgType = PtrArg->getType(); 1361 if (!PtrArgType->isPointerType() || 1362 !PtrArgType->getPointeeType()->isRecordType()) { 1363 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1364 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1365 << "structure pointer"; 1366 return ExprError(); 1367 } 1368 1369 // Ensure that the second argument is of type 'FunctionType' 1370 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1371 const QualType FnPtrArgType = FnPtrArg->getType(); 1372 if (!FnPtrArgType->isPointerType()) { 1373 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1374 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1375 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1376 return ExprError(); 1377 } 1378 1379 const auto *FuncType = 1380 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1381 1382 if (!FuncType) { 1383 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1384 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1385 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1386 return ExprError(); 1387 } 1388 1389 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1390 if (!FT->getNumParams()) { 1391 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1392 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1393 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1394 return ExprError(); 1395 } 1396 QualType PT = FT->getParamType(0); 1397 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1398 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1399 !PT->getPointeeType().isConstQualified()) { 1400 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1401 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1402 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1403 return ExprError(); 1404 } 1405 } 1406 1407 TheCall->setType(Context.IntTy); 1408 break; 1409 } 1410 case Builtin::BI__builtin_call_with_static_chain: 1411 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1412 return ExprError(); 1413 break; 1414 case Builtin::BI__exception_code: 1415 case Builtin::BI_exception_code: 1416 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1417 diag::err_seh___except_block)) 1418 return ExprError(); 1419 break; 1420 case Builtin::BI__exception_info: 1421 case Builtin::BI_exception_info: 1422 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1423 diag::err_seh___except_filter)) 1424 return ExprError(); 1425 break; 1426 case Builtin::BI__GetExceptionInfo: 1427 if (checkArgCount(*this, TheCall, 1)) 1428 return ExprError(); 1429 1430 if (CheckCXXThrowOperand( 1431 TheCall->getBeginLoc(), 1432 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1433 TheCall)) 1434 return ExprError(); 1435 1436 TheCall->setType(Context.VoidPtrTy); 1437 break; 1438 // OpenCL v2.0, s6.13.16 - Pipe functions 1439 case Builtin::BIread_pipe: 1440 case Builtin::BIwrite_pipe: 1441 // Since those two functions are declared with var args, we need a semantic 1442 // check for the argument. 1443 if (SemaBuiltinRWPipe(*this, TheCall)) 1444 return ExprError(); 1445 break; 1446 case Builtin::BIreserve_read_pipe: 1447 case Builtin::BIreserve_write_pipe: 1448 case Builtin::BIwork_group_reserve_read_pipe: 1449 case Builtin::BIwork_group_reserve_write_pipe: 1450 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1451 return ExprError(); 1452 break; 1453 case Builtin::BIsub_group_reserve_read_pipe: 1454 case Builtin::BIsub_group_reserve_write_pipe: 1455 if (checkOpenCLSubgroupExt(*this, TheCall) || 1456 SemaBuiltinReserveRWPipe(*this, TheCall)) 1457 return ExprError(); 1458 break; 1459 case Builtin::BIcommit_read_pipe: 1460 case Builtin::BIcommit_write_pipe: 1461 case Builtin::BIwork_group_commit_read_pipe: 1462 case Builtin::BIwork_group_commit_write_pipe: 1463 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1464 return ExprError(); 1465 break; 1466 case Builtin::BIsub_group_commit_read_pipe: 1467 case Builtin::BIsub_group_commit_write_pipe: 1468 if (checkOpenCLSubgroupExt(*this, TheCall) || 1469 SemaBuiltinCommitRWPipe(*this, TheCall)) 1470 return ExprError(); 1471 break; 1472 case Builtin::BIget_pipe_num_packets: 1473 case Builtin::BIget_pipe_max_packets: 1474 if (SemaBuiltinPipePackets(*this, TheCall)) 1475 return ExprError(); 1476 break; 1477 case Builtin::BIto_global: 1478 case Builtin::BIto_local: 1479 case Builtin::BIto_private: 1480 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1481 return ExprError(); 1482 break; 1483 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1484 case Builtin::BIenqueue_kernel: 1485 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1486 return ExprError(); 1487 break; 1488 case Builtin::BIget_kernel_work_group_size: 1489 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1490 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1491 return ExprError(); 1492 break; 1493 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1494 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1495 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1496 return ExprError(); 1497 break; 1498 case Builtin::BI__builtin_os_log_format: 1499 case Builtin::BI__builtin_os_log_format_buffer_size: 1500 if (SemaBuiltinOSLogFormat(TheCall)) 1501 return ExprError(); 1502 break; 1503 } 1504 1505 // Since the target specific builtins for each arch overlap, only check those 1506 // of the arch we are compiling for. 1507 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1508 switch (Context.getTargetInfo().getTriple().getArch()) { 1509 case llvm::Triple::arm: 1510 case llvm::Triple::armeb: 1511 case llvm::Triple::thumb: 1512 case llvm::Triple::thumbeb: 1513 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall)) 1514 return ExprError(); 1515 break; 1516 case llvm::Triple::aarch64: 1517 case llvm::Triple::aarch64_be: 1518 if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall)) 1519 return ExprError(); 1520 break; 1521 case llvm::Triple::hexagon: 1522 if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall)) 1523 return ExprError(); 1524 break; 1525 case llvm::Triple::mips: 1526 case llvm::Triple::mipsel: 1527 case llvm::Triple::mips64: 1528 case llvm::Triple::mips64el: 1529 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall)) 1530 return ExprError(); 1531 break; 1532 case llvm::Triple::systemz: 1533 if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall)) 1534 return ExprError(); 1535 break; 1536 case llvm::Triple::x86: 1537 case llvm::Triple::x86_64: 1538 if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall)) 1539 return ExprError(); 1540 break; 1541 case llvm::Triple::ppc: 1542 case llvm::Triple::ppc64: 1543 case llvm::Triple::ppc64le: 1544 if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall)) 1545 return ExprError(); 1546 break; 1547 default: 1548 break; 1549 } 1550 } 1551 1552 return TheCallResult; 1553 } 1554 1555 // Get the valid immediate range for the specified NEON type code. 1556 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1557 NeonTypeFlags Type(t); 1558 int IsQuad = ForceQuad ? true : Type.isQuad(); 1559 switch (Type.getEltType()) { 1560 case NeonTypeFlags::Int8: 1561 case NeonTypeFlags::Poly8: 1562 return shift ? 7 : (8 << IsQuad) - 1; 1563 case NeonTypeFlags::Int16: 1564 case NeonTypeFlags::Poly16: 1565 return shift ? 15 : (4 << IsQuad) - 1; 1566 case NeonTypeFlags::Int32: 1567 return shift ? 31 : (2 << IsQuad) - 1; 1568 case NeonTypeFlags::Int64: 1569 case NeonTypeFlags::Poly64: 1570 return shift ? 63 : (1 << IsQuad) - 1; 1571 case NeonTypeFlags::Poly128: 1572 return shift ? 127 : (1 << IsQuad) - 1; 1573 case NeonTypeFlags::Float16: 1574 assert(!shift && "cannot shift float types!"); 1575 return (4 << IsQuad) - 1; 1576 case NeonTypeFlags::Float32: 1577 assert(!shift && "cannot shift float types!"); 1578 return (2 << IsQuad) - 1; 1579 case NeonTypeFlags::Float64: 1580 assert(!shift && "cannot shift float types!"); 1581 return (1 << IsQuad) - 1; 1582 } 1583 llvm_unreachable("Invalid NeonTypeFlag!"); 1584 } 1585 1586 /// getNeonEltType - Return the QualType corresponding to the elements of 1587 /// the vector type specified by the NeonTypeFlags. This is used to check 1588 /// the pointer arguments for Neon load/store intrinsics. 1589 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 1590 bool IsPolyUnsigned, bool IsInt64Long) { 1591 switch (Flags.getEltType()) { 1592 case NeonTypeFlags::Int8: 1593 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 1594 case NeonTypeFlags::Int16: 1595 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 1596 case NeonTypeFlags::Int32: 1597 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 1598 case NeonTypeFlags::Int64: 1599 if (IsInt64Long) 1600 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 1601 else 1602 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 1603 : Context.LongLongTy; 1604 case NeonTypeFlags::Poly8: 1605 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 1606 case NeonTypeFlags::Poly16: 1607 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 1608 case NeonTypeFlags::Poly64: 1609 if (IsInt64Long) 1610 return Context.UnsignedLongTy; 1611 else 1612 return Context.UnsignedLongLongTy; 1613 case NeonTypeFlags::Poly128: 1614 break; 1615 case NeonTypeFlags::Float16: 1616 return Context.HalfTy; 1617 case NeonTypeFlags::Float32: 1618 return Context.FloatTy; 1619 case NeonTypeFlags::Float64: 1620 return Context.DoubleTy; 1621 } 1622 llvm_unreachable("Invalid NeonTypeFlag!"); 1623 } 1624 1625 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 1626 llvm::APSInt Result; 1627 uint64_t mask = 0; 1628 unsigned TV = 0; 1629 int PtrArgNum = -1; 1630 bool HasConstPtr = false; 1631 switch (BuiltinID) { 1632 #define GET_NEON_OVERLOAD_CHECK 1633 #include "clang/Basic/arm_neon.inc" 1634 #include "clang/Basic/arm_fp16.inc" 1635 #undef GET_NEON_OVERLOAD_CHECK 1636 } 1637 1638 // For NEON intrinsics which are overloaded on vector element type, validate 1639 // the immediate which specifies which variant to emit. 1640 unsigned ImmArg = TheCall->getNumArgs()-1; 1641 if (mask) { 1642 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 1643 return true; 1644 1645 TV = Result.getLimitedValue(64); 1646 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 1647 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 1648 << TheCall->getArg(ImmArg)->getSourceRange(); 1649 } 1650 1651 if (PtrArgNum >= 0) { 1652 // Check that pointer arguments have the specified type. 1653 Expr *Arg = TheCall->getArg(PtrArgNum); 1654 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 1655 Arg = ICE->getSubExpr(); 1656 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 1657 QualType RHSTy = RHS.get()->getType(); 1658 1659 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1660 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 1661 Arch == llvm::Triple::aarch64_be; 1662 bool IsInt64Long = 1663 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong; 1664 QualType EltTy = 1665 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 1666 if (HasConstPtr) 1667 EltTy = EltTy.withConst(); 1668 QualType LHSTy = Context.getPointerType(EltTy); 1669 AssignConvertType ConvTy; 1670 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 1671 if (RHS.isInvalid()) 1672 return true; 1673 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 1674 RHS.get(), AA_Assigning)) 1675 return true; 1676 } 1677 1678 // For NEON intrinsics which take an immediate value as part of the 1679 // instruction, range check them here. 1680 unsigned i = 0, l = 0, u = 0; 1681 switch (BuiltinID) { 1682 default: 1683 return false; 1684 #define GET_NEON_IMMEDIATE_CHECK 1685 #include "clang/Basic/arm_neon.inc" 1686 #include "clang/Basic/arm_fp16.inc" 1687 #undef GET_NEON_IMMEDIATE_CHECK 1688 } 1689 1690 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 1691 } 1692 1693 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 1694 unsigned MaxWidth) { 1695 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 1696 BuiltinID == ARM::BI__builtin_arm_ldaex || 1697 BuiltinID == ARM::BI__builtin_arm_strex || 1698 BuiltinID == ARM::BI__builtin_arm_stlex || 1699 BuiltinID == AArch64::BI__builtin_arm_ldrex || 1700 BuiltinID == AArch64::BI__builtin_arm_ldaex || 1701 BuiltinID == AArch64::BI__builtin_arm_strex || 1702 BuiltinID == AArch64::BI__builtin_arm_stlex) && 1703 "unexpected ARM builtin"); 1704 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 1705 BuiltinID == ARM::BI__builtin_arm_ldaex || 1706 BuiltinID == AArch64::BI__builtin_arm_ldrex || 1707 BuiltinID == AArch64::BI__builtin_arm_ldaex; 1708 1709 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 1710 1711 // Ensure that we have the proper number of arguments. 1712 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 1713 return true; 1714 1715 // Inspect the pointer argument of the atomic builtin. This should always be 1716 // a pointer type, whose element is an integral scalar or pointer type. 1717 // Because it is a pointer type, we don't have to worry about any implicit 1718 // casts here. 1719 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 1720 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 1721 if (PointerArgRes.isInvalid()) 1722 return true; 1723 PointerArg = PointerArgRes.get(); 1724 1725 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 1726 if (!pointerType) { 1727 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 1728 << PointerArg->getType() << PointerArg->getSourceRange(); 1729 return true; 1730 } 1731 1732 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 1733 // task is to insert the appropriate casts into the AST. First work out just 1734 // what the appropriate type is. 1735 QualType ValType = pointerType->getPointeeType(); 1736 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 1737 if (IsLdrex) 1738 AddrType.addConst(); 1739 1740 // Issue a warning if the cast is dodgy. 1741 CastKind CastNeeded = CK_NoOp; 1742 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 1743 CastNeeded = CK_BitCast; 1744 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 1745 << PointerArg->getType() << Context.getPointerType(AddrType) 1746 << AA_Passing << PointerArg->getSourceRange(); 1747 } 1748 1749 // Finally, do the cast and replace the argument with the corrected version. 1750 AddrType = Context.getPointerType(AddrType); 1751 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 1752 if (PointerArgRes.isInvalid()) 1753 return true; 1754 PointerArg = PointerArgRes.get(); 1755 1756 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 1757 1758 // In general, we allow ints, floats and pointers to be loaded and stored. 1759 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 1760 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 1761 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 1762 << PointerArg->getType() << PointerArg->getSourceRange(); 1763 return true; 1764 } 1765 1766 // But ARM doesn't have instructions to deal with 128-bit versions. 1767 if (Context.getTypeSize(ValType) > MaxWidth) { 1768 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 1769 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 1770 << PointerArg->getType() << PointerArg->getSourceRange(); 1771 return true; 1772 } 1773 1774 switch (ValType.getObjCLifetime()) { 1775 case Qualifiers::OCL_None: 1776 case Qualifiers::OCL_ExplicitNone: 1777 // okay 1778 break; 1779 1780 case Qualifiers::OCL_Weak: 1781 case Qualifiers::OCL_Strong: 1782 case Qualifiers::OCL_Autoreleasing: 1783 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 1784 << ValType << PointerArg->getSourceRange(); 1785 return true; 1786 } 1787 1788 if (IsLdrex) { 1789 TheCall->setType(ValType); 1790 return false; 1791 } 1792 1793 // Initialize the argument to be stored. 1794 ExprResult ValArg = TheCall->getArg(0); 1795 InitializedEntity Entity = InitializedEntity::InitializeParameter( 1796 Context, ValType, /*consume*/ false); 1797 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 1798 if (ValArg.isInvalid()) 1799 return true; 1800 TheCall->setArg(0, ValArg.get()); 1801 1802 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 1803 // but the custom checker bypasses all default analysis. 1804 TheCall->setType(Context.IntTy); 1805 return false; 1806 } 1807 1808 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 1809 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 1810 BuiltinID == ARM::BI__builtin_arm_ldaex || 1811 BuiltinID == ARM::BI__builtin_arm_strex || 1812 BuiltinID == ARM::BI__builtin_arm_stlex) { 1813 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 1814 } 1815 1816 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 1817 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 1818 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 1819 } 1820 1821 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 1822 BuiltinID == ARM::BI__builtin_arm_wsr64) 1823 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 1824 1825 if (BuiltinID == ARM::BI__builtin_arm_rsr || 1826 BuiltinID == ARM::BI__builtin_arm_rsrp || 1827 BuiltinID == ARM::BI__builtin_arm_wsr || 1828 BuiltinID == ARM::BI__builtin_arm_wsrp) 1829 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1830 1831 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 1832 return true; 1833 1834 // For intrinsics which take an immediate value as part of the instruction, 1835 // range check them here. 1836 // FIXME: VFP Intrinsics should error if VFP not present. 1837 switch (BuiltinID) { 1838 default: return false; 1839 case ARM::BI__builtin_arm_ssat: 1840 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 1841 case ARM::BI__builtin_arm_usat: 1842 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 1843 case ARM::BI__builtin_arm_ssat16: 1844 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 1845 case ARM::BI__builtin_arm_usat16: 1846 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 1847 case ARM::BI__builtin_arm_vcvtr_f: 1848 case ARM::BI__builtin_arm_vcvtr_d: 1849 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 1850 case ARM::BI__builtin_arm_dmb: 1851 case ARM::BI__builtin_arm_dsb: 1852 case ARM::BI__builtin_arm_isb: 1853 case ARM::BI__builtin_arm_dbg: 1854 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 1855 } 1856 } 1857 1858 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, 1859 CallExpr *TheCall) { 1860 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 1861 BuiltinID == AArch64::BI__builtin_arm_ldaex || 1862 BuiltinID == AArch64::BI__builtin_arm_strex || 1863 BuiltinID == AArch64::BI__builtin_arm_stlex) { 1864 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 1865 } 1866 1867 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 1868 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 1869 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 1870 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 1871 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 1872 } 1873 1874 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 1875 BuiltinID == AArch64::BI__builtin_arm_wsr64) 1876 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1877 1878 // Memory Tagging Extensions (MTE) Intrinsics 1879 if (BuiltinID == AArch64::BI__builtin_arm_irg || 1880 BuiltinID == AArch64::BI__builtin_arm_addg || 1881 BuiltinID == AArch64::BI__builtin_arm_gmi || 1882 BuiltinID == AArch64::BI__builtin_arm_ldg || 1883 BuiltinID == AArch64::BI__builtin_arm_stg || 1884 BuiltinID == AArch64::BI__builtin_arm_subp) { 1885 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 1886 } 1887 1888 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 1889 BuiltinID == AArch64::BI__builtin_arm_rsrp || 1890 BuiltinID == AArch64::BI__builtin_arm_wsr || 1891 BuiltinID == AArch64::BI__builtin_arm_wsrp) 1892 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1893 1894 // Only check the valid encoding range. Any constant in this range would be 1895 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 1896 // an exception for incorrect registers. This matches MSVC behavior. 1897 if (BuiltinID == AArch64::BI_ReadStatusReg || 1898 BuiltinID == AArch64::BI_WriteStatusReg) 1899 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 1900 1901 if (BuiltinID == AArch64::BI__getReg) 1902 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 1903 1904 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 1905 return true; 1906 1907 // For intrinsics which take an immediate value as part of the instruction, 1908 // range check them here. 1909 unsigned i = 0, l = 0, u = 0; 1910 switch (BuiltinID) { 1911 default: return false; 1912 case AArch64::BI__builtin_arm_dmb: 1913 case AArch64::BI__builtin_arm_dsb: 1914 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 1915 } 1916 1917 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 1918 } 1919 1920 bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) { 1921 struct BuiltinAndString { 1922 unsigned BuiltinID; 1923 const char *Str; 1924 }; 1925 1926 static BuiltinAndString ValidCPU[] = { 1927 { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" }, 1928 { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" }, 1929 { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" }, 1930 { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" }, 1931 { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" }, 1932 { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" }, 1933 { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" }, 1934 { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" }, 1935 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" }, 1936 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" }, 1937 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" }, 1938 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" }, 1939 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" }, 1940 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" }, 1941 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" }, 1942 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" }, 1943 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" }, 1944 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" }, 1945 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" }, 1946 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" }, 1947 { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" }, 1948 { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" }, 1949 { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" }, 1950 }; 1951 1952 static BuiltinAndString ValidHVX[] = { 1953 { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" }, 1954 { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" }, 1955 { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" }, 1956 { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" }, 1957 { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" }, 1958 { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" }, 1959 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" }, 1960 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" }, 1961 { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" }, 1962 { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" }, 1963 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" }, 1964 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" }, 1965 { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" }, 1966 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" }, 1967 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" }, 1968 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" }, 1969 { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" }, 1970 { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" }, 1971 { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" }, 1972 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" }, 1973 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" }, 1974 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" }, 1975 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" }, 1976 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" }, 1977 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" }, 1978 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" }, 1979 { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" }, 1980 { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" }, 1981 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" }, 1982 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" }, 1983 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" }, 1984 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" }, 1985 { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" }, 1986 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" }, 1987 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" }, 1988 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" }, 1989 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" }, 1990 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" }, 1991 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" }, 1992 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" }, 1993 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" }, 1994 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" }, 1995 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" }, 1996 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" }, 1997 { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" }, 1998 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" }, 1999 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" }, 2000 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" }, 2001 { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" }, 2002 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" }, 2003 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" }, 2004 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" }, 2005 { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" }, 2006 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" }, 2007 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" }, 2008 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" }, 2009 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" }, 2010 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" }, 2011 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" }, 2012 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" }, 2013 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" }, 2014 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" }, 2015 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" }, 2016 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" }, 2017 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" }, 2018 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" }, 2019 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" }, 2020 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" }, 2021 { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" }, 2022 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" }, 2023 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" }, 2024 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" }, 2025 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" }, 2026 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" }, 2027 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" }, 2028 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" }, 2029 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" }, 2030 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" }, 2031 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" }, 2032 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" }, 2033 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" }, 2034 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" }, 2035 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" }, 2036 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" }, 2037 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" }, 2038 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" }, 2039 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" }, 2040 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" }, 2041 { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" }, 2042 { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" }, 2043 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" }, 2044 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" }, 2045 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" }, 2046 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" }, 2047 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" }, 2048 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" }, 2049 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" }, 2050 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" }, 2051 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" }, 2052 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" }, 2053 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" }, 2054 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" }, 2055 { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" }, 2056 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" }, 2057 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" }, 2058 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" }, 2059 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" }, 2060 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" }, 2061 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" }, 2062 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" }, 2063 { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" }, 2064 { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" }, 2065 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" }, 2066 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" }, 2067 { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" }, 2068 { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" }, 2069 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" }, 2070 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" }, 2071 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" }, 2072 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" }, 2073 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" }, 2074 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" }, 2075 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" }, 2076 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" }, 2077 { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" }, 2078 { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" }, 2079 { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" }, 2080 { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" }, 2081 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" }, 2082 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" }, 2083 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" }, 2084 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" }, 2085 { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" }, 2086 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" }, 2087 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" }, 2088 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" }, 2089 { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" }, 2090 { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" }, 2091 { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" }, 2092 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" }, 2093 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" }, 2094 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" }, 2095 { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" }, 2096 { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" }, 2097 { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" }, 2098 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" }, 2099 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" }, 2100 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" }, 2101 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" }, 2102 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" }, 2103 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" }, 2104 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" }, 2105 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" }, 2106 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" }, 2107 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" }, 2108 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" }, 2109 { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" }, 2110 { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" }, 2111 { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" }, 2112 { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" }, 2113 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" }, 2114 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" }, 2115 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" }, 2116 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" }, 2117 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" }, 2118 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" }, 2119 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" }, 2120 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" }, 2121 { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" }, 2122 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" }, 2123 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" }, 2124 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" }, 2125 { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" }, 2126 { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" }, 2127 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" }, 2128 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" }, 2129 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" }, 2130 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" }, 2131 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" }, 2132 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" }, 2133 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" }, 2134 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" }, 2135 { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" }, 2136 { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" }, 2137 { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" }, 2138 { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" }, 2139 { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" }, 2140 { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" }, 2141 { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" }, 2142 { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" }, 2143 { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" }, 2144 { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" }, 2145 { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" }, 2146 { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" }, 2147 { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" }, 2148 { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" }, 2149 { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" }, 2150 { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" }, 2151 { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" }, 2152 { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" }, 2153 { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" }, 2154 { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" }, 2155 { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" }, 2156 { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" }, 2157 { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" }, 2158 { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" }, 2159 { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" }, 2160 { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" }, 2161 { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" }, 2162 { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" }, 2163 { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" }, 2164 { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" }, 2165 { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" }, 2166 { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" }, 2167 { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" }, 2168 { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" }, 2169 { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" }, 2170 { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" }, 2171 { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" }, 2172 { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" }, 2173 { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" }, 2174 { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" }, 2175 { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" }, 2176 { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" }, 2177 { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" }, 2178 { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" }, 2179 { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" }, 2180 { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" }, 2181 { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" }, 2182 { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" }, 2183 { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" }, 2184 { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" }, 2185 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" }, 2186 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" }, 2187 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" }, 2188 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" }, 2189 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" }, 2190 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" }, 2191 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" }, 2192 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" }, 2193 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" }, 2194 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" }, 2195 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" }, 2196 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" }, 2197 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" }, 2198 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" }, 2199 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" }, 2200 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" }, 2201 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" }, 2202 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" }, 2203 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" }, 2204 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" }, 2205 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" }, 2206 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" }, 2207 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" }, 2208 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" }, 2209 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" }, 2210 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" }, 2211 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" }, 2212 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" }, 2213 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" }, 2214 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" }, 2215 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" }, 2216 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" }, 2217 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" }, 2218 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" }, 2219 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" }, 2220 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" }, 2221 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" }, 2222 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" }, 2223 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" }, 2224 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" }, 2225 { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" }, 2226 { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" }, 2227 { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" }, 2228 { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" }, 2229 { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" }, 2230 { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" }, 2231 { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" }, 2232 { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" }, 2233 { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" }, 2234 { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" }, 2235 { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" }, 2236 { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" }, 2237 { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" }, 2238 { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" }, 2239 { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" }, 2240 { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" }, 2241 { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" }, 2242 { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" }, 2243 { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" }, 2244 { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" }, 2245 { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" }, 2246 { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" }, 2247 { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" }, 2248 { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" }, 2249 { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" }, 2250 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" }, 2251 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" }, 2252 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" }, 2253 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" }, 2254 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" }, 2255 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" }, 2256 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" }, 2257 { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" }, 2258 { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" }, 2259 { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" }, 2260 { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" }, 2261 { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" }, 2262 { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" }, 2263 { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" }, 2264 { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" }, 2265 { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" }, 2266 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" }, 2267 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" }, 2268 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" }, 2269 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" }, 2270 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" }, 2271 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" }, 2272 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" }, 2273 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" }, 2274 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" }, 2275 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" }, 2276 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" }, 2277 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" }, 2278 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" }, 2279 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" }, 2280 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" }, 2281 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" }, 2282 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" }, 2283 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" }, 2284 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" }, 2285 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" }, 2286 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" }, 2287 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" }, 2288 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" }, 2289 { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" }, 2290 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" }, 2291 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" }, 2292 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" }, 2293 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" }, 2294 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" }, 2295 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" }, 2296 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" }, 2297 { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" }, 2298 { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" }, 2299 { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" }, 2300 { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" }, 2301 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" }, 2302 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" }, 2303 { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" }, 2304 { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" }, 2305 { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" }, 2306 { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" }, 2307 { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" }, 2308 { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" }, 2309 { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" }, 2310 { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" }, 2311 { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" }, 2312 { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" }, 2313 { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" }, 2314 { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" }, 2315 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" }, 2316 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" }, 2317 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" }, 2318 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" }, 2319 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" }, 2320 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" }, 2321 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" }, 2322 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" }, 2323 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" }, 2324 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" }, 2325 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" }, 2326 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" }, 2327 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" }, 2328 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" }, 2329 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" }, 2330 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" }, 2331 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" }, 2332 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" }, 2333 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" }, 2334 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" }, 2335 { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" }, 2336 { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" }, 2337 { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" }, 2338 { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" }, 2339 { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" }, 2340 { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" }, 2341 { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" }, 2342 { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" }, 2343 { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" }, 2344 { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" }, 2345 { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" }, 2346 { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" }, 2347 { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" }, 2348 { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" }, 2349 { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" }, 2350 { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" }, 2351 { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" }, 2352 { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" }, 2353 { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" }, 2354 { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" }, 2355 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" }, 2356 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" }, 2357 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" }, 2358 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" }, 2359 { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" }, 2360 { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" }, 2361 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" }, 2362 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" }, 2363 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" }, 2364 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" }, 2365 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" }, 2366 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" }, 2367 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" }, 2368 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" }, 2369 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" }, 2370 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" }, 2371 { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" }, 2372 { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" }, 2373 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" }, 2374 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" }, 2375 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" }, 2376 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" }, 2377 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" }, 2378 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" }, 2379 { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" }, 2380 { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" }, 2381 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" }, 2382 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" }, 2383 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" }, 2384 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" }, 2385 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" }, 2386 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" }, 2387 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" }, 2388 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" }, 2389 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" }, 2390 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" }, 2391 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" }, 2392 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" }, 2393 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" }, 2394 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" }, 2395 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" }, 2396 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" }, 2397 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" }, 2398 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" }, 2399 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" }, 2400 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" }, 2401 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" }, 2402 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" }, 2403 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" }, 2404 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" }, 2405 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" }, 2406 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" }, 2407 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" }, 2408 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" }, 2409 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" }, 2410 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" }, 2411 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" }, 2412 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" }, 2413 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" }, 2414 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" }, 2415 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" }, 2416 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" }, 2417 { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" }, 2418 { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" }, 2419 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" }, 2420 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" }, 2421 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" }, 2422 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" }, 2423 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" }, 2424 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" }, 2425 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" }, 2426 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" }, 2427 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" }, 2428 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" }, 2429 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" }, 2430 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" }, 2431 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" }, 2432 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" }, 2433 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" }, 2434 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" }, 2435 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" }, 2436 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" }, 2437 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" }, 2438 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" }, 2439 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" }, 2440 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" }, 2441 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" }, 2442 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" }, 2443 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" }, 2444 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" }, 2445 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" }, 2446 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" }, 2447 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" }, 2448 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" }, 2449 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" }, 2450 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" }, 2451 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" }, 2452 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" }, 2453 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" }, 2454 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" }, 2455 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" }, 2456 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" }, 2457 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" }, 2458 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" }, 2459 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" }, 2460 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" }, 2461 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" }, 2462 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" }, 2463 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" }, 2464 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" }, 2465 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" }, 2466 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" }, 2467 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" }, 2468 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" }, 2469 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" }, 2470 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" }, 2471 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" }, 2472 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" }, 2473 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" }, 2474 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" }, 2475 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" }, 2476 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" }, 2477 { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" }, 2478 { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" }, 2479 { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" }, 2480 { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" }, 2481 { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" }, 2482 { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" }, 2483 { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" }, 2484 { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" }, 2485 { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" }, 2486 { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" }, 2487 { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" }, 2488 { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" }, 2489 { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" }, 2490 { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" }, 2491 { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" }, 2492 { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" }, 2493 { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" }, 2494 { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" }, 2495 { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" }, 2496 { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" }, 2497 { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" }, 2498 { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" }, 2499 { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" }, 2500 { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" }, 2501 { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" }, 2502 { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" }, 2503 { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" }, 2504 { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" }, 2505 { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" }, 2506 { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" }, 2507 { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" }, 2508 { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" }, 2509 { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" }, 2510 { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" }, 2511 { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" }, 2512 { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" }, 2513 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" }, 2514 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" }, 2515 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" }, 2516 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" }, 2517 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" }, 2518 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" }, 2519 { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" }, 2520 { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" }, 2521 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" }, 2522 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" }, 2523 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" }, 2524 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" }, 2525 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" }, 2526 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" }, 2527 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" }, 2528 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" }, 2529 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" }, 2530 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" }, 2531 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" }, 2532 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" }, 2533 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" }, 2534 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" }, 2535 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" }, 2536 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" }, 2537 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" }, 2538 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" }, 2539 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" }, 2540 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" }, 2541 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" }, 2542 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" }, 2543 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" }, 2544 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" }, 2545 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" }, 2546 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" }, 2547 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" }, 2548 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" }, 2549 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" }, 2550 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" }, 2551 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" }, 2552 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" }, 2553 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" }, 2554 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" }, 2555 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" }, 2556 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" }, 2557 { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" }, 2558 { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" }, 2559 { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" }, 2560 { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" }, 2561 { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" }, 2562 { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" }, 2563 { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" }, 2564 { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" }, 2565 { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" }, 2566 { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" }, 2567 { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" }, 2568 { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" }, 2569 { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" }, 2570 { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" }, 2571 { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" }, 2572 { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" }, 2573 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" }, 2574 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" }, 2575 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" }, 2576 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" }, 2577 { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" }, 2578 { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" }, 2579 { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" }, 2580 { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" }, 2581 { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" }, 2582 { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" }, 2583 { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" }, 2584 { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" }, 2585 { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" }, 2586 { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" }, 2587 { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" }, 2588 { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" }, 2589 { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" }, 2590 { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" }, 2591 { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" }, 2592 { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" }, 2593 { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" }, 2594 { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" }, 2595 { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" }, 2596 { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" }, 2597 { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" }, 2598 { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" }, 2599 { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" }, 2600 { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" }, 2601 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" }, 2602 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" }, 2603 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" }, 2604 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" }, 2605 { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" }, 2606 { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" }, 2607 { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" }, 2608 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" }, 2609 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" }, 2610 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" }, 2611 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" }, 2612 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" }, 2613 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" }, 2614 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" }, 2615 { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" }, 2616 { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" }, 2617 { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" }, 2618 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" }, 2619 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" }, 2620 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" }, 2621 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" }, 2622 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" }, 2623 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" }, 2624 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" }, 2625 { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" }, 2626 { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" }, 2627 { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" }, 2628 { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" }, 2629 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" }, 2630 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" }, 2631 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" }, 2632 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" }, 2633 { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" }, 2634 { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" }, 2635 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" }, 2636 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" }, 2637 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" }, 2638 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" }, 2639 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" }, 2640 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" }, 2641 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" }, 2642 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" }, 2643 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" }, 2644 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" }, 2645 { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" }, 2646 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" }, 2647 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" }, 2648 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" }, 2649 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" }, 2650 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" }, 2651 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" }, 2652 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" }, 2653 { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" }, 2654 { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" }, 2655 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" }, 2656 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" }, 2657 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" }, 2658 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" }, 2659 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" }, 2660 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" }, 2661 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" }, 2662 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" }, 2663 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" }, 2664 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" }, 2665 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" }, 2666 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" }, 2667 { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" }, 2668 { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" }, 2669 { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" }, 2670 { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" }, 2671 { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" }, 2672 { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" }, 2673 { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" }, 2674 { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" }, 2675 { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" }, 2676 { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" }, 2677 { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" }, 2678 { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" }, 2679 { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" }, 2680 { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" }, 2681 { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" }, 2682 { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" }, 2683 { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" }, 2684 { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" }, 2685 }; 2686 2687 // Sort the tables on first execution so we can binary search them. 2688 auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) { 2689 return LHS.BuiltinID < RHS.BuiltinID; 2690 }; 2691 static const bool SortOnce = 2692 (llvm::sort(ValidCPU, SortCmp), 2693 llvm::sort(ValidHVX, SortCmp), true); 2694 (void)SortOnce; 2695 auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) { 2696 return BI.BuiltinID < BuiltinID; 2697 }; 2698 2699 const TargetInfo &TI = Context.getTargetInfo(); 2700 2701 const BuiltinAndString *FC = 2702 std::lower_bound(std::begin(ValidCPU), std::end(ValidCPU), BuiltinID, 2703 LowerBoundCmp); 2704 if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) { 2705 const TargetOptions &Opts = TI.getTargetOpts(); 2706 StringRef CPU = Opts.CPU; 2707 if (!CPU.empty()) { 2708 assert(CPU.startswith("hexagon") && "Unexpected CPU name"); 2709 CPU.consume_front("hexagon"); 2710 SmallVector<StringRef, 3> CPUs; 2711 StringRef(FC->Str).split(CPUs, ','); 2712 if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; })) 2713 return Diag(TheCall->getBeginLoc(), 2714 diag::err_hexagon_builtin_unsupported_cpu); 2715 } 2716 } 2717 2718 const BuiltinAndString *FH = 2719 std::lower_bound(std::begin(ValidHVX), std::end(ValidHVX), BuiltinID, 2720 LowerBoundCmp); 2721 if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) { 2722 if (!TI.hasFeature("hvx")) 2723 return Diag(TheCall->getBeginLoc(), 2724 diag::err_hexagon_builtin_requires_hvx); 2725 2726 SmallVector<StringRef, 3> HVXs; 2727 StringRef(FH->Str).split(HVXs, ','); 2728 bool IsValid = llvm::any_of(HVXs, 2729 [&TI] (StringRef V) { 2730 std::string F = "hvx" + V.str(); 2731 return TI.hasFeature(F); 2732 }); 2733 if (!IsValid) 2734 return Diag(TheCall->getBeginLoc(), 2735 diag::err_hexagon_builtin_unsupported_hvx); 2736 } 2737 2738 return false; 2739 } 2740 2741 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2742 struct ArgInfo { 2743 uint8_t OpNum; 2744 bool IsSigned; 2745 uint8_t BitWidth; 2746 uint8_t Align; 2747 }; 2748 struct BuiltinInfo { 2749 unsigned BuiltinID; 2750 ArgInfo Infos[2]; 2751 }; 2752 2753 static BuiltinInfo Infos[] = { 2754 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2755 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2756 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2757 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 0 }} }, 2758 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2759 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2760 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2761 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2762 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2763 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2764 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2765 2766 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2767 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2768 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2769 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2770 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2772 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2774 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2777 2778 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2798 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2803 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2804 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2807 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2808 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2809 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2810 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2811 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2812 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2813 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2814 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2815 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2816 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2817 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2818 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2819 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2820 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2821 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2822 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2823 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2824 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2825 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2826 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2828 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2830 {{ 1, false, 6, 0 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2834 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2837 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2838 {{ 1, false, 5, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2842 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2843 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2845 { 2, false, 5, 0 }} }, 2846 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2847 { 2, false, 6, 0 }} }, 2848 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2849 { 3, false, 5, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2851 { 3, false, 6, 0 }} }, 2852 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2853 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2854 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2855 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2857 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2859 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2864 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2866 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2867 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2868 {{ 2, false, 4, 0 }, 2869 { 3, false, 5, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2871 {{ 2, false, 4, 0 }, 2872 { 3, false, 5, 0 }} }, 2873 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2874 {{ 2, false, 4, 0 }, 2875 { 3, false, 5, 0 }} }, 2876 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2877 {{ 2, false, 4, 0 }, 2878 { 3, false, 5, 0 }} }, 2879 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2880 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2881 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2882 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2883 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2885 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2886 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2890 { 2, false, 5, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2892 { 2, false, 6, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2894 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2896 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2898 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2900 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2902 {{ 1, false, 4, 0 }} }, 2903 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2905 {{ 1, false, 4, 0 }} }, 2906 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2907 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2908 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2909 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2910 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2911 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2912 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2913 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2914 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2915 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2916 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2917 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2918 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2919 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2920 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2921 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2922 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2923 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2924 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2925 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2926 {{ 3, false, 1, 0 }} }, 2927 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2928 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2929 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2930 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2931 {{ 3, false, 1, 0 }} }, 2932 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2933 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2934 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2935 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2936 {{ 3, false, 1, 0 }} }, 2937 }; 2938 2939 // Use a dynamically initialized static to sort the table exactly once on 2940 // first run. 2941 static const bool SortOnce = 2942 (llvm::sort(Infos, 2943 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2944 return LHS.BuiltinID < RHS.BuiltinID; 2945 }), 2946 true); 2947 (void)SortOnce; 2948 2949 const BuiltinInfo *F = 2950 std::lower_bound(std::begin(Infos), std::end(Infos), BuiltinID, 2951 [](const BuiltinInfo &BI, unsigned BuiltinID) { 2952 return BI.BuiltinID < BuiltinID; 2953 }); 2954 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2955 return false; 2956 2957 bool Error = false; 2958 2959 for (const ArgInfo &A : F->Infos) { 2960 // Ignore empty ArgInfo elements. 2961 if (A.BitWidth == 0) 2962 continue; 2963 2964 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2965 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2966 if (!A.Align) { 2967 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2968 } else { 2969 unsigned M = 1 << A.Align; 2970 Min *= M; 2971 Max *= M; 2972 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2973 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2974 } 2975 } 2976 return Error; 2977 } 2978 2979 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2980 CallExpr *TheCall) { 2981 return CheckHexagonBuiltinCpu(BuiltinID, TheCall) || 2982 CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2983 } 2984 2985 2986 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the 2987 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2988 // ordering for DSP is unspecified. MSA is ordered by the data format used 2989 // by the underlying instruction i.e., df/m, df/n and then by size. 2990 // 2991 // FIXME: The size tests here should instead be tablegen'd along with the 2992 // definitions from include/clang/Basic/BuiltinsMips.def. 2993 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2994 // be too. 2995 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2996 unsigned i = 0, l = 0, u = 0, m = 0; 2997 switch (BuiltinID) { 2998 default: return false; 2999 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3000 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3001 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3002 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3003 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3004 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3005 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3006 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3007 // df/m field. 3008 // These intrinsics take an unsigned 3 bit immediate. 3009 case Mips::BI__builtin_msa_bclri_b: 3010 case Mips::BI__builtin_msa_bnegi_b: 3011 case Mips::BI__builtin_msa_bseti_b: 3012 case Mips::BI__builtin_msa_sat_s_b: 3013 case Mips::BI__builtin_msa_sat_u_b: 3014 case Mips::BI__builtin_msa_slli_b: 3015 case Mips::BI__builtin_msa_srai_b: 3016 case Mips::BI__builtin_msa_srari_b: 3017 case Mips::BI__builtin_msa_srli_b: 3018 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3019 case Mips::BI__builtin_msa_binsli_b: 3020 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3021 // These intrinsics take an unsigned 4 bit immediate. 3022 case Mips::BI__builtin_msa_bclri_h: 3023 case Mips::BI__builtin_msa_bnegi_h: 3024 case Mips::BI__builtin_msa_bseti_h: 3025 case Mips::BI__builtin_msa_sat_s_h: 3026 case Mips::BI__builtin_msa_sat_u_h: 3027 case Mips::BI__builtin_msa_slli_h: 3028 case Mips::BI__builtin_msa_srai_h: 3029 case Mips::BI__builtin_msa_srari_h: 3030 case Mips::BI__builtin_msa_srli_h: 3031 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3032 case Mips::BI__builtin_msa_binsli_h: 3033 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3034 // These intrinsics take an unsigned 5 bit immediate. 3035 // The first block of intrinsics actually have an unsigned 5 bit field, 3036 // not a df/n field. 3037 case Mips::BI__builtin_msa_clei_u_b: 3038 case Mips::BI__builtin_msa_clei_u_h: 3039 case Mips::BI__builtin_msa_clei_u_w: 3040 case Mips::BI__builtin_msa_clei_u_d: 3041 case Mips::BI__builtin_msa_clti_u_b: 3042 case Mips::BI__builtin_msa_clti_u_h: 3043 case Mips::BI__builtin_msa_clti_u_w: 3044 case Mips::BI__builtin_msa_clti_u_d: 3045 case Mips::BI__builtin_msa_maxi_u_b: 3046 case Mips::BI__builtin_msa_maxi_u_h: 3047 case Mips::BI__builtin_msa_maxi_u_w: 3048 case Mips::BI__builtin_msa_maxi_u_d: 3049 case Mips::BI__builtin_msa_mini_u_b: 3050 case Mips::BI__builtin_msa_mini_u_h: 3051 case Mips::BI__builtin_msa_mini_u_w: 3052 case Mips::BI__builtin_msa_mini_u_d: 3053 case Mips::BI__builtin_msa_addvi_b: 3054 case Mips::BI__builtin_msa_addvi_h: 3055 case Mips::BI__builtin_msa_addvi_w: 3056 case Mips::BI__builtin_msa_addvi_d: 3057 case Mips::BI__builtin_msa_bclri_w: 3058 case Mips::BI__builtin_msa_bnegi_w: 3059 case Mips::BI__builtin_msa_bseti_w: 3060 case Mips::BI__builtin_msa_sat_s_w: 3061 case Mips::BI__builtin_msa_sat_u_w: 3062 case Mips::BI__builtin_msa_slli_w: 3063 case Mips::BI__builtin_msa_srai_w: 3064 case Mips::BI__builtin_msa_srari_w: 3065 case Mips::BI__builtin_msa_srli_w: 3066 case Mips::BI__builtin_msa_srlri_w: 3067 case Mips::BI__builtin_msa_subvi_b: 3068 case Mips::BI__builtin_msa_subvi_h: 3069 case Mips::BI__builtin_msa_subvi_w: 3070 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3071 case Mips::BI__builtin_msa_binsli_w: 3072 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3073 // These intrinsics take an unsigned 6 bit immediate. 3074 case Mips::BI__builtin_msa_bclri_d: 3075 case Mips::BI__builtin_msa_bnegi_d: 3076 case Mips::BI__builtin_msa_bseti_d: 3077 case Mips::BI__builtin_msa_sat_s_d: 3078 case Mips::BI__builtin_msa_sat_u_d: 3079 case Mips::BI__builtin_msa_slli_d: 3080 case Mips::BI__builtin_msa_srai_d: 3081 case Mips::BI__builtin_msa_srari_d: 3082 case Mips::BI__builtin_msa_srli_d: 3083 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3084 case Mips::BI__builtin_msa_binsli_d: 3085 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3086 // These intrinsics take a signed 5 bit immediate. 3087 case Mips::BI__builtin_msa_ceqi_b: 3088 case Mips::BI__builtin_msa_ceqi_h: 3089 case Mips::BI__builtin_msa_ceqi_w: 3090 case Mips::BI__builtin_msa_ceqi_d: 3091 case Mips::BI__builtin_msa_clti_s_b: 3092 case Mips::BI__builtin_msa_clti_s_h: 3093 case Mips::BI__builtin_msa_clti_s_w: 3094 case Mips::BI__builtin_msa_clti_s_d: 3095 case Mips::BI__builtin_msa_clei_s_b: 3096 case Mips::BI__builtin_msa_clei_s_h: 3097 case Mips::BI__builtin_msa_clei_s_w: 3098 case Mips::BI__builtin_msa_clei_s_d: 3099 case Mips::BI__builtin_msa_maxi_s_b: 3100 case Mips::BI__builtin_msa_maxi_s_h: 3101 case Mips::BI__builtin_msa_maxi_s_w: 3102 case Mips::BI__builtin_msa_maxi_s_d: 3103 case Mips::BI__builtin_msa_mini_s_b: 3104 case Mips::BI__builtin_msa_mini_s_h: 3105 case Mips::BI__builtin_msa_mini_s_w: 3106 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3107 // These intrinsics take an unsigned 8 bit immediate. 3108 case Mips::BI__builtin_msa_andi_b: 3109 case Mips::BI__builtin_msa_nori_b: 3110 case Mips::BI__builtin_msa_ori_b: 3111 case Mips::BI__builtin_msa_shf_b: 3112 case Mips::BI__builtin_msa_shf_h: 3113 case Mips::BI__builtin_msa_shf_w: 3114 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3115 case Mips::BI__builtin_msa_bseli_b: 3116 case Mips::BI__builtin_msa_bmnzi_b: 3117 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3118 // df/n format 3119 // These intrinsics take an unsigned 4 bit immediate. 3120 case Mips::BI__builtin_msa_copy_s_b: 3121 case Mips::BI__builtin_msa_copy_u_b: 3122 case Mips::BI__builtin_msa_insve_b: 3123 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3124 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3125 // These intrinsics take an unsigned 3 bit immediate. 3126 case Mips::BI__builtin_msa_copy_s_h: 3127 case Mips::BI__builtin_msa_copy_u_h: 3128 case Mips::BI__builtin_msa_insve_h: 3129 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3130 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3131 // These intrinsics take an unsigned 2 bit immediate. 3132 case Mips::BI__builtin_msa_copy_s_w: 3133 case Mips::BI__builtin_msa_copy_u_w: 3134 case Mips::BI__builtin_msa_insve_w: 3135 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3136 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3137 // These intrinsics take an unsigned 1 bit immediate. 3138 case Mips::BI__builtin_msa_copy_s_d: 3139 case Mips::BI__builtin_msa_copy_u_d: 3140 case Mips::BI__builtin_msa_insve_d: 3141 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3142 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3143 // Memory offsets and immediate loads. 3144 // These intrinsics take a signed 10 bit immediate. 3145 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3146 case Mips::BI__builtin_msa_ldi_h: 3147 case Mips::BI__builtin_msa_ldi_w: 3148 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3149 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3150 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3151 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3152 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3153 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3154 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3155 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3156 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3157 } 3158 3159 if (!m) 3160 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3161 3162 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3163 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3164 } 3165 3166 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3167 unsigned i = 0, l = 0, u = 0; 3168 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3169 BuiltinID == PPC::BI__builtin_divdeu || 3170 BuiltinID == PPC::BI__builtin_bpermd; 3171 bool IsTarget64Bit = Context.getTargetInfo() 3172 .getTypeWidth(Context 3173 .getTargetInfo() 3174 .getIntPtrType()) == 64; 3175 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3176 BuiltinID == PPC::BI__builtin_divweu || 3177 BuiltinID == PPC::BI__builtin_divde || 3178 BuiltinID == PPC::BI__builtin_divdeu; 3179 3180 if (Is64BitBltin && !IsTarget64Bit) 3181 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3182 << TheCall->getSourceRange(); 3183 3184 if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) || 3185 (BuiltinID == PPC::BI__builtin_bpermd && 3186 !Context.getTargetInfo().hasFeature("bpermd"))) 3187 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3188 << TheCall->getSourceRange(); 3189 3190 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3191 if (!Context.getTargetInfo().hasFeature("vsx")) 3192 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3193 << TheCall->getSourceRange(); 3194 return false; 3195 }; 3196 3197 switch (BuiltinID) { 3198 default: return false; 3199 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3200 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3201 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3202 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3203 case PPC::BI__builtin_tbegin: 3204 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3205 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3206 case PPC::BI__builtin_tabortwc: 3207 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3208 case PPC::BI__builtin_tabortwci: 3209 case PPC::BI__builtin_tabortdci: 3210 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3211 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3212 case PPC::BI__builtin_vsx_xxpermdi: 3213 case PPC::BI__builtin_vsx_xxsldwi: 3214 return SemaBuiltinVSX(TheCall); 3215 case PPC::BI__builtin_unpack_vector_int128: 3216 return SemaVSXCheck(TheCall) || 3217 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3218 case PPC::BI__builtin_pack_vector_int128: 3219 return SemaVSXCheck(TheCall); 3220 } 3221 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3222 } 3223 3224 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3225 CallExpr *TheCall) { 3226 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3227 Expr *Arg = TheCall->getArg(0); 3228 llvm::APSInt AbortCode(32); 3229 if (Arg->isIntegerConstantExpr(AbortCode, Context) && 3230 AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) 3231 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3232 << Arg->getSourceRange(); 3233 } 3234 3235 // For intrinsics which take an immediate value as part of the instruction, 3236 // range check them here. 3237 unsigned i = 0, l = 0, u = 0; 3238 switch (BuiltinID) { 3239 default: return false; 3240 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3241 case SystemZ::BI__builtin_s390_verimb: 3242 case SystemZ::BI__builtin_s390_verimh: 3243 case SystemZ::BI__builtin_s390_verimf: 3244 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3245 case SystemZ::BI__builtin_s390_vfaeb: 3246 case SystemZ::BI__builtin_s390_vfaeh: 3247 case SystemZ::BI__builtin_s390_vfaef: 3248 case SystemZ::BI__builtin_s390_vfaebs: 3249 case SystemZ::BI__builtin_s390_vfaehs: 3250 case SystemZ::BI__builtin_s390_vfaefs: 3251 case SystemZ::BI__builtin_s390_vfaezb: 3252 case SystemZ::BI__builtin_s390_vfaezh: 3253 case SystemZ::BI__builtin_s390_vfaezf: 3254 case SystemZ::BI__builtin_s390_vfaezbs: 3255 case SystemZ::BI__builtin_s390_vfaezhs: 3256 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3257 case SystemZ::BI__builtin_s390_vfisb: 3258 case SystemZ::BI__builtin_s390_vfidb: 3259 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3260 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3261 case SystemZ::BI__builtin_s390_vftcisb: 3262 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3263 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3264 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3265 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3266 case SystemZ::BI__builtin_s390_vstrcb: 3267 case SystemZ::BI__builtin_s390_vstrch: 3268 case SystemZ::BI__builtin_s390_vstrcf: 3269 case SystemZ::BI__builtin_s390_vstrczb: 3270 case SystemZ::BI__builtin_s390_vstrczh: 3271 case SystemZ::BI__builtin_s390_vstrczf: 3272 case SystemZ::BI__builtin_s390_vstrcbs: 3273 case SystemZ::BI__builtin_s390_vstrchs: 3274 case SystemZ::BI__builtin_s390_vstrcfs: 3275 case SystemZ::BI__builtin_s390_vstrczbs: 3276 case SystemZ::BI__builtin_s390_vstrczhs: 3277 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3278 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3279 case SystemZ::BI__builtin_s390_vfminsb: 3280 case SystemZ::BI__builtin_s390_vfmaxsb: 3281 case SystemZ::BI__builtin_s390_vfmindb: 3282 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3283 } 3284 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3285 } 3286 3287 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3288 /// This checks that the target supports __builtin_cpu_supports and 3289 /// that the string argument is constant and valid. 3290 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) { 3291 Expr *Arg = TheCall->getArg(0); 3292 3293 // Check if the argument is a string literal. 3294 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3295 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3296 << Arg->getSourceRange(); 3297 3298 // Check the contents of the string. 3299 StringRef Feature = 3300 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3301 if (!S.Context.getTargetInfo().validateCpuSupports(Feature)) 3302 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3303 << Arg->getSourceRange(); 3304 return false; 3305 } 3306 3307 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3308 /// This checks that the target supports __builtin_cpu_is and 3309 /// that the string argument is constant and valid. 3310 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) { 3311 Expr *Arg = TheCall->getArg(0); 3312 3313 // Check if the argument is a string literal. 3314 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3315 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3316 << Arg->getSourceRange(); 3317 3318 // Check the contents of the string. 3319 StringRef Feature = 3320 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3321 if (!S.Context.getTargetInfo().validateCpuIs(Feature)) 3322 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3323 << Arg->getSourceRange(); 3324 return false; 3325 } 3326 3327 // Check if the rounding mode is legal. 3328 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3329 // Indicates if this instruction has rounding control or just SAE. 3330 bool HasRC = false; 3331 3332 unsigned ArgNum = 0; 3333 switch (BuiltinID) { 3334 default: 3335 return false; 3336 case X86::BI__builtin_ia32_vcvttsd2si32: 3337 case X86::BI__builtin_ia32_vcvttsd2si64: 3338 case X86::BI__builtin_ia32_vcvttsd2usi32: 3339 case X86::BI__builtin_ia32_vcvttsd2usi64: 3340 case X86::BI__builtin_ia32_vcvttss2si32: 3341 case X86::BI__builtin_ia32_vcvttss2si64: 3342 case X86::BI__builtin_ia32_vcvttss2usi32: 3343 case X86::BI__builtin_ia32_vcvttss2usi64: 3344 ArgNum = 1; 3345 break; 3346 case X86::BI__builtin_ia32_maxpd512: 3347 case X86::BI__builtin_ia32_maxps512: 3348 case X86::BI__builtin_ia32_minpd512: 3349 case X86::BI__builtin_ia32_minps512: 3350 ArgNum = 2; 3351 break; 3352 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3353 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3354 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3355 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3356 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3357 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3358 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3359 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3360 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3361 case X86::BI__builtin_ia32_exp2pd_mask: 3362 case X86::BI__builtin_ia32_exp2ps_mask: 3363 case X86::BI__builtin_ia32_getexppd512_mask: 3364 case X86::BI__builtin_ia32_getexpps512_mask: 3365 case X86::BI__builtin_ia32_rcp28pd_mask: 3366 case X86::BI__builtin_ia32_rcp28ps_mask: 3367 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3368 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3369 case X86::BI__builtin_ia32_vcomisd: 3370 case X86::BI__builtin_ia32_vcomiss: 3371 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3372 ArgNum = 3; 3373 break; 3374 case X86::BI__builtin_ia32_cmppd512_mask: 3375 case X86::BI__builtin_ia32_cmpps512_mask: 3376 case X86::BI__builtin_ia32_cmpsd_mask: 3377 case X86::BI__builtin_ia32_cmpss_mask: 3378 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3379 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3380 case X86::BI__builtin_ia32_getexpss128_round_mask: 3381 case X86::BI__builtin_ia32_maxsd_round_mask: 3382 case X86::BI__builtin_ia32_maxss_round_mask: 3383 case X86::BI__builtin_ia32_minsd_round_mask: 3384 case X86::BI__builtin_ia32_minss_round_mask: 3385 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3386 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3387 case X86::BI__builtin_ia32_reducepd512_mask: 3388 case X86::BI__builtin_ia32_reduceps512_mask: 3389 case X86::BI__builtin_ia32_rndscalepd_mask: 3390 case X86::BI__builtin_ia32_rndscaleps_mask: 3391 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3392 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3393 ArgNum = 4; 3394 break; 3395 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3396 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3397 case X86::BI__builtin_ia32_fixupimmps512_mask: 3398 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3399 case X86::BI__builtin_ia32_fixupimmsd_mask: 3400 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3401 case X86::BI__builtin_ia32_fixupimmss_mask: 3402 case X86::BI__builtin_ia32_fixupimmss_maskz: 3403 case X86::BI__builtin_ia32_rangepd512_mask: 3404 case X86::BI__builtin_ia32_rangeps512_mask: 3405 case X86::BI__builtin_ia32_rangesd128_round_mask: 3406 case X86::BI__builtin_ia32_rangess128_round_mask: 3407 case X86::BI__builtin_ia32_reducesd_mask: 3408 case X86::BI__builtin_ia32_reducess_mask: 3409 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3410 case X86::BI__builtin_ia32_rndscaless_round_mask: 3411 ArgNum = 5; 3412 break; 3413 case X86::BI__builtin_ia32_vcvtsd2si64: 3414 case X86::BI__builtin_ia32_vcvtsd2si32: 3415 case X86::BI__builtin_ia32_vcvtsd2usi32: 3416 case X86::BI__builtin_ia32_vcvtsd2usi64: 3417 case X86::BI__builtin_ia32_vcvtss2si32: 3418 case X86::BI__builtin_ia32_vcvtss2si64: 3419 case X86::BI__builtin_ia32_vcvtss2usi32: 3420 case X86::BI__builtin_ia32_vcvtss2usi64: 3421 case X86::BI__builtin_ia32_sqrtpd512: 3422 case X86::BI__builtin_ia32_sqrtps512: 3423 ArgNum = 1; 3424 HasRC = true; 3425 break; 3426 case X86::BI__builtin_ia32_addpd512: 3427 case X86::BI__builtin_ia32_addps512: 3428 case X86::BI__builtin_ia32_divpd512: 3429 case X86::BI__builtin_ia32_divps512: 3430 case X86::BI__builtin_ia32_mulpd512: 3431 case X86::BI__builtin_ia32_mulps512: 3432 case X86::BI__builtin_ia32_subpd512: 3433 case X86::BI__builtin_ia32_subps512: 3434 case X86::BI__builtin_ia32_cvtsi2sd64: 3435 case X86::BI__builtin_ia32_cvtsi2ss32: 3436 case X86::BI__builtin_ia32_cvtsi2ss64: 3437 case X86::BI__builtin_ia32_cvtusi2sd64: 3438 case X86::BI__builtin_ia32_cvtusi2ss32: 3439 case X86::BI__builtin_ia32_cvtusi2ss64: 3440 ArgNum = 2; 3441 HasRC = true; 3442 break; 3443 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3444 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3445 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3446 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3447 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3448 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3449 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3450 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3451 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3452 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3453 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3454 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3455 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3456 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3457 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3458 ArgNum = 3; 3459 HasRC = true; 3460 break; 3461 case X86::BI__builtin_ia32_addss_round_mask: 3462 case X86::BI__builtin_ia32_addsd_round_mask: 3463 case X86::BI__builtin_ia32_divss_round_mask: 3464 case X86::BI__builtin_ia32_divsd_round_mask: 3465 case X86::BI__builtin_ia32_mulss_round_mask: 3466 case X86::BI__builtin_ia32_mulsd_round_mask: 3467 case X86::BI__builtin_ia32_subss_round_mask: 3468 case X86::BI__builtin_ia32_subsd_round_mask: 3469 case X86::BI__builtin_ia32_scalefpd512_mask: 3470 case X86::BI__builtin_ia32_scalefps512_mask: 3471 case X86::BI__builtin_ia32_scalefsd_round_mask: 3472 case X86::BI__builtin_ia32_scalefss_round_mask: 3473 case X86::BI__builtin_ia32_getmantpd512_mask: 3474 case X86::BI__builtin_ia32_getmantps512_mask: 3475 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3476 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3477 case X86::BI__builtin_ia32_sqrtss_round_mask: 3478 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3479 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3480 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3481 case X86::BI__builtin_ia32_vfmaddss3_mask: 3482 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3483 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3484 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3485 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3486 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3487 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3488 case X86::BI__builtin_ia32_vfmaddps512_mask: 3489 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3490 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3491 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3492 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3493 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3494 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3495 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3496 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3497 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3498 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3499 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3500 ArgNum = 4; 3501 HasRC = true; 3502 break; 3503 case X86::BI__builtin_ia32_getmantsd_round_mask: 3504 case X86::BI__builtin_ia32_getmantss_round_mask: 3505 ArgNum = 5; 3506 HasRC = true; 3507 break; 3508 } 3509 3510 llvm::APSInt Result; 3511 3512 // We can't check the value of a dependent argument. 3513 Expr *Arg = TheCall->getArg(ArgNum); 3514 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3515 return false; 3516 3517 // Check constant-ness first. 3518 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3519 return true; 3520 3521 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3522 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3523 // combined with ROUND_NO_EXC. 3524 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3525 Result == 8/*ROUND_NO_EXC*/ || 3526 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3527 return false; 3528 3529 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3530 << Arg->getSourceRange(); 3531 } 3532 3533 // Check if the gather/scatter scale is legal. 3534 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3535 CallExpr *TheCall) { 3536 unsigned ArgNum = 0; 3537 switch (BuiltinID) { 3538 default: 3539 return false; 3540 case X86::BI__builtin_ia32_gatherpfdpd: 3541 case X86::BI__builtin_ia32_gatherpfdps: 3542 case X86::BI__builtin_ia32_gatherpfqpd: 3543 case X86::BI__builtin_ia32_gatherpfqps: 3544 case X86::BI__builtin_ia32_scatterpfdpd: 3545 case X86::BI__builtin_ia32_scatterpfdps: 3546 case X86::BI__builtin_ia32_scatterpfqpd: 3547 case X86::BI__builtin_ia32_scatterpfqps: 3548 ArgNum = 3; 3549 break; 3550 case X86::BI__builtin_ia32_gatherd_pd: 3551 case X86::BI__builtin_ia32_gatherd_pd256: 3552 case X86::BI__builtin_ia32_gatherq_pd: 3553 case X86::BI__builtin_ia32_gatherq_pd256: 3554 case X86::BI__builtin_ia32_gatherd_ps: 3555 case X86::BI__builtin_ia32_gatherd_ps256: 3556 case X86::BI__builtin_ia32_gatherq_ps: 3557 case X86::BI__builtin_ia32_gatherq_ps256: 3558 case X86::BI__builtin_ia32_gatherd_q: 3559 case X86::BI__builtin_ia32_gatherd_q256: 3560 case X86::BI__builtin_ia32_gatherq_q: 3561 case X86::BI__builtin_ia32_gatherq_q256: 3562 case X86::BI__builtin_ia32_gatherd_d: 3563 case X86::BI__builtin_ia32_gatherd_d256: 3564 case X86::BI__builtin_ia32_gatherq_d: 3565 case X86::BI__builtin_ia32_gatherq_d256: 3566 case X86::BI__builtin_ia32_gather3div2df: 3567 case X86::BI__builtin_ia32_gather3div2di: 3568 case X86::BI__builtin_ia32_gather3div4df: 3569 case X86::BI__builtin_ia32_gather3div4di: 3570 case X86::BI__builtin_ia32_gather3div4sf: 3571 case X86::BI__builtin_ia32_gather3div4si: 3572 case X86::BI__builtin_ia32_gather3div8sf: 3573 case X86::BI__builtin_ia32_gather3div8si: 3574 case X86::BI__builtin_ia32_gather3siv2df: 3575 case X86::BI__builtin_ia32_gather3siv2di: 3576 case X86::BI__builtin_ia32_gather3siv4df: 3577 case X86::BI__builtin_ia32_gather3siv4di: 3578 case X86::BI__builtin_ia32_gather3siv4sf: 3579 case X86::BI__builtin_ia32_gather3siv4si: 3580 case X86::BI__builtin_ia32_gather3siv8sf: 3581 case X86::BI__builtin_ia32_gather3siv8si: 3582 case X86::BI__builtin_ia32_gathersiv8df: 3583 case X86::BI__builtin_ia32_gathersiv16sf: 3584 case X86::BI__builtin_ia32_gatherdiv8df: 3585 case X86::BI__builtin_ia32_gatherdiv16sf: 3586 case X86::BI__builtin_ia32_gathersiv8di: 3587 case X86::BI__builtin_ia32_gathersiv16si: 3588 case X86::BI__builtin_ia32_gatherdiv8di: 3589 case X86::BI__builtin_ia32_gatherdiv16si: 3590 case X86::BI__builtin_ia32_scatterdiv2df: 3591 case X86::BI__builtin_ia32_scatterdiv2di: 3592 case X86::BI__builtin_ia32_scatterdiv4df: 3593 case X86::BI__builtin_ia32_scatterdiv4di: 3594 case X86::BI__builtin_ia32_scatterdiv4sf: 3595 case X86::BI__builtin_ia32_scatterdiv4si: 3596 case X86::BI__builtin_ia32_scatterdiv8sf: 3597 case X86::BI__builtin_ia32_scatterdiv8si: 3598 case X86::BI__builtin_ia32_scattersiv2df: 3599 case X86::BI__builtin_ia32_scattersiv2di: 3600 case X86::BI__builtin_ia32_scattersiv4df: 3601 case X86::BI__builtin_ia32_scattersiv4di: 3602 case X86::BI__builtin_ia32_scattersiv4sf: 3603 case X86::BI__builtin_ia32_scattersiv4si: 3604 case X86::BI__builtin_ia32_scattersiv8sf: 3605 case X86::BI__builtin_ia32_scattersiv8si: 3606 case X86::BI__builtin_ia32_scattersiv8df: 3607 case X86::BI__builtin_ia32_scattersiv16sf: 3608 case X86::BI__builtin_ia32_scatterdiv8df: 3609 case X86::BI__builtin_ia32_scatterdiv16sf: 3610 case X86::BI__builtin_ia32_scattersiv8di: 3611 case X86::BI__builtin_ia32_scattersiv16si: 3612 case X86::BI__builtin_ia32_scatterdiv8di: 3613 case X86::BI__builtin_ia32_scatterdiv16si: 3614 ArgNum = 4; 3615 break; 3616 } 3617 3618 llvm::APSInt Result; 3619 3620 // We can't check the value of a dependent argument. 3621 Expr *Arg = TheCall->getArg(ArgNum); 3622 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3623 return false; 3624 3625 // Check constant-ness first. 3626 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3627 return true; 3628 3629 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3630 return false; 3631 3632 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3633 << Arg->getSourceRange(); 3634 } 3635 3636 static bool isX86_32Builtin(unsigned BuiltinID) { 3637 // These builtins only work on x86-32 targets. 3638 switch (BuiltinID) { 3639 case X86::BI__builtin_ia32_readeflags_u32: 3640 case X86::BI__builtin_ia32_writeeflags_u32: 3641 return true; 3642 } 3643 3644 return false; 3645 } 3646 3647 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3648 if (BuiltinID == X86::BI__builtin_cpu_supports) 3649 return SemaBuiltinCpuSupports(*this, TheCall); 3650 3651 if (BuiltinID == X86::BI__builtin_cpu_is) 3652 return SemaBuiltinCpuIs(*this, TheCall); 3653 3654 // Check for 32-bit only builtins on a 64-bit target. 3655 const llvm::Triple &TT = Context.getTargetInfo().getTriple(); 3656 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3657 return Diag(TheCall->getCallee()->getBeginLoc(), 3658 diag::err_32_bit_builtin_64_bit_tgt); 3659 3660 // If the intrinsic has rounding or SAE make sure its valid. 3661 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3662 return true; 3663 3664 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3665 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3666 return true; 3667 3668 // For intrinsics which take an immediate value as part of the instruction, 3669 // range check them here. 3670 int i = 0, l = 0, u = 0; 3671 switch (BuiltinID) { 3672 default: 3673 return false; 3674 case X86::BI__builtin_ia32_vec_ext_v2si: 3675 case X86::BI__builtin_ia32_vec_ext_v2di: 3676 case X86::BI__builtin_ia32_vextractf128_pd256: 3677 case X86::BI__builtin_ia32_vextractf128_ps256: 3678 case X86::BI__builtin_ia32_vextractf128_si256: 3679 case X86::BI__builtin_ia32_extract128i256: 3680 case X86::BI__builtin_ia32_extractf64x4_mask: 3681 case X86::BI__builtin_ia32_extracti64x4_mask: 3682 case X86::BI__builtin_ia32_extractf32x8_mask: 3683 case X86::BI__builtin_ia32_extracti32x8_mask: 3684 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3685 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3686 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3687 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3688 i = 1; l = 0; u = 1; 3689 break; 3690 case X86::BI__builtin_ia32_vec_set_v2di: 3691 case X86::BI__builtin_ia32_vinsertf128_pd256: 3692 case X86::BI__builtin_ia32_vinsertf128_ps256: 3693 case X86::BI__builtin_ia32_vinsertf128_si256: 3694 case X86::BI__builtin_ia32_insert128i256: 3695 case X86::BI__builtin_ia32_insertf32x8: 3696 case X86::BI__builtin_ia32_inserti32x8: 3697 case X86::BI__builtin_ia32_insertf64x4: 3698 case X86::BI__builtin_ia32_inserti64x4: 3699 case X86::BI__builtin_ia32_insertf64x2_256: 3700 case X86::BI__builtin_ia32_inserti64x2_256: 3701 case X86::BI__builtin_ia32_insertf32x4_256: 3702 case X86::BI__builtin_ia32_inserti32x4_256: 3703 i = 2; l = 0; u = 1; 3704 break; 3705 case X86::BI__builtin_ia32_vpermilpd: 3706 case X86::BI__builtin_ia32_vec_ext_v4hi: 3707 case X86::BI__builtin_ia32_vec_ext_v4si: 3708 case X86::BI__builtin_ia32_vec_ext_v4sf: 3709 case X86::BI__builtin_ia32_vec_ext_v4di: 3710 case X86::BI__builtin_ia32_extractf32x4_mask: 3711 case X86::BI__builtin_ia32_extracti32x4_mask: 3712 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3713 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3714 i = 1; l = 0; u = 3; 3715 break; 3716 case X86::BI_mm_prefetch: 3717 case X86::BI__builtin_ia32_vec_ext_v8hi: 3718 case X86::BI__builtin_ia32_vec_ext_v8si: 3719 i = 1; l = 0; u = 7; 3720 break; 3721 case X86::BI__builtin_ia32_sha1rnds4: 3722 case X86::BI__builtin_ia32_blendpd: 3723 case X86::BI__builtin_ia32_shufpd: 3724 case X86::BI__builtin_ia32_vec_set_v4hi: 3725 case X86::BI__builtin_ia32_vec_set_v4si: 3726 case X86::BI__builtin_ia32_vec_set_v4di: 3727 case X86::BI__builtin_ia32_shuf_f32x4_256: 3728 case X86::BI__builtin_ia32_shuf_f64x2_256: 3729 case X86::BI__builtin_ia32_shuf_i32x4_256: 3730 case X86::BI__builtin_ia32_shuf_i64x2_256: 3731 case X86::BI__builtin_ia32_insertf64x2_512: 3732 case X86::BI__builtin_ia32_inserti64x2_512: 3733 case X86::BI__builtin_ia32_insertf32x4: 3734 case X86::BI__builtin_ia32_inserti32x4: 3735 i = 2; l = 0; u = 3; 3736 break; 3737 case X86::BI__builtin_ia32_vpermil2pd: 3738 case X86::BI__builtin_ia32_vpermil2pd256: 3739 case X86::BI__builtin_ia32_vpermil2ps: 3740 case X86::BI__builtin_ia32_vpermil2ps256: 3741 i = 3; l = 0; u = 3; 3742 break; 3743 case X86::BI__builtin_ia32_cmpb128_mask: 3744 case X86::BI__builtin_ia32_cmpw128_mask: 3745 case X86::BI__builtin_ia32_cmpd128_mask: 3746 case X86::BI__builtin_ia32_cmpq128_mask: 3747 case X86::BI__builtin_ia32_cmpb256_mask: 3748 case X86::BI__builtin_ia32_cmpw256_mask: 3749 case X86::BI__builtin_ia32_cmpd256_mask: 3750 case X86::BI__builtin_ia32_cmpq256_mask: 3751 case X86::BI__builtin_ia32_cmpb512_mask: 3752 case X86::BI__builtin_ia32_cmpw512_mask: 3753 case X86::BI__builtin_ia32_cmpd512_mask: 3754 case X86::BI__builtin_ia32_cmpq512_mask: 3755 case X86::BI__builtin_ia32_ucmpb128_mask: 3756 case X86::BI__builtin_ia32_ucmpw128_mask: 3757 case X86::BI__builtin_ia32_ucmpd128_mask: 3758 case X86::BI__builtin_ia32_ucmpq128_mask: 3759 case X86::BI__builtin_ia32_ucmpb256_mask: 3760 case X86::BI__builtin_ia32_ucmpw256_mask: 3761 case X86::BI__builtin_ia32_ucmpd256_mask: 3762 case X86::BI__builtin_ia32_ucmpq256_mask: 3763 case X86::BI__builtin_ia32_ucmpb512_mask: 3764 case X86::BI__builtin_ia32_ucmpw512_mask: 3765 case X86::BI__builtin_ia32_ucmpd512_mask: 3766 case X86::BI__builtin_ia32_ucmpq512_mask: 3767 case X86::BI__builtin_ia32_vpcomub: 3768 case X86::BI__builtin_ia32_vpcomuw: 3769 case X86::BI__builtin_ia32_vpcomud: 3770 case X86::BI__builtin_ia32_vpcomuq: 3771 case X86::BI__builtin_ia32_vpcomb: 3772 case X86::BI__builtin_ia32_vpcomw: 3773 case X86::BI__builtin_ia32_vpcomd: 3774 case X86::BI__builtin_ia32_vpcomq: 3775 case X86::BI__builtin_ia32_vec_set_v8hi: 3776 case X86::BI__builtin_ia32_vec_set_v8si: 3777 i = 2; l = 0; u = 7; 3778 break; 3779 case X86::BI__builtin_ia32_vpermilpd256: 3780 case X86::BI__builtin_ia32_roundps: 3781 case X86::BI__builtin_ia32_roundpd: 3782 case X86::BI__builtin_ia32_roundps256: 3783 case X86::BI__builtin_ia32_roundpd256: 3784 case X86::BI__builtin_ia32_getmantpd128_mask: 3785 case X86::BI__builtin_ia32_getmantpd256_mask: 3786 case X86::BI__builtin_ia32_getmantps128_mask: 3787 case X86::BI__builtin_ia32_getmantps256_mask: 3788 case X86::BI__builtin_ia32_getmantpd512_mask: 3789 case X86::BI__builtin_ia32_getmantps512_mask: 3790 case X86::BI__builtin_ia32_vec_ext_v16qi: 3791 case X86::BI__builtin_ia32_vec_ext_v16hi: 3792 i = 1; l = 0; u = 15; 3793 break; 3794 case X86::BI__builtin_ia32_pblendd128: 3795 case X86::BI__builtin_ia32_blendps: 3796 case X86::BI__builtin_ia32_blendpd256: 3797 case X86::BI__builtin_ia32_shufpd256: 3798 case X86::BI__builtin_ia32_roundss: 3799 case X86::BI__builtin_ia32_roundsd: 3800 case X86::BI__builtin_ia32_rangepd128_mask: 3801 case X86::BI__builtin_ia32_rangepd256_mask: 3802 case X86::BI__builtin_ia32_rangepd512_mask: 3803 case X86::BI__builtin_ia32_rangeps128_mask: 3804 case X86::BI__builtin_ia32_rangeps256_mask: 3805 case X86::BI__builtin_ia32_rangeps512_mask: 3806 case X86::BI__builtin_ia32_getmantsd_round_mask: 3807 case X86::BI__builtin_ia32_getmantss_round_mask: 3808 case X86::BI__builtin_ia32_vec_set_v16qi: 3809 case X86::BI__builtin_ia32_vec_set_v16hi: 3810 i = 2; l = 0; u = 15; 3811 break; 3812 case X86::BI__builtin_ia32_vec_ext_v32qi: 3813 i = 1; l = 0; u = 31; 3814 break; 3815 case X86::BI__builtin_ia32_cmpps: 3816 case X86::BI__builtin_ia32_cmpss: 3817 case X86::BI__builtin_ia32_cmppd: 3818 case X86::BI__builtin_ia32_cmpsd: 3819 case X86::BI__builtin_ia32_cmpps256: 3820 case X86::BI__builtin_ia32_cmppd256: 3821 case X86::BI__builtin_ia32_cmpps128_mask: 3822 case X86::BI__builtin_ia32_cmppd128_mask: 3823 case X86::BI__builtin_ia32_cmpps256_mask: 3824 case X86::BI__builtin_ia32_cmppd256_mask: 3825 case X86::BI__builtin_ia32_cmpps512_mask: 3826 case X86::BI__builtin_ia32_cmppd512_mask: 3827 case X86::BI__builtin_ia32_cmpsd_mask: 3828 case X86::BI__builtin_ia32_cmpss_mask: 3829 case X86::BI__builtin_ia32_vec_set_v32qi: 3830 i = 2; l = 0; u = 31; 3831 break; 3832 case X86::BI__builtin_ia32_permdf256: 3833 case X86::BI__builtin_ia32_permdi256: 3834 case X86::BI__builtin_ia32_permdf512: 3835 case X86::BI__builtin_ia32_permdi512: 3836 case X86::BI__builtin_ia32_vpermilps: 3837 case X86::BI__builtin_ia32_vpermilps256: 3838 case X86::BI__builtin_ia32_vpermilpd512: 3839 case X86::BI__builtin_ia32_vpermilps512: 3840 case X86::BI__builtin_ia32_pshufd: 3841 case X86::BI__builtin_ia32_pshufd256: 3842 case X86::BI__builtin_ia32_pshufd512: 3843 case X86::BI__builtin_ia32_pshufhw: 3844 case X86::BI__builtin_ia32_pshufhw256: 3845 case X86::BI__builtin_ia32_pshufhw512: 3846 case X86::BI__builtin_ia32_pshuflw: 3847 case X86::BI__builtin_ia32_pshuflw256: 3848 case X86::BI__builtin_ia32_pshuflw512: 3849 case X86::BI__builtin_ia32_vcvtps2ph: 3850 case X86::BI__builtin_ia32_vcvtps2ph_mask: 3851 case X86::BI__builtin_ia32_vcvtps2ph256: 3852 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 3853 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 3854 case X86::BI__builtin_ia32_rndscaleps_128_mask: 3855 case X86::BI__builtin_ia32_rndscalepd_128_mask: 3856 case X86::BI__builtin_ia32_rndscaleps_256_mask: 3857 case X86::BI__builtin_ia32_rndscalepd_256_mask: 3858 case X86::BI__builtin_ia32_rndscaleps_mask: 3859 case X86::BI__builtin_ia32_rndscalepd_mask: 3860 case X86::BI__builtin_ia32_reducepd128_mask: 3861 case X86::BI__builtin_ia32_reducepd256_mask: 3862 case X86::BI__builtin_ia32_reducepd512_mask: 3863 case X86::BI__builtin_ia32_reduceps128_mask: 3864 case X86::BI__builtin_ia32_reduceps256_mask: 3865 case X86::BI__builtin_ia32_reduceps512_mask: 3866 case X86::BI__builtin_ia32_prold512: 3867 case X86::BI__builtin_ia32_prolq512: 3868 case X86::BI__builtin_ia32_prold128: 3869 case X86::BI__builtin_ia32_prold256: 3870 case X86::BI__builtin_ia32_prolq128: 3871 case X86::BI__builtin_ia32_prolq256: 3872 case X86::BI__builtin_ia32_prord512: 3873 case X86::BI__builtin_ia32_prorq512: 3874 case X86::BI__builtin_ia32_prord128: 3875 case X86::BI__builtin_ia32_prord256: 3876 case X86::BI__builtin_ia32_prorq128: 3877 case X86::BI__builtin_ia32_prorq256: 3878 case X86::BI__builtin_ia32_fpclasspd128_mask: 3879 case X86::BI__builtin_ia32_fpclasspd256_mask: 3880 case X86::BI__builtin_ia32_fpclassps128_mask: 3881 case X86::BI__builtin_ia32_fpclassps256_mask: 3882 case X86::BI__builtin_ia32_fpclassps512_mask: 3883 case X86::BI__builtin_ia32_fpclasspd512_mask: 3884 case X86::BI__builtin_ia32_fpclasssd_mask: 3885 case X86::BI__builtin_ia32_fpclassss_mask: 3886 case X86::BI__builtin_ia32_pslldqi128_byteshift: 3887 case X86::BI__builtin_ia32_pslldqi256_byteshift: 3888 case X86::BI__builtin_ia32_pslldqi512_byteshift: 3889 case X86::BI__builtin_ia32_psrldqi128_byteshift: 3890 case X86::BI__builtin_ia32_psrldqi256_byteshift: 3891 case X86::BI__builtin_ia32_psrldqi512_byteshift: 3892 case X86::BI__builtin_ia32_kshiftliqi: 3893 case X86::BI__builtin_ia32_kshiftlihi: 3894 case X86::BI__builtin_ia32_kshiftlisi: 3895 case X86::BI__builtin_ia32_kshiftlidi: 3896 case X86::BI__builtin_ia32_kshiftriqi: 3897 case X86::BI__builtin_ia32_kshiftrihi: 3898 case X86::BI__builtin_ia32_kshiftrisi: 3899 case X86::BI__builtin_ia32_kshiftridi: 3900 i = 1; l = 0; u = 255; 3901 break; 3902 case X86::BI__builtin_ia32_vperm2f128_pd256: 3903 case X86::BI__builtin_ia32_vperm2f128_ps256: 3904 case X86::BI__builtin_ia32_vperm2f128_si256: 3905 case X86::BI__builtin_ia32_permti256: 3906 case X86::BI__builtin_ia32_pblendw128: 3907 case X86::BI__builtin_ia32_pblendw256: 3908 case X86::BI__builtin_ia32_blendps256: 3909 case X86::BI__builtin_ia32_pblendd256: 3910 case X86::BI__builtin_ia32_palignr128: 3911 case X86::BI__builtin_ia32_palignr256: 3912 case X86::BI__builtin_ia32_palignr512: 3913 case X86::BI__builtin_ia32_alignq512: 3914 case X86::BI__builtin_ia32_alignd512: 3915 case X86::BI__builtin_ia32_alignd128: 3916 case X86::BI__builtin_ia32_alignd256: 3917 case X86::BI__builtin_ia32_alignq128: 3918 case X86::BI__builtin_ia32_alignq256: 3919 case X86::BI__builtin_ia32_vcomisd: 3920 case X86::BI__builtin_ia32_vcomiss: 3921 case X86::BI__builtin_ia32_shuf_f32x4: 3922 case X86::BI__builtin_ia32_shuf_f64x2: 3923 case X86::BI__builtin_ia32_shuf_i32x4: 3924 case X86::BI__builtin_ia32_shuf_i64x2: 3925 case X86::BI__builtin_ia32_shufpd512: 3926 case X86::BI__builtin_ia32_shufps: 3927 case X86::BI__builtin_ia32_shufps256: 3928 case X86::BI__builtin_ia32_shufps512: 3929 case X86::BI__builtin_ia32_dbpsadbw128: 3930 case X86::BI__builtin_ia32_dbpsadbw256: 3931 case X86::BI__builtin_ia32_dbpsadbw512: 3932 case X86::BI__builtin_ia32_vpshldd128: 3933 case X86::BI__builtin_ia32_vpshldd256: 3934 case X86::BI__builtin_ia32_vpshldd512: 3935 case X86::BI__builtin_ia32_vpshldq128: 3936 case X86::BI__builtin_ia32_vpshldq256: 3937 case X86::BI__builtin_ia32_vpshldq512: 3938 case X86::BI__builtin_ia32_vpshldw128: 3939 case X86::BI__builtin_ia32_vpshldw256: 3940 case X86::BI__builtin_ia32_vpshldw512: 3941 case X86::BI__builtin_ia32_vpshrdd128: 3942 case X86::BI__builtin_ia32_vpshrdd256: 3943 case X86::BI__builtin_ia32_vpshrdd512: 3944 case X86::BI__builtin_ia32_vpshrdq128: 3945 case X86::BI__builtin_ia32_vpshrdq256: 3946 case X86::BI__builtin_ia32_vpshrdq512: 3947 case X86::BI__builtin_ia32_vpshrdw128: 3948 case X86::BI__builtin_ia32_vpshrdw256: 3949 case X86::BI__builtin_ia32_vpshrdw512: 3950 i = 2; l = 0; u = 255; 3951 break; 3952 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3953 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3954 case X86::BI__builtin_ia32_fixupimmps512_mask: 3955 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3956 case X86::BI__builtin_ia32_fixupimmsd_mask: 3957 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3958 case X86::BI__builtin_ia32_fixupimmss_mask: 3959 case X86::BI__builtin_ia32_fixupimmss_maskz: 3960 case X86::BI__builtin_ia32_fixupimmpd128_mask: 3961 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 3962 case X86::BI__builtin_ia32_fixupimmpd256_mask: 3963 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 3964 case X86::BI__builtin_ia32_fixupimmps128_mask: 3965 case X86::BI__builtin_ia32_fixupimmps128_maskz: 3966 case X86::BI__builtin_ia32_fixupimmps256_mask: 3967 case X86::BI__builtin_ia32_fixupimmps256_maskz: 3968 case X86::BI__builtin_ia32_pternlogd512_mask: 3969 case X86::BI__builtin_ia32_pternlogd512_maskz: 3970 case X86::BI__builtin_ia32_pternlogq512_mask: 3971 case X86::BI__builtin_ia32_pternlogq512_maskz: 3972 case X86::BI__builtin_ia32_pternlogd128_mask: 3973 case X86::BI__builtin_ia32_pternlogd128_maskz: 3974 case X86::BI__builtin_ia32_pternlogd256_mask: 3975 case X86::BI__builtin_ia32_pternlogd256_maskz: 3976 case X86::BI__builtin_ia32_pternlogq128_mask: 3977 case X86::BI__builtin_ia32_pternlogq128_maskz: 3978 case X86::BI__builtin_ia32_pternlogq256_mask: 3979 case X86::BI__builtin_ia32_pternlogq256_maskz: 3980 i = 3; l = 0; u = 255; 3981 break; 3982 case X86::BI__builtin_ia32_gatherpfdpd: 3983 case X86::BI__builtin_ia32_gatherpfdps: 3984 case X86::BI__builtin_ia32_gatherpfqpd: 3985 case X86::BI__builtin_ia32_gatherpfqps: 3986 case X86::BI__builtin_ia32_scatterpfdpd: 3987 case X86::BI__builtin_ia32_scatterpfdps: 3988 case X86::BI__builtin_ia32_scatterpfqpd: 3989 case X86::BI__builtin_ia32_scatterpfqps: 3990 i = 4; l = 2; u = 3; 3991 break; 3992 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3993 case X86::BI__builtin_ia32_rndscaless_round_mask: 3994 i = 4; l = 0; u = 255; 3995 break; 3996 } 3997 3998 // Note that we don't force a hard error on the range check here, allowing 3999 // template-generated or macro-generated dead code to potentially have out-of- 4000 // range values. These need to code generate, but don't need to necessarily 4001 // make any sense. We use a warning that defaults to an error. 4002 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4003 } 4004 4005 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4006 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4007 /// Returns true when the format fits the function and the FormatStringInfo has 4008 /// been populated. 4009 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4010 FormatStringInfo *FSI) { 4011 FSI->HasVAListArg = Format->getFirstArg() == 0; 4012 FSI->FormatIdx = Format->getFormatIdx() - 1; 4013 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4014 4015 // The way the format attribute works in GCC, the implicit this argument 4016 // of member functions is counted. However, it doesn't appear in our own 4017 // lists, so decrement format_idx in that case. 4018 if (IsCXXMember) { 4019 if(FSI->FormatIdx == 0) 4020 return false; 4021 --FSI->FormatIdx; 4022 if (FSI->FirstDataArg != 0) 4023 --FSI->FirstDataArg; 4024 } 4025 return true; 4026 } 4027 4028 /// Checks if a the given expression evaluates to null. 4029 /// 4030 /// Returns true if the value evaluates to null. 4031 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4032 // If the expression has non-null type, it doesn't evaluate to null. 4033 if (auto nullability 4034 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4035 if (*nullability == NullabilityKind::NonNull) 4036 return false; 4037 } 4038 4039 // As a special case, transparent unions initialized with zero are 4040 // considered null for the purposes of the nonnull attribute. 4041 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4042 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4043 if (const CompoundLiteralExpr *CLE = 4044 dyn_cast<CompoundLiteralExpr>(Expr)) 4045 if (const InitListExpr *ILE = 4046 dyn_cast<InitListExpr>(CLE->getInitializer())) 4047 Expr = ILE->getInit(0); 4048 } 4049 4050 bool Result; 4051 return (!Expr->isValueDependent() && 4052 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4053 !Result); 4054 } 4055 4056 static void CheckNonNullArgument(Sema &S, 4057 const Expr *ArgExpr, 4058 SourceLocation CallSiteLoc) { 4059 if (CheckNonNullExpr(S, ArgExpr)) 4060 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4061 S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange()); 4062 } 4063 4064 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4065 FormatStringInfo FSI; 4066 if ((GetFormatStringType(Format) == FST_NSString) && 4067 getFormatStringInfo(Format, false, &FSI)) { 4068 Idx = FSI.FormatIdx; 4069 return true; 4070 } 4071 return false; 4072 } 4073 4074 /// Diagnose use of %s directive in an NSString which is being passed 4075 /// as formatting string to formatting method. 4076 static void 4077 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4078 const NamedDecl *FDecl, 4079 Expr **Args, 4080 unsigned NumArgs) { 4081 unsigned Idx = 0; 4082 bool Format = false; 4083 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4084 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4085 Idx = 2; 4086 Format = true; 4087 } 4088 else 4089 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4090 if (S.GetFormatNSStringIdx(I, Idx)) { 4091 Format = true; 4092 break; 4093 } 4094 } 4095 if (!Format || NumArgs <= Idx) 4096 return; 4097 const Expr *FormatExpr = Args[Idx]; 4098 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4099 FormatExpr = CSCE->getSubExpr(); 4100 const StringLiteral *FormatString; 4101 if (const ObjCStringLiteral *OSL = 4102 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4103 FormatString = OSL->getString(); 4104 else 4105 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4106 if (!FormatString) 4107 return; 4108 if (S.FormatStringHasSArg(FormatString)) { 4109 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4110 << "%s" << 1 << 1; 4111 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4112 << FDecl->getDeclName(); 4113 } 4114 } 4115 4116 /// Determine whether the given type has a non-null nullability annotation. 4117 static bool isNonNullType(ASTContext &ctx, QualType type) { 4118 if (auto nullability = type->getNullability(ctx)) 4119 return *nullability == NullabilityKind::NonNull; 4120 4121 return false; 4122 } 4123 4124 static void CheckNonNullArguments(Sema &S, 4125 const NamedDecl *FDecl, 4126 const FunctionProtoType *Proto, 4127 ArrayRef<const Expr *> Args, 4128 SourceLocation CallSiteLoc) { 4129 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4130 4131 // Check the attributes attached to the method/function itself. 4132 llvm::SmallBitVector NonNullArgs; 4133 if (FDecl) { 4134 // Handle the nonnull attribute on the function/method declaration itself. 4135 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4136 if (!NonNull->args_size()) { 4137 // Easy case: all pointer arguments are nonnull. 4138 for (const auto *Arg : Args) 4139 if (S.isValidPointerAttrType(Arg->getType())) 4140 CheckNonNullArgument(S, Arg, CallSiteLoc); 4141 return; 4142 } 4143 4144 for (const ParamIdx &Idx : NonNull->args()) { 4145 unsigned IdxAST = Idx.getASTIndex(); 4146 if (IdxAST >= Args.size()) 4147 continue; 4148 if (NonNullArgs.empty()) 4149 NonNullArgs.resize(Args.size()); 4150 NonNullArgs.set(IdxAST); 4151 } 4152 } 4153 } 4154 4155 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4156 // Handle the nonnull attribute on the parameters of the 4157 // function/method. 4158 ArrayRef<ParmVarDecl*> parms; 4159 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4160 parms = FD->parameters(); 4161 else 4162 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4163 4164 unsigned ParamIndex = 0; 4165 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4166 I != E; ++I, ++ParamIndex) { 4167 const ParmVarDecl *PVD = *I; 4168 if (PVD->hasAttr<NonNullAttr>() || 4169 isNonNullType(S.Context, PVD->getType())) { 4170 if (NonNullArgs.empty()) 4171 NonNullArgs.resize(Args.size()); 4172 4173 NonNullArgs.set(ParamIndex); 4174 } 4175 } 4176 } else { 4177 // If we have a non-function, non-method declaration but no 4178 // function prototype, try to dig out the function prototype. 4179 if (!Proto) { 4180 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4181 QualType type = VD->getType().getNonReferenceType(); 4182 if (auto pointerType = type->getAs<PointerType>()) 4183 type = pointerType->getPointeeType(); 4184 else if (auto blockType = type->getAs<BlockPointerType>()) 4185 type = blockType->getPointeeType(); 4186 // FIXME: data member pointers? 4187 4188 // Dig out the function prototype, if there is one. 4189 Proto = type->getAs<FunctionProtoType>(); 4190 } 4191 } 4192 4193 // Fill in non-null argument information from the nullability 4194 // information on the parameter types (if we have them). 4195 if (Proto) { 4196 unsigned Index = 0; 4197 for (auto paramType : Proto->getParamTypes()) { 4198 if (isNonNullType(S.Context, paramType)) { 4199 if (NonNullArgs.empty()) 4200 NonNullArgs.resize(Args.size()); 4201 4202 NonNullArgs.set(Index); 4203 } 4204 4205 ++Index; 4206 } 4207 } 4208 } 4209 4210 // Check for non-null arguments. 4211 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4212 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4213 if (NonNullArgs[ArgIndex]) 4214 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4215 } 4216 } 4217 4218 /// Handles the checks for format strings, non-POD arguments to vararg 4219 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4220 /// attributes. 4221 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4222 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4223 bool IsMemberFunction, SourceLocation Loc, 4224 SourceRange Range, VariadicCallType CallType) { 4225 // FIXME: We should check as much as we can in the template definition. 4226 if (CurContext->isDependentContext()) 4227 return; 4228 4229 // Printf and scanf checking. 4230 llvm::SmallBitVector CheckedVarArgs; 4231 if (FDecl) { 4232 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4233 // Only create vector if there are format attributes. 4234 CheckedVarArgs.resize(Args.size()); 4235 4236 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4237 CheckedVarArgs); 4238 } 4239 } 4240 4241 // Refuse POD arguments that weren't caught by the format string 4242 // checks above. 4243 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4244 if (CallType != VariadicDoesNotApply && 4245 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4246 unsigned NumParams = Proto ? Proto->getNumParams() 4247 : FDecl && isa<FunctionDecl>(FDecl) 4248 ? cast<FunctionDecl>(FDecl)->getNumParams() 4249 : FDecl && isa<ObjCMethodDecl>(FDecl) 4250 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4251 : 0; 4252 4253 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4254 // Args[ArgIdx] can be null in malformed code. 4255 if (const Expr *Arg = Args[ArgIdx]) { 4256 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4257 checkVariadicArgument(Arg, CallType); 4258 } 4259 } 4260 } 4261 4262 if (FDecl || Proto) { 4263 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4264 4265 // Type safety checking. 4266 if (FDecl) { 4267 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4268 CheckArgumentWithTypeTag(I, Args, Loc); 4269 } 4270 } 4271 4272 if (FD) 4273 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4274 } 4275 4276 /// CheckConstructorCall - Check a constructor call for correctness and safety 4277 /// properties not enforced by the C type system. 4278 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4279 ArrayRef<const Expr *> Args, 4280 const FunctionProtoType *Proto, 4281 SourceLocation Loc) { 4282 VariadicCallType CallType = 4283 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4284 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4285 Loc, SourceRange(), CallType); 4286 } 4287 4288 /// CheckFunctionCall - Check a direct function call for various correctness 4289 /// and safety properties not strictly enforced by the C type system. 4290 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4291 const FunctionProtoType *Proto) { 4292 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4293 isa<CXXMethodDecl>(FDecl); 4294 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4295 IsMemberOperatorCall; 4296 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4297 TheCall->getCallee()); 4298 Expr** Args = TheCall->getArgs(); 4299 unsigned NumArgs = TheCall->getNumArgs(); 4300 4301 Expr *ImplicitThis = nullptr; 4302 if (IsMemberOperatorCall) { 4303 // If this is a call to a member operator, hide the first argument 4304 // from checkCall. 4305 // FIXME: Our choice of AST representation here is less than ideal. 4306 ImplicitThis = Args[0]; 4307 ++Args; 4308 --NumArgs; 4309 } else if (IsMemberFunction) 4310 ImplicitThis = 4311 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4312 4313 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4314 IsMemberFunction, TheCall->getRParenLoc(), 4315 TheCall->getCallee()->getSourceRange(), CallType); 4316 4317 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4318 // None of the checks below are needed for functions that don't have 4319 // simple names (e.g., C++ conversion functions). 4320 if (!FnInfo) 4321 return false; 4322 4323 CheckAbsoluteValueFunction(TheCall, FDecl); 4324 CheckMaxUnsignedZero(TheCall, FDecl); 4325 4326 if (getLangOpts().ObjC) 4327 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4328 4329 unsigned CMId = FDecl->getMemoryFunctionKind(); 4330 if (CMId == 0) 4331 return false; 4332 4333 // Handle memory setting and copying functions. 4334 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) 4335 CheckStrlcpycatArguments(TheCall, FnInfo); 4336 else if (CMId == Builtin::BIstrncat) 4337 CheckStrncatArguments(TheCall, FnInfo); 4338 else 4339 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4340 4341 return false; 4342 } 4343 4344 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4345 ArrayRef<const Expr *> Args) { 4346 VariadicCallType CallType = 4347 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4348 4349 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4350 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4351 CallType); 4352 4353 return false; 4354 } 4355 4356 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4357 const FunctionProtoType *Proto) { 4358 QualType Ty; 4359 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4360 Ty = V->getType().getNonReferenceType(); 4361 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4362 Ty = F->getType().getNonReferenceType(); 4363 else 4364 return false; 4365 4366 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4367 !Ty->isFunctionProtoType()) 4368 return false; 4369 4370 VariadicCallType CallType; 4371 if (!Proto || !Proto->isVariadic()) { 4372 CallType = VariadicDoesNotApply; 4373 } else if (Ty->isBlockPointerType()) { 4374 CallType = VariadicBlock; 4375 } else { // Ty->isFunctionPointerType() 4376 CallType = VariadicFunction; 4377 } 4378 4379 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4380 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4381 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4382 TheCall->getCallee()->getSourceRange(), CallType); 4383 4384 return false; 4385 } 4386 4387 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4388 /// such as function pointers returned from functions. 4389 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4390 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4391 TheCall->getCallee()); 4392 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4393 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4394 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4395 TheCall->getCallee()->getSourceRange(), CallType); 4396 4397 return false; 4398 } 4399 4400 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4401 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4402 return false; 4403 4404 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4405 switch (Op) { 4406 case AtomicExpr::AO__c11_atomic_init: 4407 case AtomicExpr::AO__opencl_atomic_init: 4408 llvm_unreachable("There is no ordering argument for an init"); 4409 4410 case AtomicExpr::AO__c11_atomic_load: 4411 case AtomicExpr::AO__opencl_atomic_load: 4412 case AtomicExpr::AO__atomic_load_n: 4413 case AtomicExpr::AO__atomic_load: 4414 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4415 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4416 4417 case AtomicExpr::AO__c11_atomic_store: 4418 case AtomicExpr::AO__opencl_atomic_store: 4419 case AtomicExpr::AO__atomic_store: 4420 case AtomicExpr::AO__atomic_store_n: 4421 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4422 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4423 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4424 4425 default: 4426 return true; 4427 } 4428 } 4429 4430 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4431 AtomicExpr::AtomicOp Op) { 4432 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4433 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4434 4435 // All the non-OpenCL operations take one of the following forms. 4436 // The OpenCL operations take the __c11 forms with one extra argument for 4437 // synchronization scope. 4438 enum { 4439 // C __c11_atomic_init(A *, C) 4440 Init, 4441 4442 // C __c11_atomic_load(A *, int) 4443 Load, 4444 4445 // void __atomic_load(A *, CP, int) 4446 LoadCopy, 4447 4448 // void __atomic_store(A *, CP, int) 4449 Copy, 4450 4451 // C __c11_atomic_add(A *, M, int) 4452 Arithmetic, 4453 4454 // C __atomic_exchange_n(A *, CP, int) 4455 Xchg, 4456 4457 // void __atomic_exchange(A *, C *, CP, int) 4458 GNUXchg, 4459 4460 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4461 C11CmpXchg, 4462 4463 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4464 GNUCmpXchg 4465 } Form = Init; 4466 4467 const unsigned NumForm = GNUCmpXchg + 1; 4468 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4469 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4470 // where: 4471 // C is an appropriate type, 4472 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4473 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4474 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4475 // the int parameters are for orderings. 4476 4477 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4478 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4479 "need to update code for modified forms"); 4480 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4481 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == 4482 AtomicExpr::AO__atomic_load, 4483 "need to update code for modified C11 atomics"); 4484 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4485 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4486 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4487 Op <= AtomicExpr::AO__c11_atomic_fetch_xor) || 4488 IsOpenCL; 4489 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4490 Op == AtomicExpr::AO__atomic_store_n || 4491 Op == AtomicExpr::AO__atomic_exchange_n || 4492 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4493 bool IsAddSub = false; 4494 bool IsMinMax = false; 4495 4496 switch (Op) { 4497 case AtomicExpr::AO__c11_atomic_init: 4498 case AtomicExpr::AO__opencl_atomic_init: 4499 Form = Init; 4500 break; 4501 4502 case AtomicExpr::AO__c11_atomic_load: 4503 case AtomicExpr::AO__opencl_atomic_load: 4504 case AtomicExpr::AO__atomic_load_n: 4505 Form = Load; 4506 break; 4507 4508 case AtomicExpr::AO__atomic_load: 4509 Form = LoadCopy; 4510 break; 4511 4512 case AtomicExpr::AO__c11_atomic_store: 4513 case AtomicExpr::AO__opencl_atomic_store: 4514 case AtomicExpr::AO__atomic_store: 4515 case AtomicExpr::AO__atomic_store_n: 4516 Form = Copy; 4517 break; 4518 4519 case AtomicExpr::AO__c11_atomic_fetch_add: 4520 case AtomicExpr::AO__c11_atomic_fetch_sub: 4521 case AtomicExpr::AO__opencl_atomic_fetch_add: 4522 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4523 case AtomicExpr::AO__opencl_atomic_fetch_min: 4524 case AtomicExpr::AO__opencl_atomic_fetch_max: 4525 case AtomicExpr::AO__atomic_fetch_add: 4526 case AtomicExpr::AO__atomic_fetch_sub: 4527 case AtomicExpr::AO__atomic_add_fetch: 4528 case AtomicExpr::AO__atomic_sub_fetch: 4529 IsAddSub = true; 4530 LLVM_FALLTHROUGH; 4531 case AtomicExpr::AO__c11_atomic_fetch_and: 4532 case AtomicExpr::AO__c11_atomic_fetch_or: 4533 case AtomicExpr::AO__c11_atomic_fetch_xor: 4534 case AtomicExpr::AO__opencl_atomic_fetch_and: 4535 case AtomicExpr::AO__opencl_atomic_fetch_or: 4536 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4537 case AtomicExpr::AO__atomic_fetch_and: 4538 case AtomicExpr::AO__atomic_fetch_or: 4539 case AtomicExpr::AO__atomic_fetch_xor: 4540 case AtomicExpr::AO__atomic_fetch_nand: 4541 case AtomicExpr::AO__atomic_and_fetch: 4542 case AtomicExpr::AO__atomic_or_fetch: 4543 case AtomicExpr::AO__atomic_xor_fetch: 4544 case AtomicExpr::AO__atomic_nand_fetch: 4545 Form = Arithmetic; 4546 break; 4547 4548 case AtomicExpr::AO__atomic_fetch_min: 4549 case AtomicExpr::AO__atomic_fetch_max: 4550 IsMinMax = true; 4551 Form = Arithmetic; 4552 break; 4553 4554 case AtomicExpr::AO__c11_atomic_exchange: 4555 case AtomicExpr::AO__opencl_atomic_exchange: 4556 case AtomicExpr::AO__atomic_exchange_n: 4557 Form = Xchg; 4558 break; 4559 4560 case AtomicExpr::AO__atomic_exchange: 4561 Form = GNUXchg; 4562 break; 4563 4564 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4565 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4566 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4567 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4568 Form = C11CmpXchg; 4569 break; 4570 4571 case AtomicExpr::AO__atomic_compare_exchange: 4572 case AtomicExpr::AO__atomic_compare_exchange_n: 4573 Form = GNUCmpXchg; 4574 break; 4575 } 4576 4577 unsigned AdjustedNumArgs = NumArgs[Form]; 4578 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4579 ++AdjustedNumArgs; 4580 // Check we have the right number of arguments. 4581 if (TheCall->getNumArgs() < AdjustedNumArgs) { 4582 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 4583 << 0 << AdjustedNumArgs << TheCall->getNumArgs() 4584 << TheCall->getCallee()->getSourceRange(); 4585 return ExprError(); 4586 } else if (TheCall->getNumArgs() > AdjustedNumArgs) { 4587 Diag(TheCall->getArg(AdjustedNumArgs)->getBeginLoc(), 4588 diag::err_typecheck_call_too_many_args) 4589 << 0 << AdjustedNumArgs << TheCall->getNumArgs() 4590 << TheCall->getCallee()->getSourceRange(); 4591 return ExprError(); 4592 } 4593 4594 // Inspect the first argument of the atomic operation. 4595 Expr *Ptr = TheCall->getArg(0); 4596 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4597 if (ConvertedPtr.isInvalid()) 4598 return ExprError(); 4599 4600 Ptr = ConvertedPtr.get(); 4601 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4602 if (!pointerType) { 4603 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 4604 << Ptr->getType() << Ptr->getSourceRange(); 4605 return ExprError(); 4606 } 4607 4608 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4609 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4610 QualType ValType = AtomTy; // 'C' 4611 if (IsC11) { 4612 if (!AtomTy->isAtomicType()) { 4613 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic) 4614 << Ptr->getType() << Ptr->getSourceRange(); 4615 return ExprError(); 4616 } 4617 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4618 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4619 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_atomic) 4620 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4621 << Ptr->getSourceRange(); 4622 return ExprError(); 4623 } 4624 ValType = AtomTy->getAs<AtomicType>()->getValueType(); 4625 } else if (Form != Load && Form != LoadCopy) { 4626 if (ValType.isConstQualified()) { 4627 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_pointer) 4628 << Ptr->getType() << Ptr->getSourceRange(); 4629 return ExprError(); 4630 } 4631 } 4632 4633 // For an arithmetic operation, the implied arithmetic must be well-formed. 4634 if (Form == Arithmetic) { 4635 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4636 if (IsAddSub && !ValType->isIntegerType() 4637 && !ValType->isPointerType()) { 4638 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4639 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4640 return ExprError(); 4641 } 4642 if (IsMinMax) { 4643 const BuiltinType *BT = ValType->getAs<BuiltinType>(); 4644 if (!BT || (BT->getKind() != BuiltinType::Int && 4645 BT->getKind() != BuiltinType::UInt)) { 4646 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_int32_or_ptr); 4647 return ExprError(); 4648 } 4649 } 4650 if (!IsAddSub && !IsMinMax && !ValType->isIntegerType()) { 4651 Diag(DRE->getBeginLoc(), diag::err_atomic_op_bitwise_needs_atomic_int) 4652 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4653 return ExprError(); 4654 } 4655 if (IsC11 && ValType->isPointerType() && 4656 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4657 diag::err_incomplete_type)) { 4658 return ExprError(); 4659 } 4660 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4661 // For __atomic_*_n operations, the value type must be a scalar integral or 4662 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4663 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4664 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4665 return ExprError(); 4666 } 4667 4668 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4669 !AtomTy->isScalarType()) { 4670 // For GNU atomics, require a trivially-copyable type. This is not part of 4671 // the GNU atomics specification, but we enforce it for sanity. 4672 Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_trivial_copy) 4673 << Ptr->getType() << Ptr->getSourceRange(); 4674 return ExprError(); 4675 } 4676 4677 switch (ValType.getObjCLifetime()) { 4678 case Qualifiers::OCL_None: 4679 case Qualifiers::OCL_ExplicitNone: 4680 // okay 4681 break; 4682 4683 case Qualifiers::OCL_Weak: 4684 case Qualifiers::OCL_Strong: 4685 case Qualifiers::OCL_Autoreleasing: 4686 // FIXME: Can this happen? By this point, ValType should be known 4687 // to be trivially copyable. 4688 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 4689 << ValType << Ptr->getSourceRange(); 4690 return ExprError(); 4691 } 4692 4693 // All atomic operations have an overload which takes a pointer to a volatile 4694 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4695 // into the result or the other operands. Similarly atomic_load takes a 4696 // pointer to a const 'A'. 4697 ValType.removeLocalVolatile(); 4698 ValType.removeLocalConst(); 4699 QualType ResultType = ValType; 4700 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4701 Form == Init) 4702 ResultType = Context.VoidTy; 4703 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4704 ResultType = Context.BoolTy; 4705 4706 // The type of a parameter passed 'by value'. In the GNU atomics, such 4707 // arguments are actually passed as pointers. 4708 QualType ByValType = ValType; // 'CP' 4709 bool IsPassedByAddress = false; 4710 if (!IsC11 && !IsN) { 4711 ByValType = Ptr->getType(); 4712 IsPassedByAddress = true; 4713 } 4714 4715 // The first argument's non-CV pointer type is used to deduce the type of 4716 // subsequent arguments, except for: 4717 // - weak flag (always converted to bool) 4718 // - memory order (always converted to int) 4719 // - scope (always converted to int) 4720 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 4721 QualType Ty; 4722 if (i < NumVals[Form] + 1) { 4723 switch (i) { 4724 case 0: 4725 // The first argument is always a pointer. It has a fixed type. 4726 // It is always dereferenced, a nullptr is undefined. 4727 CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); 4728 // Nothing else to do: we already know all we want about this pointer. 4729 continue; 4730 case 1: 4731 // The second argument is the non-atomic operand. For arithmetic, this 4732 // is always passed by value, and for a compare_exchange it is always 4733 // passed by address. For the rest, GNU uses by-address and C11 uses 4734 // by-value. 4735 assert(Form != Load); 4736 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 4737 Ty = ValType; 4738 else if (Form == Copy || Form == Xchg) { 4739 if (IsPassedByAddress) 4740 // The value pointer is always dereferenced, a nullptr is undefined. 4741 CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); 4742 Ty = ByValType; 4743 } else if (Form == Arithmetic) 4744 Ty = Context.getPointerDiffType(); 4745 else { 4746 Expr *ValArg = TheCall->getArg(i); 4747 // The value pointer is always dereferenced, a nullptr is undefined. 4748 CheckNonNullArgument(*this, ValArg, DRE->getBeginLoc()); 4749 LangAS AS = LangAS::Default; 4750 // Keep address space of non-atomic pointer type. 4751 if (const PointerType *PtrTy = 4752 ValArg->getType()->getAs<PointerType>()) { 4753 AS = PtrTy->getPointeeType().getAddressSpace(); 4754 } 4755 Ty = Context.getPointerType( 4756 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 4757 } 4758 break; 4759 case 2: 4760 // The third argument to compare_exchange / GNU exchange is the desired 4761 // value, either by-value (for the C11 and *_n variant) or as a pointer. 4762 if (IsPassedByAddress) 4763 CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); 4764 Ty = ByValType; 4765 break; 4766 case 3: 4767 // The fourth argument to GNU compare_exchange is a 'weak' flag. 4768 Ty = Context.BoolTy; 4769 break; 4770 } 4771 } else { 4772 // The order(s) and scope are always converted to int. 4773 Ty = Context.IntTy; 4774 } 4775 4776 InitializedEntity Entity = 4777 InitializedEntity::InitializeParameter(Context, Ty, false); 4778 ExprResult Arg = TheCall->getArg(i); 4779 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 4780 if (Arg.isInvalid()) 4781 return true; 4782 TheCall->setArg(i, Arg.get()); 4783 } 4784 4785 // Permute the arguments into a 'consistent' order. 4786 SmallVector<Expr*, 5> SubExprs; 4787 SubExprs.push_back(Ptr); 4788 switch (Form) { 4789 case Init: 4790 // Note, AtomicExpr::getVal1() has a special case for this atomic. 4791 SubExprs.push_back(TheCall->getArg(1)); // Val1 4792 break; 4793 case Load: 4794 SubExprs.push_back(TheCall->getArg(1)); // Order 4795 break; 4796 case LoadCopy: 4797 case Copy: 4798 case Arithmetic: 4799 case Xchg: 4800 SubExprs.push_back(TheCall->getArg(2)); // Order 4801 SubExprs.push_back(TheCall->getArg(1)); // Val1 4802 break; 4803 case GNUXchg: 4804 // Note, AtomicExpr::getVal2() has a special case for this atomic. 4805 SubExprs.push_back(TheCall->getArg(3)); // Order 4806 SubExprs.push_back(TheCall->getArg(1)); // Val1 4807 SubExprs.push_back(TheCall->getArg(2)); // Val2 4808 break; 4809 case C11CmpXchg: 4810 SubExprs.push_back(TheCall->getArg(3)); // Order 4811 SubExprs.push_back(TheCall->getArg(1)); // Val1 4812 SubExprs.push_back(TheCall->getArg(4)); // OrderFail 4813 SubExprs.push_back(TheCall->getArg(2)); // Val2 4814 break; 4815 case GNUCmpXchg: 4816 SubExprs.push_back(TheCall->getArg(4)); // Order 4817 SubExprs.push_back(TheCall->getArg(1)); // Val1 4818 SubExprs.push_back(TheCall->getArg(5)); // OrderFail 4819 SubExprs.push_back(TheCall->getArg(2)); // Val2 4820 SubExprs.push_back(TheCall->getArg(3)); // Weak 4821 break; 4822 } 4823 4824 if (SubExprs.size() >= 2 && Form != Init) { 4825 llvm::APSInt Result(32); 4826 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && 4827 !isValidOrderingForOp(Result.getSExtValue(), Op)) 4828 Diag(SubExprs[1]->getBeginLoc(), 4829 diag::warn_atomic_op_has_invalid_memory_order) 4830 << SubExprs[1]->getSourceRange(); 4831 } 4832 4833 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 4834 auto *Scope = TheCall->getArg(TheCall->getNumArgs() - 1); 4835 llvm::APSInt Result(32); 4836 if (Scope->isIntegerConstantExpr(Result, Context) && 4837 !ScopeModel->isValid(Result.getZExtValue())) { 4838 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 4839 << Scope->getSourceRange(); 4840 } 4841 SubExprs.push_back(Scope); 4842 } 4843 4844 AtomicExpr *AE = 4845 new (Context) AtomicExpr(TheCall->getCallee()->getBeginLoc(), SubExprs, 4846 ResultType, Op, TheCall->getRParenLoc()); 4847 4848 if ((Op == AtomicExpr::AO__c11_atomic_load || 4849 Op == AtomicExpr::AO__c11_atomic_store || 4850 Op == AtomicExpr::AO__opencl_atomic_load || 4851 Op == AtomicExpr::AO__opencl_atomic_store ) && 4852 Context.AtomicUsesUnsupportedLibcall(AE)) 4853 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 4854 << ((Op == AtomicExpr::AO__c11_atomic_load || 4855 Op == AtomicExpr::AO__opencl_atomic_load) 4856 ? 0 4857 : 1); 4858 4859 return AE; 4860 } 4861 4862 /// checkBuiltinArgument - Given a call to a builtin function, perform 4863 /// normal type-checking on the given argument, updating the call in 4864 /// place. This is useful when a builtin function requires custom 4865 /// type-checking for some of its arguments but not necessarily all of 4866 /// them. 4867 /// 4868 /// Returns true on error. 4869 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 4870 FunctionDecl *Fn = E->getDirectCallee(); 4871 assert(Fn && "builtin call without direct callee!"); 4872 4873 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 4874 InitializedEntity Entity = 4875 InitializedEntity::InitializeParameter(S.Context, Param); 4876 4877 ExprResult Arg = E->getArg(0); 4878 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 4879 if (Arg.isInvalid()) 4880 return true; 4881 4882 E->setArg(ArgIndex, Arg.get()); 4883 return false; 4884 } 4885 4886 /// We have a call to a function like __sync_fetch_and_add, which is an 4887 /// overloaded function based on the pointer type of its first argument. 4888 /// The main BuildCallExpr routines have already promoted the types of 4889 /// arguments because all of these calls are prototyped as void(...). 4890 /// 4891 /// This function goes through and does final semantic checking for these 4892 /// builtins, as well as generating any warnings. 4893 ExprResult 4894 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 4895 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 4896 Expr *Callee = TheCall->getCallee(); 4897 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 4898 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 4899 4900 // Ensure that we have at least one argument to do type inference from. 4901 if (TheCall->getNumArgs() < 1) { 4902 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 4903 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 4904 return ExprError(); 4905 } 4906 4907 // Inspect the first argument of the atomic builtin. This should always be 4908 // a pointer type, whose element is an integral scalar or pointer type. 4909 // Because it is a pointer type, we don't have to worry about any implicit 4910 // casts here. 4911 // FIXME: We don't allow floating point scalars as input. 4912 Expr *FirstArg = TheCall->getArg(0); 4913 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 4914 if (FirstArgResult.isInvalid()) 4915 return ExprError(); 4916 FirstArg = FirstArgResult.get(); 4917 TheCall->setArg(0, FirstArg); 4918 4919 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 4920 if (!pointerType) { 4921 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 4922 << FirstArg->getType() << FirstArg->getSourceRange(); 4923 return ExprError(); 4924 } 4925 4926 QualType ValType = pointerType->getPointeeType(); 4927 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 4928 !ValType->isBlockPointerType()) { 4929 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 4930 << FirstArg->getType() << FirstArg->getSourceRange(); 4931 return ExprError(); 4932 } 4933 4934 if (ValType.isConstQualified()) { 4935 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 4936 << FirstArg->getType() << FirstArg->getSourceRange(); 4937 return ExprError(); 4938 } 4939 4940 switch (ValType.getObjCLifetime()) { 4941 case Qualifiers::OCL_None: 4942 case Qualifiers::OCL_ExplicitNone: 4943 // okay 4944 break; 4945 4946 case Qualifiers::OCL_Weak: 4947 case Qualifiers::OCL_Strong: 4948 case Qualifiers::OCL_Autoreleasing: 4949 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 4950 << ValType << FirstArg->getSourceRange(); 4951 return ExprError(); 4952 } 4953 4954 // Strip any qualifiers off ValType. 4955 ValType = ValType.getUnqualifiedType(); 4956 4957 // The majority of builtins return a value, but a few have special return 4958 // types, so allow them to override appropriately below. 4959 QualType ResultType = ValType; 4960 4961 // We need to figure out which concrete builtin this maps onto. For example, 4962 // __sync_fetch_and_add with a 2 byte object turns into 4963 // __sync_fetch_and_add_2. 4964 #define BUILTIN_ROW(x) \ 4965 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 4966 Builtin::BI##x##_8, Builtin::BI##x##_16 } 4967 4968 static const unsigned BuiltinIndices[][5] = { 4969 BUILTIN_ROW(__sync_fetch_and_add), 4970 BUILTIN_ROW(__sync_fetch_and_sub), 4971 BUILTIN_ROW(__sync_fetch_and_or), 4972 BUILTIN_ROW(__sync_fetch_and_and), 4973 BUILTIN_ROW(__sync_fetch_and_xor), 4974 BUILTIN_ROW(__sync_fetch_and_nand), 4975 4976 BUILTIN_ROW(__sync_add_and_fetch), 4977 BUILTIN_ROW(__sync_sub_and_fetch), 4978 BUILTIN_ROW(__sync_and_and_fetch), 4979 BUILTIN_ROW(__sync_or_and_fetch), 4980 BUILTIN_ROW(__sync_xor_and_fetch), 4981 BUILTIN_ROW(__sync_nand_and_fetch), 4982 4983 BUILTIN_ROW(__sync_val_compare_and_swap), 4984 BUILTIN_ROW(__sync_bool_compare_and_swap), 4985 BUILTIN_ROW(__sync_lock_test_and_set), 4986 BUILTIN_ROW(__sync_lock_release), 4987 BUILTIN_ROW(__sync_swap) 4988 }; 4989 #undef BUILTIN_ROW 4990 4991 // Determine the index of the size. 4992 unsigned SizeIndex; 4993 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 4994 case 1: SizeIndex = 0; break; 4995 case 2: SizeIndex = 1; break; 4996 case 4: SizeIndex = 2; break; 4997 case 8: SizeIndex = 3; break; 4998 case 16: SizeIndex = 4; break; 4999 default: 5000 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5001 << FirstArg->getType() << FirstArg->getSourceRange(); 5002 return ExprError(); 5003 } 5004 5005 // Each of these builtins has one pointer argument, followed by some number of 5006 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5007 // that we ignore. Find out which row of BuiltinIndices to read from as well 5008 // as the number of fixed args. 5009 unsigned BuiltinID = FDecl->getBuiltinID(); 5010 unsigned BuiltinIndex, NumFixed = 1; 5011 bool WarnAboutSemanticsChange = false; 5012 switch (BuiltinID) { 5013 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5014 case Builtin::BI__sync_fetch_and_add: 5015 case Builtin::BI__sync_fetch_and_add_1: 5016 case Builtin::BI__sync_fetch_and_add_2: 5017 case Builtin::BI__sync_fetch_and_add_4: 5018 case Builtin::BI__sync_fetch_and_add_8: 5019 case Builtin::BI__sync_fetch_and_add_16: 5020 BuiltinIndex = 0; 5021 break; 5022 5023 case Builtin::BI__sync_fetch_and_sub: 5024 case Builtin::BI__sync_fetch_and_sub_1: 5025 case Builtin::BI__sync_fetch_and_sub_2: 5026 case Builtin::BI__sync_fetch_and_sub_4: 5027 case Builtin::BI__sync_fetch_and_sub_8: 5028 case Builtin::BI__sync_fetch_and_sub_16: 5029 BuiltinIndex = 1; 5030 break; 5031 5032 case Builtin::BI__sync_fetch_and_or: 5033 case Builtin::BI__sync_fetch_and_or_1: 5034 case Builtin::BI__sync_fetch_and_or_2: 5035 case Builtin::BI__sync_fetch_and_or_4: 5036 case Builtin::BI__sync_fetch_and_or_8: 5037 case Builtin::BI__sync_fetch_and_or_16: 5038 BuiltinIndex = 2; 5039 break; 5040 5041 case Builtin::BI__sync_fetch_and_and: 5042 case Builtin::BI__sync_fetch_and_and_1: 5043 case Builtin::BI__sync_fetch_and_and_2: 5044 case Builtin::BI__sync_fetch_and_and_4: 5045 case Builtin::BI__sync_fetch_and_and_8: 5046 case Builtin::BI__sync_fetch_and_and_16: 5047 BuiltinIndex = 3; 5048 break; 5049 5050 case Builtin::BI__sync_fetch_and_xor: 5051 case Builtin::BI__sync_fetch_and_xor_1: 5052 case Builtin::BI__sync_fetch_and_xor_2: 5053 case Builtin::BI__sync_fetch_and_xor_4: 5054 case Builtin::BI__sync_fetch_and_xor_8: 5055 case Builtin::BI__sync_fetch_and_xor_16: 5056 BuiltinIndex = 4; 5057 break; 5058 5059 case Builtin::BI__sync_fetch_and_nand: 5060 case Builtin::BI__sync_fetch_and_nand_1: 5061 case Builtin::BI__sync_fetch_and_nand_2: 5062 case Builtin::BI__sync_fetch_and_nand_4: 5063 case Builtin::BI__sync_fetch_and_nand_8: 5064 case Builtin::BI__sync_fetch_and_nand_16: 5065 BuiltinIndex = 5; 5066 WarnAboutSemanticsChange = true; 5067 break; 5068 5069 case Builtin::BI__sync_add_and_fetch: 5070 case Builtin::BI__sync_add_and_fetch_1: 5071 case Builtin::BI__sync_add_and_fetch_2: 5072 case Builtin::BI__sync_add_and_fetch_4: 5073 case Builtin::BI__sync_add_and_fetch_8: 5074 case Builtin::BI__sync_add_and_fetch_16: 5075 BuiltinIndex = 6; 5076 break; 5077 5078 case Builtin::BI__sync_sub_and_fetch: 5079 case Builtin::BI__sync_sub_and_fetch_1: 5080 case Builtin::BI__sync_sub_and_fetch_2: 5081 case Builtin::BI__sync_sub_and_fetch_4: 5082 case Builtin::BI__sync_sub_and_fetch_8: 5083 case Builtin::BI__sync_sub_and_fetch_16: 5084 BuiltinIndex = 7; 5085 break; 5086 5087 case Builtin::BI__sync_and_and_fetch: 5088 case Builtin::BI__sync_and_and_fetch_1: 5089 case Builtin::BI__sync_and_and_fetch_2: 5090 case Builtin::BI__sync_and_and_fetch_4: 5091 case Builtin::BI__sync_and_and_fetch_8: 5092 case Builtin::BI__sync_and_and_fetch_16: 5093 BuiltinIndex = 8; 5094 break; 5095 5096 case Builtin::BI__sync_or_and_fetch: 5097 case Builtin::BI__sync_or_and_fetch_1: 5098 case Builtin::BI__sync_or_and_fetch_2: 5099 case Builtin::BI__sync_or_and_fetch_4: 5100 case Builtin::BI__sync_or_and_fetch_8: 5101 case Builtin::BI__sync_or_and_fetch_16: 5102 BuiltinIndex = 9; 5103 break; 5104 5105 case Builtin::BI__sync_xor_and_fetch: 5106 case Builtin::BI__sync_xor_and_fetch_1: 5107 case Builtin::BI__sync_xor_and_fetch_2: 5108 case Builtin::BI__sync_xor_and_fetch_4: 5109 case Builtin::BI__sync_xor_and_fetch_8: 5110 case Builtin::BI__sync_xor_and_fetch_16: 5111 BuiltinIndex = 10; 5112 break; 5113 5114 case Builtin::BI__sync_nand_and_fetch: 5115 case Builtin::BI__sync_nand_and_fetch_1: 5116 case Builtin::BI__sync_nand_and_fetch_2: 5117 case Builtin::BI__sync_nand_and_fetch_4: 5118 case Builtin::BI__sync_nand_and_fetch_8: 5119 case Builtin::BI__sync_nand_and_fetch_16: 5120 BuiltinIndex = 11; 5121 WarnAboutSemanticsChange = true; 5122 break; 5123 5124 case Builtin::BI__sync_val_compare_and_swap: 5125 case Builtin::BI__sync_val_compare_and_swap_1: 5126 case Builtin::BI__sync_val_compare_and_swap_2: 5127 case Builtin::BI__sync_val_compare_and_swap_4: 5128 case Builtin::BI__sync_val_compare_and_swap_8: 5129 case Builtin::BI__sync_val_compare_and_swap_16: 5130 BuiltinIndex = 12; 5131 NumFixed = 2; 5132 break; 5133 5134 case Builtin::BI__sync_bool_compare_and_swap: 5135 case Builtin::BI__sync_bool_compare_and_swap_1: 5136 case Builtin::BI__sync_bool_compare_and_swap_2: 5137 case Builtin::BI__sync_bool_compare_and_swap_4: 5138 case Builtin::BI__sync_bool_compare_and_swap_8: 5139 case Builtin::BI__sync_bool_compare_and_swap_16: 5140 BuiltinIndex = 13; 5141 NumFixed = 2; 5142 ResultType = Context.BoolTy; 5143 break; 5144 5145 case Builtin::BI__sync_lock_test_and_set: 5146 case Builtin::BI__sync_lock_test_and_set_1: 5147 case Builtin::BI__sync_lock_test_and_set_2: 5148 case Builtin::BI__sync_lock_test_and_set_4: 5149 case Builtin::BI__sync_lock_test_and_set_8: 5150 case Builtin::BI__sync_lock_test_and_set_16: 5151 BuiltinIndex = 14; 5152 break; 5153 5154 case Builtin::BI__sync_lock_release: 5155 case Builtin::BI__sync_lock_release_1: 5156 case Builtin::BI__sync_lock_release_2: 5157 case Builtin::BI__sync_lock_release_4: 5158 case Builtin::BI__sync_lock_release_8: 5159 case Builtin::BI__sync_lock_release_16: 5160 BuiltinIndex = 15; 5161 NumFixed = 0; 5162 ResultType = Context.VoidTy; 5163 break; 5164 5165 case Builtin::BI__sync_swap: 5166 case Builtin::BI__sync_swap_1: 5167 case Builtin::BI__sync_swap_2: 5168 case Builtin::BI__sync_swap_4: 5169 case Builtin::BI__sync_swap_8: 5170 case Builtin::BI__sync_swap_16: 5171 BuiltinIndex = 16; 5172 break; 5173 } 5174 5175 // Now that we know how many fixed arguments we expect, first check that we 5176 // have at least that many. 5177 if (TheCall->getNumArgs() < 1+NumFixed) { 5178 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5179 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5180 << Callee->getSourceRange(); 5181 return ExprError(); 5182 } 5183 5184 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5185 << Callee->getSourceRange(); 5186 5187 if (WarnAboutSemanticsChange) { 5188 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5189 << Callee->getSourceRange(); 5190 } 5191 5192 // Get the decl for the concrete builtin from this, we can tell what the 5193 // concrete integer type we should convert to is. 5194 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5195 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5196 FunctionDecl *NewBuiltinDecl; 5197 if (NewBuiltinID == BuiltinID) 5198 NewBuiltinDecl = FDecl; 5199 else { 5200 // Perform builtin lookup to avoid redeclaring it. 5201 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5202 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5203 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5204 assert(Res.getFoundDecl()); 5205 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5206 if (!NewBuiltinDecl) 5207 return ExprError(); 5208 } 5209 5210 // The first argument --- the pointer --- has a fixed type; we 5211 // deduce the types of the rest of the arguments accordingly. Walk 5212 // the remaining arguments, converting them to the deduced value type. 5213 for (unsigned i = 0; i != NumFixed; ++i) { 5214 ExprResult Arg = TheCall->getArg(i+1); 5215 5216 // GCC does an implicit conversion to the pointer or integer ValType. This 5217 // can fail in some cases (1i -> int**), check for this error case now. 5218 // Initialize the argument. 5219 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5220 ValType, /*consume*/ false); 5221 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5222 if (Arg.isInvalid()) 5223 return ExprError(); 5224 5225 // Okay, we have something that *can* be converted to the right type. Check 5226 // to see if there is a potentially weird extension going on here. This can 5227 // happen when you do an atomic operation on something like an char* and 5228 // pass in 42. The 42 gets converted to char. This is even more strange 5229 // for things like 45.123 -> char, etc. 5230 // FIXME: Do this check. 5231 TheCall->setArg(i+1, Arg.get()); 5232 } 5233 5234 // Create a new DeclRefExpr to refer to the new decl. 5235 DeclRefExpr* NewDRE = DeclRefExpr::Create( 5236 Context, 5237 DRE->getQualifierLoc(), 5238 SourceLocation(), 5239 NewBuiltinDecl, 5240 /*enclosing*/ false, 5241 DRE->getLocation(), 5242 Context.BuiltinFnTy, 5243 DRE->getValueKind()); 5244 5245 // Set the callee in the CallExpr. 5246 // FIXME: This loses syntactic information. 5247 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5248 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5249 CK_BuiltinFnToFnPtr); 5250 TheCall->setCallee(PromotedCall.get()); 5251 5252 // Change the result type of the call to match the original value type. This 5253 // is arbitrary, but the codegen for these builtins ins design to handle it 5254 // gracefully. 5255 TheCall->setType(ResultType); 5256 5257 return TheCallResult; 5258 } 5259 5260 /// SemaBuiltinNontemporalOverloaded - We have a call to 5261 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5262 /// overloaded function based on the pointer type of its last argument. 5263 /// 5264 /// This function goes through and does final semantic checking for these 5265 /// builtins. 5266 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5267 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5268 DeclRefExpr *DRE = 5269 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5270 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5271 unsigned BuiltinID = FDecl->getBuiltinID(); 5272 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5273 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5274 "Unexpected nontemporal load/store builtin!"); 5275 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5276 unsigned numArgs = isStore ? 2 : 1; 5277 5278 // Ensure that we have the proper number of arguments. 5279 if (checkArgCount(*this, TheCall, numArgs)) 5280 return ExprError(); 5281 5282 // Inspect the last argument of the nontemporal builtin. This should always 5283 // be a pointer type, from which we imply the type of the memory access. 5284 // Because it is a pointer type, we don't have to worry about any implicit 5285 // casts here. 5286 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5287 ExprResult PointerArgResult = 5288 DefaultFunctionArrayLvalueConversion(PointerArg); 5289 5290 if (PointerArgResult.isInvalid()) 5291 return ExprError(); 5292 PointerArg = PointerArgResult.get(); 5293 TheCall->setArg(numArgs - 1, PointerArg); 5294 5295 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5296 if (!pointerType) { 5297 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5298 << PointerArg->getType() << PointerArg->getSourceRange(); 5299 return ExprError(); 5300 } 5301 5302 QualType ValType = pointerType->getPointeeType(); 5303 5304 // Strip any qualifiers off ValType. 5305 ValType = ValType.getUnqualifiedType(); 5306 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5307 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5308 !ValType->isVectorType()) { 5309 Diag(DRE->getBeginLoc(), 5310 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5311 << PointerArg->getType() << PointerArg->getSourceRange(); 5312 return ExprError(); 5313 } 5314 5315 if (!isStore) { 5316 TheCall->setType(ValType); 5317 return TheCallResult; 5318 } 5319 5320 ExprResult ValArg = TheCall->getArg(0); 5321 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5322 Context, ValType, /*consume*/ false); 5323 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5324 if (ValArg.isInvalid()) 5325 return ExprError(); 5326 5327 TheCall->setArg(0, ValArg.get()); 5328 TheCall->setType(Context.VoidTy); 5329 return TheCallResult; 5330 } 5331 5332 /// CheckObjCString - Checks that the argument to the builtin 5333 /// CFString constructor is correct 5334 /// Note: It might also make sense to do the UTF-16 conversion here (would 5335 /// simplify the backend). 5336 bool Sema::CheckObjCString(Expr *Arg) { 5337 Arg = Arg->IgnoreParenCasts(); 5338 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5339 5340 if (!Literal || !Literal->isAscii()) { 5341 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5342 << Arg->getSourceRange(); 5343 return true; 5344 } 5345 5346 if (Literal->containsNonAsciiOrNull()) { 5347 StringRef String = Literal->getString(); 5348 unsigned NumBytes = String.size(); 5349 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5350 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5351 llvm::UTF16 *ToPtr = &ToBuf[0]; 5352 5353 llvm::ConversionResult Result = 5354 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5355 ToPtr + NumBytes, llvm::strictConversion); 5356 // Check for conversion failure. 5357 if (Result != llvm::conversionOK) 5358 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5359 << Arg->getSourceRange(); 5360 } 5361 return false; 5362 } 5363 5364 /// CheckObjCString - Checks that the format string argument to the os_log() 5365 /// and os_trace() functions is correct, and converts it to const char *. 5366 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5367 Arg = Arg->IgnoreParenCasts(); 5368 auto *Literal = dyn_cast<StringLiteral>(Arg); 5369 if (!Literal) { 5370 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5371 Literal = ObjcLiteral->getString(); 5372 } 5373 } 5374 5375 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5376 return ExprError( 5377 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5378 << Arg->getSourceRange()); 5379 } 5380 5381 ExprResult Result(Literal); 5382 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5383 InitializedEntity Entity = 5384 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5385 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5386 return Result; 5387 } 5388 5389 /// Check that the user is calling the appropriate va_start builtin for the 5390 /// target and calling convention. 5391 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5392 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5393 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5394 bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64; 5395 bool IsWindows = TT.isOSWindows(); 5396 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5397 if (IsX64 || IsAArch64) { 5398 CallingConv CC = CC_C; 5399 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5400 CC = FD->getType()->getAs<FunctionType>()->getCallConv(); 5401 if (IsMSVAStart) { 5402 // Don't allow this in System V ABI functions. 5403 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5404 return S.Diag(Fn->getBeginLoc(), 5405 diag::err_ms_va_start_used_in_sysv_function); 5406 } else { 5407 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5408 // On x64 Windows, don't allow this in System V ABI functions. 5409 // (Yes, that means there's no corresponding way to support variadic 5410 // System V ABI functions on Windows.) 5411 if ((IsWindows && CC == CC_X86_64SysV) || 5412 (!IsWindows && CC == CC_Win64)) 5413 return S.Diag(Fn->getBeginLoc(), 5414 diag::err_va_start_used_in_wrong_abi_function) 5415 << !IsWindows; 5416 } 5417 return false; 5418 } 5419 5420 if (IsMSVAStart) 5421 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5422 return false; 5423 } 5424 5425 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5426 ParmVarDecl **LastParam = nullptr) { 5427 // Determine whether the current function, block, or obj-c method is variadic 5428 // and get its parameter list. 5429 bool IsVariadic = false; 5430 ArrayRef<ParmVarDecl *> Params; 5431 DeclContext *Caller = S.CurContext; 5432 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5433 IsVariadic = Block->isVariadic(); 5434 Params = Block->parameters(); 5435 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5436 IsVariadic = FD->isVariadic(); 5437 Params = FD->parameters(); 5438 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5439 IsVariadic = MD->isVariadic(); 5440 // FIXME: This isn't correct for methods (results in bogus warning). 5441 Params = MD->parameters(); 5442 } else if (isa<CapturedDecl>(Caller)) { 5443 // We don't support va_start in a CapturedDecl. 5444 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5445 return true; 5446 } else { 5447 // This must be some other declcontext that parses exprs. 5448 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5449 return true; 5450 } 5451 5452 if (!IsVariadic) { 5453 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5454 return true; 5455 } 5456 5457 if (LastParam) 5458 *LastParam = Params.empty() ? nullptr : Params.back(); 5459 5460 return false; 5461 } 5462 5463 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5464 /// for validity. Emit an error and return true on failure; return false 5465 /// on success. 5466 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5467 Expr *Fn = TheCall->getCallee(); 5468 5469 if (checkVAStartABI(*this, BuiltinID, Fn)) 5470 return true; 5471 5472 if (TheCall->getNumArgs() > 2) { 5473 Diag(TheCall->getArg(2)->getBeginLoc(), 5474 diag::err_typecheck_call_too_many_args) 5475 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5476 << Fn->getSourceRange() 5477 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5478 (*(TheCall->arg_end() - 1))->getEndLoc()); 5479 return true; 5480 } 5481 5482 if (TheCall->getNumArgs() < 2) { 5483 return Diag(TheCall->getEndLoc(), 5484 diag::err_typecheck_call_too_few_args_at_least) 5485 << 0 /*function call*/ << 2 << TheCall->getNumArgs(); 5486 } 5487 5488 // Type-check the first argument normally. 5489 if (checkBuiltinArgument(*this, TheCall, 0)) 5490 return true; 5491 5492 // Check that the current function is variadic, and get its last parameter. 5493 ParmVarDecl *LastParam; 5494 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5495 return true; 5496 5497 // Verify that the second argument to the builtin is the last argument of the 5498 // current function or method. 5499 bool SecondArgIsLastNamedArgument = false; 5500 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5501 5502 // These are valid if SecondArgIsLastNamedArgument is false after the next 5503 // block. 5504 QualType Type; 5505 SourceLocation ParamLoc; 5506 bool IsCRegister = false; 5507 5508 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5509 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5510 SecondArgIsLastNamedArgument = PV == LastParam; 5511 5512 Type = PV->getType(); 5513 ParamLoc = PV->getLocation(); 5514 IsCRegister = 5515 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5516 } 5517 } 5518 5519 if (!SecondArgIsLastNamedArgument) 5520 Diag(TheCall->getArg(1)->getBeginLoc(), 5521 diag::warn_second_arg_of_va_start_not_last_named_param); 5522 else if (IsCRegister || Type->isReferenceType() || 5523 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5524 // Promotable integers are UB, but enumerations need a bit of 5525 // extra checking to see what their promotable type actually is. 5526 if (!Type->isPromotableIntegerType()) 5527 return false; 5528 if (!Type->isEnumeralType()) 5529 return true; 5530 const EnumDecl *ED = Type->getAs<EnumType>()->getDecl(); 5531 return !(ED && 5532 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5533 }()) { 5534 unsigned Reason = 0; 5535 if (Type->isReferenceType()) Reason = 1; 5536 else if (IsCRegister) Reason = 2; 5537 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5538 Diag(ParamLoc, diag::note_parameter_type) << Type; 5539 } 5540 5541 TheCall->setType(Context.VoidTy); 5542 return false; 5543 } 5544 5545 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5546 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5547 // const char *named_addr); 5548 5549 Expr *Func = Call->getCallee(); 5550 5551 if (Call->getNumArgs() < 3) 5552 return Diag(Call->getEndLoc(), 5553 diag::err_typecheck_call_too_few_args_at_least) 5554 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5555 5556 // Type-check the first argument normally. 5557 if (checkBuiltinArgument(*this, Call, 0)) 5558 return true; 5559 5560 // Check that the current function is variadic. 5561 if (checkVAStartIsInVariadicFunction(*this, Func)) 5562 return true; 5563 5564 // __va_start on Windows does not validate the parameter qualifiers 5565 5566 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5567 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5568 5569 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5570 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5571 5572 const QualType &ConstCharPtrTy = 5573 Context.getPointerType(Context.CharTy.withConst()); 5574 if (!Arg1Ty->isPointerType() || 5575 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5576 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5577 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5578 << 0 /* qualifier difference */ 5579 << 3 /* parameter mismatch */ 5580 << 2 << Arg1->getType() << ConstCharPtrTy; 5581 5582 const QualType SizeTy = Context.getSizeType(); 5583 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5584 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5585 << Arg2->getType() << SizeTy << 1 /* different class */ 5586 << 0 /* qualifier difference */ 5587 << 3 /* parameter mismatch */ 5588 << 3 << Arg2->getType() << SizeTy; 5589 5590 return false; 5591 } 5592 5593 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5594 /// friends. This is declared to take (...), so we have to check everything. 5595 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5596 if (TheCall->getNumArgs() < 2) 5597 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5598 << 0 << 2 << TheCall->getNumArgs() /*function call*/; 5599 if (TheCall->getNumArgs() > 2) 5600 return Diag(TheCall->getArg(2)->getBeginLoc(), 5601 diag::err_typecheck_call_too_many_args) 5602 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5603 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5604 (*(TheCall->arg_end() - 1))->getEndLoc()); 5605 5606 ExprResult OrigArg0 = TheCall->getArg(0); 5607 ExprResult OrigArg1 = TheCall->getArg(1); 5608 5609 // Do standard promotions between the two arguments, returning their common 5610 // type. 5611 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); 5612 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5613 return true; 5614 5615 // Make sure any conversions are pushed back into the call; this is 5616 // type safe since unordered compare builtins are declared as "_Bool 5617 // foo(...)". 5618 TheCall->setArg(0, OrigArg0.get()); 5619 TheCall->setArg(1, OrigArg1.get()); 5620 5621 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5622 return false; 5623 5624 // If the common type isn't a real floating type, then the arguments were 5625 // invalid for this operation. 5626 if (Res.isNull() || !Res->isRealFloatingType()) 5627 return Diag(OrigArg0.get()->getBeginLoc(), 5628 diag::err_typecheck_call_invalid_ordered_compare) 5629 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5630 << SourceRange(OrigArg0.get()->getBeginLoc(), 5631 OrigArg1.get()->getEndLoc()); 5632 5633 return false; 5634 } 5635 5636 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5637 /// __builtin_isnan and friends. This is declared to take (...), so we have 5638 /// to check everything. We expect the last argument to be a floating point 5639 /// value. 5640 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5641 if (TheCall->getNumArgs() < NumArgs) 5642 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5643 << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; 5644 if (TheCall->getNumArgs() > NumArgs) 5645 return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), 5646 diag::err_typecheck_call_too_many_args) 5647 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() 5648 << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), 5649 (*(TheCall->arg_end() - 1))->getEndLoc()); 5650 5651 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5652 5653 if (OrigArg->isTypeDependent()) 5654 return false; 5655 5656 // This operation requires a non-_Complex floating-point number. 5657 if (!OrigArg->getType()->isRealFloatingType()) 5658 return Diag(OrigArg->getBeginLoc(), 5659 diag::err_typecheck_call_invalid_unary_fp) 5660 << OrigArg->getType() << OrigArg->getSourceRange(); 5661 5662 // If this is an implicit conversion from float -> float, double, or 5663 // long double, remove it. 5664 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) { 5665 // Only remove standard FloatCasts, leaving other casts inplace 5666 if (Cast->getCastKind() == CK_FloatingCast) { 5667 Expr *CastArg = Cast->getSubExpr(); 5668 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) { 5669 assert( 5670 (Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) || 5671 Cast->getType()->isSpecificBuiltinType(BuiltinType::Float) || 5672 Cast->getType()->isSpecificBuiltinType(BuiltinType::LongDouble)) && 5673 "promotion from float to either float, double, or long double is " 5674 "the only expected cast here"); 5675 Cast->setSubExpr(nullptr); 5676 TheCall->setArg(NumArgs-1, CastArg); 5677 } 5678 } 5679 } 5680 5681 return false; 5682 } 5683 5684 // Customized Sema Checking for VSX builtins that have the following signature: 5685 // vector [...] builtinName(vector [...], vector [...], const int); 5686 // Which takes the same type of vectors (any legal vector type) for the first 5687 // two arguments and takes compile time constant for the third argument. 5688 // Example builtins are : 5689 // vector double vec_xxpermdi(vector double, vector double, int); 5690 // vector short vec_xxsldwi(vector short, vector short, int); 5691 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 5692 unsigned ExpectedNumArgs = 3; 5693 if (TheCall->getNumArgs() < ExpectedNumArgs) 5694 return Diag(TheCall->getEndLoc(), 5695 diag::err_typecheck_call_too_few_args_at_least) 5696 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5697 << TheCall->getSourceRange(); 5698 5699 if (TheCall->getNumArgs() > ExpectedNumArgs) 5700 return Diag(TheCall->getEndLoc(), 5701 diag::err_typecheck_call_too_many_args_at_most) 5702 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5703 << TheCall->getSourceRange(); 5704 5705 // Check the third argument is a compile time constant 5706 llvm::APSInt Value; 5707 if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) 5708 return Diag(TheCall->getBeginLoc(), 5709 diag::err_vsx_builtin_nonconstant_argument) 5710 << 3 /* argument index */ << TheCall->getDirectCallee() 5711 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5712 TheCall->getArg(2)->getEndLoc()); 5713 5714 QualType Arg1Ty = TheCall->getArg(0)->getType(); 5715 QualType Arg2Ty = TheCall->getArg(1)->getType(); 5716 5717 // Check the type of argument 1 and argument 2 are vectors. 5718 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 5719 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 5720 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 5721 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 5722 << TheCall->getDirectCallee() 5723 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5724 TheCall->getArg(1)->getEndLoc()); 5725 } 5726 5727 // Check the first two arguments are the same type. 5728 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 5729 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 5730 << TheCall->getDirectCallee() 5731 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5732 TheCall->getArg(1)->getEndLoc()); 5733 } 5734 5735 // When default clang type checking is turned off and the customized type 5736 // checking is used, the returning type of the function must be explicitly 5737 // set. Otherwise it is _Bool by default. 5738 TheCall->setType(Arg1Ty); 5739 5740 return false; 5741 } 5742 5743 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 5744 // This is declared to take (...), so we have to check everything. 5745 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 5746 if (TheCall->getNumArgs() < 2) 5747 return ExprError(Diag(TheCall->getEndLoc(), 5748 diag::err_typecheck_call_too_few_args_at_least) 5749 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5750 << TheCall->getSourceRange()); 5751 5752 // Determine which of the following types of shufflevector we're checking: 5753 // 1) unary, vector mask: (lhs, mask) 5754 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 5755 QualType resType = TheCall->getArg(0)->getType(); 5756 unsigned numElements = 0; 5757 5758 if (!TheCall->getArg(0)->isTypeDependent() && 5759 !TheCall->getArg(1)->isTypeDependent()) { 5760 QualType LHSType = TheCall->getArg(0)->getType(); 5761 QualType RHSType = TheCall->getArg(1)->getType(); 5762 5763 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 5764 return ExprError( 5765 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 5766 << TheCall->getDirectCallee() 5767 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5768 TheCall->getArg(1)->getEndLoc())); 5769 5770 numElements = LHSType->getAs<VectorType>()->getNumElements(); 5771 unsigned numResElements = TheCall->getNumArgs() - 2; 5772 5773 // Check to see if we have a call with 2 vector arguments, the unary shuffle 5774 // with mask. If so, verify that RHS is an integer vector type with the 5775 // same number of elts as lhs. 5776 if (TheCall->getNumArgs() == 2) { 5777 if (!RHSType->hasIntegerRepresentation() || 5778 RHSType->getAs<VectorType>()->getNumElements() != numElements) 5779 return ExprError(Diag(TheCall->getBeginLoc(), 5780 diag::err_vec_builtin_incompatible_vector) 5781 << TheCall->getDirectCallee() 5782 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 5783 TheCall->getArg(1)->getEndLoc())); 5784 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 5785 return ExprError(Diag(TheCall->getBeginLoc(), 5786 diag::err_vec_builtin_incompatible_vector) 5787 << TheCall->getDirectCallee() 5788 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5789 TheCall->getArg(1)->getEndLoc())); 5790 } else if (numElements != numResElements) { 5791 QualType eltType = LHSType->getAs<VectorType>()->getElementType(); 5792 resType = Context.getVectorType(eltType, numResElements, 5793 VectorType::GenericVector); 5794 } 5795 } 5796 5797 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 5798 if (TheCall->getArg(i)->isTypeDependent() || 5799 TheCall->getArg(i)->isValueDependent()) 5800 continue; 5801 5802 llvm::APSInt Result(32); 5803 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) 5804 return ExprError(Diag(TheCall->getBeginLoc(), 5805 diag::err_shufflevector_nonconstant_argument) 5806 << TheCall->getArg(i)->getSourceRange()); 5807 5808 // Allow -1 which will be translated to undef in the IR. 5809 if (Result.isSigned() && Result.isAllOnesValue()) 5810 continue; 5811 5812 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) 5813 return ExprError(Diag(TheCall->getBeginLoc(), 5814 diag::err_shufflevector_argument_too_large) 5815 << TheCall->getArg(i)->getSourceRange()); 5816 } 5817 5818 SmallVector<Expr*, 32> exprs; 5819 5820 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 5821 exprs.push_back(TheCall->getArg(i)); 5822 TheCall->setArg(i, nullptr); 5823 } 5824 5825 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 5826 TheCall->getCallee()->getBeginLoc(), 5827 TheCall->getRParenLoc()); 5828 } 5829 5830 /// SemaConvertVectorExpr - Handle __builtin_convertvector 5831 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 5832 SourceLocation BuiltinLoc, 5833 SourceLocation RParenLoc) { 5834 ExprValueKind VK = VK_RValue; 5835 ExprObjectKind OK = OK_Ordinary; 5836 QualType DstTy = TInfo->getType(); 5837 QualType SrcTy = E->getType(); 5838 5839 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 5840 return ExprError(Diag(BuiltinLoc, 5841 diag::err_convertvector_non_vector) 5842 << E->getSourceRange()); 5843 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 5844 return ExprError(Diag(BuiltinLoc, 5845 diag::err_convertvector_non_vector_type)); 5846 5847 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 5848 unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements(); 5849 unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements(); 5850 if (SrcElts != DstElts) 5851 return ExprError(Diag(BuiltinLoc, 5852 diag::err_convertvector_incompatible_vector) 5853 << E->getSourceRange()); 5854 } 5855 5856 return new (Context) 5857 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 5858 } 5859 5860 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 5861 // This is declared to take (const void*, ...) and can take two 5862 // optional constant int args. 5863 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 5864 unsigned NumArgs = TheCall->getNumArgs(); 5865 5866 if (NumArgs > 3) 5867 return Diag(TheCall->getEndLoc(), 5868 diag::err_typecheck_call_too_many_args_at_most) 5869 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5870 5871 // Argument 0 is checked for us and the remaining arguments must be 5872 // constant integers. 5873 for (unsigned i = 1; i != NumArgs; ++i) 5874 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 5875 return true; 5876 5877 return false; 5878 } 5879 5880 /// SemaBuiltinAssume - Handle __assume (MS Extension). 5881 // __assume does not evaluate its arguments, and should warn if its argument 5882 // has side effects. 5883 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 5884 Expr *Arg = TheCall->getArg(0); 5885 if (Arg->isInstantiationDependent()) return false; 5886 5887 if (Arg->HasSideEffects(Context)) 5888 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 5889 << Arg->getSourceRange() 5890 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 5891 5892 return false; 5893 } 5894 5895 /// Handle __builtin_alloca_with_align. This is declared 5896 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 5897 /// than 8. 5898 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 5899 // The alignment must be a constant integer. 5900 Expr *Arg = TheCall->getArg(1); 5901 5902 // We can't check the value of a dependent argument. 5903 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 5904 if (const auto *UE = 5905 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 5906 if (UE->getKind() == UETT_AlignOf || 5907 UE->getKind() == UETT_PreferredAlignOf) 5908 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 5909 << Arg->getSourceRange(); 5910 5911 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 5912 5913 if (!Result.isPowerOf2()) 5914 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 5915 << Arg->getSourceRange(); 5916 5917 if (Result < Context.getCharWidth()) 5918 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 5919 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 5920 5921 if (Result > std::numeric_limits<int32_t>::max()) 5922 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 5923 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 5924 } 5925 5926 return false; 5927 } 5928 5929 /// Handle __builtin_assume_aligned. This is declared 5930 /// as (const void*, size_t, ...) and can take one optional constant int arg. 5931 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 5932 unsigned NumArgs = TheCall->getNumArgs(); 5933 5934 if (NumArgs > 3) 5935 return Diag(TheCall->getEndLoc(), 5936 diag::err_typecheck_call_too_many_args_at_most) 5937 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5938 5939 // The alignment must be a constant integer. 5940 Expr *Arg = TheCall->getArg(1); 5941 5942 // We can't check the value of a dependent argument. 5943 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 5944 llvm::APSInt Result; 5945 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 5946 return true; 5947 5948 if (!Result.isPowerOf2()) 5949 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 5950 << Arg->getSourceRange(); 5951 } 5952 5953 if (NumArgs > 2) { 5954 ExprResult Arg(TheCall->getArg(2)); 5955 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5956 Context.getSizeType(), false); 5957 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5958 if (Arg.isInvalid()) return true; 5959 TheCall->setArg(2, Arg.get()); 5960 } 5961 5962 return false; 5963 } 5964 5965 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 5966 unsigned BuiltinID = 5967 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 5968 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 5969 5970 unsigned NumArgs = TheCall->getNumArgs(); 5971 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 5972 if (NumArgs < NumRequiredArgs) { 5973 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5974 << 0 /* function call */ << NumRequiredArgs << NumArgs 5975 << TheCall->getSourceRange(); 5976 } 5977 if (NumArgs >= NumRequiredArgs + 0x100) { 5978 return Diag(TheCall->getEndLoc(), 5979 diag::err_typecheck_call_too_many_args_at_most) 5980 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 5981 << TheCall->getSourceRange(); 5982 } 5983 unsigned i = 0; 5984 5985 // For formatting call, check buffer arg. 5986 if (!IsSizeCall) { 5987 ExprResult Arg(TheCall->getArg(i)); 5988 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5989 Context, Context.VoidPtrTy, false); 5990 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5991 if (Arg.isInvalid()) 5992 return true; 5993 TheCall->setArg(i, Arg.get()); 5994 i++; 5995 } 5996 5997 // Check string literal arg. 5998 unsigned FormatIdx = i; 5999 { 6000 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6001 if (Arg.isInvalid()) 6002 return true; 6003 TheCall->setArg(i, Arg.get()); 6004 i++; 6005 } 6006 6007 // Make sure variadic args are scalar. 6008 unsigned FirstDataArg = i; 6009 while (i < NumArgs) { 6010 ExprResult Arg = DefaultVariadicArgumentPromotion( 6011 TheCall->getArg(i), VariadicFunction, nullptr); 6012 if (Arg.isInvalid()) 6013 return true; 6014 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6015 if (ArgSize.getQuantity() >= 0x100) { 6016 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6017 << i << (int)ArgSize.getQuantity() << 0xff 6018 << TheCall->getSourceRange(); 6019 } 6020 TheCall->setArg(i, Arg.get()); 6021 i++; 6022 } 6023 6024 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6025 // call to avoid duplicate diagnostics. 6026 if (!IsSizeCall) { 6027 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6028 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6029 bool Success = CheckFormatArguments( 6030 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6031 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6032 CheckedVarArgs); 6033 if (!Success) 6034 return true; 6035 } 6036 6037 if (IsSizeCall) { 6038 TheCall->setType(Context.getSizeType()); 6039 } else { 6040 TheCall->setType(Context.VoidPtrTy); 6041 } 6042 return false; 6043 } 6044 6045 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6046 /// TheCall is a constant expression. 6047 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6048 llvm::APSInt &Result) { 6049 Expr *Arg = TheCall->getArg(ArgNum); 6050 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6051 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6052 6053 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6054 6055 if (!Arg->isIntegerConstantExpr(Result, Context)) 6056 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6057 << FDecl->getDeclName() << Arg->getSourceRange(); 6058 6059 return false; 6060 } 6061 6062 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6063 /// TheCall is a constant expression in the range [Low, High]. 6064 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6065 int Low, int High, bool RangeIsError) { 6066 llvm::APSInt Result; 6067 6068 // We can't check the value of a dependent argument. 6069 Expr *Arg = TheCall->getArg(ArgNum); 6070 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6071 return false; 6072 6073 // Check constant-ness first. 6074 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6075 return true; 6076 6077 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6078 if (RangeIsError) 6079 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6080 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6081 else 6082 // Defer the warning until we know if the code will be emitted so that 6083 // dead code can ignore this. 6084 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6085 PDiag(diag::warn_argument_invalid_range) 6086 << Result.toString(10) << Low << High 6087 << Arg->getSourceRange()); 6088 } 6089 6090 return false; 6091 } 6092 6093 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6094 /// TheCall is a constant expression is a multiple of Num.. 6095 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6096 unsigned Num) { 6097 llvm::APSInt Result; 6098 6099 // We can't check the value of a dependent argument. 6100 Expr *Arg = TheCall->getArg(ArgNum); 6101 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6102 return false; 6103 6104 // Check constant-ness first. 6105 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6106 return true; 6107 6108 if (Result.getSExtValue() % Num != 0) 6109 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6110 << Num << Arg->getSourceRange(); 6111 6112 return false; 6113 } 6114 6115 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6116 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6117 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6118 if (checkArgCount(*this, TheCall, 2)) 6119 return true; 6120 Expr *Arg0 = TheCall->getArg(0); 6121 Expr *Arg1 = TheCall->getArg(1); 6122 6123 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6124 if (FirstArg.isInvalid()) 6125 return true; 6126 QualType FirstArgType = FirstArg.get()->getType(); 6127 if (!FirstArgType->isAnyPointerType()) 6128 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6129 << "first" << FirstArgType << Arg0->getSourceRange(); 6130 TheCall->setArg(0, FirstArg.get()); 6131 6132 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6133 if (SecArg.isInvalid()) 6134 return true; 6135 QualType SecArgType = SecArg.get()->getType(); 6136 if (!SecArgType->isIntegerType()) 6137 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6138 << "second" << SecArgType << Arg1->getSourceRange(); 6139 6140 // Derive the return type from the pointer argument. 6141 TheCall->setType(FirstArgType); 6142 return false; 6143 } 6144 6145 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6146 if (checkArgCount(*this, TheCall, 2)) 6147 return true; 6148 6149 Expr *Arg0 = TheCall->getArg(0); 6150 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6151 if (FirstArg.isInvalid()) 6152 return true; 6153 QualType FirstArgType = FirstArg.get()->getType(); 6154 if (!FirstArgType->isAnyPointerType()) 6155 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6156 << "first" << FirstArgType << Arg0->getSourceRange(); 6157 TheCall->setArg(0, FirstArg.get()); 6158 6159 // Derive the return type from the pointer argument. 6160 TheCall->setType(FirstArgType); 6161 6162 // Second arg must be an constant in range [0,15] 6163 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6164 } 6165 6166 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6167 if (checkArgCount(*this, TheCall, 2)) 6168 return true; 6169 Expr *Arg0 = TheCall->getArg(0); 6170 Expr *Arg1 = TheCall->getArg(1); 6171 6172 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6173 if (FirstArg.isInvalid()) 6174 return true; 6175 QualType FirstArgType = FirstArg.get()->getType(); 6176 if (!FirstArgType->isAnyPointerType()) 6177 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6178 << "first" << FirstArgType << Arg0->getSourceRange(); 6179 6180 QualType SecArgType = Arg1->getType(); 6181 if (!SecArgType->isIntegerType()) 6182 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6183 << "second" << SecArgType << Arg1->getSourceRange(); 6184 TheCall->setType(Context.IntTy); 6185 return false; 6186 } 6187 6188 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6189 BuiltinID == AArch64::BI__builtin_arm_stg) { 6190 if (checkArgCount(*this, TheCall, 1)) 6191 return true; 6192 Expr *Arg0 = TheCall->getArg(0); 6193 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6194 if (FirstArg.isInvalid()) 6195 return true; 6196 6197 QualType FirstArgType = FirstArg.get()->getType(); 6198 if (!FirstArgType->isAnyPointerType()) 6199 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6200 << "first" << FirstArgType << Arg0->getSourceRange(); 6201 TheCall->setArg(0, FirstArg.get()); 6202 6203 // Derive the return type from the pointer argument. 6204 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6205 TheCall->setType(FirstArgType); 6206 return false; 6207 } 6208 6209 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6210 Expr *ArgA = TheCall->getArg(0); 6211 Expr *ArgB = TheCall->getArg(1); 6212 6213 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6214 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6215 6216 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6217 return true; 6218 6219 QualType ArgTypeA = ArgExprA.get()->getType(); 6220 QualType ArgTypeB = ArgExprB.get()->getType(); 6221 6222 auto isNull = [&] (Expr *E) -> bool { 6223 return E->isNullPointerConstant( 6224 Context, Expr::NPC_ValueDependentIsNotNull); }; 6225 6226 // argument should be either a pointer or null 6227 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6228 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6229 << "first" << ArgTypeA << ArgA->getSourceRange(); 6230 6231 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6232 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6233 << "second" << ArgTypeB << ArgB->getSourceRange(); 6234 6235 // Ensure Pointee types are compatible 6236 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6237 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6238 QualType pointeeA = ArgTypeA->getPointeeType(); 6239 QualType pointeeB = ArgTypeB->getPointeeType(); 6240 if (!Context.typesAreCompatible( 6241 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6242 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6243 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6244 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6245 << ArgB->getSourceRange(); 6246 } 6247 } 6248 6249 // at least one argument should be pointer type 6250 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6251 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6252 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6253 6254 if (isNull(ArgA)) // adopt type of the other pointer 6255 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6256 6257 if (isNull(ArgB)) 6258 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6259 6260 TheCall->setArg(0, ArgExprA.get()); 6261 TheCall->setArg(1, ArgExprB.get()); 6262 TheCall->setType(Context.LongLongTy); 6263 return false; 6264 } 6265 assert(false && "Unhandled ARM MTE intrinsic"); 6266 return true; 6267 } 6268 6269 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6270 /// TheCall is an ARM/AArch64 special register string literal. 6271 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6272 int ArgNum, unsigned ExpectedFieldNum, 6273 bool AllowName) { 6274 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6275 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6276 BuiltinID == ARM::BI__builtin_arm_rsr || 6277 BuiltinID == ARM::BI__builtin_arm_rsrp || 6278 BuiltinID == ARM::BI__builtin_arm_wsr || 6279 BuiltinID == ARM::BI__builtin_arm_wsrp; 6280 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6281 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6282 BuiltinID == AArch64::BI__builtin_arm_rsr || 6283 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6284 BuiltinID == AArch64::BI__builtin_arm_wsr || 6285 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6286 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6287 6288 // We can't check the value of a dependent argument. 6289 Expr *Arg = TheCall->getArg(ArgNum); 6290 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6291 return false; 6292 6293 // Check if the argument is a string literal. 6294 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6295 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6296 << Arg->getSourceRange(); 6297 6298 // Check the type of special register given. 6299 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6300 SmallVector<StringRef, 6> Fields; 6301 Reg.split(Fields, ":"); 6302 6303 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6304 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6305 << Arg->getSourceRange(); 6306 6307 // If the string is the name of a register then we cannot check that it is 6308 // valid here but if the string is of one the forms described in ACLE then we 6309 // can check that the supplied fields are integers and within the valid 6310 // ranges. 6311 if (Fields.size() > 1) { 6312 bool FiveFields = Fields.size() == 5; 6313 6314 bool ValidString = true; 6315 if (IsARMBuiltin) { 6316 ValidString &= Fields[0].startswith_lower("cp") || 6317 Fields[0].startswith_lower("p"); 6318 if (ValidString) 6319 Fields[0] = 6320 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6321 6322 ValidString &= Fields[2].startswith_lower("c"); 6323 if (ValidString) 6324 Fields[2] = Fields[2].drop_front(1); 6325 6326 if (FiveFields) { 6327 ValidString &= Fields[3].startswith_lower("c"); 6328 if (ValidString) 6329 Fields[3] = Fields[3].drop_front(1); 6330 } 6331 } 6332 6333 SmallVector<int, 5> Ranges; 6334 if (FiveFields) 6335 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6336 else 6337 Ranges.append({15, 7, 15}); 6338 6339 for (unsigned i=0; i<Fields.size(); ++i) { 6340 int IntField; 6341 ValidString &= !Fields[i].getAsInteger(10, IntField); 6342 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6343 } 6344 6345 if (!ValidString) 6346 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6347 << Arg->getSourceRange(); 6348 } else if (IsAArch64Builtin && Fields.size() == 1) { 6349 // If the register name is one of those that appear in the condition below 6350 // and the special register builtin being used is one of the write builtins, 6351 // then we require that the argument provided for writing to the register 6352 // is an integer constant expression. This is because it will be lowered to 6353 // an MSR (immediate) instruction, so we need to know the immediate at 6354 // compile time. 6355 if (TheCall->getNumArgs() != 2) 6356 return false; 6357 6358 std::string RegLower = Reg.lower(); 6359 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6360 RegLower != "pan" && RegLower != "uao") 6361 return false; 6362 6363 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6364 } 6365 6366 return false; 6367 } 6368 6369 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6370 /// This checks that the target supports __builtin_longjmp and 6371 /// that val is a constant 1. 6372 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6373 if (!Context.getTargetInfo().hasSjLjLowering()) 6374 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6375 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6376 6377 Expr *Arg = TheCall->getArg(1); 6378 llvm::APSInt Result; 6379 6380 // TODO: This is less than ideal. Overload this to take a value. 6381 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6382 return true; 6383 6384 if (Result != 1) 6385 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6386 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6387 6388 return false; 6389 } 6390 6391 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6392 /// This checks that the target supports __builtin_setjmp. 6393 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6394 if (!Context.getTargetInfo().hasSjLjLowering()) 6395 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6396 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6397 return false; 6398 } 6399 6400 namespace { 6401 6402 class UncoveredArgHandler { 6403 enum { Unknown = -1, AllCovered = -2 }; 6404 6405 signed FirstUncoveredArg = Unknown; 6406 SmallVector<const Expr *, 4> DiagnosticExprs; 6407 6408 public: 6409 UncoveredArgHandler() = default; 6410 6411 bool hasUncoveredArg() const { 6412 return (FirstUncoveredArg >= 0); 6413 } 6414 6415 unsigned getUncoveredArg() const { 6416 assert(hasUncoveredArg() && "no uncovered argument"); 6417 return FirstUncoveredArg; 6418 } 6419 6420 void setAllCovered() { 6421 // A string has been found with all arguments covered, so clear out 6422 // the diagnostics. 6423 DiagnosticExprs.clear(); 6424 FirstUncoveredArg = AllCovered; 6425 } 6426 6427 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6428 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6429 6430 // Don't update if a previous string covers all arguments. 6431 if (FirstUncoveredArg == AllCovered) 6432 return; 6433 6434 // UncoveredArgHandler tracks the highest uncovered argument index 6435 // and with it all the strings that match this index. 6436 if (NewFirstUncoveredArg == FirstUncoveredArg) 6437 DiagnosticExprs.push_back(StrExpr); 6438 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6439 DiagnosticExprs.clear(); 6440 DiagnosticExprs.push_back(StrExpr); 6441 FirstUncoveredArg = NewFirstUncoveredArg; 6442 } 6443 } 6444 6445 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6446 }; 6447 6448 enum StringLiteralCheckType { 6449 SLCT_NotALiteral, 6450 SLCT_UncheckedLiteral, 6451 SLCT_CheckedLiteral 6452 }; 6453 6454 } // namespace 6455 6456 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6457 BinaryOperatorKind BinOpKind, 6458 bool AddendIsRight) { 6459 unsigned BitWidth = Offset.getBitWidth(); 6460 unsigned AddendBitWidth = Addend.getBitWidth(); 6461 // There might be negative interim results. 6462 if (Addend.isUnsigned()) { 6463 Addend = Addend.zext(++AddendBitWidth); 6464 Addend.setIsSigned(true); 6465 } 6466 // Adjust the bit width of the APSInts. 6467 if (AddendBitWidth > BitWidth) { 6468 Offset = Offset.sext(AddendBitWidth); 6469 BitWidth = AddendBitWidth; 6470 } else if (BitWidth > AddendBitWidth) { 6471 Addend = Addend.sext(BitWidth); 6472 } 6473 6474 bool Ov = false; 6475 llvm::APSInt ResOffset = Offset; 6476 if (BinOpKind == BO_Add) 6477 ResOffset = Offset.sadd_ov(Addend, Ov); 6478 else { 6479 assert(AddendIsRight && BinOpKind == BO_Sub && 6480 "operator must be add or sub with addend on the right"); 6481 ResOffset = Offset.ssub_ov(Addend, Ov); 6482 } 6483 6484 // We add an offset to a pointer here so we should support an offset as big as 6485 // possible. 6486 if (Ov) { 6487 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6488 "index (intermediate) result too big"); 6489 Offset = Offset.sext(2 * BitWidth); 6490 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6491 return; 6492 } 6493 6494 Offset = ResOffset; 6495 } 6496 6497 namespace { 6498 6499 // This is a wrapper class around StringLiteral to support offsetted string 6500 // literals as format strings. It takes the offset into account when returning 6501 // the string and its length or the source locations to display notes correctly. 6502 class FormatStringLiteral { 6503 const StringLiteral *FExpr; 6504 int64_t Offset; 6505 6506 public: 6507 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 6508 : FExpr(fexpr), Offset(Offset) {} 6509 6510 StringRef getString() const { 6511 return FExpr->getString().drop_front(Offset); 6512 } 6513 6514 unsigned getByteLength() const { 6515 return FExpr->getByteLength() - getCharByteWidth() * Offset; 6516 } 6517 6518 unsigned getLength() const { return FExpr->getLength() - Offset; } 6519 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 6520 6521 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 6522 6523 QualType getType() const { return FExpr->getType(); } 6524 6525 bool isAscii() const { return FExpr->isAscii(); } 6526 bool isWide() const { return FExpr->isWide(); } 6527 bool isUTF8() const { return FExpr->isUTF8(); } 6528 bool isUTF16() const { return FExpr->isUTF16(); } 6529 bool isUTF32() const { return FExpr->isUTF32(); } 6530 bool isPascal() const { return FExpr->isPascal(); } 6531 6532 SourceLocation getLocationOfByte( 6533 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 6534 const TargetInfo &Target, unsigned *StartToken = nullptr, 6535 unsigned *StartTokenByteOffset = nullptr) const { 6536 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 6537 StartToken, StartTokenByteOffset); 6538 } 6539 6540 SourceLocation getBeginLoc() const LLVM_READONLY { 6541 return FExpr->getBeginLoc().getLocWithOffset(Offset); 6542 } 6543 6544 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 6545 }; 6546 6547 } // namespace 6548 6549 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 6550 const Expr *OrigFormatExpr, 6551 ArrayRef<const Expr *> Args, 6552 bool HasVAListArg, unsigned format_idx, 6553 unsigned firstDataArg, 6554 Sema::FormatStringType Type, 6555 bool inFunctionCall, 6556 Sema::VariadicCallType CallType, 6557 llvm::SmallBitVector &CheckedVarArgs, 6558 UncoveredArgHandler &UncoveredArg); 6559 6560 // Determine if an expression is a string literal or constant string. 6561 // If this function returns false on the arguments to a function expecting a 6562 // format string, we will usually need to emit a warning. 6563 // True string literals are then checked by CheckFormatString. 6564 static StringLiteralCheckType 6565 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 6566 bool HasVAListArg, unsigned format_idx, 6567 unsigned firstDataArg, Sema::FormatStringType Type, 6568 Sema::VariadicCallType CallType, bool InFunctionCall, 6569 llvm::SmallBitVector &CheckedVarArgs, 6570 UncoveredArgHandler &UncoveredArg, 6571 llvm::APSInt Offset) { 6572 tryAgain: 6573 assert(Offset.isSigned() && "invalid offset"); 6574 6575 if (E->isTypeDependent() || E->isValueDependent()) 6576 return SLCT_NotALiteral; 6577 6578 E = E->IgnoreParenCasts(); 6579 6580 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6581 // Technically -Wformat-nonliteral does not warn about this case. 6582 // The behavior of printf and friends in this case is implementation 6583 // dependent. Ideally if the format string cannot be null then 6584 // it should have a 'nonnull' attribute in the function prototype. 6585 return SLCT_UncheckedLiteral; 6586 6587 switch (E->getStmtClass()) { 6588 case Stmt::BinaryConditionalOperatorClass: 6589 case Stmt::ConditionalOperatorClass: { 6590 // The expression is a literal if both sub-expressions were, and it was 6591 // completely checked only if both sub-expressions were checked. 6592 const AbstractConditionalOperator *C = 6593 cast<AbstractConditionalOperator>(E); 6594 6595 // Determine whether it is necessary to check both sub-expressions, for 6596 // example, because the condition expression is a constant that can be 6597 // evaluated at compile time. 6598 bool CheckLeft = true, CheckRight = true; 6599 6600 bool Cond; 6601 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) { 6602 if (Cond) 6603 CheckRight = false; 6604 else 6605 CheckLeft = false; 6606 } 6607 6608 // We need to maintain the offsets for the right and the left hand side 6609 // separately to check if every possible indexed expression is a valid 6610 // string literal. They might have different offsets for different string 6611 // literals in the end. 6612 StringLiteralCheckType Left; 6613 if (!CheckLeft) 6614 Left = SLCT_UncheckedLiteral; 6615 else { 6616 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 6617 HasVAListArg, format_idx, firstDataArg, 6618 Type, CallType, InFunctionCall, 6619 CheckedVarArgs, UncoveredArg, Offset); 6620 if (Left == SLCT_NotALiteral || !CheckRight) { 6621 return Left; 6622 } 6623 } 6624 6625 StringLiteralCheckType Right = 6626 checkFormatStringExpr(S, C->getFalseExpr(), Args, 6627 HasVAListArg, format_idx, firstDataArg, 6628 Type, CallType, InFunctionCall, CheckedVarArgs, 6629 UncoveredArg, Offset); 6630 6631 return (CheckLeft && Left < Right) ? Left : Right; 6632 } 6633 6634 case Stmt::ImplicitCastExprClass: 6635 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 6636 goto tryAgain; 6637 6638 case Stmt::OpaqueValueExprClass: 6639 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 6640 E = src; 6641 goto tryAgain; 6642 } 6643 return SLCT_NotALiteral; 6644 6645 case Stmt::PredefinedExprClass: 6646 // While __func__, etc., are technically not string literals, they 6647 // cannot contain format specifiers and thus are not a security 6648 // liability. 6649 return SLCT_UncheckedLiteral; 6650 6651 case Stmt::DeclRefExprClass: { 6652 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 6653 6654 // As an exception, do not flag errors for variables binding to 6655 // const string literals. 6656 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 6657 bool isConstant = false; 6658 QualType T = DR->getType(); 6659 6660 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 6661 isConstant = AT->getElementType().isConstant(S.Context); 6662 } else if (const PointerType *PT = T->getAs<PointerType>()) { 6663 isConstant = T.isConstant(S.Context) && 6664 PT->getPointeeType().isConstant(S.Context); 6665 } else if (T->isObjCObjectPointerType()) { 6666 // In ObjC, there is usually no "const ObjectPointer" type, 6667 // so don't check if the pointee type is constant. 6668 isConstant = T.isConstant(S.Context); 6669 } 6670 6671 if (isConstant) { 6672 if (const Expr *Init = VD->getAnyInitializer()) { 6673 // Look through initializers like const char c[] = { "foo" } 6674 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 6675 if (InitList->isStringLiteralInit()) 6676 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 6677 } 6678 return checkFormatStringExpr(S, Init, Args, 6679 HasVAListArg, format_idx, 6680 firstDataArg, Type, CallType, 6681 /*InFunctionCall*/ false, CheckedVarArgs, 6682 UncoveredArg, Offset); 6683 } 6684 } 6685 6686 // For vprintf* functions (i.e., HasVAListArg==true), we add a 6687 // special check to see if the format string is a function parameter 6688 // of the function calling the printf function. If the function 6689 // has an attribute indicating it is a printf-like function, then we 6690 // should suppress warnings concerning non-literals being used in a call 6691 // to a vprintf function. For example: 6692 // 6693 // void 6694 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 6695 // va_list ap; 6696 // va_start(ap, fmt); 6697 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 6698 // ... 6699 // } 6700 if (HasVAListArg) { 6701 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 6702 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 6703 int PVIndex = PV->getFunctionScopeIndex() + 1; 6704 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 6705 // adjust for implicit parameter 6706 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6707 if (MD->isInstance()) 6708 ++PVIndex; 6709 // We also check if the formats are compatible. 6710 // We can't pass a 'scanf' string to a 'printf' function. 6711 if (PVIndex == PVFormat->getFormatIdx() && 6712 Type == S.GetFormatStringType(PVFormat)) 6713 return SLCT_UncheckedLiteral; 6714 } 6715 } 6716 } 6717 } 6718 } 6719 6720 return SLCT_NotALiteral; 6721 } 6722 6723 case Stmt::CallExprClass: 6724 case Stmt::CXXMemberCallExprClass: { 6725 const CallExpr *CE = cast<CallExpr>(E); 6726 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 6727 bool IsFirst = true; 6728 StringLiteralCheckType CommonResult; 6729 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 6730 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 6731 StringLiteralCheckType Result = checkFormatStringExpr( 6732 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6733 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset); 6734 if (IsFirst) { 6735 CommonResult = Result; 6736 IsFirst = false; 6737 } 6738 } 6739 if (!IsFirst) 6740 return CommonResult; 6741 6742 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 6743 unsigned BuiltinID = FD->getBuiltinID(); 6744 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 6745 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 6746 const Expr *Arg = CE->getArg(0); 6747 return checkFormatStringExpr(S, Arg, Args, 6748 HasVAListArg, format_idx, 6749 firstDataArg, Type, CallType, 6750 InFunctionCall, CheckedVarArgs, 6751 UncoveredArg, Offset); 6752 } 6753 } 6754 } 6755 6756 return SLCT_NotALiteral; 6757 } 6758 case Stmt::ObjCMessageExprClass: { 6759 const auto *ME = cast<ObjCMessageExpr>(E); 6760 if (const auto *ND = ME->getMethodDecl()) { 6761 if (const auto *FA = ND->getAttr<FormatArgAttr>()) { 6762 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 6763 return checkFormatStringExpr( 6764 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6765 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset); 6766 } 6767 } 6768 6769 return SLCT_NotALiteral; 6770 } 6771 case Stmt::ObjCStringLiteralClass: 6772 case Stmt::StringLiteralClass: { 6773 const StringLiteral *StrE = nullptr; 6774 6775 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 6776 StrE = ObjCFExpr->getString(); 6777 else 6778 StrE = cast<StringLiteral>(E); 6779 6780 if (StrE) { 6781 if (Offset.isNegative() || Offset > StrE->getLength()) { 6782 // TODO: It would be better to have an explicit warning for out of 6783 // bounds literals. 6784 return SLCT_NotALiteral; 6785 } 6786 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 6787 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 6788 firstDataArg, Type, InFunctionCall, CallType, 6789 CheckedVarArgs, UncoveredArg); 6790 return SLCT_CheckedLiteral; 6791 } 6792 6793 return SLCT_NotALiteral; 6794 } 6795 case Stmt::BinaryOperatorClass: { 6796 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 6797 6798 // A string literal + an int offset is still a string literal. 6799 if (BinOp->isAdditiveOp()) { 6800 Expr::EvalResult LResult, RResult; 6801 6802 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context); 6803 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context); 6804 6805 if (LIsInt != RIsInt) { 6806 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 6807 6808 if (LIsInt) { 6809 if (BinOpKind == BO_Add) { 6810 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 6811 E = BinOp->getRHS(); 6812 goto tryAgain; 6813 } 6814 } else { 6815 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 6816 E = BinOp->getLHS(); 6817 goto tryAgain; 6818 } 6819 } 6820 } 6821 6822 return SLCT_NotALiteral; 6823 } 6824 case Stmt::UnaryOperatorClass: { 6825 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 6826 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 6827 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 6828 Expr::EvalResult IndexResult; 6829 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) { 6830 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 6831 /*RHS is int*/ true); 6832 E = ASE->getBase(); 6833 goto tryAgain; 6834 } 6835 } 6836 6837 return SLCT_NotALiteral; 6838 } 6839 6840 default: 6841 return SLCT_NotALiteral; 6842 } 6843 } 6844 6845 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 6846 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 6847 .Case("scanf", FST_Scanf) 6848 .Cases("printf", "printf0", FST_Printf) 6849 .Cases("NSString", "CFString", FST_NSString) 6850 .Case("strftime", FST_Strftime) 6851 .Case("strfmon", FST_Strfmon) 6852 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 6853 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 6854 .Case("os_trace", FST_OSLog) 6855 .Case("os_log", FST_OSLog) 6856 .Default(FST_Unknown); 6857 } 6858 6859 /// CheckFormatArguments - Check calls to printf and scanf (and similar 6860 /// functions) for correct use of format strings. 6861 /// Returns true if a format string has been fully checked. 6862 bool Sema::CheckFormatArguments(const FormatAttr *Format, 6863 ArrayRef<const Expr *> Args, 6864 bool IsCXXMember, 6865 VariadicCallType CallType, 6866 SourceLocation Loc, SourceRange Range, 6867 llvm::SmallBitVector &CheckedVarArgs) { 6868 FormatStringInfo FSI; 6869 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 6870 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 6871 FSI.FirstDataArg, GetFormatStringType(Format), 6872 CallType, Loc, Range, CheckedVarArgs); 6873 return false; 6874 } 6875 6876 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 6877 bool HasVAListArg, unsigned format_idx, 6878 unsigned firstDataArg, FormatStringType Type, 6879 VariadicCallType CallType, 6880 SourceLocation Loc, SourceRange Range, 6881 llvm::SmallBitVector &CheckedVarArgs) { 6882 // CHECK: printf/scanf-like function is called with no format string. 6883 if (format_idx >= Args.size()) { 6884 Diag(Loc, diag::warn_missing_format_string) << Range; 6885 return false; 6886 } 6887 6888 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 6889 6890 // CHECK: format string is not a string literal. 6891 // 6892 // Dynamically generated format strings are difficult to 6893 // automatically vet at compile time. Requiring that format strings 6894 // are string literals: (1) permits the checking of format strings by 6895 // the compiler and thereby (2) can practically remove the source of 6896 // many format string exploits. 6897 6898 // Format string can be either ObjC string (e.g. @"%d") or 6899 // C string (e.g. "%d") 6900 // ObjC string uses the same format specifiers as C string, so we can use 6901 // the same format string checking logic for both ObjC and C strings. 6902 UncoveredArgHandler UncoveredArg; 6903 StringLiteralCheckType CT = 6904 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 6905 format_idx, firstDataArg, Type, CallType, 6906 /*IsFunctionCall*/ true, CheckedVarArgs, 6907 UncoveredArg, 6908 /*no string offset*/ llvm::APSInt(64, false) = 0); 6909 6910 // Generate a diagnostic where an uncovered argument is detected. 6911 if (UncoveredArg.hasUncoveredArg()) { 6912 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 6913 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 6914 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 6915 } 6916 6917 if (CT != SLCT_NotALiteral) 6918 // Literal format string found, check done! 6919 return CT == SLCT_CheckedLiteral; 6920 6921 // Strftime is particular as it always uses a single 'time' argument, 6922 // so it is safe to pass a non-literal string. 6923 if (Type == FST_Strftime) 6924 return false; 6925 6926 // Do not emit diag when the string param is a macro expansion and the 6927 // format is either NSString or CFString. This is a hack to prevent 6928 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 6929 // which are usually used in place of NS and CF string literals. 6930 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 6931 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 6932 return false; 6933 6934 // If there are no arguments specified, warn with -Wformat-security, otherwise 6935 // warn only with -Wformat-nonliteral. 6936 if (Args.size() == firstDataArg) { 6937 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 6938 << OrigFormatExpr->getSourceRange(); 6939 switch (Type) { 6940 default: 6941 break; 6942 case FST_Kprintf: 6943 case FST_FreeBSDKPrintf: 6944 case FST_Printf: 6945 Diag(FormatLoc, diag::note_format_security_fixit) 6946 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 6947 break; 6948 case FST_NSString: 6949 Diag(FormatLoc, diag::note_format_security_fixit) 6950 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 6951 break; 6952 } 6953 } else { 6954 Diag(FormatLoc, diag::warn_format_nonliteral) 6955 << OrigFormatExpr->getSourceRange(); 6956 } 6957 return false; 6958 } 6959 6960 namespace { 6961 6962 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 6963 protected: 6964 Sema &S; 6965 const FormatStringLiteral *FExpr; 6966 const Expr *OrigFormatExpr; 6967 const Sema::FormatStringType FSType; 6968 const unsigned FirstDataArg; 6969 const unsigned NumDataArgs; 6970 const char *Beg; // Start of format string. 6971 const bool HasVAListArg; 6972 ArrayRef<const Expr *> Args; 6973 unsigned FormatIdx; 6974 llvm::SmallBitVector CoveredArgs; 6975 bool usesPositionalArgs = false; 6976 bool atFirstArg = true; 6977 bool inFunctionCall; 6978 Sema::VariadicCallType CallType; 6979 llvm::SmallBitVector &CheckedVarArgs; 6980 UncoveredArgHandler &UncoveredArg; 6981 6982 public: 6983 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 6984 const Expr *origFormatExpr, 6985 const Sema::FormatStringType type, unsigned firstDataArg, 6986 unsigned numDataArgs, const char *beg, bool hasVAListArg, 6987 ArrayRef<const Expr *> Args, unsigned formatIdx, 6988 bool inFunctionCall, Sema::VariadicCallType callType, 6989 llvm::SmallBitVector &CheckedVarArgs, 6990 UncoveredArgHandler &UncoveredArg) 6991 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 6992 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 6993 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 6994 inFunctionCall(inFunctionCall), CallType(callType), 6995 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 6996 CoveredArgs.resize(numDataArgs); 6997 CoveredArgs.reset(); 6998 } 6999 7000 void DoneProcessing(); 7001 7002 void HandleIncompleteSpecifier(const char *startSpecifier, 7003 unsigned specifierLen) override; 7004 7005 void HandleInvalidLengthModifier( 7006 const analyze_format_string::FormatSpecifier &FS, 7007 const analyze_format_string::ConversionSpecifier &CS, 7008 const char *startSpecifier, unsigned specifierLen, 7009 unsigned DiagID); 7010 7011 void HandleNonStandardLengthModifier( 7012 const analyze_format_string::FormatSpecifier &FS, 7013 const char *startSpecifier, unsigned specifierLen); 7014 7015 void HandleNonStandardConversionSpecifier( 7016 const analyze_format_string::ConversionSpecifier &CS, 7017 const char *startSpecifier, unsigned specifierLen); 7018 7019 void HandlePosition(const char *startPos, unsigned posLen) override; 7020 7021 void HandleInvalidPosition(const char *startSpecifier, 7022 unsigned specifierLen, 7023 analyze_format_string::PositionContext p) override; 7024 7025 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7026 7027 void HandleNullChar(const char *nullCharacter) override; 7028 7029 template <typename Range> 7030 static void 7031 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7032 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7033 bool IsStringLocation, Range StringRange, 7034 ArrayRef<FixItHint> Fixit = None); 7035 7036 protected: 7037 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7038 const char *startSpec, 7039 unsigned specifierLen, 7040 const char *csStart, unsigned csLen); 7041 7042 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7043 const char *startSpec, 7044 unsigned specifierLen); 7045 7046 SourceRange getFormatStringRange(); 7047 CharSourceRange getSpecifierRange(const char *startSpecifier, 7048 unsigned specifierLen); 7049 SourceLocation getLocationOfByte(const char *x); 7050 7051 const Expr *getDataArg(unsigned i) const; 7052 7053 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7054 const analyze_format_string::ConversionSpecifier &CS, 7055 const char *startSpecifier, unsigned specifierLen, 7056 unsigned argIndex); 7057 7058 template <typename Range> 7059 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7060 bool IsStringLocation, Range StringRange, 7061 ArrayRef<FixItHint> Fixit = None); 7062 }; 7063 7064 } // namespace 7065 7066 SourceRange CheckFormatHandler::getFormatStringRange() { 7067 return OrigFormatExpr->getSourceRange(); 7068 } 7069 7070 CharSourceRange CheckFormatHandler:: 7071 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7072 SourceLocation Start = getLocationOfByte(startSpecifier); 7073 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7074 7075 // Advance the end SourceLocation by one due to half-open ranges. 7076 End = End.getLocWithOffset(1); 7077 7078 return CharSourceRange::getCharRange(Start, End); 7079 } 7080 7081 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7082 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7083 S.getLangOpts(), S.Context.getTargetInfo()); 7084 } 7085 7086 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7087 unsigned specifierLen){ 7088 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7089 getLocationOfByte(startSpecifier), 7090 /*IsStringLocation*/true, 7091 getSpecifierRange(startSpecifier, specifierLen)); 7092 } 7093 7094 void CheckFormatHandler::HandleInvalidLengthModifier( 7095 const analyze_format_string::FormatSpecifier &FS, 7096 const analyze_format_string::ConversionSpecifier &CS, 7097 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7098 using namespace analyze_format_string; 7099 7100 const LengthModifier &LM = FS.getLengthModifier(); 7101 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7102 7103 // See if we know how to fix this length modifier. 7104 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7105 if (FixedLM) { 7106 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7107 getLocationOfByte(LM.getStart()), 7108 /*IsStringLocation*/true, 7109 getSpecifierRange(startSpecifier, specifierLen)); 7110 7111 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7112 << FixedLM->toString() 7113 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7114 7115 } else { 7116 FixItHint Hint; 7117 if (DiagID == diag::warn_format_nonsensical_length) 7118 Hint = FixItHint::CreateRemoval(LMRange); 7119 7120 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7121 getLocationOfByte(LM.getStart()), 7122 /*IsStringLocation*/true, 7123 getSpecifierRange(startSpecifier, specifierLen), 7124 Hint); 7125 } 7126 } 7127 7128 void CheckFormatHandler::HandleNonStandardLengthModifier( 7129 const analyze_format_string::FormatSpecifier &FS, 7130 const char *startSpecifier, unsigned specifierLen) { 7131 using namespace analyze_format_string; 7132 7133 const LengthModifier &LM = FS.getLengthModifier(); 7134 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7135 7136 // See if we know how to fix this length modifier. 7137 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7138 if (FixedLM) { 7139 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7140 << LM.toString() << 0, 7141 getLocationOfByte(LM.getStart()), 7142 /*IsStringLocation*/true, 7143 getSpecifierRange(startSpecifier, specifierLen)); 7144 7145 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7146 << FixedLM->toString() 7147 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7148 7149 } else { 7150 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7151 << LM.toString() << 0, 7152 getLocationOfByte(LM.getStart()), 7153 /*IsStringLocation*/true, 7154 getSpecifierRange(startSpecifier, specifierLen)); 7155 } 7156 } 7157 7158 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7159 const analyze_format_string::ConversionSpecifier &CS, 7160 const char *startSpecifier, unsigned specifierLen) { 7161 using namespace analyze_format_string; 7162 7163 // See if we know how to fix this conversion specifier. 7164 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7165 if (FixedCS) { 7166 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7167 << CS.toString() << /*conversion specifier*/1, 7168 getLocationOfByte(CS.getStart()), 7169 /*IsStringLocation*/true, 7170 getSpecifierRange(startSpecifier, specifierLen)); 7171 7172 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7173 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7174 << FixedCS->toString() 7175 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7176 } else { 7177 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7178 << CS.toString() << /*conversion specifier*/1, 7179 getLocationOfByte(CS.getStart()), 7180 /*IsStringLocation*/true, 7181 getSpecifierRange(startSpecifier, specifierLen)); 7182 } 7183 } 7184 7185 void CheckFormatHandler::HandlePosition(const char *startPos, 7186 unsigned posLen) { 7187 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7188 getLocationOfByte(startPos), 7189 /*IsStringLocation*/true, 7190 getSpecifierRange(startPos, posLen)); 7191 } 7192 7193 void 7194 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7195 analyze_format_string::PositionContext p) { 7196 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7197 << (unsigned) p, 7198 getLocationOfByte(startPos), /*IsStringLocation*/true, 7199 getSpecifierRange(startPos, posLen)); 7200 } 7201 7202 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7203 unsigned posLen) { 7204 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7205 getLocationOfByte(startPos), 7206 /*IsStringLocation*/true, 7207 getSpecifierRange(startPos, posLen)); 7208 } 7209 7210 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7211 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7212 // The presence of a null character is likely an error. 7213 EmitFormatDiagnostic( 7214 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7215 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7216 getFormatStringRange()); 7217 } 7218 } 7219 7220 // Note that this may return NULL if there was an error parsing or building 7221 // one of the argument expressions. 7222 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7223 return Args[FirstDataArg + i]; 7224 } 7225 7226 void CheckFormatHandler::DoneProcessing() { 7227 // Does the number of data arguments exceed the number of 7228 // format conversions in the format string? 7229 if (!HasVAListArg) { 7230 // Find any arguments that weren't covered. 7231 CoveredArgs.flip(); 7232 signed notCoveredArg = CoveredArgs.find_first(); 7233 if (notCoveredArg >= 0) { 7234 assert((unsigned)notCoveredArg < NumDataArgs); 7235 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7236 } else { 7237 UncoveredArg.setAllCovered(); 7238 } 7239 } 7240 } 7241 7242 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7243 const Expr *ArgExpr) { 7244 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7245 "Invalid state"); 7246 7247 if (!ArgExpr) 7248 return; 7249 7250 SourceLocation Loc = ArgExpr->getBeginLoc(); 7251 7252 if (S.getSourceManager().isInSystemMacro(Loc)) 7253 return; 7254 7255 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7256 for (auto E : DiagnosticExprs) 7257 PDiag << E->getSourceRange(); 7258 7259 CheckFormatHandler::EmitFormatDiagnostic( 7260 S, IsFunctionCall, DiagnosticExprs[0], 7261 PDiag, Loc, /*IsStringLocation*/false, 7262 DiagnosticExprs[0]->getSourceRange()); 7263 } 7264 7265 bool 7266 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7267 SourceLocation Loc, 7268 const char *startSpec, 7269 unsigned specifierLen, 7270 const char *csStart, 7271 unsigned csLen) { 7272 bool keepGoing = true; 7273 if (argIndex < NumDataArgs) { 7274 // Consider the argument coverered, even though the specifier doesn't 7275 // make sense. 7276 CoveredArgs.set(argIndex); 7277 } 7278 else { 7279 // If argIndex exceeds the number of data arguments we 7280 // don't issue a warning because that is just a cascade of warnings (and 7281 // they may have intended '%%' anyway). We don't want to continue processing 7282 // the format string after this point, however, as we will like just get 7283 // gibberish when trying to match arguments. 7284 keepGoing = false; 7285 } 7286 7287 StringRef Specifier(csStart, csLen); 7288 7289 // If the specifier in non-printable, it could be the first byte of a UTF-8 7290 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7291 // hex value. 7292 std::string CodePointStr; 7293 if (!llvm::sys::locale::isPrint(*csStart)) { 7294 llvm::UTF32 CodePoint; 7295 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7296 const llvm::UTF8 *E = 7297 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7298 llvm::ConversionResult Result = 7299 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7300 7301 if (Result != llvm::conversionOK) { 7302 unsigned char FirstChar = *csStart; 7303 CodePoint = (llvm::UTF32)FirstChar; 7304 } 7305 7306 llvm::raw_string_ostream OS(CodePointStr); 7307 if (CodePoint < 256) 7308 OS << "\\x" << llvm::format("%02x", CodePoint); 7309 else if (CodePoint <= 0xFFFF) 7310 OS << "\\u" << llvm::format("%04x", CodePoint); 7311 else 7312 OS << "\\U" << llvm::format("%08x", CodePoint); 7313 OS.flush(); 7314 Specifier = CodePointStr; 7315 } 7316 7317 EmitFormatDiagnostic( 7318 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7319 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7320 7321 return keepGoing; 7322 } 7323 7324 void 7325 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7326 const char *startSpec, 7327 unsigned specifierLen) { 7328 EmitFormatDiagnostic( 7329 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7330 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7331 } 7332 7333 bool 7334 CheckFormatHandler::CheckNumArgs( 7335 const analyze_format_string::FormatSpecifier &FS, 7336 const analyze_format_string::ConversionSpecifier &CS, 7337 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7338 7339 if (argIndex >= NumDataArgs) { 7340 PartialDiagnostic PDiag = FS.usesPositionalArg() 7341 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7342 << (argIndex+1) << NumDataArgs) 7343 : S.PDiag(diag::warn_printf_insufficient_data_args); 7344 EmitFormatDiagnostic( 7345 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7346 getSpecifierRange(startSpecifier, specifierLen)); 7347 7348 // Since more arguments than conversion tokens are given, by extension 7349 // all arguments are covered, so mark this as so. 7350 UncoveredArg.setAllCovered(); 7351 return false; 7352 } 7353 return true; 7354 } 7355 7356 template<typename Range> 7357 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7358 SourceLocation Loc, 7359 bool IsStringLocation, 7360 Range StringRange, 7361 ArrayRef<FixItHint> FixIt) { 7362 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7363 Loc, IsStringLocation, StringRange, FixIt); 7364 } 7365 7366 /// If the format string is not within the function call, emit a note 7367 /// so that the function call and string are in diagnostic messages. 7368 /// 7369 /// \param InFunctionCall if true, the format string is within the function 7370 /// call and only one diagnostic message will be produced. Otherwise, an 7371 /// extra note will be emitted pointing to location of the format string. 7372 /// 7373 /// \param ArgumentExpr the expression that is passed as the format string 7374 /// argument in the function call. Used for getting locations when two 7375 /// diagnostics are emitted. 7376 /// 7377 /// \param PDiag the callee should already have provided any strings for the 7378 /// diagnostic message. This function only adds locations and fixits 7379 /// to diagnostics. 7380 /// 7381 /// \param Loc primary location for diagnostic. If two diagnostics are 7382 /// required, one will be at Loc and a new SourceLocation will be created for 7383 /// the other one. 7384 /// 7385 /// \param IsStringLocation if true, Loc points to the format string should be 7386 /// used for the note. Otherwise, Loc points to the argument list and will 7387 /// be used with PDiag. 7388 /// 7389 /// \param StringRange some or all of the string to highlight. This is 7390 /// templated so it can accept either a CharSourceRange or a SourceRange. 7391 /// 7392 /// \param FixIt optional fix it hint for the format string. 7393 template <typename Range> 7394 void CheckFormatHandler::EmitFormatDiagnostic( 7395 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7396 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7397 Range StringRange, ArrayRef<FixItHint> FixIt) { 7398 if (InFunctionCall) { 7399 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7400 D << StringRange; 7401 D << FixIt; 7402 } else { 7403 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7404 << ArgumentExpr->getSourceRange(); 7405 7406 const Sema::SemaDiagnosticBuilder &Note = 7407 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7408 diag::note_format_string_defined); 7409 7410 Note << StringRange; 7411 Note << FixIt; 7412 } 7413 } 7414 7415 //===--- CHECK: Printf format string checking ------------------------------===// 7416 7417 namespace { 7418 7419 class CheckPrintfHandler : public CheckFormatHandler { 7420 public: 7421 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7422 const Expr *origFormatExpr, 7423 const Sema::FormatStringType type, unsigned firstDataArg, 7424 unsigned numDataArgs, bool isObjC, const char *beg, 7425 bool hasVAListArg, ArrayRef<const Expr *> Args, 7426 unsigned formatIdx, bool inFunctionCall, 7427 Sema::VariadicCallType CallType, 7428 llvm::SmallBitVector &CheckedVarArgs, 7429 UncoveredArgHandler &UncoveredArg) 7430 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7431 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7432 inFunctionCall, CallType, CheckedVarArgs, 7433 UncoveredArg) {} 7434 7435 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7436 7437 /// Returns true if '%@' specifiers are allowed in the format string. 7438 bool allowsObjCArg() const { 7439 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7440 FSType == Sema::FST_OSTrace; 7441 } 7442 7443 bool HandleInvalidPrintfConversionSpecifier( 7444 const analyze_printf::PrintfSpecifier &FS, 7445 const char *startSpecifier, 7446 unsigned specifierLen) override; 7447 7448 void handleInvalidMaskType(StringRef MaskType) override; 7449 7450 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7451 const char *startSpecifier, 7452 unsigned specifierLen) override; 7453 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7454 const char *StartSpecifier, 7455 unsigned SpecifierLen, 7456 const Expr *E); 7457 7458 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7459 const char *startSpecifier, unsigned specifierLen); 7460 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7461 const analyze_printf::OptionalAmount &Amt, 7462 unsigned type, 7463 const char *startSpecifier, unsigned specifierLen); 7464 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7465 const analyze_printf::OptionalFlag &flag, 7466 const char *startSpecifier, unsigned specifierLen); 7467 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7468 const analyze_printf::OptionalFlag &ignoredFlag, 7469 const analyze_printf::OptionalFlag &flag, 7470 const char *startSpecifier, unsigned specifierLen); 7471 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7472 const Expr *E); 7473 7474 void HandleEmptyObjCModifierFlag(const char *startFlag, 7475 unsigned flagLen) override; 7476 7477 void HandleInvalidObjCModifierFlag(const char *startFlag, 7478 unsigned flagLen) override; 7479 7480 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 7481 const char *flagsEnd, 7482 const char *conversionPosition) 7483 override; 7484 }; 7485 7486 } // namespace 7487 7488 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 7489 const analyze_printf::PrintfSpecifier &FS, 7490 const char *startSpecifier, 7491 unsigned specifierLen) { 7492 const analyze_printf::PrintfConversionSpecifier &CS = 7493 FS.getConversionSpecifier(); 7494 7495 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 7496 getLocationOfByte(CS.getStart()), 7497 startSpecifier, specifierLen, 7498 CS.getStart(), CS.getLength()); 7499 } 7500 7501 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 7502 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 7503 } 7504 7505 bool CheckPrintfHandler::HandleAmount( 7506 const analyze_format_string::OptionalAmount &Amt, 7507 unsigned k, const char *startSpecifier, 7508 unsigned specifierLen) { 7509 if (Amt.hasDataArgument()) { 7510 if (!HasVAListArg) { 7511 unsigned argIndex = Amt.getArgIndex(); 7512 if (argIndex >= NumDataArgs) { 7513 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 7514 << k, 7515 getLocationOfByte(Amt.getStart()), 7516 /*IsStringLocation*/true, 7517 getSpecifierRange(startSpecifier, specifierLen)); 7518 // Don't do any more checking. We will just emit 7519 // spurious errors. 7520 return false; 7521 } 7522 7523 // Type check the data argument. It should be an 'int'. 7524 // Although not in conformance with C99, we also allow the argument to be 7525 // an 'unsigned int' as that is a reasonably safe case. GCC also 7526 // doesn't emit a warning for that case. 7527 CoveredArgs.set(argIndex); 7528 const Expr *Arg = getDataArg(argIndex); 7529 if (!Arg) 7530 return false; 7531 7532 QualType T = Arg->getType(); 7533 7534 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 7535 assert(AT.isValid()); 7536 7537 if (!AT.matchesType(S.Context, T)) { 7538 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 7539 << k << AT.getRepresentativeTypeName(S.Context) 7540 << T << Arg->getSourceRange(), 7541 getLocationOfByte(Amt.getStart()), 7542 /*IsStringLocation*/true, 7543 getSpecifierRange(startSpecifier, specifierLen)); 7544 // Don't do any more checking. We will just emit 7545 // spurious errors. 7546 return false; 7547 } 7548 } 7549 } 7550 return true; 7551 } 7552 7553 void CheckPrintfHandler::HandleInvalidAmount( 7554 const analyze_printf::PrintfSpecifier &FS, 7555 const analyze_printf::OptionalAmount &Amt, 7556 unsigned type, 7557 const char *startSpecifier, 7558 unsigned specifierLen) { 7559 const analyze_printf::PrintfConversionSpecifier &CS = 7560 FS.getConversionSpecifier(); 7561 7562 FixItHint fixit = 7563 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 7564 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 7565 Amt.getConstantLength())) 7566 : FixItHint(); 7567 7568 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 7569 << type << CS.toString(), 7570 getLocationOfByte(Amt.getStart()), 7571 /*IsStringLocation*/true, 7572 getSpecifierRange(startSpecifier, specifierLen), 7573 fixit); 7574 } 7575 7576 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7577 const analyze_printf::OptionalFlag &flag, 7578 const char *startSpecifier, 7579 unsigned specifierLen) { 7580 // Warn about pointless flag with a fixit removal. 7581 const analyze_printf::PrintfConversionSpecifier &CS = 7582 FS.getConversionSpecifier(); 7583 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 7584 << flag.toString() << CS.toString(), 7585 getLocationOfByte(flag.getPosition()), 7586 /*IsStringLocation*/true, 7587 getSpecifierRange(startSpecifier, specifierLen), 7588 FixItHint::CreateRemoval( 7589 getSpecifierRange(flag.getPosition(), 1))); 7590 } 7591 7592 void CheckPrintfHandler::HandleIgnoredFlag( 7593 const analyze_printf::PrintfSpecifier &FS, 7594 const analyze_printf::OptionalFlag &ignoredFlag, 7595 const analyze_printf::OptionalFlag &flag, 7596 const char *startSpecifier, 7597 unsigned specifierLen) { 7598 // Warn about ignored flag with a fixit removal. 7599 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 7600 << ignoredFlag.toString() << flag.toString(), 7601 getLocationOfByte(ignoredFlag.getPosition()), 7602 /*IsStringLocation*/true, 7603 getSpecifierRange(startSpecifier, specifierLen), 7604 FixItHint::CreateRemoval( 7605 getSpecifierRange(ignoredFlag.getPosition(), 1))); 7606 } 7607 7608 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 7609 unsigned flagLen) { 7610 // Warn about an empty flag. 7611 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 7612 getLocationOfByte(startFlag), 7613 /*IsStringLocation*/true, 7614 getSpecifierRange(startFlag, flagLen)); 7615 } 7616 7617 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 7618 unsigned flagLen) { 7619 // Warn about an invalid flag. 7620 auto Range = getSpecifierRange(startFlag, flagLen); 7621 StringRef flag(startFlag, flagLen); 7622 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 7623 getLocationOfByte(startFlag), 7624 /*IsStringLocation*/true, 7625 Range, FixItHint::CreateRemoval(Range)); 7626 } 7627 7628 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 7629 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 7630 // Warn about using '[...]' without a '@' conversion. 7631 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 7632 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 7633 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 7634 getLocationOfByte(conversionPosition), 7635 /*IsStringLocation*/true, 7636 Range, FixItHint::CreateRemoval(Range)); 7637 } 7638 7639 // Determines if the specified is a C++ class or struct containing 7640 // a member with the specified name and kind (e.g. a CXXMethodDecl named 7641 // "c_str()"). 7642 template<typename MemberKind> 7643 static llvm::SmallPtrSet<MemberKind*, 1> 7644 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 7645 const RecordType *RT = Ty->getAs<RecordType>(); 7646 llvm::SmallPtrSet<MemberKind*, 1> Results; 7647 7648 if (!RT) 7649 return Results; 7650 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 7651 if (!RD || !RD->getDefinition()) 7652 return Results; 7653 7654 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 7655 Sema::LookupMemberName); 7656 R.suppressDiagnostics(); 7657 7658 // We just need to include all members of the right kind turned up by the 7659 // filter, at this point. 7660 if (S.LookupQualifiedName(R, RT->getDecl())) 7661 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 7662 NamedDecl *decl = (*I)->getUnderlyingDecl(); 7663 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 7664 Results.insert(FK); 7665 } 7666 return Results; 7667 } 7668 7669 /// Check if we could call '.c_str()' on an object. 7670 /// 7671 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 7672 /// allow the call, or if it would be ambiguous). 7673 bool Sema::hasCStrMethod(const Expr *E) { 7674 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7675 7676 MethodSet Results = 7677 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 7678 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7679 MI != ME; ++MI) 7680 if ((*MI)->getMinRequiredArguments() == 0) 7681 return true; 7682 return false; 7683 } 7684 7685 // Check if a (w)string was passed when a (w)char* was needed, and offer a 7686 // better diagnostic if so. AT is assumed to be valid. 7687 // Returns true when a c_str() conversion method is found. 7688 bool CheckPrintfHandler::checkForCStrMembers( 7689 const analyze_printf::ArgType &AT, const Expr *E) { 7690 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7691 7692 MethodSet Results = 7693 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 7694 7695 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7696 MI != ME; ++MI) { 7697 const CXXMethodDecl *Method = *MI; 7698 if (Method->getMinRequiredArguments() == 0 && 7699 AT.matchesType(S.Context, Method->getReturnType())) { 7700 // FIXME: Suggest parens if the expression needs them. 7701 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 7702 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 7703 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 7704 return true; 7705 } 7706 } 7707 7708 return false; 7709 } 7710 7711 bool 7712 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 7713 &FS, 7714 const char *startSpecifier, 7715 unsigned specifierLen) { 7716 using namespace analyze_format_string; 7717 using namespace analyze_printf; 7718 7719 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 7720 7721 if (FS.consumesDataArgument()) { 7722 if (atFirstArg) { 7723 atFirstArg = false; 7724 usesPositionalArgs = FS.usesPositionalArg(); 7725 } 7726 else if (usesPositionalArgs != FS.usesPositionalArg()) { 7727 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 7728 startSpecifier, specifierLen); 7729 return false; 7730 } 7731 } 7732 7733 // First check if the field width, precision, and conversion specifier 7734 // have matching data arguments. 7735 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 7736 startSpecifier, specifierLen)) { 7737 return false; 7738 } 7739 7740 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 7741 startSpecifier, specifierLen)) { 7742 return false; 7743 } 7744 7745 if (!CS.consumesDataArgument()) { 7746 // FIXME: Technically specifying a precision or field width here 7747 // makes no sense. Worth issuing a warning at some point. 7748 return true; 7749 } 7750 7751 // Consume the argument. 7752 unsigned argIndex = FS.getArgIndex(); 7753 if (argIndex < NumDataArgs) { 7754 // The check to see if the argIndex is valid will come later. 7755 // We set the bit here because we may exit early from this 7756 // function if we encounter some other error. 7757 CoveredArgs.set(argIndex); 7758 } 7759 7760 // FreeBSD kernel extensions. 7761 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 7762 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 7763 // We need at least two arguments. 7764 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 7765 return false; 7766 7767 // Claim the second argument. 7768 CoveredArgs.set(argIndex + 1); 7769 7770 // Type check the first argument (int for %b, pointer for %D) 7771 const Expr *Ex = getDataArg(argIndex); 7772 const analyze_printf::ArgType &AT = 7773 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 7774 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 7775 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 7776 EmitFormatDiagnostic( 7777 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7778 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 7779 << false << Ex->getSourceRange(), 7780 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7781 getSpecifierRange(startSpecifier, specifierLen)); 7782 7783 // Type check the second argument (char * for both %b and %D) 7784 Ex = getDataArg(argIndex + 1); 7785 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 7786 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 7787 EmitFormatDiagnostic( 7788 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7789 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 7790 << false << Ex->getSourceRange(), 7791 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7792 getSpecifierRange(startSpecifier, specifierLen)); 7793 7794 return true; 7795 } 7796 7797 // Check for using an Objective-C specific conversion specifier 7798 // in a non-ObjC literal. 7799 if (!allowsObjCArg() && CS.isObjCArg()) { 7800 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7801 specifierLen); 7802 } 7803 7804 // %P can only be used with os_log. 7805 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 7806 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7807 specifierLen); 7808 } 7809 7810 // %n is not allowed with os_log. 7811 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 7812 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 7813 getLocationOfByte(CS.getStart()), 7814 /*IsStringLocation*/ false, 7815 getSpecifierRange(startSpecifier, specifierLen)); 7816 7817 return true; 7818 } 7819 7820 // Only scalars are allowed for os_trace. 7821 if (FSType == Sema::FST_OSTrace && 7822 (CS.getKind() == ConversionSpecifier::PArg || 7823 CS.getKind() == ConversionSpecifier::sArg || 7824 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 7825 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7826 specifierLen); 7827 } 7828 7829 // Check for use of public/private annotation outside of os_log(). 7830 if (FSType != Sema::FST_OSLog) { 7831 if (FS.isPublic().isSet()) { 7832 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7833 << "public", 7834 getLocationOfByte(FS.isPublic().getPosition()), 7835 /*IsStringLocation*/ false, 7836 getSpecifierRange(startSpecifier, specifierLen)); 7837 } 7838 if (FS.isPrivate().isSet()) { 7839 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7840 << "private", 7841 getLocationOfByte(FS.isPrivate().getPosition()), 7842 /*IsStringLocation*/ false, 7843 getSpecifierRange(startSpecifier, specifierLen)); 7844 } 7845 } 7846 7847 // Check for invalid use of field width 7848 if (!FS.hasValidFieldWidth()) { 7849 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 7850 startSpecifier, specifierLen); 7851 } 7852 7853 // Check for invalid use of precision 7854 if (!FS.hasValidPrecision()) { 7855 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 7856 startSpecifier, specifierLen); 7857 } 7858 7859 // Precision is mandatory for %P specifier. 7860 if (CS.getKind() == ConversionSpecifier::PArg && 7861 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 7862 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 7863 getLocationOfByte(startSpecifier), 7864 /*IsStringLocation*/ false, 7865 getSpecifierRange(startSpecifier, specifierLen)); 7866 } 7867 7868 // Check each flag does not conflict with any other component. 7869 if (!FS.hasValidThousandsGroupingPrefix()) 7870 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 7871 if (!FS.hasValidLeadingZeros()) 7872 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 7873 if (!FS.hasValidPlusPrefix()) 7874 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 7875 if (!FS.hasValidSpacePrefix()) 7876 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 7877 if (!FS.hasValidAlternativeForm()) 7878 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 7879 if (!FS.hasValidLeftJustified()) 7880 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 7881 7882 // Check that flags are not ignored by another flag 7883 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 7884 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 7885 startSpecifier, specifierLen); 7886 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 7887 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 7888 startSpecifier, specifierLen); 7889 7890 // Check the length modifier is valid with the given conversion specifier. 7891 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 7892 S.getLangOpts())) 7893 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 7894 diag::warn_format_nonsensical_length); 7895 else if (!FS.hasStandardLengthModifier()) 7896 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 7897 else if (!FS.hasStandardLengthConversionCombination()) 7898 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 7899 diag::warn_format_non_standard_conversion_spec); 7900 7901 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 7902 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 7903 7904 // The remaining checks depend on the data arguments. 7905 if (HasVAListArg) 7906 return true; 7907 7908 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 7909 return false; 7910 7911 const Expr *Arg = getDataArg(argIndex); 7912 if (!Arg) 7913 return true; 7914 7915 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 7916 } 7917 7918 static bool requiresParensToAddCast(const Expr *E) { 7919 // FIXME: We should have a general way to reason about operator 7920 // precedence and whether parens are actually needed here. 7921 // Take care of a few common cases where they aren't. 7922 const Expr *Inside = E->IgnoreImpCasts(); 7923 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 7924 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 7925 7926 switch (Inside->getStmtClass()) { 7927 case Stmt::ArraySubscriptExprClass: 7928 case Stmt::CallExprClass: 7929 case Stmt::CharacterLiteralClass: 7930 case Stmt::CXXBoolLiteralExprClass: 7931 case Stmt::DeclRefExprClass: 7932 case Stmt::FloatingLiteralClass: 7933 case Stmt::IntegerLiteralClass: 7934 case Stmt::MemberExprClass: 7935 case Stmt::ObjCArrayLiteralClass: 7936 case Stmt::ObjCBoolLiteralExprClass: 7937 case Stmt::ObjCBoxedExprClass: 7938 case Stmt::ObjCDictionaryLiteralClass: 7939 case Stmt::ObjCEncodeExprClass: 7940 case Stmt::ObjCIvarRefExprClass: 7941 case Stmt::ObjCMessageExprClass: 7942 case Stmt::ObjCPropertyRefExprClass: 7943 case Stmt::ObjCStringLiteralClass: 7944 case Stmt::ObjCSubscriptRefExprClass: 7945 case Stmt::ParenExprClass: 7946 case Stmt::StringLiteralClass: 7947 case Stmt::UnaryOperatorClass: 7948 return false; 7949 default: 7950 return true; 7951 } 7952 } 7953 7954 static std::pair<QualType, StringRef> 7955 shouldNotPrintDirectly(const ASTContext &Context, 7956 QualType IntendedTy, 7957 const Expr *E) { 7958 // Use a 'while' to peel off layers of typedefs. 7959 QualType TyTy = IntendedTy; 7960 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 7961 StringRef Name = UserTy->getDecl()->getName(); 7962 QualType CastTy = llvm::StringSwitch<QualType>(Name) 7963 .Case("CFIndex", Context.getNSIntegerType()) 7964 .Case("NSInteger", Context.getNSIntegerType()) 7965 .Case("NSUInteger", Context.getNSUIntegerType()) 7966 .Case("SInt32", Context.IntTy) 7967 .Case("UInt32", Context.UnsignedIntTy) 7968 .Default(QualType()); 7969 7970 if (!CastTy.isNull()) 7971 return std::make_pair(CastTy, Name); 7972 7973 TyTy = UserTy->desugar(); 7974 } 7975 7976 // Strip parens if necessary. 7977 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 7978 return shouldNotPrintDirectly(Context, 7979 PE->getSubExpr()->getType(), 7980 PE->getSubExpr()); 7981 7982 // If this is a conditional expression, then its result type is constructed 7983 // via usual arithmetic conversions and thus there might be no necessary 7984 // typedef sugar there. Recurse to operands to check for NSInteger & 7985 // Co. usage condition. 7986 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 7987 QualType TrueTy, FalseTy; 7988 StringRef TrueName, FalseName; 7989 7990 std::tie(TrueTy, TrueName) = 7991 shouldNotPrintDirectly(Context, 7992 CO->getTrueExpr()->getType(), 7993 CO->getTrueExpr()); 7994 std::tie(FalseTy, FalseName) = 7995 shouldNotPrintDirectly(Context, 7996 CO->getFalseExpr()->getType(), 7997 CO->getFalseExpr()); 7998 7999 if (TrueTy == FalseTy) 8000 return std::make_pair(TrueTy, TrueName); 8001 else if (TrueTy.isNull()) 8002 return std::make_pair(FalseTy, FalseName); 8003 else if (FalseTy.isNull()) 8004 return std::make_pair(TrueTy, TrueName); 8005 } 8006 8007 return std::make_pair(QualType(), StringRef()); 8008 } 8009 8010 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8011 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8012 /// type do not count. 8013 static bool 8014 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8015 QualType From = ICE->getSubExpr()->getType(); 8016 QualType To = ICE->getType(); 8017 // It's an integer promotion if the destination type is the promoted 8018 // source type. 8019 if (ICE->getCastKind() == CK_IntegralCast && 8020 From->isPromotableIntegerType() && 8021 S.Context.getPromotedIntegerType(From) == To) 8022 return true; 8023 // Look through vector types, since we do default argument promotion for 8024 // those in OpenCL. 8025 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8026 From = VecTy->getElementType(); 8027 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8028 To = VecTy->getElementType(); 8029 // It's a floating promotion if the source type is a lower rank. 8030 return ICE->getCastKind() == CK_FloatingCast && 8031 S.Context.getFloatingTypeOrder(From, To) < 0; 8032 } 8033 8034 bool 8035 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8036 const char *StartSpecifier, 8037 unsigned SpecifierLen, 8038 const Expr *E) { 8039 using namespace analyze_format_string; 8040 using namespace analyze_printf; 8041 8042 // Now type check the data expression that matches the 8043 // format specifier. 8044 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8045 if (!AT.isValid()) 8046 return true; 8047 8048 QualType ExprTy = E->getType(); 8049 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8050 ExprTy = TET->getUnderlyingExpr()->getType(); 8051 } 8052 8053 const analyze_printf::ArgType::MatchKind Match = 8054 AT.matchesType(S.Context, ExprTy); 8055 bool Pedantic = Match == analyze_printf::ArgType::NoMatchPedantic; 8056 if (Match == analyze_printf::ArgType::Match) 8057 return true; 8058 8059 // Look through argument promotions for our error message's reported type. 8060 // This includes the integral and floating promotions, but excludes array 8061 // and function pointer decay (seeing that an argument intended to be a 8062 // string has type 'char [6]' is probably more confusing than 'char *') and 8063 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8064 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8065 if (isArithmeticArgumentPromotion(S, ICE)) { 8066 E = ICE->getSubExpr(); 8067 ExprTy = E->getType(); 8068 8069 // Check if we didn't match because of an implicit cast from a 'char' 8070 // or 'short' to an 'int'. This is done because printf is a varargs 8071 // function. 8072 if (ICE->getType() == S.Context.IntTy || 8073 ICE->getType() == S.Context.UnsignedIntTy) { 8074 // All further checking is done on the subexpression. 8075 if (AT.matchesType(S.Context, ExprTy)) 8076 return true; 8077 } 8078 } 8079 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8080 // Special case for 'a', which has type 'int' in C. 8081 // Note, however, that we do /not/ want to treat multibyte constants like 8082 // 'MooV' as characters! This form is deprecated but still exists. 8083 if (ExprTy == S.Context.IntTy) 8084 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8085 ExprTy = S.Context.CharTy; 8086 } 8087 8088 // Look through enums to their underlying type. 8089 bool IsEnum = false; 8090 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8091 ExprTy = EnumTy->getDecl()->getIntegerType(); 8092 IsEnum = true; 8093 } 8094 8095 // %C in an Objective-C context prints a unichar, not a wchar_t. 8096 // If the argument is an integer of some kind, believe the %C and suggest 8097 // a cast instead of changing the conversion specifier. 8098 QualType IntendedTy = ExprTy; 8099 if (isObjCContext() && 8100 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8101 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8102 !ExprTy->isCharType()) { 8103 // 'unichar' is defined as a typedef of unsigned short, but we should 8104 // prefer using the typedef if it is visible. 8105 IntendedTy = S.Context.UnsignedShortTy; 8106 8107 // While we are here, check if the value is an IntegerLiteral that happens 8108 // to be within the valid range. 8109 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8110 const llvm::APInt &V = IL->getValue(); 8111 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8112 return true; 8113 } 8114 8115 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8116 Sema::LookupOrdinaryName); 8117 if (S.LookupName(Result, S.getCurScope())) { 8118 NamedDecl *ND = Result.getFoundDecl(); 8119 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8120 if (TD->getUnderlyingType() == IntendedTy) 8121 IntendedTy = S.Context.getTypedefType(TD); 8122 } 8123 } 8124 } 8125 8126 // Special-case some of Darwin's platform-independence types by suggesting 8127 // casts to primitive types that are known to be large enough. 8128 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8129 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8130 QualType CastTy; 8131 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8132 if (!CastTy.isNull()) { 8133 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8134 // (long in ASTContext). Only complain to pedants. 8135 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8136 (AT.isSizeT() || AT.isPtrdiffT()) && 8137 AT.matchesType(S.Context, CastTy)) 8138 Pedantic = true; 8139 IntendedTy = CastTy; 8140 ShouldNotPrintDirectly = true; 8141 } 8142 } 8143 8144 // We may be able to offer a FixItHint if it is a supported type. 8145 PrintfSpecifier fixedFS = FS; 8146 bool Success = 8147 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8148 8149 if (Success) { 8150 // Get the fix string from the fixed format specifier 8151 SmallString<16> buf; 8152 llvm::raw_svector_ostream os(buf); 8153 fixedFS.toString(os); 8154 8155 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8156 8157 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8158 unsigned Diag = 8159 Pedantic 8160 ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8161 : diag::warn_format_conversion_argument_type_mismatch; 8162 // In this case, the specifier is wrong and should be changed to match 8163 // the argument. 8164 EmitFormatDiagnostic(S.PDiag(Diag) 8165 << AT.getRepresentativeTypeName(S.Context) 8166 << IntendedTy << IsEnum << E->getSourceRange(), 8167 E->getBeginLoc(), 8168 /*IsStringLocation*/ false, SpecRange, 8169 FixItHint::CreateReplacement(SpecRange, os.str())); 8170 } else { 8171 // The canonical type for formatting this value is different from the 8172 // actual type of the expression. (This occurs, for example, with Darwin's 8173 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8174 // should be printed as 'long' for 64-bit compatibility.) 8175 // Rather than emitting a normal format/argument mismatch, we want to 8176 // add a cast to the recommended type (and correct the format string 8177 // if necessary). 8178 SmallString<16> CastBuf; 8179 llvm::raw_svector_ostream CastFix(CastBuf); 8180 CastFix << "("; 8181 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8182 CastFix << ")"; 8183 8184 SmallVector<FixItHint,4> Hints; 8185 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8186 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8187 8188 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8189 // If there's already a cast present, just replace it. 8190 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8191 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8192 8193 } else if (!requiresParensToAddCast(E)) { 8194 // If the expression has high enough precedence, 8195 // just write the C-style cast. 8196 Hints.push_back( 8197 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8198 } else { 8199 // Otherwise, add parens around the expression as well as the cast. 8200 CastFix << "("; 8201 Hints.push_back( 8202 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8203 8204 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8205 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8206 } 8207 8208 if (ShouldNotPrintDirectly) { 8209 // The expression has a type that should not be printed directly. 8210 // We extract the name from the typedef because we don't want to show 8211 // the underlying type in the diagnostic. 8212 StringRef Name; 8213 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8214 Name = TypedefTy->getDecl()->getName(); 8215 else 8216 Name = CastTyName; 8217 unsigned Diag = Pedantic 8218 ? diag::warn_format_argument_needs_cast_pedantic 8219 : diag::warn_format_argument_needs_cast; 8220 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8221 << E->getSourceRange(), 8222 E->getBeginLoc(), /*IsStringLocation=*/false, 8223 SpecRange, Hints); 8224 } else { 8225 // In this case, the expression could be printed using a different 8226 // specifier, but we've decided that the specifier is probably correct 8227 // and we should cast instead. Just use the normal warning message. 8228 EmitFormatDiagnostic( 8229 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8230 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8231 << E->getSourceRange(), 8232 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8233 } 8234 } 8235 } else { 8236 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8237 SpecifierLen); 8238 // Since the warning for passing non-POD types to variadic functions 8239 // was deferred until now, we emit a warning for non-POD 8240 // arguments here. 8241 switch (S.isValidVarArgType(ExprTy)) { 8242 case Sema::VAK_Valid: 8243 case Sema::VAK_ValidInCXX11: { 8244 unsigned Diag = 8245 Pedantic 8246 ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8247 : diag::warn_format_conversion_argument_type_mismatch; 8248 8249 EmitFormatDiagnostic( 8250 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8251 << IsEnum << CSR << E->getSourceRange(), 8252 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8253 break; 8254 } 8255 case Sema::VAK_Undefined: 8256 case Sema::VAK_MSVCUndefined: 8257 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8258 << S.getLangOpts().CPlusPlus11 << ExprTy 8259 << CallType 8260 << AT.getRepresentativeTypeName(S.Context) << CSR 8261 << E->getSourceRange(), 8262 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8263 checkForCStrMembers(AT, E); 8264 break; 8265 8266 case Sema::VAK_Invalid: 8267 if (ExprTy->isObjCObjectType()) 8268 EmitFormatDiagnostic( 8269 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8270 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8271 << AT.getRepresentativeTypeName(S.Context) << CSR 8272 << E->getSourceRange(), 8273 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8274 else 8275 // FIXME: If this is an initializer list, suggest removing the braces 8276 // or inserting a cast to the target type. 8277 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8278 << isa<InitListExpr>(E) << ExprTy << CallType 8279 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8280 break; 8281 } 8282 8283 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8284 "format string specifier index out of range"); 8285 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8286 } 8287 8288 return true; 8289 } 8290 8291 //===--- CHECK: Scanf format string checking ------------------------------===// 8292 8293 namespace { 8294 8295 class CheckScanfHandler : public CheckFormatHandler { 8296 public: 8297 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8298 const Expr *origFormatExpr, Sema::FormatStringType type, 8299 unsigned firstDataArg, unsigned numDataArgs, 8300 const char *beg, bool hasVAListArg, 8301 ArrayRef<const Expr *> Args, unsigned formatIdx, 8302 bool inFunctionCall, Sema::VariadicCallType CallType, 8303 llvm::SmallBitVector &CheckedVarArgs, 8304 UncoveredArgHandler &UncoveredArg) 8305 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8306 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8307 inFunctionCall, CallType, CheckedVarArgs, 8308 UncoveredArg) {} 8309 8310 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8311 const char *startSpecifier, 8312 unsigned specifierLen) override; 8313 8314 bool HandleInvalidScanfConversionSpecifier( 8315 const analyze_scanf::ScanfSpecifier &FS, 8316 const char *startSpecifier, 8317 unsigned specifierLen) override; 8318 8319 void HandleIncompleteScanList(const char *start, const char *end) override; 8320 }; 8321 8322 } // namespace 8323 8324 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8325 const char *end) { 8326 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8327 getLocationOfByte(end), /*IsStringLocation*/true, 8328 getSpecifierRange(start, end - start)); 8329 } 8330 8331 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8332 const analyze_scanf::ScanfSpecifier &FS, 8333 const char *startSpecifier, 8334 unsigned specifierLen) { 8335 const analyze_scanf::ScanfConversionSpecifier &CS = 8336 FS.getConversionSpecifier(); 8337 8338 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8339 getLocationOfByte(CS.getStart()), 8340 startSpecifier, specifierLen, 8341 CS.getStart(), CS.getLength()); 8342 } 8343 8344 bool CheckScanfHandler::HandleScanfSpecifier( 8345 const analyze_scanf::ScanfSpecifier &FS, 8346 const char *startSpecifier, 8347 unsigned specifierLen) { 8348 using namespace analyze_scanf; 8349 using namespace analyze_format_string; 8350 8351 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8352 8353 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8354 // be used to decide if we are using positional arguments consistently. 8355 if (FS.consumesDataArgument()) { 8356 if (atFirstArg) { 8357 atFirstArg = false; 8358 usesPositionalArgs = FS.usesPositionalArg(); 8359 } 8360 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8361 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8362 startSpecifier, specifierLen); 8363 return false; 8364 } 8365 } 8366 8367 // Check if the field with is non-zero. 8368 const OptionalAmount &Amt = FS.getFieldWidth(); 8369 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8370 if (Amt.getConstantAmount() == 0) { 8371 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8372 Amt.getConstantLength()); 8373 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8374 getLocationOfByte(Amt.getStart()), 8375 /*IsStringLocation*/true, R, 8376 FixItHint::CreateRemoval(R)); 8377 } 8378 } 8379 8380 if (!FS.consumesDataArgument()) { 8381 // FIXME: Technically specifying a precision or field width here 8382 // makes no sense. Worth issuing a warning at some point. 8383 return true; 8384 } 8385 8386 // Consume the argument. 8387 unsigned argIndex = FS.getArgIndex(); 8388 if (argIndex < NumDataArgs) { 8389 // The check to see if the argIndex is valid will come later. 8390 // We set the bit here because we may exit early from this 8391 // function if we encounter some other error. 8392 CoveredArgs.set(argIndex); 8393 } 8394 8395 // Check the length modifier is valid with the given conversion specifier. 8396 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8397 S.getLangOpts())) 8398 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8399 diag::warn_format_nonsensical_length); 8400 else if (!FS.hasStandardLengthModifier()) 8401 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8402 else if (!FS.hasStandardLengthConversionCombination()) 8403 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8404 diag::warn_format_non_standard_conversion_spec); 8405 8406 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8407 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8408 8409 // The remaining checks depend on the data arguments. 8410 if (HasVAListArg) 8411 return true; 8412 8413 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8414 return false; 8415 8416 // Check that the argument type matches the format specifier. 8417 const Expr *Ex = getDataArg(argIndex); 8418 if (!Ex) 8419 return true; 8420 8421 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8422 8423 if (!AT.isValid()) { 8424 return true; 8425 } 8426 8427 analyze_format_string::ArgType::MatchKind Match = 8428 AT.matchesType(S.Context, Ex->getType()); 8429 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8430 if (Match == analyze_format_string::ArgType::Match) 8431 return true; 8432 8433 ScanfSpecifier fixedFS = FS; 8434 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 8435 S.getLangOpts(), S.Context); 8436 8437 unsigned Diag = 8438 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8439 : diag::warn_format_conversion_argument_type_mismatch; 8440 8441 if (Success) { 8442 // Get the fix string from the fixed format specifier. 8443 SmallString<128> buf; 8444 llvm::raw_svector_ostream os(buf); 8445 fixedFS.toString(os); 8446 8447 EmitFormatDiagnostic( 8448 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 8449 << Ex->getType() << false << Ex->getSourceRange(), 8450 Ex->getBeginLoc(), 8451 /*IsStringLocation*/ false, 8452 getSpecifierRange(startSpecifier, specifierLen), 8453 FixItHint::CreateReplacement( 8454 getSpecifierRange(startSpecifier, specifierLen), os.str())); 8455 } else { 8456 EmitFormatDiagnostic(S.PDiag(Diag) 8457 << AT.getRepresentativeTypeName(S.Context) 8458 << Ex->getType() << false << Ex->getSourceRange(), 8459 Ex->getBeginLoc(), 8460 /*IsStringLocation*/ false, 8461 getSpecifierRange(startSpecifier, specifierLen)); 8462 } 8463 8464 return true; 8465 } 8466 8467 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8468 const Expr *OrigFormatExpr, 8469 ArrayRef<const Expr *> Args, 8470 bool HasVAListArg, unsigned format_idx, 8471 unsigned firstDataArg, 8472 Sema::FormatStringType Type, 8473 bool inFunctionCall, 8474 Sema::VariadicCallType CallType, 8475 llvm::SmallBitVector &CheckedVarArgs, 8476 UncoveredArgHandler &UncoveredArg) { 8477 // CHECK: is the format string a wide literal? 8478 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 8479 CheckFormatHandler::EmitFormatDiagnostic( 8480 S, inFunctionCall, Args[format_idx], 8481 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 8482 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8483 return; 8484 } 8485 8486 // Str - The format string. NOTE: this is NOT null-terminated! 8487 StringRef StrRef = FExpr->getString(); 8488 const char *Str = StrRef.data(); 8489 // Account for cases where the string literal is truncated in a declaration. 8490 const ConstantArrayType *T = 8491 S.Context.getAsConstantArrayType(FExpr->getType()); 8492 assert(T && "String literal not of constant array type!"); 8493 size_t TypeSize = T->getSize().getZExtValue(); 8494 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8495 const unsigned numDataArgs = Args.size() - firstDataArg; 8496 8497 // Emit a warning if the string literal is truncated and does not contain an 8498 // embedded null character. 8499 if (TypeSize <= StrRef.size() && 8500 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 8501 CheckFormatHandler::EmitFormatDiagnostic( 8502 S, inFunctionCall, Args[format_idx], 8503 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 8504 FExpr->getBeginLoc(), 8505 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 8506 return; 8507 } 8508 8509 // CHECK: empty format string? 8510 if (StrLen == 0 && numDataArgs > 0) { 8511 CheckFormatHandler::EmitFormatDiagnostic( 8512 S, inFunctionCall, Args[format_idx], 8513 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 8514 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8515 return; 8516 } 8517 8518 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 8519 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 8520 Type == Sema::FST_OSTrace) { 8521 CheckPrintfHandler H( 8522 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 8523 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 8524 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 8525 CheckedVarArgs, UncoveredArg); 8526 8527 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 8528 S.getLangOpts(), 8529 S.Context.getTargetInfo(), 8530 Type == Sema::FST_FreeBSDKPrintf)) 8531 H.DoneProcessing(); 8532 } else if (Type == Sema::FST_Scanf) { 8533 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 8534 numDataArgs, Str, HasVAListArg, Args, format_idx, 8535 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 8536 8537 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 8538 S.getLangOpts(), 8539 S.Context.getTargetInfo())) 8540 H.DoneProcessing(); 8541 } // TODO: handle other formats 8542 } 8543 8544 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 8545 // Str - The format string. NOTE: this is NOT null-terminated! 8546 StringRef StrRef = FExpr->getString(); 8547 const char *Str = StrRef.data(); 8548 // Account for cases where the string literal is truncated in a declaration. 8549 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 8550 assert(T && "String literal not of constant array type!"); 8551 size_t TypeSize = T->getSize().getZExtValue(); 8552 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8553 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 8554 getLangOpts(), 8555 Context.getTargetInfo()); 8556 } 8557 8558 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 8559 8560 // Returns the related absolute value function that is larger, of 0 if one 8561 // does not exist. 8562 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 8563 switch (AbsFunction) { 8564 default: 8565 return 0; 8566 8567 case Builtin::BI__builtin_abs: 8568 return Builtin::BI__builtin_labs; 8569 case Builtin::BI__builtin_labs: 8570 return Builtin::BI__builtin_llabs; 8571 case Builtin::BI__builtin_llabs: 8572 return 0; 8573 8574 case Builtin::BI__builtin_fabsf: 8575 return Builtin::BI__builtin_fabs; 8576 case Builtin::BI__builtin_fabs: 8577 return Builtin::BI__builtin_fabsl; 8578 case Builtin::BI__builtin_fabsl: 8579 return 0; 8580 8581 case Builtin::BI__builtin_cabsf: 8582 return Builtin::BI__builtin_cabs; 8583 case Builtin::BI__builtin_cabs: 8584 return Builtin::BI__builtin_cabsl; 8585 case Builtin::BI__builtin_cabsl: 8586 return 0; 8587 8588 case Builtin::BIabs: 8589 return Builtin::BIlabs; 8590 case Builtin::BIlabs: 8591 return Builtin::BIllabs; 8592 case Builtin::BIllabs: 8593 return 0; 8594 8595 case Builtin::BIfabsf: 8596 return Builtin::BIfabs; 8597 case Builtin::BIfabs: 8598 return Builtin::BIfabsl; 8599 case Builtin::BIfabsl: 8600 return 0; 8601 8602 case Builtin::BIcabsf: 8603 return Builtin::BIcabs; 8604 case Builtin::BIcabs: 8605 return Builtin::BIcabsl; 8606 case Builtin::BIcabsl: 8607 return 0; 8608 } 8609 } 8610 8611 // Returns the argument type of the absolute value function. 8612 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 8613 unsigned AbsType) { 8614 if (AbsType == 0) 8615 return QualType(); 8616 8617 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 8618 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 8619 if (Error != ASTContext::GE_None) 8620 return QualType(); 8621 8622 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 8623 if (!FT) 8624 return QualType(); 8625 8626 if (FT->getNumParams() != 1) 8627 return QualType(); 8628 8629 return FT->getParamType(0); 8630 } 8631 8632 // Returns the best absolute value function, or zero, based on type and 8633 // current absolute value function. 8634 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 8635 unsigned AbsFunctionKind) { 8636 unsigned BestKind = 0; 8637 uint64_t ArgSize = Context.getTypeSize(ArgType); 8638 for (unsigned Kind = AbsFunctionKind; Kind != 0; 8639 Kind = getLargerAbsoluteValueFunction(Kind)) { 8640 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 8641 if (Context.getTypeSize(ParamType) >= ArgSize) { 8642 if (BestKind == 0) 8643 BestKind = Kind; 8644 else if (Context.hasSameType(ParamType, ArgType)) { 8645 BestKind = Kind; 8646 break; 8647 } 8648 } 8649 } 8650 return BestKind; 8651 } 8652 8653 enum AbsoluteValueKind { 8654 AVK_Integer, 8655 AVK_Floating, 8656 AVK_Complex 8657 }; 8658 8659 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 8660 if (T->isIntegralOrEnumerationType()) 8661 return AVK_Integer; 8662 if (T->isRealFloatingType()) 8663 return AVK_Floating; 8664 if (T->isAnyComplexType()) 8665 return AVK_Complex; 8666 8667 llvm_unreachable("Type not integer, floating, or complex"); 8668 } 8669 8670 // Changes the absolute value function to a different type. Preserves whether 8671 // the function is a builtin. 8672 static unsigned changeAbsFunction(unsigned AbsKind, 8673 AbsoluteValueKind ValueKind) { 8674 switch (ValueKind) { 8675 case AVK_Integer: 8676 switch (AbsKind) { 8677 default: 8678 return 0; 8679 case Builtin::BI__builtin_fabsf: 8680 case Builtin::BI__builtin_fabs: 8681 case Builtin::BI__builtin_fabsl: 8682 case Builtin::BI__builtin_cabsf: 8683 case Builtin::BI__builtin_cabs: 8684 case Builtin::BI__builtin_cabsl: 8685 return Builtin::BI__builtin_abs; 8686 case Builtin::BIfabsf: 8687 case Builtin::BIfabs: 8688 case Builtin::BIfabsl: 8689 case Builtin::BIcabsf: 8690 case Builtin::BIcabs: 8691 case Builtin::BIcabsl: 8692 return Builtin::BIabs; 8693 } 8694 case AVK_Floating: 8695 switch (AbsKind) { 8696 default: 8697 return 0; 8698 case Builtin::BI__builtin_abs: 8699 case Builtin::BI__builtin_labs: 8700 case Builtin::BI__builtin_llabs: 8701 case Builtin::BI__builtin_cabsf: 8702 case Builtin::BI__builtin_cabs: 8703 case Builtin::BI__builtin_cabsl: 8704 return Builtin::BI__builtin_fabsf; 8705 case Builtin::BIabs: 8706 case Builtin::BIlabs: 8707 case Builtin::BIllabs: 8708 case Builtin::BIcabsf: 8709 case Builtin::BIcabs: 8710 case Builtin::BIcabsl: 8711 return Builtin::BIfabsf; 8712 } 8713 case AVK_Complex: 8714 switch (AbsKind) { 8715 default: 8716 return 0; 8717 case Builtin::BI__builtin_abs: 8718 case Builtin::BI__builtin_labs: 8719 case Builtin::BI__builtin_llabs: 8720 case Builtin::BI__builtin_fabsf: 8721 case Builtin::BI__builtin_fabs: 8722 case Builtin::BI__builtin_fabsl: 8723 return Builtin::BI__builtin_cabsf; 8724 case Builtin::BIabs: 8725 case Builtin::BIlabs: 8726 case Builtin::BIllabs: 8727 case Builtin::BIfabsf: 8728 case Builtin::BIfabs: 8729 case Builtin::BIfabsl: 8730 return Builtin::BIcabsf; 8731 } 8732 } 8733 llvm_unreachable("Unable to convert function"); 8734 } 8735 8736 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 8737 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 8738 if (!FnInfo) 8739 return 0; 8740 8741 switch (FDecl->getBuiltinID()) { 8742 default: 8743 return 0; 8744 case Builtin::BI__builtin_abs: 8745 case Builtin::BI__builtin_fabs: 8746 case Builtin::BI__builtin_fabsf: 8747 case Builtin::BI__builtin_fabsl: 8748 case Builtin::BI__builtin_labs: 8749 case Builtin::BI__builtin_llabs: 8750 case Builtin::BI__builtin_cabs: 8751 case Builtin::BI__builtin_cabsf: 8752 case Builtin::BI__builtin_cabsl: 8753 case Builtin::BIabs: 8754 case Builtin::BIlabs: 8755 case Builtin::BIllabs: 8756 case Builtin::BIfabs: 8757 case Builtin::BIfabsf: 8758 case Builtin::BIfabsl: 8759 case Builtin::BIcabs: 8760 case Builtin::BIcabsf: 8761 case Builtin::BIcabsl: 8762 return FDecl->getBuiltinID(); 8763 } 8764 llvm_unreachable("Unknown Builtin type"); 8765 } 8766 8767 // If the replacement is valid, emit a note with replacement function. 8768 // Additionally, suggest including the proper header if not already included. 8769 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 8770 unsigned AbsKind, QualType ArgType) { 8771 bool EmitHeaderHint = true; 8772 const char *HeaderName = nullptr; 8773 const char *FunctionName = nullptr; 8774 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 8775 FunctionName = "std::abs"; 8776 if (ArgType->isIntegralOrEnumerationType()) { 8777 HeaderName = "cstdlib"; 8778 } else if (ArgType->isRealFloatingType()) { 8779 HeaderName = "cmath"; 8780 } else { 8781 llvm_unreachable("Invalid Type"); 8782 } 8783 8784 // Lookup all std::abs 8785 if (NamespaceDecl *Std = S.getStdNamespace()) { 8786 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 8787 R.suppressDiagnostics(); 8788 S.LookupQualifiedName(R, Std); 8789 8790 for (const auto *I : R) { 8791 const FunctionDecl *FDecl = nullptr; 8792 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 8793 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 8794 } else { 8795 FDecl = dyn_cast<FunctionDecl>(I); 8796 } 8797 if (!FDecl) 8798 continue; 8799 8800 // Found std::abs(), check that they are the right ones. 8801 if (FDecl->getNumParams() != 1) 8802 continue; 8803 8804 // Check that the parameter type can handle the argument. 8805 QualType ParamType = FDecl->getParamDecl(0)->getType(); 8806 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 8807 S.Context.getTypeSize(ArgType) <= 8808 S.Context.getTypeSize(ParamType)) { 8809 // Found a function, don't need the header hint. 8810 EmitHeaderHint = false; 8811 break; 8812 } 8813 } 8814 } 8815 } else { 8816 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 8817 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 8818 8819 if (HeaderName) { 8820 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 8821 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 8822 R.suppressDiagnostics(); 8823 S.LookupName(R, S.getCurScope()); 8824 8825 if (R.isSingleResult()) { 8826 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 8827 if (FD && FD->getBuiltinID() == AbsKind) { 8828 EmitHeaderHint = false; 8829 } else { 8830 return; 8831 } 8832 } else if (!R.empty()) { 8833 return; 8834 } 8835 } 8836 } 8837 8838 S.Diag(Loc, diag::note_replace_abs_function) 8839 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 8840 8841 if (!HeaderName) 8842 return; 8843 8844 if (!EmitHeaderHint) 8845 return; 8846 8847 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 8848 << FunctionName; 8849 } 8850 8851 template <std::size_t StrLen> 8852 static bool IsStdFunction(const FunctionDecl *FDecl, 8853 const char (&Str)[StrLen]) { 8854 if (!FDecl) 8855 return false; 8856 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 8857 return false; 8858 if (!FDecl->isInStdNamespace()) 8859 return false; 8860 8861 return true; 8862 } 8863 8864 // Warn when using the wrong abs() function. 8865 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 8866 const FunctionDecl *FDecl) { 8867 if (Call->getNumArgs() != 1) 8868 return; 8869 8870 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 8871 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 8872 if (AbsKind == 0 && !IsStdAbs) 8873 return; 8874 8875 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 8876 QualType ParamType = Call->getArg(0)->getType(); 8877 8878 // Unsigned types cannot be negative. Suggest removing the absolute value 8879 // function call. 8880 if (ArgType->isUnsignedIntegerType()) { 8881 const char *FunctionName = 8882 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 8883 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 8884 Diag(Call->getExprLoc(), diag::note_remove_abs) 8885 << FunctionName 8886 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 8887 return; 8888 } 8889 8890 // Taking the absolute value of a pointer is very suspicious, they probably 8891 // wanted to index into an array, dereference a pointer, call a function, etc. 8892 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 8893 unsigned DiagType = 0; 8894 if (ArgType->isFunctionType()) 8895 DiagType = 1; 8896 else if (ArgType->isArrayType()) 8897 DiagType = 2; 8898 8899 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 8900 return; 8901 } 8902 8903 // std::abs has overloads which prevent most of the absolute value problems 8904 // from occurring. 8905 if (IsStdAbs) 8906 return; 8907 8908 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 8909 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 8910 8911 // The argument and parameter are the same kind. Check if they are the right 8912 // size. 8913 if (ArgValueKind == ParamValueKind) { 8914 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 8915 return; 8916 8917 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 8918 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 8919 << FDecl << ArgType << ParamType; 8920 8921 if (NewAbsKind == 0) 8922 return; 8923 8924 emitReplacement(*this, Call->getExprLoc(), 8925 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 8926 return; 8927 } 8928 8929 // ArgValueKind != ParamValueKind 8930 // The wrong type of absolute value function was used. Attempt to find the 8931 // proper one. 8932 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 8933 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 8934 if (NewAbsKind == 0) 8935 return; 8936 8937 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 8938 << FDecl << ParamValueKind << ArgValueKind; 8939 8940 emitReplacement(*this, Call->getExprLoc(), 8941 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 8942 } 8943 8944 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 8945 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 8946 const FunctionDecl *FDecl) { 8947 if (!Call || !FDecl) return; 8948 8949 // Ignore template specializations and macros. 8950 if (inTemplateInstantiation()) return; 8951 if (Call->getExprLoc().isMacroID()) return; 8952 8953 // Only care about the one template argument, two function parameter std::max 8954 if (Call->getNumArgs() != 2) return; 8955 if (!IsStdFunction(FDecl, "max")) return; 8956 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 8957 if (!ArgList) return; 8958 if (ArgList->size() != 1) return; 8959 8960 // Check that template type argument is unsigned integer. 8961 const auto& TA = ArgList->get(0); 8962 if (TA.getKind() != TemplateArgument::Type) return; 8963 QualType ArgType = TA.getAsType(); 8964 if (!ArgType->isUnsignedIntegerType()) return; 8965 8966 // See if either argument is a literal zero. 8967 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 8968 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 8969 if (!MTE) return false; 8970 const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr()); 8971 if (!Num) return false; 8972 if (Num->getValue() != 0) return false; 8973 return true; 8974 }; 8975 8976 const Expr *FirstArg = Call->getArg(0); 8977 const Expr *SecondArg = Call->getArg(1); 8978 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 8979 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 8980 8981 // Only warn when exactly one argument is zero. 8982 if (IsFirstArgZero == IsSecondArgZero) return; 8983 8984 SourceRange FirstRange = FirstArg->getSourceRange(); 8985 SourceRange SecondRange = SecondArg->getSourceRange(); 8986 8987 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 8988 8989 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 8990 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 8991 8992 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 8993 SourceRange RemovalRange; 8994 if (IsFirstArgZero) { 8995 RemovalRange = SourceRange(FirstRange.getBegin(), 8996 SecondRange.getBegin().getLocWithOffset(-1)); 8997 } else { 8998 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 8999 SecondRange.getEnd()); 9000 } 9001 9002 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9003 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9004 << FixItHint::CreateRemoval(RemovalRange); 9005 } 9006 9007 //===--- CHECK: Standard memory functions ---------------------------------===// 9008 9009 /// Takes the expression passed to the size_t parameter of functions 9010 /// such as memcmp, strncat, etc and warns if it's a comparison. 9011 /// 9012 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9013 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9014 IdentifierInfo *FnName, 9015 SourceLocation FnLoc, 9016 SourceLocation RParenLoc) { 9017 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9018 if (!Size) 9019 return false; 9020 9021 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9022 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9023 return false; 9024 9025 SourceRange SizeRange = Size->getSourceRange(); 9026 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9027 << SizeRange << FnName; 9028 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9029 << FnName 9030 << FixItHint::CreateInsertion( 9031 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9032 << FixItHint::CreateRemoval(RParenLoc); 9033 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9034 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9035 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9036 ")"); 9037 9038 return true; 9039 } 9040 9041 /// Determine whether the given type is or contains a dynamic class type 9042 /// (e.g., whether it has a vtable). 9043 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9044 bool &IsContained) { 9045 // Look through array types while ignoring qualifiers. 9046 const Type *Ty = T->getBaseElementTypeUnsafe(); 9047 IsContained = false; 9048 9049 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9050 RD = RD ? RD->getDefinition() : nullptr; 9051 if (!RD || RD->isInvalidDecl()) 9052 return nullptr; 9053 9054 if (RD->isDynamicClass()) 9055 return RD; 9056 9057 // Check all the fields. If any bases were dynamic, the class is dynamic. 9058 // It's impossible for a class to transitively contain itself by value, so 9059 // infinite recursion is impossible. 9060 for (auto *FD : RD->fields()) { 9061 bool SubContained; 9062 if (const CXXRecordDecl *ContainedRD = 9063 getContainedDynamicClass(FD->getType(), SubContained)) { 9064 IsContained = true; 9065 return ContainedRD; 9066 } 9067 } 9068 9069 return nullptr; 9070 } 9071 9072 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9073 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9074 if (Unary->getKind() == UETT_SizeOf) 9075 return Unary; 9076 return nullptr; 9077 } 9078 9079 /// If E is a sizeof expression, returns its argument expression, 9080 /// otherwise returns NULL. 9081 static const Expr *getSizeOfExprArg(const Expr *E) { 9082 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9083 if (!SizeOf->isArgumentType()) 9084 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9085 return nullptr; 9086 } 9087 9088 /// If E is a sizeof expression, returns its argument type. 9089 static QualType getSizeOfArgType(const Expr *E) { 9090 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9091 return SizeOf->getTypeOfArgument(); 9092 return QualType(); 9093 } 9094 9095 namespace { 9096 9097 struct SearchNonTrivialToInitializeField 9098 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9099 using Super = 9100 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9101 9102 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9103 9104 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9105 SourceLocation SL) { 9106 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9107 asDerived().visitArray(PDIK, AT, SL); 9108 return; 9109 } 9110 9111 Super::visitWithKind(PDIK, FT, SL); 9112 } 9113 9114 void visitARCStrong(QualType FT, SourceLocation SL) { 9115 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9116 } 9117 void visitARCWeak(QualType FT, SourceLocation SL) { 9118 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9119 } 9120 void visitStruct(QualType FT, SourceLocation SL) { 9121 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9122 visit(FD->getType(), FD->getLocation()); 9123 } 9124 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9125 const ArrayType *AT, SourceLocation SL) { 9126 visit(getContext().getBaseElementType(AT), SL); 9127 } 9128 void visitTrivial(QualType FT, SourceLocation SL) {} 9129 9130 static void diag(QualType RT, const Expr *E, Sema &S) { 9131 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9132 } 9133 9134 ASTContext &getContext() { return S.getASTContext(); } 9135 9136 const Expr *E; 9137 Sema &S; 9138 }; 9139 9140 struct SearchNonTrivialToCopyField 9141 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9142 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9143 9144 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9145 9146 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9147 SourceLocation SL) { 9148 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9149 asDerived().visitArray(PCK, AT, SL); 9150 return; 9151 } 9152 9153 Super::visitWithKind(PCK, FT, SL); 9154 } 9155 9156 void visitARCStrong(QualType FT, SourceLocation SL) { 9157 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9158 } 9159 void visitARCWeak(QualType FT, SourceLocation SL) { 9160 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9161 } 9162 void visitStruct(QualType FT, SourceLocation SL) { 9163 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9164 visit(FD->getType(), FD->getLocation()); 9165 } 9166 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9167 SourceLocation SL) { 9168 visit(getContext().getBaseElementType(AT), SL); 9169 } 9170 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9171 SourceLocation SL) {} 9172 void visitTrivial(QualType FT, SourceLocation SL) {} 9173 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9174 9175 static void diag(QualType RT, const Expr *E, Sema &S) { 9176 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9177 } 9178 9179 ASTContext &getContext() { return S.getASTContext(); } 9180 9181 const Expr *E; 9182 Sema &S; 9183 }; 9184 9185 } 9186 9187 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9188 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9189 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9190 9191 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9192 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9193 return false; 9194 9195 return doesExprLikelyComputeSize(BO->getLHS()) || 9196 doesExprLikelyComputeSize(BO->getRHS()); 9197 } 9198 9199 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9200 } 9201 9202 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9203 /// 9204 /// \code 9205 /// #define MACRO 0 9206 /// foo(MACRO); 9207 /// foo(0); 9208 /// \endcode 9209 /// 9210 /// This should return true for the first call to foo, but not for the second 9211 /// (regardless of whether foo is a macro or function). 9212 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9213 SourceLocation CallLoc, 9214 SourceLocation ArgLoc) { 9215 if (!CallLoc.isMacroID()) 9216 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9217 9218 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9219 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9220 } 9221 9222 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9223 /// last two arguments transposed. 9224 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9225 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9226 return; 9227 9228 const Expr *SizeArg = 9229 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9230 9231 auto isLiteralZero = [](const Expr *E) { 9232 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9233 }; 9234 9235 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9236 SourceLocation CallLoc = Call->getRParenLoc(); 9237 SourceManager &SM = S.getSourceManager(); 9238 if (isLiteralZero(SizeArg) && 9239 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9240 9241 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9242 9243 // Some platforms #define bzero to __builtin_memset. See if this is the 9244 // case, and if so, emit a better diagnostic. 9245 if (BId == Builtin::BIbzero || 9246 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9247 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9248 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9249 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9250 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9251 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9252 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9253 } 9254 return; 9255 } 9256 9257 // If the second argument to a memset is a sizeof expression and the third 9258 // isn't, this is also likely an error. This should catch 9259 // 'memset(buf, sizeof(buf), 0xff)'. 9260 if (BId == Builtin::BImemset && 9261 doesExprLikelyComputeSize(Call->getArg(1)) && 9262 !doesExprLikelyComputeSize(Call->getArg(2))) { 9263 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9264 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9265 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9266 return; 9267 } 9268 } 9269 9270 /// Check for dangerous or invalid arguments to memset(). 9271 /// 9272 /// This issues warnings on known problematic, dangerous or unspecified 9273 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9274 /// function calls. 9275 /// 9276 /// \param Call The call expression to diagnose. 9277 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9278 unsigned BId, 9279 IdentifierInfo *FnName) { 9280 assert(BId != 0); 9281 9282 // It is possible to have a non-standard definition of memset. Validate 9283 // we have enough arguments, and if not, abort further checking. 9284 unsigned ExpectedNumArgs = 9285 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9286 if (Call->getNumArgs() < ExpectedNumArgs) 9287 return; 9288 9289 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9290 BId == Builtin::BIstrndup ? 1 : 2); 9291 unsigned LenArg = 9292 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9293 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9294 9295 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9296 Call->getBeginLoc(), Call->getRParenLoc())) 9297 return; 9298 9299 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9300 CheckMemaccessSize(*this, BId, Call); 9301 9302 // We have special checking when the length is a sizeof expression. 9303 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9304 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9305 llvm::FoldingSetNodeID SizeOfArgID; 9306 9307 // Although widely used, 'bzero' is not a standard function. Be more strict 9308 // with the argument types before allowing diagnostics and only allow the 9309 // form bzero(ptr, sizeof(...)). 9310 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9311 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9312 return; 9313 9314 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9315 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9316 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9317 9318 QualType DestTy = Dest->getType(); 9319 QualType PointeeTy; 9320 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9321 PointeeTy = DestPtrTy->getPointeeType(); 9322 9323 // Never warn about void type pointers. This can be used to suppress 9324 // false positives. 9325 if (PointeeTy->isVoidType()) 9326 continue; 9327 9328 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9329 // actually comparing the expressions for equality. Because computing the 9330 // expression IDs can be expensive, we only do this if the diagnostic is 9331 // enabled. 9332 if (SizeOfArg && 9333 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9334 SizeOfArg->getExprLoc())) { 9335 // We only compute IDs for expressions if the warning is enabled, and 9336 // cache the sizeof arg's ID. 9337 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9338 SizeOfArg->Profile(SizeOfArgID, Context, true); 9339 llvm::FoldingSetNodeID DestID; 9340 Dest->Profile(DestID, Context, true); 9341 if (DestID == SizeOfArgID) { 9342 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9343 // over sizeof(src) as well. 9344 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9345 StringRef ReadableName = FnName->getName(); 9346 9347 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9348 if (UnaryOp->getOpcode() == UO_AddrOf) 9349 ActionIdx = 1; // If its an address-of operator, just remove it. 9350 if (!PointeeTy->isIncompleteType() && 9351 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9352 ActionIdx = 2; // If the pointee's size is sizeof(char), 9353 // suggest an explicit length. 9354 9355 // If the function is defined as a builtin macro, do not show macro 9356 // expansion. 9357 SourceLocation SL = SizeOfArg->getExprLoc(); 9358 SourceRange DSR = Dest->getSourceRange(); 9359 SourceRange SSR = SizeOfArg->getSourceRange(); 9360 SourceManager &SM = getSourceManager(); 9361 9362 if (SM.isMacroArgExpansion(SL)) { 9363 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9364 SL = SM.getSpellingLoc(SL); 9365 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9366 SM.getSpellingLoc(DSR.getEnd())); 9367 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9368 SM.getSpellingLoc(SSR.getEnd())); 9369 } 9370 9371 DiagRuntimeBehavior(SL, SizeOfArg, 9372 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9373 << ReadableName 9374 << PointeeTy 9375 << DestTy 9376 << DSR 9377 << SSR); 9378 DiagRuntimeBehavior(SL, SizeOfArg, 9379 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9380 << ActionIdx 9381 << SSR); 9382 9383 break; 9384 } 9385 } 9386 9387 // Also check for cases where the sizeof argument is the exact same 9388 // type as the memory argument, and where it points to a user-defined 9389 // record type. 9390 if (SizeOfArgTy != QualType()) { 9391 if (PointeeTy->isRecordType() && 9392 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9393 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9394 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9395 << FnName << SizeOfArgTy << ArgIdx 9396 << PointeeTy << Dest->getSourceRange() 9397 << LenExpr->getSourceRange()); 9398 break; 9399 } 9400 } 9401 } else if (DestTy->isArrayType()) { 9402 PointeeTy = DestTy; 9403 } 9404 9405 if (PointeeTy == QualType()) 9406 continue; 9407 9408 // Always complain about dynamic classes. 9409 bool IsContained; 9410 if (const CXXRecordDecl *ContainedRD = 9411 getContainedDynamicClass(PointeeTy, IsContained)) { 9412 9413 unsigned OperationType = 0; 9414 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9415 // "overwritten" if we're warning about the destination for any call 9416 // but memcmp; otherwise a verb appropriate to the call. 9417 if (ArgIdx != 0 || IsCmp) { 9418 if (BId == Builtin::BImemcpy) 9419 OperationType = 1; 9420 else if(BId == Builtin::BImemmove) 9421 OperationType = 2; 9422 else if (IsCmp) 9423 OperationType = 3; 9424 } 9425 9426 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9427 PDiag(diag::warn_dyn_class_memaccess) 9428 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 9429 << IsContained << ContainedRD << OperationType 9430 << Call->getCallee()->getSourceRange()); 9431 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 9432 BId != Builtin::BImemset) 9433 DiagRuntimeBehavior( 9434 Dest->getExprLoc(), Dest, 9435 PDiag(diag::warn_arc_object_memaccess) 9436 << ArgIdx << FnName << PointeeTy 9437 << Call->getCallee()->getSourceRange()); 9438 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 9439 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 9440 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 9441 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9442 PDiag(diag::warn_cstruct_memaccess) 9443 << ArgIdx << FnName << PointeeTy << 0); 9444 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 9445 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 9446 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 9447 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9448 PDiag(diag::warn_cstruct_memaccess) 9449 << ArgIdx << FnName << PointeeTy << 1); 9450 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 9451 } else { 9452 continue; 9453 } 9454 } else 9455 continue; 9456 9457 DiagRuntimeBehavior( 9458 Dest->getExprLoc(), Dest, 9459 PDiag(diag::note_bad_memaccess_silence) 9460 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 9461 break; 9462 } 9463 } 9464 9465 // A little helper routine: ignore addition and subtraction of integer literals. 9466 // This intentionally does not ignore all integer constant expressions because 9467 // we don't want to remove sizeof(). 9468 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 9469 Ex = Ex->IgnoreParenCasts(); 9470 9471 while (true) { 9472 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 9473 if (!BO || !BO->isAdditiveOp()) 9474 break; 9475 9476 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 9477 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 9478 9479 if (isa<IntegerLiteral>(RHS)) 9480 Ex = LHS; 9481 else if (isa<IntegerLiteral>(LHS)) 9482 Ex = RHS; 9483 else 9484 break; 9485 } 9486 9487 return Ex; 9488 } 9489 9490 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 9491 ASTContext &Context) { 9492 // Only handle constant-sized or VLAs, but not flexible members. 9493 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 9494 // Only issue the FIXIT for arrays of size > 1. 9495 if (CAT->getSize().getSExtValue() <= 1) 9496 return false; 9497 } else if (!Ty->isVariableArrayType()) { 9498 return false; 9499 } 9500 return true; 9501 } 9502 9503 // Warn if the user has made the 'size' argument to strlcpy or strlcat 9504 // be the size of the source, instead of the destination. 9505 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 9506 IdentifierInfo *FnName) { 9507 9508 // Don't crash if the user has the wrong number of arguments 9509 unsigned NumArgs = Call->getNumArgs(); 9510 if ((NumArgs != 3) && (NumArgs != 4)) 9511 return; 9512 9513 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 9514 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 9515 const Expr *CompareWithSrc = nullptr; 9516 9517 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 9518 Call->getBeginLoc(), Call->getRParenLoc())) 9519 return; 9520 9521 // Look for 'strlcpy(dst, x, sizeof(x))' 9522 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 9523 CompareWithSrc = Ex; 9524 else { 9525 // Look for 'strlcpy(dst, x, strlen(x))' 9526 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 9527 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 9528 SizeCall->getNumArgs() == 1) 9529 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 9530 } 9531 } 9532 9533 if (!CompareWithSrc) 9534 return; 9535 9536 // Determine if the argument to sizeof/strlen is equal to the source 9537 // argument. In principle there's all kinds of things you could do 9538 // here, for instance creating an == expression and evaluating it with 9539 // EvaluateAsBooleanCondition, but this uses a more direct technique: 9540 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 9541 if (!SrcArgDRE) 9542 return; 9543 9544 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 9545 if (!CompareWithSrcDRE || 9546 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 9547 return; 9548 9549 const Expr *OriginalSizeArg = Call->getArg(2); 9550 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 9551 << OriginalSizeArg->getSourceRange() << FnName; 9552 9553 // Output a FIXIT hint if the destination is an array (rather than a 9554 // pointer to an array). This could be enhanced to handle some 9555 // pointers if we know the actual size, like if DstArg is 'array+2' 9556 // we could say 'sizeof(array)-2'. 9557 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 9558 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 9559 return; 9560 9561 SmallString<128> sizeString; 9562 llvm::raw_svector_ostream OS(sizeString); 9563 OS << "sizeof("; 9564 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9565 OS << ")"; 9566 9567 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 9568 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 9569 OS.str()); 9570 } 9571 9572 /// Check if two expressions refer to the same declaration. 9573 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 9574 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 9575 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 9576 return D1->getDecl() == D2->getDecl(); 9577 return false; 9578 } 9579 9580 static const Expr *getStrlenExprArg(const Expr *E) { 9581 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 9582 const FunctionDecl *FD = CE->getDirectCallee(); 9583 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 9584 return nullptr; 9585 return CE->getArg(0)->IgnoreParenCasts(); 9586 } 9587 return nullptr; 9588 } 9589 9590 // Warn on anti-patterns as the 'size' argument to strncat. 9591 // The correct size argument should look like following: 9592 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 9593 void Sema::CheckStrncatArguments(const CallExpr *CE, 9594 IdentifierInfo *FnName) { 9595 // Don't crash if the user has the wrong number of arguments. 9596 if (CE->getNumArgs() < 3) 9597 return; 9598 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 9599 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 9600 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 9601 9602 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 9603 CE->getRParenLoc())) 9604 return; 9605 9606 // Identify common expressions, which are wrongly used as the size argument 9607 // to strncat and may lead to buffer overflows. 9608 unsigned PatternType = 0; 9609 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 9610 // - sizeof(dst) 9611 if (referToTheSameDecl(SizeOfArg, DstArg)) 9612 PatternType = 1; 9613 // - sizeof(src) 9614 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 9615 PatternType = 2; 9616 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 9617 if (BE->getOpcode() == BO_Sub) { 9618 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 9619 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 9620 // - sizeof(dst) - strlen(dst) 9621 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 9622 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 9623 PatternType = 1; 9624 // - sizeof(src) - (anything) 9625 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 9626 PatternType = 2; 9627 } 9628 } 9629 9630 if (PatternType == 0) 9631 return; 9632 9633 // Generate the diagnostic. 9634 SourceLocation SL = LenArg->getBeginLoc(); 9635 SourceRange SR = LenArg->getSourceRange(); 9636 SourceManager &SM = getSourceManager(); 9637 9638 // If the function is defined as a builtin macro, do not show macro expansion. 9639 if (SM.isMacroArgExpansion(SL)) { 9640 SL = SM.getSpellingLoc(SL); 9641 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 9642 SM.getSpellingLoc(SR.getEnd())); 9643 } 9644 9645 // Check if the destination is an array (rather than a pointer to an array). 9646 QualType DstTy = DstArg->getType(); 9647 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 9648 Context); 9649 if (!isKnownSizeArray) { 9650 if (PatternType == 1) 9651 Diag(SL, diag::warn_strncat_wrong_size) << SR; 9652 else 9653 Diag(SL, diag::warn_strncat_src_size) << SR; 9654 return; 9655 } 9656 9657 if (PatternType == 1) 9658 Diag(SL, diag::warn_strncat_large_size) << SR; 9659 else 9660 Diag(SL, diag::warn_strncat_src_size) << SR; 9661 9662 SmallString<128> sizeString; 9663 llvm::raw_svector_ostream OS(sizeString); 9664 OS << "sizeof("; 9665 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9666 OS << ") - "; 9667 OS << "strlen("; 9668 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9669 OS << ") - 1"; 9670 9671 Diag(SL, diag::note_strncat_wrong_size) 9672 << FixItHint::CreateReplacement(SR, OS.str()); 9673 } 9674 9675 void 9676 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 9677 SourceLocation ReturnLoc, 9678 bool isObjCMethod, 9679 const AttrVec *Attrs, 9680 const FunctionDecl *FD) { 9681 // Check if the return value is null but should not be. 9682 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 9683 (!isObjCMethod && isNonNullType(Context, lhsType))) && 9684 CheckNonNullExpr(*this, RetValExp)) 9685 Diag(ReturnLoc, diag::warn_null_ret) 9686 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 9687 9688 // C++11 [basic.stc.dynamic.allocation]p4: 9689 // If an allocation function declared with a non-throwing 9690 // exception-specification fails to allocate storage, it shall return 9691 // a null pointer. Any other allocation function that fails to allocate 9692 // storage shall indicate failure only by throwing an exception [...] 9693 if (FD) { 9694 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 9695 if (Op == OO_New || Op == OO_Array_New) { 9696 const FunctionProtoType *Proto 9697 = FD->getType()->castAs<FunctionProtoType>(); 9698 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 9699 CheckNonNullExpr(*this, RetValExp)) 9700 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 9701 << FD << getLangOpts().CPlusPlus11; 9702 } 9703 } 9704 } 9705 9706 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 9707 9708 /// Check for comparisons of floating point operands using != and ==. 9709 /// Issue a warning if these are no self-comparisons, as they are not likely 9710 /// to do what the programmer intended. 9711 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 9712 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 9713 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 9714 9715 // Special case: check for x == x (which is OK). 9716 // Do not emit warnings for such cases. 9717 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 9718 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 9719 if (DRL->getDecl() == DRR->getDecl()) 9720 return; 9721 9722 // Special case: check for comparisons against literals that can be exactly 9723 // represented by APFloat. In such cases, do not emit a warning. This 9724 // is a heuristic: often comparison against such literals are used to 9725 // detect if a value in a variable has not changed. This clearly can 9726 // lead to false negatives. 9727 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 9728 if (FLL->isExact()) 9729 return; 9730 } else 9731 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 9732 if (FLR->isExact()) 9733 return; 9734 9735 // Check for comparisons with builtin types. 9736 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 9737 if (CL->getBuiltinCallee()) 9738 return; 9739 9740 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 9741 if (CR->getBuiltinCallee()) 9742 return; 9743 9744 // Emit the diagnostic. 9745 Diag(Loc, diag::warn_floatingpoint_eq) 9746 << LHS->getSourceRange() << RHS->getSourceRange(); 9747 } 9748 9749 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 9750 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 9751 9752 namespace { 9753 9754 /// Structure recording the 'active' range of an integer-valued 9755 /// expression. 9756 struct IntRange { 9757 /// The number of bits active in the int. 9758 unsigned Width; 9759 9760 /// True if the int is known not to have negative values. 9761 bool NonNegative; 9762 9763 IntRange(unsigned Width, bool NonNegative) 9764 : Width(Width), NonNegative(NonNegative) {} 9765 9766 /// Returns the range of the bool type. 9767 static IntRange forBoolType() { 9768 return IntRange(1, true); 9769 } 9770 9771 /// Returns the range of an opaque value of the given integral type. 9772 static IntRange forValueOfType(ASTContext &C, QualType T) { 9773 return forValueOfCanonicalType(C, 9774 T->getCanonicalTypeInternal().getTypePtr()); 9775 } 9776 9777 /// Returns the range of an opaque value of a canonical integral type. 9778 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 9779 assert(T->isCanonicalUnqualified()); 9780 9781 if (const VectorType *VT = dyn_cast<VectorType>(T)) 9782 T = VT->getElementType().getTypePtr(); 9783 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 9784 T = CT->getElementType().getTypePtr(); 9785 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 9786 T = AT->getValueType().getTypePtr(); 9787 9788 if (!C.getLangOpts().CPlusPlus) { 9789 // For enum types in C code, use the underlying datatype. 9790 if (const EnumType *ET = dyn_cast<EnumType>(T)) 9791 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 9792 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 9793 // For enum types in C++, use the known bit width of the enumerators. 9794 EnumDecl *Enum = ET->getDecl(); 9795 // In C++11, enums can have a fixed underlying type. Use this type to 9796 // compute the range. 9797 if (Enum->isFixed()) { 9798 return IntRange(C.getIntWidth(QualType(T, 0)), 9799 !ET->isSignedIntegerOrEnumerationType()); 9800 } 9801 9802 unsigned NumPositive = Enum->getNumPositiveBits(); 9803 unsigned NumNegative = Enum->getNumNegativeBits(); 9804 9805 if (NumNegative == 0) 9806 return IntRange(NumPositive, true/*NonNegative*/); 9807 else 9808 return IntRange(std::max(NumPositive + 1, NumNegative), 9809 false/*NonNegative*/); 9810 } 9811 9812 const BuiltinType *BT = cast<BuiltinType>(T); 9813 assert(BT->isInteger()); 9814 9815 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 9816 } 9817 9818 /// Returns the "target" range of a canonical integral type, i.e. 9819 /// the range of values expressible in the type. 9820 /// 9821 /// This matches forValueOfCanonicalType except that enums have the 9822 /// full range of their type, not the range of their enumerators. 9823 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 9824 assert(T->isCanonicalUnqualified()); 9825 9826 if (const VectorType *VT = dyn_cast<VectorType>(T)) 9827 T = VT->getElementType().getTypePtr(); 9828 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 9829 T = CT->getElementType().getTypePtr(); 9830 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 9831 T = AT->getValueType().getTypePtr(); 9832 if (const EnumType *ET = dyn_cast<EnumType>(T)) 9833 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 9834 9835 const BuiltinType *BT = cast<BuiltinType>(T); 9836 assert(BT->isInteger()); 9837 9838 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 9839 } 9840 9841 /// Returns the supremum of two ranges: i.e. their conservative merge. 9842 static IntRange join(IntRange L, IntRange R) { 9843 return IntRange(std::max(L.Width, R.Width), 9844 L.NonNegative && R.NonNegative); 9845 } 9846 9847 /// Returns the infinum of two ranges: i.e. their aggressive merge. 9848 static IntRange meet(IntRange L, IntRange R) { 9849 return IntRange(std::min(L.Width, R.Width), 9850 L.NonNegative || R.NonNegative); 9851 } 9852 }; 9853 9854 } // namespace 9855 9856 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 9857 unsigned MaxWidth) { 9858 if (value.isSigned() && value.isNegative()) 9859 return IntRange(value.getMinSignedBits(), false); 9860 9861 if (value.getBitWidth() > MaxWidth) 9862 value = value.trunc(MaxWidth); 9863 9864 // isNonNegative() just checks the sign bit without considering 9865 // signedness. 9866 return IntRange(value.getActiveBits(), true); 9867 } 9868 9869 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 9870 unsigned MaxWidth) { 9871 if (result.isInt()) 9872 return GetValueRange(C, result.getInt(), MaxWidth); 9873 9874 if (result.isVector()) { 9875 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 9876 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 9877 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 9878 R = IntRange::join(R, El); 9879 } 9880 return R; 9881 } 9882 9883 if (result.isComplexInt()) { 9884 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 9885 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 9886 return IntRange::join(R, I); 9887 } 9888 9889 // This can happen with lossless casts to intptr_t of "based" lvalues. 9890 // Assume it might use arbitrary bits. 9891 // FIXME: The only reason we need to pass the type in here is to get 9892 // the sign right on this one case. It would be nice if APValue 9893 // preserved this. 9894 assert(result.isLValue() || result.isAddrLabelDiff()); 9895 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 9896 } 9897 9898 static QualType GetExprType(const Expr *E) { 9899 QualType Ty = E->getType(); 9900 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 9901 Ty = AtomicRHS->getValueType(); 9902 return Ty; 9903 } 9904 9905 /// Pseudo-evaluate the given integer expression, estimating the 9906 /// range of values it might take. 9907 /// 9908 /// \param MaxWidth - the width to which the value will be truncated 9909 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) { 9910 E = E->IgnoreParens(); 9911 9912 // Try a full evaluation first. 9913 Expr::EvalResult result; 9914 if (E->EvaluateAsRValue(result, C)) 9915 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 9916 9917 // I think we only want to look through implicit casts here; if the 9918 // user has an explicit widening cast, we should treat the value as 9919 // being of the new, wider type. 9920 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 9921 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 9922 return GetExprRange(C, CE->getSubExpr(), MaxWidth); 9923 9924 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 9925 9926 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 9927 CE->getCastKind() == CK_BooleanToSignedIntegral; 9928 9929 // Assume that non-integer casts can span the full range of the type. 9930 if (!isIntegerCast) 9931 return OutputTypeRange; 9932 9933 IntRange SubRange 9934 = GetExprRange(C, CE->getSubExpr(), 9935 std::min(MaxWidth, OutputTypeRange.Width)); 9936 9937 // Bail out if the subexpr's range is as wide as the cast type. 9938 if (SubRange.Width >= OutputTypeRange.Width) 9939 return OutputTypeRange; 9940 9941 // Otherwise, we take the smaller width, and we're non-negative if 9942 // either the output type or the subexpr is. 9943 return IntRange(SubRange.Width, 9944 SubRange.NonNegative || OutputTypeRange.NonNegative); 9945 } 9946 9947 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 9948 // If we can fold the condition, just take that operand. 9949 bool CondResult; 9950 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 9951 return GetExprRange(C, CondResult ? CO->getTrueExpr() 9952 : CO->getFalseExpr(), 9953 MaxWidth); 9954 9955 // Otherwise, conservatively merge. 9956 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth); 9957 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth); 9958 return IntRange::join(L, R); 9959 } 9960 9961 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 9962 switch (BO->getOpcode()) { 9963 case BO_Cmp: 9964 llvm_unreachable("builtin <=> should have class type"); 9965 9966 // Boolean-valued operations are single-bit and positive. 9967 case BO_LAnd: 9968 case BO_LOr: 9969 case BO_LT: 9970 case BO_GT: 9971 case BO_LE: 9972 case BO_GE: 9973 case BO_EQ: 9974 case BO_NE: 9975 return IntRange::forBoolType(); 9976 9977 // The type of the assignments is the type of the LHS, so the RHS 9978 // is not necessarily the same type. 9979 case BO_MulAssign: 9980 case BO_DivAssign: 9981 case BO_RemAssign: 9982 case BO_AddAssign: 9983 case BO_SubAssign: 9984 case BO_XorAssign: 9985 case BO_OrAssign: 9986 // TODO: bitfields? 9987 return IntRange::forValueOfType(C, GetExprType(E)); 9988 9989 // Simple assignments just pass through the RHS, which will have 9990 // been coerced to the LHS type. 9991 case BO_Assign: 9992 // TODO: bitfields? 9993 return GetExprRange(C, BO->getRHS(), MaxWidth); 9994 9995 // Operations with opaque sources are black-listed. 9996 case BO_PtrMemD: 9997 case BO_PtrMemI: 9998 return IntRange::forValueOfType(C, GetExprType(E)); 9999 10000 // Bitwise-and uses the *infinum* of the two source ranges. 10001 case BO_And: 10002 case BO_AndAssign: 10003 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth), 10004 GetExprRange(C, BO->getRHS(), MaxWidth)); 10005 10006 // Left shift gets black-listed based on a judgement call. 10007 case BO_Shl: 10008 // ...except that we want to treat '1 << (blah)' as logically 10009 // positive. It's an important idiom. 10010 if (IntegerLiteral *I 10011 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10012 if (I->getValue() == 1) { 10013 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10014 return IntRange(R.Width, /*NonNegative*/ true); 10015 } 10016 } 10017 LLVM_FALLTHROUGH; 10018 10019 case BO_ShlAssign: 10020 return IntRange::forValueOfType(C, GetExprType(E)); 10021 10022 // Right shift by a constant can narrow its left argument. 10023 case BO_Shr: 10024 case BO_ShrAssign: { 10025 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); 10026 10027 // If the shift amount is a positive constant, drop the width by 10028 // that much. 10029 llvm::APSInt shift; 10030 if (BO->getRHS()->isIntegerConstantExpr(shift, C) && 10031 shift.isNonNegative()) { 10032 unsigned zext = shift.getZExtValue(); 10033 if (zext >= L.Width) 10034 L.Width = (L.NonNegative ? 0 : 1); 10035 else 10036 L.Width -= zext; 10037 } 10038 10039 return L; 10040 } 10041 10042 // Comma acts as its right operand. 10043 case BO_Comma: 10044 return GetExprRange(C, BO->getRHS(), MaxWidth); 10045 10046 // Black-list pointer subtractions. 10047 case BO_Sub: 10048 if (BO->getLHS()->getType()->isPointerType()) 10049 return IntRange::forValueOfType(C, GetExprType(E)); 10050 break; 10051 10052 // The width of a division result is mostly determined by the size 10053 // of the LHS. 10054 case BO_Div: { 10055 // Don't 'pre-truncate' the operands. 10056 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10057 IntRange L = GetExprRange(C, BO->getLHS(), opWidth); 10058 10059 // If the divisor is constant, use that. 10060 llvm::APSInt divisor; 10061 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { 10062 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) 10063 if (log2 >= L.Width) 10064 L.Width = (L.NonNegative ? 0 : 1); 10065 else 10066 L.Width = std::min(L.Width - log2, MaxWidth); 10067 return L; 10068 } 10069 10070 // Otherwise, just use the LHS's width. 10071 IntRange R = GetExprRange(C, BO->getRHS(), opWidth); 10072 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10073 } 10074 10075 // The result of a remainder can't be larger than the result of 10076 // either side. 10077 case BO_Rem: { 10078 // Don't 'pre-truncate' the operands. 10079 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10080 IntRange L = GetExprRange(C, BO->getLHS(), opWidth); 10081 IntRange R = GetExprRange(C, BO->getRHS(), opWidth); 10082 10083 IntRange meet = IntRange::meet(L, R); 10084 meet.Width = std::min(meet.Width, MaxWidth); 10085 return meet; 10086 } 10087 10088 // The default behavior is okay for these. 10089 case BO_Mul: 10090 case BO_Add: 10091 case BO_Xor: 10092 case BO_Or: 10093 break; 10094 } 10095 10096 // The default case is to treat the operation as if it were closed 10097 // on the narrowest type that encompasses both operands. 10098 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); 10099 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth); 10100 return IntRange::join(L, R); 10101 } 10102 10103 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10104 switch (UO->getOpcode()) { 10105 // Boolean-valued operations are white-listed. 10106 case UO_LNot: 10107 return IntRange::forBoolType(); 10108 10109 // Operations with opaque sources are black-listed. 10110 case UO_Deref: 10111 case UO_AddrOf: // should be impossible 10112 return IntRange::forValueOfType(C, GetExprType(E)); 10113 10114 default: 10115 return GetExprRange(C, UO->getSubExpr(), MaxWidth); 10116 } 10117 } 10118 10119 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10120 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth); 10121 10122 if (const auto *BitField = E->getSourceBitField()) 10123 return IntRange(BitField->getBitWidthValue(C), 10124 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10125 10126 return IntRange::forValueOfType(C, GetExprType(E)); 10127 } 10128 10129 static IntRange GetExprRange(ASTContext &C, const Expr *E) { 10130 return GetExprRange(C, E, C.getIntWidth(GetExprType(E))); 10131 } 10132 10133 /// Checks whether the given value, which currently has the given 10134 /// source semantics, has the same value when coerced through the 10135 /// target semantics. 10136 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10137 const llvm::fltSemantics &Src, 10138 const llvm::fltSemantics &Tgt) { 10139 llvm::APFloat truncated = value; 10140 10141 bool ignored; 10142 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10143 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10144 10145 return truncated.bitwiseIsEqual(value); 10146 } 10147 10148 /// Checks whether the given value, which currently has the given 10149 /// source semantics, has the same value when coerced through the 10150 /// target semantics. 10151 /// 10152 /// The value might be a vector of floats (or a complex number). 10153 static bool IsSameFloatAfterCast(const APValue &value, 10154 const llvm::fltSemantics &Src, 10155 const llvm::fltSemantics &Tgt) { 10156 if (value.isFloat()) 10157 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10158 10159 if (value.isVector()) { 10160 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10161 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10162 return false; 10163 return true; 10164 } 10165 10166 assert(value.isComplexFloat()); 10167 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10168 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10169 } 10170 10171 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC); 10172 10173 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10174 // Suppress cases where we are comparing against an enum constant. 10175 if (const DeclRefExpr *DR = 10176 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10177 if (isa<EnumConstantDecl>(DR->getDecl())) 10178 return true; 10179 10180 // Suppress cases where the '0' value is expanded from a macro. 10181 if (E->getBeginLoc().isMacroID()) 10182 return true; 10183 10184 return false; 10185 } 10186 10187 static bool isKnownToHaveUnsignedValue(Expr *E) { 10188 return E->getType()->isIntegerType() && 10189 (!E->getType()->isSignedIntegerType() || 10190 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10191 } 10192 10193 namespace { 10194 /// The promoted range of values of a type. In general this has the 10195 /// following structure: 10196 /// 10197 /// |-----------| . . . |-----------| 10198 /// ^ ^ ^ ^ 10199 /// Min HoleMin HoleMax Max 10200 /// 10201 /// ... where there is only a hole if a signed type is promoted to unsigned 10202 /// (in which case Min and Max are the smallest and largest representable 10203 /// values). 10204 struct PromotedRange { 10205 // Min, or HoleMax if there is a hole. 10206 llvm::APSInt PromotedMin; 10207 // Max, or HoleMin if there is a hole. 10208 llvm::APSInt PromotedMax; 10209 10210 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10211 if (R.Width == 0) 10212 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10213 else if (R.Width >= BitWidth && !Unsigned) { 10214 // Promotion made the type *narrower*. This happens when promoting 10215 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10216 // Treat all values of 'signed int' as being in range for now. 10217 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10218 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10219 } else { 10220 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10221 .extOrTrunc(BitWidth); 10222 PromotedMin.setIsUnsigned(Unsigned); 10223 10224 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10225 .extOrTrunc(BitWidth); 10226 PromotedMax.setIsUnsigned(Unsigned); 10227 } 10228 } 10229 10230 // Determine whether this range is contiguous (has no hole). 10231 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10232 10233 // Where a constant value is within the range. 10234 enum ComparisonResult { 10235 LT = 0x1, 10236 LE = 0x2, 10237 GT = 0x4, 10238 GE = 0x8, 10239 EQ = 0x10, 10240 NE = 0x20, 10241 InRangeFlag = 0x40, 10242 10243 Less = LE | LT | NE, 10244 Min = LE | InRangeFlag, 10245 InRange = InRangeFlag, 10246 Max = GE | InRangeFlag, 10247 Greater = GE | GT | NE, 10248 10249 OnlyValue = LE | GE | EQ | InRangeFlag, 10250 InHole = NE 10251 }; 10252 10253 ComparisonResult compare(const llvm::APSInt &Value) const { 10254 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10255 Value.isUnsigned() == PromotedMin.isUnsigned()); 10256 if (!isContiguous()) { 10257 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 10258 if (Value.isMinValue()) return Min; 10259 if (Value.isMaxValue()) return Max; 10260 if (Value >= PromotedMin) return InRange; 10261 if (Value <= PromotedMax) return InRange; 10262 return InHole; 10263 } 10264 10265 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 10266 case -1: return Less; 10267 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 10268 case 1: 10269 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 10270 case -1: return InRange; 10271 case 0: return Max; 10272 case 1: return Greater; 10273 } 10274 } 10275 10276 llvm_unreachable("impossible compare result"); 10277 } 10278 10279 static llvm::Optional<StringRef> 10280 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 10281 if (Op == BO_Cmp) { 10282 ComparisonResult LTFlag = LT, GTFlag = GT; 10283 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 10284 10285 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 10286 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 10287 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 10288 return llvm::None; 10289 } 10290 10291 ComparisonResult TrueFlag, FalseFlag; 10292 if (Op == BO_EQ) { 10293 TrueFlag = EQ; 10294 FalseFlag = NE; 10295 } else if (Op == BO_NE) { 10296 TrueFlag = NE; 10297 FalseFlag = EQ; 10298 } else { 10299 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 10300 TrueFlag = LT; 10301 FalseFlag = GE; 10302 } else { 10303 TrueFlag = GT; 10304 FalseFlag = LE; 10305 } 10306 if (Op == BO_GE || Op == BO_LE) 10307 std::swap(TrueFlag, FalseFlag); 10308 } 10309 if (R & TrueFlag) 10310 return StringRef("true"); 10311 if (R & FalseFlag) 10312 return StringRef("false"); 10313 return llvm::None; 10314 } 10315 }; 10316 } 10317 10318 static bool HasEnumType(Expr *E) { 10319 // Strip off implicit integral promotions. 10320 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10321 if (ICE->getCastKind() != CK_IntegralCast && 10322 ICE->getCastKind() != CK_NoOp) 10323 break; 10324 E = ICE->getSubExpr(); 10325 } 10326 10327 return E->getType()->isEnumeralType(); 10328 } 10329 10330 static int classifyConstantValue(Expr *Constant) { 10331 // The values of this enumeration are used in the diagnostics 10332 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 10333 enum ConstantValueKind { 10334 Miscellaneous = 0, 10335 LiteralTrue, 10336 LiteralFalse 10337 }; 10338 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 10339 return BL->getValue() ? ConstantValueKind::LiteralTrue 10340 : ConstantValueKind::LiteralFalse; 10341 return ConstantValueKind::Miscellaneous; 10342 } 10343 10344 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 10345 Expr *Constant, Expr *Other, 10346 const llvm::APSInt &Value, 10347 bool RhsConstant) { 10348 if (S.inTemplateInstantiation()) 10349 return false; 10350 10351 Expr *OriginalOther = Other; 10352 10353 Constant = Constant->IgnoreParenImpCasts(); 10354 Other = Other->IgnoreParenImpCasts(); 10355 10356 // Suppress warnings on tautological comparisons between values of the same 10357 // enumeration type. There are only two ways we could warn on this: 10358 // - If the constant is outside the range of representable values of 10359 // the enumeration. In such a case, we should warn about the cast 10360 // to enumeration type, not about the comparison. 10361 // - If the constant is the maximum / minimum in-range value. For an 10362 // enumeratin type, such comparisons can be meaningful and useful. 10363 if (Constant->getType()->isEnumeralType() && 10364 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 10365 return false; 10366 10367 // TODO: Investigate using GetExprRange() to get tighter bounds 10368 // on the bit ranges. 10369 QualType OtherT = Other->getType(); 10370 if (const auto *AT = OtherT->getAs<AtomicType>()) 10371 OtherT = AT->getValueType(); 10372 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); 10373 10374 // Whether we're treating Other as being a bool because of the form of 10375 // expression despite it having another type (typically 'int' in C). 10376 bool OtherIsBooleanDespiteType = 10377 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 10378 if (OtherIsBooleanDespiteType) 10379 OtherRange = IntRange::forBoolType(); 10380 10381 // Determine the promoted range of the other type and see if a comparison of 10382 // the constant against that range is tautological. 10383 PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), 10384 Value.isUnsigned()); 10385 auto Cmp = OtherPromotedRange.compare(Value); 10386 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 10387 if (!Result) 10388 return false; 10389 10390 // Suppress the diagnostic for an in-range comparison if the constant comes 10391 // from a macro or enumerator. We don't want to diagnose 10392 // 10393 // some_long_value <= INT_MAX 10394 // 10395 // when sizeof(int) == sizeof(long). 10396 bool InRange = Cmp & PromotedRange::InRangeFlag; 10397 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 10398 return false; 10399 10400 // If this is a comparison to an enum constant, include that 10401 // constant in the diagnostic. 10402 const EnumConstantDecl *ED = nullptr; 10403 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 10404 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 10405 10406 // Should be enough for uint128 (39 decimal digits) 10407 SmallString<64> PrettySourceValue; 10408 llvm::raw_svector_ostream OS(PrettySourceValue); 10409 if (ED) 10410 OS << '\'' << *ED << "' (" << Value << ")"; 10411 else 10412 OS << Value; 10413 10414 // FIXME: We use a somewhat different formatting for the in-range cases and 10415 // cases involving boolean values for historical reasons. We should pick a 10416 // consistent way of presenting these diagnostics. 10417 if (!InRange || Other->isKnownToHaveBooleanValue()) { 10418 S.DiagRuntimeBehavior( 10419 E->getOperatorLoc(), E, 10420 S.PDiag(!InRange ? diag::warn_out_of_range_compare 10421 : diag::warn_tautological_bool_compare) 10422 << OS.str() << classifyConstantValue(Constant) 10423 << OtherT << OtherIsBooleanDespiteType << *Result 10424 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 10425 } else { 10426 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 10427 ? (HasEnumType(OriginalOther) 10428 ? diag::warn_unsigned_enum_always_true_comparison 10429 : diag::warn_unsigned_always_true_comparison) 10430 : diag::warn_tautological_constant_compare; 10431 10432 S.Diag(E->getOperatorLoc(), Diag) 10433 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 10434 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 10435 } 10436 10437 return true; 10438 } 10439 10440 /// Analyze the operands of the given comparison. Implements the 10441 /// fallback case from AnalyzeComparison. 10442 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 10443 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10444 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10445 } 10446 10447 /// Implements -Wsign-compare. 10448 /// 10449 /// \param E the binary operator to check for warnings 10450 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 10451 // The type the comparison is being performed in. 10452 QualType T = E->getLHS()->getType(); 10453 10454 // Only analyze comparison operators where both sides have been converted to 10455 // the same type. 10456 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 10457 return AnalyzeImpConvsInComparison(S, E); 10458 10459 // Don't analyze value-dependent comparisons directly. 10460 if (E->isValueDependent()) 10461 return AnalyzeImpConvsInComparison(S, E); 10462 10463 Expr *LHS = E->getLHS(); 10464 Expr *RHS = E->getRHS(); 10465 10466 if (T->isIntegralType(S.Context)) { 10467 llvm::APSInt RHSValue; 10468 llvm::APSInt LHSValue; 10469 10470 bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); 10471 bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); 10472 10473 // We don't care about expressions whose result is a constant. 10474 if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) 10475 return AnalyzeImpConvsInComparison(S, E); 10476 10477 // We only care about expressions where just one side is literal 10478 if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { 10479 // Is the constant on the RHS or LHS? 10480 const bool RhsConstant = IsRHSIntegralLiteral; 10481 Expr *Const = RhsConstant ? RHS : LHS; 10482 Expr *Other = RhsConstant ? LHS : RHS; 10483 const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; 10484 10485 // Check whether an integer constant comparison results in a value 10486 // of 'true' or 'false'. 10487 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 10488 return AnalyzeImpConvsInComparison(S, E); 10489 } 10490 } 10491 10492 if (!T->hasUnsignedIntegerRepresentation()) { 10493 // We don't do anything special if this isn't an unsigned integral 10494 // comparison: we're only interested in integral comparisons, and 10495 // signed comparisons only happen in cases we don't care to warn about. 10496 return AnalyzeImpConvsInComparison(S, E); 10497 } 10498 10499 LHS = LHS->IgnoreParenImpCasts(); 10500 RHS = RHS->IgnoreParenImpCasts(); 10501 10502 if (!S.getLangOpts().CPlusPlus) { 10503 // Avoid warning about comparison of integers with different signs when 10504 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 10505 // the type of `E`. 10506 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 10507 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10508 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 10509 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10510 } 10511 10512 // Check to see if one of the (unmodified) operands is of different 10513 // signedness. 10514 Expr *signedOperand, *unsignedOperand; 10515 if (LHS->getType()->hasSignedIntegerRepresentation()) { 10516 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 10517 "unsigned comparison between two signed integer expressions?"); 10518 signedOperand = LHS; 10519 unsignedOperand = RHS; 10520 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 10521 signedOperand = RHS; 10522 unsignedOperand = LHS; 10523 } else { 10524 return AnalyzeImpConvsInComparison(S, E); 10525 } 10526 10527 // Otherwise, calculate the effective range of the signed operand. 10528 IntRange signedRange = GetExprRange(S.Context, signedOperand); 10529 10530 // Go ahead and analyze implicit conversions in the operands. Note 10531 // that we skip the implicit conversions on both sides. 10532 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 10533 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 10534 10535 // If the signed range is non-negative, -Wsign-compare won't fire. 10536 if (signedRange.NonNegative) 10537 return; 10538 10539 // For (in)equality comparisons, if the unsigned operand is a 10540 // constant which cannot collide with a overflowed signed operand, 10541 // then reinterpreting the signed operand as unsigned will not 10542 // change the result of the comparison. 10543 if (E->isEqualityOp()) { 10544 unsigned comparisonWidth = S.Context.getIntWidth(T); 10545 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand); 10546 10547 // We should never be unable to prove that the unsigned operand is 10548 // non-negative. 10549 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 10550 10551 if (unsignedRange.Width < comparisonWidth) 10552 return; 10553 } 10554 10555 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10556 S.PDiag(diag::warn_mixed_sign_comparison) 10557 << LHS->getType() << RHS->getType() 10558 << LHS->getSourceRange() << RHS->getSourceRange()); 10559 } 10560 10561 /// Analyzes an attempt to assign the given value to a bitfield. 10562 /// 10563 /// Returns true if there was something fishy about the attempt. 10564 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 10565 SourceLocation InitLoc) { 10566 assert(Bitfield->isBitField()); 10567 if (Bitfield->isInvalidDecl()) 10568 return false; 10569 10570 // White-list bool bitfields. 10571 QualType BitfieldType = Bitfield->getType(); 10572 if (BitfieldType->isBooleanType()) 10573 return false; 10574 10575 if (BitfieldType->isEnumeralType()) { 10576 EnumDecl *BitfieldEnumDecl = BitfieldType->getAs<EnumType>()->getDecl(); 10577 // If the underlying enum type was not explicitly specified as an unsigned 10578 // type and the enum contain only positive values, MSVC++ will cause an 10579 // inconsistency by storing this as a signed type. 10580 if (S.getLangOpts().CPlusPlus11 && 10581 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 10582 BitfieldEnumDecl->getNumPositiveBits() > 0 && 10583 BitfieldEnumDecl->getNumNegativeBits() == 0) { 10584 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 10585 << BitfieldEnumDecl->getNameAsString(); 10586 } 10587 } 10588 10589 if (Bitfield->getType()->isBooleanType()) 10590 return false; 10591 10592 // Ignore value- or type-dependent expressions. 10593 if (Bitfield->getBitWidth()->isValueDependent() || 10594 Bitfield->getBitWidth()->isTypeDependent() || 10595 Init->isValueDependent() || 10596 Init->isTypeDependent()) 10597 return false; 10598 10599 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 10600 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 10601 10602 Expr::EvalResult Result; 10603 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 10604 Expr::SE_AllowSideEffects)) { 10605 // The RHS is not constant. If the RHS has an enum type, make sure the 10606 // bitfield is wide enough to hold all the values of the enum without 10607 // truncation. 10608 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 10609 EnumDecl *ED = EnumTy->getDecl(); 10610 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 10611 10612 // Enum types are implicitly signed on Windows, so check if there are any 10613 // negative enumerators to see if the enum was intended to be signed or 10614 // not. 10615 bool SignedEnum = ED->getNumNegativeBits() > 0; 10616 10617 // Check for surprising sign changes when assigning enum values to a 10618 // bitfield of different signedness. If the bitfield is signed and we 10619 // have exactly the right number of bits to store this unsigned enum, 10620 // suggest changing the enum to an unsigned type. This typically happens 10621 // on Windows where unfixed enums always use an underlying type of 'int'. 10622 unsigned DiagID = 0; 10623 if (SignedEnum && !SignedBitfield) { 10624 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 10625 } else if (SignedBitfield && !SignedEnum && 10626 ED->getNumPositiveBits() == FieldWidth) { 10627 DiagID = diag::warn_signed_bitfield_enum_conversion; 10628 } 10629 10630 if (DiagID) { 10631 S.Diag(InitLoc, DiagID) << Bitfield << ED; 10632 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 10633 SourceRange TypeRange = 10634 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 10635 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 10636 << SignedEnum << TypeRange; 10637 } 10638 10639 // Compute the required bitwidth. If the enum has negative values, we need 10640 // one more bit than the normal number of positive bits to represent the 10641 // sign bit. 10642 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 10643 ED->getNumNegativeBits()) 10644 : ED->getNumPositiveBits(); 10645 10646 // Check the bitwidth. 10647 if (BitsNeeded > FieldWidth) { 10648 Expr *WidthExpr = Bitfield->getBitWidth(); 10649 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 10650 << Bitfield << ED; 10651 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 10652 << BitsNeeded << ED << WidthExpr->getSourceRange(); 10653 } 10654 } 10655 10656 return false; 10657 } 10658 10659 llvm::APSInt Value = Result.Val.getInt(); 10660 10661 unsigned OriginalWidth = Value.getBitWidth(); 10662 10663 if (!Value.isSigned() || Value.isNegative()) 10664 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 10665 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 10666 OriginalWidth = Value.getMinSignedBits(); 10667 10668 if (OriginalWidth <= FieldWidth) 10669 return false; 10670 10671 // Compute the value which the bitfield will contain. 10672 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 10673 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 10674 10675 // Check whether the stored value is equal to the original value. 10676 TruncatedValue = TruncatedValue.extend(OriginalWidth); 10677 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 10678 return false; 10679 10680 // Special-case bitfields of width 1: booleans are naturally 0/1, and 10681 // therefore don't strictly fit into a signed bitfield of width 1. 10682 if (FieldWidth == 1 && Value == 1) 10683 return false; 10684 10685 std::string PrettyValue = Value.toString(10); 10686 std::string PrettyTrunc = TruncatedValue.toString(10); 10687 10688 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 10689 << PrettyValue << PrettyTrunc << OriginalInit->getType() 10690 << Init->getSourceRange(); 10691 10692 return true; 10693 } 10694 10695 /// Analyze the given simple or compound assignment for warning-worthy 10696 /// operations. 10697 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 10698 // Just recurse on the LHS. 10699 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10700 10701 // We want to recurse on the RHS as normal unless we're assigning to 10702 // a bitfield. 10703 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 10704 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 10705 E->getOperatorLoc())) { 10706 // Recurse, ignoring any implicit conversions on the RHS. 10707 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 10708 E->getOperatorLoc()); 10709 } 10710 } 10711 10712 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10713 10714 // Diagnose implicitly sequentially-consistent atomic assignment. 10715 if (E->getLHS()->getType()->isAtomicType()) 10716 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 10717 } 10718 10719 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10720 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 10721 SourceLocation CContext, unsigned diag, 10722 bool pruneControlFlow = false) { 10723 if (pruneControlFlow) { 10724 S.DiagRuntimeBehavior(E->getExprLoc(), E, 10725 S.PDiag(diag) 10726 << SourceType << T << E->getSourceRange() 10727 << SourceRange(CContext)); 10728 return; 10729 } 10730 S.Diag(E->getExprLoc(), diag) 10731 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 10732 } 10733 10734 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10735 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 10736 SourceLocation CContext, 10737 unsigned diag, bool pruneControlFlow = false) { 10738 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 10739 } 10740 10741 /// Diagnose an implicit cast from a floating point value to an integer value. 10742 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 10743 SourceLocation CContext) { 10744 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 10745 const bool PruneWarnings = S.inTemplateInstantiation(); 10746 10747 Expr *InnerE = E->IgnoreParenImpCasts(); 10748 // We also want to warn on, e.g., "int i = -1.234" 10749 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 10750 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 10751 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 10752 10753 const bool IsLiteral = 10754 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 10755 10756 llvm::APFloat Value(0.0); 10757 bool IsConstant = 10758 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 10759 if (!IsConstant) { 10760 return DiagnoseImpCast(S, E, T, CContext, 10761 diag::warn_impcast_float_integer, PruneWarnings); 10762 } 10763 10764 bool isExact = false; 10765 10766 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 10767 T->hasUnsignedIntegerRepresentation()); 10768 llvm::APFloat::opStatus Result = Value.convertToInteger( 10769 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 10770 10771 if (Result == llvm::APFloat::opOK && isExact) { 10772 if (IsLiteral) return; 10773 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 10774 PruneWarnings); 10775 } 10776 10777 // Conversion of a floating-point value to a non-bool integer where the 10778 // integral part cannot be represented by the integer type is undefined. 10779 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 10780 return DiagnoseImpCast( 10781 S, E, T, CContext, 10782 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 10783 : diag::warn_impcast_float_to_integer_out_of_range, 10784 PruneWarnings); 10785 10786 unsigned DiagID = 0; 10787 if (IsLiteral) { 10788 // Warn on floating point literal to integer. 10789 DiagID = diag::warn_impcast_literal_float_to_integer; 10790 } else if (IntegerValue == 0) { 10791 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 10792 return DiagnoseImpCast(S, E, T, CContext, 10793 diag::warn_impcast_float_integer, PruneWarnings); 10794 } 10795 // Warn on non-zero to zero conversion. 10796 DiagID = diag::warn_impcast_float_to_integer_zero; 10797 } else { 10798 if (IntegerValue.isUnsigned()) { 10799 if (!IntegerValue.isMaxValue()) { 10800 return DiagnoseImpCast(S, E, T, CContext, 10801 diag::warn_impcast_float_integer, PruneWarnings); 10802 } 10803 } else { // IntegerValue.isSigned() 10804 if (!IntegerValue.isMaxSignedValue() && 10805 !IntegerValue.isMinSignedValue()) { 10806 return DiagnoseImpCast(S, E, T, CContext, 10807 diag::warn_impcast_float_integer, PruneWarnings); 10808 } 10809 } 10810 // Warn on evaluatable floating point expression to integer conversion. 10811 DiagID = diag::warn_impcast_float_to_integer; 10812 } 10813 10814 // FIXME: Force the precision of the source value down so we don't print 10815 // digits which are usually useless (we don't really care here if we 10816 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 10817 // would automatically print the shortest representation, but it's a bit 10818 // tricky to implement. 10819 SmallString<16> PrettySourceValue; 10820 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 10821 precision = (precision * 59 + 195) / 196; 10822 Value.toString(PrettySourceValue, precision); 10823 10824 SmallString<16> PrettyTargetValue; 10825 if (IsBool) 10826 PrettyTargetValue = Value.isZero() ? "false" : "true"; 10827 else 10828 IntegerValue.toString(PrettyTargetValue); 10829 10830 if (PruneWarnings) { 10831 S.DiagRuntimeBehavior(E->getExprLoc(), E, 10832 S.PDiag(DiagID) 10833 << E->getType() << T.getUnqualifiedType() 10834 << PrettySourceValue << PrettyTargetValue 10835 << E->getSourceRange() << SourceRange(CContext)); 10836 } else { 10837 S.Diag(E->getExprLoc(), DiagID) 10838 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 10839 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 10840 } 10841 } 10842 10843 /// Analyze the given compound assignment for the possible losing of 10844 /// floating-point precision. 10845 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 10846 assert(isa<CompoundAssignOperator>(E) && 10847 "Must be compound assignment operation"); 10848 // Recurse on the LHS and RHS in here 10849 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10850 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10851 10852 if (E->getLHS()->getType()->isAtomicType()) 10853 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 10854 10855 // Now check the outermost expression 10856 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 10857 const auto *RBT = cast<CompoundAssignOperator>(E) 10858 ->getComputationResultType() 10859 ->getAs<BuiltinType>(); 10860 10861 // The below checks assume source is floating point. 10862 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 10863 10864 // If source is floating point but target is an integer. 10865 if (ResultBT->isInteger()) 10866 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 10867 E->getExprLoc(), diag::warn_impcast_float_integer); 10868 10869 if (!ResultBT->isFloatingPoint()) 10870 return; 10871 10872 // If both source and target are floating points, warn about losing precision. 10873 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 10874 QualType(ResultBT, 0), QualType(RBT, 0)); 10875 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 10876 // warn about dropping FP rank. 10877 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 10878 diag::warn_impcast_float_result_precision); 10879 } 10880 10881 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 10882 IntRange Range) { 10883 if (!Range.Width) return "0"; 10884 10885 llvm::APSInt ValueInRange = Value; 10886 ValueInRange.setIsSigned(!Range.NonNegative); 10887 ValueInRange = ValueInRange.trunc(Range.Width); 10888 return ValueInRange.toString(10); 10889 } 10890 10891 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 10892 if (!isa<ImplicitCastExpr>(Ex)) 10893 return false; 10894 10895 Expr *InnerE = Ex->IgnoreParenImpCasts(); 10896 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 10897 const Type *Source = 10898 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 10899 if (Target->isDependentType()) 10900 return false; 10901 10902 const BuiltinType *FloatCandidateBT = 10903 dyn_cast<BuiltinType>(ToBool ? Source : Target); 10904 const Type *BoolCandidateType = ToBool ? Target : Source; 10905 10906 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 10907 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 10908 } 10909 10910 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 10911 SourceLocation CC) { 10912 unsigned NumArgs = TheCall->getNumArgs(); 10913 for (unsigned i = 0; i < NumArgs; ++i) { 10914 Expr *CurrA = TheCall->getArg(i); 10915 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 10916 continue; 10917 10918 bool IsSwapped = ((i > 0) && 10919 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 10920 IsSwapped |= ((i < (NumArgs - 1)) && 10921 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 10922 if (IsSwapped) { 10923 // Warn on this floating-point to bool conversion. 10924 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 10925 CurrA->getType(), CC, 10926 diag::warn_impcast_floating_point_to_bool); 10927 } 10928 } 10929 } 10930 10931 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 10932 SourceLocation CC) { 10933 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 10934 E->getExprLoc())) 10935 return; 10936 10937 // Don't warn on functions which have return type nullptr_t. 10938 if (isa<CallExpr>(E)) 10939 return; 10940 10941 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 10942 const Expr::NullPointerConstantKind NullKind = 10943 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 10944 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 10945 return; 10946 10947 // Return if target type is a safe conversion. 10948 if (T->isAnyPointerType() || T->isBlockPointerType() || 10949 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 10950 return; 10951 10952 SourceLocation Loc = E->getSourceRange().getBegin(); 10953 10954 // Venture through the macro stacks to get to the source of macro arguments. 10955 // The new location is a better location than the complete location that was 10956 // passed in. 10957 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 10958 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 10959 10960 // __null is usually wrapped in a macro. Go up a macro if that is the case. 10961 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 10962 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 10963 Loc, S.SourceMgr, S.getLangOpts()); 10964 if (MacroName == "NULL") 10965 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 10966 } 10967 10968 // Only warn if the null and context location are in the same macro expansion. 10969 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 10970 return; 10971 10972 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 10973 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 10974 << FixItHint::CreateReplacement(Loc, 10975 S.getFixItZeroLiteralForType(T, Loc)); 10976 } 10977 10978 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 10979 ObjCArrayLiteral *ArrayLiteral); 10980 10981 static void 10982 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 10983 ObjCDictionaryLiteral *DictionaryLiteral); 10984 10985 /// Check a single element within a collection literal against the 10986 /// target element type. 10987 static void checkObjCCollectionLiteralElement(Sema &S, 10988 QualType TargetElementType, 10989 Expr *Element, 10990 unsigned ElementKind) { 10991 // Skip a bitcast to 'id' or qualified 'id'. 10992 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 10993 if (ICE->getCastKind() == CK_BitCast && 10994 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 10995 Element = ICE->getSubExpr(); 10996 } 10997 10998 QualType ElementType = Element->getType(); 10999 ExprResult ElementResult(Element); 11000 if (ElementType->getAs<ObjCObjectPointerType>() && 11001 S.CheckSingleAssignmentConstraints(TargetElementType, 11002 ElementResult, 11003 false, false) 11004 != Sema::Compatible) { 11005 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11006 << ElementType << ElementKind << TargetElementType 11007 << Element->getSourceRange(); 11008 } 11009 11010 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11011 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11012 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11013 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11014 } 11015 11016 /// Check an Objective-C array literal being converted to the given 11017 /// target type. 11018 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11019 ObjCArrayLiteral *ArrayLiteral) { 11020 if (!S.NSArrayDecl) 11021 return; 11022 11023 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11024 if (!TargetObjCPtr) 11025 return; 11026 11027 if (TargetObjCPtr->isUnspecialized() || 11028 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11029 != S.NSArrayDecl->getCanonicalDecl()) 11030 return; 11031 11032 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11033 if (TypeArgs.size() != 1) 11034 return; 11035 11036 QualType TargetElementType = TypeArgs[0]; 11037 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11038 checkObjCCollectionLiteralElement(S, TargetElementType, 11039 ArrayLiteral->getElement(I), 11040 0); 11041 } 11042 } 11043 11044 /// Check an Objective-C dictionary literal being converted to the given 11045 /// target type. 11046 static void 11047 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11048 ObjCDictionaryLiteral *DictionaryLiteral) { 11049 if (!S.NSDictionaryDecl) 11050 return; 11051 11052 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11053 if (!TargetObjCPtr) 11054 return; 11055 11056 if (TargetObjCPtr->isUnspecialized() || 11057 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11058 != S.NSDictionaryDecl->getCanonicalDecl()) 11059 return; 11060 11061 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11062 if (TypeArgs.size() != 2) 11063 return; 11064 11065 QualType TargetKeyType = TypeArgs[0]; 11066 QualType TargetObjectType = TypeArgs[1]; 11067 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11068 auto Element = DictionaryLiteral->getKeyValueElement(I); 11069 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11070 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11071 } 11072 } 11073 11074 // Helper function to filter out cases for constant width constant conversion. 11075 // Don't warn on char array initialization or for non-decimal values. 11076 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11077 SourceLocation CC) { 11078 // If initializing from a constant, and the constant starts with '0', 11079 // then it is a binary, octal, or hexadecimal. Allow these constants 11080 // to fill all the bits, even if there is a sign change. 11081 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11082 const char FirstLiteralCharacter = 11083 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11084 if (FirstLiteralCharacter == '0') 11085 return false; 11086 } 11087 11088 // If the CC location points to a '{', and the type is char, then assume 11089 // assume it is an array initialization. 11090 if (CC.isValid() && T->isCharType()) { 11091 const char FirstContextCharacter = 11092 S.getSourceManager().getCharacterData(CC)[0]; 11093 if (FirstContextCharacter == '{') 11094 return false; 11095 } 11096 11097 return true; 11098 } 11099 11100 static void 11101 CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC, 11102 bool *ICContext = nullptr) { 11103 if (E->isTypeDependent() || E->isValueDependent()) return; 11104 11105 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11106 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11107 if (Source == Target) return; 11108 if (Target->isDependentType()) return; 11109 11110 // If the conversion context location is invalid don't complain. We also 11111 // don't want to emit a warning if the issue occurs from the expansion of 11112 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11113 // delay this check as long as possible. Once we detect we are in that 11114 // scenario, we just return. 11115 if (CC.isInvalid()) 11116 return; 11117 11118 if (Source->isAtomicType()) 11119 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 11120 11121 // Diagnose implicit casts to bool. 11122 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 11123 if (isa<StringLiteral>(E)) 11124 // Warn on string literal to bool. Checks for string literals in logical 11125 // and expressions, for instance, assert(0 && "error here"), are 11126 // prevented by a check in AnalyzeImplicitConversions(). 11127 return DiagnoseImpCast(S, E, T, CC, 11128 diag::warn_impcast_string_literal_to_bool); 11129 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 11130 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 11131 // This covers the literal expressions that evaluate to Objective-C 11132 // objects. 11133 return DiagnoseImpCast(S, E, T, CC, 11134 diag::warn_impcast_objective_c_literal_to_bool); 11135 } 11136 if (Source->isPointerType() || Source->canDecayToPointerType()) { 11137 // Warn on pointer to bool conversion that is always true. 11138 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 11139 SourceRange(CC)); 11140 } 11141 } 11142 11143 // Check implicit casts from Objective-C collection literals to specialized 11144 // collection types, e.g., NSArray<NSString *> *. 11145 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 11146 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 11147 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 11148 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 11149 11150 // Strip vector types. 11151 if (isa<VectorType>(Source)) { 11152 if (!isa<VectorType>(Target)) { 11153 if (S.SourceMgr.isInSystemMacro(CC)) 11154 return; 11155 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 11156 } 11157 11158 // If the vector cast is cast between two vectors of the same size, it is 11159 // a bitcast, not a conversion. 11160 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 11161 return; 11162 11163 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 11164 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 11165 } 11166 if (auto VecTy = dyn_cast<VectorType>(Target)) 11167 Target = VecTy->getElementType().getTypePtr(); 11168 11169 // Strip complex types. 11170 if (isa<ComplexType>(Source)) { 11171 if (!isa<ComplexType>(Target)) { 11172 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 11173 return; 11174 11175 return DiagnoseImpCast(S, E, T, CC, 11176 S.getLangOpts().CPlusPlus 11177 ? diag::err_impcast_complex_scalar 11178 : diag::warn_impcast_complex_scalar); 11179 } 11180 11181 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 11182 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 11183 } 11184 11185 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 11186 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 11187 11188 // If the source is floating point... 11189 if (SourceBT && SourceBT->isFloatingPoint()) { 11190 // ...and the target is floating point... 11191 if (TargetBT && TargetBT->isFloatingPoint()) { 11192 // ...then warn if we're dropping FP rank. 11193 11194 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11195 QualType(SourceBT, 0), QualType(TargetBT, 0)); 11196 if (Order > 0) { 11197 // Don't warn about float constants that are precisely 11198 // representable in the target type. 11199 Expr::EvalResult result; 11200 if (E->EvaluateAsRValue(result, S.Context)) { 11201 // Value might be a float, a float vector, or a float complex. 11202 if (IsSameFloatAfterCast(result.Val, 11203 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 11204 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 11205 return; 11206 } 11207 11208 if (S.SourceMgr.isInSystemMacro(CC)) 11209 return; 11210 11211 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 11212 } 11213 // ... or possibly if we're increasing rank, too 11214 else if (Order < 0) { 11215 if (S.SourceMgr.isInSystemMacro(CC)) 11216 return; 11217 11218 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 11219 } 11220 return; 11221 } 11222 11223 // If the target is integral, always warn. 11224 if (TargetBT && TargetBT->isInteger()) { 11225 if (S.SourceMgr.isInSystemMacro(CC)) 11226 return; 11227 11228 DiagnoseFloatingImpCast(S, E, T, CC); 11229 } 11230 11231 // Detect the case where a call result is converted from floating-point to 11232 // to bool, and the final argument to the call is converted from bool, to 11233 // discover this typo: 11234 // 11235 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 11236 // 11237 // FIXME: This is an incredibly special case; is there some more general 11238 // way to detect this class of misplaced-parentheses bug? 11239 if (Target->isBooleanType() && isa<CallExpr>(E)) { 11240 // Check last argument of function call to see if it is an 11241 // implicit cast from a type matching the type the result 11242 // is being cast to. 11243 CallExpr *CEx = cast<CallExpr>(E); 11244 if (unsigned NumArgs = CEx->getNumArgs()) { 11245 Expr *LastA = CEx->getArg(NumArgs - 1); 11246 Expr *InnerE = LastA->IgnoreParenImpCasts(); 11247 if (isa<ImplicitCastExpr>(LastA) && 11248 InnerE->getType()->isBooleanType()) { 11249 // Warn on this floating-point to bool conversion 11250 DiagnoseImpCast(S, E, T, CC, 11251 diag::warn_impcast_floating_point_to_bool); 11252 } 11253 } 11254 } 11255 return; 11256 } 11257 11258 // Valid casts involving fixed point types should be accounted for here. 11259 if (Source->isFixedPointType()) { 11260 if (Target->isUnsaturatedFixedPointType()) { 11261 Expr::EvalResult Result; 11262 if (E->EvaluateAsFixedPoint(Result, S.Context, 11263 Expr::SE_AllowSideEffects)) { 11264 APFixedPoint Value = Result.Val.getFixedPoint(); 11265 APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 11266 APFixedPoint MinVal = S.Context.getFixedPointMin(T); 11267 if (Value > MaxVal || Value < MinVal) { 11268 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11269 S.PDiag(diag::warn_impcast_fixed_point_range) 11270 << Value.toString() << T 11271 << E->getSourceRange() 11272 << clang::SourceRange(CC)); 11273 return; 11274 } 11275 } 11276 } else if (Target->isIntegerType()) { 11277 Expr::EvalResult Result; 11278 if (E->EvaluateAsFixedPoint(Result, S.Context, 11279 Expr::SE_AllowSideEffects)) { 11280 APFixedPoint FXResult = Result.Val.getFixedPoint(); 11281 11282 bool Overflowed; 11283 llvm::APSInt IntResult = FXResult.convertToInt( 11284 S.Context.getIntWidth(T), 11285 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 11286 11287 if (Overflowed) { 11288 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11289 S.PDiag(diag::warn_impcast_fixed_point_range) 11290 << FXResult.toString() << T 11291 << E->getSourceRange() 11292 << clang::SourceRange(CC)); 11293 return; 11294 } 11295 } 11296 } 11297 } else if (Target->isUnsaturatedFixedPointType()) { 11298 if (Source->isIntegerType()) { 11299 Expr::EvalResult Result; 11300 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11301 llvm::APSInt Value = Result.Val.getInt(); 11302 11303 bool Overflowed; 11304 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 11305 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 11306 11307 if (Overflowed) { 11308 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11309 S.PDiag(diag::warn_impcast_fixed_point_range) 11310 << Value.toString(/*radix=*/10) << T 11311 << E->getSourceRange() 11312 << clang::SourceRange(CC)); 11313 return; 11314 } 11315 } 11316 } 11317 } 11318 11319 DiagnoseNullConversion(S, E, T, CC); 11320 11321 S.DiscardMisalignedMemberAddress(Target, E); 11322 11323 if (!Source->isIntegerType() || !Target->isIntegerType()) 11324 return; 11325 11326 // TODO: remove this early return once the false positives for constant->bool 11327 // in templates, macros, etc, are reduced or removed. 11328 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 11329 return; 11330 11331 IntRange SourceRange = GetExprRange(S.Context, E); 11332 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 11333 11334 if (SourceRange.Width > TargetRange.Width) { 11335 // If the source is a constant, use a default-on diagnostic. 11336 // TODO: this should happen for bitfield stores, too. 11337 Expr::EvalResult Result; 11338 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11339 llvm::APSInt Value(32); 11340 Value = Result.Val.getInt(); 11341 11342 if (S.SourceMgr.isInSystemMacro(CC)) 11343 return; 11344 11345 std::string PrettySourceValue = Value.toString(10); 11346 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11347 11348 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11349 S.PDiag(diag::warn_impcast_integer_precision_constant) 11350 << PrettySourceValue << PrettyTargetValue 11351 << E->getType() << T << E->getSourceRange() 11352 << clang::SourceRange(CC)); 11353 return; 11354 } 11355 11356 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 11357 if (S.SourceMgr.isInSystemMacro(CC)) 11358 return; 11359 11360 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 11361 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 11362 /* pruneControlFlow */ true); 11363 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 11364 } 11365 11366 if (TargetRange.Width > SourceRange.Width) { 11367 if (auto *UO = dyn_cast<UnaryOperator>(E)) 11368 if (UO->getOpcode() == UO_Minus) 11369 if (Source->isUnsignedIntegerType()) { 11370 if (Target->isUnsignedIntegerType()) 11371 return DiagnoseImpCast(S, E, T, CC, 11372 diag::warn_impcast_high_order_zero_bits); 11373 if (Target->isSignedIntegerType()) 11374 return DiagnoseImpCast(S, E, T, CC, 11375 diag::warn_impcast_nonnegative_result); 11376 } 11377 } 11378 11379 if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && 11380 SourceRange.NonNegative && Source->isSignedIntegerType()) { 11381 // Warn when doing a signed to signed conversion, warn if the positive 11382 // source value is exactly the width of the target type, which will 11383 // cause a negative value to be stored. 11384 11385 Expr::EvalResult Result; 11386 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 11387 !S.SourceMgr.isInSystemMacro(CC)) { 11388 llvm::APSInt Value = Result.Val.getInt(); 11389 if (isSameWidthConstantConversion(S, E, T, CC)) { 11390 std::string PrettySourceValue = Value.toString(10); 11391 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11392 11393 S.DiagRuntimeBehavior( 11394 E->getExprLoc(), E, 11395 S.PDiag(diag::warn_impcast_integer_precision_constant) 11396 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11397 << E->getSourceRange() << clang::SourceRange(CC)); 11398 return; 11399 } 11400 } 11401 11402 // Fall through for non-constants to give a sign conversion warning. 11403 } 11404 11405 if ((TargetRange.NonNegative && !SourceRange.NonNegative) || 11406 (!TargetRange.NonNegative && SourceRange.NonNegative && 11407 SourceRange.Width == TargetRange.Width)) { 11408 if (S.SourceMgr.isInSystemMacro(CC)) 11409 return; 11410 11411 unsigned DiagID = diag::warn_impcast_integer_sign; 11412 11413 // Traditionally, gcc has warned about this under -Wsign-compare. 11414 // We also want to warn about it in -Wconversion. 11415 // So if -Wconversion is off, use a completely identical diagnostic 11416 // in the sign-compare group. 11417 // The conditional-checking code will 11418 if (ICContext) { 11419 DiagID = diag::warn_impcast_integer_sign_conditional; 11420 *ICContext = true; 11421 } 11422 11423 return DiagnoseImpCast(S, E, T, CC, DiagID); 11424 } 11425 11426 // Diagnose conversions between different enumeration types. 11427 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 11428 // type, to give us better diagnostics. 11429 QualType SourceType = E->getType(); 11430 if (!S.getLangOpts().CPlusPlus) { 11431 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 11432 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 11433 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 11434 SourceType = S.Context.getTypeDeclType(Enum); 11435 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 11436 } 11437 } 11438 11439 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 11440 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 11441 if (SourceEnum->getDecl()->hasNameForLinkage() && 11442 TargetEnum->getDecl()->hasNameForLinkage() && 11443 SourceEnum != TargetEnum) { 11444 if (S.SourceMgr.isInSystemMacro(CC)) 11445 return; 11446 11447 return DiagnoseImpCast(S, E, SourceType, T, CC, 11448 diag::warn_impcast_different_enum_types); 11449 } 11450 } 11451 11452 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11453 SourceLocation CC, QualType T); 11454 11455 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 11456 SourceLocation CC, bool &ICContext) { 11457 E = E->IgnoreParenImpCasts(); 11458 11459 if (isa<ConditionalOperator>(E)) 11460 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T); 11461 11462 AnalyzeImplicitConversions(S, E, CC); 11463 if (E->getType() != T) 11464 return CheckImplicitConversion(S, E, T, CC, &ICContext); 11465 } 11466 11467 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11468 SourceLocation CC, QualType T) { 11469 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 11470 11471 bool Suspicious = false; 11472 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); 11473 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 11474 11475 // If -Wconversion would have warned about either of the candidates 11476 // for a signedness conversion to the context type... 11477 if (!Suspicious) return; 11478 11479 // ...but it's currently ignored... 11480 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 11481 return; 11482 11483 // ...then check whether it would have warned about either of the 11484 // candidates for a signedness conversion to the condition type. 11485 if (E->getType() == T) return; 11486 11487 Suspicious = false; 11488 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), 11489 E->getType(), CC, &Suspicious); 11490 if (!Suspicious) 11491 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 11492 E->getType(), CC, &Suspicious); 11493 } 11494 11495 /// Check conversion of given expression to boolean. 11496 /// Input argument E is a logical expression. 11497 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 11498 if (S.getLangOpts().Bool) 11499 return; 11500 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 11501 return; 11502 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 11503 } 11504 11505 /// AnalyzeImplicitConversions - Find and report any interesting 11506 /// implicit conversions in the given expression. There are a couple 11507 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 11508 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, 11509 SourceLocation CC) { 11510 QualType T = OrigE->getType(); 11511 Expr *E = OrigE->IgnoreParenImpCasts(); 11512 11513 if (E->isTypeDependent() || E->isValueDependent()) 11514 return; 11515 11516 // For conditional operators, we analyze the arguments as if they 11517 // were being fed directly into the output. 11518 if (isa<ConditionalOperator>(E)) { 11519 ConditionalOperator *CO = cast<ConditionalOperator>(E); 11520 CheckConditionalOperator(S, CO, CC, T); 11521 return; 11522 } 11523 11524 // Check implicit argument conversions for function calls. 11525 if (CallExpr *Call = dyn_cast<CallExpr>(E)) 11526 CheckImplicitArgumentConversions(S, Call, CC); 11527 11528 // Go ahead and check any implicit conversions we might have skipped. 11529 // The non-canonical typecheck is just an optimization; 11530 // CheckImplicitConversion will filter out dead implicit conversions. 11531 if (E->getType() != T) 11532 CheckImplicitConversion(S, E, T, CC); 11533 11534 // Now continue drilling into this expression. 11535 11536 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 11537 // The bound subexpressions in a PseudoObjectExpr are not reachable 11538 // as transitive children. 11539 // FIXME: Use a more uniform representation for this. 11540 for (auto *SE : POE->semantics()) 11541 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 11542 AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC); 11543 } 11544 11545 // Skip past explicit casts. 11546 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 11547 E = CE->getSubExpr()->IgnoreParenImpCasts(); 11548 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 11549 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11550 return AnalyzeImplicitConversions(S, E, CC); 11551 } 11552 11553 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11554 // Do a somewhat different check with comparison operators. 11555 if (BO->isComparisonOp()) 11556 return AnalyzeComparison(S, BO); 11557 11558 // And with simple assignments. 11559 if (BO->getOpcode() == BO_Assign) 11560 return AnalyzeAssignment(S, BO); 11561 // And with compound assignments. 11562 if (BO->isAssignmentOp()) 11563 return AnalyzeCompoundAssignment(S, BO); 11564 } 11565 11566 // These break the otherwise-useful invariant below. Fortunately, 11567 // we don't really need to recurse into them, because any internal 11568 // expressions should have been analyzed already when they were 11569 // built into statements. 11570 if (isa<StmtExpr>(E)) return; 11571 11572 // Don't descend into unevaluated contexts. 11573 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 11574 11575 // Now just recurse over the expression's children. 11576 CC = E->getExprLoc(); 11577 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 11578 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 11579 for (Stmt *SubStmt : E->children()) { 11580 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 11581 if (!ChildExpr) 11582 continue; 11583 11584 if (IsLogicalAndOperator && 11585 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 11586 // Ignore checking string literals that are in logical and operators. 11587 // This is a common pattern for asserts. 11588 continue; 11589 AnalyzeImplicitConversions(S, ChildExpr, CC); 11590 } 11591 11592 if (BO && BO->isLogicalOp()) { 11593 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 11594 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 11595 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 11596 11597 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 11598 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 11599 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 11600 } 11601 11602 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 11603 if (U->getOpcode() == UO_LNot) { 11604 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 11605 } else if (U->getOpcode() != UO_AddrOf) { 11606 if (U->getSubExpr()->getType()->isAtomicType()) 11607 S.Diag(U->getSubExpr()->getBeginLoc(), 11608 diag::warn_atomic_implicit_seq_cst); 11609 } 11610 } 11611 } 11612 11613 /// Diagnose integer type and any valid implicit conversion to it. 11614 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 11615 // Taking into account implicit conversions, 11616 // allow any integer. 11617 if (!E->getType()->isIntegerType()) { 11618 S.Diag(E->getBeginLoc(), 11619 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 11620 return true; 11621 } 11622 // Potentially emit standard warnings for implicit conversions if enabled 11623 // using -Wconversion. 11624 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 11625 return false; 11626 } 11627 11628 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 11629 // Returns true when emitting a warning about taking the address of a reference. 11630 static bool CheckForReference(Sema &SemaRef, const Expr *E, 11631 const PartialDiagnostic &PD) { 11632 E = E->IgnoreParenImpCasts(); 11633 11634 const FunctionDecl *FD = nullptr; 11635 11636 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 11637 if (!DRE->getDecl()->getType()->isReferenceType()) 11638 return false; 11639 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 11640 if (!M->getMemberDecl()->getType()->isReferenceType()) 11641 return false; 11642 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 11643 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 11644 return false; 11645 FD = Call->getDirectCallee(); 11646 } else { 11647 return false; 11648 } 11649 11650 SemaRef.Diag(E->getExprLoc(), PD); 11651 11652 // If possible, point to location of function. 11653 if (FD) { 11654 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 11655 } 11656 11657 return true; 11658 } 11659 11660 // Returns true if the SourceLocation is expanded from any macro body. 11661 // Returns false if the SourceLocation is invalid, is from not in a macro 11662 // expansion, or is from expanded from a top-level macro argument. 11663 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 11664 if (Loc.isInvalid()) 11665 return false; 11666 11667 while (Loc.isMacroID()) { 11668 if (SM.isMacroBodyExpansion(Loc)) 11669 return true; 11670 Loc = SM.getImmediateMacroCallerLoc(Loc); 11671 } 11672 11673 return false; 11674 } 11675 11676 /// Diagnose pointers that are always non-null. 11677 /// \param E the expression containing the pointer 11678 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 11679 /// compared to a null pointer 11680 /// \param IsEqual True when the comparison is equal to a null pointer 11681 /// \param Range Extra SourceRange to highlight in the diagnostic 11682 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 11683 Expr::NullPointerConstantKind NullKind, 11684 bool IsEqual, SourceRange Range) { 11685 if (!E) 11686 return; 11687 11688 // Don't warn inside macros. 11689 if (E->getExprLoc().isMacroID()) { 11690 const SourceManager &SM = getSourceManager(); 11691 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 11692 IsInAnyMacroBody(SM, Range.getBegin())) 11693 return; 11694 } 11695 E = E->IgnoreImpCasts(); 11696 11697 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 11698 11699 if (isa<CXXThisExpr>(E)) { 11700 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 11701 : diag::warn_this_bool_conversion; 11702 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 11703 return; 11704 } 11705 11706 bool IsAddressOf = false; 11707 11708 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 11709 if (UO->getOpcode() != UO_AddrOf) 11710 return; 11711 IsAddressOf = true; 11712 E = UO->getSubExpr(); 11713 } 11714 11715 if (IsAddressOf) { 11716 unsigned DiagID = IsCompare 11717 ? diag::warn_address_of_reference_null_compare 11718 : diag::warn_address_of_reference_bool_conversion; 11719 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 11720 << IsEqual; 11721 if (CheckForReference(*this, E, PD)) { 11722 return; 11723 } 11724 } 11725 11726 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 11727 bool IsParam = isa<NonNullAttr>(NonnullAttr); 11728 std::string Str; 11729 llvm::raw_string_ostream S(Str); 11730 E->printPretty(S, nullptr, getPrintingPolicy()); 11731 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 11732 : diag::warn_cast_nonnull_to_bool; 11733 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 11734 << E->getSourceRange() << Range << IsEqual; 11735 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 11736 }; 11737 11738 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 11739 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 11740 if (auto *Callee = Call->getDirectCallee()) { 11741 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 11742 ComplainAboutNonnullParamOrCall(A); 11743 return; 11744 } 11745 } 11746 } 11747 11748 // Expect to find a single Decl. Skip anything more complicated. 11749 ValueDecl *D = nullptr; 11750 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 11751 D = R->getDecl(); 11752 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 11753 D = M->getMemberDecl(); 11754 } 11755 11756 // Weak Decls can be null. 11757 if (!D || D->isWeak()) 11758 return; 11759 11760 // Check for parameter decl with nonnull attribute 11761 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 11762 if (getCurFunction() && 11763 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 11764 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 11765 ComplainAboutNonnullParamOrCall(A); 11766 return; 11767 } 11768 11769 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 11770 // Skip function template not specialized yet. 11771 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 11772 return; 11773 auto ParamIter = llvm::find(FD->parameters(), PV); 11774 assert(ParamIter != FD->param_end()); 11775 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 11776 11777 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 11778 if (!NonNull->args_size()) { 11779 ComplainAboutNonnullParamOrCall(NonNull); 11780 return; 11781 } 11782 11783 for (const ParamIdx &ArgNo : NonNull->args()) { 11784 if (ArgNo.getASTIndex() == ParamNo) { 11785 ComplainAboutNonnullParamOrCall(NonNull); 11786 return; 11787 } 11788 } 11789 } 11790 } 11791 } 11792 } 11793 11794 QualType T = D->getType(); 11795 const bool IsArray = T->isArrayType(); 11796 const bool IsFunction = T->isFunctionType(); 11797 11798 // Address of function is used to silence the function warning. 11799 if (IsAddressOf && IsFunction) { 11800 return; 11801 } 11802 11803 // Found nothing. 11804 if (!IsAddressOf && !IsFunction && !IsArray) 11805 return; 11806 11807 // Pretty print the expression for the diagnostic. 11808 std::string Str; 11809 llvm::raw_string_ostream S(Str); 11810 E->printPretty(S, nullptr, getPrintingPolicy()); 11811 11812 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 11813 : diag::warn_impcast_pointer_to_bool; 11814 enum { 11815 AddressOf, 11816 FunctionPointer, 11817 ArrayPointer 11818 } DiagType; 11819 if (IsAddressOf) 11820 DiagType = AddressOf; 11821 else if (IsFunction) 11822 DiagType = FunctionPointer; 11823 else if (IsArray) 11824 DiagType = ArrayPointer; 11825 else 11826 llvm_unreachable("Could not determine diagnostic."); 11827 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 11828 << Range << IsEqual; 11829 11830 if (!IsFunction) 11831 return; 11832 11833 // Suggest '&' to silence the function warning. 11834 Diag(E->getExprLoc(), diag::note_function_warning_silence) 11835 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 11836 11837 // Check to see if '()' fixit should be emitted. 11838 QualType ReturnType; 11839 UnresolvedSet<4> NonTemplateOverloads; 11840 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 11841 if (ReturnType.isNull()) 11842 return; 11843 11844 if (IsCompare) { 11845 // There are two cases here. If there is null constant, the only suggest 11846 // for a pointer return type. If the null is 0, then suggest if the return 11847 // type is a pointer or an integer type. 11848 if (!ReturnType->isPointerType()) { 11849 if (NullKind == Expr::NPCK_ZeroExpression || 11850 NullKind == Expr::NPCK_ZeroLiteral) { 11851 if (!ReturnType->isIntegerType()) 11852 return; 11853 } else { 11854 return; 11855 } 11856 } 11857 } else { // !IsCompare 11858 // For function to bool, only suggest if the function pointer has bool 11859 // return type. 11860 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 11861 return; 11862 } 11863 Diag(E->getExprLoc(), diag::note_function_to_function_call) 11864 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 11865 } 11866 11867 /// Diagnoses "dangerous" implicit conversions within the given 11868 /// expression (which is a full expression). Implements -Wconversion 11869 /// and -Wsign-compare. 11870 /// 11871 /// \param CC the "context" location of the implicit conversion, i.e. 11872 /// the most location of the syntactic entity requiring the implicit 11873 /// conversion 11874 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 11875 // Don't diagnose in unevaluated contexts. 11876 if (isUnevaluatedContext()) 11877 return; 11878 11879 // Don't diagnose for value- or type-dependent expressions. 11880 if (E->isTypeDependent() || E->isValueDependent()) 11881 return; 11882 11883 // Check for array bounds violations in cases where the check isn't triggered 11884 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 11885 // ArraySubscriptExpr is on the RHS of a variable initialization. 11886 CheckArrayAccess(E); 11887 11888 // This is not the right CC for (e.g.) a variable initialization. 11889 AnalyzeImplicitConversions(*this, E, CC); 11890 } 11891 11892 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 11893 /// Input argument E is a logical expression. 11894 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 11895 ::CheckBoolLikeConversion(*this, E, CC); 11896 } 11897 11898 /// Diagnose when expression is an integer constant expression and its evaluation 11899 /// results in integer overflow 11900 void Sema::CheckForIntOverflow (Expr *E) { 11901 // Use a work list to deal with nested struct initializers. 11902 SmallVector<Expr *, 2> Exprs(1, E); 11903 11904 do { 11905 Expr *OriginalE = Exprs.pop_back_val(); 11906 Expr *E = OriginalE->IgnoreParenCasts(); 11907 11908 if (isa<BinaryOperator>(E)) { 11909 E->EvaluateForOverflow(Context); 11910 continue; 11911 } 11912 11913 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 11914 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 11915 else if (isa<ObjCBoxedExpr>(OriginalE)) 11916 E->EvaluateForOverflow(Context); 11917 else if (auto Call = dyn_cast<CallExpr>(E)) 11918 Exprs.append(Call->arg_begin(), Call->arg_end()); 11919 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 11920 Exprs.append(Message->arg_begin(), Message->arg_end()); 11921 } while (!Exprs.empty()); 11922 } 11923 11924 namespace { 11925 11926 /// Visitor for expressions which looks for unsequenced operations on the 11927 /// same object. 11928 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> { 11929 using Base = EvaluatedExprVisitor<SequenceChecker>; 11930 11931 /// A tree of sequenced regions within an expression. Two regions are 11932 /// unsequenced if one is an ancestor or a descendent of the other. When we 11933 /// finish processing an expression with sequencing, such as a comma 11934 /// expression, we fold its tree nodes into its parent, since they are 11935 /// unsequenced with respect to nodes we will visit later. 11936 class SequenceTree { 11937 struct Value { 11938 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 11939 unsigned Parent : 31; 11940 unsigned Merged : 1; 11941 }; 11942 SmallVector<Value, 8> Values; 11943 11944 public: 11945 /// A region within an expression which may be sequenced with respect 11946 /// to some other region. 11947 class Seq { 11948 friend class SequenceTree; 11949 11950 unsigned Index; 11951 11952 explicit Seq(unsigned N) : Index(N) {} 11953 11954 public: 11955 Seq() : Index(0) {} 11956 }; 11957 11958 SequenceTree() { Values.push_back(Value(0)); } 11959 Seq root() const { return Seq(0); } 11960 11961 /// Create a new sequence of operations, which is an unsequenced 11962 /// subset of \p Parent. This sequence of operations is sequenced with 11963 /// respect to other children of \p Parent. 11964 Seq allocate(Seq Parent) { 11965 Values.push_back(Value(Parent.Index)); 11966 return Seq(Values.size() - 1); 11967 } 11968 11969 /// Merge a sequence of operations into its parent. 11970 void merge(Seq S) { 11971 Values[S.Index].Merged = true; 11972 } 11973 11974 /// Determine whether two operations are unsequenced. This operation 11975 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 11976 /// should have been merged into its parent as appropriate. 11977 bool isUnsequenced(Seq Cur, Seq Old) { 11978 unsigned C = representative(Cur.Index); 11979 unsigned Target = representative(Old.Index); 11980 while (C >= Target) { 11981 if (C == Target) 11982 return true; 11983 C = Values[C].Parent; 11984 } 11985 return false; 11986 } 11987 11988 private: 11989 /// Pick a representative for a sequence. 11990 unsigned representative(unsigned K) { 11991 if (Values[K].Merged) 11992 // Perform path compression as we go. 11993 return Values[K].Parent = representative(Values[K].Parent); 11994 return K; 11995 } 11996 }; 11997 11998 /// An object for which we can track unsequenced uses. 11999 using Object = NamedDecl *; 12000 12001 /// Different flavors of object usage which we track. We only track the 12002 /// least-sequenced usage of each kind. 12003 enum UsageKind { 12004 /// A read of an object. Multiple unsequenced reads are OK. 12005 UK_Use, 12006 12007 /// A modification of an object which is sequenced before the value 12008 /// computation of the expression, such as ++n in C++. 12009 UK_ModAsValue, 12010 12011 /// A modification of an object which is not sequenced before the value 12012 /// computation of the expression, such as n++. 12013 UK_ModAsSideEffect, 12014 12015 UK_Count = UK_ModAsSideEffect + 1 12016 }; 12017 12018 struct Usage { 12019 Expr *Use; 12020 SequenceTree::Seq Seq; 12021 12022 Usage() : Use(nullptr), Seq() {} 12023 }; 12024 12025 struct UsageInfo { 12026 Usage Uses[UK_Count]; 12027 12028 /// Have we issued a diagnostic for this variable already? 12029 bool Diagnosed; 12030 12031 UsageInfo() : Uses(), Diagnosed(false) {} 12032 }; 12033 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 12034 12035 Sema &SemaRef; 12036 12037 /// Sequenced regions within the expression. 12038 SequenceTree Tree; 12039 12040 /// Declaration modifications and references which we have seen. 12041 UsageInfoMap UsageMap; 12042 12043 /// The region we are currently within. 12044 SequenceTree::Seq Region; 12045 12046 /// Filled in with declarations which were modified as a side-effect 12047 /// (that is, post-increment operations). 12048 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 12049 12050 /// Expressions to check later. We defer checking these to reduce 12051 /// stack usage. 12052 SmallVectorImpl<Expr *> &WorkList; 12053 12054 /// RAII object wrapping the visitation of a sequenced subexpression of an 12055 /// expression. At the end of this process, the side-effects of the evaluation 12056 /// become sequenced with respect to the value computation of the result, so 12057 /// we downgrade any UK_ModAsSideEffect within the evaluation to 12058 /// UK_ModAsValue. 12059 struct SequencedSubexpression { 12060 SequencedSubexpression(SequenceChecker &Self) 12061 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 12062 Self.ModAsSideEffect = &ModAsSideEffect; 12063 } 12064 12065 ~SequencedSubexpression() { 12066 for (auto &M : llvm::reverse(ModAsSideEffect)) { 12067 UsageInfo &U = Self.UsageMap[M.first]; 12068 auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect]; 12069 Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue); 12070 SideEffectUsage = M.second; 12071 } 12072 Self.ModAsSideEffect = OldModAsSideEffect; 12073 } 12074 12075 SequenceChecker &Self; 12076 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 12077 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 12078 }; 12079 12080 /// RAII object wrapping the visitation of a subexpression which we might 12081 /// choose to evaluate as a constant. If any subexpression is evaluated and 12082 /// found to be non-constant, this allows us to suppress the evaluation of 12083 /// the outer expression. 12084 class EvaluationTracker { 12085 public: 12086 EvaluationTracker(SequenceChecker &Self) 12087 : Self(Self), Prev(Self.EvalTracker) { 12088 Self.EvalTracker = this; 12089 } 12090 12091 ~EvaluationTracker() { 12092 Self.EvalTracker = Prev; 12093 if (Prev) 12094 Prev->EvalOK &= EvalOK; 12095 } 12096 12097 bool evaluate(const Expr *E, bool &Result) { 12098 if (!EvalOK || E->isValueDependent()) 12099 return false; 12100 EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context); 12101 return EvalOK; 12102 } 12103 12104 private: 12105 SequenceChecker &Self; 12106 EvaluationTracker *Prev; 12107 bool EvalOK = true; 12108 } *EvalTracker = nullptr; 12109 12110 /// Find the object which is produced by the specified expression, 12111 /// if any. 12112 Object getObject(Expr *E, bool Mod) const { 12113 E = E->IgnoreParenCasts(); 12114 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12115 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 12116 return getObject(UO->getSubExpr(), Mod); 12117 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12118 if (BO->getOpcode() == BO_Comma) 12119 return getObject(BO->getRHS(), Mod); 12120 if (Mod && BO->isAssignmentOp()) 12121 return getObject(BO->getLHS(), Mod); 12122 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 12123 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 12124 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 12125 return ME->getMemberDecl(); 12126 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12127 // FIXME: If this is a reference, map through to its value. 12128 return DRE->getDecl(); 12129 return nullptr; 12130 } 12131 12132 /// Note that an object was modified or used by an expression. 12133 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) { 12134 Usage &U = UI.Uses[UK]; 12135 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) { 12136 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 12137 ModAsSideEffect->push_back(std::make_pair(O, U)); 12138 U.Use = Ref; 12139 U.Seq = Region; 12140 } 12141 } 12142 12143 /// Check whether a modification or use conflicts with a prior usage. 12144 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind, 12145 bool IsModMod) { 12146 if (UI.Diagnosed) 12147 return; 12148 12149 const Usage &U = UI.Uses[OtherKind]; 12150 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) 12151 return; 12152 12153 Expr *Mod = U.Use; 12154 Expr *ModOrUse = Ref; 12155 if (OtherKind == UK_Use) 12156 std::swap(Mod, ModOrUse); 12157 12158 SemaRef.DiagRuntimeBehavior( 12159 Mod->getExprLoc(), {Mod, ModOrUse}, 12160 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 12161 : diag::warn_unsequenced_mod_use) 12162 << O << SourceRange(ModOrUse->getExprLoc())); 12163 UI.Diagnosed = true; 12164 } 12165 12166 void notePreUse(Object O, Expr *Use) { 12167 UsageInfo &U = UsageMap[O]; 12168 // Uses conflict with other modifications. 12169 checkUsage(O, U, Use, UK_ModAsValue, false); 12170 } 12171 12172 void notePostUse(Object O, Expr *Use) { 12173 UsageInfo &U = UsageMap[O]; 12174 checkUsage(O, U, Use, UK_ModAsSideEffect, false); 12175 addUsage(U, O, Use, UK_Use); 12176 } 12177 12178 void notePreMod(Object O, Expr *Mod) { 12179 UsageInfo &U = UsageMap[O]; 12180 // Modifications conflict with other modifications and with uses. 12181 checkUsage(O, U, Mod, UK_ModAsValue, true); 12182 checkUsage(O, U, Mod, UK_Use, false); 12183 } 12184 12185 void notePostMod(Object O, Expr *Use, UsageKind UK) { 12186 UsageInfo &U = UsageMap[O]; 12187 checkUsage(O, U, Use, UK_ModAsSideEffect, true); 12188 addUsage(U, O, Use, UK); 12189 } 12190 12191 public: 12192 SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList) 12193 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 12194 Visit(E); 12195 } 12196 12197 void VisitStmt(Stmt *S) { 12198 // Skip all statements which aren't expressions for now. 12199 } 12200 12201 void VisitExpr(Expr *E) { 12202 // By default, just recurse to evaluated subexpressions. 12203 Base::VisitStmt(E); 12204 } 12205 12206 void VisitCastExpr(CastExpr *E) { 12207 Object O = Object(); 12208 if (E->getCastKind() == CK_LValueToRValue) 12209 O = getObject(E->getSubExpr(), false); 12210 12211 if (O) 12212 notePreUse(O, E); 12213 VisitExpr(E); 12214 if (O) 12215 notePostUse(O, E); 12216 } 12217 12218 void VisitSequencedExpressions(Expr *SequencedBefore, Expr *SequencedAfter) { 12219 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 12220 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 12221 SequenceTree::Seq OldRegion = Region; 12222 12223 { 12224 SequencedSubexpression SeqBefore(*this); 12225 Region = BeforeRegion; 12226 Visit(SequencedBefore); 12227 } 12228 12229 Region = AfterRegion; 12230 Visit(SequencedAfter); 12231 12232 Region = OldRegion; 12233 12234 Tree.merge(BeforeRegion); 12235 Tree.merge(AfterRegion); 12236 } 12237 12238 void VisitArraySubscriptExpr(ArraySubscriptExpr *ASE) { 12239 // C++17 [expr.sub]p1: 12240 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 12241 // expression E1 is sequenced before the expression E2. 12242 if (SemaRef.getLangOpts().CPlusPlus17) 12243 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 12244 else 12245 Base::VisitStmt(ASE); 12246 } 12247 12248 void VisitBinComma(BinaryOperator *BO) { 12249 // C++11 [expr.comma]p1: 12250 // Every value computation and side effect associated with the left 12251 // expression is sequenced before every value computation and side 12252 // effect associated with the right expression. 12253 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12254 } 12255 12256 void VisitBinAssign(BinaryOperator *BO) { 12257 // The modification is sequenced after the value computation of the LHS 12258 // and RHS, so check it before inspecting the operands and update the 12259 // map afterwards. 12260 Object O = getObject(BO->getLHS(), true); 12261 if (!O) 12262 return VisitExpr(BO); 12263 12264 notePreMod(O, BO); 12265 12266 // C++11 [expr.ass]p7: 12267 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated 12268 // only once. 12269 // 12270 // Therefore, for a compound assignment operator, O is considered used 12271 // everywhere except within the evaluation of E1 itself. 12272 if (isa<CompoundAssignOperator>(BO)) 12273 notePreUse(O, BO); 12274 12275 Visit(BO->getLHS()); 12276 12277 if (isa<CompoundAssignOperator>(BO)) 12278 notePostUse(O, BO); 12279 12280 Visit(BO->getRHS()); 12281 12282 // C++11 [expr.ass]p1: 12283 // the assignment is sequenced [...] before the value computation of the 12284 // assignment expression. 12285 // C11 6.5.16/3 has no such rule. 12286 notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12287 : UK_ModAsSideEffect); 12288 } 12289 12290 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) { 12291 VisitBinAssign(CAO); 12292 } 12293 12294 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12295 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12296 void VisitUnaryPreIncDec(UnaryOperator *UO) { 12297 Object O = getObject(UO->getSubExpr(), true); 12298 if (!O) 12299 return VisitExpr(UO); 12300 12301 notePreMod(O, UO); 12302 Visit(UO->getSubExpr()); 12303 // C++11 [expr.pre.incr]p1: 12304 // the expression ++x is equivalent to x+=1 12305 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12306 : UK_ModAsSideEffect); 12307 } 12308 12309 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12310 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12311 void VisitUnaryPostIncDec(UnaryOperator *UO) { 12312 Object O = getObject(UO->getSubExpr(), true); 12313 if (!O) 12314 return VisitExpr(UO); 12315 12316 notePreMod(O, UO); 12317 Visit(UO->getSubExpr()); 12318 notePostMod(O, UO, UK_ModAsSideEffect); 12319 } 12320 12321 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated. 12322 void VisitBinLOr(BinaryOperator *BO) { 12323 // The side-effects of the LHS of an '&&' are sequenced before the 12324 // value computation of the RHS, and hence before the value computation 12325 // of the '&&' itself, unless the LHS evaluates to zero. We treat them 12326 // as if they were unconditionally sequenced. 12327 EvaluationTracker Eval(*this); 12328 { 12329 SequencedSubexpression Sequenced(*this); 12330 Visit(BO->getLHS()); 12331 } 12332 12333 bool Result; 12334 if (Eval.evaluate(BO->getLHS(), Result)) { 12335 if (!Result) 12336 Visit(BO->getRHS()); 12337 } else { 12338 // Check for unsequenced operations in the RHS, treating it as an 12339 // entirely separate evaluation. 12340 // 12341 // FIXME: If there are operations in the RHS which are unsequenced 12342 // with respect to operations outside the RHS, and those operations 12343 // are unconditionally evaluated, diagnose them. 12344 WorkList.push_back(BO->getRHS()); 12345 } 12346 } 12347 void VisitBinLAnd(BinaryOperator *BO) { 12348 EvaluationTracker Eval(*this); 12349 { 12350 SequencedSubexpression Sequenced(*this); 12351 Visit(BO->getLHS()); 12352 } 12353 12354 bool Result; 12355 if (Eval.evaluate(BO->getLHS(), Result)) { 12356 if (Result) 12357 Visit(BO->getRHS()); 12358 } else { 12359 WorkList.push_back(BO->getRHS()); 12360 } 12361 } 12362 12363 // Only visit the condition, unless we can be sure which subexpression will 12364 // be chosen. 12365 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) { 12366 EvaluationTracker Eval(*this); 12367 { 12368 SequencedSubexpression Sequenced(*this); 12369 Visit(CO->getCond()); 12370 } 12371 12372 bool Result; 12373 if (Eval.evaluate(CO->getCond(), Result)) 12374 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr()); 12375 else { 12376 WorkList.push_back(CO->getTrueExpr()); 12377 WorkList.push_back(CO->getFalseExpr()); 12378 } 12379 } 12380 12381 void VisitCallExpr(CallExpr *CE) { 12382 // C++11 [intro.execution]p15: 12383 // When calling a function [...], every value computation and side effect 12384 // associated with any argument expression, or with the postfix expression 12385 // designating the called function, is sequenced before execution of every 12386 // expression or statement in the body of the function [and thus before 12387 // the value computation of its result]. 12388 SequencedSubexpression Sequenced(*this); 12389 Base::VisitCallExpr(CE); 12390 12391 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 12392 } 12393 12394 void VisitCXXConstructExpr(CXXConstructExpr *CCE) { 12395 // This is a call, so all subexpressions are sequenced before the result. 12396 SequencedSubexpression Sequenced(*this); 12397 12398 if (!CCE->isListInitialization()) 12399 return VisitExpr(CCE); 12400 12401 // In C++11, list initializations are sequenced. 12402 SmallVector<SequenceTree::Seq, 32> Elts; 12403 SequenceTree::Seq Parent = Region; 12404 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(), 12405 E = CCE->arg_end(); 12406 I != E; ++I) { 12407 Region = Tree.allocate(Parent); 12408 Elts.push_back(Region); 12409 Visit(*I); 12410 } 12411 12412 // Forget that the initializers are sequenced. 12413 Region = Parent; 12414 for (unsigned I = 0; I < Elts.size(); ++I) 12415 Tree.merge(Elts[I]); 12416 } 12417 12418 void VisitInitListExpr(InitListExpr *ILE) { 12419 if (!SemaRef.getLangOpts().CPlusPlus11) 12420 return VisitExpr(ILE); 12421 12422 // In C++11, list initializations are sequenced. 12423 SmallVector<SequenceTree::Seq, 32> Elts; 12424 SequenceTree::Seq Parent = Region; 12425 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 12426 Expr *E = ILE->getInit(I); 12427 if (!E) continue; 12428 Region = Tree.allocate(Parent); 12429 Elts.push_back(Region); 12430 Visit(E); 12431 } 12432 12433 // Forget that the initializers are sequenced. 12434 Region = Parent; 12435 for (unsigned I = 0; I < Elts.size(); ++I) 12436 Tree.merge(Elts[I]); 12437 } 12438 }; 12439 12440 } // namespace 12441 12442 void Sema::CheckUnsequencedOperations(Expr *E) { 12443 SmallVector<Expr *, 8> WorkList; 12444 WorkList.push_back(E); 12445 while (!WorkList.empty()) { 12446 Expr *Item = WorkList.pop_back_val(); 12447 SequenceChecker(*this, Item, WorkList); 12448 } 12449 } 12450 12451 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 12452 bool IsConstexpr) { 12453 CheckImplicitConversions(E, CheckLoc); 12454 if (!E->isInstantiationDependent()) 12455 CheckUnsequencedOperations(E); 12456 if (!IsConstexpr && !E->isValueDependent()) 12457 CheckForIntOverflow(E); 12458 DiagnoseMisalignedMembers(); 12459 } 12460 12461 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 12462 FieldDecl *BitField, 12463 Expr *Init) { 12464 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 12465 } 12466 12467 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 12468 SourceLocation Loc) { 12469 if (!PType->isVariablyModifiedType()) 12470 return; 12471 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 12472 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 12473 return; 12474 } 12475 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 12476 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 12477 return; 12478 } 12479 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 12480 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 12481 return; 12482 } 12483 12484 const ArrayType *AT = S.Context.getAsArrayType(PType); 12485 if (!AT) 12486 return; 12487 12488 if (AT->getSizeModifier() != ArrayType::Star) { 12489 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 12490 return; 12491 } 12492 12493 S.Diag(Loc, diag::err_array_star_in_function_definition); 12494 } 12495 12496 /// CheckParmsForFunctionDef - Check that the parameters of the given 12497 /// function are appropriate for the definition of a function. This 12498 /// takes care of any checks that cannot be performed on the 12499 /// declaration itself, e.g., that the types of each of the function 12500 /// parameters are complete. 12501 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 12502 bool CheckParameterNames) { 12503 bool HasInvalidParm = false; 12504 for (ParmVarDecl *Param : Parameters) { 12505 // C99 6.7.5.3p4: the parameters in a parameter type list in a 12506 // function declarator that is part of a function definition of 12507 // that function shall not have incomplete type. 12508 // 12509 // This is also C++ [dcl.fct]p6. 12510 if (!Param->isInvalidDecl() && 12511 RequireCompleteType(Param->getLocation(), Param->getType(), 12512 diag::err_typecheck_decl_incomplete_type)) { 12513 Param->setInvalidDecl(); 12514 HasInvalidParm = true; 12515 } 12516 12517 // C99 6.9.1p5: If the declarator includes a parameter type list, the 12518 // declaration of each parameter shall include an identifier. 12519 if (CheckParameterNames && 12520 Param->getIdentifier() == nullptr && 12521 !Param->isImplicit() && 12522 !getLangOpts().CPlusPlus) 12523 Diag(Param->getLocation(), diag::err_parameter_name_omitted); 12524 12525 // C99 6.7.5.3p12: 12526 // If the function declarator is not part of a definition of that 12527 // function, parameters may have incomplete type and may use the [*] 12528 // notation in their sequences of declarator specifiers to specify 12529 // variable length array types. 12530 QualType PType = Param->getOriginalType(); 12531 // FIXME: This diagnostic should point the '[*]' if source-location 12532 // information is added for it. 12533 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 12534 12535 // If the parameter is a c++ class type and it has to be destructed in the 12536 // callee function, declare the destructor so that it can be called by the 12537 // callee function. Do not perform any direct access check on the dtor here. 12538 if (!Param->isInvalidDecl()) { 12539 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 12540 if (!ClassDecl->isInvalidDecl() && 12541 !ClassDecl->hasIrrelevantDestructor() && 12542 !ClassDecl->isDependentContext() && 12543 ClassDecl->isParamDestroyedInCallee()) { 12544 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 12545 MarkFunctionReferenced(Param->getLocation(), Destructor); 12546 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 12547 } 12548 } 12549 } 12550 12551 // Parameters with the pass_object_size attribute only need to be marked 12552 // constant at function definitions. Because we lack information about 12553 // whether we're on a declaration or definition when we're instantiating the 12554 // attribute, we need to check for constness here. 12555 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 12556 if (!Param->getType().isConstQualified()) 12557 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 12558 << Attr->getSpelling() << 1; 12559 12560 // Check for parameter names shadowing fields from the class. 12561 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 12562 // The owning context for the parameter should be the function, but we 12563 // want to see if this function's declaration context is a record. 12564 DeclContext *DC = Param->getDeclContext(); 12565 if (DC && DC->isFunctionOrMethod()) { 12566 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 12567 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 12568 RD, /*DeclIsField*/ false); 12569 } 12570 } 12571 } 12572 12573 return HasInvalidParm; 12574 } 12575 12576 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr 12577 /// or MemberExpr. 12578 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign, 12579 ASTContext &Context) { 12580 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 12581 return Context.getDeclAlign(DRE->getDecl()); 12582 12583 if (const auto *ME = dyn_cast<MemberExpr>(E)) 12584 return Context.getDeclAlign(ME->getMemberDecl()); 12585 12586 return TypeAlign; 12587 } 12588 12589 /// CheckCastAlign - Implements -Wcast-align, which warns when a 12590 /// pointer cast increases the alignment requirements. 12591 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 12592 // This is actually a lot of work to potentially be doing on every 12593 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 12594 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 12595 return; 12596 12597 // Ignore dependent types. 12598 if (T->isDependentType() || Op->getType()->isDependentType()) 12599 return; 12600 12601 // Require that the destination be a pointer type. 12602 const PointerType *DestPtr = T->getAs<PointerType>(); 12603 if (!DestPtr) return; 12604 12605 // If the destination has alignment 1, we're done. 12606 QualType DestPointee = DestPtr->getPointeeType(); 12607 if (DestPointee->isIncompleteType()) return; 12608 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 12609 if (DestAlign.isOne()) return; 12610 12611 // Require that the source be a pointer type. 12612 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 12613 if (!SrcPtr) return; 12614 QualType SrcPointee = SrcPtr->getPointeeType(); 12615 12616 // Whitelist casts from cv void*. We already implicitly 12617 // whitelisted casts to cv void*, since they have alignment 1. 12618 // Also whitelist casts involving incomplete types, which implicitly 12619 // includes 'void'. 12620 if (SrcPointee->isIncompleteType()) return; 12621 12622 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); 12623 12624 if (auto *CE = dyn_cast<CastExpr>(Op)) { 12625 if (CE->getCastKind() == CK_ArrayToPointerDecay) 12626 SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context); 12627 } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) { 12628 if (UO->getOpcode() == UO_AddrOf) 12629 SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context); 12630 } 12631 12632 if (SrcAlign >= DestAlign) return; 12633 12634 Diag(TRange.getBegin(), diag::warn_cast_align) 12635 << Op->getType() << T 12636 << static_cast<unsigned>(SrcAlign.getQuantity()) 12637 << static_cast<unsigned>(DestAlign.getQuantity()) 12638 << TRange << Op->getSourceRange(); 12639 } 12640 12641 /// Check whether this array fits the idiom of a size-one tail padded 12642 /// array member of a struct. 12643 /// 12644 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 12645 /// commonly used to emulate flexible arrays in C89 code. 12646 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 12647 const NamedDecl *ND) { 12648 if (Size != 1 || !ND) return false; 12649 12650 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 12651 if (!FD) return false; 12652 12653 // Don't consider sizes resulting from macro expansions or template argument 12654 // substitution to form C89 tail-padded arrays. 12655 12656 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 12657 while (TInfo) { 12658 TypeLoc TL = TInfo->getTypeLoc(); 12659 // Look through typedefs. 12660 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 12661 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 12662 TInfo = TDL->getTypeSourceInfo(); 12663 continue; 12664 } 12665 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 12666 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 12667 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 12668 return false; 12669 } 12670 break; 12671 } 12672 12673 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 12674 if (!RD) return false; 12675 if (RD->isUnion()) return false; 12676 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 12677 if (!CRD->isStandardLayout()) return false; 12678 } 12679 12680 // See if this is the last field decl in the record. 12681 const Decl *D = FD; 12682 while ((D = D->getNextDeclInContext())) 12683 if (isa<FieldDecl>(D)) 12684 return false; 12685 return true; 12686 } 12687 12688 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 12689 const ArraySubscriptExpr *ASE, 12690 bool AllowOnePastEnd, bool IndexNegated) { 12691 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 12692 if (IndexExpr->isValueDependent()) 12693 return; 12694 12695 const Type *EffectiveType = 12696 BaseExpr->getType()->getPointeeOrArrayElementType(); 12697 BaseExpr = BaseExpr->IgnoreParenCasts(); 12698 const ConstantArrayType *ArrayTy = 12699 Context.getAsConstantArrayType(BaseExpr->getType()); 12700 12701 if (!ArrayTy) 12702 return; 12703 12704 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 12705 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 12706 return; 12707 12708 Expr::EvalResult Result; 12709 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 12710 return; 12711 12712 llvm::APSInt index = Result.Val.getInt(); 12713 if (IndexNegated) 12714 index = -index; 12715 12716 const NamedDecl *ND = nullptr; 12717 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 12718 ND = DRE->getDecl(); 12719 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 12720 ND = ME->getMemberDecl(); 12721 12722 if (index.isUnsigned() || !index.isNegative()) { 12723 // It is possible that the type of the base expression after 12724 // IgnoreParenCasts is incomplete, even though the type of the base 12725 // expression before IgnoreParenCasts is complete (see PR39746 for an 12726 // example). In this case we have no information about whether the array 12727 // access exceeds the array bounds. However we can still diagnose an array 12728 // access which precedes the array bounds. 12729 if (BaseType->isIncompleteType()) 12730 return; 12731 12732 llvm::APInt size = ArrayTy->getSize(); 12733 if (!size.isStrictlyPositive()) 12734 return; 12735 12736 if (BaseType != EffectiveType) { 12737 // Make sure we're comparing apples to apples when comparing index to size 12738 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 12739 uint64_t array_typesize = Context.getTypeSize(BaseType); 12740 // Handle ptrarith_typesize being zero, such as when casting to void* 12741 if (!ptrarith_typesize) ptrarith_typesize = 1; 12742 if (ptrarith_typesize != array_typesize) { 12743 // There's a cast to a different size type involved 12744 uint64_t ratio = array_typesize / ptrarith_typesize; 12745 // TODO: Be smarter about handling cases where array_typesize is not a 12746 // multiple of ptrarith_typesize 12747 if (ptrarith_typesize * ratio == array_typesize) 12748 size *= llvm::APInt(size.getBitWidth(), ratio); 12749 } 12750 } 12751 12752 if (size.getBitWidth() > index.getBitWidth()) 12753 index = index.zext(size.getBitWidth()); 12754 else if (size.getBitWidth() < index.getBitWidth()) 12755 size = size.zext(index.getBitWidth()); 12756 12757 // For array subscripting the index must be less than size, but for pointer 12758 // arithmetic also allow the index (offset) to be equal to size since 12759 // computing the next address after the end of the array is legal and 12760 // commonly done e.g. in C++ iterators and range-based for loops. 12761 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 12762 return; 12763 12764 // Also don't warn for arrays of size 1 which are members of some 12765 // structure. These are often used to approximate flexible arrays in C89 12766 // code. 12767 if (IsTailPaddedMemberArray(*this, size, ND)) 12768 return; 12769 12770 // Suppress the warning if the subscript expression (as identified by the 12771 // ']' location) and the index expression are both from macro expansions 12772 // within a system header. 12773 if (ASE) { 12774 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 12775 ASE->getRBracketLoc()); 12776 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 12777 SourceLocation IndexLoc = 12778 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 12779 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 12780 return; 12781 } 12782 } 12783 12784 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 12785 if (ASE) 12786 DiagID = diag::warn_array_index_exceeds_bounds; 12787 12788 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 12789 PDiag(DiagID) << index.toString(10, true) 12790 << size.toString(10, true) 12791 << (unsigned)size.getLimitedValue(~0U) 12792 << IndexExpr->getSourceRange()); 12793 } else { 12794 unsigned DiagID = diag::warn_array_index_precedes_bounds; 12795 if (!ASE) { 12796 DiagID = diag::warn_ptr_arith_precedes_bounds; 12797 if (index.isNegative()) index = -index; 12798 } 12799 12800 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 12801 PDiag(DiagID) << index.toString(10, true) 12802 << IndexExpr->getSourceRange()); 12803 } 12804 12805 if (!ND) { 12806 // Try harder to find a NamedDecl to point at in the note. 12807 while (const ArraySubscriptExpr *ASE = 12808 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 12809 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 12810 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 12811 ND = DRE->getDecl(); 12812 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 12813 ND = ME->getMemberDecl(); 12814 } 12815 12816 if (ND) 12817 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 12818 PDiag(diag::note_array_index_out_of_bounds) 12819 << ND->getDeclName()); 12820 } 12821 12822 void Sema::CheckArrayAccess(const Expr *expr) { 12823 int AllowOnePastEnd = 0; 12824 while (expr) { 12825 expr = expr->IgnoreParenImpCasts(); 12826 switch (expr->getStmtClass()) { 12827 case Stmt::ArraySubscriptExprClass: { 12828 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 12829 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 12830 AllowOnePastEnd > 0); 12831 expr = ASE->getBase(); 12832 break; 12833 } 12834 case Stmt::MemberExprClass: { 12835 expr = cast<MemberExpr>(expr)->getBase(); 12836 break; 12837 } 12838 case Stmt::OMPArraySectionExprClass: { 12839 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 12840 if (ASE->getLowerBound()) 12841 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 12842 /*ASE=*/nullptr, AllowOnePastEnd > 0); 12843 return; 12844 } 12845 case Stmt::UnaryOperatorClass: { 12846 // Only unwrap the * and & unary operators 12847 const UnaryOperator *UO = cast<UnaryOperator>(expr); 12848 expr = UO->getSubExpr(); 12849 switch (UO->getOpcode()) { 12850 case UO_AddrOf: 12851 AllowOnePastEnd++; 12852 break; 12853 case UO_Deref: 12854 AllowOnePastEnd--; 12855 break; 12856 default: 12857 return; 12858 } 12859 break; 12860 } 12861 case Stmt::ConditionalOperatorClass: { 12862 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 12863 if (const Expr *lhs = cond->getLHS()) 12864 CheckArrayAccess(lhs); 12865 if (const Expr *rhs = cond->getRHS()) 12866 CheckArrayAccess(rhs); 12867 return; 12868 } 12869 case Stmt::CXXOperatorCallExprClass: { 12870 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 12871 for (const auto *Arg : OCE->arguments()) 12872 CheckArrayAccess(Arg); 12873 return; 12874 } 12875 default: 12876 return; 12877 } 12878 } 12879 } 12880 12881 //===--- CHECK: Objective-C retain cycles ----------------------------------// 12882 12883 namespace { 12884 12885 struct RetainCycleOwner { 12886 VarDecl *Variable = nullptr; 12887 SourceRange Range; 12888 SourceLocation Loc; 12889 bool Indirect = false; 12890 12891 RetainCycleOwner() = default; 12892 12893 void setLocsFrom(Expr *e) { 12894 Loc = e->getExprLoc(); 12895 Range = e->getSourceRange(); 12896 } 12897 }; 12898 12899 } // namespace 12900 12901 /// Consider whether capturing the given variable can possibly lead to 12902 /// a retain cycle. 12903 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 12904 // In ARC, it's captured strongly iff the variable has __strong 12905 // lifetime. In MRR, it's captured strongly if the variable is 12906 // __block and has an appropriate type. 12907 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 12908 return false; 12909 12910 owner.Variable = var; 12911 if (ref) 12912 owner.setLocsFrom(ref); 12913 return true; 12914 } 12915 12916 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 12917 while (true) { 12918 e = e->IgnoreParens(); 12919 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 12920 switch (cast->getCastKind()) { 12921 case CK_BitCast: 12922 case CK_LValueBitCast: 12923 case CK_LValueToRValue: 12924 case CK_ARCReclaimReturnedObject: 12925 e = cast->getSubExpr(); 12926 continue; 12927 12928 default: 12929 return false; 12930 } 12931 } 12932 12933 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 12934 ObjCIvarDecl *ivar = ref->getDecl(); 12935 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 12936 return false; 12937 12938 // Try to find a retain cycle in the base. 12939 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 12940 return false; 12941 12942 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 12943 owner.Indirect = true; 12944 return true; 12945 } 12946 12947 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 12948 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 12949 if (!var) return false; 12950 return considerVariable(var, ref, owner); 12951 } 12952 12953 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 12954 if (member->isArrow()) return false; 12955 12956 // Don't count this as an indirect ownership. 12957 e = member->getBase(); 12958 continue; 12959 } 12960 12961 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 12962 // Only pay attention to pseudo-objects on property references. 12963 ObjCPropertyRefExpr *pre 12964 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 12965 ->IgnoreParens()); 12966 if (!pre) return false; 12967 if (pre->isImplicitProperty()) return false; 12968 ObjCPropertyDecl *property = pre->getExplicitProperty(); 12969 if (!property->isRetaining() && 12970 !(property->getPropertyIvarDecl() && 12971 property->getPropertyIvarDecl()->getType() 12972 .getObjCLifetime() == Qualifiers::OCL_Strong)) 12973 return false; 12974 12975 owner.Indirect = true; 12976 if (pre->isSuperReceiver()) { 12977 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 12978 if (!owner.Variable) 12979 return false; 12980 owner.Loc = pre->getLocation(); 12981 owner.Range = pre->getSourceRange(); 12982 return true; 12983 } 12984 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 12985 ->getSourceExpr()); 12986 continue; 12987 } 12988 12989 // Array ivars? 12990 12991 return false; 12992 } 12993 } 12994 12995 namespace { 12996 12997 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 12998 ASTContext &Context; 12999 VarDecl *Variable; 13000 Expr *Capturer = nullptr; 13001 bool VarWillBeReased = false; 13002 13003 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 13004 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 13005 Context(Context), Variable(variable) {} 13006 13007 void VisitDeclRefExpr(DeclRefExpr *ref) { 13008 if (ref->getDecl() == Variable && !Capturer) 13009 Capturer = ref; 13010 } 13011 13012 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 13013 if (Capturer) return; 13014 Visit(ref->getBase()); 13015 if (Capturer && ref->isFreeIvar()) 13016 Capturer = ref; 13017 } 13018 13019 void VisitBlockExpr(BlockExpr *block) { 13020 // Look inside nested blocks 13021 if (block->getBlockDecl()->capturesVariable(Variable)) 13022 Visit(block->getBlockDecl()->getBody()); 13023 } 13024 13025 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 13026 if (Capturer) return; 13027 if (OVE->getSourceExpr()) 13028 Visit(OVE->getSourceExpr()); 13029 } 13030 13031 void VisitBinaryOperator(BinaryOperator *BinOp) { 13032 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 13033 return; 13034 Expr *LHS = BinOp->getLHS(); 13035 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 13036 if (DRE->getDecl() != Variable) 13037 return; 13038 if (Expr *RHS = BinOp->getRHS()) { 13039 RHS = RHS->IgnoreParenCasts(); 13040 llvm::APSInt Value; 13041 VarWillBeReased = 13042 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); 13043 } 13044 } 13045 } 13046 }; 13047 13048 } // namespace 13049 13050 /// Check whether the given argument is a block which captures a 13051 /// variable. 13052 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 13053 assert(owner.Variable && owner.Loc.isValid()); 13054 13055 e = e->IgnoreParenCasts(); 13056 13057 // Look through [^{...} copy] and Block_copy(^{...}). 13058 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 13059 Selector Cmd = ME->getSelector(); 13060 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 13061 e = ME->getInstanceReceiver(); 13062 if (!e) 13063 return nullptr; 13064 e = e->IgnoreParenCasts(); 13065 } 13066 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 13067 if (CE->getNumArgs() == 1) { 13068 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 13069 if (Fn) { 13070 const IdentifierInfo *FnI = Fn->getIdentifier(); 13071 if (FnI && FnI->isStr("_Block_copy")) { 13072 e = CE->getArg(0)->IgnoreParenCasts(); 13073 } 13074 } 13075 } 13076 } 13077 13078 BlockExpr *block = dyn_cast<BlockExpr>(e); 13079 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 13080 return nullptr; 13081 13082 FindCaptureVisitor visitor(S.Context, owner.Variable); 13083 visitor.Visit(block->getBlockDecl()->getBody()); 13084 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 13085 } 13086 13087 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 13088 RetainCycleOwner &owner) { 13089 assert(capturer); 13090 assert(owner.Variable && owner.Loc.isValid()); 13091 13092 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 13093 << owner.Variable << capturer->getSourceRange(); 13094 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 13095 << owner.Indirect << owner.Range; 13096 } 13097 13098 /// Check for a keyword selector that starts with the word 'add' or 13099 /// 'set'. 13100 static bool isSetterLikeSelector(Selector sel) { 13101 if (sel.isUnarySelector()) return false; 13102 13103 StringRef str = sel.getNameForSlot(0); 13104 while (!str.empty() && str.front() == '_') str = str.substr(1); 13105 if (str.startswith("set")) 13106 str = str.substr(3); 13107 else if (str.startswith("add")) { 13108 // Specially whitelist 'addOperationWithBlock:'. 13109 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 13110 return false; 13111 str = str.substr(3); 13112 } 13113 else 13114 return false; 13115 13116 if (str.empty()) return true; 13117 return !isLowercase(str.front()); 13118 } 13119 13120 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 13121 ObjCMessageExpr *Message) { 13122 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 13123 Message->getReceiverInterface(), 13124 NSAPI::ClassId_NSMutableArray); 13125 if (!IsMutableArray) { 13126 return None; 13127 } 13128 13129 Selector Sel = Message->getSelector(); 13130 13131 Optional<NSAPI::NSArrayMethodKind> MKOpt = 13132 S.NSAPIObj->getNSArrayMethodKind(Sel); 13133 if (!MKOpt) { 13134 return None; 13135 } 13136 13137 NSAPI::NSArrayMethodKind MK = *MKOpt; 13138 13139 switch (MK) { 13140 case NSAPI::NSMutableArr_addObject: 13141 case NSAPI::NSMutableArr_insertObjectAtIndex: 13142 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 13143 return 0; 13144 case NSAPI::NSMutableArr_replaceObjectAtIndex: 13145 return 1; 13146 13147 default: 13148 return None; 13149 } 13150 13151 return None; 13152 } 13153 13154 static 13155 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 13156 ObjCMessageExpr *Message) { 13157 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 13158 Message->getReceiverInterface(), 13159 NSAPI::ClassId_NSMutableDictionary); 13160 if (!IsMutableDictionary) { 13161 return None; 13162 } 13163 13164 Selector Sel = Message->getSelector(); 13165 13166 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 13167 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 13168 if (!MKOpt) { 13169 return None; 13170 } 13171 13172 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 13173 13174 switch (MK) { 13175 case NSAPI::NSMutableDict_setObjectForKey: 13176 case NSAPI::NSMutableDict_setValueForKey: 13177 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 13178 return 0; 13179 13180 default: 13181 return None; 13182 } 13183 13184 return None; 13185 } 13186 13187 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 13188 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 13189 Message->getReceiverInterface(), 13190 NSAPI::ClassId_NSMutableSet); 13191 13192 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 13193 Message->getReceiverInterface(), 13194 NSAPI::ClassId_NSMutableOrderedSet); 13195 if (!IsMutableSet && !IsMutableOrderedSet) { 13196 return None; 13197 } 13198 13199 Selector Sel = Message->getSelector(); 13200 13201 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 13202 if (!MKOpt) { 13203 return None; 13204 } 13205 13206 NSAPI::NSSetMethodKind MK = *MKOpt; 13207 13208 switch (MK) { 13209 case NSAPI::NSMutableSet_addObject: 13210 case NSAPI::NSOrderedSet_setObjectAtIndex: 13211 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 13212 case NSAPI::NSOrderedSet_insertObjectAtIndex: 13213 return 0; 13214 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 13215 return 1; 13216 } 13217 13218 return None; 13219 } 13220 13221 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 13222 if (!Message->isInstanceMessage()) { 13223 return; 13224 } 13225 13226 Optional<int> ArgOpt; 13227 13228 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 13229 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 13230 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 13231 return; 13232 } 13233 13234 int ArgIndex = *ArgOpt; 13235 13236 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 13237 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 13238 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 13239 } 13240 13241 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 13242 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13243 if (ArgRE->isObjCSelfExpr()) { 13244 Diag(Message->getSourceRange().getBegin(), 13245 diag::warn_objc_circular_container) 13246 << ArgRE->getDecl() << StringRef("'super'"); 13247 } 13248 } 13249 } else { 13250 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 13251 13252 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 13253 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 13254 } 13255 13256 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 13257 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13258 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 13259 ValueDecl *Decl = ReceiverRE->getDecl(); 13260 Diag(Message->getSourceRange().getBegin(), 13261 diag::warn_objc_circular_container) 13262 << Decl << Decl; 13263 if (!ArgRE->isObjCSelfExpr()) { 13264 Diag(Decl->getLocation(), 13265 diag::note_objc_circular_container_declared_here) 13266 << Decl; 13267 } 13268 } 13269 } 13270 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 13271 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 13272 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 13273 ObjCIvarDecl *Decl = IvarRE->getDecl(); 13274 Diag(Message->getSourceRange().getBegin(), 13275 diag::warn_objc_circular_container) 13276 << Decl << Decl; 13277 Diag(Decl->getLocation(), 13278 diag::note_objc_circular_container_declared_here) 13279 << Decl; 13280 } 13281 } 13282 } 13283 } 13284 } 13285 13286 /// Check a message send to see if it's likely to cause a retain cycle. 13287 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 13288 // Only check instance methods whose selector looks like a setter. 13289 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 13290 return; 13291 13292 // Try to find a variable that the receiver is strongly owned by. 13293 RetainCycleOwner owner; 13294 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 13295 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 13296 return; 13297 } else { 13298 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 13299 owner.Variable = getCurMethodDecl()->getSelfDecl(); 13300 owner.Loc = msg->getSuperLoc(); 13301 owner.Range = msg->getSuperLoc(); 13302 } 13303 13304 // Check whether the receiver is captured by any of the arguments. 13305 const ObjCMethodDecl *MD = msg->getMethodDecl(); 13306 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 13307 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 13308 // noescape blocks should not be retained by the method. 13309 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 13310 continue; 13311 return diagnoseRetainCycle(*this, capturer, owner); 13312 } 13313 } 13314 } 13315 13316 /// Check a property assign to see if it's likely to cause a retain cycle. 13317 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 13318 RetainCycleOwner owner; 13319 if (!findRetainCycleOwner(*this, receiver, owner)) 13320 return; 13321 13322 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 13323 diagnoseRetainCycle(*this, capturer, owner); 13324 } 13325 13326 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 13327 RetainCycleOwner Owner; 13328 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 13329 return; 13330 13331 // Because we don't have an expression for the variable, we have to set the 13332 // location explicitly here. 13333 Owner.Loc = Var->getLocation(); 13334 Owner.Range = Var->getSourceRange(); 13335 13336 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 13337 diagnoseRetainCycle(*this, Capturer, Owner); 13338 } 13339 13340 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 13341 Expr *RHS, bool isProperty) { 13342 // Check if RHS is an Objective-C object literal, which also can get 13343 // immediately zapped in a weak reference. Note that we explicitly 13344 // allow ObjCStringLiterals, since those are designed to never really die. 13345 RHS = RHS->IgnoreParenImpCasts(); 13346 13347 // This enum needs to match with the 'select' in 13348 // warn_objc_arc_literal_assign (off-by-1). 13349 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 13350 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 13351 return false; 13352 13353 S.Diag(Loc, diag::warn_arc_literal_assign) 13354 << (unsigned) Kind 13355 << (isProperty ? 0 : 1) 13356 << RHS->getSourceRange(); 13357 13358 return true; 13359 } 13360 13361 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 13362 Qualifiers::ObjCLifetime LT, 13363 Expr *RHS, bool isProperty) { 13364 // Strip off any implicit cast added to get to the one ARC-specific. 13365 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13366 if (cast->getCastKind() == CK_ARCConsumeObject) { 13367 S.Diag(Loc, diag::warn_arc_retained_assign) 13368 << (LT == Qualifiers::OCL_ExplicitNone) 13369 << (isProperty ? 0 : 1) 13370 << RHS->getSourceRange(); 13371 return true; 13372 } 13373 RHS = cast->getSubExpr(); 13374 } 13375 13376 if (LT == Qualifiers::OCL_Weak && 13377 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 13378 return true; 13379 13380 return false; 13381 } 13382 13383 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 13384 QualType LHS, Expr *RHS) { 13385 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 13386 13387 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 13388 return false; 13389 13390 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 13391 return true; 13392 13393 return false; 13394 } 13395 13396 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 13397 Expr *LHS, Expr *RHS) { 13398 QualType LHSType; 13399 // PropertyRef on LHS type need be directly obtained from 13400 // its declaration as it has a PseudoType. 13401 ObjCPropertyRefExpr *PRE 13402 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 13403 if (PRE && !PRE->isImplicitProperty()) { 13404 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13405 if (PD) 13406 LHSType = PD->getType(); 13407 } 13408 13409 if (LHSType.isNull()) 13410 LHSType = LHS->getType(); 13411 13412 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 13413 13414 if (LT == Qualifiers::OCL_Weak) { 13415 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 13416 getCurFunction()->markSafeWeakUse(LHS); 13417 } 13418 13419 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 13420 return; 13421 13422 // FIXME. Check for other life times. 13423 if (LT != Qualifiers::OCL_None) 13424 return; 13425 13426 if (PRE) { 13427 if (PRE->isImplicitProperty()) 13428 return; 13429 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13430 if (!PD) 13431 return; 13432 13433 unsigned Attributes = PD->getPropertyAttributes(); 13434 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) { 13435 // when 'assign' attribute was not explicitly specified 13436 // by user, ignore it and rely on property type itself 13437 // for lifetime info. 13438 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 13439 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) && 13440 LHSType->isObjCRetainableType()) 13441 return; 13442 13443 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13444 if (cast->getCastKind() == CK_ARCConsumeObject) { 13445 Diag(Loc, diag::warn_arc_retained_property_assign) 13446 << RHS->getSourceRange(); 13447 return; 13448 } 13449 RHS = cast->getSubExpr(); 13450 } 13451 } 13452 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) { 13453 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 13454 return; 13455 } 13456 } 13457 } 13458 13459 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 13460 13461 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 13462 SourceLocation StmtLoc, 13463 const NullStmt *Body) { 13464 // Do not warn if the body is a macro that expands to nothing, e.g: 13465 // 13466 // #define CALL(x) 13467 // if (condition) 13468 // CALL(0); 13469 if (Body->hasLeadingEmptyMacro()) 13470 return false; 13471 13472 // Get line numbers of statement and body. 13473 bool StmtLineInvalid; 13474 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 13475 &StmtLineInvalid); 13476 if (StmtLineInvalid) 13477 return false; 13478 13479 bool BodyLineInvalid; 13480 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 13481 &BodyLineInvalid); 13482 if (BodyLineInvalid) 13483 return false; 13484 13485 // Warn if null statement and body are on the same line. 13486 if (StmtLine != BodyLine) 13487 return false; 13488 13489 return true; 13490 } 13491 13492 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 13493 const Stmt *Body, 13494 unsigned DiagID) { 13495 // Since this is a syntactic check, don't emit diagnostic for template 13496 // instantiations, this just adds noise. 13497 if (CurrentInstantiationScope) 13498 return; 13499 13500 // The body should be a null statement. 13501 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 13502 if (!NBody) 13503 return; 13504 13505 // Do the usual checks. 13506 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 13507 return; 13508 13509 Diag(NBody->getSemiLoc(), DiagID); 13510 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 13511 } 13512 13513 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 13514 const Stmt *PossibleBody) { 13515 assert(!CurrentInstantiationScope); // Ensured by caller 13516 13517 SourceLocation StmtLoc; 13518 const Stmt *Body; 13519 unsigned DiagID; 13520 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 13521 StmtLoc = FS->getRParenLoc(); 13522 Body = FS->getBody(); 13523 DiagID = diag::warn_empty_for_body; 13524 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 13525 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 13526 Body = WS->getBody(); 13527 DiagID = diag::warn_empty_while_body; 13528 } else 13529 return; // Neither `for' nor `while'. 13530 13531 // The body should be a null statement. 13532 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 13533 if (!NBody) 13534 return; 13535 13536 // Skip expensive checks if diagnostic is disabled. 13537 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 13538 return; 13539 13540 // Do the usual checks. 13541 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 13542 return; 13543 13544 // `for(...);' and `while(...);' are popular idioms, so in order to keep 13545 // noise level low, emit diagnostics only if for/while is followed by a 13546 // CompoundStmt, e.g.: 13547 // for (int i = 0; i < n; i++); 13548 // { 13549 // a(i); 13550 // } 13551 // or if for/while is followed by a statement with more indentation 13552 // than for/while itself: 13553 // for (int i = 0; i < n; i++); 13554 // a(i); 13555 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 13556 if (!ProbableTypo) { 13557 bool BodyColInvalid; 13558 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 13559 PossibleBody->getBeginLoc(), &BodyColInvalid); 13560 if (BodyColInvalid) 13561 return; 13562 13563 bool StmtColInvalid; 13564 unsigned StmtCol = 13565 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 13566 if (StmtColInvalid) 13567 return; 13568 13569 if (BodyCol > StmtCol) 13570 ProbableTypo = true; 13571 } 13572 13573 if (ProbableTypo) { 13574 Diag(NBody->getSemiLoc(), DiagID); 13575 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 13576 } 13577 } 13578 13579 //===--- CHECK: Warn on self move with std::move. -------------------------===// 13580 13581 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 13582 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 13583 SourceLocation OpLoc) { 13584 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 13585 return; 13586 13587 if (inTemplateInstantiation()) 13588 return; 13589 13590 // Strip parens and casts away. 13591 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 13592 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 13593 13594 // Check for a call expression 13595 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 13596 if (!CE || CE->getNumArgs() != 1) 13597 return; 13598 13599 // Check for a call to std::move 13600 if (!CE->isCallToStdMove()) 13601 return; 13602 13603 // Get argument from std::move 13604 RHSExpr = CE->getArg(0); 13605 13606 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 13607 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 13608 13609 // Two DeclRefExpr's, check that the decls are the same. 13610 if (LHSDeclRef && RHSDeclRef) { 13611 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 13612 return; 13613 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 13614 RHSDeclRef->getDecl()->getCanonicalDecl()) 13615 return; 13616 13617 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 13618 << LHSExpr->getSourceRange() 13619 << RHSExpr->getSourceRange(); 13620 return; 13621 } 13622 13623 // Member variables require a different approach to check for self moves. 13624 // MemberExpr's are the same if every nested MemberExpr refers to the same 13625 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 13626 // the base Expr's are CXXThisExpr's. 13627 const Expr *LHSBase = LHSExpr; 13628 const Expr *RHSBase = RHSExpr; 13629 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 13630 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 13631 if (!LHSME || !RHSME) 13632 return; 13633 13634 while (LHSME && RHSME) { 13635 if (LHSME->getMemberDecl()->getCanonicalDecl() != 13636 RHSME->getMemberDecl()->getCanonicalDecl()) 13637 return; 13638 13639 LHSBase = LHSME->getBase(); 13640 RHSBase = RHSME->getBase(); 13641 LHSME = dyn_cast<MemberExpr>(LHSBase); 13642 RHSME = dyn_cast<MemberExpr>(RHSBase); 13643 } 13644 13645 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 13646 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 13647 if (LHSDeclRef && RHSDeclRef) { 13648 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 13649 return; 13650 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 13651 RHSDeclRef->getDecl()->getCanonicalDecl()) 13652 return; 13653 13654 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 13655 << LHSExpr->getSourceRange() 13656 << RHSExpr->getSourceRange(); 13657 return; 13658 } 13659 13660 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 13661 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 13662 << LHSExpr->getSourceRange() 13663 << RHSExpr->getSourceRange(); 13664 } 13665 13666 //===--- Layout compatibility ----------------------------------------------// 13667 13668 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 13669 13670 /// Check if two enumeration types are layout-compatible. 13671 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 13672 // C++11 [dcl.enum] p8: 13673 // Two enumeration types are layout-compatible if they have the same 13674 // underlying type. 13675 return ED1->isComplete() && ED2->isComplete() && 13676 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 13677 } 13678 13679 /// Check if two fields are layout-compatible. 13680 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 13681 FieldDecl *Field2) { 13682 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 13683 return false; 13684 13685 if (Field1->isBitField() != Field2->isBitField()) 13686 return false; 13687 13688 if (Field1->isBitField()) { 13689 // Make sure that the bit-fields are the same length. 13690 unsigned Bits1 = Field1->getBitWidthValue(C); 13691 unsigned Bits2 = Field2->getBitWidthValue(C); 13692 13693 if (Bits1 != Bits2) 13694 return false; 13695 } 13696 13697 return true; 13698 } 13699 13700 /// Check if two standard-layout structs are layout-compatible. 13701 /// (C++11 [class.mem] p17) 13702 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 13703 RecordDecl *RD2) { 13704 // If both records are C++ classes, check that base classes match. 13705 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 13706 // If one of records is a CXXRecordDecl we are in C++ mode, 13707 // thus the other one is a CXXRecordDecl, too. 13708 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 13709 // Check number of base classes. 13710 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 13711 return false; 13712 13713 // Check the base classes. 13714 for (CXXRecordDecl::base_class_const_iterator 13715 Base1 = D1CXX->bases_begin(), 13716 BaseEnd1 = D1CXX->bases_end(), 13717 Base2 = D2CXX->bases_begin(); 13718 Base1 != BaseEnd1; 13719 ++Base1, ++Base2) { 13720 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 13721 return false; 13722 } 13723 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 13724 // If only RD2 is a C++ class, it should have zero base classes. 13725 if (D2CXX->getNumBases() > 0) 13726 return false; 13727 } 13728 13729 // Check the fields. 13730 RecordDecl::field_iterator Field2 = RD2->field_begin(), 13731 Field2End = RD2->field_end(), 13732 Field1 = RD1->field_begin(), 13733 Field1End = RD1->field_end(); 13734 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 13735 if (!isLayoutCompatible(C, *Field1, *Field2)) 13736 return false; 13737 } 13738 if (Field1 != Field1End || Field2 != Field2End) 13739 return false; 13740 13741 return true; 13742 } 13743 13744 /// Check if two standard-layout unions are layout-compatible. 13745 /// (C++11 [class.mem] p18) 13746 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 13747 RecordDecl *RD2) { 13748 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 13749 for (auto *Field2 : RD2->fields()) 13750 UnmatchedFields.insert(Field2); 13751 13752 for (auto *Field1 : RD1->fields()) { 13753 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 13754 I = UnmatchedFields.begin(), 13755 E = UnmatchedFields.end(); 13756 13757 for ( ; I != E; ++I) { 13758 if (isLayoutCompatible(C, Field1, *I)) { 13759 bool Result = UnmatchedFields.erase(*I); 13760 (void) Result; 13761 assert(Result); 13762 break; 13763 } 13764 } 13765 if (I == E) 13766 return false; 13767 } 13768 13769 return UnmatchedFields.empty(); 13770 } 13771 13772 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 13773 RecordDecl *RD2) { 13774 if (RD1->isUnion() != RD2->isUnion()) 13775 return false; 13776 13777 if (RD1->isUnion()) 13778 return isLayoutCompatibleUnion(C, RD1, RD2); 13779 else 13780 return isLayoutCompatibleStruct(C, RD1, RD2); 13781 } 13782 13783 /// Check if two types are layout-compatible in C++11 sense. 13784 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 13785 if (T1.isNull() || T2.isNull()) 13786 return false; 13787 13788 // C++11 [basic.types] p11: 13789 // If two types T1 and T2 are the same type, then T1 and T2 are 13790 // layout-compatible types. 13791 if (C.hasSameType(T1, T2)) 13792 return true; 13793 13794 T1 = T1.getCanonicalType().getUnqualifiedType(); 13795 T2 = T2.getCanonicalType().getUnqualifiedType(); 13796 13797 const Type::TypeClass TC1 = T1->getTypeClass(); 13798 const Type::TypeClass TC2 = T2->getTypeClass(); 13799 13800 if (TC1 != TC2) 13801 return false; 13802 13803 if (TC1 == Type::Enum) { 13804 return isLayoutCompatible(C, 13805 cast<EnumType>(T1)->getDecl(), 13806 cast<EnumType>(T2)->getDecl()); 13807 } else if (TC1 == Type::Record) { 13808 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 13809 return false; 13810 13811 return isLayoutCompatible(C, 13812 cast<RecordType>(T1)->getDecl(), 13813 cast<RecordType>(T2)->getDecl()); 13814 } 13815 13816 return false; 13817 } 13818 13819 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 13820 13821 /// Given a type tag expression find the type tag itself. 13822 /// 13823 /// \param TypeExpr Type tag expression, as it appears in user's code. 13824 /// 13825 /// \param VD Declaration of an identifier that appears in a type tag. 13826 /// 13827 /// \param MagicValue Type tag magic value. 13828 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 13829 const ValueDecl **VD, uint64_t *MagicValue) { 13830 while(true) { 13831 if (!TypeExpr) 13832 return false; 13833 13834 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 13835 13836 switch (TypeExpr->getStmtClass()) { 13837 case Stmt::UnaryOperatorClass: { 13838 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 13839 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 13840 TypeExpr = UO->getSubExpr(); 13841 continue; 13842 } 13843 return false; 13844 } 13845 13846 case Stmt::DeclRefExprClass: { 13847 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 13848 *VD = DRE->getDecl(); 13849 return true; 13850 } 13851 13852 case Stmt::IntegerLiteralClass: { 13853 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 13854 llvm::APInt MagicValueAPInt = IL->getValue(); 13855 if (MagicValueAPInt.getActiveBits() <= 64) { 13856 *MagicValue = MagicValueAPInt.getZExtValue(); 13857 return true; 13858 } else 13859 return false; 13860 } 13861 13862 case Stmt::BinaryConditionalOperatorClass: 13863 case Stmt::ConditionalOperatorClass: { 13864 const AbstractConditionalOperator *ACO = 13865 cast<AbstractConditionalOperator>(TypeExpr); 13866 bool Result; 13867 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) { 13868 if (Result) 13869 TypeExpr = ACO->getTrueExpr(); 13870 else 13871 TypeExpr = ACO->getFalseExpr(); 13872 continue; 13873 } 13874 return false; 13875 } 13876 13877 case Stmt::BinaryOperatorClass: { 13878 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 13879 if (BO->getOpcode() == BO_Comma) { 13880 TypeExpr = BO->getRHS(); 13881 continue; 13882 } 13883 return false; 13884 } 13885 13886 default: 13887 return false; 13888 } 13889 } 13890 } 13891 13892 /// Retrieve the C type corresponding to type tag TypeExpr. 13893 /// 13894 /// \param TypeExpr Expression that specifies a type tag. 13895 /// 13896 /// \param MagicValues Registered magic values. 13897 /// 13898 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 13899 /// kind. 13900 /// 13901 /// \param TypeInfo Information about the corresponding C type. 13902 /// 13903 /// \returns true if the corresponding C type was found. 13904 static bool GetMatchingCType( 13905 const IdentifierInfo *ArgumentKind, 13906 const Expr *TypeExpr, const ASTContext &Ctx, 13907 const llvm::DenseMap<Sema::TypeTagMagicValue, 13908 Sema::TypeTagData> *MagicValues, 13909 bool &FoundWrongKind, 13910 Sema::TypeTagData &TypeInfo) { 13911 FoundWrongKind = false; 13912 13913 // Variable declaration that has type_tag_for_datatype attribute. 13914 const ValueDecl *VD = nullptr; 13915 13916 uint64_t MagicValue; 13917 13918 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue)) 13919 return false; 13920 13921 if (VD) { 13922 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 13923 if (I->getArgumentKind() != ArgumentKind) { 13924 FoundWrongKind = true; 13925 return false; 13926 } 13927 TypeInfo.Type = I->getMatchingCType(); 13928 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 13929 TypeInfo.MustBeNull = I->getMustBeNull(); 13930 return true; 13931 } 13932 return false; 13933 } 13934 13935 if (!MagicValues) 13936 return false; 13937 13938 llvm::DenseMap<Sema::TypeTagMagicValue, 13939 Sema::TypeTagData>::const_iterator I = 13940 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 13941 if (I == MagicValues->end()) 13942 return false; 13943 13944 TypeInfo = I->second; 13945 return true; 13946 } 13947 13948 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 13949 uint64_t MagicValue, QualType Type, 13950 bool LayoutCompatible, 13951 bool MustBeNull) { 13952 if (!TypeTagForDatatypeMagicValues) 13953 TypeTagForDatatypeMagicValues.reset( 13954 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 13955 13956 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 13957 (*TypeTagForDatatypeMagicValues)[Magic] = 13958 TypeTagData(Type, LayoutCompatible, MustBeNull); 13959 } 13960 13961 static bool IsSameCharType(QualType T1, QualType T2) { 13962 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 13963 if (!BT1) 13964 return false; 13965 13966 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 13967 if (!BT2) 13968 return false; 13969 13970 BuiltinType::Kind T1Kind = BT1->getKind(); 13971 BuiltinType::Kind T2Kind = BT2->getKind(); 13972 13973 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 13974 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 13975 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 13976 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 13977 } 13978 13979 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 13980 const ArrayRef<const Expr *> ExprArgs, 13981 SourceLocation CallSiteLoc) { 13982 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 13983 bool IsPointerAttr = Attr->getIsPointer(); 13984 13985 // Retrieve the argument representing the 'type_tag'. 13986 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 13987 if (TypeTagIdxAST >= ExprArgs.size()) { 13988 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 13989 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 13990 return; 13991 } 13992 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 13993 bool FoundWrongKind; 13994 TypeTagData TypeInfo; 13995 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 13996 TypeTagForDatatypeMagicValues.get(), 13997 FoundWrongKind, TypeInfo)) { 13998 if (FoundWrongKind) 13999 Diag(TypeTagExpr->getExprLoc(), 14000 diag::warn_type_tag_for_datatype_wrong_kind) 14001 << TypeTagExpr->getSourceRange(); 14002 return; 14003 } 14004 14005 // Retrieve the argument representing the 'arg_idx'. 14006 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 14007 if (ArgumentIdxAST >= ExprArgs.size()) { 14008 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 14009 << 1 << Attr->getArgumentIdx().getSourceIndex(); 14010 return; 14011 } 14012 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 14013 if (IsPointerAttr) { 14014 // Skip implicit cast of pointer to `void *' (as a function argument). 14015 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 14016 if (ICE->getType()->isVoidPointerType() && 14017 ICE->getCastKind() == CK_BitCast) 14018 ArgumentExpr = ICE->getSubExpr(); 14019 } 14020 QualType ArgumentType = ArgumentExpr->getType(); 14021 14022 // Passing a `void*' pointer shouldn't trigger a warning. 14023 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 14024 return; 14025 14026 if (TypeInfo.MustBeNull) { 14027 // Type tag with matching void type requires a null pointer. 14028 if (!ArgumentExpr->isNullPointerConstant(Context, 14029 Expr::NPC_ValueDependentIsNotNull)) { 14030 Diag(ArgumentExpr->getExprLoc(), 14031 diag::warn_type_safety_null_pointer_required) 14032 << ArgumentKind->getName() 14033 << ArgumentExpr->getSourceRange() 14034 << TypeTagExpr->getSourceRange(); 14035 } 14036 return; 14037 } 14038 14039 QualType RequiredType = TypeInfo.Type; 14040 if (IsPointerAttr) 14041 RequiredType = Context.getPointerType(RequiredType); 14042 14043 bool mismatch = false; 14044 if (!TypeInfo.LayoutCompatible) { 14045 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 14046 14047 // C++11 [basic.fundamental] p1: 14048 // Plain char, signed char, and unsigned char are three distinct types. 14049 // 14050 // But we treat plain `char' as equivalent to `signed char' or `unsigned 14051 // char' depending on the current char signedness mode. 14052 if (mismatch) 14053 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 14054 RequiredType->getPointeeType())) || 14055 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 14056 mismatch = false; 14057 } else 14058 if (IsPointerAttr) 14059 mismatch = !isLayoutCompatible(Context, 14060 ArgumentType->getPointeeType(), 14061 RequiredType->getPointeeType()); 14062 else 14063 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 14064 14065 if (mismatch) 14066 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 14067 << ArgumentType << ArgumentKind 14068 << TypeInfo.LayoutCompatible << RequiredType 14069 << ArgumentExpr->getSourceRange() 14070 << TypeTagExpr->getSourceRange(); 14071 } 14072 14073 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 14074 CharUnits Alignment) { 14075 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 14076 } 14077 14078 void Sema::DiagnoseMisalignedMembers() { 14079 for (MisalignedMember &m : MisalignedMembers) { 14080 const NamedDecl *ND = m.RD; 14081 if (ND->getName().empty()) { 14082 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 14083 ND = TD; 14084 } 14085 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 14086 << m.MD << ND << m.E->getSourceRange(); 14087 } 14088 MisalignedMembers.clear(); 14089 } 14090 14091 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 14092 E = E->IgnoreParens(); 14093 if (!T->isPointerType() && !T->isIntegerType()) 14094 return; 14095 if (isa<UnaryOperator>(E) && 14096 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 14097 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 14098 if (isa<MemberExpr>(Op)) { 14099 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 14100 if (MA != MisalignedMembers.end() && 14101 (T->isIntegerType() || 14102 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 14103 Context.getTypeAlignInChars( 14104 T->getPointeeType()) <= MA->Alignment)))) 14105 MisalignedMembers.erase(MA); 14106 } 14107 } 14108 } 14109 14110 void Sema::RefersToMemberWithReducedAlignment( 14111 Expr *E, 14112 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 14113 Action) { 14114 const auto *ME = dyn_cast<MemberExpr>(E); 14115 if (!ME) 14116 return; 14117 14118 // No need to check expressions with an __unaligned-qualified type. 14119 if (E->getType().getQualifiers().hasUnaligned()) 14120 return; 14121 14122 // For a chain of MemberExpr like "a.b.c.d" this list 14123 // will keep FieldDecl's like [d, c, b]. 14124 SmallVector<FieldDecl *, 4> ReverseMemberChain; 14125 const MemberExpr *TopME = nullptr; 14126 bool AnyIsPacked = false; 14127 do { 14128 QualType BaseType = ME->getBase()->getType(); 14129 if (ME->isArrow()) 14130 BaseType = BaseType->getPointeeType(); 14131 RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl(); 14132 if (RD->isInvalidDecl()) 14133 return; 14134 14135 ValueDecl *MD = ME->getMemberDecl(); 14136 auto *FD = dyn_cast<FieldDecl>(MD); 14137 // We do not care about non-data members. 14138 if (!FD || FD->isInvalidDecl()) 14139 return; 14140 14141 AnyIsPacked = 14142 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 14143 ReverseMemberChain.push_back(FD); 14144 14145 TopME = ME; 14146 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 14147 } while (ME); 14148 assert(TopME && "We did not compute a topmost MemberExpr!"); 14149 14150 // Not the scope of this diagnostic. 14151 if (!AnyIsPacked) 14152 return; 14153 14154 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 14155 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 14156 // TODO: The innermost base of the member expression may be too complicated. 14157 // For now, just disregard these cases. This is left for future 14158 // improvement. 14159 if (!DRE && !isa<CXXThisExpr>(TopBase)) 14160 return; 14161 14162 // Alignment expected by the whole expression. 14163 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 14164 14165 // No need to do anything else with this case. 14166 if (ExpectedAlignment.isOne()) 14167 return; 14168 14169 // Synthesize offset of the whole access. 14170 CharUnits Offset; 14171 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 14172 I++) { 14173 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 14174 } 14175 14176 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 14177 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 14178 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 14179 14180 // The base expression of the innermost MemberExpr may give 14181 // stronger guarantees than the class containing the member. 14182 if (DRE && !TopME->isArrow()) { 14183 const ValueDecl *VD = DRE->getDecl(); 14184 if (!VD->getType()->isReferenceType()) 14185 CompleteObjectAlignment = 14186 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 14187 } 14188 14189 // Check if the synthesized offset fulfills the alignment. 14190 if (Offset % ExpectedAlignment != 0 || 14191 // It may fulfill the offset it but the effective alignment may still be 14192 // lower than the expected expression alignment. 14193 CompleteObjectAlignment < ExpectedAlignment) { 14194 // If this happens, we want to determine a sensible culprit of this. 14195 // Intuitively, watching the chain of member expressions from right to 14196 // left, we start with the required alignment (as required by the field 14197 // type) but some packed attribute in that chain has reduced the alignment. 14198 // It may happen that another packed structure increases it again. But if 14199 // we are here such increase has not been enough. So pointing the first 14200 // FieldDecl that either is packed or else its RecordDecl is, 14201 // seems reasonable. 14202 FieldDecl *FD = nullptr; 14203 CharUnits Alignment; 14204 for (FieldDecl *FDI : ReverseMemberChain) { 14205 if (FDI->hasAttr<PackedAttr>() || 14206 FDI->getParent()->hasAttr<PackedAttr>()) { 14207 FD = FDI; 14208 Alignment = std::min( 14209 Context.getTypeAlignInChars(FD->getType()), 14210 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 14211 break; 14212 } 14213 } 14214 assert(FD && "We did not find a packed FieldDecl!"); 14215 Action(E, FD->getParent(), FD, Alignment); 14216 } 14217 } 14218 14219 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 14220 using namespace std::placeholders; 14221 14222 RefersToMemberWithReducedAlignment( 14223 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 14224 _2, _3, _4)); 14225 } 14226