1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements extra semantic analysis beyond what is enforced
10 // by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102
103 using namespace clang;
104 using namespace sema;
105
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107 unsigned ByteNo) const {
108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109 Context.getTargetInfo());
110 }
111
combineFAPK(Sema::FormatArgumentPassingKind A,Sema::FormatArgumentPassingKind B)112 static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
113 Sema::FormatArgumentPassingKind B) {
114 return (A << 8) | B;
115 }
116
117 /// Checks that a call expression's argument count is at least the desired
118 /// number. This is useful when doing custom type-checking on a variadic
119 /// function. Returns true on error.
checkArgCountAtLeast(Sema & S,CallExpr * Call,unsigned MinArgCount)120 static bool checkArgCountAtLeast(Sema &S, CallExpr *Call,
121 unsigned MinArgCount) {
122 unsigned ArgCount = Call->getNumArgs();
123 if (ArgCount >= MinArgCount)
124 return false;
125
126 return S.Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
127 << 0 /*function call*/ << MinArgCount << ArgCount
128 << Call->getSourceRange();
129 }
130
131 /// Checks that a call expression's argument count is the desired number.
132 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * Call,unsigned DesiredArgCount)133 static bool checkArgCount(Sema &S, CallExpr *Call, unsigned DesiredArgCount) {
134 unsigned ArgCount = Call->getNumArgs();
135 if (ArgCount == DesiredArgCount)
136 return false;
137
138 if (checkArgCountAtLeast(S, Call, DesiredArgCount))
139 return true;
140 assert(ArgCount > DesiredArgCount && "should have diagnosed this");
141
142 // Highlight all the excess arguments.
143 SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
144 Call->getArg(ArgCount - 1)->getEndLoc());
145
146 return S.Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
147 << 0 /*function call*/ << DesiredArgCount << ArgCount
148 << Call->getArg(1)->getSourceRange();
149 }
150
151 /// Check that the first argument to __builtin_annotation is an integer
152 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)153 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
154 if (checkArgCount(S, TheCall, 2))
155 return true;
156
157 // First argument should be an integer.
158 Expr *ValArg = TheCall->getArg(0);
159 QualType Ty = ValArg->getType();
160 if (!Ty->isIntegerType()) {
161 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
162 << ValArg->getSourceRange();
163 return true;
164 }
165
166 // Second argument should be a constant string.
167 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
168 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
169 if (!Literal || !Literal->isOrdinary()) {
170 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
171 << StrArg->getSourceRange();
172 return true;
173 }
174
175 TheCall->setType(Ty);
176 return false;
177 }
178
SemaBuiltinMSVCAnnotation(Sema & S,CallExpr * TheCall)179 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
180 // We need at least one argument.
181 if (TheCall->getNumArgs() < 1) {
182 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
183 << 0 << 1 << TheCall->getNumArgs()
184 << TheCall->getCallee()->getSourceRange();
185 return true;
186 }
187
188 // All arguments should be wide string literals.
189 for (Expr *Arg : TheCall->arguments()) {
190 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
191 if (!Literal || !Literal->isWide()) {
192 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
193 << Arg->getSourceRange();
194 return true;
195 }
196 }
197
198 return false;
199 }
200
201 /// Check that the argument to __builtin_addressof is a glvalue, and set the
202 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)203 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
204 if (checkArgCount(S, TheCall, 1))
205 return true;
206
207 ExprResult Arg(TheCall->getArg(0));
208 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
209 if (ResultType.isNull())
210 return true;
211
212 TheCall->setArg(0, Arg.get());
213 TheCall->setType(ResultType);
214 return false;
215 }
216
217 /// Check that the argument to __builtin_function_start is a function.
SemaBuiltinFunctionStart(Sema & S,CallExpr * TheCall)218 static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
219 if (checkArgCount(S, TheCall, 1))
220 return true;
221
222 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
223 if (Arg.isInvalid())
224 return true;
225
226 TheCall->setArg(0, Arg.get());
227 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
228 Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
229
230 if (!FD) {
231 S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
232 << TheCall->getSourceRange();
233 return true;
234 }
235
236 return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
237 TheCall->getBeginLoc());
238 }
239
240 /// Check the number of arguments and set the result type to
241 /// the argument type.
SemaBuiltinPreserveAI(Sema & S,CallExpr * TheCall)242 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
243 if (checkArgCount(S, TheCall, 1))
244 return true;
245
246 TheCall->setType(TheCall->getArg(0)->getType());
247 return false;
248 }
249
250 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
251 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
252 /// type (but not a function pointer) and that the alignment is a power-of-two.
SemaBuiltinAlignment(Sema & S,CallExpr * TheCall,unsigned ID)253 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
254 if (checkArgCount(S, TheCall, 2))
255 return true;
256
257 clang::Expr *Source = TheCall->getArg(0);
258 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
259
260 auto IsValidIntegerType = [](QualType Ty) {
261 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
262 };
263 QualType SrcTy = Source->getType();
264 // We should also be able to use it with arrays (but not functions!).
265 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
266 SrcTy = S.Context.getDecayedType(SrcTy);
267 }
268 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
269 SrcTy->isFunctionPointerType()) {
270 // FIXME: this is not quite the right error message since we don't allow
271 // floating point types, or member pointers.
272 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
273 << SrcTy;
274 return true;
275 }
276
277 clang::Expr *AlignOp = TheCall->getArg(1);
278 if (!IsValidIntegerType(AlignOp->getType())) {
279 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
280 << AlignOp->getType();
281 return true;
282 }
283 Expr::EvalResult AlignResult;
284 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
285 // We can't check validity of alignment if it is value dependent.
286 if (!AlignOp->isValueDependent() &&
287 AlignOp->EvaluateAsInt(AlignResult, S.Context,
288 Expr::SE_AllowSideEffects)) {
289 llvm::APSInt AlignValue = AlignResult.Val.getInt();
290 llvm::APSInt MaxValue(
291 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
292 if (AlignValue < 1) {
293 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
294 return true;
295 }
296 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
297 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
298 << toString(MaxValue, 10);
299 return true;
300 }
301 if (!AlignValue.isPowerOf2()) {
302 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
303 return true;
304 }
305 if (AlignValue == 1) {
306 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
307 << IsBooleanAlignBuiltin;
308 }
309 }
310
311 ExprResult SrcArg = S.PerformCopyInitialization(
312 InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
313 SourceLocation(), Source);
314 if (SrcArg.isInvalid())
315 return true;
316 TheCall->setArg(0, SrcArg.get());
317 ExprResult AlignArg =
318 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
319 S.Context, AlignOp->getType(), false),
320 SourceLocation(), AlignOp);
321 if (AlignArg.isInvalid())
322 return true;
323 TheCall->setArg(1, AlignArg.get());
324 // For align_up/align_down, the return type is the same as the (potentially
325 // decayed) argument type including qualifiers. For is_aligned(), the result
326 // is always bool.
327 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
328 return false;
329 }
330
SemaBuiltinOverflow(Sema & S,CallExpr * TheCall,unsigned BuiltinID)331 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
332 unsigned BuiltinID) {
333 if (checkArgCount(S, TheCall, 3))
334 return true;
335
336 // First two arguments should be integers.
337 for (unsigned I = 0; I < 2; ++I) {
338 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
339 if (Arg.isInvalid()) return true;
340 TheCall->setArg(I, Arg.get());
341
342 QualType Ty = Arg.get()->getType();
343 if (!Ty->isIntegerType()) {
344 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
345 << Ty << Arg.get()->getSourceRange();
346 return true;
347 }
348 }
349
350 // Third argument should be a pointer to a non-const integer.
351 // IRGen correctly handles volatile, restrict, and address spaces, and
352 // the other qualifiers aren't possible.
353 {
354 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
355 if (Arg.isInvalid()) return true;
356 TheCall->setArg(2, Arg.get());
357
358 QualType Ty = Arg.get()->getType();
359 const auto *PtrTy = Ty->getAs<PointerType>();
360 if (!PtrTy ||
361 !PtrTy->getPointeeType()->isIntegerType() ||
362 PtrTy->getPointeeType().isConstQualified()) {
363 S.Diag(Arg.get()->getBeginLoc(),
364 diag::err_overflow_builtin_must_be_ptr_int)
365 << Ty << Arg.get()->getSourceRange();
366 return true;
367 }
368 }
369
370 // Disallow signed bit-precise integer args larger than 128 bits to mul
371 // function until we improve backend support.
372 if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
373 for (unsigned I = 0; I < 3; ++I) {
374 const auto Arg = TheCall->getArg(I);
375 // Third argument will be a pointer.
376 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
377 if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
378 S.getASTContext().getIntWidth(Ty) > 128)
379 return S.Diag(Arg->getBeginLoc(),
380 diag::err_overflow_builtin_bit_int_max_size)
381 << 128;
382 }
383 }
384
385 return false;
386 }
387
388 namespace {
389 struct BuiltinDumpStructGenerator {
390 Sema &S;
391 CallExpr *TheCall;
392 SourceLocation Loc = TheCall->getBeginLoc();
393 SmallVector<Expr *, 32> Actions;
394 DiagnosticErrorTrap ErrorTracker;
395 PrintingPolicy Policy;
396
BuiltinDumpStructGenerator__anon8097fee10211::BuiltinDumpStructGenerator397 BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
398 : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
399 Policy(S.Context.getPrintingPolicy()) {
400 Policy.AnonymousTagLocations = false;
401 }
402
makeOpaqueValueExpr__anon8097fee10211::BuiltinDumpStructGenerator403 Expr *makeOpaqueValueExpr(Expr *Inner) {
404 auto *OVE = new (S.Context)
405 OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
406 Inner->getObjectKind(), Inner);
407 Actions.push_back(OVE);
408 return OVE;
409 }
410
getStringLiteral__anon8097fee10211::BuiltinDumpStructGenerator411 Expr *getStringLiteral(llvm::StringRef Str) {
412 Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
413 // Wrap the literal in parentheses to attach a source location.
414 return new (S.Context) ParenExpr(Loc, Loc, Lit);
415 }
416
callPrintFunction__anon8097fee10211::BuiltinDumpStructGenerator417 bool callPrintFunction(llvm::StringRef Format,
418 llvm::ArrayRef<Expr *> Exprs = {}) {
419 SmallVector<Expr *, 8> Args;
420 assert(TheCall->getNumArgs() >= 2);
421 Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
422 Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
423 Args.push_back(getStringLiteral(Format));
424 Args.insert(Args.end(), Exprs.begin(), Exprs.end());
425
426 // Register a note to explain why we're performing the call.
427 Sema::CodeSynthesisContext Ctx;
428 Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
429 Ctx.PointOfInstantiation = Loc;
430 Ctx.CallArgs = Args.data();
431 Ctx.NumCallArgs = Args.size();
432 S.pushCodeSynthesisContext(Ctx);
433
434 ExprResult RealCall =
435 S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
436 TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
437
438 S.popCodeSynthesisContext();
439 if (!RealCall.isInvalid())
440 Actions.push_back(RealCall.get());
441 // Bail out if we've hit any errors, even if we managed to build the
442 // call. We don't want to produce more than one error.
443 return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
444 }
445
getIndentString__anon8097fee10211::BuiltinDumpStructGenerator446 Expr *getIndentString(unsigned Depth) {
447 if (!Depth)
448 return nullptr;
449
450 llvm::SmallString<32> Indent;
451 Indent.resize(Depth * Policy.Indentation, ' ');
452 return getStringLiteral(Indent);
453 }
454
getTypeString__anon8097fee10211::BuiltinDumpStructGenerator455 Expr *getTypeString(QualType T) {
456 return getStringLiteral(T.getAsString(Policy));
457 }
458
appendFormatSpecifier__anon8097fee10211::BuiltinDumpStructGenerator459 bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
460 llvm::raw_svector_ostream OS(Str);
461
462 // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
463 // than trying to print a single character.
464 if (auto *BT = T->getAs<BuiltinType>()) {
465 switch (BT->getKind()) {
466 case BuiltinType::Bool:
467 OS << "%d";
468 return true;
469 case BuiltinType::Char_U:
470 case BuiltinType::UChar:
471 OS << "%hhu";
472 return true;
473 case BuiltinType::Char_S:
474 case BuiltinType::SChar:
475 OS << "%hhd";
476 return true;
477 default:
478 break;
479 }
480 }
481
482 analyze_printf::PrintfSpecifier Specifier;
483 if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
484 // We were able to guess how to format this.
485 if (Specifier.getConversionSpecifier().getKind() ==
486 analyze_printf::PrintfConversionSpecifier::sArg) {
487 // Wrap double-quotes around a '%s' specifier and limit its maximum
488 // length. Ideally we'd also somehow escape special characters in the
489 // contents but printf doesn't support that.
490 // FIXME: '%s' formatting is not safe in general.
491 OS << '"';
492 Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
493 Specifier.toString(OS);
494 OS << '"';
495 // FIXME: It would be nice to include a '...' if the string doesn't fit
496 // in the length limit.
497 } else {
498 Specifier.toString(OS);
499 }
500 return true;
501 }
502
503 if (T->isPointerType()) {
504 // Format all pointers with '%p'.
505 OS << "%p";
506 return true;
507 }
508
509 return false;
510 }
511
dumpUnnamedRecord__anon8097fee10211::BuiltinDumpStructGenerator512 bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
513 Expr *IndentLit = getIndentString(Depth);
514 Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
515 if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
516 : callPrintFunction("%s", {TypeLit}))
517 return true;
518
519 return dumpRecordValue(RD, E, IndentLit, Depth);
520 }
521
522 // Dump a record value. E should be a pointer or lvalue referring to an RD.
dumpRecordValue__anon8097fee10211::BuiltinDumpStructGenerator523 bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
524 unsigned Depth) {
525 // FIXME: Decide what to do if RD is a union. At least we should probably
526 // turn off printing `const char*` members with `%s`, because that is very
527 // likely to crash if that's not the active member. Whatever we decide, we
528 // should document it.
529
530 // Build an OpaqueValueExpr so we can refer to E more than once without
531 // triggering re-evaluation.
532 Expr *RecordArg = makeOpaqueValueExpr(E);
533 bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
534
535 if (callPrintFunction(" {\n"))
536 return true;
537
538 // Dump each base class, regardless of whether they're aggregates.
539 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
540 for (const auto &Base : CXXRD->bases()) {
541 QualType BaseType =
542 RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
543 : S.Context.getLValueReferenceType(Base.getType());
544 ExprResult BasePtr = S.BuildCStyleCastExpr(
545 Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
546 RecordArg);
547 if (BasePtr.isInvalid() ||
548 dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
549 Depth + 1))
550 return true;
551 }
552 }
553
554 Expr *FieldIndentArg = getIndentString(Depth + 1);
555
556 // Dump each field.
557 for (auto *D : RD->decls()) {
558 auto *IFD = dyn_cast<IndirectFieldDecl>(D);
559 auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
560 if (!FD || FD->isUnnamedBitfield() || FD->isAnonymousStructOrUnion())
561 continue;
562
563 llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
564 llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
565 getTypeString(FD->getType()),
566 getStringLiteral(FD->getName())};
567
568 if (FD->isBitField()) {
569 Format += ": %zu ";
570 QualType SizeT = S.Context.getSizeType();
571 llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
572 FD->getBitWidthValue(S.Context));
573 Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
574 }
575
576 Format += "=";
577
578 ExprResult Field =
579 IFD ? S.BuildAnonymousStructUnionMemberReference(
580 CXXScopeSpec(), Loc, IFD,
581 DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
582 : S.BuildFieldReferenceExpr(
583 RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
584 DeclAccessPair::make(FD, AS_public),
585 DeclarationNameInfo(FD->getDeclName(), Loc));
586 if (Field.isInvalid())
587 return true;
588
589 auto *InnerRD = FD->getType()->getAsRecordDecl();
590 auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
591 if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
592 // Recursively print the values of members of aggregate record type.
593 if (callPrintFunction(Format, Args) ||
594 dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
595 return true;
596 } else {
597 Format += " ";
598 if (appendFormatSpecifier(FD->getType(), Format)) {
599 // We know how to print this field.
600 Args.push_back(Field.get());
601 } else {
602 // We don't know how to print this field. Print out its address
603 // with a format specifier that a smart tool will be able to
604 // recognize and treat specially.
605 Format += "*%p";
606 ExprResult FieldAddr =
607 S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
608 if (FieldAddr.isInvalid())
609 return true;
610 Args.push_back(FieldAddr.get());
611 }
612 Format += "\n";
613 if (callPrintFunction(Format, Args))
614 return true;
615 }
616 }
617
618 return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
619 : callPrintFunction("}\n");
620 }
621
buildWrapper__anon8097fee10211::BuiltinDumpStructGenerator622 Expr *buildWrapper() {
623 auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
624 PseudoObjectExpr::NoResult);
625 TheCall->setType(Wrapper->getType());
626 TheCall->setValueKind(Wrapper->getValueKind());
627 return Wrapper;
628 }
629 };
630 } // namespace
631
SemaBuiltinDumpStruct(Sema & S,CallExpr * TheCall)632 static ExprResult SemaBuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
633 if (checkArgCountAtLeast(S, TheCall, 2))
634 return ExprError();
635
636 ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
637 if (PtrArgResult.isInvalid())
638 return ExprError();
639 TheCall->setArg(0, PtrArgResult.get());
640
641 // First argument should be a pointer to a struct.
642 QualType PtrArgType = PtrArgResult.get()->getType();
643 if (!PtrArgType->isPointerType() ||
644 !PtrArgType->getPointeeType()->isRecordType()) {
645 S.Diag(PtrArgResult.get()->getBeginLoc(),
646 diag::err_expected_struct_pointer_argument)
647 << 1 << TheCall->getDirectCallee() << PtrArgType;
648 return ExprError();
649 }
650 const RecordDecl *RD = PtrArgType->getPointeeType()->getAsRecordDecl();
651
652 // Second argument is a callable, but we can't fully validate it until we try
653 // calling it.
654 QualType FnArgType = TheCall->getArg(1)->getType();
655 if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
656 !FnArgType->isBlockPointerType() &&
657 !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
658 auto *BT = FnArgType->getAs<BuiltinType>();
659 switch (BT ? BT->getKind() : BuiltinType::Void) {
660 case BuiltinType::Dependent:
661 case BuiltinType::Overload:
662 case BuiltinType::BoundMember:
663 case BuiltinType::PseudoObject:
664 case BuiltinType::UnknownAny:
665 case BuiltinType::BuiltinFn:
666 // This might be a callable.
667 break;
668
669 default:
670 S.Diag(TheCall->getArg(1)->getBeginLoc(),
671 diag::err_expected_callable_argument)
672 << 2 << TheCall->getDirectCallee() << FnArgType;
673 return ExprError();
674 }
675 }
676
677 BuiltinDumpStructGenerator Generator(S, TheCall);
678
679 // Wrap parentheses around the given pointer. This is not necessary for
680 // correct code generation, but it means that when we pretty-print the call
681 // arguments in our diagnostics we will produce '(&s)->n' instead of the
682 // incorrect '&s->n'.
683 Expr *PtrArg = PtrArgResult.get();
684 PtrArg = new (S.Context)
685 ParenExpr(PtrArg->getBeginLoc(),
686 S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
687 if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
688 return ExprError();
689
690 return Generator.buildWrapper();
691 }
692
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)693 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
694 if (checkArgCount(S, BuiltinCall, 2))
695 return true;
696
697 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
698 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
699 Expr *Call = BuiltinCall->getArg(0);
700 Expr *Chain = BuiltinCall->getArg(1);
701
702 if (Call->getStmtClass() != Stmt::CallExprClass) {
703 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
704 << Call->getSourceRange();
705 return true;
706 }
707
708 auto CE = cast<CallExpr>(Call);
709 if (CE->getCallee()->getType()->isBlockPointerType()) {
710 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
711 << Call->getSourceRange();
712 return true;
713 }
714
715 const Decl *TargetDecl = CE->getCalleeDecl();
716 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
717 if (FD->getBuiltinID()) {
718 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
719 << Call->getSourceRange();
720 return true;
721 }
722
723 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
724 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
725 << Call->getSourceRange();
726 return true;
727 }
728
729 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
730 if (ChainResult.isInvalid())
731 return true;
732 if (!ChainResult.get()->getType()->isPointerType()) {
733 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
734 << Chain->getSourceRange();
735 return true;
736 }
737
738 QualType ReturnTy = CE->getCallReturnType(S.Context);
739 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
740 QualType BuiltinTy = S.Context.getFunctionType(
741 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
742 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
743
744 Builtin =
745 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
746
747 BuiltinCall->setType(CE->getType());
748 BuiltinCall->setValueKind(CE->getValueKind());
749 BuiltinCall->setObjectKind(CE->getObjectKind());
750 BuiltinCall->setCallee(Builtin);
751 BuiltinCall->setArg(1, ChainResult.get());
752
753 return false;
754 }
755
756 namespace {
757
758 class ScanfDiagnosticFormatHandler
759 : public analyze_format_string::FormatStringHandler {
760 // Accepts the argument index (relative to the first destination index) of the
761 // argument whose size we want.
762 using ComputeSizeFunction =
763 llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
764
765 // Accepts the argument index (relative to the first destination index), the
766 // destination size, and the source size).
767 using DiagnoseFunction =
768 llvm::function_ref<void(unsigned, unsigned, unsigned)>;
769
770 ComputeSizeFunction ComputeSizeArgument;
771 DiagnoseFunction Diagnose;
772
773 public:
ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,DiagnoseFunction Diagnose)774 ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
775 DiagnoseFunction Diagnose)
776 : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
777
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * StartSpecifier,unsigned specifierLen)778 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
779 const char *StartSpecifier,
780 unsigned specifierLen) override {
781 if (!FS.consumesDataArgument())
782 return true;
783
784 unsigned NulByte = 0;
785 switch ((FS.getConversionSpecifier().getKind())) {
786 default:
787 return true;
788 case analyze_format_string::ConversionSpecifier::sArg:
789 case analyze_format_string::ConversionSpecifier::ScanListArg:
790 NulByte = 1;
791 break;
792 case analyze_format_string::ConversionSpecifier::cArg:
793 break;
794 }
795
796 analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
797 if (FW.getHowSpecified() !=
798 analyze_format_string::OptionalAmount::HowSpecified::Constant)
799 return true;
800
801 unsigned SourceSize = FW.getConstantAmount() + NulByte;
802
803 Optional<llvm::APSInt> DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
804 if (!DestSizeAPS)
805 return true;
806
807 unsigned DestSize = DestSizeAPS->getZExtValue();
808
809 if (DestSize < SourceSize)
810 Diagnose(FS.getArgIndex(), DestSize, SourceSize);
811
812 return true;
813 }
814 };
815
816 class EstimateSizeFormatHandler
817 : public analyze_format_string::FormatStringHandler {
818 size_t Size;
819
820 public:
EstimateSizeFormatHandler(StringRef Format)821 EstimateSizeFormatHandler(StringRef Format)
822 : Size(std::min(Format.find(0), Format.size()) +
823 1 /* null byte always written by sprintf */) {}
824
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char *,unsigned SpecifierLen,const TargetInfo &)825 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
826 const char *, unsigned SpecifierLen,
827 const TargetInfo &) override {
828
829 const size_t FieldWidth = computeFieldWidth(FS);
830 const size_t Precision = computePrecision(FS);
831
832 // The actual format.
833 switch (FS.getConversionSpecifier().getKind()) {
834 // Just a char.
835 case analyze_format_string::ConversionSpecifier::cArg:
836 case analyze_format_string::ConversionSpecifier::CArg:
837 Size += std::max(FieldWidth, (size_t)1);
838 break;
839 // Just an integer.
840 case analyze_format_string::ConversionSpecifier::dArg:
841 case analyze_format_string::ConversionSpecifier::DArg:
842 case analyze_format_string::ConversionSpecifier::iArg:
843 case analyze_format_string::ConversionSpecifier::oArg:
844 case analyze_format_string::ConversionSpecifier::OArg:
845 case analyze_format_string::ConversionSpecifier::uArg:
846 case analyze_format_string::ConversionSpecifier::UArg:
847 case analyze_format_string::ConversionSpecifier::xArg:
848 case analyze_format_string::ConversionSpecifier::XArg:
849 Size += std::max(FieldWidth, Precision);
850 break;
851
852 // %g style conversion switches between %f or %e style dynamically.
853 // %f always takes less space, so default to it.
854 case analyze_format_string::ConversionSpecifier::gArg:
855 case analyze_format_string::ConversionSpecifier::GArg:
856
857 // Floating point number in the form '[+]ddd.ddd'.
858 case analyze_format_string::ConversionSpecifier::fArg:
859 case analyze_format_string::ConversionSpecifier::FArg:
860 Size += std::max(FieldWidth, 1 /* integer part */ +
861 (Precision ? 1 + Precision
862 : 0) /* period + decimal */);
863 break;
864
865 // Floating point number in the form '[-]d.ddde[+-]dd'.
866 case analyze_format_string::ConversionSpecifier::eArg:
867 case analyze_format_string::ConversionSpecifier::EArg:
868 Size +=
869 std::max(FieldWidth,
870 1 /* integer part */ +
871 (Precision ? 1 + Precision : 0) /* period + decimal */ +
872 1 /* e or E letter */ + 2 /* exponent */);
873 break;
874
875 // Floating point number in the form '[-]0xh.hhhhp±dd'.
876 case analyze_format_string::ConversionSpecifier::aArg:
877 case analyze_format_string::ConversionSpecifier::AArg:
878 Size +=
879 std::max(FieldWidth,
880 2 /* 0x */ + 1 /* integer part */ +
881 (Precision ? 1 + Precision : 0) /* period + decimal */ +
882 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
883 break;
884
885 // Just a string.
886 case analyze_format_string::ConversionSpecifier::sArg:
887 case analyze_format_string::ConversionSpecifier::SArg:
888 Size += FieldWidth;
889 break;
890
891 // Just a pointer in the form '0xddd'.
892 case analyze_format_string::ConversionSpecifier::pArg:
893 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
894 break;
895
896 // A plain percent.
897 case analyze_format_string::ConversionSpecifier::PercentArg:
898 Size += 1;
899 break;
900
901 default:
902 break;
903 }
904
905 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
906
907 if (FS.hasAlternativeForm()) {
908 switch (FS.getConversionSpecifier().getKind()) {
909 default:
910 break;
911 // Force a leading '0'.
912 case analyze_format_string::ConversionSpecifier::oArg:
913 Size += 1;
914 break;
915 // Force a leading '0x'.
916 case analyze_format_string::ConversionSpecifier::xArg:
917 case analyze_format_string::ConversionSpecifier::XArg:
918 Size += 2;
919 break;
920 // Force a period '.' before decimal, even if precision is 0.
921 case analyze_format_string::ConversionSpecifier::aArg:
922 case analyze_format_string::ConversionSpecifier::AArg:
923 case analyze_format_string::ConversionSpecifier::eArg:
924 case analyze_format_string::ConversionSpecifier::EArg:
925 case analyze_format_string::ConversionSpecifier::fArg:
926 case analyze_format_string::ConversionSpecifier::FArg:
927 case analyze_format_string::ConversionSpecifier::gArg:
928 case analyze_format_string::ConversionSpecifier::GArg:
929 Size += (Precision ? 0 : 1);
930 break;
931 }
932 }
933 assert(SpecifierLen <= Size && "no underflow");
934 Size -= SpecifierLen;
935 return true;
936 }
937
getSizeLowerBound() const938 size_t getSizeLowerBound() const { return Size; }
939
940 private:
computeFieldWidth(const analyze_printf::PrintfSpecifier & FS)941 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
942 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
943 size_t FieldWidth = 0;
944 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
945 FieldWidth = FW.getConstantAmount();
946 return FieldWidth;
947 }
948
computePrecision(const analyze_printf::PrintfSpecifier & FS)949 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
950 const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
951 size_t Precision = 0;
952
953 // See man 3 printf for default precision value based on the specifier.
954 switch (FW.getHowSpecified()) {
955 case analyze_format_string::OptionalAmount::NotSpecified:
956 switch (FS.getConversionSpecifier().getKind()) {
957 default:
958 break;
959 case analyze_format_string::ConversionSpecifier::dArg: // %d
960 case analyze_format_string::ConversionSpecifier::DArg: // %D
961 case analyze_format_string::ConversionSpecifier::iArg: // %i
962 Precision = 1;
963 break;
964 case analyze_format_string::ConversionSpecifier::oArg: // %d
965 case analyze_format_string::ConversionSpecifier::OArg: // %D
966 case analyze_format_string::ConversionSpecifier::uArg: // %d
967 case analyze_format_string::ConversionSpecifier::UArg: // %D
968 case analyze_format_string::ConversionSpecifier::xArg: // %d
969 case analyze_format_string::ConversionSpecifier::XArg: // %D
970 Precision = 1;
971 break;
972 case analyze_format_string::ConversionSpecifier::fArg: // %f
973 case analyze_format_string::ConversionSpecifier::FArg: // %F
974 case analyze_format_string::ConversionSpecifier::eArg: // %e
975 case analyze_format_string::ConversionSpecifier::EArg: // %E
976 case analyze_format_string::ConversionSpecifier::gArg: // %g
977 case analyze_format_string::ConversionSpecifier::GArg: // %G
978 Precision = 6;
979 break;
980 case analyze_format_string::ConversionSpecifier::pArg: // %d
981 Precision = 1;
982 break;
983 }
984 break;
985 case analyze_format_string::OptionalAmount::Constant:
986 Precision = FW.getConstantAmount();
987 break;
988 default:
989 break;
990 }
991 return Precision;
992 }
993 };
994
995 } // namespace
996
checkFortifiedBuiltinMemoryFunction(FunctionDecl * FD,CallExpr * TheCall)997 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
998 CallExpr *TheCall) {
999 if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1000 isConstantEvaluated())
1001 return;
1002
1003 bool UseDABAttr = false;
1004 const FunctionDecl *UseDecl = FD;
1005
1006 const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1007 if (DABAttr) {
1008 UseDecl = DABAttr->getFunction();
1009 assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1010 UseDABAttr = true;
1011 }
1012
1013 unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1014
1015 if (!BuiltinID)
1016 return;
1017
1018 const TargetInfo &TI = getASTContext().getTargetInfo();
1019 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1020
1021 auto TranslateIndex = [&](unsigned Index) -> Optional<unsigned> {
1022 // If we refer to a diagnose_as_builtin attribute, we need to change the
1023 // argument index to refer to the arguments of the called function. Unless
1024 // the index is out of bounds, which presumably means it's a variadic
1025 // function.
1026 if (!UseDABAttr)
1027 return Index;
1028 unsigned DABIndices = DABAttr->argIndices_size();
1029 unsigned NewIndex = Index < DABIndices
1030 ? DABAttr->argIndices_begin()[Index]
1031 : Index - DABIndices + FD->getNumParams();
1032 if (NewIndex >= TheCall->getNumArgs())
1033 return llvm::None;
1034 return NewIndex;
1035 };
1036
1037 auto ComputeExplicitObjectSizeArgument =
1038 [&](unsigned Index) -> Optional<llvm::APSInt> {
1039 Optional<unsigned> IndexOptional = TranslateIndex(Index);
1040 if (!IndexOptional)
1041 return llvm::None;
1042 unsigned NewIndex = *IndexOptional;
1043 Expr::EvalResult Result;
1044 Expr *SizeArg = TheCall->getArg(NewIndex);
1045 if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1046 return llvm::None;
1047 llvm::APSInt Integer = Result.Val.getInt();
1048 Integer.setIsUnsigned(true);
1049 return Integer;
1050 };
1051
1052 auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
1053 // If the parameter has a pass_object_size attribute, then we should use its
1054 // (potentially) more strict checking mode. Otherwise, conservatively assume
1055 // type 0.
1056 int BOSType = 0;
1057 // This check can fail for variadic functions.
1058 if (Index < FD->getNumParams()) {
1059 if (const auto *POS =
1060 FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1061 BOSType = POS->getType();
1062 }
1063
1064 Optional<unsigned> IndexOptional = TranslateIndex(Index);
1065 if (!IndexOptional)
1066 return llvm::None;
1067 unsigned NewIndex = *IndexOptional;
1068
1069 const Expr *ObjArg = TheCall->getArg(NewIndex);
1070 uint64_t Result;
1071 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1072 return llvm::None;
1073
1074 // Get the object size in the target's size_t width.
1075 return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1076 };
1077
1078 auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
1079 Optional<unsigned> IndexOptional = TranslateIndex(Index);
1080 if (!IndexOptional)
1081 return llvm::None;
1082 unsigned NewIndex = *IndexOptional;
1083
1084 const Expr *ObjArg = TheCall->getArg(NewIndex);
1085 uint64_t Result;
1086 if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1087 return llvm::None;
1088 // Add 1 for null byte.
1089 return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1090 };
1091
1092 Optional<llvm::APSInt> SourceSize;
1093 Optional<llvm::APSInt> DestinationSize;
1094 unsigned DiagID = 0;
1095 bool IsChkVariant = false;
1096
1097 auto GetFunctionName = [&]() {
1098 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1099 // Skim off the details of whichever builtin was called to produce a better
1100 // diagnostic, as it's unlikely that the user wrote the __builtin
1101 // explicitly.
1102 if (IsChkVariant) {
1103 FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1104 FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1105 } else if (FunctionName.startswith("__builtin_")) {
1106 FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
1107 }
1108 return FunctionName;
1109 };
1110
1111 switch (BuiltinID) {
1112 default:
1113 return;
1114 case Builtin::BI__builtin_strcpy:
1115 case Builtin::BIstrcpy: {
1116 DiagID = diag::warn_fortify_strlen_overflow;
1117 SourceSize = ComputeStrLenArgument(1);
1118 DestinationSize = ComputeSizeArgument(0);
1119 break;
1120 }
1121
1122 case Builtin::BI__builtin___strcpy_chk: {
1123 DiagID = diag::warn_fortify_strlen_overflow;
1124 SourceSize = ComputeStrLenArgument(1);
1125 DestinationSize = ComputeExplicitObjectSizeArgument(2);
1126 IsChkVariant = true;
1127 break;
1128 }
1129
1130 case Builtin::BIscanf:
1131 case Builtin::BIfscanf:
1132 case Builtin::BIsscanf: {
1133 unsigned FormatIndex = 1;
1134 unsigned DataIndex = 2;
1135 if (BuiltinID == Builtin::BIscanf) {
1136 FormatIndex = 0;
1137 DataIndex = 1;
1138 }
1139
1140 const auto *FormatExpr =
1141 TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1142
1143 const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1144 if (!Format)
1145 return;
1146
1147 if (!Format->isOrdinary() && !Format->isUTF8())
1148 return;
1149
1150 auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1151 unsigned SourceSize) {
1152 DiagID = diag::warn_fortify_scanf_overflow;
1153 unsigned Index = ArgIndex + DataIndex;
1154 StringRef FunctionName = GetFunctionName();
1155 DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1156 PDiag(DiagID) << FunctionName << (Index + 1)
1157 << DestSize << SourceSize);
1158 };
1159
1160 StringRef FormatStrRef = Format->getString();
1161 auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1162 return ComputeSizeArgument(Index + DataIndex);
1163 };
1164 ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1165 const char *FormatBytes = FormatStrRef.data();
1166 const ConstantArrayType *T =
1167 Context.getAsConstantArrayType(Format->getType());
1168 assert(T && "String literal not of constant array type!");
1169 size_t TypeSize = T->getSize().getZExtValue();
1170
1171 // In case there's a null byte somewhere.
1172 size_t StrLen =
1173 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1174
1175 analyze_format_string::ParseScanfString(H, FormatBytes,
1176 FormatBytes + StrLen, getLangOpts(),
1177 Context.getTargetInfo());
1178
1179 // Unlike the other cases, in this one we have already issued the diagnostic
1180 // here, so no need to continue (because unlike the other cases, here the
1181 // diagnostic refers to the argument number).
1182 return;
1183 }
1184
1185 case Builtin::BIsprintf:
1186 case Builtin::BI__builtin___sprintf_chk: {
1187 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1188 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1189
1190 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
1191
1192 if (!Format->isOrdinary() && !Format->isUTF8())
1193 return;
1194
1195 StringRef FormatStrRef = Format->getString();
1196 EstimateSizeFormatHandler H(FormatStrRef);
1197 const char *FormatBytes = FormatStrRef.data();
1198 const ConstantArrayType *T =
1199 Context.getAsConstantArrayType(Format->getType());
1200 assert(T && "String literal not of constant array type!");
1201 size_t TypeSize = T->getSize().getZExtValue();
1202
1203 // In case there's a null byte somewhere.
1204 size_t StrLen =
1205 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1206 if (!analyze_format_string::ParsePrintfString(
1207 H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1208 Context.getTargetInfo(), false)) {
1209 DiagID = diag::warn_fortify_source_format_overflow;
1210 SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1211 .extOrTrunc(SizeTypeWidth);
1212 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1213 DestinationSize = ComputeExplicitObjectSizeArgument(2);
1214 IsChkVariant = true;
1215 } else {
1216 DestinationSize = ComputeSizeArgument(0);
1217 }
1218 break;
1219 }
1220 }
1221 return;
1222 }
1223 case Builtin::BI__builtin___memcpy_chk:
1224 case Builtin::BI__builtin___memmove_chk:
1225 case Builtin::BI__builtin___memset_chk:
1226 case Builtin::BI__builtin___strlcat_chk:
1227 case Builtin::BI__builtin___strlcpy_chk:
1228 case Builtin::BI__builtin___strncat_chk:
1229 case Builtin::BI__builtin___strncpy_chk:
1230 case Builtin::BI__builtin___stpncpy_chk:
1231 case Builtin::BI__builtin___memccpy_chk:
1232 case Builtin::BI__builtin___mempcpy_chk: {
1233 DiagID = diag::warn_builtin_chk_overflow;
1234 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1235 DestinationSize =
1236 ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1237 IsChkVariant = true;
1238 break;
1239 }
1240
1241 case Builtin::BI__builtin___snprintf_chk:
1242 case Builtin::BI__builtin___vsnprintf_chk: {
1243 DiagID = diag::warn_builtin_chk_overflow;
1244 SourceSize = ComputeExplicitObjectSizeArgument(1);
1245 DestinationSize = ComputeExplicitObjectSizeArgument(3);
1246 IsChkVariant = true;
1247 break;
1248 }
1249
1250 case Builtin::BIstrncat:
1251 case Builtin::BI__builtin_strncat:
1252 case Builtin::BIstrncpy:
1253 case Builtin::BI__builtin_strncpy:
1254 case Builtin::BIstpncpy:
1255 case Builtin::BI__builtin_stpncpy: {
1256 // Whether these functions overflow depends on the runtime strlen of the
1257 // string, not just the buffer size, so emitting the "always overflow"
1258 // diagnostic isn't quite right. We should still diagnose passing a buffer
1259 // size larger than the destination buffer though; this is a runtime abort
1260 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1261 DiagID = diag::warn_fortify_source_size_mismatch;
1262 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1263 DestinationSize = ComputeSizeArgument(0);
1264 break;
1265 }
1266
1267 case Builtin::BImemcpy:
1268 case Builtin::BI__builtin_memcpy:
1269 case Builtin::BImemmove:
1270 case Builtin::BI__builtin_memmove:
1271 case Builtin::BImemset:
1272 case Builtin::BI__builtin_memset:
1273 case Builtin::BImempcpy:
1274 case Builtin::BI__builtin_mempcpy: {
1275 DiagID = diag::warn_fortify_source_overflow;
1276 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1277 DestinationSize = ComputeSizeArgument(0);
1278 break;
1279 }
1280 case Builtin::BIsnprintf:
1281 case Builtin::BI__builtin_snprintf:
1282 case Builtin::BIvsnprintf:
1283 case Builtin::BI__builtin_vsnprintf: {
1284 DiagID = diag::warn_fortify_source_size_mismatch;
1285 SourceSize = ComputeExplicitObjectSizeArgument(1);
1286 DestinationSize = ComputeSizeArgument(0);
1287 break;
1288 }
1289 }
1290
1291 if (!SourceSize || !DestinationSize ||
1292 llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1293 return;
1294
1295 StringRef FunctionName = GetFunctionName();
1296
1297 SmallString<16> DestinationStr;
1298 SmallString<16> SourceStr;
1299 DestinationSize->toString(DestinationStr, /*Radix=*/10);
1300 SourceSize->toString(SourceStr, /*Radix=*/10);
1301 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1302 PDiag(DiagID)
1303 << FunctionName << DestinationStr << SourceStr);
1304 }
1305
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)1306 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1307 Scope::ScopeFlags NeededScopeFlags,
1308 unsigned DiagID) {
1309 // Scopes aren't available during instantiation. Fortunately, builtin
1310 // functions cannot be template args so they cannot be formed through template
1311 // instantiation. Therefore checking once during the parse is sufficient.
1312 if (SemaRef.inTemplateInstantiation())
1313 return false;
1314
1315 Scope *S = SemaRef.getCurScope();
1316 while (S && !S->isSEHExceptScope())
1317 S = S->getParent();
1318 if (!S || !(S->getFlags() & NeededScopeFlags)) {
1319 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1320 SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1321 << DRE->getDecl()->getIdentifier();
1322 return true;
1323 }
1324
1325 return false;
1326 }
1327
isBlockPointer(Expr * Arg)1328 static inline bool isBlockPointer(Expr *Arg) {
1329 return Arg->getType()->isBlockPointerType();
1330 }
1331
1332 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
1333 /// void*, which is a requirement of device side enqueue.
checkOpenCLBlockArgs(Sema & S,Expr * BlockArg)1334 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
1335 const BlockPointerType *BPT =
1336 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1337 ArrayRef<QualType> Params =
1338 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
1339 unsigned ArgCounter = 0;
1340 bool IllegalParams = false;
1341 // Iterate through the block parameters until either one is found that is not
1342 // a local void*, or the block is valid.
1343 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
1344 I != E; ++I, ++ArgCounter) {
1345 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
1346 (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
1347 LangAS::opencl_local) {
1348 // Get the location of the error. If a block literal has been passed
1349 // (BlockExpr) then we can point straight to the offending argument,
1350 // else we just point to the variable reference.
1351 SourceLocation ErrorLoc;
1352 if (isa<BlockExpr>(BlockArg)) {
1353 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
1354 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
1355 } else if (isa<DeclRefExpr>(BlockArg)) {
1356 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
1357 }
1358 S.Diag(ErrorLoc,
1359 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
1360 IllegalParams = true;
1361 }
1362 }
1363
1364 return IllegalParams;
1365 }
1366
checkOpenCLSubgroupExt(Sema & S,CallExpr * Call)1367 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
1368 // OpenCL device can support extension but not the feature as extension
1369 // requires subgroup independent forward progress, but subgroup independent
1370 // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature.
1371 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts()) &&
1372 !S.getOpenCLOptions().isSupported("__opencl_c_subgroups",
1373 S.getLangOpts())) {
1374 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
1375 << 1 << Call->getDirectCallee()
1376 << "cl_khr_subgroups or __opencl_c_subgroups";
1377 return true;
1378 }
1379 return false;
1380 }
1381
SemaOpenCLBuiltinNDRangeAndBlock(Sema & S,CallExpr * TheCall)1382 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
1383 if (checkArgCount(S, TheCall, 2))
1384 return true;
1385
1386 if (checkOpenCLSubgroupExt(S, TheCall))
1387 return true;
1388
1389 // First argument is an ndrange_t type.
1390 Expr *NDRangeArg = TheCall->getArg(0);
1391 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1392 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1393 << TheCall->getDirectCallee() << "'ndrange_t'";
1394 return true;
1395 }
1396
1397 Expr *BlockArg = TheCall->getArg(1);
1398 if (!isBlockPointer(BlockArg)) {
1399 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1400 << TheCall->getDirectCallee() << "block";
1401 return true;
1402 }
1403 return checkOpenCLBlockArgs(S, BlockArg);
1404 }
1405
1406 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1407 /// get_kernel_work_group_size
1408 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
SemaOpenCLBuiltinKernelWorkGroupSize(Sema & S,CallExpr * TheCall)1409 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1410 if (checkArgCount(S, TheCall, 1))
1411 return true;
1412
1413 Expr *BlockArg = TheCall->getArg(0);
1414 if (!isBlockPointer(BlockArg)) {
1415 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1416 << TheCall->getDirectCallee() << "block";
1417 return true;
1418 }
1419 return checkOpenCLBlockArgs(S, BlockArg);
1420 }
1421
1422 /// Diagnose integer type and any valid implicit conversion to it.
1423 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1424 const QualType &IntType);
1425
checkOpenCLEnqueueLocalSizeArgs(Sema & S,CallExpr * TheCall,unsigned Start,unsigned End)1426 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1427 unsigned Start, unsigned End) {
1428 bool IllegalParams = false;
1429 for (unsigned I = Start; I <= End; ++I)
1430 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1431 S.Context.getSizeType());
1432 return IllegalParams;
1433 }
1434
1435 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1436 /// 'local void*' parameter of passed block.
checkOpenCLEnqueueVariadicArgs(Sema & S,CallExpr * TheCall,Expr * BlockArg,unsigned NumNonVarArgs)1437 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1438 Expr *BlockArg,
1439 unsigned NumNonVarArgs) {
1440 const BlockPointerType *BPT =
1441 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1442 unsigned NumBlockParams =
1443 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1444 unsigned TotalNumArgs = TheCall->getNumArgs();
1445
1446 // For each argument passed to the block, a corresponding uint needs to
1447 // be passed to describe the size of the local memory.
1448 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1449 S.Diag(TheCall->getBeginLoc(),
1450 diag::err_opencl_enqueue_kernel_local_size_args);
1451 return true;
1452 }
1453
1454 // Check that the sizes of the local memory are specified by integers.
1455 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1456 TotalNumArgs - 1);
1457 }
1458
1459 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1460 /// overload formats specified in Table 6.13.17.1.
1461 /// int enqueue_kernel(queue_t queue,
1462 /// kernel_enqueue_flags_t flags,
1463 /// const ndrange_t ndrange,
1464 /// void (^block)(void))
1465 /// int enqueue_kernel(queue_t queue,
1466 /// kernel_enqueue_flags_t flags,
1467 /// const ndrange_t ndrange,
1468 /// uint num_events_in_wait_list,
1469 /// clk_event_t *event_wait_list,
1470 /// clk_event_t *event_ret,
1471 /// void (^block)(void))
1472 /// int enqueue_kernel(queue_t queue,
1473 /// kernel_enqueue_flags_t flags,
1474 /// const ndrange_t ndrange,
1475 /// void (^block)(local void*, ...),
1476 /// uint size0, ...)
1477 /// int enqueue_kernel(queue_t queue,
1478 /// kernel_enqueue_flags_t flags,
1479 /// const ndrange_t ndrange,
1480 /// uint num_events_in_wait_list,
1481 /// clk_event_t *event_wait_list,
1482 /// clk_event_t *event_ret,
1483 /// void (^block)(local void*, ...),
1484 /// uint size0, ...)
SemaOpenCLBuiltinEnqueueKernel(Sema & S,CallExpr * TheCall)1485 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1486 unsigned NumArgs = TheCall->getNumArgs();
1487
1488 if (NumArgs < 4) {
1489 S.Diag(TheCall->getBeginLoc(),
1490 diag::err_typecheck_call_too_few_args_at_least)
1491 << 0 << 4 << NumArgs;
1492 return true;
1493 }
1494
1495 Expr *Arg0 = TheCall->getArg(0);
1496 Expr *Arg1 = TheCall->getArg(1);
1497 Expr *Arg2 = TheCall->getArg(2);
1498 Expr *Arg3 = TheCall->getArg(3);
1499
1500 // First argument always needs to be a queue_t type.
1501 if (!Arg0->getType()->isQueueT()) {
1502 S.Diag(TheCall->getArg(0)->getBeginLoc(),
1503 diag::err_opencl_builtin_expected_type)
1504 << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1505 return true;
1506 }
1507
1508 // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1509 if (!Arg1->getType()->isIntegerType()) {
1510 S.Diag(TheCall->getArg(1)->getBeginLoc(),
1511 diag::err_opencl_builtin_expected_type)
1512 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1513 return true;
1514 }
1515
1516 // Third argument is always an ndrange_t type.
1517 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1518 S.Diag(TheCall->getArg(2)->getBeginLoc(),
1519 diag::err_opencl_builtin_expected_type)
1520 << TheCall->getDirectCallee() << "'ndrange_t'";
1521 return true;
1522 }
1523
1524 // With four arguments, there is only one form that the function could be
1525 // called in: no events and no variable arguments.
1526 if (NumArgs == 4) {
1527 // check that the last argument is the right block type.
1528 if (!isBlockPointer(Arg3)) {
1529 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1530 << TheCall->getDirectCallee() << "block";
1531 return true;
1532 }
1533 // we have a block type, check the prototype
1534 const BlockPointerType *BPT =
1535 cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1536 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1537 S.Diag(Arg3->getBeginLoc(),
1538 diag::err_opencl_enqueue_kernel_blocks_no_args);
1539 return true;
1540 }
1541 return false;
1542 }
1543 // we can have block + varargs.
1544 if (isBlockPointer(Arg3))
1545 return (checkOpenCLBlockArgs(S, Arg3) ||
1546 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1547 // last two cases with either exactly 7 args or 7 args and varargs.
1548 if (NumArgs >= 7) {
1549 // check common block argument.
1550 Expr *Arg6 = TheCall->getArg(6);
1551 if (!isBlockPointer(Arg6)) {
1552 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1553 << TheCall->getDirectCallee() << "block";
1554 return true;
1555 }
1556 if (checkOpenCLBlockArgs(S, Arg6))
1557 return true;
1558
1559 // Forth argument has to be any integer type.
1560 if (!Arg3->getType()->isIntegerType()) {
1561 S.Diag(TheCall->getArg(3)->getBeginLoc(),
1562 diag::err_opencl_builtin_expected_type)
1563 << TheCall->getDirectCallee() << "integer";
1564 return true;
1565 }
1566 // check remaining common arguments.
1567 Expr *Arg4 = TheCall->getArg(4);
1568 Expr *Arg5 = TheCall->getArg(5);
1569
1570 // Fifth argument is always passed as a pointer to clk_event_t.
1571 if (!Arg4->isNullPointerConstant(S.Context,
1572 Expr::NPC_ValueDependentIsNotNull) &&
1573 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1574 S.Diag(TheCall->getArg(4)->getBeginLoc(),
1575 diag::err_opencl_builtin_expected_type)
1576 << TheCall->getDirectCallee()
1577 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1578 return true;
1579 }
1580
1581 // Sixth argument is always passed as a pointer to clk_event_t.
1582 if (!Arg5->isNullPointerConstant(S.Context,
1583 Expr::NPC_ValueDependentIsNotNull) &&
1584 !(Arg5->getType()->isPointerType() &&
1585 Arg5->getType()->getPointeeType()->isClkEventT())) {
1586 S.Diag(TheCall->getArg(5)->getBeginLoc(),
1587 diag::err_opencl_builtin_expected_type)
1588 << TheCall->getDirectCallee()
1589 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1590 return true;
1591 }
1592
1593 if (NumArgs == 7)
1594 return false;
1595
1596 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1597 }
1598
1599 // None of the specific case has been detected, give generic error
1600 S.Diag(TheCall->getBeginLoc(),
1601 diag::err_opencl_enqueue_kernel_incorrect_args);
1602 return true;
1603 }
1604
1605 /// Returns OpenCL access qual.
getOpenCLArgAccess(const Decl * D)1606 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1607 return D->getAttr<OpenCLAccessAttr>();
1608 }
1609
1610 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipeArg(Sema & S,CallExpr * Call)1611 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1612 const Expr *Arg0 = Call->getArg(0);
1613 // First argument type should always be pipe.
1614 if (!Arg0->getType()->isPipeType()) {
1615 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1616 << Call->getDirectCallee() << Arg0->getSourceRange();
1617 return true;
1618 }
1619 OpenCLAccessAttr *AccessQual =
1620 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1621 // Validates the access qualifier is compatible with the call.
1622 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1623 // read_only and write_only, and assumed to be read_only if no qualifier is
1624 // specified.
1625 switch (Call->getDirectCallee()->getBuiltinID()) {
1626 case Builtin::BIread_pipe:
1627 case Builtin::BIreserve_read_pipe:
1628 case Builtin::BIcommit_read_pipe:
1629 case Builtin::BIwork_group_reserve_read_pipe:
1630 case Builtin::BIsub_group_reserve_read_pipe:
1631 case Builtin::BIwork_group_commit_read_pipe:
1632 case Builtin::BIsub_group_commit_read_pipe:
1633 if (!(!AccessQual || AccessQual->isReadOnly())) {
1634 S.Diag(Arg0->getBeginLoc(),
1635 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1636 << "read_only" << Arg0->getSourceRange();
1637 return true;
1638 }
1639 break;
1640 case Builtin::BIwrite_pipe:
1641 case Builtin::BIreserve_write_pipe:
1642 case Builtin::BIcommit_write_pipe:
1643 case Builtin::BIwork_group_reserve_write_pipe:
1644 case Builtin::BIsub_group_reserve_write_pipe:
1645 case Builtin::BIwork_group_commit_write_pipe:
1646 case Builtin::BIsub_group_commit_write_pipe:
1647 if (!(AccessQual && AccessQual->isWriteOnly())) {
1648 S.Diag(Arg0->getBeginLoc(),
1649 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1650 << "write_only" << Arg0->getSourceRange();
1651 return true;
1652 }
1653 break;
1654 default:
1655 break;
1656 }
1657 return false;
1658 }
1659
1660 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipePacketType(Sema & S,CallExpr * Call,unsigned Idx)1661 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1662 const Expr *Arg0 = Call->getArg(0);
1663 const Expr *ArgIdx = Call->getArg(Idx);
1664 const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1665 const QualType EltTy = PipeTy->getElementType();
1666 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1667 // The Idx argument should be a pointer and the type of the pointer and
1668 // the type of pipe element should also be the same.
1669 if (!ArgTy ||
1670 !S.Context.hasSameType(
1671 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1672 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1673 << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1674 << ArgIdx->getType() << ArgIdx->getSourceRange();
1675 return true;
1676 }
1677 return false;
1678 }
1679
1680 // Performs semantic analysis for the read/write_pipe call.
1681 // \param S Reference to the semantic analyzer.
1682 // \param Call A pointer to the builtin call.
1683 // \return True if a semantic error has been found, false otherwise.
SemaBuiltinRWPipe(Sema & S,CallExpr * Call)1684 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1685 // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1686 // functions have two forms.
1687 switch (Call->getNumArgs()) {
1688 case 2:
1689 if (checkOpenCLPipeArg(S, Call))
1690 return true;
1691 // The call with 2 arguments should be
1692 // read/write_pipe(pipe T, T*).
1693 // Check packet type T.
1694 if (checkOpenCLPipePacketType(S, Call, 1))
1695 return true;
1696 break;
1697
1698 case 4: {
1699 if (checkOpenCLPipeArg(S, Call))
1700 return true;
1701 // The call with 4 arguments should be
1702 // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1703 // Check reserve_id_t.
1704 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1705 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1706 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1707 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1708 return true;
1709 }
1710
1711 // Check the index.
1712 const Expr *Arg2 = Call->getArg(2);
1713 if (!Arg2->getType()->isIntegerType() &&
1714 !Arg2->getType()->isUnsignedIntegerType()) {
1715 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1716 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1717 << Arg2->getType() << Arg2->getSourceRange();
1718 return true;
1719 }
1720
1721 // Check packet type T.
1722 if (checkOpenCLPipePacketType(S, Call, 3))
1723 return true;
1724 } break;
1725 default:
1726 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1727 << Call->getDirectCallee() << Call->getSourceRange();
1728 return true;
1729 }
1730
1731 return false;
1732 }
1733
1734 // Performs a semantic analysis on the {work_group_/sub_group_
1735 // /_}reserve_{read/write}_pipe
1736 // \param S Reference to the semantic analyzer.
1737 // \param Call The call to the builtin function to be analyzed.
1738 // \return True if a semantic error was found, false otherwise.
SemaBuiltinReserveRWPipe(Sema & S,CallExpr * Call)1739 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1740 if (checkArgCount(S, Call, 2))
1741 return true;
1742
1743 if (checkOpenCLPipeArg(S, Call))
1744 return true;
1745
1746 // Check the reserve size.
1747 if (!Call->getArg(1)->getType()->isIntegerType() &&
1748 !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1749 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1750 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1751 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1752 return true;
1753 }
1754
1755 // Since return type of reserve_read/write_pipe built-in function is
1756 // reserve_id_t, which is not defined in the builtin def file , we used int
1757 // as return type and need to override the return type of these functions.
1758 Call->setType(S.Context.OCLReserveIDTy);
1759
1760 return false;
1761 }
1762
1763 // Performs a semantic analysis on {work_group_/sub_group_
1764 // /_}commit_{read/write}_pipe
1765 // \param S Reference to the semantic analyzer.
1766 // \param Call The call to the builtin function to be analyzed.
1767 // \return True if a semantic error was found, false otherwise.
SemaBuiltinCommitRWPipe(Sema & S,CallExpr * Call)1768 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1769 if (checkArgCount(S, Call, 2))
1770 return true;
1771
1772 if (checkOpenCLPipeArg(S, Call))
1773 return true;
1774
1775 // Check reserve_id_t.
1776 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1777 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1778 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1779 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1780 return true;
1781 }
1782
1783 return false;
1784 }
1785
1786 // Performs a semantic analysis on the call to built-in Pipe
1787 // Query Functions.
1788 // \param S Reference to the semantic analyzer.
1789 // \param Call The call to the builtin function to be analyzed.
1790 // \return True if a semantic error was found, false otherwise.
SemaBuiltinPipePackets(Sema & S,CallExpr * Call)1791 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1792 if (checkArgCount(S, Call, 1))
1793 return true;
1794
1795 if (!Call->getArg(0)->getType()->isPipeType()) {
1796 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1797 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1798 return true;
1799 }
1800
1801 return false;
1802 }
1803
1804 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1805 // Performs semantic analysis for the to_global/local/private call.
1806 // \param S Reference to the semantic analyzer.
1807 // \param BuiltinID ID of the builtin function.
1808 // \param Call A pointer to the builtin call.
1809 // \return True if a semantic error has been found, false otherwise.
SemaOpenCLBuiltinToAddr(Sema & S,unsigned BuiltinID,CallExpr * Call)1810 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1811 CallExpr *Call) {
1812 if (checkArgCount(S, Call, 1))
1813 return true;
1814
1815 auto RT = Call->getArg(0)->getType();
1816 if (!RT->isPointerType() || RT->getPointeeType()
1817 .getAddressSpace() == LangAS::opencl_constant) {
1818 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1819 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1820 return true;
1821 }
1822
1823 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1824 S.Diag(Call->getArg(0)->getBeginLoc(),
1825 diag::warn_opencl_generic_address_space_arg)
1826 << Call->getDirectCallee()->getNameInfo().getAsString()
1827 << Call->getArg(0)->getSourceRange();
1828 }
1829
1830 RT = RT->getPointeeType();
1831 auto Qual = RT.getQualifiers();
1832 switch (BuiltinID) {
1833 case Builtin::BIto_global:
1834 Qual.setAddressSpace(LangAS::opencl_global);
1835 break;
1836 case Builtin::BIto_local:
1837 Qual.setAddressSpace(LangAS::opencl_local);
1838 break;
1839 case Builtin::BIto_private:
1840 Qual.setAddressSpace(LangAS::opencl_private);
1841 break;
1842 default:
1843 llvm_unreachable("Invalid builtin function");
1844 }
1845 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1846 RT.getUnqualifiedType(), Qual)));
1847
1848 return false;
1849 }
1850
SemaBuiltinLaunder(Sema & S,CallExpr * TheCall)1851 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1852 if (checkArgCount(S, TheCall, 1))
1853 return ExprError();
1854
1855 // Compute __builtin_launder's parameter type from the argument.
1856 // The parameter type is:
1857 // * The type of the argument if it's not an array or function type,
1858 // Otherwise,
1859 // * The decayed argument type.
1860 QualType ParamTy = [&]() {
1861 QualType ArgTy = TheCall->getArg(0)->getType();
1862 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1863 return S.Context.getPointerType(Ty->getElementType());
1864 if (ArgTy->isFunctionType()) {
1865 return S.Context.getPointerType(ArgTy);
1866 }
1867 return ArgTy;
1868 }();
1869
1870 TheCall->setType(ParamTy);
1871
1872 auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1873 if (!ParamTy->isPointerType())
1874 return 0;
1875 if (ParamTy->isFunctionPointerType())
1876 return 1;
1877 if (ParamTy->isVoidPointerType())
1878 return 2;
1879 return llvm::Optional<unsigned>{};
1880 }();
1881 if (DiagSelect) {
1882 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1883 << DiagSelect.value() << TheCall->getSourceRange();
1884 return ExprError();
1885 }
1886
1887 // We either have an incomplete class type, or we have a class template
1888 // whose instantiation has not been forced. Example:
1889 //
1890 // template <class T> struct Foo { T value; };
1891 // Foo<int> *p = nullptr;
1892 // auto *d = __builtin_launder(p);
1893 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1894 diag::err_incomplete_type))
1895 return ExprError();
1896
1897 assert(ParamTy->getPointeeType()->isObjectType() &&
1898 "Unhandled non-object pointer case");
1899
1900 InitializedEntity Entity =
1901 InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1902 ExprResult Arg =
1903 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1904 if (Arg.isInvalid())
1905 return ExprError();
1906 TheCall->setArg(0, Arg.get());
1907
1908 return TheCall;
1909 }
1910
1911 // Emit an error and return true if the current object format type is in the
1912 // list of unsupported types.
CheckBuiltinTargetNotInUnsupported(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes)1913 static bool CheckBuiltinTargetNotInUnsupported(
1914 Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1915 ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1916 llvm::Triple::ObjectFormatType CurObjFormat =
1917 S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1918 if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1919 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1920 << TheCall->getSourceRange();
1921 return true;
1922 }
1923 return false;
1924 }
1925
1926 // Emit an error and return true if the current architecture is not in the list
1927 // of supported architectures.
1928 static bool
CheckBuiltinTargetInSupported(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ArchType> SupportedArchs)1929 CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1930 ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1931 llvm::Triple::ArchType CurArch =
1932 S.getASTContext().getTargetInfo().getTriple().getArch();
1933 if (llvm::is_contained(SupportedArchs, CurArch))
1934 return false;
1935 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1936 << TheCall->getSourceRange();
1937 return true;
1938 }
1939
1940 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1941 SourceLocation CallSiteLoc);
1942
CheckTSBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)1943 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1944 CallExpr *TheCall) {
1945 switch (TI.getTriple().getArch()) {
1946 default:
1947 // Some builtins don't require additional checking, so just consider these
1948 // acceptable.
1949 return false;
1950 case llvm::Triple::arm:
1951 case llvm::Triple::armeb:
1952 case llvm::Triple::thumb:
1953 case llvm::Triple::thumbeb:
1954 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1955 case llvm::Triple::aarch64:
1956 case llvm::Triple::aarch64_32:
1957 case llvm::Triple::aarch64_be:
1958 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1959 case llvm::Triple::bpfeb:
1960 case llvm::Triple::bpfel:
1961 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1962 case llvm::Triple::hexagon:
1963 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1964 case llvm::Triple::mips:
1965 case llvm::Triple::mipsel:
1966 case llvm::Triple::mips64:
1967 case llvm::Triple::mips64el:
1968 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1969 case llvm::Triple::systemz:
1970 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1971 case llvm::Triple::x86:
1972 case llvm::Triple::x86_64:
1973 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1974 case llvm::Triple::ppc:
1975 case llvm::Triple::ppcle:
1976 case llvm::Triple::ppc64:
1977 case llvm::Triple::ppc64le:
1978 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1979 case llvm::Triple::amdgcn:
1980 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1981 case llvm::Triple::riscv32:
1982 case llvm::Triple::riscv64:
1983 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1984 }
1985 }
1986
1987 ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)1988 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1989 CallExpr *TheCall) {
1990 ExprResult TheCallResult(TheCall);
1991
1992 // Find out if any arguments are required to be integer constant expressions.
1993 unsigned ICEArguments = 0;
1994 ASTContext::GetBuiltinTypeError Error;
1995 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1996 if (Error != ASTContext::GE_None)
1997 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
1998
1999 // If any arguments are required to be ICE's, check and diagnose.
2000 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2001 // Skip arguments not required to be ICE's.
2002 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2003
2004 llvm::APSInt Result;
2005 // If we don't have enough arguments, continue so we can issue better
2006 // diagnostic in checkArgCount(...)
2007 if (ArgNo < TheCall->getNumArgs() &&
2008 SemaBuiltinConstantArg(TheCall, ArgNo, Result))
2009 return true;
2010 ICEArguments &= ~(1 << ArgNo);
2011 }
2012
2013 switch (BuiltinID) {
2014 case Builtin::BI__builtin___CFStringMakeConstantString:
2015 // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2016 // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2017 if (CheckBuiltinTargetNotInUnsupported(
2018 *this, BuiltinID, TheCall,
2019 {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2020 return ExprError();
2021 assert(TheCall->getNumArgs() == 1 &&
2022 "Wrong # arguments to builtin CFStringMakeConstantString");
2023 if (CheckObjCString(TheCall->getArg(0)))
2024 return ExprError();
2025 break;
2026 case Builtin::BI__builtin_ms_va_start:
2027 case Builtin::BI__builtin_stdarg_start:
2028 case Builtin::BI__builtin_va_start:
2029 if (SemaBuiltinVAStart(BuiltinID, TheCall))
2030 return ExprError();
2031 break;
2032 case Builtin::BI__va_start: {
2033 switch (Context.getTargetInfo().getTriple().getArch()) {
2034 case llvm::Triple::aarch64:
2035 case llvm::Triple::arm:
2036 case llvm::Triple::thumb:
2037 if (SemaBuiltinVAStartARMMicrosoft(TheCall))
2038 return ExprError();
2039 break;
2040 default:
2041 if (SemaBuiltinVAStart(BuiltinID, TheCall))
2042 return ExprError();
2043 break;
2044 }
2045 break;
2046 }
2047
2048 // The acquire, release, and no fence variants are ARM and AArch64 only.
2049 case Builtin::BI_interlockedbittestandset_acq:
2050 case Builtin::BI_interlockedbittestandset_rel:
2051 case Builtin::BI_interlockedbittestandset_nf:
2052 case Builtin::BI_interlockedbittestandreset_acq:
2053 case Builtin::BI_interlockedbittestandreset_rel:
2054 case Builtin::BI_interlockedbittestandreset_nf:
2055 if (CheckBuiltinTargetInSupported(
2056 *this, BuiltinID, TheCall,
2057 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2058 return ExprError();
2059 break;
2060
2061 // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2062 case Builtin::BI_bittest64:
2063 case Builtin::BI_bittestandcomplement64:
2064 case Builtin::BI_bittestandreset64:
2065 case Builtin::BI_bittestandset64:
2066 case Builtin::BI_interlockedbittestandreset64:
2067 case Builtin::BI_interlockedbittestandset64:
2068 if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
2069 {llvm::Triple::x86_64, llvm::Triple::arm,
2070 llvm::Triple::thumb,
2071 llvm::Triple::aarch64}))
2072 return ExprError();
2073 break;
2074
2075 case Builtin::BI__builtin_isgreater:
2076 case Builtin::BI__builtin_isgreaterequal:
2077 case Builtin::BI__builtin_isless:
2078 case Builtin::BI__builtin_islessequal:
2079 case Builtin::BI__builtin_islessgreater:
2080 case Builtin::BI__builtin_isunordered:
2081 if (SemaBuiltinUnorderedCompare(TheCall))
2082 return ExprError();
2083 break;
2084 case Builtin::BI__builtin_fpclassify:
2085 if (SemaBuiltinFPClassification(TheCall, 6))
2086 return ExprError();
2087 break;
2088 case Builtin::BI__builtin_isfinite:
2089 case Builtin::BI__builtin_isinf:
2090 case Builtin::BI__builtin_isinf_sign:
2091 case Builtin::BI__builtin_isnan:
2092 case Builtin::BI__builtin_isnormal:
2093 case Builtin::BI__builtin_signbit:
2094 case Builtin::BI__builtin_signbitf:
2095 case Builtin::BI__builtin_signbitl:
2096 if (SemaBuiltinFPClassification(TheCall, 1))
2097 return ExprError();
2098 break;
2099 case Builtin::BI__builtin_shufflevector:
2100 return SemaBuiltinShuffleVector(TheCall);
2101 // TheCall will be freed by the smart pointer here, but that's fine, since
2102 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
2103 case Builtin::BI__builtin_prefetch:
2104 if (SemaBuiltinPrefetch(TheCall))
2105 return ExprError();
2106 break;
2107 case Builtin::BI__builtin_alloca_with_align:
2108 case Builtin::BI__builtin_alloca_with_align_uninitialized:
2109 if (SemaBuiltinAllocaWithAlign(TheCall))
2110 return ExprError();
2111 LLVM_FALLTHROUGH;
2112 case Builtin::BI__builtin_alloca:
2113 case Builtin::BI__builtin_alloca_uninitialized:
2114 Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2115 << TheCall->getDirectCallee();
2116 break;
2117 case Builtin::BI__arithmetic_fence:
2118 if (SemaBuiltinArithmeticFence(TheCall))
2119 return ExprError();
2120 break;
2121 case Builtin::BI__assume:
2122 case Builtin::BI__builtin_assume:
2123 if (SemaBuiltinAssume(TheCall))
2124 return ExprError();
2125 break;
2126 case Builtin::BI__builtin_assume_aligned:
2127 if (SemaBuiltinAssumeAligned(TheCall))
2128 return ExprError();
2129 break;
2130 case Builtin::BI__builtin_dynamic_object_size:
2131 case Builtin::BI__builtin_object_size:
2132 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
2133 return ExprError();
2134 break;
2135 case Builtin::BI__builtin_longjmp:
2136 if (SemaBuiltinLongjmp(TheCall))
2137 return ExprError();
2138 break;
2139 case Builtin::BI__builtin_setjmp:
2140 if (SemaBuiltinSetjmp(TheCall))
2141 return ExprError();
2142 break;
2143 case Builtin::BI__builtin_classify_type:
2144 if (checkArgCount(*this, TheCall, 1)) return true;
2145 TheCall->setType(Context.IntTy);
2146 break;
2147 case Builtin::BI__builtin_complex:
2148 if (SemaBuiltinComplex(TheCall))
2149 return ExprError();
2150 break;
2151 case Builtin::BI__builtin_constant_p: {
2152 if (checkArgCount(*this, TheCall, 1)) return true;
2153 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2154 if (Arg.isInvalid()) return true;
2155 TheCall->setArg(0, Arg.get());
2156 TheCall->setType(Context.IntTy);
2157 break;
2158 }
2159 case Builtin::BI__builtin_launder:
2160 return SemaBuiltinLaunder(*this, TheCall);
2161 case Builtin::BI__sync_fetch_and_add:
2162 case Builtin::BI__sync_fetch_and_add_1:
2163 case Builtin::BI__sync_fetch_and_add_2:
2164 case Builtin::BI__sync_fetch_and_add_4:
2165 case Builtin::BI__sync_fetch_and_add_8:
2166 case Builtin::BI__sync_fetch_and_add_16:
2167 case Builtin::BI__sync_fetch_and_sub:
2168 case Builtin::BI__sync_fetch_and_sub_1:
2169 case Builtin::BI__sync_fetch_and_sub_2:
2170 case Builtin::BI__sync_fetch_and_sub_4:
2171 case Builtin::BI__sync_fetch_and_sub_8:
2172 case Builtin::BI__sync_fetch_and_sub_16:
2173 case Builtin::BI__sync_fetch_and_or:
2174 case Builtin::BI__sync_fetch_and_or_1:
2175 case Builtin::BI__sync_fetch_and_or_2:
2176 case Builtin::BI__sync_fetch_and_or_4:
2177 case Builtin::BI__sync_fetch_and_or_8:
2178 case Builtin::BI__sync_fetch_and_or_16:
2179 case Builtin::BI__sync_fetch_and_and:
2180 case Builtin::BI__sync_fetch_and_and_1:
2181 case Builtin::BI__sync_fetch_and_and_2:
2182 case Builtin::BI__sync_fetch_and_and_4:
2183 case Builtin::BI__sync_fetch_and_and_8:
2184 case Builtin::BI__sync_fetch_and_and_16:
2185 case Builtin::BI__sync_fetch_and_xor:
2186 case Builtin::BI__sync_fetch_and_xor_1:
2187 case Builtin::BI__sync_fetch_and_xor_2:
2188 case Builtin::BI__sync_fetch_and_xor_4:
2189 case Builtin::BI__sync_fetch_and_xor_8:
2190 case Builtin::BI__sync_fetch_and_xor_16:
2191 case Builtin::BI__sync_fetch_and_nand:
2192 case Builtin::BI__sync_fetch_and_nand_1:
2193 case Builtin::BI__sync_fetch_and_nand_2:
2194 case Builtin::BI__sync_fetch_and_nand_4:
2195 case Builtin::BI__sync_fetch_and_nand_8:
2196 case Builtin::BI__sync_fetch_and_nand_16:
2197 case Builtin::BI__sync_add_and_fetch:
2198 case Builtin::BI__sync_add_and_fetch_1:
2199 case Builtin::BI__sync_add_and_fetch_2:
2200 case Builtin::BI__sync_add_and_fetch_4:
2201 case Builtin::BI__sync_add_and_fetch_8:
2202 case Builtin::BI__sync_add_and_fetch_16:
2203 case Builtin::BI__sync_sub_and_fetch:
2204 case Builtin::BI__sync_sub_and_fetch_1:
2205 case Builtin::BI__sync_sub_and_fetch_2:
2206 case Builtin::BI__sync_sub_and_fetch_4:
2207 case Builtin::BI__sync_sub_and_fetch_8:
2208 case Builtin::BI__sync_sub_and_fetch_16:
2209 case Builtin::BI__sync_and_and_fetch:
2210 case Builtin::BI__sync_and_and_fetch_1:
2211 case Builtin::BI__sync_and_and_fetch_2:
2212 case Builtin::BI__sync_and_and_fetch_4:
2213 case Builtin::BI__sync_and_and_fetch_8:
2214 case Builtin::BI__sync_and_and_fetch_16:
2215 case Builtin::BI__sync_or_and_fetch:
2216 case Builtin::BI__sync_or_and_fetch_1:
2217 case Builtin::BI__sync_or_and_fetch_2:
2218 case Builtin::BI__sync_or_and_fetch_4:
2219 case Builtin::BI__sync_or_and_fetch_8:
2220 case Builtin::BI__sync_or_and_fetch_16:
2221 case Builtin::BI__sync_xor_and_fetch:
2222 case Builtin::BI__sync_xor_and_fetch_1:
2223 case Builtin::BI__sync_xor_and_fetch_2:
2224 case Builtin::BI__sync_xor_and_fetch_4:
2225 case Builtin::BI__sync_xor_and_fetch_8:
2226 case Builtin::BI__sync_xor_and_fetch_16:
2227 case Builtin::BI__sync_nand_and_fetch:
2228 case Builtin::BI__sync_nand_and_fetch_1:
2229 case Builtin::BI__sync_nand_and_fetch_2:
2230 case Builtin::BI__sync_nand_and_fetch_4:
2231 case Builtin::BI__sync_nand_and_fetch_8:
2232 case Builtin::BI__sync_nand_and_fetch_16:
2233 case Builtin::BI__sync_val_compare_and_swap:
2234 case Builtin::BI__sync_val_compare_and_swap_1:
2235 case Builtin::BI__sync_val_compare_and_swap_2:
2236 case Builtin::BI__sync_val_compare_and_swap_4:
2237 case Builtin::BI__sync_val_compare_and_swap_8:
2238 case Builtin::BI__sync_val_compare_and_swap_16:
2239 case Builtin::BI__sync_bool_compare_and_swap:
2240 case Builtin::BI__sync_bool_compare_and_swap_1:
2241 case Builtin::BI__sync_bool_compare_and_swap_2:
2242 case Builtin::BI__sync_bool_compare_and_swap_4:
2243 case Builtin::BI__sync_bool_compare_and_swap_8:
2244 case Builtin::BI__sync_bool_compare_and_swap_16:
2245 case Builtin::BI__sync_lock_test_and_set:
2246 case Builtin::BI__sync_lock_test_and_set_1:
2247 case Builtin::BI__sync_lock_test_and_set_2:
2248 case Builtin::BI__sync_lock_test_and_set_4:
2249 case Builtin::BI__sync_lock_test_and_set_8:
2250 case Builtin::BI__sync_lock_test_and_set_16:
2251 case Builtin::BI__sync_lock_release:
2252 case Builtin::BI__sync_lock_release_1:
2253 case Builtin::BI__sync_lock_release_2:
2254 case Builtin::BI__sync_lock_release_4:
2255 case Builtin::BI__sync_lock_release_8:
2256 case Builtin::BI__sync_lock_release_16:
2257 case Builtin::BI__sync_swap:
2258 case Builtin::BI__sync_swap_1:
2259 case Builtin::BI__sync_swap_2:
2260 case Builtin::BI__sync_swap_4:
2261 case Builtin::BI__sync_swap_8:
2262 case Builtin::BI__sync_swap_16:
2263 return SemaBuiltinAtomicOverloaded(TheCallResult);
2264 case Builtin::BI__sync_synchronize:
2265 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2266 << TheCall->getCallee()->getSourceRange();
2267 break;
2268 case Builtin::BI__builtin_nontemporal_load:
2269 case Builtin::BI__builtin_nontemporal_store:
2270 return SemaBuiltinNontemporalOverloaded(TheCallResult);
2271 case Builtin::BI__builtin_memcpy_inline: {
2272 clang::Expr *SizeOp = TheCall->getArg(2);
2273 // We warn about copying to or from `nullptr` pointers when `size` is
2274 // greater than 0. When `size` is value dependent we cannot evaluate its
2275 // value so we bail out.
2276 if (SizeOp->isValueDependent())
2277 break;
2278 if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2279 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2280 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2281 }
2282 break;
2283 }
2284 case Builtin::BI__builtin_memset_inline: {
2285 clang::Expr *SizeOp = TheCall->getArg(2);
2286 // We warn about filling to `nullptr` pointers when `size` is greater than
2287 // 0. When `size` is value dependent we cannot evaluate its value so we bail
2288 // out.
2289 if (SizeOp->isValueDependent())
2290 break;
2291 if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2292 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2293 break;
2294 }
2295 #define BUILTIN(ID, TYPE, ATTRS)
2296 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
2297 case Builtin::BI##ID: \
2298 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2299 #include "clang/Basic/Builtins.def"
2300 case Builtin::BI__annotation:
2301 if (SemaBuiltinMSVCAnnotation(*this, TheCall))
2302 return ExprError();
2303 break;
2304 case Builtin::BI__builtin_annotation:
2305 if (SemaBuiltinAnnotation(*this, TheCall))
2306 return ExprError();
2307 break;
2308 case Builtin::BI__builtin_addressof:
2309 if (SemaBuiltinAddressof(*this, TheCall))
2310 return ExprError();
2311 break;
2312 case Builtin::BI__builtin_function_start:
2313 if (SemaBuiltinFunctionStart(*this, TheCall))
2314 return ExprError();
2315 break;
2316 case Builtin::BI__builtin_is_aligned:
2317 case Builtin::BI__builtin_align_up:
2318 case Builtin::BI__builtin_align_down:
2319 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
2320 return ExprError();
2321 break;
2322 case Builtin::BI__builtin_add_overflow:
2323 case Builtin::BI__builtin_sub_overflow:
2324 case Builtin::BI__builtin_mul_overflow:
2325 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
2326 return ExprError();
2327 break;
2328 case Builtin::BI__builtin_operator_new:
2329 case Builtin::BI__builtin_operator_delete: {
2330 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2331 ExprResult Res =
2332 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2333 if (Res.isInvalid())
2334 CorrectDelayedTyposInExpr(TheCallResult.get());
2335 return Res;
2336 }
2337 case Builtin::BI__builtin_dump_struct:
2338 return SemaBuiltinDumpStruct(*this, TheCall);
2339 case Builtin::BI__builtin_expect_with_probability: {
2340 // We first want to ensure we are called with 3 arguments
2341 if (checkArgCount(*this, TheCall, 3))
2342 return ExprError();
2343 // then check probability is constant float in range [0.0, 1.0]
2344 const Expr *ProbArg = TheCall->getArg(2);
2345 SmallVector<PartialDiagnosticAt, 8> Notes;
2346 Expr::EvalResult Eval;
2347 Eval.Diag = &Notes;
2348 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2349 !Eval.Val.isFloat()) {
2350 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2351 << ProbArg->getSourceRange();
2352 for (const PartialDiagnosticAt &PDiag : Notes)
2353 Diag(PDiag.first, PDiag.second);
2354 return ExprError();
2355 }
2356 llvm::APFloat Probability = Eval.Val.getFloat();
2357 bool LoseInfo = false;
2358 Probability.convert(llvm::APFloat::IEEEdouble(),
2359 llvm::RoundingMode::Dynamic, &LoseInfo);
2360 if (!(Probability >= llvm::APFloat(0.0) &&
2361 Probability <= llvm::APFloat(1.0))) {
2362 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2363 << ProbArg->getSourceRange();
2364 return ExprError();
2365 }
2366 break;
2367 }
2368 case Builtin::BI__builtin_preserve_access_index:
2369 if (SemaBuiltinPreserveAI(*this, TheCall))
2370 return ExprError();
2371 break;
2372 case Builtin::BI__builtin_call_with_static_chain:
2373 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
2374 return ExprError();
2375 break;
2376 case Builtin::BI__exception_code:
2377 case Builtin::BI_exception_code:
2378 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2379 diag::err_seh___except_block))
2380 return ExprError();
2381 break;
2382 case Builtin::BI__exception_info:
2383 case Builtin::BI_exception_info:
2384 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2385 diag::err_seh___except_filter))
2386 return ExprError();
2387 break;
2388 case Builtin::BI__GetExceptionInfo:
2389 if (checkArgCount(*this, TheCall, 1))
2390 return ExprError();
2391
2392 if (CheckCXXThrowOperand(
2393 TheCall->getBeginLoc(),
2394 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2395 TheCall))
2396 return ExprError();
2397
2398 TheCall->setType(Context.VoidPtrTy);
2399 break;
2400 case Builtin::BIaddressof:
2401 case Builtin::BI__addressof:
2402 case Builtin::BIforward:
2403 case Builtin::BImove:
2404 case Builtin::BImove_if_noexcept:
2405 case Builtin::BIas_const: {
2406 // These are all expected to be of the form
2407 // T &/&&/* f(U &/&&)
2408 // where T and U only differ in qualification.
2409 if (checkArgCount(*this, TheCall, 1))
2410 return ExprError();
2411 QualType Param = FDecl->getParamDecl(0)->getType();
2412 QualType Result = FDecl->getReturnType();
2413 bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2414 BuiltinID == Builtin::BI__addressof;
2415 if (!(Param->isReferenceType() &&
2416 (ReturnsPointer ? Result->isAnyPointerType()
2417 : Result->isReferenceType()) &&
2418 Context.hasSameUnqualifiedType(Param->getPointeeType(),
2419 Result->getPointeeType()))) {
2420 Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2421 << FDecl;
2422 return ExprError();
2423 }
2424 break;
2425 }
2426 // OpenCL v2.0, s6.13.16 - Pipe functions
2427 case Builtin::BIread_pipe:
2428 case Builtin::BIwrite_pipe:
2429 // Since those two functions are declared with var args, we need a semantic
2430 // check for the argument.
2431 if (SemaBuiltinRWPipe(*this, TheCall))
2432 return ExprError();
2433 break;
2434 case Builtin::BIreserve_read_pipe:
2435 case Builtin::BIreserve_write_pipe:
2436 case Builtin::BIwork_group_reserve_read_pipe:
2437 case Builtin::BIwork_group_reserve_write_pipe:
2438 if (SemaBuiltinReserveRWPipe(*this, TheCall))
2439 return ExprError();
2440 break;
2441 case Builtin::BIsub_group_reserve_read_pipe:
2442 case Builtin::BIsub_group_reserve_write_pipe:
2443 if (checkOpenCLSubgroupExt(*this, TheCall) ||
2444 SemaBuiltinReserveRWPipe(*this, TheCall))
2445 return ExprError();
2446 break;
2447 case Builtin::BIcommit_read_pipe:
2448 case Builtin::BIcommit_write_pipe:
2449 case Builtin::BIwork_group_commit_read_pipe:
2450 case Builtin::BIwork_group_commit_write_pipe:
2451 if (SemaBuiltinCommitRWPipe(*this, TheCall))
2452 return ExprError();
2453 break;
2454 case Builtin::BIsub_group_commit_read_pipe:
2455 case Builtin::BIsub_group_commit_write_pipe:
2456 if (checkOpenCLSubgroupExt(*this, TheCall) ||
2457 SemaBuiltinCommitRWPipe(*this, TheCall))
2458 return ExprError();
2459 break;
2460 case Builtin::BIget_pipe_num_packets:
2461 case Builtin::BIget_pipe_max_packets:
2462 if (SemaBuiltinPipePackets(*this, TheCall))
2463 return ExprError();
2464 break;
2465 case Builtin::BIto_global:
2466 case Builtin::BIto_local:
2467 case Builtin::BIto_private:
2468 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2469 return ExprError();
2470 break;
2471 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2472 case Builtin::BIenqueue_kernel:
2473 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2474 return ExprError();
2475 break;
2476 case Builtin::BIget_kernel_work_group_size:
2477 case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2478 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2479 return ExprError();
2480 break;
2481 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2482 case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2483 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2484 return ExprError();
2485 break;
2486 case Builtin::BI__builtin_os_log_format:
2487 Cleanup.setExprNeedsCleanups(true);
2488 LLVM_FALLTHROUGH;
2489 case Builtin::BI__builtin_os_log_format_buffer_size:
2490 if (SemaBuiltinOSLogFormat(TheCall))
2491 return ExprError();
2492 break;
2493 case Builtin::BI__builtin_frame_address:
2494 case Builtin::BI__builtin_return_address: {
2495 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2496 return ExprError();
2497
2498 // -Wframe-address warning if non-zero passed to builtin
2499 // return/frame address.
2500 Expr::EvalResult Result;
2501 if (!TheCall->getArg(0)->isValueDependent() &&
2502 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2503 Result.Val.getInt() != 0)
2504 Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2505 << ((BuiltinID == Builtin::BI__builtin_return_address)
2506 ? "__builtin_return_address"
2507 : "__builtin_frame_address")
2508 << TheCall->getSourceRange();
2509 break;
2510 }
2511
2512 // __builtin_elementwise_abs restricts the element type to signed integers or
2513 // floating point types only.
2514 case Builtin::BI__builtin_elementwise_abs: {
2515 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2516 return ExprError();
2517
2518 QualType ArgTy = TheCall->getArg(0)->getType();
2519 QualType EltTy = ArgTy;
2520
2521 if (auto *VecTy = EltTy->getAs<VectorType>())
2522 EltTy = VecTy->getElementType();
2523 if (EltTy->isUnsignedIntegerType()) {
2524 Diag(TheCall->getArg(0)->getBeginLoc(),
2525 diag::err_builtin_invalid_arg_type)
2526 << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2527 return ExprError();
2528 }
2529 break;
2530 }
2531
2532 // These builtins restrict the element type to floating point
2533 // types only.
2534 case Builtin::BI__builtin_elementwise_ceil:
2535 case Builtin::BI__builtin_elementwise_floor:
2536 case Builtin::BI__builtin_elementwise_roundeven:
2537 case Builtin::BI__builtin_elementwise_trunc: {
2538 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2539 return ExprError();
2540
2541 QualType ArgTy = TheCall->getArg(0)->getType();
2542 QualType EltTy = ArgTy;
2543
2544 if (auto *VecTy = EltTy->getAs<VectorType>())
2545 EltTy = VecTy->getElementType();
2546 if (!EltTy->isFloatingType()) {
2547 Diag(TheCall->getArg(0)->getBeginLoc(),
2548 diag::err_builtin_invalid_arg_type)
2549 << 1 << /* float ty*/ 5 << ArgTy;
2550
2551 return ExprError();
2552 }
2553 break;
2554 }
2555
2556 // These builtins restrict the element type to integer
2557 // types only.
2558 case Builtin::BI__builtin_elementwise_add_sat:
2559 case Builtin::BI__builtin_elementwise_sub_sat: {
2560 if (SemaBuiltinElementwiseMath(TheCall))
2561 return ExprError();
2562
2563 const Expr *Arg = TheCall->getArg(0);
2564 QualType ArgTy = Arg->getType();
2565 QualType EltTy = ArgTy;
2566
2567 if (auto *VecTy = EltTy->getAs<VectorType>())
2568 EltTy = VecTy->getElementType();
2569
2570 if (!EltTy->isIntegerType()) {
2571 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2572 << 1 << /* integer ty */ 6 << ArgTy;
2573 return ExprError();
2574 }
2575 break;
2576 }
2577
2578 case Builtin::BI__builtin_elementwise_min:
2579 case Builtin::BI__builtin_elementwise_max:
2580 if (SemaBuiltinElementwiseMath(TheCall))
2581 return ExprError();
2582 break;
2583 case Builtin::BI__builtin_reduce_max:
2584 case Builtin::BI__builtin_reduce_min: {
2585 if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2586 return ExprError();
2587
2588 const Expr *Arg = TheCall->getArg(0);
2589 const auto *TyA = Arg->getType()->getAs<VectorType>();
2590 if (!TyA) {
2591 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2592 << 1 << /* vector ty*/ 4 << Arg->getType();
2593 return ExprError();
2594 }
2595
2596 TheCall->setType(TyA->getElementType());
2597 break;
2598 }
2599
2600 // These builtins support vectors of integers only.
2601 // TODO: ADD/MUL should support floating-point types.
2602 case Builtin::BI__builtin_reduce_add:
2603 case Builtin::BI__builtin_reduce_mul:
2604 case Builtin::BI__builtin_reduce_xor:
2605 case Builtin::BI__builtin_reduce_or:
2606 case Builtin::BI__builtin_reduce_and: {
2607 if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2608 return ExprError();
2609
2610 const Expr *Arg = TheCall->getArg(0);
2611 const auto *TyA = Arg->getType()->getAs<VectorType>();
2612 if (!TyA || !TyA->getElementType()->isIntegerType()) {
2613 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2614 << 1 << /* vector of integers */ 6 << Arg->getType();
2615 return ExprError();
2616 }
2617 TheCall->setType(TyA->getElementType());
2618 break;
2619 }
2620
2621 case Builtin::BI__builtin_matrix_transpose:
2622 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2623
2624 case Builtin::BI__builtin_matrix_column_major_load:
2625 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2626
2627 case Builtin::BI__builtin_matrix_column_major_store:
2628 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2629
2630 case Builtin::BI__builtin_get_device_side_mangled_name: {
2631 auto Check = [](CallExpr *TheCall) {
2632 if (TheCall->getNumArgs() != 1)
2633 return false;
2634 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2635 if (!DRE)
2636 return false;
2637 auto *D = DRE->getDecl();
2638 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2639 return false;
2640 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2641 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2642 };
2643 if (!Check(TheCall)) {
2644 Diag(TheCall->getBeginLoc(),
2645 diag::err_hip_invalid_args_builtin_mangled_name);
2646 return ExprError();
2647 }
2648 }
2649 }
2650
2651 // Since the target specific builtins for each arch overlap, only check those
2652 // of the arch we are compiling for.
2653 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2654 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2655 assert(Context.getAuxTargetInfo() &&
2656 "Aux Target Builtin, but not an aux target?");
2657
2658 if (CheckTSBuiltinFunctionCall(
2659 *Context.getAuxTargetInfo(),
2660 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2661 return ExprError();
2662 } else {
2663 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2664 TheCall))
2665 return ExprError();
2666 }
2667 }
2668
2669 return TheCallResult;
2670 }
2671
2672 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)2673 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2674 NeonTypeFlags Type(t);
2675 int IsQuad = ForceQuad ? true : Type.isQuad();
2676 switch (Type.getEltType()) {
2677 case NeonTypeFlags::Int8:
2678 case NeonTypeFlags::Poly8:
2679 return shift ? 7 : (8 << IsQuad) - 1;
2680 case NeonTypeFlags::Int16:
2681 case NeonTypeFlags::Poly16:
2682 return shift ? 15 : (4 << IsQuad) - 1;
2683 case NeonTypeFlags::Int32:
2684 return shift ? 31 : (2 << IsQuad) - 1;
2685 case NeonTypeFlags::Int64:
2686 case NeonTypeFlags::Poly64:
2687 return shift ? 63 : (1 << IsQuad) - 1;
2688 case NeonTypeFlags::Poly128:
2689 return shift ? 127 : (1 << IsQuad) - 1;
2690 case NeonTypeFlags::Float16:
2691 assert(!shift && "cannot shift float types!");
2692 return (4 << IsQuad) - 1;
2693 case NeonTypeFlags::Float32:
2694 assert(!shift && "cannot shift float types!");
2695 return (2 << IsQuad) - 1;
2696 case NeonTypeFlags::Float64:
2697 assert(!shift && "cannot shift float types!");
2698 return (1 << IsQuad) - 1;
2699 case NeonTypeFlags::BFloat16:
2700 assert(!shift && "cannot shift float types!");
2701 return (4 << IsQuad) - 1;
2702 }
2703 llvm_unreachable("Invalid NeonTypeFlag!");
2704 }
2705
2706 /// getNeonEltType - Return the QualType corresponding to the elements of
2707 /// the vector type specified by the NeonTypeFlags. This is used to check
2708 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)2709 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2710 bool IsPolyUnsigned, bool IsInt64Long) {
2711 switch (Flags.getEltType()) {
2712 case NeonTypeFlags::Int8:
2713 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2714 case NeonTypeFlags::Int16:
2715 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2716 case NeonTypeFlags::Int32:
2717 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2718 case NeonTypeFlags::Int64:
2719 if (IsInt64Long)
2720 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2721 else
2722 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2723 : Context.LongLongTy;
2724 case NeonTypeFlags::Poly8:
2725 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2726 case NeonTypeFlags::Poly16:
2727 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2728 case NeonTypeFlags::Poly64:
2729 if (IsInt64Long)
2730 return Context.UnsignedLongTy;
2731 else
2732 return Context.UnsignedLongLongTy;
2733 case NeonTypeFlags::Poly128:
2734 break;
2735 case NeonTypeFlags::Float16:
2736 return Context.HalfTy;
2737 case NeonTypeFlags::Float32:
2738 return Context.FloatTy;
2739 case NeonTypeFlags::Float64:
2740 return Context.DoubleTy;
2741 case NeonTypeFlags::BFloat16:
2742 return Context.BFloat16Ty;
2743 }
2744 llvm_unreachable("Invalid NeonTypeFlag!");
2745 }
2746
CheckSVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2747 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2748 // Range check SVE intrinsics that take immediate values.
2749 SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2750
2751 switch (BuiltinID) {
2752 default:
2753 return false;
2754 #define GET_SVE_IMMEDIATE_CHECK
2755 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2756 #undef GET_SVE_IMMEDIATE_CHECK
2757 }
2758
2759 // Perform all the immediate checks for this builtin call.
2760 bool HasError = false;
2761 for (auto &I : ImmChecks) {
2762 int ArgNum, CheckTy, ElementSizeInBits;
2763 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2764
2765 typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2766
2767 // Function that checks whether the operand (ArgNum) is an immediate
2768 // that is one of the predefined values.
2769 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2770 int ErrDiag) -> bool {
2771 // We can't check the value of a dependent argument.
2772 Expr *Arg = TheCall->getArg(ArgNum);
2773 if (Arg->isTypeDependent() || Arg->isValueDependent())
2774 return false;
2775
2776 // Check constant-ness first.
2777 llvm::APSInt Imm;
2778 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2779 return true;
2780
2781 if (!CheckImm(Imm.getSExtValue()))
2782 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2783 return false;
2784 };
2785
2786 switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2787 case SVETypeFlags::ImmCheck0_31:
2788 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2789 HasError = true;
2790 break;
2791 case SVETypeFlags::ImmCheck0_13:
2792 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2793 HasError = true;
2794 break;
2795 case SVETypeFlags::ImmCheck1_16:
2796 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2797 HasError = true;
2798 break;
2799 case SVETypeFlags::ImmCheck0_7:
2800 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2801 HasError = true;
2802 break;
2803 case SVETypeFlags::ImmCheckExtract:
2804 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2805 (2048 / ElementSizeInBits) - 1))
2806 HasError = true;
2807 break;
2808 case SVETypeFlags::ImmCheckShiftRight:
2809 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2810 HasError = true;
2811 break;
2812 case SVETypeFlags::ImmCheckShiftRightNarrow:
2813 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2814 ElementSizeInBits / 2))
2815 HasError = true;
2816 break;
2817 case SVETypeFlags::ImmCheckShiftLeft:
2818 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2819 ElementSizeInBits - 1))
2820 HasError = true;
2821 break;
2822 case SVETypeFlags::ImmCheckLaneIndex:
2823 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2824 (128 / (1 * ElementSizeInBits)) - 1))
2825 HasError = true;
2826 break;
2827 case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2828 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2829 (128 / (2 * ElementSizeInBits)) - 1))
2830 HasError = true;
2831 break;
2832 case SVETypeFlags::ImmCheckLaneIndexDot:
2833 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2834 (128 / (4 * ElementSizeInBits)) - 1))
2835 HasError = true;
2836 break;
2837 case SVETypeFlags::ImmCheckComplexRot90_270:
2838 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2839 diag::err_rotation_argument_to_cadd))
2840 HasError = true;
2841 break;
2842 case SVETypeFlags::ImmCheckComplexRotAll90:
2843 if (CheckImmediateInSet(
2844 [](int64_t V) {
2845 return V == 0 || V == 90 || V == 180 || V == 270;
2846 },
2847 diag::err_rotation_argument_to_cmla))
2848 HasError = true;
2849 break;
2850 case SVETypeFlags::ImmCheck0_1:
2851 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2852 HasError = true;
2853 break;
2854 case SVETypeFlags::ImmCheck0_2:
2855 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2856 HasError = true;
2857 break;
2858 case SVETypeFlags::ImmCheck0_3:
2859 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2860 HasError = true;
2861 break;
2862 }
2863 }
2864
2865 return HasError;
2866 }
2867
CheckNeonBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2868 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2869 unsigned BuiltinID, CallExpr *TheCall) {
2870 llvm::APSInt Result;
2871 uint64_t mask = 0;
2872 unsigned TV = 0;
2873 int PtrArgNum = -1;
2874 bool HasConstPtr = false;
2875 switch (BuiltinID) {
2876 #define GET_NEON_OVERLOAD_CHECK
2877 #include "clang/Basic/arm_neon.inc"
2878 #include "clang/Basic/arm_fp16.inc"
2879 #undef GET_NEON_OVERLOAD_CHECK
2880 }
2881
2882 // For NEON intrinsics which are overloaded on vector element type, validate
2883 // the immediate which specifies which variant to emit.
2884 unsigned ImmArg = TheCall->getNumArgs()-1;
2885 if (mask) {
2886 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2887 return true;
2888
2889 TV = Result.getLimitedValue(64);
2890 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2891 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2892 << TheCall->getArg(ImmArg)->getSourceRange();
2893 }
2894
2895 if (PtrArgNum >= 0) {
2896 // Check that pointer arguments have the specified type.
2897 Expr *Arg = TheCall->getArg(PtrArgNum);
2898 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2899 Arg = ICE->getSubExpr();
2900 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2901 QualType RHSTy = RHS.get()->getType();
2902
2903 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2904 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2905 Arch == llvm::Triple::aarch64_32 ||
2906 Arch == llvm::Triple::aarch64_be;
2907 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2908 QualType EltTy =
2909 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2910 if (HasConstPtr)
2911 EltTy = EltTy.withConst();
2912 QualType LHSTy = Context.getPointerType(EltTy);
2913 AssignConvertType ConvTy;
2914 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2915 if (RHS.isInvalid())
2916 return true;
2917 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2918 RHS.get(), AA_Assigning))
2919 return true;
2920 }
2921
2922 // For NEON intrinsics which take an immediate value as part of the
2923 // instruction, range check them here.
2924 unsigned i = 0, l = 0, u = 0;
2925 switch (BuiltinID) {
2926 default:
2927 return false;
2928 #define GET_NEON_IMMEDIATE_CHECK
2929 #include "clang/Basic/arm_neon.inc"
2930 #include "clang/Basic/arm_fp16.inc"
2931 #undef GET_NEON_IMMEDIATE_CHECK
2932 }
2933
2934 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2935 }
2936
CheckMVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2937 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2938 switch (BuiltinID) {
2939 default:
2940 return false;
2941 #include "clang/Basic/arm_mve_builtin_sema.inc"
2942 }
2943 }
2944
CheckCDEBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2945 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2946 CallExpr *TheCall) {
2947 bool Err = false;
2948 switch (BuiltinID) {
2949 default:
2950 return false;
2951 #include "clang/Basic/arm_cde_builtin_sema.inc"
2952 }
2953
2954 if (Err)
2955 return true;
2956
2957 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2958 }
2959
CheckARMCoprocessorImmediate(const TargetInfo & TI,const Expr * CoprocArg,bool WantCDE)2960 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2961 const Expr *CoprocArg, bool WantCDE) {
2962 if (isConstantEvaluated())
2963 return false;
2964
2965 // We can't check the value of a dependent argument.
2966 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2967 return false;
2968
2969 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2970 int64_t CoprocNo = CoprocNoAP.getExtValue();
2971 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2972
2973 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2974 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2975
2976 if (IsCDECoproc != WantCDE)
2977 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2978 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2979
2980 return false;
2981 }
2982
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)2983 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2984 unsigned MaxWidth) {
2985 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2986 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2987 BuiltinID == ARM::BI__builtin_arm_strex ||
2988 BuiltinID == ARM::BI__builtin_arm_stlex ||
2989 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2990 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2991 BuiltinID == AArch64::BI__builtin_arm_strex ||
2992 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2993 "unexpected ARM builtin");
2994 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2995 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2996 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2997 BuiltinID == AArch64::BI__builtin_arm_ldaex;
2998
2999 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3000
3001 // Ensure that we have the proper number of arguments.
3002 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
3003 return true;
3004
3005 // Inspect the pointer argument of the atomic builtin. This should always be
3006 // a pointer type, whose element is an integral scalar or pointer type.
3007 // Because it is a pointer type, we don't have to worry about any implicit
3008 // casts here.
3009 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
3010 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
3011 if (PointerArgRes.isInvalid())
3012 return true;
3013 PointerArg = PointerArgRes.get();
3014
3015 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3016 if (!pointerType) {
3017 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
3018 << PointerArg->getType() << PointerArg->getSourceRange();
3019 return true;
3020 }
3021
3022 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
3023 // task is to insert the appropriate casts into the AST. First work out just
3024 // what the appropriate type is.
3025 QualType ValType = pointerType->getPointeeType();
3026 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
3027 if (IsLdrex)
3028 AddrType.addConst();
3029
3030 // Issue a warning if the cast is dodgy.
3031 CastKind CastNeeded = CK_NoOp;
3032 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
3033 CastNeeded = CK_BitCast;
3034 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
3035 << PointerArg->getType() << Context.getPointerType(AddrType)
3036 << AA_Passing << PointerArg->getSourceRange();
3037 }
3038
3039 // Finally, do the cast and replace the argument with the corrected version.
3040 AddrType = Context.getPointerType(AddrType);
3041 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
3042 if (PointerArgRes.isInvalid())
3043 return true;
3044 PointerArg = PointerArgRes.get();
3045
3046 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
3047
3048 // In general, we allow ints, floats and pointers to be loaded and stored.
3049 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3050 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
3051 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
3052 << PointerArg->getType() << PointerArg->getSourceRange();
3053 return true;
3054 }
3055
3056 // But ARM doesn't have instructions to deal with 128-bit versions.
3057 if (Context.getTypeSize(ValType) > MaxWidth) {
3058 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
3059 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
3060 << PointerArg->getType() << PointerArg->getSourceRange();
3061 return true;
3062 }
3063
3064 switch (ValType.getObjCLifetime()) {
3065 case Qualifiers::OCL_None:
3066 case Qualifiers::OCL_ExplicitNone:
3067 // okay
3068 break;
3069
3070 case Qualifiers::OCL_Weak:
3071 case Qualifiers::OCL_Strong:
3072 case Qualifiers::OCL_Autoreleasing:
3073 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
3074 << ValType << PointerArg->getSourceRange();
3075 return true;
3076 }
3077
3078 if (IsLdrex) {
3079 TheCall->setType(ValType);
3080 return false;
3081 }
3082
3083 // Initialize the argument to be stored.
3084 ExprResult ValArg = TheCall->getArg(0);
3085 InitializedEntity Entity = InitializedEntity::InitializeParameter(
3086 Context, ValType, /*consume*/ false);
3087 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3088 if (ValArg.isInvalid())
3089 return true;
3090 TheCall->setArg(0, ValArg.get());
3091
3092 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
3093 // but the custom checker bypasses all default analysis.
3094 TheCall->setType(Context.IntTy);
3095 return false;
3096 }
3097
CheckARMBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3098 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3099 CallExpr *TheCall) {
3100 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3101 BuiltinID == ARM::BI__builtin_arm_ldaex ||
3102 BuiltinID == ARM::BI__builtin_arm_strex ||
3103 BuiltinID == ARM::BI__builtin_arm_stlex) {
3104 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
3105 }
3106
3107 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3108 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3109 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
3110 }
3111
3112 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3113 BuiltinID == ARM::BI__builtin_arm_wsr64)
3114 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
3115
3116 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
3117 BuiltinID == ARM::BI__builtin_arm_rsrp ||
3118 BuiltinID == ARM::BI__builtin_arm_wsr ||
3119 BuiltinID == ARM::BI__builtin_arm_wsrp)
3120 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3121
3122 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3123 return true;
3124 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
3125 return true;
3126 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
3127 return true;
3128
3129 // For intrinsics which take an immediate value as part of the instruction,
3130 // range check them here.
3131 // FIXME: VFP Intrinsics should error if VFP not present.
3132 switch (BuiltinID) {
3133 default: return false;
3134 case ARM::BI__builtin_arm_ssat:
3135 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
3136 case ARM::BI__builtin_arm_usat:
3137 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
3138 case ARM::BI__builtin_arm_ssat16:
3139 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3140 case ARM::BI__builtin_arm_usat16:
3141 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3142 case ARM::BI__builtin_arm_vcvtr_f:
3143 case ARM::BI__builtin_arm_vcvtr_d:
3144 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3145 case ARM::BI__builtin_arm_dmb:
3146 case ARM::BI__builtin_arm_dsb:
3147 case ARM::BI__builtin_arm_isb:
3148 case ARM::BI__builtin_arm_dbg:
3149 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
3150 case ARM::BI__builtin_arm_cdp:
3151 case ARM::BI__builtin_arm_cdp2:
3152 case ARM::BI__builtin_arm_mcr:
3153 case ARM::BI__builtin_arm_mcr2:
3154 case ARM::BI__builtin_arm_mrc:
3155 case ARM::BI__builtin_arm_mrc2:
3156 case ARM::BI__builtin_arm_mcrr:
3157 case ARM::BI__builtin_arm_mcrr2:
3158 case ARM::BI__builtin_arm_mrrc:
3159 case ARM::BI__builtin_arm_mrrc2:
3160 case ARM::BI__builtin_arm_ldc:
3161 case ARM::BI__builtin_arm_ldcl:
3162 case ARM::BI__builtin_arm_ldc2:
3163 case ARM::BI__builtin_arm_ldc2l:
3164 case ARM::BI__builtin_arm_stc:
3165 case ARM::BI__builtin_arm_stcl:
3166 case ARM::BI__builtin_arm_stc2:
3167 case ARM::BI__builtin_arm_stc2l:
3168 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
3169 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
3170 /*WantCDE*/ false);
3171 }
3172 }
3173
CheckAArch64BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3174 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
3175 unsigned BuiltinID,
3176 CallExpr *TheCall) {
3177 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
3178 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
3179 BuiltinID == AArch64::BI__builtin_arm_strex ||
3180 BuiltinID == AArch64::BI__builtin_arm_stlex) {
3181 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
3182 }
3183
3184 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
3185 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3186 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
3187 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
3188 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
3189 }
3190
3191 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
3192 BuiltinID == AArch64::BI__builtin_arm_wsr64)
3193 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3194
3195 // Memory Tagging Extensions (MTE) Intrinsics
3196 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
3197 BuiltinID == AArch64::BI__builtin_arm_addg ||
3198 BuiltinID == AArch64::BI__builtin_arm_gmi ||
3199 BuiltinID == AArch64::BI__builtin_arm_ldg ||
3200 BuiltinID == AArch64::BI__builtin_arm_stg ||
3201 BuiltinID == AArch64::BI__builtin_arm_subp) {
3202 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
3203 }
3204
3205 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
3206 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
3207 BuiltinID == AArch64::BI__builtin_arm_wsr ||
3208 BuiltinID == AArch64::BI__builtin_arm_wsrp)
3209 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3210
3211 // Only check the valid encoding range. Any constant in this range would be
3212 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
3213 // an exception for incorrect registers. This matches MSVC behavior.
3214 if (BuiltinID == AArch64::BI_ReadStatusReg ||
3215 BuiltinID == AArch64::BI_WriteStatusReg)
3216 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
3217
3218 if (BuiltinID == AArch64::BI__getReg)
3219 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3220
3221 if (BuiltinID == AArch64::BI__break)
3222 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
3223
3224 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3225 return true;
3226
3227 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
3228 return true;
3229
3230 // For intrinsics which take an immediate value as part of the instruction,
3231 // range check them here.
3232 unsigned i = 0, l = 0, u = 0;
3233 switch (BuiltinID) {
3234 default: return false;
3235 case AArch64::BI__builtin_arm_dmb:
3236 case AArch64::BI__builtin_arm_dsb:
3237 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
3238 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
3239 }
3240
3241 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
3242 }
3243
isValidBPFPreserveFieldInfoArg(Expr * Arg)3244 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
3245 if (Arg->getType()->getAsPlaceholderType())
3246 return false;
3247
3248 // The first argument needs to be a record field access.
3249 // If it is an array element access, we delay decision
3250 // to BPF backend to check whether the access is a
3251 // field access or not.
3252 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
3253 isa<MemberExpr>(Arg->IgnoreParens()) ||
3254 isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
3255 }
3256
isValidBPFPreserveTypeInfoArg(Expr * Arg)3257 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
3258 QualType ArgType = Arg->getType();
3259 if (ArgType->getAsPlaceholderType())
3260 return false;
3261
3262 // for TYPE_EXISTENCE/TYPE_MATCH/TYPE_SIZEOF reloc type
3263 // format:
3264 // 1. __builtin_preserve_type_info(*(<type> *)0, flag);
3265 // 2. <type> var;
3266 // __builtin_preserve_type_info(var, flag);
3267 if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
3268 !isa<UnaryOperator>(Arg->IgnoreParens()))
3269 return false;
3270
3271 // Typedef type.
3272 if (ArgType->getAs<TypedefType>())
3273 return true;
3274
3275 // Record type or Enum type.
3276 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3277 if (const auto *RT = Ty->getAs<RecordType>()) {
3278 if (!RT->getDecl()->getDeclName().isEmpty())
3279 return true;
3280 } else if (const auto *ET = Ty->getAs<EnumType>()) {
3281 if (!ET->getDecl()->getDeclName().isEmpty())
3282 return true;
3283 }
3284
3285 return false;
3286 }
3287
isValidBPFPreserveEnumValueArg(Expr * Arg)3288 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
3289 QualType ArgType = Arg->getType();
3290 if (ArgType->getAsPlaceholderType())
3291 return false;
3292
3293 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
3294 // format:
3295 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
3296 // flag);
3297 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
3298 if (!UO)
3299 return false;
3300
3301 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
3302 if (!CE)
3303 return false;
3304 if (CE->getCastKind() != CK_IntegralToPointer &&
3305 CE->getCastKind() != CK_NullToPointer)
3306 return false;
3307
3308 // The integer must be from an EnumConstantDecl.
3309 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
3310 if (!DR)
3311 return false;
3312
3313 const EnumConstantDecl *Enumerator =
3314 dyn_cast<EnumConstantDecl>(DR->getDecl());
3315 if (!Enumerator)
3316 return false;
3317
3318 // The type must be EnumType.
3319 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3320 const auto *ET = Ty->getAs<EnumType>();
3321 if (!ET)
3322 return false;
3323
3324 // The enum value must be supported.
3325 return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
3326 }
3327
CheckBPFBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3328 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
3329 CallExpr *TheCall) {
3330 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
3331 BuiltinID == BPF::BI__builtin_btf_type_id ||
3332 BuiltinID == BPF::BI__builtin_preserve_type_info ||
3333 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
3334 "unexpected BPF builtin");
3335
3336 if (checkArgCount(*this, TheCall, 2))
3337 return true;
3338
3339 // The second argument needs to be a constant int
3340 Expr *Arg = TheCall->getArg(1);
3341 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
3342 diag::kind kind;
3343 if (!Value) {
3344 if (BuiltinID == BPF::BI__builtin_preserve_field_info)
3345 kind = diag::err_preserve_field_info_not_const;
3346 else if (BuiltinID == BPF::BI__builtin_btf_type_id)
3347 kind = diag::err_btf_type_id_not_const;
3348 else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
3349 kind = diag::err_preserve_type_info_not_const;
3350 else
3351 kind = diag::err_preserve_enum_value_not_const;
3352 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
3353 return true;
3354 }
3355
3356 // The first argument
3357 Arg = TheCall->getArg(0);
3358 bool InvalidArg = false;
3359 bool ReturnUnsignedInt = true;
3360 if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
3361 if (!isValidBPFPreserveFieldInfoArg(Arg)) {
3362 InvalidArg = true;
3363 kind = diag::err_preserve_field_info_not_field;
3364 }
3365 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
3366 if (!isValidBPFPreserveTypeInfoArg(Arg)) {
3367 InvalidArg = true;
3368 kind = diag::err_preserve_type_info_invalid;
3369 }
3370 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
3371 if (!isValidBPFPreserveEnumValueArg(Arg)) {
3372 InvalidArg = true;
3373 kind = diag::err_preserve_enum_value_invalid;
3374 }
3375 ReturnUnsignedInt = false;
3376 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
3377 ReturnUnsignedInt = false;
3378 }
3379
3380 if (InvalidArg) {
3381 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
3382 return true;
3383 }
3384
3385 if (ReturnUnsignedInt)
3386 TheCall->setType(Context.UnsignedIntTy);
3387 else
3388 TheCall->setType(Context.UnsignedLongTy);
3389 return false;
3390 }
3391
CheckHexagonBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)3392 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3393 struct ArgInfo {
3394 uint8_t OpNum;
3395 bool IsSigned;
3396 uint8_t BitWidth;
3397 uint8_t Align;
3398 };
3399 struct BuiltinInfo {
3400 unsigned BuiltinID;
3401 ArgInfo Infos[2];
3402 };
3403
3404 static BuiltinInfo Infos[] = {
3405 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} },
3406 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} },
3407 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} },
3408 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} },
3409 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} },
3410 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} },
3411 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} },
3412 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} },
3413 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} },
3414 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} },
3415 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} },
3416
3417 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} },
3418 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} },
3419 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} },
3420 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} },
3421 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} },
3422 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} },
3423 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} },
3424 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} },
3425 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} },
3426 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} },
3427 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} },
3428
3429 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} },
3430 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} },
3431 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} },
3432 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} },
3433 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} },
3434 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} },
3435 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} },
3436 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} },
3437 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} },
3438 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} },
3439 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} },
3440 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} },
3441 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} },
3442 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} },
3443 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} },
3444 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} },
3445 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} },
3446 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} },
3447 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} },
3448 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} },
3449 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} },
3450 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} },
3451 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} },
3452 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} },
3453 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} },
3454 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} },
3455 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} },
3456 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} },
3457 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} },
3458 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} },
3459 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} },
3460 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} },
3461 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} },
3462 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} },
3463 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} },
3464 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} },
3465 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} },
3466 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} },
3467 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} },
3468 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} },
3469 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} },
3470 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} },
3471 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} },
3472 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} },
3473 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} },
3474 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} },
3475 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} },
3476 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} },
3477 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} },
3478 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} },
3479 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} },
3480 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
3481 {{ 1, false, 6, 0 }} },
3482 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} },
3483 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} },
3484 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} },
3485 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} },
3486 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} },
3487 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} },
3488 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3489 {{ 1, false, 5, 0 }} },
3490 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} },
3491 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} },
3492 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} },
3493 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} },
3494 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} },
3495 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 },
3496 { 2, false, 5, 0 }} },
3497 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 },
3498 { 2, false, 6, 0 }} },
3499 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 },
3500 { 3, false, 5, 0 }} },
3501 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 },
3502 { 3, false, 6, 0 }} },
3503 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} },
3504 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} },
3505 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} },
3506 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} },
3507 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} },
3508 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} },
3509 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} },
3510 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} },
3511 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} },
3512 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} },
3513 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} },
3514 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} },
3515 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} },
3516 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} },
3517 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} },
3518 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3519 {{ 2, false, 4, 0 },
3520 { 3, false, 5, 0 }} },
3521 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3522 {{ 2, false, 4, 0 },
3523 { 3, false, 5, 0 }} },
3524 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3525 {{ 2, false, 4, 0 },
3526 { 3, false, 5, 0 }} },
3527 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3528 {{ 2, false, 4, 0 },
3529 { 3, false, 5, 0 }} },
3530 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} },
3531 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} },
3532 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} },
3533 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} },
3534 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} },
3535 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} },
3536 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} },
3537 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} },
3538 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} },
3539 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} },
3540 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 },
3541 { 2, false, 5, 0 }} },
3542 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 },
3543 { 2, false, 6, 0 }} },
3544 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} },
3545 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} },
3546 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} },
3547 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} },
3548 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} },
3549 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} },
3550 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} },
3551 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} },
3552 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3553 {{ 1, false, 4, 0 }} },
3554 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} },
3555 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3556 {{ 1, false, 4, 0 }} },
3557 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} },
3558 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} },
3559 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} },
3560 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} },
3561 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} },
3562 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} },
3563 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} },
3564 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} },
3565 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} },
3566 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} },
3567 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} },
3568 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} },
3569 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} },
3570 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} },
3571 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} },
3572 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} },
3573 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} },
3574 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} },
3575 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} },
3576 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3577 {{ 3, false, 1, 0 }} },
3578 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} },
3579 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} },
3580 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} },
3581 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3582 {{ 3, false, 1, 0 }} },
3583 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} },
3584 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} },
3585 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} },
3586 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3587 {{ 3, false, 1, 0 }} },
3588 };
3589
3590 // Use a dynamically initialized static to sort the table exactly once on
3591 // first run.
3592 static const bool SortOnce =
3593 (llvm::sort(Infos,
3594 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3595 return LHS.BuiltinID < RHS.BuiltinID;
3596 }),
3597 true);
3598 (void)SortOnce;
3599
3600 const BuiltinInfo *F = llvm::partition_point(
3601 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3602 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3603 return false;
3604
3605 bool Error = false;
3606
3607 for (const ArgInfo &A : F->Infos) {
3608 // Ignore empty ArgInfo elements.
3609 if (A.BitWidth == 0)
3610 continue;
3611
3612 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3613 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3614 if (!A.Align) {
3615 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3616 } else {
3617 unsigned M = 1 << A.Align;
3618 Min *= M;
3619 Max *= M;
3620 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3621 Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3622 }
3623 }
3624 return Error;
3625 }
3626
CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3627 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3628 CallExpr *TheCall) {
3629 return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3630 }
3631
CheckMipsBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3632 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3633 unsigned BuiltinID, CallExpr *TheCall) {
3634 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3635 CheckMipsBuiltinArgument(BuiltinID, TheCall);
3636 }
3637
CheckMipsBuiltinCpu(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3638 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3639 CallExpr *TheCall) {
3640
3641 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3642 BuiltinID <= Mips::BI__builtin_mips_lwx) {
3643 if (!TI.hasFeature("dsp"))
3644 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3645 }
3646
3647 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3648 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3649 if (!TI.hasFeature("dspr2"))
3650 return Diag(TheCall->getBeginLoc(),
3651 diag::err_mips_builtin_requires_dspr2);
3652 }
3653
3654 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3655 BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3656 if (!TI.hasFeature("msa"))
3657 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3658 }
3659
3660 return false;
3661 }
3662
3663 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3664 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3665 // ordering for DSP is unspecified. MSA is ordered by the data format used
3666 // by the underlying instruction i.e., df/m, df/n and then by size.
3667 //
3668 // FIXME: The size tests here should instead be tablegen'd along with the
3669 // definitions from include/clang/Basic/BuiltinsMips.def.
3670 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3671 // be too.
CheckMipsBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)3672 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3673 unsigned i = 0, l = 0, u = 0, m = 0;
3674 switch (BuiltinID) {
3675 default: return false;
3676 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3677 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3678 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3679 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3680 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3681 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3682 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3683 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3684 // df/m field.
3685 // These intrinsics take an unsigned 3 bit immediate.
3686 case Mips::BI__builtin_msa_bclri_b:
3687 case Mips::BI__builtin_msa_bnegi_b:
3688 case Mips::BI__builtin_msa_bseti_b:
3689 case Mips::BI__builtin_msa_sat_s_b:
3690 case Mips::BI__builtin_msa_sat_u_b:
3691 case Mips::BI__builtin_msa_slli_b:
3692 case Mips::BI__builtin_msa_srai_b:
3693 case Mips::BI__builtin_msa_srari_b:
3694 case Mips::BI__builtin_msa_srli_b:
3695 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3696 case Mips::BI__builtin_msa_binsli_b:
3697 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3698 // These intrinsics take an unsigned 4 bit immediate.
3699 case Mips::BI__builtin_msa_bclri_h:
3700 case Mips::BI__builtin_msa_bnegi_h:
3701 case Mips::BI__builtin_msa_bseti_h:
3702 case Mips::BI__builtin_msa_sat_s_h:
3703 case Mips::BI__builtin_msa_sat_u_h:
3704 case Mips::BI__builtin_msa_slli_h:
3705 case Mips::BI__builtin_msa_srai_h:
3706 case Mips::BI__builtin_msa_srari_h:
3707 case Mips::BI__builtin_msa_srli_h:
3708 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3709 case Mips::BI__builtin_msa_binsli_h:
3710 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3711 // These intrinsics take an unsigned 5 bit immediate.
3712 // The first block of intrinsics actually have an unsigned 5 bit field,
3713 // not a df/n field.
3714 case Mips::BI__builtin_msa_cfcmsa:
3715 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3716 case Mips::BI__builtin_msa_clei_u_b:
3717 case Mips::BI__builtin_msa_clei_u_h:
3718 case Mips::BI__builtin_msa_clei_u_w:
3719 case Mips::BI__builtin_msa_clei_u_d:
3720 case Mips::BI__builtin_msa_clti_u_b:
3721 case Mips::BI__builtin_msa_clti_u_h:
3722 case Mips::BI__builtin_msa_clti_u_w:
3723 case Mips::BI__builtin_msa_clti_u_d:
3724 case Mips::BI__builtin_msa_maxi_u_b:
3725 case Mips::BI__builtin_msa_maxi_u_h:
3726 case Mips::BI__builtin_msa_maxi_u_w:
3727 case Mips::BI__builtin_msa_maxi_u_d:
3728 case Mips::BI__builtin_msa_mini_u_b:
3729 case Mips::BI__builtin_msa_mini_u_h:
3730 case Mips::BI__builtin_msa_mini_u_w:
3731 case Mips::BI__builtin_msa_mini_u_d:
3732 case Mips::BI__builtin_msa_addvi_b:
3733 case Mips::BI__builtin_msa_addvi_h:
3734 case Mips::BI__builtin_msa_addvi_w:
3735 case Mips::BI__builtin_msa_addvi_d:
3736 case Mips::BI__builtin_msa_bclri_w:
3737 case Mips::BI__builtin_msa_bnegi_w:
3738 case Mips::BI__builtin_msa_bseti_w:
3739 case Mips::BI__builtin_msa_sat_s_w:
3740 case Mips::BI__builtin_msa_sat_u_w:
3741 case Mips::BI__builtin_msa_slli_w:
3742 case Mips::BI__builtin_msa_srai_w:
3743 case Mips::BI__builtin_msa_srari_w:
3744 case Mips::BI__builtin_msa_srli_w:
3745 case Mips::BI__builtin_msa_srlri_w:
3746 case Mips::BI__builtin_msa_subvi_b:
3747 case Mips::BI__builtin_msa_subvi_h:
3748 case Mips::BI__builtin_msa_subvi_w:
3749 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3750 case Mips::BI__builtin_msa_binsli_w:
3751 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3752 // These intrinsics take an unsigned 6 bit immediate.
3753 case Mips::BI__builtin_msa_bclri_d:
3754 case Mips::BI__builtin_msa_bnegi_d:
3755 case Mips::BI__builtin_msa_bseti_d:
3756 case Mips::BI__builtin_msa_sat_s_d:
3757 case Mips::BI__builtin_msa_sat_u_d:
3758 case Mips::BI__builtin_msa_slli_d:
3759 case Mips::BI__builtin_msa_srai_d:
3760 case Mips::BI__builtin_msa_srari_d:
3761 case Mips::BI__builtin_msa_srli_d:
3762 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3763 case Mips::BI__builtin_msa_binsli_d:
3764 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3765 // These intrinsics take a signed 5 bit immediate.
3766 case Mips::BI__builtin_msa_ceqi_b:
3767 case Mips::BI__builtin_msa_ceqi_h:
3768 case Mips::BI__builtin_msa_ceqi_w:
3769 case Mips::BI__builtin_msa_ceqi_d:
3770 case Mips::BI__builtin_msa_clti_s_b:
3771 case Mips::BI__builtin_msa_clti_s_h:
3772 case Mips::BI__builtin_msa_clti_s_w:
3773 case Mips::BI__builtin_msa_clti_s_d:
3774 case Mips::BI__builtin_msa_clei_s_b:
3775 case Mips::BI__builtin_msa_clei_s_h:
3776 case Mips::BI__builtin_msa_clei_s_w:
3777 case Mips::BI__builtin_msa_clei_s_d:
3778 case Mips::BI__builtin_msa_maxi_s_b:
3779 case Mips::BI__builtin_msa_maxi_s_h:
3780 case Mips::BI__builtin_msa_maxi_s_w:
3781 case Mips::BI__builtin_msa_maxi_s_d:
3782 case Mips::BI__builtin_msa_mini_s_b:
3783 case Mips::BI__builtin_msa_mini_s_h:
3784 case Mips::BI__builtin_msa_mini_s_w:
3785 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3786 // These intrinsics take an unsigned 8 bit immediate.
3787 case Mips::BI__builtin_msa_andi_b:
3788 case Mips::BI__builtin_msa_nori_b:
3789 case Mips::BI__builtin_msa_ori_b:
3790 case Mips::BI__builtin_msa_shf_b:
3791 case Mips::BI__builtin_msa_shf_h:
3792 case Mips::BI__builtin_msa_shf_w:
3793 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3794 case Mips::BI__builtin_msa_bseli_b:
3795 case Mips::BI__builtin_msa_bmnzi_b:
3796 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3797 // df/n format
3798 // These intrinsics take an unsigned 4 bit immediate.
3799 case Mips::BI__builtin_msa_copy_s_b:
3800 case Mips::BI__builtin_msa_copy_u_b:
3801 case Mips::BI__builtin_msa_insve_b:
3802 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3803 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3804 // These intrinsics take an unsigned 3 bit immediate.
3805 case Mips::BI__builtin_msa_copy_s_h:
3806 case Mips::BI__builtin_msa_copy_u_h:
3807 case Mips::BI__builtin_msa_insve_h:
3808 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3809 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3810 // These intrinsics take an unsigned 2 bit immediate.
3811 case Mips::BI__builtin_msa_copy_s_w:
3812 case Mips::BI__builtin_msa_copy_u_w:
3813 case Mips::BI__builtin_msa_insve_w:
3814 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3815 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3816 // These intrinsics take an unsigned 1 bit immediate.
3817 case Mips::BI__builtin_msa_copy_s_d:
3818 case Mips::BI__builtin_msa_copy_u_d:
3819 case Mips::BI__builtin_msa_insve_d:
3820 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3821 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3822 // Memory offsets and immediate loads.
3823 // These intrinsics take a signed 10 bit immediate.
3824 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3825 case Mips::BI__builtin_msa_ldi_h:
3826 case Mips::BI__builtin_msa_ldi_w:
3827 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3828 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3829 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3830 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3831 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3832 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3833 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3834 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3835 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3836 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3837 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3838 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3839 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3840 }
3841
3842 if (!m)
3843 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3844
3845 return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3846 SemaBuiltinConstantArgMultiple(TheCall, i, m);
3847 }
3848
3849 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3850 /// advancing the pointer over the consumed characters. The decoded type is
3851 /// returned. If the decoded type represents a constant integer with a
3852 /// constraint on its value then Mask is set to that value. The type descriptors
3853 /// used in Str are specific to PPC MMA builtins and are documented in the file
3854 /// defining the PPC builtins.
DecodePPCMMATypeFromStr(ASTContext & Context,const char * & Str,unsigned & Mask)3855 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3856 unsigned &Mask) {
3857 bool RequireICE = false;
3858 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3859 switch (*Str++) {
3860 case 'V':
3861 return Context.getVectorType(Context.UnsignedCharTy, 16,
3862 VectorType::VectorKind::AltiVecVector);
3863 case 'i': {
3864 char *End;
3865 unsigned size = strtoul(Str, &End, 10);
3866 assert(End != Str && "Missing constant parameter constraint");
3867 Str = End;
3868 Mask = size;
3869 return Context.IntTy;
3870 }
3871 case 'W': {
3872 char *End;
3873 unsigned size = strtoul(Str, &End, 10);
3874 assert(End != Str && "Missing PowerPC MMA type size");
3875 Str = End;
3876 QualType Type;
3877 switch (size) {
3878 #define PPC_VECTOR_TYPE(typeName, Id, size) \
3879 case size: Type = Context.Id##Ty; break;
3880 #include "clang/Basic/PPCTypes.def"
3881 default: llvm_unreachable("Invalid PowerPC MMA vector type");
3882 }
3883 bool CheckVectorArgs = false;
3884 while (!CheckVectorArgs) {
3885 switch (*Str++) {
3886 case '*':
3887 Type = Context.getPointerType(Type);
3888 break;
3889 case 'C':
3890 Type = Type.withConst();
3891 break;
3892 default:
3893 CheckVectorArgs = true;
3894 --Str;
3895 break;
3896 }
3897 }
3898 return Type;
3899 }
3900 default:
3901 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3902 }
3903 }
3904
isPPC_64Builtin(unsigned BuiltinID)3905 static bool isPPC_64Builtin(unsigned BuiltinID) {
3906 // These builtins only work on PPC 64bit targets.
3907 switch (BuiltinID) {
3908 case PPC::BI__builtin_divde:
3909 case PPC::BI__builtin_divdeu:
3910 case PPC::BI__builtin_bpermd:
3911 case PPC::BI__builtin_pdepd:
3912 case PPC::BI__builtin_pextd:
3913 case PPC::BI__builtin_ppc_ldarx:
3914 case PPC::BI__builtin_ppc_stdcx:
3915 case PPC::BI__builtin_ppc_tdw:
3916 case PPC::BI__builtin_ppc_trapd:
3917 case PPC::BI__builtin_ppc_cmpeqb:
3918 case PPC::BI__builtin_ppc_setb:
3919 case PPC::BI__builtin_ppc_mulhd:
3920 case PPC::BI__builtin_ppc_mulhdu:
3921 case PPC::BI__builtin_ppc_maddhd:
3922 case PPC::BI__builtin_ppc_maddhdu:
3923 case PPC::BI__builtin_ppc_maddld:
3924 case PPC::BI__builtin_ppc_load8r:
3925 case PPC::BI__builtin_ppc_store8r:
3926 case PPC::BI__builtin_ppc_insert_exp:
3927 case PPC::BI__builtin_ppc_extract_sig:
3928 case PPC::BI__builtin_ppc_addex:
3929 case PPC::BI__builtin_darn:
3930 case PPC::BI__builtin_darn_raw:
3931 case PPC::BI__builtin_ppc_compare_and_swaplp:
3932 case PPC::BI__builtin_ppc_fetch_and_addlp:
3933 case PPC::BI__builtin_ppc_fetch_and_andlp:
3934 case PPC::BI__builtin_ppc_fetch_and_orlp:
3935 case PPC::BI__builtin_ppc_fetch_and_swaplp:
3936 return true;
3937 }
3938 return false;
3939 }
3940
SemaFeatureCheck(Sema & S,CallExpr * TheCall,StringRef FeatureToCheck,unsigned DiagID,StringRef DiagArg="")3941 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3942 StringRef FeatureToCheck, unsigned DiagID,
3943 StringRef DiagArg = "") {
3944 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3945 return false;
3946
3947 if (DiagArg.empty())
3948 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3949 else
3950 S.Diag(TheCall->getBeginLoc(), DiagID)
3951 << DiagArg << TheCall->getSourceRange();
3952
3953 return true;
3954 }
3955
3956 /// Returns true if the argument consists of one contiguous run of 1s with any
3957 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3958 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3959 /// since all 1s are not contiguous.
SemaValueIsRunOfOnes(CallExpr * TheCall,unsigned ArgNum)3960 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3961 llvm::APSInt Result;
3962 // We can't check the value of a dependent argument.
3963 Expr *Arg = TheCall->getArg(ArgNum);
3964 if (Arg->isTypeDependent() || Arg->isValueDependent())
3965 return false;
3966
3967 // Check constant-ness first.
3968 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3969 return true;
3970
3971 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3972 if (Result.isShiftedMask() || (~Result).isShiftedMask())
3973 return false;
3974
3975 return Diag(TheCall->getBeginLoc(),
3976 diag::err_argument_not_contiguous_bit_field)
3977 << ArgNum << Arg->getSourceRange();
3978 }
3979
CheckPPCBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3980 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3981 CallExpr *TheCall) {
3982 unsigned i = 0, l = 0, u = 0;
3983 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3984 llvm::APSInt Result;
3985
3986 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3987 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3988 << TheCall->getSourceRange();
3989
3990 switch (BuiltinID) {
3991 default: return false;
3992 case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3993 case PPC::BI__builtin_altivec_crypto_vshasigmad:
3994 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3995 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3996 case PPC::BI__builtin_altivec_dss:
3997 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3998 case PPC::BI__builtin_tbegin:
3999 case PPC::BI__builtin_tend:
4000 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) ||
4001 SemaFeatureCheck(*this, TheCall, "htm",
4002 diag::err_ppc_builtin_requires_htm);
4003 case PPC::BI__builtin_tsr:
4004 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
4005 SemaFeatureCheck(*this, TheCall, "htm",
4006 diag::err_ppc_builtin_requires_htm);
4007 case PPC::BI__builtin_tabortwc:
4008 case PPC::BI__builtin_tabortdc:
4009 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
4010 SemaFeatureCheck(*this, TheCall, "htm",
4011 diag::err_ppc_builtin_requires_htm);
4012 case PPC::BI__builtin_tabortwci:
4013 case PPC::BI__builtin_tabortdci:
4014 return SemaFeatureCheck(*this, TheCall, "htm",
4015 diag::err_ppc_builtin_requires_htm) ||
4016 (SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
4017 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31));
4018 case PPC::BI__builtin_tabort:
4019 case PPC::BI__builtin_tcheck:
4020 case PPC::BI__builtin_treclaim:
4021 case PPC::BI__builtin_trechkpt:
4022 case PPC::BI__builtin_tendall:
4023 case PPC::BI__builtin_tresume:
4024 case PPC::BI__builtin_tsuspend:
4025 case PPC::BI__builtin_get_texasr:
4026 case PPC::BI__builtin_get_texasru:
4027 case PPC::BI__builtin_get_tfhar:
4028 case PPC::BI__builtin_get_tfiar:
4029 case PPC::BI__builtin_set_texasr:
4030 case PPC::BI__builtin_set_texasru:
4031 case PPC::BI__builtin_set_tfhar:
4032 case PPC::BI__builtin_set_tfiar:
4033 case PPC::BI__builtin_ttest:
4034 return SemaFeatureCheck(*this, TheCall, "htm",
4035 diag::err_ppc_builtin_requires_htm);
4036 // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
4037 // __builtin_(un)pack_longdouble are available only if long double uses IBM
4038 // extended double representation.
4039 case PPC::BI__builtin_unpack_longdouble:
4040 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
4041 return true;
4042 LLVM_FALLTHROUGH;
4043 case PPC::BI__builtin_pack_longdouble:
4044 if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
4045 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
4046 << "ibmlongdouble";
4047 return false;
4048 case PPC::BI__builtin_altivec_dst:
4049 case PPC::BI__builtin_altivec_dstt:
4050 case PPC::BI__builtin_altivec_dstst:
4051 case PPC::BI__builtin_altivec_dststt:
4052 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4053 case PPC::BI__builtin_vsx_xxpermdi:
4054 case PPC::BI__builtin_vsx_xxsldwi:
4055 return SemaBuiltinVSX(TheCall);
4056 case PPC::BI__builtin_divwe:
4057 case PPC::BI__builtin_divweu:
4058 case PPC::BI__builtin_divde:
4059 case PPC::BI__builtin_divdeu:
4060 return SemaFeatureCheck(*this, TheCall, "extdiv",
4061 diag::err_ppc_builtin_only_on_arch, "7");
4062 case PPC::BI__builtin_bpermd:
4063 return SemaFeatureCheck(*this, TheCall, "bpermd",
4064 diag::err_ppc_builtin_only_on_arch, "7");
4065 case PPC::BI__builtin_unpack_vector_int128:
4066 return SemaFeatureCheck(*this, TheCall, "vsx",
4067 diag::err_ppc_builtin_only_on_arch, "7") ||
4068 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4069 case PPC::BI__builtin_pack_vector_int128:
4070 return SemaFeatureCheck(*this, TheCall, "vsx",
4071 diag::err_ppc_builtin_only_on_arch, "7");
4072 case PPC::BI__builtin_pdepd:
4073 case PPC::BI__builtin_pextd:
4074 return SemaFeatureCheck(*this, TheCall, "isa-v31-instructions",
4075 diag::err_ppc_builtin_only_on_arch, "10");
4076 case PPC::BI__builtin_altivec_vgnb:
4077 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
4078 case PPC::BI__builtin_vsx_xxeval:
4079 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
4080 case PPC::BI__builtin_altivec_vsldbi:
4081 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4082 case PPC::BI__builtin_altivec_vsrdbi:
4083 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4084 case PPC::BI__builtin_vsx_xxpermx:
4085 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
4086 case PPC::BI__builtin_ppc_tw:
4087 case PPC::BI__builtin_ppc_tdw:
4088 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
4089 case PPC::BI__builtin_ppc_cmpeqb:
4090 case PPC::BI__builtin_ppc_setb:
4091 case PPC::BI__builtin_ppc_maddhd:
4092 case PPC::BI__builtin_ppc_maddhdu:
4093 case PPC::BI__builtin_ppc_maddld:
4094 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4095 diag::err_ppc_builtin_only_on_arch, "9");
4096 case PPC::BI__builtin_ppc_cmprb:
4097 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4098 diag::err_ppc_builtin_only_on_arch, "9") ||
4099 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
4100 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
4101 // be a constant that represents a contiguous bit field.
4102 case PPC::BI__builtin_ppc_rlwnm:
4103 return SemaValueIsRunOfOnes(TheCall, 2);
4104 case PPC::BI__builtin_ppc_rlwimi:
4105 case PPC::BI__builtin_ppc_rldimi:
4106 return SemaBuiltinConstantArg(TheCall, 2, Result) ||
4107 SemaValueIsRunOfOnes(TheCall, 3);
4108 case PPC::BI__builtin_ppc_extract_exp:
4109 case PPC::BI__builtin_ppc_extract_sig:
4110 case PPC::BI__builtin_ppc_insert_exp:
4111 return SemaFeatureCheck(*this, TheCall, "power9-vector",
4112 diag::err_ppc_builtin_only_on_arch, "9");
4113 case PPC::BI__builtin_ppc_addex: {
4114 if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4115 diag::err_ppc_builtin_only_on_arch, "9") ||
4116 SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
4117 return true;
4118 // Output warning for reserved values 1 to 3.
4119 int ArgValue =
4120 TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
4121 if (ArgValue != 0)
4122 Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
4123 << ArgValue;
4124 return false;
4125 }
4126 case PPC::BI__builtin_ppc_mtfsb0:
4127 case PPC::BI__builtin_ppc_mtfsb1:
4128 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
4129 case PPC::BI__builtin_ppc_mtfsf:
4130 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
4131 case PPC::BI__builtin_ppc_mtfsfi:
4132 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
4133 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4134 case PPC::BI__builtin_ppc_alignx:
4135 return SemaBuiltinConstantArgPower2(TheCall, 0);
4136 case PPC::BI__builtin_ppc_rdlam:
4137 return SemaValueIsRunOfOnes(TheCall, 2);
4138 case PPC::BI__builtin_ppc_icbt:
4139 case PPC::BI__builtin_ppc_sthcx:
4140 case PPC::BI__builtin_ppc_stbcx:
4141 case PPC::BI__builtin_ppc_lharx:
4142 case PPC::BI__builtin_ppc_lbarx:
4143 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
4144 diag::err_ppc_builtin_only_on_arch, "8");
4145 case PPC::BI__builtin_vsx_ldrmb:
4146 case PPC::BI__builtin_vsx_strmb:
4147 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
4148 diag::err_ppc_builtin_only_on_arch, "8") ||
4149 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
4150 case PPC::BI__builtin_altivec_vcntmbb:
4151 case PPC::BI__builtin_altivec_vcntmbh:
4152 case PPC::BI__builtin_altivec_vcntmbw:
4153 case PPC::BI__builtin_altivec_vcntmbd:
4154 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4155 case PPC::BI__builtin_darn:
4156 case PPC::BI__builtin_darn_raw:
4157 case PPC::BI__builtin_darn_32:
4158 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4159 diag::err_ppc_builtin_only_on_arch, "9");
4160 case PPC::BI__builtin_vsx_xxgenpcvbm:
4161 case PPC::BI__builtin_vsx_xxgenpcvhm:
4162 case PPC::BI__builtin_vsx_xxgenpcvwm:
4163 case PPC::BI__builtin_vsx_xxgenpcvdm:
4164 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
4165 case PPC::BI__builtin_ppc_compare_exp_uo:
4166 case PPC::BI__builtin_ppc_compare_exp_lt:
4167 case PPC::BI__builtin_ppc_compare_exp_gt:
4168 case PPC::BI__builtin_ppc_compare_exp_eq:
4169 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4170 diag::err_ppc_builtin_only_on_arch, "9") ||
4171 SemaFeatureCheck(*this, TheCall, "vsx",
4172 diag::err_ppc_builtin_requires_vsx);
4173 case PPC::BI__builtin_ppc_test_data_class: {
4174 // Check if the first argument of the __builtin_ppc_test_data_class call is
4175 // valid. The argument must be either a 'float' or a 'double'.
4176 QualType ArgType = TheCall->getArg(0)->getType();
4177 if (ArgType != QualType(Context.FloatTy) &&
4178 ArgType != QualType(Context.DoubleTy))
4179 return Diag(TheCall->getBeginLoc(),
4180 diag::err_ppc_invalid_test_data_class_type);
4181 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4182 diag::err_ppc_builtin_only_on_arch, "9") ||
4183 SemaFeatureCheck(*this, TheCall, "vsx",
4184 diag::err_ppc_builtin_requires_vsx) ||
4185 SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
4186 }
4187 case PPC::BI__builtin_ppc_maxfe:
4188 case PPC::BI__builtin_ppc_minfe:
4189 case PPC::BI__builtin_ppc_maxfl:
4190 case PPC::BI__builtin_ppc_minfl:
4191 case PPC::BI__builtin_ppc_maxfs:
4192 case PPC::BI__builtin_ppc_minfs: {
4193 if (Context.getTargetInfo().getTriple().isOSAIX() &&
4194 (BuiltinID == PPC::BI__builtin_ppc_maxfe ||
4195 BuiltinID == PPC::BI__builtin_ppc_minfe))
4196 return Diag(TheCall->getBeginLoc(), diag::err_target_unsupported_type)
4197 << "builtin" << true << 128 << QualType(Context.LongDoubleTy)
4198 << false << Context.getTargetInfo().getTriple().str();
4199 // Argument type should be exact.
4200 QualType ArgType = QualType(Context.LongDoubleTy);
4201 if (BuiltinID == PPC::BI__builtin_ppc_maxfl ||
4202 BuiltinID == PPC::BI__builtin_ppc_minfl)
4203 ArgType = QualType(Context.DoubleTy);
4204 else if (BuiltinID == PPC::BI__builtin_ppc_maxfs ||
4205 BuiltinID == PPC::BI__builtin_ppc_minfs)
4206 ArgType = QualType(Context.FloatTy);
4207 for (unsigned I = 0, E = TheCall->getNumArgs(); I < E; ++I)
4208 if (TheCall->getArg(I)->getType() != ArgType)
4209 return Diag(TheCall->getBeginLoc(),
4210 diag::err_typecheck_convert_incompatible)
4211 << TheCall->getArg(I)->getType() << ArgType << 1 << 0 << 0;
4212 return false;
4213 }
4214 case PPC::BI__builtin_ppc_load8r:
4215 case PPC::BI__builtin_ppc_store8r:
4216 return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
4217 diag::err_ppc_builtin_only_on_arch, "7");
4218 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
4219 case PPC::BI__builtin_##Name: \
4220 return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
4221 #include "clang/Basic/BuiltinsPPC.def"
4222 }
4223 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4224 }
4225
4226 // Check if the given type is a non-pointer PPC MMA type. This function is used
4227 // in Sema to prevent invalid uses of restricted PPC MMA types.
CheckPPCMMAType(QualType Type,SourceLocation TypeLoc)4228 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
4229 if (Type->isPointerType() || Type->isArrayType())
4230 return false;
4231
4232 QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
4233 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
4234 if (false
4235 #include "clang/Basic/PPCTypes.def"
4236 ) {
4237 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
4238 return true;
4239 }
4240 return false;
4241 }
4242
CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)4243 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
4244 CallExpr *TheCall) {
4245 // position of memory order and scope arguments in the builtin
4246 unsigned OrderIndex, ScopeIndex;
4247 switch (BuiltinID) {
4248 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
4249 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
4250 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
4251 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
4252 OrderIndex = 2;
4253 ScopeIndex = 3;
4254 break;
4255 case AMDGPU::BI__builtin_amdgcn_fence:
4256 OrderIndex = 0;
4257 ScopeIndex = 1;
4258 break;
4259 default:
4260 return false;
4261 }
4262
4263 ExprResult Arg = TheCall->getArg(OrderIndex);
4264 auto ArgExpr = Arg.get();
4265 Expr::EvalResult ArgResult;
4266
4267 if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
4268 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
4269 << ArgExpr->getType();
4270 auto Ord = ArgResult.Val.getInt().getZExtValue();
4271
4272 // Check validity of memory ordering as per C11 / C++11's memody model.
4273 // Only fence needs check. Atomic dec/inc allow all memory orders.
4274 if (!llvm::isValidAtomicOrderingCABI(Ord))
4275 return Diag(ArgExpr->getBeginLoc(),
4276 diag::warn_atomic_op_has_invalid_memory_order)
4277 << ArgExpr->getSourceRange();
4278 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
4279 case llvm::AtomicOrderingCABI::relaxed:
4280 case llvm::AtomicOrderingCABI::consume:
4281 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
4282 return Diag(ArgExpr->getBeginLoc(),
4283 diag::warn_atomic_op_has_invalid_memory_order)
4284 << ArgExpr->getSourceRange();
4285 break;
4286 case llvm::AtomicOrderingCABI::acquire:
4287 case llvm::AtomicOrderingCABI::release:
4288 case llvm::AtomicOrderingCABI::acq_rel:
4289 case llvm::AtomicOrderingCABI::seq_cst:
4290 break;
4291 }
4292
4293 Arg = TheCall->getArg(ScopeIndex);
4294 ArgExpr = Arg.get();
4295 Expr::EvalResult ArgResult1;
4296 // Check that sync scope is a constant literal
4297 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
4298 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
4299 << ArgExpr->getType();
4300
4301 return false;
4302 }
4303
CheckRISCVLMUL(CallExpr * TheCall,unsigned ArgNum)4304 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
4305 llvm::APSInt Result;
4306
4307 // We can't check the value of a dependent argument.
4308 Expr *Arg = TheCall->getArg(ArgNum);
4309 if (Arg->isTypeDependent() || Arg->isValueDependent())
4310 return false;
4311
4312 // Check constant-ness first.
4313 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4314 return true;
4315
4316 int64_t Val = Result.getSExtValue();
4317 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
4318 return false;
4319
4320 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
4321 << Arg->getSourceRange();
4322 }
4323
isRISCV32Builtin(unsigned BuiltinID)4324 static bool isRISCV32Builtin(unsigned BuiltinID) {
4325 // These builtins only work on riscv32 targets.
4326 switch (BuiltinID) {
4327 case RISCV::BI__builtin_riscv_zip_32:
4328 case RISCV::BI__builtin_riscv_unzip_32:
4329 case RISCV::BI__builtin_riscv_aes32dsi_32:
4330 case RISCV::BI__builtin_riscv_aes32dsmi_32:
4331 case RISCV::BI__builtin_riscv_aes32esi_32:
4332 case RISCV::BI__builtin_riscv_aes32esmi_32:
4333 case RISCV::BI__builtin_riscv_sha512sig0h_32:
4334 case RISCV::BI__builtin_riscv_sha512sig0l_32:
4335 case RISCV::BI__builtin_riscv_sha512sig1h_32:
4336 case RISCV::BI__builtin_riscv_sha512sig1l_32:
4337 case RISCV::BI__builtin_riscv_sha512sum0r_32:
4338 case RISCV::BI__builtin_riscv_sha512sum1r_32:
4339 return true;
4340 }
4341
4342 return false;
4343 }
4344
CheckRISCVBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)4345 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
4346 unsigned BuiltinID,
4347 CallExpr *TheCall) {
4348 // CodeGenFunction can also detect this, but this gives a better error
4349 // message.
4350 bool FeatureMissing = false;
4351 SmallVector<StringRef> ReqFeatures;
4352 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
4353 Features.split(ReqFeatures, ',');
4354
4355 // Check for 32-bit only builtins on a 64-bit target.
4356 const llvm::Triple &TT = TI.getTriple();
4357 if (TT.getArch() != llvm::Triple::riscv32 && isRISCV32Builtin(BuiltinID))
4358 return Diag(TheCall->getCallee()->getBeginLoc(),
4359 diag::err_32_bit_builtin_64_bit_tgt);
4360
4361 // Check if each required feature is included
4362 for (StringRef F : ReqFeatures) {
4363 SmallVector<StringRef> ReqOpFeatures;
4364 F.split(ReqOpFeatures, '|');
4365 bool HasFeature = false;
4366 for (StringRef OF : ReqOpFeatures) {
4367 if (TI.hasFeature(OF)) {
4368 HasFeature = true;
4369 continue;
4370 }
4371 }
4372
4373 if (!HasFeature) {
4374 std::string FeatureStrs;
4375 for (StringRef OF : ReqOpFeatures) {
4376 // If the feature is 64bit, alter the string so it will print better in
4377 // the diagnostic.
4378 if (OF == "64bit")
4379 OF = "RV64";
4380
4381 // Convert features like "zbr" and "experimental-zbr" to "Zbr".
4382 OF.consume_front("experimental-");
4383 std::string FeatureStr = OF.str();
4384 FeatureStr[0] = std::toupper(FeatureStr[0]);
4385 // Combine strings.
4386 FeatureStrs += FeatureStrs == "" ? "" : ", ";
4387 FeatureStrs += "'";
4388 FeatureStrs += FeatureStr;
4389 FeatureStrs += "'";
4390 }
4391 // Error message
4392 FeatureMissing = true;
4393 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
4394 << TheCall->getSourceRange() << StringRef(FeatureStrs);
4395 }
4396 }
4397
4398 if (FeatureMissing)
4399 return true;
4400
4401 switch (BuiltinID) {
4402 case RISCVVector::BI__builtin_rvv_vsetvli:
4403 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
4404 CheckRISCVLMUL(TheCall, 2);
4405 case RISCVVector::BI__builtin_rvv_vsetvlimax:
4406 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
4407 CheckRISCVLMUL(TheCall, 1);
4408 case RISCVVector::BI__builtin_rvv_vget_v: {
4409 ASTContext::BuiltinVectorTypeInfo ResVecInfo =
4410 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4411 TheCall->getType().getCanonicalType().getTypePtr()));
4412 ASTContext::BuiltinVectorTypeInfo VecInfo =
4413 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4414 TheCall->getArg(0)->getType().getCanonicalType().getTypePtr()));
4415 unsigned MaxIndex =
4416 (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors) /
4417 (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors);
4418 return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
4419 }
4420 case RISCVVector::BI__builtin_rvv_vset_v: {
4421 ASTContext::BuiltinVectorTypeInfo ResVecInfo =
4422 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4423 TheCall->getType().getCanonicalType().getTypePtr()));
4424 ASTContext::BuiltinVectorTypeInfo VecInfo =
4425 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4426 TheCall->getArg(2)->getType().getCanonicalType().getTypePtr()));
4427 unsigned MaxIndex =
4428 (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors) /
4429 (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors);
4430 return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
4431 }
4432 // Check if byteselect is in [0, 3]
4433 case RISCV::BI__builtin_riscv_aes32dsi_32:
4434 case RISCV::BI__builtin_riscv_aes32dsmi_32:
4435 case RISCV::BI__builtin_riscv_aes32esi_32:
4436 case RISCV::BI__builtin_riscv_aes32esmi_32:
4437 case RISCV::BI__builtin_riscv_sm4ks:
4438 case RISCV::BI__builtin_riscv_sm4ed:
4439 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4440 // Check if rnum is in [0, 10]
4441 case RISCV::BI__builtin_riscv_aes64ks1i_64:
4442 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 10);
4443 }
4444
4445 return false;
4446 }
4447
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)4448 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
4449 CallExpr *TheCall) {
4450 if (BuiltinID == SystemZ::BI__builtin_tabort) {
4451 Expr *Arg = TheCall->getArg(0);
4452 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
4453 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
4454 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
4455 << Arg->getSourceRange();
4456 }
4457
4458 // For intrinsics which take an immediate value as part of the instruction,
4459 // range check them here.
4460 unsigned i = 0, l = 0, u = 0;
4461 switch (BuiltinID) {
4462 default: return false;
4463 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
4464 case SystemZ::BI__builtin_s390_verimb:
4465 case SystemZ::BI__builtin_s390_verimh:
4466 case SystemZ::BI__builtin_s390_verimf:
4467 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
4468 case SystemZ::BI__builtin_s390_vfaeb:
4469 case SystemZ::BI__builtin_s390_vfaeh:
4470 case SystemZ::BI__builtin_s390_vfaef:
4471 case SystemZ::BI__builtin_s390_vfaebs:
4472 case SystemZ::BI__builtin_s390_vfaehs:
4473 case SystemZ::BI__builtin_s390_vfaefs:
4474 case SystemZ::BI__builtin_s390_vfaezb:
4475 case SystemZ::BI__builtin_s390_vfaezh:
4476 case SystemZ::BI__builtin_s390_vfaezf:
4477 case SystemZ::BI__builtin_s390_vfaezbs:
4478 case SystemZ::BI__builtin_s390_vfaezhs:
4479 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
4480 case SystemZ::BI__builtin_s390_vfisb:
4481 case SystemZ::BI__builtin_s390_vfidb:
4482 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
4483 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4484 case SystemZ::BI__builtin_s390_vftcisb:
4485 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
4486 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
4487 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
4488 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
4489 case SystemZ::BI__builtin_s390_vstrcb:
4490 case SystemZ::BI__builtin_s390_vstrch:
4491 case SystemZ::BI__builtin_s390_vstrcf:
4492 case SystemZ::BI__builtin_s390_vstrczb:
4493 case SystemZ::BI__builtin_s390_vstrczh:
4494 case SystemZ::BI__builtin_s390_vstrczf:
4495 case SystemZ::BI__builtin_s390_vstrcbs:
4496 case SystemZ::BI__builtin_s390_vstrchs:
4497 case SystemZ::BI__builtin_s390_vstrcfs:
4498 case SystemZ::BI__builtin_s390_vstrczbs:
4499 case SystemZ::BI__builtin_s390_vstrczhs:
4500 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
4501 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
4502 case SystemZ::BI__builtin_s390_vfminsb:
4503 case SystemZ::BI__builtin_s390_vfmaxsb:
4504 case SystemZ::BI__builtin_s390_vfmindb:
4505 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
4506 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
4507 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
4508 case SystemZ::BI__builtin_s390_vclfnhs:
4509 case SystemZ::BI__builtin_s390_vclfnls:
4510 case SystemZ::BI__builtin_s390_vcfn:
4511 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
4512 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
4513 }
4514 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4515 }
4516
4517 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
4518 /// This checks that the target supports __builtin_cpu_supports and
4519 /// that the string argument is constant and valid.
SemaBuiltinCpuSupports(Sema & S,const TargetInfo & TI,CallExpr * TheCall)4520 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
4521 CallExpr *TheCall) {
4522 Expr *Arg = TheCall->getArg(0);
4523
4524 // Check if the argument is a string literal.
4525 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4526 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4527 << Arg->getSourceRange();
4528
4529 // Check the contents of the string.
4530 StringRef Feature =
4531 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4532 if (!TI.validateCpuSupports(Feature))
4533 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
4534 << Arg->getSourceRange();
4535 return false;
4536 }
4537
4538 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
4539 /// This checks that the target supports __builtin_cpu_is and
4540 /// that the string argument is constant and valid.
SemaBuiltinCpuIs(Sema & S,const TargetInfo & TI,CallExpr * TheCall)4541 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
4542 Expr *Arg = TheCall->getArg(0);
4543
4544 // Check if the argument is a string literal.
4545 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4546 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4547 << Arg->getSourceRange();
4548
4549 // Check the contents of the string.
4550 StringRef Feature =
4551 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4552 if (!TI.validateCpuIs(Feature))
4553 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
4554 << Arg->getSourceRange();
4555 return false;
4556 }
4557
4558 // Check if the rounding mode is legal.
CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID,CallExpr * TheCall)4559 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
4560 // Indicates if this instruction has rounding control or just SAE.
4561 bool HasRC = false;
4562
4563 unsigned ArgNum = 0;
4564 switch (BuiltinID) {
4565 default:
4566 return false;
4567 case X86::BI__builtin_ia32_vcvttsd2si32:
4568 case X86::BI__builtin_ia32_vcvttsd2si64:
4569 case X86::BI__builtin_ia32_vcvttsd2usi32:
4570 case X86::BI__builtin_ia32_vcvttsd2usi64:
4571 case X86::BI__builtin_ia32_vcvttss2si32:
4572 case X86::BI__builtin_ia32_vcvttss2si64:
4573 case X86::BI__builtin_ia32_vcvttss2usi32:
4574 case X86::BI__builtin_ia32_vcvttss2usi64:
4575 case X86::BI__builtin_ia32_vcvttsh2si32:
4576 case X86::BI__builtin_ia32_vcvttsh2si64:
4577 case X86::BI__builtin_ia32_vcvttsh2usi32:
4578 case X86::BI__builtin_ia32_vcvttsh2usi64:
4579 ArgNum = 1;
4580 break;
4581 case X86::BI__builtin_ia32_maxpd512:
4582 case X86::BI__builtin_ia32_maxps512:
4583 case X86::BI__builtin_ia32_minpd512:
4584 case X86::BI__builtin_ia32_minps512:
4585 case X86::BI__builtin_ia32_maxph512:
4586 case X86::BI__builtin_ia32_minph512:
4587 ArgNum = 2;
4588 break;
4589 case X86::BI__builtin_ia32_vcvtph2pd512_mask:
4590 case X86::BI__builtin_ia32_vcvtph2psx512_mask:
4591 case X86::BI__builtin_ia32_cvtps2pd512_mask:
4592 case X86::BI__builtin_ia32_cvttpd2dq512_mask:
4593 case X86::BI__builtin_ia32_cvttpd2qq512_mask:
4594 case X86::BI__builtin_ia32_cvttpd2udq512_mask:
4595 case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
4596 case X86::BI__builtin_ia32_cvttps2dq512_mask:
4597 case X86::BI__builtin_ia32_cvttps2qq512_mask:
4598 case X86::BI__builtin_ia32_cvttps2udq512_mask:
4599 case X86::BI__builtin_ia32_cvttps2uqq512_mask:
4600 case X86::BI__builtin_ia32_vcvttph2w512_mask:
4601 case X86::BI__builtin_ia32_vcvttph2uw512_mask:
4602 case X86::BI__builtin_ia32_vcvttph2dq512_mask:
4603 case X86::BI__builtin_ia32_vcvttph2udq512_mask:
4604 case X86::BI__builtin_ia32_vcvttph2qq512_mask:
4605 case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
4606 case X86::BI__builtin_ia32_exp2pd_mask:
4607 case X86::BI__builtin_ia32_exp2ps_mask:
4608 case X86::BI__builtin_ia32_getexppd512_mask:
4609 case X86::BI__builtin_ia32_getexpps512_mask:
4610 case X86::BI__builtin_ia32_getexpph512_mask:
4611 case X86::BI__builtin_ia32_rcp28pd_mask:
4612 case X86::BI__builtin_ia32_rcp28ps_mask:
4613 case X86::BI__builtin_ia32_rsqrt28pd_mask:
4614 case X86::BI__builtin_ia32_rsqrt28ps_mask:
4615 case X86::BI__builtin_ia32_vcomisd:
4616 case X86::BI__builtin_ia32_vcomiss:
4617 case X86::BI__builtin_ia32_vcomish:
4618 case X86::BI__builtin_ia32_vcvtph2ps512_mask:
4619 ArgNum = 3;
4620 break;
4621 case X86::BI__builtin_ia32_cmppd512_mask:
4622 case X86::BI__builtin_ia32_cmpps512_mask:
4623 case X86::BI__builtin_ia32_cmpsd_mask:
4624 case X86::BI__builtin_ia32_cmpss_mask:
4625 case X86::BI__builtin_ia32_cmpsh_mask:
4626 case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
4627 case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
4628 case X86::BI__builtin_ia32_cvtss2sd_round_mask:
4629 case X86::BI__builtin_ia32_getexpsd128_round_mask:
4630 case X86::BI__builtin_ia32_getexpss128_round_mask:
4631 case X86::BI__builtin_ia32_getexpsh128_round_mask:
4632 case X86::BI__builtin_ia32_getmantpd512_mask:
4633 case X86::BI__builtin_ia32_getmantps512_mask:
4634 case X86::BI__builtin_ia32_getmantph512_mask:
4635 case X86::BI__builtin_ia32_maxsd_round_mask:
4636 case X86::BI__builtin_ia32_maxss_round_mask:
4637 case X86::BI__builtin_ia32_maxsh_round_mask:
4638 case X86::BI__builtin_ia32_minsd_round_mask:
4639 case X86::BI__builtin_ia32_minss_round_mask:
4640 case X86::BI__builtin_ia32_minsh_round_mask:
4641 case X86::BI__builtin_ia32_rcp28sd_round_mask:
4642 case X86::BI__builtin_ia32_rcp28ss_round_mask:
4643 case X86::BI__builtin_ia32_reducepd512_mask:
4644 case X86::BI__builtin_ia32_reduceps512_mask:
4645 case X86::BI__builtin_ia32_reduceph512_mask:
4646 case X86::BI__builtin_ia32_rndscalepd_mask:
4647 case X86::BI__builtin_ia32_rndscaleps_mask:
4648 case X86::BI__builtin_ia32_rndscaleph_mask:
4649 case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4650 case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4651 ArgNum = 4;
4652 break;
4653 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4654 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4655 case X86::BI__builtin_ia32_fixupimmps512_mask:
4656 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4657 case X86::BI__builtin_ia32_fixupimmsd_mask:
4658 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4659 case X86::BI__builtin_ia32_fixupimmss_mask:
4660 case X86::BI__builtin_ia32_fixupimmss_maskz:
4661 case X86::BI__builtin_ia32_getmantsd_round_mask:
4662 case X86::BI__builtin_ia32_getmantss_round_mask:
4663 case X86::BI__builtin_ia32_getmantsh_round_mask:
4664 case X86::BI__builtin_ia32_rangepd512_mask:
4665 case X86::BI__builtin_ia32_rangeps512_mask:
4666 case X86::BI__builtin_ia32_rangesd128_round_mask:
4667 case X86::BI__builtin_ia32_rangess128_round_mask:
4668 case X86::BI__builtin_ia32_reducesd_mask:
4669 case X86::BI__builtin_ia32_reducess_mask:
4670 case X86::BI__builtin_ia32_reducesh_mask:
4671 case X86::BI__builtin_ia32_rndscalesd_round_mask:
4672 case X86::BI__builtin_ia32_rndscaless_round_mask:
4673 case X86::BI__builtin_ia32_rndscalesh_round_mask:
4674 ArgNum = 5;
4675 break;
4676 case X86::BI__builtin_ia32_vcvtsd2si64:
4677 case X86::BI__builtin_ia32_vcvtsd2si32:
4678 case X86::BI__builtin_ia32_vcvtsd2usi32:
4679 case X86::BI__builtin_ia32_vcvtsd2usi64:
4680 case X86::BI__builtin_ia32_vcvtss2si32:
4681 case X86::BI__builtin_ia32_vcvtss2si64:
4682 case X86::BI__builtin_ia32_vcvtss2usi32:
4683 case X86::BI__builtin_ia32_vcvtss2usi64:
4684 case X86::BI__builtin_ia32_vcvtsh2si32:
4685 case X86::BI__builtin_ia32_vcvtsh2si64:
4686 case X86::BI__builtin_ia32_vcvtsh2usi32:
4687 case X86::BI__builtin_ia32_vcvtsh2usi64:
4688 case X86::BI__builtin_ia32_sqrtpd512:
4689 case X86::BI__builtin_ia32_sqrtps512:
4690 case X86::BI__builtin_ia32_sqrtph512:
4691 ArgNum = 1;
4692 HasRC = true;
4693 break;
4694 case X86::BI__builtin_ia32_addph512:
4695 case X86::BI__builtin_ia32_divph512:
4696 case X86::BI__builtin_ia32_mulph512:
4697 case X86::BI__builtin_ia32_subph512:
4698 case X86::BI__builtin_ia32_addpd512:
4699 case X86::BI__builtin_ia32_addps512:
4700 case X86::BI__builtin_ia32_divpd512:
4701 case X86::BI__builtin_ia32_divps512:
4702 case X86::BI__builtin_ia32_mulpd512:
4703 case X86::BI__builtin_ia32_mulps512:
4704 case X86::BI__builtin_ia32_subpd512:
4705 case X86::BI__builtin_ia32_subps512:
4706 case X86::BI__builtin_ia32_cvtsi2sd64:
4707 case X86::BI__builtin_ia32_cvtsi2ss32:
4708 case X86::BI__builtin_ia32_cvtsi2ss64:
4709 case X86::BI__builtin_ia32_cvtusi2sd64:
4710 case X86::BI__builtin_ia32_cvtusi2ss32:
4711 case X86::BI__builtin_ia32_cvtusi2ss64:
4712 case X86::BI__builtin_ia32_vcvtusi2sh:
4713 case X86::BI__builtin_ia32_vcvtusi642sh:
4714 case X86::BI__builtin_ia32_vcvtsi2sh:
4715 case X86::BI__builtin_ia32_vcvtsi642sh:
4716 ArgNum = 2;
4717 HasRC = true;
4718 break;
4719 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4720 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4721 case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4722 case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4723 case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4724 case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4725 case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4726 case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4727 case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4728 case X86::BI__builtin_ia32_cvtps2dq512_mask:
4729 case X86::BI__builtin_ia32_cvtps2qq512_mask:
4730 case X86::BI__builtin_ia32_cvtps2udq512_mask:
4731 case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4732 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4733 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4734 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4735 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4736 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4737 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4738 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4739 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4740 case X86::BI__builtin_ia32_vcvtph2w512_mask:
4741 case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4742 case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4743 case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4744 case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4745 case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4746 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4747 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4748 ArgNum = 3;
4749 HasRC = true;
4750 break;
4751 case X86::BI__builtin_ia32_addsh_round_mask:
4752 case X86::BI__builtin_ia32_addss_round_mask:
4753 case X86::BI__builtin_ia32_addsd_round_mask:
4754 case X86::BI__builtin_ia32_divsh_round_mask:
4755 case X86::BI__builtin_ia32_divss_round_mask:
4756 case X86::BI__builtin_ia32_divsd_round_mask:
4757 case X86::BI__builtin_ia32_mulsh_round_mask:
4758 case X86::BI__builtin_ia32_mulss_round_mask:
4759 case X86::BI__builtin_ia32_mulsd_round_mask:
4760 case X86::BI__builtin_ia32_subsh_round_mask:
4761 case X86::BI__builtin_ia32_subss_round_mask:
4762 case X86::BI__builtin_ia32_subsd_round_mask:
4763 case X86::BI__builtin_ia32_scalefph512_mask:
4764 case X86::BI__builtin_ia32_scalefpd512_mask:
4765 case X86::BI__builtin_ia32_scalefps512_mask:
4766 case X86::BI__builtin_ia32_scalefsd_round_mask:
4767 case X86::BI__builtin_ia32_scalefss_round_mask:
4768 case X86::BI__builtin_ia32_scalefsh_round_mask:
4769 case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4770 case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4771 case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4772 case X86::BI__builtin_ia32_sqrtsd_round_mask:
4773 case X86::BI__builtin_ia32_sqrtss_round_mask:
4774 case X86::BI__builtin_ia32_sqrtsh_round_mask:
4775 case X86::BI__builtin_ia32_vfmaddsd3_mask:
4776 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4777 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4778 case X86::BI__builtin_ia32_vfmaddss3_mask:
4779 case X86::BI__builtin_ia32_vfmaddss3_maskz:
4780 case X86::BI__builtin_ia32_vfmaddss3_mask3:
4781 case X86::BI__builtin_ia32_vfmaddsh3_mask:
4782 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4783 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4784 case X86::BI__builtin_ia32_vfmaddpd512_mask:
4785 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4786 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4787 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4788 case X86::BI__builtin_ia32_vfmaddps512_mask:
4789 case X86::BI__builtin_ia32_vfmaddps512_maskz:
4790 case X86::BI__builtin_ia32_vfmaddps512_mask3:
4791 case X86::BI__builtin_ia32_vfmsubps512_mask3:
4792 case X86::BI__builtin_ia32_vfmaddph512_mask:
4793 case X86::BI__builtin_ia32_vfmaddph512_maskz:
4794 case X86::BI__builtin_ia32_vfmaddph512_mask3:
4795 case X86::BI__builtin_ia32_vfmsubph512_mask3:
4796 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4797 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4798 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4799 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4800 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4801 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4802 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4803 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4804 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4805 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4806 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4807 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4808 case X86::BI__builtin_ia32_vfmaddcsh_mask:
4809 case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4810 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4811 case X86::BI__builtin_ia32_vfmaddcph512_mask:
4812 case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4813 case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4814 case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4815 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4816 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4817 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4818 case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4819 case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4820 case X86::BI__builtin_ia32_vfmulcsh_mask:
4821 case X86::BI__builtin_ia32_vfmulcph512_mask:
4822 case X86::BI__builtin_ia32_vfcmulcsh_mask:
4823 case X86::BI__builtin_ia32_vfcmulcph512_mask:
4824 ArgNum = 4;
4825 HasRC = true;
4826 break;
4827 }
4828
4829 llvm::APSInt Result;
4830
4831 // We can't check the value of a dependent argument.
4832 Expr *Arg = TheCall->getArg(ArgNum);
4833 if (Arg->isTypeDependent() || Arg->isValueDependent())
4834 return false;
4835
4836 // Check constant-ness first.
4837 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4838 return true;
4839
4840 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4841 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4842 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4843 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4844 if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4845 Result == 8/*ROUND_NO_EXC*/ ||
4846 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4847 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4848 return false;
4849
4850 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4851 << Arg->getSourceRange();
4852 }
4853
4854 // Check if the gather/scatter scale is legal.
CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,CallExpr * TheCall)4855 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4856 CallExpr *TheCall) {
4857 unsigned ArgNum = 0;
4858 switch (BuiltinID) {
4859 default:
4860 return false;
4861 case X86::BI__builtin_ia32_gatherpfdpd:
4862 case X86::BI__builtin_ia32_gatherpfdps:
4863 case X86::BI__builtin_ia32_gatherpfqpd:
4864 case X86::BI__builtin_ia32_gatherpfqps:
4865 case X86::BI__builtin_ia32_scatterpfdpd:
4866 case X86::BI__builtin_ia32_scatterpfdps:
4867 case X86::BI__builtin_ia32_scatterpfqpd:
4868 case X86::BI__builtin_ia32_scatterpfqps:
4869 ArgNum = 3;
4870 break;
4871 case X86::BI__builtin_ia32_gatherd_pd:
4872 case X86::BI__builtin_ia32_gatherd_pd256:
4873 case X86::BI__builtin_ia32_gatherq_pd:
4874 case X86::BI__builtin_ia32_gatherq_pd256:
4875 case X86::BI__builtin_ia32_gatherd_ps:
4876 case X86::BI__builtin_ia32_gatherd_ps256:
4877 case X86::BI__builtin_ia32_gatherq_ps:
4878 case X86::BI__builtin_ia32_gatherq_ps256:
4879 case X86::BI__builtin_ia32_gatherd_q:
4880 case X86::BI__builtin_ia32_gatherd_q256:
4881 case X86::BI__builtin_ia32_gatherq_q:
4882 case X86::BI__builtin_ia32_gatherq_q256:
4883 case X86::BI__builtin_ia32_gatherd_d:
4884 case X86::BI__builtin_ia32_gatherd_d256:
4885 case X86::BI__builtin_ia32_gatherq_d:
4886 case X86::BI__builtin_ia32_gatherq_d256:
4887 case X86::BI__builtin_ia32_gather3div2df:
4888 case X86::BI__builtin_ia32_gather3div2di:
4889 case X86::BI__builtin_ia32_gather3div4df:
4890 case X86::BI__builtin_ia32_gather3div4di:
4891 case X86::BI__builtin_ia32_gather3div4sf:
4892 case X86::BI__builtin_ia32_gather3div4si:
4893 case X86::BI__builtin_ia32_gather3div8sf:
4894 case X86::BI__builtin_ia32_gather3div8si:
4895 case X86::BI__builtin_ia32_gather3siv2df:
4896 case X86::BI__builtin_ia32_gather3siv2di:
4897 case X86::BI__builtin_ia32_gather3siv4df:
4898 case X86::BI__builtin_ia32_gather3siv4di:
4899 case X86::BI__builtin_ia32_gather3siv4sf:
4900 case X86::BI__builtin_ia32_gather3siv4si:
4901 case X86::BI__builtin_ia32_gather3siv8sf:
4902 case X86::BI__builtin_ia32_gather3siv8si:
4903 case X86::BI__builtin_ia32_gathersiv8df:
4904 case X86::BI__builtin_ia32_gathersiv16sf:
4905 case X86::BI__builtin_ia32_gatherdiv8df:
4906 case X86::BI__builtin_ia32_gatherdiv16sf:
4907 case X86::BI__builtin_ia32_gathersiv8di:
4908 case X86::BI__builtin_ia32_gathersiv16si:
4909 case X86::BI__builtin_ia32_gatherdiv8di:
4910 case X86::BI__builtin_ia32_gatherdiv16si:
4911 case X86::BI__builtin_ia32_scatterdiv2df:
4912 case X86::BI__builtin_ia32_scatterdiv2di:
4913 case X86::BI__builtin_ia32_scatterdiv4df:
4914 case X86::BI__builtin_ia32_scatterdiv4di:
4915 case X86::BI__builtin_ia32_scatterdiv4sf:
4916 case X86::BI__builtin_ia32_scatterdiv4si:
4917 case X86::BI__builtin_ia32_scatterdiv8sf:
4918 case X86::BI__builtin_ia32_scatterdiv8si:
4919 case X86::BI__builtin_ia32_scattersiv2df:
4920 case X86::BI__builtin_ia32_scattersiv2di:
4921 case X86::BI__builtin_ia32_scattersiv4df:
4922 case X86::BI__builtin_ia32_scattersiv4di:
4923 case X86::BI__builtin_ia32_scattersiv4sf:
4924 case X86::BI__builtin_ia32_scattersiv4si:
4925 case X86::BI__builtin_ia32_scattersiv8sf:
4926 case X86::BI__builtin_ia32_scattersiv8si:
4927 case X86::BI__builtin_ia32_scattersiv8df:
4928 case X86::BI__builtin_ia32_scattersiv16sf:
4929 case X86::BI__builtin_ia32_scatterdiv8df:
4930 case X86::BI__builtin_ia32_scatterdiv16sf:
4931 case X86::BI__builtin_ia32_scattersiv8di:
4932 case X86::BI__builtin_ia32_scattersiv16si:
4933 case X86::BI__builtin_ia32_scatterdiv8di:
4934 case X86::BI__builtin_ia32_scatterdiv16si:
4935 ArgNum = 4;
4936 break;
4937 }
4938
4939 llvm::APSInt Result;
4940
4941 // We can't check the value of a dependent argument.
4942 Expr *Arg = TheCall->getArg(ArgNum);
4943 if (Arg->isTypeDependent() || Arg->isValueDependent())
4944 return false;
4945
4946 // Check constant-ness first.
4947 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4948 return true;
4949
4950 if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4951 return false;
4952
4953 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4954 << Arg->getSourceRange();
4955 }
4956
4957 enum { TileRegLow = 0, TileRegHigh = 7 };
4958
CheckX86BuiltinTileArgumentsRange(CallExpr * TheCall,ArrayRef<int> ArgNums)4959 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4960 ArrayRef<int> ArgNums) {
4961 for (int ArgNum : ArgNums) {
4962 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4963 return true;
4964 }
4965 return false;
4966 }
4967
CheckX86BuiltinTileDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)4968 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4969 ArrayRef<int> ArgNums) {
4970 // Because the max number of tile register is TileRegHigh + 1, so here we use
4971 // each bit to represent the usage of them in bitset.
4972 std::bitset<TileRegHigh + 1> ArgValues;
4973 for (int ArgNum : ArgNums) {
4974 Expr *Arg = TheCall->getArg(ArgNum);
4975 if (Arg->isTypeDependent() || Arg->isValueDependent())
4976 continue;
4977
4978 llvm::APSInt Result;
4979 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4980 return true;
4981 int ArgExtValue = Result.getExtValue();
4982 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4983 "Incorrect tile register num.");
4984 if (ArgValues.test(ArgExtValue))
4985 return Diag(TheCall->getBeginLoc(),
4986 diag::err_x86_builtin_tile_arg_duplicate)
4987 << TheCall->getArg(ArgNum)->getSourceRange();
4988 ArgValues.set(ArgExtValue);
4989 }
4990 return false;
4991 }
4992
CheckX86BuiltinTileRangeAndDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)4993 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4994 ArrayRef<int> ArgNums) {
4995 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4996 CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4997 }
4998
CheckX86BuiltinTileArguments(unsigned BuiltinID,CallExpr * TheCall)4999 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
5000 switch (BuiltinID) {
5001 default:
5002 return false;
5003 case X86::BI__builtin_ia32_tileloadd64:
5004 case X86::BI__builtin_ia32_tileloaddt164:
5005 case X86::BI__builtin_ia32_tilestored64:
5006 case X86::BI__builtin_ia32_tilezero:
5007 return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
5008 case X86::BI__builtin_ia32_tdpbssd:
5009 case X86::BI__builtin_ia32_tdpbsud:
5010 case X86::BI__builtin_ia32_tdpbusd:
5011 case X86::BI__builtin_ia32_tdpbuud:
5012 case X86::BI__builtin_ia32_tdpbf16ps:
5013 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
5014 }
5015 }
isX86_32Builtin(unsigned BuiltinID)5016 static bool isX86_32Builtin(unsigned BuiltinID) {
5017 // These builtins only work on x86-32 targets.
5018 switch (BuiltinID) {
5019 case X86::BI__builtin_ia32_readeflags_u32:
5020 case X86::BI__builtin_ia32_writeeflags_u32:
5021 return true;
5022 }
5023
5024 return false;
5025 }
5026
CheckX86BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)5027 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
5028 CallExpr *TheCall) {
5029 if (BuiltinID == X86::BI__builtin_cpu_supports)
5030 return SemaBuiltinCpuSupports(*this, TI, TheCall);
5031
5032 if (BuiltinID == X86::BI__builtin_cpu_is)
5033 return SemaBuiltinCpuIs(*this, TI, TheCall);
5034
5035 // Check for 32-bit only builtins on a 64-bit target.
5036 const llvm::Triple &TT = TI.getTriple();
5037 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
5038 return Diag(TheCall->getCallee()->getBeginLoc(),
5039 diag::err_32_bit_builtin_64_bit_tgt);
5040
5041 // If the intrinsic has rounding or SAE make sure its valid.
5042 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
5043 return true;
5044
5045 // If the intrinsic has a gather/scatter scale immediate make sure its valid.
5046 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
5047 return true;
5048
5049 // If the intrinsic has a tile arguments, make sure they are valid.
5050 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
5051 return true;
5052
5053 // For intrinsics which take an immediate value as part of the instruction,
5054 // range check them here.
5055 int i = 0, l = 0, u = 0;
5056 switch (BuiltinID) {
5057 default:
5058 return false;
5059 case X86::BI__builtin_ia32_vec_ext_v2si:
5060 case X86::BI__builtin_ia32_vec_ext_v2di:
5061 case X86::BI__builtin_ia32_vextractf128_pd256:
5062 case X86::BI__builtin_ia32_vextractf128_ps256:
5063 case X86::BI__builtin_ia32_vextractf128_si256:
5064 case X86::BI__builtin_ia32_extract128i256:
5065 case X86::BI__builtin_ia32_extractf64x4_mask:
5066 case X86::BI__builtin_ia32_extracti64x4_mask:
5067 case X86::BI__builtin_ia32_extractf32x8_mask:
5068 case X86::BI__builtin_ia32_extracti32x8_mask:
5069 case X86::BI__builtin_ia32_extractf64x2_256_mask:
5070 case X86::BI__builtin_ia32_extracti64x2_256_mask:
5071 case X86::BI__builtin_ia32_extractf32x4_256_mask:
5072 case X86::BI__builtin_ia32_extracti32x4_256_mask:
5073 i = 1; l = 0; u = 1;
5074 break;
5075 case X86::BI__builtin_ia32_vec_set_v2di:
5076 case X86::BI__builtin_ia32_vinsertf128_pd256:
5077 case X86::BI__builtin_ia32_vinsertf128_ps256:
5078 case X86::BI__builtin_ia32_vinsertf128_si256:
5079 case X86::BI__builtin_ia32_insert128i256:
5080 case X86::BI__builtin_ia32_insertf32x8:
5081 case X86::BI__builtin_ia32_inserti32x8:
5082 case X86::BI__builtin_ia32_insertf64x4:
5083 case X86::BI__builtin_ia32_inserti64x4:
5084 case X86::BI__builtin_ia32_insertf64x2_256:
5085 case X86::BI__builtin_ia32_inserti64x2_256:
5086 case X86::BI__builtin_ia32_insertf32x4_256:
5087 case X86::BI__builtin_ia32_inserti32x4_256:
5088 i = 2; l = 0; u = 1;
5089 break;
5090 case X86::BI__builtin_ia32_vpermilpd:
5091 case X86::BI__builtin_ia32_vec_ext_v4hi:
5092 case X86::BI__builtin_ia32_vec_ext_v4si:
5093 case X86::BI__builtin_ia32_vec_ext_v4sf:
5094 case X86::BI__builtin_ia32_vec_ext_v4di:
5095 case X86::BI__builtin_ia32_extractf32x4_mask:
5096 case X86::BI__builtin_ia32_extracti32x4_mask:
5097 case X86::BI__builtin_ia32_extractf64x2_512_mask:
5098 case X86::BI__builtin_ia32_extracti64x2_512_mask:
5099 i = 1; l = 0; u = 3;
5100 break;
5101 case X86::BI_mm_prefetch:
5102 case X86::BI__builtin_ia32_vec_ext_v8hi:
5103 case X86::BI__builtin_ia32_vec_ext_v8si:
5104 i = 1; l = 0; u = 7;
5105 break;
5106 case X86::BI__builtin_ia32_sha1rnds4:
5107 case X86::BI__builtin_ia32_blendpd:
5108 case X86::BI__builtin_ia32_shufpd:
5109 case X86::BI__builtin_ia32_vec_set_v4hi:
5110 case X86::BI__builtin_ia32_vec_set_v4si:
5111 case X86::BI__builtin_ia32_vec_set_v4di:
5112 case X86::BI__builtin_ia32_shuf_f32x4_256:
5113 case X86::BI__builtin_ia32_shuf_f64x2_256:
5114 case X86::BI__builtin_ia32_shuf_i32x4_256:
5115 case X86::BI__builtin_ia32_shuf_i64x2_256:
5116 case X86::BI__builtin_ia32_insertf64x2_512:
5117 case X86::BI__builtin_ia32_inserti64x2_512:
5118 case X86::BI__builtin_ia32_insertf32x4:
5119 case X86::BI__builtin_ia32_inserti32x4:
5120 i = 2; l = 0; u = 3;
5121 break;
5122 case X86::BI__builtin_ia32_vpermil2pd:
5123 case X86::BI__builtin_ia32_vpermil2pd256:
5124 case X86::BI__builtin_ia32_vpermil2ps:
5125 case X86::BI__builtin_ia32_vpermil2ps256:
5126 i = 3; l = 0; u = 3;
5127 break;
5128 case X86::BI__builtin_ia32_cmpb128_mask:
5129 case X86::BI__builtin_ia32_cmpw128_mask:
5130 case X86::BI__builtin_ia32_cmpd128_mask:
5131 case X86::BI__builtin_ia32_cmpq128_mask:
5132 case X86::BI__builtin_ia32_cmpb256_mask:
5133 case X86::BI__builtin_ia32_cmpw256_mask:
5134 case X86::BI__builtin_ia32_cmpd256_mask:
5135 case X86::BI__builtin_ia32_cmpq256_mask:
5136 case X86::BI__builtin_ia32_cmpb512_mask:
5137 case X86::BI__builtin_ia32_cmpw512_mask:
5138 case X86::BI__builtin_ia32_cmpd512_mask:
5139 case X86::BI__builtin_ia32_cmpq512_mask:
5140 case X86::BI__builtin_ia32_ucmpb128_mask:
5141 case X86::BI__builtin_ia32_ucmpw128_mask:
5142 case X86::BI__builtin_ia32_ucmpd128_mask:
5143 case X86::BI__builtin_ia32_ucmpq128_mask:
5144 case X86::BI__builtin_ia32_ucmpb256_mask:
5145 case X86::BI__builtin_ia32_ucmpw256_mask:
5146 case X86::BI__builtin_ia32_ucmpd256_mask:
5147 case X86::BI__builtin_ia32_ucmpq256_mask:
5148 case X86::BI__builtin_ia32_ucmpb512_mask:
5149 case X86::BI__builtin_ia32_ucmpw512_mask:
5150 case X86::BI__builtin_ia32_ucmpd512_mask:
5151 case X86::BI__builtin_ia32_ucmpq512_mask:
5152 case X86::BI__builtin_ia32_vpcomub:
5153 case X86::BI__builtin_ia32_vpcomuw:
5154 case X86::BI__builtin_ia32_vpcomud:
5155 case X86::BI__builtin_ia32_vpcomuq:
5156 case X86::BI__builtin_ia32_vpcomb:
5157 case X86::BI__builtin_ia32_vpcomw:
5158 case X86::BI__builtin_ia32_vpcomd:
5159 case X86::BI__builtin_ia32_vpcomq:
5160 case X86::BI__builtin_ia32_vec_set_v8hi:
5161 case X86::BI__builtin_ia32_vec_set_v8si:
5162 i = 2; l = 0; u = 7;
5163 break;
5164 case X86::BI__builtin_ia32_vpermilpd256:
5165 case X86::BI__builtin_ia32_roundps:
5166 case X86::BI__builtin_ia32_roundpd:
5167 case X86::BI__builtin_ia32_roundps256:
5168 case X86::BI__builtin_ia32_roundpd256:
5169 case X86::BI__builtin_ia32_getmantpd128_mask:
5170 case X86::BI__builtin_ia32_getmantpd256_mask:
5171 case X86::BI__builtin_ia32_getmantps128_mask:
5172 case X86::BI__builtin_ia32_getmantps256_mask:
5173 case X86::BI__builtin_ia32_getmantpd512_mask:
5174 case X86::BI__builtin_ia32_getmantps512_mask:
5175 case X86::BI__builtin_ia32_getmantph128_mask:
5176 case X86::BI__builtin_ia32_getmantph256_mask:
5177 case X86::BI__builtin_ia32_getmantph512_mask:
5178 case X86::BI__builtin_ia32_vec_ext_v16qi:
5179 case X86::BI__builtin_ia32_vec_ext_v16hi:
5180 i = 1; l = 0; u = 15;
5181 break;
5182 case X86::BI__builtin_ia32_pblendd128:
5183 case X86::BI__builtin_ia32_blendps:
5184 case X86::BI__builtin_ia32_blendpd256:
5185 case X86::BI__builtin_ia32_shufpd256:
5186 case X86::BI__builtin_ia32_roundss:
5187 case X86::BI__builtin_ia32_roundsd:
5188 case X86::BI__builtin_ia32_rangepd128_mask:
5189 case X86::BI__builtin_ia32_rangepd256_mask:
5190 case X86::BI__builtin_ia32_rangepd512_mask:
5191 case X86::BI__builtin_ia32_rangeps128_mask:
5192 case X86::BI__builtin_ia32_rangeps256_mask:
5193 case X86::BI__builtin_ia32_rangeps512_mask:
5194 case X86::BI__builtin_ia32_getmantsd_round_mask:
5195 case X86::BI__builtin_ia32_getmantss_round_mask:
5196 case X86::BI__builtin_ia32_getmantsh_round_mask:
5197 case X86::BI__builtin_ia32_vec_set_v16qi:
5198 case X86::BI__builtin_ia32_vec_set_v16hi:
5199 i = 2; l = 0; u = 15;
5200 break;
5201 case X86::BI__builtin_ia32_vec_ext_v32qi:
5202 i = 1; l = 0; u = 31;
5203 break;
5204 case X86::BI__builtin_ia32_cmpps:
5205 case X86::BI__builtin_ia32_cmpss:
5206 case X86::BI__builtin_ia32_cmppd:
5207 case X86::BI__builtin_ia32_cmpsd:
5208 case X86::BI__builtin_ia32_cmpps256:
5209 case X86::BI__builtin_ia32_cmppd256:
5210 case X86::BI__builtin_ia32_cmpps128_mask:
5211 case X86::BI__builtin_ia32_cmppd128_mask:
5212 case X86::BI__builtin_ia32_cmpps256_mask:
5213 case X86::BI__builtin_ia32_cmppd256_mask:
5214 case X86::BI__builtin_ia32_cmpps512_mask:
5215 case X86::BI__builtin_ia32_cmppd512_mask:
5216 case X86::BI__builtin_ia32_cmpsd_mask:
5217 case X86::BI__builtin_ia32_cmpss_mask:
5218 case X86::BI__builtin_ia32_vec_set_v32qi:
5219 i = 2; l = 0; u = 31;
5220 break;
5221 case X86::BI__builtin_ia32_permdf256:
5222 case X86::BI__builtin_ia32_permdi256:
5223 case X86::BI__builtin_ia32_permdf512:
5224 case X86::BI__builtin_ia32_permdi512:
5225 case X86::BI__builtin_ia32_vpermilps:
5226 case X86::BI__builtin_ia32_vpermilps256:
5227 case X86::BI__builtin_ia32_vpermilpd512:
5228 case X86::BI__builtin_ia32_vpermilps512:
5229 case X86::BI__builtin_ia32_pshufd:
5230 case X86::BI__builtin_ia32_pshufd256:
5231 case X86::BI__builtin_ia32_pshufd512:
5232 case X86::BI__builtin_ia32_pshufhw:
5233 case X86::BI__builtin_ia32_pshufhw256:
5234 case X86::BI__builtin_ia32_pshufhw512:
5235 case X86::BI__builtin_ia32_pshuflw:
5236 case X86::BI__builtin_ia32_pshuflw256:
5237 case X86::BI__builtin_ia32_pshuflw512:
5238 case X86::BI__builtin_ia32_vcvtps2ph:
5239 case X86::BI__builtin_ia32_vcvtps2ph_mask:
5240 case X86::BI__builtin_ia32_vcvtps2ph256:
5241 case X86::BI__builtin_ia32_vcvtps2ph256_mask:
5242 case X86::BI__builtin_ia32_vcvtps2ph512_mask:
5243 case X86::BI__builtin_ia32_rndscaleps_128_mask:
5244 case X86::BI__builtin_ia32_rndscalepd_128_mask:
5245 case X86::BI__builtin_ia32_rndscaleps_256_mask:
5246 case X86::BI__builtin_ia32_rndscalepd_256_mask:
5247 case X86::BI__builtin_ia32_rndscaleps_mask:
5248 case X86::BI__builtin_ia32_rndscalepd_mask:
5249 case X86::BI__builtin_ia32_rndscaleph_mask:
5250 case X86::BI__builtin_ia32_reducepd128_mask:
5251 case X86::BI__builtin_ia32_reducepd256_mask:
5252 case X86::BI__builtin_ia32_reducepd512_mask:
5253 case X86::BI__builtin_ia32_reduceps128_mask:
5254 case X86::BI__builtin_ia32_reduceps256_mask:
5255 case X86::BI__builtin_ia32_reduceps512_mask:
5256 case X86::BI__builtin_ia32_reduceph128_mask:
5257 case X86::BI__builtin_ia32_reduceph256_mask:
5258 case X86::BI__builtin_ia32_reduceph512_mask:
5259 case X86::BI__builtin_ia32_prold512:
5260 case X86::BI__builtin_ia32_prolq512:
5261 case X86::BI__builtin_ia32_prold128:
5262 case X86::BI__builtin_ia32_prold256:
5263 case X86::BI__builtin_ia32_prolq128:
5264 case X86::BI__builtin_ia32_prolq256:
5265 case X86::BI__builtin_ia32_prord512:
5266 case X86::BI__builtin_ia32_prorq512:
5267 case X86::BI__builtin_ia32_prord128:
5268 case X86::BI__builtin_ia32_prord256:
5269 case X86::BI__builtin_ia32_prorq128:
5270 case X86::BI__builtin_ia32_prorq256:
5271 case X86::BI__builtin_ia32_fpclasspd128_mask:
5272 case X86::BI__builtin_ia32_fpclasspd256_mask:
5273 case X86::BI__builtin_ia32_fpclassps128_mask:
5274 case X86::BI__builtin_ia32_fpclassps256_mask:
5275 case X86::BI__builtin_ia32_fpclassps512_mask:
5276 case X86::BI__builtin_ia32_fpclasspd512_mask:
5277 case X86::BI__builtin_ia32_fpclassph128_mask:
5278 case X86::BI__builtin_ia32_fpclassph256_mask:
5279 case X86::BI__builtin_ia32_fpclassph512_mask:
5280 case X86::BI__builtin_ia32_fpclasssd_mask:
5281 case X86::BI__builtin_ia32_fpclassss_mask:
5282 case X86::BI__builtin_ia32_fpclasssh_mask:
5283 case X86::BI__builtin_ia32_pslldqi128_byteshift:
5284 case X86::BI__builtin_ia32_pslldqi256_byteshift:
5285 case X86::BI__builtin_ia32_pslldqi512_byteshift:
5286 case X86::BI__builtin_ia32_psrldqi128_byteshift:
5287 case X86::BI__builtin_ia32_psrldqi256_byteshift:
5288 case X86::BI__builtin_ia32_psrldqi512_byteshift:
5289 case X86::BI__builtin_ia32_kshiftliqi:
5290 case X86::BI__builtin_ia32_kshiftlihi:
5291 case X86::BI__builtin_ia32_kshiftlisi:
5292 case X86::BI__builtin_ia32_kshiftlidi:
5293 case X86::BI__builtin_ia32_kshiftriqi:
5294 case X86::BI__builtin_ia32_kshiftrihi:
5295 case X86::BI__builtin_ia32_kshiftrisi:
5296 case X86::BI__builtin_ia32_kshiftridi:
5297 i = 1; l = 0; u = 255;
5298 break;
5299 case X86::BI__builtin_ia32_vperm2f128_pd256:
5300 case X86::BI__builtin_ia32_vperm2f128_ps256:
5301 case X86::BI__builtin_ia32_vperm2f128_si256:
5302 case X86::BI__builtin_ia32_permti256:
5303 case X86::BI__builtin_ia32_pblendw128:
5304 case X86::BI__builtin_ia32_pblendw256:
5305 case X86::BI__builtin_ia32_blendps256:
5306 case X86::BI__builtin_ia32_pblendd256:
5307 case X86::BI__builtin_ia32_palignr128:
5308 case X86::BI__builtin_ia32_palignr256:
5309 case X86::BI__builtin_ia32_palignr512:
5310 case X86::BI__builtin_ia32_alignq512:
5311 case X86::BI__builtin_ia32_alignd512:
5312 case X86::BI__builtin_ia32_alignd128:
5313 case X86::BI__builtin_ia32_alignd256:
5314 case X86::BI__builtin_ia32_alignq128:
5315 case X86::BI__builtin_ia32_alignq256:
5316 case X86::BI__builtin_ia32_vcomisd:
5317 case X86::BI__builtin_ia32_vcomiss:
5318 case X86::BI__builtin_ia32_shuf_f32x4:
5319 case X86::BI__builtin_ia32_shuf_f64x2:
5320 case X86::BI__builtin_ia32_shuf_i32x4:
5321 case X86::BI__builtin_ia32_shuf_i64x2:
5322 case X86::BI__builtin_ia32_shufpd512:
5323 case X86::BI__builtin_ia32_shufps:
5324 case X86::BI__builtin_ia32_shufps256:
5325 case X86::BI__builtin_ia32_shufps512:
5326 case X86::BI__builtin_ia32_dbpsadbw128:
5327 case X86::BI__builtin_ia32_dbpsadbw256:
5328 case X86::BI__builtin_ia32_dbpsadbw512:
5329 case X86::BI__builtin_ia32_vpshldd128:
5330 case X86::BI__builtin_ia32_vpshldd256:
5331 case X86::BI__builtin_ia32_vpshldd512:
5332 case X86::BI__builtin_ia32_vpshldq128:
5333 case X86::BI__builtin_ia32_vpshldq256:
5334 case X86::BI__builtin_ia32_vpshldq512:
5335 case X86::BI__builtin_ia32_vpshldw128:
5336 case X86::BI__builtin_ia32_vpshldw256:
5337 case X86::BI__builtin_ia32_vpshldw512:
5338 case X86::BI__builtin_ia32_vpshrdd128:
5339 case X86::BI__builtin_ia32_vpshrdd256:
5340 case X86::BI__builtin_ia32_vpshrdd512:
5341 case X86::BI__builtin_ia32_vpshrdq128:
5342 case X86::BI__builtin_ia32_vpshrdq256:
5343 case X86::BI__builtin_ia32_vpshrdq512:
5344 case X86::BI__builtin_ia32_vpshrdw128:
5345 case X86::BI__builtin_ia32_vpshrdw256:
5346 case X86::BI__builtin_ia32_vpshrdw512:
5347 i = 2; l = 0; u = 255;
5348 break;
5349 case X86::BI__builtin_ia32_fixupimmpd512_mask:
5350 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
5351 case X86::BI__builtin_ia32_fixupimmps512_mask:
5352 case X86::BI__builtin_ia32_fixupimmps512_maskz:
5353 case X86::BI__builtin_ia32_fixupimmsd_mask:
5354 case X86::BI__builtin_ia32_fixupimmsd_maskz:
5355 case X86::BI__builtin_ia32_fixupimmss_mask:
5356 case X86::BI__builtin_ia32_fixupimmss_maskz:
5357 case X86::BI__builtin_ia32_fixupimmpd128_mask:
5358 case X86::BI__builtin_ia32_fixupimmpd128_maskz:
5359 case X86::BI__builtin_ia32_fixupimmpd256_mask:
5360 case X86::BI__builtin_ia32_fixupimmpd256_maskz:
5361 case X86::BI__builtin_ia32_fixupimmps128_mask:
5362 case X86::BI__builtin_ia32_fixupimmps128_maskz:
5363 case X86::BI__builtin_ia32_fixupimmps256_mask:
5364 case X86::BI__builtin_ia32_fixupimmps256_maskz:
5365 case X86::BI__builtin_ia32_pternlogd512_mask:
5366 case X86::BI__builtin_ia32_pternlogd512_maskz:
5367 case X86::BI__builtin_ia32_pternlogq512_mask:
5368 case X86::BI__builtin_ia32_pternlogq512_maskz:
5369 case X86::BI__builtin_ia32_pternlogd128_mask:
5370 case X86::BI__builtin_ia32_pternlogd128_maskz:
5371 case X86::BI__builtin_ia32_pternlogd256_mask:
5372 case X86::BI__builtin_ia32_pternlogd256_maskz:
5373 case X86::BI__builtin_ia32_pternlogq128_mask:
5374 case X86::BI__builtin_ia32_pternlogq128_maskz:
5375 case X86::BI__builtin_ia32_pternlogq256_mask:
5376 case X86::BI__builtin_ia32_pternlogq256_maskz:
5377 i = 3; l = 0; u = 255;
5378 break;
5379 case X86::BI__builtin_ia32_gatherpfdpd:
5380 case X86::BI__builtin_ia32_gatherpfdps:
5381 case X86::BI__builtin_ia32_gatherpfqpd:
5382 case X86::BI__builtin_ia32_gatherpfqps:
5383 case X86::BI__builtin_ia32_scatterpfdpd:
5384 case X86::BI__builtin_ia32_scatterpfdps:
5385 case X86::BI__builtin_ia32_scatterpfqpd:
5386 case X86::BI__builtin_ia32_scatterpfqps:
5387 i = 4; l = 2; u = 3;
5388 break;
5389 case X86::BI__builtin_ia32_reducesd_mask:
5390 case X86::BI__builtin_ia32_reducess_mask:
5391 case X86::BI__builtin_ia32_rndscalesd_round_mask:
5392 case X86::BI__builtin_ia32_rndscaless_round_mask:
5393 case X86::BI__builtin_ia32_rndscalesh_round_mask:
5394 case X86::BI__builtin_ia32_reducesh_mask:
5395 i = 4; l = 0; u = 255;
5396 break;
5397 }
5398
5399 // Note that we don't force a hard error on the range check here, allowing
5400 // template-generated or macro-generated dead code to potentially have out-of-
5401 // range values. These need to code generate, but don't need to necessarily
5402 // make any sense. We use a warning that defaults to an error.
5403 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
5404 }
5405
5406 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
5407 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
5408 /// Returns true when the format fits the function and the FormatStringInfo has
5409 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,bool IsVariadic,FormatStringInfo * FSI)5410 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
5411 bool IsVariadic, FormatStringInfo *FSI) {
5412 if (Format->getFirstArg() == 0)
5413 FSI->ArgPassingKind = FAPK_VAList;
5414 else if (IsVariadic)
5415 FSI->ArgPassingKind = FAPK_Variadic;
5416 else
5417 FSI->ArgPassingKind = FAPK_Fixed;
5418 FSI->FormatIdx = Format->getFormatIdx() - 1;
5419 FSI->FirstDataArg =
5420 FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
5421
5422 // The way the format attribute works in GCC, the implicit this argument
5423 // of member functions is counted. However, it doesn't appear in our own
5424 // lists, so decrement format_idx in that case.
5425 if (IsCXXMember) {
5426 if(FSI->FormatIdx == 0)
5427 return false;
5428 --FSI->FormatIdx;
5429 if (FSI->FirstDataArg != 0)
5430 --FSI->FirstDataArg;
5431 }
5432 return true;
5433 }
5434
5435 /// Checks if a the given expression evaluates to null.
5436 ///
5437 /// Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)5438 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
5439 // If the expression has non-null type, it doesn't evaluate to null.
5440 if (auto nullability
5441 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
5442 if (*nullability == NullabilityKind::NonNull)
5443 return false;
5444 }
5445
5446 // As a special case, transparent unions initialized with zero are
5447 // considered null for the purposes of the nonnull attribute.
5448 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
5449 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
5450 if (const CompoundLiteralExpr *CLE =
5451 dyn_cast<CompoundLiteralExpr>(Expr))
5452 if (const InitListExpr *ILE =
5453 dyn_cast<InitListExpr>(CLE->getInitializer()))
5454 Expr = ILE->getInit(0);
5455 }
5456
5457 bool Result;
5458 return (!Expr->isValueDependent() &&
5459 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
5460 !Result);
5461 }
5462
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)5463 static void CheckNonNullArgument(Sema &S,
5464 const Expr *ArgExpr,
5465 SourceLocation CallSiteLoc) {
5466 if (CheckNonNullExpr(S, ArgExpr))
5467 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
5468 S.PDiag(diag::warn_null_arg)
5469 << ArgExpr->getSourceRange());
5470 }
5471
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)5472 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
5473 FormatStringInfo FSI;
5474 if ((GetFormatStringType(Format) == FST_NSString) &&
5475 getFormatStringInfo(Format, false, true, &FSI)) {
5476 Idx = FSI.FormatIdx;
5477 return true;
5478 }
5479 return false;
5480 }
5481
5482 /// Diagnose use of %s directive in an NSString which is being passed
5483 /// as formatting string to formatting method.
5484 static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)5485 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
5486 const NamedDecl *FDecl,
5487 Expr **Args,
5488 unsigned NumArgs) {
5489 unsigned Idx = 0;
5490 bool Format = false;
5491 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
5492 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
5493 Idx = 2;
5494 Format = true;
5495 }
5496 else
5497 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5498 if (S.GetFormatNSStringIdx(I, Idx)) {
5499 Format = true;
5500 break;
5501 }
5502 }
5503 if (!Format || NumArgs <= Idx)
5504 return;
5505 const Expr *FormatExpr = Args[Idx];
5506 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
5507 FormatExpr = CSCE->getSubExpr();
5508 const StringLiteral *FormatString;
5509 if (const ObjCStringLiteral *OSL =
5510 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
5511 FormatString = OSL->getString();
5512 else
5513 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
5514 if (!FormatString)
5515 return;
5516 if (S.FormatStringHasSArg(FormatString)) {
5517 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
5518 << "%s" << 1 << 1;
5519 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
5520 << FDecl->getDeclName();
5521 }
5522 }
5523
5524 /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(ASTContext & ctx,QualType type)5525 static bool isNonNullType(ASTContext &ctx, QualType type) {
5526 if (auto nullability = type->getNullability(ctx))
5527 return *nullability == NullabilityKind::NonNull;
5528
5529 return false;
5530 }
5531
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)5532 static void CheckNonNullArguments(Sema &S,
5533 const NamedDecl *FDecl,
5534 const FunctionProtoType *Proto,
5535 ArrayRef<const Expr *> Args,
5536 SourceLocation CallSiteLoc) {
5537 assert((FDecl || Proto) && "Need a function declaration or prototype");
5538
5539 // Already checked by by constant evaluator.
5540 if (S.isConstantEvaluated())
5541 return;
5542 // Check the attributes attached to the method/function itself.
5543 llvm::SmallBitVector NonNullArgs;
5544 if (FDecl) {
5545 // Handle the nonnull attribute on the function/method declaration itself.
5546 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
5547 if (!NonNull->args_size()) {
5548 // Easy case: all pointer arguments are nonnull.
5549 for (const auto *Arg : Args)
5550 if (S.isValidPointerAttrType(Arg->getType()))
5551 CheckNonNullArgument(S, Arg, CallSiteLoc);
5552 return;
5553 }
5554
5555 for (const ParamIdx &Idx : NonNull->args()) {
5556 unsigned IdxAST = Idx.getASTIndex();
5557 if (IdxAST >= Args.size())
5558 continue;
5559 if (NonNullArgs.empty())
5560 NonNullArgs.resize(Args.size());
5561 NonNullArgs.set(IdxAST);
5562 }
5563 }
5564 }
5565
5566 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
5567 // Handle the nonnull attribute on the parameters of the
5568 // function/method.
5569 ArrayRef<ParmVarDecl*> parms;
5570 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
5571 parms = FD->parameters();
5572 else
5573 parms = cast<ObjCMethodDecl>(FDecl)->parameters();
5574
5575 unsigned ParamIndex = 0;
5576 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
5577 I != E; ++I, ++ParamIndex) {
5578 const ParmVarDecl *PVD = *I;
5579 if (PVD->hasAttr<NonNullAttr>() ||
5580 isNonNullType(S.Context, PVD->getType())) {
5581 if (NonNullArgs.empty())
5582 NonNullArgs.resize(Args.size());
5583
5584 NonNullArgs.set(ParamIndex);
5585 }
5586 }
5587 } else {
5588 // If we have a non-function, non-method declaration but no
5589 // function prototype, try to dig out the function prototype.
5590 if (!Proto) {
5591 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
5592 QualType type = VD->getType().getNonReferenceType();
5593 if (auto pointerType = type->getAs<PointerType>())
5594 type = pointerType->getPointeeType();
5595 else if (auto blockType = type->getAs<BlockPointerType>())
5596 type = blockType->getPointeeType();
5597 // FIXME: data member pointers?
5598
5599 // Dig out the function prototype, if there is one.
5600 Proto = type->getAs<FunctionProtoType>();
5601 }
5602 }
5603
5604 // Fill in non-null argument information from the nullability
5605 // information on the parameter types (if we have them).
5606 if (Proto) {
5607 unsigned Index = 0;
5608 for (auto paramType : Proto->getParamTypes()) {
5609 if (isNonNullType(S.Context, paramType)) {
5610 if (NonNullArgs.empty())
5611 NonNullArgs.resize(Args.size());
5612
5613 NonNullArgs.set(Index);
5614 }
5615
5616 ++Index;
5617 }
5618 }
5619 }
5620
5621 // Check for non-null arguments.
5622 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
5623 ArgIndex != ArgIndexEnd; ++ArgIndex) {
5624 if (NonNullArgs[ArgIndex])
5625 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
5626 }
5627 }
5628
5629 // 16 byte ByVal alignment not due to a vector member is not honoured by XL
5630 // on AIX. Emit a warning here that users are generating binary incompatible
5631 // code to be safe.
5632 // Here we try to get information about the alignment of the struct member
5633 // from the struct passed to the caller function. We only warn when the struct
5634 // is passed byval, hence the series of checks and early returns if we are a not
5635 // passing a struct byval.
checkAIXMemberAlignment(SourceLocation Loc,const Expr * Arg)5636 void Sema::checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg) {
5637 const auto *ICE = dyn_cast<ImplicitCastExpr>(Arg->IgnoreParens());
5638 if (!ICE)
5639 return;
5640
5641 const auto *DR = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
5642 if (!DR)
5643 return;
5644
5645 const auto *PD = dyn_cast<ParmVarDecl>(DR->getDecl());
5646 if (!PD || !PD->getType()->isRecordType())
5647 return;
5648
5649 QualType ArgType = Arg->getType();
5650 for (const FieldDecl *FD :
5651 ArgType->castAs<RecordType>()->getDecl()->fields()) {
5652 if (const auto *AA = FD->getAttr<AlignedAttr>()) {
5653 CharUnits Alignment =
5654 Context.toCharUnitsFromBits(AA->getAlignment(Context));
5655 if (Alignment.getQuantity() == 16) {
5656 Diag(FD->getLocation(), diag::warn_not_xl_compatible) << FD;
5657 Diag(Loc, diag::note_misaligned_member_used_here) << PD;
5658 }
5659 }
5660 }
5661 }
5662
5663 /// Warn if a pointer or reference argument passed to a function points to an
5664 /// object that is less aligned than the parameter. This can happen when
5665 /// creating a typedef with a lower alignment than the original type and then
5666 /// calling functions defined in terms of the original type.
CheckArgAlignment(SourceLocation Loc,NamedDecl * FDecl,StringRef ParamName,QualType ArgTy,QualType ParamTy)5667 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
5668 StringRef ParamName, QualType ArgTy,
5669 QualType ParamTy) {
5670
5671 // If a function accepts a pointer or reference type
5672 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5673 return;
5674
5675 // If the parameter is a pointer type, get the pointee type for the
5676 // argument too. If the parameter is a reference type, don't try to get
5677 // the pointee type for the argument.
5678 if (ParamTy->isPointerType())
5679 ArgTy = ArgTy->getPointeeType();
5680
5681 // Remove reference or pointer
5682 ParamTy = ParamTy->getPointeeType();
5683
5684 // Find expected alignment, and the actual alignment of the passed object.
5685 // getTypeAlignInChars requires complete types
5686 if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5687 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5688 ArgTy->isUndeducedType())
5689 return;
5690
5691 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5692 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5693
5694 // If the argument is less aligned than the parameter, there is a
5695 // potential alignment issue.
5696 if (ArgAlign < ParamAlign)
5697 Diag(Loc, diag::warn_param_mismatched_alignment)
5698 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5699 << ParamName << (FDecl != nullptr) << FDecl;
5700 }
5701
5702 /// Handles the checks for format strings, non-POD arguments to vararg
5703 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5704 /// attributes.
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,const Expr * ThisArg,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)5705 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5706 const Expr *ThisArg, ArrayRef<const Expr *> Args,
5707 bool IsMemberFunction, SourceLocation Loc,
5708 SourceRange Range, VariadicCallType CallType) {
5709 // FIXME: We should check as much as we can in the template definition.
5710 if (CurContext->isDependentContext())
5711 return;
5712
5713 // Printf and scanf checking.
5714 llvm::SmallBitVector CheckedVarArgs;
5715 if (FDecl) {
5716 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5717 // Only create vector if there are format attributes.
5718 CheckedVarArgs.resize(Args.size());
5719
5720 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5721 CheckedVarArgs);
5722 }
5723 }
5724
5725 // Refuse POD arguments that weren't caught by the format string
5726 // checks above.
5727 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5728 if (CallType != VariadicDoesNotApply &&
5729 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5730 unsigned NumParams = Proto ? Proto->getNumParams()
5731 : FDecl && isa<FunctionDecl>(FDecl)
5732 ? cast<FunctionDecl>(FDecl)->getNumParams()
5733 : FDecl && isa<ObjCMethodDecl>(FDecl)
5734 ? cast<ObjCMethodDecl>(FDecl)->param_size()
5735 : 0;
5736
5737 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5738 // Args[ArgIdx] can be null in malformed code.
5739 if (const Expr *Arg = Args[ArgIdx]) {
5740 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5741 checkVariadicArgument(Arg, CallType);
5742 }
5743 }
5744 }
5745
5746 if (FDecl || Proto) {
5747 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5748
5749 // Type safety checking.
5750 if (FDecl) {
5751 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5752 CheckArgumentWithTypeTag(I, Args, Loc);
5753 }
5754 }
5755
5756 // Check that passed arguments match the alignment of original arguments.
5757 // Try to get the missing prototype from the declaration.
5758 if (!Proto && FDecl) {
5759 const auto *FT = FDecl->getFunctionType();
5760 if (isa_and_nonnull<FunctionProtoType>(FT))
5761 Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5762 }
5763 if (Proto) {
5764 // For variadic functions, we may have more args than parameters.
5765 // For some K&R functions, we may have less args than parameters.
5766 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5767 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5768 // Args[ArgIdx] can be null in malformed code.
5769 if (const Expr *Arg = Args[ArgIdx]) {
5770 if (Arg->containsErrors())
5771 continue;
5772
5773 if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
5774 FDecl->hasLinkage() &&
5775 FDecl->getFormalLinkage() != InternalLinkage &&
5776 CallType == VariadicDoesNotApply)
5777 checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
5778
5779 QualType ParamTy = Proto->getParamType(ArgIdx);
5780 QualType ArgTy = Arg->getType();
5781 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5782 ArgTy, ParamTy);
5783 }
5784 }
5785 }
5786
5787 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5788 auto *AA = FDecl->getAttr<AllocAlignAttr>();
5789 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5790 if (!Arg->isValueDependent()) {
5791 Expr::EvalResult Align;
5792 if (Arg->EvaluateAsInt(Align, Context)) {
5793 const llvm::APSInt &I = Align.Val.getInt();
5794 if (!I.isPowerOf2())
5795 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5796 << Arg->getSourceRange();
5797
5798 if (I > Sema::MaximumAlignment)
5799 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5800 << Arg->getSourceRange() << Sema::MaximumAlignment;
5801 }
5802 }
5803 }
5804
5805 if (FD)
5806 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5807 }
5808
5809 /// CheckConstructorCall - Check a constructor call for correctness and safety
5810 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,QualType ThisType,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)5811 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5812 ArrayRef<const Expr *> Args,
5813 const FunctionProtoType *Proto,
5814 SourceLocation Loc) {
5815 VariadicCallType CallType =
5816 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5817
5818 auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5819 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5820 Context.getPointerType(Ctor->getThisObjectType()));
5821
5822 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5823 Loc, SourceRange(), CallType);
5824 }
5825
5826 /// CheckFunctionCall - Check a direct function call for various correctness
5827 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)5828 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5829 const FunctionProtoType *Proto) {
5830 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5831 isa<CXXMethodDecl>(FDecl);
5832 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5833 IsMemberOperatorCall;
5834 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5835 TheCall->getCallee());
5836 Expr** Args = TheCall->getArgs();
5837 unsigned NumArgs = TheCall->getNumArgs();
5838
5839 Expr *ImplicitThis = nullptr;
5840 if (IsMemberOperatorCall) {
5841 // If this is a call to a member operator, hide the first argument
5842 // from checkCall.
5843 // FIXME: Our choice of AST representation here is less than ideal.
5844 ImplicitThis = Args[0];
5845 ++Args;
5846 --NumArgs;
5847 } else if (IsMemberFunction)
5848 ImplicitThis =
5849 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5850
5851 if (ImplicitThis) {
5852 // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5853 // used.
5854 QualType ThisType = ImplicitThis->getType();
5855 if (!ThisType->isPointerType()) {
5856 assert(!ThisType->isReferenceType());
5857 ThisType = Context.getPointerType(ThisType);
5858 }
5859
5860 QualType ThisTypeFromDecl =
5861 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5862
5863 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5864 ThisTypeFromDecl);
5865 }
5866
5867 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5868 IsMemberFunction, TheCall->getRParenLoc(),
5869 TheCall->getCallee()->getSourceRange(), CallType);
5870
5871 IdentifierInfo *FnInfo = FDecl->getIdentifier();
5872 // None of the checks below are needed for functions that don't have
5873 // simple names (e.g., C++ conversion functions).
5874 if (!FnInfo)
5875 return false;
5876
5877 // Enforce TCB except for builtin calls, which are always allowed.
5878 if (FDecl->getBuiltinID() == 0)
5879 CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
5880
5881 CheckAbsoluteValueFunction(TheCall, FDecl);
5882 CheckMaxUnsignedZero(TheCall, FDecl);
5883
5884 if (getLangOpts().ObjC)
5885 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5886
5887 unsigned CMId = FDecl->getMemoryFunctionKind();
5888
5889 // Handle memory setting and copying functions.
5890 switch (CMId) {
5891 case 0:
5892 return false;
5893 case Builtin::BIstrlcpy: // fallthrough
5894 case Builtin::BIstrlcat:
5895 CheckStrlcpycatArguments(TheCall, FnInfo);
5896 break;
5897 case Builtin::BIstrncat:
5898 CheckStrncatArguments(TheCall, FnInfo);
5899 break;
5900 case Builtin::BIfree:
5901 CheckFreeArguments(TheCall);
5902 break;
5903 default:
5904 CheckMemaccessArguments(TheCall, CMId, FnInfo);
5905 }
5906
5907 return false;
5908 }
5909
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)5910 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5911 ArrayRef<const Expr *> Args) {
5912 VariadicCallType CallType =
5913 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5914
5915 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5916 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5917 CallType);
5918
5919 CheckTCBEnforcement(lbrac, Method);
5920
5921 return false;
5922 }
5923
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)5924 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5925 const FunctionProtoType *Proto) {
5926 QualType Ty;
5927 if (const auto *V = dyn_cast<VarDecl>(NDecl))
5928 Ty = V->getType().getNonReferenceType();
5929 else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5930 Ty = F->getType().getNonReferenceType();
5931 else
5932 return false;
5933
5934 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5935 !Ty->isFunctionProtoType())
5936 return false;
5937
5938 VariadicCallType CallType;
5939 if (!Proto || !Proto->isVariadic()) {
5940 CallType = VariadicDoesNotApply;
5941 } else if (Ty->isBlockPointerType()) {
5942 CallType = VariadicBlock;
5943 } else { // Ty->isFunctionPointerType()
5944 CallType = VariadicFunction;
5945 }
5946
5947 checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5948 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5949 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5950 TheCall->getCallee()->getSourceRange(), CallType);
5951
5952 return false;
5953 }
5954
5955 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5956 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)5957 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5958 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5959 TheCall->getCallee());
5960 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5961 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5962 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5963 TheCall->getCallee()->getSourceRange(), CallType);
5964
5965 return false;
5966 }
5967
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)5968 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5969 if (!llvm::isValidAtomicOrderingCABI(Ordering))
5970 return false;
5971
5972 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5973 switch (Op) {
5974 case AtomicExpr::AO__c11_atomic_init:
5975 case AtomicExpr::AO__opencl_atomic_init:
5976 llvm_unreachable("There is no ordering argument for an init");
5977
5978 case AtomicExpr::AO__c11_atomic_load:
5979 case AtomicExpr::AO__opencl_atomic_load:
5980 case AtomicExpr::AO__hip_atomic_load:
5981 case AtomicExpr::AO__atomic_load_n:
5982 case AtomicExpr::AO__atomic_load:
5983 return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5984 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5985
5986 case AtomicExpr::AO__c11_atomic_store:
5987 case AtomicExpr::AO__opencl_atomic_store:
5988 case AtomicExpr::AO__hip_atomic_store:
5989 case AtomicExpr::AO__atomic_store:
5990 case AtomicExpr::AO__atomic_store_n:
5991 return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5992 OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5993 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5994
5995 default:
5996 return true;
5997 }
5998 }
5999
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)6000 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
6001 AtomicExpr::AtomicOp Op) {
6002 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
6003 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6004 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
6005 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
6006 DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
6007 Op);
6008 }
6009
BuildAtomicExpr(SourceRange CallRange,SourceRange ExprRange,SourceLocation RParenLoc,MultiExprArg Args,AtomicExpr::AtomicOp Op,AtomicArgumentOrder ArgOrder)6010 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
6011 SourceLocation RParenLoc, MultiExprArg Args,
6012 AtomicExpr::AtomicOp Op,
6013 AtomicArgumentOrder ArgOrder) {
6014 // All the non-OpenCL operations take one of the following forms.
6015 // The OpenCL operations take the __c11 forms with one extra argument for
6016 // synchronization scope.
6017 enum {
6018 // C __c11_atomic_init(A *, C)
6019 Init,
6020
6021 // C __c11_atomic_load(A *, int)
6022 Load,
6023
6024 // void __atomic_load(A *, CP, int)
6025 LoadCopy,
6026
6027 // void __atomic_store(A *, CP, int)
6028 Copy,
6029
6030 // C __c11_atomic_add(A *, M, int)
6031 Arithmetic,
6032
6033 // C __atomic_exchange_n(A *, CP, int)
6034 Xchg,
6035
6036 // void __atomic_exchange(A *, C *, CP, int)
6037 GNUXchg,
6038
6039 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
6040 C11CmpXchg,
6041
6042 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
6043 GNUCmpXchg
6044 } Form = Init;
6045
6046 const unsigned NumForm = GNUCmpXchg + 1;
6047 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
6048 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
6049 // where:
6050 // C is an appropriate type,
6051 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
6052 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
6053 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
6054 // the int parameters are for orderings.
6055
6056 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
6057 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
6058 "need to update code for modified forms");
6059 static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
6060 AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
6061 AtomicExpr::AO__atomic_load,
6062 "need to update code for modified C11 atomics");
6063 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
6064 Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
6065 bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
6066 Op <= AtomicExpr::AO__hip_atomic_fetch_max;
6067 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
6068 Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
6069 IsOpenCL;
6070 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
6071 Op == AtomicExpr::AO__atomic_store_n ||
6072 Op == AtomicExpr::AO__atomic_exchange_n ||
6073 Op == AtomicExpr::AO__atomic_compare_exchange_n;
6074 bool IsAddSub = false;
6075
6076 switch (Op) {
6077 case AtomicExpr::AO__c11_atomic_init:
6078 case AtomicExpr::AO__opencl_atomic_init:
6079 Form = Init;
6080 break;
6081
6082 case AtomicExpr::AO__c11_atomic_load:
6083 case AtomicExpr::AO__opencl_atomic_load:
6084 case AtomicExpr::AO__hip_atomic_load:
6085 case AtomicExpr::AO__atomic_load_n:
6086 Form = Load;
6087 break;
6088
6089 case AtomicExpr::AO__atomic_load:
6090 Form = LoadCopy;
6091 break;
6092
6093 case AtomicExpr::AO__c11_atomic_store:
6094 case AtomicExpr::AO__opencl_atomic_store:
6095 case AtomicExpr::AO__hip_atomic_store:
6096 case AtomicExpr::AO__atomic_store:
6097 case AtomicExpr::AO__atomic_store_n:
6098 Form = Copy;
6099 break;
6100 case AtomicExpr::AO__hip_atomic_fetch_add:
6101 case AtomicExpr::AO__hip_atomic_fetch_min:
6102 case AtomicExpr::AO__hip_atomic_fetch_max:
6103 case AtomicExpr::AO__c11_atomic_fetch_add:
6104 case AtomicExpr::AO__c11_atomic_fetch_sub:
6105 case AtomicExpr::AO__opencl_atomic_fetch_add:
6106 case AtomicExpr::AO__opencl_atomic_fetch_sub:
6107 case AtomicExpr::AO__atomic_fetch_add:
6108 case AtomicExpr::AO__atomic_fetch_sub:
6109 case AtomicExpr::AO__atomic_add_fetch:
6110 case AtomicExpr::AO__atomic_sub_fetch:
6111 IsAddSub = true;
6112 Form = Arithmetic;
6113 break;
6114 case AtomicExpr::AO__c11_atomic_fetch_and:
6115 case AtomicExpr::AO__c11_atomic_fetch_or:
6116 case AtomicExpr::AO__c11_atomic_fetch_xor:
6117 case AtomicExpr::AO__hip_atomic_fetch_and:
6118 case AtomicExpr::AO__hip_atomic_fetch_or:
6119 case AtomicExpr::AO__hip_atomic_fetch_xor:
6120 case AtomicExpr::AO__c11_atomic_fetch_nand:
6121 case AtomicExpr::AO__opencl_atomic_fetch_and:
6122 case AtomicExpr::AO__opencl_atomic_fetch_or:
6123 case AtomicExpr::AO__opencl_atomic_fetch_xor:
6124 case AtomicExpr::AO__atomic_fetch_and:
6125 case AtomicExpr::AO__atomic_fetch_or:
6126 case AtomicExpr::AO__atomic_fetch_xor:
6127 case AtomicExpr::AO__atomic_fetch_nand:
6128 case AtomicExpr::AO__atomic_and_fetch:
6129 case AtomicExpr::AO__atomic_or_fetch:
6130 case AtomicExpr::AO__atomic_xor_fetch:
6131 case AtomicExpr::AO__atomic_nand_fetch:
6132 Form = Arithmetic;
6133 break;
6134 case AtomicExpr::AO__c11_atomic_fetch_min:
6135 case AtomicExpr::AO__c11_atomic_fetch_max:
6136 case AtomicExpr::AO__opencl_atomic_fetch_min:
6137 case AtomicExpr::AO__opencl_atomic_fetch_max:
6138 case AtomicExpr::AO__atomic_min_fetch:
6139 case AtomicExpr::AO__atomic_max_fetch:
6140 case AtomicExpr::AO__atomic_fetch_min:
6141 case AtomicExpr::AO__atomic_fetch_max:
6142 Form = Arithmetic;
6143 break;
6144
6145 case AtomicExpr::AO__c11_atomic_exchange:
6146 case AtomicExpr::AO__hip_atomic_exchange:
6147 case AtomicExpr::AO__opencl_atomic_exchange:
6148 case AtomicExpr::AO__atomic_exchange_n:
6149 Form = Xchg;
6150 break;
6151
6152 case AtomicExpr::AO__atomic_exchange:
6153 Form = GNUXchg;
6154 break;
6155
6156 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
6157 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
6158 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
6159 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
6160 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
6161 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
6162 Form = C11CmpXchg;
6163 break;
6164
6165 case AtomicExpr::AO__atomic_compare_exchange:
6166 case AtomicExpr::AO__atomic_compare_exchange_n:
6167 Form = GNUCmpXchg;
6168 break;
6169 }
6170
6171 unsigned AdjustedNumArgs = NumArgs[Form];
6172 if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init)
6173 ++AdjustedNumArgs;
6174 // Check we have the right number of arguments.
6175 if (Args.size() < AdjustedNumArgs) {
6176 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
6177 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
6178 << ExprRange;
6179 return ExprError();
6180 } else if (Args.size() > AdjustedNumArgs) {
6181 Diag(Args[AdjustedNumArgs]->getBeginLoc(),
6182 diag::err_typecheck_call_too_many_args)
6183 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
6184 << ExprRange;
6185 return ExprError();
6186 }
6187
6188 // Inspect the first argument of the atomic operation.
6189 Expr *Ptr = Args[0];
6190 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
6191 if (ConvertedPtr.isInvalid())
6192 return ExprError();
6193
6194 Ptr = ConvertedPtr.get();
6195 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
6196 if (!pointerType) {
6197 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
6198 << Ptr->getType() << Ptr->getSourceRange();
6199 return ExprError();
6200 }
6201
6202 // For a __c11 builtin, this should be a pointer to an _Atomic type.
6203 QualType AtomTy = pointerType->getPointeeType(); // 'A'
6204 QualType ValType = AtomTy; // 'C'
6205 if (IsC11) {
6206 if (!AtomTy->isAtomicType()) {
6207 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
6208 << Ptr->getType() << Ptr->getSourceRange();
6209 return ExprError();
6210 }
6211 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
6212 AtomTy.getAddressSpace() == LangAS::opencl_constant) {
6213 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
6214 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
6215 << Ptr->getSourceRange();
6216 return ExprError();
6217 }
6218 ValType = AtomTy->castAs<AtomicType>()->getValueType();
6219 } else if (Form != Load && Form != LoadCopy) {
6220 if (ValType.isConstQualified()) {
6221 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
6222 << Ptr->getType() << Ptr->getSourceRange();
6223 return ExprError();
6224 }
6225 }
6226
6227 // For an arithmetic operation, the implied arithmetic must be well-formed.
6228 if (Form == Arithmetic) {
6229 // GCC does not enforce these rules for GNU atomics, but we do to help catch
6230 // trivial type errors.
6231 auto IsAllowedValueType = [&](QualType ValType) {
6232 if (ValType->isIntegerType())
6233 return true;
6234 if (ValType->isPointerType())
6235 return true;
6236 if (!ValType->isFloatingType())
6237 return false;
6238 // LLVM Parser does not allow atomicrmw with x86_fp80 type.
6239 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
6240 &Context.getTargetInfo().getLongDoubleFormat() ==
6241 &llvm::APFloat::x87DoubleExtended())
6242 return false;
6243 return true;
6244 };
6245 if (IsAddSub && !IsAllowedValueType(ValType)) {
6246 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
6247 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6248 return ExprError();
6249 }
6250 if (!IsAddSub && !ValType->isIntegerType()) {
6251 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
6252 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6253 return ExprError();
6254 }
6255 if (IsC11 && ValType->isPointerType() &&
6256 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
6257 diag::err_incomplete_type)) {
6258 return ExprError();
6259 }
6260 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
6261 // For __atomic_*_n operations, the value type must be a scalar integral or
6262 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
6263 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
6264 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6265 return ExprError();
6266 }
6267
6268 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
6269 !AtomTy->isScalarType()) {
6270 // For GNU atomics, require a trivially-copyable type. This is not part of
6271 // the GNU atomics specification but we enforce it for consistency with
6272 // other atomics which generally all require a trivially-copyable type. This
6273 // is because atomics just copy bits.
6274 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
6275 << Ptr->getType() << Ptr->getSourceRange();
6276 return ExprError();
6277 }
6278
6279 switch (ValType.getObjCLifetime()) {
6280 case Qualifiers::OCL_None:
6281 case Qualifiers::OCL_ExplicitNone:
6282 // okay
6283 break;
6284
6285 case Qualifiers::OCL_Weak:
6286 case Qualifiers::OCL_Strong:
6287 case Qualifiers::OCL_Autoreleasing:
6288 // FIXME: Can this happen? By this point, ValType should be known
6289 // to be trivially copyable.
6290 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
6291 << ValType << Ptr->getSourceRange();
6292 return ExprError();
6293 }
6294
6295 // All atomic operations have an overload which takes a pointer to a volatile
6296 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
6297 // into the result or the other operands. Similarly atomic_load takes a
6298 // pointer to a const 'A'.
6299 ValType.removeLocalVolatile();
6300 ValType.removeLocalConst();
6301 QualType ResultType = ValType;
6302 if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
6303 Form == Init)
6304 ResultType = Context.VoidTy;
6305 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
6306 ResultType = Context.BoolTy;
6307
6308 // The type of a parameter passed 'by value'. In the GNU atomics, such
6309 // arguments are actually passed as pointers.
6310 QualType ByValType = ValType; // 'CP'
6311 bool IsPassedByAddress = false;
6312 if (!IsC11 && !IsHIP && !IsN) {
6313 ByValType = Ptr->getType();
6314 IsPassedByAddress = true;
6315 }
6316
6317 SmallVector<Expr *, 5> APIOrderedArgs;
6318 if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
6319 APIOrderedArgs.push_back(Args[0]);
6320 switch (Form) {
6321 case Init:
6322 case Load:
6323 APIOrderedArgs.push_back(Args[1]); // Val1/Order
6324 break;
6325 case LoadCopy:
6326 case Copy:
6327 case Arithmetic:
6328 case Xchg:
6329 APIOrderedArgs.push_back(Args[2]); // Val1
6330 APIOrderedArgs.push_back(Args[1]); // Order
6331 break;
6332 case GNUXchg:
6333 APIOrderedArgs.push_back(Args[2]); // Val1
6334 APIOrderedArgs.push_back(Args[3]); // Val2
6335 APIOrderedArgs.push_back(Args[1]); // Order
6336 break;
6337 case C11CmpXchg:
6338 APIOrderedArgs.push_back(Args[2]); // Val1
6339 APIOrderedArgs.push_back(Args[4]); // Val2
6340 APIOrderedArgs.push_back(Args[1]); // Order
6341 APIOrderedArgs.push_back(Args[3]); // OrderFail
6342 break;
6343 case GNUCmpXchg:
6344 APIOrderedArgs.push_back(Args[2]); // Val1
6345 APIOrderedArgs.push_back(Args[4]); // Val2
6346 APIOrderedArgs.push_back(Args[5]); // Weak
6347 APIOrderedArgs.push_back(Args[1]); // Order
6348 APIOrderedArgs.push_back(Args[3]); // OrderFail
6349 break;
6350 }
6351 } else
6352 APIOrderedArgs.append(Args.begin(), Args.end());
6353
6354 // The first argument's non-CV pointer type is used to deduce the type of
6355 // subsequent arguments, except for:
6356 // - weak flag (always converted to bool)
6357 // - memory order (always converted to int)
6358 // - scope (always converted to int)
6359 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
6360 QualType Ty;
6361 if (i < NumVals[Form] + 1) {
6362 switch (i) {
6363 case 0:
6364 // The first argument is always a pointer. It has a fixed type.
6365 // It is always dereferenced, a nullptr is undefined.
6366 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
6367 // Nothing else to do: we already know all we want about this pointer.
6368 continue;
6369 case 1:
6370 // The second argument is the non-atomic operand. For arithmetic, this
6371 // is always passed by value, and for a compare_exchange it is always
6372 // passed by address. For the rest, GNU uses by-address and C11 uses
6373 // by-value.
6374 assert(Form != Load);
6375 if (Form == Arithmetic && ValType->isPointerType())
6376 Ty = Context.getPointerDiffType();
6377 else if (Form == Init || Form == Arithmetic)
6378 Ty = ValType;
6379 else if (Form == Copy || Form == Xchg) {
6380 if (IsPassedByAddress) {
6381 // The value pointer is always dereferenced, a nullptr is undefined.
6382 CheckNonNullArgument(*this, APIOrderedArgs[i],
6383 ExprRange.getBegin());
6384 }
6385 Ty = ByValType;
6386 } else {
6387 Expr *ValArg = APIOrderedArgs[i];
6388 // The value pointer is always dereferenced, a nullptr is undefined.
6389 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
6390 LangAS AS = LangAS::Default;
6391 // Keep address space of non-atomic pointer type.
6392 if (const PointerType *PtrTy =
6393 ValArg->getType()->getAs<PointerType>()) {
6394 AS = PtrTy->getPointeeType().getAddressSpace();
6395 }
6396 Ty = Context.getPointerType(
6397 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
6398 }
6399 break;
6400 case 2:
6401 // The third argument to compare_exchange / GNU exchange is the desired
6402 // value, either by-value (for the C11 and *_n variant) or as a pointer.
6403 if (IsPassedByAddress)
6404 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
6405 Ty = ByValType;
6406 break;
6407 case 3:
6408 // The fourth argument to GNU compare_exchange is a 'weak' flag.
6409 Ty = Context.BoolTy;
6410 break;
6411 }
6412 } else {
6413 // The order(s) and scope are always converted to int.
6414 Ty = Context.IntTy;
6415 }
6416
6417 InitializedEntity Entity =
6418 InitializedEntity::InitializeParameter(Context, Ty, false);
6419 ExprResult Arg = APIOrderedArgs[i];
6420 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6421 if (Arg.isInvalid())
6422 return true;
6423 APIOrderedArgs[i] = Arg.get();
6424 }
6425
6426 // Permute the arguments into a 'consistent' order.
6427 SmallVector<Expr*, 5> SubExprs;
6428 SubExprs.push_back(Ptr);
6429 switch (Form) {
6430 case Init:
6431 // Note, AtomicExpr::getVal1() has a special case for this atomic.
6432 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6433 break;
6434 case Load:
6435 SubExprs.push_back(APIOrderedArgs[1]); // Order
6436 break;
6437 case LoadCopy:
6438 case Copy:
6439 case Arithmetic:
6440 case Xchg:
6441 SubExprs.push_back(APIOrderedArgs[2]); // Order
6442 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6443 break;
6444 case GNUXchg:
6445 // Note, AtomicExpr::getVal2() has a special case for this atomic.
6446 SubExprs.push_back(APIOrderedArgs[3]); // Order
6447 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6448 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6449 break;
6450 case C11CmpXchg:
6451 SubExprs.push_back(APIOrderedArgs[3]); // Order
6452 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6453 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
6454 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6455 break;
6456 case GNUCmpXchg:
6457 SubExprs.push_back(APIOrderedArgs[4]); // Order
6458 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6459 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
6460 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6461 SubExprs.push_back(APIOrderedArgs[3]); // Weak
6462 break;
6463 }
6464
6465 if (SubExprs.size() >= 2 && Form != Init) {
6466 if (Optional<llvm::APSInt> Result =
6467 SubExprs[1]->getIntegerConstantExpr(Context))
6468 if (!isValidOrderingForOp(Result->getSExtValue(), Op))
6469 Diag(SubExprs[1]->getBeginLoc(),
6470 diag::warn_atomic_op_has_invalid_memory_order)
6471 << SubExprs[1]->getSourceRange();
6472 }
6473
6474 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
6475 auto *Scope = Args[Args.size() - 1];
6476 if (Optional<llvm::APSInt> Result =
6477 Scope->getIntegerConstantExpr(Context)) {
6478 if (!ScopeModel->isValid(Result->getZExtValue()))
6479 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
6480 << Scope->getSourceRange();
6481 }
6482 SubExprs.push_back(Scope);
6483 }
6484
6485 AtomicExpr *AE = new (Context)
6486 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
6487
6488 if ((Op == AtomicExpr::AO__c11_atomic_load ||
6489 Op == AtomicExpr::AO__c11_atomic_store ||
6490 Op == AtomicExpr::AO__opencl_atomic_load ||
6491 Op == AtomicExpr::AO__hip_atomic_load ||
6492 Op == AtomicExpr::AO__opencl_atomic_store ||
6493 Op == AtomicExpr::AO__hip_atomic_store) &&
6494 Context.AtomicUsesUnsupportedLibcall(AE))
6495 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
6496 << ((Op == AtomicExpr::AO__c11_atomic_load ||
6497 Op == AtomicExpr::AO__opencl_atomic_load ||
6498 Op == AtomicExpr::AO__hip_atomic_load)
6499 ? 0
6500 : 1);
6501
6502 if (ValType->isBitIntType()) {
6503 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
6504 return ExprError();
6505 }
6506
6507 return AE;
6508 }
6509
6510 /// checkBuiltinArgument - Given a call to a builtin function, perform
6511 /// normal type-checking on the given argument, updating the call in
6512 /// place. This is useful when a builtin function requires custom
6513 /// type-checking for some of its arguments but not necessarily all of
6514 /// them.
6515 ///
6516 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)6517 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
6518 FunctionDecl *Fn = E->getDirectCallee();
6519 assert(Fn && "builtin call without direct callee!");
6520
6521 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
6522 InitializedEntity Entity =
6523 InitializedEntity::InitializeParameter(S.Context, Param);
6524
6525 ExprResult Arg = E->getArg(ArgIndex);
6526 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
6527 if (Arg.isInvalid())
6528 return true;
6529
6530 E->setArg(ArgIndex, Arg.get());
6531 return false;
6532 }
6533
6534 /// We have a call to a function like __sync_fetch_and_add, which is an
6535 /// overloaded function based on the pointer type of its first argument.
6536 /// The main BuildCallExpr routines have already promoted the types of
6537 /// arguments because all of these calls are prototyped as void(...).
6538 ///
6539 /// This function goes through and does final semantic checking for these
6540 /// builtins, as well as generating any warnings.
6541 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)6542 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
6543 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
6544 Expr *Callee = TheCall->getCallee();
6545 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
6546 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6547
6548 // Ensure that we have at least one argument to do type inference from.
6549 if (TheCall->getNumArgs() < 1) {
6550 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6551 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
6552 return ExprError();
6553 }
6554
6555 // Inspect the first argument of the atomic builtin. This should always be
6556 // a pointer type, whose element is an integral scalar or pointer type.
6557 // Because it is a pointer type, we don't have to worry about any implicit
6558 // casts here.
6559 // FIXME: We don't allow floating point scalars as input.
6560 Expr *FirstArg = TheCall->getArg(0);
6561 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
6562 if (FirstArgResult.isInvalid())
6563 return ExprError();
6564 FirstArg = FirstArgResult.get();
6565 TheCall->setArg(0, FirstArg);
6566
6567 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
6568 if (!pointerType) {
6569 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
6570 << FirstArg->getType() << FirstArg->getSourceRange();
6571 return ExprError();
6572 }
6573
6574 QualType ValType = pointerType->getPointeeType();
6575 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6576 !ValType->isBlockPointerType()) {
6577 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
6578 << FirstArg->getType() << FirstArg->getSourceRange();
6579 return ExprError();
6580 }
6581
6582 if (ValType.isConstQualified()) {
6583 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
6584 << FirstArg->getType() << FirstArg->getSourceRange();
6585 return ExprError();
6586 }
6587
6588 switch (ValType.getObjCLifetime()) {
6589 case Qualifiers::OCL_None:
6590 case Qualifiers::OCL_ExplicitNone:
6591 // okay
6592 break;
6593
6594 case Qualifiers::OCL_Weak:
6595 case Qualifiers::OCL_Strong:
6596 case Qualifiers::OCL_Autoreleasing:
6597 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
6598 << ValType << FirstArg->getSourceRange();
6599 return ExprError();
6600 }
6601
6602 // Strip any qualifiers off ValType.
6603 ValType = ValType.getUnqualifiedType();
6604
6605 // The majority of builtins return a value, but a few have special return
6606 // types, so allow them to override appropriately below.
6607 QualType ResultType = ValType;
6608
6609 // We need to figure out which concrete builtin this maps onto. For example,
6610 // __sync_fetch_and_add with a 2 byte object turns into
6611 // __sync_fetch_and_add_2.
6612 #define BUILTIN_ROW(x) \
6613 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
6614 Builtin::BI##x##_8, Builtin::BI##x##_16 }
6615
6616 static const unsigned BuiltinIndices[][5] = {
6617 BUILTIN_ROW(__sync_fetch_and_add),
6618 BUILTIN_ROW(__sync_fetch_and_sub),
6619 BUILTIN_ROW(__sync_fetch_and_or),
6620 BUILTIN_ROW(__sync_fetch_and_and),
6621 BUILTIN_ROW(__sync_fetch_and_xor),
6622 BUILTIN_ROW(__sync_fetch_and_nand),
6623
6624 BUILTIN_ROW(__sync_add_and_fetch),
6625 BUILTIN_ROW(__sync_sub_and_fetch),
6626 BUILTIN_ROW(__sync_and_and_fetch),
6627 BUILTIN_ROW(__sync_or_and_fetch),
6628 BUILTIN_ROW(__sync_xor_and_fetch),
6629 BUILTIN_ROW(__sync_nand_and_fetch),
6630
6631 BUILTIN_ROW(__sync_val_compare_and_swap),
6632 BUILTIN_ROW(__sync_bool_compare_and_swap),
6633 BUILTIN_ROW(__sync_lock_test_and_set),
6634 BUILTIN_ROW(__sync_lock_release),
6635 BUILTIN_ROW(__sync_swap)
6636 };
6637 #undef BUILTIN_ROW
6638
6639 // Determine the index of the size.
6640 unsigned SizeIndex;
6641 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
6642 case 1: SizeIndex = 0; break;
6643 case 2: SizeIndex = 1; break;
6644 case 4: SizeIndex = 2; break;
6645 case 8: SizeIndex = 3; break;
6646 case 16: SizeIndex = 4; break;
6647 default:
6648 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
6649 << FirstArg->getType() << FirstArg->getSourceRange();
6650 return ExprError();
6651 }
6652
6653 // Each of these builtins has one pointer argument, followed by some number of
6654 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
6655 // that we ignore. Find out which row of BuiltinIndices to read from as well
6656 // as the number of fixed args.
6657 unsigned BuiltinID = FDecl->getBuiltinID();
6658 unsigned BuiltinIndex, NumFixed = 1;
6659 bool WarnAboutSemanticsChange = false;
6660 switch (BuiltinID) {
6661 default: llvm_unreachable("Unknown overloaded atomic builtin!");
6662 case Builtin::BI__sync_fetch_and_add:
6663 case Builtin::BI__sync_fetch_and_add_1:
6664 case Builtin::BI__sync_fetch_and_add_2:
6665 case Builtin::BI__sync_fetch_and_add_4:
6666 case Builtin::BI__sync_fetch_and_add_8:
6667 case Builtin::BI__sync_fetch_and_add_16:
6668 BuiltinIndex = 0;
6669 break;
6670
6671 case Builtin::BI__sync_fetch_and_sub:
6672 case Builtin::BI__sync_fetch_and_sub_1:
6673 case Builtin::BI__sync_fetch_and_sub_2:
6674 case Builtin::BI__sync_fetch_and_sub_4:
6675 case Builtin::BI__sync_fetch_and_sub_8:
6676 case Builtin::BI__sync_fetch_and_sub_16:
6677 BuiltinIndex = 1;
6678 break;
6679
6680 case Builtin::BI__sync_fetch_and_or:
6681 case Builtin::BI__sync_fetch_and_or_1:
6682 case Builtin::BI__sync_fetch_and_or_2:
6683 case Builtin::BI__sync_fetch_and_or_4:
6684 case Builtin::BI__sync_fetch_and_or_8:
6685 case Builtin::BI__sync_fetch_and_or_16:
6686 BuiltinIndex = 2;
6687 break;
6688
6689 case Builtin::BI__sync_fetch_and_and:
6690 case Builtin::BI__sync_fetch_and_and_1:
6691 case Builtin::BI__sync_fetch_and_and_2:
6692 case Builtin::BI__sync_fetch_and_and_4:
6693 case Builtin::BI__sync_fetch_and_and_8:
6694 case Builtin::BI__sync_fetch_and_and_16:
6695 BuiltinIndex = 3;
6696 break;
6697
6698 case Builtin::BI__sync_fetch_and_xor:
6699 case Builtin::BI__sync_fetch_and_xor_1:
6700 case Builtin::BI__sync_fetch_and_xor_2:
6701 case Builtin::BI__sync_fetch_and_xor_4:
6702 case Builtin::BI__sync_fetch_and_xor_8:
6703 case Builtin::BI__sync_fetch_and_xor_16:
6704 BuiltinIndex = 4;
6705 break;
6706
6707 case Builtin::BI__sync_fetch_and_nand:
6708 case Builtin::BI__sync_fetch_and_nand_1:
6709 case Builtin::BI__sync_fetch_and_nand_2:
6710 case Builtin::BI__sync_fetch_and_nand_4:
6711 case Builtin::BI__sync_fetch_and_nand_8:
6712 case Builtin::BI__sync_fetch_and_nand_16:
6713 BuiltinIndex = 5;
6714 WarnAboutSemanticsChange = true;
6715 break;
6716
6717 case Builtin::BI__sync_add_and_fetch:
6718 case Builtin::BI__sync_add_and_fetch_1:
6719 case Builtin::BI__sync_add_and_fetch_2:
6720 case Builtin::BI__sync_add_and_fetch_4:
6721 case Builtin::BI__sync_add_and_fetch_8:
6722 case Builtin::BI__sync_add_and_fetch_16:
6723 BuiltinIndex = 6;
6724 break;
6725
6726 case Builtin::BI__sync_sub_and_fetch:
6727 case Builtin::BI__sync_sub_and_fetch_1:
6728 case Builtin::BI__sync_sub_and_fetch_2:
6729 case Builtin::BI__sync_sub_and_fetch_4:
6730 case Builtin::BI__sync_sub_and_fetch_8:
6731 case Builtin::BI__sync_sub_and_fetch_16:
6732 BuiltinIndex = 7;
6733 break;
6734
6735 case Builtin::BI__sync_and_and_fetch:
6736 case Builtin::BI__sync_and_and_fetch_1:
6737 case Builtin::BI__sync_and_and_fetch_2:
6738 case Builtin::BI__sync_and_and_fetch_4:
6739 case Builtin::BI__sync_and_and_fetch_8:
6740 case Builtin::BI__sync_and_and_fetch_16:
6741 BuiltinIndex = 8;
6742 break;
6743
6744 case Builtin::BI__sync_or_and_fetch:
6745 case Builtin::BI__sync_or_and_fetch_1:
6746 case Builtin::BI__sync_or_and_fetch_2:
6747 case Builtin::BI__sync_or_and_fetch_4:
6748 case Builtin::BI__sync_or_and_fetch_8:
6749 case Builtin::BI__sync_or_and_fetch_16:
6750 BuiltinIndex = 9;
6751 break;
6752
6753 case Builtin::BI__sync_xor_and_fetch:
6754 case Builtin::BI__sync_xor_and_fetch_1:
6755 case Builtin::BI__sync_xor_and_fetch_2:
6756 case Builtin::BI__sync_xor_and_fetch_4:
6757 case Builtin::BI__sync_xor_and_fetch_8:
6758 case Builtin::BI__sync_xor_and_fetch_16:
6759 BuiltinIndex = 10;
6760 break;
6761
6762 case Builtin::BI__sync_nand_and_fetch:
6763 case Builtin::BI__sync_nand_and_fetch_1:
6764 case Builtin::BI__sync_nand_and_fetch_2:
6765 case Builtin::BI__sync_nand_and_fetch_4:
6766 case Builtin::BI__sync_nand_and_fetch_8:
6767 case Builtin::BI__sync_nand_and_fetch_16:
6768 BuiltinIndex = 11;
6769 WarnAboutSemanticsChange = true;
6770 break;
6771
6772 case Builtin::BI__sync_val_compare_and_swap:
6773 case Builtin::BI__sync_val_compare_and_swap_1:
6774 case Builtin::BI__sync_val_compare_and_swap_2:
6775 case Builtin::BI__sync_val_compare_and_swap_4:
6776 case Builtin::BI__sync_val_compare_and_swap_8:
6777 case Builtin::BI__sync_val_compare_and_swap_16:
6778 BuiltinIndex = 12;
6779 NumFixed = 2;
6780 break;
6781
6782 case Builtin::BI__sync_bool_compare_and_swap:
6783 case Builtin::BI__sync_bool_compare_and_swap_1:
6784 case Builtin::BI__sync_bool_compare_and_swap_2:
6785 case Builtin::BI__sync_bool_compare_and_swap_4:
6786 case Builtin::BI__sync_bool_compare_and_swap_8:
6787 case Builtin::BI__sync_bool_compare_and_swap_16:
6788 BuiltinIndex = 13;
6789 NumFixed = 2;
6790 ResultType = Context.BoolTy;
6791 break;
6792
6793 case Builtin::BI__sync_lock_test_and_set:
6794 case Builtin::BI__sync_lock_test_and_set_1:
6795 case Builtin::BI__sync_lock_test_and_set_2:
6796 case Builtin::BI__sync_lock_test_and_set_4:
6797 case Builtin::BI__sync_lock_test_and_set_8:
6798 case Builtin::BI__sync_lock_test_and_set_16:
6799 BuiltinIndex = 14;
6800 break;
6801
6802 case Builtin::BI__sync_lock_release:
6803 case Builtin::BI__sync_lock_release_1:
6804 case Builtin::BI__sync_lock_release_2:
6805 case Builtin::BI__sync_lock_release_4:
6806 case Builtin::BI__sync_lock_release_8:
6807 case Builtin::BI__sync_lock_release_16:
6808 BuiltinIndex = 15;
6809 NumFixed = 0;
6810 ResultType = Context.VoidTy;
6811 break;
6812
6813 case Builtin::BI__sync_swap:
6814 case Builtin::BI__sync_swap_1:
6815 case Builtin::BI__sync_swap_2:
6816 case Builtin::BI__sync_swap_4:
6817 case Builtin::BI__sync_swap_8:
6818 case Builtin::BI__sync_swap_16:
6819 BuiltinIndex = 16;
6820 break;
6821 }
6822
6823 // Now that we know how many fixed arguments we expect, first check that we
6824 // have at least that many.
6825 if (TheCall->getNumArgs() < 1+NumFixed) {
6826 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6827 << 0 << 1 + NumFixed << TheCall->getNumArgs()
6828 << Callee->getSourceRange();
6829 return ExprError();
6830 }
6831
6832 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6833 << Callee->getSourceRange();
6834
6835 if (WarnAboutSemanticsChange) {
6836 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6837 << Callee->getSourceRange();
6838 }
6839
6840 // Get the decl for the concrete builtin from this, we can tell what the
6841 // concrete integer type we should convert to is.
6842 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6843 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6844 FunctionDecl *NewBuiltinDecl;
6845 if (NewBuiltinID == BuiltinID)
6846 NewBuiltinDecl = FDecl;
6847 else {
6848 // Perform builtin lookup to avoid redeclaring it.
6849 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6850 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6851 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6852 assert(Res.getFoundDecl());
6853 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6854 if (!NewBuiltinDecl)
6855 return ExprError();
6856 }
6857
6858 // The first argument --- the pointer --- has a fixed type; we
6859 // deduce the types of the rest of the arguments accordingly. Walk
6860 // the remaining arguments, converting them to the deduced value type.
6861 for (unsigned i = 0; i != NumFixed; ++i) {
6862 ExprResult Arg = TheCall->getArg(i+1);
6863
6864 // GCC does an implicit conversion to the pointer or integer ValType. This
6865 // can fail in some cases (1i -> int**), check for this error case now.
6866 // Initialize the argument.
6867 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6868 ValType, /*consume*/ false);
6869 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6870 if (Arg.isInvalid())
6871 return ExprError();
6872
6873 // Okay, we have something that *can* be converted to the right type. Check
6874 // to see if there is a potentially weird extension going on here. This can
6875 // happen when you do an atomic operation on something like an char* and
6876 // pass in 42. The 42 gets converted to char. This is even more strange
6877 // for things like 45.123 -> char, etc.
6878 // FIXME: Do this check.
6879 TheCall->setArg(i+1, Arg.get());
6880 }
6881
6882 // Create a new DeclRefExpr to refer to the new decl.
6883 DeclRefExpr *NewDRE = DeclRefExpr::Create(
6884 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6885 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6886 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6887
6888 // Set the callee in the CallExpr.
6889 // FIXME: This loses syntactic information.
6890 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6891 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6892 CK_BuiltinFnToFnPtr);
6893 TheCall->setCallee(PromotedCall.get());
6894
6895 // Change the result type of the call to match the original value type. This
6896 // is arbitrary, but the codegen for these builtins ins design to handle it
6897 // gracefully.
6898 TheCall->setType(ResultType);
6899
6900 // Prohibit problematic uses of bit-precise integer types with atomic
6901 // builtins. The arguments would have already been converted to the first
6902 // argument's type, so only need to check the first argument.
6903 const auto *BitIntValType = ValType->getAs<BitIntType>();
6904 if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
6905 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6906 return ExprError();
6907 }
6908
6909 return TheCallResult;
6910 }
6911
6912 /// SemaBuiltinNontemporalOverloaded - We have a call to
6913 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6914 /// overloaded function based on the pointer type of its last argument.
6915 ///
6916 /// This function goes through and does final semantic checking for these
6917 /// builtins.
SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult)6918 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6919 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6920 DeclRefExpr *DRE =
6921 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6922 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6923 unsigned BuiltinID = FDecl->getBuiltinID();
6924 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6925 BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6926 "Unexpected nontemporal load/store builtin!");
6927 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6928 unsigned numArgs = isStore ? 2 : 1;
6929
6930 // Ensure that we have the proper number of arguments.
6931 if (checkArgCount(*this, TheCall, numArgs))
6932 return ExprError();
6933
6934 // Inspect the last argument of the nontemporal builtin. This should always
6935 // be a pointer type, from which we imply the type of the memory access.
6936 // Because it is a pointer type, we don't have to worry about any implicit
6937 // casts here.
6938 Expr *PointerArg = TheCall->getArg(numArgs - 1);
6939 ExprResult PointerArgResult =
6940 DefaultFunctionArrayLvalueConversion(PointerArg);
6941
6942 if (PointerArgResult.isInvalid())
6943 return ExprError();
6944 PointerArg = PointerArgResult.get();
6945 TheCall->setArg(numArgs - 1, PointerArg);
6946
6947 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6948 if (!pointerType) {
6949 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6950 << PointerArg->getType() << PointerArg->getSourceRange();
6951 return ExprError();
6952 }
6953
6954 QualType ValType = pointerType->getPointeeType();
6955
6956 // Strip any qualifiers off ValType.
6957 ValType = ValType.getUnqualifiedType();
6958 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6959 !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6960 !ValType->isVectorType()) {
6961 Diag(DRE->getBeginLoc(),
6962 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6963 << PointerArg->getType() << PointerArg->getSourceRange();
6964 return ExprError();
6965 }
6966
6967 if (!isStore) {
6968 TheCall->setType(ValType);
6969 return TheCallResult;
6970 }
6971
6972 ExprResult ValArg = TheCall->getArg(0);
6973 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6974 Context, ValType, /*consume*/ false);
6975 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6976 if (ValArg.isInvalid())
6977 return ExprError();
6978
6979 TheCall->setArg(0, ValArg.get());
6980 TheCall->setType(Context.VoidTy);
6981 return TheCallResult;
6982 }
6983
6984 /// CheckObjCString - Checks that the argument to the builtin
6985 /// CFString constructor is correct
6986 /// Note: It might also make sense to do the UTF-16 conversion here (would
6987 /// simplify the backend).
CheckObjCString(Expr * Arg)6988 bool Sema::CheckObjCString(Expr *Arg) {
6989 Arg = Arg->IgnoreParenCasts();
6990 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6991
6992 if (!Literal || !Literal->isOrdinary()) {
6993 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6994 << Arg->getSourceRange();
6995 return true;
6996 }
6997
6998 if (Literal->containsNonAsciiOrNull()) {
6999 StringRef String = Literal->getString();
7000 unsigned NumBytes = String.size();
7001 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
7002 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
7003 llvm::UTF16 *ToPtr = &ToBuf[0];
7004
7005 llvm::ConversionResult Result =
7006 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
7007 ToPtr + NumBytes, llvm::strictConversion);
7008 // Check for conversion failure.
7009 if (Result != llvm::conversionOK)
7010 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
7011 << Arg->getSourceRange();
7012 }
7013 return false;
7014 }
7015
7016 /// CheckObjCString - Checks that the format string argument to the os_log()
7017 /// and os_trace() functions is correct, and converts it to const char *.
CheckOSLogFormatStringArg(Expr * Arg)7018 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
7019 Arg = Arg->IgnoreParenCasts();
7020 auto *Literal = dyn_cast<StringLiteral>(Arg);
7021 if (!Literal) {
7022 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
7023 Literal = ObjcLiteral->getString();
7024 }
7025 }
7026
7027 if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
7028 return ExprError(
7029 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
7030 << Arg->getSourceRange());
7031 }
7032
7033 ExprResult Result(Literal);
7034 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
7035 InitializedEntity Entity =
7036 InitializedEntity::InitializeParameter(Context, ResultTy, false);
7037 Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
7038 return Result;
7039 }
7040
7041 /// Check that the user is calling the appropriate va_start builtin for the
7042 /// target and calling convention.
checkVAStartABI(Sema & S,unsigned BuiltinID,Expr * Fn)7043 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
7044 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
7045 bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
7046 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
7047 TT.getArch() == llvm::Triple::aarch64_32);
7048 bool IsWindows = TT.isOSWindows();
7049 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
7050 if (IsX64 || IsAArch64) {
7051 CallingConv CC = CC_C;
7052 if (const FunctionDecl *FD = S.getCurFunctionDecl())
7053 CC = FD->getType()->castAs<FunctionType>()->getCallConv();
7054 if (IsMSVAStart) {
7055 // Don't allow this in System V ABI functions.
7056 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
7057 return S.Diag(Fn->getBeginLoc(),
7058 diag::err_ms_va_start_used_in_sysv_function);
7059 } else {
7060 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
7061 // On x64 Windows, don't allow this in System V ABI functions.
7062 // (Yes, that means there's no corresponding way to support variadic
7063 // System V ABI functions on Windows.)
7064 if ((IsWindows && CC == CC_X86_64SysV) ||
7065 (!IsWindows && CC == CC_Win64))
7066 return S.Diag(Fn->getBeginLoc(),
7067 diag::err_va_start_used_in_wrong_abi_function)
7068 << !IsWindows;
7069 }
7070 return false;
7071 }
7072
7073 if (IsMSVAStart)
7074 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
7075 return false;
7076 }
7077
checkVAStartIsInVariadicFunction(Sema & S,Expr * Fn,ParmVarDecl ** LastParam=nullptr)7078 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
7079 ParmVarDecl **LastParam = nullptr) {
7080 // Determine whether the current function, block, or obj-c method is variadic
7081 // and get its parameter list.
7082 bool IsVariadic = false;
7083 ArrayRef<ParmVarDecl *> Params;
7084 DeclContext *Caller = S.CurContext;
7085 if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
7086 IsVariadic = Block->isVariadic();
7087 Params = Block->parameters();
7088 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
7089 IsVariadic = FD->isVariadic();
7090 Params = FD->parameters();
7091 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
7092 IsVariadic = MD->isVariadic();
7093 // FIXME: This isn't correct for methods (results in bogus warning).
7094 Params = MD->parameters();
7095 } else if (isa<CapturedDecl>(Caller)) {
7096 // We don't support va_start in a CapturedDecl.
7097 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
7098 return true;
7099 } else {
7100 // This must be some other declcontext that parses exprs.
7101 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
7102 return true;
7103 }
7104
7105 if (!IsVariadic) {
7106 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
7107 return true;
7108 }
7109
7110 if (LastParam)
7111 *LastParam = Params.empty() ? nullptr : Params.back();
7112
7113 return false;
7114 }
7115
7116 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
7117 /// for validity. Emit an error and return true on failure; return false
7118 /// on success.
SemaBuiltinVAStart(unsigned BuiltinID,CallExpr * TheCall)7119 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
7120 Expr *Fn = TheCall->getCallee();
7121
7122 if (checkVAStartABI(*this, BuiltinID, Fn))
7123 return true;
7124
7125 if (checkArgCount(*this, TheCall, 2))
7126 return true;
7127
7128 // Type-check the first argument normally.
7129 if (checkBuiltinArgument(*this, TheCall, 0))
7130 return true;
7131
7132 // Check that the current function is variadic, and get its last parameter.
7133 ParmVarDecl *LastParam;
7134 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
7135 return true;
7136
7137 // Verify that the second argument to the builtin is the last argument of the
7138 // current function or method.
7139 bool SecondArgIsLastNamedArgument = false;
7140 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
7141
7142 // These are valid if SecondArgIsLastNamedArgument is false after the next
7143 // block.
7144 QualType Type;
7145 SourceLocation ParamLoc;
7146 bool IsCRegister = false;
7147
7148 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
7149 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
7150 SecondArgIsLastNamedArgument = PV == LastParam;
7151
7152 Type = PV->getType();
7153 ParamLoc = PV->getLocation();
7154 IsCRegister =
7155 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
7156 }
7157 }
7158
7159 if (!SecondArgIsLastNamedArgument)
7160 Diag(TheCall->getArg(1)->getBeginLoc(),
7161 diag::warn_second_arg_of_va_start_not_last_named_param);
7162 else if (IsCRegister || Type->isReferenceType() ||
7163 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
7164 // Promotable integers are UB, but enumerations need a bit of
7165 // extra checking to see what their promotable type actually is.
7166 if (!Type->isPromotableIntegerType())
7167 return false;
7168 if (!Type->isEnumeralType())
7169 return true;
7170 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
7171 return !(ED &&
7172 Context.typesAreCompatible(ED->getPromotionType(), Type));
7173 }()) {
7174 unsigned Reason = 0;
7175 if (Type->isReferenceType()) Reason = 1;
7176 else if (IsCRegister) Reason = 2;
7177 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
7178 Diag(ParamLoc, diag::note_parameter_type) << Type;
7179 }
7180
7181 TheCall->setType(Context.VoidTy);
7182 return false;
7183 }
7184
SemaBuiltinVAStartARMMicrosoft(CallExpr * Call)7185 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
7186 auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
7187 const LangOptions &LO = getLangOpts();
7188
7189 if (LO.CPlusPlus)
7190 return Arg->getType()
7191 .getCanonicalType()
7192 .getTypePtr()
7193 ->getPointeeType()
7194 .withoutLocalFastQualifiers() == Context.CharTy;
7195
7196 // In C, allow aliasing through `char *`, this is required for AArch64 at
7197 // least.
7198 return true;
7199 };
7200
7201 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
7202 // const char *named_addr);
7203
7204 Expr *Func = Call->getCallee();
7205
7206 if (Call->getNumArgs() < 3)
7207 return Diag(Call->getEndLoc(),
7208 diag::err_typecheck_call_too_few_args_at_least)
7209 << 0 /*function call*/ << 3 << Call->getNumArgs();
7210
7211 // Type-check the first argument normally.
7212 if (checkBuiltinArgument(*this, Call, 0))
7213 return true;
7214
7215 // Check that the current function is variadic.
7216 if (checkVAStartIsInVariadicFunction(*this, Func))
7217 return true;
7218
7219 // __va_start on Windows does not validate the parameter qualifiers
7220
7221 const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
7222 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
7223
7224 const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
7225 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
7226
7227 const QualType &ConstCharPtrTy =
7228 Context.getPointerType(Context.CharTy.withConst());
7229 if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
7230 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7231 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
7232 << 0 /* qualifier difference */
7233 << 3 /* parameter mismatch */
7234 << 2 << Arg1->getType() << ConstCharPtrTy;
7235
7236 const QualType SizeTy = Context.getSizeType();
7237 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
7238 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7239 << Arg2->getType() << SizeTy << 1 /* different class */
7240 << 0 /* qualifier difference */
7241 << 3 /* parameter mismatch */
7242 << 3 << Arg2->getType() << SizeTy;
7243
7244 return false;
7245 }
7246
7247 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
7248 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)7249 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
7250 if (checkArgCount(*this, TheCall, 2))
7251 return true;
7252
7253 ExprResult OrigArg0 = TheCall->getArg(0);
7254 ExprResult OrigArg1 = TheCall->getArg(1);
7255
7256 // Do standard promotions between the two arguments, returning their common
7257 // type.
7258 QualType Res = UsualArithmeticConversions(
7259 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
7260 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
7261 return true;
7262
7263 // Make sure any conversions are pushed back into the call; this is
7264 // type safe since unordered compare builtins are declared as "_Bool
7265 // foo(...)".
7266 TheCall->setArg(0, OrigArg0.get());
7267 TheCall->setArg(1, OrigArg1.get());
7268
7269 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
7270 return false;
7271
7272 // If the common type isn't a real floating type, then the arguments were
7273 // invalid for this operation.
7274 if (Res.isNull() || !Res->isRealFloatingType())
7275 return Diag(OrigArg0.get()->getBeginLoc(),
7276 diag::err_typecheck_call_invalid_ordered_compare)
7277 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
7278 << SourceRange(OrigArg0.get()->getBeginLoc(),
7279 OrigArg1.get()->getEndLoc());
7280
7281 return false;
7282 }
7283
7284 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
7285 /// __builtin_isnan and friends. This is declared to take (...), so we have
7286 /// to check everything. We expect the last argument to be a floating point
7287 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)7288 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
7289 if (checkArgCount(*this, TheCall, NumArgs))
7290 return true;
7291
7292 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
7293 // on all preceding parameters just being int. Try all of those.
7294 for (unsigned i = 0; i < NumArgs - 1; ++i) {
7295 Expr *Arg = TheCall->getArg(i);
7296
7297 if (Arg->isTypeDependent())
7298 return false;
7299
7300 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
7301
7302 if (Res.isInvalid())
7303 return true;
7304 TheCall->setArg(i, Res.get());
7305 }
7306
7307 Expr *OrigArg = TheCall->getArg(NumArgs-1);
7308
7309 if (OrigArg->isTypeDependent())
7310 return false;
7311
7312 // Usual Unary Conversions will convert half to float, which we want for
7313 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
7314 // type how it is, but do normal L->Rvalue conversions.
7315 if (Context.getTargetInfo().useFP16ConversionIntrinsics())
7316 OrigArg = UsualUnaryConversions(OrigArg).get();
7317 else
7318 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
7319 TheCall->setArg(NumArgs - 1, OrigArg);
7320
7321 // This operation requires a non-_Complex floating-point number.
7322 if (!OrigArg->getType()->isRealFloatingType())
7323 return Diag(OrigArg->getBeginLoc(),
7324 diag::err_typecheck_call_invalid_unary_fp)
7325 << OrigArg->getType() << OrigArg->getSourceRange();
7326
7327 return false;
7328 }
7329
7330 /// Perform semantic analysis for a call to __builtin_complex.
SemaBuiltinComplex(CallExpr * TheCall)7331 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
7332 if (checkArgCount(*this, TheCall, 2))
7333 return true;
7334
7335 bool Dependent = false;
7336 for (unsigned I = 0; I != 2; ++I) {
7337 Expr *Arg = TheCall->getArg(I);
7338 QualType T = Arg->getType();
7339 if (T->isDependentType()) {
7340 Dependent = true;
7341 continue;
7342 }
7343
7344 // Despite supporting _Complex int, GCC requires a real floating point type
7345 // for the operands of __builtin_complex.
7346 if (!T->isRealFloatingType()) {
7347 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
7348 << Arg->getType() << Arg->getSourceRange();
7349 }
7350
7351 ExprResult Converted = DefaultLvalueConversion(Arg);
7352 if (Converted.isInvalid())
7353 return true;
7354 TheCall->setArg(I, Converted.get());
7355 }
7356
7357 if (Dependent) {
7358 TheCall->setType(Context.DependentTy);
7359 return false;
7360 }
7361
7362 Expr *Real = TheCall->getArg(0);
7363 Expr *Imag = TheCall->getArg(1);
7364 if (!Context.hasSameType(Real->getType(), Imag->getType())) {
7365 return Diag(Real->getBeginLoc(),
7366 diag::err_typecheck_call_different_arg_types)
7367 << Real->getType() << Imag->getType()
7368 << Real->getSourceRange() << Imag->getSourceRange();
7369 }
7370
7371 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
7372 // don't allow this builtin to form those types either.
7373 // FIXME: Should we allow these types?
7374 if (Real->getType()->isFloat16Type())
7375 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
7376 << "_Float16";
7377 if (Real->getType()->isHalfType())
7378 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
7379 << "half";
7380
7381 TheCall->setType(Context.getComplexType(Real->getType()));
7382 return false;
7383 }
7384
7385 // Customized Sema Checking for VSX builtins that have the following signature:
7386 // vector [...] builtinName(vector [...], vector [...], const int);
7387 // Which takes the same type of vectors (any legal vector type) for the first
7388 // two arguments and takes compile time constant for the third argument.
7389 // Example builtins are :
7390 // vector double vec_xxpermdi(vector double, vector double, int);
7391 // vector short vec_xxsldwi(vector short, vector short, int);
SemaBuiltinVSX(CallExpr * TheCall)7392 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
7393 unsigned ExpectedNumArgs = 3;
7394 if (checkArgCount(*this, TheCall, ExpectedNumArgs))
7395 return true;
7396
7397 // Check the third argument is a compile time constant
7398 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
7399 return Diag(TheCall->getBeginLoc(),
7400 diag::err_vsx_builtin_nonconstant_argument)
7401 << 3 /* argument index */ << TheCall->getDirectCallee()
7402 << SourceRange(TheCall->getArg(2)->getBeginLoc(),
7403 TheCall->getArg(2)->getEndLoc());
7404
7405 QualType Arg1Ty = TheCall->getArg(0)->getType();
7406 QualType Arg2Ty = TheCall->getArg(1)->getType();
7407
7408 // Check the type of argument 1 and argument 2 are vectors.
7409 SourceLocation BuiltinLoc = TheCall->getBeginLoc();
7410 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
7411 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
7412 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
7413 << TheCall->getDirectCallee()
7414 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7415 TheCall->getArg(1)->getEndLoc());
7416 }
7417
7418 // Check the first two arguments are the same type.
7419 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
7420 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
7421 << TheCall->getDirectCallee()
7422 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7423 TheCall->getArg(1)->getEndLoc());
7424 }
7425
7426 // When default clang type checking is turned off and the customized type
7427 // checking is used, the returning type of the function must be explicitly
7428 // set. Otherwise it is _Bool by default.
7429 TheCall->setType(Arg1Ty);
7430
7431 return false;
7432 }
7433
7434 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
7435 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)7436 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
7437 if (TheCall->getNumArgs() < 2)
7438 return ExprError(Diag(TheCall->getEndLoc(),
7439 diag::err_typecheck_call_too_few_args_at_least)
7440 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
7441 << TheCall->getSourceRange());
7442
7443 // Determine which of the following types of shufflevector we're checking:
7444 // 1) unary, vector mask: (lhs, mask)
7445 // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
7446 QualType resType = TheCall->getArg(0)->getType();
7447 unsigned numElements = 0;
7448
7449 if (!TheCall->getArg(0)->isTypeDependent() &&
7450 !TheCall->getArg(1)->isTypeDependent()) {
7451 QualType LHSType = TheCall->getArg(0)->getType();
7452 QualType RHSType = TheCall->getArg(1)->getType();
7453
7454 if (!LHSType->isVectorType() || !RHSType->isVectorType())
7455 return ExprError(
7456 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
7457 << TheCall->getDirectCallee()
7458 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7459 TheCall->getArg(1)->getEndLoc()));
7460
7461 numElements = LHSType->castAs<VectorType>()->getNumElements();
7462 unsigned numResElements = TheCall->getNumArgs() - 2;
7463
7464 // Check to see if we have a call with 2 vector arguments, the unary shuffle
7465 // with mask. If so, verify that RHS is an integer vector type with the
7466 // same number of elts as lhs.
7467 if (TheCall->getNumArgs() == 2) {
7468 if (!RHSType->hasIntegerRepresentation() ||
7469 RHSType->castAs<VectorType>()->getNumElements() != numElements)
7470 return ExprError(Diag(TheCall->getBeginLoc(),
7471 diag::err_vec_builtin_incompatible_vector)
7472 << TheCall->getDirectCallee()
7473 << SourceRange(TheCall->getArg(1)->getBeginLoc(),
7474 TheCall->getArg(1)->getEndLoc()));
7475 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
7476 return ExprError(Diag(TheCall->getBeginLoc(),
7477 diag::err_vec_builtin_incompatible_vector)
7478 << TheCall->getDirectCallee()
7479 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7480 TheCall->getArg(1)->getEndLoc()));
7481 } else if (numElements != numResElements) {
7482 QualType eltType = LHSType->castAs<VectorType>()->getElementType();
7483 resType = Context.getVectorType(eltType, numResElements,
7484 VectorType::GenericVector);
7485 }
7486 }
7487
7488 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
7489 if (TheCall->getArg(i)->isTypeDependent() ||
7490 TheCall->getArg(i)->isValueDependent())
7491 continue;
7492
7493 Optional<llvm::APSInt> Result;
7494 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
7495 return ExprError(Diag(TheCall->getBeginLoc(),
7496 diag::err_shufflevector_nonconstant_argument)
7497 << TheCall->getArg(i)->getSourceRange());
7498
7499 // Allow -1 which will be translated to undef in the IR.
7500 if (Result->isSigned() && Result->isAllOnes())
7501 continue;
7502
7503 if (Result->getActiveBits() > 64 ||
7504 Result->getZExtValue() >= numElements * 2)
7505 return ExprError(Diag(TheCall->getBeginLoc(),
7506 diag::err_shufflevector_argument_too_large)
7507 << TheCall->getArg(i)->getSourceRange());
7508 }
7509
7510 SmallVector<Expr*, 32> exprs;
7511
7512 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
7513 exprs.push_back(TheCall->getArg(i));
7514 TheCall->setArg(i, nullptr);
7515 }
7516
7517 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
7518 TheCall->getCallee()->getBeginLoc(),
7519 TheCall->getRParenLoc());
7520 }
7521
7522 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7523 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
7524 SourceLocation BuiltinLoc,
7525 SourceLocation RParenLoc) {
7526 ExprValueKind VK = VK_PRValue;
7527 ExprObjectKind OK = OK_Ordinary;
7528 QualType DstTy = TInfo->getType();
7529 QualType SrcTy = E->getType();
7530
7531 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
7532 return ExprError(Diag(BuiltinLoc,
7533 diag::err_convertvector_non_vector)
7534 << E->getSourceRange());
7535 if (!DstTy->isVectorType() && !DstTy->isDependentType())
7536 return ExprError(Diag(BuiltinLoc,
7537 diag::err_convertvector_non_vector_type));
7538
7539 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
7540 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
7541 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
7542 if (SrcElts != DstElts)
7543 return ExprError(Diag(BuiltinLoc,
7544 diag::err_convertvector_incompatible_vector)
7545 << E->getSourceRange());
7546 }
7547
7548 return new (Context)
7549 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
7550 }
7551
7552 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
7553 // This is declared to take (const void*, ...) and can take two
7554 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)7555 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
7556 unsigned NumArgs = TheCall->getNumArgs();
7557
7558 if (NumArgs > 3)
7559 return Diag(TheCall->getEndLoc(),
7560 diag::err_typecheck_call_too_many_args_at_most)
7561 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7562
7563 // Argument 0 is checked for us and the remaining arguments must be
7564 // constant integers.
7565 for (unsigned i = 1; i != NumArgs; ++i)
7566 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
7567 return true;
7568
7569 return false;
7570 }
7571
7572 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
SemaBuiltinArithmeticFence(CallExpr * TheCall)7573 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
7574 if (!Context.getTargetInfo().checkArithmeticFenceSupported())
7575 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
7576 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7577 if (checkArgCount(*this, TheCall, 1))
7578 return true;
7579 Expr *Arg = TheCall->getArg(0);
7580 if (Arg->isInstantiationDependent())
7581 return false;
7582
7583 QualType ArgTy = Arg->getType();
7584 if (!ArgTy->hasFloatingRepresentation())
7585 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
7586 << ArgTy;
7587 if (Arg->isLValue()) {
7588 ExprResult FirstArg = DefaultLvalueConversion(Arg);
7589 TheCall->setArg(0, FirstArg.get());
7590 }
7591 TheCall->setType(TheCall->getArg(0)->getType());
7592 return false;
7593 }
7594
7595 /// SemaBuiltinAssume - Handle __assume (MS Extension).
7596 // __assume does not evaluate its arguments, and should warn if its argument
7597 // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)7598 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
7599 Expr *Arg = TheCall->getArg(0);
7600 if (Arg->isInstantiationDependent()) return false;
7601
7602 if (Arg->HasSideEffects(Context))
7603 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
7604 << Arg->getSourceRange()
7605 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
7606
7607 return false;
7608 }
7609
7610 /// Handle __builtin_alloca_with_align. This is declared
7611 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
7612 /// than 8.
SemaBuiltinAllocaWithAlign(CallExpr * TheCall)7613 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
7614 // The alignment must be a constant integer.
7615 Expr *Arg = TheCall->getArg(1);
7616
7617 // We can't check the value of a dependent argument.
7618 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7619 if (const auto *UE =
7620 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
7621 if (UE->getKind() == UETT_AlignOf ||
7622 UE->getKind() == UETT_PreferredAlignOf)
7623 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
7624 << Arg->getSourceRange();
7625
7626 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
7627
7628 if (!Result.isPowerOf2())
7629 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7630 << Arg->getSourceRange();
7631
7632 if (Result < Context.getCharWidth())
7633 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
7634 << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
7635
7636 if (Result > std::numeric_limits<int32_t>::max())
7637 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
7638 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
7639 }
7640
7641 return false;
7642 }
7643
7644 /// Handle __builtin_assume_aligned. This is declared
7645 /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)7646 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
7647 unsigned NumArgs = TheCall->getNumArgs();
7648
7649 if (NumArgs > 3)
7650 return Diag(TheCall->getEndLoc(),
7651 diag::err_typecheck_call_too_many_args_at_most)
7652 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7653
7654 // The alignment must be a constant integer.
7655 Expr *Arg = TheCall->getArg(1);
7656
7657 // We can't check the value of a dependent argument.
7658 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7659 llvm::APSInt Result;
7660 if (SemaBuiltinConstantArg(TheCall, 1, Result))
7661 return true;
7662
7663 if (!Result.isPowerOf2())
7664 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7665 << Arg->getSourceRange();
7666
7667 if (Result > Sema::MaximumAlignment)
7668 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
7669 << Arg->getSourceRange() << Sema::MaximumAlignment;
7670 }
7671
7672 if (NumArgs > 2) {
7673 ExprResult Arg(TheCall->getArg(2));
7674 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
7675 Context.getSizeType(), false);
7676 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7677 if (Arg.isInvalid()) return true;
7678 TheCall->setArg(2, Arg.get());
7679 }
7680
7681 return false;
7682 }
7683
SemaBuiltinOSLogFormat(CallExpr * TheCall)7684 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
7685 unsigned BuiltinID =
7686 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
7687 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
7688
7689 unsigned NumArgs = TheCall->getNumArgs();
7690 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
7691 if (NumArgs < NumRequiredArgs) {
7692 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
7693 << 0 /* function call */ << NumRequiredArgs << NumArgs
7694 << TheCall->getSourceRange();
7695 }
7696 if (NumArgs >= NumRequiredArgs + 0x100) {
7697 return Diag(TheCall->getEndLoc(),
7698 diag::err_typecheck_call_too_many_args_at_most)
7699 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7700 << TheCall->getSourceRange();
7701 }
7702 unsigned i = 0;
7703
7704 // For formatting call, check buffer arg.
7705 if (!IsSizeCall) {
7706 ExprResult Arg(TheCall->getArg(i));
7707 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7708 Context, Context.VoidPtrTy, false);
7709 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7710 if (Arg.isInvalid())
7711 return true;
7712 TheCall->setArg(i, Arg.get());
7713 i++;
7714 }
7715
7716 // Check string literal arg.
7717 unsigned FormatIdx = i;
7718 {
7719 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7720 if (Arg.isInvalid())
7721 return true;
7722 TheCall->setArg(i, Arg.get());
7723 i++;
7724 }
7725
7726 // Make sure variadic args are scalar.
7727 unsigned FirstDataArg = i;
7728 while (i < NumArgs) {
7729 ExprResult Arg = DefaultVariadicArgumentPromotion(
7730 TheCall->getArg(i), VariadicFunction, nullptr);
7731 if (Arg.isInvalid())
7732 return true;
7733 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7734 if (ArgSize.getQuantity() >= 0x100) {
7735 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7736 << i << (int)ArgSize.getQuantity() << 0xff
7737 << TheCall->getSourceRange();
7738 }
7739 TheCall->setArg(i, Arg.get());
7740 i++;
7741 }
7742
7743 // Check formatting specifiers. NOTE: We're only doing this for the non-size
7744 // call to avoid duplicate diagnostics.
7745 if (!IsSizeCall) {
7746 llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7747 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7748 bool Success = CheckFormatArguments(
7749 Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
7750 VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7751 CheckedVarArgs);
7752 if (!Success)
7753 return true;
7754 }
7755
7756 if (IsSizeCall) {
7757 TheCall->setType(Context.getSizeType());
7758 } else {
7759 TheCall->setType(Context.VoidPtrTy);
7760 }
7761 return false;
7762 }
7763
7764 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7765 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)7766 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7767 llvm::APSInt &Result) {
7768 Expr *Arg = TheCall->getArg(ArgNum);
7769 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7770 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7771
7772 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7773
7774 Optional<llvm::APSInt> R;
7775 if (!(R = Arg->getIntegerConstantExpr(Context)))
7776 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7777 << FDecl->getDeclName() << Arg->getSourceRange();
7778 Result = *R;
7779 return false;
7780 }
7781
7782 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7783 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High,bool RangeIsError)7784 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7785 int Low, int High, bool RangeIsError) {
7786 if (isConstantEvaluated())
7787 return false;
7788 llvm::APSInt Result;
7789
7790 // We can't check the value of a dependent argument.
7791 Expr *Arg = TheCall->getArg(ArgNum);
7792 if (Arg->isTypeDependent() || Arg->isValueDependent())
7793 return false;
7794
7795 // Check constant-ness first.
7796 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7797 return true;
7798
7799 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7800 if (RangeIsError)
7801 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7802 << toString(Result, 10) << Low << High << Arg->getSourceRange();
7803 else
7804 // Defer the warning until we know if the code will be emitted so that
7805 // dead code can ignore this.
7806 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7807 PDiag(diag::warn_argument_invalid_range)
7808 << toString(Result, 10) << Low << High
7809 << Arg->getSourceRange());
7810 }
7811
7812 return false;
7813 }
7814
7815 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7816 /// TheCall is a constant expression is a multiple of Num..
SemaBuiltinConstantArgMultiple(CallExpr * TheCall,int ArgNum,unsigned Num)7817 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7818 unsigned Num) {
7819 llvm::APSInt Result;
7820
7821 // We can't check the value of a dependent argument.
7822 Expr *Arg = TheCall->getArg(ArgNum);
7823 if (Arg->isTypeDependent() || Arg->isValueDependent())
7824 return false;
7825
7826 // Check constant-ness first.
7827 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7828 return true;
7829
7830 if (Result.getSExtValue() % Num != 0)
7831 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7832 << Num << Arg->getSourceRange();
7833
7834 return false;
7835 }
7836
7837 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7838 /// constant expression representing a power of 2.
SemaBuiltinConstantArgPower2(CallExpr * TheCall,int ArgNum)7839 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7840 llvm::APSInt Result;
7841
7842 // We can't check the value of a dependent argument.
7843 Expr *Arg = TheCall->getArg(ArgNum);
7844 if (Arg->isTypeDependent() || Arg->isValueDependent())
7845 return false;
7846
7847 // Check constant-ness first.
7848 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7849 return true;
7850
7851 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7852 // and only if x is a power of 2.
7853 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7854 return false;
7855
7856 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7857 << Arg->getSourceRange();
7858 }
7859
IsShiftedByte(llvm::APSInt Value)7860 static bool IsShiftedByte(llvm::APSInt Value) {
7861 if (Value.isNegative())
7862 return false;
7863
7864 // Check if it's a shifted byte, by shifting it down
7865 while (true) {
7866 // If the value fits in the bottom byte, the check passes.
7867 if (Value < 0x100)
7868 return true;
7869
7870 // Otherwise, if the value has _any_ bits in the bottom byte, the check
7871 // fails.
7872 if ((Value & 0xFF) != 0)
7873 return false;
7874
7875 // If the bottom 8 bits are all 0, but something above that is nonzero,
7876 // then shifting the value right by 8 bits won't affect whether it's a
7877 // shifted byte or not. So do that, and go round again.
7878 Value >>= 8;
7879 }
7880 }
7881
7882 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7883 /// a constant expression representing an arbitrary byte value shifted left by
7884 /// a multiple of 8 bits.
SemaBuiltinConstantArgShiftedByte(CallExpr * TheCall,int ArgNum,unsigned ArgBits)7885 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7886 unsigned ArgBits) {
7887 llvm::APSInt Result;
7888
7889 // We can't check the value of a dependent argument.
7890 Expr *Arg = TheCall->getArg(ArgNum);
7891 if (Arg->isTypeDependent() || Arg->isValueDependent())
7892 return false;
7893
7894 // Check constant-ness first.
7895 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7896 return true;
7897
7898 // Truncate to the given size.
7899 Result = Result.getLoBits(ArgBits);
7900 Result.setIsUnsigned(true);
7901
7902 if (IsShiftedByte(Result))
7903 return false;
7904
7905 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7906 << Arg->getSourceRange();
7907 }
7908
7909 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7910 /// TheCall is a constant expression representing either a shifted byte value,
7911 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7912 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7913 /// Arm MVE intrinsics.
SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr * TheCall,int ArgNum,unsigned ArgBits)7914 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7915 int ArgNum,
7916 unsigned ArgBits) {
7917 llvm::APSInt Result;
7918
7919 // We can't check the value of a dependent argument.
7920 Expr *Arg = TheCall->getArg(ArgNum);
7921 if (Arg->isTypeDependent() || Arg->isValueDependent())
7922 return false;
7923
7924 // Check constant-ness first.
7925 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7926 return true;
7927
7928 // Truncate to the given size.
7929 Result = Result.getLoBits(ArgBits);
7930 Result.setIsUnsigned(true);
7931
7932 // Check to see if it's in either of the required forms.
7933 if (IsShiftedByte(Result) ||
7934 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7935 return false;
7936
7937 return Diag(TheCall->getBeginLoc(),
7938 diag::err_argument_not_shifted_byte_or_xxff)
7939 << Arg->getSourceRange();
7940 }
7941
7942 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID,CallExpr * TheCall)7943 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7944 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7945 if (checkArgCount(*this, TheCall, 2))
7946 return true;
7947 Expr *Arg0 = TheCall->getArg(0);
7948 Expr *Arg1 = TheCall->getArg(1);
7949
7950 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7951 if (FirstArg.isInvalid())
7952 return true;
7953 QualType FirstArgType = FirstArg.get()->getType();
7954 if (!FirstArgType->isAnyPointerType())
7955 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7956 << "first" << FirstArgType << Arg0->getSourceRange();
7957 TheCall->setArg(0, FirstArg.get());
7958
7959 ExprResult SecArg = DefaultLvalueConversion(Arg1);
7960 if (SecArg.isInvalid())
7961 return true;
7962 QualType SecArgType = SecArg.get()->getType();
7963 if (!SecArgType->isIntegerType())
7964 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7965 << "second" << SecArgType << Arg1->getSourceRange();
7966
7967 // Derive the return type from the pointer argument.
7968 TheCall->setType(FirstArgType);
7969 return false;
7970 }
7971
7972 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7973 if (checkArgCount(*this, TheCall, 2))
7974 return true;
7975
7976 Expr *Arg0 = TheCall->getArg(0);
7977 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7978 if (FirstArg.isInvalid())
7979 return true;
7980 QualType FirstArgType = FirstArg.get()->getType();
7981 if (!FirstArgType->isAnyPointerType())
7982 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7983 << "first" << FirstArgType << Arg0->getSourceRange();
7984 TheCall->setArg(0, FirstArg.get());
7985
7986 // Derive the return type from the pointer argument.
7987 TheCall->setType(FirstArgType);
7988
7989 // Second arg must be an constant in range [0,15]
7990 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7991 }
7992
7993 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7994 if (checkArgCount(*this, TheCall, 2))
7995 return true;
7996 Expr *Arg0 = TheCall->getArg(0);
7997 Expr *Arg1 = TheCall->getArg(1);
7998
7999 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
8000 if (FirstArg.isInvalid())
8001 return true;
8002 QualType FirstArgType = FirstArg.get()->getType();
8003 if (!FirstArgType->isAnyPointerType())
8004 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
8005 << "first" << FirstArgType << Arg0->getSourceRange();
8006
8007 QualType SecArgType = Arg1->getType();
8008 if (!SecArgType->isIntegerType())
8009 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
8010 << "second" << SecArgType << Arg1->getSourceRange();
8011 TheCall->setType(Context.IntTy);
8012 return false;
8013 }
8014
8015 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
8016 BuiltinID == AArch64::BI__builtin_arm_stg) {
8017 if (checkArgCount(*this, TheCall, 1))
8018 return true;
8019 Expr *Arg0 = TheCall->getArg(0);
8020 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
8021 if (FirstArg.isInvalid())
8022 return true;
8023
8024 QualType FirstArgType = FirstArg.get()->getType();
8025 if (!FirstArgType->isAnyPointerType())
8026 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
8027 << "first" << FirstArgType << Arg0->getSourceRange();
8028 TheCall->setArg(0, FirstArg.get());
8029
8030 // Derive the return type from the pointer argument.
8031 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
8032 TheCall->setType(FirstArgType);
8033 return false;
8034 }
8035
8036 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
8037 Expr *ArgA = TheCall->getArg(0);
8038 Expr *ArgB = TheCall->getArg(1);
8039
8040 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
8041 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
8042
8043 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
8044 return true;
8045
8046 QualType ArgTypeA = ArgExprA.get()->getType();
8047 QualType ArgTypeB = ArgExprB.get()->getType();
8048
8049 auto isNull = [&] (Expr *E) -> bool {
8050 return E->isNullPointerConstant(
8051 Context, Expr::NPC_ValueDependentIsNotNull); };
8052
8053 // argument should be either a pointer or null
8054 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
8055 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
8056 << "first" << ArgTypeA << ArgA->getSourceRange();
8057
8058 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
8059 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
8060 << "second" << ArgTypeB << ArgB->getSourceRange();
8061
8062 // Ensure Pointee types are compatible
8063 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
8064 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
8065 QualType pointeeA = ArgTypeA->getPointeeType();
8066 QualType pointeeB = ArgTypeB->getPointeeType();
8067 if (!Context.typesAreCompatible(
8068 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
8069 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
8070 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
8071 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
8072 << ArgB->getSourceRange();
8073 }
8074 }
8075
8076 // at least one argument should be pointer type
8077 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
8078 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
8079 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
8080
8081 if (isNull(ArgA)) // adopt type of the other pointer
8082 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
8083
8084 if (isNull(ArgB))
8085 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
8086
8087 TheCall->setArg(0, ArgExprA.get());
8088 TheCall->setArg(1, ArgExprB.get());
8089 TheCall->setType(Context.LongLongTy);
8090 return false;
8091 }
8092 assert(false && "Unhandled ARM MTE intrinsic");
8093 return true;
8094 }
8095
8096 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
8097 /// TheCall is an ARM/AArch64 special register string literal.
SemaBuiltinARMSpecialReg(unsigned BuiltinID,CallExpr * TheCall,int ArgNum,unsigned ExpectedFieldNum,bool AllowName)8098 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
8099 int ArgNum, unsigned ExpectedFieldNum,
8100 bool AllowName) {
8101 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
8102 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
8103 BuiltinID == ARM::BI__builtin_arm_rsr ||
8104 BuiltinID == ARM::BI__builtin_arm_rsrp ||
8105 BuiltinID == ARM::BI__builtin_arm_wsr ||
8106 BuiltinID == ARM::BI__builtin_arm_wsrp;
8107 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8108 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
8109 BuiltinID == AArch64::BI__builtin_arm_rsr ||
8110 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8111 BuiltinID == AArch64::BI__builtin_arm_wsr ||
8112 BuiltinID == AArch64::BI__builtin_arm_wsrp;
8113 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
8114
8115 // We can't check the value of a dependent argument.
8116 Expr *Arg = TheCall->getArg(ArgNum);
8117 if (Arg->isTypeDependent() || Arg->isValueDependent())
8118 return false;
8119
8120 // Check if the argument is a string literal.
8121 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
8122 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
8123 << Arg->getSourceRange();
8124
8125 // Check the type of special register given.
8126 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
8127 SmallVector<StringRef, 6> Fields;
8128 Reg.split(Fields, ":");
8129
8130 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
8131 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
8132 << Arg->getSourceRange();
8133
8134 // If the string is the name of a register then we cannot check that it is
8135 // valid here but if the string is of one the forms described in ACLE then we
8136 // can check that the supplied fields are integers and within the valid
8137 // ranges.
8138 if (Fields.size() > 1) {
8139 bool FiveFields = Fields.size() == 5;
8140
8141 bool ValidString = true;
8142 if (IsARMBuiltin) {
8143 ValidString &= Fields[0].startswith_insensitive("cp") ||
8144 Fields[0].startswith_insensitive("p");
8145 if (ValidString)
8146 Fields[0] = Fields[0].drop_front(
8147 Fields[0].startswith_insensitive("cp") ? 2 : 1);
8148
8149 ValidString &= Fields[2].startswith_insensitive("c");
8150 if (ValidString)
8151 Fields[2] = Fields[2].drop_front(1);
8152
8153 if (FiveFields) {
8154 ValidString &= Fields[3].startswith_insensitive("c");
8155 if (ValidString)
8156 Fields[3] = Fields[3].drop_front(1);
8157 }
8158 }
8159
8160 SmallVector<int, 5> Ranges;
8161 if (FiveFields)
8162 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
8163 else
8164 Ranges.append({15, 7, 15});
8165
8166 for (unsigned i=0; i<Fields.size(); ++i) {
8167 int IntField;
8168 ValidString &= !Fields[i].getAsInteger(10, IntField);
8169 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
8170 }
8171
8172 if (!ValidString)
8173 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
8174 << Arg->getSourceRange();
8175 } else if (IsAArch64Builtin && Fields.size() == 1) {
8176 // If the register name is one of those that appear in the condition below
8177 // and the special register builtin being used is one of the write builtins,
8178 // then we require that the argument provided for writing to the register
8179 // is an integer constant expression. This is because it will be lowered to
8180 // an MSR (immediate) instruction, so we need to know the immediate at
8181 // compile time.
8182 if (TheCall->getNumArgs() != 2)
8183 return false;
8184
8185 std::string RegLower = Reg.lower();
8186 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
8187 RegLower != "pan" && RegLower != "uao")
8188 return false;
8189
8190 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
8191 }
8192
8193 return false;
8194 }
8195
8196 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
8197 /// Emit an error and return true on failure; return false on success.
8198 /// TypeStr is a string containing the type descriptor of the value returned by
8199 /// the builtin and the descriptors of the expected type of the arguments.
SemaBuiltinPPCMMACall(CallExpr * TheCall,unsigned BuiltinID,const char * TypeStr)8200 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
8201 const char *TypeStr) {
8202
8203 assert((TypeStr[0] != '\0') &&
8204 "Invalid types in PPC MMA builtin declaration");
8205
8206 switch (BuiltinID) {
8207 default:
8208 // This function is called in CheckPPCBuiltinFunctionCall where the
8209 // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
8210 // we are isolating the pair vector memop builtins that can be used with mma
8211 // off so the default case is every builtin that requires mma and paired
8212 // vector memops.
8213 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
8214 diag::err_ppc_builtin_only_on_arch, "10") ||
8215 SemaFeatureCheck(*this, TheCall, "mma",
8216 diag::err_ppc_builtin_only_on_arch, "10"))
8217 return true;
8218 break;
8219 case PPC::BI__builtin_vsx_lxvp:
8220 case PPC::BI__builtin_vsx_stxvp:
8221 case PPC::BI__builtin_vsx_assemble_pair:
8222 case PPC::BI__builtin_vsx_disassemble_pair:
8223 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
8224 diag::err_ppc_builtin_only_on_arch, "10"))
8225 return true;
8226 break;
8227 }
8228
8229 unsigned Mask = 0;
8230 unsigned ArgNum = 0;
8231
8232 // The first type in TypeStr is the type of the value returned by the
8233 // builtin. So we first read that type and change the type of TheCall.
8234 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8235 TheCall->setType(type);
8236
8237 while (*TypeStr != '\0') {
8238 Mask = 0;
8239 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8240 if (ArgNum >= TheCall->getNumArgs()) {
8241 ArgNum++;
8242 break;
8243 }
8244
8245 Expr *Arg = TheCall->getArg(ArgNum);
8246 QualType PassedType = Arg->getType();
8247 QualType StrippedRVType = PassedType.getCanonicalType();
8248
8249 // Strip Restrict/Volatile qualifiers.
8250 if (StrippedRVType.isRestrictQualified() ||
8251 StrippedRVType.isVolatileQualified())
8252 StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
8253
8254 // The only case where the argument type and expected type are allowed to
8255 // mismatch is if the argument type is a non-void pointer (or array) and
8256 // expected type is a void pointer.
8257 if (StrippedRVType != ExpectedType)
8258 if (!(ExpectedType->isVoidPointerType() &&
8259 (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
8260 return Diag(Arg->getBeginLoc(),
8261 diag::err_typecheck_convert_incompatible)
8262 << PassedType << ExpectedType << 1 << 0 << 0;
8263
8264 // If the value of the Mask is not 0, we have a constraint in the size of
8265 // the integer argument so here we ensure the argument is a constant that
8266 // is in the valid range.
8267 if (Mask != 0 &&
8268 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
8269 return true;
8270
8271 ArgNum++;
8272 }
8273
8274 // In case we exited early from the previous loop, there are other types to
8275 // read from TypeStr. So we need to read them all to ensure we have the right
8276 // number of arguments in TheCall and if it is not the case, to display a
8277 // better error message.
8278 while (*TypeStr != '\0') {
8279 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8280 ArgNum++;
8281 }
8282 if (checkArgCount(*this, TheCall, ArgNum))
8283 return true;
8284
8285 return false;
8286 }
8287
8288 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
8289 /// This checks that the target supports __builtin_longjmp and
8290 /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)8291 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
8292 if (!Context.getTargetInfo().hasSjLjLowering())
8293 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
8294 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
8295
8296 Expr *Arg = TheCall->getArg(1);
8297 llvm::APSInt Result;
8298
8299 // TODO: This is less than ideal. Overload this to take a value.
8300 if (SemaBuiltinConstantArg(TheCall, 1, Result))
8301 return true;
8302
8303 if (Result != 1)
8304 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
8305 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
8306
8307 return false;
8308 }
8309
8310 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
8311 /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)8312 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
8313 if (!Context.getTargetInfo().hasSjLjLowering())
8314 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
8315 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
8316 return false;
8317 }
8318
8319 namespace {
8320
8321 class UncoveredArgHandler {
8322 enum { Unknown = -1, AllCovered = -2 };
8323
8324 signed FirstUncoveredArg = Unknown;
8325 SmallVector<const Expr *, 4> DiagnosticExprs;
8326
8327 public:
8328 UncoveredArgHandler() = default;
8329
hasUncoveredArg() const8330 bool hasUncoveredArg() const {
8331 return (FirstUncoveredArg >= 0);
8332 }
8333
getUncoveredArg() const8334 unsigned getUncoveredArg() const {
8335 assert(hasUncoveredArg() && "no uncovered argument");
8336 return FirstUncoveredArg;
8337 }
8338
setAllCovered()8339 void setAllCovered() {
8340 // A string has been found with all arguments covered, so clear out
8341 // the diagnostics.
8342 DiagnosticExprs.clear();
8343 FirstUncoveredArg = AllCovered;
8344 }
8345
Update(signed NewFirstUncoveredArg,const Expr * StrExpr)8346 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
8347 assert(NewFirstUncoveredArg >= 0 && "Outside range");
8348
8349 // Don't update if a previous string covers all arguments.
8350 if (FirstUncoveredArg == AllCovered)
8351 return;
8352
8353 // UncoveredArgHandler tracks the highest uncovered argument index
8354 // and with it all the strings that match this index.
8355 if (NewFirstUncoveredArg == FirstUncoveredArg)
8356 DiagnosticExprs.push_back(StrExpr);
8357 else if (NewFirstUncoveredArg > FirstUncoveredArg) {
8358 DiagnosticExprs.clear();
8359 DiagnosticExprs.push_back(StrExpr);
8360 FirstUncoveredArg = NewFirstUncoveredArg;
8361 }
8362 }
8363
8364 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
8365 };
8366
8367 enum StringLiteralCheckType {
8368 SLCT_NotALiteral,
8369 SLCT_UncheckedLiteral,
8370 SLCT_CheckedLiteral
8371 };
8372
8373 } // namespace
8374
sumOffsets(llvm::APSInt & Offset,llvm::APSInt Addend,BinaryOperatorKind BinOpKind,bool AddendIsRight)8375 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
8376 BinaryOperatorKind BinOpKind,
8377 bool AddendIsRight) {
8378 unsigned BitWidth = Offset.getBitWidth();
8379 unsigned AddendBitWidth = Addend.getBitWidth();
8380 // There might be negative interim results.
8381 if (Addend.isUnsigned()) {
8382 Addend = Addend.zext(++AddendBitWidth);
8383 Addend.setIsSigned(true);
8384 }
8385 // Adjust the bit width of the APSInts.
8386 if (AddendBitWidth > BitWidth) {
8387 Offset = Offset.sext(AddendBitWidth);
8388 BitWidth = AddendBitWidth;
8389 } else if (BitWidth > AddendBitWidth) {
8390 Addend = Addend.sext(BitWidth);
8391 }
8392
8393 bool Ov = false;
8394 llvm::APSInt ResOffset = Offset;
8395 if (BinOpKind == BO_Add)
8396 ResOffset = Offset.sadd_ov(Addend, Ov);
8397 else {
8398 assert(AddendIsRight && BinOpKind == BO_Sub &&
8399 "operator must be add or sub with addend on the right");
8400 ResOffset = Offset.ssub_ov(Addend, Ov);
8401 }
8402
8403 // We add an offset to a pointer here so we should support an offset as big as
8404 // possible.
8405 if (Ov) {
8406 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
8407 "index (intermediate) result too big");
8408 Offset = Offset.sext(2 * BitWidth);
8409 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
8410 return;
8411 }
8412
8413 Offset = ResOffset;
8414 }
8415
8416 namespace {
8417
8418 // This is a wrapper class around StringLiteral to support offsetted string
8419 // literals as format strings. It takes the offset into account when returning
8420 // the string and its length or the source locations to display notes correctly.
8421 class FormatStringLiteral {
8422 const StringLiteral *FExpr;
8423 int64_t Offset;
8424
8425 public:
FormatStringLiteral(const StringLiteral * fexpr,int64_t Offset=0)8426 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
8427 : FExpr(fexpr), Offset(Offset) {}
8428
getString() const8429 StringRef getString() const {
8430 return FExpr->getString().drop_front(Offset);
8431 }
8432
getByteLength() const8433 unsigned getByteLength() const {
8434 return FExpr->getByteLength() - getCharByteWidth() * Offset;
8435 }
8436
getLength() const8437 unsigned getLength() const { return FExpr->getLength() - Offset; }
getCharByteWidth() const8438 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
8439
getKind() const8440 StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
8441
getType() const8442 QualType getType() const { return FExpr->getType(); }
8443
isAscii() const8444 bool isAscii() const { return FExpr->isOrdinary(); }
isWide() const8445 bool isWide() const { return FExpr->isWide(); }
isUTF8() const8446 bool isUTF8() const { return FExpr->isUTF8(); }
isUTF16() const8447 bool isUTF16() const { return FExpr->isUTF16(); }
isUTF32() const8448 bool isUTF32() const { return FExpr->isUTF32(); }
isPascal() const8449 bool isPascal() const { return FExpr->isPascal(); }
8450
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken=nullptr,unsigned * StartTokenByteOffset=nullptr) const8451 SourceLocation getLocationOfByte(
8452 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
8453 const TargetInfo &Target, unsigned *StartToken = nullptr,
8454 unsigned *StartTokenByteOffset = nullptr) const {
8455 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
8456 StartToken, StartTokenByteOffset);
8457 }
8458
getBeginLoc() const8459 SourceLocation getBeginLoc() const LLVM_READONLY {
8460 return FExpr->getBeginLoc().getLocWithOffset(Offset);
8461 }
8462
getEndLoc() const8463 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
8464 };
8465
8466 } // namespace
8467
8468 static void CheckFormatString(
8469 Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
8470 ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
8471 unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
8472 bool inFunctionCall, Sema::VariadicCallType CallType,
8473 llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
8474 bool IgnoreStringsWithoutSpecifiers);
8475
8476 // Determine if an expression is a string literal or constant string.
8477 // If this function returns false on the arguments to a function expecting a
8478 // format string, we will usually need to emit a warning.
8479 // True string literals are then checked by CheckFormatString.
8480 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,llvm::APSInt Offset,bool IgnoreStringsWithoutSpecifiers=false)8481 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
8482 Sema::FormatArgumentPassingKind APK, unsigned format_idx,
8483 unsigned firstDataArg, Sema::FormatStringType Type,
8484 Sema::VariadicCallType CallType, bool InFunctionCall,
8485 llvm::SmallBitVector &CheckedVarArgs,
8486 UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
8487 bool IgnoreStringsWithoutSpecifiers = false) {
8488 if (S.isConstantEvaluated())
8489 return SLCT_NotALiteral;
8490 tryAgain:
8491 assert(Offset.isSigned() && "invalid offset");
8492
8493 if (E->isTypeDependent() || E->isValueDependent())
8494 return SLCT_NotALiteral;
8495
8496 E = E->IgnoreParenCasts();
8497
8498 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
8499 // Technically -Wformat-nonliteral does not warn about this case.
8500 // The behavior of printf and friends in this case is implementation
8501 // dependent. Ideally if the format string cannot be null then
8502 // it should have a 'nonnull' attribute in the function prototype.
8503 return SLCT_UncheckedLiteral;
8504
8505 switch (E->getStmtClass()) {
8506 case Stmt::BinaryConditionalOperatorClass:
8507 case Stmt::ConditionalOperatorClass: {
8508 // The expression is a literal if both sub-expressions were, and it was
8509 // completely checked only if both sub-expressions were checked.
8510 const AbstractConditionalOperator *C =
8511 cast<AbstractConditionalOperator>(E);
8512
8513 // Determine whether it is necessary to check both sub-expressions, for
8514 // example, because the condition expression is a constant that can be
8515 // evaluated at compile time.
8516 bool CheckLeft = true, CheckRight = true;
8517
8518 bool Cond;
8519 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
8520 S.isConstantEvaluated())) {
8521 if (Cond)
8522 CheckRight = false;
8523 else
8524 CheckLeft = false;
8525 }
8526
8527 // We need to maintain the offsets for the right and the left hand side
8528 // separately to check if every possible indexed expression is a valid
8529 // string literal. They might have different offsets for different string
8530 // literals in the end.
8531 StringLiteralCheckType Left;
8532 if (!CheckLeft)
8533 Left = SLCT_UncheckedLiteral;
8534 else {
8535 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
8536 firstDataArg, Type, CallType, InFunctionCall,
8537 CheckedVarArgs, UncoveredArg, Offset,
8538 IgnoreStringsWithoutSpecifiers);
8539 if (Left == SLCT_NotALiteral || !CheckRight) {
8540 return Left;
8541 }
8542 }
8543
8544 StringLiteralCheckType Right = checkFormatStringExpr(
8545 S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
8546 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8547 IgnoreStringsWithoutSpecifiers);
8548
8549 return (CheckLeft && Left < Right) ? Left : Right;
8550 }
8551
8552 case Stmt::ImplicitCastExprClass:
8553 E = cast<ImplicitCastExpr>(E)->getSubExpr();
8554 goto tryAgain;
8555
8556 case Stmt::OpaqueValueExprClass:
8557 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
8558 E = src;
8559 goto tryAgain;
8560 }
8561 return SLCT_NotALiteral;
8562
8563 case Stmt::PredefinedExprClass:
8564 // While __func__, etc., are technically not string literals, they
8565 // cannot contain format specifiers and thus are not a security
8566 // liability.
8567 return SLCT_UncheckedLiteral;
8568
8569 case Stmt::DeclRefExprClass: {
8570 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8571
8572 // As an exception, do not flag errors for variables binding to
8573 // const string literals.
8574 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
8575 bool isConstant = false;
8576 QualType T = DR->getType();
8577
8578 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
8579 isConstant = AT->getElementType().isConstant(S.Context);
8580 } else if (const PointerType *PT = T->getAs<PointerType>()) {
8581 isConstant = T.isConstant(S.Context) &&
8582 PT->getPointeeType().isConstant(S.Context);
8583 } else if (T->isObjCObjectPointerType()) {
8584 // In ObjC, there is usually no "const ObjectPointer" type,
8585 // so don't check if the pointee type is constant.
8586 isConstant = T.isConstant(S.Context);
8587 }
8588
8589 if (isConstant) {
8590 if (const Expr *Init = VD->getAnyInitializer()) {
8591 // Look through initializers like const char c[] = { "foo" }
8592 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
8593 if (InitList->isStringLiteralInit())
8594 Init = InitList->getInit(0)->IgnoreParenImpCasts();
8595 }
8596 return checkFormatStringExpr(
8597 S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
8598 /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
8599 }
8600 }
8601
8602 // When the format argument is an argument of this function, and this
8603 // function also has the format attribute, there are several interactions
8604 // for which there shouldn't be a warning. For instance, when calling
8605 // v*printf from a function that has the printf format attribute, we
8606 // should not emit a warning about using `fmt`, even though it's not
8607 // constant, because the arguments have already been checked for the
8608 // caller of `logmessage`:
8609 //
8610 // __attribute__((format(printf, 1, 2)))
8611 // void logmessage(char const *fmt, ...) {
8612 // va_list ap;
8613 // va_start(ap, fmt);
8614 // vprintf(fmt, ap); /* do not emit a warning about "fmt" */
8615 // ...
8616 // }
8617 //
8618 // Another interaction that we need to support is calling a variadic
8619 // format function from a format function that has fixed arguments. For
8620 // instance:
8621 //
8622 // __attribute__((format(printf, 1, 2)))
8623 // void logstring(char const *fmt, char const *str) {
8624 // printf(fmt, str); /* do not emit a warning about "fmt" */
8625 // }
8626 //
8627 // Same (and perhaps more relatably) for the variadic template case:
8628 //
8629 // template<typename... Args>
8630 // __attribute__((format(printf, 1, 2)))
8631 // void log(const char *fmt, Args&&... args) {
8632 // printf(fmt, forward<Args>(args)...);
8633 // /* do not emit a warning about "fmt" */
8634 // }
8635 //
8636 // Due to implementation difficulty, we only check the format, not the
8637 // format arguments, in all cases.
8638 //
8639 if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
8640 if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
8641 for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
8642 bool IsCXXMember = false;
8643 if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
8644 IsCXXMember = MD->isInstance();
8645
8646 bool IsVariadic = false;
8647 if (const FunctionType *FnTy = D->getFunctionType())
8648 IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
8649 else if (const auto *BD = dyn_cast<BlockDecl>(D))
8650 IsVariadic = BD->isVariadic();
8651 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
8652 IsVariadic = OMD->isVariadic();
8653
8654 Sema::FormatStringInfo CallerFSI;
8655 if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
8656 &CallerFSI)) {
8657 // We also check if the formats are compatible.
8658 // We can't pass a 'scanf' string to a 'printf' function.
8659 if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
8660 Type == S.GetFormatStringType(PVFormat)) {
8661 // Lastly, check that argument passing kinds transition in a
8662 // way that makes sense:
8663 // from a caller with FAPK_VAList, allow FAPK_VAList
8664 // from a caller with FAPK_Fixed, allow FAPK_Fixed
8665 // from a caller with FAPK_Fixed, allow FAPK_Variadic
8666 // from a caller with FAPK_Variadic, allow FAPK_VAList
8667 switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
8668 case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
8669 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
8670 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
8671 case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
8672 return SLCT_UncheckedLiteral;
8673 }
8674 }
8675 }
8676 }
8677 }
8678 }
8679 }
8680
8681 return SLCT_NotALiteral;
8682 }
8683
8684 case Stmt::CallExprClass:
8685 case Stmt::CXXMemberCallExprClass: {
8686 const CallExpr *CE = cast<CallExpr>(E);
8687 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
8688 bool IsFirst = true;
8689 StringLiteralCheckType CommonResult;
8690 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
8691 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
8692 StringLiteralCheckType Result = checkFormatStringExpr(
8693 S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8694 InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8695 IgnoreStringsWithoutSpecifiers);
8696 if (IsFirst) {
8697 CommonResult = Result;
8698 IsFirst = false;
8699 }
8700 }
8701 if (!IsFirst)
8702 return CommonResult;
8703
8704 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
8705 unsigned BuiltinID = FD->getBuiltinID();
8706 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
8707 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
8708 const Expr *Arg = CE->getArg(0);
8709 return checkFormatStringExpr(
8710 S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8711 InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8712 IgnoreStringsWithoutSpecifiers);
8713 }
8714 }
8715 }
8716
8717 return SLCT_NotALiteral;
8718 }
8719 case Stmt::ObjCMessageExprClass: {
8720 const auto *ME = cast<ObjCMessageExpr>(E);
8721 if (const auto *MD = ME->getMethodDecl()) {
8722 if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
8723 // As a special case heuristic, if we're using the method -[NSBundle
8724 // localizedStringForKey:value:table:], ignore any key strings that lack
8725 // format specifiers. The idea is that if the key doesn't have any
8726 // format specifiers then its probably just a key to map to the
8727 // localized strings. If it does have format specifiers though, then its
8728 // likely that the text of the key is the format string in the
8729 // programmer's language, and should be checked.
8730 const ObjCInterfaceDecl *IFace;
8731 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
8732 IFace->getIdentifier()->isStr("NSBundle") &&
8733 MD->getSelector().isKeywordSelector(
8734 {"localizedStringForKey", "value", "table"})) {
8735 IgnoreStringsWithoutSpecifiers = true;
8736 }
8737
8738 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8739 return checkFormatStringExpr(
8740 S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8741 InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8742 IgnoreStringsWithoutSpecifiers);
8743 }
8744 }
8745
8746 return SLCT_NotALiteral;
8747 }
8748 case Stmt::ObjCStringLiteralClass:
8749 case Stmt::StringLiteralClass: {
8750 const StringLiteral *StrE = nullptr;
8751
8752 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8753 StrE = ObjCFExpr->getString();
8754 else
8755 StrE = cast<StringLiteral>(E);
8756
8757 if (StrE) {
8758 if (Offset.isNegative() || Offset > StrE->getLength()) {
8759 // TODO: It would be better to have an explicit warning for out of
8760 // bounds literals.
8761 return SLCT_NotALiteral;
8762 }
8763 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8764 CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
8765 InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
8766 IgnoreStringsWithoutSpecifiers);
8767 return SLCT_CheckedLiteral;
8768 }
8769
8770 return SLCT_NotALiteral;
8771 }
8772 case Stmt::BinaryOperatorClass: {
8773 const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8774
8775 // A string literal + an int offset is still a string literal.
8776 if (BinOp->isAdditiveOp()) {
8777 Expr::EvalResult LResult, RResult;
8778
8779 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8780 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8781 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8782 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8783
8784 if (LIsInt != RIsInt) {
8785 BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8786
8787 if (LIsInt) {
8788 if (BinOpKind == BO_Add) {
8789 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8790 E = BinOp->getRHS();
8791 goto tryAgain;
8792 }
8793 } else {
8794 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8795 E = BinOp->getLHS();
8796 goto tryAgain;
8797 }
8798 }
8799 }
8800
8801 return SLCT_NotALiteral;
8802 }
8803 case Stmt::UnaryOperatorClass: {
8804 const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8805 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8806 if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8807 Expr::EvalResult IndexResult;
8808 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8809 Expr::SE_NoSideEffects,
8810 S.isConstantEvaluated())) {
8811 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8812 /*RHS is int*/ true);
8813 E = ASE->getBase();
8814 goto tryAgain;
8815 }
8816 }
8817
8818 return SLCT_NotALiteral;
8819 }
8820
8821 default:
8822 return SLCT_NotALiteral;
8823 }
8824 }
8825
GetFormatStringType(const FormatAttr * Format)8826 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8827 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8828 .Case("scanf", FST_Scanf)
8829 .Cases("printf", "printf0", FST_Printf)
8830 .Cases("NSString", "CFString", FST_NSString)
8831 .Case("strftime", FST_Strftime)
8832 .Case("strfmon", FST_Strfmon)
8833 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8834 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8835 .Case("os_trace", FST_OSLog)
8836 .Case("os_log", FST_OSLog)
8837 .Default(FST_Unknown);
8838 }
8839
8840 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8841 /// functions) for correct use of format strings.
8842 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)8843 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8844 ArrayRef<const Expr *> Args, bool IsCXXMember,
8845 VariadicCallType CallType, SourceLocation Loc,
8846 SourceRange Range,
8847 llvm::SmallBitVector &CheckedVarArgs) {
8848 FormatStringInfo FSI;
8849 if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
8850 &FSI))
8851 return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
8852 FSI.FirstDataArg, GetFormatStringType(Format),
8853 CallType, Loc, Range, CheckedVarArgs);
8854 return false;
8855 }
8856
CheckFormatArguments(ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)8857 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8858 Sema::FormatArgumentPassingKind APK,
8859 unsigned format_idx, unsigned firstDataArg,
8860 FormatStringType Type,
8861 VariadicCallType CallType, SourceLocation Loc,
8862 SourceRange Range,
8863 llvm::SmallBitVector &CheckedVarArgs) {
8864 // CHECK: printf/scanf-like function is called with no format string.
8865 if (format_idx >= Args.size()) {
8866 Diag(Loc, diag::warn_missing_format_string) << Range;
8867 return false;
8868 }
8869
8870 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8871
8872 // CHECK: format string is not a string literal.
8873 //
8874 // Dynamically generated format strings are difficult to
8875 // automatically vet at compile time. Requiring that format strings
8876 // are string literals: (1) permits the checking of format strings by
8877 // the compiler and thereby (2) can practically remove the source of
8878 // many format string exploits.
8879
8880 // Format string can be either ObjC string (e.g. @"%d") or
8881 // C string (e.g. "%d")
8882 // ObjC string uses the same format specifiers as C string, so we can use
8883 // the same format string checking logic for both ObjC and C strings.
8884 UncoveredArgHandler UncoveredArg;
8885 StringLiteralCheckType CT = checkFormatStringExpr(
8886 *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
8887 CallType,
8888 /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
8889 /*no string offset*/ llvm::APSInt(64, false) = 0);
8890
8891 // Generate a diagnostic where an uncovered argument is detected.
8892 if (UncoveredArg.hasUncoveredArg()) {
8893 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8894 assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8895 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8896 }
8897
8898 if (CT != SLCT_NotALiteral)
8899 // Literal format string found, check done!
8900 return CT == SLCT_CheckedLiteral;
8901
8902 // Strftime is particular as it always uses a single 'time' argument,
8903 // so it is safe to pass a non-literal string.
8904 if (Type == FST_Strftime)
8905 return false;
8906
8907 // Do not emit diag when the string param is a macro expansion and the
8908 // format is either NSString or CFString. This is a hack to prevent
8909 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8910 // which are usually used in place of NS and CF string literals.
8911 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8912 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8913 return false;
8914
8915 // If there are no arguments specified, warn with -Wformat-security, otherwise
8916 // warn only with -Wformat-nonliteral.
8917 if (Args.size() == firstDataArg) {
8918 Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8919 << OrigFormatExpr->getSourceRange();
8920 switch (Type) {
8921 default:
8922 break;
8923 case FST_Kprintf:
8924 case FST_FreeBSDKPrintf:
8925 case FST_Printf:
8926 Diag(FormatLoc, diag::note_format_security_fixit)
8927 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8928 break;
8929 case FST_NSString:
8930 Diag(FormatLoc, diag::note_format_security_fixit)
8931 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8932 break;
8933 }
8934 } else {
8935 Diag(FormatLoc, diag::warn_format_nonliteral)
8936 << OrigFormatExpr->getSourceRange();
8937 }
8938 return false;
8939 }
8940
8941 namespace {
8942
8943 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8944 protected:
8945 Sema &S;
8946 const FormatStringLiteral *FExpr;
8947 const Expr *OrigFormatExpr;
8948 const Sema::FormatStringType FSType;
8949 const unsigned FirstDataArg;
8950 const unsigned NumDataArgs;
8951 const char *Beg; // Start of format string.
8952 const Sema::FormatArgumentPassingKind ArgPassingKind;
8953 ArrayRef<const Expr *> Args;
8954 unsigned FormatIdx;
8955 llvm::SmallBitVector CoveredArgs;
8956 bool usesPositionalArgs = false;
8957 bool atFirstArg = true;
8958 bool inFunctionCall;
8959 Sema::VariadicCallType CallType;
8960 llvm::SmallBitVector &CheckedVarArgs;
8961 UncoveredArgHandler &UncoveredArg;
8962
8963 public:
CheckFormatHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)8964 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8965 const Expr *origFormatExpr,
8966 const Sema::FormatStringType type, unsigned firstDataArg,
8967 unsigned numDataArgs, const char *beg,
8968 Sema::FormatArgumentPassingKind APK,
8969 ArrayRef<const Expr *> Args, unsigned formatIdx,
8970 bool inFunctionCall, Sema::VariadicCallType callType,
8971 llvm::SmallBitVector &CheckedVarArgs,
8972 UncoveredArgHandler &UncoveredArg)
8973 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8974 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8975 ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
8976 inFunctionCall(inFunctionCall), CallType(callType),
8977 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8978 CoveredArgs.resize(numDataArgs);
8979 CoveredArgs.reset();
8980 }
8981
8982 void DoneProcessing();
8983
8984 void HandleIncompleteSpecifier(const char *startSpecifier,
8985 unsigned specifierLen) override;
8986
8987 void HandleInvalidLengthModifier(
8988 const analyze_format_string::FormatSpecifier &FS,
8989 const analyze_format_string::ConversionSpecifier &CS,
8990 const char *startSpecifier, unsigned specifierLen,
8991 unsigned DiagID);
8992
8993 void HandleNonStandardLengthModifier(
8994 const analyze_format_string::FormatSpecifier &FS,
8995 const char *startSpecifier, unsigned specifierLen);
8996
8997 void HandleNonStandardConversionSpecifier(
8998 const analyze_format_string::ConversionSpecifier &CS,
8999 const char *startSpecifier, unsigned specifierLen);
9000
9001 void HandlePosition(const char *startPos, unsigned posLen) override;
9002
9003 void HandleInvalidPosition(const char *startSpecifier,
9004 unsigned specifierLen,
9005 analyze_format_string::PositionContext p) override;
9006
9007 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
9008
9009 void HandleNullChar(const char *nullCharacter) override;
9010
9011 template <typename Range>
9012 static void
9013 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
9014 const PartialDiagnostic &PDiag, SourceLocation StringLoc,
9015 bool IsStringLocation, Range StringRange,
9016 ArrayRef<FixItHint> Fixit = None);
9017
9018 protected:
9019 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
9020 const char *startSpec,
9021 unsigned specifierLen,
9022 const char *csStart, unsigned csLen);
9023
9024 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
9025 const char *startSpec,
9026 unsigned specifierLen);
9027
9028 SourceRange getFormatStringRange();
9029 CharSourceRange getSpecifierRange(const char *startSpecifier,
9030 unsigned specifierLen);
9031 SourceLocation getLocationOfByte(const char *x);
9032
9033 const Expr *getDataArg(unsigned i) const;
9034
9035 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
9036 const analyze_format_string::ConversionSpecifier &CS,
9037 const char *startSpecifier, unsigned specifierLen,
9038 unsigned argIndex);
9039
9040 template <typename Range>
9041 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
9042 bool IsStringLocation, Range StringRange,
9043 ArrayRef<FixItHint> Fixit = None);
9044 };
9045
9046 } // namespace
9047
getFormatStringRange()9048 SourceRange CheckFormatHandler::getFormatStringRange() {
9049 return OrigFormatExpr->getSourceRange();
9050 }
9051
9052 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)9053 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
9054 SourceLocation Start = getLocationOfByte(startSpecifier);
9055 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
9056
9057 // Advance the end SourceLocation by one due to half-open ranges.
9058 End = End.getLocWithOffset(1);
9059
9060 return CharSourceRange::getCharRange(Start, End);
9061 }
9062
getLocationOfByte(const char * x)9063 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
9064 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
9065 S.getLangOpts(), S.Context.getTargetInfo());
9066 }
9067
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)9068 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
9069 unsigned specifierLen){
9070 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
9071 getLocationOfByte(startSpecifier),
9072 /*IsStringLocation*/true,
9073 getSpecifierRange(startSpecifier, specifierLen));
9074 }
9075
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)9076 void CheckFormatHandler::HandleInvalidLengthModifier(
9077 const analyze_format_string::FormatSpecifier &FS,
9078 const analyze_format_string::ConversionSpecifier &CS,
9079 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
9080 using namespace analyze_format_string;
9081
9082 const LengthModifier &LM = FS.getLengthModifier();
9083 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
9084
9085 // See if we know how to fix this length modifier.
9086 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
9087 if (FixedLM) {
9088 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
9089 getLocationOfByte(LM.getStart()),
9090 /*IsStringLocation*/true,
9091 getSpecifierRange(startSpecifier, specifierLen));
9092
9093 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
9094 << FixedLM->toString()
9095 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
9096
9097 } else {
9098 FixItHint Hint;
9099 if (DiagID == diag::warn_format_nonsensical_length)
9100 Hint = FixItHint::CreateRemoval(LMRange);
9101
9102 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
9103 getLocationOfByte(LM.getStart()),
9104 /*IsStringLocation*/true,
9105 getSpecifierRange(startSpecifier, specifierLen),
9106 Hint);
9107 }
9108 }
9109
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)9110 void CheckFormatHandler::HandleNonStandardLengthModifier(
9111 const analyze_format_string::FormatSpecifier &FS,
9112 const char *startSpecifier, unsigned specifierLen) {
9113 using namespace analyze_format_string;
9114
9115 const LengthModifier &LM = FS.getLengthModifier();
9116 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
9117
9118 // See if we know how to fix this length modifier.
9119 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
9120 if (FixedLM) {
9121 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9122 << LM.toString() << 0,
9123 getLocationOfByte(LM.getStart()),
9124 /*IsStringLocation*/true,
9125 getSpecifierRange(startSpecifier, specifierLen));
9126
9127 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
9128 << FixedLM->toString()
9129 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
9130
9131 } else {
9132 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9133 << LM.toString() << 0,
9134 getLocationOfByte(LM.getStart()),
9135 /*IsStringLocation*/true,
9136 getSpecifierRange(startSpecifier, specifierLen));
9137 }
9138 }
9139
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)9140 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
9141 const analyze_format_string::ConversionSpecifier &CS,
9142 const char *startSpecifier, unsigned specifierLen) {
9143 using namespace analyze_format_string;
9144
9145 // See if we know how to fix this conversion specifier.
9146 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
9147 if (FixedCS) {
9148 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9149 << CS.toString() << /*conversion specifier*/1,
9150 getLocationOfByte(CS.getStart()),
9151 /*IsStringLocation*/true,
9152 getSpecifierRange(startSpecifier, specifierLen));
9153
9154 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
9155 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
9156 << FixedCS->toString()
9157 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
9158 } else {
9159 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9160 << CS.toString() << /*conversion specifier*/1,
9161 getLocationOfByte(CS.getStart()),
9162 /*IsStringLocation*/true,
9163 getSpecifierRange(startSpecifier, specifierLen));
9164 }
9165 }
9166
HandlePosition(const char * startPos,unsigned posLen)9167 void CheckFormatHandler::HandlePosition(const char *startPos,
9168 unsigned posLen) {
9169 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
9170 getLocationOfByte(startPos),
9171 /*IsStringLocation*/true,
9172 getSpecifierRange(startPos, posLen));
9173 }
9174
9175 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)9176 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
9177 analyze_format_string::PositionContext p) {
9178 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
9179 << (unsigned) p,
9180 getLocationOfByte(startPos), /*IsStringLocation*/true,
9181 getSpecifierRange(startPos, posLen));
9182 }
9183
HandleZeroPosition(const char * startPos,unsigned posLen)9184 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
9185 unsigned posLen) {
9186 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
9187 getLocationOfByte(startPos),
9188 /*IsStringLocation*/true,
9189 getSpecifierRange(startPos, posLen));
9190 }
9191
HandleNullChar(const char * nullCharacter)9192 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
9193 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
9194 // The presence of a null character is likely an error.
9195 EmitFormatDiagnostic(
9196 S.PDiag(diag::warn_printf_format_string_contains_null_char),
9197 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
9198 getFormatStringRange());
9199 }
9200 }
9201
9202 // Note that this may return NULL if there was an error parsing or building
9203 // one of the argument expressions.
getDataArg(unsigned i) const9204 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
9205 return Args[FirstDataArg + i];
9206 }
9207
DoneProcessing()9208 void CheckFormatHandler::DoneProcessing() {
9209 // Does the number of data arguments exceed the number of
9210 // format conversions in the format string?
9211 if (ArgPassingKind != Sema::FAPK_VAList) {
9212 // Find any arguments that weren't covered.
9213 CoveredArgs.flip();
9214 signed notCoveredArg = CoveredArgs.find_first();
9215 if (notCoveredArg >= 0) {
9216 assert((unsigned)notCoveredArg < NumDataArgs);
9217 UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
9218 } else {
9219 UncoveredArg.setAllCovered();
9220 }
9221 }
9222 }
9223
Diagnose(Sema & S,bool IsFunctionCall,const Expr * ArgExpr)9224 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
9225 const Expr *ArgExpr) {
9226 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
9227 "Invalid state");
9228
9229 if (!ArgExpr)
9230 return;
9231
9232 SourceLocation Loc = ArgExpr->getBeginLoc();
9233
9234 if (S.getSourceManager().isInSystemMacro(Loc))
9235 return;
9236
9237 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
9238 for (auto E : DiagnosticExprs)
9239 PDiag << E->getSourceRange();
9240
9241 CheckFormatHandler::EmitFormatDiagnostic(
9242 S, IsFunctionCall, DiagnosticExprs[0],
9243 PDiag, Loc, /*IsStringLocation*/false,
9244 DiagnosticExprs[0]->getSourceRange());
9245 }
9246
9247 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)9248 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
9249 SourceLocation Loc,
9250 const char *startSpec,
9251 unsigned specifierLen,
9252 const char *csStart,
9253 unsigned csLen) {
9254 bool keepGoing = true;
9255 if (argIndex < NumDataArgs) {
9256 // Consider the argument coverered, even though the specifier doesn't
9257 // make sense.
9258 CoveredArgs.set(argIndex);
9259 }
9260 else {
9261 // If argIndex exceeds the number of data arguments we
9262 // don't issue a warning because that is just a cascade of warnings (and
9263 // they may have intended '%%' anyway). We don't want to continue processing
9264 // the format string after this point, however, as we will like just get
9265 // gibberish when trying to match arguments.
9266 keepGoing = false;
9267 }
9268
9269 StringRef Specifier(csStart, csLen);
9270
9271 // If the specifier in non-printable, it could be the first byte of a UTF-8
9272 // sequence. In that case, print the UTF-8 code point. If not, print the byte
9273 // hex value.
9274 std::string CodePointStr;
9275 if (!llvm::sys::locale::isPrint(*csStart)) {
9276 llvm::UTF32 CodePoint;
9277 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
9278 const llvm::UTF8 *E =
9279 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
9280 llvm::ConversionResult Result =
9281 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
9282
9283 if (Result != llvm::conversionOK) {
9284 unsigned char FirstChar = *csStart;
9285 CodePoint = (llvm::UTF32)FirstChar;
9286 }
9287
9288 llvm::raw_string_ostream OS(CodePointStr);
9289 if (CodePoint < 256)
9290 OS << "\\x" << llvm::format("%02x", CodePoint);
9291 else if (CodePoint <= 0xFFFF)
9292 OS << "\\u" << llvm::format("%04x", CodePoint);
9293 else
9294 OS << "\\U" << llvm::format("%08x", CodePoint);
9295 OS.flush();
9296 Specifier = CodePointStr;
9297 }
9298
9299 EmitFormatDiagnostic(
9300 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
9301 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
9302
9303 return keepGoing;
9304 }
9305
9306 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)9307 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
9308 const char *startSpec,
9309 unsigned specifierLen) {
9310 EmitFormatDiagnostic(
9311 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
9312 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
9313 }
9314
9315 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)9316 CheckFormatHandler::CheckNumArgs(
9317 const analyze_format_string::FormatSpecifier &FS,
9318 const analyze_format_string::ConversionSpecifier &CS,
9319 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
9320
9321 if (argIndex >= NumDataArgs) {
9322 PartialDiagnostic PDiag = FS.usesPositionalArg()
9323 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
9324 << (argIndex+1) << NumDataArgs)
9325 : S.PDiag(diag::warn_printf_insufficient_data_args);
9326 EmitFormatDiagnostic(
9327 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
9328 getSpecifierRange(startSpecifier, specifierLen));
9329
9330 // Since more arguments than conversion tokens are given, by extension
9331 // all arguments are covered, so mark this as so.
9332 UncoveredArg.setAllCovered();
9333 return false;
9334 }
9335 return true;
9336 }
9337
9338 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)9339 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
9340 SourceLocation Loc,
9341 bool IsStringLocation,
9342 Range StringRange,
9343 ArrayRef<FixItHint> FixIt) {
9344 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
9345 Loc, IsStringLocation, StringRange, FixIt);
9346 }
9347
9348 /// If the format string is not within the function call, emit a note
9349 /// so that the function call and string are in diagnostic messages.
9350 ///
9351 /// \param InFunctionCall if true, the format string is within the function
9352 /// call and only one diagnostic message will be produced. Otherwise, an
9353 /// extra note will be emitted pointing to location of the format string.
9354 ///
9355 /// \param ArgumentExpr the expression that is passed as the format string
9356 /// argument in the function call. Used for getting locations when two
9357 /// diagnostics are emitted.
9358 ///
9359 /// \param PDiag the callee should already have provided any strings for the
9360 /// diagnostic message. This function only adds locations and fixits
9361 /// to diagnostics.
9362 ///
9363 /// \param Loc primary location for diagnostic. If two diagnostics are
9364 /// required, one will be at Loc and a new SourceLocation will be created for
9365 /// the other one.
9366 ///
9367 /// \param IsStringLocation if true, Loc points to the format string should be
9368 /// used for the note. Otherwise, Loc points to the argument list and will
9369 /// be used with PDiag.
9370 ///
9371 /// \param StringRange some or all of the string to highlight. This is
9372 /// templated so it can accept either a CharSourceRange or a SourceRange.
9373 ///
9374 /// \param FixIt optional fix it hint for the format string.
9375 template <typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,const PartialDiagnostic & PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)9376 void CheckFormatHandler::EmitFormatDiagnostic(
9377 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
9378 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
9379 Range StringRange, ArrayRef<FixItHint> FixIt) {
9380 if (InFunctionCall) {
9381 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
9382 D << StringRange;
9383 D << FixIt;
9384 } else {
9385 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
9386 << ArgumentExpr->getSourceRange();
9387
9388 const Sema::SemaDiagnosticBuilder &Note =
9389 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
9390 diag::note_format_string_defined);
9391
9392 Note << StringRange;
9393 Note << FixIt;
9394 }
9395 }
9396
9397 //===--- CHECK: Printf format string checking ------------------------------===//
9398
9399 namespace {
9400
9401 class CheckPrintfHandler : public CheckFormatHandler {
9402 public:
CheckPrintfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)9403 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
9404 const Expr *origFormatExpr,
9405 const Sema::FormatStringType type, unsigned firstDataArg,
9406 unsigned numDataArgs, bool isObjC, const char *beg,
9407 Sema::FormatArgumentPassingKind APK,
9408 ArrayRef<const Expr *> Args, unsigned formatIdx,
9409 bool inFunctionCall, Sema::VariadicCallType CallType,
9410 llvm::SmallBitVector &CheckedVarArgs,
9411 UncoveredArgHandler &UncoveredArg)
9412 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9413 numDataArgs, beg, APK, Args, formatIdx,
9414 inFunctionCall, CallType, CheckedVarArgs,
9415 UncoveredArg) {}
9416
isObjCContext() const9417 bool isObjCContext() const { return FSType == Sema::FST_NSString; }
9418
9419 /// Returns true if '%@' specifiers are allowed in the format string.
allowsObjCArg() const9420 bool allowsObjCArg() const {
9421 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
9422 FSType == Sema::FST_OSTrace;
9423 }
9424
9425 bool HandleInvalidPrintfConversionSpecifier(
9426 const analyze_printf::PrintfSpecifier &FS,
9427 const char *startSpecifier,
9428 unsigned specifierLen) override;
9429
9430 void handleInvalidMaskType(StringRef MaskType) override;
9431
9432 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
9433 const char *startSpecifier, unsigned specifierLen,
9434 const TargetInfo &Target) override;
9435 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9436 const char *StartSpecifier,
9437 unsigned SpecifierLen,
9438 const Expr *E);
9439
9440 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
9441 const char *startSpecifier, unsigned specifierLen);
9442 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
9443 const analyze_printf::OptionalAmount &Amt,
9444 unsigned type,
9445 const char *startSpecifier, unsigned specifierLen);
9446 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9447 const analyze_printf::OptionalFlag &flag,
9448 const char *startSpecifier, unsigned specifierLen);
9449 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
9450 const analyze_printf::OptionalFlag &ignoredFlag,
9451 const analyze_printf::OptionalFlag &flag,
9452 const char *startSpecifier, unsigned specifierLen);
9453 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
9454 const Expr *E);
9455
9456 void HandleEmptyObjCModifierFlag(const char *startFlag,
9457 unsigned flagLen) override;
9458
9459 void HandleInvalidObjCModifierFlag(const char *startFlag,
9460 unsigned flagLen) override;
9461
9462 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
9463 const char *flagsEnd,
9464 const char *conversionPosition)
9465 override;
9466 };
9467
9468 } // namespace
9469
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)9470 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
9471 const analyze_printf::PrintfSpecifier &FS,
9472 const char *startSpecifier,
9473 unsigned specifierLen) {
9474 const analyze_printf::PrintfConversionSpecifier &CS =
9475 FS.getConversionSpecifier();
9476
9477 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9478 getLocationOfByte(CS.getStart()),
9479 startSpecifier, specifierLen,
9480 CS.getStart(), CS.getLength());
9481 }
9482
handleInvalidMaskType(StringRef MaskType)9483 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
9484 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
9485 }
9486
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)9487 bool CheckPrintfHandler::HandleAmount(
9488 const analyze_format_string::OptionalAmount &Amt, unsigned k,
9489 const char *startSpecifier, unsigned specifierLen) {
9490 if (Amt.hasDataArgument()) {
9491 if (ArgPassingKind != Sema::FAPK_VAList) {
9492 unsigned argIndex = Amt.getArgIndex();
9493 if (argIndex >= NumDataArgs) {
9494 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
9495 << k,
9496 getLocationOfByte(Amt.getStart()),
9497 /*IsStringLocation*/ true,
9498 getSpecifierRange(startSpecifier, specifierLen));
9499 // Don't do any more checking. We will just emit
9500 // spurious errors.
9501 return false;
9502 }
9503
9504 // Type check the data argument. It should be an 'int'.
9505 // Although not in conformance with C99, we also allow the argument to be
9506 // an 'unsigned int' as that is a reasonably safe case. GCC also
9507 // doesn't emit a warning for that case.
9508 CoveredArgs.set(argIndex);
9509 const Expr *Arg = getDataArg(argIndex);
9510 if (!Arg)
9511 return false;
9512
9513 QualType T = Arg->getType();
9514
9515 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
9516 assert(AT.isValid());
9517
9518 if (!AT.matchesType(S.Context, T)) {
9519 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
9520 << k << AT.getRepresentativeTypeName(S.Context)
9521 << T << Arg->getSourceRange(),
9522 getLocationOfByte(Amt.getStart()),
9523 /*IsStringLocation*/true,
9524 getSpecifierRange(startSpecifier, specifierLen));
9525 // Don't do any more checking. We will just emit
9526 // spurious errors.
9527 return false;
9528 }
9529 }
9530 }
9531 return true;
9532 }
9533
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)9534 void CheckPrintfHandler::HandleInvalidAmount(
9535 const analyze_printf::PrintfSpecifier &FS,
9536 const analyze_printf::OptionalAmount &Amt,
9537 unsigned type,
9538 const char *startSpecifier,
9539 unsigned specifierLen) {
9540 const analyze_printf::PrintfConversionSpecifier &CS =
9541 FS.getConversionSpecifier();
9542
9543 FixItHint fixit =
9544 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
9545 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
9546 Amt.getConstantLength()))
9547 : FixItHint();
9548
9549 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
9550 << type << CS.toString(),
9551 getLocationOfByte(Amt.getStart()),
9552 /*IsStringLocation*/true,
9553 getSpecifierRange(startSpecifier, specifierLen),
9554 fixit);
9555 }
9556
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)9557 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9558 const analyze_printf::OptionalFlag &flag,
9559 const char *startSpecifier,
9560 unsigned specifierLen) {
9561 // Warn about pointless flag with a fixit removal.
9562 const analyze_printf::PrintfConversionSpecifier &CS =
9563 FS.getConversionSpecifier();
9564 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
9565 << flag.toString() << CS.toString(),
9566 getLocationOfByte(flag.getPosition()),
9567 /*IsStringLocation*/true,
9568 getSpecifierRange(startSpecifier, specifierLen),
9569 FixItHint::CreateRemoval(
9570 getSpecifierRange(flag.getPosition(), 1)));
9571 }
9572
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)9573 void CheckPrintfHandler::HandleIgnoredFlag(
9574 const analyze_printf::PrintfSpecifier &FS,
9575 const analyze_printf::OptionalFlag &ignoredFlag,
9576 const analyze_printf::OptionalFlag &flag,
9577 const char *startSpecifier,
9578 unsigned specifierLen) {
9579 // Warn about ignored flag with a fixit removal.
9580 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
9581 << ignoredFlag.toString() << flag.toString(),
9582 getLocationOfByte(ignoredFlag.getPosition()),
9583 /*IsStringLocation*/true,
9584 getSpecifierRange(startSpecifier, specifierLen),
9585 FixItHint::CreateRemoval(
9586 getSpecifierRange(ignoredFlag.getPosition(), 1)));
9587 }
9588
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)9589 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
9590 unsigned flagLen) {
9591 // Warn about an empty flag.
9592 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
9593 getLocationOfByte(startFlag),
9594 /*IsStringLocation*/true,
9595 getSpecifierRange(startFlag, flagLen));
9596 }
9597
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)9598 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
9599 unsigned flagLen) {
9600 // Warn about an invalid flag.
9601 auto Range = getSpecifierRange(startFlag, flagLen);
9602 StringRef flag(startFlag, flagLen);
9603 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
9604 getLocationOfByte(startFlag),
9605 /*IsStringLocation*/true,
9606 Range, FixItHint::CreateRemoval(Range));
9607 }
9608
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)9609 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
9610 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
9611 // Warn about using '[...]' without a '@' conversion.
9612 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
9613 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
9614 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
9615 getLocationOfByte(conversionPosition),
9616 /*IsStringLocation*/true,
9617 Range, FixItHint::CreateRemoval(Range));
9618 }
9619
9620 // Determines if the specified is a C++ class or struct containing
9621 // a member with the specified name and kind (e.g. a CXXMethodDecl named
9622 // "c_str()").
9623 template<typename MemberKind>
9624 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)9625 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
9626 const RecordType *RT = Ty->getAs<RecordType>();
9627 llvm::SmallPtrSet<MemberKind*, 1> Results;
9628
9629 if (!RT)
9630 return Results;
9631 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
9632 if (!RD || !RD->getDefinition())
9633 return Results;
9634
9635 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
9636 Sema::LookupMemberName);
9637 R.suppressDiagnostics();
9638
9639 // We just need to include all members of the right kind turned up by the
9640 // filter, at this point.
9641 if (S.LookupQualifiedName(R, RT->getDecl()))
9642 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
9643 NamedDecl *decl = (*I)->getUnderlyingDecl();
9644 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
9645 Results.insert(FK);
9646 }
9647 return Results;
9648 }
9649
9650 /// Check if we could call '.c_str()' on an object.
9651 ///
9652 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
9653 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)9654 bool Sema::hasCStrMethod(const Expr *E) {
9655 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9656
9657 MethodSet Results =
9658 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
9659 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9660 MI != ME; ++MI)
9661 if ((*MI)->getMinRequiredArguments() == 0)
9662 return true;
9663 return false;
9664 }
9665
9666 // Check if a (w)string was passed when a (w)char* was needed, and offer a
9667 // better diagnostic if so. AT is assumed to be valid.
9668 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)9669 bool CheckPrintfHandler::checkForCStrMembers(
9670 const analyze_printf::ArgType &AT, const Expr *E) {
9671 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9672
9673 MethodSet Results =
9674 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
9675
9676 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9677 MI != ME; ++MI) {
9678 const CXXMethodDecl *Method = *MI;
9679 if (Method->getMinRequiredArguments() == 0 &&
9680 AT.matchesType(S.Context, Method->getReturnType())) {
9681 // FIXME: Suggest parens if the expression needs them.
9682 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
9683 S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
9684 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
9685 return true;
9686 }
9687 }
9688
9689 return false;
9690 }
9691
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen,const TargetInfo & Target)9692 bool CheckPrintfHandler::HandlePrintfSpecifier(
9693 const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
9694 unsigned specifierLen, const TargetInfo &Target) {
9695 using namespace analyze_format_string;
9696 using namespace analyze_printf;
9697
9698 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
9699
9700 if (FS.consumesDataArgument()) {
9701 if (atFirstArg) {
9702 atFirstArg = false;
9703 usesPositionalArgs = FS.usesPositionalArg();
9704 }
9705 else if (usesPositionalArgs != FS.usesPositionalArg()) {
9706 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9707 startSpecifier, specifierLen);
9708 return false;
9709 }
9710 }
9711
9712 // First check if the field width, precision, and conversion specifier
9713 // have matching data arguments.
9714 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
9715 startSpecifier, specifierLen)) {
9716 return false;
9717 }
9718
9719 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
9720 startSpecifier, specifierLen)) {
9721 return false;
9722 }
9723
9724 if (!CS.consumesDataArgument()) {
9725 // FIXME: Technically specifying a precision or field width here
9726 // makes no sense. Worth issuing a warning at some point.
9727 return true;
9728 }
9729
9730 // Consume the argument.
9731 unsigned argIndex = FS.getArgIndex();
9732 if (argIndex < NumDataArgs) {
9733 // The check to see if the argIndex is valid will come later.
9734 // We set the bit here because we may exit early from this
9735 // function if we encounter some other error.
9736 CoveredArgs.set(argIndex);
9737 }
9738
9739 // FreeBSD kernel extensions.
9740 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9741 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9742 // We need at least two arguments.
9743 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9744 return false;
9745
9746 // Claim the second argument.
9747 CoveredArgs.set(argIndex + 1);
9748
9749 // Type check the first argument (int for %b, pointer for %D)
9750 const Expr *Ex = getDataArg(argIndex);
9751 const analyze_printf::ArgType &AT =
9752 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9753 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9754 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9755 EmitFormatDiagnostic(
9756 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9757 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9758 << false << Ex->getSourceRange(),
9759 Ex->getBeginLoc(), /*IsStringLocation*/ false,
9760 getSpecifierRange(startSpecifier, specifierLen));
9761
9762 // Type check the second argument (char * for both %b and %D)
9763 Ex = getDataArg(argIndex + 1);
9764 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9765 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9766 EmitFormatDiagnostic(
9767 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9768 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9769 << false << Ex->getSourceRange(),
9770 Ex->getBeginLoc(), /*IsStringLocation*/ false,
9771 getSpecifierRange(startSpecifier, specifierLen));
9772
9773 return true;
9774 }
9775
9776 // Check for using an Objective-C specific conversion specifier
9777 // in a non-ObjC literal.
9778 if (!allowsObjCArg() && CS.isObjCArg()) {
9779 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9780 specifierLen);
9781 }
9782
9783 // %P can only be used with os_log.
9784 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9785 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9786 specifierLen);
9787 }
9788
9789 // %n is not allowed with os_log.
9790 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9791 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9792 getLocationOfByte(CS.getStart()),
9793 /*IsStringLocation*/ false,
9794 getSpecifierRange(startSpecifier, specifierLen));
9795
9796 return true;
9797 }
9798
9799 // Only scalars are allowed for os_trace.
9800 if (FSType == Sema::FST_OSTrace &&
9801 (CS.getKind() == ConversionSpecifier::PArg ||
9802 CS.getKind() == ConversionSpecifier::sArg ||
9803 CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9804 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9805 specifierLen);
9806 }
9807
9808 // Check for use of public/private annotation outside of os_log().
9809 if (FSType != Sema::FST_OSLog) {
9810 if (FS.isPublic().isSet()) {
9811 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9812 << "public",
9813 getLocationOfByte(FS.isPublic().getPosition()),
9814 /*IsStringLocation*/ false,
9815 getSpecifierRange(startSpecifier, specifierLen));
9816 }
9817 if (FS.isPrivate().isSet()) {
9818 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9819 << "private",
9820 getLocationOfByte(FS.isPrivate().getPosition()),
9821 /*IsStringLocation*/ false,
9822 getSpecifierRange(startSpecifier, specifierLen));
9823 }
9824 }
9825
9826 const llvm::Triple &Triple = Target.getTriple();
9827 if (CS.getKind() == ConversionSpecifier::nArg &&
9828 (Triple.isAndroid() || Triple.isOSFuchsia())) {
9829 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
9830 getLocationOfByte(CS.getStart()),
9831 /*IsStringLocation*/ false,
9832 getSpecifierRange(startSpecifier, specifierLen));
9833 }
9834
9835 // Check for invalid use of field width
9836 if (!FS.hasValidFieldWidth()) {
9837 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9838 startSpecifier, specifierLen);
9839 }
9840
9841 // Check for invalid use of precision
9842 if (!FS.hasValidPrecision()) {
9843 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9844 startSpecifier, specifierLen);
9845 }
9846
9847 // Precision is mandatory for %P specifier.
9848 if (CS.getKind() == ConversionSpecifier::PArg &&
9849 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9850 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9851 getLocationOfByte(startSpecifier),
9852 /*IsStringLocation*/ false,
9853 getSpecifierRange(startSpecifier, specifierLen));
9854 }
9855
9856 // Check each flag does not conflict with any other component.
9857 if (!FS.hasValidThousandsGroupingPrefix())
9858 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9859 if (!FS.hasValidLeadingZeros())
9860 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9861 if (!FS.hasValidPlusPrefix())
9862 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9863 if (!FS.hasValidSpacePrefix())
9864 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9865 if (!FS.hasValidAlternativeForm())
9866 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9867 if (!FS.hasValidLeftJustified())
9868 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9869
9870 // Check that flags are not ignored by another flag
9871 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9872 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9873 startSpecifier, specifierLen);
9874 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9875 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9876 startSpecifier, specifierLen);
9877
9878 // Check the length modifier is valid with the given conversion specifier.
9879 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9880 S.getLangOpts()))
9881 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9882 diag::warn_format_nonsensical_length);
9883 else if (!FS.hasStandardLengthModifier())
9884 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9885 else if (!FS.hasStandardLengthConversionCombination())
9886 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9887 diag::warn_format_non_standard_conversion_spec);
9888
9889 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9890 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9891
9892 // The remaining checks depend on the data arguments.
9893 if (ArgPassingKind == Sema::FAPK_VAList)
9894 return true;
9895
9896 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9897 return false;
9898
9899 const Expr *Arg = getDataArg(argIndex);
9900 if (!Arg)
9901 return true;
9902
9903 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9904 }
9905
requiresParensToAddCast(const Expr * E)9906 static bool requiresParensToAddCast(const Expr *E) {
9907 // FIXME: We should have a general way to reason about operator
9908 // precedence and whether parens are actually needed here.
9909 // Take care of a few common cases where they aren't.
9910 const Expr *Inside = E->IgnoreImpCasts();
9911 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9912 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9913
9914 switch (Inside->getStmtClass()) {
9915 case Stmt::ArraySubscriptExprClass:
9916 case Stmt::CallExprClass:
9917 case Stmt::CharacterLiteralClass:
9918 case Stmt::CXXBoolLiteralExprClass:
9919 case Stmt::DeclRefExprClass:
9920 case Stmt::FloatingLiteralClass:
9921 case Stmt::IntegerLiteralClass:
9922 case Stmt::MemberExprClass:
9923 case Stmt::ObjCArrayLiteralClass:
9924 case Stmt::ObjCBoolLiteralExprClass:
9925 case Stmt::ObjCBoxedExprClass:
9926 case Stmt::ObjCDictionaryLiteralClass:
9927 case Stmt::ObjCEncodeExprClass:
9928 case Stmt::ObjCIvarRefExprClass:
9929 case Stmt::ObjCMessageExprClass:
9930 case Stmt::ObjCPropertyRefExprClass:
9931 case Stmt::ObjCStringLiteralClass:
9932 case Stmt::ObjCSubscriptRefExprClass:
9933 case Stmt::ParenExprClass:
9934 case Stmt::StringLiteralClass:
9935 case Stmt::UnaryOperatorClass:
9936 return false;
9937 default:
9938 return true;
9939 }
9940 }
9941
9942 static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)9943 shouldNotPrintDirectly(const ASTContext &Context,
9944 QualType IntendedTy,
9945 const Expr *E) {
9946 // Use a 'while' to peel off layers of typedefs.
9947 QualType TyTy = IntendedTy;
9948 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9949 StringRef Name = UserTy->getDecl()->getName();
9950 QualType CastTy = llvm::StringSwitch<QualType>(Name)
9951 .Case("CFIndex", Context.getNSIntegerType())
9952 .Case("NSInteger", Context.getNSIntegerType())
9953 .Case("NSUInteger", Context.getNSUIntegerType())
9954 .Case("SInt32", Context.IntTy)
9955 .Case("UInt32", Context.UnsignedIntTy)
9956 .Default(QualType());
9957
9958 if (!CastTy.isNull())
9959 return std::make_pair(CastTy, Name);
9960
9961 TyTy = UserTy->desugar();
9962 }
9963
9964 // Strip parens if necessary.
9965 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9966 return shouldNotPrintDirectly(Context,
9967 PE->getSubExpr()->getType(),
9968 PE->getSubExpr());
9969
9970 // If this is a conditional expression, then its result type is constructed
9971 // via usual arithmetic conversions and thus there might be no necessary
9972 // typedef sugar there. Recurse to operands to check for NSInteger &
9973 // Co. usage condition.
9974 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9975 QualType TrueTy, FalseTy;
9976 StringRef TrueName, FalseName;
9977
9978 std::tie(TrueTy, TrueName) =
9979 shouldNotPrintDirectly(Context,
9980 CO->getTrueExpr()->getType(),
9981 CO->getTrueExpr());
9982 std::tie(FalseTy, FalseName) =
9983 shouldNotPrintDirectly(Context,
9984 CO->getFalseExpr()->getType(),
9985 CO->getFalseExpr());
9986
9987 if (TrueTy == FalseTy)
9988 return std::make_pair(TrueTy, TrueName);
9989 else if (TrueTy.isNull())
9990 return std::make_pair(FalseTy, FalseName);
9991 else if (FalseTy.isNull())
9992 return std::make_pair(TrueTy, TrueName);
9993 }
9994
9995 return std::make_pair(QualType(), StringRef());
9996 }
9997
9998 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9999 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
10000 /// type do not count.
10001 static bool
isArithmeticArgumentPromotion(Sema & S,const ImplicitCastExpr * ICE)10002 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
10003 QualType From = ICE->getSubExpr()->getType();
10004 QualType To = ICE->getType();
10005 // It's an integer promotion if the destination type is the promoted
10006 // source type.
10007 if (ICE->getCastKind() == CK_IntegralCast &&
10008 From->isPromotableIntegerType() &&
10009 S.Context.getPromotedIntegerType(From) == To)
10010 return true;
10011 // Look through vector types, since we do default argument promotion for
10012 // those in OpenCL.
10013 if (const auto *VecTy = From->getAs<ExtVectorType>())
10014 From = VecTy->getElementType();
10015 if (const auto *VecTy = To->getAs<ExtVectorType>())
10016 To = VecTy->getElementType();
10017 // It's a floating promotion if the source type is a lower rank.
10018 return ICE->getCastKind() == CK_FloatingCast &&
10019 S.Context.getFloatingTypeOrder(From, To) < 0;
10020 }
10021
10022 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)10023 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
10024 const char *StartSpecifier,
10025 unsigned SpecifierLen,
10026 const Expr *E) {
10027 using namespace analyze_format_string;
10028 using namespace analyze_printf;
10029
10030 // Now type check the data expression that matches the
10031 // format specifier.
10032 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
10033 if (!AT.isValid())
10034 return true;
10035
10036 QualType ExprTy = E->getType();
10037 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
10038 ExprTy = TET->getUnderlyingExpr()->getType();
10039 }
10040
10041 // When using the format attribute in C++, you can receive a function or an
10042 // array that will necessarily decay to a pointer when passed to the final
10043 // format consumer. Apply decay before type comparison.
10044 if (ExprTy->canDecayToPointerType())
10045 ExprTy = S.Context.getDecayedType(ExprTy);
10046
10047 // Diagnose attempts to print a boolean value as a character. Unlike other
10048 // -Wformat diagnostics, this is fine from a type perspective, but it still
10049 // doesn't make sense.
10050 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
10051 E->isKnownToHaveBooleanValue()) {
10052 const CharSourceRange &CSR =
10053 getSpecifierRange(StartSpecifier, SpecifierLen);
10054 SmallString<4> FSString;
10055 llvm::raw_svector_ostream os(FSString);
10056 FS.toString(os);
10057 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
10058 << FSString,
10059 E->getExprLoc(), false, CSR);
10060 return true;
10061 }
10062
10063 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
10064 if (Match == analyze_printf::ArgType::Match)
10065 return true;
10066
10067 // Look through argument promotions for our error message's reported type.
10068 // This includes the integral and floating promotions, but excludes array
10069 // and function pointer decay (seeing that an argument intended to be a
10070 // string has type 'char [6]' is probably more confusing than 'char *') and
10071 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
10072 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10073 if (isArithmeticArgumentPromotion(S, ICE)) {
10074 E = ICE->getSubExpr();
10075 ExprTy = E->getType();
10076
10077 // Check if we didn't match because of an implicit cast from a 'char'
10078 // or 'short' to an 'int'. This is done because printf is a varargs
10079 // function.
10080 if (ICE->getType() == S.Context.IntTy ||
10081 ICE->getType() == S.Context.UnsignedIntTy) {
10082 // All further checking is done on the subexpression
10083 const analyze_printf::ArgType::MatchKind ImplicitMatch =
10084 AT.matchesType(S.Context, ExprTy);
10085 if (ImplicitMatch == analyze_printf::ArgType::Match)
10086 return true;
10087 if (ImplicitMatch == ArgType::NoMatchPedantic ||
10088 ImplicitMatch == ArgType::NoMatchTypeConfusion)
10089 Match = ImplicitMatch;
10090 }
10091 }
10092 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
10093 // Special case for 'a', which has type 'int' in C.
10094 // Note, however, that we do /not/ want to treat multibyte constants like
10095 // 'MooV' as characters! This form is deprecated but still exists. In
10096 // addition, don't treat expressions as of type 'char' if one byte length
10097 // modifier is provided.
10098 if (ExprTy == S.Context.IntTy &&
10099 FS.getLengthModifier().getKind() != LengthModifier::AsChar)
10100 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
10101 ExprTy = S.Context.CharTy;
10102 }
10103
10104 // Look through enums to their underlying type.
10105 bool IsEnum = false;
10106 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
10107 ExprTy = EnumTy->getDecl()->getIntegerType();
10108 IsEnum = true;
10109 }
10110
10111 // %C in an Objective-C context prints a unichar, not a wchar_t.
10112 // If the argument is an integer of some kind, believe the %C and suggest
10113 // a cast instead of changing the conversion specifier.
10114 QualType IntendedTy = ExprTy;
10115 if (isObjCContext() &&
10116 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
10117 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
10118 !ExprTy->isCharType()) {
10119 // 'unichar' is defined as a typedef of unsigned short, but we should
10120 // prefer using the typedef if it is visible.
10121 IntendedTy = S.Context.UnsignedShortTy;
10122
10123 // While we are here, check if the value is an IntegerLiteral that happens
10124 // to be within the valid range.
10125 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
10126 const llvm::APInt &V = IL->getValue();
10127 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
10128 return true;
10129 }
10130
10131 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
10132 Sema::LookupOrdinaryName);
10133 if (S.LookupName(Result, S.getCurScope())) {
10134 NamedDecl *ND = Result.getFoundDecl();
10135 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
10136 if (TD->getUnderlyingType() == IntendedTy)
10137 IntendedTy = S.Context.getTypedefType(TD);
10138 }
10139 }
10140 }
10141
10142 // Special-case some of Darwin's platform-independence types by suggesting
10143 // casts to primitive types that are known to be large enough.
10144 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
10145 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
10146 QualType CastTy;
10147 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
10148 if (!CastTy.isNull()) {
10149 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
10150 // (long in ASTContext). Only complain to pedants.
10151 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
10152 (AT.isSizeT() || AT.isPtrdiffT()) &&
10153 AT.matchesType(S.Context, CastTy))
10154 Match = ArgType::NoMatchPedantic;
10155 IntendedTy = CastTy;
10156 ShouldNotPrintDirectly = true;
10157 }
10158 }
10159
10160 // We may be able to offer a FixItHint if it is a supported type.
10161 PrintfSpecifier fixedFS = FS;
10162 bool Success =
10163 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
10164
10165 if (Success) {
10166 // Get the fix string from the fixed format specifier
10167 SmallString<16> buf;
10168 llvm::raw_svector_ostream os(buf);
10169 fixedFS.toString(os);
10170
10171 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
10172
10173 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
10174 unsigned Diag;
10175 switch (Match) {
10176 case ArgType::Match: llvm_unreachable("expected non-matching");
10177 case ArgType::NoMatchPedantic:
10178 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
10179 break;
10180 case ArgType::NoMatchTypeConfusion:
10181 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
10182 break;
10183 case ArgType::NoMatch:
10184 Diag = diag::warn_format_conversion_argument_type_mismatch;
10185 break;
10186 }
10187
10188 // In this case, the specifier is wrong and should be changed to match
10189 // the argument.
10190 EmitFormatDiagnostic(S.PDiag(Diag)
10191 << AT.getRepresentativeTypeName(S.Context)
10192 << IntendedTy << IsEnum << E->getSourceRange(),
10193 E->getBeginLoc(),
10194 /*IsStringLocation*/ false, SpecRange,
10195 FixItHint::CreateReplacement(SpecRange, os.str()));
10196 } else {
10197 // The canonical type for formatting this value is different from the
10198 // actual type of the expression. (This occurs, for example, with Darwin's
10199 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
10200 // should be printed as 'long' for 64-bit compatibility.)
10201 // Rather than emitting a normal format/argument mismatch, we want to
10202 // add a cast to the recommended type (and correct the format string
10203 // if necessary).
10204 SmallString<16> CastBuf;
10205 llvm::raw_svector_ostream CastFix(CastBuf);
10206 CastFix << "(";
10207 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
10208 CastFix << ")";
10209
10210 SmallVector<FixItHint,4> Hints;
10211 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
10212 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
10213
10214 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
10215 // If there's already a cast present, just replace it.
10216 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
10217 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
10218
10219 } else if (!requiresParensToAddCast(E)) {
10220 // If the expression has high enough precedence,
10221 // just write the C-style cast.
10222 Hints.push_back(
10223 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
10224 } else {
10225 // Otherwise, add parens around the expression as well as the cast.
10226 CastFix << "(";
10227 Hints.push_back(
10228 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
10229
10230 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
10231 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
10232 }
10233
10234 if (ShouldNotPrintDirectly) {
10235 // The expression has a type that should not be printed directly.
10236 // We extract the name from the typedef because we don't want to show
10237 // the underlying type in the diagnostic.
10238 StringRef Name;
10239 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
10240 Name = TypedefTy->getDecl()->getName();
10241 else
10242 Name = CastTyName;
10243 unsigned Diag = Match == ArgType::NoMatchPedantic
10244 ? diag::warn_format_argument_needs_cast_pedantic
10245 : diag::warn_format_argument_needs_cast;
10246 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
10247 << E->getSourceRange(),
10248 E->getBeginLoc(), /*IsStringLocation=*/false,
10249 SpecRange, Hints);
10250 } else {
10251 // In this case, the expression could be printed using a different
10252 // specifier, but we've decided that the specifier is probably correct
10253 // and we should cast instead. Just use the normal warning message.
10254 EmitFormatDiagnostic(
10255 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
10256 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
10257 << E->getSourceRange(),
10258 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
10259 }
10260 }
10261 } else {
10262 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
10263 SpecifierLen);
10264 // Since the warning for passing non-POD types to variadic functions
10265 // was deferred until now, we emit a warning for non-POD
10266 // arguments here.
10267 bool EmitTypeMismatch = false;
10268 switch (S.isValidVarArgType(ExprTy)) {
10269 case Sema::VAK_Valid:
10270 case Sema::VAK_ValidInCXX11: {
10271 unsigned Diag;
10272 switch (Match) {
10273 case ArgType::Match: llvm_unreachable("expected non-matching");
10274 case ArgType::NoMatchPedantic:
10275 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
10276 break;
10277 case ArgType::NoMatchTypeConfusion:
10278 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
10279 break;
10280 case ArgType::NoMatch:
10281 Diag = diag::warn_format_conversion_argument_type_mismatch;
10282 break;
10283 }
10284
10285 EmitFormatDiagnostic(
10286 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
10287 << IsEnum << CSR << E->getSourceRange(),
10288 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10289 break;
10290 }
10291 case Sema::VAK_Undefined:
10292 case Sema::VAK_MSVCUndefined:
10293 if (CallType == Sema::VariadicDoesNotApply) {
10294 EmitTypeMismatch = true;
10295 } else {
10296 EmitFormatDiagnostic(
10297 S.PDiag(diag::warn_non_pod_vararg_with_format_string)
10298 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
10299 << AT.getRepresentativeTypeName(S.Context) << CSR
10300 << E->getSourceRange(),
10301 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10302 checkForCStrMembers(AT, E);
10303 }
10304 break;
10305
10306 case Sema::VAK_Invalid:
10307 if (CallType == Sema::VariadicDoesNotApply)
10308 EmitTypeMismatch = true;
10309 else if (ExprTy->isObjCObjectType())
10310 EmitFormatDiagnostic(
10311 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
10312 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
10313 << AT.getRepresentativeTypeName(S.Context) << CSR
10314 << E->getSourceRange(),
10315 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10316 else
10317 // FIXME: If this is an initializer list, suggest removing the braces
10318 // or inserting a cast to the target type.
10319 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
10320 << isa<InitListExpr>(E) << ExprTy << CallType
10321 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
10322 break;
10323 }
10324
10325 if (EmitTypeMismatch) {
10326 // The function is not variadic, so we do not generate warnings about
10327 // being allowed to pass that object as a variadic argument. Instead,
10328 // since there are inherently no printf specifiers for types which cannot
10329 // be passed as variadic arguments, emit a plain old specifier mismatch
10330 // argument.
10331 EmitFormatDiagnostic(
10332 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
10333 << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
10334 << E->getSourceRange(),
10335 E->getBeginLoc(), false, CSR);
10336 }
10337
10338 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
10339 "format string specifier index out of range");
10340 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
10341 }
10342
10343 return true;
10344 }
10345
10346 //===--- CHECK: Scanf format string checking ------------------------------===//
10347
10348 namespace {
10349
10350 class CheckScanfHandler : public CheckFormatHandler {
10351 public:
CheckScanfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)10352 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
10353 const Expr *origFormatExpr, Sema::FormatStringType type,
10354 unsigned firstDataArg, unsigned numDataArgs,
10355 const char *beg, Sema::FormatArgumentPassingKind APK,
10356 ArrayRef<const Expr *> Args, unsigned formatIdx,
10357 bool inFunctionCall, Sema::VariadicCallType CallType,
10358 llvm::SmallBitVector &CheckedVarArgs,
10359 UncoveredArgHandler &UncoveredArg)
10360 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
10361 numDataArgs, beg, APK, Args, formatIdx,
10362 inFunctionCall, CallType, CheckedVarArgs,
10363 UncoveredArg) {}
10364
10365 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
10366 const char *startSpecifier,
10367 unsigned specifierLen) override;
10368
10369 bool HandleInvalidScanfConversionSpecifier(
10370 const analyze_scanf::ScanfSpecifier &FS,
10371 const char *startSpecifier,
10372 unsigned specifierLen) override;
10373
10374 void HandleIncompleteScanList(const char *start, const char *end) override;
10375 };
10376
10377 } // namespace
10378
HandleIncompleteScanList(const char * start,const char * end)10379 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
10380 const char *end) {
10381 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
10382 getLocationOfByte(end), /*IsStringLocation*/true,
10383 getSpecifierRange(start, end - start));
10384 }
10385
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)10386 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
10387 const analyze_scanf::ScanfSpecifier &FS,
10388 const char *startSpecifier,
10389 unsigned specifierLen) {
10390 const analyze_scanf::ScanfConversionSpecifier &CS =
10391 FS.getConversionSpecifier();
10392
10393 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
10394 getLocationOfByte(CS.getStart()),
10395 startSpecifier, specifierLen,
10396 CS.getStart(), CS.getLength());
10397 }
10398
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)10399 bool CheckScanfHandler::HandleScanfSpecifier(
10400 const analyze_scanf::ScanfSpecifier &FS,
10401 const char *startSpecifier,
10402 unsigned specifierLen) {
10403 using namespace analyze_scanf;
10404 using namespace analyze_format_string;
10405
10406 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
10407
10408 // Handle case where '%' and '*' don't consume an argument. These shouldn't
10409 // be used to decide if we are using positional arguments consistently.
10410 if (FS.consumesDataArgument()) {
10411 if (atFirstArg) {
10412 atFirstArg = false;
10413 usesPositionalArgs = FS.usesPositionalArg();
10414 }
10415 else if (usesPositionalArgs != FS.usesPositionalArg()) {
10416 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
10417 startSpecifier, specifierLen);
10418 return false;
10419 }
10420 }
10421
10422 // Check if the field with is non-zero.
10423 const OptionalAmount &Amt = FS.getFieldWidth();
10424 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
10425 if (Amt.getConstantAmount() == 0) {
10426 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
10427 Amt.getConstantLength());
10428 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
10429 getLocationOfByte(Amt.getStart()),
10430 /*IsStringLocation*/true, R,
10431 FixItHint::CreateRemoval(R));
10432 }
10433 }
10434
10435 if (!FS.consumesDataArgument()) {
10436 // FIXME: Technically specifying a precision or field width here
10437 // makes no sense. Worth issuing a warning at some point.
10438 return true;
10439 }
10440
10441 // Consume the argument.
10442 unsigned argIndex = FS.getArgIndex();
10443 if (argIndex < NumDataArgs) {
10444 // The check to see if the argIndex is valid will come later.
10445 // We set the bit here because we may exit early from this
10446 // function if we encounter some other error.
10447 CoveredArgs.set(argIndex);
10448 }
10449
10450 // Check the length modifier is valid with the given conversion specifier.
10451 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
10452 S.getLangOpts()))
10453 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
10454 diag::warn_format_nonsensical_length);
10455 else if (!FS.hasStandardLengthModifier())
10456 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
10457 else if (!FS.hasStandardLengthConversionCombination())
10458 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
10459 diag::warn_format_non_standard_conversion_spec);
10460
10461 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
10462 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
10463
10464 // The remaining checks depend on the data arguments.
10465 if (ArgPassingKind == Sema::FAPK_VAList)
10466 return true;
10467
10468 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
10469 return false;
10470
10471 // Check that the argument type matches the format specifier.
10472 const Expr *Ex = getDataArg(argIndex);
10473 if (!Ex)
10474 return true;
10475
10476 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
10477
10478 if (!AT.isValid()) {
10479 return true;
10480 }
10481
10482 analyze_format_string::ArgType::MatchKind Match =
10483 AT.matchesType(S.Context, Ex->getType());
10484 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
10485 if (Match == analyze_format_string::ArgType::Match)
10486 return true;
10487
10488 ScanfSpecifier fixedFS = FS;
10489 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
10490 S.getLangOpts(), S.Context);
10491
10492 unsigned Diag =
10493 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
10494 : diag::warn_format_conversion_argument_type_mismatch;
10495
10496 if (Success) {
10497 // Get the fix string from the fixed format specifier.
10498 SmallString<128> buf;
10499 llvm::raw_svector_ostream os(buf);
10500 fixedFS.toString(os);
10501
10502 EmitFormatDiagnostic(
10503 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
10504 << Ex->getType() << false << Ex->getSourceRange(),
10505 Ex->getBeginLoc(),
10506 /*IsStringLocation*/ false,
10507 getSpecifierRange(startSpecifier, specifierLen),
10508 FixItHint::CreateReplacement(
10509 getSpecifierRange(startSpecifier, specifierLen), os.str()));
10510 } else {
10511 EmitFormatDiagnostic(S.PDiag(Diag)
10512 << AT.getRepresentativeTypeName(S.Context)
10513 << Ex->getType() << false << Ex->getSourceRange(),
10514 Ex->getBeginLoc(),
10515 /*IsStringLocation*/ false,
10516 getSpecifierRange(startSpecifier, specifierLen));
10517 }
10518
10519 return true;
10520 }
10521
CheckFormatString(Sema & S,const FormatStringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,bool IgnoreStringsWithoutSpecifiers)10522 static void CheckFormatString(
10523 Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
10524 ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
10525 unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
10526 bool inFunctionCall, Sema::VariadicCallType CallType,
10527 llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
10528 bool IgnoreStringsWithoutSpecifiers) {
10529 // CHECK: is the format string a wide literal?
10530 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
10531 CheckFormatHandler::EmitFormatDiagnostic(
10532 S, inFunctionCall, Args[format_idx],
10533 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
10534 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10535 return;
10536 }
10537
10538 // Str - The format string. NOTE: this is NOT null-terminated!
10539 StringRef StrRef = FExpr->getString();
10540 const char *Str = StrRef.data();
10541 // Account for cases where the string literal is truncated in a declaration.
10542 const ConstantArrayType *T =
10543 S.Context.getAsConstantArrayType(FExpr->getType());
10544 assert(T && "String literal not of constant array type!");
10545 size_t TypeSize = T->getSize().getZExtValue();
10546 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10547 const unsigned numDataArgs = Args.size() - firstDataArg;
10548
10549 if (IgnoreStringsWithoutSpecifiers &&
10550 !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
10551 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10552 return;
10553
10554 // Emit a warning if the string literal is truncated and does not contain an
10555 // embedded null character.
10556 if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
10557 CheckFormatHandler::EmitFormatDiagnostic(
10558 S, inFunctionCall, Args[format_idx],
10559 S.PDiag(diag::warn_printf_format_string_not_null_terminated),
10560 FExpr->getBeginLoc(),
10561 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
10562 return;
10563 }
10564
10565 // CHECK: empty format string?
10566 if (StrLen == 0 && numDataArgs > 0) {
10567 CheckFormatHandler::EmitFormatDiagnostic(
10568 S, inFunctionCall, Args[format_idx],
10569 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
10570 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10571 return;
10572 }
10573
10574 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
10575 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
10576 Type == Sema::FST_OSTrace) {
10577 CheckPrintfHandler H(
10578 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
10579 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
10580 Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
10581 UncoveredArg);
10582
10583 if (!analyze_format_string::ParsePrintfString(
10584 H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
10585 Type == Sema::FST_FreeBSDKPrintf))
10586 H.DoneProcessing();
10587 } else if (Type == Sema::FST_Scanf) {
10588 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
10589 numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
10590 CallType, CheckedVarArgs, UncoveredArg);
10591
10592 if (!analyze_format_string::ParseScanfString(
10593 H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10594 H.DoneProcessing();
10595 } // TODO: handle other formats
10596 }
10597
FormatStringHasSArg(const StringLiteral * FExpr)10598 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
10599 // Str - The format string. NOTE: this is NOT null-terminated!
10600 StringRef StrRef = FExpr->getString();
10601 const char *Str = StrRef.data();
10602 // Account for cases where the string literal is truncated in a declaration.
10603 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
10604 assert(T && "String literal not of constant array type!");
10605 size_t TypeSize = T->getSize().getZExtValue();
10606 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10607 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
10608 getLangOpts(),
10609 Context.getTargetInfo());
10610 }
10611
10612 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
10613
10614 // Returns the related absolute value function that is larger, of 0 if one
10615 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)10616 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
10617 switch (AbsFunction) {
10618 default:
10619 return 0;
10620
10621 case Builtin::BI__builtin_abs:
10622 return Builtin::BI__builtin_labs;
10623 case Builtin::BI__builtin_labs:
10624 return Builtin::BI__builtin_llabs;
10625 case Builtin::BI__builtin_llabs:
10626 return 0;
10627
10628 case Builtin::BI__builtin_fabsf:
10629 return Builtin::BI__builtin_fabs;
10630 case Builtin::BI__builtin_fabs:
10631 return Builtin::BI__builtin_fabsl;
10632 case Builtin::BI__builtin_fabsl:
10633 return 0;
10634
10635 case Builtin::BI__builtin_cabsf:
10636 return Builtin::BI__builtin_cabs;
10637 case Builtin::BI__builtin_cabs:
10638 return Builtin::BI__builtin_cabsl;
10639 case Builtin::BI__builtin_cabsl:
10640 return 0;
10641
10642 case Builtin::BIabs:
10643 return Builtin::BIlabs;
10644 case Builtin::BIlabs:
10645 return Builtin::BIllabs;
10646 case Builtin::BIllabs:
10647 return 0;
10648
10649 case Builtin::BIfabsf:
10650 return Builtin::BIfabs;
10651 case Builtin::BIfabs:
10652 return Builtin::BIfabsl;
10653 case Builtin::BIfabsl:
10654 return 0;
10655
10656 case Builtin::BIcabsf:
10657 return Builtin::BIcabs;
10658 case Builtin::BIcabs:
10659 return Builtin::BIcabsl;
10660 case Builtin::BIcabsl:
10661 return 0;
10662 }
10663 }
10664
10665 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)10666 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
10667 unsigned AbsType) {
10668 if (AbsType == 0)
10669 return QualType();
10670
10671 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
10672 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
10673 if (Error != ASTContext::GE_None)
10674 return QualType();
10675
10676 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
10677 if (!FT)
10678 return QualType();
10679
10680 if (FT->getNumParams() != 1)
10681 return QualType();
10682
10683 return FT->getParamType(0);
10684 }
10685
10686 // Returns the best absolute value function, or zero, based on type and
10687 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)10688 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
10689 unsigned AbsFunctionKind) {
10690 unsigned BestKind = 0;
10691 uint64_t ArgSize = Context.getTypeSize(ArgType);
10692 for (unsigned Kind = AbsFunctionKind; Kind != 0;
10693 Kind = getLargerAbsoluteValueFunction(Kind)) {
10694 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
10695 if (Context.getTypeSize(ParamType) >= ArgSize) {
10696 if (BestKind == 0)
10697 BestKind = Kind;
10698 else if (Context.hasSameType(ParamType, ArgType)) {
10699 BestKind = Kind;
10700 break;
10701 }
10702 }
10703 }
10704 return BestKind;
10705 }
10706
10707 enum AbsoluteValueKind {
10708 AVK_Integer,
10709 AVK_Floating,
10710 AVK_Complex
10711 };
10712
getAbsoluteValueKind(QualType T)10713 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
10714 if (T->isIntegralOrEnumerationType())
10715 return AVK_Integer;
10716 if (T->isRealFloatingType())
10717 return AVK_Floating;
10718 if (T->isAnyComplexType())
10719 return AVK_Complex;
10720
10721 llvm_unreachable("Type not integer, floating, or complex");
10722 }
10723
10724 // Changes the absolute value function to a different type. Preserves whether
10725 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)10726 static unsigned changeAbsFunction(unsigned AbsKind,
10727 AbsoluteValueKind ValueKind) {
10728 switch (ValueKind) {
10729 case AVK_Integer:
10730 switch (AbsKind) {
10731 default:
10732 return 0;
10733 case Builtin::BI__builtin_fabsf:
10734 case Builtin::BI__builtin_fabs:
10735 case Builtin::BI__builtin_fabsl:
10736 case Builtin::BI__builtin_cabsf:
10737 case Builtin::BI__builtin_cabs:
10738 case Builtin::BI__builtin_cabsl:
10739 return Builtin::BI__builtin_abs;
10740 case Builtin::BIfabsf:
10741 case Builtin::BIfabs:
10742 case Builtin::BIfabsl:
10743 case Builtin::BIcabsf:
10744 case Builtin::BIcabs:
10745 case Builtin::BIcabsl:
10746 return Builtin::BIabs;
10747 }
10748 case AVK_Floating:
10749 switch (AbsKind) {
10750 default:
10751 return 0;
10752 case Builtin::BI__builtin_abs:
10753 case Builtin::BI__builtin_labs:
10754 case Builtin::BI__builtin_llabs:
10755 case Builtin::BI__builtin_cabsf:
10756 case Builtin::BI__builtin_cabs:
10757 case Builtin::BI__builtin_cabsl:
10758 return Builtin::BI__builtin_fabsf;
10759 case Builtin::BIabs:
10760 case Builtin::BIlabs:
10761 case Builtin::BIllabs:
10762 case Builtin::BIcabsf:
10763 case Builtin::BIcabs:
10764 case Builtin::BIcabsl:
10765 return Builtin::BIfabsf;
10766 }
10767 case AVK_Complex:
10768 switch (AbsKind) {
10769 default:
10770 return 0;
10771 case Builtin::BI__builtin_abs:
10772 case Builtin::BI__builtin_labs:
10773 case Builtin::BI__builtin_llabs:
10774 case Builtin::BI__builtin_fabsf:
10775 case Builtin::BI__builtin_fabs:
10776 case Builtin::BI__builtin_fabsl:
10777 return Builtin::BI__builtin_cabsf;
10778 case Builtin::BIabs:
10779 case Builtin::BIlabs:
10780 case Builtin::BIllabs:
10781 case Builtin::BIfabsf:
10782 case Builtin::BIfabs:
10783 case Builtin::BIfabsl:
10784 return Builtin::BIcabsf;
10785 }
10786 }
10787 llvm_unreachable("Unable to convert function");
10788 }
10789
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)10790 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10791 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10792 if (!FnInfo)
10793 return 0;
10794
10795 switch (FDecl->getBuiltinID()) {
10796 default:
10797 return 0;
10798 case Builtin::BI__builtin_abs:
10799 case Builtin::BI__builtin_fabs:
10800 case Builtin::BI__builtin_fabsf:
10801 case Builtin::BI__builtin_fabsl:
10802 case Builtin::BI__builtin_labs:
10803 case Builtin::BI__builtin_llabs:
10804 case Builtin::BI__builtin_cabs:
10805 case Builtin::BI__builtin_cabsf:
10806 case Builtin::BI__builtin_cabsl:
10807 case Builtin::BIabs:
10808 case Builtin::BIlabs:
10809 case Builtin::BIllabs:
10810 case Builtin::BIfabs:
10811 case Builtin::BIfabsf:
10812 case Builtin::BIfabsl:
10813 case Builtin::BIcabs:
10814 case Builtin::BIcabsf:
10815 case Builtin::BIcabsl:
10816 return FDecl->getBuiltinID();
10817 }
10818 llvm_unreachable("Unknown Builtin type");
10819 }
10820
10821 // If the replacement is valid, emit a note with replacement function.
10822 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)10823 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10824 unsigned AbsKind, QualType ArgType) {
10825 bool EmitHeaderHint = true;
10826 const char *HeaderName = nullptr;
10827 const char *FunctionName = nullptr;
10828 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10829 FunctionName = "std::abs";
10830 if (ArgType->isIntegralOrEnumerationType()) {
10831 HeaderName = "cstdlib";
10832 } else if (ArgType->isRealFloatingType()) {
10833 HeaderName = "cmath";
10834 } else {
10835 llvm_unreachable("Invalid Type");
10836 }
10837
10838 // Lookup all std::abs
10839 if (NamespaceDecl *Std = S.getStdNamespace()) {
10840 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10841 R.suppressDiagnostics();
10842 S.LookupQualifiedName(R, Std);
10843
10844 for (const auto *I : R) {
10845 const FunctionDecl *FDecl = nullptr;
10846 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10847 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10848 } else {
10849 FDecl = dyn_cast<FunctionDecl>(I);
10850 }
10851 if (!FDecl)
10852 continue;
10853
10854 // Found std::abs(), check that they are the right ones.
10855 if (FDecl->getNumParams() != 1)
10856 continue;
10857
10858 // Check that the parameter type can handle the argument.
10859 QualType ParamType = FDecl->getParamDecl(0)->getType();
10860 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10861 S.Context.getTypeSize(ArgType) <=
10862 S.Context.getTypeSize(ParamType)) {
10863 // Found a function, don't need the header hint.
10864 EmitHeaderHint = false;
10865 break;
10866 }
10867 }
10868 }
10869 } else {
10870 FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10871 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10872
10873 if (HeaderName) {
10874 DeclarationName DN(&S.Context.Idents.get(FunctionName));
10875 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10876 R.suppressDiagnostics();
10877 S.LookupName(R, S.getCurScope());
10878
10879 if (R.isSingleResult()) {
10880 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10881 if (FD && FD->getBuiltinID() == AbsKind) {
10882 EmitHeaderHint = false;
10883 } else {
10884 return;
10885 }
10886 } else if (!R.empty()) {
10887 return;
10888 }
10889 }
10890 }
10891
10892 S.Diag(Loc, diag::note_replace_abs_function)
10893 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10894
10895 if (!HeaderName)
10896 return;
10897
10898 if (!EmitHeaderHint)
10899 return;
10900
10901 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10902 << FunctionName;
10903 }
10904
10905 template <std::size_t StrLen>
IsStdFunction(const FunctionDecl * FDecl,const char (& Str)[StrLen])10906 static bool IsStdFunction(const FunctionDecl *FDecl,
10907 const char (&Str)[StrLen]) {
10908 if (!FDecl)
10909 return false;
10910 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10911 return false;
10912 if (!FDecl->isInStdNamespace())
10913 return false;
10914
10915 return true;
10916 }
10917
10918 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl)10919 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10920 const FunctionDecl *FDecl) {
10921 if (Call->getNumArgs() != 1)
10922 return;
10923
10924 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10925 bool IsStdAbs = IsStdFunction(FDecl, "abs");
10926 if (AbsKind == 0 && !IsStdAbs)
10927 return;
10928
10929 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10930 QualType ParamType = Call->getArg(0)->getType();
10931
10932 // Unsigned types cannot be negative. Suggest removing the absolute value
10933 // function call.
10934 if (ArgType->isUnsignedIntegerType()) {
10935 const char *FunctionName =
10936 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10937 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10938 Diag(Call->getExprLoc(), diag::note_remove_abs)
10939 << FunctionName
10940 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10941 return;
10942 }
10943
10944 // Taking the absolute value of a pointer is very suspicious, they probably
10945 // wanted to index into an array, dereference a pointer, call a function, etc.
10946 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10947 unsigned DiagType = 0;
10948 if (ArgType->isFunctionType())
10949 DiagType = 1;
10950 else if (ArgType->isArrayType())
10951 DiagType = 2;
10952
10953 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10954 return;
10955 }
10956
10957 // std::abs has overloads which prevent most of the absolute value problems
10958 // from occurring.
10959 if (IsStdAbs)
10960 return;
10961
10962 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10963 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10964
10965 // The argument and parameter are the same kind. Check if they are the right
10966 // size.
10967 if (ArgValueKind == ParamValueKind) {
10968 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10969 return;
10970
10971 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10972 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10973 << FDecl << ArgType << ParamType;
10974
10975 if (NewAbsKind == 0)
10976 return;
10977
10978 emitReplacement(*this, Call->getExprLoc(),
10979 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10980 return;
10981 }
10982
10983 // ArgValueKind != ParamValueKind
10984 // The wrong type of absolute value function was used. Attempt to find the
10985 // proper one.
10986 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10987 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10988 if (NewAbsKind == 0)
10989 return;
10990
10991 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10992 << FDecl << ParamValueKind << ArgValueKind;
10993
10994 emitReplacement(*this, Call->getExprLoc(),
10995 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10996 }
10997
10998 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
CheckMaxUnsignedZero(const CallExpr * Call,const FunctionDecl * FDecl)10999 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
11000 const FunctionDecl *FDecl) {
11001 if (!Call || !FDecl) return;
11002
11003 // Ignore template specializations and macros.
11004 if (inTemplateInstantiation()) return;
11005 if (Call->getExprLoc().isMacroID()) return;
11006
11007 // Only care about the one template argument, two function parameter std::max
11008 if (Call->getNumArgs() != 2) return;
11009 if (!IsStdFunction(FDecl, "max")) return;
11010 const auto * ArgList = FDecl->getTemplateSpecializationArgs();
11011 if (!ArgList) return;
11012 if (ArgList->size() != 1) return;
11013
11014 // Check that template type argument is unsigned integer.
11015 const auto& TA = ArgList->get(0);
11016 if (TA.getKind() != TemplateArgument::Type) return;
11017 QualType ArgType = TA.getAsType();
11018 if (!ArgType->isUnsignedIntegerType()) return;
11019
11020 // See if either argument is a literal zero.
11021 auto IsLiteralZeroArg = [](const Expr* E) -> bool {
11022 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
11023 if (!MTE) return false;
11024 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
11025 if (!Num) return false;
11026 if (Num->getValue() != 0) return false;
11027 return true;
11028 };
11029
11030 const Expr *FirstArg = Call->getArg(0);
11031 const Expr *SecondArg = Call->getArg(1);
11032 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
11033 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
11034
11035 // Only warn when exactly one argument is zero.
11036 if (IsFirstArgZero == IsSecondArgZero) return;
11037
11038 SourceRange FirstRange = FirstArg->getSourceRange();
11039 SourceRange SecondRange = SecondArg->getSourceRange();
11040
11041 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
11042
11043 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
11044 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
11045
11046 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
11047 SourceRange RemovalRange;
11048 if (IsFirstArgZero) {
11049 RemovalRange = SourceRange(FirstRange.getBegin(),
11050 SecondRange.getBegin().getLocWithOffset(-1));
11051 } else {
11052 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
11053 SecondRange.getEnd());
11054 }
11055
11056 Diag(Call->getExprLoc(), diag::note_remove_max_call)
11057 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
11058 << FixItHint::CreateRemoval(RemovalRange);
11059 }
11060
11061 //===--- CHECK: Standard memory functions ---------------------------------===//
11062
11063 /// Takes the expression passed to the size_t parameter of functions
11064 /// such as memcmp, strncat, etc and warns if it's a comparison.
11065 ///
11066 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)11067 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
11068 IdentifierInfo *FnName,
11069 SourceLocation FnLoc,
11070 SourceLocation RParenLoc) {
11071 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
11072 if (!Size)
11073 return false;
11074
11075 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
11076 if (!Size->isComparisonOp() && !Size->isLogicalOp())
11077 return false;
11078
11079 SourceRange SizeRange = Size->getSourceRange();
11080 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
11081 << SizeRange << FnName;
11082 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
11083 << FnName
11084 << FixItHint::CreateInsertion(
11085 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
11086 << FixItHint::CreateRemoval(RParenLoc);
11087 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
11088 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
11089 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
11090 ")");
11091
11092 return true;
11093 }
11094
11095 /// Determine whether the given type is or contains a dynamic class type
11096 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)11097 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
11098 bool &IsContained) {
11099 // Look through array types while ignoring qualifiers.
11100 const Type *Ty = T->getBaseElementTypeUnsafe();
11101 IsContained = false;
11102
11103 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
11104 RD = RD ? RD->getDefinition() : nullptr;
11105 if (!RD || RD->isInvalidDecl())
11106 return nullptr;
11107
11108 if (RD->isDynamicClass())
11109 return RD;
11110
11111 // Check all the fields. If any bases were dynamic, the class is dynamic.
11112 // It's impossible for a class to transitively contain itself by value, so
11113 // infinite recursion is impossible.
11114 for (auto *FD : RD->fields()) {
11115 bool SubContained;
11116 if (const CXXRecordDecl *ContainedRD =
11117 getContainedDynamicClass(FD->getType(), SubContained)) {
11118 IsContained = true;
11119 return ContainedRD;
11120 }
11121 }
11122
11123 return nullptr;
11124 }
11125
getAsSizeOfExpr(const Expr * E)11126 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
11127 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
11128 if (Unary->getKind() == UETT_SizeOf)
11129 return Unary;
11130 return nullptr;
11131 }
11132
11133 /// If E is a sizeof expression, returns its argument expression,
11134 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)11135 static const Expr *getSizeOfExprArg(const Expr *E) {
11136 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
11137 if (!SizeOf->isArgumentType())
11138 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
11139 return nullptr;
11140 }
11141
11142 /// If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)11143 static QualType getSizeOfArgType(const Expr *E) {
11144 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
11145 return SizeOf->getTypeOfArgument();
11146 return QualType();
11147 }
11148
11149 namespace {
11150
11151 struct SearchNonTrivialToInitializeField
11152 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
11153 using Super =
11154 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
11155
SearchNonTrivialToInitializeField__anon8097fee12011::SearchNonTrivialToInitializeField11156 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
11157
visitWithKind__anon8097fee12011::SearchNonTrivialToInitializeField11158 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
11159 SourceLocation SL) {
11160 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
11161 asDerived().visitArray(PDIK, AT, SL);
11162 return;
11163 }
11164
11165 Super::visitWithKind(PDIK, FT, SL);
11166 }
11167
visitARCStrong__anon8097fee12011::SearchNonTrivialToInitializeField11168 void visitARCStrong(QualType FT, SourceLocation SL) {
11169 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
11170 }
visitARCWeak__anon8097fee12011::SearchNonTrivialToInitializeField11171 void visitARCWeak(QualType FT, SourceLocation SL) {
11172 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
11173 }
visitStruct__anon8097fee12011::SearchNonTrivialToInitializeField11174 void visitStruct(QualType FT, SourceLocation SL) {
11175 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
11176 visit(FD->getType(), FD->getLocation());
11177 }
visitArray__anon8097fee12011::SearchNonTrivialToInitializeField11178 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
11179 const ArrayType *AT, SourceLocation SL) {
11180 visit(getContext().getBaseElementType(AT), SL);
11181 }
visitTrivial__anon8097fee12011::SearchNonTrivialToInitializeField11182 void visitTrivial(QualType FT, SourceLocation SL) {}
11183
diag__anon8097fee12011::SearchNonTrivialToInitializeField11184 static void diag(QualType RT, const Expr *E, Sema &S) {
11185 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
11186 }
11187
getContext__anon8097fee12011::SearchNonTrivialToInitializeField11188 ASTContext &getContext() { return S.getASTContext(); }
11189
11190 const Expr *E;
11191 Sema &S;
11192 };
11193
11194 struct SearchNonTrivialToCopyField
11195 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
11196 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
11197
SearchNonTrivialToCopyField__anon8097fee12011::SearchNonTrivialToCopyField11198 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
11199
visitWithKind__anon8097fee12011::SearchNonTrivialToCopyField11200 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
11201 SourceLocation SL) {
11202 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
11203 asDerived().visitArray(PCK, AT, SL);
11204 return;
11205 }
11206
11207 Super::visitWithKind(PCK, FT, SL);
11208 }
11209
visitARCStrong__anon8097fee12011::SearchNonTrivialToCopyField11210 void visitARCStrong(QualType FT, SourceLocation SL) {
11211 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
11212 }
visitARCWeak__anon8097fee12011::SearchNonTrivialToCopyField11213 void visitARCWeak(QualType FT, SourceLocation SL) {
11214 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
11215 }
visitStruct__anon8097fee12011::SearchNonTrivialToCopyField11216 void visitStruct(QualType FT, SourceLocation SL) {
11217 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
11218 visit(FD->getType(), FD->getLocation());
11219 }
visitArray__anon8097fee12011::SearchNonTrivialToCopyField11220 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
11221 SourceLocation SL) {
11222 visit(getContext().getBaseElementType(AT), SL);
11223 }
preVisit__anon8097fee12011::SearchNonTrivialToCopyField11224 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
11225 SourceLocation SL) {}
visitTrivial__anon8097fee12011::SearchNonTrivialToCopyField11226 void visitTrivial(QualType FT, SourceLocation SL) {}
visitVolatileTrivial__anon8097fee12011::SearchNonTrivialToCopyField11227 void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
11228
diag__anon8097fee12011::SearchNonTrivialToCopyField11229 static void diag(QualType RT, const Expr *E, Sema &S) {
11230 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
11231 }
11232
getContext__anon8097fee12011::SearchNonTrivialToCopyField11233 ASTContext &getContext() { return S.getASTContext(); }
11234
11235 const Expr *E;
11236 Sema &S;
11237 };
11238
11239 }
11240
11241 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
doesExprLikelyComputeSize(const Expr * SizeofExpr)11242 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
11243 SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
11244
11245 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
11246 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
11247 return false;
11248
11249 return doesExprLikelyComputeSize(BO->getLHS()) ||
11250 doesExprLikelyComputeSize(BO->getRHS());
11251 }
11252
11253 return getAsSizeOfExpr(SizeofExpr) != nullptr;
11254 }
11255
11256 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
11257 ///
11258 /// \code
11259 /// #define MACRO 0
11260 /// foo(MACRO);
11261 /// foo(0);
11262 /// \endcode
11263 ///
11264 /// This should return true for the first call to foo, but not for the second
11265 /// (regardless of whether foo is a macro or function).
isArgumentExpandedFromMacro(SourceManager & SM,SourceLocation CallLoc,SourceLocation ArgLoc)11266 static bool isArgumentExpandedFromMacro(SourceManager &SM,
11267 SourceLocation CallLoc,
11268 SourceLocation ArgLoc) {
11269 if (!CallLoc.isMacroID())
11270 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
11271
11272 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
11273 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
11274 }
11275
11276 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
11277 /// last two arguments transposed.
CheckMemaccessSize(Sema & S,unsigned BId,const CallExpr * Call)11278 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
11279 if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
11280 return;
11281
11282 const Expr *SizeArg =
11283 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
11284
11285 auto isLiteralZero = [](const Expr *E) {
11286 return (isa<IntegerLiteral>(E) &&
11287 cast<IntegerLiteral>(E)->getValue() == 0) ||
11288 (isa<CharacterLiteral>(E) &&
11289 cast<CharacterLiteral>(E)->getValue() == 0);
11290 };
11291
11292 // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
11293 SourceLocation CallLoc = Call->getRParenLoc();
11294 SourceManager &SM = S.getSourceManager();
11295 if (isLiteralZero(SizeArg) &&
11296 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
11297
11298 SourceLocation DiagLoc = SizeArg->getExprLoc();
11299
11300 // Some platforms #define bzero to __builtin_memset. See if this is the
11301 // case, and if so, emit a better diagnostic.
11302 if (BId == Builtin::BIbzero ||
11303 (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
11304 CallLoc, SM, S.getLangOpts()) == "bzero")) {
11305 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
11306 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
11307 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
11308 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
11309 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
11310 }
11311 return;
11312 }
11313
11314 // If the second argument to a memset is a sizeof expression and the third
11315 // isn't, this is also likely an error. This should catch
11316 // 'memset(buf, sizeof(buf), 0xff)'.
11317 if (BId == Builtin::BImemset &&
11318 doesExprLikelyComputeSize(Call->getArg(1)) &&
11319 !doesExprLikelyComputeSize(Call->getArg(2))) {
11320 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
11321 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
11322 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
11323 return;
11324 }
11325 }
11326
11327 /// Check for dangerous or invalid arguments to memset().
11328 ///
11329 /// This issues warnings on known problematic, dangerous or unspecified
11330 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
11331 /// function calls.
11332 ///
11333 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)11334 void Sema::CheckMemaccessArguments(const CallExpr *Call,
11335 unsigned BId,
11336 IdentifierInfo *FnName) {
11337 assert(BId != 0);
11338
11339 // It is possible to have a non-standard definition of memset. Validate
11340 // we have enough arguments, and if not, abort further checking.
11341 unsigned ExpectedNumArgs =
11342 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
11343 if (Call->getNumArgs() < ExpectedNumArgs)
11344 return;
11345
11346 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
11347 BId == Builtin::BIstrndup ? 1 : 2);
11348 unsigned LenArg =
11349 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
11350 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
11351
11352 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
11353 Call->getBeginLoc(), Call->getRParenLoc()))
11354 return;
11355
11356 // Catch cases like 'memset(buf, sizeof(buf), 0)'.
11357 CheckMemaccessSize(*this, BId, Call);
11358
11359 // We have special checking when the length is a sizeof expression.
11360 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
11361 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
11362 llvm::FoldingSetNodeID SizeOfArgID;
11363
11364 // Although widely used, 'bzero' is not a standard function. Be more strict
11365 // with the argument types before allowing diagnostics and only allow the
11366 // form bzero(ptr, sizeof(...)).
11367 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
11368 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
11369 return;
11370
11371 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
11372 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
11373 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
11374
11375 QualType DestTy = Dest->getType();
11376 QualType PointeeTy;
11377 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
11378 PointeeTy = DestPtrTy->getPointeeType();
11379
11380 // Never warn about void type pointers. This can be used to suppress
11381 // false positives.
11382 if (PointeeTy->isVoidType())
11383 continue;
11384
11385 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
11386 // actually comparing the expressions for equality. Because computing the
11387 // expression IDs can be expensive, we only do this if the diagnostic is
11388 // enabled.
11389 if (SizeOfArg &&
11390 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
11391 SizeOfArg->getExprLoc())) {
11392 // We only compute IDs for expressions if the warning is enabled, and
11393 // cache the sizeof arg's ID.
11394 if (SizeOfArgID == llvm::FoldingSetNodeID())
11395 SizeOfArg->Profile(SizeOfArgID, Context, true);
11396 llvm::FoldingSetNodeID DestID;
11397 Dest->Profile(DestID, Context, true);
11398 if (DestID == SizeOfArgID) {
11399 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
11400 // over sizeof(src) as well.
11401 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
11402 StringRef ReadableName = FnName->getName();
11403
11404 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
11405 if (UnaryOp->getOpcode() == UO_AddrOf)
11406 ActionIdx = 1; // If its an address-of operator, just remove it.
11407 if (!PointeeTy->isIncompleteType() &&
11408 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
11409 ActionIdx = 2; // If the pointee's size is sizeof(char),
11410 // suggest an explicit length.
11411
11412 // If the function is defined as a builtin macro, do not show macro
11413 // expansion.
11414 SourceLocation SL = SizeOfArg->getExprLoc();
11415 SourceRange DSR = Dest->getSourceRange();
11416 SourceRange SSR = SizeOfArg->getSourceRange();
11417 SourceManager &SM = getSourceManager();
11418
11419 if (SM.isMacroArgExpansion(SL)) {
11420 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
11421 SL = SM.getSpellingLoc(SL);
11422 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
11423 SM.getSpellingLoc(DSR.getEnd()));
11424 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
11425 SM.getSpellingLoc(SSR.getEnd()));
11426 }
11427
11428 DiagRuntimeBehavior(SL, SizeOfArg,
11429 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
11430 << ReadableName
11431 << PointeeTy
11432 << DestTy
11433 << DSR
11434 << SSR);
11435 DiagRuntimeBehavior(SL, SizeOfArg,
11436 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
11437 << ActionIdx
11438 << SSR);
11439
11440 break;
11441 }
11442 }
11443
11444 // Also check for cases where the sizeof argument is the exact same
11445 // type as the memory argument, and where it points to a user-defined
11446 // record type.
11447 if (SizeOfArgTy != QualType()) {
11448 if (PointeeTy->isRecordType() &&
11449 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
11450 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
11451 PDiag(diag::warn_sizeof_pointer_type_memaccess)
11452 << FnName << SizeOfArgTy << ArgIdx
11453 << PointeeTy << Dest->getSourceRange()
11454 << LenExpr->getSourceRange());
11455 break;
11456 }
11457 }
11458 } else if (DestTy->isArrayType()) {
11459 PointeeTy = DestTy;
11460 }
11461
11462 if (PointeeTy == QualType())
11463 continue;
11464
11465 // Always complain about dynamic classes.
11466 bool IsContained;
11467 if (const CXXRecordDecl *ContainedRD =
11468 getContainedDynamicClass(PointeeTy, IsContained)) {
11469
11470 unsigned OperationType = 0;
11471 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
11472 // "overwritten" if we're warning about the destination for any call
11473 // but memcmp; otherwise a verb appropriate to the call.
11474 if (ArgIdx != 0 || IsCmp) {
11475 if (BId == Builtin::BImemcpy)
11476 OperationType = 1;
11477 else if(BId == Builtin::BImemmove)
11478 OperationType = 2;
11479 else if (IsCmp)
11480 OperationType = 3;
11481 }
11482
11483 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11484 PDiag(diag::warn_dyn_class_memaccess)
11485 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
11486 << IsContained << ContainedRD << OperationType
11487 << Call->getCallee()->getSourceRange());
11488 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
11489 BId != Builtin::BImemset)
11490 DiagRuntimeBehavior(
11491 Dest->getExprLoc(), Dest,
11492 PDiag(diag::warn_arc_object_memaccess)
11493 << ArgIdx << FnName << PointeeTy
11494 << Call->getCallee()->getSourceRange());
11495 else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
11496 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
11497 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
11498 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11499 PDiag(diag::warn_cstruct_memaccess)
11500 << ArgIdx << FnName << PointeeTy << 0);
11501 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
11502 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
11503 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
11504 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11505 PDiag(diag::warn_cstruct_memaccess)
11506 << ArgIdx << FnName << PointeeTy << 1);
11507 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
11508 } else {
11509 continue;
11510 }
11511 } else
11512 continue;
11513
11514 DiagRuntimeBehavior(
11515 Dest->getExprLoc(), Dest,
11516 PDiag(diag::note_bad_memaccess_silence)
11517 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
11518 break;
11519 }
11520 }
11521
11522 // A little helper routine: ignore addition and subtraction of integer literals.
11523 // This intentionally does not ignore all integer constant expressions because
11524 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)11525 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
11526 Ex = Ex->IgnoreParenCasts();
11527
11528 while (true) {
11529 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
11530 if (!BO || !BO->isAdditiveOp())
11531 break;
11532
11533 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
11534 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
11535
11536 if (isa<IntegerLiteral>(RHS))
11537 Ex = LHS;
11538 else if (isa<IntegerLiteral>(LHS))
11539 Ex = RHS;
11540 else
11541 break;
11542 }
11543
11544 return Ex;
11545 }
11546
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)11547 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
11548 ASTContext &Context) {
11549 // Only handle constant-sized or VLAs, but not flexible members.
11550 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
11551 // Only issue the FIXIT for arrays of size > 1.
11552 if (CAT->getSize().getSExtValue() <= 1)
11553 return false;
11554 } else if (!Ty->isVariableArrayType()) {
11555 return false;
11556 }
11557 return true;
11558 }
11559
11560 // Warn if the user has made the 'size' argument to strlcpy or strlcat
11561 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)11562 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
11563 IdentifierInfo *FnName) {
11564
11565 // Don't crash if the user has the wrong number of arguments
11566 unsigned NumArgs = Call->getNumArgs();
11567 if ((NumArgs != 3) && (NumArgs != 4))
11568 return;
11569
11570 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
11571 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
11572 const Expr *CompareWithSrc = nullptr;
11573
11574 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
11575 Call->getBeginLoc(), Call->getRParenLoc()))
11576 return;
11577
11578 // Look for 'strlcpy(dst, x, sizeof(x))'
11579 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
11580 CompareWithSrc = Ex;
11581 else {
11582 // Look for 'strlcpy(dst, x, strlen(x))'
11583 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
11584 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
11585 SizeCall->getNumArgs() == 1)
11586 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
11587 }
11588 }
11589
11590 if (!CompareWithSrc)
11591 return;
11592
11593 // Determine if the argument to sizeof/strlen is equal to the source
11594 // argument. In principle there's all kinds of things you could do
11595 // here, for instance creating an == expression and evaluating it with
11596 // EvaluateAsBooleanCondition, but this uses a more direct technique:
11597 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
11598 if (!SrcArgDRE)
11599 return;
11600
11601 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
11602 if (!CompareWithSrcDRE ||
11603 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
11604 return;
11605
11606 const Expr *OriginalSizeArg = Call->getArg(2);
11607 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
11608 << OriginalSizeArg->getSourceRange() << FnName;
11609
11610 // Output a FIXIT hint if the destination is an array (rather than a
11611 // pointer to an array). This could be enhanced to handle some
11612 // pointers if we know the actual size, like if DstArg is 'array+2'
11613 // we could say 'sizeof(array)-2'.
11614 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
11615 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
11616 return;
11617
11618 SmallString<128> sizeString;
11619 llvm::raw_svector_ostream OS(sizeString);
11620 OS << "sizeof(";
11621 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11622 OS << ")";
11623
11624 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
11625 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
11626 OS.str());
11627 }
11628
11629 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)11630 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
11631 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
11632 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
11633 return D1->getDecl() == D2->getDecl();
11634 return false;
11635 }
11636
getStrlenExprArg(const Expr * E)11637 static const Expr *getStrlenExprArg(const Expr *E) {
11638 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11639 const FunctionDecl *FD = CE->getDirectCallee();
11640 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
11641 return nullptr;
11642 return CE->getArg(0)->IgnoreParenCasts();
11643 }
11644 return nullptr;
11645 }
11646
11647 // Warn on anti-patterns as the 'size' argument to strncat.
11648 // The correct size argument should look like following:
11649 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)11650 void Sema::CheckStrncatArguments(const CallExpr *CE,
11651 IdentifierInfo *FnName) {
11652 // Don't crash if the user has the wrong number of arguments.
11653 if (CE->getNumArgs() < 3)
11654 return;
11655 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
11656 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
11657 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
11658
11659 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
11660 CE->getRParenLoc()))
11661 return;
11662
11663 // Identify common expressions, which are wrongly used as the size argument
11664 // to strncat and may lead to buffer overflows.
11665 unsigned PatternType = 0;
11666 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
11667 // - sizeof(dst)
11668 if (referToTheSameDecl(SizeOfArg, DstArg))
11669 PatternType = 1;
11670 // - sizeof(src)
11671 else if (referToTheSameDecl(SizeOfArg, SrcArg))
11672 PatternType = 2;
11673 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
11674 if (BE->getOpcode() == BO_Sub) {
11675 const Expr *L = BE->getLHS()->IgnoreParenCasts();
11676 const Expr *R = BE->getRHS()->IgnoreParenCasts();
11677 // - sizeof(dst) - strlen(dst)
11678 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
11679 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
11680 PatternType = 1;
11681 // - sizeof(src) - (anything)
11682 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
11683 PatternType = 2;
11684 }
11685 }
11686
11687 if (PatternType == 0)
11688 return;
11689
11690 // Generate the diagnostic.
11691 SourceLocation SL = LenArg->getBeginLoc();
11692 SourceRange SR = LenArg->getSourceRange();
11693 SourceManager &SM = getSourceManager();
11694
11695 // If the function is defined as a builtin macro, do not show macro expansion.
11696 if (SM.isMacroArgExpansion(SL)) {
11697 SL = SM.getSpellingLoc(SL);
11698 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
11699 SM.getSpellingLoc(SR.getEnd()));
11700 }
11701
11702 // Check if the destination is an array (rather than a pointer to an array).
11703 QualType DstTy = DstArg->getType();
11704 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
11705 Context);
11706 if (!isKnownSizeArray) {
11707 if (PatternType == 1)
11708 Diag(SL, diag::warn_strncat_wrong_size) << SR;
11709 else
11710 Diag(SL, diag::warn_strncat_src_size) << SR;
11711 return;
11712 }
11713
11714 if (PatternType == 1)
11715 Diag(SL, diag::warn_strncat_large_size) << SR;
11716 else
11717 Diag(SL, diag::warn_strncat_src_size) << SR;
11718
11719 SmallString<128> sizeString;
11720 llvm::raw_svector_ostream OS(sizeString);
11721 OS << "sizeof(";
11722 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11723 OS << ") - ";
11724 OS << "strlen(";
11725 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11726 OS << ") - 1";
11727
11728 Diag(SL, diag::note_strncat_wrong_size)
11729 << FixItHint::CreateReplacement(SR, OS.str());
11730 }
11731
11732 namespace {
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const Decl * D)11733 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
11734 const UnaryOperator *UnaryExpr, const Decl *D) {
11735 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
11736 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
11737 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
11738 return;
11739 }
11740 }
11741
CheckFreeArgumentsAddressof(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)11742 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
11743 const UnaryOperator *UnaryExpr) {
11744 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
11745 const Decl *D = Lvalue->getDecl();
11746 if (isa<DeclaratorDecl>(D))
11747 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
11748 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
11749 }
11750
11751 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
11752 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
11753 Lvalue->getMemberDecl());
11754 }
11755
CheckFreeArgumentsPlus(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)11756 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
11757 const UnaryOperator *UnaryExpr) {
11758 const auto *Lambda = dyn_cast<LambdaExpr>(
11759 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
11760 if (!Lambda)
11761 return;
11762
11763 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11764 << CalleeName << 2 /*object: lambda expression*/;
11765 }
11766
CheckFreeArgumentsStackArray(Sema & S,const std::string & CalleeName,const DeclRefExpr * Lvalue)11767 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11768 const DeclRefExpr *Lvalue) {
11769 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11770 if (Var == nullptr)
11771 return;
11772
11773 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11774 << CalleeName << 0 /*object: */ << Var;
11775 }
11776
CheckFreeArgumentsCast(Sema & S,const std::string & CalleeName,const CastExpr * Cast)11777 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11778 const CastExpr *Cast) {
11779 SmallString<128> SizeString;
11780 llvm::raw_svector_ostream OS(SizeString);
11781
11782 clang::CastKind Kind = Cast->getCastKind();
11783 if (Kind == clang::CK_BitCast &&
11784 !Cast->getSubExpr()->getType()->isFunctionPointerType())
11785 return;
11786 if (Kind == clang::CK_IntegralToPointer &&
11787 !isa<IntegerLiteral>(
11788 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11789 return;
11790
11791 switch (Cast->getCastKind()) {
11792 case clang::CK_BitCast:
11793 case clang::CK_IntegralToPointer:
11794 case clang::CK_FunctionToPointerDecay:
11795 OS << '\'';
11796 Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11797 OS << '\'';
11798 break;
11799 default:
11800 return;
11801 }
11802
11803 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11804 << CalleeName << 0 /*object: */ << OS.str();
11805 }
11806 } // namespace
11807
11808 /// Alerts the user that they are attempting to free a non-malloc'd object.
CheckFreeArguments(const CallExpr * E)11809 void Sema::CheckFreeArguments(const CallExpr *E) {
11810 const std::string CalleeName =
11811 cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11812
11813 { // Prefer something that doesn't involve a cast to make things simpler.
11814 const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11815 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11816 switch (UnaryExpr->getOpcode()) {
11817 case UnaryOperator::Opcode::UO_AddrOf:
11818 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11819 case UnaryOperator::Opcode::UO_Plus:
11820 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11821 default:
11822 break;
11823 }
11824
11825 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11826 if (Lvalue->getType()->isArrayType())
11827 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11828
11829 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11830 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11831 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11832 return;
11833 }
11834
11835 if (isa<BlockExpr>(Arg)) {
11836 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11837 << CalleeName << 1 /*object: block*/;
11838 return;
11839 }
11840 }
11841 // Maybe the cast was important, check after the other cases.
11842 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11843 return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11844 }
11845
11846 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)11847 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11848 SourceLocation ReturnLoc,
11849 bool isObjCMethod,
11850 const AttrVec *Attrs,
11851 const FunctionDecl *FD) {
11852 // Check if the return value is null but should not be.
11853 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11854 (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11855 CheckNonNullExpr(*this, RetValExp))
11856 Diag(ReturnLoc, diag::warn_null_ret)
11857 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11858
11859 // C++11 [basic.stc.dynamic.allocation]p4:
11860 // If an allocation function declared with a non-throwing
11861 // exception-specification fails to allocate storage, it shall return
11862 // a null pointer. Any other allocation function that fails to allocate
11863 // storage shall indicate failure only by throwing an exception [...]
11864 if (FD) {
11865 OverloadedOperatorKind Op = FD->getOverloadedOperator();
11866 if (Op == OO_New || Op == OO_Array_New) {
11867 const FunctionProtoType *Proto
11868 = FD->getType()->castAs<FunctionProtoType>();
11869 if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11870 CheckNonNullExpr(*this, RetValExp))
11871 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11872 << FD << getLangOpts().CPlusPlus11;
11873 }
11874 }
11875
11876 // PPC MMA non-pointer types are not allowed as return type. Checking the type
11877 // here prevent the user from using a PPC MMA type as trailing return type.
11878 if (Context.getTargetInfo().getTriple().isPPC64())
11879 CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11880 }
11881
11882 /// Check for comparisons of floating-point values using == and !=. Issue a
11883 /// warning if the comparison is not likely to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opcode)11884 void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
11885 BinaryOperatorKind Opcode) {
11886 if (!BinaryOperator::isEqualityOp(Opcode))
11887 return;
11888
11889 // Match and capture subexpressions such as "(float) X == 0.1".
11890 FloatingLiteral *FPLiteral;
11891 CastExpr *FPCast;
11892 auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
11893 FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
11894 FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
11895 return FPLiteral && FPCast;
11896 };
11897
11898 if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
11899 auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
11900 auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
11901 if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
11902 TargetTy->isFloatingPoint()) {
11903 bool Lossy;
11904 llvm::APFloat TargetC = FPLiteral->getValue();
11905 TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
11906 llvm::APFloat::rmNearestTiesToEven, &Lossy);
11907 if (Lossy) {
11908 // If the literal cannot be represented in the source type, then a
11909 // check for == is always false and check for != is always true.
11910 Diag(Loc, diag::warn_float_compare_literal)
11911 << (Opcode == BO_EQ) << QualType(SourceTy, 0)
11912 << LHS->getSourceRange() << RHS->getSourceRange();
11913 return;
11914 }
11915 }
11916 }
11917
11918 // Match a more general floating-point equality comparison (-Wfloat-equal).
11919 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11920 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11921
11922 // Special case: check for x == x (which is OK).
11923 // Do not emit warnings for such cases.
11924 if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11925 if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11926 if (DRL->getDecl() == DRR->getDecl())
11927 return;
11928
11929 // Special case: check for comparisons against literals that can be exactly
11930 // represented by APFloat. In such cases, do not emit a warning. This
11931 // is a heuristic: often comparison against such literals are used to
11932 // detect if a value in a variable has not changed. This clearly can
11933 // lead to false negatives.
11934 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11935 if (FLL->isExact())
11936 return;
11937 } else
11938 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11939 if (FLR->isExact())
11940 return;
11941
11942 // Check for comparisons with builtin types.
11943 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11944 if (CL->getBuiltinCallee())
11945 return;
11946
11947 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11948 if (CR->getBuiltinCallee())
11949 return;
11950
11951 // Emit the diagnostic.
11952 Diag(Loc, diag::warn_floatingpoint_eq)
11953 << LHS->getSourceRange() << RHS->getSourceRange();
11954 }
11955
11956 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11957 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11958
11959 namespace {
11960
11961 /// Structure recording the 'active' range of an integer-valued
11962 /// expression.
11963 struct IntRange {
11964 /// The number of bits active in the int. Note that this includes exactly one
11965 /// sign bit if !NonNegative.
11966 unsigned Width;
11967
11968 /// True if the int is known not to have negative values. If so, all leading
11969 /// bits before Width are known zero, otherwise they are known to be the
11970 /// same as the MSB within Width.
11971 bool NonNegative;
11972
IntRange__anon8097fee12411::IntRange11973 IntRange(unsigned Width, bool NonNegative)
11974 : Width(Width), NonNegative(NonNegative) {}
11975
11976 /// Number of bits excluding the sign bit.
valueBits__anon8097fee12411::IntRange11977 unsigned valueBits() const {
11978 return NonNegative ? Width : Width - 1;
11979 }
11980
11981 /// Returns the range of the bool type.
forBoolType__anon8097fee12411::IntRange11982 static IntRange forBoolType() {
11983 return IntRange(1, true);
11984 }
11985
11986 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon8097fee12411::IntRange11987 static IntRange forValueOfType(ASTContext &C, QualType T) {
11988 return forValueOfCanonicalType(C,
11989 T->getCanonicalTypeInternal().getTypePtr());
11990 }
11991
11992 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon8097fee12411::IntRange11993 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11994 assert(T->isCanonicalUnqualified());
11995
11996 if (const VectorType *VT = dyn_cast<VectorType>(T))
11997 T = VT->getElementType().getTypePtr();
11998 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11999 T = CT->getElementType().getTypePtr();
12000 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
12001 T = AT->getValueType().getTypePtr();
12002
12003 if (!C.getLangOpts().CPlusPlus) {
12004 // For enum types in C code, use the underlying datatype.
12005 if (const EnumType *ET = dyn_cast<EnumType>(T))
12006 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
12007 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
12008 // For enum types in C++, use the known bit width of the enumerators.
12009 EnumDecl *Enum = ET->getDecl();
12010 // In C++11, enums can have a fixed underlying type. Use this type to
12011 // compute the range.
12012 if (Enum->isFixed()) {
12013 return IntRange(C.getIntWidth(QualType(T, 0)),
12014 !ET->isSignedIntegerOrEnumerationType());
12015 }
12016
12017 unsigned NumPositive = Enum->getNumPositiveBits();
12018 unsigned NumNegative = Enum->getNumNegativeBits();
12019
12020 if (NumNegative == 0)
12021 return IntRange(NumPositive, true/*NonNegative*/);
12022 else
12023 return IntRange(std::max(NumPositive + 1, NumNegative),
12024 false/*NonNegative*/);
12025 }
12026
12027 if (const auto *EIT = dyn_cast<BitIntType>(T))
12028 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
12029
12030 const BuiltinType *BT = cast<BuiltinType>(T);
12031 assert(BT->isInteger());
12032
12033 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
12034 }
12035
12036 /// Returns the "target" range of a canonical integral type, i.e.
12037 /// the range of values expressible in the type.
12038 ///
12039 /// This matches forValueOfCanonicalType except that enums have the
12040 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon8097fee12411::IntRange12041 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
12042 assert(T->isCanonicalUnqualified());
12043
12044 if (const VectorType *VT = dyn_cast<VectorType>(T))
12045 T = VT->getElementType().getTypePtr();
12046 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
12047 T = CT->getElementType().getTypePtr();
12048 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
12049 T = AT->getValueType().getTypePtr();
12050 if (const EnumType *ET = dyn_cast<EnumType>(T))
12051 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
12052
12053 if (const auto *EIT = dyn_cast<BitIntType>(T))
12054 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
12055
12056 const BuiltinType *BT = cast<BuiltinType>(T);
12057 assert(BT->isInteger());
12058
12059 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
12060 }
12061
12062 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon8097fee12411::IntRange12063 static IntRange join(IntRange L, IntRange R) {
12064 bool Unsigned = L.NonNegative && R.NonNegative;
12065 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
12066 L.NonNegative && R.NonNegative);
12067 }
12068
12069 /// Return the range of a bitwise-AND of the two ranges.
bit_and__anon8097fee12411::IntRange12070 static IntRange bit_and(IntRange L, IntRange R) {
12071 unsigned Bits = std::max(L.Width, R.Width);
12072 bool NonNegative = false;
12073 if (L.NonNegative) {
12074 Bits = std::min(Bits, L.Width);
12075 NonNegative = true;
12076 }
12077 if (R.NonNegative) {
12078 Bits = std::min(Bits, R.Width);
12079 NonNegative = true;
12080 }
12081 return IntRange(Bits, NonNegative);
12082 }
12083
12084 /// Return the range of a sum of the two ranges.
sum__anon8097fee12411::IntRange12085 static IntRange sum(IntRange L, IntRange R) {
12086 bool Unsigned = L.NonNegative && R.NonNegative;
12087 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
12088 Unsigned);
12089 }
12090
12091 /// Return the range of a difference of the two ranges.
difference__anon8097fee12411::IntRange12092 static IntRange difference(IntRange L, IntRange R) {
12093 // We need a 1-bit-wider range if:
12094 // 1) LHS can be negative: least value can be reduced.
12095 // 2) RHS can be negative: greatest value can be increased.
12096 bool CanWiden = !L.NonNegative || !R.NonNegative;
12097 bool Unsigned = L.NonNegative && R.Width == 0;
12098 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
12099 !Unsigned,
12100 Unsigned);
12101 }
12102
12103 /// Return the range of a product of the two ranges.
product__anon8097fee12411::IntRange12104 static IntRange product(IntRange L, IntRange R) {
12105 // If both LHS and RHS can be negative, we can form
12106 // -2^L * -2^R = 2^(L + R)
12107 // which requires L + R + 1 value bits to represent.
12108 bool CanWiden = !L.NonNegative && !R.NonNegative;
12109 bool Unsigned = L.NonNegative && R.NonNegative;
12110 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
12111 Unsigned);
12112 }
12113
12114 /// Return the range of a remainder operation between the two ranges.
rem__anon8097fee12411::IntRange12115 static IntRange rem(IntRange L, IntRange R) {
12116 // The result of a remainder can't be larger than the result of
12117 // either side. The sign of the result is the sign of the LHS.
12118 bool Unsigned = L.NonNegative;
12119 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
12120 Unsigned);
12121 }
12122 };
12123
12124 } // namespace
12125
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)12126 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
12127 unsigned MaxWidth) {
12128 if (value.isSigned() && value.isNegative())
12129 return IntRange(value.getMinSignedBits(), false);
12130
12131 if (value.getBitWidth() > MaxWidth)
12132 value = value.trunc(MaxWidth);
12133
12134 // isNonNegative() just checks the sign bit without considering
12135 // signedness.
12136 return IntRange(value.getActiveBits(), true);
12137 }
12138
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)12139 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
12140 unsigned MaxWidth) {
12141 if (result.isInt())
12142 return GetValueRange(C, result.getInt(), MaxWidth);
12143
12144 if (result.isVector()) {
12145 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
12146 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
12147 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
12148 R = IntRange::join(R, El);
12149 }
12150 return R;
12151 }
12152
12153 if (result.isComplexInt()) {
12154 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
12155 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
12156 return IntRange::join(R, I);
12157 }
12158
12159 // This can happen with lossless casts to intptr_t of "based" lvalues.
12160 // Assume it might use arbitrary bits.
12161 // FIXME: The only reason we need to pass the type in here is to get
12162 // the sign right on this one case. It would be nice if APValue
12163 // preserved this.
12164 assert(result.isLValue() || result.isAddrLabelDiff());
12165 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
12166 }
12167
GetExprType(const Expr * E)12168 static QualType GetExprType(const Expr *E) {
12169 QualType Ty = E->getType();
12170 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
12171 Ty = AtomicRHS->getValueType();
12172 return Ty;
12173 }
12174
12175 /// Pseudo-evaluate the given integer expression, estimating the
12176 /// range of values it might take.
12177 ///
12178 /// \param MaxWidth The width to which the value will be truncated.
12179 /// \param Approximate If \c true, return a likely range for the result: in
12180 /// particular, assume that arithmetic on narrower types doesn't leave
12181 /// those types. If \c false, return a range including all possible
12182 /// result values.
GetExprRange(ASTContext & C,const Expr * E,unsigned MaxWidth,bool InConstantContext,bool Approximate)12183 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
12184 bool InConstantContext, bool Approximate) {
12185 E = E->IgnoreParens();
12186
12187 // Try a full evaluation first.
12188 Expr::EvalResult result;
12189 if (E->EvaluateAsRValue(result, C, InConstantContext))
12190 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
12191
12192 // I think we only want to look through implicit casts here; if the
12193 // user has an explicit widening cast, we should treat the value as
12194 // being of the new, wider type.
12195 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
12196 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
12197 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
12198 Approximate);
12199
12200 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
12201
12202 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
12203 CE->getCastKind() == CK_BooleanToSignedIntegral;
12204
12205 // Assume that non-integer casts can span the full range of the type.
12206 if (!isIntegerCast)
12207 return OutputTypeRange;
12208
12209 IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
12210 std::min(MaxWidth, OutputTypeRange.Width),
12211 InConstantContext, Approximate);
12212
12213 // Bail out if the subexpr's range is as wide as the cast type.
12214 if (SubRange.Width >= OutputTypeRange.Width)
12215 return OutputTypeRange;
12216
12217 // Otherwise, we take the smaller width, and we're non-negative if
12218 // either the output type or the subexpr is.
12219 return IntRange(SubRange.Width,
12220 SubRange.NonNegative || OutputTypeRange.NonNegative);
12221 }
12222
12223 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12224 // If we can fold the condition, just take that operand.
12225 bool CondResult;
12226 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
12227 return GetExprRange(C,
12228 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
12229 MaxWidth, InConstantContext, Approximate);
12230
12231 // Otherwise, conservatively merge.
12232 // GetExprRange requires an integer expression, but a throw expression
12233 // results in a void type.
12234 Expr *E = CO->getTrueExpr();
12235 IntRange L = E->getType()->isVoidType()
12236 ? IntRange{0, true}
12237 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
12238 E = CO->getFalseExpr();
12239 IntRange R = E->getType()->isVoidType()
12240 ? IntRange{0, true}
12241 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
12242 return IntRange::join(L, R);
12243 }
12244
12245 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12246 IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
12247
12248 switch (BO->getOpcode()) {
12249 case BO_Cmp:
12250 llvm_unreachable("builtin <=> should have class type");
12251
12252 // Boolean-valued operations are single-bit and positive.
12253 case BO_LAnd:
12254 case BO_LOr:
12255 case BO_LT:
12256 case BO_GT:
12257 case BO_LE:
12258 case BO_GE:
12259 case BO_EQ:
12260 case BO_NE:
12261 return IntRange::forBoolType();
12262
12263 // The type of the assignments is the type of the LHS, so the RHS
12264 // is not necessarily the same type.
12265 case BO_MulAssign:
12266 case BO_DivAssign:
12267 case BO_RemAssign:
12268 case BO_AddAssign:
12269 case BO_SubAssign:
12270 case BO_XorAssign:
12271 case BO_OrAssign:
12272 // TODO: bitfields?
12273 return IntRange::forValueOfType(C, GetExprType(E));
12274
12275 // Simple assignments just pass through the RHS, which will have
12276 // been coerced to the LHS type.
12277 case BO_Assign:
12278 // TODO: bitfields?
12279 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
12280 Approximate);
12281
12282 // Operations with opaque sources are black-listed.
12283 case BO_PtrMemD:
12284 case BO_PtrMemI:
12285 return IntRange::forValueOfType(C, GetExprType(E));
12286
12287 // Bitwise-and uses the *infinum* of the two source ranges.
12288 case BO_And:
12289 case BO_AndAssign:
12290 Combine = IntRange::bit_and;
12291 break;
12292
12293 // Left shift gets black-listed based on a judgement call.
12294 case BO_Shl:
12295 // ...except that we want to treat '1 << (blah)' as logically
12296 // positive. It's an important idiom.
12297 if (IntegerLiteral *I
12298 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
12299 if (I->getValue() == 1) {
12300 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
12301 return IntRange(R.Width, /*NonNegative*/ true);
12302 }
12303 }
12304 LLVM_FALLTHROUGH;
12305
12306 case BO_ShlAssign:
12307 return IntRange::forValueOfType(C, GetExprType(E));
12308
12309 // Right shift by a constant can narrow its left argument.
12310 case BO_Shr:
12311 case BO_ShrAssign: {
12312 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
12313 Approximate);
12314
12315 // If the shift amount is a positive constant, drop the width by
12316 // that much.
12317 if (Optional<llvm::APSInt> shift =
12318 BO->getRHS()->getIntegerConstantExpr(C)) {
12319 if (shift->isNonNegative()) {
12320 unsigned zext = shift->getZExtValue();
12321 if (zext >= L.Width)
12322 L.Width = (L.NonNegative ? 0 : 1);
12323 else
12324 L.Width -= zext;
12325 }
12326 }
12327
12328 return L;
12329 }
12330
12331 // Comma acts as its right operand.
12332 case BO_Comma:
12333 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
12334 Approximate);
12335
12336 case BO_Add:
12337 if (!Approximate)
12338 Combine = IntRange::sum;
12339 break;
12340
12341 case BO_Sub:
12342 if (BO->getLHS()->getType()->isPointerType())
12343 return IntRange::forValueOfType(C, GetExprType(E));
12344 if (!Approximate)
12345 Combine = IntRange::difference;
12346 break;
12347
12348 case BO_Mul:
12349 if (!Approximate)
12350 Combine = IntRange::product;
12351 break;
12352
12353 // The width of a division result is mostly determined by the size
12354 // of the LHS.
12355 case BO_Div: {
12356 // Don't 'pre-truncate' the operands.
12357 unsigned opWidth = C.getIntWidth(GetExprType(E));
12358 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
12359 Approximate);
12360
12361 // If the divisor is constant, use that.
12362 if (Optional<llvm::APSInt> divisor =
12363 BO->getRHS()->getIntegerConstantExpr(C)) {
12364 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
12365 if (log2 >= L.Width)
12366 L.Width = (L.NonNegative ? 0 : 1);
12367 else
12368 L.Width = std::min(L.Width - log2, MaxWidth);
12369 return L;
12370 }
12371
12372 // Otherwise, just use the LHS's width.
12373 // FIXME: This is wrong if the LHS could be its minimal value and the RHS
12374 // could be -1.
12375 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
12376 Approximate);
12377 return IntRange(L.Width, L.NonNegative && R.NonNegative);
12378 }
12379
12380 case BO_Rem:
12381 Combine = IntRange::rem;
12382 break;
12383
12384 // The default behavior is okay for these.
12385 case BO_Xor:
12386 case BO_Or:
12387 break;
12388 }
12389
12390 // Combine the two ranges, but limit the result to the type in which we
12391 // performed the computation.
12392 QualType T = GetExprType(E);
12393 unsigned opWidth = C.getIntWidth(T);
12394 IntRange L =
12395 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
12396 IntRange R =
12397 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
12398 IntRange C = Combine(L, R);
12399 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
12400 C.Width = std::min(C.Width, MaxWidth);
12401 return C;
12402 }
12403
12404 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
12405 switch (UO->getOpcode()) {
12406 // Boolean-valued operations are white-listed.
12407 case UO_LNot:
12408 return IntRange::forBoolType();
12409
12410 // Operations with opaque sources are black-listed.
12411 case UO_Deref:
12412 case UO_AddrOf: // should be impossible
12413 return IntRange::forValueOfType(C, GetExprType(E));
12414
12415 default:
12416 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
12417 Approximate);
12418 }
12419 }
12420
12421 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12422 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
12423 Approximate);
12424
12425 if (const auto *BitField = E->getSourceBitField())
12426 return IntRange(BitField->getBitWidthValue(C),
12427 BitField->getType()->isUnsignedIntegerOrEnumerationType());
12428
12429 return IntRange::forValueOfType(C, GetExprType(E));
12430 }
12431
GetExprRange(ASTContext & C,const Expr * E,bool InConstantContext,bool Approximate)12432 static IntRange GetExprRange(ASTContext &C, const Expr *E,
12433 bool InConstantContext, bool Approximate) {
12434 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
12435 Approximate);
12436 }
12437
12438 /// Checks whether the given value, which currently has the given
12439 /// source semantics, has the same value when coerced through the
12440 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)12441 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
12442 const llvm::fltSemantics &Src,
12443 const llvm::fltSemantics &Tgt) {
12444 llvm::APFloat truncated = value;
12445
12446 bool ignored;
12447 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
12448 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
12449
12450 return truncated.bitwiseIsEqual(value);
12451 }
12452
12453 /// Checks whether the given value, which currently has the given
12454 /// source semantics, has the same value when coerced through the
12455 /// target semantics.
12456 ///
12457 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)12458 static bool IsSameFloatAfterCast(const APValue &value,
12459 const llvm::fltSemantics &Src,
12460 const llvm::fltSemantics &Tgt) {
12461 if (value.isFloat())
12462 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
12463
12464 if (value.isVector()) {
12465 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
12466 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
12467 return false;
12468 return true;
12469 }
12470
12471 assert(value.isComplexFloat());
12472 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
12473 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
12474 }
12475
12476 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
12477 bool IsListInit = false);
12478
IsEnumConstOrFromMacro(Sema & S,Expr * E)12479 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
12480 // Suppress cases where we are comparing against an enum constant.
12481 if (const DeclRefExpr *DR =
12482 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
12483 if (isa<EnumConstantDecl>(DR->getDecl()))
12484 return true;
12485
12486 // Suppress cases where the value is expanded from a macro, unless that macro
12487 // is how a language represents a boolean literal. This is the case in both C
12488 // and Objective-C.
12489 SourceLocation BeginLoc = E->getBeginLoc();
12490 if (BeginLoc.isMacroID()) {
12491 StringRef MacroName = Lexer::getImmediateMacroName(
12492 BeginLoc, S.getSourceManager(), S.getLangOpts());
12493 return MacroName != "YES" && MacroName != "NO" &&
12494 MacroName != "true" && MacroName != "false";
12495 }
12496
12497 return false;
12498 }
12499
isKnownToHaveUnsignedValue(Expr * E)12500 static bool isKnownToHaveUnsignedValue(Expr *E) {
12501 return E->getType()->isIntegerType() &&
12502 (!E->getType()->isSignedIntegerType() ||
12503 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
12504 }
12505
12506 namespace {
12507 /// The promoted range of values of a type. In general this has the
12508 /// following structure:
12509 ///
12510 /// |-----------| . . . |-----------|
12511 /// ^ ^ ^ ^
12512 /// Min HoleMin HoleMax Max
12513 ///
12514 /// ... where there is only a hole if a signed type is promoted to unsigned
12515 /// (in which case Min and Max are the smallest and largest representable
12516 /// values).
12517 struct PromotedRange {
12518 // Min, or HoleMax if there is a hole.
12519 llvm::APSInt PromotedMin;
12520 // Max, or HoleMin if there is a hole.
12521 llvm::APSInt PromotedMax;
12522
PromotedRange__anon8097fee12511::PromotedRange12523 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
12524 if (R.Width == 0)
12525 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
12526 else if (R.Width >= BitWidth && !Unsigned) {
12527 // Promotion made the type *narrower*. This happens when promoting
12528 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
12529 // Treat all values of 'signed int' as being in range for now.
12530 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
12531 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
12532 } else {
12533 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
12534 .extOrTrunc(BitWidth);
12535 PromotedMin.setIsUnsigned(Unsigned);
12536
12537 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
12538 .extOrTrunc(BitWidth);
12539 PromotedMax.setIsUnsigned(Unsigned);
12540 }
12541 }
12542
12543 // Determine whether this range is contiguous (has no hole).
isContiguous__anon8097fee12511::PromotedRange12544 bool isContiguous() const { return PromotedMin <= PromotedMax; }
12545
12546 // Where a constant value is within the range.
12547 enum ComparisonResult {
12548 LT = 0x1,
12549 LE = 0x2,
12550 GT = 0x4,
12551 GE = 0x8,
12552 EQ = 0x10,
12553 NE = 0x20,
12554 InRangeFlag = 0x40,
12555
12556 Less = LE | LT | NE,
12557 Min = LE | InRangeFlag,
12558 InRange = InRangeFlag,
12559 Max = GE | InRangeFlag,
12560 Greater = GE | GT | NE,
12561
12562 OnlyValue = LE | GE | EQ | InRangeFlag,
12563 InHole = NE
12564 };
12565
compare__anon8097fee12511::PromotedRange12566 ComparisonResult compare(const llvm::APSInt &Value) const {
12567 assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
12568 Value.isUnsigned() == PromotedMin.isUnsigned());
12569 if (!isContiguous()) {
12570 assert(Value.isUnsigned() && "discontiguous range for signed compare");
12571 if (Value.isMinValue()) return Min;
12572 if (Value.isMaxValue()) return Max;
12573 if (Value >= PromotedMin) return InRange;
12574 if (Value <= PromotedMax) return InRange;
12575 return InHole;
12576 }
12577
12578 switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
12579 case -1: return Less;
12580 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
12581 case 1:
12582 switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
12583 case -1: return InRange;
12584 case 0: return Max;
12585 case 1: return Greater;
12586 }
12587 }
12588
12589 llvm_unreachable("impossible compare result");
12590 }
12591
12592 static llvm::Optional<StringRef>
constantValue__anon8097fee12511::PromotedRange12593 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
12594 if (Op == BO_Cmp) {
12595 ComparisonResult LTFlag = LT, GTFlag = GT;
12596 if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
12597
12598 if (R & EQ) return StringRef("'std::strong_ordering::equal'");
12599 if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
12600 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
12601 return llvm::None;
12602 }
12603
12604 ComparisonResult TrueFlag, FalseFlag;
12605 if (Op == BO_EQ) {
12606 TrueFlag = EQ;
12607 FalseFlag = NE;
12608 } else if (Op == BO_NE) {
12609 TrueFlag = NE;
12610 FalseFlag = EQ;
12611 } else {
12612 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
12613 TrueFlag = LT;
12614 FalseFlag = GE;
12615 } else {
12616 TrueFlag = GT;
12617 FalseFlag = LE;
12618 }
12619 if (Op == BO_GE || Op == BO_LE)
12620 std::swap(TrueFlag, FalseFlag);
12621 }
12622 if (R & TrueFlag)
12623 return StringRef("true");
12624 if (R & FalseFlag)
12625 return StringRef("false");
12626 return llvm::None;
12627 }
12628 };
12629 }
12630
HasEnumType(Expr * E)12631 static bool HasEnumType(Expr *E) {
12632 // Strip off implicit integral promotions.
12633 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12634 if (ICE->getCastKind() != CK_IntegralCast &&
12635 ICE->getCastKind() != CK_NoOp)
12636 break;
12637 E = ICE->getSubExpr();
12638 }
12639
12640 return E->getType()->isEnumeralType();
12641 }
12642
classifyConstantValue(Expr * Constant)12643 static int classifyConstantValue(Expr *Constant) {
12644 // The values of this enumeration are used in the diagnostics
12645 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
12646 enum ConstantValueKind {
12647 Miscellaneous = 0,
12648 LiteralTrue,
12649 LiteralFalse
12650 };
12651 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
12652 return BL->getValue() ? ConstantValueKind::LiteralTrue
12653 : ConstantValueKind::LiteralFalse;
12654 return ConstantValueKind::Miscellaneous;
12655 }
12656
CheckTautologicalComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,const llvm::APSInt & Value,bool RhsConstant)12657 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
12658 Expr *Constant, Expr *Other,
12659 const llvm::APSInt &Value,
12660 bool RhsConstant) {
12661 if (S.inTemplateInstantiation())
12662 return false;
12663
12664 Expr *OriginalOther = Other;
12665
12666 Constant = Constant->IgnoreParenImpCasts();
12667 Other = Other->IgnoreParenImpCasts();
12668
12669 // Suppress warnings on tautological comparisons between values of the same
12670 // enumeration type. There are only two ways we could warn on this:
12671 // - If the constant is outside the range of representable values of
12672 // the enumeration. In such a case, we should warn about the cast
12673 // to enumeration type, not about the comparison.
12674 // - If the constant is the maximum / minimum in-range value. For an
12675 // enumeratin type, such comparisons can be meaningful and useful.
12676 if (Constant->getType()->isEnumeralType() &&
12677 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
12678 return false;
12679
12680 IntRange OtherValueRange = GetExprRange(
12681 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
12682
12683 QualType OtherT = Other->getType();
12684 if (const auto *AT = OtherT->getAs<AtomicType>())
12685 OtherT = AT->getValueType();
12686 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
12687
12688 // Special case for ObjC BOOL on targets where its a typedef for a signed char
12689 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
12690 bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
12691 S.NSAPIObj->isObjCBOOLType(OtherT) &&
12692 OtherT->isSpecificBuiltinType(BuiltinType::SChar);
12693
12694 // Whether we're treating Other as being a bool because of the form of
12695 // expression despite it having another type (typically 'int' in C).
12696 bool OtherIsBooleanDespiteType =
12697 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
12698 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
12699 OtherTypeRange = OtherValueRange = IntRange::forBoolType();
12700
12701 // Check if all values in the range of possible values of this expression
12702 // lead to the same comparison outcome.
12703 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
12704 Value.isUnsigned());
12705 auto Cmp = OtherPromotedValueRange.compare(Value);
12706 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
12707 if (!Result)
12708 return false;
12709
12710 // Also consider the range determined by the type alone. This allows us to
12711 // classify the warning under the proper diagnostic group.
12712 bool TautologicalTypeCompare = false;
12713 {
12714 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
12715 Value.isUnsigned());
12716 auto TypeCmp = OtherPromotedTypeRange.compare(Value);
12717 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
12718 RhsConstant)) {
12719 TautologicalTypeCompare = true;
12720 Cmp = TypeCmp;
12721 Result = TypeResult;
12722 }
12723 }
12724
12725 // Don't warn if the non-constant operand actually always evaluates to the
12726 // same value.
12727 if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
12728 return false;
12729
12730 // Suppress the diagnostic for an in-range comparison if the constant comes
12731 // from a macro or enumerator. We don't want to diagnose
12732 //
12733 // some_long_value <= INT_MAX
12734 //
12735 // when sizeof(int) == sizeof(long).
12736 bool InRange = Cmp & PromotedRange::InRangeFlag;
12737 if (InRange && IsEnumConstOrFromMacro(S, Constant))
12738 return false;
12739
12740 // A comparison of an unsigned bit-field against 0 is really a type problem,
12741 // even though at the type level the bit-field might promote to 'signed int'.
12742 if (Other->refersToBitField() && InRange && Value == 0 &&
12743 Other->getType()->isUnsignedIntegerOrEnumerationType())
12744 TautologicalTypeCompare = true;
12745
12746 // If this is a comparison to an enum constant, include that
12747 // constant in the diagnostic.
12748 const EnumConstantDecl *ED = nullptr;
12749 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
12750 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
12751
12752 // Should be enough for uint128 (39 decimal digits)
12753 SmallString<64> PrettySourceValue;
12754 llvm::raw_svector_ostream OS(PrettySourceValue);
12755 if (ED) {
12756 OS << '\'' << *ED << "' (" << Value << ")";
12757 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
12758 Constant->IgnoreParenImpCasts())) {
12759 OS << (BL->getValue() ? "YES" : "NO");
12760 } else {
12761 OS << Value;
12762 }
12763
12764 if (!TautologicalTypeCompare) {
12765 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
12766 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
12767 << E->getOpcodeStr() << OS.str() << *Result
12768 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12769 return true;
12770 }
12771
12772 if (IsObjCSignedCharBool) {
12773 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12774 S.PDiag(diag::warn_tautological_compare_objc_bool)
12775 << OS.str() << *Result);
12776 return true;
12777 }
12778
12779 // FIXME: We use a somewhat different formatting for the in-range cases and
12780 // cases involving boolean values for historical reasons. We should pick a
12781 // consistent way of presenting these diagnostics.
12782 if (!InRange || Other->isKnownToHaveBooleanValue()) {
12783
12784 S.DiagRuntimeBehavior(
12785 E->getOperatorLoc(), E,
12786 S.PDiag(!InRange ? diag::warn_out_of_range_compare
12787 : diag::warn_tautological_bool_compare)
12788 << OS.str() << classifyConstantValue(Constant) << OtherT
12789 << OtherIsBooleanDespiteType << *Result
12790 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
12791 } else {
12792 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
12793 unsigned Diag =
12794 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12795 ? (HasEnumType(OriginalOther)
12796 ? diag::warn_unsigned_enum_always_true_comparison
12797 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12798 : diag::warn_unsigned_always_true_comparison)
12799 : diag::warn_tautological_constant_compare;
12800
12801 S.Diag(E->getOperatorLoc(), Diag)
12802 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12803 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12804 }
12805
12806 return true;
12807 }
12808
12809 /// Analyze the operands of the given comparison. Implements the
12810 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)12811 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12812 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12813 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12814 }
12815
12816 /// Implements -Wsign-compare.
12817 ///
12818 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)12819 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12820 // The type the comparison is being performed in.
12821 QualType T = E->getLHS()->getType();
12822
12823 // Only analyze comparison operators where both sides have been converted to
12824 // the same type.
12825 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12826 return AnalyzeImpConvsInComparison(S, E);
12827
12828 // Don't analyze value-dependent comparisons directly.
12829 if (E->isValueDependent())
12830 return AnalyzeImpConvsInComparison(S, E);
12831
12832 Expr *LHS = E->getLHS();
12833 Expr *RHS = E->getRHS();
12834
12835 if (T->isIntegralType(S.Context)) {
12836 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12837 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12838
12839 // We don't care about expressions whose result is a constant.
12840 if (RHSValue && LHSValue)
12841 return AnalyzeImpConvsInComparison(S, E);
12842
12843 // We only care about expressions where just one side is literal
12844 if ((bool)RHSValue ^ (bool)LHSValue) {
12845 // Is the constant on the RHS or LHS?
12846 const bool RhsConstant = (bool)RHSValue;
12847 Expr *Const = RhsConstant ? RHS : LHS;
12848 Expr *Other = RhsConstant ? LHS : RHS;
12849 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12850
12851 // Check whether an integer constant comparison results in a value
12852 // of 'true' or 'false'.
12853 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12854 return AnalyzeImpConvsInComparison(S, E);
12855 }
12856 }
12857
12858 if (!T->hasUnsignedIntegerRepresentation()) {
12859 // We don't do anything special if this isn't an unsigned integral
12860 // comparison: we're only interested in integral comparisons, and
12861 // signed comparisons only happen in cases we don't care to warn about.
12862 return AnalyzeImpConvsInComparison(S, E);
12863 }
12864
12865 LHS = LHS->IgnoreParenImpCasts();
12866 RHS = RHS->IgnoreParenImpCasts();
12867
12868 if (!S.getLangOpts().CPlusPlus) {
12869 // Avoid warning about comparison of integers with different signs when
12870 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12871 // the type of `E`.
12872 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12873 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12874 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12875 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12876 }
12877
12878 // Check to see if one of the (unmodified) operands is of different
12879 // signedness.
12880 Expr *signedOperand, *unsignedOperand;
12881 if (LHS->getType()->hasSignedIntegerRepresentation()) {
12882 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12883 "unsigned comparison between two signed integer expressions?");
12884 signedOperand = LHS;
12885 unsignedOperand = RHS;
12886 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12887 signedOperand = RHS;
12888 unsignedOperand = LHS;
12889 } else {
12890 return AnalyzeImpConvsInComparison(S, E);
12891 }
12892
12893 // Otherwise, calculate the effective range of the signed operand.
12894 IntRange signedRange = GetExprRange(
12895 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12896
12897 // Go ahead and analyze implicit conversions in the operands. Note
12898 // that we skip the implicit conversions on both sides.
12899 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12900 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12901
12902 // If the signed range is non-negative, -Wsign-compare won't fire.
12903 if (signedRange.NonNegative)
12904 return;
12905
12906 // For (in)equality comparisons, if the unsigned operand is a
12907 // constant which cannot collide with a overflowed signed operand,
12908 // then reinterpreting the signed operand as unsigned will not
12909 // change the result of the comparison.
12910 if (E->isEqualityOp()) {
12911 unsigned comparisonWidth = S.Context.getIntWidth(T);
12912 IntRange unsignedRange =
12913 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12914 /*Approximate*/ true);
12915
12916 // We should never be unable to prove that the unsigned operand is
12917 // non-negative.
12918 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12919
12920 if (unsignedRange.Width < comparisonWidth)
12921 return;
12922 }
12923
12924 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12925 S.PDiag(diag::warn_mixed_sign_comparison)
12926 << LHS->getType() << RHS->getType()
12927 << LHS->getSourceRange() << RHS->getSourceRange());
12928 }
12929
12930 /// Analyzes an attempt to assign the given value to a bitfield.
12931 ///
12932 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)12933 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12934 SourceLocation InitLoc) {
12935 assert(Bitfield->isBitField());
12936 if (Bitfield->isInvalidDecl())
12937 return false;
12938
12939 // White-list bool bitfields.
12940 QualType BitfieldType = Bitfield->getType();
12941 if (BitfieldType->isBooleanType())
12942 return false;
12943
12944 if (BitfieldType->isEnumeralType()) {
12945 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12946 // If the underlying enum type was not explicitly specified as an unsigned
12947 // type and the enum contain only positive values, MSVC++ will cause an
12948 // inconsistency by storing this as a signed type.
12949 if (S.getLangOpts().CPlusPlus11 &&
12950 !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12951 BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12952 BitfieldEnumDecl->getNumNegativeBits() == 0) {
12953 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12954 << BitfieldEnumDecl;
12955 }
12956 }
12957
12958 if (Bitfield->getType()->isBooleanType())
12959 return false;
12960
12961 // Ignore value- or type-dependent expressions.
12962 if (Bitfield->getBitWidth()->isValueDependent() ||
12963 Bitfield->getBitWidth()->isTypeDependent() ||
12964 Init->isValueDependent() ||
12965 Init->isTypeDependent())
12966 return false;
12967
12968 Expr *OriginalInit = Init->IgnoreParenImpCasts();
12969 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12970
12971 Expr::EvalResult Result;
12972 if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12973 Expr::SE_AllowSideEffects)) {
12974 // The RHS is not constant. If the RHS has an enum type, make sure the
12975 // bitfield is wide enough to hold all the values of the enum without
12976 // truncation.
12977 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12978 EnumDecl *ED = EnumTy->getDecl();
12979 bool SignedBitfield = BitfieldType->isSignedIntegerType();
12980
12981 // Enum types are implicitly signed on Windows, so check if there are any
12982 // negative enumerators to see if the enum was intended to be signed or
12983 // not.
12984 bool SignedEnum = ED->getNumNegativeBits() > 0;
12985
12986 // Check for surprising sign changes when assigning enum values to a
12987 // bitfield of different signedness. If the bitfield is signed and we
12988 // have exactly the right number of bits to store this unsigned enum,
12989 // suggest changing the enum to an unsigned type. This typically happens
12990 // on Windows where unfixed enums always use an underlying type of 'int'.
12991 unsigned DiagID = 0;
12992 if (SignedEnum && !SignedBitfield) {
12993 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12994 } else if (SignedBitfield && !SignedEnum &&
12995 ED->getNumPositiveBits() == FieldWidth) {
12996 DiagID = diag::warn_signed_bitfield_enum_conversion;
12997 }
12998
12999 if (DiagID) {
13000 S.Diag(InitLoc, DiagID) << Bitfield << ED;
13001 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
13002 SourceRange TypeRange =
13003 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
13004 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
13005 << SignedEnum << TypeRange;
13006 }
13007
13008 // Compute the required bitwidth. If the enum has negative values, we need
13009 // one more bit than the normal number of positive bits to represent the
13010 // sign bit.
13011 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
13012 ED->getNumNegativeBits())
13013 : ED->getNumPositiveBits();
13014
13015 // Check the bitwidth.
13016 if (BitsNeeded > FieldWidth) {
13017 Expr *WidthExpr = Bitfield->getBitWidth();
13018 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
13019 << Bitfield << ED;
13020 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
13021 << BitsNeeded << ED << WidthExpr->getSourceRange();
13022 }
13023 }
13024
13025 return false;
13026 }
13027
13028 llvm::APSInt Value = Result.Val.getInt();
13029
13030 unsigned OriginalWidth = Value.getBitWidth();
13031
13032 if (!Value.isSigned() || Value.isNegative())
13033 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
13034 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
13035 OriginalWidth = Value.getMinSignedBits();
13036
13037 if (OriginalWidth <= FieldWidth)
13038 return false;
13039
13040 // Compute the value which the bitfield will contain.
13041 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
13042 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
13043
13044 // Check whether the stored value is equal to the original value.
13045 TruncatedValue = TruncatedValue.extend(OriginalWidth);
13046 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
13047 return false;
13048
13049 // Special-case bitfields of width 1: booleans are naturally 0/1, and
13050 // therefore don't strictly fit into a signed bitfield of width 1.
13051 if (FieldWidth == 1 && Value == 1)
13052 return false;
13053
13054 std::string PrettyValue = toString(Value, 10);
13055 std::string PrettyTrunc = toString(TruncatedValue, 10);
13056
13057 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
13058 << PrettyValue << PrettyTrunc << OriginalInit->getType()
13059 << Init->getSourceRange();
13060
13061 return true;
13062 }
13063
13064 /// Analyze the given simple or compound assignment for warning-worthy
13065 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)13066 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
13067 // Just recurse on the LHS.
13068 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
13069
13070 // We want to recurse on the RHS as normal unless we're assigning to
13071 // a bitfield.
13072 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
13073 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
13074 E->getOperatorLoc())) {
13075 // Recurse, ignoring any implicit conversions on the RHS.
13076 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
13077 E->getOperatorLoc());
13078 }
13079 }
13080
13081 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
13082
13083 // Diagnose implicitly sequentially-consistent atomic assignment.
13084 if (E->getLHS()->getType()->isAtomicType())
13085 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13086 }
13087
13088 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)13089 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
13090 SourceLocation CContext, unsigned diag,
13091 bool pruneControlFlow = false) {
13092 if (pruneControlFlow) {
13093 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13094 S.PDiag(diag)
13095 << SourceType << T << E->getSourceRange()
13096 << SourceRange(CContext));
13097 return;
13098 }
13099 S.Diag(E->getExprLoc(), diag)
13100 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
13101 }
13102
13103 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)13104 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
13105 SourceLocation CContext,
13106 unsigned diag, bool pruneControlFlow = false) {
13107 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
13108 }
13109
isObjCSignedCharBool(Sema & S,QualType Ty)13110 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
13111 return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
13112 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
13113 }
13114
adornObjCBoolConversionDiagWithTernaryFixit(Sema & S,Expr * SourceExpr,const Sema::SemaDiagnosticBuilder & Builder)13115 static void adornObjCBoolConversionDiagWithTernaryFixit(
13116 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
13117 Expr *Ignored = SourceExpr->IgnoreImplicit();
13118 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
13119 Ignored = OVE->getSourceExpr();
13120 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
13121 isa<BinaryOperator>(Ignored) ||
13122 isa<CXXOperatorCallExpr>(Ignored);
13123 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
13124 if (NeedsParens)
13125 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
13126 << FixItHint::CreateInsertion(EndLoc, ")");
13127 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
13128 }
13129
13130 /// Diagnose an implicit cast from a floating point value to an integer value.
DiagnoseFloatingImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext)13131 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
13132 SourceLocation CContext) {
13133 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
13134 const bool PruneWarnings = S.inTemplateInstantiation();
13135
13136 Expr *InnerE = E->IgnoreParenImpCasts();
13137 // We also want to warn on, e.g., "int i = -1.234"
13138 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
13139 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
13140 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
13141
13142 const bool IsLiteral =
13143 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
13144
13145 llvm::APFloat Value(0.0);
13146 bool IsConstant =
13147 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
13148 if (!IsConstant) {
13149 if (isObjCSignedCharBool(S, T)) {
13150 return adornObjCBoolConversionDiagWithTernaryFixit(
13151 S, E,
13152 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
13153 << E->getType());
13154 }
13155
13156 return DiagnoseImpCast(S, E, T, CContext,
13157 diag::warn_impcast_float_integer, PruneWarnings);
13158 }
13159
13160 bool isExact = false;
13161
13162 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
13163 T->hasUnsignedIntegerRepresentation());
13164 llvm::APFloat::opStatus Result = Value.convertToInteger(
13165 IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
13166
13167 // FIXME: Force the precision of the source value down so we don't print
13168 // digits which are usually useless (we don't really care here if we
13169 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
13170 // would automatically print the shortest representation, but it's a bit
13171 // tricky to implement.
13172 SmallString<16> PrettySourceValue;
13173 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
13174 precision = (precision * 59 + 195) / 196;
13175 Value.toString(PrettySourceValue, precision);
13176
13177 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
13178 return adornObjCBoolConversionDiagWithTernaryFixit(
13179 S, E,
13180 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
13181 << PrettySourceValue);
13182 }
13183
13184 if (Result == llvm::APFloat::opOK && isExact) {
13185 if (IsLiteral) return;
13186 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
13187 PruneWarnings);
13188 }
13189
13190 // Conversion of a floating-point value to a non-bool integer where the
13191 // integral part cannot be represented by the integer type is undefined.
13192 if (!IsBool && Result == llvm::APFloat::opInvalidOp)
13193 return DiagnoseImpCast(
13194 S, E, T, CContext,
13195 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
13196 : diag::warn_impcast_float_to_integer_out_of_range,
13197 PruneWarnings);
13198
13199 unsigned DiagID = 0;
13200 if (IsLiteral) {
13201 // Warn on floating point literal to integer.
13202 DiagID = diag::warn_impcast_literal_float_to_integer;
13203 } else if (IntegerValue == 0) {
13204 if (Value.isZero()) { // Skip -0.0 to 0 conversion.
13205 return DiagnoseImpCast(S, E, T, CContext,
13206 diag::warn_impcast_float_integer, PruneWarnings);
13207 }
13208 // Warn on non-zero to zero conversion.
13209 DiagID = diag::warn_impcast_float_to_integer_zero;
13210 } else {
13211 if (IntegerValue.isUnsigned()) {
13212 if (!IntegerValue.isMaxValue()) {
13213 return DiagnoseImpCast(S, E, T, CContext,
13214 diag::warn_impcast_float_integer, PruneWarnings);
13215 }
13216 } else { // IntegerValue.isSigned()
13217 if (!IntegerValue.isMaxSignedValue() &&
13218 !IntegerValue.isMinSignedValue()) {
13219 return DiagnoseImpCast(S, E, T, CContext,
13220 diag::warn_impcast_float_integer, PruneWarnings);
13221 }
13222 }
13223 // Warn on evaluatable floating point expression to integer conversion.
13224 DiagID = diag::warn_impcast_float_to_integer;
13225 }
13226
13227 SmallString<16> PrettyTargetValue;
13228 if (IsBool)
13229 PrettyTargetValue = Value.isZero() ? "false" : "true";
13230 else
13231 IntegerValue.toString(PrettyTargetValue);
13232
13233 if (PruneWarnings) {
13234 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13235 S.PDiag(DiagID)
13236 << E->getType() << T.getUnqualifiedType()
13237 << PrettySourceValue << PrettyTargetValue
13238 << E->getSourceRange() << SourceRange(CContext));
13239 } else {
13240 S.Diag(E->getExprLoc(), DiagID)
13241 << E->getType() << T.getUnqualifiedType() << PrettySourceValue
13242 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
13243 }
13244 }
13245
13246 /// Analyze the given compound assignment for the possible losing of
13247 /// floating-point precision.
AnalyzeCompoundAssignment(Sema & S,BinaryOperator * E)13248 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
13249 assert(isa<CompoundAssignOperator>(E) &&
13250 "Must be compound assignment operation");
13251 // Recurse on the LHS and RHS in here
13252 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
13253 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
13254
13255 if (E->getLHS()->getType()->isAtomicType())
13256 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
13257
13258 // Now check the outermost expression
13259 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
13260 const auto *RBT = cast<CompoundAssignOperator>(E)
13261 ->getComputationResultType()
13262 ->getAs<BuiltinType>();
13263
13264 // The below checks assume source is floating point.
13265 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
13266
13267 // If source is floating point but target is an integer.
13268 if (ResultBT->isInteger())
13269 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
13270 E->getExprLoc(), diag::warn_impcast_float_integer);
13271
13272 if (!ResultBT->isFloatingPoint())
13273 return;
13274
13275 // If both source and target are floating points, warn about losing precision.
13276 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13277 QualType(ResultBT, 0), QualType(RBT, 0));
13278 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
13279 // warn about dropping FP rank.
13280 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
13281 diag::warn_impcast_float_result_precision);
13282 }
13283
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)13284 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
13285 IntRange Range) {
13286 if (!Range.Width) return "0";
13287
13288 llvm::APSInt ValueInRange = Value;
13289 ValueInRange.setIsSigned(!Range.NonNegative);
13290 ValueInRange = ValueInRange.trunc(Range.Width);
13291 return toString(ValueInRange, 10);
13292 }
13293
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)13294 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
13295 if (!isa<ImplicitCastExpr>(Ex))
13296 return false;
13297
13298 Expr *InnerE = Ex->IgnoreParenImpCasts();
13299 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
13300 const Type *Source =
13301 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
13302 if (Target->isDependentType())
13303 return false;
13304
13305 const BuiltinType *FloatCandidateBT =
13306 dyn_cast<BuiltinType>(ToBool ? Source : Target);
13307 const Type *BoolCandidateType = ToBool ? Target : Source;
13308
13309 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
13310 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
13311 }
13312
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)13313 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
13314 SourceLocation CC) {
13315 unsigned NumArgs = TheCall->getNumArgs();
13316 for (unsigned i = 0; i < NumArgs; ++i) {
13317 Expr *CurrA = TheCall->getArg(i);
13318 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
13319 continue;
13320
13321 bool IsSwapped = ((i > 0) &&
13322 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
13323 IsSwapped |= ((i < (NumArgs - 1)) &&
13324 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
13325 if (IsSwapped) {
13326 // Warn on this floating-point to bool conversion.
13327 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
13328 CurrA->getType(), CC,
13329 diag::warn_impcast_floating_point_to_bool);
13330 }
13331 }
13332 }
13333
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)13334 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
13335 SourceLocation CC) {
13336 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
13337 E->getExprLoc()))
13338 return;
13339
13340 // Don't warn on functions which have return type nullptr_t.
13341 if (isa<CallExpr>(E))
13342 return;
13343
13344 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
13345 const Expr::NullPointerConstantKind NullKind =
13346 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
13347 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
13348 return;
13349
13350 // Return if target type is a safe conversion.
13351 if (T->isAnyPointerType() || T->isBlockPointerType() ||
13352 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
13353 return;
13354
13355 SourceLocation Loc = E->getSourceRange().getBegin();
13356
13357 // Venture through the macro stacks to get to the source of macro arguments.
13358 // The new location is a better location than the complete location that was
13359 // passed in.
13360 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
13361 CC = S.SourceMgr.getTopMacroCallerLoc(CC);
13362
13363 // __null is usually wrapped in a macro. Go up a macro if that is the case.
13364 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
13365 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
13366 Loc, S.SourceMgr, S.getLangOpts());
13367 if (MacroName == "NULL")
13368 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
13369 }
13370
13371 // Only warn if the null and context location are in the same macro expansion.
13372 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
13373 return;
13374
13375 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
13376 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
13377 << FixItHint::CreateReplacement(Loc,
13378 S.getFixItZeroLiteralForType(T, Loc));
13379 }
13380
13381 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
13382 ObjCArrayLiteral *ArrayLiteral);
13383
13384 static void
13385 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
13386 ObjCDictionaryLiteral *DictionaryLiteral);
13387
13388 /// Check a single element within a collection literal against the
13389 /// target element type.
checkObjCCollectionLiteralElement(Sema & S,QualType TargetElementType,Expr * Element,unsigned ElementKind)13390 static void checkObjCCollectionLiteralElement(Sema &S,
13391 QualType TargetElementType,
13392 Expr *Element,
13393 unsigned ElementKind) {
13394 // Skip a bitcast to 'id' or qualified 'id'.
13395 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
13396 if (ICE->getCastKind() == CK_BitCast &&
13397 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
13398 Element = ICE->getSubExpr();
13399 }
13400
13401 QualType ElementType = Element->getType();
13402 ExprResult ElementResult(Element);
13403 if (ElementType->getAs<ObjCObjectPointerType>() &&
13404 S.CheckSingleAssignmentConstraints(TargetElementType,
13405 ElementResult,
13406 false, false)
13407 != Sema::Compatible) {
13408 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
13409 << ElementType << ElementKind << TargetElementType
13410 << Element->getSourceRange();
13411 }
13412
13413 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
13414 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
13415 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
13416 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
13417 }
13418
13419 /// Check an Objective-C array literal being converted to the given
13420 /// target type.
checkObjCArrayLiteral(Sema & S,QualType TargetType,ObjCArrayLiteral * ArrayLiteral)13421 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
13422 ObjCArrayLiteral *ArrayLiteral) {
13423 if (!S.NSArrayDecl)
13424 return;
13425
13426 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
13427 if (!TargetObjCPtr)
13428 return;
13429
13430 if (TargetObjCPtr->isUnspecialized() ||
13431 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
13432 != S.NSArrayDecl->getCanonicalDecl())
13433 return;
13434
13435 auto TypeArgs = TargetObjCPtr->getTypeArgs();
13436 if (TypeArgs.size() != 1)
13437 return;
13438
13439 QualType TargetElementType = TypeArgs[0];
13440 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
13441 checkObjCCollectionLiteralElement(S, TargetElementType,
13442 ArrayLiteral->getElement(I),
13443 0);
13444 }
13445 }
13446
13447 /// Check an Objective-C dictionary literal being converted to the given
13448 /// target type.
13449 static void
checkObjCDictionaryLiteral(Sema & S,QualType TargetType,ObjCDictionaryLiteral * DictionaryLiteral)13450 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
13451 ObjCDictionaryLiteral *DictionaryLiteral) {
13452 if (!S.NSDictionaryDecl)
13453 return;
13454
13455 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
13456 if (!TargetObjCPtr)
13457 return;
13458
13459 if (TargetObjCPtr->isUnspecialized() ||
13460 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
13461 != S.NSDictionaryDecl->getCanonicalDecl())
13462 return;
13463
13464 auto TypeArgs = TargetObjCPtr->getTypeArgs();
13465 if (TypeArgs.size() != 2)
13466 return;
13467
13468 QualType TargetKeyType = TypeArgs[0];
13469 QualType TargetObjectType = TypeArgs[1];
13470 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
13471 auto Element = DictionaryLiteral->getKeyValueElement(I);
13472 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
13473 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
13474 }
13475 }
13476
13477 // Helper function to filter out cases for constant width constant conversion.
13478 // Don't warn on char array initialization or for non-decimal values.
isSameWidthConstantConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)13479 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
13480 SourceLocation CC) {
13481 // If initializing from a constant, and the constant starts with '0',
13482 // then it is a binary, octal, or hexadecimal. Allow these constants
13483 // to fill all the bits, even if there is a sign change.
13484 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
13485 const char FirstLiteralCharacter =
13486 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
13487 if (FirstLiteralCharacter == '0')
13488 return false;
13489 }
13490
13491 // If the CC location points to a '{', and the type is char, then assume
13492 // assume it is an array initialization.
13493 if (CC.isValid() && T->isCharType()) {
13494 const char FirstContextCharacter =
13495 S.getSourceManager().getCharacterData(CC)[0];
13496 if (FirstContextCharacter == '{')
13497 return false;
13498 }
13499
13500 return true;
13501 }
13502
getIntegerLiteral(Expr * E)13503 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
13504 const auto *IL = dyn_cast<IntegerLiteral>(E);
13505 if (!IL) {
13506 if (auto *UO = dyn_cast<UnaryOperator>(E)) {
13507 if (UO->getOpcode() == UO_Minus)
13508 return dyn_cast<IntegerLiteral>(UO->getSubExpr());
13509 }
13510 }
13511
13512 return IL;
13513 }
13514
DiagnoseIntInBoolContext(Sema & S,Expr * E)13515 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
13516 E = E->IgnoreParenImpCasts();
13517 SourceLocation ExprLoc = E->getExprLoc();
13518
13519 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
13520 BinaryOperator::Opcode Opc = BO->getOpcode();
13521 Expr::EvalResult Result;
13522 // Do not diagnose unsigned shifts.
13523 if (Opc == BO_Shl) {
13524 const auto *LHS = getIntegerLiteral(BO->getLHS());
13525 const auto *RHS = getIntegerLiteral(BO->getRHS());
13526 if (LHS && LHS->getValue() == 0)
13527 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
13528 else if (!E->isValueDependent() && LHS && RHS &&
13529 RHS->getValue().isNonNegative() &&
13530 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
13531 S.Diag(ExprLoc, diag::warn_left_shift_always)
13532 << (Result.Val.getInt() != 0);
13533 else if (E->getType()->isSignedIntegerType())
13534 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
13535 }
13536 }
13537
13538 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
13539 const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
13540 const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
13541 if (!LHS || !RHS)
13542 return;
13543 if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
13544 (RHS->getValue() == 0 || RHS->getValue() == 1))
13545 // Do not diagnose common idioms.
13546 return;
13547 if (LHS->getValue() != 0 && RHS->getValue() != 0)
13548 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
13549 }
13550 }
13551
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr,bool IsListInit=false)13552 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
13553 SourceLocation CC,
13554 bool *ICContext = nullptr,
13555 bool IsListInit = false) {
13556 if (E->isTypeDependent() || E->isValueDependent()) return;
13557
13558 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
13559 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
13560 if (Source == Target) return;
13561 if (Target->isDependentType()) return;
13562
13563 // If the conversion context location is invalid don't complain. We also
13564 // don't want to emit a warning if the issue occurs from the expansion of
13565 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
13566 // delay this check as long as possible. Once we detect we are in that
13567 // scenario, we just return.
13568 if (CC.isInvalid())
13569 return;
13570
13571 if (Source->isAtomicType())
13572 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
13573
13574 // Diagnose implicit casts to bool.
13575 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
13576 if (isa<StringLiteral>(E))
13577 // Warn on string literal to bool. Checks for string literals in logical
13578 // and expressions, for instance, assert(0 && "error here"), are
13579 // prevented by a check in AnalyzeImplicitConversions().
13580 return DiagnoseImpCast(S, E, T, CC,
13581 diag::warn_impcast_string_literal_to_bool);
13582 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
13583 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
13584 // This covers the literal expressions that evaluate to Objective-C
13585 // objects.
13586 return DiagnoseImpCast(S, E, T, CC,
13587 diag::warn_impcast_objective_c_literal_to_bool);
13588 }
13589 if (Source->isPointerType() || Source->canDecayToPointerType()) {
13590 // Warn on pointer to bool conversion that is always true.
13591 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
13592 SourceRange(CC));
13593 }
13594 }
13595
13596 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
13597 // is a typedef for signed char (macOS), then that constant value has to be 1
13598 // or 0.
13599 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
13600 Expr::EvalResult Result;
13601 if (E->EvaluateAsInt(Result, S.getASTContext(),
13602 Expr::SE_AllowSideEffects)) {
13603 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
13604 adornObjCBoolConversionDiagWithTernaryFixit(
13605 S, E,
13606 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
13607 << toString(Result.Val.getInt(), 10));
13608 }
13609 return;
13610 }
13611 }
13612
13613 // Check implicit casts from Objective-C collection literals to specialized
13614 // collection types, e.g., NSArray<NSString *> *.
13615 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
13616 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
13617 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
13618 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
13619
13620 // Strip vector types.
13621 if (isa<VectorType>(Source)) {
13622 if (Target->isVLSTBuiltinType() &&
13623 (S.Context.areCompatibleSveTypes(QualType(Target, 0),
13624 QualType(Source, 0)) ||
13625 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
13626 QualType(Source, 0))))
13627 return;
13628
13629 if (!isa<VectorType>(Target)) {
13630 if (S.SourceMgr.isInSystemMacro(CC))
13631 return;
13632 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
13633 }
13634
13635 // If the vector cast is cast between two vectors of the same size, it is
13636 // a bitcast, not a conversion.
13637 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13638 return;
13639
13640 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
13641 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
13642 }
13643 if (auto VecTy = dyn_cast<VectorType>(Target))
13644 Target = VecTy->getElementType().getTypePtr();
13645
13646 // Strip complex types.
13647 if (isa<ComplexType>(Source)) {
13648 if (!isa<ComplexType>(Target)) {
13649 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
13650 return;
13651
13652 return DiagnoseImpCast(S, E, T, CC,
13653 S.getLangOpts().CPlusPlus
13654 ? diag::err_impcast_complex_scalar
13655 : diag::warn_impcast_complex_scalar);
13656 }
13657
13658 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
13659 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
13660 }
13661
13662 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
13663 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
13664
13665 // Strip SVE vector types
13666 if (SourceBT && SourceBT->isVLSTBuiltinType()) {
13667 // Need the original target type for vector type checks
13668 const Type *OriginalTarget = S.Context.getCanonicalType(T).getTypePtr();
13669 // Handle conversion from scalable to fixed when msve-vector-bits is
13670 // specified
13671 if (S.Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
13672 QualType(Source, 0)) ||
13673 S.Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
13674 QualType(Source, 0)))
13675 return;
13676
13677 // If the vector cast is cast between two vectors of the same size, it is
13678 // a bitcast, not a conversion.
13679 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13680 return;
13681
13682 Source = SourceBT->getSveEltType(S.Context).getTypePtr();
13683 }
13684
13685 if (TargetBT && TargetBT->isVLSTBuiltinType())
13686 Target = TargetBT->getSveEltType(S.Context).getTypePtr();
13687
13688 // If the source is floating point...
13689 if (SourceBT && SourceBT->isFloatingPoint()) {
13690 // ...and the target is floating point...
13691 if (TargetBT && TargetBT->isFloatingPoint()) {
13692 // ...then warn if we're dropping FP rank.
13693
13694 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13695 QualType(SourceBT, 0), QualType(TargetBT, 0));
13696 if (Order > 0) {
13697 // Don't warn about float constants that are precisely
13698 // representable in the target type.
13699 Expr::EvalResult result;
13700 if (E->EvaluateAsRValue(result, S.Context)) {
13701 // Value might be a float, a float vector, or a float complex.
13702 if (IsSameFloatAfterCast(result.Val,
13703 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
13704 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
13705 return;
13706 }
13707
13708 if (S.SourceMgr.isInSystemMacro(CC))
13709 return;
13710
13711 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
13712 }
13713 // ... or possibly if we're increasing rank, too
13714 else if (Order < 0) {
13715 if (S.SourceMgr.isInSystemMacro(CC))
13716 return;
13717
13718 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
13719 }
13720 return;
13721 }
13722
13723 // If the target is integral, always warn.
13724 if (TargetBT && TargetBT->isInteger()) {
13725 if (S.SourceMgr.isInSystemMacro(CC))
13726 return;
13727
13728 DiagnoseFloatingImpCast(S, E, T, CC);
13729 }
13730
13731 // Detect the case where a call result is converted from floating-point to
13732 // to bool, and the final argument to the call is converted from bool, to
13733 // discover this typo:
13734 //
13735 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
13736 //
13737 // FIXME: This is an incredibly special case; is there some more general
13738 // way to detect this class of misplaced-parentheses bug?
13739 if (Target->isBooleanType() && isa<CallExpr>(E)) {
13740 // Check last argument of function call to see if it is an
13741 // implicit cast from a type matching the type the result
13742 // is being cast to.
13743 CallExpr *CEx = cast<CallExpr>(E);
13744 if (unsigned NumArgs = CEx->getNumArgs()) {
13745 Expr *LastA = CEx->getArg(NumArgs - 1);
13746 Expr *InnerE = LastA->IgnoreParenImpCasts();
13747 if (isa<ImplicitCastExpr>(LastA) &&
13748 InnerE->getType()->isBooleanType()) {
13749 // Warn on this floating-point to bool conversion
13750 DiagnoseImpCast(S, E, T, CC,
13751 diag::warn_impcast_floating_point_to_bool);
13752 }
13753 }
13754 }
13755 return;
13756 }
13757
13758 // Valid casts involving fixed point types should be accounted for here.
13759 if (Source->isFixedPointType()) {
13760 if (Target->isUnsaturatedFixedPointType()) {
13761 Expr::EvalResult Result;
13762 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
13763 S.isConstantEvaluated())) {
13764 llvm::APFixedPoint Value = Result.Val.getFixedPoint();
13765 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
13766 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
13767 if (Value > MaxVal || Value < MinVal) {
13768 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13769 S.PDiag(diag::warn_impcast_fixed_point_range)
13770 << Value.toString() << T
13771 << E->getSourceRange()
13772 << clang::SourceRange(CC));
13773 return;
13774 }
13775 }
13776 } else if (Target->isIntegerType()) {
13777 Expr::EvalResult Result;
13778 if (!S.isConstantEvaluated() &&
13779 E->EvaluateAsFixedPoint(Result, S.Context,
13780 Expr::SE_AllowSideEffects)) {
13781 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
13782
13783 bool Overflowed;
13784 llvm::APSInt IntResult = FXResult.convertToInt(
13785 S.Context.getIntWidth(T),
13786 Target->isSignedIntegerOrEnumerationType(), &Overflowed);
13787
13788 if (Overflowed) {
13789 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13790 S.PDiag(diag::warn_impcast_fixed_point_range)
13791 << FXResult.toString() << T
13792 << E->getSourceRange()
13793 << clang::SourceRange(CC));
13794 return;
13795 }
13796 }
13797 }
13798 } else if (Target->isUnsaturatedFixedPointType()) {
13799 if (Source->isIntegerType()) {
13800 Expr::EvalResult Result;
13801 if (!S.isConstantEvaluated() &&
13802 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
13803 llvm::APSInt Value = Result.Val.getInt();
13804
13805 bool Overflowed;
13806 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
13807 Value, S.Context.getFixedPointSemantics(T), &Overflowed);
13808
13809 if (Overflowed) {
13810 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13811 S.PDiag(diag::warn_impcast_fixed_point_range)
13812 << toString(Value, /*Radix=*/10) << T
13813 << E->getSourceRange()
13814 << clang::SourceRange(CC));
13815 return;
13816 }
13817 }
13818 }
13819 }
13820
13821 // If we are casting an integer type to a floating point type without
13822 // initialization-list syntax, we might lose accuracy if the floating
13823 // point type has a narrower significand than the integer type.
13824 if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13825 TargetBT->isFloatingType() && !IsListInit) {
13826 // Determine the number of precision bits in the source integer type.
13827 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13828 /*Approximate*/ true);
13829 unsigned int SourcePrecision = SourceRange.Width;
13830
13831 // Determine the number of precision bits in the
13832 // target floating point type.
13833 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13834 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13835
13836 if (SourcePrecision > 0 && TargetPrecision > 0 &&
13837 SourcePrecision > TargetPrecision) {
13838
13839 if (Optional<llvm::APSInt> SourceInt =
13840 E->getIntegerConstantExpr(S.Context)) {
13841 // If the source integer is a constant, convert it to the target
13842 // floating point type. Issue a warning if the value changes
13843 // during the whole conversion.
13844 llvm::APFloat TargetFloatValue(
13845 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13846 llvm::APFloat::opStatus ConversionStatus =
13847 TargetFloatValue.convertFromAPInt(
13848 *SourceInt, SourceBT->isSignedInteger(),
13849 llvm::APFloat::rmNearestTiesToEven);
13850
13851 if (ConversionStatus != llvm::APFloat::opOK) {
13852 SmallString<32> PrettySourceValue;
13853 SourceInt->toString(PrettySourceValue, 10);
13854 SmallString<32> PrettyTargetValue;
13855 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13856
13857 S.DiagRuntimeBehavior(
13858 E->getExprLoc(), E,
13859 S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13860 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13861 << E->getSourceRange() << clang::SourceRange(CC));
13862 }
13863 } else {
13864 // Otherwise, the implicit conversion may lose precision.
13865 DiagnoseImpCast(S, E, T, CC,
13866 diag::warn_impcast_integer_float_precision);
13867 }
13868 }
13869 }
13870
13871 DiagnoseNullConversion(S, E, T, CC);
13872
13873 S.DiscardMisalignedMemberAddress(Target, E);
13874
13875 if (Target->isBooleanType())
13876 DiagnoseIntInBoolContext(S, E);
13877
13878 if (!Source->isIntegerType() || !Target->isIntegerType())
13879 return;
13880
13881 // TODO: remove this early return once the false positives for constant->bool
13882 // in templates, macros, etc, are reduced or removed.
13883 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13884 return;
13885
13886 if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13887 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13888 return adornObjCBoolConversionDiagWithTernaryFixit(
13889 S, E,
13890 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13891 << E->getType());
13892 }
13893
13894 IntRange SourceTypeRange =
13895 IntRange::forTargetOfCanonicalType(S.Context, Source);
13896 IntRange LikelySourceRange =
13897 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13898 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13899
13900 if (LikelySourceRange.Width > TargetRange.Width) {
13901 // If the source is a constant, use a default-on diagnostic.
13902 // TODO: this should happen for bitfield stores, too.
13903 Expr::EvalResult Result;
13904 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13905 S.isConstantEvaluated())) {
13906 llvm::APSInt Value(32);
13907 Value = Result.Val.getInt();
13908
13909 if (S.SourceMgr.isInSystemMacro(CC))
13910 return;
13911
13912 std::string PrettySourceValue = toString(Value, 10);
13913 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13914
13915 S.DiagRuntimeBehavior(
13916 E->getExprLoc(), E,
13917 S.PDiag(diag::warn_impcast_integer_precision_constant)
13918 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13919 << E->getSourceRange() << SourceRange(CC));
13920 return;
13921 }
13922
13923 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13924 if (S.SourceMgr.isInSystemMacro(CC))
13925 return;
13926
13927 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13928 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13929 /* pruneControlFlow */ true);
13930 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13931 }
13932
13933 if (TargetRange.Width > SourceTypeRange.Width) {
13934 if (auto *UO = dyn_cast<UnaryOperator>(E))
13935 if (UO->getOpcode() == UO_Minus)
13936 if (Source->isUnsignedIntegerType()) {
13937 if (Target->isUnsignedIntegerType())
13938 return DiagnoseImpCast(S, E, T, CC,
13939 diag::warn_impcast_high_order_zero_bits);
13940 if (Target->isSignedIntegerType())
13941 return DiagnoseImpCast(S, E, T, CC,
13942 diag::warn_impcast_nonnegative_result);
13943 }
13944 }
13945
13946 if (TargetRange.Width == LikelySourceRange.Width &&
13947 !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13948 Source->isSignedIntegerType()) {
13949 // Warn when doing a signed to signed conversion, warn if the positive
13950 // source value is exactly the width of the target type, which will
13951 // cause a negative value to be stored.
13952
13953 Expr::EvalResult Result;
13954 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13955 !S.SourceMgr.isInSystemMacro(CC)) {
13956 llvm::APSInt Value = Result.Val.getInt();
13957 if (isSameWidthConstantConversion(S, E, T, CC)) {
13958 std::string PrettySourceValue = toString(Value, 10);
13959 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13960
13961 S.DiagRuntimeBehavior(
13962 E->getExprLoc(), E,
13963 S.PDiag(diag::warn_impcast_integer_precision_constant)
13964 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13965 << E->getSourceRange() << SourceRange(CC));
13966 return;
13967 }
13968 }
13969
13970 // Fall through for non-constants to give a sign conversion warning.
13971 }
13972
13973 if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
13974 ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13975 (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13976 LikelySourceRange.Width == TargetRange.Width))) {
13977 if (S.SourceMgr.isInSystemMacro(CC))
13978 return;
13979
13980 unsigned DiagID = diag::warn_impcast_integer_sign;
13981
13982 // Traditionally, gcc has warned about this under -Wsign-compare.
13983 // We also want to warn about it in -Wconversion.
13984 // So if -Wconversion is off, use a completely identical diagnostic
13985 // in the sign-compare group.
13986 // The conditional-checking code will
13987 if (ICContext) {
13988 DiagID = diag::warn_impcast_integer_sign_conditional;
13989 *ICContext = true;
13990 }
13991
13992 return DiagnoseImpCast(S, E, T, CC, DiagID);
13993 }
13994
13995 // Diagnose conversions between different enumeration types.
13996 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13997 // type, to give us better diagnostics.
13998 QualType SourceType = E->getType();
13999 if (!S.getLangOpts().CPlusPlus) {
14000 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14001 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
14002 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
14003 SourceType = S.Context.getTypeDeclType(Enum);
14004 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
14005 }
14006 }
14007
14008 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
14009 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
14010 if (SourceEnum->getDecl()->hasNameForLinkage() &&
14011 TargetEnum->getDecl()->hasNameForLinkage() &&
14012 SourceEnum != TargetEnum) {
14013 if (S.SourceMgr.isInSystemMacro(CC))
14014 return;
14015
14016 return DiagnoseImpCast(S, E, SourceType, T, CC,
14017 diag::warn_impcast_different_enum_types);
14018 }
14019 }
14020
14021 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
14022 SourceLocation CC, QualType T);
14023
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)14024 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
14025 SourceLocation CC, bool &ICContext) {
14026 E = E->IgnoreParenImpCasts();
14027
14028 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
14029 return CheckConditionalOperator(S, CO, CC, T);
14030
14031 AnalyzeImplicitConversions(S, E, CC);
14032 if (E->getType() != T)
14033 return CheckImplicitConversion(S, E, T, CC, &ICContext);
14034 }
14035
CheckConditionalOperator(Sema & S,AbstractConditionalOperator * E,SourceLocation CC,QualType T)14036 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
14037 SourceLocation CC, QualType T) {
14038 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
14039
14040 Expr *TrueExpr = E->getTrueExpr();
14041 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
14042 TrueExpr = BCO->getCommon();
14043
14044 bool Suspicious = false;
14045 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
14046 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
14047
14048 if (T->isBooleanType())
14049 DiagnoseIntInBoolContext(S, E);
14050
14051 // If -Wconversion would have warned about either of the candidates
14052 // for a signedness conversion to the context type...
14053 if (!Suspicious) return;
14054
14055 // ...but it's currently ignored...
14056 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
14057 return;
14058
14059 // ...then check whether it would have warned about either of the
14060 // candidates for a signedness conversion to the condition type.
14061 if (E->getType() == T) return;
14062
14063 Suspicious = false;
14064 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
14065 E->getType(), CC, &Suspicious);
14066 if (!Suspicious)
14067 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
14068 E->getType(), CC, &Suspicious);
14069 }
14070
14071 /// Check conversion of given expression to boolean.
14072 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)14073 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
14074 if (S.getLangOpts().Bool)
14075 return;
14076 if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
14077 return;
14078 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
14079 }
14080
14081 namespace {
14082 struct AnalyzeImplicitConversionsWorkItem {
14083 Expr *E;
14084 SourceLocation CC;
14085 bool IsListInit;
14086 };
14087 }
14088
14089 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
14090 /// that should be visited are added to WorkList.
AnalyzeImplicitConversions(Sema & S,AnalyzeImplicitConversionsWorkItem Item,llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> & WorkList)14091 static void AnalyzeImplicitConversions(
14092 Sema &S, AnalyzeImplicitConversionsWorkItem Item,
14093 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
14094 Expr *OrigE = Item.E;
14095 SourceLocation CC = Item.CC;
14096
14097 QualType T = OrigE->getType();
14098 Expr *E = OrigE->IgnoreParenImpCasts();
14099
14100 // Propagate whether we are in a C++ list initialization expression.
14101 // If so, we do not issue warnings for implicit int-float conversion
14102 // precision loss, because C++11 narrowing already handles it.
14103 bool IsListInit = Item.IsListInit ||
14104 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
14105
14106 if (E->isTypeDependent() || E->isValueDependent())
14107 return;
14108
14109 Expr *SourceExpr = E;
14110 // Examine, but don't traverse into the source expression of an
14111 // OpaqueValueExpr, since it may have multiple parents and we don't want to
14112 // emit duplicate diagnostics. Its fine to examine the form or attempt to
14113 // evaluate it in the context of checking the specific conversion to T though.
14114 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
14115 if (auto *Src = OVE->getSourceExpr())
14116 SourceExpr = Src;
14117
14118 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
14119 if (UO->getOpcode() == UO_Not &&
14120 UO->getSubExpr()->isKnownToHaveBooleanValue())
14121 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
14122 << OrigE->getSourceRange() << T->isBooleanType()
14123 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
14124
14125 if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
14126 if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
14127 BO->getLHS()->isKnownToHaveBooleanValue() &&
14128 BO->getRHS()->isKnownToHaveBooleanValue() &&
14129 BO->getLHS()->HasSideEffects(S.Context) &&
14130 BO->getRHS()->HasSideEffects(S.Context)) {
14131 S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
14132 << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
14133 << FixItHint::CreateReplacement(
14134 BO->getOperatorLoc(),
14135 (BO->getOpcode() == BO_And ? "&&" : "||"));
14136 S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
14137 }
14138
14139 // For conditional operators, we analyze the arguments as if they
14140 // were being fed directly into the output.
14141 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
14142 CheckConditionalOperator(S, CO, CC, T);
14143 return;
14144 }
14145
14146 // Check implicit argument conversions for function calls.
14147 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
14148 CheckImplicitArgumentConversions(S, Call, CC);
14149
14150 // Go ahead and check any implicit conversions we might have skipped.
14151 // The non-canonical typecheck is just an optimization;
14152 // CheckImplicitConversion will filter out dead implicit conversions.
14153 if (SourceExpr->getType() != T)
14154 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
14155
14156 // Now continue drilling into this expression.
14157
14158 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
14159 // The bound subexpressions in a PseudoObjectExpr are not reachable
14160 // as transitive children.
14161 // FIXME: Use a more uniform representation for this.
14162 for (auto *SE : POE->semantics())
14163 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
14164 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
14165 }
14166
14167 // Skip past explicit casts.
14168 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
14169 E = CE->getSubExpr()->IgnoreParenImpCasts();
14170 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
14171 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
14172 WorkList.push_back({E, CC, IsListInit});
14173 return;
14174 }
14175
14176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14177 // Do a somewhat different check with comparison operators.
14178 if (BO->isComparisonOp())
14179 return AnalyzeComparison(S, BO);
14180
14181 // And with simple assignments.
14182 if (BO->getOpcode() == BO_Assign)
14183 return AnalyzeAssignment(S, BO);
14184 // And with compound assignments.
14185 if (BO->isAssignmentOp())
14186 return AnalyzeCompoundAssignment(S, BO);
14187 }
14188
14189 // These break the otherwise-useful invariant below. Fortunately,
14190 // we don't really need to recurse into them, because any internal
14191 // expressions should have been analyzed already when they were
14192 // built into statements.
14193 if (isa<StmtExpr>(E)) return;
14194
14195 // Don't descend into unevaluated contexts.
14196 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
14197
14198 // Now just recurse over the expression's children.
14199 CC = E->getExprLoc();
14200 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
14201 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
14202 for (Stmt *SubStmt : E->children()) {
14203 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
14204 if (!ChildExpr)
14205 continue;
14206
14207 if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
14208 if (ChildExpr == CSE->getOperand())
14209 // Do not recurse over a CoroutineSuspendExpr's operand.
14210 // The operand is also a subexpression of getCommonExpr(), and
14211 // recursing into it directly would produce duplicate diagnostics.
14212 continue;
14213
14214 if (IsLogicalAndOperator &&
14215 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
14216 // Ignore checking string literals that are in logical and operators.
14217 // This is a common pattern for asserts.
14218 continue;
14219 WorkList.push_back({ChildExpr, CC, IsListInit});
14220 }
14221
14222 if (BO && BO->isLogicalOp()) {
14223 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
14224 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
14225 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
14226
14227 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
14228 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
14229 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
14230 }
14231
14232 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
14233 if (U->getOpcode() == UO_LNot) {
14234 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
14235 } else if (U->getOpcode() != UO_AddrOf) {
14236 if (U->getSubExpr()->getType()->isAtomicType())
14237 S.Diag(U->getSubExpr()->getBeginLoc(),
14238 diag::warn_atomic_implicit_seq_cst);
14239 }
14240 }
14241 }
14242
14243 /// AnalyzeImplicitConversions - Find and report any interesting
14244 /// implicit conversions in the given expression. There are a couple
14245 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC,bool IsListInit)14246 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
14247 bool IsListInit/*= false*/) {
14248 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
14249 WorkList.push_back({OrigE, CC, IsListInit});
14250 while (!WorkList.empty())
14251 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
14252 }
14253
14254 /// Diagnose integer type and any valid implicit conversion to it.
checkOpenCLEnqueueIntType(Sema & S,Expr * E,const QualType & IntT)14255 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
14256 // Taking into account implicit conversions,
14257 // allow any integer.
14258 if (!E->getType()->isIntegerType()) {
14259 S.Diag(E->getBeginLoc(),
14260 diag::err_opencl_enqueue_kernel_invalid_local_size_type);
14261 return true;
14262 }
14263 // Potentially emit standard warnings for implicit conversions if enabled
14264 // using -Wconversion.
14265 CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
14266 return false;
14267 }
14268
14269 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
14270 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,const PartialDiagnostic & PD)14271 static bool CheckForReference(Sema &SemaRef, const Expr *E,
14272 const PartialDiagnostic &PD) {
14273 E = E->IgnoreParenImpCasts();
14274
14275 const FunctionDecl *FD = nullptr;
14276
14277 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14278 if (!DRE->getDecl()->getType()->isReferenceType())
14279 return false;
14280 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
14281 if (!M->getMemberDecl()->getType()->isReferenceType())
14282 return false;
14283 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
14284 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
14285 return false;
14286 FD = Call->getDirectCallee();
14287 } else {
14288 return false;
14289 }
14290
14291 SemaRef.Diag(E->getExprLoc(), PD);
14292
14293 // If possible, point to location of function.
14294 if (FD) {
14295 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
14296 }
14297
14298 return true;
14299 }
14300
14301 // Returns true if the SourceLocation is expanded from any macro body.
14302 // Returns false if the SourceLocation is invalid, is from not in a macro
14303 // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)14304 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
14305 if (Loc.isInvalid())
14306 return false;
14307
14308 while (Loc.isMacroID()) {
14309 if (SM.isMacroBodyExpansion(Loc))
14310 return true;
14311 Loc = SM.getImmediateMacroCallerLoc(Loc);
14312 }
14313
14314 return false;
14315 }
14316
14317 /// Diagnose pointers that are always non-null.
14318 /// \param E the expression containing the pointer
14319 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
14320 /// compared to a null pointer
14321 /// \param IsEqual True when the comparison is equal to a null pointer
14322 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)14323 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
14324 Expr::NullPointerConstantKind NullKind,
14325 bool IsEqual, SourceRange Range) {
14326 if (!E)
14327 return;
14328
14329 // Don't warn inside macros.
14330 if (E->getExprLoc().isMacroID()) {
14331 const SourceManager &SM = getSourceManager();
14332 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
14333 IsInAnyMacroBody(SM, Range.getBegin()))
14334 return;
14335 }
14336 E = E->IgnoreImpCasts();
14337
14338 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
14339
14340 if (isa<CXXThisExpr>(E)) {
14341 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
14342 : diag::warn_this_bool_conversion;
14343 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
14344 return;
14345 }
14346
14347 bool IsAddressOf = false;
14348
14349 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14350 if (UO->getOpcode() != UO_AddrOf)
14351 return;
14352 IsAddressOf = true;
14353 E = UO->getSubExpr();
14354 }
14355
14356 if (IsAddressOf) {
14357 unsigned DiagID = IsCompare
14358 ? diag::warn_address_of_reference_null_compare
14359 : diag::warn_address_of_reference_bool_conversion;
14360 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
14361 << IsEqual;
14362 if (CheckForReference(*this, E, PD)) {
14363 return;
14364 }
14365 }
14366
14367 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
14368 bool IsParam = isa<NonNullAttr>(NonnullAttr);
14369 std::string Str;
14370 llvm::raw_string_ostream S(Str);
14371 E->printPretty(S, nullptr, getPrintingPolicy());
14372 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
14373 : diag::warn_cast_nonnull_to_bool;
14374 Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
14375 << E->getSourceRange() << Range << IsEqual;
14376 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
14377 };
14378
14379 // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
14380 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
14381 if (auto *Callee = Call->getDirectCallee()) {
14382 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
14383 ComplainAboutNonnullParamOrCall(A);
14384 return;
14385 }
14386 }
14387 }
14388
14389 // Expect to find a single Decl. Skip anything more complicated.
14390 ValueDecl *D = nullptr;
14391 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
14392 D = R->getDecl();
14393 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
14394 D = M->getMemberDecl();
14395 }
14396
14397 // Weak Decls can be null.
14398 if (!D || D->isWeak())
14399 return;
14400
14401 // Check for parameter decl with nonnull attribute
14402 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
14403 if (getCurFunction() &&
14404 !getCurFunction()->ModifiedNonNullParams.count(PV)) {
14405 if (const Attr *A = PV->getAttr<NonNullAttr>()) {
14406 ComplainAboutNonnullParamOrCall(A);
14407 return;
14408 }
14409
14410 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
14411 // Skip function template not specialized yet.
14412 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
14413 return;
14414 auto ParamIter = llvm::find(FD->parameters(), PV);
14415 assert(ParamIter != FD->param_end());
14416 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
14417
14418 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
14419 if (!NonNull->args_size()) {
14420 ComplainAboutNonnullParamOrCall(NonNull);
14421 return;
14422 }
14423
14424 for (const ParamIdx &ArgNo : NonNull->args()) {
14425 if (ArgNo.getASTIndex() == ParamNo) {
14426 ComplainAboutNonnullParamOrCall(NonNull);
14427 return;
14428 }
14429 }
14430 }
14431 }
14432 }
14433 }
14434
14435 QualType T = D->getType();
14436 const bool IsArray = T->isArrayType();
14437 const bool IsFunction = T->isFunctionType();
14438
14439 // Address of function is used to silence the function warning.
14440 if (IsAddressOf && IsFunction) {
14441 return;
14442 }
14443
14444 // Found nothing.
14445 if (!IsAddressOf && !IsFunction && !IsArray)
14446 return;
14447
14448 // Pretty print the expression for the diagnostic.
14449 std::string Str;
14450 llvm::raw_string_ostream S(Str);
14451 E->printPretty(S, nullptr, getPrintingPolicy());
14452
14453 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
14454 : diag::warn_impcast_pointer_to_bool;
14455 enum {
14456 AddressOf,
14457 FunctionPointer,
14458 ArrayPointer
14459 } DiagType;
14460 if (IsAddressOf)
14461 DiagType = AddressOf;
14462 else if (IsFunction)
14463 DiagType = FunctionPointer;
14464 else if (IsArray)
14465 DiagType = ArrayPointer;
14466 else
14467 llvm_unreachable("Could not determine diagnostic.");
14468 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
14469 << Range << IsEqual;
14470
14471 if (!IsFunction)
14472 return;
14473
14474 // Suggest '&' to silence the function warning.
14475 Diag(E->getExprLoc(), diag::note_function_warning_silence)
14476 << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
14477
14478 // Check to see if '()' fixit should be emitted.
14479 QualType ReturnType;
14480 UnresolvedSet<4> NonTemplateOverloads;
14481 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
14482 if (ReturnType.isNull())
14483 return;
14484
14485 if (IsCompare) {
14486 // There are two cases here. If there is null constant, the only suggest
14487 // for a pointer return type. If the null is 0, then suggest if the return
14488 // type is a pointer or an integer type.
14489 if (!ReturnType->isPointerType()) {
14490 if (NullKind == Expr::NPCK_ZeroExpression ||
14491 NullKind == Expr::NPCK_ZeroLiteral) {
14492 if (!ReturnType->isIntegerType())
14493 return;
14494 } else {
14495 return;
14496 }
14497 }
14498 } else { // !IsCompare
14499 // For function to bool, only suggest if the function pointer has bool
14500 // return type.
14501 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
14502 return;
14503 }
14504 Diag(E->getExprLoc(), diag::note_function_to_function_call)
14505 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
14506 }
14507
14508 /// Diagnoses "dangerous" implicit conversions within the given
14509 /// expression (which is a full expression). Implements -Wconversion
14510 /// and -Wsign-compare.
14511 ///
14512 /// \param CC the "context" location of the implicit conversion, i.e.
14513 /// the most location of the syntactic entity requiring the implicit
14514 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)14515 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
14516 // Don't diagnose in unevaluated contexts.
14517 if (isUnevaluatedContext())
14518 return;
14519
14520 // Don't diagnose for value- or type-dependent expressions.
14521 if (E->isTypeDependent() || E->isValueDependent())
14522 return;
14523
14524 // Check for array bounds violations in cases where the check isn't triggered
14525 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
14526 // ArraySubscriptExpr is on the RHS of a variable initialization.
14527 CheckArrayAccess(E);
14528
14529 // This is not the right CC for (e.g.) a variable initialization.
14530 AnalyzeImplicitConversions(*this, E, CC);
14531 }
14532
14533 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
14534 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)14535 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
14536 ::CheckBoolLikeConversion(*this, E, CC);
14537 }
14538
14539 /// Diagnose when expression is an integer constant expression and its evaluation
14540 /// results in integer overflow
CheckForIntOverflow(Expr * E)14541 void Sema::CheckForIntOverflow (Expr *E) {
14542 // Use a work list to deal with nested struct initializers.
14543 SmallVector<Expr *, 2> Exprs(1, E);
14544
14545 do {
14546 Expr *OriginalE = Exprs.pop_back_val();
14547 Expr *E = OriginalE->IgnoreParenCasts();
14548
14549 if (isa<BinaryOperator>(E)) {
14550 E->EvaluateForOverflow(Context);
14551 continue;
14552 }
14553
14554 if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
14555 Exprs.append(InitList->inits().begin(), InitList->inits().end());
14556 else if (isa<ObjCBoxedExpr>(OriginalE))
14557 E->EvaluateForOverflow(Context);
14558 else if (auto Call = dyn_cast<CallExpr>(E))
14559 Exprs.append(Call->arg_begin(), Call->arg_end());
14560 else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
14561 Exprs.append(Message->arg_begin(), Message->arg_end());
14562 } while (!Exprs.empty());
14563 }
14564
14565 namespace {
14566
14567 /// Visitor for expressions which looks for unsequenced operations on the
14568 /// same object.
14569 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
14570 using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
14571
14572 /// A tree of sequenced regions within an expression. Two regions are
14573 /// unsequenced if one is an ancestor or a descendent of the other. When we
14574 /// finish processing an expression with sequencing, such as a comma
14575 /// expression, we fold its tree nodes into its parent, since they are
14576 /// unsequenced with respect to nodes we will visit later.
14577 class SequenceTree {
14578 struct Value {
Value__anon8097fee12911::SequenceChecker::SequenceTree::Value14579 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
14580 unsigned Parent : 31;
14581 unsigned Merged : 1;
14582 };
14583 SmallVector<Value, 8> Values;
14584
14585 public:
14586 /// A region within an expression which may be sequenced with respect
14587 /// to some other region.
14588 class Seq {
14589 friend class SequenceTree;
14590
14591 unsigned Index;
14592
Seq(unsigned N)14593 explicit Seq(unsigned N) : Index(N) {}
14594
14595 public:
Seq()14596 Seq() : Index(0) {}
14597 };
14598
SequenceTree()14599 SequenceTree() { Values.push_back(Value(0)); }
root() const14600 Seq root() const { return Seq(0); }
14601
14602 /// Create a new sequence of operations, which is an unsequenced
14603 /// subset of \p Parent. This sequence of operations is sequenced with
14604 /// respect to other children of \p Parent.
allocate(Seq Parent)14605 Seq allocate(Seq Parent) {
14606 Values.push_back(Value(Parent.Index));
14607 return Seq(Values.size() - 1);
14608 }
14609
14610 /// Merge a sequence of operations into its parent.
merge(Seq S)14611 void merge(Seq S) {
14612 Values[S.Index].Merged = true;
14613 }
14614
14615 /// Determine whether two operations are unsequenced. This operation
14616 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
14617 /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)14618 bool isUnsequenced(Seq Cur, Seq Old) {
14619 unsigned C = representative(Cur.Index);
14620 unsigned Target = representative(Old.Index);
14621 while (C >= Target) {
14622 if (C == Target)
14623 return true;
14624 C = Values[C].Parent;
14625 }
14626 return false;
14627 }
14628
14629 private:
14630 /// Pick a representative for a sequence.
representative(unsigned K)14631 unsigned representative(unsigned K) {
14632 if (Values[K].Merged)
14633 // Perform path compression as we go.
14634 return Values[K].Parent = representative(Values[K].Parent);
14635 return K;
14636 }
14637 };
14638
14639 /// An object for which we can track unsequenced uses.
14640 using Object = const NamedDecl *;
14641
14642 /// Different flavors of object usage which we track. We only track the
14643 /// least-sequenced usage of each kind.
14644 enum UsageKind {
14645 /// A read of an object. Multiple unsequenced reads are OK.
14646 UK_Use,
14647
14648 /// A modification of an object which is sequenced before the value
14649 /// computation of the expression, such as ++n in C++.
14650 UK_ModAsValue,
14651
14652 /// A modification of an object which is not sequenced before the value
14653 /// computation of the expression, such as n++.
14654 UK_ModAsSideEffect,
14655
14656 UK_Count = UK_ModAsSideEffect + 1
14657 };
14658
14659 /// Bundle together a sequencing region and the expression corresponding
14660 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
14661 struct Usage {
14662 const Expr *UsageExpr;
14663 SequenceTree::Seq Seq;
14664
Usage__anon8097fee12911::SequenceChecker::Usage14665 Usage() : UsageExpr(nullptr) {}
14666 };
14667
14668 struct UsageInfo {
14669 Usage Uses[UK_Count];
14670
14671 /// Have we issued a diagnostic for this object already?
14672 bool Diagnosed;
14673
UsageInfo__anon8097fee12911::SequenceChecker::UsageInfo14674 UsageInfo() : Diagnosed(false) {}
14675 };
14676 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
14677
14678 Sema &SemaRef;
14679
14680 /// Sequenced regions within the expression.
14681 SequenceTree Tree;
14682
14683 /// Declaration modifications and references which we have seen.
14684 UsageInfoMap UsageMap;
14685
14686 /// The region we are currently within.
14687 SequenceTree::Seq Region;
14688
14689 /// Filled in with declarations which were modified as a side-effect
14690 /// (that is, post-increment operations).
14691 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
14692
14693 /// Expressions to check later. We defer checking these to reduce
14694 /// stack usage.
14695 SmallVectorImpl<const Expr *> &WorkList;
14696
14697 /// RAII object wrapping the visitation of a sequenced subexpression of an
14698 /// expression. At the end of this process, the side-effects of the evaluation
14699 /// become sequenced with respect to the value computation of the result, so
14700 /// we downgrade any UK_ModAsSideEffect within the evaluation to
14701 /// UK_ModAsValue.
14702 struct SequencedSubexpression {
SequencedSubexpression__anon8097fee12911::SequenceChecker::SequencedSubexpression14703 SequencedSubexpression(SequenceChecker &Self)
14704 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
14705 Self.ModAsSideEffect = &ModAsSideEffect;
14706 }
14707
~SequencedSubexpression__anon8097fee12911::SequenceChecker::SequencedSubexpression14708 ~SequencedSubexpression() {
14709 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
14710 // Add a new usage with usage kind UK_ModAsValue, and then restore
14711 // the previous usage with UK_ModAsSideEffect (thus clearing it if
14712 // the previous one was empty).
14713 UsageInfo &UI = Self.UsageMap[M.first];
14714 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
14715 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
14716 SideEffectUsage = M.second;
14717 }
14718 Self.ModAsSideEffect = OldModAsSideEffect;
14719 }
14720
14721 SequenceChecker &Self;
14722 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
14723 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
14724 };
14725
14726 /// RAII object wrapping the visitation of a subexpression which we might
14727 /// choose to evaluate as a constant. If any subexpression is evaluated and
14728 /// found to be non-constant, this allows us to suppress the evaluation of
14729 /// the outer expression.
14730 class EvaluationTracker {
14731 public:
EvaluationTracker(SequenceChecker & Self)14732 EvaluationTracker(SequenceChecker &Self)
14733 : Self(Self), Prev(Self.EvalTracker) {
14734 Self.EvalTracker = this;
14735 }
14736
~EvaluationTracker()14737 ~EvaluationTracker() {
14738 Self.EvalTracker = Prev;
14739 if (Prev)
14740 Prev->EvalOK &= EvalOK;
14741 }
14742
evaluate(const Expr * E,bool & Result)14743 bool evaluate(const Expr *E, bool &Result) {
14744 if (!EvalOK || E->isValueDependent())
14745 return false;
14746 EvalOK = E->EvaluateAsBooleanCondition(
14747 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
14748 return EvalOK;
14749 }
14750
14751 private:
14752 SequenceChecker &Self;
14753 EvaluationTracker *Prev;
14754 bool EvalOK = true;
14755 } *EvalTracker = nullptr;
14756
14757 /// Find the object which is produced by the specified expression,
14758 /// if any.
getObject(const Expr * E,bool Mod) const14759 Object getObject(const Expr *E, bool Mod) const {
14760 E = E->IgnoreParenCasts();
14761 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14762 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
14763 return getObject(UO->getSubExpr(), Mod);
14764 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14765 if (BO->getOpcode() == BO_Comma)
14766 return getObject(BO->getRHS(), Mod);
14767 if (Mod && BO->isAssignmentOp())
14768 return getObject(BO->getLHS(), Mod);
14769 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14770 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
14771 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
14772 return ME->getMemberDecl();
14773 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14774 // FIXME: If this is a reference, map through to its value.
14775 return DRE->getDecl();
14776 return nullptr;
14777 }
14778
14779 /// Note that an object \p O was modified or used by an expression
14780 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
14781 /// the object \p O as obtained via the \p UsageMap.
addUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind UK)14782 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
14783 // Get the old usage for the given object and usage kind.
14784 Usage &U = UI.Uses[UK];
14785 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
14786 // If we have a modification as side effect and are in a sequenced
14787 // subexpression, save the old Usage so that we can restore it later
14788 // in SequencedSubexpression::~SequencedSubexpression.
14789 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
14790 ModAsSideEffect->push_back(std::make_pair(O, U));
14791 // Then record the new usage with the current sequencing region.
14792 U.UsageExpr = UsageExpr;
14793 U.Seq = Region;
14794 }
14795 }
14796
14797 /// Check whether a modification or use of an object \p O in an expression
14798 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
14799 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
14800 /// \p IsModMod is true when we are checking for a mod-mod unsequenced
14801 /// usage and false we are checking for a mod-use unsequenced usage.
checkUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind OtherKind,bool IsModMod)14802 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
14803 UsageKind OtherKind, bool IsModMod) {
14804 if (UI.Diagnosed)
14805 return;
14806
14807 const Usage &U = UI.Uses[OtherKind];
14808 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
14809 return;
14810
14811 const Expr *Mod = U.UsageExpr;
14812 const Expr *ModOrUse = UsageExpr;
14813 if (OtherKind == UK_Use)
14814 std::swap(Mod, ModOrUse);
14815
14816 SemaRef.DiagRuntimeBehavior(
14817 Mod->getExprLoc(), {Mod, ModOrUse},
14818 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
14819 : diag::warn_unsequenced_mod_use)
14820 << O << SourceRange(ModOrUse->getExprLoc()));
14821 UI.Diagnosed = true;
14822 }
14823
14824 // A note on note{Pre, Post}{Use, Mod}:
14825 //
14826 // (It helps to follow the algorithm with an expression such as
14827 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14828 // operations before C++17 and both are well-defined in C++17).
14829 //
14830 // When visiting a node which uses/modify an object we first call notePreUse
14831 // or notePreMod before visiting its sub-expression(s). At this point the
14832 // children of the current node have not yet been visited and so the eventual
14833 // uses/modifications resulting from the children of the current node have not
14834 // been recorded yet.
14835 //
14836 // We then visit the children of the current node. After that notePostUse or
14837 // notePostMod is called. These will 1) detect an unsequenced modification
14838 // as side effect (as in "k++ + k") and 2) add a new usage with the
14839 // appropriate usage kind.
14840 //
14841 // We also have to be careful that some operation sequences modification as
14842 // side effect as well (for example: || or ,). To account for this we wrap
14843 // the visitation of such a sub-expression (for example: the LHS of || or ,)
14844 // with SequencedSubexpression. SequencedSubexpression is an RAII object
14845 // which record usages which are modifications as side effect, and then
14846 // downgrade them (or more accurately restore the previous usage which was a
14847 // modification as side effect) when exiting the scope of the sequenced
14848 // subexpression.
14849
notePreUse(Object O,const Expr * UseExpr)14850 void notePreUse(Object O, const Expr *UseExpr) {
14851 UsageInfo &UI = UsageMap[O];
14852 // Uses conflict with other modifications.
14853 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14854 }
14855
notePostUse(Object O,const Expr * UseExpr)14856 void notePostUse(Object O, const Expr *UseExpr) {
14857 UsageInfo &UI = UsageMap[O];
14858 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14859 /*IsModMod=*/false);
14860 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14861 }
14862
notePreMod(Object O,const Expr * ModExpr)14863 void notePreMod(Object O, const Expr *ModExpr) {
14864 UsageInfo &UI = UsageMap[O];
14865 // Modifications conflict with other modifications and with uses.
14866 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14867 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14868 }
14869
notePostMod(Object O,const Expr * ModExpr,UsageKind UK)14870 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14871 UsageInfo &UI = UsageMap[O];
14872 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14873 /*IsModMod=*/true);
14874 addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14875 }
14876
14877 public:
SequenceChecker(Sema & S,const Expr * E,SmallVectorImpl<const Expr * > & WorkList)14878 SequenceChecker(Sema &S, const Expr *E,
14879 SmallVectorImpl<const Expr *> &WorkList)
14880 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14881 Visit(E);
14882 // Silence a -Wunused-private-field since WorkList is now unused.
14883 // TODO: Evaluate if it can be used, and if not remove it.
14884 (void)this->WorkList;
14885 }
14886
VisitStmt(const Stmt * S)14887 void VisitStmt(const Stmt *S) {
14888 // Skip all statements which aren't expressions for now.
14889 }
14890
VisitExpr(const Expr * E)14891 void VisitExpr(const Expr *E) {
14892 // By default, just recurse to evaluated subexpressions.
14893 Base::VisitStmt(E);
14894 }
14895
VisitCastExpr(const CastExpr * E)14896 void VisitCastExpr(const CastExpr *E) {
14897 Object O = Object();
14898 if (E->getCastKind() == CK_LValueToRValue)
14899 O = getObject(E->getSubExpr(), false);
14900
14901 if (O)
14902 notePreUse(O, E);
14903 VisitExpr(E);
14904 if (O)
14905 notePostUse(O, E);
14906 }
14907
VisitSequencedExpressions(const Expr * SequencedBefore,const Expr * SequencedAfter)14908 void VisitSequencedExpressions(const Expr *SequencedBefore,
14909 const Expr *SequencedAfter) {
14910 SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14911 SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14912 SequenceTree::Seq OldRegion = Region;
14913
14914 {
14915 SequencedSubexpression SeqBefore(*this);
14916 Region = BeforeRegion;
14917 Visit(SequencedBefore);
14918 }
14919
14920 Region = AfterRegion;
14921 Visit(SequencedAfter);
14922
14923 Region = OldRegion;
14924
14925 Tree.merge(BeforeRegion);
14926 Tree.merge(AfterRegion);
14927 }
14928
VisitArraySubscriptExpr(const ArraySubscriptExpr * ASE)14929 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14930 // C++17 [expr.sub]p1:
14931 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14932 // expression E1 is sequenced before the expression E2.
14933 if (SemaRef.getLangOpts().CPlusPlus17)
14934 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14935 else {
14936 Visit(ASE->getLHS());
14937 Visit(ASE->getRHS());
14938 }
14939 }
14940
VisitBinPtrMemD(const BinaryOperator * BO)14941 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMemI(const BinaryOperator * BO)14942 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMem(const BinaryOperator * BO)14943 void VisitBinPtrMem(const BinaryOperator *BO) {
14944 // C++17 [expr.mptr.oper]p4:
14945 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14946 // the expression E1 is sequenced before the expression E2.
14947 if (SemaRef.getLangOpts().CPlusPlus17)
14948 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14949 else {
14950 Visit(BO->getLHS());
14951 Visit(BO->getRHS());
14952 }
14953 }
14954
VisitBinShl(const BinaryOperator * BO)14955 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShr(const BinaryOperator * BO)14956 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShlShr(const BinaryOperator * BO)14957 void VisitBinShlShr(const BinaryOperator *BO) {
14958 // C++17 [expr.shift]p4:
14959 // The expression E1 is sequenced before the expression E2.
14960 if (SemaRef.getLangOpts().CPlusPlus17)
14961 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14962 else {
14963 Visit(BO->getLHS());
14964 Visit(BO->getRHS());
14965 }
14966 }
14967
VisitBinComma(const BinaryOperator * BO)14968 void VisitBinComma(const BinaryOperator *BO) {
14969 // C++11 [expr.comma]p1:
14970 // Every value computation and side effect associated with the left
14971 // expression is sequenced before every value computation and side
14972 // effect associated with the right expression.
14973 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14974 }
14975
VisitBinAssign(const BinaryOperator * BO)14976 void VisitBinAssign(const BinaryOperator *BO) {
14977 SequenceTree::Seq RHSRegion;
14978 SequenceTree::Seq LHSRegion;
14979 if (SemaRef.getLangOpts().CPlusPlus17) {
14980 RHSRegion = Tree.allocate(Region);
14981 LHSRegion = Tree.allocate(Region);
14982 } else {
14983 RHSRegion = Region;
14984 LHSRegion = Region;
14985 }
14986 SequenceTree::Seq OldRegion = Region;
14987
14988 // C++11 [expr.ass]p1:
14989 // [...] the assignment is sequenced after the value computation
14990 // of the right and left operands, [...]
14991 //
14992 // so check it before inspecting the operands and update the
14993 // map afterwards.
14994 Object O = getObject(BO->getLHS(), /*Mod=*/true);
14995 if (O)
14996 notePreMod(O, BO);
14997
14998 if (SemaRef.getLangOpts().CPlusPlus17) {
14999 // C++17 [expr.ass]p1:
15000 // [...] The right operand is sequenced before the left operand. [...]
15001 {
15002 SequencedSubexpression SeqBefore(*this);
15003 Region = RHSRegion;
15004 Visit(BO->getRHS());
15005 }
15006
15007 Region = LHSRegion;
15008 Visit(BO->getLHS());
15009
15010 if (O && isa<CompoundAssignOperator>(BO))
15011 notePostUse(O, BO);
15012
15013 } else {
15014 // C++11 does not specify any sequencing between the LHS and RHS.
15015 Region = LHSRegion;
15016 Visit(BO->getLHS());
15017
15018 if (O && isa<CompoundAssignOperator>(BO))
15019 notePostUse(O, BO);
15020
15021 Region = RHSRegion;
15022 Visit(BO->getRHS());
15023 }
15024
15025 // C++11 [expr.ass]p1:
15026 // the assignment is sequenced [...] before the value computation of the
15027 // assignment expression.
15028 // C11 6.5.16/3 has no such rule.
15029 Region = OldRegion;
15030 if (O)
15031 notePostMod(O, BO,
15032 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
15033 : UK_ModAsSideEffect);
15034 if (SemaRef.getLangOpts().CPlusPlus17) {
15035 Tree.merge(RHSRegion);
15036 Tree.merge(LHSRegion);
15037 }
15038 }
15039
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)15040 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
15041 VisitBinAssign(CAO);
15042 }
15043
VisitUnaryPreInc(const UnaryOperator * UO)15044 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(const UnaryOperator * UO)15045 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(const UnaryOperator * UO)15046 void VisitUnaryPreIncDec(const UnaryOperator *UO) {
15047 Object O = getObject(UO->getSubExpr(), true);
15048 if (!O)
15049 return VisitExpr(UO);
15050
15051 notePreMod(O, UO);
15052 Visit(UO->getSubExpr());
15053 // C++11 [expr.pre.incr]p1:
15054 // the expression ++x is equivalent to x+=1
15055 notePostMod(O, UO,
15056 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
15057 : UK_ModAsSideEffect);
15058 }
15059
VisitUnaryPostInc(const UnaryOperator * UO)15060 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(const UnaryOperator * UO)15061 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(const UnaryOperator * UO)15062 void VisitUnaryPostIncDec(const UnaryOperator *UO) {
15063 Object O = getObject(UO->getSubExpr(), true);
15064 if (!O)
15065 return VisitExpr(UO);
15066
15067 notePreMod(O, UO);
15068 Visit(UO->getSubExpr());
15069 notePostMod(O, UO, UK_ModAsSideEffect);
15070 }
15071
VisitBinLOr(const BinaryOperator * BO)15072 void VisitBinLOr(const BinaryOperator *BO) {
15073 // C++11 [expr.log.or]p2:
15074 // If the second expression is evaluated, every value computation and
15075 // side effect associated with the first expression is sequenced before
15076 // every value computation and side effect associated with the
15077 // second expression.
15078 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
15079 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
15080 SequenceTree::Seq OldRegion = Region;
15081
15082 EvaluationTracker Eval(*this);
15083 {
15084 SequencedSubexpression Sequenced(*this);
15085 Region = LHSRegion;
15086 Visit(BO->getLHS());
15087 }
15088
15089 // C++11 [expr.log.or]p1:
15090 // [...] the second operand is not evaluated if the first operand
15091 // evaluates to true.
15092 bool EvalResult = false;
15093 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
15094 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
15095 if (ShouldVisitRHS) {
15096 Region = RHSRegion;
15097 Visit(BO->getRHS());
15098 }
15099
15100 Region = OldRegion;
15101 Tree.merge(LHSRegion);
15102 Tree.merge(RHSRegion);
15103 }
15104
VisitBinLAnd(const BinaryOperator * BO)15105 void VisitBinLAnd(const BinaryOperator *BO) {
15106 // C++11 [expr.log.and]p2:
15107 // If the second expression is evaluated, every value computation and
15108 // side effect associated with the first expression is sequenced before
15109 // every value computation and side effect associated with the
15110 // second expression.
15111 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
15112 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
15113 SequenceTree::Seq OldRegion = Region;
15114
15115 EvaluationTracker Eval(*this);
15116 {
15117 SequencedSubexpression Sequenced(*this);
15118 Region = LHSRegion;
15119 Visit(BO->getLHS());
15120 }
15121
15122 // C++11 [expr.log.and]p1:
15123 // [...] the second operand is not evaluated if the first operand is false.
15124 bool EvalResult = false;
15125 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
15126 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
15127 if (ShouldVisitRHS) {
15128 Region = RHSRegion;
15129 Visit(BO->getRHS());
15130 }
15131
15132 Region = OldRegion;
15133 Tree.merge(LHSRegion);
15134 Tree.merge(RHSRegion);
15135 }
15136
VisitAbstractConditionalOperator(const AbstractConditionalOperator * CO)15137 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
15138 // C++11 [expr.cond]p1:
15139 // [...] Every value computation and side effect associated with the first
15140 // expression is sequenced before every value computation and side effect
15141 // associated with the second or third expression.
15142 SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
15143
15144 // No sequencing is specified between the true and false expression.
15145 // However since exactly one of both is going to be evaluated we can
15146 // consider them to be sequenced. This is needed to avoid warning on
15147 // something like "x ? y+= 1 : y += 2;" in the case where we will visit
15148 // both the true and false expressions because we can't evaluate x.
15149 // This will still allow us to detect an expression like (pre C++17)
15150 // "(x ? y += 1 : y += 2) = y".
15151 //
15152 // We don't wrap the visitation of the true and false expression with
15153 // SequencedSubexpression because we don't want to downgrade modifications
15154 // as side effect in the true and false expressions after the visition
15155 // is done. (for example in the expression "(x ? y++ : y++) + y" we should
15156 // not warn between the two "y++", but we should warn between the "y++"
15157 // and the "y".
15158 SequenceTree::Seq TrueRegion = Tree.allocate(Region);
15159 SequenceTree::Seq FalseRegion = Tree.allocate(Region);
15160 SequenceTree::Seq OldRegion = Region;
15161
15162 EvaluationTracker Eval(*this);
15163 {
15164 SequencedSubexpression Sequenced(*this);
15165 Region = ConditionRegion;
15166 Visit(CO->getCond());
15167 }
15168
15169 // C++11 [expr.cond]p1:
15170 // [...] The first expression is contextually converted to bool (Clause 4).
15171 // It is evaluated and if it is true, the result of the conditional
15172 // expression is the value of the second expression, otherwise that of the
15173 // third expression. Only one of the second and third expressions is
15174 // evaluated. [...]
15175 bool EvalResult = false;
15176 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
15177 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
15178 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
15179 if (ShouldVisitTrueExpr) {
15180 Region = TrueRegion;
15181 Visit(CO->getTrueExpr());
15182 }
15183 if (ShouldVisitFalseExpr) {
15184 Region = FalseRegion;
15185 Visit(CO->getFalseExpr());
15186 }
15187
15188 Region = OldRegion;
15189 Tree.merge(ConditionRegion);
15190 Tree.merge(TrueRegion);
15191 Tree.merge(FalseRegion);
15192 }
15193
VisitCallExpr(const CallExpr * CE)15194 void VisitCallExpr(const CallExpr *CE) {
15195 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
15196
15197 if (CE->isUnevaluatedBuiltinCall(Context))
15198 return;
15199
15200 // C++11 [intro.execution]p15:
15201 // When calling a function [...], every value computation and side effect
15202 // associated with any argument expression, or with the postfix expression
15203 // designating the called function, is sequenced before execution of every
15204 // expression or statement in the body of the function [and thus before
15205 // the value computation of its result].
15206 SequencedSubexpression Sequenced(*this);
15207 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
15208 // C++17 [expr.call]p5
15209 // The postfix-expression is sequenced before each expression in the
15210 // expression-list and any default argument. [...]
15211 SequenceTree::Seq CalleeRegion;
15212 SequenceTree::Seq OtherRegion;
15213 if (SemaRef.getLangOpts().CPlusPlus17) {
15214 CalleeRegion = Tree.allocate(Region);
15215 OtherRegion = Tree.allocate(Region);
15216 } else {
15217 CalleeRegion = Region;
15218 OtherRegion = Region;
15219 }
15220 SequenceTree::Seq OldRegion = Region;
15221
15222 // Visit the callee expression first.
15223 Region = CalleeRegion;
15224 if (SemaRef.getLangOpts().CPlusPlus17) {
15225 SequencedSubexpression Sequenced(*this);
15226 Visit(CE->getCallee());
15227 } else {
15228 Visit(CE->getCallee());
15229 }
15230
15231 // Then visit the argument expressions.
15232 Region = OtherRegion;
15233 for (const Expr *Argument : CE->arguments())
15234 Visit(Argument);
15235
15236 Region = OldRegion;
15237 if (SemaRef.getLangOpts().CPlusPlus17) {
15238 Tree.merge(CalleeRegion);
15239 Tree.merge(OtherRegion);
15240 }
15241 });
15242 }
15243
VisitCXXOperatorCallExpr(const CXXOperatorCallExpr * CXXOCE)15244 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
15245 // C++17 [over.match.oper]p2:
15246 // [...] the operator notation is first transformed to the equivalent
15247 // function-call notation as summarized in Table 12 (where @ denotes one
15248 // of the operators covered in the specified subclause). However, the
15249 // operands are sequenced in the order prescribed for the built-in
15250 // operator (Clause 8).
15251 //
15252 // From the above only overloaded binary operators and overloaded call
15253 // operators have sequencing rules in C++17 that we need to handle
15254 // separately.
15255 if (!SemaRef.getLangOpts().CPlusPlus17 ||
15256 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
15257 return VisitCallExpr(CXXOCE);
15258
15259 enum {
15260 NoSequencing,
15261 LHSBeforeRHS,
15262 RHSBeforeLHS,
15263 LHSBeforeRest
15264 } SequencingKind;
15265 switch (CXXOCE->getOperator()) {
15266 case OO_Equal:
15267 case OO_PlusEqual:
15268 case OO_MinusEqual:
15269 case OO_StarEqual:
15270 case OO_SlashEqual:
15271 case OO_PercentEqual:
15272 case OO_CaretEqual:
15273 case OO_AmpEqual:
15274 case OO_PipeEqual:
15275 case OO_LessLessEqual:
15276 case OO_GreaterGreaterEqual:
15277 SequencingKind = RHSBeforeLHS;
15278 break;
15279
15280 case OO_LessLess:
15281 case OO_GreaterGreater:
15282 case OO_AmpAmp:
15283 case OO_PipePipe:
15284 case OO_Comma:
15285 case OO_ArrowStar:
15286 case OO_Subscript:
15287 SequencingKind = LHSBeforeRHS;
15288 break;
15289
15290 case OO_Call:
15291 SequencingKind = LHSBeforeRest;
15292 break;
15293
15294 default:
15295 SequencingKind = NoSequencing;
15296 break;
15297 }
15298
15299 if (SequencingKind == NoSequencing)
15300 return VisitCallExpr(CXXOCE);
15301
15302 // This is a call, so all subexpressions are sequenced before the result.
15303 SequencedSubexpression Sequenced(*this);
15304
15305 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
15306 assert(SemaRef.getLangOpts().CPlusPlus17 &&
15307 "Should only get there with C++17 and above!");
15308 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
15309 "Should only get there with an overloaded binary operator"
15310 " or an overloaded call operator!");
15311
15312 if (SequencingKind == LHSBeforeRest) {
15313 assert(CXXOCE->getOperator() == OO_Call &&
15314 "We should only have an overloaded call operator here!");
15315
15316 // This is very similar to VisitCallExpr, except that we only have the
15317 // C++17 case. The postfix-expression is the first argument of the
15318 // CXXOperatorCallExpr. The expressions in the expression-list, if any,
15319 // are in the following arguments.
15320 //
15321 // Note that we intentionally do not visit the callee expression since
15322 // it is just a decayed reference to a function.
15323 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
15324 SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
15325 SequenceTree::Seq OldRegion = Region;
15326
15327 assert(CXXOCE->getNumArgs() >= 1 &&
15328 "An overloaded call operator must have at least one argument"
15329 " for the postfix-expression!");
15330 const Expr *PostfixExpr = CXXOCE->getArgs()[0];
15331 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
15332 CXXOCE->getNumArgs() - 1);
15333
15334 // Visit the postfix-expression first.
15335 {
15336 Region = PostfixExprRegion;
15337 SequencedSubexpression Sequenced(*this);
15338 Visit(PostfixExpr);
15339 }
15340
15341 // Then visit the argument expressions.
15342 Region = ArgsRegion;
15343 for (const Expr *Arg : Args)
15344 Visit(Arg);
15345
15346 Region = OldRegion;
15347 Tree.merge(PostfixExprRegion);
15348 Tree.merge(ArgsRegion);
15349 } else {
15350 assert(CXXOCE->getNumArgs() == 2 &&
15351 "Should only have two arguments here!");
15352 assert((SequencingKind == LHSBeforeRHS ||
15353 SequencingKind == RHSBeforeLHS) &&
15354 "Unexpected sequencing kind!");
15355
15356 // We do not visit the callee expression since it is just a decayed
15357 // reference to a function.
15358 const Expr *E1 = CXXOCE->getArg(0);
15359 const Expr *E2 = CXXOCE->getArg(1);
15360 if (SequencingKind == RHSBeforeLHS)
15361 std::swap(E1, E2);
15362
15363 return VisitSequencedExpressions(E1, E2);
15364 }
15365 });
15366 }
15367
VisitCXXConstructExpr(const CXXConstructExpr * CCE)15368 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
15369 // This is a call, so all subexpressions are sequenced before the result.
15370 SequencedSubexpression Sequenced(*this);
15371
15372 if (!CCE->isListInitialization())
15373 return VisitExpr(CCE);
15374
15375 // In C++11, list initializations are sequenced.
15376 SmallVector<SequenceTree::Seq, 32> Elts;
15377 SequenceTree::Seq Parent = Region;
15378 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
15379 E = CCE->arg_end();
15380 I != E; ++I) {
15381 Region = Tree.allocate(Parent);
15382 Elts.push_back(Region);
15383 Visit(*I);
15384 }
15385
15386 // Forget that the initializers are sequenced.
15387 Region = Parent;
15388 for (unsigned I = 0; I < Elts.size(); ++I)
15389 Tree.merge(Elts[I]);
15390 }
15391
VisitInitListExpr(const InitListExpr * ILE)15392 void VisitInitListExpr(const InitListExpr *ILE) {
15393 if (!SemaRef.getLangOpts().CPlusPlus11)
15394 return VisitExpr(ILE);
15395
15396 // In C++11, list initializations are sequenced.
15397 SmallVector<SequenceTree::Seq, 32> Elts;
15398 SequenceTree::Seq Parent = Region;
15399 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
15400 const Expr *E = ILE->getInit(I);
15401 if (!E)
15402 continue;
15403 Region = Tree.allocate(Parent);
15404 Elts.push_back(Region);
15405 Visit(E);
15406 }
15407
15408 // Forget that the initializers are sequenced.
15409 Region = Parent;
15410 for (unsigned I = 0; I < Elts.size(); ++I)
15411 Tree.merge(Elts[I]);
15412 }
15413 };
15414
15415 } // namespace
15416
CheckUnsequencedOperations(const Expr * E)15417 void Sema::CheckUnsequencedOperations(const Expr *E) {
15418 SmallVector<const Expr *, 8> WorkList;
15419 WorkList.push_back(E);
15420 while (!WorkList.empty()) {
15421 const Expr *Item = WorkList.pop_back_val();
15422 SequenceChecker(*this, Item, WorkList);
15423 }
15424 }
15425
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)15426 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
15427 bool IsConstexpr) {
15428 llvm::SaveAndRestore<bool> ConstantContext(
15429 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
15430 CheckImplicitConversions(E, CheckLoc);
15431 if (!E->isInstantiationDependent())
15432 CheckUnsequencedOperations(E);
15433 if (!IsConstexpr && !E->isValueDependent())
15434 CheckForIntOverflow(E);
15435 DiagnoseMisalignedMembers();
15436 }
15437
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)15438 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
15439 FieldDecl *BitField,
15440 Expr *Init) {
15441 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
15442 }
15443
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)15444 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
15445 SourceLocation Loc) {
15446 if (!PType->isVariablyModifiedType())
15447 return;
15448 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
15449 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
15450 return;
15451 }
15452 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
15453 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
15454 return;
15455 }
15456 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
15457 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
15458 return;
15459 }
15460
15461 const ArrayType *AT = S.Context.getAsArrayType(PType);
15462 if (!AT)
15463 return;
15464
15465 if (AT->getSizeModifier() != ArrayType::Star) {
15466 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
15467 return;
15468 }
15469
15470 S.Diag(Loc, diag::err_array_star_in_function_definition);
15471 }
15472
15473 /// CheckParmsForFunctionDef - Check that the parameters of the given
15474 /// function are appropriate for the definition of a function. This
15475 /// takes care of any checks that cannot be performed on the
15476 /// declaration itself, e.g., that the types of each of the function
15477 /// parameters are complete.
CheckParmsForFunctionDef(ArrayRef<ParmVarDecl * > Parameters,bool CheckParameterNames)15478 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
15479 bool CheckParameterNames) {
15480 bool HasInvalidParm = false;
15481 for (ParmVarDecl *Param : Parameters) {
15482 // C99 6.7.5.3p4: the parameters in a parameter type list in a
15483 // function declarator that is part of a function definition of
15484 // that function shall not have incomplete type.
15485 //
15486 // This is also C++ [dcl.fct]p6.
15487 if (!Param->isInvalidDecl() &&
15488 RequireCompleteType(Param->getLocation(), Param->getType(),
15489 diag::err_typecheck_decl_incomplete_type)) {
15490 Param->setInvalidDecl();
15491 HasInvalidParm = true;
15492 }
15493
15494 // C99 6.9.1p5: If the declarator includes a parameter type list, the
15495 // declaration of each parameter shall include an identifier.
15496 if (CheckParameterNames && Param->getIdentifier() == nullptr &&
15497 !Param->isImplicit() && !getLangOpts().CPlusPlus) {
15498 // Diagnose this as an extension in C17 and earlier.
15499 if (!getLangOpts().C2x)
15500 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15501 }
15502
15503 // C99 6.7.5.3p12:
15504 // If the function declarator is not part of a definition of that
15505 // function, parameters may have incomplete type and may use the [*]
15506 // notation in their sequences of declarator specifiers to specify
15507 // variable length array types.
15508 QualType PType = Param->getOriginalType();
15509 // FIXME: This diagnostic should point the '[*]' if source-location
15510 // information is added for it.
15511 diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
15512
15513 // If the parameter is a c++ class type and it has to be destructed in the
15514 // callee function, declare the destructor so that it can be called by the
15515 // callee function. Do not perform any direct access check on the dtor here.
15516 if (!Param->isInvalidDecl()) {
15517 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
15518 if (!ClassDecl->isInvalidDecl() &&
15519 !ClassDecl->hasIrrelevantDestructor() &&
15520 !ClassDecl->isDependentContext() &&
15521 ClassDecl->isParamDestroyedInCallee()) {
15522 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15523 MarkFunctionReferenced(Param->getLocation(), Destructor);
15524 DiagnoseUseOfDecl(Destructor, Param->getLocation());
15525 }
15526 }
15527 }
15528
15529 // Parameters with the pass_object_size attribute only need to be marked
15530 // constant at function definitions. Because we lack information about
15531 // whether we're on a declaration or definition when we're instantiating the
15532 // attribute, we need to check for constness here.
15533 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
15534 if (!Param->getType().isConstQualified())
15535 Diag(Param->getLocation(), diag::err_attribute_pointers_only)
15536 << Attr->getSpelling() << 1;
15537
15538 // Check for parameter names shadowing fields from the class.
15539 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
15540 // The owning context for the parameter should be the function, but we
15541 // want to see if this function's declaration context is a record.
15542 DeclContext *DC = Param->getDeclContext();
15543 if (DC && DC->isFunctionOrMethod()) {
15544 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
15545 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
15546 RD, /*DeclIsField*/ false);
15547 }
15548 }
15549 }
15550
15551 return HasInvalidParm;
15552 }
15553
15554 Optional<std::pair<CharUnits, CharUnits>>
15555 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
15556
15557 /// Compute the alignment and offset of the base class object given the
15558 /// derived-to-base cast expression and the alignment and offset of the derived
15559 /// class object.
15560 static std::pair<CharUnits, CharUnits>
getDerivedToBaseAlignmentAndOffset(const CastExpr * CE,QualType DerivedType,CharUnits BaseAlignment,CharUnits Offset,ASTContext & Ctx)15561 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
15562 CharUnits BaseAlignment, CharUnits Offset,
15563 ASTContext &Ctx) {
15564 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
15565 ++PathI) {
15566 const CXXBaseSpecifier *Base = *PathI;
15567 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
15568 if (Base->isVirtual()) {
15569 // The complete object may have a lower alignment than the non-virtual
15570 // alignment of the base, in which case the base may be misaligned. Choose
15571 // the smaller of the non-virtual alignment and BaseAlignment, which is a
15572 // conservative lower bound of the complete object alignment.
15573 CharUnits NonVirtualAlignment =
15574 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
15575 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
15576 Offset = CharUnits::Zero();
15577 } else {
15578 const ASTRecordLayout &RL =
15579 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
15580 Offset += RL.getBaseClassOffset(BaseDecl);
15581 }
15582 DerivedType = Base->getType();
15583 }
15584
15585 return std::make_pair(BaseAlignment, Offset);
15586 }
15587
15588 /// Compute the alignment and offset of a binary additive operator.
15589 static Optional<std::pair<CharUnits, CharUnits>>
getAlignmentAndOffsetFromBinAddOrSub(const Expr * PtrE,const Expr * IntE,bool IsSub,ASTContext & Ctx)15590 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
15591 bool IsSub, ASTContext &Ctx) {
15592 QualType PointeeType = PtrE->getType()->getPointeeType();
15593
15594 if (!PointeeType->isConstantSizeType())
15595 return llvm::None;
15596
15597 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
15598
15599 if (!P)
15600 return llvm::None;
15601
15602 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
15603 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
15604 CharUnits Offset = EltSize * IdxRes->getExtValue();
15605 if (IsSub)
15606 Offset = -Offset;
15607 return std::make_pair(P->first, P->second + Offset);
15608 }
15609
15610 // If the integer expression isn't a constant expression, compute the lower
15611 // bound of the alignment using the alignment and offset of the pointer
15612 // expression and the element size.
15613 return std::make_pair(
15614 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
15615 CharUnits::Zero());
15616 }
15617
15618 /// This helper function takes an lvalue expression and returns the alignment of
15619 /// a VarDecl and a constant offset from the VarDecl.
15620 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromLValue(const Expr * E,ASTContext & Ctx)15621 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
15622 E = E->IgnoreParens();
15623 switch (E->getStmtClass()) {
15624 default:
15625 break;
15626 case Stmt::CStyleCastExprClass:
15627 case Stmt::CXXStaticCastExprClass:
15628 case Stmt::ImplicitCastExprClass: {
15629 auto *CE = cast<CastExpr>(E);
15630 const Expr *From = CE->getSubExpr();
15631 switch (CE->getCastKind()) {
15632 default:
15633 break;
15634 case CK_NoOp:
15635 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15636 case CK_UncheckedDerivedToBase:
15637 case CK_DerivedToBase: {
15638 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15639 if (!P)
15640 break;
15641 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
15642 P->second, Ctx);
15643 }
15644 }
15645 break;
15646 }
15647 case Stmt::ArraySubscriptExprClass: {
15648 auto *ASE = cast<ArraySubscriptExpr>(E);
15649 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
15650 false, Ctx);
15651 }
15652 case Stmt::DeclRefExprClass: {
15653 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
15654 // FIXME: If VD is captured by copy or is an escaping __block variable,
15655 // use the alignment of VD's type.
15656 if (!VD->getType()->isReferenceType())
15657 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
15658 if (VD->hasInit())
15659 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
15660 }
15661 break;
15662 }
15663 case Stmt::MemberExprClass: {
15664 auto *ME = cast<MemberExpr>(E);
15665 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
15666 if (!FD || FD->getType()->isReferenceType() ||
15667 FD->getParent()->isInvalidDecl())
15668 break;
15669 Optional<std::pair<CharUnits, CharUnits>> P;
15670 if (ME->isArrow())
15671 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
15672 else
15673 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
15674 if (!P)
15675 break;
15676 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
15677 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
15678 return std::make_pair(P->first,
15679 P->second + CharUnits::fromQuantity(Offset));
15680 }
15681 case Stmt::UnaryOperatorClass: {
15682 auto *UO = cast<UnaryOperator>(E);
15683 switch (UO->getOpcode()) {
15684 default:
15685 break;
15686 case UO_Deref:
15687 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
15688 }
15689 break;
15690 }
15691 case Stmt::BinaryOperatorClass: {
15692 auto *BO = cast<BinaryOperator>(E);
15693 auto Opcode = BO->getOpcode();
15694 switch (Opcode) {
15695 default:
15696 break;
15697 case BO_Comma:
15698 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
15699 }
15700 break;
15701 }
15702 }
15703 return llvm::None;
15704 }
15705
15706 /// This helper function takes a pointer expression and returns the alignment of
15707 /// a VarDecl and a constant offset from the VarDecl.
15708 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromPtr(const Expr * E,ASTContext & Ctx)15709 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
15710 E = E->IgnoreParens();
15711 switch (E->getStmtClass()) {
15712 default:
15713 break;
15714 case Stmt::CStyleCastExprClass:
15715 case Stmt::CXXStaticCastExprClass:
15716 case Stmt::ImplicitCastExprClass: {
15717 auto *CE = cast<CastExpr>(E);
15718 const Expr *From = CE->getSubExpr();
15719 switch (CE->getCastKind()) {
15720 default:
15721 break;
15722 case CK_NoOp:
15723 return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15724 case CK_ArrayToPointerDecay:
15725 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15726 case CK_UncheckedDerivedToBase:
15727 case CK_DerivedToBase: {
15728 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15729 if (!P)
15730 break;
15731 return getDerivedToBaseAlignmentAndOffset(
15732 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
15733 }
15734 }
15735 break;
15736 }
15737 case Stmt::CXXThisExprClass: {
15738 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
15739 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
15740 return std::make_pair(Alignment, CharUnits::Zero());
15741 }
15742 case Stmt::UnaryOperatorClass: {
15743 auto *UO = cast<UnaryOperator>(E);
15744 if (UO->getOpcode() == UO_AddrOf)
15745 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
15746 break;
15747 }
15748 case Stmt::BinaryOperatorClass: {
15749 auto *BO = cast<BinaryOperator>(E);
15750 auto Opcode = BO->getOpcode();
15751 switch (Opcode) {
15752 default:
15753 break;
15754 case BO_Add:
15755 case BO_Sub: {
15756 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
15757 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
15758 std::swap(LHS, RHS);
15759 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
15760 Ctx);
15761 }
15762 case BO_Comma:
15763 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
15764 }
15765 break;
15766 }
15767 }
15768 return llvm::None;
15769 }
15770
getPresumedAlignmentOfPointer(const Expr * E,Sema & S)15771 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
15772 // See if we can compute the alignment of a VarDecl and an offset from it.
15773 Optional<std::pair<CharUnits, CharUnits>> P =
15774 getBaseAlignmentAndOffsetFromPtr(E, S.Context);
15775
15776 if (P)
15777 return P->first.alignmentAtOffset(P->second);
15778
15779 // If that failed, return the type's alignment.
15780 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
15781 }
15782
15783 /// CheckCastAlign - Implements -Wcast-align, which warns when a
15784 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)15785 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
15786 // This is actually a lot of work to potentially be doing on every
15787 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
15788 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
15789 return;
15790
15791 // Ignore dependent types.
15792 if (T->isDependentType() || Op->getType()->isDependentType())
15793 return;
15794
15795 // Require that the destination be a pointer type.
15796 const PointerType *DestPtr = T->getAs<PointerType>();
15797 if (!DestPtr) return;
15798
15799 // If the destination has alignment 1, we're done.
15800 QualType DestPointee = DestPtr->getPointeeType();
15801 if (DestPointee->isIncompleteType()) return;
15802 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
15803 if (DestAlign.isOne()) return;
15804
15805 // Require that the source be a pointer type.
15806 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
15807 if (!SrcPtr) return;
15808 QualType SrcPointee = SrcPtr->getPointeeType();
15809
15810 // Explicitly allow casts from cv void*. We already implicitly
15811 // allowed casts to cv void*, since they have alignment 1.
15812 // Also allow casts involving incomplete types, which implicitly
15813 // includes 'void'.
15814 if (SrcPointee->isIncompleteType()) return;
15815
15816 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
15817
15818 if (SrcAlign >= DestAlign) return;
15819
15820 Diag(TRange.getBegin(), diag::warn_cast_align)
15821 << Op->getType() << T
15822 << static_cast<unsigned>(SrcAlign.getQuantity())
15823 << static_cast<unsigned>(DestAlign.getQuantity())
15824 << TRange << Op->getSourceRange();
15825 }
15826
15827 /// Check whether this array fits the idiom of a size-one tail padded
15828 /// array member of a struct.
15829 ///
15830 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
15831 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,const llvm::APInt & Size,const NamedDecl * ND,unsigned StrictFlexArraysLevel)15832 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15833 const NamedDecl *ND,
15834 unsigned StrictFlexArraysLevel) {
15835 if (!ND)
15836 return false;
15837
15838 if (StrictFlexArraysLevel >= 2 && Size != 0)
15839 return false;
15840
15841 if (StrictFlexArraysLevel == 1 && Size.ule(1))
15842 return false;
15843
15844 // FIXME: While the default -fstrict-flex-arrays=0 permits Size>1 trailing
15845 // arrays to be treated as flexible-array-members, we still emit diagnostics
15846 // as if they are not. Pending further discussion...
15847 if (StrictFlexArraysLevel == 0 && Size != 1)
15848 return false;
15849
15850 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15851 if (!FD)
15852 return false;
15853
15854 // Don't consider sizes resulting from macro expansions or template argument
15855 // substitution to form C89 tail-padded arrays.
15856
15857 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15858 while (TInfo) {
15859 TypeLoc TL = TInfo->getTypeLoc();
15860 // Look through typedefs.
15861 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15862 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15863 TInfo = TDL->getTypeSourceInfo();
15864 continue;
15865 }
15866 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15867 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15868 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15869 return false;
15870 }
15871 break;
15872 }
15873
15874 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15875 if (!RD)
15876 return false;
15877 if (RD->isUnion())
15878 return false;
15879 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15880 if (!CRD->isStandardLayout())
15881 return false;
15882 }
15883
15884 // See if this is the last field decl in the record.
15885 const Decl *D = FD;
15886 while ((D = D->getNextDeclInContext()))
15887 if (isa<FieldDecl>(D))
15888 return false;
15889 return true;
15890 }
15891
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)15892 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15893 const ArraySubscriptExpr *ASE,
15894 bool AllowOnePastEnd, bool IndexNegated) {
15895 // Already diagnosed by the constant evaluator.
15896 if (isConstantEvaluated())
15897 return;
15898
15899 IndexExpr = IndexExpr->IgnoreParenImpCasts();
15900 if (IndexExpr->isValueDependent())
15901 return;
15902
15903 const Type *EffectiveType =
15904 BaseExpr->getType()->getPointeeOrArrayElementType();
15905 BaseExpr = BaseExpr->IgnoreParenCasts();
15906 const ConstantArrayType *ArrayTy =
15907 Context.getAsConstantArrayType(BaseExpr->getType());
15908
15909 const Type *BaseType =
15910 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15911 bool IsUnboundedArray = (BaseType == nullptr);
15912 if (EffectiveType->isDependentType() ||
15913 (!IsUnboundedArray && BaseType->isDependentType()))
15914 return;
15915
15916 Expr::EvalResult Result;
15917 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15918 return;
15919
15920 llvm::APSInt index = Result.Val.getInt();
15921 if (IndexNegated) {
15922 index.setIsUnsigned(false);
15923 index = -index;
15924 }
15925
15926 const NamedDecl *ND = nullptr;
15927 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15928 ND = DRE->getDecl();
15929 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15930 ND = ME->getMemberDecl();
15931
15932 if (IsUnboundedArray) {
15933 if (EffectiveType->isFunctionType())
15934 return;
15935 if (index.isUnsigned() || !index.isNegative()) {
15936 const auto &ASTC = getASTContext();
15937 unsigned AddrBits =
15938 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15939 EffectiveType->getCanonicalTypeInternal()));
15940 if (index.getBitWidth() < AddrBits)
15941 index = index.zext(AddrBits);
15942 Optional<CharUnits> ElemCharUnits =
15943 ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15944 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15945 // pointer) bounds-checking isn't meaningful.
15946 if (!ElemCharUnits)
15947 return;
15948 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15949 // If index has more active bits than address space, we already know
15950 // we have a bounds violation to warn about. Otherwise, compute
15951 // address of (index + 1)th element, and warn about bounds violation
15952 // only if that address exceeds address space.
15953 if (index.getActiveBits() <= AddrBits) {
15954 bool Overflow;
15955 llvm::APInt Product(index);
15956 Product += 1;
15957 Product = Product.umul_ov(ElemBytes, Overflow);
15958 if (!Overflow && Product.getActiveBits() <= AddrBits)
15959 return;
15960 }
15961
15962 // Need to compute max possible elements in address space, since that
15963 // is included in diag message.
15964 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15965 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15966 MaxElems += 1;
15967 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15968 MaxElems = MaxElems.udiv(ElemBytes);
15969
15970 unsigned DiagID =
15971 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15972 : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15973
15974 // Diag message shows element size in bits and in "bytes" (platform-
15975 // dependent CharUnits)
15976 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15977 PDiag(DiagID)
15978 << toString(index, 10, true) << AddrBits
15979 << (unsigned)ASTC.toBits(*ElemCharUnits)
15980 << toString(ElemBytes, 10, false)
15981 << toString(MaxElems, 10, false)
15982 << (unsigned)MaxElems.getLimitedValue(~0U)
15983 << IndexExpr->getSourceRange());
15984
15985 if (!ND) {
15986 // Try harder to find a NamedDecl to point at in the note.
15987 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15988 BaseExpr = ASE->getBase()->IgnoreParenCasts();
15989 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15990 ND = DRE->getDecl();
15991 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15992 ND = ME->getMemberDecl();
15993 }
15994
15995 if (ND)
15996 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15997 PDiag(diag::note_array_declared_here) << ND);
15998 }
15999 return;
16000 }
16001
16002 if (index.isUnsigned() || !index.isNegative()) {
16003 // It is possible that the type of the base expression after
16004 // IgnoreParenCasts is incomplete, even though the type of the base
16005 // expression before IgnoreParenCasts is complete (see PR39746 for an
16006 // example). In this case we have no information about whether the array
16007 // access exceeds the array bounds. However we can still diagnose an array
16008 // access which precedes the array bounds.
16009 //
16010 // FIXME: this check should be redundant with the IsUnboundedArray check
16011 // above.
16012 if (BaseType->isIncompleteType())
16013 return;
16014
16015 // FIXME: this check should belong to the IsTailPaddedMemberArray call
16016 // below.
16017 llvm::APInt size = ArrayTy->getSize();
16018 if (!size.isStrictlyPositive())
16019 return;
16020
16021 if (BaseType != EffectiveType) {
16022 // Make sure we're comparing apples to apples when comparing index to size
16023 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
16024 uint64_t array_typesize = Context.getTypeSize(BaseType);
16025 // Handle ptrarith_typesize being zero, such as when casting to void*
16026 if (!ptrarith_typesize) ptrarith_typesize = 1;
16027 if (ptrarith_typesize != array_typesize) {
16028 // There's a cast to a different size type involved
16029 uint64_t ratio = array_typesize / ptrarith_typesize;
16030 // TODO: Be smarter about handling cases where array_typesize is not a
16031 // multiple of ptrarith_typesize
16032 if (ptrarith_typesize * ratio == array_typesize)
16033 size *= llvm::APInt(size.getBitWidth(), ratio);
16034 }
16035 }
16036
16037 if (size.getBitWidth() > index.getBitWidth())
16038 index = index.zext(size.getBitWidth());
16039 else if (size.getBitWidth() < index.getBitWidth())
16040 size = size.zext(index.getBitWidth());
16041
16042 // For array subscripting the index must be less than size, but for pointer
16043 // arithmetic also allow the index (offset) to be equal to size since
16044 // computing the next address after the end of the array is legal and
16045 // commonly done e.g. in C++ iterators and range-based for loops.
16046 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
16047 return;
16048
16049 // Also don't warn for Flexible Array Member emulation.
16050 const unsigned StrictFlexArraysLevel = getLangOpts().StrictFlexArrays;
16051 if (IsTailPaddedMemberArray(*this, size, ND, StrictFlexArraysLevel))
16052 return;
16053
16054 // Suppress the warning if the subscript expression (as identified by the
16055 // ']' location) and the index expression are both from macro expansions
16056 // within a system header.
16057 if (ASE) {
16058 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
16059 ASE->getRBracketLoc());
16060 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
16061 SourceLocation IndexLoc =
16062 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
16063 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
16064 return;
16065 }
16066 }
16067
16068 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
16069 : diag::warn_ptr_arith_exceeds_bounds;
16070
16071 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
16072 PDiag(DiagID) << toString(index, 10, true)
16073 << toString(size, 10, true)
16074 << (unsigned)size.getLimitedValue(~0U)
16075 << IndexExpr->getSourceRange());
16076 } else {
16077 unsigned DiagID = diag::warn_array_index_precedes_bounds;
16078 if (!ASE) {
16079 DiagID = diag::warn_ptr_arith_precedes_bounds;
16080 if (index.isNegative()) index = -index;
16081 }
16082
16083 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
16084 PDiag(DiagID) << toString(index, 10, true)
16085 << IndexExpr->getSourceRange());
16086 }
16087
16088 if (!ND) {
16089 // Try harder to find a NamedDecl to point at in the note.
16090 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
16091 BaseExpr = ASE->getBase()->IgnoreParenCasts();
16092 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
16093 ND = DRE->getDecl();
16094 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
16095 ND = ME->getMemberDecl();
16096 }
16097
16098 if (ND)
16099 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
16100 PDiag(diag::note_array_declared_here) << ND);
16101 }
16102
CheckArrayAccess(const Expr * expr)16103 void Sema::CheckArrayAccess(const Expr *expr) {
16104 int AllowOnePastEnd = 0;
16105 while (expr) {
16106 expr = expr->IgnoreParenImpCasts();
16107 switch (expr->getStmtClass()) {
16108 case Stmt::ArraySubscriptExprClass: {
16109 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
16110 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
16111 AllowOnePastEnd > 0);
16112 expr = ASE->getBase();
16113 break;
16114 }
16115 case Stmt::MemberExprClass: {
16116 expr = cast<MemberExpr>(expr)->getBase();
16117 break;
16118 }
16119 case Stmt::OMPArraySectionExprClass: {
16120 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
16121 if (ASE->getLowerBound())
16122 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
16123 /*ASE=*/nullptr, AllowOnePastEnd > 0);
16124 return;
16125 }
16126 case Stmt::UnaryOperatorClass: {
16127 // Only unwrap the * and & unary operators
16128 const UnaryOperator *UO = cast<UnaryOperator>(expr);
16129 expr = UO->getSubExpr();
16130 switch (UO->getOpcode()) {
16131 case UO_AddrOf:
16132 AllowOnePastEnd++;
16133 break;
16134 case UO_Deref:
16135 AllowOnePastEnd--;
16136 break;
16137 default:
16138 return;
16139 }
16140 break;
16141 }
16142 case Stmt::ConditionalOperatorClass: {
16143 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
16144 if (const Expr *lhs = cond->getLHS())
16145 CheckArrayAccess(lhs);
16146 if (const Expr *rhs = cond->getRHS())
16147 CheckArrayAccess(rhs);
16148 return;
16149 }
16150 case Stmt::CXXOperatorCallExprClass: {
16151 const auto *OCE = cast<CXXOperatorCallExpr>(expr);
16152 for (const auto *Arg : OCE->arguments())
16153 CheckArrayAccess(Arg);
16154 return;
16155 }
16156 default:
16157 return;
16158 }
16159 }
16160 }
16161
16162 //===--- CHECK: Objective-C retain cycles ----------------------------------//
16163
16164 namespace {
16165
16166 struct RetainCycleOwner {
16167 VarDecl *Variable = nullptr;
16168 SourceRange Range;
16169 SourceLocation Loc;
16170 bool Indirect = false;
16171
16172 RetainCycleOwner() = default;
16173
setLocsFrom__anon8097fee12d11::RetainCycleOwner16174 void setLocsFrom(Expr *e) {
16175 Loc = e->getExprLoc();
16176 Range = e->getSourceRange();
16177 }
16178 };
16179
16180 } // namespace
16181
16182 /// Consider whether capturing the given variable can possibly lead to
16183 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)16184 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
16185 // In ARC, it's captured strongly iff the variable has __strong
16186 // lifetime. In MRR, it's captured strongly if the variable is
16187 // __block and has an appropriate type.
16188 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
16189 return false;
16190
16191 owner.Variable = var;
16192 if (ref)
16193 owner.setLocsFrom(ref);
16194 return true;
16195 }
16196
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)16197 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
16198 while (true) {
16199 e = e->IgnoreParens();
16200 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
16201 switch (cast->getCastKind()) {
16202 case CK_BitCast:
16203 case CK_LValueBitCast:
16204 case CK_LValueToRValue:
16205 case CK_ARCReclaimReturnedObject:
16206 e = cast->getSubExpr();
16207 continue;
16208
16209 default:
16210 return false;
16211 }
16212 }
16213
16214 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
16215 ObjCIvarDecl *ivar = ref->getDecl();
16216 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
16217 return false;
16218
16219 // Try to find a retain cycle in the base.
16220 if (!findRetainCycleOwner(S, ref->getBase(), owner))
16221 return false;
16222
16223 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
16224 owner.Indirect = true;
16225 return true;
16226 }
16227
16228 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
16229 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
16230 if (!var) return false;
16231 return considerVariable(var, ref, owner);
16232 }
16233
16234 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
16235 if (member->isArrow()) return false;
16236
16237 // Don't count this as an indirect ownership.
16238 e = member->getBase();
16239 continue;
16240 }
16241
16242 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
16243 // Only pay attention to pseudo-objects on property references.
16244 ObjCPropertyRefExpr *pre
16245 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
16246 ->IgnoreParens());
16247 if (!pre) return false;
16248 if (pre->isImplicitProperty()) return false;
16249 ObjCPropertyDecl *property = pre->getExplicitProperty();
16250 if (!property->isRetaining() &&
16251 !(property->getPropertyIvarDecl() &&
16252 property->getPropertyIvarDecl()->getType()
16253 .getObjCLifetime() == Qualifiers::OCL_Strong))
16254 return false;
16255
16256 owner.Indirect = true;
16257 if (pre->isSuperReceiver()) {
16258 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
16259 if (!owner.Variable)
16260 return false;
16261 owner.Loc = pre->getLocation();
16262 owner.Range = pre->getSourceRange();
16263 return true;
16264 }
16265 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
16266 ->getSourceExpr());
16267 continue;
16268 }
16269
16270 // Array ivars?
16271
16272 return false;
16273 }
16274 }
16275
16276 namespace {
16277
16278 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
16279 ASTContext &Context;
16280 VarDecl *Variable;
16281 Expr *Capturer = nullptr;
16282 bool VarWillBeReased = false;
16283
FindCaptureVisitor__anon8097fee12e11::FindCaptureVisitor16284 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
16285 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
16286 Context(Context), Variable(variable) {}
16287
VisitDeclRefExpr__anon8097fee12e11::FindCaptureVisitor16288 void VisitDeclRefExpr(DeclRefExpr *ref) {
16289 if (ref->getDecl() == Variable && !Capturer)
16290 Capturer = ref;
16291 }
16292
VisitObjCIvarRefExpr__anon8097fee12e11::FindCaptureVisitor16293 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
16294 if (Capturer) return;
16295 Visit(ref->getBase());
16296 if (Capturer && ref->isFreeIvar())
16297 Capturer = ref;
16298 }
16299
VisitBlockExpr__anon8097fee12e11::FindCaptureVisitor16300 void VisitBlockExpr(BlockExpr *block) {
16301 // Look inside nested blocks
16302 if (block->getBlockDecl()->capturesVariable(Variable))
16303 Visit(block->getBlockDecl()->getBody());
16304 }
16305
VisitOpaqueValueExpr__anon8097fee12e11::FindCaptureVisitor16306 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
16307 if (Capturer) return;
16308 if (OVE->getSourceExpr())
16309 Visit(OVE->getSourceExpr());
16310 }
16311
VisitBinaryOperator__anon8097fee12e11::FindCaptureVisitor16312 void VisitBinaryOperator(BinaryOperator *BinOp) {
16313 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
16314 return;
16315 Expr *LHS = BinOp->getLHS();
16316 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
16317 if (DRE->getDecl() != Variable)
16318 return;
16319 if (Expr *RHS = BinOp->getRHS()) {
16320 RHS = RHS->IgnoreParenCasts();
16321 Optional<llvm::APSInt> Value;
16322 VarWillBeReased =
16323 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
16324 *Value == 0);
16325 }
16326 }
16327 }
16328 };
16329
16330 } // namespace
16331
16332 /// Check whether the given argument is a block which captures a
16333 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)16334 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
16335 assert(owner.Variable && owner.Loc.isValid());
16336
16337 e = e->IgnoreParenCasts();
16338
16339 // Look through [^{...} copy] and Block_copy(^{...}).
16340 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
16341 Selector Cmd = ME->getSelector();
16342 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
16343 e = ME->getInstanceReceiver();
16344 if (!e)
16345 return nullptr;
16346 e = e->IgnoreParenCasts();
16347 }
16348 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
16349 if (CE->getNumArgs() == 1) {
16350 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
16351 if (Fn) {
16352 const IdentifierInfo *FnI = Fn->getIdentifier();
16353 if (FnI && FnI->isStr("_Block_copy")) {
16354 e = CE->getArg(0)->IgnoreParenCasts();
16355 }
16356 }
16357 }
16358 }
16359
16360 BlockExpr *block = dyn_cast<BlockExpr>(e);
16361 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
16362 return nullptr;
16363
16364 FindCaptureVisitor visitor(S.Context, owner.Variable);
16365 visitor.Visit(block->getBlockDecl()->getBody());
16366 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
16367 }
16368
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)16369 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
16370 RetainCycleOwner &owner) {
16371 assert(capturer);
16372 assert(owner.Variable && owner.Loc.isValid());
16373
16374 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
16375 << owner.Variable << capturer->getSourceRange();
16376 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
16377 << owner.Indirect << owner.Range;
16378 }
16379
16380 /// Check for a keyword selector that starts with the word 'add' or
16381 /// 'set'.
isSetterLikeSelector(Selector sel)16382 static bool isSetterLikeSelector(Selector sel) {
16383 if (sel.isUnarySelector()) return false;
16384
16385 StringRef str = sel.getNameForSlot(0);
16386 while (!str.empty() && str.front() == '_') str = str.substr(1);
16387 if (str.startswith("set"))
16388 str = str.substr(3);
16389 else if (str.startswith("add")) {
16390 // Specially allow 'addOperationWithBlock:'.
16391 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
16392 return false;
16393 str = str.substr(3);
16394 }
16395 else
16396 return false;
16397
16398 if (str.empty()) return true;
16399 return !isLowercase(str.front());
16400 }
16401
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)16402 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
16403 ObjCMessageExpr *Message) {
16404 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
16405 Message->getReceiverInterface(),
16406 NSAPI::ClassId_NSMutableArray);
16407 if (!IsMutableArray) {
16408 return None;
16409 }
16410
16411 Selector Sel = Message->getSelector();
16412
16413 Optional<NSAPI::NSArrayMethodKind> MKOpt =
16414 S.NSAPIObj->getNSArrayMethodKind(Sel);
16415 if (!MKOpt) {
16416 return None;
16417 }
16418
16419 NSAPI::NSArrayMethodKind MK = *MKOpt;
16420
16421 switch (MK) {
16422 case NSAPI::NSMutableArr_addObject:
16423 case NSAPI::NSMutableArr_insertObjectAtIndex:
16424 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
16425 return 0;
16426 case NSAPI::NSMutableArr_replaceObjectAtIndex:
16427 return 1;
16428
16429 default:
16430 return None;
16431 }
16432
16433 return None;
16434 }
16435
16436 static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)16437 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
16438 ObjCMessageExpr *Message) {
16439 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
16440 Message->getReceiverInterface(),
16441 NSAPI::ClassId_NSMutableDictionary);
16442 if (!IsMutableDictionary) {
16443 return None;
16444 }
16445
16446 Selector Sel = Message->getSelector();
16447
16448 Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
16449 S.NSAPIObj->getNSDictionaryMethodKind(Sel);
16450 if (!MKOpt) {
16451 return None;
16452 }
16453
16454 NSAPI::NSDictionaryMethodKind MK = *MKOpt;
16455
16456 switch (MK) {
16457 case NSAPI::NSMutableDict_setObjectForKey:
16458 case NSAPI::NSMutableDict_setValueForKey:
16459 case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
16460 return 0;
16461
16462 default:
16463 return None;
16464 }
16465
16466 return None;
16467 }
16468
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)16469 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
16470 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
16471 Message->getReceiverInterface(),
16472 NSAPI::ClassId_NSMutableSet);
16473
16474 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
16475 Message->getReceiverInterface(),
16476 NSAPI::ClassId_NSMutableOrderedSet);
16477 if (!IsMutableSet && !IsMutableOrderedSet) {
16478 return None;
16479 }
16480
16481 Selector Sel = Message->getSelector();
16482
16483 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
16484 if (!MKOpt) {
16485 return None;
16486 }
16487
16488 NSAPI::NSSetMethodKind MK = *MKOpt;
16489
16490 switch (MK) {
16491 case NSAPI::NSMutableSet_addObject:
16492 case NSAPI::NSOrderedSet_setObjectAtIndex:
16493 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
16494 case NSAPI::NSOrderedSet_insertObjectAtIndex:
16495 return 0;
16496 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
16497 return 1;
16498 }
16499
16500 return None;
16501 }
16502
CheckObjCCircularContainer(ObjCMessageExpr * Message)16503 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
16504 if (!Message->isInstanceMessage()) {
16505 return;
16506 }
16507
16508 Optional<int> ArgOpt;
16509
16510 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
16511 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
16512 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
16513 return;
16514 }
16515
16516 int ArgIndex = *ArgOpt;
16517
16518 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
16519 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
16520 Arg = OE->getSourceExpr()->IgnoreImpCasts();
16521 }
16522
16523 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
16524 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
16525 if (ArgRE->isObjCSelfExpr()) {
16526 Diag(Message->getSourceRange().getBegin(),
16527 diag::warn_objc_circular_container)
16528 << ArgRE->getDecl() << StringRef("'super'");
16529 }
16530 }
16531 } else {
16532 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
16533
16534 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
16535 Receiver = OE->getSourceExpr()->IgnoreImpCasts();
16536 }
16537
16538 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
16539 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
16540 if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
16541 ValueDecl *Decl = ReceiverRE->getDecl();
16542 Diag(Message->getSourceRange().getBegin(),
16543 diag::warn_objc_circular_container)
16544 << Decl << Decl;
16545 if (!ArgRE->isObjCSelfExpr()) {
16546 Diag(Decl->getLocation(),
16547 diag::note_objc_circular_container_declared_here)
16548 << Decl;
16549 }
16550 }
16551 }
16552 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
16553 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
16554 if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
16555 ObjCIvarDecl *Decl = IvarRE->getDecl();
16556 Diag(Message->getSourceRange().getBegin(),
16557 diag::warn_objc_circular_container)
16558 << Decl << Decl;
16559 Diag(Decl->getLocation(),
16560 diag::note_objc_circular_container_declared_here)
16561 << Decl;
16562 }
16563 }
16564 }
16565 }
16566 }
16567
16568 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)16569 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
16570 // Only check instance methods whose selector looks like a setter.
16571 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
16572 return;
16573
16574 // Try to find a variable that the receiver is strongly owned by.
16575 RetainCycleOwner owner;
16576 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
16577 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
16578 return;
16579 } else {
16580 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
16581 owner.Variable = getCurMethodDecl()->getSelfDecl();
16582 owner.Loc = msg->getSuperLoc();
16583 owner.Range = msg->getSuperLoc();
16584 }
16585
16586 // Check whether the receiver is captured by any of the arguments.
16587 const ObjCMethodDecl *MD = msg->getMethodDecl();
16588 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
16589 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
16590 // noescape blocks should not be retained by the method.
16591 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
16592 continue;
16593 return diagnoseRetainCycle(*this, capturer, owner);
16594 }
16595 }
16596 }
16597
16598 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)16599 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
16600 RetainCycleOwner owner;
16601 if (!findRetainCycleOwner(*this, receiver, owner))
16602 return;
16603
16604 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
16605 diagnoseRetainCycle(*this, capturer, owner);
16606 }
16607
checkRetainCycles(VarDecl * Var,Expr * Init)16608 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
16609 RetainCycleOwner Owner;
16610 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
16611 return;
16612
16613 // Because we don't have an expression for the variable, we have to set the
16614 // location explicitly here.
16615 Owner.Loc = Var->getLocation();
16616 Owner.Range = Var->getSourceRange();
16617
16618 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
16619 diagnoseRetainCycle(*this, Capturer, Owner);
16620 }
16621
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)16622 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
16623 Expr *RHS, bool isProperty) {
16624 // Check if RHS is an Objective-C object literal, which also can get
16625 // immediately zapped in a weak reference. Note that we explicitly
16626 // allow ObjCStringLiterals, since those are designed to never really die.
16627 RHS = RHS->IgnoreParenImpCasts();
16628
16629 // This enum needs to match with the 'select' in
16630 // warn_objc_arc_literal_assign (off-by-1).
16631 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
16632 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
16633 return false;
16634
16635 S.Diag(Loc, diag::warn_arc_literal_assign)
16636 << (unsigned) Kind
16637 << (isProperty ? 0 : 1)
16638 << RHS->getSourceRange();
16639
16640 return true;
16641 }
16642
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)16643 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
16644 Qualifiers::ObjCLifetime LT,
16645 Expr *RHS, bool isProperty) {
16646 // Strip off any implicit cast added to get to the one ARC-specific.
16647 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16648 if (cast->getCastKind() == CK_ARCConsumeObject) {
16649 S.Diag(Loc, diag::warn_arc_retained_assign)
16650 << (LT == Qualifiers::OCL_ExplicitNone)
16651 << (isProperty ? 0 : 1)
16652 << RHS->getSourceRange();
16653 return true;
16654 }
16655 RHS = cast->getSubExpr();
16656 }
16657
16658 if (LT == Qualifiers::OCL_Weak &&
16659 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
16660 return true;
16661
16662 return false;
16663 }
16664
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)16665 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
16666 QualType LHS, Expr *RHS) {
16667 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
16668
16669 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
16670 return false;
16671
16672 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
16673 return true;
16674
16675 return false;
16676 }
16677
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)16678 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
16679 Expr *LHS, Expr *RHS) {
16680 QualType LHSType;
16681 // PropertyRef on LHS type need be directly obtained from
16682 // its declaration as it has a PseudoType.
16683 ObjCPropertyRefExpr *PRE
16684 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
16685 if (PRE && !PRE->isImplicitProperty()) {
16686 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16687 if (PD)
16688 LHSType = PD->getType();
16689 }
16690
16691 if (LHSType.isNull())
16692 LHSType = LHS->getType();
16693
16694 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
16695
16696 if (LT == Qualifiers::OCL_Weak) {
16697 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
16698 getCurFunction()->markSafeWeakUse(LHS);
16699 }
16700
16701 if (checkUnsafeAssigns(Loc, LHSType, RHS))
16702 return;
16703
16704 // FIXME. Check for other life times.
16705 if (LT != Qualifiers::OCL_None)
16706 return;
16707
16708 if (PRE) {
16709 if (PRE->isImplicitProperty())
16710 return;
16711 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16712 if (!PD)
16713 return;
16714
16715 unsigned Attributes = PD->getPropertyAttributes();
16716 if (Attributes & ObjCPropertyAttribute::kind_assign) {
16717 // when 'assign' attribute was not explicitly specified
16718 // by user, ignore it and rely on property type itself
16719 // for lifetime info.
16720 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
16721 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
16722 LHSType->isObjCRetainableType())
16723 return;
16724
16725 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16726 if (cast->getCastKind() == CK_ARCConsumeObject) {
16727 Diag(Loc, diag::warn_arc_retained_property_assign)
16728 << RHS->getSourceRange();
16729 return;
16730 }
16731 RHS = cast->getSubExpr();
16732 }
16733 } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
16734 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
16735 return;
16736 }
16737 }
16738 }
16739
16740 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
16741
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)16742 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
16743 SourceLocation StmtLoc,
16744 const NullStmt *Body) {
16745 // Do not warn if the body is a macro that expands to nothing, e.g:
16746 //
16747 // #define CALL(x)
16748 // if (condition)
16749 // CALL(0);
16750 if (Body->hasLeadingEmptyMacro())
16751 return false;
16752
16753 // Get line numbers of statement and body.
16754 bool StmtLineInvalid;
16755 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
16756 &StmtLineInvalid);
16757 if (StmtLineInvalid)
16758 return false;
16759
16760 bool BodyLineInvalid;
16761 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
16762 &BodyLineInvalid);
16763 if (BodyLineInvalid)
16764 return false;
16765
16766 // Warn if null statement and body are on the same line.
16767 if (StmtLine != BodyLine)
16768 return false;
16769
16770 return true;
16771 }
16772
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)16773 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
16774 const Stmt *Body,
16775 unsigned DiagID) {
16776 // Since this is a syntactic check, don't emit diagnostic for template
16777 // instantiations, this just adds noise.
16778 if (CurrentInstantiationScope)
16779 return;
16780
16781 // The body should be a null statement.
16782 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16783 if (!NBody)
16784 return;
16785
16786 // Do the usual checks.
16787 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16788 return;
16789
16790 Diag(NBody->getSemiLoc(), DiagID);
16791 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16792 }
16793
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)16794 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
16795 const Stmt *PossibleBody) {
16796 assert(!CurrentInstantiationScope); // Ensured by caller
16797
16798 SourceLocation StmtLoc;
16799 const Stmt *Body;
16800 unsigned DiagID;
16801 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
16802 StmtLoc = FS->getRParenLoc();
16803 Body = FS->getBody();
16804 DiagID = diag::warn_empty_for_body;
16805 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
16806 StmtLoc = WS->getRParenLoc();
16807 Body = WS->getBody();
16808 DiagID = diag::warn_empty_while_body;
16809 } else
16810 return; // Neither `for' nor `while'.
16811
16812 // The body should be a null statement.
16813 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16814 if (!NBody)
16815 return;
16816
16817 // Skip expensive checks if diagnostic is disabled.
16818 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
16819 return;
16820
16821 // Do the usual checks.
16822 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16823 return;
16824
16825 // `for(...);' and `while(...);' are popular idioms, so in order to keep
16826 // noise level low, emit diagnostics only if for/while is followed by a
16827 // CompoundStmt, e.g.:
16828 // for (int i = 0; i < n; i++);
16829 // {
16830 // a(i);
16831 // }
16832 // or if for/while is followed by a statement with more indentation
16833 // than for/while itself:
16834 // for (int i = 0; i < n; i++);
16835 // a(i);
16836 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
16837 if (!ProbableTypo) {
16838 bool BodyColInvalid;
16839 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
16840 PossibleBody->getBeginLoc(), &BodyColInvalid);
16841 if (BodyColInvalid)
16842 return;
16843
16844 bool StmtColInvalid;
16845 unsigned StmtCol =
16846 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
16847 if (StmtColInvalid)
16848 return;
16849
16850 if (BodyCol > StmtCol)
16851 ProbableTypo = true;
16852 }
16853
16854 if (ProbableTypo) {
16855 Diag(NBody->getSemiLoc(), DiagID);
16856 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16857 }
16858 }
16859
16860 //===--- CHECK: Warn on self move with std::move. -------------------------===//
16861
16862 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)16863 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16864 SourceLocation OpLoc) {
16865 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16866 return;
16867
16868 if (inTemplateInstantiation())
16869 return;
16870
16871 // Strip parens and casts away.
16872 LHSExpr = LHSExpr->IgnoreParenImpCasts();
16873 RHSExpr = RHSExpr->IgnoreParenImpCasts();
16874
16875 // Check for a call expression
16876 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16877 if (!CE || CE->getNumArgs() != 1)
16878 return;
16879
16880 // Check for a call to std::move
16881 if (!CE->isCallToStdMove())
16882 return;
16883
16884 // Get argument from std::move
16885 RHSExpr = CE->getArg(0);
16886
16887 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16888 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16889
16890 // Two DeclRefExpr's, check that the decls are the same.
16891 if (LHSDeclRef && RHSDeclRef) {
16892 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16893 return;
16894 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16895 RHSDeclRef->getDecl()->getCanonicalDecl())
16896 return;
16897
16898 auto D = Diag(OpLoc, diag::warn_self_move)
16899 << LHSExpr->getType() << LHSExpr->getSourceRange()
16900 << RHSExpr->getSourceRange();
16901 if (const FieldDecl *F =
16902 getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
16903 D << 1 << F
16904 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
16905 else
16906 D << 0;
16907 return;
16908 }
16909
16910 // Member variables require a different approach to check for self moves.
16911 // MemberExpr's are the same if every nested MemberExpr refers to the same
16912 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16913 // the base Expr's are CXXThisExpr's.
16914 const Expr *LHSBase = LHSExpr;
16915 const Expr *RHSBase = RHSExpr;
16916 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16917 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16918 if (!LHSME || !RHSME)
16919 return;
16920
16921 while (LHSME && RHSME) {
16922 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16923 RHSME->getMemberDecl()->getCanonicalDecl())
16924 return;
16925
16926 LHSBase = LHSME->getBase();
16927 RHSBase = RHSME->getBase();
16928 LHSME = dyn_cast<MemberExpr>(LHSBase);
16929 RHSME = dyn_cast<MemberExpr>(RHSBase);
16930 }
16931
16932 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16933 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16934 if (LHSDeclRef && RHSDeclRef) {
16935 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16936 return;
16937 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16938 RHSDeclRef->getDecl()->getCanonicalDecl())
16939 return;
16940
16941 Diag(OpLoc, diag::warn_self_move)
16942 << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
16943 << RHSExpr->getSourceRange();
16944 return;
16945 }
16946
16947 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16948 Diag(OpLoc, diag::warn_self_move)
16949 << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
16950 << RHSExpr->getSourceRange();
16951 }
16952
16953 //===--- Layout compatibility ----------------------------------------------//
16954
16955 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16956
16957 /// Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)16958 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16959 // C++11 [dcl.enum] p8:
16960 // Two enumeration types are layout-compatible if they have the same
16961 // underlying type.
16962 return ED1->isComplete() && ED2->isComplete() &&
16963 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16964 }
16965
16966 /// Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)16967 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16968 FieldDecl *Field2) {
16969 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16970 return false;
16971
16972 if (Field1->isBitField() != Field2->isBitField())
16973 return false;
16974
16975 if (Field1->isBitField()) {
16976 // Make sure that the bit-fields are the same length.
16977 unsigned Bits1 = Field1->getBitWidthValue(C);
16978 unsigned Bits2 = Field2->getBitWidthValue(C);
16979
16980 if (Bits1 != Bits2)
16981 return false;
16982 }
16983
16984 return true;
16985 }
16986
16987 /// Check if two standard-layout structs are layout-compatible.
16988 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)16989 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16990 RecordDecl *RD2) {
16991 // If both records are C++ classes, check that base classes match.
16992 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16993 // If one of records is a CXXRecordDecl we are in C++ mode,
16994 // thus the other one is a CXXRecordDecl, too.
16995 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16996 // Check number of base classes.
16997 if (D1CXX->getNumBases() != D2CXX->getNumBases())
16998 return false;
16999
17000 // Check the base classes.
17001 for (CXXRecordDecl::base_class_const_iterator
17002 Base1 = D1CXX->bases_begin(),
17003 BaseEnd1 = D1CXX->bases_end(),
17004 Base2 = D2CXX->bases_begin();
17005 Base1 != BaseEnd1;
17006 ++Base1, ++Base2) {
17007 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
17008 return false;
17009 }
17010 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
17011 // If only RD2 is a C++ class, it should have zero base classes.
17012 if (D2CXX->getNumBases() > 0)
17013 return false;
17014 }
17015
17016 // Check the fields.
17017 RecordDecl::field_iterator Field2 = RD2->field_begin(),
17018 Field2End = RD2->field_end(),
17019 Field1 = RD1->field_begin(),
17020 Field1End = RD1->field_end();
17021 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
17022 if (!isLayoutCompatible(C, *Field1, *Field2))
17023 return false;
17024 }
17025 if (Field1 != Field1End || Field2 != Field2End)
17026 return false;
17027
17028 return true;
17029 }
17030
17031 /// Check if two standard-layout unions are layout-compatible.
17032 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)17033 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
17034 RecordDecl *RD2) {
17035 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
17036 for (auto *Field2 : RD2->fields())
17037 UnmatchedFields.insert(Field2);
17038
17039 for (auto *Field1 : RD1->fields()) {
17040 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
17041 I = UnmatchedFields.begin(),
17042 E = UnmatchedFields.end();
17043
17044 for ( ; I != E; ++I) {
17045 if (isLayoutCompatible(C, Field1, *I)) {
17046 bool Result = UnmatchedFields.erase(*I);
17047 (void) Result;
17048 assert(Result);
17049 break;
17050 }
17051 }
17052 if (I == E)
17053 return false;
17054 }
17055
17056 return UnmatchedFields.empty();
17057 }
17058
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)17059 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
17060 RecordDecl *RD2) {
17061 if (RD1->isUnion() != RD2->isUnion())
17062 return false;
17063
17064 if (RD1->isUnion())
17065 return isLayoutCompatibleUnion(C, RD1, RD2);
17066 else
17067 return isLayoutCompatibleStruct(C, RD1, RD2);
17068 }
17069
17070 /// Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)17071 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
17072 if (T1.isNull() || T2.isNull())
17073 return false;
17074
17075 // C++11 [basic.types] p11:
17076 // If two types T1 and T2 are the same type, then T1 and T2 are
17077 // layout-compatible types.
17078 if (C.hasSameType(T1, T2))
17079 return true;
17080
17081 T1 = T1.getCanonicalType().getUnqualifiedType();
17082 T2 = T2.getCanonicalType().getUnqualifiedType();
17083
17084 const Type::TypeClass TC1 = T1->getTypeClass();
17085 const Type::TypeClass TC2 = T2->getTypeClass();
17086
17087 if (TC1 != TC2)
17088 return false;
17089
17090 if (TC1 == Type::Enum) {
17091 return isLayoutCompatible(C,
17092 cast<EnumType>(T1)->getDecl(),
17093 cast<EnumType>(T2)->getDecl());
17094 } else if (TC1 == Type::Record) {
17095 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
17096 return false;
17097
17098 return isLayoutCompatible(C,
17099 cast<RecordType>(T1)->getDecl(),
17100 cast<RecordType>(T2)->getDecl());
17101 }
17102
17103 return false;
17104 }
17105
17106 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
17107
17108 /// Given a type tag expression find the type tag itself.
17109 ///
17110 /// \param TypeExpr Type tag expression, as it appears in user's code.
17111 ///
17112 /// \param VD Declaration of an identifier that appears in a type tag.
17113 ///
17114 /// \param MagicValue Type tag magic value.
17115 ///
17116 /// \param isConstantEvaluated whether the evalaution should be performed in
17117
17118 /// constant context.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue,bool isConstantEvaluated)17119 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
17120 const ValueDecl **VD, uint64_t *MagicValue,
17121 bool isConstantEvaluated) {
17122 while(true) {
17123 if (!TypeExpr)
17124 return false;
17125
17126 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
17127
17128 switch (TypeExpr->getStmtClass()) {
17129 case Stmt::UnaryOperatorClass: {
17130 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
17131 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
17132 TypeExpr = UO->getSubExpr();
17133 continue;
17134 }
17135 return false;
17136 }
17137
17138 case Stmt::DeclRefExprClass: {
17139 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
17140 *VD = DRE->getDecl();
17141 return true;
17142 }
17143
17144 case Stmt::IntegerLiteralClass: {
17145 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
17146 llvm::APInt MagicValueAPInt = IL->getValue();
17147 if (MagicValueAPInt.getActiveBits() <= 64) {
17148 *MagicValue = MagicValueAPInt.getZExtValue();
17149 return true;
17150 } else
17151 return false;
17152 }
17153
17154 case Stmt::BinaryConditionalOperatorClass:
17155 case Stmt::ConditionalOperatorClass: {
17156 const AbstractConditionalOperator *ACO =
17157 cast<AbstractConditionalOperator>(TypeExpr);
17158 bool Result;
17159 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
17160 isConstantEvaluated)) {
17161 if (Result)
17162 TypeExpr = ACO->getTrueExpr();
17163 else
17164 TypeExpr = ACO->getFalseExpr();
17165 continue;
17166 }
17167 return false;
17168 }
17169
17170 case Stmt::BinaryOperatorClass: {
17171 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
17172 if (BO->getOpcode() == BO_Comma) {
17173 TypeExpr = BO->getRHS();
17174 continue;
17175 }
17176 return false;
17177 }
17178
17179 default:
17180 return false;
17181 }
17182 }
17183 }
17184
17185 /// Retrieve the C type corresponding to type tag TypeExpr.
17186 ///
17187 /// \param TypeExpr Expression that specifies a type tag.
17188 ///
17189 /// \param MagicValues Registered magic values.
17190 ///
17191 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
17192 /// kind.
17193 ///
17194 /// \param TypeInfo Information about the corresponding C type.
17195 ///
17196 /// \param isConstantEvaluated whether the evalaution should be performed in
17197 /// constant context.
17198 ///
17199 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo,bool isConstantEvaluated)17200 static bool GetMatchingCType(
17201 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
17202 const ASTContext &Ctx,
17203 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
17204 *MagicValues,
17205 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
17206 bool isConstantEvaluated) {
17207 FoundWrongKind = false;
17208
17209 // Variable declaration that has type_tag_for_datatype attribute.
17210 const ValueDecl *VD = nullptr;
17211
17212 uint64_t MagicValue;
17213
17214 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
17215 return false;
17216
17217 if (VD) {
17218 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
17219 if (I->getArgumentKind() != ArgumentKind) {
17220 FoundWrongKind = true;
17221 return false;
17222 }
17223 TypeInfo.Type = I->getMatchingCType();
17224 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
17225 TypeInfo.MustBeNull = I->getMustBeNull();
17226 return true;
17227 }
17228 return false;
17229 }
17230
17231 if (!MagicValues)
17232 return false;
17233
17234 llvm::DenseMap<Sema::TypeTagMagicValue,
17235 Sema::TypeTagData>::const_iterator I =
17236 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
17237 if (I == MagicValues->end())
17238 return false;
17239
17240 TypeInfo = I->second;
17241 return true;
17242 }
17243
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)17244 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
17245 uint64_t MagicValue, QualType Type,
17246 bool LayoutCompatible,
17247 bool MustBeNull) {
17248 if (!TypeTagForDatatypeMagicValues)
17249 TypeTagForDatatypeMagicValues.reset(
17250 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
17251
17252 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
17253 (*TypeTagForDatatypeMagicValues)[Magic] =
17254 TypeTagData(Type, LayoutCompatible, MustBeNull);
17255 }
17256
IsSameCharType(QualType T1,QualType T2)17257 static bool IsSameCharType(QualType T1, QualType T2) {
17258 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
17259 if (!BT1)
17260 return false;
17261
17262 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
17263 if (!BT2)
17264 return false;
17265
17266 BuiltinType::Kind T1Kind = BT1->getKind();
17267 BuiltinType::Kind T2Kind = BT2->getKind();
17268
17269 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
17270 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
17271 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
17272 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
17273 }
17274
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const ArrayRef<const Expr * > ExprArgs,SourceLocation CallSiteLoc)17275 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
17276 const ArrayRef<const Expr *> ExprArgs,
17277 SourceLocation CallSiteLoc) {
17278 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
17279 bool IsPointerAttr = Attr->getIsPointer();
17280
17281 // Retrieve the argument representing the 'type_tag'.
17282 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
17283 if (TypeTagIdxAST >= ExprArgs.size()) {
17284 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
17285 << 0 << Attr->getTypeTagIdx().getSourceIndex();
17286 return;
17287 }
17288 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
17289 bool FoundWrongKind;
17290 TypeTagData TypeInfo;
17291 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
17292 TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
17293 TypeInfo, isConstantEvaluated())) {
17294 if (FoundWrongKind)
17295 Diag(TypeTagExpr->getExprLoc(),
17296 diag::warn_type_tag_for_datatype_wrong_kind)
17297 << TypeTagExpr->getSourceRange();
17298 return;
17299 }
17300
17301 // Retrieve the argument representing the 'arg_idx'.
17302 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
17303 if (ArgumentIdxAST >= ExprArgs.size()) {
17304 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
17305 << 1 << Attr->getArgumentIdx().getSourceIndex();
17306 return;
17307 }
17308 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
17309 if (IsPointerAttr) {
17310 // Skip implicit cast of pointer to `void *' (as a function argument).
17311 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
17312 if (ICE->getType()->isVoidPointerType() &&
17313 ICE->getCastKind() == CK_BitCast)
17314 ArgumentExpr = ICE->getSubExpr();
17315 }
17316 QualType ArgumentType = ArgumentExpr->getType();
17317
17318 // Passing a `void*' pointer shouldn't trigger a warning.
17319 if (IsPointerAttr && ArgumentType->isVoidPointerType())
17320 return;
17321
17322 if (TypeInfo.MustBeNull) {
17323 // Type tag with matching void type requires a null pointer.
17324 if (!ArgumentExpr->isNullPointerConstant(Context,
17325 Expr::NPC_ValueDependentIsNotNull)) {
17326 Diag(ArgumentExpr->getExprLoc(),
17327 diag::warn_type_safety_null_pointer_required)
17328 << ArgumentKind->getName()
17329 << ArgumentExpr->getSourceRange()
17330 << TypeTagExpr->getSourceRange();
17331 }
17332 return;
17333 }
17334
17335 QualType RequiredType = TypeInfo.Type;
17336 if (IsPointerAttr)
17337 RequiredType = Context.getPointerType(RequiredType);
17338
17339 bool mismatch = false;
17340 if (!TypeInfo.LayoutCompatible) {
17341 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
17342
17343 // C++11 [basic.fundamental] p1:
17344 // Plain char, signed char, and unsigned char are three distinct types.
17345 //
17346 // But we treat plain `char' as equivalent to `signed char' or `unsigned
17347 // char' depending on the current char signedness mode.
17348 if (mismatch)
17349 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
17350 RequiredType->getPointeeType())) ||
17351 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
17352 mismatch = false;
17353 } else
17354 if (IsPointerAttr)
17355 mismatch = !isLayoutCompatible(Context,
17356 ArgumentType->getPointeeType(),
17357 RequiredType->getPointeeType());
17358 else
17359 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
17360
17361 if (mismatch)
17362 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
17363 << ArgumentType << ArgumentKind
17364 << TypeInfo.LayoutCompatible << RequiredType
17365 << ArgumentExpr->getSourceRange()
17366 << TypeTagExpr->getSourceRange();
17367 }
17368
AddPotentialMisalignedMembers(Expr * E,RecordDecl * RD,ValueDecl * MD,CharUnits Alignment)17369 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
17370 CharUnits Alignment) {
17371 MisalignedMembers.emplace_back(E, RD, MD, Alignment);
17372 }
17373
DiagnoseMisalignedMembers()17374 void Sema::DiagnoseMisalignedMembers() {
17375 for (MisalignedMember &m : MisalignedMembers) {
17376 const NamedDecl *ND = m.RD;
17377 if (ND->getName().empty()) {
17378 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
17379 ND = TD;
17380 }
17381 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
17382 << m.MD << ND << m.E->getSourceRange();
17383 }
17384 MisalignedMembers.clear();
17385 }
17386
DiscardMisalignedMemberAddress(const Type * T,Expr * E)17387 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
17388 E = E->IgnoreParens();
17389 if (!T->isPointerType() && !T->isIntegerType())
17390 return;
17391 if (isa<UnaryOperator>(E) &&
17392 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
17393 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
17394 if (isa<MemberExpr>(Op)) {
17395 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
17396 if (MA != MisalignedMembers.end() &&
17397 (T->isIntegerType() ||
17398 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
17399 Context.getTypeAlignInChars(
17400 T->getPointeeType()) <= MA->Alignment))))
17401 MisalignedMembers.erase(MA);
17402 }
17403 }
17404 }
17405
RefersToMemberWithReducedAlignment(Expr * E,llvm::function_ref<void (Expr *,RecordDecl *,FieldDecl *,CharUnits)> Action)17406 void Sema::RefersToMemberWithReducedAlignment(
17407 Expr *E,
17408 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
17409 Action) {
17410 const auto *ME = dyn_cast<MemberExpr>(E);
17411 if (!ME)
17412 return;
17413
17414 // No need to check expressions with an __unaligned-qualified type.
17415 if (E->getType().getQualifiers().hasUnaligned())
17416 return;
17417
17418 // For a chain of MemberExpr like "a.b.c.d" this list
17419 // will keep FieldDecl's like [d, c, b].
17420 SmallVector<FieldDecl *, 4> ReverseMemberChain;
17421 const MemberExpr *TopME = nullptr;
17422 bool AnyIsPacked = false;
17423 do {
17424 QualType BaseType = ME->getBase()->getType();
17425 if (BaseType->isDependentType())
17426 return;
17427 if (ME->isArrow())
17428 BaseType = BaseType->getPointeeType();
17429 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
17430 if (RD->isInvalidDecl())
17431 return;
17432
17433 ValueDecl *MD = ME->getMemberDecl();
17434 auto *FD = dyn_cast<FieldDecl>(MD);
17435 // We do not care about non-data members.
17436 if (!FD || FD->isInvalidDecl())
17437 return;
17438
17439 AnyIsPacked =
17440 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
17441 ReverseMemberChain.push_back(FD);
17442
17443 TopME = ME;
17444 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
17445 } while (ME);
17446 assert(TopME && "We did not compute a topmost MemberExpr!");
17447
17448 // Not the scope of this diagnostic.
17449 if (!AnyIsPacked)
17450 return;
17451
17452 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
17453 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
17454 // TODO: The innermost base of the member expression may be too complicated.
17455 // For now, just disregard these cases. This is left for future
17456 // improvement.
17457 if (!DRE && !isa<CXXThisExpr>(TopBase))
17458 return;
17459
17460 // Alignment expected by the whole expression.
17461 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
17462
17463 // No need to do anything else with this case.
17464 if (ExpectedAlignment.isOne())
17465 return;
17466
17467 // Synthesize offset of the whole access.
17468 CharUnits Offset;
17469 for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
17470 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
17471
17472 // Compute the CompleteObjectAlignment as the alignment of the whole chain.
17473 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
17474 ReverseMemberChain.back()->getParent()->getTypeForDecl());
17475
17476 // The base expression of the innermost MemberExpr may give
17477 // stronger guarantees than the class containing the member.
17478 if (DRE && !TopME->isArrow()) {
17479 const ValueDecl *VD = DRE->getDecl();
17480 if (!VD->getType()->isReferenceType())
17481 CompleteObjectAlignment =
17482 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
17483 }
17484
17485 // Check if the synthesized offset fulfills the alignment.
17486 if (Offset % ExpectedAlignment != 0 ||
17487 // It may fulfill the offset it but the effective alignment may still be
17488 // lower than the expected expression alignment.
17489 CompleteObjectAlignment < ExpectedAlignment) {
17490 // If this happens, we want to determine a sensible culprit of this.
17491 // Intuitively, watching the chain of member expressions from right to
17492 // left, we start with the required alignment (as required by the field
17493 // type) but some packed attribute in that chain has reduced the alignment.
17494 // It may happen that another packed structure increases it again. But if
17495 // we are here such increase has not been enough. So pointing the first
17496 // FieldDecl that either is packed or else its RecordDecl is,
17497 // seems reasonable.
17498 FieldDecl *FD = nullptr;
17499 CharUnits Alignment;
17500 for (FieldDecl *FDI : ReverseMemberChain) {
17501 if (FDI->hasAttr<PackedAttr>() ||
17502 FDI->getParent()->hasAttr<PackedAttr>()) {
17503 FD = FDI;
17504 Alignment = std::min(
17505 Context.getTypeAlignInChars(FD->getType()),
17506 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
17507 break;
17508 }
17509 }
17510 assert(FD && "We did not find a packed FieldDecl!");
17511 Action(E, FD->getParent(), FD, Alignment);
17512 }
17513 }
17514
CheckAddressOfPackedMember(Expr * rhs)17515 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
17516 using namespace std::placeholders;
17517
17518 RefersToMemberWithReducedAlignment(
17519 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
17520 _2, _3, _4));
17521 }
17522
17523 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
17524 // not a valid type, emit an error message and return true. Otherwise return
17525 // false.
checkMathBuiltinElementType(Sema & S,SourceLocation Loc,QualType Ty)17526 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
17527 QualType Ty) {
17528 if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
17529 S.Diag(Loc, diag::err_builtin_invalid_arg_type)
17530 << 1 << /* vector, integer or float ty*/ 0 << Ty;
17531 return true;
17532 }
17533 return false;
17534 }
17535
PrepareBuiltinElementwiseMathOneArgCall(CallExpr * TheCall)17536 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
17537 if (checkArgCount(*this, TheCall, 1))
17538 return true;
17539
17540 ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
17541 if (A.isInvalid())
17542 return true;
17543
17544 TheCall->setArg(0, A.get());
17545 QualType TyA = A.get()->getType();
17546
17547 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
17548 return true;
17549
17550 TheCall->setType(TyA);
17551 return false;
17552 }
17553
SemaBuiltinElementwiseMath(CallExpr * TheCall)17554 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
17555 if (checkArgCount(*this, TheCall, 2))
17556 return true;
17557
17558 ExprResult A = TheCall->getArg(0);
17559 ExprResult B = TheCall->getArg(1);
17560 // Do standard promotions between the two arguments, returning their common
17561 // type.
17562 QualType Res =
17563 UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
17564 if (A.isInvalid() || B.isInvalid())
17565 return true;
17566
17567 QualType TyA = A.get()->getType();
17568 QualType TyB = B.get()->getType();
17569
17570 if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
17571 return Diag(A.get()->getBeginLoc(),
17572 diag::err_typecheck_call_different_arg_types)
17573 << TyA << TyB;
17574
17575 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
17576 return true;
17577
17578 TheCall->setArg(0, A.get());
17579 TheCall->setArg(1, B.get());
17580 TheCall->setType(Res);
17581 return false;
17582 }
17583
PrepareBuiltinReduceMathOneArgCall(CallExpr * TheCall)17584 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
17585 if (checkArgCount(*this, TheCall, 1))
17586 return true;
17587
17588 ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
17589 if (A.isInvalid())
17590 return true;
17591
17592 TheCall->setArg(0, A.get());
17593 return false;
17594 }
17595
SemaBuiltinMatrixTranspose(CallExpr * TheCall,ExprResult CallResult)17596 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
17597 ExprResult CallResult) {
17598 if (checkArgCount(*this, TheCall, 1))
17599 return ExprError();
17600
17601 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
17602 if (MatrixArg.isInvalid())
17603 return MatrixArg;
17604 Expr *Matrix = MatrixArg.get();
17605
17606 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
17607 if (!MType) {
17608 Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17609 << 1 << /* matrix ty*/ 1 << Matrix->getType();
17610 return ExprError();
17611 }
17612
17613 // Create returned matrix type by swapping rows and columns of the argument
17614 // matrix type.
17615 QualType ResultType = Context.getConstantMatrixType(
17616 MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
17617
17618 // Change the return type to the type of the returned matrix.
17619 TheCall->setType(ResultType);
17620
17621 // Update call argument to use the possibly converted matrix argument.
17622 TheCall->setArg(0, Matrix);
17623 return CallResult;
17624 }
17625
17626 // Get and verify the matrix dimensions.
17627 static llvm::Optional<unsigned>
getAndVerifyMatrixDimension(Expr * Expr,StringRef Name,Sema & S)17628 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
17629 SourceLocation ErrorPos;
17630 Optional<llvm::APSInt> Value =
17631 Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
17632 if (!Value) {
17633 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
17634 << Name;
17635 return {};
17636 }
17637 uint64_t Dim = Value->getZExtValue();
17638 if (!ConstantMatrixType::isDimensionValid(Dim)) {
17639 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
17640 << Name << ConstantMatrixType::getMaxElementsPerDimension();
17641 return {};
17642 }
17643 return Dim;
17644 }
17645
SemaBuiltinMatrixColumnMajorLoad(CallExpr * TheCall,ExprResult CallResult)17646 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
17647 ExprResult CallResult) {
17648 if (!getLangOpts().MatrixTypes) {
17649 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
17650 return ExprError();
17651 }
17652
17653 if (checkArgCount(*this, TheCall, 4))
17654 return ExprError();
17655
17656 unsigned PtrArgIdx = 0;
17657 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17658 Expr *RowsExpr = TheCall->getArg(1);
17659 Expr *ColumnsExpr = TheCall->getArg(2);
17660 Expr *StrideExpr = TheCall->getArg(3);
17661
17662 bool ArgError = false;
17663
17664 // Check pointer argument.
17665 {
17666 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17667 if (PtrConv.isInvalid())
17668 return PtrConv;
17669 PtrExpr = PtrConv.get();
17670 TheCall->setArg(0, PtrExpr);
17671 if (PtrExpr->isTypeDependent()) {
17672 TheCall->setType(Context.DependentTy);
17673 return TheCall;
17674 }
17675 }
17676
17677 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17678 QualType ElementTy;
17679 if (!PtrTy) {
17680 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17681 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17682 ArgError = true;
17683 } else {
17684 ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
17685
17686 if (!ConstantMatrixType::isValidElementType(ElementTy)) {
17687 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17688 << PtrArgIdx + 1 << /* pointer to element ty*/ 2
17689 << PtrExpr->getType();
17690 ArgError = true;
17691 }
17692 }
17693
17694 // Apply default Lvalue conversions and convert the expression to size_t.
17695 auto ApplyArgumentConversions = [this](Expr *E) {
17696 ExprResult Conv = DefaultLvalueConversion(E);
17697 if (Conv.isInvalid())
17698 return Conv;
17699
17700 return tryConvertExprToType(Conv.get(), Context.getSizeType());
17701 };
17702
17703 // Apply conversion to row and column expressions.
17704 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
17705 if (!RowsConv.isInvalid()) {
17706 RowsExpr = RowsConv.get();
17707 TheCall->setArg(1, RowsExpr);
17708 } else
17709 RowsExpr = nullptr;
17710
17711 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
17712 if (!ColumnsConv.isInvalid()) {
17713 ColumnsExpr = ColumnsConv.get();
17714 TheCall->setArg(2, ColumnsExpr);
17715 } else
17716 ColumnsExpr = nullptr;
17717
17718 // If any any part of the result matrix type is still pending, just use
17719 // Context.DependentTy, until all parts are resolved.
17720 if ((RowsExpr && RowsExpr->isTypeDependent()) ||
17721 (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
17722 TheCall->setType(Context.DependentTy);
17723 return CallResult;
17724 }
17725
17726 // Check row and column dimensions.
17727 llvm::Optional<unsigned> MaybeRows;
17728 if (RowsExpr)
17729 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
17730
17731 llvm::Optional<unsigned> MaybeColumns;
17732 if (ColumnsExpr)
17733 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
17734
17735 // Check stride argument.
17736 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
17737 if (StrideConv.isInvalid())
17738 return ExprError();
17739 StrideExpr = StrideConv.get();
17740 TheCall->setArg(3, StrideExpr);
17741
17742 if (MaybeRows) {
17743 if (Optional<llvm::APSInt> Value =
17744 StrideExpr->getIntegerConstantExpr(Context)) {
17745 uint64_t Stride = Value->getZExtValue();
17746 if (Stride < *MaybeRows) {
17747 Diag(StrideExpr->getBeginLoc(),
17748 diag::err_builtin_matrix_stride_too_small);
17749 ArgError = true;
17750 }
17751 }
17752 }
17753
17754 if (ArgError || !MaybeRows || !MaybeColumns)
17755 return ExprError();
17756
17757 TheCall->setType(
17758 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
17759 return CallResult;
17760 }
17761
SemaBuiltinMatrixColumnMajorStore(CallExpr * TheCall,ExprResult CallResult)17762 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
17763 ExprResult CallResult) {
17764 if (checkArgCount(*this, TheCall, 3))
17765 return ExprError();
17766
17767 unsigned PtrArgIdx = 1;
17768 Expr *MatrixExpr = TheCall->getArg(0);
17769 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17770 Expr *StrideExpr = TheCall->getArg(2);
17771
17772 bool ArgError = false;
17773
17774 {
17775 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
17776 if (MatrixConv.isInvalid())
17777 return MatrixConv;
17778 MatrixExpr = MatrixConv.get();
17779 TheCall->setArg(0, MatrixExpr);
17780 }
17781 if (MatrixExpr->isTypeDependent()) {
17782 TheCall->setType(Context.DependentTy);
17783 return TheCall;
17784 }
17785
17786 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
17787 if (!MatrixTy) {
17788 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17789 << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
17790 ArgError = true;
17791 }
17792
17793 {
17794 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17795 if (PtrConv.isInvalid())
17796 return PtrConv;
17797 PtrExpr = PtrConv.get();
17798 TheCall->setArg(1, PtrExpr);
17799 if (PtrExpr->isTypeDependent()) {
17800 TheCall->setType(Context.DependentTy);
17801 return TheCall;
17802 }
17803 }
17804
17805 // Check pointer argument.
17806 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17807 if (!PtrTy) {
17808 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17809 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17810 ArgError = true;
17811 } else {
17812 QualType ElementTy = PtrTy->getPointeeType();
17813 if (ElementTy.isConstQualified()) {
17814 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
17815 ArgError = true;
17816 }
17817 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
17818 if (MatrixTy &&
17819 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
17820 Diag(PtrExpr->getBeginLoc(),
17821 diag::err_builtin_matrix_pointer_arg_mismatch)
17822 << ElementTy << MatrixTy->getElementType();
17823 ArgError = true;
17824 }
17825 }
17826
17827 // Apply default Lvalue conversions and convert the stride expression to
17828 // size_t.
17829 {
17830 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
17831 if (StrideConv.isInvalid())
17832 return StrideConv;
17833
17834 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
17835 if (StrideConv.isInvalid())
17836 return StrideConv;
17837 StrideExpr = StrideConv.get();
17838 TheCall->setArg(2, StrideExpr);
17839 }
17840
17841 // Check stride argument.
17842 if (MatrixTy) {
17843 if (Optional<llvm::APSInt> Value =
17844 StrideExpr->getIntegerConstantExpr(Context)) {
17845 uint64_t Stride = Value->getZExtValue();
17846 if (Stride < MatrixTy->getNumRows()) {
17847 Diag(StrideExpr->getBeginLoc(),
17848 diag::err_builtin_matrix_stride_too_small);
17849 ArgError = true;
17850 }
17851 }
17852 }
17853
17854 if (ArgError)
17855 return ExprError();
17856
17857 return CallResult;
17858 }
17859
17860 /// \brief Enforce the bounds of a TCB
17861 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
17862 /// directly calls other functions in the same TCB as marked by the enforce_tcb
17863 /// and enforce_tcb_leaf attributes.
CheckTCBEnforcement(const SourceLocation CallExprLoc,const NamedDecl * Callee)17864 void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
17865 const NamedDecl *Callee) {
17866 const NamedDecl *Caller = getCurFunctionOrMethodDecl();
17867
17868 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
17869 return;
17870
17871 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17872 // all TCBs the callee is a part of.
17873 llvm::StringSet<> CalleeTCBs;
17874 for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
17875 CalleeTCBs.insert(A->getTCBName());
17876 for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
17877 CalleeTCBs.insert(A->getTCBName());
17878
17879 // Go through the TCBs the caller is a part of and emit warnings if Caller
17880 // is in a TCB that the Callee is not.
17881 for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
17882 StringRef CallerTCB = A->getTCBName();
17883 if (CalleeTCBs.count(CallerTCB) == 0) {
17884 this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
17885 << Callee << CallerTCB;
17886 }
17887 }
17888 }
17889