1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 /// Checks that a call expression's argument count is the desired number.
113 /// This is useful when doing custom type-checking.  Returns true on error.
114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115   unsigned argCount = call->getNumArgs();
116   if (argCount == desiredArgCount) return false;
117 
118   if (argCount < desiredArgCount)
119     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120            << 0 /*function call*/ << desiredArgCount << argCount
121            << call->getSourceRange();
122 
123   // Highlight all the excess arguments.
124   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125                     call->getArg(argCount - 1)->getEndLoc());
126 
127   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128     << 0 /*function call*/ << desiredArgCount << argCount
129     << call->getArg(1)->getSourceRange();
130 }
131 
132 /// Check that the first argument to __builtin_annotation is an integer
133 /// and the second argument is a non-wide string literal.
134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135   if (checkArgCount(S, TheCall, 2))
136     return true;
137 
138   // First argument should be an integer.
139   Expr *ValArg = TheCall->getArg(0);
140   QualType Ty = ValArg->getType();
141   if (!Ty->isIntegerType()) {
142     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143         << ValArg->getSourceRange();
144     return true;
145   }
146 
147   // Second argument should be a constant string.
148   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150   if (!Literal || !Literal->isAscii()) {
151     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152         << StrArg->getSourceRange();
153     return true;
154   }
155 
156   TheCall->setType(Ty);
157   return false;
158 }
159 
160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161   // We need at least one argument.
162   if (TheCall->getNumArgs() < 1) {
163     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164         << 0 << 1 << TheCall->getNumArgs()
165         << TheCall->getCallee()->getSourceRange();
166     return true;
167   }
168 
169   // All arguments should be wide string literals.
170   for (Expr *Arg : TheCall->arguments()) {
171     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172     if (!Literal || !Literal->isWide()) {
173       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174           << Arg->getSourceRange();
175       return true;
176     }
177   }
178 
179   return false;
180 }
181 
182 /// Check that the argument to __builtin_addressof is a glvalue, and set the
183 /// result type to the corresponding pointer type.
184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185   if (checkArgCount(S, TheCall, 1))
186     return true;
187 
188   ExprResult Arg(TheCall->getArg(0));
189   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190   if (ResultType.isNull())
191     return true;
192 
193   TheCall->setArg(0, Arg.get());
194   TheCall->setType(ResultType);
195   return false;
196 }
197 
198 /// Check the number of arguments and set the result type to
199 /// the argument type.
200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
201   if (checkArgCount(S, TheCall, 1))
202     return true;
203 
204   TheCall->setType(TheCall->getArg(0)->getType());
205   return false;
206 }
207 
208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
210 /// type (but not a function pointer) and that the alignment is a power-of-two.
211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
212   if (checkArgCount(S, TheCall, 2))
213     return true;
214 
215   clang::Expr *Source = TheCall->getArg(0);
216   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
217 
218   auto IsValidIntegerType = [](QualType Ty) {
219     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
220   };
221   QualType SrcTy = Source->getType();
222   // We should also be able to use it with arrays (but not functions!).
223   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
224     SrcTy = S.Context.getDecayedType(SrcTy);
225   }
226   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
227       SrcTy->isFunctionPointerType()) {
228     // FIXME: this is not quite the right error message since we don't allow
229     // floating point types, or member pointers.
230     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
231         << SrcTy;
232     return true;
233   }
234 
235   clang::Expr *AlignOp = TheCall->getArg(1);
236   if (!IsValidIntegerType(AlignOp->getType())) {
237     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
238         << AlignOp->getType();
239     return true;
240   }
241   Expr::EvalResult AlignResult;
242   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
243   // We can't check validity of alignment if it is value dependent.
244   if (!AlignOp->isValueDependent() &&
245       AlignOp->EvaluateAsInt(AlignResult, S.Context,
246                              Expr::SE_AllowSideEffects)) {
247     llvm::APSInt AlignValue = AlignResult.Val.getInt();
248     llvm::APSInt MaxValue(
249         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
250     if (AlignValue < 1) {
251       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
252       return true;
253     }
254     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
255       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
256           << toString(MaxValue, 10);
257       return true;
258     }
259     if (!AlignValue.isPowerOf2()) {
260       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
261       return true;
262     }
263     if (AlignValue == 1) {
264       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
265           << IsBooleanAlignBuiltin;
266     }
267   }
268 
269   ExprResult SrcArg = S.PerformCopyInitialization(
270       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
271       SourceLocation(), Source);
272   if (SrcArg.isInvalid())
273     return true;
274   TheCall->setArg(0, SrcArg.get());
275   ExprResult AlignArg =
276       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
277                                       S.Context, AlignOp->getType(), false),
278                                   SourceLocation(), AlignOp);
279   if (AlignArg.isInvalid())
280     return true;
281   TheCall->setArg(1, AlignArg.get());
282   // For align_up/align_down, the return type is the same as the (potentially
283   // decayed) argument type including qualifiers. For is_aligned(), the result
284   // is always bool.
285   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
286   return false;
287 }
288 
289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
290                                 unsigned BuiltinID) {
291   if (checkArgCount(S, TheCall, 3))
292     return true;
293 
294   // First two arguments should be integers.
295   for (unsigned I = 0; I < 2; ++I) {
296     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
297     if (Arg.isInvalid()) return true;
298     TheCall->setArg(I, Arg.get());
299 
300     QualType Ty = Arg.get()->getType();
301     if (!Ty->isIntegerType()) {
302       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
303           << Ty << Arg.get()->getSourceRange();
304       return true;
305     }
306   }
307 
308   // Third argument should be a pointer to a non-const integer.
309   // IRGen correctly handles volatile, restrict, and address spaces, and
310   // the other qualifiers aren't possible.
311   {
312     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
313     if (Arg.isInvalid()) return true;
314     TheCall->setArg(2, Arg.get());
315 
316     QualType Ty = Arg.get()->getType();
317     const auto *PtrTy = Ty->getAs<PointerType>();
318     if (!PtrTy ||
319         !PtrTy->getPointeeType()->isIntegerType() ||
320         PtrTy->getPointeeType().isConstQualified()) {
321       S.Diag(Arg.get()->getBeginLoc(),
322              diag::err_overflow_builtin_must_be_ptr_int)
323         << Ty << Arg.get()->getSourceRange();
324       return true;
325     }
326   }
327 
328   // Disallow signed ExtIntType args larger than 128 bits to mul function until
329   // we improve backend support.
330   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
331     for (unsigned I = 0; I < 3; ++I) {
332       const auto Arg = TheCall->getArg(I);
333       // Third argument will be a pointer.
334       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
335       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
336           S.getASTContext().getIntWidth(Ty) > 128)
337         return S.Diag(Arg->getBeginLoc(),
338                       diag::err_overflow_builtin_ext_int_max_size)
339                << 128;
340     }
341   }
342 
343   return false;
344 }
345 
346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
347   if (checkArgCount(S, BuiltinCall, 2))
348     return true;
349 
350   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
351   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
352   Expr *Call = BuiltinCall->getArg(0);
353   Expr *Chain = BuiltinCall->getArg(1);
354 
355   if (Call->getStmtClass() != Stmt::CallExprClass) {
356     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
357         << Call->getSourceRange();
358     return true;
359   }
360 
361   auto CE = cast<CallExpr>(Call);
362   if (CE->getCallee()->getType()->isBlockPointerType()) {
363     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
364         << Call->getSourceRange();
365     return true;
366   }
367 
368   const Decl *TargetDecl = CE->getCalleeDecl();
369   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
370     if (FD->getBuiltinID()) {
371       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
372           << Call->getSourceRange();
373       return true;
374     }
375 
376   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
377     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
378         << Call->getSourceRange();
379     return true;
380   }
381 
382   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
383   if (ChainResult.isInvalid())
384     return true;
385   if (!ChainResult.get()->getType()->isPointerType()) {
386     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
387         << Chain->getSourceRange();
388     return true;
389   }
390 
391   QualType ReturnTy = CE->getCallReturnType(S.Context);
392   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
393   QualType BuiltinTy = S.Context.getFunctionType(
394       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
395   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
396 
397   Builtin =
398       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
399 
400   BuiltinCall->setType(CE->getType());
401   BuiltinCall->setValueKind(CE->getValueKind());
402   BuiltinCall->setObjectKind(CE->getObjectKind());
403   BuiltinCall->setCallee(Builtin);
404   BuiltinCall->setArg(1, ChainResult.get());
405 
406   return false;
407 }
408 
409 namespace {
410 
411 class EstimateSizeFormatHandler
412     : public analyze_format_string::FormatStringHandler {
413   size_t Size;
414 
415 public:
416   EstimateSizeFormatHandler(StringRef Format)
417       : Size(std::min(Format.find(0), Format.size()) +
418              1 /* null byte always written by sprintf */) {}
419 
420   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
421                              const char *, unsigned SpecifierLen) override {
422 
423     const size_t FieldWidth = computeFieldWidth(FS);
424     const size_t Precision = computePrecision(FS);
425 
426     // The actual format.
427     switch (FS.getConversionSpecifier().getKind()) {
428     // Just a char.
429     case analyze_format_string::ConversionSpecifier::cArg:
430     case analyze_format_string::ConversionSpecifier::CArg:
431       Size += std::max(FieldWidth, (size_t)1);
432       break;
433     // Just an integer.
434     case analyze_format_string::ConversionSpecifier::dArg:
435     case analyze_format_string::ConversionSpecifier::DArg:
436     case analyze_format_string::ConversionSpecifier::iArg:
437     case analyze_format_string::ConversionSpecifier::oArg:
438     case analyze_format_string::ConversionSpecifier::OArg:
439     case analyze_format_string::ConversionSpecifier::uArg:
440     case analyze_format_string::ConversionSpecifier::UArg:
441     case analyze_format_string::ConversionSpecifier::xArg:
442     case analyze_format_string::ConversionSpecifier::XArg:
443       Size += std::max(FieldWidth, Precision);
444       break;
445 
446     // %g style conversion switches between %f or %e style dynamically.
447     // %f always takes less space, so default to it.
448     case analyze_format_string::ConversionSpecifier::gArg:
449     case analyze_format_string::ConversionSpecifier::GArg:
450 
451     // Floating point number in the form '[+]ddd.ddd'.
452     case analyze_format_string::ConversionSpecifier::fArg:
453     case analyze_format_string::ConversionSpecifier::FArg:
454       Size += std::max(FieldWidth, 1 /* integer part */ +
455                                        (Precision ? 1 + Precision
456                                                   : 0) /* period + decimal */);
457       break;
458 
459     // Floating point number in the form '[-]d.ddde[+-]dd'.
460     case analyze_format_string::ConversionSpecifier::eArg:
461     case analyze_format_string::ConversionSpecifier::EArg:
462       Size +=
463           std::max(FieldWidth,
464                    1 /* integer part */ +
465                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
466                        1 /* e or E letter */ + 2 /* exponent */);
467       break;
468 
469     // Floating point number in the form '[-]0xh.hhhhp±dd'.
470     case analyze_format_string::ConversionSpecifier::aArg:
471     case analyze_format_string::ConversionSpecifier::AArg:
472       Size +=
473           std::max(FieldWidth,
474                    2 /* 0x */ + 1 /* integer part */ +
475                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
476                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
477       break;
478 
479     // Just a string.
480     case analyze_format_string::ConversionSpecifier::sArg:
481     case analyze_format_string::ConversionSpecifier::SArg:
482       Size += FieldWidth;
483       break;
484 
485     // Just a pointer in the form '0xddd'.
486     case analyze_format_string::ConversionSpecifier::pArg:
487       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
488       break;
489 
490     // A plain percent.
491     case analyze_format_string::ConversionSpecifier::PercentArg:
492       Size += 1;
493       break;
494 
495     default:
496       break;
497     }
498 
499     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
500 
501     if (FS.hasAlternativeForm()) {
502       switch (FS.getConversionSpecifier().getKind()) {
503       default:
504         break;
505       // Force a leading '0'.
506       case analyze_format_string::ConversionSpecifier::oArg:
507         Size += 1;
508         break;
509       // Force a leading '0x'.
510       case analyze_format_string::ConversionSpecifier::xArg:
511       case analyze_format_string::ConversionSpecifier::XArg:
512         Size += 2;
513         break;
514       // Force a period '.' before decimal, even if precision is 0.
515       case analyze_format_string::ConversionSpecifier::aArg:
516       case analyze_format_string::ConversionSpecifier::AArg:
517       case analyze_format_string::ConversionSpecifier::eArg:
518       case analyze_format_string::ConversionSpecifier::EArg:
519       case analyze_format_string::ConversionSpecifier::fArg:
520       case analyze_format_string::ConversionSpecifier::FArg:
521       case analyze_format_string::ConversionSpecifier::gArg:
522       case analyze_format_string::ConversionSpecifier::GArg:
523         Size += (Precision ? 0 : 1);
524         break;
525       }
526     }
527     assert(SpecifierLen <= Size && "no underflow");
528     Size -= SpecifierLen;
529     return true;
530   }
531 
532   size_t getSizeLowerBound() const { return Size; }
533 
534 private:
535   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
536     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
537     size_t FieldWidth = 0;
538     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
539       FieldWidth = FW.getConstantAmount();
540     return FieldWidth;
541   }
542 
543   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
544     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
545     size_t Precision = 0;
546 
547     // See man 3 printf for default precision value based on the specifier.
548     switch (FW.getHowSpecified()) {
549     case analyze_format_string::OptionalAmount::NotSpecified:
550       switch (FS.getConversionSpecifier().getKind()) {
551       default:
552         break;
553       case analyze_format_string::ConversionSpecifier::dArg: // %d
554       case analyze_format_string::ConversionSpecifier::DArg: // %D
555       case analyze_format_string::ConversionSpecifier::iArg: // %i
556         Precision = 1;
557         break;
558       case analyze_format_string::ConversionSpecifier::oArg: // %d
559       case analyze_format_string::ConversionSpecifier::OArg: // %D
560       case analyze_format_string::ConversionSpecifier::uArg: // %d
561       case analyze_format_string::ConversionSpecifier::UArg: // %D
562       case analyze_format_string::ConversionSpecifier::xArg: // %d
563       case analyze_format_string::ConversionSpecifier::XArg: // %D
564         Precision = 1;
565         break;
566       case analyze_format_string::ConversionSpecifier::fArg: // %f
567       case analyze_format_string::ConversionSpecifier::FArg: // %F
568       case analyze_format_string::ConversionSpecifier::eArg: // %e
569       case analyze_format_string::ConversionSpecifier::EArg: // %E
570       case analyze_format_string::ConversionSpecifier::gArg: // %g
571       case analyze_format_string::ConversionSpecifier::GArg: // %G
572         Precision = 6;
573         break;
574       case analyze_format_string::ConversionSpecifier::pArg: // %d
575         Precision = 1;
576         break;
577       }
578       break;
579     case analyze_format_string::OptionalAmount::Constant:
580       Precision = FW.getConstantAmount();
581       break;
582     default:
583       break;
584     }
585     return Precision;
586   }
587 };
588 
589 } // namespace
590 
591 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
592                                                CallExpr *TheCall) {
593   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
594       isConstantEvaluated())
595     return;
596 
597   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
598   if (!BuiltinID)
599     return;
600 
601   const TargetInfo &TI = getASTContext().getTargetInfo();
602   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
603 
604   auto ComputeExplicitObjectSizeArgument =
605       [&](unsigned Index) -> Optional<llvm::APSInt> {
606     Expr::EvalResult Result;
607     Expr *SizeArg = TheCall->getArg(Index);
608     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
609       return llvm::None;
610     return Result.Val.getInt();
611   };
612 
613   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
614     // If the parameter has a pass_object_size attribute, then we should use its
615     // (potentially) more strict checking mode. Otherwise, conservatively assume
616     // type 0.
617     int BOSType = 0;
618     if (const auto *POS =
619             FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
620       BOSType = POS->getType();
621 
622     const Expr *ObjArg = TheCall->getArg(Index);
623     uint64_t Result;
624     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
625       return llvm::None;
626 
627     // Get the object size in the target's size_t width.
628     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
629   };
630 
631   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
632     Expr *ObjArg = TheCall->getArg(Index);
633     uint64_t Result;
634     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
635       return llvm::None;
636     // Add 1 for null byte.
637     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
638   };
639 
640   Optional<llvm::APSInt> SourceSize;
641   Optional<llvm::APSInt> DestinationSize;
642   unsigned DiagID = 0;
643   bool IsChkVariant = false;
644 
645   switch (BuiltinID) {
646   default:
647     return;
648   case Builtin::BI__builtin_strcpy:
649   case Builtin::BIstrcpy: {
650     DiagID = diag::warn_fortify_strlen_overflow;
651     SourceSize = ComputeStrLenArgument(1);
652     DestinationSize = ComputeSizeArgument(0);
653     break;
654   }
655 
656   case Builtin::BI__builtin___strcpy_chk: {
657     DiagID = diag::warn_fortify_strlen_overflow;
658     SourceSize = ComputeStrLenArgument(1);
659     DestinationSize = ComputeExplicitObjectSizeArgument(2);
660     IsChkVariant = true;
661     break;
662   }
663 
664   case Builtin::BIsprintf:
665   case Builtin::BI__builtin___sprintf_chk: {
666     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
667     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
668 
669     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
670 
671       if (!Format->isAscii() && !Format->isUTF8())
672         return;
673 
674       StringRef FormatStrRef = Format->getString();
675       EstimateSizeFormatHandler H(FormatStrRef);
676       const char *FormatBytes = FormatStrRef.data();
677       const ConstantArrayType *T =
678           Context.getAsConstantArrayType(Format->getType());
679       assert(T && "String literal not of constant array type!");
680       size_t TypeSize = T->getSize().getZExtValue();
681 
682       // In case there's a null byte somewhere.
683       size_t StrLen =
684           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
685       if (!analyze_format_string::ParsePrintfString(
686               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
687               Context.getTargetInfo(), false)) {
688         DiagID = diag::warn_fortify_source_format_overflow;
689         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
690                          .extOrTrunc(SizeTypeWidth);
691         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
692           DestinationSize = ComputeExplicitObjectSizeArgument(2);
693           IsChkVariant = true;
694         } else {
695           DestinationSize = ComputeSizeArgument(0);
696         }
697         break;
698       }
699     }
700     return;
701   }
702   case Builtin::BI__builtin___memcpy_chk:
703   case Builtin::BI__builtin___memmove_chk:
704   case Builtin::BI__builtin___memset_chk:
705   case Builtin::BI__builtin___strlcat_chk:
706   case Builtin::BI__builtin___strlcpy_chk:
707   case Builtin::BI__builtin___strncat_chk:
708   case Builtin::BI__builtin___strncpy_chk:
709   case Builtin::BI__builtin___stpncpy_chk:
710   case Builtin::BI__builtin___memccpy_chk:
711   case Builtin::BI__builtin___mempcpy_chk: {
712     DiagID = diag::warn_builtin_chk_overflow;
713     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
714     DestinationSize =
715         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
716     IsChkVariant = true;
717     break;
718   }
719 
720   case Builtin::BI__builtin___snprintf_chk:
721   case Builtin::BI__builtin___vsnprintf_chk: {
722     DiagID = diag::warn_builtin_chk_overflow;
723     SourceSize = ComputeExplicitObjectSizeArgument(1);
724     DestinationSize = ComputeExplicitObjectSizeArgument(3);
725     IsChkVariant = true;
726     break;
727   }
728 
729   case Builtin::BIstrncat:
730   case Builtin::BI__builtin_strncat:
731   case Builtin::BIstrncpy:
732   case Builtin::BI__builtin_strncpy:
733   case Builtin::BIstpncpy:
734   case Builtin::BI__builtin_stpncpy: {
735     // Whether these functions overflow depends on the runtime strlen of the
736     // string, not just the buffer size, so emitting the "always overflow"
737     // diagnostic isn't quite right. We should still diagnose passing a buffer
738     // size larger than the destination buffer though; this is a runtime abort
739     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
740     DiagID = diag::warn_fortify_source_size_mismatch;
741     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
742     DestinationSize = ComputeSizeArgument(0);
743     break;
744   }
745 
746   case Builtin::BImemcpy:
747   case Builtin::BI__builtin_memcpy:
748   case Builtin::BImemmove:
749   case Builtin::BI__builtin_memmove:
750   case Builtin::BImemset:
751   case Builtin::BI__builtin_memset:
752   case Builtin::BImempcpy:
753   case Builtin::BI__builtin_mempcpy: {
754     DiagID = diag::warn_fortify_source_overflow;
755     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
756     DestinationSize = ComputeSizeArgument(0);
757     break;
758   }
759   case Builtin::BIsnprintf:
760   case Builtin::BI__builtin_snprintf:
761   case Builtin::BIvsnprintf:
762   case Builtin::BI__builtin_vsnprintf: {
763     DiagID = diag::warn_fortify_source_size_mismatch;
764     SourceSize = ComputeExplicitObjectSizeArgument(1);
765     DestinationSize = ComputeSizeArgument(0);
766     break;
767   }
768   }
769 
770   if (!SourceSize || !DestinationSize ||
771       SourceSize.getValue().ule(DestinationSize.getValue()))
772     return;
773 
774   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
775   // Skim off the details of whichever builtin was called to produce a better
776   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
777   if (IsChkVariant) {
778     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
779     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
780   } else if (FunctionName.startswith("__builtin_")) {
781     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
782   }
783 
784   SmallString<16> DestinationStr;
785   SmallString<16> SourceStr;
786   DestinationSize->toString(DestinationStr, /*Radix=*/10);
787   SourceSize->toString(SourceStr, /*Radix=*/10);
788   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
789                       PDiag(DiagID)
790                           << FunctionName << DestinationStr << SourceStr);
791 }
792 
793 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
794                                      Scope::ScopeFlags NeededScopeFlags,
795                                      unsigned DiagID) {
796   // Scopes aren't available during instantiation. Fortunately, builtin
797   // functions cannot be template args so they cannot be formed through template
798   // instantiation. Therefore checking once during the parse is sufficient.
799   if (SemaRef.inTemplateInstantiation())
800     return false;
801 
802   Scope *S = SemaRef.getCurScope();
803   while (S && !S->isSEHExceptScope())
804     S = S->getParent();
805   if (!S || !(S->getFlags() & NeededScopeFlags)) {
806     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
807     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
808         << DRE->getDecl()->getIdentifier();
809     return true;
810   }
811 
812   return false;
813 }
814 
815 static inline bool isBlockPointer(Expr *Arg) {
816   return Arg->getType()->isBlockPointerType();
817 }
818 
819 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
820 /// void*, which is a requirement of device side enqueue.
821 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
822   const BlockPointerType *BPT =
823       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
824   ArrayRef<QualType> Params =
825       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
826   unsigned ArgCounter = 0;
827   bool IllegalParams = false;
828   // Iterate through the block parameters until either one is found that is not
829   // a local void*, or the block is valid.
830   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
831        I != E; ++I, ++ArgCounter) {
832     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
833         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
834             LangAS::opencl_local) {
835       // Get the location of the error. If a block literal has been passed
836       // (BlockExpr) then we can point straight to the offending argument,
837       // else we just point to the variable reference.
838       SourceLocation ErrorLoc;
839       if (isa<BlockExpr>(BlockArg)) {
840         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
841         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
842       } else if (isa<DeclRefExpr>(BlockArg)) {
843         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
844       }
845       S.Diag(ErrorLoc,
846              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
847       IllegalParams = true;
848     }
849   }
850 
851   return IllegalParams;
852 }
853 
854 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
855   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
856     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
857         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
858     return true;
859   }
860   return false;
861 }
862 
863 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
864   if (checkArgCount(S, TheCall, 2))
865     return true;
866 
867   if (checkOpenCLSubgroupExt(S, TheCall))
868     return true;
869 
870   // First argument is an ndrange_t type.
871   Expr *NDRangeArg = TheCall->getArg(0);
872   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
873     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
874         << TheCall->getDirectCallee() << "'ndrange_t'";
875     return true;
876   }
877 
878   Expr *BlockArg = TheCall->getArg(1);
879   if (!isBlockPointer(BlockArg)) {
880     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
881         << TheCall->getDirectCallee() << "block";
882     return true;
883   }
884   return checkOpenCLBlockArgs(S, BlockArg);
885 }
886 
887 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
888 /// get_kernel_work_group_size
889 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
890 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
891   if (checkArgCount(S, TheCall, 1))
892     return true;
893 
894   Expr *BlockArg = TheCall->getArg(0);
895   if (!isBlockPointer(BlockArg)) {
896     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
897         << TheCall->getDirectCallee() << "block";
898     return true;
899   }
900   return checkOpenCLBlockArgs(S, BlockArg);
901 }
902 
903 /// Diagnose integer type and any valid implicit conversion to it.
904 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
905                                       const QualType &IntType);
906 
907 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
908                                             unsigned Start, unsigned End) {
909   bool IllegalParams = false;
910   for (unsigned I = Start; I <= End; ++I)
911     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
912                                               S.Context.getSizeType());
913   return IllegalParams;
914 }
915 
916 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
917 /// 'local void*' parameter of passed block.
918 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
919                                            Expr *BlockArg,
920                                            unsigned NumNonVarArgs) {
921   const BlockPointerType *BPT =
922       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
923   unsigned NumBlockParams =
924       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
925   unsigned TotalNumArgs = TheCall->getNumArgs();
926 
927   // For each argument passed to the block, a corresponding uint needs to
928   // be passed to describe the size of the local memory.
929   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
930     S.Diag(TheCall->getBeginLoc(),
931            diag::err_opencl_enqueue_kernel_local_size_args);
932     return true;
933   }
934 
935   // Check that the sizes of the local memory are specified by integers.
936   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
937                                          TotalNumArgs - 1);
938 }
939 
940 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
941 /// overload formats specified in Table 6.13.17.1.
942 /// int enqueue_kernel(queue_t queue,
943 ///                    kernel_enqueue_flags_t flags,
944 ///                    const ndrange_t ndrange,
945 ///                    void (^block)(void))
946 /// int enqueue_kernel(queue_t queue,
947 ///                    kernel_enqueue_flags_t flags,
948 ///                    const ndrange_t ndrange,
949 ///                    uint num_events_in_wait_list,
950 ///                    clk_event_t *event_wait_list,
951 ///                    clk_event_t *event_ret,
952 ///                    void (^block)(void))
953 /// int enqueue_kernel(queue_t queue,
954 ///                    kernel_enqueue_flags_t flags,
955 ///                    const ndrange_t ndrange,
956 ///                    void (^block)(local void*, ...),
957 ///                    uint size0, ...)
958 /// int enqueue_kernel(queue_t queue,
959 ///                    kernel_enqueue_flags_t flags,
960 ///                    const ndrange_t ndrange,
961 ///                    uint num_events_in_wait_list,
962 ///                    clk_event_t *event_wait_list,
963 ///                    clk_event_t *event_ret,
964 ///                    void (^block)(local void*, ...),
965 ///                    uint size0, ...)
966 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
967   unsigned NumArgs = TheCall->getNumArgs();
968 
969   if (NumArgs < 4) {
970     S.Diag(TheCall->getBeginLoc(),
971            diag::err_typecheck_call_too_few_args_at_least)
972         << 0 << 4 << NumArgs;
973     return true;
974   }
975 
976   Expr *Arg0 = TheCall->getArg(0);
977   Expr *Arg1 = TheCall->getArg(1);
978   Expr *Arg2 = TheCall->getArg(2);
979   Expr *Arg3 = TheCall->getArg(3);
980 
981   // First argument always needs to be a queue_t type.
982   if (!Arg0->getType()->isQueueT()) {
983     S.Diag(TheCall->getArg(0)->getBeginLoc(),
984            diag::err_opencl_builtin_expected_type)
985         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
986     return true;
987   }
988 
989   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
990   if (!Arg1->getType()->isIntegerType()) {
991     S.Diag(TheCall->getArg(1)->getBeginLoc(),
992            diag::err_opencl_builtin_expected_type)
993         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
994     return true;
995   }
996 
997   // Third argument is always an ndrange_t type.
998   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
999     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1000            diag::err_opencl_builtin_expected_type)
1001         << TheCall->getDirectCallee() << "'ndrange_t'";
1002     return true;
1003   }
1004 
1005   // With four arguments, there is only one form that the function could be
1006   // called in: no events and no variable arguments.
1007   if (NumArgs == 4) {
1008     // check that the last argument is the right block type.
1009     if (!isBlockPointer(Arg3)) {
1010       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1011           << TheCall->getDirectCallee() << "block";
1012       return true;
1013     }
1014     // we have a block type, check the prototype
1015     const BlockPointerType *BPT =
1016         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1017     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1018       S.Diag(Arg3->getBeginLoc(),
1019              diag::err_opencl_enqueue_kernel_blocks_no_args);
1020       return true;
1021     }
1022     return false;
1023   }
1024   // we can have block + varargs.
1025   if (isBlockPointer(Arg3))
1026     return (checkOpenCLBlockArgs(S, Arg3) ||
1027             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1028   // last two cases with either exactly 7 args or 7 args and varargs.
1029   if (NumArgs >= 7) {
1030     // check common block argument.
1031     Expr *Arg6 = TheCall->getArg(6);
1032     if (!isBlockPointer(Arg6)) {
1033       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1034           << TheCall->getDirectCallee() << "block";
1035       return true;
1036     }
1037     if (checkOpenCLBlockArgs(S, Arg6))
1038       return true;
1039 
1040     // Forth argument has to be any integer type.
1041     if (!Arg3->getType()->isIntegerType()) {
1042       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1043              diag::err_opencl_builtin_expected_type)
1044           << TheCall->getDirectCallee() << "integer";
1045       return true;
1046     }
1047     // check remaining common arguments.
1048     Expr *Arg4 = TheCall->getArg(4);
1049     Expr *Arg5 = TheCall->getArg(5);
1050 
1051     // Fifth argument is always passed as a pointer to clk_event_t.
1052     if (!Arg4->isNullPointerConstant(S.Context,
1053                                      Expr::NPC_ValueDependentIsNotNull) &&
1054         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1055       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1056              diag::err_opencl_builtin_expected_type)
1057           << TheCall->getDirectCallee()
1058           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1059       return true;
1060     }
1061 
1062     // Sixth argument is always passed as a pointer to clk_event_t.
1063     if (!Arg5->isNullPointerConstant(S.Context,
1064                                      Expr::NPC_ValueDependentIsNotNull) &&
1065         !(Arg5->getType()->isPointerType() &&
1066           Arg5->getType()->getPointeeType()->isClkEventT())) {
1067       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1068              diag::err_opencl_builtin_expected_type)
1069           << TheCall->getDirectCallee()
1070           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1071       return true;
1072     }
1073 
1074     if (NumArgs == 7)
1075       return false;
1076 
1077     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1078   }
1079 
1080   // None of the specific case has been detected, give generic error
1081   S.Diag(TheCall->getBeginLoc(),
1082          diag::err_opencl_enqueue_kernel_incorrect_args);
1083   return true;
1084 }
1085 
1086 /// Returns OpenCL access qual.
1087 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1088     return D->getAttr<OpenCLAccessAttr>();
1089 }
1090 
1091 /// Returns true if pipe element type is different from the pointer.
1092 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1093   const Expr *Arg0 = Call->getArg(0);
1094   // First argument type should always be pipe.
1095   if (!Arg0->getType()->isPipeType()) {
1096     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1097         << Call->getDirectCallee() << Arg0->getSourceRange();
1098     return true;
1099   }
1100   OpenCLAccessAttr *AccessQual =
1101       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1102   // Validates the access qualifier is compatible with the call.
1103   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1104   // read_only and write_only, and assumed to be read_only if no qualifier is
1105   // specified.
1106   switch (Call->getDirectCallee()->getBuiltinID()) {
1107   case Builtin::BIread_pipe:
1108   case Builtin::BIreserve_read_pipe:
1109   case Builtin::BIcommit_read_pipe:
1110   case Builtin::BIwork_group_reserve_read_pipe:
1111   case Builtin::BIsub_group_reserve_read_pipe:
1112   case Builtin::BIwork_group_commit_read_pipe:
1113   case Builtin::BIsub_group_commit_read_pipe:
1114     if (!(!AccessQual || AccessQual->isReadOnly())) {
1115       S.Diag(Arg0->getBeginLoc(),
1116              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1117           << "read_only" << Arg0->getSourceRange();
1118       return true;
1119     }
1120     break;
1121   case Builtin::BIwrite_pipe:
1122   case Builtin::BIreserve_write_pipe:
1123   case Builtin::BIcommit_write_pipe:
1124   case Builtin::BIwork_group_reserve_write_pipe:
1125   case Builtin::BIsub_group_reserve_write_pipe:
1126   case Builtin::BIwork_group_commit_write_pipe:
1127   case Builtin::BIsub_group_commit_write_pipe:
1128     if (!(AccessQual && AccessQual->isWriteOnly())) {
1129       S.Diag(Arg0->getBeginLoc(),
1130              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1131           << "write_only" << Arg0->getSourceRange();
1132       return true;
1133     }
1134     break;
1135   default:
1136     break;
1137   }
1138   return false;
1139 }
1140 
1141 /// Returns true if pipe element type is different from the pointer.
1142 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1143   const Expr *Arg0 = Call->getArg(0);
1144   const Expr *ArgIdx = Call->getArg(Idx);
1145   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1146   const QualType EltTy = PipeTy->getElementType();
1147   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1148   // The Idx argument should be a pointer and the type of the pointer and
1149   // the type of pipe element should also be the same.
1150   if (!ArgTy ||
1151       !S.Context.hasSameType(
1152           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1153     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1154         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1155         << ArgIdx->getType() << ArgIdx->getSourceRange();
1156     return true;
1157   }
1158   return false;
1159 }
1160 
1161 // Performs semantic analysis for the read/write_pipe call.
1162 // \param S Reference to the semantic analyzer.
1163 // \param Call A pointer to the builtin call.
1164 // \return True if a semantic error has been found, false otherwise.
1165 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1166   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1167   // functions have two forms.
1168   switch (Call->getNumArgs()) {
1169   case 2:
1170     if (checkOpenCLPipeArg(S, Call))
1171       return true;
1172     // The call with 2 arguments should be
1173     // read/write_pipe(pipe T, T*).
1174     // Check packet type T.
1175     if (checkOpenCLPipePacketType(S, Call, 1))
1176       return true;
1177     break;
1178 
1179   case 4: {
1180     if (checkOpenCLPipeArg(S, Call))
1181       return true;
1182     // The call with 4 arguments should be
1183     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1184     // Check reserve_id_t.
1185     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1186       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1187           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1188           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1189       return true;
1190     }
1191 
1192     // Check the index.
1193     const Expr *Arg2 = Call->getArg(2);
1194     if (!Arg2->getType()->isIntegerType() &&
1195         !Arg2->getType()->isUnsignedIntegerType()) {
1196       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1197           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1198           << Arg2->getType() << Arg2->getSourceRange();
1199       return true;
1200     }
1201 
1202     // Check packet type T.
1203     if (checkOpenCLPipePacketType(S, Call, 3))
1204       return true;
1205   } break;
1206   default:
1207     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1208         << Call->getDirectCallee() << Call->getSourceRange();
1209     return true;
1210   }
1211 
1212   return false;
1213 }
1214 
1215 // Performs a semantic analysis on the {work_group_/sub_group_
1216 //        /_}reserve_{read/write}_pipe
1217 // \param S Reference to the semantic analyzer.
1218 // \param Call The call to the builtin function to be analyzed.
1219 // \return True if a semantic error was found, false otherwise.
1220 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1221   if (checkArgCount(S, Call, 2))
1222     return true;
1223 
1224   if (checkOpenCLPipeArg(S, Call))
1225     return true;
1226 
1227   // Check the reserve size.
1228   if (!Call->getArg(1)->getType()->isIntegerType() &&
1229       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1230     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1231         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1232         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1233     return true;
1234   }
1235 
1236   // Since return type of reserve_read/write_pipe built-in function is
1237   // reserve_id_t, which is not defined in the builtin def file , we used int
1238   // as return type and need to override the return type of these functions.
1239   Call->setType(S.Context.OCLReserveIDTy);
1240 
1241   return false;
1242 }
1243 
1244 // Performs a semantic analysis on {work_group_/sub_group_
1245 //        /_}commit_{read/write}_pipe
1246 // \param S Reference to the semantic analyzer.
1247 // \param Call The call to the builtin function to be analyzed.
1248 // \return True if a semantic error was found, false otherwise.
1249 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1250   if (checkArgCount(S, Call, 2))
1251     return true;
1252 
1253   if (checkOpenCLPipeArg(S, Call))
1254     return true;
1255 
1256   // Check reserve_id_t.
1257   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1258     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1259         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1260         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1261     return true;
1262   }
1263 
1264   return false;
1265 }
1266 
1267 // Performs a semantic analysis on the call to built-in Pipe
1268 //        Query Functions.
1269 // \param S Reference to the semantic analyzer.
1270 // \param Call The call to the builtin function to be analyzed.
1271 // \return True if a semantic error was found, false otherwise.
1272 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1273   if (checkArgCount(S, Call, 1))
1274     return true;
1275 
1276   if (!Call->getArg(0)->getType()->isPipeType()) {
1277     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1278         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1279     return true;
1280   }
1281 
1282   return false;
1283 }
1284 
1285 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1286 // Performs semantic analysis for the to_global/local/private call.
1287 // \param S Reference to the semantic analyzer.
1288 // \param BuiltinID ID of the builtin function.
1289 // \param Call A pointer to the builtin call.
1290 // \return True if a semantic error has been found, false otherwise.
1291 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1292                                     CallExpr *Call) {
1293   if (checkArgCount(S, Call, 1))
1294     return true;
1295 
1296   auto RT = Call->getArg(0)->getType();
1297   if (!RT->isPointerType() || RT->getPointeeType()
1298       .getAddressSpace() == LangAS::opencl_constant) {
1299     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1300         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1301     return true;
1302   }
1303 
1304   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1305     S.Diag(Call->getArg(0)->getBeginLoc(),
1306            diag::warn_opencl_generic_address_space_arg)
1307         << Call->getDirectCallee()->getNameInfo().getAsString()
1308         << Call->getArg(0)->getSourceRange();
1309   }
1310 
1311   RT = RT->getPointeeType();
1312   auto Qual = RT.getQualifiers();
1313   switch (BuiltinID) {
1314   case Builtin::BIto_global:
1315     Qual.setAddressSpace(LangAS::opencl_global);
1316     break;
1317   case Builtin::BIto_local:
1318     Qual.setAddressSpace(LangAS::opencl_local);
1319     break;
1320   case Builtin::BIto_private:
1321     Qual.setAddressSpace(LangAS::opencl_private);
1322     break;
1323   default:
1324     llvm_unreachable("Invalid builtin function");
1325   }
1326   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1327       RT.getUnqualifiedType(), Qual)));
1328 
1329   return false;
1330 }
1331 
1332 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1333   if (checkArgCount(S, TheCall, 1))
1334     return ExprError();
1335 
1336   // Compute __builtin_launder's parameter type from the argument.
1337   // The parameter type is:
1338   //  * The type of the argument if it's not an array or function type,
1339   //  Otherwise,
1340   //  * The decayed argument type.
1341   QualType ParamTy = [&]() {
1342     QualType ArgTy = TheCall->getArg(0)->getType();
1343     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1344       return S.Context.getPointerType(Ty->getElementType());
1345     if (ArgTy->isFunctionType()) {
1346       return S.Context.getPointerType(ArgTy);
1347     }
1348     return ArgTy;
1349   }();
1350 
1351   TheCall->setType(ParamTy);
1352 
1353   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1354     if (!ParamTy->isPointerType())
1355       return 0;
1356     if (ParamTy->isFunctionPointerType())
1357       return 1;
1358     if (ParamTy->isVoidPointerType())
1359       return 2;
1360     return llvm::Optional<unsigned>{};
1361   }();
1362   if (DiagSelect.hasValue()) {
1363     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1364         << DiagSelect.getValue() << TheCall->getSourceRange();
1365     return ExprError();
1366   }
1367 
1368   // We either have an incomplete class type, or we have a class template
1369   // whose instantiation has not been forced. Example:
1370   //
1371   //   template <class T> struct Foo { T value; };
1372   //   Foo<int> *p = nullptr;
1373   //   auto *d = __builtin_launder(p);
1374   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1375                             diag::err_incomplete_type))
1376     return ExprError();
1377 
1378   assert(ParamTy->getPointeeType()->isObjectType() &&
1379          "Unhandled non-object pointer case");
1380 
1381   InitializedEntity Entity =
1382       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1383   ExprResult Arg =
1384       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1385   if (Arg.isInvalid())
1386     return ExprError();
1387   TheCall->setArg(0, Arg.get());
1388 
1389   return TheCall;
1390 }
1391 
1392 // Emit an error and return true if the current architecture is not in the list
1393 // of supported architectures.
1394 static bool
1395 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1396                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1397   llvm::Triple::ArchType CurArch =
1398       S.getASTContext().getTargetInfo().getTriple().getArch();
1399   if (llvm::is_contained(SupportedArchs, CurArch))
1400     return false;
1401   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1402       << TheCall->getSourceRange();
1403   return true;
1404 }
1405 
1406 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1407                                  SourceLocation CallSiteLoc);
1408 
1409 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1410                                       CallExpr *TheCall) {
1411   switch (TI.getTriple().getArch()) {
1412   default:
1413     // Some builtins don't require additional checking, so just consider these
1414     // acceptable.
1415     return false;
1416   case llvm::Triple::arm:
1417   case llvm::Triple::armeb:
1418   case llvm::Triple::thumb:
1419   case llvm::Triple::thumbeb:
1420     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1421   case llvm::Triple::aarch64:
1422   case llvm::Triple::aarch64_32:
1423   case llvm::Triple::aarch64_be:
1424     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425   case llvm::Triple::bpfeb:
1426   case llvm::Triple::bpfel:
1427     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1428   case llvm::Triple::hexagon:
1429     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1430   case llvm::Triple::mips:
1431   case llvm::Triple::mipsel:
1432   case llvm::Triple::mips64:
1433   case llvm::Triple::mips64el:
1434     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1435   case llvm::Triple::systemz:
1436     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1437   case llvm::Triple::x86:
1438   case llvm::Triple::x86_64:
1439     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1440   case llvm::Triple::ppc:
1441   case llvm::Triple::ppcle:
1442   case llvm::Triple::ppc64:
1443   case llvm::Triple::ppc64le:
1444     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1445   case llvm::Triple::amdgcn:
1446     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1447   case llvm::Triple::riscv32:
1448   case llvm::Triple::riscv64:
1449     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1450   }
1451 }
1452 
1453 ExprResult
1454 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1455                                CallExpr *TheCall) {
1456   ExprResult TheCallResult(TheCall);
1457 
1458   // Find out if any arguments are required to be integer constant expressions.
1459   unsigned ICEArguments = 0;
1460   ASTContext::GetBuiltinTypeError Error;
1461   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1462   if (Error != ASTContext::GE_None)
1463     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1464 
1465   // If any arguments are required to be ICE's, check and diagnose.
1466   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1467     // Skip arguments not required to be ICE's.
1468     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1469 
1470     llvm::APSInt Result;
1471     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1472       return true;
1473     ICEArguments &= ~(1 << ArgNo);
1474   }
1475 
1476   switch (BuiltinID) {
1477   case Builtin::BI__builtin___CFStringMakeConstantString:
1478     assert(TheCall->getNumArgs() == 1 &&
1479            "Wrong # arguments to builtin CFStringMakeConstantString");
1480     if (CheckObjCString(TheCall->getArg(0)))
1481       return ExprError();
1482     break;
1483   case Builtin::BI__builtin_ms_va_start:
1484   case Builtin::BI__builtin_stdarg_start:
1485   case Builtin::BI__builtin_va_start:
1486     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1487       return ExprError();
1488     break;
1489   case Builtin::BI__va_start: {
1490     switch (Context.getTargetInfo().getTriple().getArch()) {
1491     case llvm::Triple::aarch64:
1492     case llvm::Triple::arm:
1493     case llvm::Triple::thumb:
1494       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1495         return ExprError();
1496       break;
1497     default:
1498       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1499         return ExprError();
1500       break;
1501     }
1502     break;
1503   }
1504 
1505   // The acquire, release, and no fence variants are ARM and AArch64 only.
1506   case Builtin::BI_interlockedbittestandset_acq:
1507   case Builtin::BI_interlockedbittestandset_rel:
1508   case Builtin::BI_interlockedbittestandset_nf:
1509   case Builtin::BI_interlockedbittestandreset_acq:
1510   case Builtin::BI_interlockedbittestandreset_rel:
1511   case Builtin::BI_interlockedbittestandreset_nf:
1512     if (CheckBuiltinTargetSupport(
1513             *this, BuiltinID, TheCall,
1514             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1515       return ExprError();
1516     break;
1517 
1518   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1519   case Builtin::BI_bittest64:
1520   case Builtin::BI_bittestandcomplement64:
1521   case Builtin::BI_bittestandreset64:
1522   case Builtin::BI_bittestandset64:
1523   case Builtin::BI_interlockedbittestandreset64:
1524   case Builtin::BI_interlockedbittestandset64:
1525     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1526                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1527                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1528       return ExprError();
1529     break;
1530 
1531   case Builtin::BI__builtin_isgreater:
1532   case Builtin::BI__builtin_isgreaterequal:
1533   case Builtin::BI__builtin_isless:
1534   case Builtin::BI__builtin_islessequal:
1535   case Builtin::BI__builtin_islessgreater:
1536   case Builtin::BI__builtin_isunordered:
1537     if (SemaBuiltinUnorderedCompare(TheCall))
1538       return ExprError();
1539     break;
1540   case Builtin::BI__builtin_fpclassify:
1541     if (SemaBuiltinFPClassification(TheCall, 6))
1542       return ExprError();
1543     break;
1544   case Builtin::BI__builtin_isfinite:
1545   case Builtin::BI__builtin_isinf:
1546   case Builtin::BI__builtin_isinf_sign:
1547   case Builtin::BI__builtin_isnan:
1548   case Builtin::BI__builtin_isnormal:
1549   case Builtin::BI__builtin_signbit:
1550   case Builtin::BI__builtin_signbitf:
1551   case Builtin::BI__builtin_signbitl:
1552     if (SemaBuiltinFPClassification(TheCall, 1))
1553       return ExprError();
1554     break;
1555   case Builtin::BI__builtin_shufflevector:
1556     return SemaBuiltinShuffleVector(TheCall);
1557     // TheCall will be freed by the smart pointer here, but that's fine, since
1558     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1559   case Builtin::BI__builtin_prefetch:
1560     if (SemaBuiltinPrefetch(TheCall))
1561       return ExprError();
1562     break;
1563   case Builtin::BI__builtin_alloca_with_align:
1564     if (SemaBuiltinAllocaWithAlign(TheCall))
1565       return ExprError();
1566     LLVM_FALLTHROUGH;
1567   case Builtin::BI__builtin_alloca:
1568     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1569         << TheCall->getDirectCallee();
1570     break;
1571   case Builtin::BI__arithmetic_fence:
1572     if (SemaBuiltinArithmeticFence(TheCall))
1573       return ExprError();
1574     break;
1575   case Builtin::BI__assume:
1576   case Builtin::BI__builtin_assume:
1577     if (SemaBuiltinAssume(TheCall))
1578       return ExprError();
1579     break;
1580   case Builtin::BI__builtin_assume_aligned:
1581     if (SemaBuiltinAssumeAligned(TheCall))
1582       return ExprError();
1583     break;
1584   case Builtin::BI__builtin_dynamic_object_size:
1585   case Builtin::BI__builtin_object_size:
1586     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1587       return ExprError();
1588     break;
1589   case Builtin::BI__builtin_longjmp:
1590     if (SemaBuiltinLongjmp(TheCall))
1591       return ExprError();
1592     break;
1593   case Builtin::BI__builtin_setjmp:
1594     if (SemaBuiltinSetjmp(TheCall))
1595       return ExprError();
1596     break;
1597   case Builtin::BI__builtin_classify_type:
1598     if (checkArgCount(*this, TheCall, 1)) return true;
1599     TheCall->setType(Context.IntTy);
1600     break;
1601   case Builtin::BI__builtin_complex:
1602     if (SemaBuiltinComplex(TheCall))
1603       return ExprError();
1604     break;
1605   case Builtin::BI__builtin_constant_p: {
1606     if (checkArgCount(*this, TheCall, 1)) return true;
1607     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1608     if (Arg.isInvalid()) return true;
1609     TheCall->setArg(0, Arg.get());
1610     TheCall->setType(Context.IntTy);
1611     break;
1612   }
1613   case Builtin::BI__builtin_launder:
1614     return SemaBuiltinLaunder(*this, TheCall);
1615   case Builtin::BI__sync_fetch_and_add:
1616   case Builtin::BI__sync_fetch_and_add_1:
1617   case Builtin::BI__sync_fetch_and_add_2:
1618   case Builtin::BI__sync_fetch_and_add_4:
1619   case Builtin::BI__sync_fetch_and_add_8:
1620   case Builtin::BI__sync_fetch_and_add_16:
1621   case Builtin::BI__sync_fetch_and_sub:
1622   case Builtin::BI__sync_fetch_and_sub_1:
1623   case Builtin::BI__sync_fetch_and_sub_2:
1624   case Builtin::BI__sync_fetch_and_sub_4:
1625   case Builtin::BI__sync_fetch_and_sub_8:
1626   case Builtin::BI__sync_fetch_and_sub_16:
1627   case Builtin::BI__sync_fetch_and_or:
1628   case Builtin::BI__sync_fetch_and_or_1:
1629   case Builtin::BI__sync_fetch_and_or_2:
1630   case Builtin::BI__sync_fetch_and_or_4:
1631   case Builtin::BI__sync_fetch_and_or_8:
1632   case Builtin::BI__sync_fetch_and_or_16:
1633   case Builtin::BI__sync_fetch_and_and:
1634   case Builtin::BI__sync_fetch_and_and_1:
1635   case Builtin::BI__sync_fetch_and_and_2:
1636   case Builtin::BI__sync_fetch_and_and_4:
1637   case Builtin::BI__sync_fetch_and_and_8:
1638   case Builtin::BI__sync_fetch_and_and_16:
1639   case Builtin::BI__sync_fetch_and_xor:
1640   case Builtin::BI__sync_fetch_and_xor_1:
1641   case Builtin::BI__sync_fetch_and_xor_2:
1642   case Builtin::BI__sync_fetch_and_xor_4:
1643   case Builtin::BI__sync_fetch_and_xor_8:
1644   case Builtin::BI__sync_fetch_and_xor_16:
1645   case Builtin::BI__sync_fetch_and_nand:
1646   case Builtin::BI__sync_fetch_and_nand_1:
1647   case Builtin::BI__sync_fetch_and_nand_2:
1648   case Builtin::BI__sync_fetch_and_nand_4:
1649   case Builtin::BI__sync_fetch_and_nand_8:
1650   case Builtin::BI__sync_fetch_and_nand_16:
1651   case Builtin::BI__sync_add_and_fetch:
1652   case Builtin::BI__sync_add_and_fetch_1:
1653   case Builtin::BI__sync_add_and_fetch_2:
1654   case Builtin::BI__sync_add_and_fetch_4:
1655   case Builtin::BI__sync_add_and_fetch_8:
1656   case Builtin::BI__sync_add_and_fetch_16:
1657   case Builtin::BI__sync_sub_and_fetch:
1658   case Builtin::BI__sync_sub_and_fetch_1:
1659   case Builtin::BI__sync_sub_and_fetch_2:
1660   case Builtin::BI__sync_sub_and_fetch_4:
1661   case Builtin::BI__sync_sub_and_fetch_8:
1662   case Builtin::BI__sync_sub_and_fetch_16:
1663   case Builtin::BI__sync_and_and_fetch:
1664   case Builtin::BI__sync_and_and_fetch_1:
1665   case Builtin::BI__sync_and_and_fetch_2:
1666   case Builtin::BI__sync_and_and_fetch_4:
1667   case Builtin::BI__sync_and_and_fetch_8:
1668   case Builtin::BI__sync_and_and_fetch_16:
1669   case Builtin::BI__sync_or_and_fetch:
1670   case Builtin::BI__sync_or_and_fetch_1:
1671   case Builtin::BI__sync_or_and_fetch_2:
1672   case Builtin::BI__sync_or_and_fetch_4:
1673   case Builtin::BI__sync_or_and_fetch_8:
1674   case Builtin::BI__sync_or_and_fetch_16:
1675   case Builtin::BI__sync_xor_and_fetch:
1676   case Builtin::BI__sync_xor_and_fetch_1:
1677   case Builtin::BI__sync_xor_and_fetch_2:
1678   case Builtin::BI__sync_xor_and_fetch_4:
1679   case Builtin::BI__sync_xor_and_fetch_8:
1680   case Builtin::BI__sync_xor_and_fetch_16:
1681   case Builtin::BI__sync_nand_and_fetch:
1682   case Builtin::BI__sync_nand_and_fetch_1:
1683   case Builtin::BI__sync_nand_and_fetch_2:
1684   case Builtin::BI__sync_nand_and_fetch_4:
1685   case Builtin::BI__sync_nand_and_fetch_8:
1686   case Builtin::BI__sync_nand_and_fetch_16:
1687   case Builtin::BI__sync_val_compare_and_swap:
1688   case Builtin::BI__sync_val_compare_and_swap_1:
1689   case Builtin::BI__sync_val_compare_and_swap_2:
1690   case Builtin::BI__sync_val_compare_and_swap_4:
1691   case Builtin::BI__sync_val_compare_and_swap_8:
1692   case Builtin::BI__sync_val_compare_and_swap_16:
1693   case Builtin::BI__sync_bool_compare_and_swap:
1694   case Builtin::BI__sync_bool_compare_and_swap_1:
1695   case Builtin::BI__sync_bool_compare_and_swap_2:
1696   case Builtin::BI__sync_bool_compare_and_swap_4:
1697   case Builtin::BI__sync_bool_compare_and_swap_8:
1698   case Builtin::BI__sync_bool_compare_and_swap_16:
1699   case Builtin::BI__sync_lock_test_and_set:
1700   case Builtin::BI__sync_lock_test_and_set_1:
1701   case Builtin::BI__sync_lock_test_and_set_2:
1702   case Builtin::BI__sync_lock_test_and_set_4:
1703   case Builtin::BI__sync_lock_test_and_set_8:
1704   case Builtin::BI__sync_lock_test_and_set_16:
1705   case Builtin::BI__sync_lock_release:
1706   case Builtin::BI__sync_lock_release_1:
1707   case Builtin::BI__sync_lock_release_2:
1708   case Builtin::BI__sync_lock_release_4:
1709   case Builtin::BI__sync_lock_release_8:
1710   case Builtin::BI__sync_lock_release_16:
1711   case Builtin::BI__sync_swap:
1712   case Builtin::BI__sync_swap_1:
1713   case Builtin::BI__sync_swap_2:
1714   case Builtin::BI__sync_swap_4:
1715   case Builtin::BI__sync_swap_8:
1716   case Builtin::BI__sync_swap_16:
1717     return SemaBuiltinAtomicOverloaded(TheCallResult);
1718   case Builtin::BI__sync_synchronize:
1719     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1720         << TheCall->getCallee()->getSourceRange();
1721     break;
1722   case Builtin::BI__builtin_nontemporal_load:
1723   case Builtin::BI__builtin_nontemporal_store:
1724     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1725   case Builtin::BI__builtin_memcpy_inline: {
1726     clang::Expr *SizeOp = TheCall->getArg(2);
1727     // We warn about copying to or from `nullptr` pointers when `size` is
1728     // greater than 0. When `size` is value dependent we cannot evaluate its
1729     // value so we bail out.
1730     if (SizeOp->isValueDependent())
1731       break;
1732     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1733       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1734       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1735     }
1736     break;
1737   }
1738 #define BUILTIN(ID, TYPE, ATTRS)
1739 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1740   case Builtin::BI##ID: \
1741     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1742 #include "clang/Basic/Builtins.def"
1743   case Builtin::BI__annotation:
1744     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1745       return ExprError();
1746     break;
1747   case Builtin::BI__builtin_annotation:
1748     if (SemaBuiltinAnnotation(*this, TheCall))
1749       return ExprError();
1750     break;
1751   case Builtin::BI__builtin_addressof:
1752     if (SemaBuiltinAddressof(*this, TheCall))
1753       return ExprError();
1754     break;
1755   case Builtin::BI__builtin_is_aligned:
1756   case Builtin::BI__builtin_align_up:
1757   case Builtin::BI__builtin_align_down:
1758     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1759       return ExprError();
1760     break;
1761   case Builtin::BI__builtin_add_overflow:
1762   case Builtin::BI__builtin_sub_overflow:
1763   case Builtin::BI__builtin_mul_overflow:
1764     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1765       return ExprError();
1766     break;
1767   case Builtin::BI__builtin_operator_new:
1768   case Builtin::BI__builtin_operator_delete: {
1769     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1770     ExprResult Res =
1771         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1772     if (Res.isInvalid())
1773       CorrectDelayedTyposInExpr(TheCallResult.get());
1774     return Res;
1775   }
1776   case Builtin::BI__builtin_dump_struct: {
1777     // We first want to ensure we are called with 2 arguments
1778     if (checkArgCount(*this, TheCall, 2))
1779       return ExprError();
1780     // Ensure that the first argument is of type 'struct XX *'
1781     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1782     const QualType PtrArgType = PtrArg->getType();
1783     if (!PtrArgType->isPointerType() ||
1784         !PtrArgType->getPointeeType()->isRecordType()) {
1785       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1786           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1787           << "structure pointer";
1788       return ExprError();
1789     }
1790 
1791     // Ensure that the second argument is of type 'FunctionType'
1792     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1793     const QualType FnPtrArgType = FnPtrArg->getType();
1794     if (!FnPtrArgType->isPointerType()) {
1795       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1796           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1797           << FnPtrArgType << "'int (*)(const char *, ...)'";
1798       return ExprError();
1799     }
1800 
1801     const auto *FuncType =
1802         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1803 
1804     if (!FuncType) {
1805       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1806           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1807           << FnPtrArgType << "'int (*)(const char *, ...)'";
1808       return ExprError();
1809     }
1810 
1811     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1812       if (!FT->getNumParams()) {
1813         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1814             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1815             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1816         return ExprError();
1817       }
1818       QualType PT = FT->getParamType(0);
1819       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1820           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1821           !PT->getPointeeType().isConstQualified()) {
1822         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1823             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1824             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1825         return ExprError();
1826       }
1827     }
1828 
1829     TheCall->setType(Context.IntTy);
1830     break;
1831   }
1832   case Builtin::BI__builtin_expect_with_probability: {
1833     // We first want to ensure we are called with 3 arguments
1834     if (checkArgCount(*this, TheCall, 3))
1835       return ExprError();
1836     // then check probability is constant float in range [0.0, 1.0]
1837     const Expr *ProbArg = TheCall->getArg(2);
1838     SmallVector<PartialDiagnosticAt, 8> Notes;
1839     Expr::EvalResult Eval;
1840     Eval.Diag = &Notes;
1841     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1842         !Eval.Val.isFloat()) {
1843       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1844           << ProbArg->getSourceRange();
1845       for (const PartialDiagnosticAt &PDiag : Notes)
1846         Diag(PDiag.first, PDiag.second);
1847       return ExprError();
1848     }
1849     llvm::APFloat Probability = Eval.Val.getFloat();
1850     bool LoseInfo = false;
1851     Probability.convert(llvm::APFloat::IEEEdouble(),
1852                         llvm::RoundingMode::Dynamic, &LoseInfo);
1853     if (!(Probability >= llvm::APFloat(0.0) &&
1854           Probability <= llvm::APFloat(1.0))) {
1855       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1856           << ProbArg->getSourceRange();
1857       return ExprError();
1858     }
1859     break;
1860   }
1861   case Builtin::BI__builtin_preserve_access_index:
1862     if (SemaBuiltinPreserveAI(*this, TheCall))
1863       return ExprError();
1864     break;
1865   case Builtin::BI__builtin_call_with_static_chain:
1866     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1867       return ExprError();
1868     break;
1869   case Builtin::BI__exception_code:
1870   case Builtin::BI_exception_code:
1871     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1872                                  diag::err_seh___except_block))
1873       return ExprError();
1874     break;
1875   case Builtin::BI__exception_info:
1876   case Builtin::BI_exception_info:
1877     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1878                                  diag::err_seh___except_filter))
1879       return ExprError();
1880     break;
1881   case Builtin::BI__GetExceptionInfo:
1882     if (checkArgCount(*this, TheCall, 1))
1883       return ExprError();
1884 
1885     if (CheckCXXThrowOperand(
1886             TheCall->getBeginLoc(),
1887             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1888             TheCall))
1889       return ExprError();
1890 
1891     TheCall->setType(Context.VoidPtrTy);
1892     break;
1893   // OpenCL v2.0, s6.13.16 - Pipe functions
1894   case Builtin::BIread_pipe:
1895   case Builtin::BIwrite_pipe:
1896     // Since those two functions are declared with var args, we need a semantic
1897     // check for the argument.
1898     if (SemaBuiltinRWPipe(*this, TheCall))
1899       return ExprError();
1900     break;
1901   case Builtin::BIreserve_read_pipe:
1902   case Builtin::BIreserve_write_pipe:
1903   case Builtin::BIwork_group_reserve_read_pipe:
1904   case Builtin::BIwork_group_reserve_write_pipe:
1905     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1906       return ExprError();
1907     break;
1908   case Builtin::BIsub_group_reserve_read_pipe:
1909   case Builtin::BIsub_group_reserve_write_pipe:
1910     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1911         SemaBuiltinReserveRWPipe(*this, TheCall))
1912       return ExprError();
1913     break;
1914   case Builtin::BIcommit_read_pipe:
1915   case Builtin::BIcommit_write_pipe:
1916   case Builtin::BIwork_group_commit_read_pipe:
1917   case Builtin::BIwork_group_commit_write_pipe:
1918     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1919       return ExprError();
1920     break;
1921   case Builtin::BIsub_group_commit_read_pipe:
1922   case Builtin::BIsub_group_commit_write_pipe:
1923     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1924         SemaBuiltinCommitRWPipe(*this, TheCall))
1925       return ExprError();
1926     break;
1927   case Builtin::BIget_pipe_num_packets:
1928   case Builtin::BIget_pipe_max_packets:
1929     if (SemaBuiltinPipePackets(*this, TheCall))
1930       return ExprError();
1931     break;
1932   case Builtin::BIto_global:
1933   case Builtin::BIto_local:
1934   case Builtin::BIto_private:
1935     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1936       return ExprError();
1937     break;
1938   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1939   case Builtin::BIenqueue_kernel:
1940     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1941       return ExprError();
1942     break;
1943   case Builtin::BIget_kernel_work_group_size:
1944   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1945     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1946       return ExprError();
1947     break;
1948   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1949   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1950     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1951       return ExprError();
1952     break;
1953   case Builtin::BI__builtin_os_log_format:
1954     Cleanup.setExprNeedsCleanups(true);
1955     LLVM_FALLTHROUGH;
1956   case Builtin::BI__builtin_os_log_format_buffer_size:
1957     if (SemaBuiltinOSLogFormat(TheCall))
1958       return ExprError();
1959     break;
1960   case Builtin::BI__builtin_frame_address:
1961   case Builtin::BI__builtin_return_address: {
1962     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1963       return ExprError();
1964 
1965     // -Wframe-address warning if non-zero passed to builtin
1966     // return/frame address.
1967     Expr::EvalResult Result;
1968     if (!TheCall->getArg(0)->isValueDependent() &&
1969         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1970         Result.Val.getInt() != 0)
1971       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1972           << ((BuiltinID == Builtin::BI__builtin_return_address)
1973                   ? "__builtin_return_address"
1974                   : "__builtin_frame_address")
1975           << TheCall->getSourceRange();
1976     break;
1977   }
1978 
1979   case Builtin::BI__builtin_matrix_transpose:
1980     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1981 
1982   case Builtin::BI__builtin_matrix_column_major_load:
1983     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1984 
1985   case Builtin::BI__builtin_matrix_column_major_store:
1986     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1987 
1988   case Builtin::BI__builtin_get_device_side_mangled_name: {
1989     auto Check = [](CallExpr *TheCall) {
1990       if (TheCall->getNumArgs() != 1)
1991         return false;
1992       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
1993       if (!DRE)
1994         return false;
1995       auto *D = DRE->getDecl();
1996       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
1997         return false;
1998       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
1999              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2000     };
2001     if (!Check(TheCall)) {
2002       Diag(TheCall->getBeginLoc(),
2003            diag::err_hip_invalid_args_builtin_mangled_name);
2004       return ExprError();
2005     }
2006   }
2007   }
2008 
2009   // Since the target specific builtins for each arch overlap, only check those
2010   // of the arch we are compiling for.
2011   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2012     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2013       assert(Context.getAuxTargetInfo() &&
2014              "Aux Target Builtin, but not an aux target?");
2015 
2016       if (CheckTSBuiltinFunctionCall(
2017               *Context.getAuxTargetInfo(),
2018               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2019         return ExprError();
2020     } else {
2021       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2022                                      TheCall))
2023         return ExprError();
2024     }
2025   }
2026 
2027   return TheCallResult;
2028 }
2029 
2030 // Get the valid immediate range for the specified NEON type code.
2031 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2032   NeonTypeFlags Type(t);
2033   int IsQuad = ForceQuad ? true : Type.isQuad();
2034   switch (Type.getEltType()) {
2035   case NeonTypeFlags::Int8:
2036   case NeonTypeFlags::Poly8:
2037     return shift ? 7 : (8 << IsQuad) - 1;
2038   case NeonTypeFlags::Int16:
2039   case NeonTypeFlags::Poly16:
2040     return shift ? 15 : (4 << IsQuad) - 1;
2041   case NeonTypeFlags::Int32:
2042     return shift ? 31 : (2 << IsQuad) - 1;
2043   case NeonTypeFlags::Int64:
2044   case NeonTypeFlags::Poly64:
2045     return shift ? 63 : (1 << IsQuad) - 1;
2046   case NeonTypeFlags::Poly128:
2047     return shift ? 127 : (1 << IsQuad) - 1;
2048   case NeonTypeFlags::Float16:
2049     assert(!shift && "cannot shift float types!");
2050     return (4 << IsQuad) - 1;
2051   case NeonTypeFlags::Float32:
2052     assert(!shift && "cannot shift float types!");
2053     return (2 << IsQuad) - 1;
2054   case NeonTypeFlags::Float64:
2055     assert(!shift && "cannot shift float types!");
2056     return (1 << IsQuad) - 1;
2057   case NeonTypeFlags::BFloat16:
2058     assert(!shift && "cannot shift float types!");
2059     return (4 << IsQuad) - 1;
2060   }
2061   llvm_unreachable("Invalid NeonTypeFlag!");
2062 }
2063 
2064 /// getNeonEltType - Return the QualType corresponding to the elements of
2065 /// the vector type specified by the NeonTypeFlags.  This is used to check
2066 /// the pointer arguments for Neon load/store intrinsics.
2067 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2068                                bool IsPolyUnsigned, bool IsInt64Long) {
2069   switch (Flags.getEltType()) {
2070   case NeonTypeFlags::Int8:
2071     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2072   case NeonTypeFlags::Int16:
2073     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2074   case NeonTypeFlags::Int32:
2075     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2076   case NeonTypeFlags::Int64:
2077     if (IsInt64Long)
2078       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2079     else
2080       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2081                                 : Context.LongLongTy;
2082   case NeonTypeFlags::Poly8:
2083     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2084   case NeonTypeFlags::Poly16:
2085     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2086   case NeonTypeFlags::Poly64:
2087     if (IsInt64Long)
2088       return Context.UnsignedLongTy;
2089     else
2090       return Context.UnsignedLongLongTy;
2091   case NeonTypeFlags::Poly128:
2092     break;
2093   case NeonTypeFlags::Float16:
2094     return Context.HalfTy;
2095   case NeonTypeFlags::Float32:
2096     return Context.FloatTy;
2097   case NeonTypeFlags::Float64:
2098     return Context.DoubleTy;
2099   case NeonTypeFlags::BFloat16:
2100     return Context.BFloat16Ty;
2101   }
2102   llvm_unreachable("Invalid NeonTypeFlag!");
2103 }
2104 
2105 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2106   // Range check SVE intrinsics that take immediate values.
2107   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2108 
2109   switch (BuiltinID) {
2110   default:
2111     return false;
2112 #define GET_SVE_IMMEDIATE_CHECK
2113 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2114 #undef GET_SVE_IMMEDIATE_CHECK
2115   }
2116 
2117   // Perform all the immediate checks for this builtin call.
2118   bool HasError = false;
2119   for (auto &I : ImmChecks) {
2120     int ArgNum, CheckTy, ElementSizeInBits;
2121     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2122 
2123     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2124 
2125     // Function that checks whether the operand (ArgNum) is an immediate
2126     // that is one of the predefined values.
2127     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2128                                    int ErrDiag) -> bool {
2129       // We can't check the value of a dependent argument.
2130       Expr *Arg = TheCall->getArg(ArgNum);
2131       if (Arg->isTypeDependent() || Arg->isValueDependent())
2132         return false;
2133 
2134       // Check constant-ness first.
2135       llvm::APSInt Imm;
2136       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2137         return true;
2138 
2139       if (!CheckImm(Imm.getSExtValue()))
2140         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2141       return false;
2142     };
2143 
2144     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2145     case SVETypeFlags::ImmCheck0_31:
2146       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2147         HasError = true;
2148       break;
2149     case SVETypeFlags::ImmCheck0_13:
2150       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2151         HasError = true;
2152       break;
2153     case SVETypeFlags::ImmCheck1_16:
2154       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2155         HasError = true;
2156       break;
2157     case SVETypeFlags::ImmCheck0_7:
2158       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2159         HasError = true;
2160       break;
2161     case SVETypeFlags::ImmCheckExtract:
2162       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2163                                       (2048 / ElementSizeInBits) - 1))
2164         HasError = true;
2165       break;
2166     case SVETypeFlags::ImmCheckShiftRight:
2167       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2168         HasError = true;
2169       break;
2170     case SVETypeFlags::ImmCheckShiftRightNarrow:
2171       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2172                                       ElementSizeInBits / 2))
2173         HasError = true;
2174       break;
2175     case SVETypeFlags::ImmCheckShiftLeft:
2176       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2177                                       ElementSizeInBits - 1))
2178         HasError = true;
2179       break;
2180     case SVETypeFlags::ImmCheckLaneIndex:
2181       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2182                                       (128 / (1 * ElementSizeInBits)) - 1))
2183         HasError = true;
2184       break;
2185     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2186       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2187                                       (128 / (2 * ElementSizeInBits)) - 1))
2188         HasError = true;
2189       break;
2190     case SVETypeFlags::ImmCheckLaneIndexDot:
2191       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2192                                       (128 / (4 * ElementSizeInBits)) - 1))
2193         HasError = true;
2194       break;
2195     case SVETypeFlags::ImmCheckComplexRot90_270:
2196       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2197                               diag::err_rotation_argument_to_cadd))
2198         HasError = true;
2199       break;
2200     case SVETypeFlags::ImmCheckComplexRotAll90:
2201       if (CheckImmediateInSet(
2202               [](int64_t V) {
2203                 return V == 0 || V == 90 || V == 180 || V == 270;
2204               },
2205               diag::err_rotation_argument_to_cmla))
2206         HasError = true;
2207       break;
2208     case SVETypeFlags::ImmCheck0_1:
2209       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2210         HasError = true;
2211       break;
2212     case SVETypeFlags::ImmCheck0_2:
2213       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2214         HasError = true;
2215       break;
2216     case SVETypeFlags::ImmCheck0_3:
2217       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2218         HasError = true;
2219       break;
2220     }
2221   }
2222 
2223   return HasError;
2224 }
2225 
2226 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2227                                         unsigned BuiltinID, CallExpr *TheCall) {
2228   llvm::APSInt Result;
2229   uint64_t mask = 0;
2230   unsigned TV = 0;
2231   int PtrArgNum = -1;
2232   bool HasConstPtr = false;
2233   switch (BuiltinID) {
2234 #define GET_NEON_OVERLOAD_CHECK
2235 #include "clang/Basic/arm_neon.inc"
2236 #include "clang/Basic/arm_fp16.inc"
2237 #undef GET_NEON_OVERLOAD_CHECK
2238   }
2239 
2240   // For NEON intrinsics which are overloaded on vector element type, validate
2241   // the immediate which specifies which variant to emit.
2242   unsigned ImmArg = TheCall->getNumArgs()-1;
2243   if (mask) {
2244     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2245       return true;
2246 
2247     TV = Result.getLimitedValue(64);
2248     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2249       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2250              << TheCall->getArg(ImmArg)->getSourceRange();
2251   }
2252 
2253   if (PtrArgNum >= 0) {
2254     // Check that pointer arguments have the specified type.
2255     Expr *Arg = TheCall->getArg(PtrArgNum);
2256     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2257       Arg = ICE->getSubExpr();
2258     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2259     QualType RHSTy = RHS.get()->getType();
2260 
2261     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2262     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2263                           Arch == llvm::Triple::aarch64_32 ||
2264                           Arch == llvm::Triple::aarch64_be;
2265     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2266     QualType EltTy =
2267         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2268     if (HasConstPtr)
2269       EltTy = EltTy.withConst();
2270     QualType LHSTy = Context.getPointerType(EltTy);
2271     AssignConvertType ConvTy;
2272     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2273     if (RHS.isInvalid())
2274       return true;
2275     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2276                                  RHS.get(), AA_Assigning))
2277       return true;
2278   }
2279 
2280   // For NEON intrinsics which take an immediate value as part of the
2281   // instruction, range check them here.
2282   unsigned i = 0, l = 0, u = 0;
2283   switch (BuiltinID) {
2284   default:
2285     return false;
2286   #define GET_NEON_IMMEDIATE_CHECK
2287   #include "clang/Basic/arm_neon.inc"
2288   #include "clang/Basic/arm_fp16.inc"
2289   #undef GET_NEON_IMMEDIATE_CHECK
2290   }
2291 
2292   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2293 }
2294 
2295 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2296   switch (BuiltinID) {
2297   default:
2298     return false;
2299   #include "clang/Basic/arm_mve_builtin_sema.inc"
2300   }
2301 }
2302 
2303 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2304                                        CallExpr *TheCall) {
2305   bool Err = false;
2306   switch (BuiltinID) {
2307   default:
2308     return false;
2309 #include "clang/Basic/arm_cde_builtin_sema.inc"
2310   }
2311 
2312   if (Err)
2313     return true;
2314 
2315   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2316 }
2317 
2318 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2319                                         const Expr *CoprocArg, bool WantCDE) {
2320   if (isConstantEvaluated())
2321     return false;
2322 
2323   // We can't check the value of a dependent argument.
2324   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2325     return false;
2326 
2327   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2328   int64_t CoprocNo = CoprocNoAP.getExtValue();
2329   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2330 
2331   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2332   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2333 
2334   if (IsCDECoproc != WantCDE)
2335     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2336            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2337 
2338   return false;
2339 }
2340 
2341 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2342                                         unsigned MaxWidth) {
2343   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2344           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2345           BuiltinID == ARM::BI__builtin_arm_strex ||
2346           BuiltinID == ARM::BI__builtin_arm_stlex ||
2347           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2348           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2349           BuiltinID == AArch64::BI__builtin_arm_strex ||
2350           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2351          "unexpected ARM builtin");
2352   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2353                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2354                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2355                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2356 
2357   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2358 
2359   // Ensure that we have the proper number of arguments.
2360   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2361     return true;
2362 
2363   // Inspect the pointer argument of the atomic builtin.  This should always be
2364   // a pointer type, whose element is an integral scalar or pointer type.
2365   // Because it is a pointer type, we don't have to worry about any implicit
2366   // casts here.
2367   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2368   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2369   if (PointerArgRes.isInvalid())
2370     return true;
2371   PointerArg = PointerArgRes.get();
2372 
2373   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2374   if (!pointerType) {
2375     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2376         << PointerArg->getType() << PointerArg->getSourceRange();
2377     return true;
2378   }
2379 
2380   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2381   // task is to insert the appropriate casts into the AST. First work out just
2382   // what the appropriate type is.
2383   QualType ValType = pointerType->getPointeeType();
2384   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2385   if (IsLdrex)
2386     AddrType.addConst();
2387 
2388   // Issue a warning if the cast is dodgy.
2389   CastKind CastNeeded = CK_NoOp;
2390   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2391     CastNeeded = CK_BitCast;
2392     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2393         << PointerArg->getType() << Context.getPointerType(AddrType)
2394         << AA_Passing << PointerArg->getSourceRange();
2395   }
2396 
2397   // Finally, do the cast and replace the argument with the corrected version.
2398   AddrType = Context.getPointerType(AddrType);
2399   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2400   if (PointerArgRes.isInvalid())
2401     return true;
2402   PointerArg = PointerArgRes.get();
2403 
2404   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2405 
2406   // In general, we allow ints, floats and pointers to be loaded and stored.
2407   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2408       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2409     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2410         << PointerArg->getType() << PointerArg->getSourceRange();
2411     return true;
2412   }
2413 
2414   // But ARM doesn't have instructions to deal with 128-bit versions.
2415   if (Context.getTypeSize(ValType) > MaxWidth) {
2416     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2417     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2418         << PointerArg->getType() << PointerArg->getSourceRange();
2419     return true;
2420   }
2421 
2422   switch (ValType.getObjCLifetime()) {
2423   case Qualifiers::OCL_None:
2424   case Qualifiers::OCL_ExplicitNone:
2425     // okay
2426     break;
2427 
2428   case Qualifiers::OCL_Weak:
2429   case Qualifiers::OCL_Strong:
2430   case Qualifiers::OCL_Autoreleasing:
2431     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2432         << ValType << PointerArg->getSourceRange();
2433     return true;
2434   }
2435 
2436   if (IsLdrex) {
2437     TheCall->setType(ValType);
2438     return false;
2439   }
2440 
2441   // Initialize the argument to be stored.
2442   ExprResult ValArg = TheCall->getArg(0);
2443   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2444       Context, ValType, /*consume*/ false);
2445   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2446   if (ValArg.isInvalid())
2447     return true;
2448   TheCall->setArg(0, ValArg.get());
2449 
2450   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2451   // but the custom checker bypasses all default analysis.
2452   TheCall->setType(Context.IntTy);
2453   return false;
2454 }
2455 
2456 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2457                                        CallExpr *TheCall) {
2458   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2459       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2460       BuiltinID == ARM::BI__builtin_arm_strex ||
2461       BuiltinID == ARM::BI__builtin_arm_stlex) {
2462     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2463   }
2464 
2465   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2466     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2467       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2468   }
2469 
2470   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2471       BuiltinID == ARM::BI__builtin_arm_wsr64)
2472     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2473 
2474   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2475       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2476       BuiltinID == ARM::BI__builtin_arm_wsr ||
2477       BuiltinID == ARM::BI__builtin_arm_wsrp)
2478     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2479 
2480   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2481     return true;
2482   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2483     return true;
2484   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2485     return true;
2486 
2487   // For intrinsics which take an immediate value as part of the instruction,
2488   // range check them here.
2489   // FIXME: VFP Intrinsics should error if VFP not present.
2490   switch (BuiltinID) {
2491   default: return false;
2492   case ARM::BI__builtin_arm_ssat:
2493     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2494   case ARM::BI__builtin_arm_usat:
2495     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2496   case ARM::BI__builtin_arm_ssat16:
2497     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2498   case ARM::BI__builtin_arm_usat16:
2499     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2500   case ARM::BI__builtin_arm_vcvtr_f:
2501   case ARM::BI__builtin_arm_vcvtr_d:
2502     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2503   case ARM::BI__builtin_arm_dmb:
2504   case ARM::BI__builtin_arm_dsb:
2505   case ARM::BI__builtin_arm_isb:
2506   case ARM::BI__builtin_arm_dbg:
2507     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2508   case ARM::BI__builtin_arm_cdp:
2509   case ARM::BI__builtin_arm_cdp2:
2510   case ARM::BI__builtin_arm_mcr:
2511   case ARM::BI__builtin_arm_mcr2:
2512   case ARM::BI__builtin_arm_mrc:
2513   case ARM::BI__builtin_arm_mrc2:
2514   case ARM::BI__builtin_arm_mcrr:
2515   case ARM::BI__builtin_arm_mcrr2:
2516   case ARM::BI__builtin_arm_mrrc:
2517   case ARM::BI__builtin_arm_mrrc2:
2518   case ARM::BI__builtin_arm_ldc:
2519   case ARM::BI__builtin_arm_ldcl:
2520   case ARM::BI__builtin_arm_ldc2:
2521   case ARM::BI__builtin_arm_ldc2l:
2522   case ARM::BI__builtin_arm_stc:
2523   case ARM::BI__builtin_arm_stcl:
2524   case ARM::BI__builtin_arm_stc2:
2525   case ARM::BI__builtin_arm_stc2l:
2526     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2527            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2528                                         /*WantCDE*/ false);
2529   }
2530 }
2531 
2532 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2533                                            unsigned BuiltinID,
2534                                            CallExpr *TheCall) {
2535   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2536       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2537       BuiltinID == AArch64::BI__builtin_arm_strex ||
2538       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2539     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2540   }
2541 
2542   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2543     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2544       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2545       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2546       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2547   }
2548 
2549   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2550       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2551     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2552 
2553   // Memory Tagging Extensions (MTE) Intrinsics
2554   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2555       BuiltinID == AArch64::BI__builtin_arm_addg ||
2556       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2557       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2558       BuiltinID == AArch64::BI__builtin_arm_stg ||
2559       BuiltinID == AArch64::BI__builtin_arm_subp) {
2560     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2561   }
2562 
2563   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2564       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2565       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2566       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2567     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2568 
2569   // Only check the valid encoding range. Any constant in this range would be
2570   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2571   // an exception for incorrect registers. This matches MSVC behavior.
2572   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2573       BuiltinID == AArch64::BI_WriteStatusReg)
2574     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2575 
2576   if (BuiltinID == AArch64::BI__getReg)
2577     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2578 
2579   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2580     return true;
2581 
2582   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2583     return true;
2584 
2585   // For intrinsics which take an immediate value as part of the instruction,
2586   // range check them here.
2587   unsigned i = 0, l = 0, u = 0;
2588   switch (BuiltinID) {
2589   default: return false;
2590   case AArch64::BI__builtin_arm_dmb:
2591   case AArch64::BI__builtin_arm_dsb:
2592   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2593   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2594   }
2595 
2596   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2597 }
2598 
2599 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2600   if (Arg->getType()->getAsPlaceholderType())
2601     return false;
2602 
2603   // The first argument needs to be a record field access.
2604   // If it is an array element access, we delay decision
2605   // to BPF backend to check whether the access is a
2606   // field access or not.
2607   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2608           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2609           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2610 }
2611 
2612 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2613                             QualType VectorTy, QualType EltTy) {
2614   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2615   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2616     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2617         << Call->getSourceRange() << VectorEltTy << EltTy;
2618     return false;
2619   }
2620   return true;
2621 }
2622 
2623 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2624   QualType ArgType = Arg->getType();
2625   if (ArgType->getAsPlaceholderType())
2626     return false;
2627 
2628   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2629   // format:
2630   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2631   //   2. <type> var;
2632   //      __builtin_preserve_type_info(var, flag);
2633   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2634       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2635     return false;
2636 
2637   // Typedef type.
2638   if (ArgType->getAs<TypedefType>())
2639     return true;
2640 
2641   // Record type or Enum type.
2642   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2643   if (const auto *RT = Ty->getAs<RecordType>()) {
2644     if (!RT->getDecl()->getDeclName().isEmpty())
2645       return true;
2646   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2647     if (!ET->getDecl()->getDeclName().isEmpty())
2648       return true;
2649   }
2650 
2651   return false;
2652 }
2653 
2654 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2655   QualType ArgType = Arg->getType();
2656   if (ArgType->getAsPlaceholderType())
2657     return false;
2658 
2659   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2660   // format:
2661   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2662   //                                 flag);
2663   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2664   if (!UO)
2665     return false;
2666 
2667   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2668   if (!CE)
2669     return false;
2670   if (CE->getCastKind() != CK_IntegralToPointer &&
2671       CE->getCastKind() != CK_NullToPointer)
2672     return false;
2673 
2674   // The integer must be from an EnumConstantDecl.
2675   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2676   if (!DR)
2677     return false;
2678 
2679   const EnumConstantDecl *Enumerator =
2680       dyn_cast<EnumConstantDecl>(DR->getDecl());
2681   if (!Enumerator)
2682     return false;
2683 
2684   // The type must be EnumType.
2685   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2686   const auto *ET = Ty->getAs<EnumType>();
2687   if (!ET)
2688     return false;
2689 
2690   // The enum value must be supported.
2691   for (auto *EDI : ET->getDecl()->enumerators()) {
2692     if (EDI == Enumerator)
2693       return true;
2694   }
2695 
2696   return false;
2697 }
2698 
2699 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2700                                        CallExpr *TheCall) {
2701   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2702           BuiltinID == BPF::BI__builtin_btf_type_id ||
2703           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2704           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2705          "unexpected BPF builtin");
2706 
2707   if (checkArgCount(*this, TheCall, 2))
2708     return true;
2709 
2710   // The second argument needs to be a constant int
2711   Expr *Arg = TheCall->getArg(1);
2712   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2713   diag::kind kind;
2714   if (!Value) {
2715     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2716       kind = diag::err_preserve_field_info_not_const;
2717     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2718       kind = diag::err_btf_type_id_not_const;
2719     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2720       kind = diag::err_preserve_type_info_not_const;
2721     else
2722       kind = diag::err_preserve_enum_value_not_const;
2723     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2724     return true;
2725   }
2726 
2727   // The first argument
2728   Arg = TheCall->getArg(0);
2729   bool InvalidArg = false;
2730   bool ReturnUnsignedInt = true;
2731   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2732     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2733       InvalidArg = true;
2734       kind = diag::err_preserve_field_info_not_field;
2735     }
2736   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2737     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2738       InvalidArg = true;
2739       kind = diag::err_preserve_type_info_invalid;
2740     }
2741   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2742     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2743       InvalidArg = true;
2744       kind = diag::err_preserve_enum_value_invalid;
2745     }
2746     ReturnUnsignedInt = false;
2747   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2748     ReturnUnsignedInt = false;
2749   }
2750 
2751   if (InvalidArg) {
2752     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2753     return true;
2754   }
2755 
2756   if (ReturnUnsignedInt)
2757     TheCall->setType(Context.UnsignedIntTy);
2758   else
2759     TheCall->setType(Context.UnsignedLongTy);
2760   return false;
2761 }
2762 
2763 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2764   struct ArgInfo {
2765     uint8_t OpNum;
2766     bool IsSigned;
2767     uint8_t BitWidth;
2768     uint8_t Align;
2769   };
2770   struct BuiltinInfo {
2771     unsigned BuiltinID;
2772     ArgInfo Infos[2];
2773   };
2774 
2775   static BuiltinInfo Infos[] = {
2776     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2777     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2778     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2779     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2780     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2781     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2782     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2783     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2784     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2785     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2786     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2787 
2788     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2791     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2792     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2793     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2797     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2799 
2800     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2845     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2848     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2849     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2851     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2852                                                       {{ 1, false, 6,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2860                                                       {{ 1, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2867                                                        { 2, false, 5,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2869                                                        { 2, false, 6,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2871                                                        { 3, false, 5,  0 }} },
2872     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2873                                                        { 3, false, 6,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2882     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2890                                                       {{ 2, false, 4,  0 },
2891                                                        { 3, false, 5,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2893                                                       {{ 2, false, 4,  0 },
2894                                                        { 3, false, 5,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2896                                                       {{ 2, false, 4,  0 },
2897                                                        { 3, false, 5,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2899                                                       {{ 2, false, 4,  0 },
2900                                                        { 3, false, 5,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2905     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2911     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2912                                                        { 2, false, 5,  0 }} },
2913     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2914                                                        { 2, false, 6,  0 }} },
2915     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2916     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2917     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2918     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2919     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2921     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2922     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2923     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2924                                                       {{ 1, false, 4,  0 }} },
2925     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2926     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2927                                                       {{ 1, false, 4,  0 }} },
2928     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2929     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2930     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2931     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2932     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2933     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2934     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2936     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2937     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2938     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2939     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2940     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2941     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2942     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2943     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2944     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2945     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2946     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2947     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2948                                                       {{ 3, false, 1,  0 }} },
2949     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2950     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2951     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2952     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2953                                                       {{ 3, false, 1,  0 }} },
2954     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2955     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2956     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2957     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2958                                                       {{ 3, false, 1,  0 }} },
2959   };
2960 
2961   // Use a dynamically initialized static to sort the table exactly once on
2962   // first run.
2963   static const bool SortOnce =
2964       (llvm::sort(Infos,
2965                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2966                    return LHS.BuiltinID < RHS.BuiltinID;
2967                  }),
2968        true);
2969   (void)SortOnce;
2970 
2971   const BuiltinInfo *F = llvm::partition_point(
2972       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2973   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2974     return false;
2975 
2976   bool Error = false;
2977 
2978   for (const ArgInfo &A : F->Infos) {
2979     // Ignore empty ArgInfo elements.
2980     if (A.BitWidth == 0)
2981       continue;
2982 
2983     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2984     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2985     if (!A.Align) {
2986       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2987     } else {
2988       unsigned M = 1 << A.Align;
2989       Min *= M;
2990       Max *= M;
2991       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2992                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2993     }
2994   }
2995   return Error;
2996 }
2997 
2998 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2999                                            CallExpr *TheCall) {
3000   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3001 }
3002 
3003 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3004                                         unsigned BuiltinID, CallExpr *TheCall) {
3005   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3006          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3007 }
3008 
3009 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3010                                CallExpr *TheCall) {
3011 
3012   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3013       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3014     if (!TI.hasFeature("dsp"))
3015       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3016   }
3017 
3018   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3019       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3020     if (!TI.hasFeature("dspr2"))
3021       return Diag(TheCall->getBeginLoc(),
3022                   diag::err_mips_builtin_requires_dspr2);
3023   }
3024 
3025   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3026       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3027     if (!TI.hasFeature("msa"))
3028       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3029   }
3030 
3031   return false;
3032 }
3033 
3034 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3035 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3036 // ordering for DSP is unspecified. MSA is ordered by the data format used
3037 // by the underlying instruction i.e., df/m, df/n and then by size.
3038 //
3039 // FIXME: The size tests here should instead be tablegen'd along with the
3040 //        definitions from include/clang/Basic/BuiltinsMips.def.
3041 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3042 //        be too.
3043 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3044   unsigned i = 0, l = 0, u = 0, m = 0;
3045   switch (BuiltinID) {
3046   default: return false;
3047   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3048   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3049   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3050   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3051   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3052   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3053   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3054   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3055   // df/m field.
3056   // These intrinsics take an unsigned 3 bit immediate.
3057   case Mips::BI__builtin_msa_bclri_b:
3058   case Mips::BI__builtin_msa_bnegi_b:
3059   case Mips::BI__builtin_msa_bseti_b:
3060   case Mips::BI__builtin_msa_sat_s_b:
3061   case Mips::BI__builtin_msa_sat_u_b:
3062   case Mips::BI__builtin_msa_slli_b:
3063   case Mips::BI__builtin_msa_srai_b:
3064   case Mips::BI__builtin_msa_srari_b:
3065   case Mips::BI__builtin_msa_srli_b:
3066   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3067   case Mips::BI__builtin_msa_binsli_b:
3068   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3069   // These intrinsics take an unsigned 4 bit immediate.
3070   case Mips::BI__builtin_msa_bclri_h:
3071   case Mips::BI__builtin_msa_bnegi_h:
3072   case Mips::BI__builtin_msa_bseti_h:
3073   case Mips::BI__builtin_msa_sat_s_h:
3074   case Mips::BI__builtin_msa_sat_u_h:
3075   case Mips::BI__builtin_msa_slli_h:
3076   case Mips::BI__builtin_msa_srai_h:
3077   case Mips::BI__builtin_msa_srari_h:
3078   case Mips::BI__builtin_msa_srli_h:
3079   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3080   case Mips::BI__builtin_msa_binsli_h:
3081   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3082   // These intrinsics take an unsigned 5 bit immediate.
3083   // The first block of intrinsics actually have an unsigned 5 bit field,
3084   // not a df/n field.
3085   case Mips::BI__builtin_msa_cfcmsa:
3086   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3087   case Mips::BI__builtin_msa_clei_u_b:
3088   case Mips::BI__builtin_msa_clei_u_h:
3089   case Mips::BI__builtin_msa_clei_u_w:
3090   case Mips::BI__builtin_msa_clei_u_d:
3091   case Mips::BI__builtin_msa_clti_u_b:
3092   case Mips::BI__builtin_msa_clti_u_h:
3093   case Mips::BI__builtin_msa_clti_u_w:
3094   case Mips::BI__builtin_msa_clti_u_d:
3095   case Mips::BI__builtin_msa_maxi_u_b:
3096   case Mips::BI__builtin_msa_maxi_u_h:
3097   case Mips::BI__builtin_msa_maxi_u_w:
3098   case Mips::BI__builtin_msa_maxi_u_d:
3099   case Mips::BI__builtin_msa_mini_u_b:
3100   case Mips::BI__builtin_msa_mini_u_h:
3101   case Mips::BI__builtin_msa_mini_u_w:
3102   case Mips::BI__builtin_msa_mini_u_d:
3103   case Mips::BI__builtin_msa_addvi_b:
3104   case Mips::BI__builtin_msa_addvi_h:
3105   case Mips::BI__builtin_msa_addvi_w:
3106   case Mips::BI__builtin_msa_addvi_d:
3107   case Mips::BI__builtin_msa_bclri_w:
3108   case Mips::BI__builtin_msa_bnegi_w:
3109   case Mips::BI__builtin_msa_bseti_w:
3110   case Mips::BI__builtin_msa_sat_s_w:
3111   case Mips::BI__builtin_msa_sat_u_w:
3112   case Mips::BI__builtin_msa_slli_w:
3113   case Mips::BI__builtin_msa_srai_w:
3114   case Mips::BI__builtin_msa_srari_w:
3115   case Mips::BI__builtin_msa_srli_w:
3116   case Mips::BI__builtin_msa_srlri_w:
3117   case Mips::BI__builtin_msa_subvi_b:
3118   case Mips::BI__builtin_msa_subvi_h:
3119   case Mips::BI__builtin_msa_subvi_w:
3120   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3121   case Mips::BI__builtin_msa_binsli_w:
3122   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3123   // These intrinsics take an unsigned 6 bit immediate.
3124   case Mips::BI__builtin_msa_bclri_d:
3125   case Mips::BI__builtin_msa_bnegi_d:
3126   case Mips::BI__builtin_msa_bseti_d:
3127   case Mips::BI__builtin_msa_sat_s_d:
3128   case Mips::BI__builtin_msa_sat_u_d:
3129   case Mips::BI__builtin_msa_slli_d:
3130   case Mips::BI__builtin_msa_srai_d:
3131   case Mips::BI__builtin_msa_srari_d:
3132   case Mips::BI__builtin_msa_srli_d:
3133   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3134   case Mips::BI__builtin_msa_binsli_d:
3135   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3136   // These intrinsics take a signed 5 bit immediate.
3137   case Mips::BI__builtin_msa_ceqi_b:
3138   case Mips::BI__builtin_msa_ceqi_h:
3139   case Mips::BI__builtin_msa_ceqi_w:
3140   case Mips::BI__builtin_msa_ceqi_d:
3141   case Mips::BI__builtin_msa_clti_s_b:
3142   case Mips::BI__builtin_msa_clti_s_h:
3143   case Mips::BI__builtin_msa_clti_s_w:
3144   case Mips::BI__builtin_msa_clti_s_d:
3145   case Mips::BI__builtin_msa_clei_s_b:
3146   case Mips::BI__builtin_msa_clei_s_h:
3147   case Mips::BI__builtin_msa_clei_s_w:
3148   case Mips::BI__builtin_msa_clei_s_d:
3149   case Mips::BI__builtin_msa_maxi_s_b:
3150   case Mips::BI__builtin_msa_maxi_s_h:
3151   case Mips::BI__builtin_msa_maxi_s_w:
3152   case Mips::BI__builtin_msa_maxi_s_d:
3153   case Mips::BI__builtin_msa_mini_s_b:
3154   case Mips::BI__builtin_msa_mini_s_h:
3155   case Mips::BI__builtin_msa_mini_s_w:
3156   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3157   // These intrinsics take an unsigned 8 bit immediate.
3158   case Mips::BI__builtin_msa_andi_b:
3159   case Mips::BI__builtin_msa_nori_b:
3160   case Mips::BI__builtin_msa_ori_b:
3161   case Mips::BI__builtin_msa_shf_b:
3162   case Mips::BI__builtin_msa_shf_h:
3163   case Mips::BI__builtin_msa_shf_w:
3164   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3165   case Mips::BI__builtin_msa_bseli_b:
3166   case Mips::BI__builtin_msa_bmnzi_b:
3167   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3168   // df/n format
3169   // These intrinsics take an unsigned 4 bit immediate.
3170   case Mips::BI__builtin_msa_copy_s_b:
3171   case Mips::BI__builtin_msa_copy_u_b:
3172   case Mips::BI__builtin_msa_insve_b:
3173   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3174   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3175   // These intrinsics take an unsigned 3 bit immediate.
3176   case Mips::BI__builtin_msa_copy_s_h:
3177   case Mips::BI__builtin_msa_copy_u_h:
3178   case Mips::BI__builtin_msa_insve_h:
3179   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3180   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3181   // These intrinsics take an unsigned 2 bit immediate.
3182   case Mips::BI__builtin_msa_copy_s_w:
3183   case Mips::BI__builtin_msa_copy_u_w:
3184   case Mips::BI__builtin_msa_insve_w:
3185   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3186   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3187   // These intrinsics take an unsigned 1 bit immediate.
3188   case Mips::BI__builtin_msa_copy_s_d:
3189   case Mips::BI__builtin_msa_copy_u_d:
3190   case Mips::BI__builtin_msa_insve_d:
3191   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3192   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3193   // Memory offsets and immediate loads.
3194   // These intrinsics take a signed 10 bit immediate.
3195   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3196   case Mips::BI__builtin_msa_ldi_h:
3197   case Mips::BI__builtin_msa_ldi_w:
3198   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3199   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3200   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3201   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3202   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3203   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3204   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3205   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3206   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3207   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3208   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3209   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3210   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3211   }
3212 
3213   if (!m)
3214     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3215 
3216   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3217          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3218 }
3219 
3220 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3221 /// advancing the pointer over the consumed characters. The decoded type is
3222 /// returned. If the decoded type represents a constant integer with a
3223 /// constraint on its value then Mask is set to that value. The type descriptors
3224 /// used in Str are specific to PPC MMA builtins and are documented in the file
3225 /// defining the PPC builtins.
3226 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3227                                         unsigned &Mask) {
3228   bool RequireICE = false;
3229   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3230   switch (*Str++) {
3231   case 'V':
3232     return Context.getVectorType(Context.UnsignedCharTy, 16,
3233                                  VectorType::VectorKind::AltiVecVector);
3234   case 'i': {
3235     char *End;
3236     unsigned size = strtoul(Str, &End, 10);
3237     assert(End != Str && "Missing constant parameter constraint");
3238     Str = End;
3239     Mask = size;
3240     return Context.IntTy;
3241   }
3242   case 'W': {
3243     char *End;
3244     unsigned size = strtoul(Str, &End, 10);
3245     assert(End != Str && "Missing PowerPC MMA type size");
3246     Str = End;
3247     QualType Type;
3248     switch (size) {
3249   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3250     case size: Type = Context.Id##Ty; break;
3251   #include "clang/Basic/PPCTypes.def"
3252     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3253     }
3254     bool CheckVectorArgs = false;
3255     while (!CheckVectorArgs) {
3256       switch (*Str++) {
3257       case '*':
3258         Type = Context.getPointerType(Type);
3259         break;
3260       case 'C':
3261         Type = Type.withConst();
3262         break;
3263       default:
3264         CheckVectorArgs = true;
3265         --Str;
3266         break;
3267       }
3268     }
3269     return Type;
3270   }
3271   default:
3272     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3273   }
3274 }
3275 
3276 static bool isPPC_64Builtin(unsigned BuiltinID) {
3277   // These builtins only work on PPC 64bit targets.
3278   switch (BuiltinID) {
3279   case PPC::BI__builtin_divde:
3280   case PPC::BI__builtin_divdeu:
3281   case PPC::BI__builtin_bpermd:
3282   case PPC::BI__builtin_ppc_ldarx:
3283   case PPC::BI__builtin_ppc_stdcx:
3284   case PPC::BI__builtin_ppc_tdw:
3285   case PPC::BI__builtin_ppc_trapd:
3286   case PPC::BI__builtin_ppc_cmpeqb:
3287   case PPC::BI__builtin_ppc_setb:
3288   case PPC::BI__builtin_ppc_mulhd:
3289   case PPC::BI__builtin_ppc_mulhdu:
3290   case PPC::BI__builtin_ppc_maddhd:
3291   case PPC::BI__builtin_ppc_maddhdu:
3292   case PPC::BI__builtin_ppc_maddld:
3293   case PPC::BI__builtin_ppc_load8r:
3294   case PPC::BI__builtin_ppc_store8r:
3295   case PPC::BI__builtin_ppc_insert_exp:
3296   case PPC::BI__builtin_ppc_extract_sig:
3297   case PPC::BI__builtin_ppc_addex:
3298     return true;
3299   }
3300   return false;
3301 }
3302 
3303 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3304                              StringRef FeatureToCheck, unsigned DiagID,
3305                              StringRef DiagArg = "") {
3306   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3307     return false;
3308 
3309   if (DiagArg.empty())
3310     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3311   else
3312     S.Diag(TheCall->getBeginLoc(), DiagID)
3313         << DiagArg << TheCall->getSourceRange();
3314 
3315   return true;
3316 }
3317 
3318 /// Returns true if the argument consists of one contiguous run of 1s with any
3319 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3320 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3321 /// since all 1s are not contiguous.
3322 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3323   llvm::APSInt Result;
3324   // We can't check the value of a dependent argument.
3325   Expr *Arg = TheCall->getArg(ArgNum);
3326   if (Arg->isTypeDependent() || Arg->isValueDependent())
3327     return false;
3328 
3329   // Check constant-ness first.
3330   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3331     return true;
3332 
3333   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3334   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3335     return false;
3336 
3337   return Diag(TheCall->getBeginLoc(),
3338               diag::err_argument_not_contiguous_bit_field)
3339          << ArgNum << Arg->getSourceRange();
3340 }
3341 
3342 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3343                                        CallExpr *TheCall) {
3344   unsigned i = 0, l = 0, u = 0;
3345   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3346   llvm::APSInt Result;
3347 
3348   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3349     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3350            << TheCall->getSourceRange();
3351 
3352   switch (BuiltinID) {
3353   default: return false;
3354   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3355   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3356     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3357            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3358   case PPC::BI__builtin_altivec_dss:
3359     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3360   case PPC::BI__builtin_tbegin:
3361   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3362   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3363   case PPC::BI__builtin_tabortwc:
3364   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3365   case PPC::BI__builtin_tabortwci:
3366   case PPC::BI__builtin_tabortdci:
3367     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3368            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3369   case PPC::BI__builtin_altivec_dst:
3370   case PPC::BI__builtin_altivec_dstt:
3371   case PPC::BI__builtin_altivec_dstst:
3372   case PPC::BI__builtin_altivec_dststt:
3373     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3374   case PPC::BI__builtin_vsx_xxpermdi:
3375   case PPC::BI__builtin_vsx_xxsldwi:
3376     return SemaBuiltinVSX(TheCall);
3377   case PPC::BI__builtin_divwe:
3378   case PPC::BI__builtin_divweu:
3379   case PPC::BI__builtin_divde:
3380   case PPC::BI__builtin_divdeu:
3381     return SemaFeatureCheck(*this, TheCall, "extdiv",
3382                             diag::err_ppc_builtin_only_on_arch, "7");
3383   case PPC::BI__builtin_bpermd:
3384     return SemaFeatureCheck(*this, TheCall, "bpermd",
3385                             diag::err_ppc_builtin_only_on_arch, "7");
3386   case PPC::BI__builtin_unpack_vector_int128:
3387     return SemaFeatureCheck(*this, TheCall, "vsx",
3388                             diag::err_ppc_builtin_only_on_arch, "7") ||
3389            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3390   case PPC::BI__builtin_pack_vector_int128:
3391     return SemaFeatureCheck(*this, TheCall, "vsx",
3392                             diag::err_ppc_builtin_only_on_arch, "7");
3393   case PPC::BI__builtin_altivec_vgnb:
3394      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3395   case PPC::BI__builtin_altivec_vec_replace_elt:
3396   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3397     QualType VecTy = TheCall->getArg(0)->getType();
3398     QualType EltTy = TheCall->getArg(1)->getType();
3399     unsigned Width = Context.getIntWidth(EltTy);
3400     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3401            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3402   }
3403   case PPC::BI__builtin_vsx_xxeval:
3404      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3405   case PPC::BI__builtin_altivec_vsldbi:
3406      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3407   case PPC::BI__builtin_altivec_vsrdbi:
3408      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3409   case PPC::BI__builtin_vsx_xxpermx:
3410      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3411   case PPC::BI__builtin_ppc_tw:
3412   case PPC::BI__builtin_ppc_tdw:
3413     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3414   case PPC::BI__builtin_ppc_cmpeqb:
3415   case PPC::BI__builtin_ppc_setb:
3416   case PPC::BI__builtin_ppc_maddhd:
3417   case PPC::BI__builtin_ppc_maddhdu:
3418   case PPC::BI__builtin_ppc_maddld:
3419     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3420                             diag::err_ppc_builtin_only_on_arch, "9");
3421   case PPC::BI__builtin_ppc_cmprb:
3422     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3423                             diag::err_ppc_builtin_only_on_arch, "9") ||
3424            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3425   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3426   // be a constant that represents a contiguous bit field.
3427   case PPC::BI__builtin_ppc_rlwnm:
3428     return SemaBuiltinConstantArg(TheCall, 1, Result) ||
3429            SemaValueIsRunOfOnes(TheCall, 2);
3430   case PPC::BI__builtin_ppc_rlwimi:
3431   case PPC::BI__builtin_ppc_rldimi:
3432     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3433            SemaValueIsRunOfOnes(TheCall, 3);
3434   case PPC::BI__builtin_ppc_extract_exp:
3435   case PPC::BI__builtin_ppc_extract_sig:
3436   case PPC::BI__builtin_ppc_insert_exp:
3437     return SemaFeatureCheck(*this, TheCall, "power9-vector",
3438                             diag::err_ppc_builtin_only_on_arch, "9");
3439   case PPC::BI__builtin_ppc_addex: {
3440     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3441                          diag::err_ppc_builtin_only_on_arch, "9") ||
3442         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3443       return true;
3444     // Output warning for reserved values 1 to 3.
3445     int ArgValue =
3446         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3447     if (ArgValue != 0)
3448       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3449           << ArgValue;
3450     return false;
3451   }
3452   case PPC::BI__builtin_ppc_mtfsb0:
3453   case PPC::BI__builtin_ppc_mtfsb1:
3454     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3455   case PPC::BI__builtin_ppc_mtfsf:
3456     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3457   case PPC::BI__builtin_ppc_mtfsfi:
3458     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3459            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3460   case PPC::BI__builtin_ppc_alignx:
3461     return SemaBuiltinConstantArgPower2(TheCall, 0);
3462   case PPC::BI__builtin_ppc_rdlam:
3463     return SemaValueIsRunOfOnes(TheCall, 2);
3464   case PPC::BI__builtin_ppc_icbt:
3465   case PPC::BI__builtin_ppc_sthcx:
3466   case PPC::BI__builtin_ppc_stbcx:
3467   case PPC::BI__builtin_ppc_lharx:
3468   case PPC::BI__builtin_ppc_lbarx:
3469     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3470                             diag::err_ppc_builtin_only_on_arch, "8");
3471   case PPC::BI__builtin_vsx_ldrmb:
3472   case PPC::BI__builtin_vsx_strmb:
3473     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3474                             diag::err_ppc_builtin_only_on_arch, "8") ||
3475            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3476 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
3477   case PPC::BI__builtin_##Name: \
3478     return SemaBuiltinPPCMMACall(TheCall, Types);
3479 #include "clang/Basic/BuiltinsPPC.def"
3480   }
3481   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3482 }
3483 
3484 // Check if the given type is a non-pointer PPC MMA type. This function is used
3485 // in Sema to prevent invalid uses of restricted PPC MMA types.
3486 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3487   if (Type->isPointerType() || Type->isArrayType())
3488     return false;
3489 
3490   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3491 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3492   if (false
3493 #include "clang/Basic/PPCTypes.def"
3494      ) {
3495     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3496     return true;
3497   }
3498   return false;
3499 }
3500 
3501 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3502                                           CallExpr *TheCall) {
3503   // position of memory order and scope arguments in the builtin
3504   unsigned OrderIndex, ScopeIndex;
3505   switch (BuiltinID) {
3506   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3507   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3508   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3509   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3510     OrderIndex = 2;
3511     ScopeIndex = 3;
3512     break;
3513   case AMDGPU::BI__builtin_amdgcn_fence:
3514     OrderIndex = 0;
3515     ScopeIndex = 1;
3516     break;
3517   default:
3518     return false;
3519   }
3520 
3521   ExprResult Arg = TheCall->getArg(OrderIndex);
3522   auto ArgExpr = Arg.get();
3523   Expr::EvalResult ArgResult;
3524 
3525   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3526     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3527            << ArgExpr->getType();
3528   auto Ord = ArgResult.Val.getInt().getZExtValue();
3529 
3530   // Check valididty of memory ordering as per C11 / C++11's memody model.
3531   // Only fence needs check. Atomic dec/inc allow all memory orders.
3532   if (!llvm::isValidAtomicOrderingCABI(Ord))
3533     return Diag(ArgExpr->getBeginLoc(),
3534                 diag::warn_atomic_op_has_invalid_memory_order)
3535            << ArgExpr->getSourceRange();
3536   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3537   case llvm::AtomicOrderingCABI::relaxed:
3538   case llvm::AtomicOrderingCABI::consume:
3539     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3540       return Diag(ArgExpr->getBeginLoc(),
3541                   diag::warn_atomic_op_has_invalid_memory_order)
3542              << ArgExpr->getSourceRange();
3543     break;
3544   case llvm::AtomicOrderingCABI::acquire:
3545   case llvm::AtomicOrderingCABI::release:
3546   case llvm::AtomicOrderingCABI::acq_rel:
3547   case llvm::AtomicOrderingCABI::seq_cst:
3548     break;
3549   }
3550 
3551   Arg = TheCall->getArg(ScopeIndex);
3552   ArgExpr = Arg.get();
3553   Expr::EvalResult ArgResult1;
3554   // Check that sync scope is a constant literal
3555   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3556     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3557            << ArgExpr->getType();
3558 
3559   return false;
3560 }
3561 
3562 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3563   llvm::APSInt Result;
3564 
3565   // We can't check the value of a dependent argument.
3566   Expr *Arg = TheCall->getArg(ArgNum);
3567   if (Arg->isTypeDependent() || Arg->isValueDependent())
3568     return false;
3569 
3570   // Check constant-ness first.
3571   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3572     return true;
3573 
3574   int64_t Val = Result.getSExtValue();
3575   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3576     return false;
3577 
3578   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3579          << Arg->getSourceRange();
3580 }
3581 
3582 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3583                                          unsigned BuiltinID,
3584                                          CallExpr *TheCall) {
3585   // CodeGenFunction can also detect this, but this gives a better error
3586   // message.
3587   bool FeatureMissing = false;
3588   SmallVector<StringRef> ReqFeatures;
3589   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3590   Features.split(ReqFeatures, ',');
3591 
3592   // Check if each required feature is included
3593   for (StringRef F : ReqFeatures) {
3594     if (TI.hasFeature(F))
3595       continue;
3596 
3597     // If the feature is 64bit, alter the string so it will print better in
3598     // the diagnostic.
3599     if (F == "64bit")
3600       F = "RV64";
3601 
3602     // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3603     F.consume_front("experimental-");
3604     std::string FeatureStr = F.str();
3605     FeatureStr[0] = std::toupper(FeatureStr[0]);
3606 
3607     // Error message
3608     FeatureMissing = true;
3609     Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
3610         << TheCall->getSourceRange() << StringRef(FeatureStr);
3611   }
3612 
3613   if (FeatureMissing)
3614     return true;
3615 
3616   switch (BuiltinID) {
3617   case RISCV::BI__builtin_rvv_vsetvli:
3618     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
3619            CheckRISCVLMUL(TheCall, 2);
3620   case RISCV::BI__builtin_rvv_vsetvlimax:
3621     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
3622            CheckRISCVLMUL(TheCall, 1);
3623   case RISCV::BI__builtin_rvv_vget_v_i8m2_i8m1:
3624   case RISCV::BI__builtin_rvv_vget_v_i16m2_i16m1:
3625   case RISCV::BI__builtin_rvv_vget_v_i32m2_i32m1:
3626   case RISCV::BI__builtin_rvv_vget_v_i64m2_i64m1:
3627   case RISCV::BI__builtin_rvv_vget_v_f32m2_f32m1:
3628   case RISCV::BI__builtin_rvv_vget_v_f64m2_f64m1:
3629   case RISCV::BI__builtin_rvv_vget_v_u8m2_u8m1:
3630   case RISCV::BI__builtin_rvv_vget_v_u16m2_u16m1:
3631   case RISCV::BI__builtin_rvv_vget_v_u32m2_u32m1:
3632   case RISCV::BI__builtin_rvv_vget_v_u64m2_u64m1:
3633   case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m2:
3634   case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m2:
3635   case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m2:
3636   case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m2:
3637   case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m2:
3638   case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m2:
3639   case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m2:
3640   case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m2:
3641   case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m2:
3642   case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m2:
3643   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m4:
3644   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m4:
3645   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m4:
3646   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m4:
3647   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m4:
3648   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m4:
3649   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m4:
3650   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m4:
3651   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m4:
3652   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m4:
3653     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3654   case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m1:
3655   case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m1:
3656   case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m1:
3657   case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m1:
3658   case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m1:
3659   case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m1:
3660   case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m1:
3661   case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m1:
3662   case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m1:
3663   case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m1:
3664   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m2:
3665   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m2:
3666   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m2:
3667   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m2:
3668   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m2:
3669   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m2:
3670   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m2:
3671   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m2:
3672   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m2:
3673   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m2:
3674     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3675   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m1:
3676   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m1:
3677   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m1:
3678   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m1:
3679   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m1:
3680   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m1:
3681   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m1:
3682   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m1:
3683   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m1:
3684   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m1:
3685     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3686   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m2:
3687   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m2:
3688   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m2:
3689   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m2:
3690   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m2:
3691   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m2:
3692   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m2:
3693   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m2:
3694   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m2:
3695   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m2:
3696   case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m4:
3697   case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m4:
3698   case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m4:
3699   case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m4:
3700   case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m4:
3701   case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m4:
3702   case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m4:
3703   case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m4:
3704   case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m4:
3705   case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m4:
3706   case RISCV::BI__builtin_rvv_vset_v_i8m4_i8m8:
3707   case RISCV::BI__builtin_rvv_vset_v_i16m4_i16m8:
3708   case RISCV::BI__builtin_rvv_vset_v_i32m4_i32m8:
3709   case RISCV::BI__builtin_rvv_vset_v_i64m4_i64m8:
3710   case RISCV::BI__builtin_rvv_vset_v_f32m4_f32m8:
3711   case RISCV::BI__builtin_rvv_vset_v_f64m4_f64m8:
3712   case RISCV::BI__builtin_rvv_vset_v_u8m4_u8m8:
3713   case RISCV::BI__builtin_rvv_vset_v_u16m4_u16m8:
3714   case RISCV::BI__builtin_rvv_vset_v_u32m4_u32m8:
3715   case RISCV::BI__builtin_rvv_vset_v_u64m4_u64m8:
3716     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3717   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m4:
3718   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m4:
3719   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m4:
3720   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m4:
3721   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m4:
3722   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m4:
3723   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m4:
3724   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m4:
3725   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m4:
3726   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m4:
3727   case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m8:
3728   case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m8:
3729   case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m8:
3730   case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m8:
3731   case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m8:
3732   case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m8:
3733   case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m8:
3734   case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m8:
3735   case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m8:
3736   case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m8:
3737     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3738   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m8:
3739   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m8:
3740   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m8:
3741   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m8:
3742   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m8:
3743   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m8:
3744   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m8:
3745   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m8:
3746   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m8:
3747   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m8:
3748     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3749   }
3750 
3751   return false;
3752 }
3753 
3754 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3755                                            CallExpr *TheCall) {
3756   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3757     Expr *Arg = TheCall->getArg(0);
3758     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3759       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3760         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3761                << Arg->getSourceRange();
3762   }
3763 
3764   // For intrinsics which take an immediate value as part of the instruction,
3765   // range check them here.
3766   unsigned i = 0, l = 0, u = 0;
3767   switch (BuiltinID) {
3768   default: return false;
3769   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3770   case SystemZ::BI__builtin_s390_verimb:
3771   case SystemZ::BI__builtin_s390_verimh:
3772   case SystemZ::BI__builtin_s390_verimf:
3773   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3774   case SystemZ::BI__builtin_s390_vfaeb:
3775   case SystemZ::BI__builtin_s390_vfaeh:
3776   case SystemZ::BI__builtin_s390_vfaef:
3777   case SystemZ::BI__builtin_s390_vfaebs:
3778   case SystemZ::BI__builtin_s390_vfaehs:
3779   case SystemZ::BI__builtin_s390_vfaefs:
3780   case SystemZ::BI__builtin_s390_vfaezb:
3781   case SystemZ::BI__builtin_s390_vfaezh:
3782   case SystemZ::BI__builtin_s390_vfaezf:
3783   case SystemZ::BI__builtin_s390_vfaezbs:
3784   case SystemZ::BI__builtin_s390_vfaezhs:
3785   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3786   case SystemZ::BI__builtin_s390_vfisb:
3787   case SystemZ::BI__builtin_s390_vfidb:
3788     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3789            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3790   case SystemZ::BI__builtin_s390_vftcisb:
3791   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3792   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3793   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3794   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3795   case SystemZ::BI__builtin_s390_vstrcb:
3796   case SystemZ::BI__builtin_s390_vstrch:
3797   case SystemZ::BI__builtin_s390_vstrcf:
3798   case SystemZ::BI__builtin_s390_vstrczb:
3799   case SystemZ::BI__builtin_s390_vstrczh:
3800   case SystemZ::BI__builtin_s390_vstrczf:
3801   case SystemZ::BI__builtin_s390_vstrcbs:
3802   case SystemZ::BI__builtin_s390_vstrchs:
3803   case SystemZ::BI__builtin_s390_vstrcfs:
3804   case SystemZ::BI__builtin_s390_vstrczbs:
3805   case SystemZ::BI__builtin_s390_vstrczhs:
3806   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3807   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3808   case SystemZ::BI__builtin_s390_vfminsb:
3809   case SystemZ::BI__builtin_s390_vfmaxsb:
3810   case SystemZ::BI__builtin_s390_vfmindb:
3811   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3812   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3813   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3814   case SystemZ::BI__builtin_s390_vclfnhs:
3815   case SystemZ::BI__builtin_s390_vclfnls:
3816   case SystemZ::BI__builtin_s390_vcfn:
3817   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
3818   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
3819   }
3820   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3821 }
3822 
3823 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3824 /// This checks that the target supports __builtin_cpu_supports and
3825 /// that the string argument is constant and valid.
3826 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3827                                    CallExpr *TheCall) {
3828   Expr *Arg = TheCall->getArg(0);
3829 
3830   // Check if the argument is a string literal.
3831   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3832     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3833            << Arg->getSourceRange();
3834 
3835   // Check the contents of the string.
3836   StringRef Feature =
3837       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3838   if (!TI.validateCpuSupports(Feature))
3839     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3840            << Arg->getSourceRange();
3841   return false;
3842 }
3843 
3844 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3845 /// This checks that the target supports __builtin_cpu_is and
3846 /// that the string argument is constant and valid.
3847 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3848   Expr *Arg = TheCall->getArg(0);
3849 
3850   // Check if the argument is a string literal.
3851   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3852     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3853            << Arg->getSourceRange();
3854 
3855   // Check the contents of the string.
3856   StringRef Feature =
3857       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3858   if (!TI.validateCpuIs(Feature))
3859     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3860            << Arg->getSourceRange();
3861   return false;
3862 }
3863 
3864 // Check if the rounding mode is legal.
3865 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3866   // Indicates if this instruction has rounding control or just SAE.
3867   bool HasRC = false;
3868 
3869   unsigned ArgNum = 0;
3870   switch (BuiltinID) {
3871   default:
3872     return false;
3873   case X86::BI__builtin_ia32_vcvttsd2si32:
3874   case X86::BI__builtin_ia32_vcvttsd2si64:
3875   case X86::BI__builtin_ia32_vcvttsd2usi32:
3876   case X86::BI__builtin_ia32_vcvttsd2usi64:
3877   case X86::BI__builtin_ia32_vcvttss2si32:
3878   case X86::BI__builtin_ia32_vcvttss2si64:
3879   case X86::BI__builtin_ia32_vcvttss2usi32:
3880   case X86::BI__builtin_ia32_vcvttss2usi64:
3881     ArgNum = 1;
3882     break;
3883   case X86::BI__builtin_ia32_maxpd512:
3884   case X86::BI__builtin_ia32_maxps512:
3885   case X86::BI__builtin_ia32_minpd512:
3886   case X86::BI__builtin_ia32_minps512:
3887   case X86::BI__builtin_ia32_maxph512:
3888   case X86::BI__builtin_ia32_minph512:
3889     ArgNum = 2;
3890     break;
3891   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3892   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3893   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3894   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3895   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3896   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3897   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3898   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3899   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3900   case X86::BI__builtin_ia32_exp2pd_mask:
3901   case X86::BI__builtin_ia32_exp2ps_mask:
3902   case X86::BI__builtin_ia32_getexppd512_mask:
3903   case X86::BI__builtin_ia32_getexpps512_mask:
3904   case X86::BI__builtin_ia32_rcp28pd_mask:
3905   case X86::BI__builtin_ia32_rcp28ps_mask:
3906   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3907   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3908   case X86::BI__builtin_ia32_vcomisd:
3909   case X86::BI__builtin_ia32_vcomiss:
3910   case X86::BI__builtin_ia32_vcomish:
3911   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3912     ArgNum = 3;
3913     break;
3914   case X86::BI__builtin_ia32_cmppd512_mask:
3915   case X86::BI__builtin_ia32_cmpps512_mask:
3916   case X86::BI__builtin_ia32_cmpsd_mask:
3917   case X86::BI__builtin_ia32_cmpss_mask:
3918   case X86::BI__builtin_ia32_cmpsh_mask:
3919   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3920   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3921   case X86::BI__builtin_ia32_getexpss128_round_mask:
3922   case X86::BI__builtin_ia32_getmantpd512_mask:
3923   case X86::BI__builtin_ia32_getmantps512_mask:
3924   case X86::BI__builtin_ia32_maxsd_round_mask:
3925   case X86::BI__builtin_ia32_maxss_round_mask:
3926   case X86::BI__builtin_ia32_maxsh_round_mask:
3927   case X86::BI__builtin_ia32_minsd_round_mask:
3928   case X86::BI__builtin_ia32_minss_round_mask:
3929   case X86::BI__builtin_ia32_minsh_round_mask:
3930   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3931   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3932   case X86::BI__builtin_ia32_reducepd512_mask:
3933   case X86::BI__builtin_ia32_reduceps512_mask:
3934   case X86::BI__builtin_ia32_rndscalepd_mask:
3935   case X86::BI__builtin_ia32_rndscaleps_mask:
3936   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3937   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3938     ArgNum = 4;
3939     break;
3940   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3941   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3942   case X86::BI__builtin_ia32_fixupimmps512_mask:
3943   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3944   case X86::BI__builtin_ia32_fixupimmsd_mask:
3945   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3946   case X86::BI__builtin_ia32_fixupimmss_mask:
3947   case X86::BI__builtin_ia32_fixupimmss_maskz:
3948   case X86::BI__builtin_ia32_getmantsd_round_mask:
3949   case X86::BI__builtin_ia32_getmantss_round_mask:
3950   case X86::BI__builtin_ia32_rangepd512_mask:
3951   case X86::BI__builtin_ia32_rangeps512_mask:
3952   case X86::BI__builtin_ia32_rangesd128_round_mask:
3953   case X86::BI__builtin_ia32_rangess128_round_mask:
3954   case X86::BI__builtin_ia32_reducesd_mask:
3955   case X86::BI__builtin_ia32_reducess_mask:
3956   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3957   case X86::BI__builtin_ia32_rndscaless_round_mask:
3958     ArgNum = 5;
3959     break;
3960   case X86::BI__builtin_ia32_vcvtsd2si64:
3961   case X86::BI__builtin_ia32_vcvtsd2si32:
3962   case X86::BI__builtin_ia32_vcvtsd2usi32:
3963   case X86::BI__builtin_ia32_vcvtsd2usi64:
3964   case X86::BI__builtin_ia32_vcvtss2si32:
3965   case X86::BI__builtin_ia32_vcvtss2si64:
3966   case X86::BI__builtin_ia32_vcvtss2usi32:
3967   case X86::BI__builtin_ia32_vcvtss2usi64:
3968   case X86::BI__builtin_ia32_sqrtpd512:
3969   case X86::BI__builtin_ia32_sqrtps512:
3970     ArgNum = 1;
3971     HasRC = true;
3972     break;
3973   case X86::BI__builtin_ia32_addph512:
3974   case X86::BI__builtin_ia32_divph512:
3975   case X86::BI__builtin_ia32_mulph512:
3976   case X86::BI__builtin_ia32_subph512:
3977   case X86::BI__builtin_ia32_addpd512:
3978   case X86::BI__builtin_ia32_addps512:
3979   case X86::BI__builtin_ia32_divpd512:
3980   case X86::BI__builtin_ia32_divps512:
3981   case X86::BI__builtin_ia32_mulpd512:
3982   case X86::BI__builtin_ia32_mulps512:
3983   case X86::BI__builtin_ia32_subpd512:
3984   case X86::BI__builtin_ia32_subps512:
3985   case X86::BI__builtin_ia32_cvtsi2sd64:
3986   case X86::BI__builtin_ia32_cvtsi2ss32:
3987   case X86::BI__builtin_ia32_cvtsi2ss64:
3988   case X86::BI__builtin_ia32_cvtusi2sd64:
3989   case X86::BI__builtin_ia32_cvtusi2ss32:
3990   case X86::BI__builtin_ia32_cvtusi2ss64:
3991     ArgNum = 2;
3992     HasRC = true;
3993     break;
3994   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3995   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3996   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3997   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3998   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3999   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4000   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4001   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4002   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4003   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4004   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4005   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4006   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4007   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4008   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4009     ArgNum = 3;
4010     HasRC = true;
4011     break;
4012   case X86::BI__builtin_ia32_addsh_round_mask:
4013   case X86::BI__builtin_ia32_addss_round_mask:
4014   case X86::BI__builtin_ia32_addsd_round_mask:
4015   case X86::BI__builtin_ia32_divsh_round_mask:
4016   case X86::BI__builtin_ia32_divss_round_mask:
4017   case X86::BI__builtin_ia32_divsd_round_mask:
4018   case X86::BI__builtin_ia32_mulsh_round_mask:
4019   case X86::BI__builtin_ia32_mulss_round_mask:
4020   case X86::BI__builtin_ia32_mulsd_round_mask:
4021   case X86::BI__builtin_ia32_subsh_round_mask:
4022   case X86::BI__builtin_ia32_subss_round_mask:
4023   case X86::BI__builtin_ia32_subsd_round_mask:
4024   case X86::BI__builtin_ia32_scalefpd512_mask:
4025   case X86::BI__builtin_ia32_scalefps512_mask:
4026   case X86::BI__builtin_ia32_scalefsd_round_mask:
4027   case X86::BI__builtin_ia32_scalefss_round_mask:
4028   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4029   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4030   case X86::BI__builtin_ia32_sqrtss_round_mask:
4031   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4032   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4033   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4034   case X86::BI__builtin_ia32_vfmaddss3_mask:
4035   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4036   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4037   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4038   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4039   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4040   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4041   case X86::BI__builtin_ia32_vfmaddps512_mask:
4042   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4043   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4044   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4045   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4046   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4047   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4048   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4049   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4050   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4051   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4052   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4053     ArgNum = 4;
4054     HasRC = true;
4055     break;
4056   }
4057 
4058   llvm::APSInt Result;
4059 
4060   // We can't check the value of a dependent argument.
4061   Expr *Arg = TheCall->getArg(ArgNum);
4062   if (Arg->isTypeDependent() || Arg->isValueDependent())
4063     return false;
4064 
4065   // Check constant-ness first.
4066   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4067     return true;
4068 
4069   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4070   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4071   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4072   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4073   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4074       Result == 8/*ROUND_NO_EXC*/ ||
4075       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4076       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4077     return false;
4078 
4079   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4080          << Arg->getSourceRange();
4081 }
4082 
4083 // Check if the gather/scatter scale is legal.
4084 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4085                                              CallExpr *TheCall) {
4086   unsigned ArgNum = 0;
4087   switch (BuiltinID) {
4088   default:
4089     return false;
4090   case X86::BI__builtin_ia32_gatherpfdpd:
4091   case X86::BI__builtin_ia32_gatherpfdps:
4092   case X86::BI__builtin_ia32_gatherpfqpd:
4093   case X86::BI__builtin_ia32_gatherpfqps:
4094   case X86::BI__builtin_ia32_scatterpfdpd:
4095   case X86::BI__builtin_ia32_scatterpfdps:
4096   case X86::BI__builtin_ia32_scatterpfqpd:
4097   case X86::BI__builtin_ia32_scatterpfqps:
4098     ArgNum = 3;
4099     break;
4100   case X86::BI__builtin_ia32_gatherd_pd:
4101   case X86::BI__builtin_ia32_gatherd_pd256:
4102   case X86::BI__builtin_ia32_gatherq_pd:
4103   case X86::BI__builtin_ia32_gatherq_pd256:
4104   case X86::BI__builtin_ia32_gatherd_ps:
4105   case X86::BI__builtin_ia32_gatherd_ps256:
4106   case X86::BI__builtin_ia32_gatherq_ps:
4107   case X86::BI__builtin_ia32_gatherq_ps256:
4108   case X86::BI__builtin_ia32_gatherd_q:
4109   case X86::BI__builtin_ia32_gatherd_q256:
4110   case X86::BI__builtin_ia32_gatherq_q:
4111   case X86::BI__builtin_ia32_gatherq_q256:
4112   case X86::BI__builtin_ia32_gatherd_d:
4113   case X86::BI__builtin_ia32_gatherd_d256:
4114   case X86::BI__builtin_ia32_gatherq_d:
4115   case X86::BI__builtin_ia32_gatherq_d256:
4116   case X86::BI__builtin_ia32_gather3div2df:
4117   case X86::BI__builtin_ia32_gather3div2di:
4118   case X86::BI__builtin_ia32_gather3div4df:
4119   case X86::BI__builtin_ia32_gather3div4di:
4120   case X86::BI__builtin_ia32_gather3div4sf:
4121   case X86::BI__builtin_ia32_gather3div4si:
4122   case X86::BI__builtin_ia32_gather3div8sf:
4123   case X86::BI__builtin_ia32_gather3div8si:
4124   case X86::BI__builtin_ia32_gather3siv2df:
4125   case X86::BI__builtin_ia32_gather3siv2di:
4126   case X86::BI__builtin_ia32_gather3siv4df:
4127   case X86::BI__builtin_ia32_gather3siv4di:
4128   case X86::BI__builtin_ia32_gather3siv4sf:
4129   case X86::BI__builtin_ia32_gather3siv4si:
4130   case X86::BI__builtin_ia32_gather3siv8sf:
4131   case X86::BI__builtin_ia32_gather3siv8si:
4132   case X86::BI__builtin_ia32_gathersiv8df:
4133   case X86::BI__builtin_ia32_gathersiv16sf:
4134   case X86::BI__builtin_ia32_gatherdiv8df:
4135   case X86::BI__builtin_ia32_gatherdiv16sf:
4136   case X86::BI__builtin_ia32_gathersiv8di:
4137   case X86::BI__builtin_ia32_gathersiv16si:
4138   case X86::BI__builtin_ia32_gatherdiv8di:
4139   case X86::BI__builtin_ia32_gatherdiv16si:
4140   case X86::BI__builtin_ia32_scatterdiv2df:
4141   case X86::BI__builtin_ia32_scatterdiv2di:
4142   case X86::BI__builtin_ia32_scatterdiv4df:
4143   case X86::BI__builtin_ia32_scatterdiv4di:
4144   case X86::BI__builtin_ia32_scatterdiv4sf:
4145   case X86::BI__builtin_ia32_scatterdiv4si:
4146   case X86::BI__builtin_ia32_scatterdiv8sf:
4147   case X86::BI__builtin_ia32_scatterdiv8si:
4148   case X86::BI__builtin_ia32_scattersiv2df:
4149   case X86::BI__builtin_ia32_scattersiv2di:
4150   case X86::BI__builtin_ia32_scattersiv4df:
4151   case X86::BI__builtin_ia32_scattersiv4di:
4152   case X86::BI__builtin_ia32_scattersiv4sf:
4153   case X86::BI__builtin_ia32_scattersiv4si:
4154   case X86::BI__builtin_ia32_scattersiv8sf:
4155   case X86::BI__builtin_ia32_scattersiv8si:
4156   case X86::BI__builtin_ia32_scattersiv8df:
4157   case X86::BI__builtin_ia32_scattersiv16sf:
4158   case X86::BI__builtin_ia32_scatterdiv8df:
4159   case X86::BI__builtin_ia32_scatterdiv16sf:
4160   case X86::BI__builtin_ia32_scattersiv8di:
4161   case X86::BI__builtin_ia32_scattersiv16si:
4162   case X86::BI__builtin_ia32_scatterdiv8di:
4163   case X86::BI__builtin_ia32_scatterdiv16si:
4164     ArgNum = 4;
4165     break;
4166   }
4167 
4168   llvm::APSInt Result;
4169 
4170   // We can't check the value of a dependent argument.
4171   Expr *Arg = TheCall->getArg(ArgNum);
4172   if (Arg->isTypeDependent() || Arg->isValueDependent())
4173     return false;
4174 
4175   // Check constant-ness first.
4176   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4177     return true;
4178 
4179   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4180     return false;
4181 
4182   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4183          << Arg->getSourceRange();
4184 }
4185 
4186 enum { TileRegLow = 0, TileRegHigh = 7 };
4187 
4188 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4189                                              ArrayRef<int> ArgNums) {
4190   for (int ArgNum : ArgNums) {
4191     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4192       return true;
4193   }
4194   return false;
4195 }
4196 
4197 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4198                                         ArrayRef<int> ArgNums) {
4199   // Because the max number of tile register is TileRegHigh + 1, so here we use
4200   // each bit to represent the usage of them in bitset.
4201   std::bitset<TileRegHigh + 1> ArgValues;
4202   for (int ArgNum : ArgNums) {
4203     Expr *Arg = TheCall->getArg(ArgNum);
4204     if (Arg->isTypeDependent() || Arg->isValueDependent())
4205       continue;
4206 
4207     llvm::APSInt Result;
4208     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4209       return true;
4210     int ArgExtValue = Result.getExtValue();
4211     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4212            "Incorrect tile register num.");
4213     if (ArgValues.test(ArgExtValue))
4214       return Diag(TheCall->getBeginLoc(),
4215                   diag::err_x86_builtin_tile_arg_duplicate)
4216              << TheCall->getArg(ArgNum)->getSourceRange();
4217     ArgValues.set(ArgExtValue);
4218   }
4219   return false;
4220 }
4221 
4222 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4223                                                 ArrayRef<int> ArgNums) {
4224   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4225          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4226 }
4227 
4228 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4229   switch (BuiltinID) {
4230   default:
4231     return false;
4232   case X86::BI__builtin_ia32_tileloadd64:
4233   case X86::BI__builtin_ia32_tileloaddt164:
4234   case X86::BI__builtin_ia32_tilestored64:
4235   case X86::BI__builtin_ia32_tilezero:
4236     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4237   case X86::BI__builtin_ia32_tdpbssd:
4238   case X86::BI__builtin_ia32_tdpbsud:
4239   case X86::BI__builtin_ia32_tdpbusd:
4240   case X86::BI__builtin_ia32_tdpbuud:
4241   case X86::BI__builtin_ia32_tdpbf16ps:
4242     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4243   }
4244 }
4245 static bool isX86_32Builtin(unsigned BuiltinID) {
4246   // These builtins only work on x86-32 targets.
4247   switch (BuiltinID) {
4248   case X86::BI__builtin_ia32_readeflags_u32:
4249   case X86::BI__builtin_ia32_writeeflags_u32:
4250     return true;
4251   }
4252 
4253   return false;
4254 }
4255 
4256 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4257                                        CallExpr *TheCall) {
4258   if (BuiltinID == X86::BI__builtin_cpu_supports)
4259     return SemaBuiltinCpuSupports(*this, TI, TheCall);
4260 
4261   if (BuiltinID == X86::BI__builtin_cpu_is)
4262     return SemaBuiltinCpuIs(*this, TI, TheCall);
4263 
4264   // Check for 32-bit only builtins on a 64-bit target.
4265   const llvm::Triple &TT = TI.getTriple();
4266   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4267     return Diag(TheCall->getCallee()->getBeginLoc(),
4268                 diag::err_32_bit_builtin_64_bit_tgt);
4269 
4270   // If the intrinsic has rounding or SAE make sure its valid.
4271   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4272     return true;
4273 
4274   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4275   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4276     return true;
4277 
4278   // If the intrinsic has a tile arguments, make sure they are valid.
4279   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4280     return true;
4281 
4282   // For intrinsics which take an immediate value as part of the instruction,
4283   // range check them here.
4284   int i = 0, l = 0, u = 0;
4285   switch (BuiltinID) {
4286   default:
4287     return false;
4288   case X86::BI__builtin_ia32_vec_ext_v2si:
4289   case X86::BI__builtin_ia32_vec_ext_v2di:
4290   case X86::BI__builtin_ia32_vextractf128_pd256:
4291   case X86::BI__builtin_ia32_vextractf128_ps256:
4292   case X86::BI__builtin_ia32_vextractf128_si256:
4293   case X86::BI__builtin_ia32_extract128i256:
4294   case X86::BI__builtin_ia32_extractf64x4_mask:
4295   case X86::BI__builtin_ia32_extracti64x4_mask:
4296   case X86::BI__builtin_ia32_extractf32x8_mask:
4297   case X86::BI__builtin_ia32_extracti32x8_mask:
4298   case X86::BI__builtin_ia32_extractf64x2_256_mask:
4299   case X86::BI__builtin_ia32_extracti64x2_256_mask:
4300   case X86::BI__builtin_ia32_extractf32x4_256_mask:
4301   case X86::BI__builtin_ia32_extracti32x4_256_mask:
4302     i = 1; l = 0; u = 1;
4303     break;
4304   case X86::BI__builtin_ia32_vec_set_v2di:
4305   case X86::BI__builtin_ia32_vinsertf128_pd256:
4306   case X86::BI__builtin_ia32_vinsertf128_ps256:
4307   case X86::BI__builtin_ia32_vinsertf128_si256:
4308   case X86::BI__builtin_ia32_insert128i256:
4309   case X86::BI__builtin_ia32_insertf32x8:
4310   case X86::BI__builtin_ia32_inserti32x8:
4311   case X86::BI__builtin_ia32_insertf64x4:
4312   case X86::BI__builtin_ia32_inserti64x4:
4313   case X86::BI__builtin_ia32_insertf64x2_256:
4314   case X86::BI__builtin_ia32_inserti64x2_256:
4315   case X86::BI__builtin_ia32_insertf32x4_256:
4316   case X86::BI__builtin_ia32_inserti32x4_256:
4317     i = 2; l = 0; u = 1;
4318     break;
4319   case X86::BI__builtin_ia32_vpermilpd:
4320   case X86::BI__builtin_ia32_vec_ext_v4hi:
4321   case X86::BI__builtin_ia32_vec_ext_v4si:
4322   case X86::BI__builtin_ia32_vec_ext_v4sf:
4323   case X86::BI__builtin_ia32_vec_ext_v4di:
4324   case X86::BI__builtin_ia32_extractf32x4_mask:
4325   case X86::BI__builtin_ia32_extracti32x4_mask:
4326   case X86::BI__builtin_ia32_extractf64x2_512_mask:
4327   case X86::BI__builtin_ia32_extracti64x2_512_mask:
4328     i = 1; l = 0; u = 3;
4329     break;
4330   case X86::BI_mm_prefetch:
4331   case X86::BI__builtin_ia32_vec_ext_v8hi:
4332   case X86::BI__builtin_ia32_vec_ext_v8si:
4333     i = 1; l = 0; u = 7;
4334     break;
4335   case X86::BI__builtin_ia32_sha1rnds4:
4336   case X86::BI__builtin_ia32_blendpd:
4337   case X86::BI__builtin_ia32_shufpd:
4338   case X86::BI__builtin_ia32_vec_set_v4hi:
4339   case X86::BI__builtin_ia32_vec_set_v4si:
4340   case X86::BI__builtin_ia32_vec_set_v4di:
4341   case X86::BI__builtin_ia32_shuf_f32x4_256:
4342   case X86::BI__builtin_ia32_shuf_f64x2_256:
4343   case X86::BI__builtin_ia32_shuf_i32x4_256:
4344   case X86::BI__builtin_ia32_shuf_i64x2_256:
4345   case X86::BI__builtin_ia32_insertf64x2_512:
4346   case X86::BI__builtin_ia32_inserti64x2_512:
4347   case X86::BI__builtin_ia32_insertf32x4:
4348   case X86::BI__builtin_ia32_inserti32x4:
4349     i = 2; l = 0; u = 3;
4350     break;
4351   case X86::BI__builtin_ia32_vpermil2pd:
4352   case X86::BI__builtin_ia32_vpermil2pd256:
4353   case X86::BI__builtin_ia32_vpermil2ps:
4354   case X86::BI__builtin_ia32_vpermil2ps256:
4355     i = 3; l = 0; u = 3;
4356     break;
4357   case X86::BI__builtin_ia32_cmpb128_mask:
4358   case X86::BI__builtin_ia32_cmpw128_mask:
4359   case X86::BI__builtin_ia32_cmpd128_mask:
4360   case X86::BI__builtin_ia32_cmpq128_mask:
4361   case X86::BI__builtin_ia32_cmpb256_mask:
4362   case X86::BI__builtin_ia32_cmpw256_mask:
4363   case X86::BI__builtin_ia32_cmpd256_mask:
4364   case X86::BI__builtin_ia32_cmpq256_mask:
4365   case X86::BI__builtin_ia32_cmpb512_mask:
4366   case X86::BI__builtin_ia32_cmpw512_mask:
4367   case X86::BI__builtin_ia32_cmpd512_mask:
4368   case X86::BI__builtin_ia32_cmpq512_mask:
4369   case X86::BI__builtin_ia32_ucmpb128_mask:
4370   case X86::BI__builtin_ia32_ucmpw128_mask:
4371   case X86::BI__builtin_ia32_ucmpd128_mask:
4372   case X86::BI__builtin_ia32_ucmpq128_mask:
4373   case X86::BI__builtin_ia32_ucmpb256_mask:
4374   case X86::BI__builtin_ia32_ucmpw256_mask:
4375   case X86::BI__builtin_ia32_ucmpd256_mask:
4376   case X86::BI__builtin_ia32_ucmpq256_mask:
4377   case X86::BI__builtin_ia32_ucmpb512_mask:
4378   case X86::BI__builtin_ia32_ucmpw512_mask:
4379   case X86::BI__builtin_ia32_ucmpd512_mask:
4380   case X86::BI__builtin_ia32_ucmpq512_mask:
4381   case X86::BI__builtin_ia32_vpcomub:
4382   case X86::BI__builtin_ia32_vpcomuw:
4383   case X86::BI__builtin_ia32_vpcomud:
4384   case X86::BI__builtin_ia32_vpcomuq:
4385   case X86::BI__builtin_ia32_vpcomb:
4386   case X86::BI__builtin_ia32_vpcomw:
4387   case X86::BI__builtin_ia32_vpcomd:
4388   case X86::BI__builtin_ia32_vpcomq:
4389   case X86::BI__builtin_ia32_vec_set_v8hi:
4390   case X86::BI__builtin_ia32_vec_set_v8si:
4391     i = 2; l = 0; u = 7;
4392     break;
4393   case X86::BI__builtin_ia32_vpermilpd256:
4394   case X86::BI__builtin_ia32_roundps:
4395   case X86::BI__builtin_ia32_roundpd:
4396   case X86::BI__builtin_ia32_roundps256:
4397   case X86::BI__builtin_ia32_roundpd256:
4398   case X86::BI__builtin_ia32_getmantpd128_mask:
4399   case X86::BI__builtin_ia32_getmantpd256_mask:
4400   case X86::BI__builtin_ia32_getmantps128_mask:
4401   case X86::BI__builtin_ia32_getmantps256_mask:
4402   case X86::BI__builtin_ia32_getmantpd512_mask:
4403   case X86::BI__builtin_ia32_getmantps512_mask:
4404   case X86::BI__builtin_ia32_vec_ext_v16qi:
4405   case X86::BI__builtin_ia32_vec_ext_v16hi:
4406     i = 1; l = 0; u = 15;
4407     break;
4408   case X86::BI__builtin_ia32_pblendd128:
4409   case X86::BI__builtin_ia32_blendps:
4410   case X86::BI__builtin_ia32_blendpd256:
4411   case X86::BI__builtin_ia32_shufpd256:
4412   case X86::BI__builtin_ia32_roundss:
4413   case X86::BI__builtin_ia32_roundsd:
4414   case X86::BI__builtin_ia32_rangepd128_mask:
4415   case X86::BI__builtin_ia32_rangepd256_mask:
4416   case X86::BI__builtin_ia32_rangepd512_mask:
4417   case X86::BI__builtin_ia32_rangeps128_mask:
4418   case X86::BI__builtin_ia32_rangeps256_mask:
4419   case X86::BI__builtin_ia32_rangeps512_mask:
4420   case X86::BI__builtin_ia32_getmantsd_round_mask:
4421   case X86::BI__builtin_ia32_getmantss_round_mask:
4422   case X86::BI__builtin_ia32_vec_set_v16qi:
4423   case X86::BI__builtin_ia32_vec_set_v16hi:
4424     i = 2; l = 0; u = 15;
4425     break;
4426   case X86::BI__builtin_ia32_vec_ext_v32qi:
4427     i = 1; l = 0; u = 31;
4428     break;
4429   case X86::BI__builtin_ia32_cmpps:
4430   case X86::BI__builtin_ia32_cmpss:
4431   case X86::BI__builtin_ia32_cmppd:
4432   case X86::BI__builtin_ia32_cmpsd:
4433   case X86::BI__builtin_ia32_cmpps256:
4434   case X86::BI__builtin_ia32_cmppd256:
4435   case X86::BI__builtin_ia32_cmpps128_mask:
4436   case X86::BI__builtin_ia32_cmppd128_mask:
4437   case X86::BI__builtin_ia32_cmpps256_mask:
4438   case X86::BI__builtin_ia32_cmppd256_mask:
4439   case X86::BI__builtin_ia32_cmpps512_mask:
4440   case X86::BI__builtin_ia32_cmppd512_mask:
4441   case X86::BI__builtin_ia32_cmpsd_mask:
4442   case X86::BI__builtin_ia32_cmpss_mask:
4443   case X86::BI__builtin_ia32_vec_set_v32qi:
4444     i = 2; l = 0; u = 31;
4445     break;
4446   case X86::BI__builtin_ia32_permdf256:
4447   case X86::BI__builtin_ia32_permdi256:
4448   case X86::BI__builtin_ia32_permdf512:
4449   case X86::BI__builtin_ia32_permdi512:
4450   case X86::BI__builtin_ia32_vpermilps:
4451   case X86::BI__builtin_ia32_vpermilps256:
4452   case X86::BI__builtin_ia32_vpermilpd512:
4453   case X86::BI__builtin_ia32_vpermilps512:
4454   case X86::BI__builtin_ia32_pshufd:
4455   case X86::BI__builtin_ia32_pshufd256:
4456   case X86::BI__builtin_ia32_pshufd512:
4457   case X86::BI__builtin_ia32_pshufhw:
4458   case X86::BI__builtin_ia32_pshufhw256:
4459   case X86::BI__builtin_ia32_pshufhw512:
4460   case X86::BI__builtin_ia32_pshuflw:
4461   case X86::BI__builtin_ia32_pshuflw256:
4462   case X86::BI__builtin_ia32_pshuflw512:
4463   case X86::BI__builtin_ia32_vcvtps2ph:
4464   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4465   case X86::BI__builtin_ia32_vcvtps2ph256:
4466   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4467   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4468   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4469   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4470   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4471   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4472   case X86::BI__builtin_ia32_rndscaleps_mask:
4473   case X86::BI__builtin_ia32_rndscalepd_mask:
4474   case X86::BI__builtin_ia32_reducepd128_mask:
4475   case X86::BI__builtin_ia32_reducepd256_mask:
4476   case X86::BI__builtin_ia32_reducepd512_mask:
4477   case X86::BI__builtin_ia32_reduceps128_mask:
4478   case X86::BI__builtin_ia32_reduceps256_mask:
4479   case X86::BI__builtin_ia32_reduceps512_mask:
4480   case X86::BI__builtin_ia32_prold512:
4481   case X86::BI__builtin_ia32_prolq512:
4482   case X86::BI__builtin_ia32_prold128:
4483   case X86::BI__builtin_ia32_prold256:
4484   case X86::BI__builtin_ia32_prolq128:
4485   case X86::BI__builtin_ia32_prolq256:
4486   case X86::BI__builtin_ia32_prord512:
4487   case X86::BI__builtin_ia32_prorq512:
4488   case X86::BI__builtin_ia32_prord128:
4489   case X86::BI__builtin_ia32_prord256:
4490   case X86::BI__builtin_ia32_prorq128:
4491   case X86::BI__builtin_ia32_prorq256:
4492   case X86::BI__builtin_ia32_fpclasspd128_mask:
4493   case X86::BI__builtin_ia32_fpclasspd256_mask:
4494   case X86::BI__builtin_ia32_fpclassps128_mask:
4495   case X86::BI__builtin_ia32_fpclassps256_mask:
4496   case X86::BI__builtin_ia32_fpclassps512_mask:
4497   case X86::BI__builtin_ia32_fpclasspd512_mask:
4498   case X86::BI__builtin_ia32_fpclasssd_mask:
4499   case X86::BI__builtin_ia32_fpclassss_mask:
4500   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4501   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4502   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4503   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4504   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4505   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4506   case X86::BI__builtin_ia32_kshiftliqi:
4507   case X86::BI__builtin_ia32_kshiftlihi:
4508   case X86::BI__builtin_ia32_kshiftlisi:
4509   case X86::BI__builtin_ia32_kshiftlidi:
4510   case X86::BI__builtin_ia32_kshiftriqi:
4511   case X86::BI__builtin_ia32_kshiftrihi:
4512   case X86::BI__builtin_ia32_kshiftrisi:
4513   case X86::BI__builtin_ia32_kshiftridi:
4514     i = 1; l = 0; u = 255;
4515     break;
4516   case X86::BI__builtin_ia32_vperm2f128_pd256:
4517   case X86::BI__builtin_ia32_vperm2f128_ps256:
4518   case X86::BI__builtin_ia32_vperm2f128_si256:
4519   case X86::BI__builtin_ia32_permti256:
4520   case X86::BI__builtin_ia32_pblendw128:
4521   case X86::BI__builtin_ia32_pblendw256:
4522   case X86::BI__builtin_ia32_blendps256:
4523   case X86::BI__builtin_ia32_pblendd256:
4524   case X86::BI__builtin_ia32_palignr128:
4525   case X86::BI__builtin_ia32_palignr256:
4526   case X86::BI__builtin_ia32_palignr512:
4527   case X86::BI__builtin_ia32_alignq512:
4528   case X86::BI__builtin_ia32_alignd512:
4529   case X86::BI__builtin_ia32_alignd128:
4530   case X86::BI__builtin_ia32_alignd256:
4531   case X86::BI__builtin_ia32_alignq128:
4532   case X86::BI__builtin_ia32_alignq256:
4533   case X86::BI__builtin_ia32_vcomisd:
4534   case X86::BI__builtin_ia32_vcomiss:
4535   case X86::BI__builtin_ia32_shuf_f32x4:
4536   case X86::BI__builtin_ia32_shuf_f64x2:
4537   case X86::BI__builtin_ia32_shuf_i32x4:
4538   case X86::BI__builtin_ia32_shuf_i64x2:
4539   case X86::BI__builtin_ia32_shufpd512:
4540   case X86::BI__builtin_ia32_shufps:
4541   case X86::BI__builtin_ia32_shufps256:
4542   case X86::BI__builtin_ia32_shufps512:
4543   case X86::BI__builtin_ia32_dbpsadbw128:
4544   case X86::BI__builtin_ia32_dbpsadbw256:
4545   case X86::BI__builtin_ia32_dbpsadbw512:
4546   case X86::BI__builtin_ia32_vpshldd128:
4547   case X86::BI__builtin_ia32_vpshldd256:
4548   case X86::BI__builtin_ia32_vpshldd512:
4549   case X86::BI__builtin_ia32_vpshldq128:
4550   case X86::BI__builtin_ia32_vpshldq256:
4551   case X86::BI__builtin_ia32_vpshldq512:
4552   case X86::BI__builtin_ia32_vpshldw128:
4553   case X86::BI__builtin_ia32_vpshldw256:
4554   case X86::BI__builtin_ia32_vpshldw512:
4555   case X86::BI__builtin_ia32_vpshrdd128:
4556   case X86::BI__builtin_ia32_vpshrdd256:
4557   case X86::BI__builtin_ia32_vpshrdd512:
4558   case X86::BI__builtin_ia32_vpshrdq128:
4559   case X86::BI__builtin_ia32_vpshrdq256:
4560   case X86::BI__builtin_ia32_vpshrdq512:
4561   case X86::BI__builtin_ia32_vpshrdw128:
4562   case X86::BI__builtin_ia32_vpshrdw256:
4563   case X86::BI__builtin_ia32_vpshrdw512:
4564     i = 2; l = 0; u = 255;
4565     break;
4566   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4567   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4568   case X86::BI__builtin_ia32_fixupimmps512_mask:
4569   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4570   case X86::BI__builtin_ia32_fixupimmsd_mask:
4571   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4572   case X86::BI__builtin_ia32_fixupimmss_mask:
4573   case X86::BI__builtin_ia32_fixupimmss_maskz:
4574   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4575   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4576   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4577   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4578   case X86::BI__builtin_ia32_fixupimmps128_mask:
4579   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4580   case X86::BI__builtin_ia32_fixupimmps256_mask:
4581   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4582   case X86::BI__builtin_ia32_pternlogd512_mask:
4583   case X86::BI__builtin_ia32_pternlogd512_maskz:
4584   case X86::BI__builtin_ia32_pternlogq512_mask:
4585   case X86::BI__builtin_ia32_pternlogq512_maskz:
4586   case X86::BI__builtin_ia32_pternlogd128_mask:
4587   case X86::BI__builtin_ia32_pternlogd128_maskz:
4588   case X86::BI__builtin_ia32_pternlogd256_mask:
4589   case X86::BI__builtin_ia32_pternlogd256_maskz:
4590   case X86::BI__builtin_ia32_pternlogq128_mask:
4591   case X86::BI__builtin_ia32_pternlogq128_maskz:
4592   case X86::BI__builtin_ia32_pternlogq256_mask:
4593   case X86::BI__builtin_ia32_pternlogq256_maskz:
4594     i = 3; l = 0; u = 255;
4595     break;
4596   case X86::BI__builtin_ia32_gatherpfdpd:
4597   case X86::BI__builtin_ia32_gatherpfdps:
4598   case X86::BI__builtin_ia32_gatherpfqpd:
4599   case X86::BI__builtin_ia32_gatherpfqps:
4600   case X86::BI__builtin_ia32_scatterpfdpd:
4601   case X86::BI__builtin_ia32_scatterpfdps:
4602   case X86::BI__builtin_ia32_scatterpfqpd:
4603   case X86::BI__builtin_ia32_scatterpfqps:
4604     i = 4; l = 2; u = 3;
4605     break;
4606   case X86::BI__builtin_ia32_reducesd_mask:
4607   case X86::BI__builtin_ia32_reducess_mask:
4608   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4609   case X86::BI__builtin_ia32_rndscaless_round_mask:
4610     i = 4; l = 0; u = 255;
4611     break;
4612   }
4613 
4614   // Note that we don't force a hard error on the range check here, allowing
4615   // template-generated or macro-generated dead code to potentially have out-of-
4616   // range values. These need to code generate, but don't need to necessarily
4617   // make any sense. We use a warning that defaults to an error.
4618   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4619 }
4620 
4621 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4622 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4623 /// Returns true when the format fits the function and the FormatStringInfo has
4624 /// been populated.
4625 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4626                                FormatStringInfo *FSI) {
4627   FSI->HasVAListArg = Format->getFirstArg() == 0;
4628   FSI->FormatIdx = Format->getFormatIdx() - 1;
4629   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4630 
4631   // The way the format attribute works in GCC, the implicit this argument
4632   // of member functions is counted. However, it doesn't appear in our own
4633   // lists, so decrement format_idx in that case.
4634   if (IsCXXMember) {
4635     if(FSI->FormatIdx == 0)
4636       return false;
4637     --FSI->FormatIdx;
4638     if (FSI->FirstDataArg != 0)
4639       --FSI->FirstDataArg;
4640   }
4641   return true;
4642 }
4643 
4644 /// Checks if a the given expression evaluates to null.
4645 ///
4646 /// Returns true if the value evaluates to null.
4647 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4648   // If the expression has non-null type, it doesn't evaluate to null.
4649   if (auto nullability
4650         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4651     if (*nullability == NullabilityKind::NonNull)
4652       return false;
4653   }
4654 
4655   // As a special case, transparent unions initialized with zero are
4656   // considered null for the purposes of the nonnull attribute.
4657   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4658     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4659       if (const CompoundLiteralExpr *CLE =
4660           dyn_cast<CompoundLiteralExpr>(Expr))
4661         if (const InitListExpr *ILE =
4662             dyn_cast<InitListExpr>(CLE->getInitializer()))
4663           Expr = ILE->getInit(0);
4664   }
4665 
4666   bool Result;
4667   return (!Expr->isValueDependent() &&
4668           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4669           !Result);
4670 }
4671 
4672 static void CheckNonNullArgument(Sema &S,
4673                                  const Expr *ArgExpr,
4674                                  SourceLocation CallSiteLoc) {
4675   if (CheckNonNullExpr(S, ArgExpr))
4676     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4677                           S.PDiag(diag::warn_null_arg)
4678                               << ArgExpr->getSourceRange());
4679 }
4680 
4681 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4682   FormatStringInfo FSI;
4683   if ((GetFormatStringType(Format) == FST_NSString) &&
4684       getFormatStringInfo(Format, false, &FSI)) {
4685     Idx = FSI.FormatIdx;
4686     return true;
4687   }
4688   return false;
4689 }
4690 
4691 /// Diagnose use of %s directive in an NSString which is being passed
4692 /// as formatting string to formatting method.
4693 static void
4694 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4695                                         const NamedDecl *FDecl,
4696                                         Expr **Args,
4697                                         unsigned NumArgs) {
4698   unsigned Idx = 0;
4699   bool Format = false;
4700   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4701   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4702     Idx = 2;
4703     Format = true;
4704   }
4705   else
4706     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4707       if (S.GetFormatNSStringIdx(I, Idx)) {
4708         Format = true;
4709         break;
4710       }
4711     }
4712   if (!Format || NumArgs <= Idx)
4713     return;
4714   const Expr *FormatExpr = Args[Idx];
4715   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4716     FormatExpr = CSCE->getSubExpr();
4717   const StringLiteral *FormatString;
4718   if (const ObjCStringLiteral *OSL =
4719       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4720     FormatString = OSL->getString();
4721   else
4722     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4723   if (!FormatString)
4724     return;
4725   if (S.FormatStringHasSArg(FormatString)) {
4726     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4727       << "%s" << 1 << 1;
4728     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4729       << FDecl->getDeclName();
4730   }
4731 }
4732 
4733 /// Determine whether the given type has a non-null nullability annotation.
4734 static bool isNonNullType(ASTContext &ctx, QualType type) {
4735   if (auto nullability = type->getNullability(ctx))
4736     return *nullability == NullabilityKind::NonNull;
4737 
4738   return false;
4739 }
4740 
4741 static void CheckNonNullArguments(Sema &S,
4742                                   const NamedDecl *FDecl,
4743                                   const FunctionProtoType *Proto,
4744                                   ArrayRef<const Expr *> Args,
4745                                   SourceLocation CallSiteLoc) {
4746   assert((FDecl || Proto) && "Need a function declaration or prototype");
4747 
4748   // Already checked by by constant evaluator.
4749   if (S.isConstantEvaluated())
4750     return;
4751   // Check the attributes attached to the method/function itself.
4752   llvm::SmallBitVector NonNullArgs;
4753   if (FDecl) {
4754     // Handle the nonnull attribute on the function/method declaration itself.
4755     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4756       if (!NonNull->args_size()) {
4757         // Easy case: all pointer arguments are nonnull.
4758         for (const auto *Arg : Args)
4759           if (S.isValidPointerAttrType(Arg->getType()))
4760             CheckNonNullArgument(S, Arg, CallSiteLoc);
4761         return;
4762       }
4763 
4764       for (const ParamIdx &Idx : NonNull->args()) {
4765         unsigned IdxAST = Idx.getASTIndex();
4766         if (IdxAST >= Args.size())
4767           continue;
4768         if (NonNullArgs.empty())
4769           NonNullArgs.resize(Args.size());
4770         NonNullArgs.set(IdxAST);
4771       }
4772     }
4773   }
4774 
4775   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4776     // Handle the nonnull attribute on the parameters of the
4777     // function/method.
4778     ArrayRef<ParmVarDecl*> parms;
4779     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4780       parms = FD->parameters();
4781     else
4782       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4783 
4784     unsigned ParamIndex = 0;
4785     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4786          I != E; ++I, ++ParamIndex) {
4787       const ParmVarDecl *PVD = *I;
4788       if (PVD->hasAttr<NonNullAttr>() ||
4789           isNonNullType(S.Context, PVD->getType())) {
4790         if (NonNullArgs.empty())
4791           NonNullArgs.resize(Args.size());
4792 
4793         NonNullArgs.set(ParamIndex);
4794       }
4795     }
4796   } else {
4797     // If we have a non-function, non-method declaration but no
4798     // function prototype, try to dig out the function prototype.
4799     if (!Proto) {
4800       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4801         QualType type = VD->getType().getNonReferenceType();
4802         if (auto pointerType = type->getAs<PointerType>())
4803           type = pointerType->getPointeeType();
4804         else if (auto blockType = type->getAs<BlockPointerType>())
4805           type = blockType->getPointeeType();
4806         // FIXME: data member pointers?
4807 
4808         // Dig out the function prototype, if there is one.
4809         Proto = type->getAs<FunctionProtoType>();
4810       }
4811     }
4812 
4813     // Fill in non-null argument information from the nullability
4814     // information on the parameter types (if we have them).
4815     if (Proto) {
4816       unsigned Index = 0;
4817       for (auto paramType : Proto->getParamTypes()) {
4818         if (isNonNullType(S.Context, paramType)) {
4819           if (NonNullArgs.empty())
4820             NonNullArgs.resize(Args.size());
4821 
4822           NonNullArgs.set(Index);
4823         }
4824 
4825         ++Index;
4826       }
4827     }
4828   }
4829 
4830   // Check for non-null arguments.
4831   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4832        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4833     if (NonNullArgs[ArgIndex])
4834       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4835   }
4836 }
4837 
4838 /// Warn if a pointer or reference argument passed to a function points to an
4839 /// object that is less aligned than the parameter. This can happen when
4840 /// creating a typedef with a lower alignment than the original type and then
4841 /// calling functions defined in terms of the original type.
4842 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
4843                              StringRef ParamName, QualType ArgTy,
4844                              QualType ParamTy) {
4845 
4846   // If a function accepts a pointer or reference type
4847   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
4848     return;
4849 
4850   // If the parameter is a pointer type, get the pointee type for the
4851   // argument too. If the parameter is a reference type, don't try to get
4852   // the pointee type for the argument.
4853   if (ParamTy->isPointerType())
4854     ArgTy = ArgTy->getPointeeType();
4855 
4856   // Remove reference or pointer
4857   ParamTy = ParamTy->getPointeeType();
4858 
4859   // Find expected alignment, and the actual alignment of the passed object.
4860   // getTypeAlignInChars requires complete types
4861   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
4862       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
4863       ArgTy->isUndeducedType())
4864     return;
4865 
4866   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
4867   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
4868 
4869   // If the argument is less aligned than the parameter, there is a
4870   // potential alignment issue.
4871   if (ArgAlign < ParamAlign)
4872     Diag(Loc, diag::warn_param_mismatched_alignment)
4873         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
4874         << ParamName << FDecl;
4875 }
4876 
4877 /// Handles the checks for format strings, non-POD arguments to vararg
4878 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4879 /// attributes.
4880 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4881                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4882                      bool IsMemberFunction, SourceLocation Loc,
4883                      SourceRange Range, VariadicCallType CallType) {
4884   // FIXME: We should check as much as we can in the template definition.
4885   if (CurContext->isDependentContext())
4886     return;
4887 
4888   // Printf and scanf checking.
4889   llvm::SmallBitVector CheckedVarArgs;
4890   if (FDecl) {
4891     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4892       // Only create vector if there are format attributes.
4893       CheckedVarArgs.resize(Args.size());
4894 
4895       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4896                            CheckedVarArgs);
4897     }
4898   }
4899 
4900   // Refuse POD arguments that weren't caught by the format string
4901   // checks above.
4902   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4903   if (CallType != VariadicDoesNotApply &&
4904       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4905     unsigned NumParams = Proto ? Proto->getNumParams()
4906                        : FDecl && isa<FunctionDecl>(FDecl)
4907                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4908                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4909                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4910                        : 0;
4911 
4912     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4913       // Args[ArgIdx] can be null in malformed code.
4914       if (const Expr *Arg = Args[ArgIdx]) {
4915         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4916           checkVariadicArgument(Arg, CallType);
4917       }
4918     }
4919   }
4920 
4921   if (FDecl || Proto) {
4922     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4923 
4924     // Type safety checking.
4925     if (FDecl) {
4926       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4927         CheckArgumentWithTypeTag(I, Args, Loc);
4928     }
4929   }
4930 
4931   // Check that passed arguments match the alignment of original arguments.
4932   // Try to get the missing prototype from the declaration.
4933   if (!Proto && FDecl) {
4934     const auto *FT = FDecl->getFunctionType();
4935     if (isa_and_nonnull<FunctionProtoType>(FT))
4936       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
4937   }
4938   if (Proto) {
4939     // For variadic functions, we may have more args than parameters.
4940     // For some K&R functions, we may have less args than parameters.
4941     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
4942     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
4943       // Args[ArgIdx] can be null in malformed code.
4944       if (const Expr *Arg = Args[ArgIdx]) {
4945         if (Arg->containsErrors())
4946           continue;
4947 
4948         QualType ParamTy = Proto->getParamType(ArgIdx);
4949         QualType ArgTy = Arg->getType();
4950         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
4951                           ArgTy, ParamTy);
4952       }
4953     }
4954   }
4955 
4956   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4957     auto *AA = FDecl->getAttr<AllocAlignAttr>();
4958     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4959     if (!Arg->isValueDependent()) {
4960       Expr::EvalResult Align;
4961       if (Arg->EvaluateAsInt(Align, Context)) {
4962         const llvm::APSInt &I = Align.Val.getInt();
4963         if (!I.isPowerOf2())
4964           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4965               << Arg->getSourceRange();
4966 
4967         if (I > Sema::MaximumAlignment)
4968           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4969               << Arg->getSourceRange() << Sema::MaximumAlignment;
4970       }
4971     }
4972   }
4973 
4974   if (FD)
4975     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4976 }
4977 
4978 /// CheckConstructorCall - Check a constructor call for correctness and safety
4979 /// properties not enforced by the C type system.
4980 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
4981                                 ArrayRef<const Expr *> Args,
4982                                 const FunctionProtoType *Proto,
4983                                 SourceLocation Loc) {
4984   VariadicCallType CallType =
4985       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4986 
4987   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
4988   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
4989                     Context.getPointerType(Ctor->getThisObjectType()));
4990 
4991   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4992             Loc, SourceRange(), CallType);
4993 }
4994 
4995 /// CheckFunctionCall - Check a direct function call for various correctness
4996 /// and safety properties not strictly enforced by the C type system.
4997 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4998                              const FunctionProtoType *Proto) {
4999   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5000                               isa<CXXMethodDecl>(FDecl);
5001   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5002                           IsMemberOperatorCall;
5003   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5004                                                   TheCall->getCallee());
5005   Expr** Args = TheCall->getArgs();
5006   unsigned NumArgs = TheCall->getNumArgs();
5007 
5008   Expr *ImplicitThis = nullptr;
5009   if (IsMemberOperatorCall) {
5010     // If this is a call to a member operator, hide the first argument
5011     // from checkCall.
5012     // FIXME: Our choice of AST representation here is less than ideal.
5013     ImplicitThis = Args[0];
5014     ++Args;
5015     --NumArgs;
5016   } else if (IsMemberFunction)
5017     ImplicitThis =
5018         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5019 
5020   if (ImplicitThis) {
5021     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5022     // used.
5023     QualType ThisType = ImplicitThis->getType();
5024     if (!ThisType->isPointerType()) {
5025       assert(!ThisType->isReferenceType());
5026       ThisType = Context.getPointerType(ThisType);
5027     }
5028 
5029     QualType ThisTypeFromDecl =
5030         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5031 
5032     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5033                       ThisTypeFromDecl);
5034   }
5035 
5036   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5037             IsMemberFunction, TheCall->getRParenLoc(),
5038             TheCall->getCallee()->getSourceRange(), CallType);
5039 
5040   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5041   // None of the checks below are needed for functions that don't have
5042   // simple names (e.g., C++ conversion functions).
5043   if (!FnInfo)
5044     return false;
5045 
5046   CheckTCBEnforcement(TheCall, FDecl);
5047 
5048   CheckAbsoluteValueFunction(TheCall, FDecl);
5049   CheckMaxUnsignedZero(TheCall, FDecl);
5050 
5051   if (getLangOpts().ObjC)
5052     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5053 
5054   unsigned CMId = FDecl->getMemoryFunctionKind();
5055 
5056   // Handle memory setting and copying functions.
5057   switch (CMId) {
5058   case 0:
5059     return false;
5060   case Builtin::BIstrlcpy: // fallthrough
5061   case Builtin::BIstrlcat:
5062     CheckStrlcpycatArguments(TheCall, FnInfo);
5063     break;
5064   case Builtin::BIstrncat:
5065     CheckStrncatArguments(TheCall, FnInfo);
5066     break;
5067   case Builtin::BIfree:
5068     CheckFreeArguments(TheCall);
5069     break;
5070   default:
5071     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5072   }
5073 
5074   return false;
5075 }
5076 
5077 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5078                                ArrayRef<const Expr *> Args) {
5079   VariadicCallType CallType =
5080       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5081 
5082   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5083             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5084             CallType);
5085 
5086   return false;
5087 }
5088 
5089 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5090                             const FunctionProtoType *Proto) {
5091   QualType Ty;
5092   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5093     Ty = V->getType().getNonReferenceType();
5094   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5095     Ty = F->getType().getNonReferenceType();
5096   else
5097     return false;
5098 
5099   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5100       !Ty->isFunctionProtoType())
5101     return false;
5102 
5103   VariadicCallType CallType;
5104   if (!Proto || !Proto->isVariadic()) {
5105     CallType = VariadicDoesNotApply;
5106   } else if (Ty->isBlockPointerType()) {
5107     CallType = VariadicBlock;
5108   } else { // Ty->isFunctionPointerType()
5109     CallType = VariadicFunction;
5110   }
5111 
5112   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5113             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5114             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5115             TheCall->getCallee()->getSourceRange(), CallType);
5116 
5117   return false;
5118 }
5119 
5120 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5121 /// such as function pointers returned from functions.
5122 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5123   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5124                                                   TheCall->getCallee());
5125   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5126             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5127             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5128             TheCall->getCallee()->getSourceRange(), CallType);
5129 
5130   return false;
5131 }
5132 
5133 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5134   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5135     return false;
5136 
5137   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5138   switch (Op) {
5139   case AtomicExpr::AO__c11_atomic_init:
5140   case AtomicExpr::AO__opencl_atomic_init:
5141     llvm_unreachable("There is no ordering argument for an init");
5142 
5143   case AtomicExpr::AO__c11_atomic_load:
5144   case AtomicExpr::AO__opencl_atomic_load:
5145   case AtomicExpr::AO__atomic_load_n:
5146   case AtomicExpr::AO__atomic_load:
5147     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5148            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5149 
5150   case AtomicExpr::AO__c11_atomic_store:
5151   case AtomicExpr::AO__opencl_atomic_store:
5152   case AtomicExpr::AO__atomic_store:
5153   case AtomicExpr::AO__atomic_store_n:
5154     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5155            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5156            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5157 
5158   default:
5159     return true;
5160   }
5161 }
5162 
5163 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5164                                          AtomicExpr::AtomicOp Op) {
5165   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5166   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5167   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5168   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5169                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5170                          Op);
5171 }
5172 
5173 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5174                                  SourceLocation RParenLoc, MultiExprArg Args,
5175                                  AtomicExpr::AtomicOp Op,
5176                                  AtomicArgumentOrder ArgOrder) {
5177   // All the non-OpenCL operations take one of the following forms.
5178   // The OpenCL operations take the __c11 forms with one extra argument for
5179   // synchronization scope.
5180   enum {
5181     // C    __c11_atomic_init(A *, C)
5182     Init,
5183 
5184     // C    __c11_atomic_load(A *, int)
5185     Load,
5186 
5187     // void __atomic_load(A *, CP, int)
5188     LoadCopy,
5189 
5190     // void __atomic_store(A *, CP, int)
5191     Copy,
5192 
5193     // C    __c11_atomic_add(A *, M, int)
5194     Arithmetic,
5195 
5196     // C    __atomic_exchange_n(A *, CP, int)
5197     Xchg,
5198 
5199     // void __atomic_exchange(A *, C *, CP, int)
5200     GNUXchg,
5201 
5202     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5203     C11CmpXchg,
5204 
5205     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5206     GNUCmpXchg
5207   } Form = Init;
5208 
5209   const unsigned NumForm = GNUCmpXchg + 1;
5210   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5211   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5212   // where:
5213   //   C is an appropriate type,
5214   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5215   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5216   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5217   //   the int parameters are for orderings.
5218 
5219   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5220       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5221       "need to update code for modified forms");
5222   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5223                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5224                         AtomicExpr::AO__atomic_load,
5225                 "need to update code for modified C11 atomics");
5226   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5227                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5228   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5229                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5230                IsOpenCL;
5231   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5232              Op == AtomicExpr::AO__atomic_store_n ||
5233              Op == AtomicExpr::AO__atomic_exchange_n ||
5234              Op == AtomicExpr::AO__atomic_compare_exchange_n;
5235   bool IsAddSub = false;
5236 
5237   switch (Op) {
5238   case AtomicExpr::AO__c11_atomic_init:
5239   case AtomicExpr::AO__opencl_atomic_init:
5240     Form = Init;
5241     break;
5242 
5243   case AtomicExpr::AO__c11_atomic_load:
5244   case AtomicExpr::AO__opencl_atomic_load:
5245   case AtomicExpr::AO__atomic_load_n:
5246     Form = Load;
5247     break;
5248 
5249   case AtomicExpr::AO__atomic_load:
5250     Form = LoadCopy;
5251     break;
5252 
5253   case AtomicExpr::AO__c11_atomic_store:
5254   case AtomicExpr::AO__opencl_atomic_store:
5255   case AtomicExpr::AO__atomic_store:
5256   case AtomicExpr::AO__atomic_store_n:
5257     Form = Copy;
5258     break;
5259 
5260   case AtomicExpr::AO__c11_atomic_fetch_add:
5261   case AtomicExpr::AO__c11_atomic_fetch_sub:
5262   case AtomicExpr::AO__opencl_atomic_fetch_add:
5263   case AtomicExpr::AO__opencl_atomic_fetch_sub:
5264   case AtomicExpr::AO__atomic_fetch_add:
5265   case AtomicExpr::AO__atomic_fetch_sub:
5266   case AtomicExpr::AO__atomic_add_fetch:
5267   case AtomicExpr::AO__atomic_sub_fetch:
5268     IsAddSub = true;
5269     Form = Arithmetic;
5270     break;
5271   case AtomicExpr::AO__c11_atomic_fetch_and:
5272   case AtomicExpr::AO__c11_atomic_fetch_or:
5273   case AtomicExpr::AO__c11_atomic_fetch_xor:
5274   case AtomicExpr::AO__opencl_atomic_fetch_and:
5275   case AtomicExpr::AO__opencl_atomic_fetch_or:
5276   case AtomicExpr::AO__opencl_atomic_fetch_xor:
5277   case AtomicExpr::AO__atomic_fetch_and:
5278   case AtomicExpr::AO__atomic_fetch_or:
5279   case AtomicExpr::AO__atomic_fetch_xor:
5280   case AtomicExpr::AO__atomic_fetch_nand:
5281   case AtomicExpr::AO__atomic_and_fetch:
5282   case AtomicExpr::AO__atomic_or_fetch:
5283   case AtomicExpr::AO__atomic_xor_fetch:
5284   case AtomicExpr::AO__atomic_nand_fetch:
5285     Form = Arithmetic;
5286     break;
5287   case AtomicExpr::AO__c11_atomic_fetch_min:
5288   case AtomicExpr::AO__c11_atomic_fetch_max:
5289   case AtomicExpr::AO__opencl_atomic_fetch_min:
5290   case AtomicExpr::AO__opencl_atomic_fetch_max:
5291   case AtomicExpr::AO__atomic_min_fetch:
5292   case AtomicExpr::AO__atomic_max_fetch:
5293   case AtomicExpr::AO__atomic_fetch_min:
5294   case AtomicExpr::AO__atomic_fetch_max:
5295     Form = Arithmetic;
5296     break;
5297 
5298   case AtomicExpr::AO__c11_atomic_exchange:
5299   case AtomicExpr::AO__opencl_atomic_exchange:
5300   case AtomicExpr::AO__atomic_exchange_n:
5301     Form = Xchg;
5302     break;
5303 
5304   case AtomicExpr::AO__atomic_exchange:
5305     Form = GNUXchg;
5306     break;
5307 
5308   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5309   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5310   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5311   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5312     Form = C11CmpXchg;
5313     break;
5314 
5315   case AtomicExpr::AO__atomic_compare_exchange:
5316   case AtomicExpr::AO__atomic_compare_exchange_n:
5317     Form = GNUCmpXchg;
5318     break;
5319   }
5320 
5321   unsigned AdjustedNumArgs = NumArgs[Form];
5322   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
5323     ++AdjustedNumArgs;
5324   // Check we have the right number of arguments.
5325   if (Args.size() < AdjustedNumArgs) {
5326     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5327         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5328         << ExprRange;
5329     return ExprError();
5330   } else if (Args.size() > AdjustedNumArgs) {
5331     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5332          diag::err_typecheck_call_too_many_args)
5333         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5334         << ExprRange;
5335     return ExprError();
5336   }
5337 
5338   // Inspect the first argument of the atomic operation.
5339   Expr *Ptr = Args[0];
5340   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5341   if (ConvertedPtr.isInvalid())
5342     return ExprError();
5343 
5344   Ptr = ConvertedPtr.get();
5345   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5346   if (!pointerType) {
5347     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5348         << Ptr->getType() << Ptr->getSourceRange();
5349     return ExprError();
5350   }
5351 
5352   // For a __c11 builtin, this should be a pointer to an _Atomic type.
5353   QualType AtomTy = pointerType->getPointeeType(); // 'A'
5354   QualType ValType = AtomTy; // 'C'
5355   if (IsC11) {
5356     if (!AtomTy->isAtomicType()) {
5357       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5358           << Ptr->getType() << Ptr->getSourceRange();
5359       return ExprError();
5360     }
5361     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5362         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5363       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5364           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5365           << Ptr->getSourceRange();
5366       return ExprError();
5367     }
5368     ValType = AtomTy->castAs<AtomicType>()->getValueType();
5369   } else if (Form != Load && Form != LoadCopy) {
5370     if (ValType.isConstQualified()) {
5371       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5372           << Ptr->getType() << Ptr->getSourceRange();
5373       return ExprError();
5374     }
5375   }
5376 
5377   // For an arithmetic operation, the implied arithmetic must be well-formed.
5378   if (Form == Arithmetic) {
5379     // gcc does not enforce these rules for GNU atomics, but we do so for
5380     // sanity.
5381     auto IsAllowedValueType = [&](QualType ValType) {
5382       if (ValType->isIntegerType())
5383         return true;
5384       if (ValType->isPointerType())
5385         return true;
5386       if (!ValType->isFloatingType())
5387         return false;
5388       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5389       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5390           &Context.getTargetInfo().getLongDoubleFormat() ==
5391               &llvm::APFloat::x87DoubleExtended())
5392         return false;
5393       return true;
5394     };
5395     if (IsAddSub && !IsAllowedValueType(ValType)) {
5396       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5397           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5398       return ExprError();
5399     }
5400     if (!IsAddSub && !ValType->isIntegerType()) {
5401       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5402           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5403       return ExprError();
5404     }
5405     if (IsC11 && ValType->isPointerType() &&
5406         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5407                             diag::err_incomplete_type)) {
5408       return ExprError();
5409     }
5410   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5411     // For __atomic_*_n operations, the value type must be a scalar integral or
5412     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5413     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5414         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5415     return ExprError();
5416   }
5417 
5418   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5419       !AtomTy->isScalarType()) {
5420     // For GNU atomics, require a trivially-copyable type. This is not part of
5421     // the GNU atomics specification, but we enforce it for sanity.
5422     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5423         << Ptr->getType() << Ptr->getSourceRange();
5424     return ExprError();
5425   }
5426 
5427   switch (ValType.getObjCLifetime()) {
5428   case Qualifiers::OCL_None:
5429   case Qualifiers::OCL_ExplicitNone:
5430     // okay
5431     break;
5432 
5433   case Qualifiers::OCL_Weak:
5434   case Qualifiers::OCL_Strong:
5435   case Qualifiers::OCL_Autoreleasing:
5436     // FIXME: Can this happen? By this point, ValType should be known
5437     // to be trivially copyable.
5438     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5439         << ValType << Ptr->getSourceRange();
5440     return ExprError();
5441   }
5442 
5443   // All atomic operations have an overload which takes a pointer to a volatile
5444   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
5445   // into the result or the other operands. Similarly atomic_load takes a
5446   // pointer to a const 'A'.
5447   ValType.removeLocalVolatile();
5448   ValType.removeLocalConst();
5449   QualType ResultType = ValType;
5450   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5451       Form == Init)
5452     ResultType = Context.VoidTy;
5453   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5454     ResultType = Context.BoolTy;
5455 
5456   // The type of a parameter passed 'by value'. In the GNU atomics, such
5457   // arguments are actually passed as pointers.
5458   QualType ByValType = ValType; // 'CP'
5459   bool IsPassedByAddress = false;
5460   if (!IsC11 && !IsN) {
5461     ByValType = Ptr->getType();
5462     IsPassedByAddress = true;
5463   }
5464 
5465   SmallVector<Expr *, 5> APIOrderedArgs;
5466   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5467     APIOrderedArgs.push_back(Args[0]);
5468     switch (Form) {
5469     case Init:
5470     case Load:
5471       APIOrderedArgs.push_back(Args[1]); // Val1/Order
5472       break;
5473     case LoadCopy:
5474     case Copy:
5475     case Arithmetic:
5476     case Xchg:
5477       APIOrderedArgs.push_back(Args[2]); // Val1
5478       APIOrderedArgs.push_back(Args[1]); // Order
5479       break;
5480     case GNUXchg:
5481       APIOrderedArgs.push_back(Args[2]); // Val1
5482       APIOrderedArgs.push_back(Args[3]); // Val2
5483       APIOrderedArgs.push_back(Args[1]); // Order
5484       break;
5485     case C11CmpXchg:
5486       APIOrderedArgs.push_back(Args[2]); // Val1
5487       APIOrderedArgs.push_back(Args[4]); // Val2
5488       APIOrderedArgs.push_back(Args[1]); // Order
5489       APIOrderedArgs.push_back(Args[3]); // OrderFail
5490       break;
5491     case GNUCmpXchg:
5492       APIOrderedArgs.push_back(Args[2]); // Val1
5493       APIOrderedArgs.push_back(Args[4]); // Val2
5494       APIOrderedArgs.push_back(Args[5]); // Weak
5495       APIOrderedArgs.push_back(Args[1]); // Order
5496       APIOrderedArgs.push_back(Args[3]); // OrderFail
5497       break;
5498     }
5499   } else
5500     APIOrderedArgs.append(Args.begin(), Args.end());
5501 
5502   // The first argument's non-CV pointer type is used to deduce the type of
5503   // subsequent arguments, except for:
5504   //  - weak flag (always converted to bool)
5505   //  - memory order (always converted to int)
5506   //  - scope  (always converted to int)
5507   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5508     QualType Ty;
5509     if (i < NumVals[Form] + 1) {
5510       switch (i) {
5511       case 0:
5512         // The first argument is always a pointer. It has a fixed type.
5513         // It is always dereferenced, a nullptr is undefined.
5514         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5515         // Nothing else to do: we already know all we want about this pointer.
5516         continue;
5517       case 1:
5518         // The second argument is the non-atomic operand. For arithmetic, this
5519         // is always passed by value, and for a compare_exchange it is always
5520         // passed by address. For the rest, GNU uses by-address and C11 uses
5521         // by-value.
5522         assert(Form != Load);
5523         if (Form == Arithmetic && ValType->isPointerType())
5524           Ty = Context.getPointerDiffType();
5525         else if (Form == Init || Form == Arithmetic)
5526           Ty = ValType;
5527         else if (Form == Copy || Form == Xchg) {
5528           if (IsPassedByAddress) {
5529             // The value pointer is always dereferenced, a nullptr is undefined.
5530             CheckNonNullArgument(*this, APIOrderedArgs[i],
5531                                  ExprRange.getBegin());
5532           }
5533           Ty = ByValType;
5534         } else {
5535           Expr *ValArg = APIOrderedArgs[i];
5536           // The value pointer is always dereferenced, a nullptr is undefined.
5537           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5538           LangAS AS = LangAS::Default;
5539           // Keep address space of non-atomic pointer type.
5540           if (const PointerType *PtrTy =
5541                   ValArg->getType()->getAs<PointerType>()) {
5542             AS = PtrTy->getPointeeType().getAddressSpace();
5543           }
5544           Ty = Context.getPointerType(
5545               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5546         }
5547         break;
5548       case 2:
5549         // The third argument to compare_exchange / GNU exchange is the desired
5550         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5551         if (IsPassedByAddress)
5552           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5553         Ty = ByValType;
5554         break;
5555       case 3:
5556         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5557         Ty = Context.BoolTy;
5558         break;
5559       }
5560     } else {
5561       // The order(s) and scope are always converted to int.
5562       Ty = Context.IntTy;
5563     }
5564 
5565     InitializedEntity Entity =
5566         InitializedEntity::InitializeParameter(Context, Ty, false);
5567     ExprResult Arg = APIOrderedArgs[i];
5568     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5569     if (Arg.isInvalid())
5570       return true;
5571     APIOrderedArgs[i] = Arg.get();
5572   }
5573 
5574   // Permute the arguments into a 'consistent' order.
5575   SmallVector<Expr*, 5> SubExprs;
5576   SubExprs.push_back(Ptr);
5577   switch (Form) {
5578   case Init:
5579     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5580     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5581     break;
5582   case Load:
5583     SubExprs.push_back(APIOrderedArgs[1]); // Order
5584     break;
5585   case LoadCopy:
5586   case Copy:
5587   case Arithmetic:
5588   case Xchg:
5589     SubExprs.push_back(APIOrderedArgs[2]); // Order
5590     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5591     break;
5592   case GNUXchg:
5593     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5594     SubExprs.push_back(APIOrderedArgs[3]); // Order
5595     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5596     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5597     break;
5598   case C11CmpXchg:
5599     SubExprs.push_back(APIOrderedArgs[3]); // Order
5600     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5601     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5602     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5603     break;
5604   case GNUCmpXchg:
5605     SubExprs.push_back(APIOrderedArgs[4]); // Order
5606     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5607     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5608     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5609     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5610     break;
5611   }
5612 
5613   if (SubExprs.size() >= 2 && Form != Init) {
5614     if (Optional<llvm::APSInt> Result =
5615             SubExprs[1]->getIntegerConstantExpr(Context))
5616       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5617         Diag(SubExprs[1]->getBeginLoc(),
5618              diag::warn_atomic_op_has_invalid_memory_order)
5619             << SubExprs[1]->getSourceRange();
5620   }
5621 
5622   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5623     auto *Scope = Args[Args.size() - 1];
5624     if (Optional<llvm::APSInt> Result =
5625             Scope->getIntegerConstantExpr(Context)) {
5626       if (!ScopeModel->isValid(Result->getZExtValue()))
5627         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5628             << Scope->getSourceRange();
5629     }
5630     SubExprs.push_back(Scope);
5631   }
5632 
5633   AtomicExpr *AE = new (Context)
5634       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5635 
5636   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5637        Op == AtomicExpr::AO__c11_atomic_store ||
5638        Op == AtomicExpr::AO__opencl_atomic_load ||
5639        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5640       Context.AtomicUsesUnsupportedLibcall(AE))
5641     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5642         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5643              Op == AtomicExpr::AO__opencl_atomic_load)
5644                 ? 0
5645                 : 1);
5646 
5647   if (ValType->isExtIntType()) {
5648     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5649     return ExprError();
5650   }
5651 
5652   return AE;
5653 }
5654 
5655 /// checkBuiltinArgument - Given a call to a builtin function, perform
5656 /// normal type-checking on the given argument, updating the call in
5657 /// place.  This is useful when a builtin function requires custom
5658 /// type-checking for some of its arguments but not necessarily all of
5659 /// them.
5660 ///
5661 /// Returns true on error.
5662 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5663   FunctionDecl *Fn = E->getDirectCallee();
5664   assert(Fn && "builtin call without direct callee!");
5665 
5666   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5667   InitializedEntity Entity =
5668     InitializedEntity::InitializeParameter(S.Context, Param);
5669 
5670   ExprResult Arg = E->getArg(0);
5671   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5672   if (Arg.isInvalid())
5673     return true;
5674 
5675   E->setArg(ArgIndex, Arg.get());
5676   return false;
5677 }
5678 
5679 /// We have a call to a function like __sync_fetch_and_add, which is an
5680 /// overloaded function based on the pointer type of its first argument.
5681 /// The main BuildCallExpr routines have already promoted the types of
5682 /// arguments because all of these calls are prototyped as void(...).
5683 ///
5684 /// This function goes through and does final semantic checking for these
5685 /// builtins, as well as generating any warnings.
5686 ExprResult
5687 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5688   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5689   Expr *Callee = TheCall->getCallee();
5690   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5691   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5692 
5693   // Ensure that we have at least one argument to do type inference from.
5694   if (TheCall->getNumArgs() < 1) {
5695     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5696         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5697     return ExprError();
5698   }
5699 
5700   // Inspect the first argument of the atomic builtin.  This should always be
5701   // a pointer type, whose element is an integral scalar or pointer type.
5702   // Because it is a pointer type, we don't have to worry about any implicit
5703   // casts here.
5704   // FIXME: We don't allow floating point scalars as input.
5705   Expr *FirstArg = TheCall->getArg(0);
5706   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5707   if (FirstArgResult.isInvalid())
5708     return ExprError();
5709   FirstArg = FirstArgResult.get();
5710   TheCall->setArg(0, FirstArg);
5711 
5712   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5713   if (!pointerType) {
5714     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5715         << FirstArg->getType() << FirstArg->getSourceRange();
5716     return ExprError();
5717   }
5718 
5719   QualType ValType = pointerType->getPointeeType();
5720   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5721       !ValType->isBlockPointerType()) {
5722     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5723         << FirstArg->getType() << FirstArg->getSourceRange();
5724     return ExprError();
5725   }
5726 
5727   if (ValType.isConstQualified()) {
5728     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5729         << FirstArg->getType() << FirstArg->getSourceRange();
5730     return ExprError();
5731   }
5732 
5733   switch (ValType.getObjCLifetime()) {
5734   case Qualifiers::OCL_None:
5735   case Qualifiers::OCL_ExplicitNone:
5736     // okay
5737     break;
5738 
5739   case Qualifiers::OCL_Weak:
5740   case Qualifiers::OCL_Strong:
5741   case Qualifiers::OCL_Autoreleasing:
5742     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5743         << ValType << FirstArg->getSourceRange();
5744     return ExprError();
5745   }
5746 
5747   // Strip any qualifiers off ValType.
5748   ValType = ValType.getUnqualifiedType();
5749 
5750   // The majority of builtins return a value, but a few have special return
5751   // types, so allow them to override appropriately below.
5752   QualType ResultType = ValType;
5753 
5754   // We need to figure out which concrete builtin this maps onto.  For example,
5755   // __sync_fetch_and_add with a 2 byte object turns into
5756   // __sync_fetch_and_add_2.
5757 #define BUILTIN_ROW(x) \
5758   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5759     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5760 
5761   static const unsigned BuiltinIndices[][5] = {
5762     BUILTIN_ROW(__sync_fetch_and_add),
5763     BUILTIN_ROW(__sync_fetch_and_sub),
5764     BUILTIN_ROW(__sync_fetch_and_or),
5765     BUILTIN_ROW(__sync_fetch_and_and),
5766     BUILTIN_ROW(__sync_fetch_and_xor),
5767     BUILTIN_ROW(__sync_fetch_and_nand),
5768 
5769     BUILTIN_ROW(__sync_add_and_fetch),
5770     BUILTIN_ROW(__sync_sub_and_fetch),
5771     BUILTIN_ROW(__sync_and_and_fetch),
5772     BUILTIN_ROW(__sync_or_and_fetch),
5773     BUILTIN_ROW(__sync_xor_and_fetch),
5774     BUILTIN_ROW(__sync_nand_and_fetch),
5775 
5776     BUILTIN_ROW(__sync_val_compare_and_swap),
5777     BUILTIN_ROW(__sync_bool_compare_and_swap),
5778     BUILTIN_ROW(__sync_lock_test_and_set),
5779     BUILTIN_ROW(__sync_lock_release),
5780     BUILTIN_ROW(__sync_swap)
5781   };
5782 #undef BUILTIN_ROW
5783 
5784   // Determine the index of the size.
5785   unsigned SizeIndex;
5786   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5787   case 1: SizeIndex = 0; break;
5788   case 2: SizeIndex = 1; break;
5789   case 4: SizeIndex = 2; break;
5790   case 8: SizeIndex = 3; break;
5791   case 16: SizeIndex = 4; break;
5792   default:
5793     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5794         << FirstArg->getType() << FirstArg->getSourceRange();
5795     return ExprError();
5796   }
5797 
5798   // Each of these builtins has one pointer argument, followed by some number of
5799   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5800   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5801   // as the number of fixed args.
5802   unsigned BuiltinID = FDecl->getBuiltinID();
5803   unsigned BuiltinIndex, NumFixed = 1;
5804   bool WarnAboutSemanticsChange = false;
5805   switch (BuiltinID) {
5806   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5807   case Builtin::BI__sync_fetch_and_add:
5808   case Builtin::BI__sync_fetch_and_add_1:
5809   case Builtin::BI__sync_fetch_and_add_2:
5810   case Builtin::BI__sync_fetch_and_add_4:
5811   case Builtin::BI__sync_fetch_and_add_8:
5812   case Builtin::BI__sync_fetch_and_add_16:
5813     BuiltinIndex = 0;
5814     break;
5815 
5816   case Builtin::BI__sync_fetch_and_sub:
5817   case Builtin::BI__sync_fetch_and_sub_1:
5818   case Builtin::BI__sync_fetch_and_sub_2:
5819   case Builtin::BI__sync_fetch_and_sub_4:
5820   case Builtin::BI__sync_fetch_and_sub_8:
5821   case Builtin::BI__sync_fetch_and_sub_16:
5822     BuiltinIndex = 1;
5823     break;
5824 
5825   case Builtin::BI__sync_fetch_and_or:
5826   case Builtin::BI__sync_fetch_and_or_1:
5827   case Builtin::BI__sync_fetch_and_or_2:
5828   case Builtin::BI__sync_fetch_and_or_4:
5829   case Builtin::BI__sync_fetch_and_or_8:
5830   case Builtin::BI__sync_fetch_and_or_16:
5831     BuiltinIndex = 2;
5832     break;
5833 
5834   case Builtin::BI__sync_fetch_and_and:
5835   case Builtin::BI__sync_fetch_and_and_1:
5836   case Builtin::BI__sync_fetch_and_and_2:
5837   case Builtin::BI__sync_fetch_and_and_4:
5838   case Builtin::BI__sync_fetch_and_and_8:
5839   case Builtin::BI__sync_fetch_and_and_16:
5840     BuiltinIndex = 3;
5841     break;
5842 
5843   case Builtin::BI__sync_fetch_and_xor:
5844   case Builtin::BI__sync_fetch_and_xor_1:
5845   case Builtin::BI__sync_fetch_and_xor_2:
5846   case Builtin::BI__sync_fetch_and_xor_4:
5847   case Builtin::BI__sync_fetch_and_xor_8:
5848   case Builtin::BI__sync_fetch_and_xor_16:
5849     BuiltinIndex = 4;
5850     break;
5851 
5852   case Builtin::BI__sync_fetch_and_nand:
5853   case Builtin::BI__sync_fetch_and_nand_1:
5854   case Builtin::BI__sync_fetch_and_nand_2:
5855   case Builtin::BI__sync_fetch_and_nand_4:
5856   case Builtin::BI__sync_fetch_and_nand_8:
5857   case Builtin::BI__sync_fetch_and_nand_16:
5858     BuiltinIndex = 5;
5859     WarnAboutSemanticsChange = true;
5860     break;
5861 
5862   case Builtin::BI__sync_add_and_fetch:
5863   case Builtin::BI__sync_add_and_fetch_1:
5864   case Builtin::BI__sync_add_and_fetch_2:
5865   case Builtin::BI__sync_add_and_fetch_4:
5866   case Builtin::BI__sync_add_and_fetch_8:
5867   case Builtin::BI__sync_add_and_fetch_16:
5868     BuiltinIndex = 6;
5869     break;
5870 
5871   case Builtin::BI__sync_sub_and_fetch:
5872   case Builtin::BI__sync_sub_and_fetch_1:
5873   case Builtin::BI__sync_sub_and_fetch_2:
5874   case Builtin::BI__sync_sub_and_fetch_4:
5875   case Builtin::BI__sync_sub_and_fetch_8:
5876   case Builtin::BI__sync_sub_and_fetch_16:
5877     BuiltinIndex = 7;
5878     break;
5879 
5880   case Builtin::BI__sync_and_and_fetch:
5881   case Builtin::BI__sync_and_and_fetch_1:
5882   case Builtin::BI__sync_and_and_fetch_2:
5883   case Builtin::BI__sync_and_and_fetch_4:
5884   case Builtin::BI__sync_and_and_fetch_8:
5885   case Builtin::BI__sync_and_and_fetch_16:
5886     BuiltinIndex = 8;
5887     break;
5888 
5889   case Builtin::BI__sync_or_and_fetch:
5890   case Builtin::BI__sync_or_and_fetch_1:
5891   case Builtin::BI__sync_or_and_fetch_2:
5892   case Builtin::BI__sync_or_and_fetch_4:
5893   case Builtin::BI__sync_or_and_fetch_8:
5894   case Builtin::BI__sync_or_and_fetch_16:
5895     BuiltinIndex = 9;
5896     break;
5897 
5898   case Builtin::BI__sync_xor_and_fetch:
5899   case Builtin::BI__sync_xor_and_fetch_1:
5900   case Builtin::BI__sync_xor_and_fetch_2:
5901   case Builtin::BI__sync_xor_and_fetch_4:
5902   case Builtin::BI__sync_xor_and_fetch_8:
5903   case Builtin::BI__sync_xor_and_fetch_16:
5904     BuiltinIndex = 10;
5905     break;
5906 
5907   case Builtin::BI__sync_nand_and_fetch:
5908   case Builtin::BI__sync_nand_and_fetch_1:
5909   case Builtin::BI__sync_nand_and_fetch_2:
5910   case Builtin::BI__sync_nand_and_fetch_4:
5911   case Builtin::BI__sync_nand_and_fetch_8:
5912   case Builtin::BI__sync_nand_and_fetch_16:
5913     BuiltinIndex = 11;
5914     WarnAboutSemanticsChange = true;
5915     break;
5916 
5917   case Builtin::BI__sync_val_compare_and_swap:
5918   case Builtin::BI__sync_val_compare_and_swap_1:
5919   case Builtin::BI__sync_val_compare_and_swap_2:
5920   case Builtin::BI__sync_val_compare_and_swap_4:
5921   case Builtin::BI__sync_val_compare_and_swap_8:
5922   case Builtin::BI__sync_val_compare_and_swap_16:
5923     BuiltinIndex = 12;
5924     NumFixed = 2;
5925     break;
5926 
5927   case Builtin::BI__sync_bool_compare_and_swap:
5928   case Builtin::BI__sync_bool_compare_and_swap_1:
5929   case Builtin::BI__sync_bool_compare_and_swap_2:
5930   case Builtin::BI__sync_bool_compare_and_swap_4:
5931   case Builtin::BI__sync_bool_compare_and_swap_8:
5932   case Builtin::BI__sync_bool_compare_and_swap_16:
5933     BuiltinIndex = 13;
5934     NumFixed = 2;
5935     ResultType = Context.BoolTy;
5936     break;
5937 
5938   case Builtin::BI__sync_lock_test_and_set:
5939   case Builtin::BI__sync_lock_test_and_set_1:
5940   case Builtin::BI__sync_lock_test_and_set_2:
5941   case Builtin::BI__sync_lock_test_and_set_4:
5942   case Builtin::BI__sync_lock_test_and_set_8:
5943   case Builtin::BI__sync_lock_test_and_set_16:
5944     BuiltinIndex = 14;
5945     break;
5946 
5947   case Builtin::BI__sync_lock_release:
5948   case Builtin::BI__sync_lock_release_1:
5949   case Builtin::BI__sync_lock_release_2:
5950   case Builtin::BI__sync_lock_release_4:
5951   case Builtin::BI__sync_lock_release_8:
5952   case Builtin::BI__sync_lock_release_16:
5953     BuiltinIndex = 15;
5954     NumFixed = 0;
5955     ResultType = Context.VoidTy;
5956     break;
5957 
5958   case Builtin::BI__sync_swap:
5959   case Builtin::BI__sync_swap_1:
5960   case Builtin::BI__sync_swap_2:
5961   case Builtin::BI__sync_swap_4:
5962   case Builtin::BI__sync_swap_8:
5963   case Builtin::BI__sync_swap_16:
5964     BuiltinIndex = 16;
5965     break;
5966   }
5967 
5968   // Now that we know how many fixed arguments we expect, first check that we
5969   // have at least that many.
5970   if (TheCall->getNumArgs() < 1+NumFixed) {
5971     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5972         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5973         << Callee->getSourceRange();
5974     return ExprError();
5975   }
5976 
5977   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5978       << Callee->getSourceRange();
5979 
5980   if (WarnAboutSemanticsChange) {
5981     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5982         << Callee->getSourceRange();
5983   }
5984 
5985   // Get the decl for the concrete builtin from this, we can tell what the
5986   // concrete integer type we should convert to is.
5987   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5988   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5989   FunctionDecl *NewBuiltinDecl;
5990   if (NewBuiltinID == BuiltinID)
5991     NewBuiltinDecl = FDecl;
5992   else {
5993     // Perform builtin lookup to avoid redeclaring it.
5994     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5995     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5996     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5997     assert(Res.getFoundDecl());
5998     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5999     if (!NewBuiltinDecl)
6000       return ExprError();
6001   }
6002 
6003   // The first argument --- the pointer --- has a fixed type; we
6004   // deduce the types of the rest of the arguments accordingly.  Walk
6005   // the remaining arguments, converting them to the deduced value type.
6006   for (unsigned i = 0; i != NumFixed; ++i) {
6007     ExprResult Arg = TheCall->getArg(i+1);
6008 
6009     // GCC does an implicit conversion to the pointer or integer ValType.  This
6010     // can fail in some cases (1i -> int**), check for this error case now.
6011     // Initialize the argument.
6012     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6013                                                    ValType, /*consume*/ false);
6014     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6015     if (Arg.isInvalid())
6016       return ExprError();
6017 
6018     // Okay, we have something that *can* be converted to the right type.  Check
6019     // to see if there is a potentially weird extension going on here.  This can
6020     // happen when you do an atomic operation on something like an char* and
6021     // pass in 42.  The 42 gets converted to char.  This is even more strange
6022     // for things like 45.123 -> char, etc.
6023     // FIXME: Do this check.
6024     TheCall->setArg(i+1, Arg.get());
6025   }
6026 
6027   // Create a new DeclRefExpr to refer to the new decl.
6028   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6029       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6030       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6031       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6032 
6033   // Set the callee in the CallExpr.
6034   // FIXME: This loses syntactic information.
6035   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6036   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6037                                               CK_BuiltinFnToFnPtr);
6038   TheCall->setCallee(PromotedCall.get());
6039 
6040   // Change the result type of the call to match the original value type. This
6041   // is arbitrary, but the codegen for these builtins ins design to handle it
6042   // gracefully.
6043   TheCall->setType(ResultType);
6044 
6045   // Prohibit use of _ExtInt with atomic builtins.
6046   // The arguments would have already been converted to the first argument's
6047   // type, so only need to check the first argument.
6048   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
6049   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
6050     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6051     return ExprError();
6052   }
6053 
6054   return TheCallResult;
6055 }
6056 
6057 /// SemaBuiltinNontemporalOverloaded - We have a call to
6058 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6059 /// overloaded function based on the pointer type of its last argument.
6060 ///
6061 /// This function goes through and does final semantic checking for these
6062 /// builtins.
6063 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6064   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6065   DeclRefExpr *DRE =
6066       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6067   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6068   unsigned BuiltinID = FDecl->getBuiltinID();
6069   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6070           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6071          "Unexpected nontemporal load/store builtin!");
6072   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6073   unsigned numArgs = isStore ? 2 : 1;
6074 
6075   // Ensure that we have the proper number of arguments.
6076   if (checkArgCount(*this, TheCall, numArgs))
6077     return ExprError();
6078 
6079   // Inspect the last argument of the nontemporal builtin.  This should always
6080   // be a pointer type, from which we imply the type of the memory access.
6081   // Because it is a pointer type, we don't have to worry about any implicit
6082   // casts here.
6083   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6084   ExprResult PointerArgResult =
6085       DefaultFunctionArrayLvalueConversion(PointerArg);
6086 
6087   if (PointerArgResult.isInvalid())
6088     return ExprError();
6089   PointerArg = PointerArgResult.get();
6090   TheCall->setArg(numArgs - 1, PointerArg);
6091 
6092   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6093   if (!pointerType) {
6094     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6095         << PointerArg->getType() << PointerArg->getSourceRange();
6096     return ExprError();
6097   }
6098 
6099   QualType ValType = pointerType->getPointeeType();
6100 
6101   // Strip any qualifiers off ValType.
6102   ValType = ValType.getUnqualifiedType();
6103   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6104       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6105       !ValType->isVectorType()) {
6106     Diag(DRE->getBeginLoc(),
6107          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6108         << PointerArg->getType() << PointerArg->getSourceRange();
6109     return ExprError();
6110   }
6111 
6112   if (!isStore) {
6113     TheCall->setType(ValType);
6114     return TheCallResult;
6115   }
6116 
6117   ExprResult ValArg = TheCall->getArg(0);
6118   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6119       Context, ValType, /*consume*/ false);
6120   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6121   if (ValArg.isInvalid())
6122     return ExprError();
6123 
6124   TheCall->setArg(0, ValArg.get());
6125   TheCall->setType(Context.VoidTy);
6126   return TheCallResult;
6127 }
6128 
6129 /// CheckObjCString - Checks that the argument to the builtin
6130 /// CFString constructor is correct
6131 /// Note: It might also make sense to do the UTF-16 conversion here (would
6132 /// simplify the backend).
6133 bool Sema::CheckObjCString(Expr *Arg) {
6134   Arg = Arg->IgnoreParenCasts();
6135   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6136 
6137   if (!Literal || !Literal->isAscii()) {
6138     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6139         << Arg->getSourceRange();
6140     return true;
6141   }
6142 
6143   if (Literal->containsNonAsciiOrNull()) {
6144     StringRef String = Literal->getString();
6145     unsigned NumBytes = String.size();
6146     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6147     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6148     llvm::UTF16 *ToPtr = &ToBuf[0];
6149 
6150     llvm::ConversionResult Result =
6151         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6152                                  ToPtr + NumBytes, llvm::strictConversion);
6153     // Check for conversion failure.
6154     if (Result != llvm::conversionOK)
6155       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6156           << Arg->getSourceRange();
6157   }
6158   return false;
6159 }
6160 
6161 /// CheckObjCString - Checks that the format string argument to the os_log()
6162 /// and os_trace() functions is correct, and converts it to const char *.
6163 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6164   Arg = Arg->IgnoreParenCasts();
6165   auto *Literal = dyn_cast<StringLiteral>(Arg);
6166   if (!Literal) {
6167     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6168       Literal = ObjcLiteral->getString();
6169     }
6170   }
6171 
6172   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6173     return ExprError(
6174         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6175         << Arg->getSourceRange());
6176   }
6177 
6178   ExprResult Result(Literal);
6179   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6180   InitializedEntity Entity =
6181       InitializedEntity::InitializeParameter(Context, ResultTy, false);
6182   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6183   return Result;
6184 }
6185 
6186 /// Check that the user is calling the appropriate va_start builtin for the
6187 /// target and calling convention.
6188 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6189   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6190   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6191   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6192                     TT.getArch() == llvm::Triple::aarch64_32);
6193   bool IsWindows = TT.isOSWindows();
6194   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6195   if (IsX64 || IsAArch64) {
6196     CallingConv CC = CC_C;
6197     if (const FunctionDecl *FD = S.getCurFunctionDecl())
6198       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6199     if (IsMSVAStart) {
6200       // Don't allow this in System V ABI functions.
6201       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6202         return S.Diag(Fn->getBeginLoc(),
6203                       diag::err_ms_va_start_used_in_sysv_function);
6204     } else {
6205       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6206       // On x64 Windows, don't allow this in System V ABI functions.
6207       // (Yes, that means there's no corresponding way to support variadic
6208       // System V ABI functions on Windows.)
6209       if ((IsWindows && CC == CC_X86_64SysV) ||
6210           (!IsWindows && CC == CC_Win64))
6211         return S.Diag(Fn->getBeginLoc(),
6212                       diag::err_va_start_used_in_wrong_abi_function)
6213                << !IsWindows;
6214     }
6215     return false;
6216   }
6217 
6218   if (IsMSVAStart)
6219     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6220   return false;
6221 }
6222 
6223 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6224                                              ParmVarDecl **LastParam = nullptr) {
6225   // Determine whether the current function, block, or obj-c method is variadic
6226   // and get its parameter list.
6227   bool IsVariadic = false;
6228   ArrayRef<ParmVarDecl *> Params;
6229   DeclContext *Caller = S.CurContext;
6230   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6231     IsVariadic = Block->isVariadic();
6232     Params = Block->parameters();
6233   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6234     IsVariadic = FD->isVariadic();
6235     Params = FD->parameters();
6236   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6237     IsVariadic = MD->isVariadic();
6238     // FIXME: This isn't correct for methods (results in bogus warning).
6239     Params = MD->parameters();
6240   } else if (isa<CapturedDecl>(Caller)) {
6241     // We don't support va_start in a CapturedDecl.
6242     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6243     return true;
6244   } else {
6245     // This must be some other declcontext that parses exprs.
6246     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6247     return true;
6248   }
6249 
6250   if (!IsVariadic) {
6251     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6252     return true;
6253   }
6254 
6255   if (LastParam)
6256     *LastParam = Params.empty() ? nullptr : Params.back();
6257 
6258   return false;
6259 }
6260 
6261 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6262 /// for validity.  Emit an error and return true on failure; return false
6263 /// on success.
6264 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6265   Expr *Fn = TheCall->getCallee();
6266 
6267   if (checkVAStartABI(*this, BuiltinID, Fn))
6268     return true;
6269 
6270   if (checkArgCount(*this, TheCall, 2))
6271     return true;
6272 
6273   // Type-check the first argument normally.
6274   if (checkBuiltinArgument(*this, TheCall, 0))
6275     return true;
6276 
6277   // Check that the current function is variadic, and get its last parameter.
6278   ParmVarDecl *LastParam;
6279   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6280     return true;
6281 
6282   // Verify that the second argument to the builtin is the last argument of the
6283   // current function or method.
6284   bool SecondArgIsLastNamedArgument = false;
6285   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6286 
6287   // These are valid if SecondArgIsLastNamedArgument is false after the next
6288   // block.
6289   QualType Type;
6290   SourceLocation ParamLoc;
6291   bool IsCRegister = false;
6292 
6293   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6294     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6295       SecondArgIsLastNamedArgument = PV == LastParam;
6296 
6297       Type = PV->getType();
6298       ParamLoc = PV->getLocation();
6299       IsCRegister =
6300           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6301     }
6302   }
6303 
6304   if (!SecondArgIsLastNamedArgument)
6305     Diag(TheCall->getArg(1)->getBeginLoc(),
6306          diag::warn_second_arg_of_va_start_not_last_named_param);
6307   else if (IsCRegister || Type->isReferenceType() ||
6308            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6309              // Promotable integers are UB, but enumerations need a bit of
6310              // extra checking to see what their promotable type actually is.
6311              if (!Type->isPromotableIntegerType())
6312                return false;
6313              if (!Type->isEnumeralType())
6314                return true;
6315              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6316              return !(ED &&
6317                       Context.typesAreCompatible(ED->getPromotionType(), Type));
6318            }()) {
6319     unsigned Reason = 0;
6320     if (Type->isReferenceType())  Reason = 1;
6321     else if (IsCRegister)         Reason = 2;
6322     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6323     Diag(ParamLoc, diag::note_parameter_type) << Type;
6324   }
6325 
6326   TheCall->setType(Context.VoidTy);
6327   return false;
6328 }
6329 
6330 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6331   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6332   //                 const char *named_addr);
6333 
6334   Expr *Func = Call->getCallee();
6335 
6336   if (Call->getNumArgs() < 3)
6337     return Diag(Call->getEndLoc(),
6338                 diag::err_typecheck_call_too_few_args_at_least)
6339            << 0 /*function call*/ << 3 << Call->getNumArgs();
6340 
6341   // Type-check the first argument normally.
6342   if (checkBuiltinArgument(*this, Call, 0))
6343     return true;
6344 
6345   // Check that the current function is variadic.
6346   if (checkVAStartIsInVariadicFunction(*this, Func))
6347     return true;
6348 
6349   // __va_start on Windows does not validate the parameter qualifiers
6350 
6351   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6352   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6353 
6354   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6355   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6356 
6357   const QualType &ConstCharPtrTy =
6358       Context.getPointerType(Context.CharTy.withConst());
6359   if (!Arg1Ty->isPointerType() ||
6360       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
6361     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6362         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6363         << 0                                      /* qualifier difference */
6364         << 3                                      /* parameter mismatch */
6365         << 2 << Arg1->getType() << ConstCharPtrTy;
6366 
6367   const QualType SizeTy = Context.getSizeType();
6368   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6369     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6370         << Arg2->getType() << SizeTy << 1 /* different class */
6371         << 0                              /* qualifier difference */
6372         << 3                              /* parameter mismatch */
6373         << 3 << Arg2->getType() << SizeTy;
6374 
6375   return false;
6376 }
6377 
6378 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6379 /// friends.  This is declared to take (...), so we have to check everything.
6380 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6381   if (checkArgCount(*this, TheCall, 2))
6382     return true;
6383 
6384   ExprResult OrigArg0 = TheCall->getArg(0);
6385   ExprResult OrigArg1 = TheCall->getArg(1);
6386 
6387   // Do standard promotions between the two arguments, returning their common
6388   // type.
6389   QualType Res = UsualArithmeticConversions(
6390       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6391   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6392     return true;
6393 
6394   // Make sure any conversions are pushed back into the call; this is
6395   // type safe since unordered compare builtins are declared as "_Bool
6396   // foo(...)".
6397   TheCall->setArg(0, OrigArg0.get());
6398   TheCall->setArg(1, OrigArg1.get());
6399 
6400   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6401     return false;
6402 
6403   // If the common type isn't a real floating type, then the arguments were
6404   // invalid for this operation.
6405   if (Res.isNull() || !Res->isRealFloatingType())
6406     return Diag(OrigArg0.get()->getBeginLoc(),
6407                 diag::err_typecheck_call_invalid_ordered_compare)
6408            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6409            << SourceRange(OrigArg0.get()->getBeginLoc(),
6410                           OrigArg1.get()->getEndLoc());
6411 
6412   return false;
6413 }
6414 
6415 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6416 /// __builtin_isnan and friends.  This is declared to take (...), so we have
6417 /// to check everything. We expect the last argument to be a floating point
6418 /// value.
6419 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6420   if (checkArgCount(*this, TheCall, NumArgs))
6421     return true;
6422 
6423   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6424   // on all preceding parameters just being int.  Try all of those.
6425   for (unsigned i = 0; i < NumArgs - 1; ++i) {
6426     Expr *Arg = TheCall->getArg(i);
6427 
6428     if (Arg->isTypeDependent())
6429       return false;
6430 
6431     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6432 
6433     if (Res.isInvalid())
6434       return true;
6435     TheCall->setArg(i, Res.get());
6436   }
6437 
6438   Expr *OrigArg = TheCall->getArg(NumArgs-1);
6439 
6440   if (OrigArg->isTypeDependent())
6441     return false;
6442 
6443   // Usual Unary Conversions will convert half to float, which we want for
6444   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6445   // type how it is, but do normal L->Rvalue conversions.
6446   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6447     OrigArg = UsualUnaryConversions(OrigArg).get();
6448   else
6449     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6450   TheCall->setArg(NumArgs - 1, OrigArg);
6451 
6452   // This operation requires a non-_Complex floating-point number.
6453   if (!OrigArg->getType()->isRealFloatingType())
6454     return Diag(OrigArg->getBeginLoc(),
6455                 diag::err_typecheck_call_invalid_unary_fp)
6456            << OrigArg->getType() << OrigArg->getSourceRange();
6457 
6458   return false;
6459 }
6460 
6461 /// Perform semantic analysis for a call to __builtin_complex.
6462 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6463   if (checkArgCount(*this, TheCall, 2))
6464     return true;
6465 
6466   bool Dependent = false;
6467   for (unsigned I = 0; I != 2; ++I) {
6468     Expr *Arg = TheCall->getArg(I);
6469     QualType T = Arg->getType();
6470     if (T->isDependentType()) {
6471       Dependent = true;
6472       continue;
6473     }
6474 
6475     // Despite supporting _Complex int, GCC requires a real floating point type
6476     // for the operands of __builtin_complex.
6477     if (!T->isRealFloatingType()) {
6478       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6479              << Arg->getType() << Arg->getSourceRange();
6480     }
6481 
6482     ExprResult Converted = DefaultLvalueConversion(Arg);
6483     if (Converted.isInvalid())
6484       return true;
6485     TheCall->setArg(I, Converted.get());
6486   }
6487 
6488   if (Dependent) {
6489     TheCall->setType(Context.DependentTy);
6490     return false;
6491   }
6492 
6493   Expr *Real = TheCall->getArg(0);
6494   Expr *Imag = TheCall->getArg(1);
6495   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6496     return Diag(Real->getBeginLoc(),
6497                 diag::err_typecheck_call_different_arg_types)
6498            << Real->getType() << Imag->getType()
6499            << Real->getSourceRange() << Imag->getSourceRange();
6500   }
6501 
6502   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6503   // don't allow this builtin to form those types either.
6504   // FIXME: Should we allow these types?
6505   if (Real->getType()->isFloat16Type())
6506     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6507            << "_Float16";
6508   if (Real->getType()->isHalfType())
6509     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6510            << "half";
6511 
6512   TheCall->setType(Context.getComplexType(Real->getType()));
6513   return false;
6514 }
6515 
6516 // Customized Sema Checking for VSX builtins that have the following signature:
6517 // vector [...] builtinName(vector [...], vector [...], const int);
6518 // Which takes the same type of vectors (any legal vector type) for the first
6519 // two arguments and takes compile time constant for the third argument.
6520 // Example builtins are :
6521 // vector double vec_xxpermdi(vector double, vector double, int);
6522 // vector short vec_xxsldwi(vector short, vector short, int);
6523 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6524   unsigned ExpectedNumArgs = 3;
6525   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6526     return true;
6527 
6528   // Check the third argument is a compile time constant
6529   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6530     return Diag(TheCall->getBeginLoc(),
6531                 diag::err_vsx_builtin_nonconstant_argument)
6532            << 3 /* argument index */ << TheCall->getDirectCallee()
6533            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6534                           TheCall->getArg(2)->getEndLoc());
6535 
6536   QualType Arg1Ty = TheCall->getArg(0)->getType();
6537   QualType Arg2Ty = TheCall->getArg(1)->getType();
6538 
6539   // Check the type of argument 1 and argument 2 are vectors.
6540   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6541   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6542       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6543     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6544            << TheCall->getDirectCallee()
6545            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6546                           TheCall->getArg(1)->getEndLoc());
6547   }
6548 
6549   // Check the first two arguments are the same type.
6550   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6551     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6552            << TheCall->getDirectCallee()
6553            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6554                           TheCall->getArg(1)->getEndLoc());
6555   }
6556 
6557   // When default clang type checking is turned off and the customized type
6558   // checking is used, the returning type of the function must be explicitly
6559   // set. Otherwise it is _Bool by default.
6560   TheCall->setType(Arg1Ty);
6561 
6562   return false;
6563 }
6564 
6565 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6566 // This is declared to take (...), so we have to check everything.
6567 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6568   if (TheCall->getNumArgs() < 2)
6569     return ExprError(Diag(TheCall->getEndLoc(),
6570                           diag::err_typecheck_call_too_few_args_at_least)
6571                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6572                      << TheCall->getSourceRange());
6573 
6574   // Determine which of the following types of shufflevector we're checking:
6575   // 1) unary, vector mask: (lhs, mask)
6576   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6577   QualType resType = TheCall->getArg(0)->getType();
6578   unsigned numElements = 0;
6579 
6580   if (!TheCall->getArg(0)->isTypeDependent() &&
6581       !TheCall->getArg(1)->isTypeDependent()) {
6582     QualType LHSType = TheCall->getArg(0)->getType();
6583     QualType RHSType = TheCall->getArg(1)->getType();
6584 
6585     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6586       return ExprError(
6587           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6588           << TheCall->getDirectCallee()
6589           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6590                          TheCall->getArg(1)->getEndLoc()));
6591 
6592     numElements = LHSType->castAs<VectorType>()->getNumElements();
6593     unsigned numResElements = TheCall->getNumArgs() - 2;
6594 
6595     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6596     // with mask.  If so, verify that RHS is an integer vector type with the
6597     // same number of elts as lhs.
6598     if (TheCall->getNumArgs() == 2) {
6599       if (!RHSType->hasIntegerRepresentation() ||
6600           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6601         return ExprError(Diag(TheCall->getBeginLoc(),
6602                               diag::err_vec_builtin_incompatible_vector)
6603                          << TheCall->getDirectCallee()
6604                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6605                                         TheCall->getArg(1)->getEndLoc()));
6606     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6607       return ExprError(Diag(TheCall->getBeginLoc(),
6608                             diag::err_vec_builtin_incompatible_vector)
6609                        << TheCall->getDirectCallee()
6610                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6611                                       TheCall->getArg(1)->getEndLoc()));
6612     } else if (numElements != numResElements) {
6613       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6614       resType = Context.getVectorType(eltType, numResElements,
6615                                       VectorType::GenericVector);
6616     }
6617   }
6618 
6619   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6620     if (TheCall->getArg(i)->isTypeDependent() ||
6621         TheCall->getArg(i)->isValueDependent())
6622       continue;
6623 
6624     Optional<llvm::APSInt> Result;
6625     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6626       return ExprError(Diag(TheCall->getBeginLoc(),
6627                             diag::err_shufflevector_nonconstant_argument)
6628                        << TheCall->getArg(i)->getSourceRange());
6629 
6630     // Allow -1 which will be translated to undef in the IR.
6631     if (Result->isSigned() && Result->isAllOnesValue())
6632       continue;
6633 
6634     if (Result->getActiveBits() > 64 ||
6635         Result->getZExtValue() >= numElements * 2)
6636       return ExprError(Diag(TheCall->getBeginLoc(),
6637                             diag::err_shufflevector_argument_too_large)
6638                        << TheCall->getArg(i)->getSourceRange());
6639   }
6640 
6641   SmallVector<Expr*, 32> exprs;
6642 
6643   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6644     exprs.push_back(TheCall->getArg(i));
6645     TheCall->setArg(i, nullptr);
6646   }
6647 
6648   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6649                                          TheCall->getCallee()->getBeginLoc(),
6650                                          TheCall->getRParenLoc());
6651 }
6652 
6653 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6654 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6655                                        SourceLocation BuiltinLoc,
6656                                        SourceLocation RParenLoc) {
6657   ExprValueKind VK = VK_PRValue;
6658   ExprObjectKind OK = OK_Ordinary;
6659   QualType DstTy = TInfo->getType();
6660   QualType SrcTy = E->getType();
6661 
6662   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6663     return ExprError(Diag(BuiltinLoc,
6664                           diag::err_convertvector_non_vector)
6665                      << E->getSourceRange());
6666   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6667     return ExprError(Diag(BuiltinLoc,
6668                           diag::err_convertvector_non_vector_type));
6669 
6670   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6671     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6672     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6673     if (SrcElts != DstElts)
6674       return ExprError(Diag(BuiltinLoc,
6675                             diag::err_convertvector_incompatible_vector)
6676                        << E->getSourceRange());
6677   }
6678 
6679   return new (Context)
6680       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6681 }
6682 
6683 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6684 // This is declared to take (const void*, ...) and can take two
6685 // optional constant int args.
6686 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6687   unsigned NumArgs = TheCall->getNumArgs();
6688 
6689   if (NumArgs > 3)
6690     return Diag(TheCall->getEndLoc(),
6691                 diag::err_typecheck_call_too_many_args_at_most)
6692            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6693 
6694   // Argument 0 is checked for us and the remaining arguments must be
6695   // constant integers.
6696   for (unsigned i = 1; i != NumArgs; ++i)
6697     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6698       return true;
6699 
6700   return false;
6701 }
6702 
6703 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
6704 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
6705   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
6706     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
6707            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6708   if (checkArgCount(*this, TheCall, 1))
6709     return true;
6710   Expr *Arg = TheCall->getArg(0);
6711   if (Arg->isInstantiationDependent())
6712     return false;
6713 
6714   QualType ArgTy = Arg->getType();
6715   if (!ArgTy->hasFloatingRepresentation())
6716     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
6717            << ArgTy;
6718   if (Arg->isLValue()) {
6719     ExprResult FirstArg = DefaultLvalueConversion(Arg);
6720     TheCall->setArg(0, FirstArg.get());
6721   }
6722   TheCall->setType(TheCall->getArg(0)->getType());
6723   return false;
6724 }
6725 
6726 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6727 // __assume does not evaluate its arguments, and should warn if its argument
6728 // has side effects.
6729 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6730   Expr *Arg = TheCall->getArg(0);
6731   if (Arg->isInstantiationDependent()) return false;
6732 
6733   if (Arg->HasSideEffects(Context))
6734     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6735         << Arg->getSourceRange()
6736         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6737 
6738   return false;
6739 }
6740 
6741 /// Handle __builtin_alloca_with_align. This is declared
6742 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6743 /// than 8.
6744 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6745   // The alignment must be a constant integer.
6746   Expr *Arg = TheCall->getArg(1);
6747 
6748   // We can't check the value of a dependent argument.
6749   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6750     if (const auto *UE =
6751             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6752       if (UE->getKind() == UETT_AlignOf ||
6753           UE->getKind() == UETT_PreferredAlignOf)
6754         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6755             << Arg->getSourceRange();
6756 
6757     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6758 
6759     if (!Result.isPowerOf2())
6760       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6761              << Arg->getSourceRange();
6762 
6763     if (Result < Context.getCharWidth())
6764       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6765              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6766 
6767     if (Result > std::numeric_limits<int32_t>::max())
6768       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6769              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6770   }
6771 
6772   return false;
6773 }
6774 
6775 /// Handle __builtin_assume_aligned. This is declared
6776 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6777 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6778   unsigned NumArgs = TheCall->getNumArgs();
6779 
6780   if (NumArgs > 3)
6781     return Diag(TheCall->getEndLoc(),
6782                 diag::err_typecheck_call_too_many_args_at_most)
6783            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6784 
6785   // The alignment must be a constant integer.
6786   Expr *Arg = TheCall->getArg(1);
6787 
6788   // We can't check the value of a dependent argument.
6789   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6790     llvm::APSInt Result;
6791     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6792       return true;
6793 
6794     if (!Result.isPowerOf2())
6795       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6796              << Arg->getSourceRange();
6797 
6798     if (Result > Sema::MaximumAlignment)
6799       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6800           << Arg->getSourceRange() << Sema::MaximumAlignment;
6801   }
6802 
6803   if (NumArgs > 2) {
6804     ExprResult Arg(TheCall->getArg(2));
6805     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6806       Context.getSizeType(), false);
6807     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6808     if (Arg.isInvalid()) return true;
6809     TheCall->setArg(2, Arg.get());
6810   }
6811 
6812   return false;
6813 }
6814 
6815 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6816   unsigned BuiltinID =
6817       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6818   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6819 
6820   unsigned NumArgs = TheCall->getNumArgs();
6821   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6822   if (NumArgs < NumRequiredArgs) {
6823     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6824            << 0 /* function call */ << NumRequiredArgs << NumArgs
6825            << TheCall->getSourceRange();
6826   }
6827   if (NumArgs >= NumRequiredArgs + 0x100) {
6828     return Diag(TheCall->getEndLoc(),
6829                 diag::err_typecheck_call_too_many_args_at_most)
6830            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6831            << TheCall->getSourceRange();
6832   }
6833   unsigned i = 0;
6834 
6835   // For formatting call, check buffer arg.
6836   if (!IsSizeCall) {
6837     ExprResult Arg(TheCall->getArg(i));
6838     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6839         Context, Context.VoidPtrTy, false);
6840     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6841     if (Arg.isInvalid())
6842       return true;
6843     TheCall->setArg(i, Arg.get());
6844     i++;
6845   }
6846 
6847   // Check string literal arg.
6848   unsigned FormatIdx = i;
6849   {
6850     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6851     if (Arg.isInvalid())
6852       return true;
6853     TheCall->setArg(i, Arg.get());
6854     i++;
6855   }
6856 
6857   // Make sure variadic args are scalar.
6858   unsigned FirstDataArg = i;
6859   while (i < NumArgs) {
6860     ExprResult Arg = DefaultVariadicArgumentPromotion(
6861         TheCall->getArg(i), VariadicFunction, nullptr);
6862     if (Arg.isInvalid())
6863       return true;
6864     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6865     if (ArgSize.getQuantity() >= 0x100) {
6866       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6867              << i << (int)ArgSize.getQuantity() << 0xff
6868              << TheCall->getSourceRange();
6869     }
6870     TheCall->setArg(i, Arg.get());
6871     i++;
6872   }
6873 
6874   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6875   // call to avoid duplicate diagnostics.
6876   if (!IsSizeCall) {
6877     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6878     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6879     bool Success = CheckFormatArguments(
6880         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6881         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6882         CheckedVarArgs);
6883     if (!Success)
6884       return true;
6885   }
6886 
6887   if (IsSizeCall) {
6888     TheCall->setType(Context.getSizeType());
6889   } else {
6890     TheCall->setType(Context.VoidPtrTy);
6891   }
6892   return false;
6893 }
6894 
6895 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6896 /// TheCall is a constant expression.
6897 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6898                                   llvm::APSInt &Result) {
6899   Expr *Arg = TheCall->getArg(ArgNum);
6900   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6901   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6902 
6903   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6904 
6905   Optional<llvm::APSInt> R;
6906   if (!(R = Arg->getIntegerConstantExpr(Context)))
6907     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6908            << FDecl->getDeclName() << Arg->getSourceRange();
6909   Result = *R;
6910   return false;
6911 }
6912 
6913 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6914 /// TheCall is a constant expression in the range [Low, High].
6915 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6916                                        int Low, int High, bool RangeIsError) {
6917   if (isConstantEvaluated())
6918     return false;
6919   llvm::APSInt Result;
6920 
6921   // We can't check the value of a dependent argument.
6922   Expr *Arg = TheCall->getArg(ArgNum);
6923   if (Arg->isTypeDependent() || Arg->isValueDependent())
6924     return false;
6925 
6926   // Check constant-ness first.
6927   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6928     return true;
6929 
6930   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6931     if (RangeIsError)
6932       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6933              << toString(Result, 10) << Low << High << Arg->getSourceRange();
6934     else
6935       // Defer the warning until we know if the code will be emitted so that
6936       // dead code can ignore this.
6937       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6938                           PDiag(diag::warn_argument_invalid_range)
6939                               << toString(Result, 10) << Low << High
6940                               << Arg->getSourceRange());
6941   }
6942 
6943   return false;
6944 }
6945 
6946 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6947 /// TheCall is a constant expression is a multiple of Num..
6948 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6949                                           unsigned Num) {
6950   llvm::APSInt Result;
6951 
6952   // We can't check the value of a dependent argument.
6953   Expr *Arg = TheCall->getArg(ArgNum);
6954   if (Arg->isTypeDependent() || Arg->isValueDependent())
6955     return false;
6956 
6957   // Check constant-ness first.
6958   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6959     return true;
6960 
6961   if (Result.getSExtValue() % Num != 0)
6962     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6963            << Num << Arg->getSourceRange();
6964 
6965   return false;
6966 }
6967 
6968 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6969 /// constant expression representing a power of 2.
6970 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6971   llvm::APSInt Result;
6972 
6973   // We can't check the value of a dependent argument.
6974   Expr *Arg = TheCall->getArg(ArgNum);
6975   if (Arg->isTypeDependent() || Arg->isValueDependent())
6976     return false;
6977 
6978   // Check constant-ness first.
6979   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6980     return true;
6981 
6982   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6983   // and only if x is a power of 2.
6984   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6985     return false;
6986 
6987   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6988          << Arg->getSourceRange();
6989 }
6990 
6991 static bool IsShiftedByte(llvm::APSInt Value) {
6992   if (Value.isNegative())
6993     return false;
6994 
6995   // Check if it's a shifted byte, by shifting it down
6996   while (true) {
6997     // If the value fits in the bottom byte, the check passes.
6998     if (Value < 0x100)
6999       return true;
7000 
7001     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7002     // fails.
7003     if ((Value & 0xFF) != 0)
7004       return false;
7005 
7006     // If the bottom 8 bits are all 0, but something above that is nonzero,
7007     // then shifting the value right by 8 bits won't affect whether it's a
7008     // shifted byte or not. So do that, and go round again.
7009     Value >>= 8;
7010   }
7011 }
7012 
7013 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7014 /// a constant expression representing an arbitrary byte value shifted left by
7015 /// a multiple of 8 bits.
7016 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7017                                              unsigned ArgBits) {
7018   llvm::APSInt Result;
7019 
7020   // We can't check the value of a dependent argument.
7021   Expr *Arg = TheCall->getArg(ArgNum);
7022   if (Arg->isTypeDependent() || Arg->isValueDependent())
7023     return false;
7024 
7025   // Check constant-ness first.
7026   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7027     return true;
7028 
7029   // Truncate to the given size.
7030   Result = Result.getLoBits(ArgBits);
7031   Result.setIsUnsigned(true);
7032 
7033   if (IsShiftedByte(Result))
7034     return false;
7035 
7036   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7037          << Arg->getSourceRange();
7038 }
7039 
7040 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7041 /// TheCall is a constant expression representing either a shifted byte value,
7042 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7043 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7044 /// Arm MVE intrinsics.
7045 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7046                                                    int ArgNum,
7047                                                    unsigned ArgBits) {
7048   llvm::APSInt Result;
7049 
7050   // We can't check the value of a dependent argument.
7051   Expr *Arg = TheCall->getArg(ArgNum);
7052   if (Arg->isTypeDependent() || Arg->isValueDependent())
7053     return false;
7054 
7055   // Check constant-ness first.
7056   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7057     return true;
7058 
7059   // Truncate to the given size.
7060   Result = Result.getLoBits(ArgBits);
7061   Result.setIsUnsigned(true);
7062 
7063   // Check to see if it's in either of the required forms.
7064   if (IsShiftedByte(Result) ||
7065       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7066     return false;
7067 
7068   return Diag(TheCall->getBeginLoc(),
7069               diag::err_argument_not_shifted_byte_or_xxff)
7070          << Arg->getSourceRange();
7071 }
7072 
7073 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7074 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7075   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7076     if (checkArgCount(*this, TheCall, 2))
7077       return true;
7078     Expr *Arg0 = TheCall->getArg(0);
7079     Expr *Arg1 = TheCall->getArg(1);
7080 
7081     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7082     if (FirstArg.isInvalid())
7083       return true;
7084     QualType FirstArgType = FirstArg.get()->getType();
7085     if (!FirstArgType->isAnyPointerType())
7086       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7087                << "first" << FirstArgType << Arg0->getSourceRange();
7088     TheCall->setArg(0, FirstArg.get());
7089 
7090     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7091     if (SecArg.isInvalid())
7092       return true;
7093     QualType SecArgType = SecArg.get()->getType();
7094     if (!SecArgType->isIntegerType())
7095       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7096                << "second" << SecArgType << Arg1->getSourceRange();
7097 
7098     // Derive the return type from the pointer argument.
7099     TheCall->setType(FirstArgType);
7100     return false;
7101   }
7102 
7103   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7104     if (checkArgCount(*this, TheCall, 2))
7105       return true;
7106 
7107     Expr *Arg0 = TheCall->getArg(0);
7108     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7109     if (FirstArg.isInvalid())
7110       return true;
7111     QualType FirstArgType = FirstArg.get()->getType();
7112     if (!FirstArgType->isAnyPointerType())
7113       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7114                << "first" << FirstArgType << Arg0->getSourceRange();
7115     TheCall->setArg(0, FirstArg.get());
7116 
7117     // Derive the return type from the pointer argument.
7118     TheCall->setType(FirstArgType);
7119 
7120     // Second arg must be an constant in range [0,15]
7121     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7122   }
7123 
7124   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7125     if (checkArgCount(*this, TheCall, 2))
7126       return true;
7127     Expr *Arg0 = TheCall->getArg(0);
7128     Expr *Arg1 = TheCall->getArg(1);
7129 
7130     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7131     if (FirstArg.isInvalid())
7132       return true;
7133     QualType FirstArgType = FirstArg.get()->getType();
7134     if (!FirstArgType->isAnyPointerType())
7135       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7136                << "first" << FirstArgType << Arg0->getSourceRange();
7137 
7138     QualType SecArgType = Arg1->getType();
7139     if (!SecArgType->isIntegerType())
7140       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7141                << "second" << SecArgType << Arg1->getSourceRange();
7142     TheCall->setType(Context.IntTy);
7143     return false;
7144   }
7145 
7146   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7147       BuiltinID == AArch64::BI__builtin_arm_stg) {
7148     if (checkArgCount(*this, TheCall, 1))
7149       return true;
7150     Expr *Arg0 = TheCall->getArg(0);
7151     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7152     if (FirstArg.isInvalid())
7153       return true;
7154 
7155     QualType FirstArgType = FirstArg.get()->getType();
7156     if (!FirstArgType->isAnyPointerType())
7157       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7158                << "first" << FirstArgType << Arg0->getSourceRange();
7159     TheCall->setArg(0, FirstArg.get());
7160 
7161     // Derive the return type from the pointer argument.
7162     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7163       TheCall->setType(FirstArgType);
7164     return false;
7165   }
7166 
7167   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7168     Expr *ArgA = TheCall->getArg(0);
7169     Expr *ArgB = TheCall->getArg(1);
7170 
7171     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7172     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7173 
7174     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7175       return true;
7176 
7177     QualType ArgTypeA = ArgExprA.get()->getType();
7178     QualType ArgTypeB = ArgExprB.get()->getType();
7179 
7180     auto isNull = [&] (Expr *E) -> bool {
7181       return E->isNullPointerConstant(
7182                         Context, Expr::NPC_ValueDependentIsNotNull); };
7183 
7184     // argument should be either a pointer or null
7185     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7186       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7187         << "first" << ArgTypeA << ArgA->getSourceRange();
7188 
7189     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7190       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7191         << "second" << ArgTypeB << ArgB->getSourceRange();
7192 
7193     // Ensure Pointee types are compatible
7194     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7195         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7196       QualType pointeeA = ArgTypeA->getPointeeType();
7197       QualType pointeeB = ArgTypeB->getPointeeType();
7198       if (!Context.typesAreCompatible(
7199              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7200              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7201         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7202           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
7203           << ArgB->getSourceRange();
7204       }
7205     }
7206 
7207     // at least one argument should be pointer type
7208     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7209       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7210         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7211 
7212     if (isNull(ArgA)) // adopt type of the other pointer
7213       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7214 
7215     if (isNull(ArgB))
7216       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7217 
7218     TheCall->setArg(0, ArgExprA.get());
7219     TheCall->setArg(1, ArgExprB.get());
7220     TheCall->setType(Context.LongLongTy);
7221     return false;
7222   }
7223   assert(false && "Unhandled ARM MTE intrinsic");
7224   return true;
7225 }
7226 
7227 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7228 /// TheCall is an ARM/AArch64 special register string literal.
7229 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7230                                     int ArgNum, unsigned ExpectedFieldNum,
7231                                     bool AllowName) {
7232   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7233                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7234                       BuiltinID == ARM::BI__builtin_arm_rsr ||
7235                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7236                       BuiltinID == ARM::BI__builtin_arm_wsr ||
7237                       BuiltinID == ARM::BI__builtin_arm_wsrp;
7238   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7239                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7240                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
7241                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7242                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
7243                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
7244   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
7245 
7246   // We can't check the value of a dependent argument.
7247   Expr *Arg = TheCall->getArg(ArgNum);
7248   if (Arg->isTypeDependent() || Arg->isValueDependent())
7249     return false;
7250 
7251   // Check if the argument is a string literal.
7252   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7253     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7254            << Arg->getSourceRange();
7255 
7256   // Check the type of special register given.
7257   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7258   SmallVector<StringRef, 6> Fields;
7259   Reg.split(Fields, ":");
7260 
7261   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7262     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7263            << Arg->getSourceRange();
7264 
7265   // If the string is the name of a register then we cannot check that it is
7266   // valid here but if the string is of one the forms described in ACLE then we
7267   // can check that the supplied fields are integers and within the valid
7268   // ranges.
7269   if (Fields.size() > 1) {
7270     bool FiveFields = Fields.size() == 5;
7271 
7272     bool ValidString = true;
7273     if (IsARMBuiltin) {
7274       ValidString &= Fields[0].startswith_insensitive("cp") ||
7275                      Fields[0].startswith_insensitive("p");
7276       if (ValidString)
7277         Fields[0] = Fields[0].drop_front(
7278             Fields[0].startswith_insensitive("cp") ? 2 : 1);
7279 
7280       ValidString &= Fields[2].startswith_insensitive("c");
7281       if (ValidString)
7282         Fields[2] = Fields[2].drop_front(1);
7283 
7284       if (FiveFields) {
7285         ValidString &= Fields[3].startswith_insensitive("c");
7286         if (ValidString)
7287           Fields[3] = Fields[3].drop_front(1);
7288       }
7289     }
7290 
7291     SmallVector<int, 5> Ranges;
7292     if (FiveFields)
7293       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7294     else
7295       Ranges.append({15, 7, 15});
7296 
7297     for (unsigned i=0; i<Fields.size(); ++i) {
7298       int IntField;
7299       ValidString &= !Fields[i].getAsInteger(10, IntField);
7300       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7301     }
7302 
7303     if (!ValidString)
7304       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7305              << Arg->getSourceRange();
7306   } else if (IsAArch64Builtin && Fields.size() == 1) {
7307     // If the register name is one of those that appear in the condition below
7308     // and the special register builtin being used is one of the write builtins,
7309     // then we require that the argument provided for writing to the register
7310     // is an integer constant expression. This is because it will be lowered to
7311     // an MSR (immediate) instruction, so we need to know the immediate at
7312     // compile time.
7313     if (TheCall->getNumArgs() != 2)
7314       return false;
7315 
7316     std::string RegLower = Reg.lower();
7317     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7318         RegLower != "pan" && RegLower != "uao")
7319       return false;
7320 
7321     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7322   }
7323 
7324   return false;
7325 }
7326 
7327 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7328 /// Emit an error and return true on failure; return false on success.
7329 /// TypeStr is a string containing the type descriptor of the value returned by
7330 /// the builtin and the descriptors of the expected type of the arguments.
7331 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
7332 
7333   assert((TypeStr[0] != '\0') &&
7334          "Invalid types in PPC MMA builtin declaration");
7335 
7336   unsigned Mask = 0;
7337   unsigned ArgNum = 0;
7338 
7339   // The first type in TypeStr is the type of the value returned by the
7340   // builtin. So we first read that type and change the type of TheCall.
7341   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7342   TheCall->setType(type);
7343 
7344   while (*TypeStr != '\0') {
7345     Mask = 0;
7346     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7347     if (ArgNum >= TheCall->getNumArgs()) {
7348       ArgNum++;
7349       break;
7350     }
7351 
7352     Expr *Arg = TheCall->getArg(ArgNum);
7353     QualType ArgType = Arg->getType();
7354 
7355     if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
7356         (!ExpectedType->isVoidPointerType() &&
7357            ArgType.getCanonicalType() != ExpectedType))
7358       return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7359              << ArgType << ExpectedType << 1 << 0 << 0;
7360 
7361     // If the value of the Mask is not 0, we have a constraint in the size of
7362     // the integer argument so here we ensure the argument is a constant that
7363     // is in the valid range.
7364     if (Mask != 0 &&
7365         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7366       return true;
7367 
7368     ArgNum++;
7369   }
7370 
7371   // In case we exited early from the previous loop, there are other types to
7372   // read from TypeStr. So we need to read them all to ensure we have the right
7373   // number of arguments in TheCall and if it is not the case, to display a
7374   // better error message.
7375   while (*TypeStr != '\0') {
7376     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7377     ArgNum++;
7378   }
7379   if (checkArgCount(*this, TheCall, ArgNum))
7380     return true;
7381 
7382   return false;
7383 }
7384 
7385 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7386 /// This checks that the target supports __builtin_longjmp and
7387 /// that val is a constant 1.
7388 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7389   if (!Context.getTargetInfo().hasSjLjLowering())
7390     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7391            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7392 
7393   Expr *Arg = TheCall->getArg(1);
7394   llvm::APSInt Result;
7395 
7396   // TODO: This is less than ideal. Overload this to take a value.
7397   if (SemaBuiltinConstantArg(TheCall, 1, Result))
7398     return true;
7399 
7400   if (Result != 1)
7401     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7402            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7403 
7404   return false;
7405 }
7406 
7407 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7408 /// This checks that the target supports __builtin_setjmp.
7409 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7410   if (!Context.getTargetInfo().hasSjLjLowering())
7411     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7412            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7413   return false;
7414 }
7415 
7416 namespace {
7417 
7418 class UncoveredArgHandler {
7419   enum { Unknown = -1, AllCovered = -2 };
7420 
7421   signed FirstUncoveredArg = Unknown;
7422   SmallVector<const Expr *, 4> DiagnosticExprs;
7423 
7424 public:
7425   UncoveredArgHandler() = default;
7426 
7427   bool hasUncoveredArg() const {
7428     return (FirstUncoveredArg >= 0);
7429   }
7430 
7431   unsigned getUncoveredArg() const {
7432     assert(hasUncoveredArg() && "no uncovered argument");
7433     return FirstUncoveredArg;
7434   }
7435 
7436   void setAllCovered() {
7437     // A string has been found with all arguments covered, so clear out
7438     // the diagnostics.
7439     DiagnosticExprs.clear();
7440     FirstUncoveredArg = AllCovered;
7441   }
7442 
7443   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7444     assert(NewFirstUncoveredArg >= 0 && "Outside range");
7445 
7446     // Don't update if a previous string covers all arguments.
7447     if (FirstUncoveredArg == AllCovered)
7448       return;
7449 
7450     // UncoveredArgHandler tracks the highest uncovered argument index
7451     // and with it all the strings that match this index.
7452     if (NewFirstUncoveredArg == FirstUncoveredArg)
7453       DiagnosticExprs.push_back(StrExpr);
7454     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7455       DiagnosticExprs.clear();
7456       DiagnosticExprs.push_back(StrExpr);
7457       FirstUncoveredArg = NewFirstUncoveredArg;
7458     }
7459   }
7460 
7461   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7462 };
7463 
7464 enum StringLiteralCheckType {
7465   SLCT_NotALiteral,
7466   SLCT_UncheckedLiteral,
7467   SLCT_CheckedLiteral
7468 };
7469 
7470 } // namespace
7471 
7472 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7473                                      BinaryOperatorKind BinOpKind,
7474                                      bool AddendIsRight) {
7475   unsigned BitWidth = Offset.getBitWidth();
7476   unsigned AddendBitWidth = Addend.getBitWidth();
7477   // There might be negative interim results.
7478   if (Addend.isUnsigned()) {
7479     Addend = Addend.zext(++AddendBitWidth);
7480     Addend.setIsSigned(true);
7481   }
7482   // Adjust the bit width of the APSInts.
7483   if (AddendBitWidth > BitWidth) {
7484     Offset = Offset.sext(AddendBitWidth);
7485     BitWidth = AddendBitWidth;
7486   } else if (BitWidth > AddendBitWidth) {
7487     Addend = Addend.sext(BitWidth);
7488   }
7489 
7490   bool Ov = false;
7491   llvm::APSInt ResOffset = Offset;
7492   if (BinOpKind == BO_Add)
7493     ResOffset = Offset.sadd_ov(Addend, Ov);
7494   else {
7495     assert(AddendIsRight && BinOpKind == BO_Sub &&
7496            "operator must be add or sub with addend on the right");
7497     ResOffset = Offset.ssub_ov(Addend, Ov);
7498   }
7499 
7500   // We add an offset to a pointer here so we should support an offset as big as
7501   // possible.
7502   if (Ov) {
7503     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
7504            "index (intermediate) result too big");
7505     Offset = Offset.sext(2 * BitWidth);
7506     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7507     return;
7508   }
7509 
7510   Offset = ResOffset;
7511 }
7512 
7513 namespace {
7514 
7515 // This is a wrapper class around StringLiteral to support offsetted string
7516 // literals as format strings. It takes the offset into account when returning
7517 // the string and its length or the source locations to display notes correctly.
7518 class FormatStringLiteral {
7519   const StringLiteral *FExpr;
7520   int64_t Offset;
7521 
7522  public:
7523   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7524       : FExpr(fexpr), Offset(Offset) {}
7525 
7526   StringRef getString() const {
7527     return FExpr->getString().drop_front(Offset);
7528   }
7529 
7530   unsigned getByteLength() const {
7531     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7532   }
7533 
7534   unsigned getLength() const { return FExpr->getLength() - Offset; }
7535   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7536 
7537   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7538 
7539   QualType getType() const { return FExpr->getType(); }
7540 
7541   bool isAscii() const { return FExpr->isAscii(); }
7542   bool isWide() const { return FExpr->isWide(); }
7543   bool isUTF8() const { return FExpr->isUTF8(); }
7544   bool isUTF16() const { return FExpr->isUTF16(); }
7545   bool isUTF32() const { return FExpr->isUTF32(); }
7546   bool isPascal() const { return FExpr->isPascal(); }
7547 
7548   SourceLocation getLocationOfByte(
7549       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7550       const TargetInfo &Target, unsigned *StartToken = nullptr,
7551       unsigned *StartTokenByteOffset = nullptr) const {
7552     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7553                                     StartToken, StartTokenByteOffset);
7554   }
7555 
7556   SourceLocation getBeginLoc() const LLVM_READONLY {
7557     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7558   }
7559 
7560   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7561 };
7562 
7563 }  // namespace
7564 
7565 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7566                               const Expr *OrigFormatExpr,
7567                               ArrayRef<const Expr *> Args,
7568                               bool HasVAListArg, unsigned format_idx,
7569                               unsigned firstDataArg,
7570                               Sema::FormatStringType Type,
7571                               bool inFunctionCall,
7572                               Sema::VariadicCallType CallType,
7573                               llvm::SmallBitVector &CheckedVarArgs,
7574                               UncoveredArgHandler &UncoveredArg,
7575                               bool IgnoreStringsWithoutSpecifiers);
7576 
7577 // Determine if an expression is a string literal or constant string.
7578 // If this function returns false on the arguments to a function expecting a
7579 // format string, we will usually need to emit a warning.
7580 // True string literals are then checked by CheckFormatString.
7581 static StringLiteralCheckType
7582 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7583                       bool HasVAListArg, unsigned format_idx,
7584                       unsigned firstDataArg, Sema::FormatStringType Type,
7585                       Sema::VariadicCallType CallType, bool InFunctionCall,
7586                       llvm::SmallBitVector &CheckedVarArgs,
7587                       UncoveredArgHandler &UncoveredArg,
7588                       llvm::APSInt Offset,
7589                       bool IgnoreStringsWithoutSpecifiers = false) {
7590   if (S.isConstantEvaluated())
7591     return SLCT_NotALiteral;
7592  tryAgain:
7593   assert(Offset.isSigned() && "invalid offset");
7594 
7595   if (E->isTypeDependent() || E->isValueDependent())
7596     return SLCT_NotALiteral;
7597 
7598   E = E->IgnoreParenCasts();
7599 
7600   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7601     // Technically -Wformat-nonliteral does not warn about this case.
7602     // The behavior of printf and friends in this case is implementation
7603     // dependent.  Ideally if the format string cannot be null then
7604     // it should have a 'nonnull' attribute in the function prototype.
7605     return SLCT_UncheckedLiteral;
7606 
7607   switch (E->getStmtClass()) {
7608   case Stmt::BinaryConditionalOperatorClass:
7609   case Stmt::ConditionalOperatorClass: {
7610     // The expression is a literal if both sub-expressions were, and it was
7611     // completely checked only if both sub-expressions were checked.
7612     const AbstractConditionalOperator *C =
7613         cast<AbstractConditionalOperator>(E);
7614 
7615     // Determine whether it is necessary to check both sub-expressions, for
7616     // example, because the condition expression is a constant that can be
7617     // evaluated at compile time.
7618     bool CheckLeft = true, CheckRight = true;
7619 
7620     bool Cond;
7621     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7622                                                  S.isConstantEvaluated())) {
7623       if (Cond)
7624         CheckRight = false;
7625       else
7626         CheckLeft = false;
7627     }
7628 
7629     // We need to maintain the offsets for the right and the left hand side
7630     // separately to check if every possible indexed expression is a valid
7631     // string literal. They might have different offsets for different string
7632     // literals in the end.
7633     StringLiteralCheckType Left;
7634     if (!CheckLeft)
7635       Left = SLCT_UncheckedLiteral;
7636     else {
7637       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7638                                    HasVAListArg, format_idx, firstDataArg,
7639                                    Type, CallType, InFunctionCall,
7640                                    CheckedVarArgs, UncoveredArg, Offset,
7641                                    IgnoreStringsWithoutSpecifiers);
7642       if (Left == SLCT_NotALiteral || !CheckRight) {
7643         return Left;
7644       }
7645     }
7646 
7647     StringLiteralCheckType Right = checkFormatStringExpr(
7648         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7649         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7650         IgnoreStringsWithoutSpecifiers);
7651 
7652     return (CheckLeft && Left < Right) ? Left : Right;
7653   }
7654 
7655   case Stmt::ImplicitCastExprClass:
7656     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7657     goto tryAgain;
7658 
7659   case Stmt::OpaqueValueExprClass:
7660     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7661       E = src;
7662       goto tryAgain;
7663     }
7664     return SLCT_NotALiteral;
7665 
7666   case Stmt::PredefinedExprClass:
7667     // While __func__, etc., are technically not string literals, they
7668     // cannot contain format specifiers and thus are not a security
7669     // liability.
7670     return SLCT_UncheckedLiteral;
7671 
7672   case Stmt::DeclRefExprClass: {
7673     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7674 
7675     // As an exception, do not flag errors for variables binding to
7676     // const string literals.
7677     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7678       bool isConstant = false;
7679       QualType T = DR->getType();
7680 
7681       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7682         isConstant = AT->getElementType().isConstant(S.Context);
7683       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7684         isConstant = T.isConstant(S.Context) &&
7685                      PT->getPointeeType().isConstant(S.Context);
7686       } else if (T->isObjCObjectPointerType()) {
7687         // In ObjC, there is usually no "const ObjectPointer" type,
7688         // so don't check if the pointee type is constant.
7689         isConstant = T.isConstant(S.Context);
7690       }
7691 
7692       if (isConstant) {
7693         if (const Expr *Init = VD->getAnyInitializer()) {
7694           // Look through initializers like const char c[] = { "foo" }
7695           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7696             if (InitList->isStringLiteralInit())
7697               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7698           }
7699           return checkFormatStringExpr(S, Init, Args,
7700                                        HasVAListArg, format_idx,
7701                                        firstDataArg, Type, CallType,
7702                                        /*InFunctionCall*/ false, CheckedVarArgs,
7703                                        UncoveredArg, Offset);
7704         }
7705       }
7706 
7707       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7708       // special check to see if the format string is a function parameter
7709       // of the function calling the printf function.  If the function
7710       // has an attribute indicating it is a printf-like function, then we
7711       // should suppress warnings concerning non-literals being used in a call
7712       // to a vprintf function.  For example:
7713       //
7714       // void
7715       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7716       //      va_list ap;
7717       //      va_start(ap, fmt);
7718       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7719       //      ...
7720       // }
7721       if (HasVAListArg) {
7722         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7723           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7724             int PVIndex = PV->getFunctionScopeIndex() + 1;
7725             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7726               // adjust for implicit parameter
7727               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7728                 if (MD->isInstance())
7729                   ++PVIndex;
7730               // We also check if the formats are compatible.
7731               // We can't pass a 'scanf' string to a 'printf' function.
7732               if (PVIndex == PVFormat->getFormatIdx() &&
7733                   Type == S.GetFormatStringType(PVFormat))
7734                 return SLCT_UncheckedLiteral;
7735             }
7736           }
7737         }
7738       }
7739     }
7740 
7741     return SLCT_NotALiteral;
7742   }
7743 
7744   case Stmt::CallExprClass:
7745   case Stmt::CXXMemberCallExprClass: {
7746     const CallExpr *CE = cast<CallExpr>(E);
7747     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7748       bool IsFirst = true;
7749       StringLiteralCheckType CommonResult;
7750       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7751         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7752         StringLiteralCheckType Result = checkFormatStringExpr(
7753             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7754             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7755             IgnoreStringsWithoutSpecifiers);
7756         if (IsFirst) {
7757           CommonResult = Result;
7758           IsFirst = false;
7759         }
7760       }
7761       if (!IsFirst)
7762         return CommonResult;
7763 
7764       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7765         unsigned BuiltinID = FD->getBuiltinID();
7766         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7767             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7768           const Expr *Arg = CE->getArg(0);
7769           return checkFormatStringExpr(S, Arg, Args,
7770                                        HasVAListArg, format_idx,
7771                                        firstDataArg, Type, CallType,
7772                                        InFunctionCall, CheckedVarArgs,
7773                                        UncoveredArg, Offset,
7774                                        IgnoreStringsWithoutSpecifiers);
7775         }
7776       }
7777     }
7778 
7779     return SLCT_NotALiteral;
7780   }
7781   case Stmt::ObjCMessageExprClass: {
7782     const auto *ME = cast<ObjCMessageExpr>(E);
7783     if (const auto *MD = ME->getMethodDecl()) {
7784       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7785         // As a special case heuristic, if we're using the method -[NSBundle
7786         // localizedStringForKey:value:table:], ignore any key strings that lack
7787         // format specifiers. The idea is that if the key doesn't have any
7788         // format specifiers then its probably just a key to map to the
7789         // localized strings. If it does have format specifiers though, then its
7790         // likely that the text of the key is the format string in the
7791         // programmer's language, and should be checked.
7792         const ObjCInterfaceDecl *IFace;
7793         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7794             IFace->getIdentifier()->isStr("NSBundle") &&
7795             MD->getSelector().isKeywordSelector(
7796                 {"localizedStringForKey", "value", "table"})) {
7797           IgnoreStringsWithoutSpecifiers = true;
7798         }
7799 
7800         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7801         return checkFormatStringExpr(
7802             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7803             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7804             IgnoreStringsWithoutSpecifiers);
7805       }
7806     }
7807 
7808     return SLCT_NotALiteral;
7809   }
7810   case Stmt::ObjCStringLiteralClass:
7811   case Stmt::StringLiteralClass: {
7812     const StringLiteral *StrE = nullptr;
7813 
7814     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7815       StrE = ObjCFExpr->getString();
7816     else
7817       StrE = cast<StringLiteral>(E);
7818 
7819     if (StrE) {
7820       if (Offset.isNegative() || Offset > StrE->getLength()) {
7821         // TODO: It would be better to have an explicit warning for out of
7822         // bounds literals.
7823         return SLCT_NotALiteral;
7824       }
7825       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7826       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7827                         firstDataArg, Type, InFunctionCall, CallType,
7828                         CheckedVarArgs, UncoveredArg,
7829                         IgnoreStringsWithoutSpecifiers);
7830       return SLCT_CheckedLiteral;
7831     }
7832 
7833     return SLCT_NotALiteral;
7834   }
7835   case Stmt::BinaryOperatorClass: {
7836     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7837 
7838     // A string literal + an int offset is still a string literal.
7839     if (BinOp->isAdditiveOp()) {
7840       Expr::EvalResult LResult, RResult;
7841 
7842       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7843           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7844       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7845           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7846 
7847       if (LIsInt != RIsInt) {
7848         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7849 
7850         if (LIsInt) {
7851           if (BinOpKind == BO_Add) {
7852             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7853             E = BinOp->getRHS();
7854             goto tryAgain;
7855           }
7856         } else {
7857           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7858           E = BinOp->getLHS();
7859           goto tryAgain;
7860         }
7861       }
7862     }
7863 
7864     return SLCT_NotALiteral;
7865   }
7866   case Stmt::UnaryOperatorClass: {
7867     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7868     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7869     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7870       Expr::EvalResult IndexResult;
7871       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7872                                        Expr::SE_NoSideEffects,
7873                                        S.isConstantEvaluated())) {
7874         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7875                    /*RHS is int*/ true);
7876         E = ASE->getBase();
7877         goto tryAgain;
7878       }
7879     }
7880 
7881     return SLCT_NotALiteral;
7882   }
7883 
7884   default:
7885     return SLCT_NotALiteral;
7886   }
7887 }
7888 
7889 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7890   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7891       .Case("scanf", FST_Scanf)
7892       .Cases("printf", "printf0", FST_Printf)
7893       .Cases("NSString", "CFString", FST_NSString)
7894       .Case("strftime", FST_Strftime)
7895       .Case("strfmon", FST_Strfmon)
7896       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7897       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7898       .Case("os_trace", FST_OSLog)
7899       .Case("os_log", FST_OSLog)
7900       .Default(FST_Unknown);
7901 }
7902 
7903 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7904 /// functions) for correct use of format strings.
7905 /// Returns true if a format string has been fully checked.
7906 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7907                                 ArrayRef<const Expr *> Args,
7908                                 bool IsCXXMember,
7909                                 VariadicCallType CallType,
7910                                 SourceLocation Loc, SourceRange Range,
7911                                 llvm::SmallBitVector &CheckedVarArgs) {
7912   FormatStringInfo FSI;
7913   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7914     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7915                                 FSI.FirstDataArg, GetFormatStringType(Format),
7916                                 CallType, Loc, Range, CheckedVarArgs);
7917   return false;
7918 }
7919 
7920 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7921                                 bool HasVAListArg, unsigned format_idx,
7922                                 unsigned firstDataArg, FormatStringType Type,
7923                                 VariadicCallType CallType,
7924                                 SourceLocation Loc, SourceRange Range,
7925                                 llvm::SmallBitVector &CheckedVarArgs) {
7926   // CHECK: printf/scanf-like function is called with no format string.
7927   if (format_idx >= Args.size()) {
7928     Diag(Loc, diag::warn_missing_format_string) << Range;
7929     return false;
7930   }
7931 
7932   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7933 
7934   // CHECK: format string is not a string literal.
7935   //
7936   // Dynamically generated format strings are difficult to
7937   // automatically vet at compile time.  Requiring that format strings
7938   // are string literals: (1) permits the checking of format strings by
7939   // the compiler and thereby (2) can practically remove the source of
7940   // many format string exploits.
7941 
7942   // Format string can be either ObjC string (e.g. @"%d") or
7943   // C string (e.g. "%d")
7944   // ObjC string uses the same format specifiers as C string, so we can use
7945   // the same format string checking logic for both ObjC and C strings.
7946   UncoveredArgHandler UncoveredArg;
7947   StringLiteralCheckType CT =
7948       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7949                             format_idx, firstDataArg, Type, CallType,
7950                             /*IsFunctionCall*/ true, CheckedVarArgs,
7951                             UncoveredArg,
7952                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7953 
7954   // Generate a diagnostic where an uncovered argument is detected.
7955   if (UncoveredArg.hasUncoveredArg()) {
7956     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7957     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7958     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7959   }
7960 
7961   if (CT != SLCT_NotALiteral)
7962     // Literal format string found, check done!
7963     return CT == SLCT_CheckedLiteral;
7964 
7965   // Strftime is particular as it always uses a single 'time' argument,
7966   // so it is safe to pass a non-literal string.
7967   if (Type == FST_Strftime)
7968     return false;
7969 
7970   // Do not emit diag when the string param is a macro expansion and the
7971   // format is either NSString or CFString. This is a hack to prevent
7972   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7973   // which are usually used in place of NS and CF string literals.
7974   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7975   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7976     return false;
7977 
7978   // If there are no arguments specified, warn with -Wformat-security, otherwise
7979   // warn only with -Wformat-nonliteral.
7980   if (Args.size() == firstDataArg) {
7981     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7982       << OrigFormatExpr->getSourceRange();
7983     switch (Type) {
7984     default:
7985       break;
7986     case FST_Kprintf:
7987     case FST_FreeBSDKPrintf:
7988     case FST_Printf:
7989       Diag(FormatLoc, diag::note_format_security_fixit)
7990         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7991       break;
7992     case FST_NSString:
7993       Diag(FormatLoc, diag::note_format_security_fixit)
7994         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7995       break;
7996     }
7997   } else {
7998     Diag(FormatLoc, diag::warn_format_nonliteral)
7999       << OrigFormatExpr->getSourceRange();
8000   }
8001   return false;
8002 }
8003 
8004 namespace {
8005 
8006 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8007 protected:
8008   Sema &S;
8009   const FormatStringLiteral *FExpr;
8010   const Expr *OrigFormatExpr;
8011   const Sema::FormatStringType FSType;
8012   const unsigned FirstDataArg;
8013   const unsigned NumDataArgs;
8014   const char *Beg; // Start of format string.
8015   const bool HasVAListArg;
8016   ArrayRef<const Expr *> Args;
8017   unsigned FormatIdx;
8018   llvm::SmallBitVector CoveredArgs;
8019   bool usesPositionalArgs = false;
8020   bool atFirstArg = true;
8021   bool inFunctionCall;
8022   Sema::VariadicCallType CallType;
8023   llvm::SmallBitVector &CheckedVarArgs;
8024   UncoveredArgHandler &UncoveredArg;
8025 
8026 public:
8027   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8028                      const Expr *origFormatExpr,
8029                      const Sema::FormatStringType type, unsigned firstDataArg,
8030                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
8031                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8032                      bool inFunctionCall, Sema::VariadicCallType callType,
8033                      llvm::SmallBitVector &CheckedVarArgs,
8034                      UncoveredArgHandler &UncoveredArg)
8035       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8036         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8037         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8038         inFunctionCall(inFunctionCall), CallType(callType),
8039         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8040     CoveredArgs.resize(numDataArgs);
8041     CoveredArgs.reset();
8042   }
8043 
8044   void DoneProcessing();
8045 
8046   void HandleIncompleteSpecifier(const char *startSpecifier,
8047                                  unsigned specifierLen) override;
8048 
8049   void HandleInvalidLengthModifier(
8050                            const analyze_format_string::FormatSpecifier &FS,
8051                            const analyze_format_string::ConversionSpecifier &CS,
8052                            const char *startSpecifier, unsigned specifierLen,
8053                            unsigned DiagID);
8054 
8055   void HandleNonStandardLengthModifier(
8056                     const analyze_format_string::FormatSpecifier &FS,
8057                     const char *startSpecifier, unsigned specifierLen);
8058 
8059   void HandleNonStandardConversionSpecifier(
8060                     const analyze_format_string::ConversionSpecifier &CS,
8061                     const char *startSpecifier, unsigned specifierLen);
8062 
8063   void HandlePosition(const char *startPos, unsigned posLen) override;
8064 
8065   void HandleInvalidPosition(const char *startSpecifier,
8066                              unsigned specifierLen,
8067                              analyze_format_string::PositionContext p) override;
8068 
8069   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8070 
8071   void HandleNullChar(const char *nullCharacter) override;
8072 
8073   template <typename Range>
8074   static void
8075   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8076                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8077                        bool IsStringLocation, Range StringRange,
8078                        ArrayRef<FixItHint> Fixit = None);
8079 
8080 protected:
8081   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8082                                         const char *startSpec,
8083                                         unsigned specifierLen,
8084                                         const char *csStart, unsigned csLen);
8085 
8086   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8087                                          const char *startSpec,
8088                                          unsigned specifierLen);
8089 
8090   SourceRange getFormatStringRange();
8091   CharSourceRange getSpecifierRange(const char *startSpecifier,
8092                                     unsigned specifierLen);
8093   SourceLocation getLocationOfByte(const char *x);
8094 
8095   const Expr *getDataArg(unsigned i) const;
8096 
8097   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8098                     const analyze_format_string::ConversionSpecifier &CS,
8099                     const char *startSpecifier, unsigned specifierLen,
8100                     unsigned argIndex);
8101 
8102   template <typename Range>
8103   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8104                             bool IsStringLocation, Range StringRange,
8105                             ArrayRef<FixItHint> Fixit = None);
8106 };
8107 
8108 } // namespace
8109 
8110 SourceRange CheckFormatHandler::getFormatStringRange() {
8111   return OrigFormatExpr->getSourceRange();
8112 }
8113 
8114 CharSourceRange CheckFormatHandler::
8115 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8116   SourceLocation Start = getLocationOfByte(startSpecifier);
8117   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
8118 
8119   // Advance the end SourceLocation by one due to half-open ranges.
8120   End = End.getLocWithOffset(1);
8121 
8122   return CharSourceRange::getCharRange(Start, End);
8123 }
8124 
8125 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8126   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8127                                   S.getLangOpts(), S.Context.getTargetInfo());
8128 }
8129 
8130 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8131                                                    unsigned specifierLen){
8132   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8133                        getLocationOfByte(startSpecifier),
8134                        /*IsStringLocation*/true,
8135                        getSpecifierRange(startSpecifier, specifierLen));
8136 }
8137 
8138 void CheckFormatHandler::HandleInvalidLengthModifier(
8139     const analyze_format_string::FormatSpecifier &FS,
8140     const analyze_format_string::ConversionSpecifier &CS,
8141     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8142   using namespace analyze_format_string;
8143 
8144   const LengthModifier &LM = FS.getLengthModifier();
8145   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8146 
8147   // See if we know how to fix this length modifier.
8148   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8149   if (FixedLM) {
8150     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8151                          getLocationOfByte(LM.getStart()),
8152                          /*IsStringLocation*/true,
8153                          getSpecifierRange(startSpecifier, specifierLen));
8154 
8155     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8156       << FixedLM->toString()
8157       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8158 
8159   } else {
8160     FixItHint Hint;
8161     if (DiagID == diag::warn_format_nonsensical_length)
8162       Hint = FixItHint::CreateRemoval(LMRange);
8163 
8164     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8165                          getLocationOfByte(LM.getStart()),
8166                          /*IsStringLocation*/true,
8167                          getSpecifierRange(startSpecifier, specifierLen),
8168                          Hint);
8169   }
8170 }
8171 
8172 void CheckFormatHandler::HandleNonStandardLengthModifier(
8173     const analyze_format_string::FormatSpecifier &FS,
8174     const char *startSpecifier, unsigned specifierLen) {
8175   using namespace analyze_format_string;
8176 
8177   const LengthModifier &LM = FS.getLengthModifier();
8178   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8179 
8180   // See if we know how to fix this length modifier.
8181   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8182   if (FixedLM) {
8183     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8184                            << LM.toString() << 0,
8185                          getLocationOfByte(LM.getStart()),
8186                          /*IsStringLocation*/true,
8187                          getSpecifierRange(startSpecifier, specifierLen));
8188 
8189     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8190       << FixedLM->toString()
8191       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8192 
8193   } else {
8194     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8195                            << LM.toString() << 0,
8196                          getLocationOfByte(LM.getStart()),
8197                          /*IsStringLocation*/true,
8198                          getSpecifierRange(startSpecifier, specifierLen));
8199   }
8200 }
8201 
8202 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8203     const analyze_format_string::ConversionSpecifier &CS,
8204     const char *startSpecifier, unsigned specifierLen) {
8205   using namespace analyze_format_string;
8206 
8207   // See if we know how to fix this conversion specifier.
8208   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8209   if (FixedCS) {
8210     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8211                           << CS.toString() << /*conversion specifier*/1,
8212                          getLocationOfByte(CS.getStart()),
8213                          /*IsStringLocation*/true,
8214                          getSpecifierRange(startSpecifier, specifierLen));
8215 
8216     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8217     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8218       << FixedCS->toString()
8219       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8220   } else {
8221     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8222                           << CS.toString() << /*conversion specifier*/1,
8223                          getLocationOfByte(CS.getStart()),
8224                          /*IsStringLocation*/true,
8225                          getSpecifierRange(startSpecifier, specifierLen));
8226   }
8227 }
8228 
8229 void CheckFormatHandler::HandlePosition(const char *startPos,
8230                                         unsigned posLen) {
8231   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8232                                getLocationOfByte(startPos),
8233                                /*IsStringLocation*/true,
8234                                getSpecifierRange(startPos, posLen));
8235 }
8236 
8237 void
8238 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8239                                      analyze_format_string::PositionContext p) {
8240   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8241                          << (unsigned) p,
8242                        getLocationOfByte(startPos), /*IsStringLocation*/true,
8243                        getSpecifierRange(startPos, posLen));
8244 }
8245 
8246 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8247                                             unsigned posLen) {
8248   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8249                                getLocationOfByte(startPos),
8250                                /*IsStringLocation*/true,
8251                                getSpecifierRange(startPos, posLen));
8252 }
8253 
8254 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8255   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8256     // The presence of a null character is likely an error.
8257     EmitFormatDiagnostic(
8258       S.PDiag(diag::warn_printf_format_string_contains_null_char),
8259       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8260       getFormatStringRange());
8261   }
8262 }
8263 
8264 // Note that this may return NULL if there was an error parsing or building
8265 // one of the argument expressions.
8266 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8267   return Args[FirstDataArg + i];
8268 }
8269 
8270 void CheckFormatHandler::DoneProcessing() {
8271   // Does the number of data arguments exceed the number of
8272   // format conversions in the format string?
8273   if (!HasVAListArg) {
8274       // Find any arguments that weren't covered.
8275     CoveredArgs.flip();
8276     signed notCoveredArg = CoveredArgs.find_first();
8277     if (notCoveredArg >= 0) {
8278       assert((unsigned)notCoveredArg < NumDataArgs);
8279       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8280     } else {
8281       UncoveredArg.setAllCovered();
8282     }
8283   }
8284 }
8285 
8286 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8287                                    const Expr *ArgExpr) {
8288   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
8289          "Invalid state");
8290 
8291   if (!ArgExpr)
8292     return;
8293 
8294   SourceLocation Loc = ArgExpr->getBeginLoc();
8295 
8296   if (S.getSourceManager().isInSystemMacro(Loc))
8297     return;
8298 
8299   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8300   for (auto E : DiagnosticExprs)
8301     PDiag << E->getSourceRange();
8302 
8303   CheckFormatHandler::EmitFormatDiagnostic(
8304                                   S, IsFunctionCall, DiagnosticExprs[0],
8305                                   PDiag, Loc, /*IsStringLocation*/false,
8306                                   DiagnosticExprs[0]->getSourceRange());
8307 }
8308 
8309 bool
8310 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8311                                                      SourceLocation Loc,
8312                                                      const char *startSpec,
8313                                                      unsigned specifierLen,
8314                                                      const char *csStart,
8315                                                      unsigned csLen) {
8316   bool keepGoing = true;
8317   if (argIndex < NumDataArgs) {
8318     // Consider the argument coverered, even though the specifier doesn't
8319     // make sense.
8320     CoveredArgs.set(argIndex);
8321   }
8322   else {
8323     // If argIndex exceeds the number of data arguments we
8324     // don't issue a warning because that is just a cascade of warnings (and
8325     // they may have intended '%%' anyway). We don't want to continue processing
8326     // the format string after this point, however, as we will like just get
8327     // gibberish when trying to match arguments.
8328     keepGoing = false;
8329   }
8330 
8331   StringRef Specifier(csStart, csLen);
8332 
8333   // If the specifier in non-printable, it could be the first byte of a UTF-8
8334   // sequence. In that case, print the UTF-8 code point. If not, print the byte
8335   // hex value.
8336   std::string CodePointStr;
8337   if (!llvm::sys::locale::isPrint(*csStart)) {
8338     llvm::UTF32 CodePoint;
8339     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8340     const llvm::UTF8 *E =
8341         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8342     llvm::ConversionResult Result =
8343         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8344 
8345     if (Result != llvm::conversionOK) {
8346       unsigned char FirstChar = *csStart;
8347       CodePoint = (llvm::UTF32)FirstChar;
8348     }
8349 
8350     llvm::raw_string_ostream OS(CodePointStr);
8351     if (CodePoint < 256)
8352       OS << "\\x" << llvm::format("%02x", CodePoint);
8353     else if (CodePoint <= 0xFFFF)
8354       OS << "\\u" << llvm::format("%04x", CodePoint);
8355     else
8356       OS << "\\U" << llvm::format("%08x", CodePoint);
8357     OS.flush();
8358     Specifier = CodePointStr;
8359   }
8360 
8361   EmitFormatDiagnostic(
8362       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8363       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8364 
8365   return keepGoing;
8366 }
8367 
8368 void
8369 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8370                                                       const char *startSpec,
8371                                                       unsigned specifierLen) {
8372   EmitFormatDiagnostic(
8373     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8374     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8375 }
8376 
8377 bool
8378 CheckFormatHandler::CheckNumArgs(
8379   const analyze_format_string::FormatSpecifier &FS,
8380   const analyze_format_string::ConversionSpecifier &CS,
8381   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8382 
8383   if (argIndex >= NumDataArgs) {
8384     PartialDiagnostic PDiag = FS.usesPositionalArg()
8385       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8386            << (argIndex+1) << NumDataArgs)
8387       : S.PDiag(diag::warn_printf_insufficient_data_args);
8388     EmitFormatDiagnostic(
8389       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8390       getSpecifierRange(startSpecifier, specifierLen));
8391 
8392     // Since more arguments than conversion tokens are given, by extension
8393     // all arguments are covered, so mark this as so.
8394     UncoveredArg.setAllCovered();
8395     return false;
8396   }
8397   return true;
8398 }
8399 
8400 template<typename Range>
8401 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8402                                               SourceLocation Loc,
8403                                               bool IsStringLocation,
8404                                               Range StringRange,
8405                                               ArrayRef<FixItHint> FixIt) {
8406   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8407                        Loc, IsStringLocation, StringRange, FixIt);
8408 }
8409 
8410 /// If the format string is not within the function call, emit a note
8411 /// so that the function call and string are in diagnostic messages.
8412 ///
8413 /// \param InFunctionCall if true, the format string is within the function
8414 /// call and only one diagnostic message will be produced.  Otherwise, an
8415 /// extra note will be emitted pointing to location of the format string.
8416 ///
8417 /// \param ArgumentExpr the expression that is passed as the format string
8418 /// argument in the function call.  Used for getting locations when two
8419 /// diagnostics are emitted.
8420 ///
8421 /// \param PDiag the callee should already have provided any strings for the
8422 /// diagnostic message.  This function only adds locations and fixits
8423 /// to diagnostics.
8424 ///
8425 /// \param Loc primary location for diagnostic.  If two diagnostics are
8426 /// required, one will be at Loc and a new SourceLocation will be created for
8427 /// the other one.
8428 ///
8429 /// \param IsStringLocation if true, Loc points to the format string should be
8430 /// used for the note.  Otherwise, Loc points to the argument list and will
8431 /// be used with PDiag.
8432 ///
8433 /// \param StringRange some or all of the string to highlight.  This is
8434 /// templated so it can accept either a CharSourceRange or a SourceRange.
8435 ///
8436 /// \param FixIt optional fix it hint for the format string.
8437 template <typename Range>
8438 void CheckFormatHandler::EmitFormatDiagnostic(
8439     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8440     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8441     Range StringRange, ArrayRef<FixItHint> FixIt) {
8442   if (InFunctionCall) {
8443     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8444     D << StringRange;
8445     D << FixIt;
8446   } else {
8447     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8448       << ArgumentExpr->getSourceRange();
8449 
8450     const Sema::SemaDiagnosticBuilder &Note =
8451       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8452              diag::note_format_string_defined);
8453 
8454     Note << StringRange;
8455     Note << FixIt;
8456   }
8457 }
8458 
8459 //===--- CHECK: Printf format string checking ------------------------------===//
8460 
8461 namespace {
8462 
8463 class CheckPrintfHandler : public CheckFormatHandler {
8464 public:
8465   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8466                      const Expr *origFormatExpr,
8467                      const Sema::FormatStringType type, unsigned firstDataArg,
8468                      unsigned numDataArgs, bool isObjC, const char *beg,
8469                      bool hasVAListArg, ArrayRef<const Expr *> Args,
8470                      unsigned formatIdx, bool inFunctionCall,
8471                      Sema::VariadicCallType CallType,
8472                      llvm::SmallBitVector &CheckedVarArgs,
8473                      UncoveredArgHandler &UncoveredArg)
8474       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8475                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8476                            inFunctionCall, CallType, CheckedVarArgs,
8477                            UncoveredArg) {}
8478 
8479   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8480 
8481   /// Returns true if '%@' specifiers are allowed in the format string.
8482   bool allowsObjCArg() const {
8483     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8484            FSType == Sema::FST_OSTrace;
8485   }
8486 
8487   bool HandleInvalidPrintfConversionSpecifier(
8488                                       const analyze_printf::PrintfSpecifier &FS,
8489                                       const char *startSpecifier,
8490                                       unsigned specifierLen) override;
8491 
8492   void handleInvalidMaskType(StringRef MaskType) override;
8493 
8494   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8495                              const char *startSpecifier,
8496                              unsigned specifierLen) override;
8497   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8498                        const char *StartSpecifier,
8499                        unsigned SpecifierLen,
8500                        const Expr *E);
8501 
8502   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8503                     const char *startSpecifier, unsigned specifierLen);
8504   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8505                            const analyze_printf::OptionalAmount &Amt,
8506                            unsigned type,
8507                            const char *startSpecifier, unsigned specifierLen);
8508   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8509                   const analyze_printf::OptionalFlag &flag,
8510                   const char *startSpecifier, unsigned specifierLen);
8511   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8512                          const analyze_printf::OptionalFlag &ignoredFlag,
8513                          const analyze_printf::OptionalFlag &flag,
8514                          const char *startSpecifier, unsigned specifierLen);
8515   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8516                            const Expr *E);
8517 
8518   void HandleEmptyObjCModifierFlag(const char *startFlag,
8519                                    unsigned flagLen) override;
8520 
8521   void HandleInvalidObjCModifierFlag(const char *startFlag,
8522                                             unsigned flagLen) override;
8523 
8524   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8525                                            const char *flagsEnd,
8526                                            const char *conversionPosition)
8527                                              override;
8528 };
8529 
8530 } // namespace
8531 
8532 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8533                                       const analyze_printf::PrintfSpecifier &FS,
8534                                       const char *startSpecifier,
8535                                       unsigned specifierLen) {
8536   const analyze_printf::PrintfConversionSpecifier &CS =
8537     FS.getConversionSpecifier();
8538 
8539   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8540                                           getLocationOfByte(CS.getStart()),
8541                                           startSpecifier, specifierLen,
8542                                           CS.getStart(), CS.getLength());
8543 }
8544 
8545 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8546   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8547 }
8548 
8549 bool CheckPrintfHandler::HandleAmount(
8550                                const analyze_format_string::OptionalAmount &Amt,
8551                                unsigned k, const char *startSpecifier,
8552                                unsigned specifierLen) {
8553   if (Amt.hasDataArgument()) {
8554     if (!HasVAListArg) {
8555       unsigned argIndex = Amt.getArgIndex();
8556       if (argIndex >= NumDataArgs) {
8557         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8558                                << k,
8559                              getLocationOfByte(Amt.getStart()),
8560                              /*IsStringLocation*/true,
8561                              getSpecifierRange(startSpecifier, specifierLen));
8562         // Don't do any more checking.  We will just emit
8563         // spurious errors.
8564         return false;
8565       }
8566 
8567       // Type check the data argument.  It should be an 'int'.
8568       // Although not in conformance with C99, we also allow the argument to be
8569       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8570       // doesn't emit a warning for that case.
8571       CoveredArgs.set(argIndex);
8572       const Expr *Arg = getDataArg(argIndex);
8573       if (!Arg)
8574         return false;
8575 
8576       QualType T = Arg->getType();
8577 
8578       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8579       assert(AT.isValid());
8580 
8581       if (!AT.matchesType(S.Context, T)) {
8582         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8583                                << k << AT.getRepresentativeTypeName(S.Context)
8584                                << T << Arg->getSourceRange(),
8585                              getLocationOfByte(Amt.getStart()),
8586                              /*IsStringLocation*/true,
8587                              getSpecifierRange(startSpecifier, specifierLen));
8588         // Don't do any more checking.  We will just emit
8589         // spurious errors.
8590         return false;
8591       }
8592     }
8593   }
8594   return true;
8595 }
8596 
8597 void CheckPrintfHandler::HandleInvalidAmount(
8598                                       const analyze_printf::PrintfSpecifier &FS,
8599                                       const analyze_printf::OptionalAmount &Amt,
8600                                       unsigned type,
8601                                       const char *startSpecifier,
8602                                       unsigned specifierLen) {
8603   const analyze_printf::PrintfConversionSpecifier &CS =
8604     FS.getConversionSpecifier();
8605 
8606   FixItHint fixit =
8607     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8608       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8609                                  Amt.getConstantLength()))
8610       : FixItHint();
8611 
8612   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8613                          << type << CS.toString(),
8614                        getLocationOfByte(Amt.getStart()),
8615                        /*IsStringLocation*/true,
8616                        getSpecifierRange(startSpecifier, specifierLen),
8617                        fixit);
8618 }
8619 
8620 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8621                                     const analyze_printf::OptionalFlag &flag,
8622                                     const char *startSpecifier,
8623                                     unsigned specifierLen) {
8624   // Warn about pointless flag with a fixit removal.
8625   const analyze_printf::PrintfConversionSpecifier &CS =
8626     FS.getConversionSpecifier();
8627   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8628                          << flag.toString() << CS.toString(),
8629                        getLocationOfByte(flag.getPosition()),
8630                        /*IsStringLocation*/true,
8631                        getSpecifierRange(startSpecifier, specifierLen),
8632                        FixItHint::CreateRemoval(
8633                          getSpecifierRange(flag.getPosition(), 1)));
8634 }
8635 
8636 void CheckPrintfHandler::HandleIgnoredFlag(
8637                                 const analyze_printf::PrintfSpecifier &FS,
8638                                 const analyze_printf::OptionalFlag &ignoredFlag,
8639                                 const analyze_printf::OptionalFlag &flag,
8640                                 const char *startSpecifier,
8641                                 unsigned specifierLen) {
8642   // Warn about ignored flag with a fixit removal.
8643   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8644                          << ignoredFlag.toString() << flag.toString(),
8645                        getLocationOfByte(ignoredFlag.getPosition()),
8646                        /*IsStringLocation*/true,
8647                        getSpecifierRange(startSpecifier, specifierLen),
8648                        FixItHint::CreateRemoval(
8649                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8650 }
8651 
8652 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8653                                                      unsigned flagLen) {
8654   // Warn about an empty flag.
8655   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8656                        getLocationOfByte(startFlag),
8657                        /*IsStringLocation*/true,
8658                        getSpecifierRange(startFlag, flagLen));
8659 }
8660 
8661 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8662                                                        unsigned flagLen) {
8663   // Warn about an invalid flag.
8664   auto Range = getSpecifierRange(startFlag, flagLen);
8665   StringRef flag(startFlag, flagLen);
8666   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8667                       getLocationOfByte(startFlag),
8668                       /*IsStringLocation*/true,
8669                       Range, FixItHint::CreateRemoval(Range));
8670 }
8671 
8672 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8673     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8674     // Warn about using '[...]' without a '@' conversion.
8675     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8676     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8677     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8678                          getLocationOfByte(conversionPosition),
8679                          /*IsStringLocation*/true,
8680                          Range, FixItHint::CreateRemoval(Range));
8681 }
8682 
8683 // Determines if the specified is a C++ class or struct containing
8684 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8685 // "c_str()").
8686 template<typename MemberKind>
8687 static llvm::SmallPtrSet<MemberKind*, 1>
8688 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8689   const RecordType *RT = Ty->getAs<RecordType>();
8690   llvm::SmallPtrSet<MemberKind*, 1> Results;
8691 
8692   if (!RT)
8693     return Results;
8694   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8695   if (!RD || !RD->getDefinition())
8696     return Results;
8697 
8698   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8699                  Sema::LookupMemberName);
8700   R.suppressDiagnostics();
8701 
8702   // We just need to include all members of the right kind turned up by the
8703   // filter, at this point.
8704   if (S.LookupQualifiedName(R, RT->getDecl()))
8705     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8706       NamedDecl *decl = (*I)->getUnderlyingDecl();
8707       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8708         Results.insert(FK);
8709     }
8710   return Results;
8711 }
8712 
8713 /// Check if we could call '.c_str()' on an object.
8714 ///
8715 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8716 /// allow the call, or if it would be ambiguous).
8717 bool Sema::hasCStrMethod(const Expr *E) {
8718   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8719 
8720   MethodSet Results =
8721       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8722   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8723        MI != ME; ++MI)
8724     if ((*MI)->getMinRequiredArguments() == 0)
8725       return true;
8726   return false;
8727 }
8728 
8729 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8730 // better diagnostic if so. AT is assumed to be valid.
8731 // Returns true when a c_str() conversion method is found.
8732 bool CheckPrintfHandler::checkForCStrMembers(
8733     const analyze_printf::ArgType &AT, const Expr *E) {
8734   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8735 
8736   MethodSet Results =
8737       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8738 
8739   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8740        MI != ME; ++MI) {
8741     const CXXMethodDecl *Method = *MI;
8742     if (Method->getMinRequiredArguments() == 0 &&
8743         AT.matchesType(S.Context, Method->getReturnType())) {
8744       // FIXME: Suggest parens if the expression needs them.
8745       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8746       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8747           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8748       return true;
8749     }
8750   }
8751 
8752   return false;
8753 }
8754 
8755 bool
8756 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8757                                             &FS,
8758                                           const char *startSpecifier,
8759                                           unsigned specifierLen) {
8760   using namespace analyze_format_string;
8761   using namespace analyze_printf;
8762 
8763   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8764 
8765   if (FS.consumesDataArgument()) {
8766     if (atFirstArg) {
8767         atFirstArg = false;
8768         usesPositionalArgs = FS.usesPositionalArg();
8769     }
8770     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8771       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8772                                         startSpecifier, specifierLen);
8773       return false;
8774     }
8775   }
8776 
8777   // First check if the field width, precision, and conversion specifier
8778   // have matching data arguments.
8779   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8780                     startSpecifier, specifierLen)) {
8781     return false;
8782   }
8783 
8784   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8785                     startSpecifier, specifierLen)) {
8786     return false;
8787   }
8788 
8789   if (!CS.consumesDataArgument()) {
8790     // FIXME: Technically specifying a precision or field width here
8791     // makes no sense.  Worth issuing a warning at some point.
8792     return true;
8793   }
8794 
8795   // Consume the argument.
8796   unsigned argIndex = FS.getArgIndex();
8797   if (argIndex < NumDataArgs) {
8798     // The check to see if the argIndex is valid will come later.
8799     // We set the bit here because we may exit early from this
8800     // function if we encounter some other error.
8801     CoveredArgs.set(argIndex);
8802   }
8803 
8804   // FreeBSD kernel extensions.
8805   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8806       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8807     // We need at least two arguments.
8808     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8809       return false;
8810 
8811     // Claim the second argument.
8812     CoveredArgs.set(argIndex + 1);
8813 
8814     // Type check the first argument (int for %b, pointer for %D)
8815     const Expr *Ex = getDataArg(argIndex);
8816     const analyze_printf::ArgType &AT =
8817       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8818         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8819     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8820       EmitFormatDiagnostic(
8821           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8822               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8823               << false << Ex->getSourceRange(),
8824           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8825           getSpecifierRange(startSpecifier, specifierLen));
8826 
8827     // Type check the second argument (char * for both %b and %D)
8828     Ex = getDataArg(argIndex + 1);
8829     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8830     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8831       EmitFormatDiagnostic(
8832           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8833               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8834               << false << Ex->getSourceRange(),
8835           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8836           getSpecifierRange(startSpecifier, specifierLen));
8837 
8838      return true;
8839   }
8840 
8841   // Check for using an Objective-C specific conversion specifier
8842   // in a non-ObjC literal.
8843   if (!allowsObjCArg() && CS.isObjCArg()) {
8844     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8845                                                   specifierLen);
8846   }
8847 
8848   // %P can only be used with os_log.
8849   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8850     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8851                                                   specifierLen);
8852   }
8853 
8854   // %n is not allowed with os_log.
8855   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8856     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8857                          getLocationOfByte(CS.getStart()),
8858                          /*IsStringLocation*/ false,
8859                          getSpecifierRange(startSpecifier, specifierLen));
8860 
8861     return true;
8862   }
8863 
8864   // Only scalars are allowed for os_trace.
8865   if (FSType == Sema::FST_OSTrace &&
8866       (CS.getKind() == ConversionSpecifier::PArg ||
8867        CS.getKind() == ConversionSpecifier::sArg ||
8868        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8869     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8870                                                   specifierLen);
8871   }
8872 
8873   // Check for use of public/private annotation outside of os_log().
8874   if (FSType != Sema::FST_OSLog) {
8875     if (FS.isPublic().isSet()) {
8876       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8877                                << "public",
8878                            getLocationOfByte(FS.isPublic().getPosition()),
8879                            /*IsStringLocation*/ false,
8880                            getSpecifierRange(startSpecifier, specifierLen));
8881     }
8882     if (FS.isPrivate().isSet()) {
8883       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8884                                << "private",
8885                            getLocationOfByte(FS.isPrivate().getPosition()),
8886                            /*IsStringLocation*/ false,
8887                            getSpecifierRange(startSpecifier, specifierLen));
8888     }
8889   }
8890 
8891   // Check for invalid use of field width
8892   if (!FS.hasValidFieldWidth()) {
8893     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8894         startSpecifier, specifierLen);
8895   }
8896 
8897   // Check for invalid use of precision
8898   if (!FS.hasValidPrecision()) {
8899     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8900         startSpecifier, specifierLen);
8901   }
8902 
8903   // Precision is mandatory for %P specifier.
8904   if (CS.getKind() == ConversionSpecifier::PArg &&
8905       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8906     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8907                          getLocationOfByte(startSpecifier),
8908                          /*IsStringLocation*/ false,
8909                          getSpecifierRange(startSpecifier, specifierLen));
8910   }
8911 
8912   // Check each flag does not conflict with any other component.
8913   if (!FS.hasValidThousandsGroupingPrefix())
8914     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8915   if (!FS.hasValidLeadingZeros())
8916     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8917   if (!FS.hasValidPlusPrefix())
8918     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8919   if (!FS.hasValidSpacePrefix())
8920     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8921   if (!FS.hasValidAlternativeForm())
8922     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8923   if (!FS.hasValidLeftJustified())
8924     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8925 
8926   // Check that flags are not ignored by another flag
8927   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8928     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8929         startSpecifier, specifierLen);
8930   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8931     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8932             startSpecifier, specifierLen);
8933 
8934   // Check the length modifier is valid with the given conversion specifier.
8935   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8936                                  S.getLangOpts()))
8937     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8938                                 diag::warn_format_nonsensical_length);
8939   else if (!FS.hasStandardLengthModifier())
8940     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8941   else if (!FS.hasStandardLengthConversionCombination())
8942     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8943                                 diag::warn_format_non_standard_conversion_spec);
8944 
8945   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8946     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8947 
8948   // The remaining checks depend on the data arguments.
8949   if (HasVAListArg)
8950     return true;
8951 
8952   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8953     return false;
8954 
8955   const Expr *Arg = getDataArg(argIndex);
8956   if (!Arg)
8957     return true;
8958 
8959   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8960 }
8961 
8962 static bool requiresParensToAddCast(const Expr *E) {
8963   // FIXME: We should have a general way to reason about operator
8964   // precedence and whether parens are actually needed here.
8965   // Take care of a few common cases where they aren't.
8966   const Expr *Inside = E->IgnoreImpCasts();
8967   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8968     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8969 
8970   switch (Inside->getStmtClass()) {
8971   case Stmt::ArraySubscriptExprClass:
8972   case Stmt::CallExprClass:
8973   case Stmt::CharacterLiteralClass:
8974   case Stmt::CXXBoolLiteralExprClass:
8975   case Stmt::DeclRefExprClass:
8976   case Stmt::FloatingLiteralClass:
8977   case Stmt::IntegerLiteralClass:
8978   case Stmt::MemberExprClass:
8979   case Stmt::ObjCArrayLiteralClass:
8980   case Stmt::ObjCBoolLiteralExprClass:
8981   case Stmt::ObjCBoxedExprClass:
8982   case Stmt::ObjCDictionaryLiteralClass:
8983   case Stmt::ObjCEncodeExprClass:
8984   case Stmt::ObjCIvarRefExprClass:
8985   case Stmt::ObjCMessageExprClass:
8986   case Stmt::ObjCPropertyRefExprClass:
8987   case Stmt::ObjCStringLiteralClass:
8988   case Stmt::ObjCSubscriptRefExprClass:
8989   case Stmt::ParenExprClass:
8990   case Stmt::StringLiteralClass:
8991   case Stmt::UnaryOperatorClass:
8992     return false;
8993   default:
8994     return true;
8995   }
8996 }
8997 
8998 static std::pair<QualType, StringRef>
8999 shouldNotPrintDirectly(const ASTContext &Context,
9000                        QualType IntendedTy,
9001                        const Expr *E) {
9002   // Use a 'while' to peel off layers of typedefs.
9003   QualType TyTy = IntendedTy;
9004   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9005     StringRef Name = UserTy->getDecl()->getName();
9006     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9007       .Case("CFIndex", Context.getNSIntegerType())
9008       .Case("NSInteger", Context.getNSIntegerType())
9009       .Case("NSUInteger", Context.getNSUIntegerType())
9010       .Case("SInt32", Context.IntTy)
9011       .Case("UInt32", Context.UnsignedIntTy)
9012       .Default(QualType());
9013 
9014     if (!CastTy.isNull())
9015       return std::make_pair(CastTy, Name);
9016 
9017     TyTy = UserTy->desugar();
9018   }
9019 
9020   // Strip parens if necessary.
9021   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9022     return shouldNotPrintDirectly(Context,
9023                                   PE->getSubExpr()->getType(),
9024                                   PE->getSubExpr());
9025 
9026   // If this is a conditional expression, then its result type is constructed
9027   // via usual arithmetic conversions and thus there might be no necessary
9028   // typedef sugar there.  Recurse to operands to check for NSInteger &
9029   // Co. usage condition.
9030   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9031     QualType TrueTy, FalseTy;
9032     StringRef TrueName, FalseName;
9033 
9034     std::tie(TrueTy, TrueName) =
9035       shouldNotPrintDirectly(Context,
9036                              CO->getTrueExpr()->getType(),
9037                              CO->getTrueExpr());
9038     std::tie(FalseTy, FalseName) =
9039       shouldNotPrintDirectly(Context,
9040                              CO->getFalseExpr()->getType(),
9041                              CO->getFalseExpr());
9042 
9043     if (TrueTy == FalseTy)
9044       return std::make_pair(TrueTy, TrueName);
9045     else if (TrueTy.isNull())
9046       return std::make_pair(FalseTy, FalseName);
9047     else if (FalseTy.isNull())
9048       return std::make_pair(TrueTy, TrueName);
9049   }
9050 
9051   return std::make_pair(QualType(), StringRef());
9052 }
9053 
9054 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9055 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9056 /// type do not count.
9057 static bool
9058 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9059   QualType From = ICE->getSubExpr()->getType();
9060   QualType To = ICE->getType();
9061   // It's an integer promotion if the destination type is the promoted
9062   // source type.
9063   if (ICE->getCastKind() == CK_IntegralCast &&
9064       From->isPromotableIntegerType() &&
9065       S.Context.getPromotedIntegerType(From) == To)
9066     return true;
9067   // Look through vector types, since we do default argument promotion for
9068   // those in OpenCL.
9069   if (const auto *VecTy = From->getAs<ExtVectorType>())
9070     From = VecTy->getElementType();
9071   if (const auto *VecTy = To->getAs<ExtVectorType>())
9072     To = VecTy->getElementType();
9073   // It's a floating promotion if the source type is a lower rank.
9074   return ICE->getCastKind() == CK_FloatingCast &&
9075          S.Context.getFloatingTypeOrder(From, To) < 0;
9076 }
9077 
9078 bool
9079 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9080                                     const char *StartSpecifier,
9081                                     unsigned SpecifierLen,
9082                                     const Expr *E) {
9083   using namespace analyze_format_string;
9084   using namespace analyze_printf;
9085 
9086   // Now type check the data expression that matches the
9087   // format specifier.
9088   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9089   if (!AT.isValid())
9090     return true;
9091 
9092   QualType ExprTy = E->getType();
9093   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9094     ExprTy = TET->getUnderlyingExpr()->getType();
9095   }
9096 
9097   // Diagnose attempts to print a boolean value as a character. Unlike other
9098   // -Wformat diagnostics, this is fine from a type perspective, but it still
9099   // doesn't make sense.
9100   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9101       E->isKnownToHaveBooleanValue()) {
9102     const CharSourceRange &CSR =
9103         getSpecifierRange(StartSpecifier, SpecifierLen);
9104     SmallString<4> FSString;
9105     llvm::raw_svector_ostream os(FSString);
9106     FS.toString(os);
9107     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9108                              << FSString,
9109                          E->getExprLoc(), false, CSR);
9110     return true;
9111   }
9112 
9113   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9114   if (Match == analyze_printf::ArgType::Match)
9115     return true;
9116 
9117   // Look through argument promotions for our error message's reported type.
9118   // This includes the integral and floating promotions, but excludes array
9119   // and function pointer decay (seeing that an argument intended to be a
9120   // string has type 'char [6]' is probably more confusing than 'char *') and
9121   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9122   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9123     if (isArithmeticArgumentPromotion(S, ICE)) {
9124       E = ICE->getSubExpr();
9125       ExprTy = E->getType();
9126 
9127       // Check if we didn't match because of an implicit cast from a 'char'
9128       // or 'short' to an 'int'.  This is done because printf is a varargs
9129       // function.
9130       if (ICE->getType() == S.Context.IntTy ||
9131           ICE->getType() == S.Context.UnsignedIntTy) {
9132         // All further checking is done on the subexpression
9133         const analyze_printf::ArgType::MatchKind ImplicitMatch =
9134             AT.matchesType(S.Context, ExprTy);
9135         if (ImplicitMatch == analyze_printf::ArgType::Match)
9136           return true;
9137         if (ImplicitMatch == ArgType::NoMatchPedantic ||
9138             ImplicitMatch == ArgType::NoMatchTypeConfusion)
9139           Match = ImplicitMatch;
9140       }
9141     }
9142   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9143     // Special case for 'a', which has type 'int' in C.
9144     // Note, however, that we do /not/ want to treat multibyte constants like
9145     // 'MooV' as characters! This form is deprecated but still exists. In
9146     // addition, don't treat expressions as of type 'char' if one byte length
9147     // modifier is provided.
9148     if (ExprTy == S.Context.IntTy &&
9149         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9150       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9151         ExprTy = S.Context.CharTy;
9152   }
9153 
9154   // Look through enums to their underlying type.
9155   bool IsEnum = false;
9156   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9157     ExprTy = EnumTy->getDecl()->getIntegerType();
9158     IsEnum = true;
9159   }
9160 
9161   // %C in an Objective-C context prints a unichar, not a wchar_t.
9162   // If the argument is an integer of some kind, believe the %C and suggest
9163   // a cast instead of changing the conversion specifier.
9164   QualType IntendedTy = ExprTy;
9165   if (isObjCContext() &&
9166       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9167     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9168         !ExprTy->isCharType()) {
9169       // 'unichar' is defined as a typedef of unsigned short, but we should
9170       // prefer using the typedef if it is visible.
9171       IntendedTy = S.Context.UnsignedShortTy;
9172 
9173       // While we are here, check if the value is an IntegerLiteral that happens
9174       // to be within the valid range.
9175       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9176         const llvm::APInt &V = IL->getValue();
9177         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9178           return true;
9179       }
9180 
9181       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9182                           Sema::LookupOrdinaryName);
9183       if (S.LookupName(Result, S.getCurScope())) {
9184         NamedDecl *ND = Result.getFoundDecl();
9185         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9186           if (TD->getUnderlyingType() == IntendedTy)
9187             IntendedTy = S.Context.getTypedefType(TD);
9188       }
9189     }
9190   }
9191 
9192   // Special-case some of Darwin's platform-independence types by suggesting
9193   // casts to primitive types that are known to be large enough.
9194   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9195   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9196     QualType CastTy;
9197     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9198     if (!CastTy.isNull()) {
9199       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9200       // (long in ASTContext). Only complain to pedants.
9201       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9202           (AT.isSizeT() || AT.isPtrdiffT()) &&
9203           AT.matchesType(S.Context, CastTy))
9204         Match = ArgType::NoMatchPedantic;
9205       IntendedTy = CastTy;
9206       ShouldNotPrintDirectly = true;
9207     }
9208   }
9209 
9210   // We may be able to offer a FixItHint if it is a supported type.
9211   PrintfSpecifier fixedFS = FS;
9212   bool Success =
9213       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9214 
9215   if (Success) {
9216     // Get the fix string from the fixed format specifier
9217     SmallString<16> buf;
9218     llvm::raw_svector_ostream os(buf);
9219     fixedFS.toString(os);
9220 
9221     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9222 
9223     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9224       unsigned Diag;
9225       switch (Match) {
9226       case ArgType::Match: llvm_unreachable("expected non-matching");
9227       case ArgType::NoMatchPedantic:
9228         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9229         break;
9230       case ArgType::NoMatchTypeConfusion:
9231         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9232         break;
9233       case ArgType::NoMatch:
9234         Diag = diag::warn_format_conversion_argument_type_mismatch;
9235         break;
9236       }
9237 
9238       // In this case, the specifier is wrong and should be changed to match
9239       // the argument.
9240       EmitFormatDiagnostic(S.PDiag(Diag)
9241                                << AT.getRepresentativeTypeName(S.Context)
9242                                << IntendedTy << IsEnum << E->getSourceRange(),
9243                            E->getBeginLoc(),
9244                            /*IsStringLocation*/ false, SpecRange,
9245                            FixItHint::CreateReplacement(SpecRange, os.str()));
9246     } else {
9247       // The canonical type for formatting this value is different from the
9248       // actual type of the expression. (This occurs, for example, with Darwin's
9249       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9250       // should be printed as 'long' for 64-bit compatibility.)
9251       // Rather than emitting a normal format/argument mismatch, we want to
9252       // add a cast to the recommended type (and correct the format string
9253       // if necessary).
9254       SmallString<16> CastBuf;
9255       llvm::raw_svector_ostream CastFix(CastBuf);
9256       CastFix << "(";
9257       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9258       CastFix << ")";
9259 
9260       SmallVector<FixItHint,4> Hints;
9261       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9262         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9263 
9264       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9265         // If there's already a cast present, just replace it.
9266         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9267         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9268 
9269       } else if (!requiresParensToAddCast(E)) {
9270         // If the expression has high enough precedence,
9271         // just write the C-style cast.
9272         Hints.push_back(
9273             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9274       } else {
9275         // Otherwise, add parens around the expression as well as the cast.
9276         CastFix << "(";
9277         Hints.push_back(
9278             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9279 
9280         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9281         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9282       }
9283 
9284       if (ShouldNotPrintDirectly) {
9285         // The expression has a type that should not be printed directly.
9286         // We extract the name from the typedef because we don't want to show
9287         // the underlying type in the diagnostic.
9288         StringRef Name;
9289         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9290           Name = TypedefTy->getDecl()->getName();
9291         else
9292           Name = CastTyName;
9293         unsigned Diag = Match == ArgType::NoMatchPedantic
9294                             ? diag::warn_format_argument_needs_cast_pedantic
9295                             : diag::warn_format_argument_needs_cast;
9296         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9297                                            << E->getSourceRange(),
9298                              E->getBeginLoc(), /*IsStringLocation=*/false,
9299                              SpecRange, Hints);
9300       } else {
9301         // In this case, the expression could be printed using a different
9302         // specifier, but we've decided that the specifier is probably correct
9303         // and we should cast instead. Just use the normal warning message.
9304         EmitFormatDiagnostic(
9305             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9306                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9307                 << E->getSourceRange(),
9308             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9309       }
9310     }
9311   } else {
9312     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9313                                                    SpecifierLen);
9314     // Since the warning for passing non-POD types to variadic functions
9315     // was deferred until now, we emit a warning for non-POD
9316     // arguments here.
9317     switch (S.isValidVarArgType(ExprTy)) {
9318     case Sema::VAK_Valid:
9319     case Sema::VAK_ValidInCXX11: {
9320       unsigned Diag;
9321       switch (Match) {
9322       case ArgType::Match: llvm_unreachable("expected non-matching");
9323       case ArgType::NoMatchPedantic:
9324         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9325         break;
9326       case ArgType::NoMatchTypeConfusion:
9327         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9328         break;
9329       case ArgType::NoMatch:
9330         Diag = diag::warn_format_conversion_argument_type_mismatch;
9331         break;
9332       }
9333 
9334       EmitFormatDiagnostic(
9335           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9336                         << IsEnum << CSR << E->getSourceRange(),
9337           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9338       break;
9339     }
9340     case Sema::VAK_Undefined:
9341     case Sema::VAK_MSVCUndefined:
9342       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9343                                << S.getLangOpts().CPlusPlus11 << ExprTy
9344                                << CallType
9345                                << AT.getRepresentativeTypeName(S.Context) << CSR
9346                                << E->getSourceRange(),
9347                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9348       checkForCStrMembers(AT, E);
9349       break;
9350 
9351     case Sema::VAK_Invalid:
9352       if (ExprTy->isObjCObjectType())
9353         EmitFormatDiagnostic(
9354             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9355                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9356                 << AT.getRepresentativeTypeName(S.Context) << CSR
9357                 << E->getSourceRange(),
9358             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9359       else
9360         // FIXME: If this is an initializer list, suggest removing the braces
9361         // or inserting a cast to the target type.
9362         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9363             << isa<InitListExpr>(E) << ExprTy << CallType
9364             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9365       break;
9366     }
9367 
9368     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
9369            "format string specifier index out of range");
9370     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9371   }
9372 
9373   return true;
9374 }
9375 
9376 //===--- CHECK: Scanf format string checking ------------------------------===//
9377 
9378 namespace {
9379 
9380 class CheckScanfHandler : public CheckFormatHandler {
9381 public:
9382   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9383                     const Expr *origFormatExpr, Sema::FormatStringType type,
9384                     unsigned firstDataArg, unsigned numDataArgs,
9385                     const char *beg, bool hasVAListArg,
9386                     ArrayRef<const Expr *> Args, unsigned formatIdx,
9387                     bool inFunctionCall, Sema::VariadicCallType CallType,
9388                     llvm::SmallBitVector &CheckedVarArgs,
9389                     UncoveredArgHandler &UncoveredArg)
9390       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9391                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
9392                            inFunctionCall, CallType, CheckedVarArgs,
9393                            UncoveredArg) {}
9394 
9395   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9396                             const char *startSpecifier,
9397                             unsigned specifierLen) override;
9398 
9399   bool HandleInvalidScanfConversionSpecifier(
9400           const analyze_scanf::ScanfSpecifier &FS,
9401           const char *startSpecifier,
9402           unsigned specifierLen) override;
9403 
9404   void HandleIncompleteScanList(const char *start, const char *end) override;
9405 };
9406 
9407 } // namespace
9408 
9409 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9410                                                  const char *end) {
9411   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9412                        getLocationOfByte(end), /*IsStringLocation*/true,
9413                        getSpecifierRange(start, end - start));
9414 }
9415 
9416 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9417                                         const analyze_scanf::ScanfSpecifier &FS,
9418                                         const char *startSpecifier,
9419                                         unsigned specifierLen) {
9420   const analyze_scanf::ScanfConversionSpecifier &CS =
9421     FS.getConversionSpecifier();
9422 
9423   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9424                                           getLocationOfByte(CS.getStart()),
9425                                           startSpecifier, specifierLen,
9426                                           CS.getStart(), CS.getLength());
9427 }
9428 
9429 bool CheckScanfHandler::HandleScanfSpecifier(
9430                                        const analyze_scanf::ScanfSpecifier &FS,
9431                                        const char *startSpecifier,
9432                                        unsigned specifierLen) {
9433   using namespace analyze_scanf;
9434   using namespace analyze_format_string;
9435 
9436   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9437 
9438   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
9439   // be used to decide if we are using positional arguments consistently.
9440   if (FS.consumesDataArgument()) {
9441     if (atFirstArg) {
9442       atFirstArg = false;
9443       usesPositionalArgs = FS.usesPositionalArg();
9444     }
9445     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9446       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9447                                         startSpecifier, specifierLen);
9448       return false;
9449     }
9450   }
9451 
9452   // Check if the field with is non-zero.
9453   const OptionalAmount &Amt = FS.getFieldWidth();
9454   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9455     if (Amt.getConstantAmount() == 0) {
9456       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9457                                                    Amt.getConstantLength());
9458       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9459                            getLocationOfByte(Amt.getStart()),
9460                            /*IsStringLocation*/true, R,
9461                            FixItHint::CreateRemoval(R));
9462     }
9463   }
9464 
9465   if (!FS.consumesDataArgument()) {
9466     // FIXME: Technically specifying a precision or field width here
9467     // makes no sense.  Worth issuing a warning at some point.
9468     return true;
9469   }
9470 
9471   // Consume the argument.
9472   unsigned argIndex = FS.getArgIndex();
9473   if (argIndex < NumDataArgs) {
9474       // The check to see if the argIndex is valid will come later.
9475       // We set the bit here because we may exit early from this
9476       // function if we encounter some other error.
9477     CoveredArgs.set(argIndex);
9478   }
9479 
9480   // Check the length modifier is valid with the given conversion specifier.
9481   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9482                                  S.getLangOpts()))
9483     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9484                                 diag::warn_format_nonsensical_length);
9485   else if (!FS.hasStandardLengthModifier())
9486     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9487   else if (!FS.hasStandardLengthConversionCombination())
9488     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9489                                 diag::warn_format_non_standard_conversion_spec);
9490 
9491   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9492     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9493 
9494   // The remaining checks depend on the data arguments.
9495   if (HasVAListArg)
9496     return true;
9497 
9498   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9499     return false;
9500 
9501   // Check that the argument type matches the format specifier.
9502   const Expr *Ex = getDataArg(argIndex);
9503   if (!Ex)
9504     return true;
9505 
9506   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9507 
9508   if (!AT.isValid()) {
9509     return true;
9510   }
9511 
9512   analyze_format_string::ArgType::MatchKind Match =
9513       AT.matchesType(S.Context, Ex->getType());
9514   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9515   if (Match == analyze_format_string::ArgType::Match)
9516     return true;
9517 
9518   ScanfSpecifier fixedFS = FS;
9519   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9520                                  S.getLangOpts(), S.Context);
9521 
9522   unsigned Diag =
9523       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9524                : diag::warn_format_conversion_argument_type_mismatch;
9525 
9526   if (Success) {
9527     // Get the fix string from the fixed format specifier.
9528     SmallString<128> buf;
9529     llvm::raw_svector_ostream os(buf);
9530     fixedFS.toString(os);
9531 
9532     EmitFormatDiagnostic(
9533         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9534                       << Ex->getType() << false << Ex->getSourceRange(),
9535         Ex->getBeginLoc(),
9536         /*IsStringLocation*/ false,
9537         getSpecifierRange(startSpecifier, specifierLen),
9538         FixItHint::CreateReplacement(
9539             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9540   } else {
9541     EmitFormatDiagnostic(S.PDiag(Diag)
9542                              << AT.getRepresentativeTypeName(S.Context)
9543                              << Ex->getType() << false << Ex->getSourceRange(),
9544                          Ex->getBeginLoc(),
9545                          /*IsStringLocation*/ false,
9546                          getSpecifierRange(startSpecifier, specifierLen));
9547   }
9548 
9549   return true;
9550 }
9551 
9552 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9553                               const Expr *OrigFormatExpr,
9554                               ArrayRef<const Expr *> Args,
9555                               bool HasVAListArg, unsigned format_idx,
9556                               unsigned firstDataArg,
9557                               Sema::FormatStringType Type,
9558                               bool inFunctionCall,
9559                               Sema::VariadicCallType CallType,
9560                               llvm::SmallBitVector &CheckedVarArgs,
9561                               UncoveredArgHandler &UncoveredArg,
9562                               bool IgnoreStringsWithoutSpecifiers) {
9563   // CHECK: is the format string a wide literal?
9564   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9565     CheckFormatHandler::EmitFormatDiagnostic(
9566         S, inFunctionCall, Args[format_idx],
9567         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9568         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9569     return;
9570   }
9571 
9572   // Str - The format string.  NOTE: this is NOT null-terminated!
9573   StringRef StrRef = FExpr->getString();
9574   const char *Str = StrRef.data();
9575   // Account for cases where the string literal is truncated in a declaration.
9576   const ConstantArrayType *T =
9577     S.Context.getAsConstantArrayType(FExpr->getType());
9578   assert(T && "String literal not of constant array type!");
9579   size_t TypeSize = T->getSize().getZExtValue();
9580   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9581   const unsigned numDataArgs = Args.size() - firstDataArg;
9582 
9583   if (IgnoreStringsWithoutSpecifiers &&
9584       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9585           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9586     return;
9587 
9588   // Emit a warning if the string literal is truncated and does not contain an
9589   // embedded null character.
9590   if (TypeSize <= StrRef.size() &&
9591       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9592     CheckFormatHandler::EmitFormatDiagnostic(
9593         S, inFunctionCall, Args[format_idx],
9594         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9595         FExpr->getBeginLoc(),
9596         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9597     return;
9598   }
9599 
9600   // CHECK: empty format string?
9601   if (StrLen == 0 && numDataArgs > 0) {
9602     CheckFormatHandler::EmitFormatDiagnostic(
9603         S, inFunctionCall, Args[format_idx],
9604         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9605         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9606     return;
9607   }
9608 
9609   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9610       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9611       Type == Sema::FST_OSTrace) {
9612     CheckPrintfHandler H(
9613         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9614         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9615         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9616         CheckedVarArgs, UncoveredArg);
9617 
9618     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9619                                                   S.getLangOpts(),
9620                                                   S.Context.getTargetInfo(),
9621                                             Type == Sema::FST_FreeBSDKPrintf))
9622       H.DoneProcessing();
9623   } else if (Type == Sema::FST_Scanf) {
9624     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9625                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9626                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9627 
9628     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9629                                                  S.getLangOpts(),
9630                                                  S.Context.getTargetInfo()))
9631       H.DoneProcessing();
9632   } // TODO: handle other formats
9633 }
9634 
9635 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9636   // Str - The format string.  NOTE: this is NOT null-terminated!
9637   StringRef StrRef = FExpr->getString();
9638   const char *Str = StrRef.data();
9639   // Account for cases where the string literal is truncated in a declaration.
9640   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9641   assert(T && "String literal not of constant array type!");
9642   size_t TypeSize = T->getSize().getZExtValue();
9643   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9644   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9645                                                          getLangOpts(),
9646                                                          Context.getTargetInfo());
9647 }
9648 
9649 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9650 
9651 // Returns the related absolute value function that is larger, of 0 if one
9652 // does not exist.
9653 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9654   switch (AbsFunction) {
9655   default:
9656     return 0;
9657 
9658   case Builtin::BI__builtin_abs:
9659     return Builtin::BI__builtin_labs;
9660   case Builtin::BI__builtin_labs:
9661     return Builtin::BI__builtin_llabs;
9662   case Builtin::BI__builtin_llabs:
9663     return 0;
9664 
9665   case Builtin::BI__builtin_fabsf:
9666     return Builtin::BI__builtin_fabs;
9667   case Builtin::BI__builtin_fabs:
9668     return Builtin::BI__builtin_fabsl;
9669   case Builtin::BI__builtin_fabsl:
9670     return 0;
9671 
9672   case Builtin::BI__builtin_cabsf:
9673     return Builtin::BI__builtin_cabs;
9674   case Builtin::BI__builtin_cabs:
9675     return Builtin::BI__builtin_cabsl;
9676   case Builtin::BI__builtin_cabsl:
9677     return 0;
9678 
9679   case Builtin::BIabs:
9680     return Builtin::BIlabs;
9681   case Builtin::BIlabs:
9682     return Builtin::BIllabs;
9683   case Builtin::BIllabs:
9684     return 0;
9685 
9686   case Builtin::BIfabsf:
9687     return Builtin::BIfabs;
9688   case Builtin::BIfabs:
9689     return Builtin::BIfabsl;
9690   case Builtin::BIfabsl:
9691     return 0;
9692 
9693   case Builtin::BIcabsf:
9694    return Builtin::BIcabs;
9695   case Builtin::BIcabs:
9696     return Builtin::BIcabsl;
9697   case Builtin::BIcabsl:
9698     return 0;
9699   }
9700 }
9701 
9702 // Returns the argument type of the absolute value function.
9703 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9704                                              unsigned AbsType) {
9705   if (AbsType == 0)
9706     return QualType();
9707 
9708   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9709   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9710   if (Error != ASTContext::GE_None)
9711     return QualType();
9712 
9713   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9714   if (!FT)
9715     return QualType();
9716 
9717   if (FT->getNumParams() != 1)
9718     return QualType();
9719 
9720   return FT->getParamType(0);
9721 }
9722 
9723 // Returns the best absolute value function, or zero, based on type and
9724 // current absolute value function.
9725 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9726                                    unsigned AbsFunctionKind) {
9727   unsigned BestKind = 0;
9728   uint64_t ArgSize = Context.getTypeSize(ArgType);
9729   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9730        Kind = getLargerAbsoluteValueFunction(Kind)) {
9731     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9732     if (Context.getTypeSize(ParamType) >= ArgSize) {
9733       if (BestKind == 0)
9734         BestKind = Kind;
9735       else if (Context.hasSameType(ParamType, ArgType)) {
9736         BestKind = Kind;
9737         break;
9738       }
9739     }
9740   }
9741   return BestKind;
9742 }
9743 
9744 enum AbsoluteValueKind {
9745   AVK_Integer,
9746   AVK_Floating,
9747   AVK_Complex
9748 };
9749 
9750 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9751   if (T->isIntegralOrEnumerationType())
9752     return AVK_Integer;
9753   if (T->isRealFloatingType())
9754     return AVK_Floating;
9755   if (T->isAnyComplexType())
9756     return AVK_Complex;
9757 
9758   llvm_unreachable("Type not integer, floating, or complex");
9759 }
9760 
9761 // Changes the absolute value function to a different type.  Preserves whether
9762 // the function is a builtin.
9763 static unsigned changeAbsFunction(unsigned AbsKind,
9764                                   AbsoluteValueKind ValueKind) {
9765   switch (ValueKind) {
9766   case AVK_Integer:
9767     switch (AbsKind) {
9768     default:
9769       return 0;
9770     case Builtin::BI__builtin_fabsf:
9771     case Builtin::BI__builtin_fabs:
9772     case Builtin::BI__builtin_fabsl:
9773     case Builtin::BI__builtin_cabsf:
9774     case Builtin::BI__builtin_cabs:
9775     case Builtin::BI__builtin_cabsl:
9776       return Builtin::BI__builtin_abs;
9777     case Builtin::BIfabsf:
9778     case Builtin::BIfabs:
9779     case Builtin::BIfabsl:
9780     case Builtin::BIcabsf:
9781     case Builtin::BIcabs:
9782     case Builtin::BIcabsl:
9783       return Builtin::BIabs;
9784     }
9785   case AVK_Floating:
9786     switch (AbsKind) {
9787     default:
9788       return 0;
9789     case Builtin::BI__builtin_abs:
9790     case Builtin::BI__builtin_labs:
9791     case Builtin::BI__builtin_llabs:
9792     case Builtin::BI__builtin_cabsf:
9793     case Builtin::BI__builtin_cabs:
9794     case Builtin::BI__builtin_cabsl:
9795       return Builtin::BI__builtin_fabsf;
9796     case Builtin::BIabs:
9797     case Builtin::BIlabs:
9798     case Builtin::BIllabs:
9799     case Builtin::BIcabsf:
9800     case Builtin::BIcabs:
9801     case Builtin::BIcabsl:
9802       return Builtin::BIfabsf;
9803     }
9804   case AVK_Complex:
9805     switch (AbsKind) {
9806     default:
9807       return 0;
9808     case Builtin::BI__builtin_abs:
9809     case Builtin::BI__builtin_labs:
9810     case Builtin::BI__builtin_llabs:
9811     case Builtin::BI__builtin_fabsf:
9812     case Builtin::BI__builtin_fabs:
9813     case Builtin::BI__builtin_fabsl:
9814       return Builtin::BI__builtin_cabsf;
9815     case Builtin::BIabs:
9816     case Builtin::BIlabs:
9817     case Builtin::BIllabs:
9818     case Builtin::BIfabsf:
9819     case Builtin::BIfabs:
9820     case Builtin::BIfabsl:
9821       return Builtin::BIcabsf;
9822     }
9823   }
9824   llvm_unreachable("Unable to convert function");
9825 }
9826 
9827 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9828   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9829   if (!FnInfo)
9830     return 0;
9831 
9832   switch (FDecl->getBuiltinID()) {
9833   default:
9834     return 0;
9835   case Builtin::BI__builtin_abs:
9836   case Builtin::BI__builtin_fabs:
9837   case Builtin::BI__builtin_fabsf:
9838   case Builtin::BI__builtin_fabsl:
9839   case Builtin::BI__builtin_labs:
9840   case Builtin::BI__builtin_llabs:
9841   case Builtin::BI__builtin_cabs:
9842   case Builtin::BI__builtin_cabsf:
9843   case Builtin::BI__builtin_cabsl:
9844   case Builtin::BIabs:
9845   case Builtin::BIlabs:
9846   case Builtin::BIllabs:
9847   case Builtin::BIfabs:
9848   case Builtin::BIfabsf:
9849   case Builtin::BIfabsl:
9850   case Builtin::BIcabs:
9851   case Builtin::BIcabsf:
9852   case Builtin::BIcabsl:
9853     return FDecl->getBuiltinID();
9854   }
9855   llvm_unreachable("Unknown Builtin type");
9856 }
9857 
9858 // If the replacement is valid, emit a note with replacement function.
9859 // Additionally, suggest including the proper header if not already included.
9860 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9861                             unsigned AbsKind, QualType ArgType) {
9862   bool EmitHeaderHint = true;
9863   const char *HeaderName = nullptr;
9864   const char *FunctionName = nullptr;
9865   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9866     FunctionName = "std::abs";
9867     if (ArgType->isIntegralOrEnumerationType()) {
9868       HeaderName = "cstdlib";
9869     } else if (ArgType->isRealFloatingType()) {
9870       HeaderName = "cmath";
9871     } else {
9872       llvm_unreachable("Invalid Type");
9873     }
9874 
9875     // Lookup all std::abs
9876     if (NamespaceDecl *Std = S.getStdNamespace()) {
9877       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9878       R.suppressDiagnostics();
9879       S.LookupQualifiedName(R, Std);
9880 
9881       for (const auto *I : R) {
9882         const FunctionDecl *FDecl = nullptr;
9883         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9884           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9885         } else {
9886           FDecl = dyn_cast<FunctionDecl>(I);
9887         }
9888         if (!FDecl)
9889           continue;
9890 
9891         // Found std::abs(), check that they are the right ones.
9892         if (FDecl->getNumParams() != 1)
9893           continue;
9894 
9895         // Check that the parameter type can handle the argument.
9896         QualType ParamType = FDecl->getParamDecl(0)->getType();
9897         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9898             S.Context.getTypeSize(ArgType) <=
9899                 S.Context.getTypeSize(ParamType)) {
9900           // Found a function, don't need the header hint.
9901           EmitHeaderHint = false;
9902           break;
9903         }
9904       }
9905     }
9906   } else {
9907     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9908     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9909 
9910     if (HeaderName) {
9911       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9912       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9913       R.suppressDiagnostics();
9914       S.LookupName(R, S.getCurScope());
9915 
9916       if (R.isSingleResult()) {
9917         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9918         if (FD && FD->getBuiltinID() == AbsKind) {
9919           EmitHeaderHint = false;
9920         } else {
9921           return;
9922         }
9923       } else if (!R.empty()) {
9924         return;
9925       }
9926     }
9927   }
9928 
9929   S.Diag(Loc, diag::note_replace_abs_function)
9930       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9931 
9932   if (!HeaderName)
9933     return;
9934 
9935   if (!EmitHeaderHint)
9936     return;
9937 
9938   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9939                                                     << FunctionName;
9940 }
9941 
9942 template <std::size_t StrLen>
9943 static bool IsStdFunction(const FunctionDecl *FDecl,
9944                           const char (&Str)[StrLen]) {
9945   if (!FDecl)
9946     return false;
9947   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9948     return false;
9949   if (!FDecl->isInStdNamespace())
9950     return false;
9951 
9952   return true;
9953 }
9954 
9955 // Warn when using the wrong abs() function.
9956 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9957                                       const FunctionDecl *FDecl) {
9958   if (Call->getNumArgs() != 1)
9959     return;
9960 
9961   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9962   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9963   if (AbsKind == 0 && !IsStdAbs)
9964     return;
9965 
9966   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9967   QualType ParamType = Call->getArg(0)->getType();
9968 
9969   // Unsigned types cannot be negative.  Suggest removing the absolute value
9970   // function call.
9971   if (ArgType->isUnsignedIntegerType()) {
9972     const char *FunctionName =
9973         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9974     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9975     Diag(Call->getExprLoc(), diag::note_remove_abs)
9976         << FunctionName
9977         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9978     return;
9979   }
9980 
9981   // Taking the absolute value of a pointer is very suspicious, they probably
9982   // wanted to index into an array, dereference a pointer, call a function, etc.
9983   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9984     unsigned DiagType = 0;
9985     if (ArgType->isFunctionType())
9986       DiagType = 1;
9987     else if (ArgType->isArrayType())
9988       DiagType = 2;
9989 
9990     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9991     return;
9992   }
9993 
9994   // std::abs has overloads which prevent most of the absolute value problems
9995   // from occurring.
9996   if (IsStdAbs)
9997     return;
9998 
9999   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10000   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10001 
10002   // The argument and parameter are the same kind.  Check if they are the right
10003   // size.
10004   if (ArgValueKind == ParamValueKind) {
10005     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10006       return;
10007 
10008     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10009     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10010         << FDecl << ArgType << ParamType;
10011 
10012     if (NewAbsKind == 0)
10013       return;
10014 
10015     emitReplacement(*this, Call->getExprLoc(),
10016                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10017     return;
10018   }
10019 
10020   // ArgValueKind != ParamValueKind
10021   // The wrong type of absolute value function was used.  Attempt to find the
10022   // proper one.
10023   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10024   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10025   if (NewAbsKind == 0)
10026     return;
10027 
10028   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10029       << FDecl << ParamValueKind << ArgValueKind;
10030 
10031   emitReplacement(*this, Call->getExprLoc(),
10032                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10033 }
10034 
10035 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10036 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10037                                 const FunctionDecl *FDecl) {
10038   if (!Call || !FDecl) return;
10039 
10040   // Ignore template specializations and macros.
10041   if (inTemplateInstantiation()) return;
10042   if (Call->getExprLoc().isMacroID()) return;
10043 
10044   // Only care about the one template argument, two function parameter std::max
10045   if (Call->getNumArgs() != 2) return;
10046   if (!IsStdFunction(FDecl, "max")) return;
10047   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10048   if (!ArgList) return;
10049   if (ArgList->size() != 1) return;
10050 
10051   // Check that template type argument is unsigned integer.
10052   const auto& TA = ArgList->get(0);
10053   if (TA.getKind() != TemplateArgument::Type) return;
10054   QualType ArgType = TA.getAsType();
10055   if (!ArgType->isUnsignedIntegerType()) return;
10056 
10057   // See if either argument is a literal zero.
10058   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10059     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10060     if (!MTE) return false;
10061     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10062     if (!Num) return false;
10063     if (Num->getValue() != 0) return false;
10064     return true;
10065   };
10066 
10067   const Expr *FirstArg = Call->getArg(0);
10068   const Expr *SecondArg = Call->getArg(1);
10069   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10070   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10071 
10072   // Only warn when exactly one argument is zero.
10073   if (IsFirstArgZero == IsSecondArgZero) return;
10074 
10075   SourceRange FirstRange = FirstArg->getSourceRange();
10076   SourceRange SecondRange = SecondArg->getSourceRange();
10077 
10078   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10079 
10080   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10081       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10082 
10083   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10084   SourceRange RemovalRange;
10085   if (IsFirstArgZero) {
10086     RemovalRange = SourceRange(FirstRange.getBegin(),
10087                                SecondRange.getBegin().getLocWithOffset(-1));
10088   } else {
10089     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10090                                SecondRange.getEnd());
10091   }
10092 
10093   Diag(Call->getExprLoc(), diag::note_remove_max_call)
10094         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10095         << FixItHint::CreateRemoval(RemovalRange);
10096 }
10097 
10098 //===--- CHECK: Standard memory functions ---------------------------------===//
10099 
10100 /// Takes the expression passed to the size_t parameter of functions
10101 /// such as memcmp, strncat, etc and warns if it's a comparison.
10102 ///
10103 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10104 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10105                                            IdentifierInfo *FnName,
10106                                            SourceLocation FnLoc,
10107                                            SourceLocation RParenLoc) {
10108   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10109   if (!Size)
10110     return false;
10111 
10112   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10113   if (!Size->isComparisonOp() && !Size->isLogicalOp())
10114     return false;
10115 
10116   SourceRange SizeRange = Size->getSourceRange();
10117   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10118       << SizeRange << FnName;
10119   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10120       << FnName
10121       << FixItHint::CreateInsertion(
10122              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10123       << FixItHint::CreateRemoval(RParenLoc);
10124   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10125       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10126       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10127                                     ")");
10128 
10129   return true;
10130 }
10131 
10132 /// Determine whether the given type is or contains a dynamic class type
10133 /// (e.g., whether it has a vtable).
10134 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10135                                                      bool &IsContained) {
10136   // Look through array types while ignoring qualifiers.
10137   const Type *Ty = T->getBaseElementTypeUnsafe();
10138   IsContained = false;
10139 
10140   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10141   RD = RD ? RD->getDefinition() : nullptr;
10142   if (!RD || RD->isInvalidDecl())
10143     return nullptr;
10144 
10145   if (RD->isDynamicClass())
10146     return RD;
10147 
10148   // Check all the fields.  If any bases were dynamic, the class is dynamic.
10149   // It's impossible for a class to transitively contain itself by value, so
10150   // infinite recursion is impossible.
10151   for (auto *FD : RD->fields()) {
10152     bool SubContained;
10153     if (const CXXRecordDecl *ContainedRD =
10154             getContainedDynamicClass(FD->getType(), SubContained)) {
10155       IsContained = true;
10156       return ContainedRD;
10157     }
10158   }
10159 
10160   return nullptr;
10161 }
10162 
10163 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10164   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10165     if (Unary->getKind() == UETT_SizeOf)
10166       return Unary;
10167   return nullptr;
10168 }
10169 
10170 /// If E is a sizeof expression, returns its argument expression,
10171 /// otherwise returns NULL.
10172 static const Expr *getSizeOfExprArg(const Expr *E) {
10173   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10174     if (!SizeOf->isArgumentType())
10175       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10176   return nullptr;
10177 }
10178 
10179 /// If E is a sizeof expression, returns its argument type.
10180 static QualType getSizeOfArgType(const Expr *E) {
10181   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10182     return SizeOf->getTypeOfArgument();
10183   return QualType();
10184 }
10185 
10186 namespace {
10187 
10188 struct SearchNonTrivialToInitializeField
10189     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10190   using Super =
10191       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10192 
10193   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10194 
10195   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10196                      SourceLocation SL) {
10197     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10198       asDerived().visitArray(PDIK, AT, SL);
10199       return;
10200     }
10201 
10202     Super::visitWithKind(PDIK, FT, SL);
10203   }
10204 
10205   void visitARCStrong(QualType FT, SourceLocation SL) {
10206     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10207   }
10208   void visitARCWeak(QualType FT, SourceLocation SL) {
10209     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10210   }
10211   void visitStruct(QualType FT, SourceLocation SL) {
10212     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10213       visit(FD->getType(), FD->getLocation());
10214   }
10215   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10216                   const ArrayType *AT, SourceLocation SL) {
10217     visit(getContext().getBaseElementType(AT), SL);
10218   }
10219   void visitTrivial(QualType FT, SourceLocation SL) {}
10220 
10221   static void diag(QualType RT, const Expr *E, Sema &S) {
10222     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10223   }
10224 
10225   ASTContext &getContext() { return S.getASTContext(); }
10226 
10227   const Expr *E;
10228   Sema &S;
10229 };
10230 
10231 struct SearchNonTrivialToCopyField
10232     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10233   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10234 
10235   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10236 
10237   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10238                      SourceLocation SL) {
10239     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10240       asDerived().visitArray(PCK, AT, SL);
10241       return;
10242     }
10243 
10244     Super::visitWithKind(PCK, FT, SL);
10245   }
10246 
10247   void visitARCStrong(QualType FT, SourceLocation SL) {
10248     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10249   }
10250   void visitARCWeak(QualType FT, SourceLocation SL) {
10251     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10252   }
10253   void visitStruct(QualType FT, SourceLocation SL) {
10254     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10255       visit(FD->getType(), FD->getLocation());
10256   }
10257   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10258                   SourceLocation SL) {
10259     visit(getContext().getBaseElementType(AT), SL);
10260   }
10261   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10262                 SourceLocation SL) {}
10263   void visitTrivial(QualType FT, SourceLocation SL) {}
10264   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10265 
10266   static void diag(QualType RT, const Expr *E, Sema &S) {
10267     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10268   }
10269 
10270   ASTContext &getContext() { return S.getASTContext(); }
10271 
10272   const Expr *E;
10273   Sema &S;
10274 };
10275 
10276 }
10277 
10278 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10279 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10280   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10281 
10282   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10283     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10284       return false;
10285 
10286     return doesExprLikelyComputeSize(BO->getLHS()) ||
10287            doesExprLikelyComputeSize(BO->getRHS());
10288   }
10289 
10290   return getAsSizeOfExpr(SizeofExpr) != nullptr;
10291 }
10292 
10293 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10294 ///
10295 /// \code
10296 ///   #define MACRO 0
10297 ///   foo(MACRO);
10298 ///   foo(0);
10299 /// \endcode
10300 ///
10301 /// This should return true for the first call to foo, but not for the second
10302 /// (regardless of whether foo is a macro or function).
10303 static bool isArgumentExpandedFromMacro(SourceManager &SM,
10304                                         SourceLocation CallLoc,
10305                                         SourceLocation ArgLoc) {
10306   if (!CallLoc.isMacroID())
10307     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10308 
10309   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10310          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10311 }
10312 
10313 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10314 /// last two arguments transposed.
10315 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10316   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10317     return;
10318 
10319   const Expr *SizeArg =
10320     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10321 
10322   auto isLiteralZero = [](const Expr *E) {
10323     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10324   };
10325 
10326   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10327   SourceLocation CallLoc = Call->getRParenLoc();
10328   SourceManager &SM = S.getSourceManager();
10329   if (isLiteralZero(SizeArg) &&
10330       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10331 
10332     SourceLocation DiagLoc = SizeArg->getExprLoc();
10333 
10334     // Some platforms #define bzero to __builtin_memset. See if this is the
10335     // case, and if so, emit a better diagnostic.
10336     if (BId == Builtin::BIbzero ||
10337         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10338                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
10339       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10340       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10341     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10342       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10343       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10344     }
10345     return;
10346   }
10347 
10348   // If the second argument to a memset is a sizeof expression and the third
10349   // isn't, this is also likely an error. This should catch
10350   // 'memset(buf, sizeof(buf), 0xff)'.
10351   if (BId == Builtin::BImemset &&
10352       doesExprLikelyComputeSize(Call->getArg(1)) &&
10353       !doesExprLikelyComputeSize(Call->getArg(2))) {
10354     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10355     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10356     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10357     return;
10358   }
10359 }
10360 
10361 /// Check for dangerous or invalid arguments to memset().
10362 ///
10363 /// This issues warnings on known problematic, dangerous or unspecified
10364 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10365 /// function calls.
10366 ///
10367 /// \param Call The call expression to diagnose.
10368 void Sema::CheckMemaccessArguments(const CallExpr *Call,
10369                                    unsigned BId,
10370                                    IdentifierInfo *FnName) {
10371   assert(BId != 0);
10372 
10373   // It is possible to have a non-standard definition of memset.  Validate
10374   // we have enough arguments, and if not, abort further checking.
10375   unsigned ExpectedNumArgs =
10376       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10377   if (Call->getNumArgs() < ExpectedNumArgs)
10378     return;
10379 
10380   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10381                       BId == Builtin::BIstrndup ? 1 : 2);
10382   unsigned LenArg =
10383       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10384   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10385 
10386   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10387                                      Call->getBeginLoc(), Call->getRParenLoc()))
10388     return;
10389 
10390   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10391   CheckMemaccessSize(*this, BId, Call);
10392 
10393   // We have special checking when the length is a sizeof expression.
10394   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10395   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10396   llvm::FoldingSetNodeID SizeOfArgID;
10397 
10398   // Although widely used, 'bzero' is not a standard function. Be more strict
10399   // with the argument types before allowing diagnostics and only allow the
10400   // form bzero(ptr, sizeof(...)).
10401   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10402   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10403     return;
10404 
10405   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10406     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10407     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10408 
10409     QualType DestTy = Dest->getType();
10410     QualType PointeeTy;
10411     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10412       PointeeTy = DestPtrTy->getPointeeType();
10413 
10414       // Never warn about void type pointers. This can be used to suppress
10415       // false positives.
10416       if (PointeeTy->isVoidType())
10417         continue;
10418 
10419       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10420       // actually comparing the expressions for equality. Because computing the
10421       // expression IDs can be expensive, we only do this if the diagnostic is
10422       // enabled.
10423       if (SizeOfArg &&
10424           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10425                            SizeOfArg->getExprLoc())) {
10426         // We only compute IDs for expressions if the warning is enabled, and
10427         // cache the sizeof arg's ID.
10428         if (SizeOfArgID == llvm::FoldingSetNodeID())
10429           SizeOfArg->Profile(SizeOfArgID, Context, true);
10430         llvm::FoldingSetNodeID DestID;
10431         Dest->Profile(DestID, Context, true);
10432         if (DestID == SizeOfArgID) {
10433           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10434           //       over sizeof(src) as well.
10435           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10436           StringRef ReadableName = FnName->getName();
10437 
10438           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10439             if (UnaryOp->getOpcode() == UO_AddrOf)
10440               ActionIdx = 1; // If its an address-of operator, just remove it.
10441           if (!PointeeTy->isIncompleteType() &&
10442               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10443             ActionIdx = 2; // If the pointee's size is sizeof(char),
10444                            // suggest an explicit length.
10445 
10446           // If the function is defined as a builtin macro, do not show macro
10447           // expansion.
10448           SourceLocation SL = SizeOfArg->getExprLoc();
10449           SourceRange DSR = Dest->getSourceRange();
10450           SourceRange SSR = SizeOfArg->getSourceRange();
10451           SourceManager &SM = getSourceManager();
10452 
10453           if (SM.isMacroArgExpansion(SL)) {
10454             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10455             SL = SM.getSpellingLoc(SL);
10456             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10457                              SM.getSpellingLoc(DSR.getEnd()));
10458             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10459                              SM.getSpellingLoc(SSR.getEnd()));
10460           }
10461 
10462           DiagRuntimeBehavior(SL, SizeOfArg,
10463                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10464                                 << ReadableName
10465                                 << PointeeTy
10466                                 << DestTy
10467                                 << DSR
10468                                 << SSR);
10469           DiagRuntimeBehavior(SL, SizeOfArg,
10470                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10471                                 << ActionIdx
10472                                 << SSR);
10473 
10474           break;
10475         }
10476       }
10477 
10478       // Also check for cases where the sizeof argument is the exact same
10479       // type as the memory argument, and where it points to a user-defined
10480       // record type.
10481       if (SizeOfArgTy != QualType()) {
10482         if (PointeeTy->isRecordType() &&
10483             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10484           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10485                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
10486                                 << FnName << SizeOfArgTy << ArgIdx
10487                                 << PointeeTy << Dest->getSourceRange()
10488                                 << LenExpr->getSourceRange());
10489           break;
10490         }
10491       }
10492     } else if (DestTy->isArrayType()) {
10493       PointeeTy = DestTy;
10494     }
10495 
10496     if (PointeeTy == QualType())
10497       continue;
10498 
10499     // Always complain about dynamic classes.
10500     bool IsContained;
10501     if (const CXXRecordDecl *ContainedRD =
10502             getContainedDynamicClass(PointeeTy, IsContained)) {
10503 
10504       unsigned OperationType = 0;
10505       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10506       // "overwritten" if we're warning about the destination for any call
10507       // but memcmp; otherwise a verb appropriate to the call.
10508       if (ArgIdx != 0 || IsCmp) {
10509         if (BId == Builtin::BImemcpy)
10510           OperationType = 1;
10511         else if(BId == Builtin::BImemmove)
10512           OperationType = 2;
10513         else if (IsCmp)
10514           OperationType = 3;
10515       }
10516 
10517       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10518                           PDiag(diag::warn_dyn_class_memaccess)
10519                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10520                               << IsContained << ContainedRD << OperationType
10521                               << Call->getCallee()->getSourceRange());
10522     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10523              BId != Builtin::BImemset)
10524       DiagRuntimeBehavior(
10525         Dest->getExprLoc(), Dest,
10526         PDiag(diag::warn_arc_object_memaccess)
10527           << ArgIdx << FnName << PointeeTy
10528           << Call->getCallee()->getSourceRange());
10529     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10530       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10531           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10532         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10533                             PDiag(diag::warn_cstruct_memaccess)
10534                                 << ArgIdx << FnName << PointeeTy << 0);
10535         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10536       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10537                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10538         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10539                             PDiag(diag::warn_cstruct_memaccess)
10540                                 << ArgIdx << FnName << PointeeTy << 1);
10541         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10542       } else {
10543         continue;
10544       }
10545     } else
10546       continue;
10547 
10548     DiagRuntimeBehavior(
10549       Dest->getExprLoc(), Dest,
10550       PDiag(diag::note_bad_memaccess_silence)
10551         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10552     break;
10553   }
10554 }
10555 
10556 // A little helper routine: ignore addition and subtraction of integer literals.
10557 // This intentionally does not ignore all integer constant expressions because
10558 // we don't want to remove sizeof().
10559 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10560   Ex = Ex->IgnoreParenCasts();
10561 
10562   while (true) {
10563     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10564     if (!BO || !BO->isAdditiveOp())
10565       break;
10566 
10567     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10568     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10569 
10570     if (isa<IntegerLiteral>(RHS))
10571       Ex = LHS;
10572     else if (isa<IntegerLiteral>(LHS))
10573       Ex = RHS;
10574     else
10575       break;
10576   }
10577 
10578   return Ex;
10579 }
10580 
10581 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10582                                                       ASTContext &Context) {
10583   // Only handle constant-sized or VLAs, but not flexible members.
10584   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10585     // Only issue the FIXIT for arrays of size > 1.
10586     if (CAT->getSize().getSExtValue() <= 1)
10587       return false;
10588   } else if (!Ty->isVariableArrayType()) {
10589     return false;
10590   }
10591   return true;
10592 }
10593 
10594 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10595 // be the size of the source, instead of the destination.
10596 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10597                                     IdentifierInfo *FnName) {
10598 
10599   // Don't crash if the user has the wrong number of arguments
10600   unsigned NumArgs = Call->getNumArgs();
10601   if ((NumArgs != 3) && (NumArgs != 4))
10602     return;
10603 
10604   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10605   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10606   const Expr *CompareWithSrc = nullptr;
10607 
10608   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10609                                      Call->getBeginLoc(), Call->getRParenLoc()))
10610     return;
10611 
10612   // Look for 'strlcpy(dst, x, sizeof(x))'
10613   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10614     CompareWithSrc = Ex;
10615   else {
10616     // Look for 'strlcpy(dst, x, strlen(x))'
10617     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10618       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10619           SizeCall->getNumArgs() == 1)
10620         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10621     }
10622   }
10623 
10624   if (!CompareWithSrc)
10625     return;
10626 
10627   // Determine if the argument to sizeof/strlen is equal to the source
10628   // argument.  In principle there's all kinds of things you could do
10629   // here, for instance creating an == expression and evaluating it with
10630   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10631   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10632   if (!SrcArgDRE)
10633     return;
10634 
10635   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10636   if (!CompareWithSrcDRE ||
10637       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10638     return;
10639 
10640   const Expr *OriginalSizeArg = Call->getArg(2);
10641   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10642       << OriginalSizeArg->getSourceRange() << FnName;
10643 
10644   // Output a FIXIT hint if the destination is an array (rather than a
10645   // pointer to an array).  This could be enhanced to handle some
10646   // pointers if we know the actual size, like if DstArg is 'array+2'
10647   // we could say 'sizeof(array)-2'.
10648   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10649   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10650     return;
10651 
10652   SmallString<128> sizeString;
10653   llvm::raw_svector_ostream OS(sizeString);
10654   OS << "sizeof(";
10655   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10656   OS << ")";
10657 
10658   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10659       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10660                                       OS.str());
10661 }
10662 
10663 /// Check if two expressions refer to the same declaration.
10664 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10665   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10666     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10667       return D1->getDecl() == D2->getDecl();
10668   return false;
10669 }
10670 
10671 static const Expr *getStrlenExprArg(const Expr *E) {
10672   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10673     const FunctionDecl *FD = CE->getDirectCallee();
10674     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10675       return nullptr;
10676     return CE->getArg(0)->IgnoreParenCasts();
10677   }
10678   return nullptr;
10679 }
10680 
10681 // Warn on anti-patterns as the 'size' argument to strncat.
10682 // The correct size argument should look like following:
10683 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10684 void Sema::CheckStrncatArguments(const CallExpr *CE,
10685                                  IdentifierInfo *FnName) {
10686   // Don't crash if the user has the wrong number of arguments.
10687   if (CE->getNumArgs() < 3)
10688     return;
10689   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10690   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10691   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10692 
10693   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10694                                      CE->getRParenLoc()))
10695     return;
10696 
10697   // Identify common expressions, which are wrongly used as the size argument
10698   // to strncat and may lead to buffer overflows.
10699   unsigned PatternType = 0;
10700   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10701     // - sizeof(dst)
10702     if (referToTheSameDecl(SizeOfArg, DstArg))
10703       PatternType = 1;
10704     // - sizeof(src)
10705     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10706       PatternType = 2;
10707   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10708     if (BE->getOpcode() == BO_Sub) {
10709       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10710       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10711       // - sizeof(dst) - strlen(dst)
10712       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10713           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10714         PatternType = 1;
10715       // - sizeof(src) - (anything)
10716       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10717         PatternType = 2;
10718     }
10719   }
10720 
10721   if (PatternType == 0)
10722     return;
10723 
10724   // Generate the diagnostic.
10725   SourceLocation SL = LenArg->getBeginLoc();
10726   SourceRange SR = LenArg->getSourceRange();
10727   SourceManager &SM = getSourceManager();
10728 
10729   // If the function is defined as a builtin macro, do not show macro expansion.
10730   if (SM.isMacroArgExpansion(SL)) {
10731     SL = SM.getSpellingLoc(SL);
10732     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10733                      SM.getSpellingLoc(SR.getEnd()));
10734   }
10735 
10736   // Check if the destination is an array (rather than a pointer to an array).
10737   QualType DstTy = DstArg->getType();
10738   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10739                                                                     Context);
10740   if (!isKnownSizeArray) {
10741     if (PatternType == 1)
10742       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10743     else
10744       Diag(SL, diag::warn_strncat_src_size) << SR;
10745     return;
10746   }
10747 
10748   if (PatternType == 1)
10749     Diag(SL, diag::warn_strncat_large_size) << SR;
10750   else
10751     Diag(SL, diag::warn_strncat_src_size) << SR;
10752 
10753   SmallString<128> sizeString;
10754   llvm::raw_svector_ostream OS(sizeString);
10755   OS << "sizeof(";
10756   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10757   OS << ") - ";
10758   OS << "strlen(";
10759   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10760   OS << ") - 1";
10761 
10762   Diag(SL, diag::note_strncat_wrong_size)
10763     << FixItHint::CreateReplacement(SR, OS.str());
10764 }
10765 
10766 namespace {
10767 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10768                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10769   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
10770     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10771         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
10772     return;
10773   }
10774 }
10775 
10776 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10777                                  const UnaryOperator *UnaryExpr) {
10778   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
10779     const Decl *D = Lvalue->getDecl();
10780     if (isa<DeclaratorDecl>(D))
10781       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
10782         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
10783   }
10784 
10785   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10786     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10787                                       Lvalue->getMemberDecl());
10788 }
10789 
10790 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
10791                             const UnaryOperator *UnaryExpr) {
10792   const auto *Lambda = dyn_cast<LambdaExpr>(
10793       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
10794   if (!Lambda)
10795     return;
10796 
10797   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
10798       << CalleeName << 2 /*object: lambda expression*/;
10799 }
10800 
10801 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10802                                   const DeclRefExpr *Lvalue) {
10803   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10804   if (Var == nullptr)
10805     return;
10806 
10807   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10808       << CalleeName << 0 /*object: */ << Var;
10809 }
10810 
10811 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
10812                             const CastExpr *Cast) {
10813   SmallString<128> SizeString;
10814   llvm::raw_svector_ostream OS(SizeString);
10815 
10816   clang::CastKind Kind = Cast->getCastKind();
10817   if (Kind == clang::CK_BitCast &&
10818       !Cast->getSubExpr()->getType()->isFunctionPointerType())
10819     return;
10820   if (Kind == clang::CK_IntegralToPointer &&
10821       !isa<IntegerLiteral>(
10822           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
10823     return;
10824 
10825   switch (Cast->getCastKind()) {
10826   case clang::CK_BitCast:
10827   case clang::CK_IntegralToPointer:
10828   case clang::CK_FunctionToPointerDecay:
10829     OS << '\'';
10830     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
10831     OS << '\'';
10832     break;
10833   default:
10834     return;
10835   }
10836 
10837   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
10838       << CalleeName << 0 /*object: */ << OS.str();
10839 }
10840 } // namespace
10841 
10842 /// Alerts the user that they are attempting to free a non-malloc'd object.
10843 void Sema::CheckFreeArguments(const CallExpr *E) {
10844   const std::string CalleeName =
10845       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10846 
10847   { // Prefer something that doesn't involve a cast to make things simpler.
10848     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10849     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10850       switch (UnaryExpr->getOpcode()) {
10851       case UnaryOperator::Opcode::UO_AddrOf:
10852         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10853       case UnaryOperator::Opcode::UO_Plus:
10854         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
10855       default:
10856         break;
10857       }
10858 
10859     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10860       if (Lvalue->getType()->isArrayType())
10861         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10862 
10863     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
10864       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
10865           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
10866       return;
10867     }
10868 
10869     if (isa<BlockExpr>(Arg)) {
10870       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
10871           << CalleeName << 1 /*object: block*/;
10872       return;
10873     }
10874   }
10875   // Maybe the cast was important, check after the other cases.
10876   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
10877     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
10878 }
10879 
10880 void
10881 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10882                          SourceLocation ReturnLoc,
10883                          bool isObjCMethod,
10884                          const AttrVec *Attrs,
10885                          const FunctionDecl *FD) {
10886   // Check if the return value is null but should not be.
10887   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10888        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10889       CheckNonNullExpr(*this, RetValExp))
10890     Diag(ReturnLoc, diag::warn_null_ret)
10891       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10892 
10893   // C++11 [basic.stc.dynamic.allocation]p4:
10894   //   If an allocation function declared with a non-throwing
10895   //   exception-specification fails to allocate storage, it shall return
10896   //   a null pointer. Any other allocation function that fails to allocate
10897   //   storage shall indicate failure only by throwing an exception [...]
10898   if (FD) {
10899     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10900     if (Op == OO_New || Op == OO_Array_New) {
10901       const FunctionProtoType *Proto
10902         = FD->getType()->castAs<FunctionProtoType>();
10903       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10904           CheckNonNullExpr(*this, RetValExp))
10905         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10906           << FD << getLangOpts().CPlusPlus11;
10907     }
10908   }
10909 
10910   // PPC MMA non-pointer types are not allowed as return type. Checking the type
10911   // here prevent the user from using a PPC MMA type as trailing return type.
10912   if (Context.getTargetInfo().getTriple().isPPC64())
10913     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10914 }
10915 
10916 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10917 
10918 /// Check for comparisons of floating point operands using != and ==.
10919 /// Issue a warning if these are no self-comparisons, as they are not likely
10920 /// to do what the programmer intended.
10921 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10922   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10923   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10924 
10925   // Special case: check for x == x (which is OK).
10926   // Do not emit warnings for such cases.
10927   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10928     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10929       if (DRL->getDecl() == DRR->getDecl())
10930         return;
10931 
10932   // Special case: check for comparisons against literals that can be exactly
10933   //  represented by APFloat.  In such cases, do not emit a warning.  This
10934   //  is a heuristic: often comparison against such literals are used to
10935   //  detect if a value in a variable has not changed.  This clearly can
10936   //  lead to false negatives.
10937   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10938     if (FLL->isExact())
10939       return;
10940   } else
10941     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10942       if (FLR->isExact())
10943         return;
10944 
10945   // Check for comparisons with builtin types.
10946   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10947     if (CL->getBuiltinCallee())
10948       return;
10949 
10950   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10951     if (CR->getBuiltinCallee())
10952       return;
10953 
10954   // Emit the diagnostic.
10955   Diag(Loc, diag::warn_floatingpoint_eq)
10956     << LHS->getSourceRange() << RHS->getSourceRange();
10957 }
10958 
10959 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10960 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10961 
10962 namespace {
10963 
10964 /// Structure recording the 'active' range of an integer-valued
10965 /// expression.
10966 struct IntRange {
10967   /// The number of bits active in the int. Note that this includes exactly one
10968   /// sign bit if !NonNegative.
10969   unsigned Width;
10970 
10971   /// True if the int is known not to have negative values. If so, all leading
10972   /// bits before Width are known zero, otherwise they are known to be the
10973   /// same as the MSB within Width.
10974   bool NonNegative;
10975 
10976   IntRange(unsigned Width, bool NonNegative)
10977       : Width(Width), NonNegative(NonNegative) {}
10978 
10979   /// Number of bits excluding the sign bit.
10980   unsigned valueBits() const {
10981     return NonNegative ? Width : Width - 1;
10982   }
10983 
10984   /// Returns the range of the bool type.
10985   static IntRange forBoolType() {
10986     return IntRange(1, true);
10987   }
10988 
10989   /// Returns the range of an opaque value of the given integral type.
10990   static IntRange forValueOfType(ASTContext &C, QualType T) {
10991     return forValueOfCanonicalType(C,
10992                           T->getCanonicalTypeInternal().getTypePtr());
10993   }
10994 
10995   /// Returns the range of an opaque value of a canonical integral type.
10996   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10997     assert(T->isCanonicalUnqualified());
10998 
10999     if (const VectorType *VT = dyn_cast<VectorType>(T))
11000       T = VT->getElementType().getTypePtr();
11001     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11002       T = CT->getElementType().getTypePtr();
11003     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11004       T = AT->getValueType().getTypePtr();
11005 
11006     if (!C.getLangOpts().CPlusPlus) {
11007       // For enum types in C code, use the underlying datatype.
11008       if (const EnumType *ET = dyn_cast<EnumType>(T))
11009         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11010     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11011       // For enum types in C++, use the known bit width of the enumerators.
11012       EnumDecl *Enum = ET->getDecl();
11013       // In C++11, enums can have a fixed underlying type. Use this type to
11014       // compute the range.
11015       if (Enum->isFixed()) {
11016         return IntRange(C.getIntWidth(QualType(T, 0)),
11017                         !ET->isSignedIntegerOrEnumerationType());
11018       }
11019 
11020       unsigned NumPositive = Enum->getNumPositiveBits();
11021       unsigned NumNegative = Enum->getNumNegativeBits();
11022 
11023       if (NumNegative == 0)
11024         return IntRange(NumPositive, true/*NonNegative*/);
11025       else
11026         return IntRange(std::max(NumPositive + 1, NumNegative),
11027                         false/*NonNegative*/);
11028     }
11029 
11030     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11031       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11032 
11033     const BuiltinType *BT = cast<BuiltinType>(T);
11034     assert(BT->isInteger());
11035 
11036     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11037   }
11038 
11039   /// Returns the "target" range of a canonical integral type, i.e.
11040   /// the range of values expressible in the type.
11041   ///
11042   /// This matches forValueOfCanonicalType except that enums have the
11043   /// full range of their type, not the range of their enumerators.
11044   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11045     assert(T->isCanonicalUnqualified());
11046 
11047     if (const VectorType *VT = dyn_cast<VectorType>(T))
11048       T = VT->getElementType().getTypePtr();
11049     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11050       T = CT->getElementType().getTypePtr();
11051     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11052       T = AT->getValueType().getTypePtr();
11053     if (const EnumType *ET = dyn_cast<EnumType>(T))
11054       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11055 
11056     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11057       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11058 
11059     const BuiltinType *BT = cast<BuiltinType>(T);
11060     assert(BT->isInteger());
11061 
11062     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11063   }
11064 
11065   /// Returns the supremum of two ranges: i.e. their conservative merge.
11066   static IntRange join(IntRange L, IntRange R) {
11067     bool Unsigned = L.NonNegative && R.NonNegative;
11068     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11069                     L.NonNegative && R.NonNegative);
11070   }
11071 
11072   /// Return the range of a bitwise-AND of the two ranges.
11073   static IntRange bit_and(IntRange L, IntRange R) {
11074     unsigned Bits = std::max(L.Width, R.Width);
11075     bool NonNegative = false;
11076     if (L.NonNegative) {
11077       Bits = std::min(Bits, L.Width);
11078       NonNegative = true;
11079     }
11080     if (R.NonNegative) {
11081       Bits = std::min(Bits, R.Width);
11082       NonNegative = true;
11083     }
11084     return IntRange(Bits, NonNegative);
11085   }
11086 
11087   /// Return the range of a sum of the two ranges.
11088   static IntRange sum(IntRange L, IntRange R) {
11089     bool Unsigned = L.NonNegative && R.NonNegative;
11090     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11091                     Unsigned);
11092   }
11093 
11094   /// Return the range of a difference of the two ranges.
11095   static IntRange difference(IntRange L, IntRange R) {
11096     // We need a 1-bit-wider range if:
11097     //   1) LHS can be negative: least value can be reduced.
11098     //   2) RHS can be negative: greatest value can be increased.
11099     bool CanWiden = !L.NonNegative || !R.NonNegative;
11100     bool Unsigned = L.NonNegative && R.Width == 0;
11101     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11102                         !Unsigned,
11103                     Unsigned);
11104   }
11105 
11106   /// Return the range of a product of the two ranges.
11107   static IntRange product(IntRange L, IntRange R) {
11108     // If both LHS and RHS can be negative, we can form
11109     //   -2^L * -2^R = 2^(L + R)
11110     // which requires L + R + 1 value bits to represent.
11111     bool CanWiden = !L.NonNegative && !R.NonNegative;
11112     bool Unsigned = L.NonNegative && R.NonNegative;
11113     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11114                     Unsigned);
11115   }
11116 
11117   /// Return the range of a remainder operation between the two ranges.
11118   static IntRange rem(IntRange L, IntRange R) {
11119     // The result of a remainder can't be larger than the result of
11120     // either side. The sign of the result is the sign of the LHS.
11121     bool Unsigned = L.NonNegative;
11122     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11123                     Unsigned);
11124   }
11125 };
11126 
11127 } // namespace
11128 
11129 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11130                               unsigned MaxWidth) {
11131   if (value.isSigned() && value.isNegative())
11132     return IntRange(value.getMinSignedBits(), false);
11133 
11134   if (value.getBitWidth() > MaxWidth)
11135     value = value.trunc(MaxWidth);
11136 
11137   // isNonNegative() just checks the sign bit without considering
11138   // signedness.
11139   return IntRange(value.getActiveBits(), true);
11140 }
11141 
11142 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11143                               unsigned MaxWidth) {
11144   if (result.isInt())
11145     return GetValueRange(C, result.getInt(), MaxWidth);
11146 
11147   if (result.isVector()) {
11148     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11149     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11150       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11151       R = IntRange::join(R, El);
11152     }
11153     return R;
11154   }
11155 
11156   if (result.isComplexInt()) {
11157     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11158     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11159     return IntRange::join(R, I);
11160   }
11161 
11162   // This can happen with lossless casts to intptr_t of "based" lvalues.
11163   // Assume it might use arbitrary bits.
11164   // FIXME: The only reason we need to pass the type in here is to get
11165   // the sign right on this one case.  It would be nice if APValue
11166   // preserved this.
11167   assert(result.isLValue() || result.isAddrLabelDiff());
11168   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11169 }
11170 
11171 static QualType GetExprType(const Expr *E) {
11172   QualType Ty = E->getType();
11173   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11174     Ty = AtomicRHS->getValueType();
11175   return Ty;
11176 }
11177 
11178 /// Pseudo-evaluate the given integer expression, estimating the
11179 /// range of values it might take.
11180 ///
11181 /// \param MaxWidth The width to which the value will be truncated.
11182 /// \param Approximate If \c true, return a likely range for the result: in
11183 ///        particular, assume that aritmetic on narrower types doesn't leave
11184 ///        those types. If \c false, return a range including all possible
11185 ///        result values.
11186 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11187                              bool InConstantContext, bool Approximate) {
11188   E = E->IgnoreParens();
11189 
11190   // Try a full evaluation first.
11191   Expr::EvalResult result;
11192   if (E->EvaluateAsRValue(result, C, InConstantContext))
11193     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11194 
11195   // I think we only want to look through implicit casts here; if the
11196   // user has an explicit widening cast, we should treat the value as
11197   // being of the new, wider type.
11198   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11199     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11200       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11201                           Approximate);
11202 
11203     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11204 
11205     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11206                          CE->getCastKind() == CK_BooleanToSignedIntegral;
11207 
11208     // Assume that non-integer casts can span the full range of the type.
11209     if (!isIntegerCast)
11210       return OutputTypeRange;
11211 
11212     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11213                                      std::min(MaxWidth, OutputTypeRange.Width),
11214                                      InConstantContext, Approximate);
11215 
11216     // Bail out if the subexpr's range is as wide as the cast type.
11217     if (SubRange.Width >= OutputTypeRange.Width)
11218       return OutputTypeRange;
11219 
11220     // Otherwise, we take the smaller width, and we're non-negative if
11221     // either the output type or the subexpr is.
11222     return IntRange(SubRange.Width,
11223                     SubRange.NonNegative || OutputTypeRange.NonNegative);
11224   }
11225 
11226   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11227     // If we can fold the condition, just take that operand.
11228     bool CondResult;
11229     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11230       return GetExprRange(C,
11231                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11232                           MaxWidth, InConstantContext, Approximate);
11233 
11234     // Otherwise, conservatively merge.
11235     // GetExprRange requires an integer expression, but a throw expression
11236     // results in a void type.
11237     Expr *E = CO->getTrueExpr();
11238     IntRange L = E->getType()->isVoidType()
11239                      ? IntRange{0, true}
11240                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11241     E = CO->getFalseExpr();
11242     IntRange R = E->getType()->isVoidType()
11243                      ? IntRange{0, true}
11244                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11245     return IntRange::join(L, R);
11246   }
11247 
11248   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11249     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11250 
11251     switch (BO->getOpcode()) {
11252     case BO_Cmp:
11253       llvm_unreachable("builtin <=> should have class type");
11254 
11255     // Boolean-valued operations are single-bit and positive.
11256     case BO_LAnd:
11257     case BO_LOr:
11258     case BO_LT:
11259     case BO_GT:
11260     case BO_LE:
11261     case BO_GE:
11262     case BO_EQ:
11263     case BO_NE:
11264       return IntRange::forBoolType();
11265 
11266     // The type of the assignments is the type of the LHS, so the RHS
11267     // is not necessarily the same type.
11268     case BO_MulAssign:
11269     case BO_DivAssign:
11270     case BO_RemAssign:
11271     case BO_AddAssign:
11272     case BO_SubAssign:
11273     case BO_XorAssign:
11274     case BO_OrAssign:
11275       // TODO: bitfields?
11276       return IntRange::forValueOfType(C, GetExprType(E));
11277 
11278     // Simple assignments just pass through the RHS, which will have
11279     // been coerced to the LHS type.
11280     case BO_Assign:
11281       // TODO: bitfields?
11282       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11283                           Approximate);
11284 
11285     // Operations with opaque sources are black-listed.
11286     case BO_PtrMemD:
11287     case BO_PtrMemI:
11288       return IntRange::forValueOfType(C, GetExprType(E));
11289 
11290     // Bitwise-and uses the *infinum* of the two source ranges.
11291     case BO_And:
11292     case BO_AndAssign:
11293       Combine = IntRange::bit_and;
11294       break;
11295 
11296     // Left shift gets black-listed based on a judgement call.
11297     case BO_Shl:
11298       // ...except that we want to treat '1 << (blah)' as logically
11299       // positive.  It's an important idiom.
11300       if (IntegerLiteral *I
11301             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11302         if (I->getValue() == 1) {
11303           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11304           return IntRange(R.Width, /*NonNegative*/ true);
11305         }
11306       }
11307       LLVM_FALLTHROUGH;
11308 
11309     case BO_ShlAssign:
11310       return IntRange::forValueOfType(C, GetExprType(E));
11311 
11312     // Right shift by a constant can narrow its left argument.
11313     case BO_Shr:
11314     case BO_ShrAssign: {
11315       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11316                                 Approximate);
11317 
11318       // If the shift amount is a positive constant, drop the width by
11319       // that much.
11320       if (Optional<llvm::APSInt> shift =
11321               BO->getRHS()->getIntegerConstantExpr(C)) {
11322         if (shift->isNonNegative()) {
11323           unsigned zext = shift->getZExtValue();
11324           if (zext >= L.Width)
11325             L.Width = (L.NonNegative ? 0 : 1);
11326           else
11327             L.Width -= zext;
11328         }
11329       }
11330 
11331       return L;
11332     }
11333 
11334     // Comma acts as its right operand.
11335     case BO_Comma:
11336       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11337                           Approximate);
11338 
11339     case BO_Add:
11340       if (!Approximate)
11341         Combine = IntRange::sum;
11342       break;
11343 
11344     case BO_Sub:
11345       if (BO->getLHS()->getType()->isPointerType())
11346         return IntRange::forValueOfType(C, GetExprType(E));
11347       if (!Approximate)
11348         Combine = IntRange::difference;
11349       break;
11350 
11351     case BO_Mul:
11352       if (!Approximate)
11353         Combine = IntRange::product;
11354       break;
11355 
11356     // The width of a division result is mostly determined by the size
11357     // of the LHS.
11358     case BO_Div: {
11359       // Don't 'pre-truncate' the operands.
11360       unsigned opWidth = C.getIntWidth(GetExprType(E));
11361       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11362                                 Approximate);
11363 
11364       // If the divisor is constant, use that.
11365       if (Optional<llvm::APSInt> divisor =
11366               BO->getRHS()->getIntegerConstantExpr(C)) {
11367         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11368         if (log2 >= L.Width)
11369           L.Width = (L.NonNegative ? 0 : 1);
11370         else
11371           L.Width = std::min(L.Width - log2, MaxWidth);
11372         return L;
11373       }
11374 
11375       // Otherwise, just use the LHS's width.
11376       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11377       // could be -1.
11378       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11379                                 Approximate);
11380       return IntRange(L.Width, L.NonNegative && R.NonNegative);
11381     }
11382 
11383     case BO_Rem:
11384       Combine = IntRange::rem;
11385       break;
11386 
11387     // The default behavior is okay for these.
11388     case BO_Xor:
11389     case BO_Or:
11390       break;
11391     }
11392 
11393     // Combine the two ranges, but limit the result to the type in which we
11394     // performed the computation.
11395     QualType T = GetExprType(E);
11396     unsigned opWidth = C.getIntWidth(T);
11397     IntRange L =
11398         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11399     IntRange R =
11400         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11401     IntRange C = Combine(L, R);
11402     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11403     C.Width = std::min(C.Width, MaxWidth);
11404     return C;
11405   }
11406 
11407   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11408     switch (UO->getOpcode()) {
11409     // Boolean-valued operations are white-listed.
11410     case UO_LNot:
11411       return IntRange::forBoolType();
11412 
11413     // Operations with opaque sources are black-listed.
11414     case UO_Deref:
11415     case UO_AddrOf: // should be impossible
11416       return IntRange::forValueOfType(C, GetExprType(E));
11417 
11418     default:
11419       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11420                           Approximate);
11421     }
11422   }
11423 
11424   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11425     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11426                         Approximate);
11427 
11428   if (const auto *BitField = E->getSourceBitField())
11429     return IntRange(BitField->getBitWidthValue(C),
11430                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
11431 
11432   return IntRange::forValueOfType(C, GetExprType(E));
11433 }
11434 
11435 static IntRange GetExprRange(ASTContext &C, const Expr *E,
11436                              bool InConstantContext, bool Approximate) {
11437   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11438                       Approximate);
11439 }
11440 
11441 /// Checks whether the given value, which currently has the given
11442 /// source semantics, has the same value when coerced through the
11443 /// target semantics.
11444 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11445                                  const llvm::fltSemantics &Src,
11446                                  const llvm::fltSemantics &Tgt) {
11447   llvm::APFloat truncated = value;
11448 
11449   bool ignored;
11450   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11451   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11452 
11453   return truncated.bitwiseIsEqual(value);
11454 }
11455 
11456 /// Checks whether the given value, which currently has the given
11457 /// source semantics, has the same value when coerced through the
11458 /// target semantics.
11459 ///
11460 /// The value might be a vector of floats (or a complex number).
11461 static bool IsSameFloatAfterCast(const APValue &value,
11462                                  const llvm::fltSemantics &Src,
11463                                  const llvm::fltSemantics &Tgt) {
11464   if (value.isFloat())
11465     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11466 
11467   if (value.isVector()) {
11468     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11469       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11470         return false;
11471     return true;
11472   }
11473 
11474   assert(value.isComplexFloat());
11475   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11476           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11477 }
11478 
11479 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11480                                        bool IsListInit = false);
11481 
11482 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11483   // Suppress cases where we are comparing against an enum constant.
11484   if (const DeclRefExpr *DR =
11485       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11486     if (isa<EnumConstantDecl>(DR->getDecl()))
11487       return true;
11488 
11489   // Suppress cases where the value is expanded from a macro, unless that macro
11490   // is how a language represents a boolean literal. This is the case in both C
11491   // and Objective-C.
11492   SourceLocation BeginLoc = E->getBeginLoc();
11493   if (BeginLoc.isMacroID()) {
11494     StringRef MacroName = Lexer::getImmediateMacroName(
11495         BeginLoc, S.getSourceManager(), S.getLangOpts());
11496     return MacroName != "YES" && MacroName != "NO" &&
11497            MacroName != "true" && MacroName != "false";
11498   }
11499 
11500   return false;
11501 }
11502 
11503 static bool isKnownToHaveUnsignedValue(Expr *E) {
11504   return E->getType()->isIntegerType() &&
11505          (!E->getType()->isSignedIntegerType() ||
11506           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11507 }
11508 
11509 namespace {
11510 /// The promoted range of values of a type. In general this has the
11511 /// following structure:
11512 ///
11513 ///     |-----------| . . . |-----------|
11514 ///     ^           ^       ^           ^
11515 ///    Min       HoleMin  HoleMax      Max
11516 ///
11517 /// ... where there is only a hole if a signed type is promoted to unsigned
11518 /// (in which case Min and Max are the smallest and largest representable
11519 /// values).
11520 struct PromotedRange {
11521   // Min, or HoleMax if there is a hole.
11522   llvm::APSInt PromotedMin;
11523   // Max, or HoleMin if there is a hole.
11524   llvm::APSInt PromotedMax;
11525 
11526   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11527     if (R.Width == 0)
11528       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11529     else if (R.Width >= BitWidth && !Unsigned) {
11530       // Promotion made the type *narrower*. This happens when promoting
11531       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11532       // Treat all values of 'signed int' as being in range for now.
11533       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11534       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11535     } else {
11536       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11537                         .extOrTrunc(BitWidth);
11538       PromotedMin.setIsUnsigned(Unsigned);
11539 
11540       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11541                         .extOrTrunc(BitWidth);
11542       PromotedMax.setIsUnsigned(Unsigned);
11543     }
11544   }
11545 
11546   // Determine whether this range is contiguous (has no hole).
11547   bool isContiguous() const { return PromotedMin <= PromotedMax; }
11548 
11549   // Where a constant value is within the range.
11550   enum ComparisonResult {
11551     LT = 0x1,
11552     LE = 0x2,
11553     GT = 0x4,
11554     GE = 0x8,
11555     EQ = 0x10,
11556     NE = 0x20,
11557     InRangeFlag = 0x40,
11558 
11559     Less = LE | LT | NE,
11560     Min = LE | InRangeFlag,
11561     InRange = InRangeFlag,
11562     Max = GE | InRangeFlag,
11563     Greater = GE | GT | NE,
11564 
11565     OnlyValue = LE | GE | EQ | InRangeFlag,
11566     InHole = NE
11567   };
11568 
11569   ComparisonResult compare(const llvm::APSInt &Value) const {
11570     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11571            Value.isUnsigned() == PromotedMin.isUnsigned());
11572     if (!isContiguous()) {
11573       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11574       if (Value.isMinValue()) return Min;
11575       if (Value.isMaxValue()) return Max;
11576       if (Value >= PromotedMin) return InRange;
11577       if (Value <= PromotedMax) return InRange;
11578       return InHole;
11579     }
11580 
11581     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11582     case -1: return Less;
11583     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11584     case 1:
11585       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11586       case -1: return InRange;
11587       case 0: return Max;
11588       case 1: return Greater;
11589       }
11590     }
11591 
11592     llvm_unreachable("impossible compare result");
11593   }
11594 
11595   static llvm::Optional<StringRef>
11596   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11597     if (Op == BO_Cmp) {
11598       ComparisonResult LTFlag = LT, GTFlag = GT;
11599       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11600 
11601       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11602       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11603       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11604       return llvm::None;
11605     }
11606 
11607     ComparisonResult TrueFlag, FalseFlag;
11608     if (Op == BO_EQ) {
11609       TrueFlag = EQ;
11610       FalseFlag = NE;
11611     } else if (Op == BO_NE) {
11612       TrueFlag = NE;
11613       FalseFlag = EQ;
11614     } else {
11615       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11616         TrueFlag = LT;
11617         FalseFlag = GE;
11618       } else {
11619         TrueFlag = GT;
11620         FalseFlag = LE;
11621       }
11622       if (Op == BO_GE || Op == BO_LE)
11623         std::swap(TrueFlag, FalseFlag);
11624     }
11625     if (R & TrueFlag)
11626       return StringRef("true");
11627     if (R & FalseFlag)
11628       return StringRef("false");
11629     return llvm::None;
11630   }
11631 };
11632 }
11633 
11634 static bool HasEnumType(Expr *E) {
11635   // Strip off implicit integral promotions.
11636   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11637     if (ICE->getCastKind() != CK_IntegralCast &&
11638         ICE->getCastKind() != CK_NoOp)
11639       break;
11640     E = ICE->getSubExpr();
11641   }
11642 
11643   return E->getType()->isEnumeralType();
11644 }
11645 
11646 static int classifyConstantValue(Expr *Constant) {
11647   // The values of this enumeration are used in the diagnostics
11648   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11649   enum ConstantValueKind {
11650     Miscellaneous = 0,
11651     LiteralTrue,
11652     LiteralFalse
11653   };
11654   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11655     return BL->getValue() ? ConstantValueKind::LiteralTrue
11656                           : ConstantValueKind::LiteralFalse;
11657   return ConstantValueKind::Miscellaneous;
11658 }
11659 
11660 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11661                                         Expr *Constant, Expr *Other,
11662                                         const llvm::APSInt &Value,
11663                                         bool RhsConstant) {
11664   if (S.inTemplateInstantiation())
11665     return false;
11666 
11667   Expr *OriginalOther = Other;
11668 
11669   Constant = Constant->IgnoreParenImpCasts();
11670   Other = Other->IgnoreParenImpCasts();
11671 
11672   // Suppress warnings on tautological comparisons between values of the same
11673   // enumeration type. There are only two ways we could warn on this:
11674   //  - If the constant is outside the range of representable values of
11675   //    the enumeration. In such a case, we should warn about the cast
11676   //    to enumeration type, not about the comparison.
11677   //  - If the constant is the maximum / minimum in-range value. For an
11678   //    enumeratin type, such comparisons can be meaningful and useful.
11679   if (Constant->getType()->isEnumeralType() &&
11680       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11681     return false;
11682 
11683   IntRange OtherValueRange = GetExprRange(
11684       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11685 
11686   QualType OtherT = Other->getType();
11687   if (const auto *AT = OtherT->getAs<AtomicType>())
11688     OtherT = AT->getValueType();
11689   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11690 
11691   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11692   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11693   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11694                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11695                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11696 
11697   // Whether we're treating Other as being a bool because of the form of
11698   // expression despite it having another type (typically 'int' in C).
11699   bool OtherIsBooleanDespiteType =
11700       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11701   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11702     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11703 
11704   // Check if all values in the range of possible values of this expression
11705   // lead to the same comparison outcome.
11706   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11707                                         Value.isUnsigned());
11708   auto Cmp = OtherPromotedValueRange.compare(Value);
11709   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11710   if (!Result)
11711     return false;
11712 
11713   // Also consider the range determined by the type alone. This allows us to
11714   // classify the warning under the proper diagnostic group.
11715   bool TautologicalTypeCompare = false;
11716   {
11717     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11718                                          Value.isUnsigned());
11719     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11720     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11721                                                        RhsConstant)) {
11722       TautologicalTypeCompare = true;
11723       Cmp = TypeCmp;
11724       Result = TypeResult;
11725     }
11726   }
11727 
11728   // Don't warn if the non-constant operand actually always evaluates to the
11729   // same value.
11730   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11731     return false;
11732 
11733   // Suppress the diagnostic for an in-range comparison if the constant comes
11734   // from a macro or enumerator. We don't want to diagnose
11735   //
11736   //   some_long_value <= INT_MAX
11737   //
11738   // when sizeof(int) == sizeof(long).
11739   bool InRange = Cmp & PromotedRange::InRangeFlag;
11740   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11741     return false;
11742 
11743   // A comparison of an unsigned bit-field against 0 is really a type problem,
11744   // even though at the type level the bit-field might promote to 'signed int'.
11745   if (Other->refersToBitField() && InRange && Value == 0 &&
11746       Other->getType()->isUnsignedIntegerOrEnumerationType())
11747     TautologicalTypeCompare = true;
11748 
11749   // If this is a comparison to an enum constant, include that
11750   // constant in the diagnostic.
11751   const EnumConstantDecl *ED = nullptr;
11752   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11753     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11754 
11755   // Should be enough for uint128 (39 decimal digits)
11756   SmallString<64> PrettySourceValue;
11757   llvm::raw_svector_ostream OS(PrettySourceValue);
11758   if (ED) {
11759     OS << '\'' << *ED << "' (" << Value << ")";
11760   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11761                Constant->IgnoreParenImpCasts())) {
11762     OS << (BL->getValue() ? "YES" : "NO");
11763   } else {
11764     OS << Value;
11765   }
11766 
11767   if (!TautologicalTypeCompare) {
11768     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11769         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11770         << E->getOpcodeStr() << OS.str() << *Result
11771         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11772     return true;
11773   }
11774 
11775   if (IsObjCSignedCharBool) {
11776     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11777                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11778                               << OS.str() << *Result);
11779     return true;
11780   }
11781 
11782   // FIXME: We use a somewhat different formatting for the in-range cases and
11783   // cases involving boolean values for historical reasons. We should pick a
11784   // consistent way of presenting these diagnostics.
11785   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11786 
11787     S.DiagRuntimeBehavior(
11788         E->getOperatorLoc(), E,
11789         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11790                          : diag::warn_tautological_bool_compare)
11791             << OS.str() << classifyConstantValue(Constant) << OtherT
11792             << OtherIsBooleanDespiteType << *Result
11793             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11794   } else {
11795     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
11796     unsigned Diag =
11797         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11798             ? (HasEnumType(OriginalOther)
11799                    ? diag::warn_unsigned_enum_always_true_comparison
11800                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
11801                               : diag::warn_unsigned_always_true_comparison)
11802             : diag::warn_tautological_constant_compare;
11803 
11804     S.Diag(E->getOperatorLoc(), Diag)
11805         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11806         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11807   }
11808 
11809   return true;
11810 }
11811 
11812 /// Analyze the operands of the given comparison.  Implements the
11813 /// fallback case from AnalyzeComparison.
11814 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11815   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11816   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11817 }
11818 
11819 /// Implements -Wsign-compare.
11820 ///
11821 /// \param E the binary operator to check for warnings
11822 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11823   // The type the comparison is being performed in.
11824   QualType T = E->getLHS()->getType();
11825 
11826   // Only analyze comparison operators where both sides have been converted to
11827   // the same type.
11828   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11829     return AnalyzeImpConvsInComparison(S, E);
11830 
11831   // Don't analyze value-dependent comparisons directly.
11832   if (E->isValueDependent())
11833     return AnalyzeImpConvsInComparison(S, E);
11834 
11835   Expr *LHS = E->getLHS();
11836   Expr *RHS = E->getRHS();
11837 
11838   if (T->isIntegralType(S.Context)) {
11839     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11840     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11841 
11842     // We don't care about expressions whose result is a constant.
11843     if (RHSValue && LHSValue)
11844       return AnalyzeImpConvsInComparison(S, E);
11845 
11846     // We only care about expressions where just one side is literal
11847     if ((bool)RHSValue ^ (bool)LHSValue) {
11848       // Is the constant on the RHS or LHS?
11849       const bool RhsConstant = (bool)RHSValue;
11850       Expr *Const = RhsConstant ? RHS : LHS;
11851       Expr *Other = RhsConstant ? LHS : RHS;
11852       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11853 
11854       // Check whether an integer constant comparison results in a value
11855       // of 'true' or 'false'.
11856       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11857         return AnalyzeImpConvsInComparison(S, E);
11858     }
11859   }
11860 
11861   if (!T->hasUnsignedIntegerRepresentation()) {
11862     // We don't do anything special if this isn't an unsigned integral
11863     // comparison:  we're only interested in integral comparisons, and
11864     // signed comparisons only happen in cases we don't care to warn about.
11865     return AnalyzeImpConvsInComparison(S, E);
11866   }
11867 
11868   LHS = LHS->IgnoreParenImpCasts();
11869   RHS = RHS->IgnoreParenImpCasts();
11870 
11871   if (!S.getLangOpts().CPlusPlus) {
11872     // Avoid warning about comparison of integers with different signs when
11873     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11874     // the type of `E`.
11875     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11876       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11877     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11878       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11879   }
11880 
11881   // Check to see if one of the (unmodified) operands is of different
11882   // signedness.
11883   Expr *signedOperand, *unsignedOperand;
11884   if (LHS->getType()->hasSignedIntegerRepresentation()) {
11885     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11886            "unsigned comparison between two signed integer expressions?");
11887     signedOperand = LHS;
11888     unsignedOperand = RHS;
11889   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11890     signedOperand = RHS;
11891     unsignedOperand = LHS;
11892   } else {
11893     return AnalyzeImpConvsInComparison(S, E);
11894   }
11895 
11896   // Otherwise, calculate the effective range of the signed operand.
11897   IntRange signedRange = GetExprRange(
11898       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11899 
11900   // Go ahead and analyze implicit conversions in the operands.  Note
11901   // that we skip the implicit conversions on both sides.
11902   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11903   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11904 
11905   // If the signed range is non-negative, -Wsign-compare won't fire.
11906   if (signedRange.NonNegative)
11907     return;
11908 
11909   // For (in)equality comparisons, if the unsigned operand is a
11910   // constant which cannot collide with a overflowed signed operand,
11911   // then reinterpreting the signed operand as unsigned will not
11912   // change the result of the comparison.
11913   if (E->isEqualityOp()) {
11914     unsigned comparisonWidth = S.Context.getIntWidth(T);
11915     IntRange unsignedRange =
11916         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11917                      /*Approximate*/ true);
11918 
11919     // We should never be unable to prove that the unsigned operand is
11920     // non-negative.
11921     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11922 
11923     if (unsignedRange.Width < comparisonWidth)
11924       return;
11925   }
11926 
11927   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11928                         S.PDiag(diag::warn_mixed_sign_comparison)
11929                             << LHS->getType() << RHS->getType()
11930                             << LHS->getSourceRange() << RHS->getSourceRange());
11931 }
11932 
11933 /// Analyzes an attempt to assign the given value to a bitfield.
11934 ///
11935 /// Returns true if there was something fishy about the attempt.
11936 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11937                                       SourceLocation InitLoc) {
11938   assert(Bitfield->isBitField());
11939   if (Bitfield->isInvalidDecl())
11940     return false;
11941 
11942   // White-list bool bitfields.
11943   QualType BitfieldType = Bitfield->getType();
11944   if (BitfieldType->isBooleanType())
11945      return false;
11946 
11947   if (BitfieldType->isEnumeralType()) {
11948     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11949     // If the underlying enum type was not explicitly specified as an unsigned
11950     // type and the enum contain only positive values, MSVC++ will cause an
11951     // inconsistency by storing this as a signed type.
11952     if (S.getLangOpts().CPlusPlus11 &&
11953         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11954         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11955         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11956       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11957           << BitfieldEnumDecl;
11958     }
11959   }
11960 
11961   if (Bitfield->getType()->isBooleanType())
11962     return false;
11963 
11964   // Ignore value- or type-dependent expressions.
11965   if (Bitfield->getBitWidth()->isValueDependent() ||
11966       Bitfield->getBitWidth()->isTypeDependent() ||
11967       Init->isValueDependent() ||
11968       Init->isTypeDependent())
11969     return false;
11970 
11971   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11972   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11973 
11974   Expr::EvalResult Result;
11975   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11976                                    Expr::SE_AllowSideEffects)) {
11977     // The RHS is not constant.  If the RHS has an enum type, make sure the
11978     // bitfield is wide enough to hold all the values of the enum without
11979     // truncation.
11980     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11981       EnumDecl *ED = EnumTy->getDecl();
11982       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11983 
11984       // Enum types are implicitly signed on Windows, so check if there are any
11985       // negative enumerators to see if the enum was intended to be signed or
11986       // not.
11987       bool SignedEnum = ED->getNumNegativeBits() > 0;
11988 
11989       // Check for surprising sign changes when assigning enum values to a
11990       // bitfield of different signedness.  If the bitfield is signed and we
11991       // have exactly the right number of bits to store this unsigned enum,
11992       // suggest changing the enum to an unsigned type. This typically happens
11993       // on Windows where unfixed enums always use an underlying type of 'int'.
11994       unsigned DiagID = 0;
11995       if (SignedEnum && !SignedBitfield) {
11996         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11997       } else if (SignedBitfield && !SignedEnum &&
11998                  ED->getNumPositiveBits() == FieldWidth) {
11999         DiagID = diag::warn_signed_bitfield_enum_conversion;
12000       }
12001 
12002       if (DiagID) {
12003         S.Diag(InitLoc, DiagID) << Bitfield << ED;
12004         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12005         SourceRange TypeRange =
12006             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12007         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12008             << SignedEnum << TypeRange;
12009       }
12010 
12011       // Compute the required bitwidth. If the enum has negative values, we need
12012       // one more bit than the normal number of positive bits to represent the
12013       // sign bit.
12014       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12015                                                   ED->getNumNegativeBits())
12016                                        : ED->getNumPositiveBits();
12017 
12018       // Check the bitwidth.
12019       if (BitsNeeded > FieldWidth) {
12020         Expr *WidthExpr = Bitfield->getBitWidth();
12021         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12022             << Bitfield << ED;
12023         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12024             << BitsNeeded << ED << WidthExpr->getSourceRange();
12025       }
12026     }
12027 
12028     return false;
12029   }
12030 
12031   llvm::APSInt Value = Result.Val.getInt();
12032 
12033   unsigned OriginalWidth = Value.getBitWidth();
12034 
12035   if (!Value.isSigned() || Value.isNegative())
12036     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12037       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12038         OriginalWidth = Value.getMinSignedBits();
12039 
12040   if (OriginalWidth <= FieldWidth)
12041     return false;
12042 
12043   // Compute the value which the bitfield will contain.
12044   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12045   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12046 
12047   // Check whether the stored value is equal to the original value.
12048   TruncatedValue = TruncatedValue.extend(OriginalWidth);
12049   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12050     return false;
12051 
12052   // Special-case bitfields of width 1: booleans are naturally 0/1, and
12053   // therefore don't strictly fit into a signed bitfield of width 1.
12054   if (FieldWidth == 1 && Value == 1)
12055     return false;
12056 
12057   std::string PrettyValue = toString(Value, 10);
12058   std::string PrettyTrunc = toString(TruncatedValue, 10);
12059 
12060   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12061     << PrettyValue << PrettyTrunc << OriginalInit->getType()
12062     << Init->getSourceRange();
12063 
12064   return true;
12065 }
12066 
12067 /// Analyze the given simple or compound assignment for warning-worthy
12068 /// operations.
12069 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12070   // Just recurse on the LHS.
12071   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12072 
12073   // We want to recurse on the RHS as normal unless we're assigning to
12074   // a bitfield.
12075   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12076     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12077                                   E->getOperatorLoc())) {
12078       // Recurse, ignoring any implicit conversions on the RHS.
12079       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12080                                         E->getOperatorLoc());
12081     }
12082   }
12083 
12084   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12085 
12086   // Diagnose implicitly sequentially-consistent atomic assignment.
12087   if (E->getLHS()->getType()->isAtomicType())
12088     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12089 }
12090 
12091 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12092 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12093                             SourceLocation CContext, unsigned diag,
12094                             bool pruneControlFlow = false) {
12095   if (pruneControlFlow) {
12096     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12097                           S.PDiag(diag)
12098                               << SourceType << T << E->getSourceRange()
12099                               << SourceRange(CContext));
12100     return;
12101   }
12102   S.Diag(E->getExprLoc(), diag)
12103     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12104 }
12105 
12106 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12107 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12108                             SourceLocation CContext,
12109                             unsigned diag, bool pruneControlFlow = false) {
12110   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12111 }
12112 
12113 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12114   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12115       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12116 }
12117 
12118 static void adornObjCBoolConversionDiagWithTernaryFixit(
12119     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12120   Expr *Ignored = SourceExpr->IgnoreImplicit();
12121   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12122     Ignored = OVE->getSourceExpr();
12123   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12124                      isa<BinaryOperator>(Ignored) ||
12125                      isa<CXXOperatorCallExpr>(Ignored);
12126   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12127   if (NeedsParens)
12128     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12129             << FixItHint::CreateInsertion(EndLoc, ")");
12130   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12131 }
12132 
12133 /// Diagnose an implicit cast from a floating point value to an integer value.
12134 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12135                                     SourceLocation CContext) {
12136   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12137   const bool PruneWarnings = S.inTemplateInstantiation();
12138 
12139   Expr *InnerE = E->IgnoreParenImpCasts();
12140   // We also want to warn on, e.g., "int i = -1.234"
12141   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12142     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12143       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12144 
12145   const bool IsLiteral =
12146       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12147 
12148   llvm::APFloat Value(0.0);
12149   bool IsConstant =
12150     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12151   if (!IsConstant) {
12152     if (isObjCSignedCharBool(S, T)) {
12153       return adornObjCBoolConversionDiagWithTernaryFixit(
12154           S, E,
12155           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12156               << E->getType());
12157     }
12158 
12159     return DiagnoseImpCast(S, E, T, CContext,
12160                            diag::warn_impcast_float_integer, PruneWarnings);
12161   }
12162 
12163   bool isExact = false;
12164 
12165   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12166                             T->hasUnsignedIntegerRepresentation());
12167   llvm::APFloat::opStatus Result = Value.convertToInteger(
12168       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12169 
12170   // FIXME: Force the precision of the source value down so we don't print
12171   // digits which are usually useless (we don't really care here if we
12172   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
12173   // would automatically print the shortest representation, but it's a bit
12174   // tricky to implement.
12175   SmallString<16> PrettySourceValue;
12176   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12177   precision = (precision * 59 + 195) / 196;
12178   Value.toString(PrettySourceValue, precision);
12179 
12180   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12181     return adornObjCBoolConversionDiagWithTernaryFixit(
12182         S, E,
12183         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12184             << PrettySourceValue);
12185   }
12186 
12187   if (Result == llvm::APFloat::opOK && isExact) {
12188     if (IsLiteral) return;
12189     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12190                            PruneWarnings);
12191   }
12192 
12193   // Conversion of a floating-point value to a non-bool integer where the
12194   // integral part cannot be represented by the integer type is undefined.
12195   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12196     return DiagnoseImpCast(
12197         S, E, T, CContext,
12198         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12199                   : diag::warn_impcast_float_to_integer_out_of_range,
12200         PruneWarnings);
12201 
12202   unsigned DiagID = 0;
12203   if (IsLiteral) {
12204     // Warn on floating point literal to integer.
12205     DiagID = diag::warn_impcast_literal_float_to_integer;
12206   } else if (IntegerValue == 0) {
12207     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
12208       return DiagnoseImpCast(S, E, T, CContext,
12209                              diag::warn_impcast_float_integer, PruneWarnings);
12210     }
12211     // Warn on non-zero to zero conversion.
12212     DiagID = diag::warn_impcast_float_to_integer_zero;
12213   } else {
12214     if (IntegerValue.isUnsigned()) {
12215       if (!IntegerValue.isMaxValue()) {
12216         return DiagnoseImpCast(S, E, T, CContext,
12217                                diag::warn_impcast_float_integer, PruneWarnings);
12218       }
12219     } else {  // IntegerValue.isSigned()
12220       if (!IntegerValue.isMaxSignedValue() &&
12221           !IntegerValue.isMinSignedValue()) {
12222         return DiagnoseImpCast(S, E, T, CContext,
12223                                diag::warn_impcast_float_integer, PruneWarnings);
12224       }
12225     }
12226     // Warn on evaluatable floating point expression to integer conversion.
12227     DiagID = diag::warn_impcast_float_to_integer;
12228   }
12229 
12230   SmallString<16> PrettyTargetValue;
12231   if (IsBool)
12232     PrettyTargetValue = Value.isZero() ? "false" : "true";
12233   else
12234     IntegerValue.toString(PrettyTargetValue);
12235 
12236   if (PruneWarnings) {
12237     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12238                           S.PDiag(DiagID)
12239                               << E->getType() << T.getUnqualifiedType()
12240                               << PrettySourceValue << PrettyTargetValue
12241                               << E->getSourceRange() << SourceRange(CContext));
12242   } else {
12243     S.Diag(E->getExprLoc(), DiagID)
12244         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12245         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12246   }
12247 }
12248 
12249 /// Analyze the given compound assignment for the possible losing of
12250 /// floating-point precision.
12251 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12252   assert(isa<CompoundAssignOperator>(E) &&
12253          "Must be compound assignment operation");
12254   // Recurse on the LHS and RHS in here
12255   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12256   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12257 
12258   if (E->getLHS()->getType()->isAtomicType())
12259     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12260 
12261   // Now check the outermost expression
12262   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12263   const auto *RBT = cast<CompoundAssignOperator>(E)
12264                         ->getComputationResultType()
12265                         ->getAs<BuiltinType>();
12266 
12267   // The below checks assume source is floating point.
12268   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12269 
12270   // If source is floating point but target is an integer.
12271   if (ResultBT->isInteger())
12272     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12273                            E->getExprLoc(), diag::warn_impcast_float_integer);
12274 
12275   if (!ResultBT->isFloatingPoint())
12276     return;
12277 
12278   // If both source and target are floating points, warn about losing precision.
12279   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12280       QualType(ResultBT, 0), QualType(RBT, 0));
12281   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12282     // warn about dropping FP rank.
12283     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12284                     diag::warn_impcast_float_result_precision);
12285 }
12286 
12287 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12288                                       IntRange Range) {
12289   if (!Range.Width) return "0";
12290 
12291   llvm::APSInt ValueInRange = Value;
12292   ValueInRange.setIsSigned(!Range.NonNegative);
12293   ValueInRange = ValueInRange.trunc(Range.Width);
12294   return toString(ValueInRange, 10);
12295 }
12296 
12297 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12298   if (!isa<ImplicitCastExpr>(Ex))
12299     return false;
12300 
12301   Expr *InnerE = Ex->IgnoreParenImpCasts();
12302   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12303   const Type *Source =
12304     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12305   if (Target->isDependentType())
12306     return false;
12307 
12308   const BuiltinType *FloatCandidateBT =
12309     dyn_cast<BuiltinType>(ToBool ? Source : Target);
12310   const Type *BoolCandidateType = ToBool ? Target : Source;
12311 
12312   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12313           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12314 }
12315 
12316 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12317                                              SourceLocation CC) {
12318   unsigned NumArgs = TheCall->getNumArgs();
12319   for (unsigned i = 0; i < NumArgs; ++i) {
12320     Expr *CurrA = TheCall->getArg(i);
12321     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12322       continue;
12323 
12324     bool IsSwapped = ((i > 0) &&
12325         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12326     IsSwapped |= ((i < (NumArgs - 1)) &&
12327         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12328     if (IsSwapped) {
12329       // Warn on this floating-point to bool conversion.
12330       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12331                       CurrA->getType(), CC,
12332                       diag::warn_impcast_floating_point_to_bool);
12333     }
12334   }
12335 }
12336 
12337 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12338                                    SourceLocation CC) {
12339   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12340                         E->getExprLoc()))
12341     return;
12342 
12343   // Don't warn on functions which have return type nullptr_t.
12344   if (isa<CallExpr>(E))
12345     return;
12346 
12347   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12348   const Expr::NullPointerConstantKind NullKind =
12349       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12350   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12351     return;
12352 
12353   // Return if target type is a safe conversion.
12354   if (T->isAnyPointerType() || T->isBlockPointerType() ||
12355       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12356     return;
12357 
12358   SourceLocation Loc = E->getSourceRange().getBegin();
12359 
12360   // Venture through the macro stacks to get to the source of macro arguments.
12361   // The new location is a better location than the complete location that was
12362   // passed in.
12363   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12364   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12365 
12366   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
12367   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12368     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12369         Loc, S.SourceMgr, S.getLangOpts());
12370     if (MacroName == "NULL")
12371       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12372   }
12373 
12374   // Only warn if the null and context location are in the same macro expansion.
12375   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12376     return;
12377 
12378   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12379       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12380       << FixItHint::CreateReplacement(Loc,
12381                                       S.getFixItZeroLiteralForType(T, Loc));
12382 }
12383 
12384 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12385                                   ObjCArrayLiteral *ArrayLiteral);
12386 
12387 static void
12388 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12389                            ObjCDictionaryLiteral *DictionaryLiteral);
12390 
12391 /// Check a single element within a collection literal against the
12392 /// target element type.
12393 static void checkObjCCollectionLiteralElement(Sema &S,
12394                                               QualType TargetElementType,
12395                                               Expr *Element,
12396                                               unsigned ElementKind) {
12397   // Skip a bitcast to 'id' or qualified 'id'.
12398   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12399     if (ICE->getCastKind() == CK_BitCast &&
12400         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12401       Element = ICE->getSubExpr();
12402   }
12403 
12404   QualType ElementType = Element->getType();
12405   ExprResult ElementResult(Element);
12406   if (ElementType->getAs<ObjCObjectPointerType>() &&
12407       S.CheckSingleAssignmentConstraints(TargetElementType,
12408                                          ElementResult,
12409                                          false, false)
12410         != Sema::Compatible) {
12411     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12412         << ElementType << ElementKind << TargetElementType
12413         << Element->getSourceRange();
12414   }
12415 
12416   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12417     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12418   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12419     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12420 }
12421 
12422 /// Check an Objective-C array literal being converted to the given
12423 /// target type.
12424 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12425                                   ObjCArrayLiteral *ArrayLiteral) {
12426   if (!S.NSArrayDecl)
12427     return;
12428 
12429   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12430   if (!TargetObjCPtr)
12431     return;
12432 
12433   if (TargetObjCPtr->isUnspecialized() ||
12434       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12435         != S.NSArrayDecl->getCanonicalDecl())
12436     return;
12437 
12438   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12439   if (TypeArgs.size() != 1)
12440     return;
12441 
12442   QualType TargetElementType = TypeArgs[0];
12443   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12444     checkObjCCollectionLiteralElement(S, TargetElementType,
12445                                       ArrayLiteral->getElement(I),
12446                                       0);
12447   }
12448 }
12449 
12450 /// Check an Objective-C dictionary literal being converted to the given
12451 /// target type.
12452 static void
12453 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12454                            ObjCDictionaryLiteral *DictionaryLiteral) {
12455   if (!S.NSDictionaryDecl)
12456     return;
12457 
12458   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12459   if (!TargetObjCPtr)
12460     return;
12461 
12462   if (TargetObjCPtr->isUnspecialized() ||
12463       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12464         != S.NSDictionaryDecl->getCanonicalDecl())
12465     return;
12466 
12467   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12468   if (TypeArgs.size() != 2)
12469     return;
12470 
12471   QualType TargetKeyType = TypeArgs[0];
12472   QualType TargetObjectType = TypeArgs[1];
12473   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12474     auto Element = DictionaryLiteral->getKeyValueElement(I);
12475     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12476     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12477   }
12478 }
12479 
12480 // Helper function to filter out cases for constant width constant conversion.
12481 // Don't warn on char array initialization or for non-decimal values.
12482 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12483                                           SourceLocation CC) {
12484   // If initializing from a constant, and the constant starts with '0',
12485   // then it is a binary, octal, or hexadecimal.  Allow these constants
12486   // to fill all the bits, even if there is a sign change.
12487   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12488     const char FirstLiteralCharacter =
12489         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12490     if (FirstLiteralCharacter == '0')
12491       return false;
12492   }
12493 
12494   // If the CC location points to a '{', and the type is char, then assume
12495   // assume it is an array initialization.
12496   if (CC.isValid() && T->isCharType()) {
12497     const char FirstContextCharacter =
12498         S.getSourceManager().getCharacterData(CC)[0];
12499     if (FirstContextCharacter == '{')
12500       return false;
12501   }
12502 
12503   return true;
12504 }
12505 
12506 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12507   const auto *IL = dyn_cast<IntegerLiteral>(E);
12508   if (!IL) {
12509     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12510       if (UO->getOpcode() == UO_Minus)
12511         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12512     }
12513   }
12514 
12515   return IL;
12516 }
12517 
12518 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12519   E = E->IgnoreParenImpCasts();
12520   SourceLocation ExprLoc = E->getExprLoc();
12521 
12522   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12523     BinaryOperator::Opcode Opc = BO->getOpcode();
12524     Expr::EvalResult Result;
12525     // Do not diagnose unsigned shifts.
12526     if (Opc == BO_Shl) {
12527       const auto *LHS = getIntegerLiteral(BO->getLHS());
12528       const auto *RHS = getIntegerLiteral(BO->getRHS());
12529       if (LHS && LHS->getValue() == 0)
12530         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12531       else if (!E->isValueDependent() && LHS && RHS &&
12532                RHS->getValue().isNonNegative() &&
12533                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12534         S.Diag(ExprLoc, diag::warn_left_shift_always)
12535             << (Result.Val.getInt() != 0);
12536       else if (E->getType()->isSignedIntegerType())
12537         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12538     }
12539   }
12540 
12541   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12542     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12543     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12544     if (!LHS || !RHS)
12545       return;
12546     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12547         (RHS->getValue() == 0 || RHS->getValue() == 1))
12548       // Do not diagnose common idioms.
12549       return;
12550     if (LHS->getValue() != 0 && RHS->getValue() != 0)
12551       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12552   }
12553 }
12554 
12555 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12556                                     SourceLocation CC,
12557                                     bool *ICContext = nullptr,
12558                                     bool IsListInit = false) {
12559   if (E->isTypeDependent() || E->isValueDependent()) return;
12560 
12561   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
12562   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
12563   if (Source == Target) return;
12564   if (Target->isDependentType()) return;
12565 
12566   // If the conversion context location is invalid don't complain. We also
12567   // don't want to emit a warning if the issue occurs from the expansion of
12568   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12569   // delay this check as long as possible. Once we detect we are in that
12570   // scenario, we just return.
12571   if (CC.isInvalid())
12572     return;
12573 
12574   if (Source->isAtomicType())
12575     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12576 
12577   // Diagnose implicit casts to bool.
12578   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12579     if (isa<StringLiteral>(E))
12580       // Warn on string literal to bool.  Checks for string literals in logical
12581       // and expressions, for instance, assert(0 && "error here"), are
12582       // prevented by a check in AnalyzeImplicitConversions().
12583       return DiagnoseImpCast(S, E, T, CC,
12584                              diag::warn_impcast_string_literal_to_bool);
12585     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12586         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12587       // This covers the literal expressions that evaluate to Objective-C
12588       // objects.
12589       return DiagnoseImpCast(S, E, T, CC,
12590                              diag::warn_impcast_objective_c_literal_to_bool);
12591     }
12592     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12593       // Warn on pointer to bool conversion that is always true.
12594       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12595                                      SourceRange(CC));
12596     }
12597   }
12598 
12599   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12600   // is a typedef for signed char (macOS), then that constant value has to be 1
12601   // or 0.
12602   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12603     Expr::EvalResult Result;
12604     if (E->EvaluateAsInt(Result, S.getASTContext(),
12605                          Expr::SE_AllowSideEffects)) {
12606       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12607         adornObjCBoolConversionDiagWithTernaryFixit(
12608             S, E,
12609             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12610                 << toString(Result.Val.getInt(), 10));
12611       }
12612       return;
12613     }
12614   }
12615 
12616   // Check implicit casts from Objective-C collection literals to specialized
12617   // collection types, e.g., NSArray<NSString *> *.
12618   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12619     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12620   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12621     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12622 
12623   // Strip vector types.
12624   if (isa<VectorType>(Source)) {
12625     if (Target->isVLSTBuiltinType() &&
12626         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
12627                                          QualType(Source, 0)) ||
12628          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
12629                                             QualType(Source, 0))))
12630       return;
12631 
12632     if (!isa<VectorType>(Target)) {
12633       if (S.SourceMgr.isInSystemMacro(CC))
12634         return;
12635       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12636     }
12637 
12638     // If the vector cast is cast between two vectors of the same size, it is
12639     // a bitcast, not a conversion.
12640     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12641       return;
12642 
12643     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12644     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12645   }
12646   if (auto VecTy = dyn_cast<VectorType>(Target))
12647     Target = VecTy->getElementType().getTypePtr();
12648 
12649   // Strip complex types.
12650   if (isa<ComplexType>(Source)) {
12651     if (!isa<ComplexType>(Target)) {
12652       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12653         return;
12654 
12655       return DiagnoseImpCast(S, E, T, CC,
12656                              S.getLangOpts().CPlusPlus
12657                                  ? diag::err_impcast_complex_scalar
12658                                  : diag::warn_impcast_complex_scalar);
12659     }
12660 
12661     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12662     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12663   }
12664 
12665   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12666   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12667 
12668   // If the source is floating point...
12669   if (SourceBT && SourceBT->isFloatingPoint()) {
12670     // ...and the target is floating point...
12671     if (TargetBT && TargetBT->isFloatingPoint()) {
12672       // ...then warn if we're dropping FP rank.
12673 
12674       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12675           QualType(SourceBT, 0), QualType(TargetBT, 0));
12676       if (Order > 0) {
12677         // Don't warn about float constants that are precisely
12678         // representable in the target type.
12679         Expr::EvalResult result;
12680         if (E->EvaluateAsRValue(result, S.Context)) {
12681           // Value might be a float, a float vector, or a float complex.
12682           if (IsSameFloatAfterCast(result.Val,
12683                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12684                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12685             return;
12686         }
12687 
12688         if (S.SourceMgr.isInSystemMacro(CC))
12689           return;
12690 
12691         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12692       }
12693       // ... or possibly if we're increasing rank, too
12694       else if (Order < 0) {
12695         if (S.SourceMgr.isInSystemMacro(CC))
12696           return;
12697 
12698         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12699       }
12700       return;
12701     }
12702 
12703     // If the target is integral, always warn.
12704     if (TargetBT && TargetBT->isInteger()) {
12705       if (S.SourceMgr.isInSystemMacro(CC))
12706         return;
12707 
12708       DiagnoseFloatingImpCast(S, E, T, CC);
12709     }
12710 
12711     // Detect the case where a call result is converted from floating-point to
12712     // to bool, and the final argument to the call is converted from bool, to
12713     // discover this typo:
12714     //
12715     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12716     //
12717     // FIXME: This is an incredibly special case; is there some more general
12718     // way to detect this class of misplaced-parentheses bug?
12719     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12720       // Check last argument of function call to see if it is an
12721       // implicit cast from a type matching the type the result
12722       // is being cast to.
12723       CallExpr *CEx = cast<CallExpr>(E);
12724       if (unsigned NumArgs = CEx->getNumArgs()) {
12725         Expr *LastA = CEx->getArg(NumArgs - 1);
12726         Expr *InnerE = LastA->IgnoreParenImpCasts();
12727         if (isa<ImplicitCastExpr>(LastA) &&
12728             InnerE->getType()->isBooleanType()) {
12729           // Warn on this floating-point to bool conversion
12730           DiagnoseImpCast(S, E, T, CC,
12731                           diag::warn_impcast_floating_point_to_bool);
12732         }
12733       }
12734     }
12735     return;
12736   }
12737 
12738   // Valid casts involving fixed point types should be accounted for here.
12739   if (Source->isFixedPointType()) {
12740     if (Target->isUnsaturatedFixedPointType()) {
12741       Expr::EvalResult Result;
12742       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12743                                   S.isConstantEvaluated())) {
12744         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12745         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12746         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12747         if (Value > MaxVal || Value < MinVal) {
12748           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12749                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12750                                     << Value.toString() << T
12751                                     << E->getSourceRange()
12752                                     << clang::SourceRange(CC));
12753           return;
12754         }
12755       }
12756     } else if (Target->isIntegerType()) {
12757       Expr::EvalResult Result;
12758       if (!S.isConstantEvaluated() &&
12759           E->EvaluateAsFixedPoint(Result, S.Context,
12760                                   Expr::SE_AllowSideEffects)) {
12761         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12762 
12763         bool Overflowed;
12764         llvm::APSInt IntResult = FXResult.convertToInt(
12765             S.Context.getIntWidth(T),
12766             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12767 
12768         if (Overflowed) {
12769           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12770                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12771                                     << FXResult.toString() << T
12772                                     << E->getSourceRange()
12773                                     << clang::SourceRange(CC));
12774           return;
12775         }
12776       }
12777     }
12778   } else if (Target->isUnsaturatedFixedPointType()) {
12779     if (Source->isIntegerType()) {
12780       Expr::EvalResult Result;
12781       if (!S.isConstantEvaluated() &&
12782           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12783         llvm::APSInt Value = Result.Val.getInt();
12784 
12785         bool Overflowed;
12786         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12787             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12788 
12789         if (Overflowed) {
12790           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12791                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12792                                     << toString(Value, /*Radix=*/10) << T
12793                                     << E->getSourceRange()
12794                                     << clang::SourceRange(CC));
12795           return;
12796         }
12797       }
12798     }
12799   }
12800 
12801   // If we are casting an integer type to a floating point type without
12802   // initialization-list syntax, we might lose accuracy if the floating
12803   // point type has a narrower significand than the integer type.
12804   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12805       TargetBT->isFloatingType() && !IsListInit) {
12806     // Determine the number of precision bits in the source integer type.
12807     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12808                                         /*Approximate*/ true);
12809     unsigned int SourcePrecision = SourceRange.Width;
12810 
12811     // Determine the number of precision bits in the
12812     // target floating point type.
12813     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12814         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12815 
12816     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12817         SourcePrecision > TargetPrecision) {
12818 
12819       if (Optional<llvm::APSInt> SourceInt =
12820               E->getIntegerConstantExpr(S.Context)) {
12821         // If the source integer is a constant, convert it to the target
12822         // floating point type. Issue a warning if the value changes
12823         // during the whole conversion.
12824         llvm::APFloat TargetFloatValue(
12825             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12826         llvm::APFloat::opStatus ConversionStatus =
12827             TargetFloatValue.convertFromAPInt(
12828                 *SourceInt, SourceBT->isSignedInteger(),
12829                 llvm::APFloat::rmNearestTiesToEven);
12830 
12831         if (ConversionStatus != llvm::APFloat::opOK) {
12832           SmallString<32> PrettySourceValue;
12833           SourceInt->toString(PrettySourceValue, 10);
12834           SmallString<32> PrettyTargetValue;
12835           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12836 
12837           S.DiagRuntimeBehavior(
12838               E->getExprLoc(), E,
12839               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12840                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12841                   << E->getSourceRange() << clang::SourceRange(CC));
12842         }
12843       } else {
12844         // Otherwise, the implicit conversion may lose precision.
12845         DiagnoseImpCast(S, E, T, CC,
12846                         diag::warn_impcast_integer_float_precision);
12847       }
12848     }
12849   }
12850 
12851   DiagnoseNullConversion(S, E, T, CC);
12852 
12853   S.DiscardMisalignedMemberAddress(Target, E);
12854 
12855   if (Target->isBooleanType())
12856     DiagnoseIntInBoolContext(S, E);
12857 
12858   if (!Source->isIntegerType() || !Target->isIntegerType())
12859     return;
12860 
12861   // TODO: remove this early return once the false positives for constant->bool
12862   // in templates, macros, etc, are reduced or removed.
12863   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12864     return;
12865 
12866   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12867       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12868     return adornObjCBoolConversionDiagWithTernaryFixit(
12869         S, E,
12870         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12871             << E->getType());
12872   }
12873 
12874   IntRange SourceTypeRange =
12875       IntRange::forTargetOfCanonicalType(S.Context, Source);
12876   IntRange LikelySourceRange =
12877       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12878   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12879 
12880   if (LikelySourceRange.Width > TargetRange.Width) {
12881     // If the source is a constant, use a default-on diagnostic.
12882     // TODO: this should happen for bitfield stores, too.
12883     Expr::EvalResult Result;
12884     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12885                          S.isConstantEvaluated())) {
12886       llvm::APSInt Value(32);
12887       Value = Result.Val.getInt();
12888 
12889       if (S.SourceMgr.isInSystemMacro(CC))
12890         return;
12891 
12892       std::string PrettySourceValue = toString(Value, 10);
12893       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12894 
12895       S.DiagRuntimeBehavior(
12896           E->getExprLoc(), E,
12897           S.PDiag(diag::warn_impcast_integer_precision_constant)
12898               << PrettySourceValue << PrettyTargetValue << E->getType() << T
12899               << E->getSourceRange() << SourceRange(CC));
12900       return;
12901     }
12902 
12903     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12904     if (S.SourceMgr.isInSystemMacro(CC))
12905       return;
12906 
12907     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12908       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12909                              /* pruneControlFlow */ true);
12910     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12911   }
12912 
12913   if (TargetRange.Width > SourceTypeRange.Width) {
12914     if (auto *UO = dyn_cast<UnaryOperator>(E))
12915       if (UO->getOpcode() == UO_Minus)
12916         if (Source->isUnsignedIntegerType()) {
12917           if (Target->isUnsignedIntegerType())
12918             return DiagnoseImpCast(S, E, T, CC,
12919                                    diag::warn_impcast_high_order_zero_bits);
12920           if (Target->isSignedIntegerType())
12921             return DiagnoseImpCast(S, E, T, CC,
12922                                    diag::warn_impcast_nonnegative_result);
12923         }
12924   }
12925 
12926   if (TargetRange.Width == LikelySourceRange.Width &&
12927       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12928       Source->isSignedIntegerType()) {
12929     // Warn when doing a signed to signed conversion, warn if the positive
12930     // source value is exactly the width of the target type, which will
12931     // cause a negative value to be stored.
12932 
12933     Expr::EvalResult Result;
12934     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12935         !S.SourceMgr.isInSystemMacro(CC)) {
12936       llvm::APSInt Value = Result.Val.getInt();
12937       if (isSameWidthConstantConversion(S, E, T, CC)) {
12938         std::string PrettySourceValue = toString(Value, 10);
12939         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12940 
12941         S.DiagRuntimeBehavior(
12942             E->getExprLoc(), E,
12943             S.PDiag(diag::warn_impcast_integer_precision_constant)
12944                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12945                 << E->getSourceRange() << SourceRange(CC));
12946         return;
12947       }
12948     }
12949 
12950     // Fall through for non-constants to give a sign conversion warning.
12951   }
12952 
12953   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12954       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12955        LikelySourceRange.Width == TargetRange.Width)) {
12956     if (S.SourceMgr.isInSystemMacro(CC))
12957       return;
12958 
12959     unsigned DiagID = diag::warn_impcast_integer_sign;
12960 
12961     // Traditionally, gcc has warned about this under -Wsign-compare.
12962     // We also want to warn about it in -Wconversion.
12963     // So if -Wconversion is off, use a completely identical diagnostic
12964     // in the sign-compare group.
12965     // The conditional-checking code will
12966     if (ICContext) {
12967       DiagID = diag::warn_impcast_integer_sign_conditional;
12968       *ICContext = true;
12969     }
12970 
12971     return DiagnoseImpCast(S, E, T, CC, DiagID);
12972   }
12973 
12974   // Diagnose conversions between different enumeration types.
12975   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12976   // type, to give us better diagnostics.
12977   QualType SourceType = E->getType();
12978   if (!S.getLangOpts().CPlusPlus) {
12979     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12980       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12981         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12982         SourceType = S.Context.getTypeDeclType(Enum);
12983         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12984       }
12985   }
12986 
12987   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12988     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12989       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12990           TargetEnum->getDecl()->hasNameForLinkage() &&
12991           SourceEnum != TargetEnum) {
12992         if (S.SourceMgr.isInSystemMacro(CC))
12993           return;
12994 
12995         return DiagnoseImpCast(S, E, SourceType, T, CC,
12996                                diag::warn_impcast_different_enum_types);
12997       }
12998 }
12999 
13000 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13001                                      SourceLocation CC, QualType T);
13002 
13003 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13004                                     SourceLocation CC, bool &ICContext) {
13005   E = E->IgnoreParenImpCasts();
13006 
13007   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13008     return CheckConditionalOperator(S, CO, CC, T);
13009 
13010   AnalyzeImplicitConversions(S, E, CC);
13011   if (E->getType() != T)
13012     return CheckImplicitConversion(S, E, T, CC, &ICContext);
13013 }
13014 
13015 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13016                                      SourceLocation CC, QualType T) {
13017   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13018 
13019   Expr *TrueExpr = E->getTrueExpr();
13020   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13021     TrueExpr = BCO->getCommon();
13022 
13023   bool Suspicious = false;
13024   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13025   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13026 
13027   if (T->isBooleanType())
13028     DiagnoseIntInBoolContext(S, E);
13029 
13030   // If -Wconversion would have warned about either of the candidates
13031   // for a signedness conversion to the context type...
13032   if (!Suspicious) return;
13033 
13034   // ...but it's currently ignored...
13035   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13036     return;
13037 
13038   // ...then check whether it would have warned about either of the
13039   // candidates for a signedness conversion to the condition type.
13040   if (E->getType() == T) return;
13041 
13042   Suspicious = false;
13043   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13044                           E->getType(), CC, &Suspicious);
13045   if (!Suspicious)
13046     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13047                             E->getType(), CC, &Suspicious);
13048 }
13049 
13050 /// Check conversion of given expression to boolean.
13051 /// Input argument E is a logical expression.
13052 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13053   if (S.getLangOpts().Bool)
13054     return;
13055   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13056     return;
13057   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13058 }
13059 
13060 namespace {
13061 struct AnalyzeImplicitConversionsWorkItem {
13062   Expr *E;
13063   SourceLocation CC;
13064   bool IsListInit;
13065 };
13066 }
13067 
13068 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13069 /// that should be visited are added to WorkList.
13070 static void AnalyzeImplicitConversions(
13071     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13072     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13073   Expr *OrigE = Item.E;
13074   SourceLocation CC = Item.CC;
13075 
13076   QualType T = OrigE->getType();
13077   Expr *E = OrigE->IgnoreParenImpCasts();
13078 
13079   // Propagate whether we are in a C++ list initialization expression.
13080   // If so, we do not issue warnings for implicit int-float conversion
13081   // precision loss, because C++11 narrowing already handles it.
13082   bool IsListInit = Item.IsListInit ||
13083                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13084 
13085   if (E->isTypeDependent() || E->isValueDependent())
13086     return;
13087 
13088   Expr *SourceExpr = E;
13089   // Examine, but don't traverse into the source expression of an
13090   // OpaqueValueExpr, since it may have multiple parents and we don't want to
13091   // emit duplicate diagnostics. Its fine to examine the form or attempt to
13092   // evaluate it in the context of checking the specific conversion to T though.
13093   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13094     if (auto *Src = OVE->getSourceExpr())
13095       SourceExpr = Src;
13096 
13097   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13098     if (UO->getOpcode() == UO_Not &&
13099         UO->getSubExpr()->isKnownToHaveBooleanValue())
13100       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13101           << OrigE->getSourceRange() << T->isBooleanType()
13102           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13103 
13104   // For conditional operators, we analyze the arguments as if they
13105   // were being fed directly into the output.
13106   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13107     CheckConditionalOperator(S, CO, CC, T);
13108     return;
13109   }
13110 
13111   // Check implicit argument conversions for function calls.
13112   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13113     CheckImplicitArgumentConversions(S, Call, CC);
13114 
13115   // Go ahead and check any implicit conversions we might have skipped.
13116   // The non-canonical typecheck is just an optimization;
13117   // CheckImplicitConversion will filter out dead implicit conversions.
13118   if (SourceExpr->getType() != T)
13119     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13120 
13121   // Now continue drilling into this expression.
13122 
13123   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13124     // The bound subexpressions in a PseudoObjectExpr are not reachable
13125     // as transitive children.
13126     // FIXME: Use a more uniform representation for this.
13127     for (auto *SE : POE->semantics())
13128       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13129         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13130   }
13131 
13132   // Skip past explicit casts.
13133   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13134     E = CE->getSubExpr()->IgnoreParenImpCasts();
13135     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13136       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13137     WorkList.push_back({E, CC, IsListInit});
13138     return;
13139   }
13140 
13141   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13142     // Do a somewhat different check with comparison operators.
13143     if (BO->isComparisonOp())
13144       return AnalyzeComparison(S, BO);
13145 
13146     // And with simple assignments.
13147     if (BO->getOpcode() == BO_Assign)
13148       return AnalyzeAssignment(S, BO);
13149     // And with compound assignments.
13150     if (BO->isAssignmentOp())
13151       return AnalyzeCompoundAssignment(S, BO);
13152   }
13153 
13154   // These break the otherwise-useful invariant below.  Fortunately,
13155   // we don't really need to recurse into them, because any internal
13156   // expressions should have been analyzed already when they were
13157   // built into statements.
13158   if (isa<StmtExpr>(E)) return;
13159 
13160   // Don't descend into unevaluated contexts.
13161   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13162 
13163   // Now just recurse over the expression's children.
13164   CC = E->getExprLoc();
13165   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13166   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13167   for (Stmt *SubStmt : E->children()) {
13168     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13169     if (!ChildExpr)
13170       continue;
13171 
13172     if (IsLogicalAndOperator &&
13173         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13174       // Ignore checking string literals that are in logical and operators.
13175       // This is a common pattern for asserts.
13176       continue;
13177     WorkList.push_back({ChildExpr, CC, IsListInit});
13178   }
13179 
13180   if (BO && BO->isLogicalOp()) {
13181     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13182     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13183       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13184 
13185     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13186     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13187       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13188   }
13189 
13190   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13191     if (U->getOpcode() == UO_LNot) {
13192       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13193     } else if (U->getOpcode() != UO_AddrOf) {
13194       if (U->getSubExpr()->getType()->isAtomicType())
13195         S.Diag(U->getSubExpr()->getBeginLoc(),
13196                diag::warn_atomic_implicit_seq_cst);
13197     }
13198   }
13199 }
13200 
13201 /// AnalyzeImplicitConversions - Find and report any interesting
13202 /// implicit conversions in the given expression.  There are a couple
13203 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
13204 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13205                                        bool IsListInit/*= false*/) {
13206   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13207   WorkList.push_back({OrigE, CC, IsListInit});
13208   while (!WorkList.empty())
13209     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13210 }
13211 
13212 /// Diagnose integer type and any valid implicit conversion to it.
13213 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13214   // Taking into account implicit conversions,
13215   // allow any integer.
13216   if (!E->getType()->isIntegerType()) {
13217     S.Diag(E->getBeginLoc(),
13218            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13219     return true;
13220   }
13221   // Potentially emit standard warnings for implicit conversions if enabled
13222   // using -Wconversion.
13223   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13224   return false;
13225 }
13226 
13227 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13228 // Returns true when emitting a warning about taking the address of a reference.
13229 static bool CheckForReference(Sema &SemaRef, const Expr *E,
13230                               const PartialDiagnostic &PD) {
13231   E = E->IgnoreParenImpCasts();
13232 
13233   const FunctionDecl *FD = nullptr;
13234 
13235   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13236     if (!DRE->getDecl()->getType()->isReferenceType())
13237       return false;
13238   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13239     if (!M->getMemberDecl()->getType()->isReferenceType())
13240       return false;
13241   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13242     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13243       return false;
13244     FD = Call->getDirectCallee();
13245   } else {
13246     return false;
13247   }
13248 
13249   SemaRef.Diag(E->getExprLoc(), PD);
13250 
13251   // If possible, point to location of function.
13252   if (FD) {
13253     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13254   }
13255 
13256   return true;
13257 }
13258 
13259 // Returns true if the SourceLocation is expanded from any macro body.
13260 // Returns false if the SourceLocation is invalid, is from not in a macro
13261 // expansion, or is from expanded from a top-level macro argument.
13262 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13263   if (Loc.isInvalid())
13264     return false;
13265 
13266   while (Loc.isMacroID()) {
13267     if (SM.isMacroBodyExpansion(Loc))
13268       return true;
13269     Loc = SM.getImmediateMacroCallerLoc(Loc);
13270   }
13271 
13272   return false;
13273 }
13274 
13275 /// Diagnose pointers that are always non-null.
13276 /// \param E the expression containing the pointer
13277 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13278 /// compared to a null pointer
13279 /// \param IsEqual True when the comparison is equal to a null pointer
13280 /// \param Range Extra SourceRange to highlight in the diagnostic
13281 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13282                                         Expr::NullPointerConstantKind NullKind,
13283                                         bool IsEqual, SourceRange Range) {
13284   if (!E)
13285     return;
13286 
13287   // Don't warn inside macros.
13288   if (E->getExprLoc().isMacroID()) {
13289     const SourceManager &SM = getSourceManager();
13290     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13291         IsInAnyMacroBody(SM, Range.getBegin()))
13292       return;
13293   }
13294   E = E->IgnoreImpCasts();
13295 
13296   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13297 
13298   if (isa<CXXThisExpr>(E)) {
13299     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13300                                 : diag::warn_this_bool_conversion;
13301     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13302     return;
13303   }
13304 
13305   bool IsAddressOf = false;
13306 
13307   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13308     if (UO->getOpcode() != UO_AddrOf)
13309       return;
13310     IsAddressOf = true;
13311     E = UO->getSubExpr();
13312   }
13313 
13314   if (IsAddressOf) {
13315     unsigned DiagID = IsCompare
13316                           ? diag::warn_address_of_reference_null_compare
13317                           : diag::warn_address_of_reference_bool_conversion;
13318     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13319                                          << IsEqual;
13320     if (CheckForReference(*this, E, PD)) {
13321       return;
13322     }
13323   }
13324 
13325   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13326     bool IsParam = isa<NonNullAttr>(NonnullAttr);
13327     std::string Str;
13328     llvm::raw_string_ostream S(Str);
13329     E->printPretty(S, nullptr, getPrintingPolicy());
13330     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13331                                 : diag::warn_cast_nonnull_to_bool;
13332     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13333       << E->getSourceRange() << Range << IsEqual;
13334     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13335   };
13336 
13337   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13338   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13339     if (auto *Callee = Call->getDirectCallee()) {
13340       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13341         ComplainAboutNonnullParamOrCall(A);
13342         return;
13343       }
13344     }
13345   }
13346 
13347   // Expect to find a single Decl.  Skip anything more complicated.
13348   ValueDecl *D = nullptr;
13349   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13350     D = R->getDecl();
13351   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13352     D = M->getMemberDecl();
13353   }
13354 
13355   // Weak Decls can be null.
13356   if (!D || D->isWeak())
13357     return;
13358 
13359   // Check for parameter decl with nonnull attribute
13360   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13361     if (getCurFunction() &&
13362         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13363       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13364         ComplainAboutNonnullParamOrCall(A);
13365         return;
13366       }
13367 
13368       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13369         // Skip function template not specialized yet.
13370         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13371           return;
13372         auto ParamIter = llvm::find(FD->parameters(), PV);
13373         assert(ParamIter != FD->param_end());
13374         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13375 
13376         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13377           if (!NonNull->args_size()) {
13378               ComplainAboutNonnullParamOrCall(NonNull);
13379               return;
13380           }
13381 
13382           for (const ParamIdx &ArgNo : NonNull->args()) {
13383             if (ArgNo.getASTIndex() == ParamNo) {
13384               ComplainAboutNonnullParamOrCall(NonNull);
13385               return;
13386             }
13387           }
13388         }
13389       }
13390     }
13391   }
13392 
13393   QualType T = D->getType();
13394   const bool IsArray = T->isArrayType();
13395   const bool IsFunction = T->isFunctionType();
13396 
13397   // Address of function is used to silence the function warning.
13398   if (IsAddressOf && IsFunction) {
13399     return;
13400   }
13401 
13402   // Found nothing.
13403   if (!IsAddressOf && !IsFunction && !IsArray)
13404     return;
13405 
13406   // Pretty print the expression for the diagnostic.
13407   std::string Str;
13408   llvm::raw_string_ostream S(Str);
13409   E->printPretty(S, nullptr, getPrintingPolicy());
13410 
13411   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13412                               : diag::warn_impcast_pointer_to_bool;
13413   enum {
13414     AddressOf,
13415     FunctionPointer,
13416     ArrayPointer
13417   } DiagType;
13418   if (IsAddressOf)
13419     DiagType = AddressOf;
13420   else if (IsFunction)
13421     DiagType = FunctionPointer;
13422   else if (IsArray)
13423     DiagType = ArrayPointer;
13424   else
13425     llvm_unreachable("Could not determine diagnostic.");
13426   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13427                                 << Range << IsEqual;
13428 
13429   if (!IsFunction)
13430     return;
13431 
13432   // Suggest '&' to silence the function warning.
13433   Diag(E->getExprLoc(), diag::note_function_warning_silence)
13434       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13435 
13436   // Check to see if '()' fixit should be emitted.
13437   QualType ReturnType;
13438   UnresolvedSet<4> NonTemplateOverloads;
13439   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13440   if (ReturnType.isNull())
13441     return;
13442 
13443   if (IsCompare) {
13444     // There are two cases here.  If there is null constant, the only suggest
13445     // for a pointer return type.  If the null is 0, then suggest if the return
13446     // type is a pointer or an integer type.
13447     if (!ReturnType->isPointerType()) {
13448       if (NullKind == Expr::NPCK_ZeroExpression ||
13449           NullKind == Expr::NPCK_ZeroLiteral) {
13450         if (!ReturnType->isIntegerType())
13451           return;
13452       } else {
13453         return;
13454       }
13455     }
13456   } else { // !IsCompare
13457     // For function to bool, only suggest if the function pointer has bool
13458     // return type.
13459     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13460       return;
13461   }
13462   Diag(E->getExprLoc(), diag::note_function_to_function_call)
13463       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13464 }
13465 
13466 /// Diagnoses "dangerous" implicit conversions within the given
13467 /// expression (which is a full expression).  Implements -Wconversion
13468 /// and -Wsign-compare.
13469 ///
13470 /// \param CC the "context" location of the implicit conversion, i.e.
13471 ///   the most location of the syntactic entity requiring the implicit
13472 ///   conversion
13473 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13474   // Don't diagnose in unevaluated contexts.
13475   if (isUnevaluatedContext())
13476     return;
13477 
13478   // Don't diagnose for value- or type-dependent expressions.
13479   if (E->isTypeDependent() || E->isValueDependent())
13480     return;
13481 
13482   // Check for array bounds violations in cases where the check isn't triggered
13483   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13484   // ArraySubscriptExpr is on the RHS of a variable initialization.
13485   CheckArrayAccess(E);
13486 
13487   // This is not the right CC for (e.g.) a variable initialization.
13488   AnalyzeImplicitConversions(*this, E, CC);
13489 }
13490 
13491 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13492 /// Input argument E is a logical expression.
13493 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13494   ::CheckBoolLikeConversion(*this, E, CC);
13495 }
13496 
13497 /// Diagnose when expression is an integer constant expression and its evaluation
13498 /// results in integer overflow
13499 void Sema::CheckForIntOverflow (Expr *E) {
13500   // Use a work list to deal with nested struct initializers.
13501   SmallVector<Expr *, 2> Exprs(1, E);
13502 
13503   do {
13504     Expr *OriginalE = Exprs.pop_back_val();
13505     Expr *E = OriginalE->IgnoreParenCasts();
13506 
13507     if (isa<BinaryOperator>(E)) {
13508       E->EvaluateForOverflow(Context);
13509       continue;
13510     }
13511 
13512     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13513       Exprs.append(InitList->inits().begin(), InitList->inits().end());
13514     else if (isa<ObjCBoxedExpr>(OriginalE))
13515       E->EvaluateForOverflow(Context);
13516     else if (auto Call = dyn_cast<CallExpr>(E))
13517       Exprs.append(Call->arg_begin(), Call->arg_end());
13518     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13519       Exprs.append(Message->arg_begin(), Message->arg_end());
13520   } while (!Exprs.empty());
13521 }
13522 
13523 namespace {
13524 
13525 /// Visitor for expressions which looks for unsequenced operations on the
13526 /// same object.
13527 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13528   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13529 
13530   /// A tree of sequenced regions within an expression. Two regions are
13531   /// unsequenced if one is an ancestor or a descendent of the other. When we
13532   /// finish processing an expression with sequencing, such as a comma
13533   /// expression, we fold its tree nodes into its parent, since they are
13534   /// unsequenced with respect to nodes we will visit later.
13535   class SequenceTree {
13536     struct Value {
13537       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13538       unsigned Parent : 31;
13539       unsigned Merged : 1;
13540     };
13541     SmallVector<Value, 8> Values;
13542 
13543   public:
13544     /// A region within an expression which may be sequenced with respect
13545     /// to some other region.
13546     class Seq {
13547       friend class SequenceTree;
13548 
13549       unsigned Index;
13550 
13551       explicit Seq(unsigned N) : Index(N) {}
13552 
13553     public:
13554       Seq() : Index(0) {}
13555     };
13556 
13557     SequenceTree() { Values.push_back(Value(0)); }
13558     Seq root() const { return Seq(0); }
13559 
13560     /// Create a new sequence of operations, which is an unsequenced
13561     /// subset of \p Parent. This sequence of operations is sequenced with
13562     /// respect to other children of \p Parent.
13563     Seq allocate(Seq Parent) {
13564       Values.push_back(Value(Parent.Index));
13565       return Seq(Values.size() - 1);
13566     }
13567 
13568     /// Merge a sequence of operations into its parent.
13569     void merge(Seq S) {
13570       Values[S.Index].Merged = true;
13571     }
13572 
13573     /// Determine whether two operations are unsequenced. This operation
13574     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13575     /// should have been merged into its parent as appropriate.
13576     bool isUnsequenced(Seq Cur, Seq Old) {
13577       unsigned C = representative(Cur.Index);
13578       unsigned Target = representative(Old.Index);
13579       while (C >= Target) {
13580         if (C == Target)
13581           return true;
13582         C = Values[C].Parent;
13583       }
13584       return false;
13585     }
13586 
13587   private:
13588     /// Pick a representative for a sequence.
13589     unsigned representative(unsigned K) {
13590       if (Values[K].Merged)
13591         // Perform path compression as we go.
13592         return Values[K].Parent = representative(Values[K].Parent);
13593       return K;
13594     }
13595   };
13596 
13597   /// An object for which we can track unsequenced uses.
13598   using Object = const NamedDecl *;
13599 
13600   /// Different flavors of object usage which we track. We only track the
13601   /// least-sequenced usage of each kind.
13602   enum UsageKind {
13603     /// A read of an object. Multiple unsequenced reads are OK.
13604     UK_Use,
13605 
13606     /// A modification of an object which is sequenced before the value
13607     /// computation of the expression, such as ++n in C++.
13608     UK_ModAsValue,
13609 
13610     /// A modification of an object which is not sequenced before the value
13611     /// computation of the expression, such as n++.
13612     UK_ModAsSideEffect,
13613 
13614     UK_Count = UK_ModAsSideEffect + 1
13615   };
13616 
13617   /// Bundle together a sequencing region and the expression corresponding
13618   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13619   struct Usage {
13620     const Expr *UsageExpr;
13621     SequenceTree::Seq Seq;
13622 
13623     Usage() : UsageExpr(nullptr), Seq() {}
13624   };
13625 
13626   struct UsageInfo {
13627     Usage Uses[UK_Count];
13628 
13629     /// Have we issued a diagnostic for this object already?
13630     bool Diagnosed;
13631 
13632     UsageInfo() : Uses(), Diagnosed(false) {}
13633   };
13634   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13635 
13636   Sema &SemaRef;
13637 
13638   /// Sequenced regions within the expression.
13639   SequenceTree Tree;
13640 
13641   /// Declaration modifications and references which we have seen.
13642   UsageInfoMap UsageMap;
13643 
13644   /// The region we are currently within.
13645   SequenceTree::Seq Region;
13646 
13647   /// Filled in with declarations which were modified as a side-effect
13648   /// (that is, post-increment operations).
13649   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13650 
13651   /// Expressions to check later. We defer checking these to reduce
13652   /// stack usage.
13653   SmallVectorImpl<const Expr *> &WorkList;
13654 
13655   /// RAII object wrapping the visitation of a sequenced subexpression of an
13656   /// expression. At the end of this process, the side-effects of the evaluation
13657   /// become sequenced with respect to the value computation of the result, so
13658   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13659   /// UK_ModAsValue.
13660   struct SequencedSubexpression {
13661     SequencedSubexpression(SequenceChecker &Self)
13662       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13663       Self.ModAsSideEffect = &ModAsSideEffect;
13664     }
13665 
13666     ~SequencedSubexpression() {
13667       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13668         // Add a new usage with usage kind UK_ModAsValue, and then restore
13669         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13670         // the previous one was empty).
13671         UsageInfo &UI = Self.UsageMap[M.first];
13672         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13673         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13674         SideEffectUsage = M.second;
13675       }
13676       Self.ModAsSideEffect = OldModAsSideEffect;
13677     }
13678 
13679     SequenceChecker &Self;
13680     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13681     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13682   };
13683 
13684   /// RAII object wrapping the visitation of a subexpression which we might
13685   /// choose to evaluate as a constant. If any subexpression is evaluated and
13686   /// found to be non-constant, this allows us to suppress the evaluation of
13687   /// the outer expression.
13688   class EvaluationTracker {
13689   public:
13690     EvaluationTracker(SequenceChecker &Self)
13691         : Self(Self), Prev(Self.EvalTracker) {
13692       Self.EvalTracker = this;
13693     }
13694 
13695     ~EvaluationTracker() {
13696       Self.EvalTracker = Prev;
13697       if (Prev)
13698         Prev->EvalOK &= EvalOK;
13699     }
13700 
13701     bool evaluate(const Expr *E, bool &Result) {
13702       if (!EvalOK || E->isValueDependent())
13703         return false;
13704       EvalOK = E->EvaluateAsBooleanCondition(
13705           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13706       return EvalOK;
13707     }
13708 
13709   private:
13710     SequenceChecker &Self;
13711     EvaluationTracker *Prev;
13712     bool EvalOK = true;
13713   } *EvalTracker = nullptr;
13714 
13715   /// Find the object which is produced by the specified expression,
13716   /// if any.
13717   Object getObject(const Expr *E, bool Mod) const {
13718     E = E->IgnoreParenCasts();
13719     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13720       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13721         return getObject(UO->getSubExpr(), Mod);
13722     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13723       if (BO->getOpcode() == BO_Comma)
13724         return getObject(BO->getRHS(), Mod);
13725       if (Mod && BO->isAssignmentOp())
13726         return getObject(BO->getLHS(), Mod);
13727     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13728       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13729       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13730         return ME->getMemberDecl();
13731     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13732       // FIXME: If this is a reference, map through to its value.
13733       return DRE->getDecl();
13734     return nullptr;
13735   }
13736 
13737   /// Note that an object \p O was modified or used by an expression
13738   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13739   /// the object \p O as obtained via the \p UsageMap.
13740   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13741     // Get the old usage for the given object and usage kind.
13742     Usage &U = UI.Uses[UK];
13743     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13744       // If we have a modification as side effect and are in a sequenced
13745       // subexpression, save the old Usage so that we can restore it later
13746       // in SequencedSubexpression::~SequencedSubexpression.
13747       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13748         ModAsSideEffect->push_back(std::make_pair(O, U));
13749       // Then record the new usage with the current sequencing region.
13750       U.UsageExpr = UsageExpr;
13751       U.Seq = Region;
13752     }
13753   }
13754 
13755   /// Check whether a modification or use of an object \p O in an expression
13756   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13757   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13758   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13759   /// usage and false we are checking for a mod-use unsequenced usage.
13760   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13761                   UsageKind OtherKind, bool IsModMod) {
13762     if (UI.Diagnosed)
13763       return;
13764 
13765     const Usage &U = UI.Uses[OtherKind];
13766     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13767       return;
13768 
13769     const Expr *Mod = U.UsageExpr;
13770     const Expr *ModOrUse = UsageExpr;
13771     if (OtherKind == UK_Use)
13772       std::swap(Mod, ModOrUse);
13773 
13774     SemaRef.DiagRuntimeBehavior(
13775         Mod->getExprLoc(), {Mod, ModOrUse},
13776         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13777                                : diag::warn_unsequenced_mod_use)
13778             << O << SourceRange(ModOrUse->getExprLoc()));
13779     UI.Diagnosed = true;
13780   }
13781 
13782   // A note on note{Pre, Post}{Use, Mod}:
13783   //
13784   // (It helps to follow the algorithm with an expression such as
13785   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13786   //  operations before C++17 and both are well-defined in C++17).
13787   //
13788   // When visiting a node which uses/modify an object we first call notePreUse
13789   // or notePreMod before visiting its sub-expression(s). At this point the
13790   // children of the current node have not yet been visited and so the eventual
13791   // uses/modifications resulting from the children of the current node have not
13792   // been recorded yet.
13793   //
13794   // We then visit the children of the current node. After that notePostUse or
13795   // notePostMod is called. These will 1) detect an unsequenced modification
13796   // as side effect (as in "k++ + k") and 2) add a new usage with the
13797   // appropriate usage kind.
13798   //
13799   // We also have to be careful that some operation sequences modification as
13800   // side effect as well (for example: || or ,). To account for this we wrap
13801   // the visitation of such a sub-expression (for example: the LHS of || or ,)
13802   // with SequencedSubexpression. SequencedSubexpression is an RAII object
13803   // which record usages which are modifications as side effect, and then
13804   // downgrade them (or more accurately restore the previous usage which was a
13805   // modification as side effect) when exiting the scope of the sequenced
13806   // subexpression.
13807 
13808   void notePreUse(Object O, const Expr *UseExpr) {
13809     UsageInfo &UI = UsageMap[O];
13810     // Uses conflict with other modifications.
13811     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13812   }
13813 
13814   void notePostUse(Object O, const Expr *UseExpr) {
13815     UsageInfo &UI = UsageMap[O];
13816     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13817                /*IsModMod=*/false);
13818     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13819   }
13820 
13821   void notePreMod(Object O, const Expr *ModExpr) {
13822     UsageInfo &UI = UsageMap[O];
13823     // Modifications conflict with other modifications and with uses.
13824     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13825     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13826   }
13827 
13828   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13829     UsageInfo &UI = UsageMap[O];
13830     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13831                /*IsModMod=*/true);
13832     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13833   }
13834 
13835 public:
13836   SequenceChecker(Sema &S, const Expr *E,
13837                   SmallVectorImpl<const Expr *> &WorkList)
13838       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13839     Visit(E);
13840     // Silence a -Wunused-private-field since WorkList is now unused.
13841     // TODO: Evaluate if it can be used, and if not remove it.
13842     (void)this->WorkList;
13843   }
13844 
13845   void VisitStmt(const Stmt *S) {
13846     // Skip all statements which aren't expressions for now.
13847   }
13848 
13849   void VisitExpr(const Expr *E) {
13850     // By default, just recurse to evaluated subexpressions.
13851     Base::VisitStmt(E);
13852   }
13853 
13854   void VisitCastExpr(const CastExpr *E) {
13855     Object O = Object();
13856     if (E->getCastKind() == CK_LValueToRValue)
13857       O = getObject(E->getSubExpr(), false);
13858 
13859     if (O)
13860       notePreUse(O, E);
13861     VisitExpr(E);
13862     if (O)
13863       notePostUse(O, E);
13864   }
13865 
13866   void VisitSequencedExpressions(const Expr *SequencedBefore,
13867                                  const Expr *SequencedAfter) {
13868     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13869     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13870     SequenceTree::Seq OldRegion = Region;
13871 
13872     {
13873       SequencedSubexpression SeqBefore(*this);
13874       Region = BeforeRegion;
13875       Visit(SequencedBefore);
13876     }
13877 
13878     Region = AfterRegion;
13879     Visit(SequencedAfter);
13880 
13881     Region = OldRegion;
13882 
13883     Tree.merge(BeforeRegion);
13884     Tree.merge(AfterRegion);
13885   }
13886 
13887   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13888     // C++17 [expr.sub]p1:
13889     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13890     //   expression E1 is sequenced before the expression E2.
13891     if (SemaRef.getLangOpts().CPlusPlus17)
13892       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13893     else {
13894       Visit(ASE->getLHS());
13895       Visit(ASE->getRHS());
13896     }
13897   }
13898 
13899   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13900   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13901   void VisitBinPtrMem(const BinaryOperator *BO) {
13902     // C++17 [expr.mptr.oper]p4:
13903     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13904     //  the expression E1 is sequenced before the expression E2.
13905     if (SemaRef.getLangOpts().CPlusPlus17)
13906       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13907     else {
13908       Visit(BO->getLHS());
13909       Visit(BO->getRHS());
13910     }
13911   }
13912 
13913   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13914   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13915   void VisitBinShlShr(const BinaryOperator *BO) {
13916     // C++17 [expr.shift]p4:
13917     //  The expression E1 is sequenced before the expression E2.
13918     if (SemaRef.getLangOpts().CPlusPlus17)
13919       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13920     else {
13921       Visit(BO->getLHS());
13922       Visit(BO->getRHS());
13923     }
13924   }
13925 
13926   void VisitBinComma(const BinaryOperator *BO) {
13927     // C++11 [expr.comma]p1:
13928     //   Every value computation and side effect associated with the left
13929     //   expression is sequenced before every value computation and side
13930     //   effect associated with the right expression.
13931     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13932   }
13933 
13934   void VisitBinAssign(const BinaryOperator *BO) {
13935     SequenceTree::Seq RHSRegion;
13936     SequenceTree::Seq LHSRegion;
13937     if (SemaRef.getLangOpts().CPlusPlus17) {
13938       RHSRegion = Tree.allocate(Region);
13939       LHSRegion = Tree.allocate(Region);
13940     } else {
13941       RHSRegion = Region;
13942       LHSRegion = Region;
13943     }
13944     SequenceTree::Seq OldRegion = Region;
13945 
13946     // C++11 [expr.ass]p1:
13947     //  [...] the assignment is sequenced after the value computation
13948     //  of the right and left operands, [...]
13949     //
13950     // so check it before inspecting the operands and update the
13951     // map afterwards.
13952     Object O = getObject(BO->getLHS(), /*Mod=*/true);
13953     if (O)
13954       notePreMod(O, BO);
13955 
13956     if (SemaRef.getLangOpts().CPlusPlus17) {
13957       // C++17 [expr.ass]p1:
13958       //  [...] The right operand is sequenced before the left operand. [...]
13959       {
13960         SequencedSubexpression SeqBefore(*this);
13961         Region = RHSRegion;
13962         Visit(BO->getRHS());
13963       }
13964 
13965       Region = LHSRegion;
13966       Visit(BO->getLHS());
13967 
13968       if (O && isa<CompoundAssignOperator>(BO))
13969         notePostUse(O, BO);
13970 
13971     } else {
13972       // C++11 does not specify any sequencing between the LHS and RHS.
13973       Region = LHSRegion;
13974       Visit(BO->getLHS());
13975 
13976       if (O && isa<CompoundAssignOperator>(BO))
13977         notePostUse(O, BO);
13978 
13979       Region = RHSRegion;
13980       Visit(BO->getRHS());
13981     }
13982 
13983     // C++11 [expr.ass]p1:
13984     //  the assignment is sequenced [...] before the value computation of the
13985     //  assignment expression.
13986     // C11 6.5.16/3 has no such rule.
13987     Region = OldRegion;
13988     if (O)
13989       notePostMod(O, BO,
13990                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13991                                                   : UK_ModAsSideEffect);
13992     if (SemaRef.getLangOpts().CPlusPlus17) {
13993       Tree.merge(RHSRegion);
13994       Tree.merge(LHSRegion);
13995     }
13996   }
13997 
13998   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13999     VisitBinAssign(CAO);
14000   }
14001 
14002   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14003   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14004   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14005     Object O = getObject(UO->getSubExpr(), true);
14006     if (!O)
14007       return VisitExpr(UO);
14008 
14009     notePreMod(O, UO);
14010     Visit(UO->getSubExpr());
14011     // C++11 [expr.pre.incr]p1:
14012     //   the expression ++x is equivalent to x+=1
14013     notePostMod(O, UO,
14014                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14015                                                 : UK_ModAsSideEffect);
14016   }
14017 
14018   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14019   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14020   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14021     Object O = getObject(UO->getSubExpr(), true);
14022     if (!O)
14023       return VisitExpr(UO);
14024 
14025     notePreMod(O, UO);
14026     Visit(UO->getSubExpr());
14027     notePostMod(O, UO, UK_ModAsSideEffect);
14028   }
14029 
14030   void VisitBinLOr(const BinaryOperator *BO) {
14031     // C++11 [expr.log.or]p2:
14032     //  If the second expression is evaluated, every value computation and
14033     //  side effect associated with the first expression is sequenced before
14034     //  every value computation and side effect associated with the
14035     //  second expression.
14036     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14037     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14038     SequenceTree::Seq OldRegion = Region;
14039 
14040     EvaluationTracker Eval(*this);
14041     {
14042       SequencedSubexpression Sequenced(*this);
14043       Region = LHSRegion;
14044       Visit(BO->getLHS());
14045     }
14046 
14047     // C++11 [expr.log.or]p1:
14048     //  [...] the second operand is not evaluated if the first operand
14049     //  evaluates to true.
14050     bool EvalResult = false;
14051     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14052     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14053     if (ShouldVisitRHS) {
14054       Region = RHSRegion;
14055       Visit(BO->getRHS());
14056     }
14057 
14058     Region = OldRegion;
14059     Tree.merge(LHSRegion);
14060     Tree.merge(RHSRegion);
14061   }
14062 
14063   void VisitBinLAnd(const BinaryOperator *BO) {
14064     // C++11 [expr.log.and]p2:
14065     //  If the second expression is evaluated, every value computation and
14066     //  side effect associated with the first expression is sequenced before
14067     //  every value computation and side effect associated with the
14068     //  second expression.
14069     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14070     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14071     SequenceTree::Seq OldRegion = Region;
14072 
14073     EvaluationTracker Eval(*this);
14074     {
14075       SequencedSubexpression Sequenced(*this);
14076       Region = LHSRegion;
14077       Visit(BO->getLHS());
14078     }
14079 
14080     // C++11 [expr.log.and]p1:
14081     //  [...] the second operand is not evaluated if the first operand is false.
14082     bool EvalResult = false;
14083     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14084     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14085     if (ShouldVisitRHS) {
14086       Region = RHSRegion;
14087       Visit(BO->getRHS());
14088     }
14089 
14090     Region = OldRegion;
14091     Tree.merge(LHSRegion);
14092     Tree.merge(RHSRegion);
14093   }
14094 
14095   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14096     // C++11 [expr.cond]p1:
14097     //  [...] Every value computation and side effect associated with the first
14098     //  expression is sequenced before every value computation and side effect
14099     //  associated with the second or third expression.
14100     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14101 
14102     // No sequencing is specified between the true and false expression.
14103     // However since exactly one of both is going to be evaluated we can
14104     // consider them to be sequenced. This is needed to avoid warning on
14105     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14106     // both the true and false expressions because we can't evaluate x.
14107     // This will still allow us to detect an expression like (pre C++17)
14108     // "(x ? y += 1 : y += 2) = y".
14109     //
14110     // We don't wrap the visitation of the true and false expression with
14111     // SequencedSubexpression because we don't want to downgrade modifications
14112     // as side effect in the true and false expressions after the visition
14113     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14114     // not warn between the two "y++", but we should warn between the "y++"
14115     // and the "y".
14116     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14117     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14118     SequenceTree::Seq OldRegion = Region;
14119 
14120     EvaluationTracker Eval(*this);
14121     {
14122       SequencedSubexpression Sequenced(*this);
14123       Region = ConditionRegion;
14124       Visit(CO->getCond());
14125     }
14126 
14127     // C++11 [expr.cond]p1:
14128     // [...] The first expression is contextually converted to bool (Clause 4).
14129     // It is evaluated and if it is true, the result of the conditional
14130     // expression is the value of the second expression, otherwise that of the
14131     // third expression. Only one of the second and third expressions is
14132     // evaluated. [...]
14133     bool EvalResult = false;
14134     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14135     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14136     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14137     if (ShouldVisitTrueExpr) {
14138       Region = TrueRegion;
14139       Visit(CO->getTrueExpr());
14140     }
14141     if (ShouldVisitFalseExpr) {
14142       Region = FalseRegion;
14143       Visit(CO->getFalseExpr());
14144     }
14145 
14146     Region = OldRegion;
14147     Tree.merge(ConditionRegion);
14148     Tree.merge(TrueRegion);
14149     Tree.merge(FalseRegion);
14150   }
14151 
14152   void VisitCallExpr(const CallExpr *CE) {
14153     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14154 
14155     if (CE->isUnevaluatedBuiltinCall(Context))
14156       return;
14157 
14158     // C++11 [intro.execution]p15:
14159     //   When calling a function [...], every value computation and side effect
14160     //   associated with any argument expression, or with the postfix expression
14161     //   designating the called function, is sequenced before execution of every
14162     //   expression or statement in the body of the function [and thus before
14163     //   the value computation of its result].
14164     SequencedSubexpression Sequenced(*this);
14165     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14166       // C++17 [expr.call]p5
14167       //   The postfix-expression is sequenced before each expression in the
14168       //   expression-list and any default argument. [...]
14169       SequenceTree::Seq CalleeRegion;
14170       SequenceTree::Seq OtherRegion;
14171       if (SemaRef.getLangOpts().CPlusPlus17) {
14172         CalleeRegion = Tree.allocate(Region);
14173         OtherRegion = Tree.allocate(Region);
14174       } else {
14175         CalleeRegion = Region;
14176         OtherRegion = Region;
14177       }
14178       SequenceTree::Seq OldRegion = Region;
14179 
14180       // Visit the callee expression first.
14181       Region = CalleeRegion;
14182       if (SemaRef.getLangOpts().CPlusPlus17) {
14183         SequencedSubexpression Sequenced(*this);
14184         Visit(CE->getCallee());
14185       } else {
14186         Visit(CE->getCallee());
14187       }
14188 
14189       // Then visit the argument expressions.
14190       Region = OtherRegion;
14191       for (const Expr *Argument : CE->arguments())
14192         Visit(Argument);
14193 
14194       Region = OldRegion;
14195       if (SemaRef.getLangOpts().CPlusPlus17) {
14196         Tree.merge(CalleeRegion);
14197         Tree.merge(OtherRegion);
14198       }
14199     });
14200   }
14201 
14202   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14203     // C++17 [over.match.oper]p2:
14204     //   [...] the operator notation is first transformed to the equivalent
14205     //   function-call notation as summarized in Table 12 (where @ denotes one
14206     //   of the operators covered in the specified subclause). However, the
14207     //   operands are sequenced in the order prescribed for the built-in
14208     //   operator (Clause 8).
14209     //
14210     // From the above only overloaded binary operators and overloaded call
14211     // operators have sequencing rules in C++17 that we need to handle
14212     // separately.
14213     if (!SemaRef.getLangOpts().CPlusPlus17 ||
14214         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14215       return VisitCallExpr(CXXOCE);
14216 
14217     enum {
14218       NoSequencing,
14219       LHSBeforeRHS,
14220       RHSBeforeLHS,
14221       LHSBeforeRest
14222     } SequencingKind;
14223     switch (CXXOCE->getOperator()) {
14224     case OO_Equal:
14225     case OO_PlusEqual:
14226     case OO_MinusEqual:
14227     case OO_StarEqual:
14228     case OO_SlashEqual:
14229     case OO_PercentEqual:
14230     case OO_CaretEqual:
14231     case OO_AmpEqual:
14232     case OO_PipeEqual:
14233     case OO_LessLessEqual:
14234     case OO_GreaterGreaterEqual:
14235       SequencingKind = RHSBeforeLHS;
14236       break;
14237 
14238     case OO_LessLess:
14239     case OO_GreaterGreater:
14240     case OO_AmpAmp:
14241     case OO_PipePipe:
14242     case OO_Comma:
14243     case OO_ArrowStar:
14244     case OO_Subscript:
14245       SequencingKind = LHSBeforeRHS;
14246       break;
14247 
14248     case OO_Call:
14249       SequencingKind = LHSBeforeRest;
14250       break;
14251 
14252     default:
14253       SequencingKind = NoSequencing;
14254       break;
14255     }
14256 
14257     if (SequencingKind == NoSequencing)
14258       return VisitCallExpr(CXXOCE);
14259 
14260     // This is a call, so all subexpressions are sequenced before the result.
14261     SequencedSubexpression Sequenced(*this);
14262 
14263     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14264       assert(SemaRef.getLangOpts().CPlusPlus17 &&
14265              "Should only get there with C++17 and above!");
14266       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
14267              "Should only get there with an overloaded binary operator"
14268              " or an overloaded call operator!");
14269 
14270       if (SequencingKind == LHSBeforeRest) {
14271         assert(CXXOCE->getOperator() == OO_Call &&
14272                "We should only have an overloaded call operator here!");
14273 
14274         // This is very similar to VisitCallExpr, except that we only have the
14275         // C++17 case. The postfix-expression is the first argument of the
14276         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14277         // are in the following arguments.
14278         //
14279         // Note that we intentionally do not visit the callee expression since
14280         // it is just a decayed reference to a function.
14281         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14282         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14283         SequenceTree::Seq OldRegion = Region;
14284 
14285         assert(CXXOCE->getNumArgs() >= 1 &&
14286                "An overloaded call operator must have at least one argument"
14287                " for the postfix-expression!");
14288         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14289         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14290                                           CXXOCE->getNumArgs() - 1);
14291 
14292         // Visit the postfix-expression first.
14293         {
14294           Region = PostfixExprRegion;
14295           SequencedSubexpression Sequenced(*this);
14296           Visit(PostfixExpr);
14297         }
14298 
14299         // Then visit the argument expressions.
14300         Region = ArgsRegion;
14301         for (const Expr *Arg : Args)
14302           Visit(Arg);
14303 
14304         Region = OldRegion;
14305         Tree.merge(PostfixExprRegion);
14306         Tree.merge(ArgsRegion);
14307       } else {
14308         assert(CXXOCE->getNumArgs() == 2 &&
14309                "Should only have two arguments here!");
14310         assert((SequencingKind == LHSBeforeRHS ||
14311                 SequencingKind == RHSBeforeLHS) &&
14312                "Unexpected sequencing kind!");
14313 
14314         // We do not visit the callee expression since it is just a decayed
14315         // reference to a function.
14316         const Expr *E1 = CXXOCE->getArg(0);
14317         const Expr *E2 = CXXOCE->getArg(1);
14318         if (SequencingKind == RHSBeforeLHS)
14319           std::swap(E1, E2);
14320 
14321         return VisitSequencedExpressions(E1, E2);
14322       }
14323     });
14324   }
14325 
14326   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14327     // This is a call, so all subexpressions are sequenced before the result.
14328     SequencedSubexpression Sequenced(*this);
14329 
14330     if (!CCE->isListInitialization())
14331       return VisitExpr(CCE);
14332 
14333     // In C++11, list initializations are sequenced.
14334     SmallVector<SequenceTree::Seq, 32> Elts;
14335     SequenceTree::Seq Parent = Region;
14336     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14337                                               E = CCE->arg_end();
14338          I != E; ++I) {
14339       Region = Tree.allocate(Parent);
14340       Elts.push_back(Region);
14341       Visit(*I);
14342     }
14343 
14344     // Forget that the initializers are sequenced.
14345     Region = Parent;
14346     for (unsigned I = 0; I < Elts.size(); ++I)
14347       Tree.merge(Elts[I]);
14348   }
14349 
14350   void VisitInitListExpr(const InitListExpr *ILE) {
14351     if (!SemaRef.getLangOpts().CPlusPlus11)
14352       return VisitExpr(ILE);
14353 
14354     // In C++11, list initializations are sequenced.
14355     SmallVector<SequenceTree::Seq, 32> Elts;
14356     SequenceTree::Seq Parent = Region;
14357     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14358       const Expr *E = ILE->getInit(I);
14359       if (!E)
14360         continue;
14361       Region = Tree.allocate(Parent);
14362       Elts.push_back(Region);
14363       Visit(E);
14364     }
14365 
14366     // Forget that the initializers are sequenced.
14367     Region = Parent;
14368     for (unsigned I = 0; I < Elts.size(); ++I)
14369       Tree.merge(Elts[I]);
14370   }
14371 };
14372 
14373 } // namespace
14374 
14375 void Sema::CheckUnsequencedOperations(const Expr *E) {
14376   SmallVector<const Expr *, 8> WorkList;
14377   WorkList.push_back(E);
14378   while (!WorkList.empty()) {
14379     const Expr *Item = WorkList.pop_back_val();
14380     SequenceChecker(*this, Item, WorkList);
14381   }
14382 }
14383 
14384 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14385                               bool IsConstexpr) {
14386   llvm::SaveAndRestore<bool> ConstantContext(
14387       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14388   CheckImplicitConversions(E, CheckLoc);
14389   if (!E->isInstantiationDependent())
14390     CheckUnsequencedOperations(E);
14391   if (!IsConstexpr && !E->isValueDependent())
14392     CheckForIntOverflow(E);
14393   DiagnoseMisalignedMembers();
14394 }
14395 
14396 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14397                                        FieldDecl *BitField,
14398                                        Expr *Init) {
14399   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14400 }
14401 
14402 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14403                                          SourceLocation Loc) {
14404   if (!PType->isVariablyModifiedType())
14405     return;
14406   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14407     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14408     return;
14409   }
14410   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14411     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14412     return;
14413   }
14414   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14415     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14416     return;
14417   }
14418 
14419   const ArrayType *AT = S.Context.getAsArrayType(PType);
14420   if (!AT)
14421     return;
14422 
14423   if (AT->getSizeModifier() != ArrayType::Star) {
14424     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14425     return;
14426   }
14427 
14428   S.Diag(Loc, diag::err_array_star_in_function_definition);
14429 }
14430 
14431 /// CheckParmsForFunctionDef - Check that the parameters of the given
14432 /// function are appropriate for the definition of a function. This
14433 /// takes care of any checks that cannot be performed on the
14434 /// declaration itself, e.g., that the types of each of the function
14435 /// parameters are complete.
14436 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14437                                     bool CheckParameterNames) {
14438   bool HasInvalidParm = false;
14439   for (ParmVarDecl *Param : Parameters) {
14440     // C99 6.7.5.3p4: the parameters in a parameter type list in a
14441     // function declarator that is part of a function definition of
14442     // that function shall not have incomplete type.
14443     //
14444     // This is also C++ [dcl.fct]p6.
14445     if (!Param->isInvalidDecl() &&
14446         RequireCompleteType(Param->getLocation(), Param->getType(),
14447                             diag::err_typecheck_decl_incomplete_type)) {
14448       Param->setInvalidDecl();
14449       HasInvalidParm = true;
14450     }
14451 
14452     // C99 6.9.1p5: If the declarator includes a parameter type list, the
14453     // declaration of each parameter shall include an identifier.
14454     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14455         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14456       // Diagnose this as an extension in C17 and earlier.
14457       if (!getLangOpts().C2x)
14458         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14459     }
14460 
14461     // C99 6.7.5.3p12:
14462     //   If the function declarator is not part of a definition of that
14463     //   function, parameters may have incomplete type and may use the [*]
14464     //   notation in their sequences of declarator specifiers to specify
14465     //   variable length array types.
14466     QualType PType = Param->getOriginalType();
14467     // FIXME: This diagnostic should point the '[*]' if source-location
14468     // information is added for it.
14469     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14470 
14471     // If the parameter is a c++ class type and it has to be destructed in the
14472     // callee function, declare the destructor so that it can be called by the
14473     // callee function. Do not perform any direct access check on the dtor here.
14474     if (!Param->isInvalidDecl()) {
14475       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14476         if (!ClassDecl->isInvalidDecl() &&
14477             !ClassDecl->hasIrrelevantDestructor() &&
14478             !ClassDecl->isDependentContext() &&
14479             ClassDecl->isParamDestroyedInCallee()) {
14480           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14481           MarkFunctionReferenced(Param->getLocation(), Destructor);
14482           DiagnoseUseOfDecl(Destructor, Param->getLocation());
14483         }
14484       }
14485     }
14486 
14487     // Parameters with the pass_object_size attribute only need to be marked
14488     // constant at function definitions. Because we lack information about
14489     // whether we're on a declaration or definition when we're instantiating the
14490     // attribute, we need to check for constness here.
14491     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14492       if (!Param->getType().isConstQualified())
14493         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14494             << Attr->getSpelling() << 1;
14495 
14496     // Check for parameter names shadowing fields from the class.
14497     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14498       // The owning context for the parameter should be the function, but we
14499       // want to see if this function's declaration context is a record.
14500       DeclContext *DC = Param->getDeclContext();
14501       if (DC && DC->isFunctionOrMethod()) {
14502         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14503           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14504                                      RD, /*DeclIsField*/ false);
14505       }
14506     }
14507   }
14508 
14509   return HasInvalidParm;
14510 }
14511 
14512 Optional<std::pair<CharUnits, CharUnits>>
14513 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14514 
14515 /// Compute the alignment and offset of the base class object given the
14516 /// derived-to-base cast expression and the alignment and offset of the derived
14517 /// class object.
14518 static std::pair<CharUnits, CharUnits>
14519 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14520                                    CharUnits BaseAlignment, CharUnits Offset,
14521                                    ASTContext &Ctx) {
14522   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14523        ++PathI) {
14524     const CXXBaseSpecifier *Base = *PathI;
14525     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14526     if (Base->isVirtual()) {
14527       // The complete object may have a lower alignment than the non-virtual
14528       // alignment of the base, in which case the base may be misaligned. Choose
14529       // the smaller of the non-virtual alignment and BaseAlignment, which is a
14530       // conservative lower bound of the complete object alignment.
14531       CharUnits NonVirtualAlignment =
14532           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14533       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14534       Offset = CharUnits::Zero();
14535     } else {
14536       const ASTRecordLayout &RL =
14537           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14538       Offset += RL.getBaseClassOffset(BaseDecl);
14539     }
14540     DerivedType = Base->getType();
14541   }
14542 
14543   return std::make_pair(BaseAlignment, Offset);
14544 }
14545 
14546 /// Compute the alignment and offset of a binary additive operator.
14547 static Optional<std::pair<CharUnits, CharUnits>>
14548 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
14549                                      bool IsSub, ASTContext &Ctx) {
14550   QualType PointeeType = PtrE->getType()->getPointeeType();
14551 
14552   if (!PointeeType->isConstantSizeType())
14553     return llvm::None;
14554 
14555   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
14556 
14557   if (!P)
14558     return llvm::None;
14559 
14560   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
14561   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
14562     CharUnits Offset = EltSize * IdxRes->getExtValue();
14563     if (IsSub)
14564       Offset = -Offset;
14565     return std::make_pair(P->first, P->second + Offset);
14566   }
14567 
14568   // If the integer expression isn't a constant expression, compute the lower
14569   // bound of the alignment using the alignment and offset of the pointer
14570   // expression and the element size.
14571   return std::make_pair(
14572       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
14573       CharUnits::Zero());
14574 }
14575 
14576 /// This helper function takes an lvalue expression and returns the alignment of
14577 /// a VarDecl and a constant offset from the VarDecl.
14578 Optional<std::pair<CharUnits, CharUnits>>
14579 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14580   E = E->IgnoreParens();
14581   switch (E->getStmtClass()) {
14582   default:
14583     break;
14584   case Stmt::CStyleCastExprClass:
14585   case Stmt::CXXStaticCastExprClass:
14586   case Stmt::ImplicitCastExprClass: {
14587     auto *CE = cast<CastExpr>(E);
14588     const Expr *From = CE->getSubExpr();
14589     switch (CE->getCastKind()) {
14590     default:
14591       break;
14592     case CK_NoOp:
14593       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14594     case CK_UncheckedDerivedToBase:
14595     case CK_DerivedToBase: {
14596       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14597       if (!P)
14598         break;
14599       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14600                                                 P->second, Ctx);
14601     }
14602     }
14603     break;
14604   }
14605   case Stmt::ArraySubscriptExprClass: {
14606     auto *ASE = cast<ArraySubscriptExpr>(E);
14607     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14608                                                 false, Ctx);
14609   }
14610   case Stmt::DeclRefExprClass: {
14611     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14612       // FIXME: If VD is captured by copy or is an escaping __block variable,
14613       // use the alignment of VD's type.
14614       if (!VD->getType()->isReferenceType())
14615         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14616       if (VD->hasInit())
14617         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14618     }
14619     break;
14620   }
14621   case Stmt::MemberExprClass: {
14622     auto *ME = cast<MemberExpr>(E);
14623     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14624     if (!FD || FD->getType()->isReferenceType() ||
14625         FD->getParent()->isInvalidDecl())
14626       break;
14627     Optional<std::pair<CharUnits, CharUnits>> P;
14628     if (ME->isArrow())
14629       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14630     else
14631       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14632     if (!P)
14633       break;
14634     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14635     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14636     return std::make_pair(P->first,
14637                           P->second + CharUnits::fromQuantity(Offset));
14638   }
14639   case Stmt::UnaryOperatorClass: {
14640     auto *UO = cast<UnaryOperator>(E);
14641     switch (UO->getOpcode()) {
14642     default:
14643       break;
14644     case UO_Deref:
14645       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14646     }
14647     break;
14648   }
14649   case Stmt::BinaryOperatorClass: {
14650     auto *BO = cast<BinaryOperator>(E);
14651     auto Opcode = BO->getOpcode();
14652     switch (Opcode) {
14653     default:
14654       break;
14655     case BO_Comma:
14656       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14657     }
14658     break;
14659   }
14660   }
14661   return llvm::None;
14662 }
14663 
14664 /// This helper function takes a pointer expression and returns the alignment of
14665 /// a VarDecl and a constant offset from the VarDecl.
14666 Optional<std::pair<CharUnits, CharUnits>>
14667 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14668   E = E->IgnoreParens();
14669   switch (E->getStmtClass()) {
14670   default:
14671     break;
14672   case Stmt::CStyleCastExprClass:
14673   case Stmt::CXXStaticCastExprClass:
14674   case Stmt::ImplicitCastExprClass: {
14675     auto *CE = cast<CastExpr>(E);
14676     const Expr *From = CE->getSubExpr();
14677     switch (CE->getCastKind()) {
14678     default:
14679       break;
14680     case CK_NoOp:
14681       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14682     case CK_ArrayToPointerDecay:
14683       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14684     case CK_UncheckedDerivedToBase:
14685     case CK_DerivedToBase: {
14686       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14687       if (!P)
14688         break;
14689       return getDerivedToBaseAlignmentAndOffset(
14690           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14691     }
14692     }
14693     break;
14694   }
14695   case Stmt::CXXThisExprClass: {
14696     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14697     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14698     return std::make_pair(Alignment, CharUnits::Zero());
14699   }
14700   case Stmt::UnaryOperatorClass: {
14701     auto *UO = cast<UnaryOperator>(E);
14702     if (UO->getOpcode() == UO_AddrOf)
14703       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14704     break;
14705   }
14706   case Stmt::BinaryOperatorClass: {
14707     auto *BO = cast<BinaryOperator>(E);
14708     auto Opcode = BO->getOpcode();
14709     switch (Opcode) {
14710     default:
14711       break;
14712     case BO_Add:
14713     case BO_Sub: {
14714       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14715       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14716         std::swap(LHS, RHS);
14717       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14718                                                   Ctx);
14719     }
14720     case BO_Comma:
14721       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14722     }
14723     break;
14724   }
14725   }
14726   return llvm::None;
14727 }
14728 
14729 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14730   // See if we can compute the alignment of a VarDecl and an offset from it.
14731   Optional<std::pair<CharUnits, CharUnits>> P =
14732       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14733 
14734   if (P)
14735     return P->first.alignmentAtOffset(P->second);
14736 
14737   // If that failed, return the type's alignment.
14738   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14739 }
14740 
14741 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14742 /// pointer cast increases the alignment requirements.
14743 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14744   // This is actually a lot of work to potentially be doing on every
14745   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14746   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14747     return;
14748 
14749   // Ignore dependent types.
14750   if (T->isDependentType() || Op->getType()->isDependentType())
14751     return;
14752 
14753   // Require that the destination be a pointer type.
14754   const PointerType *DestPtr = T->getAs<PointerType>();
14755   if (!DestPtr) return;
14756 
14757   // If the destination has alignment 1, we're done.
14758   QualType DestPointee = DestPtr->getPointeeType();
14759   if (DestPointee->isIncompleteType()) return;
14760   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14761   if (DestAlign.isOne()) return;
14762 
14763   // Require that the source be a pointer type.
14764   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14765   if (!SrcPtr) return;
14766   QualType SrcPointee = SrcPtr->getPointeeType();
14767 
14768   // Explicitly allow casts from cv void*.  We already implicitly
14769   // allowed casts to cv void*, since they have alignment 1.
14770   // Also allow casts involving incomplete types, which implicitly
14771   // includes 'void'.
14772   if (SrcPointee->isIncompleteType()) return;
14773 
14774   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14775 
14776   if (SrcAlign >= DestAlign) return;
14777 
14778   Diag(TRange.getBegin(), diag::warn_cast_align)
14779     << Op->getType() << T
14780     << static_cast<unsigned>(SrcAlign.getQuantity())
14781     << static_cast<unsigned>(DestAlign.getQuantity())
14782     << TRange << Op->getSourceRange();
14783 }
14784 
14785 /// Check whether this array fits the idiom of a size-one tail padded
14786 /// array member of a struct.
14787 ///
14788 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14789 /// commonly used to emulate flexible arrays in C89 code.
14790 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14791                                     const NamedDecl *ND) {
14792   if (Size != 1 || !ND) return false;
14793 
14794   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14795   if (!FD) return false;
14796 
14797   // Don't consider sizes resulting from macro expansions or template argument
14798   // substitution to form C89 tail-padded arrays.
14799 
14800   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14801   while (TInfo) {
14802     TypeLoc TL = TInfo->getTypeLoc();
14803     // Look through typedefs.
14804     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14805       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14806       TInfo = TDL->getTypeSourceInfo();
14807       continue;
14808     }
14809     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14810       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14811       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14812         return false;
14813     }
14814     break;
14815   }
14816 
14817   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14818   if (!RD) return false;
14819   if (RD->isUnion()) return false;
14820   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14821     if (!CRD->isStandardLayout()) return false;
14822   }
14823 
14824   // See if this is the last field decl in the record.
14825   const Decl *D = FD;
14826   while ((D = D->getNextDeclInContext()))
14827     if (isa<FieldDecl>(D))
14828       return false;
14829   return true;
14830 }
14831 
14832 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14833                             const ArraySubscriptExpr *ASE,
14834                             bool AllowOnePastEnd, bool IndexNegated) {
14835   // Already diagnosed by the constant evaluator.
14836   if (isConstantEvaluated())
14837     return;
14838 
14839   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14840   if (IndexExpr->isValueDependent())
14841     return;
14842 
14843   const Type *EffectiveType =
14844       BaseExpr->getType()->getPointeeOrArrayElementType();
14845   BaseExpr = BaseExpr->IgnoreParenCasts();
14846   const ConstantArrayType *ArrayTy =
14847       Context.getAsConstantArrayType(BaseExpr->getType());
14848 
14849   const Type *BaseType =
14850       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
14851   bool IsUnboundedArray = (BaseType == nullptr);
14852   if (EffectiveType->isDependentType() ||
14853       (!IsUnboundedArray && BaseType->isDependentType()))
14854     return;
14855 
14856   Expr::EvalResult Result;
14857   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14858     return;
14859 
14860   llvm::APSInt index = Result.Val.getInt();
14861   if (IndexNegated) {
14862     index.setIsUnsigned(false);
14863     index = -index;
14864   }
14865 
14866   const NamedDecl *ND = nullptr;
14867   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14868     ND = DRE->getDecl();
14869   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14870     ND = ME->getMemberDecl();
14871 
14872   if (IsUnboundedArray) {
14873     if (index.isUnsigned() || !index.isNegative()) {
14874       const auto &ASTC = getASTContext();
14875       unsigned AddrBits =
14876           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
14877               EffectiveType->getCanonicalTypeInternal()));
14878       if (index.getBitWidth() < AddrBits)
14879         index = index.zext(AddrBits);
14880       Optional<CharUnits> ElemCharUnits =
14881           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
14882       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
14883       // pointer) bounds-checking isn't meaningful.
14884       if (!ElemCharUnits)
14885         return;
14886       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
14887       // If index has more active bits than address space, we already know
14888       // we have a bounds violation to warn about.  Otherwise, compute
14889       // address of (index + 1)th element, and warn about bounds violation
14890       // only if that address exceeds address space.
14891       if (index.getActiveBits() <= AddrBits) {
14892         bool Overflow;
14893         llvm::APInt Product(index);
14894         Product += 1;
14895         Product = Product.umul_ov(ElemBytes, Overflow);
14896         if (!Overflow && Product.getActiveBits() <= AddrBits)
14897           return;
14898       }
14899 
14900       // Need to compute max possible elements in address space, since that
14901       // is included in diag message.
14902       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
14903       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
14904       MaxElems += 1;
14905       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
14906       MaxElems = MaxElems.udiv(ElemBytes);
14907 
14908       unsigned DiagID =
14909           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
14910               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
14911 
14912       // Diag message shows element size in bits and in "bytes" (platform-
14913       // dependent CharUnits)
14914       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14915                           PDiag(DiagID)
14916                               << toString(index, 10, true) << AddrBits
14917                               << (unsigned)ASTC.toBits(*ElemCharUnits)
14918                               << toString(ElemBytes, 10, false)
14919                               << toString(MaxElems, 10, false)
14920                               << (unsigned)MaxElems.getLimitedValue(~0U)
14921                               << IndexExpr->getSourceRange());
14922 
14923       if (!ND) {
14924         // Try harder to find a NamedDecl to point at in the note.
14925         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
14926           BaseExpr = ASE->getBase()->IgnoreParenCasts();
14927         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14928           ND = DRE->getDecl();
14929         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
14930           ND = ME->getMemberDecl();
14931       }
14932 
14933       if (ND)
14934         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14935                             PDiag(diag::note_array_declared_here) << ND);
14936     }
14937     return;
14938   }
14939 
14940   if (index.isUnsigned() || !index.isNegative()) {
14941     // It is possible that the type of the base expression after
14942     // IgnoreParenCasts is incomplete, even though the type of the base
14943     // expression before IgnoreParenCasts is complete (see PR39746 for an
14944     // example). In this case we have no information about whether the array
14945     // access exceeds the array bounds. However we can still diagnose an array
14946     // access which precedes the array bounds.
14947     if (BaseType->isIncompleteType())
14948       return;
14949 
14950     llvm::APInt size = ArrayTy->getSize();
14951     if (!size.isStrictlyPositive())
14952       return;
14953 
14954     if (BaseType != EffectiveType) {
14955       // Make sure we're comparing apples to apples when comparing index to size
14956       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14957       uint64_t array_typesize = Context.getTypeSize(BaseType);
14958       // Handle ptrarith_typesize being zero, such as when casting to void*
14959       if (!ptrarith_typesize) ptrarith_typesize = 1;
14960       if (ptrarith_typesize != array_typesize) {
14961         // There's a cast to a different size type involved
14962         uint64_t ratio = array_typesize / ptrarith_typesize;
14963         // TODO: Be smarter about handling cases where array_typesize is not a
14964         // multiple of ptrarith_typesize
14965         if (ptrarith_typesize * ratio == array_typesize)
14966           size *= llvm::APInt(size.getBitWidth(), ratio);
14967       }
14968     }
14969 
14970     if (size.getBitWidth() > index.getBitWidth())
14971       index = index.zext(size.getBitWidth());
14972     else if (size.getBitWidth() < index.getBitWidth())
14973       size = size.zext(index.getBitWidth());
14974 
14975     // For array subscripting the index must be less than size, but for pointer
14976     // arithmetic also allow the index (offset) to be equal to size since
14977     // computing the next address after the end of the array is legal and
14978     // commonly done e.g. in C++ iterators and range-based for loops.
14979     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14980       return;
14981 
14982     // Also don't warn for arrays of size 1 which are members of some
14983     // structure. These are often used to approximate flexible arrays in C89
14984     // code.
14985     if (IsTailPaddedMemberArray(*this, size, ND))
14986       return;
14987 
14988     // Suppress the warning if the subscript expression (as identified by the
14989     // ']' location) and the index expression are both from macro expansions
14990     // within a system header.
14991     if (ASE) {
14992       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14993           ASE->getRBracketLoc());
14994       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14995         SourceLocation IndexLoc =
14996             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14997         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14998           return;
14999       }
15000     }
15001 
15002     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15003                           : diag::warn_ptr_arith_exceeds_bounds;
15004 
15005     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15006                         PDiag(DiagID) << toString(index, 10, true)
15007                                       << toString(size, 10, true)
15008                                       << (unsigned)size.getLimitedValue(~0U)
15009                                       << IndexExpr->getSourceRange());
15010   } else {
15011     unsigned DiagID = diag::warn_array_index_precedes_bounds;
15012     if (!ASE) {
15013       DiagID = diag::warn_ptr_arith_precedes_bounds;
15014       if (index.isNegative()) index = -index;
15015     }
15016 
15017     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15018                         PDiag(DiagID) << toString(index, 10, true)
15019                                       << IndexExpr->getSourceRange());
15020   }
15021 
15022   if (!ND) {
15023     // Try harder to find a NamedDecl to point at in the note.
15024     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15025       BaseExpr = ASE->getBase()->IgnoreParenCasts();
15026     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15027       ND = DRE->getDecl();
15028     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15029       ND = ME->getMemberDecl();
15030   }
15031 
15032   if (ND)
15033     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15034                         PDiag(diag::note_array_declared_here) << ND);
15035 }
15036 
15037 void Sema::CheckArrayAccess(const Expr *expr) {
15038   int AllowOnePastEnd = 0;
15039   while (expr) {
15040     expr = expr->IgnoreParenImpCasts();
15041     switch (expr->getStmtClass()) {
15042       case Stmt::ArraySubscriptExprClass: {
15043         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15044         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15045                          AllowOnePastEnd > 0);
15046         expr = ASE->getBase();
15047         break;
15048       }
15049       case Stmt::MemberExprClass: {
15050         expr = cast<MemberExpr>(expr)->getBase();
15051         break;
15052       }
15053       case Stmt::OMPArraySectionExprClass: {
15054         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15055         if (ASE->getLowerBound())
15056           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15057                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
15058         return;
15059       }
15060       case Stmt::UnaryOperatorClass: {
15061         // Only unwrap the * and & unary operators
15062         const UnaryOperator *UO = cast<UnaryOperator>(expr);
15063         expr = UO->getSubExpr();
15064         switch (UO->getOpcode()) {
15065           case UO_AddrOf:
15066             AllowOnePastEnd++;
15067             break;
15068           case UO_Deref:
15069             AllowOnePastEnd--;
15070             break;
15071           default:
15072             return;
15073         }
15074         break;
15075       }
15076       case Stmt::ConditionalOperatorClass: {
15077         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15078         if (const Expr *lhs = cond->getLHS())
15079           CheckArrayAccess(lhs);
15080         if (const Expr *rhs = cond->getRHS())
15081           CheckArrayAccess(rhs);
15082         return;
15083       }
15084       case Stmt::CXXOperatorCallExprClass: {
15085         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15086         for (const auto *Arg : OCE->arguments())
15087           CheckArrayAccess(Arg);
15088         return;
15089       }
15090       default:
15091         return;
15092     }
15093   }
15094 }
15095 
15096 //===--- CHECK: Objective-C retain cycles ----------------------------------//
15097 
15098 namespace {
15099 
15100 struct RetainCycleOwner {
15101   VarDecl *Variable = nullptr;
15102   SourceRange Range;
15103   SourceLocation Loc;
15104   bool Indirect = false;
15105 
15106   RetainCycleOwner() = default;
15107 
15108   void setLocsFrom(Expr *e) {
15109     Loc = e->getExprLoc();
15110     Range = e->getSourceRange();
15111   }
15112 };
15113 
15114 } // namespace
15115 
15116 /// Consider whether capturing the given variable can possibly lead to
15117 /// a retain cycle.
15118 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15119   // In ARC, it's captured strongly iff the variable has __strong
15120   // lifetime.  In MRR, it's captured strongly if the variable is
15121   // __block and has an appropriate type.
15122   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15123     return false;
15124 
15125   owner.Variable = var;
15126   if (ref)
15127     owner.setLocsFrom(ref);
15128   return true;
15129 }
15130 
15131 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15132   while (true) {
15133     e = e->IgnoreParens();
15134     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15135       switch (cast->getCastKind()) {
15136       case CK_BitCast:
15137       case CK_LValueBitCast:
15138       case CK_LValueToRValue:
15139       case CK_ARCReclaimReturnedObject:
15140         e = cast->getSubExpr();
15141         continue;
15142 
15143       default:
15144         return false;
15145       }
15146     }
15147 
15148     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15149       ObjCIvarDecl *ivar = ref->getDecl();
15150       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15151         return false;
15152 
15153       // Try to find a retain cycle in the base.
15154       if (!findRetainCycleOwner(S, ref->getBase(), owner))
15155         return false;
15156 
15157       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15158       owner.Indirect = true;
15159       return true;
15160     }
15161 
15162     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15163       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15164       if (!var) return false;
15165       return considerVariable(var, ref, owner);
15166     }
15167 
15168     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15169       if (member->isArrow()) return false;
15170 
15171       // Don't count this as an indirect ownership.
15172       e = member->getBase();
15173       continue;
15174     }
15175 
15176     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15177       // Only pay attention to pseudo-objects on property references.
15178       ObjCPropertyRefExpr *pre
15179         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15180                                               ->IgnoreParens());
15181       if (!pre) return false;
15182       if (pre->isImplicitProperty()) return false;
15183       ObjCPropertyDecl *property = pre->getExplicitProperty();
15184       if (!property->isRetaining() &&
15185           !(property->getPropertyIvarDecl() &&
15186             property->getPropertyIvarDecl()->getType()
15187               .getObjCLifetime() == Qualifiers::OCL_Strong))
15188           return false;
15189 
15190       owner.Indirect = true;
15191       if (pre->isSuperReceiver()) {
15192         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15193         if (!owner.Variable)
15194           return false;
15195         owner.Loc = pre->getLocation();
15196         owner.Range = pre->getSourceRange();
15197         return true;
15198       }
15199       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15200                               ->getSourceExpr());
15201       continue;
15202     }
15203 
15204     // Array ivars?
15205 
15206     return false;
15207   }
15208 }
15209 
15210 namespace {
15211 
15212   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15213     ASTContext &Context;
15214     VarDecl *Variable;
15215     Expr *Capturer = nullptr;
15216     bool VarWillBeReased = false;
15217 
15218     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15219         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15220           Context(Context), Variable(variable) {}
15221 
15222     void VisitDeclRefExpr(DeclRefExpr *ref) {
15223       if (ref->getDecl() == Variable && !Capturer)
15224         Capturer = ref;
15225     }
15226 
15227     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15228       if (Capturer) return;
15229       Visit(ref->getBase());
15230       if (Capturer && ref->isFreeIvar())
15231         Capturer = ref;
15232     }
15233 
15234     void VisitBlockExpr(BlockExpr *block) {
15235       // Look inside nested blocks
15236       if (block->getBlockDecl()->capturesVariable(Variable))
15237         Visit(block->getBlockDecl()->getBody());
15238     }
15239 
15240     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15241       if (Capturer) return;
15242       if (OVE->getSourceExpr())
15243         Visit(OVE->getSourceExpr());
15244     }
15245 
15246     void VisitBinaryOperator(BinaryOperator *BinOp) {
15247       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15248         return;
15249       Expr *LHS = BinOp->getLHS();
15250       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15251         if (DRE->getDecl() != Variable)
15252           return;
15253         if (Expr *RHS = BinOp->getRHS()) {
15254           RHS = RHS->IgnoreParenCasts();
15255           Optional<llvm::APSInt> Value;
15256           VarWillBeReased =
15257               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15258                *Value == 0);
15259         }
15260       }
15261     }
15262   };
15263 
15264 } // namespace
15265 
15266 /// Check whether the given argument is a block which captures a
15267 /// variable.
15268 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15269   assert(owner.Variable && owner.Loc.isValid());
15270 
15271   e = e->IgnoreParenCasts();
15272 
15273   // Look through [^{...} copy] and Block_copy(^{...}).
15274   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15275     Selector Cmd = ME->getSelector();
15276     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15277       e = ME->getInstanceReceiver();
15278       if (!e)
15279         return nullptr;
15280       e = e->IgnoreParenCasts();
15281     }
15282   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15283     if (CE->getNumArgs() == 1) {
15284       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15285       if (Fn) {
15286         const IdentifierInfo *FnI = Fn->getIdentifier();
15287         if (FnI && FnI->isStr("_Block_copy")) {
15288           e = CE->getArg(0)->IgnoreParenCasts();
15289         }
15290       }
15291     }
15292   }
15293 
15294   BlockExpr *block = dyn_cast<BlockExpr>(e);
15295   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15296     return nullptr;
15297 
15298   FindCaptureVisitor visitor(S.Context, owner.Variable);
15299   visitor.Visit(block->getBlockDecl()->getBody());
15300   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15301 }
15302 
15303 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15304                                 RetainCycleOwner &owner) {
15305   assert(capturer);
15306   assert(owner.Variable && owner.Loc.isValid());
15307 
15308   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15309     << owner.Variable << capturer->getSourceRange();
15310   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15311     << owner.Indirect << owner.Range;
15312 }
15313 
15314 /// Check for a keyword selector that starts with the word 'add' or
15315 /// 'set'.
15316 static bool isSetterLikeSelector(Selector sel) {
15317   if (sel.isUnarySelector()) return false;
15318 
15319   StringRef str = sel.getNameForSlot(0);
15320   while (!str.empty() && str.front() == '_') str = str.substr(1);
15321   if (str.startswith("set"))
15322     str = str.substr(3);
15323   else if (str.startswith("add")) {
15324     // Specially allow 'addOperationWithBlock:'.
15325     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15326       return false;
15327     str = str.substr(3);
15328   }
15329   else
15330     return false;
15331 
15332   if (str.empty()) return true;
15333   return !isLowercase(str.front());
15334 }
15335 
15336 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15337                                                     ObjCMessageExpr *Message) {
15338   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15339                                                 Message->getReceiverInterface(),
15340                                                 NSAPI::ClassId_NSMutableArray);
15341   if (!IsMutableArray) {
15342     return None;
15343   }
15344 
15345   Selector Sel = Message->getSelector();
15346 
15347   Optional<NSAPI::NSArrayMethodKind> MKOpt =
15348     S.NSAPIObj->getNSArrayMethodKind(Sel);
15349   if (!MKOpt) {
15350     return None;
15351   }
15352 
15353   NSAPI::NSArrayMethodKind MK = *MKOpt;
15354 
15355   switch (MK) {
15356     case NSAPI::NSMutableArr_addObject:
15357     case NSAPI::NSMutableArr_insertObjectAtIndex:
15358     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15359       return 0;
15360     case NSAPI::NSMutableArr_replaceObjectAtIndex:
15361       return 1;
15362 
15363     default:
15364       return None;
15365   }
15366 
15367   return None;
15368 }
15369 
15370 static
15371 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15372                                                   ObjCMessageExpr *Message) {
15373   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15374                                             Message->getReceiverInterface(),
15375                                             NSAPI::ClassId_NSMutableDictionary);
15376   if (!IsMutableDictionary) {
15377     return None;
15378   }
15379 
15380   Selector Sel = Message->getSelector();
15381 
15382   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15383     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15384   if (!MKOpt) {
15385     return None;
15386   }
15387 
15388   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15389 
15390   switch (MK) {
15391     case NSAPI::NSMutableDict_setObjectForKey:
15392     case NSAPI::NSMutableDict_setValueForKey:
15393     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15394       return 0;
15395 
15396     default:
15397       return None;
15398   }
15399 
15400   return None;
15401 }
15402 
15403 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15404   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15405                                                 Message->getReceiverInterface(),
15406                                                 NSAPI::ClassId_NSMutableSet);
15407 
15408   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15409                                             Message->getReceiverInterface(),
15410                                             NSAPI::ClassId_NSMutableOrderedSet);
15411   if (!IsMutableSet && !IsMutableOrderedSet) {
15412     return None;
15413   }
15414 
15415   Selector Sel = Message->getSelector();
15416 
15417   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15418   if (!MKOpt) {
15419     return None;
15420   }
15421 
15422   NSAPI::NSSetMethodKind MK = *MKOpt;
15423 
15424   switch (MK) {
15425     case NSAPI::NSMutableSet_addObject:
15426     case NSAPI::NSOrderedSet_setObjectAtIndex:
15427     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15428     case NSAPI::NSOrderedSet_insertObjectAtIndex:
15429       return 0;
15430     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15431       return 1;
15432   }
15433 
15434   return None;
15435 }
15436 
15437 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15438   if (!Message->isInstanceMessage()) {
15439     return;
15440   }
15441 
15442   Optional<int> ArgOpt;
15443 
15444   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15445       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15446       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15447     return;
15448   }
15449 
15450   int ArgIndex = *ArgOpt;
15451 
15452   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15453   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15454     Arg = OE->getSourceExpr()->IgnoreImpCasts();
15455   }
15456 
15457   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15458     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15459       if (ArgRE->isObjCSelfExpr()) {
15460         Diag(Message->getSourceRange().getBegin(),
15461              diag::warn_objc_circular_container)
15462           << ArgRE->getDecl() << StringRef("'super'");
15463       }
15464     }
15465   } else {
15466     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15467 
15468     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15469       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15470     }
15471 
15472     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15473       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15474         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15475           ValueDecl *Decl = ReceiverRE->getDecl();
15476           Diag(Message->getSourceRange().getBegin(),
15477                diag::warn_objc_circular_container)
15478             << Decl << Decl;
15479           if (!ArgRE->isObjCSelfExpr()) {
15480             Diag(Decl->getLocation(),
15481                  diag::note_objc_circular_container_declared_here)
15482               << Decl;
15483           }
15484         }
15485       }
15486     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15487       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15488         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15489           ObjCIvarDecl *Decl = IvarRE->getDecl();
15490           Diag(Message->getSourceRange().getBegin(),
15491                diag::warn_objc_circular_container)
15492             << Decl << Decl;
15493           Diag(Decl->getLocation(),
15494                diag::note_objc_circular_container_declared_here)
15495             << Decl;
15496         }
15497       }
15498     }
15499   }
15500 }
15501 
15502 /// Check a message send to see if it's likely to cause a retain cycle.
15503 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15504   // Only check instance methods whose selector looks like a setter.
15505   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15506     return;
15507 
15508   // Try to find a variable that the receiver is strongly owned by.
15509   RetainCycleOwner owner;
15510   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15511     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15512       return;
15513   } else {
15514     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
15515     owner.Variable = getCurMethodDecl()->getSelfDecl();
15516     owner.Loc = msg->getSuperLoc();
15517     owner.Range = msg->getSuperLoc();
15518   }
15519 
15520   // Check whether the receiver is captured by any of the arguments.
15521   const ObjCMethodDecl *MD = msg->getMethodDecl();
15522   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15523     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15524       // noescape blocks should not be retained by the method.
15525       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15526         continue;
15527       return diagnoseRetainCycle(*this, capturer, owner);
15528     }
15529   }
15530 }
15531 
15532 /// Check a property assign to see if it's likely to cause a retain cycle.
15533 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15534   RetainCycleOwner owner;
15535   if (!findRetainCycleOwner(*this, receiver, owner))
15536     return;
15537 
15538   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15539     diagnoseRetainCycle(*this, capturer, owner);
15540 }
15541 
15542 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15543   RetainCycleOwner Owner;
15544   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15545     return;
15546 
15547   // Because we don't have an expression for the variable, we have to set the
15548   // location explicitly here.
15549   Owner.Loc = Var->getLocation();
15550   Owner.Range = Var->getSourceRange();
15551 
15552   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
15553     diagnoseRetainCycle(*this, Capturer, Owner);
15554 }
15555 
15556 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
15557                                      Expr *RHS, bool isProperty) {
15558   // Check if RHS is an Objective-C object literal, which also can get
15559   // immediately zapped in a weak reference.  Note that we explicitly
15560   // allow ObjCStringLiterals, since those are designed to never really die.
15561   RHS = RHS->IgnoreParenImpCasts();
15562 
15563   // This enum needs to match with the 'select' in
15564   // warn_objc_arc_literal_assign (off-by-1).
15565   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
15566   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
15567     return false;
15568 
15569   S.Diag(Loc, diag::warn_arc_literal_assign)
15570     << (unsigned) Kind
15571     << (isProperty ? 0 : 1)
15572     << RHS->getSourceRange();
15573 
15574   return true;
15575 }
15576 
15577 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
15578                                     Qualifiers::ObjCLifetime LT,
15579                                     Expr *RHS, bool isProperty) {
15580   // Strip off any implicit cast added to get to the one ARC-specific.
15581   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15582     if (cast->getCastKind() == CK_ARCConsumeObject) {
15583       S.Diag(Loc, diag::warn_arc_retained_assign)
15584         << (LT == Qualifiers::OCL_ExplicitNone)
15585         << (isProperty ? 0 : 1)
15586         << RHS->getSourceRange();
15587       return true;
15588     }
15589     RHS = cast->getSubExpr();
15590   }
15591 
15592   if (LT == Qualifiers::OCL_Weak &&
15593       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
15594     return true;
15595 
15596   return false;
15597 }
15598 
15599 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
15600                               QualType LHS, Expr *RHS) {
15601   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
15602 
15603   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
15604     return false;
15605 
15606   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
15607     return true;
15608 
15609   return false;
15610 }
15611 
15612 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
15613                               Expr *LHS, Expr *RHS) {
15614   QualType LHSType;
15615   // PropertyRef on LHS type need be directly obtained from
15616   // its declaration as it has a PseudoType.
15617   ObjCPropertyRefExpr *PRE
15618     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
15619   if (PRE && !PRE->isImplicitProperty()) {
15620     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15621     if (PD)
15622       LHSType = PD->getType();
15623   }
15624 
15625   if (LHSType.isNull())
15626     LHSType = LHS->getType();
15627 
15628   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
15629 
15630   if (LT == Qualifiers::OCL_Weak) {
15631     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
15632       getCurFunction()->markSafeWeakUse(LHS);
15633   }
15634 
15635   if (checkUnsafeAssigns(Loc, LHSType, RHS))
15636     return;
15637 
15638   // FIXME. Check for other life times.
15639   if (LT != Qualifiers::OCL_None)
15640     return;
15641 
15642   if (PRE) {
15643     if (PRE->isImplicitProperty())
15644       return;
15645     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15646     if (!PD)
15647       return;
15648 
15649     unsigned Attributes = PD->getPropertyAttributes();
15650     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15651       // when 'assign' attribute was not explicitly specified
15652       // by user, ignore it and rely on property type itself
15653       // for lifetime info.
15654       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15655       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15656           LHSType->isObjCRetainableType())
15657         return;
15658 
15659       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15660         if (cast->getCastKind() == CK_ARCConsumeObject) {
15661           Diag(Loc, diag::warn_arc_retained_property_assign)
15662           << RHS->getSourceRange();
15663           return;
15664         }
15665         RHS = cast->getSubExpr();
15666       }
15667     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15668       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15669         return;
15670     }
15671   }
15672 }
15673 
15674 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15675 
15676 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15677                                         SourceLocation StmtLoc,
15678                                         const NullStmt *Body) {
15679   // Do not warn if the body is a macro that expands to nothing, e.g:
15680   //
15681   // #define CALL(x)
15682   // if (condition)
15683   //   CALL(0);
15684   if (Body->hasLeadingEmptyMacro())
15685     return false;
15686 
15687   // Get line numbers of statement and body.
15688   bool StmtLineInvalid;
15689   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15690                                                       &StmtLineInvalid);
15691   if (StmtLineInvalid)
15692     return false;
15693 
15694   bool BodyLineInvalid;
15695   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15696                                                       &BodyLineInvalid);
15697   if (BodyLineInvalid)
15698     return false;
15699 
15700   // Warn if null statement and body are on the same line.
15701   if (StmtLine != BodyLine)
15702     return false;
15703 
15704   return true;
15705 }
15706 
15707 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15708                                  const Stmt *Body,
15709                                  unsigned DiagID) {
15710   // Since this is a syntactic check, don't emit diagnostic for template
15711   // instantiations, this just adds noise.
15712   if (CurrentInstantiationScope)
15713     return;
15714 
15715   // The body should be a null statement.
15716   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15717   if (!NBody)
15718     return;
15719 
15720   // Do the usual checks.
15721   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15722     return;
15723 
15724   Diag(NBody->getSemiLoc(), DiagID);
15725   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15726 }
15727 
15728 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15729                                  const Stmt *PossibleBody) {
15730   assert(!CurrentInstantiationScope); // Ensured by caller
15731 
15732   SourceLocation StmtLoc;
15733   const Stmt *Body;
15734   unsigned DiagID;
15735   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15736     StmtLoc = FS->getRParenLoc();
15737     Body = FS->getBody();
15738     DiagID = diag::warn_empty_for_body;
15739   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15740     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15741     Body = WS->getBody();
15742     DiagID = diag::warn_empty_while_body;
15743   } else
15744     return; // Neither `for' nor `while'.
15745 
15746   // The body should be a null statement.
15747   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15748   if (!NBody)
15749     return;
15750 
15751   // Skip expensive checks if diagnostic is disabled.
15752   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15753     return;
15754 
15755   // Do the usual checks.
15756   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15757     return;
15758 
15759   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15760   // noise level low, emit diagnostics only if for/while is followed by a
15761   // CompoundStmt, e.g.:
15762   //    for (int i = 0; i < n; i++);
15763   //    {
15764   //      a(i);
15765   //    }
15766   // or if for/while is followed by a statement with more indentation
15767   // than for/while itself:
15768   //    for (int i = 0; i < n; i++);
15769   //      a(i);
15770   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15771   if (!ProbableTypo) {
15772     bool BodyColInvalid;
15773     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15774         PossibleBody->getBeginLoc(), &BodyColInvalid);
15775     if (BodyColInvalid)
15776       return;
15777 
15778     bool StmtColInvalid;
15779     unsigned StmtCol =
15780         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15781     if (StmtColInvalid)
15782       return;
15783 
15784     if (BodyCol > StmtCol)
15785       ProbableTypo = true;
15786   }
15787 
15788   if (ProbableTypo) {
15789     Diag(NBody->getSemiLoc(), DiagID);
15790     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15791   }
15792 }
15793 
15794 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15795 
15796 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15797 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15798                              SourceLocation OpLoc) {
15799   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15800     return;
15801 
15802   if (inTemplateInstantiation())
15803     return;
15804 
15805   // Strip parens and casts away.
15806   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15807   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15808 
15809   // Check for a call expression
15810   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15811   if (!CE || CE->getNumArgs() != 1)
15812     return;
15813 
15814   // Check for a call to std::move
15815   if (!CE->isCallToStdMove())
15816     return;
15817 
15818   // Get argument from std::move
15819   RHSExpr = CE->getArg(0);
15820 
15821   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15822   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15823 
15824   // Two DeclRefExpr's, check that the decls are the same.
15825   if (LHSDeclRef && RHSDeclRef) {
15826     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15827       return;
15828     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15829         RHSDeclRef->getDecl()->getCanonicalDecl())
15830       return;
15831 
15832     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15833                                         << LHSExpr->getSourceRange()
15834                                         << RHSExpr->getSourceRange();
15835     return;
15836   }
15837 
15838   // Member variables require a different approach to check for self moves.
15839   // MemberExpr's are the same if every nested MemberExpr refers to the same
15840   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15841   // the base Expr's are CXXThisExpr's.
15842   const Expr *LHSBase = LHSExpr;
15843   const Expr *RHSBase = RHSExpr;
15844   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15845   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15846   if (!LHSME || !RHSME)
15847     return;
15848 
15849   while (LHSME && RHSME) {
15850     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15851         RHSME->getMemberDecl()->getCanonicalDecl())
15852       return;
15853 
15854     LHSBase = LHSME->getBase();
15855     RHSBase = RHSME->getBase();
15856     LHSME = dyn_cast<MemberExpr>(LHSBase);
15857     RHSME = dyn_cast<MemberExpr>(RHSBase);
15858   }
15859 
15860   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15861   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15862   if (LHSDeclRef && RHSDeclRef) {
15863     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15864       return;
15865     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15866         RHSDeclRef->getDecl()->getCanonicalDecl())
15867       return;
15868 
15869     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15870                                         << LHSExpr->getSourceRange()
15871                                         << RHSExpr->getSourceRange();
15872     return;
15873   }
15874 
15875   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15876     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15877                                         << LHSExpr->getSourceRange()
15878                                         << RHSExpr->getSourceRange();
15879 }
15880 
15881 //===--- Layout compatibility ----------------------------------------------//
15882 
15883 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15884 
15885 /// Check if two enumeration types are layout-compatible.
15886 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15887   // C++11 [dcl.enum] p8:
15888   // Two enumeration types are layout-compatible if they have the same
15889   // underlying type.
15890   return ED1->isComplete() && ED2->isComplete() &&
15891          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15892 }
15893 
15894 /// Check if two fields are layout-compatible.
15895 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15896                                FieldDecl *Field2) {
15897   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15898     return false;
15899 
15900   if (Field1->isBitField() != Field2->isBitField())
15901     return false;
15902 
15903   if (Field1->isBitField()) {
15904     // Make sure that the bit-fields are the same length.
15905     unsigned Bits1 = Field1->getBitWidthValue(C);
15906     unsigned Bits2 = Field2->getBitWidthValue(C);
15907 
15908     if (Bits1 != Bits2)
15909       return false;
15910   }
15911 
15912   return true;
15913 }
15914 
15915 /// Check if two standard-layout structs are layout-compatible.
15916 /// (C++11 [class.mem] p17)
15917 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15918                                      RecordDecl *RD2) {
15919   // If both records are C++ classes, check that base classes match.
15920   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15921     // If one of records is a CXXRecordDecl we are in C++ mode,
15922     // thus the other one is a CXXRecordDecl, too.
15923     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15924     // Check number of base classes.
15925     if (D1CXX->getNumBases() != D2CXX->getNumBases())
15926       return false;
15927 
15928     // Check the base classes.
15929     for (CXXRecordDecl::base_class_const_iterator
15930                Base1 = D1CXX->bases_begin(),
15931            BaseEnd1 = D1CXX->bases_end(),
15932               Base2 = D2CXX->bases_begin();
15933          Base1 != BaseEnd1;
15934          ++Base1, ++Base2) {
15935       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15936         return false;
15937     }
15938   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15939     // If only RD2 is a C++ class, it should have zero base classes.
15940     if (D2CXX->getNumBases() > 0)
15941       return false;
15942   }
15943 
15944   // Check the fields.
15945   RecordDecl::field_iterator Field2 = RD2->field_begin(),
15946                              Field2End = RD2->field_end(),
15947                              Field1 = RD1->field_begin(),
15948                              Field1End = RD1->field_end();
15949   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15950     if (!isLayoutCompatible(C, *Field1, *Field2))
15951       return false;
15952   }
15953   if (Field1 != Field1End || Field2 != Field2End)
15954     return false;
15955 
15956   return true;
15957 }
15958 
15959 /// Check if two standard-layout unions are layout-compatible.
15960 /// (C++11 [class.mem] p18)
15961 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15962                                     RecordDecl *RD2) {
15963   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15964   for (auto *Field2 : RD2->fields())
15965     UnmatchedFields.insert(Field2);
15966 
15967   for (auto *Field1 : RD1->fields()) {
15968     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15969         I = UnmatchedFields.begin(),
15970         E = UnmatchedFields.end();
15971 
15972     for ( ; I != E; ++I) {
15973       if (isLayoutCompatible(C, Field1, *I)) {
15974         bool Result = UnmatchedFields.erase(*I);
15975         (void) Result;
15976         assert(Result);
15977         break;
15978       }
15979     }
15980     if (I == E)
15981       return false;
15982   }
15983 
15984   return UnmatchedFields.empty();
15985 }
15986 
15987 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15988                                RecordDecl *RD2) {
15989   if (RD1->isUnion() != RD2->isUnion())
15990     return false;
15991 
15992   if (RD1->isUnion())
15993     return isLayoutCompatibleUnion(C, RD1, RD2);
15994   else
15995     return isLayoutCompatibleStruct(C, RD1, RD2);
15996 }
15997 
15998 /// Check if two types are layout-compatible in C++11 sense.
15999 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16000   if (T1.isNull() || T2.isNull())
16001     return false;
16002 
16003   // C++11 [basic.types] p11:
16004   // If two types T1 and T2 are the same type, then T1 and T2 are
16005   // layout-compatible types.
16006   if (C.hasSameType(T1, T2))
16007     return true;
16008 
16009   T1 = T1.getCanonicalType().getUnqualifiedType();
16010   T2 = T2.getCanonicalType().getUnqualifiedType();
16011 
16012   const Type::TypeClass TC1 = T1->getTypeClass();
16013   const Type::TypeClass TC2 = T2->getTypeClass();
16014 
16015   if (TC1 != TC2)
16016     return false;
16017 
16018   if (TC1 == Type::Enum) {
16019     return isLayoutCompatible(C,
16020                               cast<EnumType>(T1)->getDecl(),
16021                               cast<EnumType>(T2)->getDecl());
16022   } else if (TC1 == Type::Record) {
16023     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16024       return false;
16025 
16026     return isLayoutCompatible(C,
16027                               cast<RecordType>(T1)->getDecl(),
16028                               cast<RecordType>(T2)->getDecl());
16029   }
16030 
16031   return false;
16032 }
16033 
16034 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16035 
16036 /// Given a type tag expression find the type tag itself.
16037 ///
16038 /// \param TypeExpr Type tag expression, as it appears in user's code.
16039 ///
16040 /// \param VD Declaration of an identifier that appears in a type tag.
16041 ///
16042 /// \param MagicValue Type tag magic value.
16043 ///
16044 /// \param isConstantEvaluated whether the evalaution should be performed in
16045 
16046 /// constant context.
16047 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16048                             const ValueDecl **VD, uint64_t *MagicValue,
16049                             bool isConstantEvaluated) {
16050   while(true) {
16051     if (!TypeExpr)
16052       return false;
16053 
16054     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16055 
16056     switch (TypeExpr->getStmtClass()) {
16057     case Stmt::UnaryOperatorClass: {
16058       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16059       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16060         TypeExpr = UO->getSubExpr();
16061         continue;
16062       }
16063       return false;
16064     }
16065 
16066     case Stmt::DeclRefExprClass: {
16067       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16068       *VD = DRE->getDecl();
16069       return true;
16070     }
16071 
16072     case Stmt::IntegerLiteralClass: {
16073       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16074       llvm::APInt MagicValueAPInt = IL->getValue();
16075       if (MagicValueAPInt.getActiveBits() <= 64) {
16076         *MagicValue = MagicValueAPInt.getZExtValue();
16077         return true;
16078       } else
16079         return false;
16080     }
16081 
16082     case Stmt::BinaryConditionalOperatorClass:
16083     case Stmt::ConditionalOperatorClass: {
16084       const AbstractConditionalOperator *ACO =
16085           cast<AbstractConditionalOperator>(TypeExpr);
16086       bool Result;
16087       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16088                                                      isConstantEvaluated)) {
16089         if (Result)
16090           TypeExpr = ACO->getTrueExpr();
16091         else
16092           TypeExpr = ACO->getFalseExpr();
16093         continue;
16094       }
16095       return false;
16096     }
16097 
16098     case Stmt::BinaryOperatorClass: {
16099       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16100       if (BO->getOpcode() == BO_Comma) {
16101         TypeExpr = BO->getRHS();
16102         continue;
16103       }
16104       return false;
16105     }
16106 
16107     default:
16108       return false;
16109     }
16110   }
16111 }
16112 
16113 /// Retrieve the C type corresponding to type tag TypeExpr.
16114 ///
16115 /// \param TypeExpr Expression that specifies a type tag.
16116 ///
16117 /// \param MagicValues Registered magic values.
16118 ///
16119 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16120 ///        kind.
16121 ///
16122 /// \param TypeInfo Information about the corresponding C type.
16123 ///
16124 /// \param isConstantEvaluated whether the evalaution should be performed in
16125 /// constant context.
16126 ///
16127 /// \returns true if the corresponding C type was found.
16128 static bool GetMatchingCType(
16129     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16130     const ASTContext &Ctx,
16131     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16132         *MagicValues,
16133     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16134     bool isConstantEvaluated) {
16135   FoundWrongKind = false;
16136 
16137   // Variable declaration that has type_tag_for_datatype attribute.
16138   const ValueDecl *VD = nullptr;
16139 
16140   uint64_t MagicValue;
16141 
16142   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16143     return false;
16144 
16145   if (VD) {
16146     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16147       if (I->getArgumentKind() != ArgumentKind) {
16148         FoundWrongKind = true;
16149         return false;
16150       }
16151       TypeInfo.Type = I->getMatchingCType();
16152       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16153       TypeInfo.MustBeNull = I->getMustBeNull();
16154       return true;
16155     }
16156     return false;
16157   }
16158 
16159   if (!MagicValues)
16160     return false;
16161 
16162   llvm::DenseMap<Sema::TypeTagMagicValue,
16163                  Sema::TypeTagData>::const_iterator I =
16164       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16165   if (I == MagicValues->end())
16166     return false;
16167 
16168   TypeInfo = I->second;
16169   return true;
16170 }
16171 
16172 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16173                                       uint64_t MagicValue, QualType Type,
16174                                       bool LayoutCompatible,
16175                                       bool MustBeNull) {
16176   if (!TypeTagForDatatypeMagicValues)
16177     TypeTagForDatatypeMagicValues.reset(
16178         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16179 
16180   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16181   (*TypeTagForDatatypeMagicValues)[Magic] =
16182       TypeTagData(Type, LayoutCompatible, MustBeNull);
16183 }
16184 
16185 static bool IsSameCharType(QualType T1, QualType T2) {
16186   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16187   if (!BT1)
16188     return false;
16189 
16190   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16191   if (!BT2)
16192     return false;
16193 
16194   BuiltinType::Kind T1Kind = BT1->getKind();
16195   BuiltinType::Kind T2Kind = BT2->getKind();
16196 
16197   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
16198          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
16199          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16200          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16201 }
16202 
16203 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16204                                     const ArrayRef<const Expr *> ExprArgs,
16205                                     SourceLocation CallSiteLoc) {
16206   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16207   bool IsPointerAttr = Attr->getIsPointer();
16208 
16209   // Retrieve the argument representing the 'type_tag'.
16210   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16211   if (TypeTagIdxAST >= ExprArgs.size()) {
16212     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16213         << 0 << Attr->getTypeTagIdx().getSourceIndex();
16214     return;
16215   }
16216   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16217   bool FoundWrongKind;
16218   TypeTagData TypeInfo;
16219   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16220                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16221                         TypeInfo, isConstantEvaluated())) {
16222     if (FoundWrongKind)
16223       Diag(TypeTagExpr->getExprLoc(),
16224            diag::warn_type_tag_for_datatype_wrong_kind)
16225         << TypeTagExpr->getSourceRange();
16226     return;
16227   }
16228 
16229   // Retrieve the argument representing the 'arg_idx'.
16230   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16231   if (ArgumentIdxAST >= ExprArgs.size()) {
16232     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16233         << 1 << Attr->getArgumentIdx().getSourceIndex();
16234     return;
16235   }
16236   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16237   if (IsPointerAttr) {
16238     // Skip implicit cast of pointer to `void *' (as a function argument).
16239     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16240       if (ICE->getType()->isVoidPointerType() &&
16241           ICE->getCastKind() == CK_BitCast)
16242         ArgumentExpr = ICE->getSubExpr();
16243   }
16244   QualType ArgumentType = ArgumentExpr->getType();
16245 
16246   // Passing a `void*' pointer shouldn't trigger a warning.
16247   if (IsPointerAttr && ArgumentType->isVoidPointerType())
16248     return;
16249 
16250   if (TypeInfo.MustBeNull) {
16251     // Type tag with matching void type requires a null pointer.
16252     if (!ArgumentExpr->isNullPointerConstant(Context,
16253                                              Expr::NPC_ValueDependentIsNotNull)) {
16254       Diag(ArgumentExpr->getExprLoc(),
16255            diag::warn_type_safety_null_pointer_required)
16256           << ArgumentKind->getName()
16257           << ArgumentExpr->getSourceRange()
16258           << TypeTagExpr->getSourceRange();
16259     }
16260     return;
16261   }
16262 
16263   QualType RequiredType = TypeInfo.Type;
16264   if (IsPointerAttr)
16265     RequiredType = Context.getPointerType(RequiredType);
16266 
16267   bool mismatch = false;
16268   if (!TypeInfo.LayoutCompatible) {
16269     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16270 
16271     // C++11 [basic.fundamental] p1:
16272     // Plain char, signed char, and unsigned char are three distinct types.
16273     //
16274     // But we treat plain `char' as equivalent to `signed char' or `unsigned
16275     // char' depending on the current char signedness mode.
16276     if (mismatch)
16277       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16278                                            RequiredType->getPointeeType())) ||
16279           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16280         mismatch = false;
16281   } else
16282     if (IsPointerAttr)
16283       mismatch = !isLayoutCompatible(Context,
16284                                      ArgumentType->getPointeeType(),
16285                                      RequiredType->getPointeeType());
16286     else
16287       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16288 
16289   if (mismatch)
16290     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16291         << ArgumentType << ArgumentKind
16292         << TypeInfo.LayoutCompatible << RequiredType
16293         << ArgumentExpr->getSourceRange()
16294         << TypeTagExpr->getSourceRange();
16295 }
16296 
16297 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16298                                          CharUnits Alignment) {
16299   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16300 }
16301 
16302 void Sema::DiagnoseMisalignedMembers() {
16303   for (MisalignedMember &m : MisalignedMembers) {
16304     const NamedDecl *ND = m.RD;
16305     if (ND->getName().empty()) {
16306       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16307         ND = TD;
16308     }
16309     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16310         << m.MD << ND << m.E->getSourceRange();
16311   }
16312   MisalignedMembers.clear();
16313 }
16314 
16315 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16316   E = E->IgnoreParens();
16317   if (!T->isPointerType() && !T->isIntegerType())
16318     return;
16319   if (isa<UnaryOperator>(E) &&
16320       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16321     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16322     if (isa<MemberExpr>(Op)) {
16323       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16324       if (MA != MisalignedMembers.end() &&
16325           (T->isIntegerType() ||
16326            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16327                                    Context.getTypeAlignInChars(
16328                                        T->getPointeeType()) <= MA->Alignment))))
16329         MisalignedMembers.erase(MA);
16330     }
16331   }
16332 }
16333 
16334 void Sema::RefersToMemberWithReducedAlignment(
16335     Expr *E,
16336     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16337         Action) {
16338   const auto *ME = dyn_cast<MemberExpr>(E);
16339   if (!ME)
16340     return;
16341 
16342   // No need to check expressions with an __unaligned-qualified type.
16343   if (E->getType().getQualifiers().hasUnaligned())
16344     return;
16345 
16346   // For a chain of MemberExpr like "a.b.c.d" this list
16347   // will keep FieldDecl's like [d, c, b].
16348   SmallVector<FieldDecl *, 4> ReverseMemberChain;
16349   const MemberExpr *TopME = nullptr;
16350   bool AnyIsPacked = false;
16351   do {
16352     QualType BaseType = ME->getBase()->getType();
16353     if (BaseType->isDependentType())
16354       return;
16355     if (ME->isArrow())
16356       BaseType = BaseType->getPointeeType();
16357     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16358     if (RD->isInvalidDecl())
16359       return;
16360 
16361     ValueDecl *MD = ME->getMemberDecl();
16362     auto *FD = dyn_cast<FieldDecl>(MD);
16363     // We do not care about non-data members.
16364     if (!FD || FD->isInvalidDecl())
16365       return;
16366 
16367     AnyIsPacked =
16368         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16369     ReverseMemberChain.push_back(FD);
16370 
16371     TopME = ME;
16372     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16373   } while (ME);
16374   assert(TopME && "We did not compute a topmost MemberExpr!");
16375 
16376   // Not the scope of this diagnostic.
16377   if (!AnyIsPacked)
16378     return;
16379 
16380   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16381   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16382   // TODO: The innermost base of the member expression may be too complicated.
16383   // For now, just disregard these cases. This is left for future
16384   // improvement.
16385   if (!DRE && !isa<CXXThisExpr>(TopBase))
16386       return;
16387 
16388   // Alignment expected by the whole expression.
16389   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16390 
16391   // No need to do anything else with this case.
16392   if (ExpectedAlignment.isOne())
16393     return;
16394 
16395   // Synthesize offset of the whole access.
16396   CharUnits Offset;
16397   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
16398        I++) {
16399     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
16400   }
16401 
16402   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16403   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16404       ReverseMemberChain.back()->getParent()->getTypeForDecl());
16405 
16406   // The base expression of the innermost MemberExpr may give
16407   // stronger guarantees than the class containing the member.
16408   if (DRE && !TopME->isArrow()) {
16409     const ValueDecl *VD = DRE->getDecl();
16410     if (!VD->getType()->isReferenceType())
16411       CompleteObjectAlignment =
16412           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16413   }
16414 
16415   // Check if the synthesized offset fulfills the alignment.
16416   if (Offset % ExpectedAlignment != 0 ||
16417       // It may fulfill the offset it but the effective alignment may still be
16418       // lower than the expected expression alignment.
16419       CompleteObjectAlignment < ExpectedAlignment) {
16420     // If this happens, we want to determine a sensible culprit of this.
16421     // Intuitively, watching the chain of member expressions from right to
16422     // left, we start with the required alignment (as required by the field
16423     // type) but some packed attribute in that chain has reduced the alignment.
16424     // It may happen that another packed structure increases it again. But if
16425     // we are here such increase has not been enough. So pointing the first
16426     // FieldDecl that either is packed or else its RecordDecl is,
16427     // seems reasonable.
16428     FieldDecl *FD = nullptr;
16429     CharUnits Alignment;
16430     for (FieldDecl *FDI : ReverseMemberChain) {
16431       if (FDI->hasAttr<PackedAttr>() ||
16432           FDI->getParent()->hasAttr<PackedAttr>()) {
16433         FD = FDI;
16434         Alignment = std::min(
16435             Context.getTypeAlignInChars(FD->getType()),
16436             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16437         break;
16438       }
16439     }
16440     assert(FD && "We did not find a packed FieldDecl!");
16441     Action(E, FD->getParent(), FD, Alignment);
16442   }
16443 }
16444 
16445 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16446   using namespace std::placeholders;
16447 
16448   RefersToMemberWithReducedAlignment(
16449       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16450                      _2, _3, _4));
16451 }
16452 
16453 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16454                                             ExprResult CallResult) {
16455   if (checkArgCount(*this, TheCall, 1))
16456     return ExprError();
16457 
16458   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16459   if (MatrixArg.isInvalid())
16460     return MatrixArg;
16461   Expr *Matrix = MatrixArg.get();
16462 
16463   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16464   if (!MType) {
16465     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
16466     return ExprError();
16467   }
16468 
16469   // Create returned matrix type by swapping rows and columns of the argument
16470   // matrix type.
16471   QualType ResultType = Context.getConstantMatrixType(
16472       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16473 
16474   // Change the return type to the type of the returned matrix.
16475   TheCall->setType(ResultType);
16476 
16477   // Update call argument to use the possibly converted matrix argument.
16478   TheCall->setArg(0, Matrix);
16479   return CallResult;
16480 }
16481 
16482 // Get and verify the matrix dimensions.
16483 static llvm::Optional<unsigned>
16484 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
16485   SourceLocation ErrorPos;
16486   Optional<llvm::APSInt> Value =
16487       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
16488   if (!Value) {
16489     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
16490         << Name;
16491     return {};
16492   }
16493   uint64_t Dim = Value->getZExtValue();
16494   if (!ConstantMatrixType::isDimensionValid(Dim)) {
16495     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
16496         << Name << ConstantMatrixType::getMaxElementsPerDimension();
16497     return {};
16498   }
16499   return Dim;
16500 }
16501 
16502 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
16503                                                   ExprResult CallResult) {
16504   if (!getLangOpts().MatrixTypes) {
16505     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
16506     return ExprError();
16507   }
16508 
16509   if (checkArgCount(*this, TheCall, 4))
16510     return ExprError();
16511 
16512   unsigned PtrArgIdx = 0;
16513   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16514   Expr *RowsExpr = TheCall->getArg(1);
16515   Expr *ColumnsExpr = TheCall->getArg(2);
16516   Expr *StrideExpr = TheCall->getArg(3);
16517 
16518   bool ArgError = false;
16519 
16520   // Check pointer argument.
16521   {
16522     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16523     if (PtrConv.isInvalid())
16524       return PtrConv;
16525     PtrExpr = PtrConv.get();
16526     TheCall->setArg(0, PtrExpr);
16527     if (PtrExpr->isTypeDependent()) {
16528       TheCall->setType(Context.DependentTy);
16529       return TheCall;
16530     }
16531   }
16532 
16533   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16534   QualType ElementTy;
16535   if (!PtrTy) {
16536     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16537         << PtrArgIdx + 1;
16538     ArgError = true;
16539   } else {
16540     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
16541 
16542     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
16543       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16544           << PtrArgIdx + 1;
16545       ArgError = true;
16546     }
16547   }
16548 
16549   // Apply default Lvalue conversions and convert the expression to size_t.
16550   auto ApplyArgumentConversions = [this](Expr *E) {
16551     ExprResult Conv = DefaultLvalueConversion(E);
16552     if (Conv.isInvalid())
16553       return Conv;
16554 
16555     return tryConvertExprToType(Conv.get(), Context.getSizeType());
16556   };
16557 
16558   // Apply conversion to row and column expressions.
16559   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
16560   if (!RowsConv.isInvalid()) {
16561     RowsExpr = RowsConv.get();
16562     TheCall->setArg(1, RowsExpr);
16563   } else
16564     RowsExpr = nullptr;
16565 
16566   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
16567   if (!ColumnsConv.isInvalid()) {
16568     ColumnsExpr = ColumnsConv.get();
16569     TheCall->setArg(2, ColumnsExpr);
16570   } else
16571     ColumnsExpr = nullptr;
16572 
16573   // If any any part of the result matrix type is still pending, just use
16574   // Context.DependentTy, until all parts are resolved.
16575   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
16576       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
16577     TheCall->setType(Context.DependentTy);
16578     return CallResult;
16579   }
16580 
16581   // Check row and column dimenions.
16582   llvm::Optional<unsigned> MaybeRows;
16583   if (RowsExpr)
16584     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
16585 
16586   llvm::Optional<unsigned> MaybeColumns;
16587   if (ColumnsExpr)
16588     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
16589 
16590   // Check stride argument.
16591   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
16592   if (StrideConv.isInvalid())
16593     return ExprError();
16594   StrideExpr = StrideConv.get();
16595   TheCall->setArg(3, StrideExpr);
16596 
16597   if (MaybeRows) {
16598     if (Optional<llvm::APSInt> Value =
16599             StrideExpr->getIntegerConstantExpr(Context)) {
16600       uint64_t Stride = Value->getZExtValue();
16601       if (Stride < *MaybeRows) {
16602         Diag(StrideExpr->getBeginLoc(),
16603              diag::err_builtin_matrix_stride_too_small);
16604         ArgError = true;
16605       }
16606     }
16607   }
16608 
16609   if (ArgError || !MaybeRows || !MaybeColumns)
16610     return ExprError();
16611 
16612   TheCall->setType(
16613       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
16614   return CallResult;
16615 }
16616 
16617 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
16618                                                    ExprResult CallResult) {
16619   if (checkArgCount(*this, TheCall, 3))
16620     return ExprError();
16621 
16622   unsigned PtrArgIdx = 1;
16623   Expr *MatrixExpr = TheCall->getArg(0);
16624   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16625   Expr *StrideExpr = TheCall->getArg(2);
16626 
16627   bool ArgError = false;
16628 
16629   {
16630     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
16631     if (MatrixConv.isInvalid())
16632       return MatrixConv;
16633     MatrixExpr = MatrixConv.get();
16634     TheCall->setArg(0, MatrixExpr);
16635   }
16636   if (MatrixExpr->isTypeDependent()) {
16637     TheCall->setType(Context.DependentTy);
16638     return TheCall;
16639   }
16640 
16641   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
16642   if (!MatrixTy) {
16643     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
16644     ArgError = true;
16645   }
16646 
16647   {
16648     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16649     if (PtrConv.isInvalid())
16650       return PtrConv;
16651     PtrExpr = PtrConv.get();
16652     TheCall->setArg(1, PtrExpr);
16653     if (PtrExpr->isTypeDependent()) {
16654       TheCall->setType(Context.DependentTy);
16655       return TheCall;
16656     }
16657   }
16658 
16659   // Check pointer argument.
16660   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16661   if (!PtrTy) {
16662     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16663         << PtrArgIdx + 1;
16664     ArgError = true;
16665   } else {
16666     QualType ElementTy = PtrTy->getPointeeType();
16667     if (ElementTy.isConstQualified()) {
16668       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16669       ArgError = true;
16670     }
16671     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16672     if (MatrixTy &&
16673         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16674       Diag(PtrExpr->getBeginLoc(),
16675            diag::err_builtin_matrix_pointer_arg_mismatch)
16676           << ElementTy << MatrixTy->getElementType();
16677       ArgError = true;
16678     }
16679   }
16680 
16681   // Apply default Lvalue conversions and convert the stride expression to
16682   // size_t.
16683   {
16684     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16685     if (StrideConv.isInvalid())
16686       return StrideConv;
16687 
16688     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16689     if (StrideConv.isInvalid())
16690       return StrideConv;
16691     StrideExpr = StrideConv.get();
16692     TheCall->setArg(2, StrideExpr);
16693   }
16694 
16695   // Check stride argument.
16696   if (MatrixTy) {
16697     if (Optional<llvm::APSInt> Value =
16698             StrideExpr->getIntegerConstantExpr(Context)) {
16699       uint64_t Stride = Value->getZExtValue();
16700       if (Stride < MatrixTy->getNumRows()) {
16701         Diag(StrideExpr->getBeginLoc(),
16702              diag::err_builtin_matrix_stride_too_small);
16703         ArgError = true;
16704       }
16705     }
16706   }
16707 
16708   if (ArgError)
16709     return ExprError();
16710 
16711   return CallResult;
16712 }
16713 
16714 /// \brief Enforce the bounds of a TCB
16715 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
16716 /// directly calls other functions in the same TCB as marked by the enforce_tcb
16717 /// and enforce_tcb_leaf attributes.
16718 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16719                                const FunctionDecl *Callee) {
16720   const FunctionDecl *Caller = getCurFunctionDecl();
16721 
16722   // Calls to builtins are not enforced.
16723   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16724       Callee->getBuiltinID() != 0)
16725     return;
16726 
16727   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16728   // all TCBs the callee is a part of.
16729   llvm::StringSet<> CalleeTCBs;
16730   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16731            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16732   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16733            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16734 
16735   // Go through the TCBs the caller is a part of and emit warnings if Caller
16736   // is in a TCB that the Callee is not.
16737   for_each(
16738       Caller->specific_attrs<EnforceTCBAttr>(),
16739       [&](const auto *A) {
16740         StringRef CallerTCB = A->getTCBName();
16741         if (CalleeTCBs.count(CallerTCB) == 0) {
16742           this->Diag(TheCall->getExprLoc(),
16743                      diag::warn_tcb_enforcement_violation) << Callee
16744                                                            << CallerTCB;
16745         }
16746       });
16747 }
16748