1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/AST/APValue.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/AttrIterator.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/ExprOpenMP.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/AST/UnresolvedSet.h"
38 #include "clang/Analysis/Analyses/FormatString.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSwitch.h"
79 #include "llvm/ADT/Triple.h"
80 #include "llvm/Support/AtomicOrdering.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/ConvertUTF.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/Locale.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstddef>
92 #include <cstdint>
93 #include <functional>
94 #include <limits>
95 #include <string>
96 #include <tuple>
97 #include <utility>
98 
99 using namespace clang;
100 using namespace sema;
101 
102 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
103                                                     unsigned ByteNo) const {
104   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
105                                Context.getTargetInfo());
106 }
107 
108 /// Checks that a call expression's argument count is the desired number.
109 /// This is useful when doing custom type-checking.  Returns true on error.
110 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
111   unsigned argCount = call->getNumArgs();
112   if (argCount == desiredArgCount) return false;
113 
114   if (argCount < desiredArgCount)
115     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
116         << 0 /*function call*/ << desiredArgCount << argCount
117         << call->getSourceRange();
118 
119   // Highlight all the excess arguments.
120   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
121                     call->getArg(argCount - 1)->getLocEnd());
122 
123   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
124     << 0 /*function call*/ << desiredArgCount << argCount
125     << call->getArg(1)->getSourceRange();
126 }
127 
128 /// Check that the first argument to __builtin_annotation is an integer
129 /// and the second argument is a non-wide string literal.
130 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
131   if (checkArgCount(S, TheCall, 2))
132     return true;
133 
134   // First argument should be an integer.
135   Expr *ValArg = TheCall->getArg(0);
136   QualType Ty = ValArg->getType();
137   if (!Ty->isIntegerType()) {
138     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
139       << ValArg->getSourceRange();
140     return true;
141   }
142 
143   // Second argument should be a constant string.
144   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
145   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
146   if (!Literal || !Literal->isAscii()) {
147     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
148       << StrArg->getSourceRange();
149     return true;
150   }
151 
152   TheCall->setType(Ty);
153   return false;
154 }
155 
156 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
157   // We need at least one argument.
158   if (TheCall->getNumArgs() < 1) {
159     S.Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
160         << 0 << 1 << TheCall->getNumArgs()
161         << TheCall->getCallee()->getSourceRange();
162     return true;
163   }
164 
165   // All arguments should be wide string literals.
166   for (Expr *Arg : TheCall->arguments()) {
167     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
168     if (!Literal || !Literal->isWide()) {
169       S.Diag(Arg->getLocStart(), diag::err_msvc_annotation_wide_str)
170           << Arg->getSourceRange();
171       return true;
172     }
173   }
174 
175   return false;
176 }
177 
178 /// Check that the argument to __builtin_addressof is a glvalue, and set the
179 /// result type to the corresponding pointer type.
180 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
181   if (checkArgCount(S, TheCall, 1))
182     return true;
183 
184   ExprResult Arg(TheCall->getArg(0));
185   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
186   if (ResultType.isNull())
187     return true;
188 
189   TheCall->setArg(0, Arg.get());
190   TheCall->setType(ResultType);
191   return false;
192 }
193 
194 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
195   if (checkArgCount(S, TheCall, 3))
196     return true;
197 
198   // First two arguments should be integers.
199   for (unsigned I = 0; I < 2; ++I) {
200     Expr *Arg = TheCall->getArg(I);
201     QualType Ty = Arg->getType();
202     if (!Ty->isIntegerType()) {
203       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_int)
204           << Ty << Arg->getSourceRange();
205       return true;
206     }
207   }
208 
209   // Third argument should be a pointer to a non-const integer.
210   // IRGen correctly handles volatile, restrict, and address spaces, and
211   // the other qualifiers aren't possible.
212   {
213     Expr *Arg = TheCall->getArg(2);
214     QualType Ty = Arg->getType();
215     const auto *PtrTy = Ty->getAs<PointerType>();
216     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
217           !PtrTy->getPointeeType().isConstQualified())) {
218       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_ptr_int)
219           << Ty << Arg->getSourceRange();
220       return true;
221     }
222   }
223 
224   return false;
225 }
226 
227 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
228 		                  CallExpr *TheCall, unsigned SizeIdx,
229                                   unsigned DstSizeIdx) {
230   if (TheCall->getNumArgs() <= SizeIdx ||
231       TheCall->getNumArgs() <= DstSizeIdx)
232     return;
233 
234   const Expr *SizeArg = TheCall->getArg(SizeIdx);
235   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
236 
237   llvm::APSInt Size, DstSize;
238 
239   // find out if both sizes are known at compile time
240   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
241       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
242     return;
243 
244   if (Size.ule(DstSize))
245     return;
246 
247   // confirmed overflow so generate the diagnostic.
248   IdentifierInfo *FnName = FDecl->getIdentifier();
249   SourceLocation SL = TheCall->getLocStart();
250   SourceRange SR = TheCall->getSourceRange();
251 
252   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
253 }
254 
255 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
256   if (checkArgCount(S, BuiltinCall, 2))
257     return true;
258 
259   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
260   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
261   Expr *Call = BuiltinCall->getArg(0);
262   Expr *Chain = BuiltinCall->getArg(1);
263 
264   if (Call->getStmtClass() != Stmt::CallExprClass) {
265     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
266         << Call->getSourceRange();
267     return true;
268   }
269 
270   auto CE = cast<CallExpr>(Call);
271   if (CE->getCallee()->getType()->isBlockPointerType()) {
272     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
273         << Call->getSourceRange();
274     return true;
275   }
276 
277   const Decl *TargetDecl = CE->getCalleeDecl();
278   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
279     if (FD->getBuiltinID()) {
280       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
281           << Call->getSourceRange();
282       return true;
283     }
284 
285   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
286     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
287         << Call->getSourceRange();
288     return true;
289   }
290 
291   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
292   if (ChainResult.isInvalid())
293     return true;
294   if (!ChainResult.get()->getType()->isPointerType()) {
295     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
296         << Chain->getSourceRange();
297     return true;
298   }
299 
300   QualType ReturnTy = CE->getCallReturnType(S.Context);
301   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
302   QualType BuiltinTy = S.Context.getFunctionType(
303       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
304   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
305 
306   Builtin =
307       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
308 
309   BuiltinCall->setType(CE->getType());
310   BuiltinCall->setValueKind(CE->getValueKind());
311   BuiltinCall->setObjectKind(CE->getObjectKind());
312   BuiltinCall->setCallee(Builtin);
313   BuiltinCall->setArg(1, ChainResult.get());
314 
315   return false;
316 }
317 
318 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
319                                      Scope::ScopeFlags NeededScopeFlags,
320                                      unsigned DiagID) {
321   // Scopes aren't available during instantiation. Fortunately, builtin
322   // functions cannot be template args so they cannot be formed through template
323   // instantiation. Therefore checking once during the parse is sufficient.
324   if (SemaRef.inTemplateInstantiation())
325     return false;
326 
327   Scope *S = SemaRef.getCurScope();
328   while (S && !S->isSEHExceptScope())
329     S = S->getParent();
330   if (!S || !(S->getFlags() & NeededScopeFlags)) {
331     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
332     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
333         << DRE->getDecl()->getIdentifier();
334     return true;
335   }
336 
337   return false;
338 }
339 
340 static inline bool isBlockPointer(Expr *Arg) {
341   return Arg->getType()->isBlockPointerType();
342 }
343 
344 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
345 /// void*, which is a requirement of device side enqueue.
346 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
347   const BlockPointerType *BPT =
348       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
349   ArrayRef<QualType> Params =
350       BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes();
351   unsigned ArgCounter = 0;
352   bool IllegalParams = false;
353   // Iterate through the block parameters until either one is found that is not
354   // a local void*, or the block is valid.
355   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
356        I != E; ++I, ++ArgCounter) {
357     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
358         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
359             LangAS::opencl_local) {
360       // Get the location of the error. If a block literal has been passed
361       // (BlockExpr) then we can point straight to the offending argument,
362       // else we just point to the variable reference.
363       SourceLocation ErrorLoc;
364       if (isa<BlockExpr>(BlockArg)) {
365         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
366         ErrorLoc = BD->getParamDecl(ArgCounter)->getLocStart();
367       } else if (isa<DeclRefExpr>(BlockArg)) {
368         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getLocStart();
369       }
370       S.Diag(ErrorLoc,
371              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
372       IllegalParams = true;
373     }
374   }
375 
376   return IllegalParams;
377 }
378 
379 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
380   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
381     S.Diag(Call->getLocStart(), diag::err_opencl_requires_extension)
382           << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
383     return true;
384   }
385   return false;
386 }
387 
388 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
389   if (checkArgCount(S, TheCall, 2))
390     return true;
391 
392   if (checkOpenCLSubgroupExt(S, TheCall))
393     return true;
394 
395   // First argument is an ndrange_t type.
396   Expr *NDRangeArg = TheCall->getArg(0);
397   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
398     S.Diag(NDRangeArg->getLocStart(),
399            diag::err_opencl_builtin_expected_type)
400         << TheCall->getDirectCallee() << "'ndrange_t'";
401     return true;
402   }
403 
404   Expr *BlockArg = TheCall->getArg(1);
405   if (!isBlockPointer(BlockArg)) {
406     S.Diag(BlockArg->getLocStart(),
407            diag::err_opencl_builtin_expected_type)
408         << TheCall->getDirectCallee() << "block";
409     return true;
410   }
411   return checkOpenCLBlockArgs(S, BlockArg);
412 }
413 
414 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
415 /// get_kernel_work_group_size
416 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
417 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
418   if (checkArgCount(S, TheCall, 1))
419     return true;
420 
421   Expr *BlockArg = TheCall->getArg(0);
422   if (!isBlockPointer(BlockArg)) {
423     S.Diag(BlockArg->getLocStart(),
424            diag::err_opencl_builtin_expected_type)
425         << TheCall->getDirectCallee() << "block";
426     return true;
427   }
428   return checkOpenCLBlockArgs(S, BlockArg);
429 }
430 
431 /// Diagnose integer type and any valid implicit conversion to it.
432 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
433                                       const QualType &IntType);
434 
435 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
436                                             unsigned Start, unsigned End) {
437   bool IllegalParams = false;
438   for (unsigned I = Start; I <= End; ++I)
439     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
440                                               S.Context.getSizeType());
441   return IllegalParams;
442 }
443 
444 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
445 /// 'local void*' parameter of passed block.
446 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
447                                            Expr *BlockArg,
448                                            unsigned NumNonVarArgs) {
449   const BlockPointerType *BPT =
450       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
451   unsigned NumBlockParams =
452       BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams();
453   unsigned TotalNumArgs = TheCall->getNumArgs();
454 
455   // For each argument passed to the block, a corresponding uint needs to
456   // be passed to describe the size of the local memory.
457   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
458     S.Diag(TheCall->getLocStart(),
459            diag::err_opencl_enqueue_kernel_local_size_args);
460     return true;
461   }
462 
463   // Check that the sizes of the local memory are specified by integers.
464   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
465                                          TotalNumArgs - 1);
466 }
467 
468 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
469 /// overload formats specified in Table 6.13.17.1.
470 /// int enqueue_kernel(queue_t queue,
471 ///                    kernel_enqueue_flags_t flags,
472 ///                    const ndrange_t ndrange,
473 ///                    void (^block)(void))
474 /// int enqueue_kernel(queue_t queue,
475 ///                    kernel_enqueue_flags_t flags,
476 ///                    const ndrange_t ndrange,
477 ///                    uint num_events_in_wait_list,
478 ///                    clk_event_t *event_wait_list,
479 ///                    clk_event_t *event_ret,
480 ///                    void (^block)(void))
481 /// int enqueue_kernel(queue_t queue,
482 ///                    kernel_enqueue_flags_t flags,
483 ///                    const ndrange_t ndrange,
484 ///                    void (^block)(local void*, ...),
485 ///                    uint size0, ...)
486 /// int enqueue_kernel(queue_t queue,
487 ///                    kernel_enqueue_flags_t flags,
488 ///                    const ndrange_t ndrange,
489 ///                    uint num_events_in_wait_list,
490 ///                    clk_event_t *event_wait_list,
491 ///                    clk_event_t *event_ret,
492 ///                    void (^block)(local void*, ...),
493 ///                    uint size0, ...)
494 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
495   unsigned NumArgs = TheCall->getNumArgs();
496 
497   if (NumArgs < 4) {
498     S.Diag(TheCall->getLocStart(), diag::err_typecheck_call_too_few_args);
499     return true;
500   }
501 
502   Expr *Arg0 = TheCall->getArg(0);
503   Expr *Arg1 = TheCall->getArg(1);
504   Expr *Arg2 = TheCall->getArg(2);
505   Expr *Arg3 = TheCall->getArg(3);
506 
507   // First argument always needs to be a queue_t type.
508   if (!Arg0->getType()->isQueueT()) {
509     S.Diag(TheCall->getArg(0)->getLocStart(),
510            diag::err_opencl_builtin_expected_type)
511         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
512     return true;
513   }
514 
515   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
516   if (!Arg1->getType()->isIntegerType()) {
517     S.Diag(TheCall->getArg(1)->getLocStart(),
518            diag::err_opencl_builtin_expected_type)
519         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
520     return true;
521   }
522 
523   // Third argument is always an ndrange_t type.
524   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
525     S.Diag(TheCall->getArg(2)->getLocStart(),
526            diag::err_opencl_builtin_expected_type)
527         << TheCall->getDirectCallee() << "'ndrange_t'";
528     return true;
529   }
530 
531   // With four arguments, there is only one form that the function could be
532   // called in: no events and no variable arguments.
533   if (NumArgs == 4) {
534     // check that the last argument is the right block type.
535     if (!isBlockPointer(Arg3)) {
536       S.Diag(Arg3->getLocStart(), diag::err_opencl_builtin_expected_type)
537           << TheCall->getDirectCallee() << "block";
538       return true;
539     }
540     // we have a block type, check the prototype
541     const BlockPointerType *BPT =
542         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
543     if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) {
544       S.Diag(Arg3->getLocStart(),
545              diag::err_opencl_enqueue_kernel_blocks_no_args);
546       return true;
547     }
548     return false;
549   }
550   // we can have block + varargs.
551   if (isBlockPointer(Arg3))
552     return (checkOpenCLBlockArgs(S, Arg3) ||
553             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
554   // last two cases with either exactly 7 args or 7 args and varargs.
555   if (NumArgs >= 7) {
556     // check common block argument.
557     Expr *Arg6 = TheCall->getArg(6);
558     if (!isBlockPointer(Arg6)) {
559       S.Diag(Arg6->getLocStart(), diag::err_opencl_builtin_expected_type)
560           << TheCall->getDirectCallee() << "block";
561       return true;
562     }
563     if (checkOpenCLBlockArgs(S, Arg6))
564       return true;
565 
566     // Forth argument has to be any integer type.
567     if (!Arg3->getType()->isIntegerType()) {
568       S.Diag(TheCall->getArg(3)->getLocStart(),
569              diag::err_opencl_builtin_expected_type)
570           << TheCall->getDirectCallee() << "integer";
571       return true;
572     }
573     // check remaining common arguments.
574     Expr *Arg4 = TheCall->getArg(4);
575     Expr *Arg5 = TheCall->getArg(5);
576 
577     // Fifth argument is always passed as a pointer to clk_event_t.
578     if (!Arg4->isNullPointerConstant(S.Context,
579                                      Expr::NPC_ValueDependentIsNotNull) &&
580         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
581       S.Diag(TheCall->getArg(4)->getLocStart(),
582              diag::err_opencl_builtin_expected_type)
583           << TheCall->getDirectCallee()
584           << S.Context.getPointerType(S.Context.OCLClkEventTy);
585       return true;
586     }
587 
588     // Sixth argument is always passed as a pointer to clk_event_t.
589     if (!Arg5->isNullPointerConstant(S.Context,
590                                      Expr::NPC_ValueDependentIsNotNull) &&
591         !(Arg5->getType()->isPointerType() &&
592           Arg5->getType()->getPointeeType()->isClkEventT())) {
593       S.Diag(TheCall->getArg(5)->getLocStart(),
594              diag::err_opencl_builtin_expected_type)
595           << TheCall->getDirectCallee()
596           << S.Context.getPointerType(S.Context.OCLClkEventTy);
597       return true;
598     }
599 
600     if (NumArgs == 7)
601       return false;
602 
603     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
604   }
605 
606   // None of the specific case has been detected, give generic error
607   S.Diag(TheCall->getLocStart(),
608          diag::err_opencl_enqueue_kernel_incorrect_args);
609   return true;
610 }
611 
612 /// Returns OpenCL access qual.
613 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
614     return D->getAttr<OpenCLAccessAttr>();
615 }
616 
617 /// Returns true if pipe element type is different from the pointer.
618 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
619   const Expr *Arg0 = Call->getArg(0);
620   // First argument type should always be pipe.
621   if (!Arg0->getType()->isPipeType()) {
622     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
623         << Call->getDirectCallee() << Arg0->getSourceRange();
624     return true;
625   }
626   OpenCLAccessAttr *AccessQual =
627       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
628   // Validates the access qualifier is compatible with the call.
629   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
630   // read_only and write_only, and assumed to be read_only if no qualifier is
631   // specified.
632   switch (Call->getDirectCallee()->getBuiltinID()) {
633   case Builtin::BIread_pipe:
634   case Builtin::BIreserve_read_pipe:
635   case Builtin::BIcommit_read_pipe:
636   case Builtin::BIwork_group_reserve_read_pipe:
637   case Builtin::BIsub_group_reserve_read_pipe:
638   case Builtin::BIwork_group_commit_read_pipe:
639   case Builtin::BIsub_group_commit_read_pipe:
640     if (!(!AccessQual || AccessQual->isReadOnly())) {
641       S.Diag(Arg0->getLocStart(),
642              diag::err_opencl_builtin_pipe_invalid_access_modifier)
643           << "read_only" << Arg0->getSourceRange();
644       return true;
645     }
646     break;
647   case Builtin::BIwrite_pipe:
648   case Builtin::BIreserve_write_pipe:
649   case Builtin::BIcommit_write_pipe:
650   case Builtin::BIwork_group_reserve_write_pipe:
651   case Builtin::BIsub_group_reserve_write_pipe:
652   case Builtin::BIwork_group_commit_write_pipe:
653   case Builtin::BIsub_group_commit_write_pipe:
654     if (!(AccessQual && AccessQual->isWriteOnly())) {
655       S.Diag(Arg0->getLocStart(),
656              diag::err_opencl_builtin_pipe_invalid_access_modifier)
657           << "write_only" << Arg0->getSourceRange();
658       return true;
659     }
660     break;
661   default:
662     break;
663   }
664   return false;
665 }
666 
667 /// Returns true if pipe element type is different from the pointer.
668 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
669   const Expr *Arg0 = Call->getArg(0);
670   const Expr *ArgIdx = Call->getArg(Idx);
671   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
672   const QualType EltTy = PipeTy->getElementType();
673   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
674   // The Idx argument should be a pointer and the type of the pointer and
675   // the type of pipe element should also be the same.
676   if (!ArgTy ||
677       !S.Context.hasSameType(
678           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
679     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
680         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
681         << ArgIdx->getType() << ArgIdx->getSourceRange();
682     return true;
683   }
684   return false;
685 }
686 
687 // Performs semantic analysis for the read/write_pipe call.
688 // \param S Reference to the semantic analyzer.
689 // \param Call A pointer to the builtin call.
690 // \return True if a semantic error has been found, false otherwise.
691 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
692   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
693   // functions have two forms.
694   switch (Call->getNumArgs()) {
695   case 2:
696     if (checkOpenCLPipeArg(S, Call))
697       return true;
698     // The call with 2 arguments should be
699     // read/write_pipe(pipe T, T*).
700     // Check packet type T.
701     if (checkOpenCLPipePacketType(S, Call, 1))
702       return true;
703     break;
704 
705   case 4: {
706     if (checkOpenCLPipeArg(S, Call))
707       return true;
708     // The call with 4 arguments should be
709     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
710     // Check reserve_id_t.
711     if (!Call->getArg(1)->getType()->isReserveIDT()) {
712       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
713           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
714           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
715       return true;
716     }
717 
718     // Check the index.
719     const Expr *Arg2 = Call->getArg(2);
720     if (!Arg2->getType()->isIntegerType() &&
721         !Arg2->getType()->isUnsignedIntegerType()) {
722       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
723           << Call->getDirectCallee() << S.Context.UnsignedIntTy
724           << Arg2->getType() << Arg2->getSourceRange();
725       return true;
726     }
727 
728     // Check packet type T.
729     if (checkOpenCLPipePacketType(S, Call, 3))
730       return true;
731   } break;
732   default:
733     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_arg_num)
734         << Call->getDirectCallee() << Call->getSourceRange();
735     return true;
736   }
737 
738   return false;
739 }
740 
741 // Performs a semantic analysis on the {work_group_/sub_group_
742 //        /_}reserve_{read/write}_pipe
743 // \param S Reference to the semantic analyzer.
744 // \param Call The call to the builtin function to be analyzed.
745 // \return True if a semantic error was found, false otherwise.
746 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
747   if (checkArgCount(S, Call, 2))
748     return true;
749 
750   if (checkOpenCLPipeArg(S, Call))
751     return true;
752 
753   // Check the reserve size.
754   if (!Call->getArg(1)->getType()->isIntegerType() &&
755       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
756     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
757         << Call->getDirectCallee() << S.Context.UnsignedIntTy
758         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
759     return true;
760   }
761 
762   // Since return type of reserve_read/write_pipe built-in function is
763   // reserve_id_t, which is not defined in the builtin def file , we used int
764   // as return type and need to override the return type of these functions.
765   Call->setType(S.Context.OCLReserveIDTy);
766 
767   return false;
768 }
769 
770 // Performs a semantic analysis on {work_group_/sub_group_
771 //        /_}commit_{read/write}_pipe
772 // \param S Reference to the semantic analyzer.
773 // \param Call The call to the builtin function to be analyzed.
774 // \return True if a semantic error was found, false otherwise.
775 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
776   if (checkArgCount(S, Call, 2))
777     return true;
778 
779   if (checkOpenCLPipeArg(S, Call))
780     return true;
781 
782   // Check reserve_id_t.
783   if (!Call->getArg(1)->getType()->isReserveIDT()) {
784     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
785         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
786         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
787     return true;
788   }
789 
790   return false;
791 }
792 
793 // Performs a semantic analysis on the call to built-in Pipe
794 //        Query Functions.
795 // \param S Reference to the semantic analyzer.
796 // \param Call The call to the builtin function to be analyzed.
797 // \return True if a semantic error was found, false otherwise.
798 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
799   if (checkArgCount(S, Call, 1))
800     return true;
801 
802   if (!Call->getArg(0)->getType()->isPipeType()) {
803     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
804         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
805     return true;
806   }
807 
808   return false;
809 }
810 
811 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
812 // Performs semantic analysis for the to_global/local/private call.
813 // \param S Reference to the semantic analyzer.
814 // \param BuiltinID ID of the builtin function.
815 // \param Call A pointer to the builtin call.
816 // \return True if a semantic error has been found, false otherwise.
817 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
818                                     CallExpr *Call) {
819   if (Call->getNumArgs() != 1) {
820     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_arg_num)
821         << Call->getDirectCallee() << Call->getSourceRange();
822     return true;
823   }
824 
825   auto RT = Call->getArg(0)->getType();
826   if (!RT->isPointerType() || RT->getPointeeType()
827       .getAddressSpace() == LangAS::opencl_constant) {
828     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_invalid_arg)
829         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
830     return true;
831   }
832 
833   RT = RT->getPointeeType();
834   auto Qual = RT.getQualifiers();
835   switch (BuiltinID) {
836   case Builtin::BIto_global:
837     Qual.setAddressSpace(LangAS::opencl_global);
838     break;
839   case Builtin::BIto_local:
840     Qual.setAddressSpace(LangAS::opencl_local);
841     break;
842   case Builtin::BIto_private:
843     Qual.setAddressSpace(LangAS::opencl_private);
844     break;
845   default:
846     llvm_unreachable("Invalid builtin function");
847   }
848   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
849       RT.getUnqualifiedType(), Qual)));
850 
851   return false;
852 }
853 
854 ExprResult
855 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
856                                CallExpr *TheCall) {
857   ExprResult TheCallResult(TheCall);
858 
859   // Find out if any arguments are required to be integer constant expressions.
860   unsigned ICEArguments = 0;
861   ASTContext::GetBuiltinTypeError Error;
862   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
863   if (Error != ASTContext::GE_None)
864     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
865 
866   // If any arguments are required to be ICE's, check and diagnose.
867   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
868     // Skip arguments not required to be ICE's.
869     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
870 
871     llvm::APSInt Result;
872     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
873       return true;
874     ICEArguments &= ~(1 << ArgNo);
875   }
876 
877   switch (BuiltinID) {
878   case Builtin::BI__builtin___CFStringMakeConstantString:
879     assert(TheCall->getNumArgs() == 1 &&
880            "Wrong # arguments to builtin CFStringMakeConstantString");
881     if (CheckObjCString(TheCall->getArg(0)))
882       return ExprError();
883     break;
884   case Builtin::BI__builtin_ms_va_start:
885   case Builtin::BI__builtin_stdarg_start:
886   case Builtin::BI__builtin_va_start:
887     if (SemaBuiltinVAStart(BuiltinID, TheCall))
888       return ExprError();
889     break;
890   case Builtin::BI__va_start: {
891     switch (Context.getTargetInfo().getTriple().getArch()) {
892     case llvm::Triple::arm:
893     case llvm::Triple::thumb:
894       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
895         return ExprError();
896       break;
897     default:
898       if (SemaBuiltinVAStart(BuiltinID, TheCall))
899         return ExprError();
900       break;
901     }
902     break;
903   }
904   case Builtin::BI__builtin_isgreater:
905   case Builtin::BI__builtin_isgreaterequal:
906   case Builtin::BI__builtin_isless:
907   case Builtin::BI__builtin_islessequal:
908   case Builtin::BI__builtin_islessgreater:
909   case Builtin::BI__builtin_isunordered:
910     if (SemaBuiltinUnorderedCompare(TheCall))
911       return ExprError();
912     break;
913   case Builtin::BI__builtin_fpclassify:
914     if (SemaBuiltinFPClassification(TheCall, 6))
915       return ExprError();
916     break;
917   case Builtin::BI__builtin_isfinite:
918   case Builtin::BI__builtin_isinf:
919   case Builtin::BI__builtin_isinf_sign:
920   case Builtin::BI__builtin_isnan:
921   case Builtin::BI__builtin_isnormal:
922     if (SemaBuiltinFPClassification(TheCall, 1))
923       return ExprError();
924     break;
925   case Builtin::BI__builtin_shufflevector:
926     return SemaBuiltinShuffleVector(TheCall);
927     // TheCall will be freed by the smart pointer here, but that's fine, since
928     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
929   case Builtin::BI__builtin_prefetch:
930     if (SemaBuiltinPrefetch(TheCall))
931       return ExprError();
932     break;
933   case Builtin::BI__builtin_alloca_with_align:
934     if (SemaBuiltinAllocaWithAlign(TheCall))
935       return ExprError();
936     break;
937   case Builtin::BI__assume:
938   case Builtin::BI__builtin_assume:
939     if (SemaBuiltinAssume(TheCall))
940       return ExprError();
941     break;
942   case Builtin::BI__builtin_assume_aligned:
943     if (SemaBuiltinAssumeAligned(TheCall))
944       return ExprError();
945     break;
946   case Builtin::BI__builtin_object_size:
947     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
948       return ExprError();
949     break;
950   case Builtin::BI__builtin_longjmp:
951     if (SemaBuiltinLongjmp(TheCall))
952       return ExprError();
953     break;
954   case Builtin::BI__builtin_setjmp:
955     if (SemaBuiltinSetjmp(TheCall))
956       return ExprError();
957     break;
958   case Builtin::BI_setjmp:
959   case Builtin::BI_setjmpex:
960     if (checkArgCount(*this, TheCall, 1))
961       return true;
962     break;
963   case Builtin::BI__builtin_classify_type:
964     if (checkArgCount(*this, TheCall, 1)) return true;
965     TheCall->setType(Context.IntTy);
966     break;
967   case Builtin::BI__builtin_constant_p:
968     if (checkArgCount(*this, TheCall, 1)) return true;
969     TheCall->setType(Context.IntTy);
970     break;
971   case Builtin::BI__sync_fetch_and_add:
972   case Builtin::BI__sync_fetch_and_add_1:
973   case Builtin::BI__sync_fetch_and_add_2:
974   case Builtin::BI__sync_fetch_and_add_4:
975   case Builtin::BI__sync_fetch_and_add_8:
976   case Builtin::BI__sync_fetch_and_add_16:
977   case Builtin::BI__sync_fetch_and_sub:
978   case Builtin::BI__sync_fetch_and_sub_1:
979   case Builtin::BI__sync_fetch_and_sub_2:
980   case Builtin::BI__sync_fetch_and_sub_4:
981   case Builtin::BI__sync_fetch_and_sub_8:
982   case Builtin::BI__sync_fetch_and_sub_16:
983   case Builtin::BI__sync_fetch_and_or:
984   case Builtin::BI__sync_fetch_and_or_1:
985   case Builtin::BI__sync_fetch_and_or_2:
986   case Builtin::BI__sync_fetch_and_or_4:
987   case Builtin::BI__sync_fetch_and_or_8:
988   case Builtin::BI__sync_fetch_and_or_16:
989   case Builtin::BI__sync_fetch_and_and:
990   case Builtin::BI__sync_fetch_and_and_1:
991   case Builtin::BI__sync_fetch_and_and_2:
992   case Builtin::BI__sync_fetch_and_and_4:
993   case Builtin::BI__sync_fetch_and_and_8:
994   case Builtin::BI__sync_fetch_and_and_16:
995   case Builtin::BI__sync_fetch_and_xor:
996   case Builtin::BI__sync_fetch_and_xor_1:
997   case Builtin::BI__sync_fetch_and_xor_2:
998   case Builtin::BI__sync_fetch_and_xor_4:
999   case Builtin::BI__sync_fetch_and_xor_8:
1000   case Builtin::BI__sync_fetch_and_xor_16:
1001   case Builtin::BI__sync_fetch_and_nand:
1002   case Builtin::BI__sync_fetch_and_nand_1:
1003   case Builtin::BI__sync_fetch_and_nand_2:
1004   case Builtin::BI__sync_fetch_and_nand_4:
1005   case Builtin::BI__sync_fetch_and_nand_8:
1006   case Builtin::BI__sync_fetch_and_nand_16:
1007   case Builtin::BI__sync_add_and_fetch:
1008   case Builtin::BI__sync_add_and_fetch_1:
1009   case Builtin::BI__sync_add_and_fetch_2:
1010   case Builtin::BI__sync_add_and_fetch_4:
1011   case Builtin::BI__sync_add_and_fetch_8:
1012   case Builtin::BI__sync_add_and_fetch_16:
1013   case Builtin::BI__sync_sub_and_fetch:
1014   case Builtin::BI__sync_sub_and_fetch_1:
1015   case Builtin::BI__sync_sub_and_fetch_2:
1016   case Builtin::BI__sync_sub_and_fetch_4:
1017   case Builtin::BI__sync_sub_and_fetch_8:
1018   case Builtin::BI__sync_sub_and_fetch_16:
1019   case Builtin::BI__sync_and_and_fetch:
1020   case Builtin::BI__sync_and_and_fetch_1:
1021   case Builtin::BI__sync_and_and_fetch_2:
1022   case Builtin::BI__sync_and_and_fetch_4:
1023   case Builtin::BI__sync_and_and_fetch_8:
1024   case Builtin::BI__sync_and_and_fetch_16:
1025   case Builtin::BI__sync_or_and_fetch:
1026   case Builtin::BI__sync_or_and_fetch_1:
1027   case Builtin::BI__sync_or_and_fetch_2:
1028   case Builtin::BI__sync_or_and_fetch_4:
1029   case Builtin::BI__sync_or_and_fetch_8:
1030   case Builtin::BI__sync_or_and_fetch_16:
1031   case Builtin::BI__sync_xor_and_fetch:
1032   case Builtin::BI__sync_xor_and_fetch_1:
1033   case Builtin::BI__sync_xor_and_fetch_2:
1034   case Builtin::BI__sync_xor_and_fetch_4:
1035   case Builtin::BI__sync_xor_and_fetch_8:
1036   case Builtin::BI__sync_xor_and_fetch_16:
1037   case Builtin::BI__sync_nand_and_fetch:
1038   case Builtin::BI__sync_nand_and_fetch_1:
1039   case Builtin::BI__sync_nand_and_fetch_2:
1040   case Builtin::BI__sync_nand_and_fetch_4:
1041   case Builtin::BI__sync_nand_and_fetch_8:
1042   case Builtin::BI__sync_nand_and_fetch_16:
1043   case Builtin::BI__sync_val_compare_and_swap:
1044   case Builtin::BI__sync_val_compare_and_swap_1:
1045   case Builtin::BI__sync_val_compare_and_swap_2:
1046   case Builtin::BI__sync_val_compare_and_swap_4:
1047   case Builtin::BI__sync_val_compare_and_swap_8:
1048   case Builtin::BI__sync_val_compare_and_swap_16:
1049   case Builtin::BI__sync_bool_compare_and_swap:
1050   case Builtin::BI__sync_bool_compare_and_swap_1:
1051   case Builtin::BI__sync_bool_compare_and_swap_2:
1052   case Builtin::BI__sync_bool_compare_and_swap_4:
1053   case Builtin::BI__sync_bool_compare_and_swap_8:
1054   case Builtin::BI__sync_bool_compare_and_swap_16:
1055   case Builtin::BI__sync_lock_test_and_set:
1056   case Builtin::BI__sync_lock_test_and_set_1:
1057   case Builtin::BI__sync_lock_test_and_set_2:
1058   case Builtin::BI__sync_lock_test_and_set_4:
1059   case Builtin::BI__sync_lock_test_and_set_8:
1060   case Builtin::BI__sync_lock_test_and_set_16:
1061   case Builtin::BI__sync_lock_release:
1062   case Builtin::BI__sync_lock_release_1:
1063   case Builtin::BI__sync_lock_release_2:
1064   case Builtin::BI__sync_lock_release_4:
1065   case Builtin::BI__sync_lock_release_8:
1066   case Builtin::BI__sync_lock_release_16:
1067   case Builtin::BI__sync_swap:
1068   case Builtin::BI__sync_swap_1:
1069   case Builtin::BI__sync_swap_2:
1070   case Builtin::BI__sync_swap_4:
1071   case Builtin::BI__sync_swap_8:
1072   case Builtin::BI__sync_swap_16:
1073     return SemaBuiltinAtomicOverloaded(TheCallResult);
1074   case Builtin::BI__builtin_nontemporal_load:
1075   case Builtin::BI__builtin_nontemporal_store:
1076     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1077 #define BUILTIN(ID, TYPE, ATTRS)
1078 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1079   case Builtin::BI##ID: \
1080     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1081 #include "clang/Basic/Builtins.def"
1082   case Builtin::BI__annotation:
1083     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1084       return ExprError();
1085     break;
1086   case Builtin::BI__builtin_annotation:
1087     if (SemaBuiltinAnnotation(*this, TheCall))
1088       return ExprError();
1089     break;
1090   case Builtin::BI__builtin_addressof:
1091     if (SemaBuiltinAddressof(*this, TheCall))
1092       return ExprError();
1093     break;
1094   case Builtin::BI__builtin_add_overflow:
1095   case Builtin::BI__builtin_sub_overflow:
1096   case Builtin::BI__builtin_mul_overflow:
1097     if (SemaBuiltinOverflow(*this, TheCall))
1098       return ExprError();
1099     break;
1100   case Builtin::BI__builtin_operator_new:
1101   case Builtin::BI__builtin_operator_delete: {
1102     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1103     ExprResult Res =
1104         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1105     if (Res.isInvalid())
1106       CorrectDelayedTyposInExpr(TheCallResult.get());
1107     return Res;
1108   }
1109   case Builtin::BI__builtin_dump_struct: {
1110     // We first want to ensure we are called with 2 arguments
1111     if (checkArgCount(*this, TheCall, 2))
1112       return ExprError();
1113     // Ensure that the first argument is of type 'struct XX *'
1114     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1115     const QualType PtrArgType = PtrArg->getType();
1116     if (!PtrArgType->isPointerType() ||
1117         !PtrArgType->getPointeeType()->isRecordType()) {
1118       Diag(PtrArg->getLocStart(), diag::err_typecheck_convert_incompatible)
1119           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1120           << "structure pointer";
1121       return ExprError();
1122     }
1123 
1124     // Ensure that the second argument is of type 'FunctionType'
1125     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1126     const QualType FnPtrArgType = FnPtrArg->getType();
1127     if (!FnPtrArgType->isPointerType()) {
1128       Diag(FnPtrArg->getLocStart(), diag::err_typecheck_convert_incompatible)
1129           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1130           << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1131       return ExprError();
1132     }
1133 
1134     const auto *FuncType =
1135         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1136 
1137     if (!FuncType) {
1138       Diag(FnPtrArg->getLocStart(), diag::err_typecheck_convert_incompatible)
1139           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1140           << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1141       return ExprError();
1142     }
1143 
1144     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1145       if (!FT->getNumParams()) {
1146         Diag(FnPtrArg->getLocStart(), diag::err_typecheck_convert_incompatible)
1147             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1148             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1149         return ExprError();
1150       }
1151       QualType PT = FT->getParamType(0);
1152       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1153           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1154           !PT->getPointeeType().isConstQualified()) {
1155         Diag(FnPtrArg->getLocStart(), diag::err_typecheck_convert_incompatible)
1156             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1157             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1158         return ExprError();
1159       }
1160     }
1161 
1162     TheCall->setType(Context.IntTy);
1163     break;
1164   }
1165 
1166   // check secure string manipulation functions where overflows
1167   // are detectable at compile time
1168   case Builtin::BI__builtin___memcpy_chk:
1169   case Builtin::BI__builtin___memmove_chk:
1170   case Builtin::BI__builtin___memset_chk:
1171   case Builtin::BI__builtin___strlcat_chk:
1172   case Builtin::BI__builtin___strlcpy_chk:
1173   case Builtin::BI__builtin___strncat_chk:
1174   case Builtin::BI__builtin___strncpy_chk:
1175   case Builtin::BI__builtin___stpncpy_chk:
1176     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
1177     break;
1178   case Builtin::BI__builtin___memccpy_chk:
1179     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
1180     break;
1181   case Builtin::BI__builtin___snprintf_chk:
1182   case Builtin::BI__builtin___vsnprintf_chk:
1183     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
1184     break;
1185   case Builtin::BI__builtin_call_with_static_chain:
1186     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1187       return ExprError();
1188     break;
1189   case Builtin::BI__exception_code:
1190   case Builtin::BI_exception_code:
1191     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1192                                  diag::err_seh___except_block))
1193       return ExprError();
1194     break;
1195   case Builtin::BI__exception_info:
1196   case Builtin::BI_exception_info:
1197     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1198                                  diag::err_seh___except_filter))
1199       return ExprError();
1200     break;
1201   case Builtin::BI__GetExceptionInfo:
1202     if (checkArgCount(*this, TheCall, 1))
1203       return ExprError();
1204 
1205     if (CheckCXXThrowOperand(
1206             TheCall->getLocStart(),
1207             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1208             TheCall))
1209       return ExprError();
1210 
1211     TheCall->setType(Context.VoidPtrTy);
1212     break;
1213   // OpenCL v2.0, s6.13.16 - Pipe functions
1214   case Builtin::BIread_pipe:
1215   case Builtin::BIwrite_pipe:
1216     // Since those two functions are declared with var args, we need a semantic
1217     // check for the argument.
1218     if (SemaBuiltinRWPipe(*this, TheCall))
1219       return ExprError();
1220     TheCall->setType(Context.IntTy);
1221     break;
1222   case Builtin::BIreserve_read_pipe:
1223   case Builtin::BIreserve_write_pipe:
1224   case Builtin::BIwork_group_reserve_read_pipe:
1225   case Builtin::BIwork_group_reserve_write_pipe:
1226     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1227       return ExprError();
1228     break;
1229   case Builtin::BIsub_group_reserve_read_pipe:
1230   case Builtin::BIsub_group_reserve_write_pipe:
1231     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1232         SemaBuiltinReserveRWPipe(*this, TheCall))
1233       return ExprError();
1234     break;
1235   case Builtin::BIcommit_read_pipe:
1236   case Builtin::BIcommit_write_pipe:
1237   case Builtin::BIwork_group_commit_read_pipe:
1238   case Builtin::BIwork_group_commit_write_pipe:
1239     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1240       return ExprError();
1241     break;
1242   case Builtin::BIsub_group_commit_read_pipe:
1243   case Builtin::BIsub_group_commit_write_pipe:
1244     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1245         SemaBuiltinCommitRWPipe(*this, TheCall))
1246       return ExprError();
1247     break;
1248   case Builtin::BIget_pipe_num_packets:
1249   case Builtin::BIget_pipe_max_packets:
1250     if (SemaBuiltinPipePackets(*this, TheCall))
1251       return ExprError();
1252     TheCall->setType(Context.UnsignedIntTy);
1253     break;
1254   case Builtin::BIto_global:
1255   case Builtin::BIto_local:
1256   case Builtin::BIto_private:
1257     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1258       return ExprError();
1259     break;
1260   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1261   case Builtin::BIenqueue_kernel:
1262     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1263       return ExprError();
1264     break;
1265   case Builtin::BIget_kernel_work_group_size:
1266   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1267     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1268       return ExprError();
1269     break;
1270   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1271   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1272     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1273       return ExprError();
1274     break;
1275   case Builtin::BI__builtin_os_log_format:
1276   case Builtin::BI__builtin_os_log_format_buffer_size:
1277     if (SemaBuiltinOSLogFormat(TheCall))
1278       return ExprError();
1279     break;
1280   }
1281 
1282   // Since the target specific builtins for each arch overlap, only check those
1283   // of the arch we are compiling for.
1284   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1285     switch (Context.getTargetInfo().getTriple().getArch()) {
1286       case llvm::Triple::arm:
1287       case llvm::Triple::armeb:
1288       case llvm::Triple::thumb:
1289       case llvm::Triple::thumbeb:
1290         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1291           return ExprError();
1292         break;
1293       case llvm::Triple::aarch64:
1294       case llvm::Triple::aarch64_be:
1295         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1296           return ExprError();
1297         break;
1298       case llvm::Triple::mips:
1299       case llvm::Triple::mipsel:
1300       case llvm::Triple::mips64:
1301       case llvm::Triple::mips64el:
1302         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1303           return ExprError();
1304         break;
1305       case llvm::Triple::systemz:
1306         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1307           return ExprError();
1308         break;
1309       case llvm::Triple::x86:
1310       case llvm::Triple::x86_64:
1311         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1312           return ExprError();
1313         break;
1314       case llvm::Triple::ppc:
1315       case llvm::Triple::ppc64:
1316       case llvm::Triple::ppc64le:
1317         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1318           return ExprError();
1319         break;
1320       default:
1321         break;
1322     }
1323   }
1324 
1325   return TheCallResult;
1326 }
1327 
1328 // Get the valid immediate range for the specified NEON type code.
1329 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1330   NeonTypeFlags Type(t);
1331   int IsQuad = ForceQuad ? true : Type.isQuad();
1332   switch (Type.getEltType()) {
1333   case NeonTypeFlags::Int8:
1334   case NeonTypeFlags::Poly8:
1335     return shift ? 7 : (8 << IsQuad) - 1;
1336   case NeonTypeFlags::Int16:
1337   case NeonTypeFlags::Poly16:
1338     return shift ? 15 : (4 << IsQuad) - 1;
1339   case NeonTypeFlags::Int32:
1340     return shift ? 31 : (2 << IsQuad) - 1;
1341   case NeonTypeFlags::Int64:
1342   case NeonTypeFlags::Poly64:
1343     return shift ? 63 : (1 << IsQuad) - 1;
1344   case NeonTypeFlags::Poly128:
1345     return shift ? 127 : (1 << IsQuad) - 1;
1346   case NeonTypeFlags::Float16:
1347     assert(!shift && "cannot shift float types!");
1348     return (4 << IsQuad) - 1;
1349   case NeonTypeFlags::Float32:
1350     assert(!shift && "cannot shift float types!");
1351     return (2 << IsQuad) - 1;
1352   case NeonTypeFlags::Float64:
1353     assert(!shift && "cannot shift float types!");
1354     return (1 << IsQuad) - 1;
1355   }
1356   llvm_unreachable("Invalid NeonTypeFlag!");
1357 }
1358 
1359 /// getNeonEltType - Return the QualType corresponding to the elements of
1360 /// the vector type specified by the NeonTypeFlags.  This is used to check
1361 /// the pointer arguments for Neon load/store intrinsics.
1362 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1363                                bool IsPolyUnsigned, bool IsInt64Long) {
1364   switch (Flags.getEltType()) {
1365   case NeonTypeFlags::Int8:
1366     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1367   case NeonTypeFlags::Int16:
1368     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1369   case NeonTypeFlags::Int32:
1370     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1371   case NeonTypeFlags::Int64:
1372     if (IsInt64Long)
1373       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1374     else
1375       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1376                                 : Context.LongLongTy;
1377   case NeonTypeFlags::Poly8:
1378     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1379   case NeonTypeFlags::Poly16:
1380     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1381   case NeonTypeFlags::Poly64:
1382     if (IsInt64Long)
1383       return Context.UnsignedLongTy;
1384     else
1385       return Context.UnsignedLongLongTy;
1386   case NeonTypeFlags::Poly128:
1387     break;
1388   case NeonTypeFlags::Float16:
1389     return Context.HalfTy;
1390   case NeonTypeFlags::Float32:
1391     return Context.FloatTy;
1392   case NeonTypeFlags::Float64:
1393     return Context.DoubleTy;
1394   }
1395   llvm_unreachable("Invalid NeonTypeFlag!");
1396 }
1397 
1398 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1399   llvm::APSInt Result;
1400   uint64_t mask = 0;
1401   unsigned TV = 0;
1402   int PtrArgNum = -1;
1403   bool HasConstPtr = false;
1404   switch (BuiltinID) {
1405 #define GET_NEON_OVERLOAD_CHECK
1406 #include "clang/Basic/arm_neon.inc"
1407 #include "clang/Basic/arm_fp16.inc"
1408 #undef GET_NEON_OVERLOAD_CHECK
1409   }
1410 
1411   // For NEON intrinsics which are overloaded on vector element type, validate
1412   // the immediate which specifies which variant to emit.
1413   unsigned ImmArg = TheCall->getNumArgs()-1;
1414   if (mask) {
1415     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1416       return true;
1417 
1418     TV = Result.getLimitedValue(64);
1419     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1420       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
1421         << TheCall->getArg(ImmArg)->getSourceRange();
1422   }
1423 
1424   if (PtrArgNum >= 0) {
1425     // Check that pointer arguments have the specified type.
1426     Expr *Arg = TheCall->getArg(PtrArgNum);
1427     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1428       Arg = ICE->getSubExpr();
1429     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1430     QualType RHSTy = RHS.get()->getType();
1431 
1432     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1433     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
1434                           Arch == llvm::Triple::aarch64_be;
1435     bool IsInt64Long =
1436         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1437     QualType EltTy =
1438         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1439     if (HasConstPtr)
1440       EltTy = EltTy.withConst();
1441     QualType LHSTy = Context.getPointerType(EltTy);
1442     AssignConvertType ConvTy;
1443     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1444     if (RHS.isInvalid())
1445       return true;
1446     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
1447                                  RHS.get(), AA_Assigning))
1448       return true;
1449   }
1450 
1451   // For NEON intrinsics which take an immediate value as part of the
1452   // instruction, range check them here.
1453   unsigned i = 0, l = 0, u = 0;
1454   switch (BuiltinID) {
1455   default:
1456     return false;
1457 #define GET_NEON_IMMEDIATE_CHECK
1458 #include "clang/Basic/arm_neon.inc"
1459 #include "clang/Basic/arm_fp16.inc"
1460 #undef GET_NEON_IMMEDIATE_CHECK
1461   }
1462 
1463   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1464 }
1465 
1466 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1467                                         unsigned MaxWidth) {
1468   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1469           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1470           BuiltinID == ARM::BI__builtin_arm_strex ||
1471           BuiltinID == ARM::BI__builtin_arm_stlex ||
1472           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1473           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1474           BuiltinID == AArch64::BI__builtin_arm_strex ||
1475           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1476          "unexpected ARM builtin");
1477   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1478                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1479                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1480                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1481 
1482   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1483 
1484   // Ensure that we have the proper number of arguments.
1485   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1486     return true;
1487 
1488   // Inspect the pointer argument of the atomic builtin.  This should always be
1489   // a pointer type, whose element is an integral scalar or pointer type.
1490   // Because it is a pointer type, we don't have to worry about any implicit
1491   // casts here.
1492   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1493   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1494   if (PointerArgRes.isInvalid())
1495     return true;
1496   PointerArg = PointerArgRes.get();
1497 
1498   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1499   if (!pointerType) {
1500     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1501       << PointerArg->getType() << PointerArg->getSourceRange();
1502     return true;
1503   }
1504 
1505   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1506   // task is to insert the appropriate casts into the AST. First work out just
1507   // what the appropriate type is.
1508   QualType ValType = pointerType->getPointeeType();
1509   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1510   if (IsLdrex)
1511     AddrType.addConst();
1512 
1513   // Issue a warning if the cast is dodgy.
1514   CastKind CastNeeded = CK_NoOp;
1515   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1516     CastNeeded = CK_BitCast;
1517     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
1518       << PointerArg->getType()
1519       << Context.getPointerType(AddrType)
1520       << AA_Passing << PointerArg->getSourceRange();
1521   }
1522 
1523   // Finally, do the cast and replace the argument with the corrected version.
1524   AddrType = Context.getPointerType(AddrType);
1525   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1526   if (PointerArgRes.isInvalid())
1527     return true;
1528   PointerArg = PointerArgRes.get();
1529 
1530   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1531 
1532   // In general, we allow ints, floats and pointers to be loaded and stored.
1533   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1534       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1535     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1536       << PointerArg->getType() << PointerArg->getSourceRange();
1537     return true;
1538   }
1539 
1540   // But ARM doesn't have instructions to deal with 128-bit versions.
1541   if (Context.getTypeSize(ValType) > MaxWidth) {
1542     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1543     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
1544       << PointerArg->getType() << PointerArg->getSourceRange();
1545     return true;
1546   }
1547 
1548   switch (ValType.getObjCLifetime()) {
1549   case Qualifiers::OCL_None:
1550   case Qualifiers::OCL_ExplicitNone:
1551     // okay
1552     break;
1553 
1554   case Qualifiers::OCL_Weak:
1555   case Qualifiers::OCL_Strong:
1556   case Qualifiers::OCL_Autoreleasing:
1557     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1558       << ValType << PointerArg->getSourceRange();
1559     return true;
1560   }
1561 
1562   if (IsLdrex) {
1563     TheCall->setType(ValType);
1564     return false;
1565   }
1566 
1567   // Initialize the argument to be stored.
1568   ExprResult ValArg = TheCall->getArg(0);
1569   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1570       Context, ValType, /*consume*/ false);
1571   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1572   if (ValArg.isInvalid())
1573     return true;
1574   TheCall->setArg(0, ValArg.get());
1575 
1576   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1577   // but the custom checker bypasses all default analysis.
1578   TheCall->setType(Context.IntTy);
1579   return false;
1580 }
1581 
1582 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1583   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1584       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1585       BuiltinID == ARM::BI__builtin_arm_strex ||
1586       BuiltinID == ARM::BI__builtin_arm_stlex) {
1587     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1588   }
1589 
1590   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1591     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1592       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1593   }
1594 
1595   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1596       BuiltinID == ARM::BI__builtin_arm_wsr64)
1597     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1598 
1599   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1600       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1601       BuiltinID == ARM::BI__builtin_arm_wsr ||
1602       BuiltinID == ARM::BI__builtin_arm_wsrp)
1603     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1604 
1605   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1606     return true;
1607 
1608   // For intrinsics which take an immediate value as part of the instruction,
1609   // range check them here.
1610   // FIXME: VFP Intrinsics should error if VFP not present.
1611   switch (BuiltinID) {
1612   default: return false;
1613   case ARM::BI__builtin_arm_ssat:
1614     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
1615   case ARM::BI__builtin_arm_usat:
1616     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
1617   case ARM::BI__builtin_arm_ssat16:
1618     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
1619   case ARM::BI__builtin_arm_usat16:
1620     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
1621   case ARM::BI__builtin_arm_vcvtr_f:
1622   case ARM::BI__builtin_arm_vcvtr_d:
1623     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
1624   case ARM::BI__builtin_arm_dmb:
1625   case ARM::BI__builtin_arm_dsb:
1626   case ARM::BI__builtin_arm_isb:
1627   case ARM::BI__builtin_arm_dbg:
1628     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
1629   }
1630 }
1631 
1632 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1633                                          CallExpr *TheCall) {
1634   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1635       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1636       BuiltinID == AArch64::BI__builtin_arm_strex ||
1637       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1638     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1639   }
1640 
1641   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1642     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1643       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1644       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1645       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
1646   }
1647 
1648   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1649       BuiltinID == AArch64::BI__builtin_arm_wsr64)
1650     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1651 
1652   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1653       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1654       BuiltinID == AArch64::BI__builtin_arm_wsr ||
1655       BuiltinID == AArch64::BI__builtin_arm_wsrp)
1656     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1657 
1658   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1659     return true;
1660 
1661   // For intrinsics which take an immediate value as part of the instruction,
1662   // range check them here.
1663   unsigned i = 0, l = 0, u = 0;
1664   switch (BuiltinID) {
1665   default: return false;
1666   case AArch64::BI__builtin_arm_dmb:
1667   case AArch64::BI__builtin_arm_dsb:
1668   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1669   }
1670 
1671   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1672 }
1673 
1674 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the
1675 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
1676 // ordering for DSP is unspecified. MSA is ordered by the data format used
1677 // by the underlying instruction i.e., df/m, df/n and then by size.
1678 //
1679 // FIXME: The size tests here should instead be tablegen'd along with the
1680 //        definitions from include/clang/Basic/BuiltinsMips.def.
1681 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
1682 //        be too.
1683 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1684   unsigned i = 0, l = 0, u = 0, m = 0;
1685   switch (BuiltinID) {
1686   default: return false;
1687   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
1688   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
1689   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
1690   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
1691   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
1692   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
1693   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
1694   // MSA instrinsics. Instructions (which the intrinsics maps to) which use the
1695   // df/m field.
1696   // These intrinsics take an unsigned 3 bit immediate.
1697   case Mips::BI__builtin_msa_bclri_b:
1698   case Mips::BI__builtin_msa_bnegi_b:
1699   case Mips::BI__builtin_msa_bseti_b:
1700   case Mips::BI__builtin_msa_sat_s_b:
1701   case Mips::BI__builtin_msa_sat_u_b:
1702   case Mips::BI__builtin_msa_slli_b:
1703   case Mips::BI__builtin_msa_srai_b:
1704   case Mips::BI__builtin_msa_srari_b:
1705   case Mips::BI__builtin_msa_srli_b:
1706   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
1707   case Mips::BI__builtin_msa_binsli_b:
1708   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
1709   // These intrinsics take an unsigned 4 bit immediate.
1710   case Mips::BI__builtin_msa_bclri_h:
1711   case Mips::BI__builtin_msa_bnegi_h:
1712   case Mips::BI__builtin_msa_bseti_h:
1713   case Mips::BI__builtin_msa_sat_s_h:
1714   case Mips::BI__builtin_msa_sat_u_h:
1715   case Mips::BI__builtin_msa_slli_h:
1716   case Mips::BI__builtin_msa_srai_h:
1717   case Mips::BI__builtin_msa_srari_h:
1718   case Mips::BI__builtin_msa_srli_h:
1719   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
1720   case Mips::BI__builtin_msa_binsli_h:
1721   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
1722   // These intrinsics take an unsigned 5 bit immediate.
1723   // The first block of intrinsics actually have an unsigned 5 bit field,
1724   // not a df/n field.
1725   case Mips::BI__builtin_msa_clei_u_b:
1726   case Mips::BI__builtin_msa_clei_u_h:
1727   case Mips::BI__builtin_msa_clei_u_w:
1728   case Mips::BI__builtin_msa_clei_u_d:
1729   case Mips::BI__builtin_msa_clti_u_b:
1730   case Mips::BI__builtin_msa_clti_u_h:
1731   case Mips::BI__builtin_msa_clti_u_w:
1732   case Mips::BI__builtin_msa_clti_u_d:
1733   case Mips::BI__builtin_msa_maxi_u_b:
1734   case Mips::BI__builtin_msa_maxi_u_h:
1735   case Mips::BI__builtin_msa_maxi_u_w:
1736   case Mips::BI__builtin_msa_maxi_u_d:
1737   case Mips::BI__builtin_msa_mini_u_b:
1738   case Mips::BI__builtin_msa_mini_u_h:
1739   case Mips::BI__builtin_msa_mini_u_w:
1740   case Mips::BI__builtin_msa_mini_u_d:
1741   case Mips::BI__builtin_msa_addvi_b:
1742   case Mips::BI__builtin_msa_addvi_h:
1743   case Mips::BI__builtin_msa_addvi_w:
1744   case Mips::BI__builtin_msa_addvi_d:
1745   case Mips::BI__builtin_msa_bclri_w:
1746   case Mips::BI__builtin_msa_bnegi_w:
1747   case Mips::BI__builtin_msa_bseti_w:
1748   case Mips::BI__builtin_msa_sat_s_w:
1749   case Mips::BI__builtin_msa_sat_u_w:
1750   case Mips::BI__builtin_msa_slli_w:
1751   case Mips::BI__builtin_msa_srai_w:
1752   case Mips::BI__builtin_msa_srari_w:
1753   case Mips::BI__builtin_msa_srli_w:
1754   case Mips::BI__builtin_msa_srlri_w:
1755   case Mips::BI__builtin_msa_subvi_b:
1756   case Mips::BI__builtin_msa_subvi_h:
1757   case Mips::BI__builtin_msa_subvi_w:
1758   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
1759   case Mips::BI__builtin_msa_binsli_w:
1760   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
1761   // These intrinsics take an unsigned 6 bit immediate.
1762   case Mips::BI__builtin_msa_bclri_d:
1763   case Mips::BI__builtin_msa_bnegi_d:
1764   case Mips::BI__builtin_msa_bseti_d:
1765   case Mips::BI__builtin_msa_sat_s_d:
1766   case Mips::BI__builtin_msa_sat_u_d:
1767   case Mips::BI__builtin_msa_slli_d:
1768   case Mips::BI__builtin_msa_srai_d:
1769   case Mips::BI__builtin_msa_srari_d:
1770   case Mips::BI__builtin_msa_srli_d:
1771   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
1772   case Mips::BI__builtin_msa_binsli_d:
1773   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
1774   // These intrinsics take a signed 5 bit immediate.
1775   case Mips::BI__builtin_msa_ceqi_b:
1776   case Mips::BI__builtin_msa_ceqi_h:
1777   case Mips::BI__builtin_msa_ceqi_w:
1778   case Mips::BI__builtin_msa_ceqi_d:
1779   case Mips::BI__builtin_msa_clti_s_b:
1780   case Mips::BI__builtin_msa_clti_s_h:
1781   case Mips::BI__builtin_msa_clti_s_w:
1782   case Mips::BI__builtin_msa_clti_s_d:
1783   case Mips::BI__builtin_msa_clei_s_b:
1784   case Mips::BI__builtin_msa_clei_s_h:
1785   case Mips::BI__builtin_msa_clei_s_w:
1786   case Mips::BI__builtin_msa_clei_s_d:
1787   case Mips::BI__builtin_msa_maxi_s_b:
1788   case Mips::BI__builtin_msa_maxi_s_h:
1789   case Mips::BI__builtin_msa_maxi_s_w:
1790   case Mips::BI__builtin_msa_maxi_s_d:
1791   case Mips::BI__builtin_msa_mini_s_b:
1792   case Mips::BI__builtin_msa_mini_s_h:
1793   case Mips::BI__builtin_msa_mini_s_w:
1794   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
1795   // These intrinsics take an unsigned 8 bit immediate.
1796   case Mips::BI__builtin_msa_andi_b:
1797   case Mips::BI__builtin_msa_nori_b:
1798   case Mips::BI__builtin_msa_ori_b:
1799   case Mips::BI__builtin_msa_shf_b:
1800   case Mips::BI__builtin_msa_shf_h:
1801   case Mips::BI__builtin_msa_shf_w:
1802   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
1803   case Mips::BI__builtin_msa_bseli_b:
1804   case Mips::BI__builtin_msa_bmnzi_b:
1805   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
1806   // df/n format
1807   // These intrinsics take an unsigned 4 bit immediate.
1808   case Mips::BI__builtin_msa_copy_s_b:
1809   case Mips::BI__builtin_msa_copy_u_b:
1810   case Mips::BI__builtin_msa_insve_b:
1811   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
1812   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
1813   // These intrinsics take an unsigned 3 bit immediate.
1814   case Mips::BI__builtin_msa_copy_s_h:
1815   case Mips::BI__builtin_msa_copy_u_h:
1816   case Mips::BI__builtin_msa_insve_h:
1817   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
1818   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
1819   // These intrinsics take an unsigned 2 bit immediate.
1820   case Mips::BI__builtin_msa_copy_s_w:
1821   case Mips::BI__builtin_msa_copy_u_w:
1822   case Mips::BI__builtin_msa_insve_w:
1823   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
1824   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
1825   // These intrinsics take an unsigned 1 bit immediate.
1826   case Mips::BI__builtin_msa_copy_s_d:
1827   case Mips::BI__builtin_msa_copy_u_d:
1828   case Mips::BI__builtin_msa_insve_d:
1829   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
1830   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
1831   // Memory offsets and immediate loads.
1832   // These intrinsics take a signed 10 bit immediate.
1833   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
1834   case Mips::BI__builtin_msa_ldi_h:
1835   case Mips::BI__builtin_msa_ldi_w:
1836   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
1837   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 16; break;
1838   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 16; break;
1839   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 16; break;
1840   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 16; break;
1841   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 16; break;
1842   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 16; break;
1843   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 16; break;
1844   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 16; break;
1845   }
1846 
1847   if (!m)
1848     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1849 
1850   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
1851          SemaBuiltinConstantArgMultiple(TheCall, i, m);
1852 }
1853 
1854 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1855   unsigned i = 0, l = 0, u = 0;
1856   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
1857                       BuiltinID == PPC::BI__builtin_divdeu ||
1858                       BuiltinID == PPC::BI__builtin_bpermd;
1859   bool IsTarget64Bit = Context.getTargetInfo()
1860                               .getTypeWidth(Context
1861                                             .getTargetInfo()
1862                                             .getIntPtrType()) == 64;
1863   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
1864                        BuiltinID == PPC::BI__builtin_divweu ||
1865                        BuiltinID == PPC::BI__builtin_divde ||
1866                        BuiltinID == PPC::BI__builtin_divdeu;
1867 
1868   if (Is64BitBltin && !IsTarget64Bit)
1869       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
1870              << TheCall->getSourceRange();
1871 
1872   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
1873       (BuiltinID == PPC::BI__builtin_bpermd &&
1874        !Context.getTargetInfo().hasFeature("bpermd")))
1875     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
1876            << TheCall->getSourceRange();
1877 
1878   switch (BuiltinID) {
1879   default: return false;
1880   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
1881   case PPC::BI__builtin_altivec_crypto_vshasigmad:
1882     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1883            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1884   case PPC::BI__builtin_tbegin:
1885   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
1886   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
1887   case PPC::BI__builtin_tabortwc:
1888   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
1889   case PPC::BI__builtin_tabortwci:
1890   case PPC::BI__builtin_tabortdci:
1891     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
1892            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
1893   case PPC::BI__builtin_vsx_xxpermdi:
1894   case PPC::BI__builtin_vsx_xxsldwi:
1895     return SemaBuiltinVSX(TheCall);
1896   }
1897   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1898 }
1899 
1900 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
1901                                            CallExpr *TheCall) {
1902   if (BuiltinID == SystemZ::BI__builtin_tabort) {
1903     Expr *Arg = TheCall->getArg(0);
1904     llvm::APSInt AbortCode(32);
1905     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
1906         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
1907       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
1908              << Arg->getSourceRange();
1909   }
1910 
1911   // For intrinsics which take an immediate value as part of the instruction,
1912   // range check them here.
1913   unsigned i = 0, l = 0, u = 0;
1914   switch (BuiltinID) {
1915   default: return false;
1916   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
1917   case SystemZ::BI__builtin_s390_verimb:
1918   case SystemZ::BI__builtin_s390_verimh:
1919   case SystemZ::BI__builtin_s390_verimf:
1920   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
1921   case SystemZ::BI__builtin_s390_vfaeb:
1922   case SystemZ::BI__builtin_s390_vfaeh:
1923   case SystemZ::BI__builtin_s390_vfaef:
1924   case SystemZ::BI__builtin_s390_vfaebs:
1925   case SystemZ::BI__builtin_s390_vfaehs:
1926   case SystemZ::BI__builtin_s390_vfaefs:
1927   case SystemZ::BI__builtin_s390_vfaezb:
1928   case SystemZ::BI__builtin_s390_vfaezh:
1929   case SystemZ::BI__builtin_s390_vfaezf:
1930   case SystemZ::BI__builtin_s390_vfaezbs:
1931   case SystemZ::BI__builtin_s390_vfaezhs:
1932   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
1933   case SystemZ::BI__builtin_s390_vfisb:
1934   case SystemZ::BI__builtin_s390_vfidb:
1935     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
1936            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1937   case SystemZ::BI__builtin_s390_vftcisb:
1938   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
1939   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
1940   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
1941   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
1942   case SystemZ::BI__builtin_s390_vstrcb:
1943   case SystemZ::BI__builtin_s390_vstrch:
1944   case SystemZ::BI__builtin_s390_vstrcf:
1945   case SystemZ::BI__builtin_s390_vstrczb:
1946   case SystemZ::BI__builtin_s390_vstrczh:
1947   case SystemZ::BI__builtin_s390_vstrczf:
1948   case SystemZ::BI__builtin_s390_vstrcbs:
1949   case SystemZ::BI__builtin_s390_vstrchs:
1950   case SystemZ::BI__builtin_s390_vstrcfs:
1951   case SystemZ::BI__builtin_s390_vstrczbs:
1952   case SystemZ::BI__builtin_s390_vstrczhs:
1953   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
1954   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
1955   case SystemZ::BI__builtin_s390_vfminsb:
1956   case SystemZ::BI__builtin_s390_vfmaxsb:
1957   case SystemZ::BI__builtin_s390_vfmindb:
1958   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
1959   }
1960   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1961 }
1962 
1963 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
1964 /// This checks that the target supports __builtin_cpu_supports and
1965 /// that the string argument is constant and valid.
1966 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
1967   Expr *Arg = TheCall->getArg(0);
1968 
1969   // Check if the argument is a string literal.
1970   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
1971     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
1972            << Arg->getSourceRange();
1973 
1974   // Check the contents of the string.
1975   StringRef Feature =
1976       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
1977   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
1978     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
1979            << Arg->getSourceRange();
1980   return false;
1981 }
1982 
1983 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
1984 /// This checks that the target supports __builtin_cpu_is and
1985 /// that the string argument is constant and valid.
1986 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
1987   Expr *Arg = TheCall->getArg(0);
1988 
1989   // Check if the argument is a string literal.
1990   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
1991     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
1992            << Arg->getSourceRange();
1993 
1994   // Check the contents of the string.
1995   StringRef Feature =
1996       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
1997   if (!S.Context.getTargetInfo().validateCpuIs(Feature))
1998     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_is)
1999            << Arg->getSourceRange();
2000   return false;
2001 }
2002 
2003 // Check if the rounding mode is legal.
2004 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
2005   // Indicates if this instruction has rounding control or just SAE.
2006   bool HasRC = false;
2007 
2008   unsigned ArgNum = 0;
2009   switch (BuiltinID) {
2010   default:
2011     return false;
2012   case X86::BI__builtin_ia32_vcvttsd2si32:
2013   case X86::BI__builtin_ia32_vcvttsd2si64:
2014   case X86::BI__builtin_ia32_vcvttsd2usi32:
2015   case X86::BI__builtin_ia32_vcvttsd2usi64:
2016   case X86::BI__builtin_ia32_vcvttss2si32:
2017   case X86::BI__builtin_ia32_vcvttss2si64:
2018   case X86::BI__builtin_ia32_vcvttss2usi32:
2019   case X86::BI__builtin_ia32_vcvttss2usi64:
2020     ArgNum = 1;
2021     break;
2022   case X86::BI__builtin_ia32_cvtps2pd512_mask:
2023   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
2024   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
2025   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
2026   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
2027   case X86::BI__builtin_ia32_cvttps2dq512_mask:
2028   case X86::BI__builtin_ia32_cvttps2qq512_mask:
2029   case X86::BI__builtin_ia32_cvttps2udq512_mask:
2030   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
2031   case X86::BI__builtin_ia32_exp2pd_mask:
2032   case X86::BI__builtin_ia32_exp2ps_mask:
2033   case X86::BI__builtin_ia32_getexppd512_mask:
2034   case X86::BI__builtin_ia32_getexpps512_mask:
2035   case X86::BI__builtin_ia32_rcp28pd_mask:
2036   case X86::BI__builtin_ia32_rcp28ps_mask:
2037   case X86::BI__builtin_ia32_rsqrt28pd_mask:
2038   case X86::BI__builtin_ia32_rsqrt28ps_mask:
2039   case X86::BI__builtin_ia32_vcomisd:
2040   case X86::BI__builtin_ia32_vcomiss:
2041   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
2042     ArgNum = 3;
2043     break;
2044   case X86::BI__builtin_ia32_cmppd512_mask:
2045   case X86::BI__builtin_ia32_cmpps512_mask:
2046   case X86::BI__builtin_ia32_cmpsd_mask:
2047   case X86::BI__builtin_ia32_cmpss_mask:
2048   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
2049   case X86::BI__builtin_ia32_getexpsd128_round_mask:
2050   case X86::BI__builtin_ia32_getexpss128_round_mask:
2051   case X86::BI__builtin_ia32_maxpd512_mask:
2052   case X86::BI__builtin_ia32_maxps512_mask:
2053   case X86::BI__builtin_ia32_maxsd_round_mask:
2054   case X86::BI__builtin_ia32_maxss_round_mask:
2055   case X86::BI__builtin_ia32_minpd512_mask:
2056   case X86::BI__builtin_ia32_minps512_mask:
2057   case X86::BI__builtin_ia32_minsd_round_mask:
2058   case X86::BI__builtin_ia32_minss_round_mask:
2059   case X86::BI__builtin_ia32_rcp28sd_round_mask:
2060   case X86::BI__builtin_ia32_rcp28ss_round_mask:
2061   case X86::BI__builtin_ia32_reducepd512_mask:
2062   case X86::BI__builtin_ia32_reduceps512_mask:
2063   case X86::BI__builtin_ia32_rndscalepd_mask:
2064   case X86::BI__builtin_ia32_rndscaleps_mask:
2065   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
2066   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
2067     ArgNum = 4;
2068     break;
2069   case X86::BI__builtin_ia32_fixupimmpd512_mask:
2070   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
2071   case X86::BI__builtin_ia32_fixupimmps512_mask:
2072   case X86::BI__builtin_ia32_fixupimmps512_maskz:
2073   case X86::BI__builtin_ia32_fixupimmsd_mask:
2074   case X86::BI__builtin_ia32_fixupimmsd_maskz:
2075   case X86::BI__builtin_ia32_fixupimmss_mask:
2076   case X86::BI__builtin_ia32_fixupimmss_maskz:
2077   case X86::BI__builtin_ia32_rangepd512_mask:
2078   case X86::BI__builtin_ia32_rangeps512_mask:
2079   case X86::BI__builtin_ia32_rangesd128_round_mask:
2080   case X86::BI__builtin_ia32_rangess128_round_mask:
2081   case X86::BI__builtin_ia32_reducesd_mask:
2082   case X86::BI__builtin_ia32_reducess_mask:
2083   case X86::BI__builtin_ia32_rndscalesd_round_mask:
2084   case X86::BI__builtin_ia32_rndscaless_round_mask:
2085     ArgNum = 5;
2086     break;
2087   case X86::BI__builtin_ia32_vcvtsd2si64:
2088   case X86::BI__builtin_ia32_vcvtsd2si32:
2089   case X86::BI__builtin_ia32_vcvtsd2usi32:
2090   case X86::BI__builtin_ia32_vcvtsd2usi64:
2091   case X86::BI__builtin_ia32_vcvtss2si32:
2092   case X86::BI__builtin_ia32_vcvtss2si64:
2093   case X86::BI__builtin_ia32_vcvtss2usi32:
2094   case X86::BI__builtin_ia32_vcvtss2usi64:
2095     ArgNum = 1;
2096     HasRC = true;
2097     break;
2098   case X86::BI__builtin_ia32_cvtsi2sd64:
2099   case X86::BI__builtin_ia32_cvtsi2ss32:
2100   case X86::BI__builtin_ia32_cvtsi2ss64:
2101   case X86::BI__builtin_ia32_cvtusi2sd64:
2102   case X86::BI__builtin_ia32_cvtusi2ss32:
2103   case X86::BI__builtin_ia32_cvtusi2ss64:
2104     ArgNum = 2;
2105     HasRC = true;
2106     break;
2107   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
2108   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
2109   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
2110   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
2111   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
2112   case X86::BI__builtin_ia32_cvtps2qq512_mask:
2113   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
2114   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
2115   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
2116   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
2117   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
2118   case X86::BI__builtin_ia32_sqrtpd512_mask:
2119   case X86::BI__builtin_ia32_sqrtps512_mask:
2120     ArgNum = 3;
2121     HasRC = true;
2122     break;
2123   case X86::BI__builtin_ia32_addpd512_mask:
2124   case X86::BI__builtin_ia32_addps512_mask:
2125   case X86::BI__builtin_ia32_divpd512_mask:
2126   case X86::BI__builtin_ia32_divps512_mask:
2127   case X86::BI__builtin_ia32_mulpd512_mask:
2128   case X86::BI__builtin_ia32_mulps512_mask:
2129   case X86::BI__builtin_ia32_subpd512_mask:
2130   case X86::BI__builtin_ia32_subps512_mask:
2131   case X86::BI__builtin_ia32_addss_round_mask:
2132   case X86::BI__builtin_ia32_addsd_round_mask:
2133   case X86::BI__builtin_ia32_divss_round_mask:
2134   case X86::BI__builtin_ia32_divsd_round_mask:
2135   case X86::BI__builtin_ia32_mulss_round_mask:
2136   case X86::BI__builtin_ia32_mulsd_round_mask:
2137   case X86::BI__builtin_ia32_subss_round_mask:
2138   case X86::BI__builtin_ia32_subsd_round_mask:
2139   case X86::BI__builtin_ia32_scalefpd512_mask:
2140   case X86::BI__builtin_ia32_scalefps512_mask:
2141   case X86::BI__builtin_ia32_scalefsd_round_mask:
2142   case X86::BI__builtin_ia32_scalefss_round_mask:
2143   case X86::BI__builtin_ia32_getmantpd512_mask:
2144   case X86::BI__builtin_ia32_getmantps512_mask:
2145   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
2146   case X86::BI__builtin_ia32_sqrtsd_round_mask:
2147   case X86::BI__builtin_ia32_sqrtss_round_mask:
2148   case X86::BI__builtin_ia32_vfmaddpd512_mask:
2149   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
2150   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
2151   case X86::BI__builtin_ia32_vfmaddps512_mask:
2152   case X86::BI__builtin_ia32_vfmaddps512_mask3:
2153   case X86::BI__builtin_ia32_vfmaddps512_maskz:
2154   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
2155   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
2156   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
2157   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
2158   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
2159   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
2160   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
2161   case X86::BI__builtin_ia32_vfmsubps512_mask3:
2162   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
2163   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
2164   case X86::BI__builtin_ia32_vfnmaddpd512_mask:
2165   case X86::BI__builtin_ia32_vfnmaddps512_mask:
2166   case X86::BI__builtin_ia32_vfnmsubpd512_mask:
2167   case X86::BI__builtin_ia32_vfnmsubpd512_mask3:
2168   case X86::BI__builtin_ia32_vfnmsubps512_mask:
2169   case X86::BI__builtin_ia32_vfnmsubps512_mask3:
2170   case X86::BI__builtin_ia32_vfmaddsd3_mask:
2171   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
2172   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
2173   case X86::BI__builtin_ia32_vfmaddss3_mask:
2174   case X86::BI__builtin_ia32_vfmaddss3_maskz:
2175   case X86::BI__builtin_ia32_vfmaddss3_mask3:
2176     ArgNum = 4;
2177     HasRC = true;
2178     break;
2179   case X86::BI__builtin_ia32_getmantsd_round_mask:
2180   case X86::BI__builtin_ia32_getmantss_round_mask:
2181     ArgNum = 5;
2182     HasRC = true;
2183     break;
2184   }
2185 
2186   llvm::APSInt Result;
2187 
2188   // We can't check the value of a dependent argument.
2189   Expr *Arg = TheCall->getArg(ArgNum);
2190   if (Arg->isTypeDependent() || Arg->isValueDependent())
2191     return false;
2192 
2193   // Check constant-ness first.
2194   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2195     return true;
2196 
2197   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
2198   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
2199   // combined with ROUND_NO_EXC.
2200   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
2201       Result == 8/*ROUND_NO_EXC*/ ||
2202       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
2203     return false;
2204 
2205   return Diag(TheCall->getLocStart(), diag::err_x86_builtin_invalid_rounding)
2206     << Arg->getSourceRange();
2207 }
2208 
2209 // Check if the gather/scatter scale is legal.
2210 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
2211                                              CallExpr *TheCall) {
2212   unsigned ArgNum = 0;
2213   switch (BuiltinID) {
2214   default:
2215     return false;
2216   case X86::BI__builtin_ia32_gatherpfdpd:
2217   case X86::BI__builtin_ia32_gatherpfdps:
2218   case X86::BI__builtin_ia32_gatherpfqpd:
2219   case X86::BI__builtin_ia32_gatherpfqps:
2220   case X86::BI__builtin_ia32_scatterpfdpd:
2221   case X86::BI__builtin_ia32_scatterpfdps:
2222   case X86::BI__builtin_ia32_scatterpfqpd:
2223   case X86::BI__builtin_ia32_scatterpfqps:
2224     ArgNum = 3;
2225     break;
2226   case X86::BI__builtin_ia32_gatherd_pd:
2227   case X86::BI__builtin_ia32_gatherd_pd256:
2228   case X86::BI__builtin_ia32_gatherq_pd:
2229   case X86::BI__builtin_ia32_gatherq_pd256:
2230   case X86::BI__builtin_ia32_gatherd_ps:
2231   case X86::BI__builtin_ia32_gatherd_ps256:
2232   case X86::BI__builtin_ia32_gatherq_ps:
2233   case X86::BI__builtin_ia32_gatherq_ps256:
2234   case X86::BI__builtin_ia32_gatherd_q:
2235   case X86::BI__builtin_ia32_gatherd_q256:
2236   case X86::BI__builtin_ia32_gatherq_q:
2237   case X86::BI__builtin_ia32_gatherq_q256:
2238   case X86::BI__builtin_ia32_gatherd_d:
2239   case X86::BI__builtin_ia32_gatherd_d256:
2240   case X86::BI__builtin_ia32_gatherq_d:
2241   case X86::BI__builtin_ia32_gatherq_d256:
2242   case X86::BI__builtin_ia32_gather3div2df:
2243   case X86::BI__builtin_ia32_gather3div2di:
2244   case X86::BI__builtin_ia32_gather3div4df:
2245   case X86::BI__builtin_ia32_gather3div4di:
2246   case X86::BI__builtin_ia32_gather3div4sf:
2247   case X86::BI__builtin_ia32_gather3div4si:
2248   case X86::BI__builtin_ia32_gather3div8sf:
2249   case X86::BI__builtin_ia32_gather3div8si:
2250   case X86::BI__builtin_ia32_gather3siv2df:
2251   case X86::BI__builtin_ia32_gather3siv2di:
2252   case X86::BI__builtin_ia32_gather3siv4df:
2253   case X86::BI__builtin_ia32_gather3siv4di:
2254   case X86::BI__builtin_ia32_gather3siv4sf:
2255   case X86::BI__builtin_ia32_gather3siv4si:
2256   case X86::BI__builtin_ia32_gather3siv8sf:
2257   case X86::BI__builtin_ia32_gather3siv8si:
2258   case X86::BI__builtin_ia32_gathersiv8df:
2259   case X86::BI__builtin_ia32_gathersiv16sf:
2260   case X86::BI__builtin_ia32_gatherdiv8df:
2261   case X86::BI__builtin_ia32_gatherdiv16sf:
2262   case X86::BI__builtin_ia32_gathersiv8di:
2263   case X86::BI__builtin_ia32_gathersiv16si:
2264   case X86::BI__builtin_ia32_gatherdiv8di:
2265   case X86::BI__builtin_ia32_gatherdiv16si:
2266   case X86::BI__builtin_ia32_scatterdiv2df:
2267   case X86::BI__builtin_ia32_scatterdiv2di:
2268   case X86::BI__builtin_ia32_scatterdiv4df:
2269   case X86::BI__builtin_ia32_scatterdiv4di:
2270   case X86::BI__builtin_ia32_scatterdiv4sf:
2271   case X86::BI__builtin_ia32_scatterdiv4si:
2272   case X86::BI__builtin_ia32_scatterdiv8sf:
2273   case X86::BI__builtin_ia32_scatterdiv8si:
2274   case X86::BI__builtin_ia32_scattersiv2df:
2275   case X86::BI__builtin_ia32_scattersiv2di:
2276   case X86::BI__builtin_ia32_scattersiv4df:
2277   case X86::BI__builtin_ia32_scattersiv4di:
2278   case X86::BI__builtin_ia32_scattersiv4sf:
2279   case X86::BI__builtin_ia32_scattersiv4si:
2280   case X86::BI__builtin_ia32_scattersiv8sf:
2281   case X86::BI__builtin_ia32_scattersiv8si:
2282   case X86::BI__builtin_ia32_scattersiv8df:
2283   case X86::BI__builtin_ia32_scattersiv16sf:
2284   case X86::BI__builtin_ia32_scatterdiv8df:
2285   case X86::BI__builtin_ia32_scatterdiv16sf:
2286   case X86::BI__builtin_ia32_scattersiv8di:
2287   case X86::BI__builtin_ia32_scattersiv16si:
2288   case X86::BI__builtin_ia32_scatterdiv8di:
2289   case X86::BI__builtin_ia32_scatterdiv16si:
2290     ArgNum = 4;
2291     break;
2292   }
2293 
2294   llvm::APSInt Result;
2295 
2296   // We can't check the value of a dependent argument.
2297   Expr *Arg = TheCall->getArg(ArgNum);
2298   if (Arg->isTypeDependent() || Arg->isValueDependent())
2299     return false;
2300 
2301   // Check constant-ness first.
2302   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2303     return true;
2304 
2305   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
2306     return false;
2307 
2308   return Diag(TheCall->getLocStart(), diag::err_x86_builtin_invalid_scale)
2309     << Arg->getSourceRange();
2310 }
2311 
2312 static bool isX86_32Builtin(unsigned BuiltinID) {
2313   // These builtins only work on x86-32 targets.
2314   switch (BuiltinID) {
2315   case X86::BI__builtin_ia32_readeflags_u32:
2316   case X86::BI__builtin_ia32_writeeflags_u32:
2317     return true;
2318   }
2319 
2320   return false;
2321 }
2322 
2323 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2324   if (BuiltinID == X86::BI__builtin_cpu_supports)
2325     return SemaBuiltinCpuSupports(*this, TheCall);
2326 
2327   if (BuiltinID == X86::BI__builtin_cpu_is)
2328     return SemaBuiltinCpuIs(*this, TheCall);
2329 
2330   // Check for 32-bit only builtins on a 64-bit target.
2331   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
2332   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
2333     return Diag(TheCall->getCallee()->getLocStart(),
2334                 diag::err_32_bit_builtin_64_bit_tgt);
2335 
2336   // If the intrinsic has rounding or SAE make sure its valid.
2337   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
2338     return true;
2339 
2340   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
2341   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
2342     return true;
2343 
2344   // For intrinsics which take an immediate value as part of the instruction,
2345   // range check them here.
2346   int i = 0, l = 0, u = 0;
2347   switch (BuiltinID) {
2348   default:
2349     return false;
2350   case X86::BI_mm_prefetch:
2351     i = 1; l = 0; u = 7;
2352     break;
2353   case X86::BI__builtin_ia32_sha1rnds4:
2354   case X86::BI__builtin_ia32_shuf_f32x4_256_mask:
2355   case X86::BI__builtin_ia32_shuf_f64x2_256_mask:
2356   case X86::BI__builtin_ia32_shuf_i32x4_256_mask:
2357   case X86::BI__builtin_ia32_shuf_i64x2_256_mask:
2358     i = 2; l = 0; u = 3;
2359     break;
2360   case X86::BI__builtin_ia32_vpermil2pd:
2361   case X86::BI__builtin_ia32_vpermil2pd256:
2362   case X86::BI__builtin_ia32_vpermil2ps:
2363   case X86::BI__builtin_ia32_vpermil2ps256:
2364     i = 3; l = 0; u = 3;
2365     break;
2366   case X86::BI__builtin_ia32_cmpb128_mask:
2367   case X86::BI__builtin_ia32_cmpw128_mask:
2368   case X86::BI__builtin_ia32_cmpd128_mask:
2369   case X86::BI__builtin_ia32_cmpq128_mask:
2370   case X86::BI__builtin_ia32_cmpb256_mask:
2371   case X86::BI__builtin_ia32_cmpw256_mask:
2372   case X86::BI__builtin_ia32_cmpd256_mask:
2373   case X86::BI__builtin_ia32_cmpq256_mask:
2374   case X86::BI__builtin_ia32_cmpb512_mask:
2375   case X86::BI__builtin_ia32_cmpw512_mask:
2376   case X86::BI__builtin_ia32_cmpd512_mask:
2377   case X86::BI__builtin_ia32_cmpq512_mask:
2378   case X86::BI__builtin_ia32_ucmpb128_mask:
2379   case X86::BI__builtin_ia32_ucmpw128_mask:
2380   case X86::BI__builtin_ia32_ucmpd128_mask:
2381   case X86::BI__builtin_ia32_ucmpq128_mask:
2382   case X86::BI__builtin_ia32_ucmpb256_mask:
2383   case X86::BI__builtin_ia32_ucmpw256_mask:
2384   case X86::BI__builtin_ia32_ucmpd256_mask:
2385   case X86::BI__builtin_ia32_ucmpq256_mask:
2386   case X86::BI__builtin_ia32_ucmpb512_mask:
2387   case X86::BI__builtin_ia32_ucmpw512_mask:
2388   case X86::BI__builtin_ia32_ucmpd512_mask:
2389   case X86::BI__builtin_ia32_ucmpq512_mask:
2390   case X86::BI__builtin_ia32_vpcomub:
2391   case X86::BI__builtin_ia32_vpcomuw:
2392   case X86::BI__builtin_ia32_vpcomud:
2393   case X86::BI__builtin_ia32_vpcomuq:
2394   case X86::BI__builtin_ia32_vpcomb:
2395   case X86::BI__builtin_ia32_vpcomw:
2396   case X86::BI__builtin_ia32_vpcomd:
2397   case X86::BI__builtin_ia32_vpcomq:
2398     i = 2; l = 0; u = 7;
2399     break;
2400   case X86::BI__builtin_ia32_roundps:
2401   case X86::BI__builtin_ia32_roundpd:
2402   case X86::BI__builtin_ia32_roundps256:
2403   case X86::BI__builtin_ia32_roundpd256:
2404     i = 1; l = 0; u = 15;
2405     break;
2406   case X86::BI__builtin_ia32_roundss:
2407   case X86::BI__builtin_ia32_roundsd:
2408   case X86::BI__builtin_ia32_rangepd128_mask:
2409   case X86::BI__builtin_ia32_rangepd256_mask:
2410   case X86::BI__builtin_ia32_rangepd512_mask:
2411   case X86::BI__builtin_ia32_rangeps128_mask:
2412   case X86::BI__builtin_ia32_rangeps256_mask:
2413   case X86::BI__builtin_ia32_rangeps512_mask:
2414   case X86::BI__builtin_ia32_getmantsd_round_mask:
2415   case X86::BI__builtin_ia32_getmantss_round_mask:
2416     i = 2; l = 0; u = 15;
2417     break;
2418   case X86::BI__builtin_ia32_cmpps:
2419   case X86::BI__builtin_ia32_cmpss:
2420   case X86::BI__builtin_ia32_cmppd:
2421   case X86::BI__builtin_ia32_cmpsd:
2422   case X86::BI__builtin_ia32_cmpps256:
2423   case X86::BI__builtin_ia32_cmppd256:
2424   case X86::BI__builtin_ia32_cmpps128_mask:
2425   case X86::BI__builtin_ia32_cmppd128_mask:
2426   case X86::BI__builtin_ia32_cmpps256_mask:
2427   case X86::BI__builtin_ia32_cmppd256_mask:
2428   case X86::BI__builtin_ia32_cmpps512_mask:
2429   case X86::BI__builtin_ia32_cmppd512_mask:
2430   case X86::BI__builtin_ia32_cmpsd_mask:
2431   case X86::BI__builtin_ia32_cmpss_mask:
2432     i = 2; l = 0; u = 31;
2433     break;
2434   case X86::BI__builtin_ia32_vcvtps2ph:
2435   case X86::BI__builtin_ia32_vcvtps2ph_mask:
2436   case X86::BI__builtin_ia32_vcvtps2ph256:
2437   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
2438   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
2439   case X86::BI__builtin_ia32_rndscaleps_128_mask:
2440   case X86::BI__builtin_ia32_rndscalepd_128_mask:
2441   case X86::BI__builtin_ia32_rndscaleps_256_mask:
2442   case X86::BI__builtin_ia32_rndscalepd_256_mask:
2443   case X86::BI__builtin_ia32_rndscaleps_mask:
2444   case X86::BI__builtin_ia32_rndscalepd_mask:
2445   case X86::BI__builtin_ia32_reducepd128_mask:
2446   case X86::BI__builtin_ia32_reducepd256_mask:
2447   case X86::BI__builtin_ia32_reducepd512_mask:
2448   case X86::BI__builtin_ia32_reduceps128_mask:
2449   case X86::BI__builtin_ia32_reduceps256_mask:
2450   case X86::BI__builtin_ia32_reduceps512_mask:
2451   case X86::BI__builtin_ia32_prold512_mask:
2452   case X86::BI__builtin_ia32_prolq512_mask:
2453   case X86::BI__builtin_ia32_prold128_mask:
2454   case X86::BI__builtin_ia32_prold256_mask:
2455   case X86::BI__builtin_ia32_prolq128_mask:
2456   case X86::BI__builtin_ia32_prolq256_mask:
2457   case X86::BI__builtin_ia32_prord128_mask:
2458   case X86::BI__builtin_ia32_prord256_mask:
2459   case X86::BI__builtin_ia32_prorq128_mask:
2460   case X86::BI__builtin_ia32_prorq256_mask:
2461   case X86::BI__builtin_ia32_fpclasspd128_mask:
2462   case X86::BI__builtin_ia32_fpclasspd256_mask:
2463   case X86::BI__builtin_ia32_fpclassps128_mask:
2464   case X86::BI__builtin_ia32_fpclassps256_mask:
2465   case X86::BI__builtin_ia32_fpclassps512_mask:
2466   case X86::BI__builtin_ia32_fpclasspd512_mask:
2467   case X86::BI__builtin_ia32_fpclasssd_mask:
2468   case X86::BI__builtin_ia32_fpclassss_mask:
2469     i = 1; l = 0; u = 255;
2470     break;
2471   case X86::BI__builtin_ia32_palignr128:
2472   case X86::BI__builtin_ia32_palignr256:
2473   case X86::BI__builtin_ia32_palignr512_mask:
2474   case X86::BI__builtin_ia32_vcomisd:
2475   case X86::BI__builtin_ia32_vcomiss:
2476   case X86::BI__builtin_ia32_shuf_f32x4_mask:
2477   case X86::BI__builtin_ia32_shuf_f64x2_mask:
2478   case X86::BI__builtin_ia32_shuf_i32x4_mask:
2479   case X86::BI__builtin_ia32_shuf_i64x2_mask:
2480   case X86::BI__builtin_ia32_dbpsadbw128_mask:
2481   case X86::BI__builtin_ia32_dbpsadbw256_mask:
2482   case X86::BI__builtin_ia32_dbpsadbw512_mask:
2483   case X86::BI__builtin_ia32_vpshldd128_mask:
2484   case X86::BI__builtin_ia32_vpshldd256_mask:
2485   case X86::BI__builtin_ia32_vpshldd512_mask:
2486   case X86::BI__builtin_ia32_vpshldq128_mask:
2487   case X86::BI__builtin_ia32_vpshldq256_mask:
2488   case X86::BI__builtin_ia32_vpshldq512_mask:
2489   case X86::BI__builtin_ia32_vpshldw128_mask:
2490   case X86::BI__builtin_ia32_vpshldw256_mask:
2491   case X86::BI__builtin_ia32_vpshldw512_mask:
2492   case X86::BI__builtin_ia32_vpshrdd128_mask:
2493   case X86::BI__builtin_ia32_vpshrdd256_mask:
2494   case X86::BI__builtin_ia32_vpshrdd512_mask:
2495   case X86::BI__builtin_ia32_vpshrdq128_mask:
2496   case X86::BI__builtin_ia32_vpshrdq256_mask:
2497   case X86::BI__builtin_ia32_vpshrdq512_mask:
2498   case X86::BI__builtin_ia32_vpshrdw128_mask:
2499   case X86::BI__builtin_ia32_vpshrdw256_mask:
2500   case X86::BI__builtin_ia32_vpshrdw512_mask:
2501     i = 2; l = 0; u = 255;
2502     break;
2503   case X86::BI__builtin_ia32_fixupimmpd512_mask:
2504   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
2505   case X86::BI__builtin_ia32_fixupimmps512_mask:
2506   case X86::BI__builtin_ia32_fixupimmps512_maskz:
2507   case X86::BI__builtin_ia32_fixupimmsd_mask:
2508   case X86::BI__builtin_ia32_fixupimmsd_maskz:
2509   case X86::BI__builtin_ia32_fixupimmss_mask:
2510   case X86::BI__builtin_ia32_fixupimmss_maskz:
2511   case X86::BI__builtin_ia32_fixupimmpd128_mask:
2512   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
2513   case X86::BI__builtin_ia32_fixupimmpd256_mask:
2514   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
2515   case X86::BI__builtin_ia32_fixupimmps128_mask:
2516   case X86::BI__builtin_ia32_fixupimmps128_maskz:
2517   case X86::BI__builtin_ia32_fixupimmps256_mask:
2518   case X86::BI__builtin_ia32_fixupimmps256_maskz:
2519   case X86::BI__builtin_ia32_pternlogd512_mask:
2520   case X86::BI__builtin_ia32_pternlogd512_maskz:
2521   case X86::BI__builtin_ia32_pternlogq512_mask:
2522   case X86::BI__builtin_ia32_pternlogq512_maskz:
2523   case X86::BI__builtin_ia32_pternlogd128_mask:
2524   case X86::BI__builtin_ia32_pternlogd128_maskz:
2525   case X86::BI__builtin_ia32_pternlogd256_mask:
2526   case X86::BI__builtin_ia32_pternlogd256_maskz:
2527   case X86::BI__builtin_ia32_pternlogq128_mask:
2528   case X86::BI__builtin_ia32_pternlogq128_maskz:
2529   case X86::BI__builtin_ia32_pternlogq256_mask:
2530   case X86::BI__builtin_ia32_pternlogq256_maskz:
2531     i = 3; l = 0; u = 255;
2532     break;
2533   case X86::BI__builtin_ia32_gatherpfdpd:
2534   case X86::BI__builtin_ia32_gatherpfdps:
2535   case X86::BI__builtin_ia32_gatherpfqpd:
2536   case X86::BI__builtin_ia32_gatherpfqps:
2537   case X86::BI__builtin_ia32_scatterpfdpd:
2538   case X86::BI__builtin_ia32_scatterpfdps:
2539   case X86::BI__builtin_ia32_scatterpfqpd:
2540   case X86::BI__builtin_ia32_scatterpfqps:
2541     i = 4; l = 2; u = 3;
2542     break;
2543   case X86::BI__builtin_ia32_rndscalesd_round_mask:
2544   case X86::BI__builtin_ia32_rndscaless_round_mask:
2545     i = 4; l = 0; u = 255;
2546     break;
2547   }
2548   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
2549 }
2550 
2551 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
2552 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
2553 /// Returns true when the format fits the function and the FormatStringInfo has
2554 /// been populated.
2555 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
2556                                FormatStringInfo *FSI) {
2557   FSI->HasVAListArg = Format->getFirstArg() == 0;
2558   FSI->FormatIdx = Format->getFormatIdx() - 1;
2559   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
2560 
2561   // The way the format attribute works in GCC, the implicit this argument
2562   // of member functions is counted. However, it doesn't appear in our own
2563   // lists, so decrement format_idx in that case.
2564   if (IsCXXMember) {
2565     if(FSI->FormatIdx == 0)
2566       return false;
2567     --FSI->FormatIdx;
2568     if (FSI->FirstDataArg != 0)
2569       --FSI->FirstDataArg;
2570   }
2571   return true;
2572 }
2573 
2574 /// Checks if a the given expression evaluates to null.
2575 ///
2576 /// Returns true if the value evaluates to null.
2577 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
2578   // If the expression has non-null type, it doesn't evaluate to null.
2579   if (auto nullability
2580         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
2581     if (*nullability == NullabilityKind::NonNull)
2582       return false;
2583   }
2584 
2585   // As a special case, transparent unions initialized with zero are
2586   // considered null for the purposes of the nonnull attribute.
2587   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
2588     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2589       if (const CompoundLiteralExpr *CLE =
2590           dyn_cast<CompoundLiteralExpr>(Expr))
2591         if (const InitListExpr *ILE =
2592             dyn_cast<InitListExpr>(CLE->getInitializer()))
2593           Expr = ILE->getInit(0);
2594   }
2595 
2596   bool Result;
2597   return (!Expr->isValueDependent() &&
2598           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
2599           !Result);
2600 }
2601 
2602 static void CheckNonNullArgument(Sema &S,
2603                                  const Expr *ArgExpr,
2604                                  SourceLocation CallSiteLoc) {
2605   if (CheckNonNullExpr(S, ArgExpr))
2606     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
2607            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
2608 }
2609 
2610 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
2611   FormatStringInfo FSI;
2612   if ((GetFormatStringType(Format) == FST_NSString) &&
2613       getFormatStringInfo(Format, false, &FSI)) {
2614     Idx = FSI.FormatIdx;
2615     return true;
2616   }
2617   return false;
2618 }
2619 
2620 /// Diagnose use of %s directive in an NSString which is being passed
2621 /// as formatting string to formatting method.
2622 static void
2623 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
2624                                         const NamedDecl *FDecl,
2625                                         Expr **Args,
2626                                         unsigned NumArgs) {
2627   unsigned Idx = 0;
2628   bool Format = false;
2629   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
2630   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
2631     Idx = 2;
2632     Format = true;
2633   }
2634   else
2635     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
2636       if (S.GetFormatNSStringIdx(I, Idx)) {
2637         Format = true;
2638         break;
2639       }
2640     }
2641   if (!Format || NumArgs <= Idx)
2642     return;
2643   const Expr *FormatExpr = Args[Idx];
2644   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
2645     FormatExpr = CSCE->getSubExpr();
2646   const StringLiteral *FormatString;
2647   if (const ObjCStringLiteral *OSL =
2648       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
2649     FormatString = OSL->getString();
2650   else
2651     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
2652   if (!FormatString)
2653     return;
2654   if (S.FormatStringHasSArg(FormatString)) {
2655     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2656       << "%s" << 1 << 1;
2657     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
2658       << FDecl->getDeclName();
2659   }
2660 }
2661 
2662 /// Determine whether the given type has a non-null nullability annotation.
2663 static bool isNonNullType(ASTContext &ctx, QualType type) {
2664   if (auto nullability = type->getNullability(ctx))
2665     return *nullability == NullabilityKind::NonNull;
2666 
2667   return false;
2668 }
2669 
2670 static void CheckNonNullArguments(Sema &S,
2671                                   const NamedDecl *FDecl,
2672                                   const FunctionProtoType *Proto,
2673                                   ArrayRef<const Expr *> Args,
2674                                   SourceLocation CallSiteLoc) {
2675   assert((FDecl || Proto) && "Need a function declaration or prototype");
2676 
2677   // Check the attributes attached to the method/function itself.
2678   llvm::SmallBitVector NonNullArgs;
2679   if (FDecl) {
2680     // Handle the nonnull attribute on the function/method declaration itself.
2681     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
2682       if (!NonNull->args_size()) {
2683         // Easy case: all pointer arguments are nonnull.
2684         for (const auto *Arg : Args)
2685           if (S.isValidPointerAttrType(Arg->getType()))
2686             CheckNonNullArgument(S, Arg, CallSiteLoc);
2687         return;
2688       }
2689 
2690       for (const ParamIdx &Idx : NonNull->args()) {
2691         unsigned IdxAST = Idx.getASTIndex();
2692         if (IdxAST >= Args.size())
2693           continue;
2694         if (NonNullArgs.empty())
2695           NonNullArgs.resize(Args.size());
2696         NonNullArgs.set(IdxAST);
2697       }
2698     }
2699   }
2700 
2701   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
2702     // Handle the nonnull attribute on the parameters of the
2703     // function/method.
2704     ArrayRef<ParmVarDecl*> parms;
2705     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
2706       parms = FD->parameters();
2707     else
2708       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
2709 
2710     unsigned ParamIndex = 0;
2711     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
2712          I != E; ++I, ++ParamIndex) {
2713       const ParmVarDecl *PVD = *I;
2714       if (PVD->hasAttr<NonNullAttr>() ||
2715           isNonNullType(S.Context, PVD->getType())) {
2716         if (NonNullArgs.empty())
2717           NonNullArgs.resize(Args.size());
2718 
2719         NonNullArgs.set(ParamIndex);
2720       }
2721     }
2722   } else {
2723     // If we have a non-function, non-method declaration but no
2724     // function prototype, try to dig out the function prototype.
2725     if (!Proto) {
2726       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
2727         QualType type = VD->getType().getNonReferenceType();
2728         if (auto pointerType = type->getAs<PointerType>())
2729           type = pointerType->getPointeeType();
2730         else if (auto blockType = type->getAs<BlockPointerType>())
2731           type = blockType->getPointeeType();
2732         // FIXME: data member pointers?
2733 
2734         // Dig out the function prototype, if there is one.
2735         Proto = type->getAs<FunctionProtoType>();
2736       }
2737     }
2738 
2739     // Fill in non-null argument information from the nullability
2740     // information on the parameter types (if we have them).
2741     if (Proto) {
2742       unsigned Index = 0;
2743       for (auto paramType : Proto->getParamTypes()) {
2744         if (isNonNullType(S.Context, paramType)) {
2745           if (NonNullArgs.empty())
2746             NonNullArgs.resize(Args.size());
2747 
2748           NonNullArgs.set(Index);
2749         }
2750 
2751         ++Index;
2752       }
2753     }
2754   }
2755 
2756   // Check for non-null arguments.
2757   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
2758        ArgIndex != ArgIndexEnd; ++ArgIndex) {
2759     if (NonNullArgs[ArgIndex])
2760       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
2761   }
2762 }
2763 
2764 /// Handles the checks for format strings, non-POD arguments to vararg
2765 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
2766 /// attributes.
2767 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
2768                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
2769                      bool IsMemberFunction, SourceLocation Loc,
2770                      SourceRange Range, VariadicCallType CallType) {
2771   // FIXME: We should check as much as we can in the template definition.
2772   if (CurContext->isDependentContext())
2773     return;
2774 
2775   // Printf and scanf checking.
2776   llvm::SmallBitVector CheckedVarArgs;
2777   if (FDecl) {
2778     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
2779       // Only create vector if there are format attributes.
2780       CheckedVarArgs.resize(Args.size());
2781 
2782       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
2783                            CheckedVarArgs);
2784     }
2785   }
2786 
2787   // Refuse POD arguments that weren't caught by the format string
2788   // checks above.
2789   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
2790   if (CallType != VariadicDoesNotApply &&
2791       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
2792     unsigned NumParams = Proto ? Proto->getNumParams()
2793                        : FDecl && isa<FunctionDecl>(FDecl)
2794                            ? cast<FunctionDecl>(FDecl)->getNumParams()
2795                        : FDecl && isa<ObjCMethodDecl>(FDecl)
2796                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
2797                        : 0;
2798 
2799     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
2800       // Args[ArgIdx] can be null in malformed code.
2801       if (const Expr *Arg = Args[ArgIdx]) {
2802         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
2803           checkVariadicArgument(Arg, CallType);
2804       }
2805     }
2806   }
2807 
2808   if (FDecl || Proto) {
2809     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
2810 
2811     // Type safety checking.
2812     if (FDecl) {
2813       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
2814         CheckArgumentWithTypeTag(I, Args, Loc);
2815     }
2816   }
2817 
2818   if (FD)
2819     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
2820 }
2821 
2822 /// CheckConstructorCall - Check a constructor call for correctness and safety
2823 /// properties not enforced by the C type system.
2824 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
2825                                 ArrayRef<const Expr *> Args,
2826                                 const FunctionProtoType *Proto,
2827                                 SourceLocation Loc) {
2828   VariadicCallType CallType =
2829     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
2830   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
2831             Loc, SourceRange(), CallType);
2832 }
2833 
2834 /// CheckFunctionCall - Check a direct function call for various correctness
2835 /// and safety properties not strictly enforced by the C type system.
2836 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
2837                              const FunctionProtoType *Proto) {
2838   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
2839                               isa<CXXMethodDecl>(FDecl);
2840   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2841                           IsMemberOperatorCall;
2842   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
2843                                                   TheCall->getCallee());
2844   Expr** Args = TheCall->getArgs();
2845   unsigned NumArgs = TheCall->getNumArgs();
2846 
2847   Expr *ImplicitThis = nullptr;
2848   if (IsMemberOperatorCall) {
2849     // If this is a call to a member operator, hide the first argument
2850     // from checkCall.
2851     // FIXME: Our choice of AST representation here is less than ideal.
2852     ImplicitThis = Args[0];
2853     ++Args;
2854     --NumArgs;
2855   } else if (IsMemberFunction)
2856     ImplicitThis =
2857         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
2858 
2859   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
2860             IsMemberFunction, TheCall->getRParenLoc(),
2861             TheCall->getCallee()->getSourceRange(), CallType);
2862 
2863   IdentifierInfo *FnInfo = FDecl->getIdentifier();
2864   // None of the checks below are needed for functions that don't have
2865   // simple names (e.g., C++ conversion functions).
2866   if (!FnInfo)
2867     return false;
2868 
2869   CheckAbsoluteValueFunction(TheCall, FDecl);
2870   CheckMaxUnsignedZero(TheCall, FDecl);
2871 
2872   if (getLangOpts().ObjC1)
2873     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
2874 
2875   unsigned CMId = FDecl->getMemoryFunctionKind();
2876   if (CMId == 0)
2877     return false;
2878 
2879   // Handle memory setting and copying functions.
2880   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
2881     CheckStrlcpycatArguments(TheCall, FnInfo);
2882   else if (CMId == Builtin::BIstrncat)
2883     CheckStrncatArguments(TheCall, FnInfo);
2884   else
2885     CheckMemaccessArguments(TheCall, CMId, FnInfo);
2886 
2887   return false;
2888 }
2889 
2890 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
2891                                ArrayRef<const Expr *> Args) {
2892   VariadicCallType CallType =
2893       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
2894 
2895   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
2896             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
2897             CallType);
2898 
2899   return false;
2900 }
2901 
2902 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
2903                             const FunctionProtoType *Proto) {
2904   QualType Ty;
2905   if (const auto *V = dyn_cast<VarDecl>(NDecl))
2906     Ty = V->getType().getNonReferenceType();
2907   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
2908     Ty = F->getType().getNonReferenceType();
2909   else
2910     return false;
2911 
2912   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
2913       !Ty->isFunctionProtoType())
2914     return false;
2915 
2916   VariadicCallType CallType;
2917   if (!Proto || !Proto->isVariadic()) {
2918     CallType = VariadicDoesNotApply;
2919   } else if (Ty->isBlockPointerType()) {
2920     CallType = VariadicBlock;
2921   } else { // Ty->isFunctionPointerType()
2922     CallType = VariadicFunction;
2923   }
2924 
2925   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
2926             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2927             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2928             TheCall->getCallee()->getSourceRange(), CallType);
2929 
2930   return false;
2931 }
2932 
2933 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
2934 /// such as function pointers returned from functions.
2935 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
2936   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
2937                                                   TheCall->getCallee());
2938   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
2939             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2940             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2941             TheCall->getCallee()->getSourceRange(), CallType);
2942 
2943   return false;
2944 }
2945 
2946 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
2947   if (!llvm::isValidAtomicOrderingCABI(Ordering))
2948     return false;
2949 
2950   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
2951   switch (Op) {
2952   case AtomicExpr::AO__c11_atomic_init:
2953   case AtomicExpr::AO__opencl_atomic_init:
2954     llvm_unreachable("There is no ordering argument for an init");
2955 
2956   case AtomicExpr::AO__c11_atomic_load:
2957   case AtomicExpr::AO__opencl_atomic_load:
2958   case AtomicExpr::AO__atomic_load_n:
2959   case AtomicExpr::AO__atomic_load:
2960     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
2961            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2962 
2963   case AtomicExpr::AO__c11_atomic_store:
2964   case AtomicExpr::AO__opencl_atomic_store:
2965   case AtomicExpr::AO__atomic_store:
2966   case AtomicExpr::AO__atomic_store_n:
2967     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
2968            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
2969            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2970 
2971   default:
2972     return true;
2973   }
2974 }
2975 
2976 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
2977                                          AtomicExpr::AtomicOp Op) {
2978   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
2979   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2980 
2981   // All the non-OpenCL operations take one of the following forms.
2982   // The OpenCL operations take the __c11 forms with one extra argument for
2983   // synchronization scope.
2984   enum {
2985     // C    __c11_atomic_init(A *, C)
2986     Init,
2987 
2988     // C    __c11_atomic_load(A *, int)
2989     Load,
2990 
2991     // void __atomic_load(A *, CP, int)
2992     LoadCopy,
2993 
2994     // void __atomic_store(A *, CP, int)
2995     Copy,
2996 
2997     // C    __c11_atomic_add(A *, M, int)
2998     Arithmetic,
2999 
3000     // C    __atomic_exchange_n(A *, CP, int)
3001     Xchg,
3002 
3003     // void __atomic_exchange(A *, C *, CP, int)
3004     GNUXchg,
3005 
3006     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
3007     C11CmpXchg,
3008 
3009     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
3010     GNUCmpXchg
3011   } Form = Init;
3012 
3013   const unsigned NumForm = GNUCmpXchg + 1;
3014   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
3015   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
3016   // where:
3017   //   C is an appropriate type,
3018   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
3019   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
3020   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
3021   //   the int parameters are for orderings.
3022 
3023   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
3024       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
3025       "need to update code for modified forms");
3026   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
3027                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
3028                         AtomicExpr::AO__atomic_load,
3029                 "need to update code for modified C11 atomics");
3030   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
3031                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
3032   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
3033                Op <= AtomicExpr::AO__c11_atomic_fetch_xor) ||
3034                IsOpenCL;
3035   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
3036              Op == AtomicExpr::AO__atomic_store_n ||
3037              Op == AtomicExpr::AO__atomic_exchange_n ||
3038              Op == AtomicExpr::AO__atomic_compare_exchange_n;
3039   bool IsAddSub = false;
3040 
3041   switch (Op) {
3042   case AtomicExpr::AO__c11_atomic_init:
3043   case AtomicExpr::AO__opencl_atomic_init:
3044     Form = Init;
3045     break;
3046 
3047   case AtomicExpr::AO__c11_atomic_load:
3048   case AtomicExpr::AO__opencl_atomic_load:
3049   case AtomicExpr::AO__atomic_load_n:
3050     Form = Load;
3051     break;
3052 
3053   case AtomicExpr::AO__atomic_load:
3054     Form = LoadCopy;
3055     break;
3056 
3057   case AtomicExpr::AO__c11_atomic_store:
3058   case AtomicExpr::AO__opencl_atomic_store:
3059   case AtomicExpr::AO__atomic_store:
3060   case AtomicExpr::AO__atomic_store_n:
3061     Form = Copy;
3062     break;
3063 
3064   case AtomicExpr::AO__c11_atomic_fetch_add:
3065   case AtomicExpr::AO__c11_atomic_fetch_sub:
3066   case AtomicExpr::AO__opencl_atomic_fetch_add:
3067   case AtomicExpr::AO__opencl_atomic_fetch_sub:
3068   case AtomicExpr::AO__opencl_atomic_fetch_min:
3069   case AtomicExpr::AO__opencl_atomic_fetch_max:
3070   case AtomicExpr::AO__atomic_fetch_add:
3071   case AtomicExpr::AO__atomic_fetch_sub:
3072   case AtomicExpr::AO__atomic_add_fetch:
3073   case AtomicExpr::AO__atomic_sub_fetch:
3074     IsAddSub = true;
3075     LLVM_FALLTHROUGH;
3076   case AtomicExpr::AO__c11_atomic_fetch_and:
3077   case AtomicExpr::AO__c11_atomic_fetch_or:
3078   case AtomicExpr::AO__c11_atomic_fetch_xor:
3079   case AtomicExpr::AO__opencl_atomic_fetch_and:
3080   case AtomicExpr::AO__opencl_atomic_fetch_or:
3081   case AtomicExpr::AO__opencl_atomic_fetch_xor:
3082   case AtomicExpr::AO__atomic_fetch_and:
3083   case AtomicExpr::AO__atomic_fetch_or:
3084   case AtomicExpr::AO__atomic_fetch_xor:
3085   case AtomicExpr::AO__atomic_fetch_nand:
3086   case AtomicExpr::AO__atomic_and_fetch:
3087   case AtomicExpr::AO__atomic_or_fetch:
3088   case AtomicExpr::AO__atomic_xor_fetch:
3089   case AtomicExpr::AO__atomic_nand_fetch:
3090     Form = Arithmetic;
3091     break;
3092 
3093   case AtomicExpr::AO__c11_atomic_exchange:
3094   case AtomicExpr::AO__opencl_atomic_exchange:
3095   case AtomicExpr::AO__atomic_exchange_n:
3096     Form = Xchg;
3097     break;
3098 
3099   case AtomicExpr::AO__atomic_exchange:
3100     Form = GNUXchg;
3101     break;
3102 
3103   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3104   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3105   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
3106   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
3107     Form = C11CmpXchg;
3108     break;
3109 
3110   case AtomicExpr::AO__atomic_compare_exchange:
3111   case AtomicExpr::AO__atomic_compare_exchange_n:
3112     Form = GNUCmpXchg;
3113     break;
3114   }
3115 
3116   unsigned AdjustedNumArgs = NumArgs[Form];
3117   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
3118     ++AdjustedNumArgs;
3119   // Check we have the right number of arguments.
3120   if (TheCall->getNumArgs() < AdjustedNumArgs) {
3121     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
3122       << 0 << AdjustedNumArgs << TheCall->getNumArgs()
3123       << TheCall->getCallee()->getSourceRange();
3124     return ExprError();
3125   } else if (TheCall->getNumArgs() > AdjustedNumArgs) {
3126     Diag(TheCall->getArg(AdjustedNumArgs)->getLocStart(),
3127          diag::err_typecheck_call_too_many_args)
3128       << 0 << AdjustedNumArgs << TheCall->getNumArgs()
3129       << TheCall->getCallee()->getSourceRange();
3130     return ExprError();
3131   }
3132 
3133   // Inspect the first argument of the atomic operation.
3134   Expr *Ptr = TheCall->getArg(0);
3135   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
3136   if (ConvertedPtr.isInvalid())
3137     return ExprError();
3138 
3139   Ptr = ConvertedPtr.get();
3140   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
3141   if (!pointerType) {
3142     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
3143       << Ptr->getType() << Ptr->getSourceRange();
3144     return ExprError();
3145   }
3146 
3147   // For a __c11 builtin, this should be a pointer to an _Atomic type.
3148   QualType AtomTy = pointerType->getPointeeType(); // 'A'
3149   QualType ValType = AtomTy; // 'C'
3150   if (IsC11) {
3151     if (!AtomTy->isAtomicType()) {
3152       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
3153         << Ptr->getType() << Ptr->getSourceRange();
3154       return ExprError();
3155     }
3156     if (AtomTy.isConstQualified() ||
3157         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
3158       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
3159           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
3160           << Ptr->getSourceRange();
3161       return ExprError();
3162     }
3163     ValType = AtomTy->getAs<AtomicType>()->getValueType();
3164   } else if (Form != Load && Form != LoadCopy) {
3165     if (ValType.isConstQualified()) {
3166       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
3167         << Ptr->getType() << Ptr->getSourceRange();
3168       return ExprError();
3169     }
3170   }
3171 
3172   // For an arithmetic operation, the implied arithmetic must be well-formed.
3173   if (Form == Arithmetic) {
3174     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
3175     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
3176       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
3177         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3178       return ExprError();
3179     }
3180     if (!IsAddSub && !ValType->isIntegerType()) {
3181       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
3182         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3183       return ExprError();
3184     }
3185     if (IsC11 && ValType->isPointerType() &&
3186         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
3187                             diag::err_incomplete_type)) {
3188       return ExprError();
3189     }
3190   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
3191     // For __atomic_*_n operations, the value type must be a scalar integral or
3192     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
3193     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
3194       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3195     return ExprError();
3196   }
3197 
3198   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
3199       !AtomTy->isScalarType()) {
3200     // For GNU atomics, require a trivially-copyable type. This is not part of
3201     // the GNU atomics specification, but we enforce it for sanity.
3202     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
3203       << Ptr->getType() << Ptr->getSourceRange();
3204     return ExprError();
3205   }
3206 
3207   switch (ValType.getObjCLifetime()) {
3208   case Qualifiers::OCL_None:
3209   case Qualifiers::OCL_ExplicitNone:
3210     // okay
3211     break;
3212 
3213   case Qualifiers::OCL_Weak:
3214   case Qualifiers::OCL_Strong:
3215   case Qualifiers::OCL_Autoreleasing:
3216     // FIXME: Can this happen? By this point, ValType should be known
3217     // to be trivially copyable.
3218     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
3219       << ValType << Ptr->getSourceRange();
3220     return ExprError();
3221   }
3222 
3223   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
3224   // volatile-ness of the pointee-type inject itself into the result or the
3225   // other operands. Similarly atomic_load can take a pointer to a const 'A'.
3226   ValType.removeLocalVolatile();
3227   ValType.removeLocalConst();
3228   QualType ResultType = ValType;
3229   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
3230       Form == Init)
3231     ResultType = Context.VoidTy;
3232   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
3233     ResultType = Context.BoolTy;
3234 
3235   // The type of a parameter passed 'by value'. In the GNU atomics, such
3236   // arguments are actually passed as pointers.
3237   QualType ByValType = ValType; // 'CP'
3238   if (!IsC11 && !IsN)
3239     ByValType = Ptr->getType();
3240 
3241   // The first argument --- the pointer --- has a fixed type; we
3242   // deduce the types of the rest of the arguments accordingly.  Walk
3243   // the remaining arguments, converting them to the deduced value type.
3244   for (unsigned i = 1; i != TheCall->getNumArgs(); ++i) {
3245     QualType Ty;
3246     if (i < NumVals[Form] + 1) {
3247       switch (i) {
3248       case 1:
3249         // The second argument is the non-atomic operand. For arithmetic, this
3250         // is always passed by value, and for a compare_exchange it is always
3251         // passed by address. For the rest, GNU uses by-address and C11 uses
3252         // by-value.
3253         assert(Form != Load);
3254         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
3255           Ty = ValType;
3256         else if (Form == Copy || Form == Xchg)
3257           Ty = ByValType;
3258         else if (Form == Arithmetic)
3259           Ty = Context.getPointerDiffType();
3260         else {
3261           Expr *ValArg = TheCall->getArg(i);
3262           // Treat this argument as _Nonnull as we want to show a warning if
3263           // NULL is passed into it.
3264           CheckNonNullArgument(*this, ValArg, DRE->getLocStart());
3265           LangAS AS = LangAS::Default;
3266           // Keep address space of non-atomic pointer type.
3267           if (const PointerType *PtrTy =
3268                   ValArg->getType()->getAs<PointerType>()) {
3269             AS = PtrTy->getPointeeType().getAddressSpace();
3270           }
3271           Ty = Context.getPointerType(
3272               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
3273         }
3274         break;
3275       case 2:
3276         // The third argument to compare_exchange / GNU exchange is a
3277         // (pointer to a) desired value.
3278         Ty = ByValType;
3279         break;
3280       case 3:
3281         // The fourth argument to GNU compare_exchange is a 'weak' flag.
3282         Ty = Context.BoolTy;
3283         break;
3284       }
3285     } else {
3286       // The order(s) and scope are always converted to int.
3287       Ty = Context.IntTy;
3288     }
3289 
3290     InitializedEntity Entity =
3291         InitializedEntity::InitializeParameter(Context, Ty, false);
3292     ExprResult Arg = TheCall->getArg(i);
3293     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3294     if (Arg.isInvalid())
3295       return true;
3296     TheCall->setArg(i, Arg.get());
3297   }
3298 
3299   // Permute the arguments into a 'consistent' order.
3300   SmallVector<Expr*, 5> SubExprs;
3301   SubExprs.push_back(Ptr);
3302   switch (Form) {
3303   case Init:
3304     // Note, AtomicExpr::getVal1() has a special case for this atomic.
3305     SubExprs.push_back(TheCall->getArg(1)); // Val1
3306     break;
3307   case Load:
3308     SubExprs.push_back(TheCall->getArg(1)); // Order
3309     break;
3310   case LoadCopy:
3311   case Copy:
3312   case Arithmetic:
3313   case Xchg:
3314     SubExprs.push_back(TheCall->getArg(2)); // Order
3315     SubExprs.push_back(TheCall->getArg(1)); // Val1
3316     break;
3317   case GNUXchg:
3318     // Note, AtomicExpr::getVal2() has a special case for this atomic.
3319     SubExprs.push_back(TheCall->getArg(3)); // Order
3320     SubExprs.push_back(TheCall->getArg(1)); // Val1
3321     SubExprs.push_back(TheCall->getArg(2)); // Val2
3322     break;
3323   case C11CmpXchg:
3324     SubExprs.push_back(TheCall->getArg(3)); // Order
3325     SubExprs.push_back(TheCall->getArg(1)); // Val1
3326     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
3327     SubExprs.push_back(TheCall->getArg(2)); // Val2
3328     break;
3329   case GNUCmpXchg:
3330     SubExprs.push_back(TheCall->getArg(4)); // Order
3331     SubExprs.push_back(TheCall->getArg(1)); // Val1
3332     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
3333     SubExprs.push_back(TheCall->getArg(2)); // Val2
3334     SubExprs.push_back(TheCall->getArg(3)); // Weak
3335     break;
3336   }
3337 
3338   if (SubExprs.size() >= 2 && Form != Init) {
3339     llvm::APSInt Result(32);
3340     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
3341         !isValidOrderingForOp(Result.getSExtValue(), Op))
3342       Diag(SubExprs[1]->getLocStart(),
3343            diag::warn_atomic_op_has_invalid_memory_order)
3344           << SubExprs[1]->getSourceRange();
3345   }
3346 
3347   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
3348     auto *Scope = TheCall->getArg(TheCall->getNumArgs() - 1);
3349     llvm::APSInt Result(32);
3350     if (Scope->isIntegerConstantExpr(Result, Context) &&
3351         !ScopeModel->isValid(Result.getZExtValue())) {
3352       Diag(Scope->getLocStart(), diag::err_atomic_op_has_invalid_synch_scope)
3353           << Scope->getSourceRange();
3354     }
3355     SubExprs.push_back(Scope);
3356   }
3357 
3358   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
3359                                             SubExprs, ResultType, Op,
3360                                             TheCall->getRParenLoc());
3361 
3362   if ((Op == AtomicExpr::AO__c11_atomic_load ||
3363        Op == AtomicExpr::AO__c11_atomic_store ||
3364        Op == AtomicExpr::AO__opencl_atomic_load ||
3365        Op == AtomicExpr::AO__opencl_atomic_store ) &&
3366       Context.AtomicUsesUnsupportedLibcall(AE))
3367     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib)
3368         << ((Op == AtomicExpr::AO__c11_atomic_load ||
3369             Op == AtomicExpr::AO__opencl_atomic_load)
3370                 ? 0 : 1);
3371 
3372   return AE;
3373 }
3374 
3375 /// checkBuiltinArgument - Given a call to a builtin function, perform
3376 /// normal type-checking on the given argument, updating the call in
3377 /// place.  This is useful when a builtin function requires custom
3378 /// type-checking for some of its arguments but not necessarily all of
3379 /// them.
3380 ///
3381 /// Returns true on error.
3382 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
3383   FunctionDecl *Fn = E->getDirectCallee();
3384   assert(Fn && "builtin call without direct callee!");
3385 
3386   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
3387   InitializedEntity Entity =
3388     InitializedEntity::InitializeParameter(S.Context, Param);
3389 
3390   ExprResult Arg = E->getArg(0);
3391   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
3392   if (Arg.isInvalid())
3393     return true;
3394 
3395   E->setArg(ArgIndex, Arg.get());
3396   return false;
3397 }
3398 
3399 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
3400 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
3401 /// type of its first argument.  The main ActOnCallExpr routines have already
3402 /// promoted the types of arguments because all of these calls are prototyped as
3403 /// void(...).
3404 ///
3405 /// This function goes through and does final semantic checking for these
3406 /// builtins,
3407 ExprResult
3408 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
3409   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
3410   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3411   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3412 
3413   // Ensure that we have at least one argument to do type inference from.
3414   if (TheCall->getNumArgs() < 1) {
3415     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
3416       << 0 << 1 << TheCall->getNumArgs()
3417       << TheCall->getCallee()->getSourceRange();
3418     return ExprError();
3419   }
3420 
3421   // Inspect the first argument of the atomic builtin.  This should always be
3422   // a pointer type, whose element is an integral scalar or pointer type.
3423   // Because it is a pointer type, we don't have to worry about any implicit
3424   // casts here.
3425   // FIXME: We don't allow floating point scalars as input.
3426   Expr *FirstArg = TheCall->getArg(0);
3427   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
3428   if (FirstArgResult.isInvalid())
3429     return ExprError();
3430   FirstArg = FirstArgResult.get();
3431   TheCall->setArg(0, FirstArg);
3432 
3433   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
3434   if (!pointerType) {
3435     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
3436       << FirstArg->getType() << FirstArg->getSourceRange();
3437     return ExprError();
3438   }
3439 
3440   QualType ValType = pointerType->getPointeeType();
3441   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3442       !ValType->isBlockPointerType()) {
3443     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
3444       << FirstArg->getType() << FirstArg->getSourceRange();
3445     return ExprError();
3446   }
3447 
3448   if (ValType.isConstQualified()) {
3449     Diag(DRE->getLocStart(), diag::err_atomic_builtin_cannot_be_const)
3450         << FirstArg->getType() << FirstArg->getSourceRange();
3451     return ExprError();
3452   }
3453 
3454   switch (ValType.getObjCLifetime()) {
3455   case Qualifiers::OCL_None:
3456   case Qualifiers::OCL_ExplicitNone:
3457     // okay
3458     break;
3459 
3460   case Qualifiers::OCL_Weak:
3461   case Qualifiers::OCL_Strong:
3462   case Qualifiers::OCL_Autoreleasing:
3463     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
3464       << ValType << FirstArg->getSourceRange();
3465     return ExprError();
3466   }
3467 
3468   // Strip any qualifiers off ValType.
3469   ValType = ValType.getUnqualifiedType();
3470 
3471   // The majority of builtins return a value, but a few have special return
3472   // types, so allow them to override appropriately below.
3473   QualType ResultType = ValType;
3474 
3475   // We need to figure out which concrete builtin this maps onto.  For example,
3476   // __sync_fetch_and_add with a 2 byte object turns into
3477   // __sync_fetch_and_add_2.
3478 #define BUILTIN_ROW(x) \
3479   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
3480     Builtin::BI##x##_8, Builtin::BI##x##_16 }
3481 
3482   static const unsigned BuiltinIndices[][5] = {
3483     BUILTIN_ROW(__sync_fetch_and_add),
3484     BUILTIN_ROW(__sync_fetch_and_sub),
3485     BUILTIN_ROW(__sync_fetch_and_or),
3486     BUILTIN_ROW(__sync_fetch_and_and),
3487     BUILTIN_ROW(__sync_fetch_and_xor),
3488     BUILTIN_ROW(__sync_fetch_and_nand),
3489 
3490     BUILTIN_ROW(__sync_add_and_fetch),
3491     BUILTIN_ROW(__sync_sub_and_fetch),
3492     BUILTIN_ROW(__sync_and_and_fetch),
3493     BUILTIN_ROW(__sync_or_and_fetch),
3494     BUILTIN_ROW(__sync_xor_and_fetch),
3495     BUILTIN_ROW(__sync_nand_and_fetch),
3496 
3497     BUILTIN_ROW(__sync_val_compare_and_swap),
3498     BUILTIN_ROW(__sync_bool_compare_and_swap),
3499     BUILTIN_ROW(__sync_lock_test_and_set),
3500     BUILTIN_ROW(__sync_lock_release),
3501     BUILTIN_ROW(__sync_swap)
3502   };
3503 #undef BUILTIN_ROW
3504 
3505   // Determine the index of the size.
3506   unsigned SizeIndex;
3507   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
3508   case 1: SizeIndex = 0; break;
3509   case 2: SizeIndex = 1; break;
3510   case 4: SizeIndex = 2; break;
3511   case 8: SizeIndex = 3; break;
3512   case 16: SizeIndex = 4; break;
3513   default:
3514     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
3515       << FirstArg->getType() << FirstArg->getSourceRange();
3516     return ExprError();
3517   }
3518 
3519   // Each of these builtins has one pointer argument, followed by some number of
3520   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
3521   // that we ignore.  Find out which row of BuiltinIndices to read from as well
3522   // as the number of fixed args.
3523   unsigned BuiltinID = FDecl->getBuiltinID();
3524   unsigned BuiltinIndex, NumFixed = 1;
3525   bool WarnAboutSemanticsChange = false;
3526   switch (BuiltinID) {
3527   default: llvm_unreachable("Unknown overloaded atomic builtin!");
3528   case Builtin::BI__sync_fetch_and_add:
3529   case Builtin::BI__sync_fetch_and_add_1:
3530   case Builtin::BI__sync_fetch_and_add_2:
3531   case Builtin::BI__sync_fetch_and_add_4:
3532   case Builtin::BI__sync_fetch_and_add_8:
3533   case Builtin::BI__sync_fetch_and_add_16:
3534     BuiltinIndex = 0;
3535     break;
3536 
3537   case Builtin::BI__sync_fetch_and_sub:
3538   case Builtin::BI__sync_fetch_and_sub_1:
3539   case Builtin::BI__sync_fetch_and_sub_2:
3540   case Builtin::BI__sync_fetch_and_sub_4:
3541   case Builtin::BI__sync_fetch_and_sub_8:
3542   case Builtin::BI__sync_fetch_and_sub_16:
3543     BuiltinIndex = 1;
3544     break;
3545 
3546   case Builtin::BI__sync_fetch_and_or:
3547   case Builtin::BI__sync_fetch_and_or_1:
3548   case Builtin::BI__sync_fetch_and_or_2:
3549   case Builtin::BI__sync_fetch_and_or_4:
3550   case Builtin::BI__sync_fetch_and_or_8:
3551   case Builtin::BI__sync_fetch_and_or_16:
3552     BuiltinIndex = 2;
3553     break;
3554 
3555   case Builtin::BI__sync_fetch_and_and:
3556   case Builtin::BI__sync_fetch_and_and_1:
3557   case Builtin::BI__sync_fetch_and_and_2:
3558   case Builtin::BI__sync_fetch_and_and_4:
3559   case Builtin::BI__sync_fetch_and_and_8:
3560   case Builtin::BI__sync_fetch_and_and_16:
3561     BuiltinIndex = 3;
3562     break;
3563 
3564   case Builtin::BI__sync_fetch_and_xor:
3565   case Builtin::BI__sync_fetch_and_xor_1:
3566   case Builtin::BI__sync_fetch_and_xor_2:
3567   case Builtin::BI__sync_fetch_and_xor_4:
3568   case Builtin::BI__sync_fetch_and_xor_8:
3569   case Builtin::BI__sync_fetch_and_xor_16:
3570     BuiltinIndex = 4;
3571     break;
3572 
3573   case Builtin::BI__sync_fetch_and_nand:
3574   case Builtin::BI__sync_fetch_and_nand_1:
3575   case Builtin::BI__sync_fetch_and_nand_2:
3576   case Builtin::BI__sync_fetch_and_nand_4:
3577   case Builtin::BI__sync_fetch_and_nand_8:
3578   case Builtin::BI__sync_fetch_and_nand_16:
3579     BuiltinIndex = 5;
3580     WarnAboutSemanticsChange = true;
3581     break;
3582 
3583   case Builtin::BI__sync_add_and_fetch:
3584   case Builtin::BI__sync_add_and_fetch_1:
3585   case Builtin::BI__sync_add_and_fetch_2:
3586   case Builtin::BI__sync_add_and_fetch_4:
3587   case Builtin::BI__sync_add_and_fetch_8:
3588   case Builtin::BI__sync_add_and_fetch_16:
3589     BuiltinIndex = 6;
3590     break;
3591 
3592   case Builtin::BI__sync_sub_and_fetch:
3593   case Builtin::BI__sync_sub_and_fetch_1:
3594   case Builtin::BI__sync_sub_and_fetch_2:
3595   case Builtin::BI__sync_sub_and_fetch_4:
3596   case Builtin::BI__sync_sub_and_fetch_8:
3597   case Builtin::BI__sync_sub_and_fetch_16:
3598     BuiltinIndex = 7;
3599     break;
3600 
3601   case Builtin::BI__sync_and_and_fetch:
3602   case Builtin::BI__sync_and_and_fetch_1:
3603   case Builtin::BI__sync_and_and_fetch_2:
3604   case Builtin::BI__sync_and_and_fetch_4:
3605   case Builtin::BI__sync_and_and_fetch_8:
3606   case Builtin::BI__sync_and_and_fetch_16:
3607     BuiltinIndex = 8;
3608     break;
3609 
3610   case Builtin::BI__sync_or_and_fetch:
3611   case Builtin::BI__sync_or_and_fetch_1:
3612   case Builtin::BI__sync_or_and_fetch_2:
3613   case Builtin::BI__sync_or_and_fetch_4:
3614   case Builtin::BI__sync_or_and_fetch_8:
3615   case Builtin::BI__sync_or_and_fetch_16:
3616     BuiltinIndex = 9;
3617     break;
3618 
3619   case Builtin::BI__sync_xor_and_fetch:
3620   case Builtin::BI__sync_xor_and_fetch_1:
3621   case Builtin::BI__sync_xor_and_fetch_2:
3622   case Builtin::BI__sync_xor_and_fetch_4:
3623   case Builtin::BI__sync_xor_and_fetch_8:
3624   case Builtin::BI__sync_xor_and_fetch_16:
3625     BuiltinIndex = 10;
3626     break;
3627 
3628   case Builtin::BI__sync_nand_and_fetch:
3629   case Builtin::BI__sync_nand_and_fetch_1:
3630   case Builtin::BI__sync_nand_and_fetch_2:
3631   case Builtin::BI__sync_nand_and_fetch_4:
3632   case Builtin::BI__sync_nand_and_fetch_8:
3633   case Builtin::BI__sync_nand_and_fetch_16:
3634     BuiltinIndex = 11;
3635     WarnAboutSemanticsChange = true;
3636     break;
3637 
3638   case Builtin::BI__sync_val_compare_and_swap:
3639   case Builtin::BI__sync_val_compare_and_swap_1:
3640   case Builtin::BI__sync_val_compare_and_swap_2:
3641   case Builtin::BI__sync_val_compare_and_swap_4:
3642   case Builtin::BI__sync_val_compare_and_swap_8:
3643   case Builtin::BI__sync_val_compare_and_swap_16:
3644     BuiltinIndex = 12;
3645     NumFixed = 2;
3646     break;
3647 
3648   case Builtin::BI__sync_bool_compare_and_swap:
3649   case Builtin::BI__sync_bool_compare_and_swap_1:
3650   case Builtin::BI__sync_bool_compare_and_swap_2:
3651   case Builtin::BI__sync_bool_compare_and_swap_4:
3652   case Builtin::BI__sync_bool_compare_and_swap_8:
3653   case Builtin::BI__sync_bool_compare_and_swap_16:
3654     BuiltinIndex = 13;
3655     NumFixed = 2;
3656     ResultType = Context.BoolTy;
3657     break;
3658 
3659   case Builtin::BI__sync_lock_test_and_set:
3660   case Builtin::BI__sync_lock_test_and_set_1:
3661   case Builtin::BI__sync_lock_test_and_set_2:
3662   case Builtin::BI__sync_lock_test_and_set_4:
3663   case Builtin::BI__sync_lock_test_and_set_8:
3664   case Builtin::BI__sync_lock_test_and_set_16:
3665     BuiltinIndex = 14;
3666     break;
3667 
3668   case Builtin::BI__sync_lock_release:
3669   case Builtin::BI__sync_lock_release_1:
3670   case Builtin::BI__sync_lock_release_2:
3671   case Builtin::BI__sync_lock_release_4:
3672   case Builtin::BI__sync_lock_release_8:
3673   case Builtin::BI__sync_lock_release_16:
3674     BuiltinIndex = 15;
3675     NumFixed = 0;
3676     ResultType = Context.VoidTy;
3677     break;
3678 
3679   case Builtin::BI__sync_swap:
3680   case Builtin::BI__sync_swap_1:
3681   case Builtin::BI__sync_swap_2:
3682   case Builtin::BI__sync_swap_4:
3683   case Builtin::BI__sync_swap_8:
3684   case Builtin::BI__sync_swap_16:
3685     BuiltinIndex = 16;
3686     break;
3687   }
3688 
3689   // Now that we know how many fixed arguments we expect, first check that we
3690   // have at least that many.
3691   if (TheCall->getNumArgs() < 1+NumFixed) {
3692     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
3693       << 0 << 1+NumFixed << TheCall->getNumArgs()
3694       << TheCall->getCallee()->getSourceRange();
3695     return ExprError();
3696   }
3697 
3698   if (WarnAboutSemanticsChange) {
3699     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
3700       << TheCall->getCallee()->getSourceRange();
3701   }
3702 
3703   // Get the decl for the concrete builtin from this, we can tell what the
3704   // concrete integer type we should convert to is.
3705   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
3706   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
3707   FunctionDecl *NewBuiltinDecl;
3708   if (NewBuiltinID == BuiltinID)
3709     NewBuiltinDecl = FDecl;
3710   else {
3711     // Perform builtin lookup to avoid redeclaring it.
3712     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
3713     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
3714     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
3715     assert(Res.getFoundDecl());
3716     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
3717     if (!NewBuiltinDecl)
3718       return ExprError();
3719   }
3720 
3721   // The first argument --- the pointer --- has a fixed type; we
3722   // deduce the types of the rest of the arguments accordingly.  Walk
3723   // the remaining arguments, converting them to the deduced value type.
3724   for (unsigned i = 0; i != NumFixed; ++i) {
3725     ExprResult Arg = TheCall->getArg(i+1);
3726 
3727     // GCC does an implicit conversion to the pointer or integer ValType.  This
3728     // can fail in some cases (1i -> int**), check for this error case now.
3729     // Initialize the argument.
3730     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
3731                                                    ValType, /*consume*/ false);
3732     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3733     if (Arg.isInvalid())
3734       return ExprError();
3735 
3736     // Okay, we have something that *can* be converted to the right type.  Check
3737     // to see if there is a potentially weird extension going on here.  This can
3738     // happen when you do an atomic operation on something like an char* and
3739     // pass in 42.  The 42 gets converted to char.  This is even more strange
3740     // for things like 45.123 -> char, etc.
3741     // FIXME: Do this check.
3742     TheCall->setArg(i+1, Arg.get());
3743   }
3744 
3745   ASTContext& Context = this->getASTContext();
3746 
3747   // Create a new DeclRefExpr to refer to the new decl.
3748   DeclRefExpr* NewDRE = DeclRefExpr::Create(
3749       Context,
3750       DRE->getQualifierLoc(),
3751       SourceLocation(),
3752       NewBuiltinDecl,
3753       /*enclosing*/ false,
3754       DRE->getLocation(),
3755       Context.BuiltinFnTy,
3756       DRE->getValueKind());
3757 
3758   // Set the callee in the CallExpr.
3759   // FIXME: This loses syntactic information.
3760   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
3761   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
3762                                               CK_BuiltinFnToFnPtr);
3763   TheCall->setCallee(PromotedCall.get());
3764 
3765   // Change the result type of the call to match the original value type. This
3766   // is arbitrary, but the codegen for these builtins ins design to handle it
3767   // gracefully.
3768   TheCall->setType(ResultType);
3769 
3770   return TheCallResult;
3771 }
3772 
3773 /// SemaBuiltinNontemporalOverloaded - We have a call to
3774 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
3775 /// overloaded function based on the pointer type of its last argument.
3776 ///
3777 /// This function goes through and does final semantic checking for these
3778 /// builtins.
3779 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
3780   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
3781   DeclRefExpr *DRE =
3782       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3783   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3784   unsigned BuiltinID = FDecl->getBuiltinID();
3785   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
3786           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
3787          "Unexpected nontemporal load/store builtin!");
3788   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
3789   unsigned numArgs = isStore ? 2 : 1;
3790 
3791   // Ensure that we have the proper number of arguments.
3792   if (checkArgCount(*this, TheCall, numArgs))
3793     return ExprError();
3794 
3795   // Inspect the last argument of the nontemporal builtin.  This should always
3796   // be a pointer type, from which we imply the type of the memory access.
3797   // Because it is a pointer type, we don't have to worry about any implicit
3798   // casts here.
3799   Expr *PointerArg = TheCall->getArg(numArgs - 1);
3800   ExprResult PointerArgResult =
3801       DefaultFunctionArrayLvalueConversion(PointerArg);
3802 
3803   if (PointerArgResult.isInvalid())
3804     return ExprError();
3805   PointerArg = PointerArgResult.get();
3806   TheCall->setArg(numArgs - 1, PointerArg);
3807 
3808   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3809   if (!pointerType) {
3810     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
3811         << PointerArg->getType() << PointerArg->getSourceRange();
3812     return ExprError();
3813   }
3814 
3815   QualType ValType = pointerType->getPointeeType();
3816 
3817   // Strip any qualifiers off ValType.
3818   ValType = ValType.getUnqualifiedType();
3819   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3820       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
3821       !ValType->isVectorType()) {
3822     Diag(DRE->getLocStart(),
3823          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
3824         << PointerArg->getType() << PointerArg->getSourceRange();
3825     return ExprError();
3826   }
3827 
3828   if (!isStore) {
3829     TheCall->setType(ValType);
3830     return TheCallResult;
3831   }
3832 
3833   ExprResult ValArg = TheCall->getArg(0);
3834   InitializedEntity Entity = InitializedEntity::InitializeParameter(
3835       Context, ValType, /*consume*/ false);
3836   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3837   if (ValArg.isInvalid())
3838     return ExprError();
3839 
3840   TheCall->setArg(0, ValArg.get());
3841   TheCall->setType(Context.VoidTy);
3842   return TheCallResult;
3843 }
3844 
3845 /// CheckObjCString - Checks that the argument to the builtin
3846 /// CFString constructor is correct
3847 /// Note: It might also make sense to do the UTF-16 conversion here (would
3848 /// simplify the backend).
3849 bool Sema::CheckObjCString(Expr *Arg) {
3850   Arg = Arg->IgnoreParenCasts();
3851   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
3852 
3853   if (!Literal || !Literal->isAscii()) {
3854     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
3855       << Arg->getSourceRange();
3856     return true;
3857   }
3858 
3859   if (Literal->containsNonAsciiOrNull()) {
3860     StringRef String = Literal->getString();
3861     unsigned NumBytes = String.size();
3862     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
3863     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3864     llvm::UTF16 *ToPtr = &ToBuf[0];
3865 
3866     llvm::ConversionResult Result =
3867         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3868                                  ToPtr + NumBytes, llvm::strictConversion);
3869     // Check for conversion failure.
3870     if (Result != llvm::conversionOK)
3871       Diag(Arg->getLocStart(),
3872            diag::warn_cfstring_truncated) << Arg->getSourceRange();
3873   }
3874   return false;
3875 }
3876 
3877 /// CheckObjCString - Checks that the format string argument to the os_log()
3878 /// and os_trace() functions is correct, and converts it to const char *.
3879 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
3880   Arg = Arg->IgnoreParenCasts();
3881   auto *Literal = dyn_cast<StringLiteral>(Arg);
3882   if (!Literal) {
3883     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
3884       Literal = ObjcLiteral->getString();
3885     }
3886   }
3887 
3888   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
3889     return ExprError(
3890         Diag(Arg->getLocStart(), diag::err_os_log_format_not_string_constant)
3891         << Arg->getSourceRange());
3892   }
3893 
3894   ExprResult Result(Literal);
3895   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
3896   InitializedEntity Entity =
3897       InitializedEntity::InitializeParameter(Context, ResultTy, false);
3898   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
3899   return Result;
3900 }
3901 
3902 /// Check that the user is calling the appropriate va_start builtin for the
3903 /// target and calling convention.
3904 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
3905   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
3906   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
3907   bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64;
3908   bool IsWindows = TT.isOSWindows();
3909   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
3910   if (IsX64 || IsAArch64) {
3911     CallingConv CC = CC_C;
3912     if (const FunctionDecl *FD = S.getCurFunctionDecl())
3913       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
3914     if (IsMSVAStart) {
3915       // Don't allow this in System V ABI functions.
3916       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
3917         return S.Diag(Fn->getLocStart(),
3918                       diag::err_ms_va_start_used_in_sysv_function);
3919     } else {
3920       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
3921       // On x64 Windows, don't allow this in System V ABI functions.
3922       // (Yes, that means there's no corresponding way to support variadic
3923       // System V ABI functions on Windows.)
3924       if ((IsWindows && CC == CC_X86_64SysV) ||
3925           (!IsWindows && CC == CC_Win64))
3926         return S.Diag(Fn->getLocStart(),
3927                       diag::err_va_start_used_in_wrong_abi_function)
3928                << !IsWindows;
3929     }
3930     return false;
3931   }
3932 
3933   if (IsMSVAStart)
3934     return S.Diag(Fn->getLocStart(), diag::err_builtin_x64_aarch64_only);
3935   return false;
3936 }
3937 
3938 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
3939                                              ParmVarDecl **LastParam = nullptr) {
3940   // Determine whether the current function, block, or obj-c method is variadic
3941   // and get its parameter list.
3942   bool IsVariadic = false;
3943   ArrayRef<ParmVarDecl *> Params;
3944   DeclContext *Caller = S.CurContext;
3945   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
3946     IsVariadic = Block->isVariadic();
3947     Params = Block->parameters();
3948   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
3949     IsVariadic = FD->isVariadic();
3950     Params = FD->parameters();
3951   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
3952     IsVariadic = MD->isVariadic();
3953     // FIXME: This isn't correct for methods (results in bogus warning).
3954     Params = MD->parameters();
3955   } else if (isa<CapturedDecl>(Caller)) {
3956     // We don't support va_start in a CapturedDecl.
3957     S.Diag(Fn->getLocStart(), diag::err_va_start_captured_stmt);
3958     return true;
3959   } else {
3960     // This must be some other declcontext that parses exprs.
3961     S.Diag(Fn->getLocStart(), diag::err_va_start_outside_function);
3962     return true;
3963   }
3964 
3965   if (!IsVariadic) {
3966     S.Diag(Fn->getLocStart(), diag::err_va_start_fixed_function);
3967     return true;
3968   }
3969 
3970   if (LastParam)
3971     *LastParam = Params.empty() ? nullptr : Params.back();
3972 
3973   return false;
3974 }
3975 
3976 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
3977 /// for validity.  Emit an error and return true on failure; return false
3978 /// on success.
3979 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
3980   Expr *Fn = TheCall->getCallee();
3981 
3982   if (checkVAStartABI(*this, BuiltinID, Fn))
3983     return true;
3984 
3985   if (TheCall->getNumArgs() > 2) {
3986     Diag(TheCall->getArg(2)->getLocStart(),
3987          diag::err_typecheck_call_too_many_args)
3988       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3989       << Fn->getSourceRange()
3990       << SourceRange(TheCall->getArg(2)->getLocStart(),
3991                      (*(TheCall->arg_end()-1))->getLocEnd());
3992     return true;
3993   }
3994 
3995   if (TheCall->getNumArgs() < 2) {
3996     return Diag(TheCall->getLocEnd(),
3997       diag::err_typecheck_call_too_few_args_at_least)
3998       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
3999   }
4000 
4001   // Type-check the first argument normally.
4002   if (checkBuiltinArgument(*this, TheCall, 0))
4003     return true;
4004 
4005   // Check that the current function is variadic, and get its last parameter.
4006   ParmVarDecl *LastParam;
4007   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
4008     return true;
4009 
4010   // Verify that the second argument to the builtin is the last argument of the
4011   // current function or method.
4012   bool SecondArgIsLastNamedArgument = false;
4013   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
4014 
4015   // These are valid if SecondArgIsLastNamedArgument is false after the next
4016   // block.
4017   QualType Type;
4018   SourceLocation ParamLoc;
4019   bool IsCRegister = false;
4020 
4021   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
4022     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
4023       SecondArgIsLastNamedArgument = PV == LastParam;
4024 
4025       Type = PV->getType();
4026       ParamLoc = PV->getLocation();
4027       IsCRegister =
4028           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
4029     }
4030   }
4031 
4032   if (!SecondArgIsLastNamedArgument)
4033     Diag(TheCall->getArg(1)->getLocStart(),
4034          diag::warn_second_arg_of_va_start_not_last_named_param);
4035   else if (IsCRegister || Type->isReferenceType() ||
4036            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
4037              // Promotable integers are UB, but enumerations need a bit of
4038              // extra checking to see what their promotable type actually is.
4039              if (!Type->isPromotableIntegerType())
4040                return false;
4041              if (!Type->isEnumeralType())
4042                return true;
4043              const EnumDecl *ED = Type->getAs<EnumType>()->getDecl();
4044              return !(ED &&
4045                       Context.typesAreCompatible(ED->getPromotionType(), Type));
4046            }()) {
4047     unsigned Reason = 0;
4048     if (Type->isReferenceType())  Reason = 1;
4049     else if (IsCRegister)         Reason = 2;
4050     Diag(Arg->getLocStart(), diag::warn_va_start_type_is_undefined) << Reason;
4051     Diag(ParamLoc, diag::note_parameter_type) << Type;
4052   }
4053 
4054   TheCall->setType(Context.VoidTy);
4055   return false;
4056 }
4057 
4058 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
4059   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
4060   //                 const char *named_addr);
4061 
4062   Expr *Func = Call->getCallee();
4063 
4064   if (Call->getNumArgs() < 3)
4065     return Diag(Call->getLocEnd(),
4066                 diag::err_typecheck_call_too_few_args_at_least)
4067            << 0 /*function call*/ << 3 << Call->getNumArgs();
4068 
4069   // Type-check the first argument normally.
4070   if (checkBuiltinArgument(*this, Call, 0))
4071     return true;
4072 
4073   // Check that the current function is variadic.
4074   if (checkVAStartIsInVariadicFunction(*this, Func))
4075     return true;
4076 
4077   // __va_start on Windows does not validate the parameter qualifiers
4078 
4079   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
4080   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
4081 
4082   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
4083   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
4084 
4085   const QualType &ConstCharPtrTy =
4086       Context.getPointerType(Context.CharTy.withConst());
4087   if (!Arg1Ty->isPointerType() ||
4088       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
4089     Diag(Arg1->getLocStart(), diag::err_typecheck_convert_incompatible)
4090         << Arg1->getType() << ConstCharPtrTy
4091         << 1 /* different class */
4092         << 0 /* qualifier difference */
4093         << 3 /* parameter mismatch */
4094         << 2 << Arg1->getType() << ConstCharPtrTy;
4095 
4096   const QualType SizeTy = Context.getSizeType();
4097   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
4098     Diag(Arg2->getLocStart(), diag::err_typecheck_convert_incompatible)
4099         << Arg2->getType() << SizeTy
4100         << 1 /* different class */
4101         << 0 /* qualifier difference */
4102         << 3 /* parameter mismatch */
4103         << 3 << Arg2->getType() << SizeTy;
4104 
4105   return false;
4106 }
4107 
4108 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
4109 /// friends.  This is declared to take (...), so we have to check everything.
4110 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
4111   if (TheCall->getNumArgs() < 2)
4112     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
4113       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
4114   if (TheCall->getNumArgs() > 2)
4115     return Diag(TheCall->getArg(2)->getLocStart(),
4116                 diag::err_typecheck_call_too_many_args)
4117       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
4118       << SourceRange(TheCall->getArg(2)->getLocStart(),
4119                      (*(TheCall->arg_end()-1))->getLocEnd());
4120 
4121   ExprResult OrigArg0 = TheCall->getArg(0);
4122   ExprResult OrigArg1 = TheCall->getArg(1);
4123 
4124   // Do standard promotions between the two arguments, returning their common
4125   // type.
4126   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
4127   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
4128     return true;
4129 
4130   // Make sure any conversions are pushed back into the call; this is
4131   // type safe since unordered compare builtins are declared as "_Bool
4132   // foo(...)".
4133   TheCall->setArg(0, OrigArg0.get());
4134   TheCall->setArg(1, OrigArg1.get());
4135 
4136   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
4137     return false;
4138 
4139   // If the common type isn't a real floating type, then the arguments were
4140   // invalid for this operation.
4141   if (Res.isNull() || !Res->isRealFloatingType())
4142     return Diag(OrigArg0.get()->getLocStart(),
4143                 diag::err_typecheck_call_invalid_ordered_compare)
4144       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
4145       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
4146 
4147   return false;
4148 }
4149 
4150 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
4151 /// __builtin_isnan and friends.  This is declared to take (...), so we have
4152 /// to check everything. We expect the last argument to be a floating point
4153 /// value.
4154 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
4155   if (TheCall->getNumArgs() < NumArgs)
4156     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
4157       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
4158   if (TheCall->getNumArgs() > NumArgs)
4159     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
4160                 diag::err_typecheck_call_too_many_args)
4161       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
4162       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
4163                      (*(TheCall->arg_end()-1))->getLocEnd());
4164 
4165   Expr *OrigArg = TheCall->getArg(NumArgs-1);
4166 
4167   if (OrigArg->isTypeDependent())
4168     return false;
4169 
4170   // This operation requires a non-_Complex floating-point number.
4171   if (!OrigArg->getType()->isRealFloatingType())
4172     return Diag(OrigArg->getLocStart(),
4173                 diag::err_typecheck_call_invalid_unary_fp)
4174       << OrigArg->getType() << OrigArg->getSourceRange();
4175 
4176   // If this is an implicit conversion from float -> float or double, remove it.
4177   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
4178     // Only remove standard FloatCasts, leaving other casts inplace
4179     if (Cast->getCastKind() == CK_FloatingCast) {
4180       Expr *CastArg = Cast->getSubExpr();
4181       if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
4182           assert((Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) ||
4183                   Cast->getType()->isSpecificBuiltinType(BuiltinType::Float)) &&
4184                "promotion from float to either float or double is the only expected cast here");
4185         Cast->setSubExpr(nullptr);
4186         TheCall->setArg(NumArgs-1, CastArg);
4187       }
4188     }
4189   }
4190 
4191   return false;
4192 }
4193 
4194 // Customized Sema Checking for VSX builtins that have the following signature:
4195 // vector [...] builtinName(vector [...], vector [...], const int);
4196 // Which takes the same type of vectors (any legal vector type) for the first
4197 // two arguments and takes compile time constant for the third argument.
4198 // Example builtins are :
4199 // vector double vec_xxpermdi(vector double, vector double, int);
4200 // vector short vec_xxsldwi(vector short, vector short, int);
4201 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
4202   unsigned ExpectedNumArgs = 3;
4203   if (TheCall->getNumArgs() < ExpectedNumArgs)
4204     return Diag(TheCall->getLocEnd(),
4205                 diag::err_typecheck_call_too_few_args_at_least)
4206            << 0 /*function call*/ <<  ExpectedNumArgs << TheCall->getNumArgs()
4207            << TheCall->getSourceRange();
4208 
4209   if (TheCall->getNumArgs() > ExpectedNumArgs)
4210     return Diag(TheCall->getLocEnd(),
4211                 diag::err_typecheck_call_too_many_args_at_most)
4212            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
4213            << TheCall->getSourceRange();
4214 
4215   // Check the third argument is a compile time constant
4216   llvm::APSInt Value;
4217   if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
4218     return Diag(TheCall->getLocStart(),
4219                 diag::err_vsx_builtin_nonconstant_argument)
4220            << 3 /* argument index */ << TheCall->getDirectCallee()
4221            << SourceRange(TheCall->getArg(2)->getLocStart(),
4222                           TheCall->getArg(2)->getLocEnd());
4223 
4224   QualType Arg1Ty = TheCall->getArg(0)->getType();
4225   QualType Arg2Ty = TheCall->getArg(1)->getType();
4226 
4227   // Check the type of argument 1 and argument 2 are vectors.
4228   SourceLocation BuiltinLoc = TheCall->getLocStart();
4229   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
4230       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
4231     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
4232            << TheCall->getDirectCallee()
4233            << SourceRange(TheCall->getArg(0)->getLocStart(),
4234                           TheCall->getArg(1)->getLocEnd());
4235   }
4236 
4237   // Check the first two arguments are the same type.
4238   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
4239     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
4240            << TheCall->getDirectCallee()
4241            << SourceRange(TheCall->getArg(0)->getLocStart(),
4242                           TheCall->getArg(1)->getLocEnd());
4243   }
4244 
4245   // When default clang type checking is turned off and the customized type
4246   // checking is used, the returning type of the function must be explicitly
4247   // set. Otherwise it is _Bool by default.
4248   TheCall->setType(Arg1Ty);
4249 
4250   return false;
4251 }
4252 
4253 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
4254 // This is declared to take (...), so we have to check everything.
4255 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
4256   if (TheCall->getNumArgs() < 2)
4257     return ExprError(Diag(TheCall->getLocEnd(),
4258                           diag::err_typecheck_call_too_few_args_at_least)
4259                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
4260                      << TheCall->getSourceRange());
4261 
4262   // Determine which of the following types of shufflevector we're checking:
4263   // 1) unary, vector mask: (lhs, mask)
4264   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
4265   QualType resType = TheCall->getArg(0)->getType();
4266   unsigned numElements = 0;
4267 
4268   if (!TheCall->getArg(0)->isTypeDependent() &&
4269       !TheCall->getArg(1)->isTypeDependent()) {
4270     QualType LHSType = TheCall->getArg(0)->getType();
4271     QualType RHSType = TheCall->getArg(1)->getType();
4272 
4273     if (!LHSType->isVectorType() || !RHSType->isVectorType())
4274       return ExprError(Diag(TheCall->getLocStart(),
4275                             diag::err_vec_builtin_non_vector)
4276                        << TheCall->getDirectCallee()
4277                        << SourceRange(TheCall->getArg(0)->getLocStart(),
4278                                       TheCall->getArg(1)->getLocEnd()));
4279 
4280     numElements = LHSType->getAs<VectorType>()->getNumElements();
4281     unsigned numResElements = TheCall->getNumArgs() - 2;
4282 
4283     // Check to see if we have a call with 2 vector arguments, the unary shuffle
4284     // with mask.  If so, verify that RHS is an integer vector type with the
4285     // same number of elts as lhs.
4286     if (TheCall->getNumArgs() == 2) {
4287       if (!RHSType->hasIntegerRepresentation() ||
4288           RHSType->getAs<VectorType>()->getNumElements() != numElements)
4289         return ExprError(Diag(TheCall->getLocStart(),
4290                               diag::err_vec_builtin_incompatible_vector)
4291                          << TheCall->getDirectCallee()
4292                          << SourceRange(TheCall->getArg(1)->getLocStart(),
4293                                         TheCall->getArg(1)->getLocEnd()));
4294     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
4295       return ExprError(Diag(TheCall->getLocStart(),
4296                             diag::err_vec_builtin_incompatible_vector)
4297                        << TheCall->getDirectCallee()
4298                        << SourceRange(TheCall->getArg(0)->getLocStart(),
4299                                       TheCall->getArg(1)->getLocEnd()));
4300     } else if (numElements != numResElements) {
4301       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
4302       resType = Context.getVectorType(eltType, numResElements,
4303                                       VectorType::GenericVector);
4304     }
4305   }
4306 
4307   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
4308     if (TheCall->getArg(i)->isTypeDependent() ||
4309         TheCall->getArg(i)->isValueDependent())
4310       continue;
4311 
4312     llvm::APSInt Result(32);
4313     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
4314       return ExprError(Diag(TheCall->getLocStart(),
4315                             diag::err_shufflevector_nonconstant_argument)
4316                        << TheCall->getArg(i)->getSourceRange());
4317 
4318     // Allow -1 which will be translated to undef in the IR.
4319     if (Result.isSigned() && Result.isAllOnesValue())
4320       continue;
4321 
4322     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
4323       return ExprError(Diag(TheCall->getLocStart(),
4324                             diag::err_shufflevector_argument_too_large)
4325                        << TheCall->getArg(i)->getSourceRange());
4326   }
4327 
4328   SmallVector<Expr*, 32> exprs;
4329 
4330   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
4331     exprs.push_back(TheCall->getArg(i));
4332     TheCall->setArg(i, nullptr);
4333   }
4334 
4335   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
4336                                          TheCall->getCallee()->getLocStart(),
4337                                          TheCall->getRParenLoc());
4338 }
4339 
4340 /// SemaConvertVectorExpr - Handle __builtin_convertvector
4341 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
4342                                        SourceLocation BuiltinLoc,
4343                                        SourceLocation RParenLoc) {
4344   ExprValueKind VK = VK_RValue;
4345   ExprObjectKind OK = OK_Ordinary;
4346   QualType DstTy = TInfo->getType();
4347   QualType SrcTy = E->getType();
4348 
4349   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
4350     return ExprError(Diag(BuiltinLoc,
4351                           diag::err_convertvector_non_vector)
4352                      << E->getSourceRange());
4353   if (!DstTy->isVectorType() && !DstTy->isDependentType())
4354     return ExprError(Diag(BuiltinLoc,
4355                           diag::err_convertvector_non_vector_type));
4356 
4357   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
4358     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
4359     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
4360     if (SrcElts != DstElts)
4361       return ExprError(Diag(BuiltinLoc,
4362                             diag::err_convertvector_incompatible_vector)
4363                        << E->getSourceRange());
4364   }
4365 
4366   return new (Context)
4367       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
4368 }
4369 
4370 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
4371 // This is declared to take (const void*, ...) and can take two
4372 // optional constant int args.
4373 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
4374   unsigned NumArgs = TheCall->getNumArgs();
4375 
4376   if (NumArgs > 3)
4377     return Diag(TheCall->getLocEnd(),
4378              diag::err_typecheck_call_too_many_args_at_most)
4379              << 0 /*function call*/ << 3 << NumArgs
4380              << TheCall->getSourceRange();
4381 
4382   // Argument 0 is checked for us and the remaining arguments must be
4383   // constant integers.
4384   for (unsigned i = 1; i != NumArgs; ++i)
4385     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
4386       return true;
4387 
4388   return false;
4389 }
4390 
4391 /// SemaBuiltinAssume - Handle __assume (MS Extension).
4392 // __assume does not evaluate its arguments, and should warn if its argument
4393 // has side effects.
4394 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
4395   Expr *Arg = TheCall->getArg(0);
4396   if (Arg->isInstantiationDependent()) return false;
4397 
4398   if (Arg->HasSideEffects(Context))
4399     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
4400       << Arg->getSourceRange()
4401       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
4402 
4403   return false;
4404 }
4405 
4406 /// Handle __builtin_alloca_with_align. This is declared
4407 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
4408 /// than 8.
4409 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
4410   // The alignment must be a constant integer.
4411   Expr *Arg = TheCall->getArg(1);
4412 
4413   // We can't check the value of a dependent argument.
4414   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
4415     if (const auto *UE =
4416             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
4417       if (UE->getKind() == UETT_AlignOf)
4418         Diag(TheCall->getLocStart(), diag::warn_alloca_align_alignof)
4419           << Arg->getSourceRange();
4420 
4421     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
4422 
4423     if (!Result.isPowerOf2())
4424       return Diag(TheCall->getLocStart(),
4425                   diag::err_alignment_not_power_of_two)
4426            << Arg->getSourceRange();
4427 
4428     if (Result < Context.getCharWidth())
4429       return Diag(TheCall->getLocStart(), diag::err_alignment_too_small)
4430            << (unsigned)Context.getCharWidth()
4431            << Arg->getSourceRange();
4432 
4433     if (Result > std::numeric_limits<int32_t>::max())
4434       return Diag(TheCall->getLocStart(), diag::err_alignment_too_big)
4435            << std::numeric_limits<int32_t>::max()
4436            << Arg->getSourceRange();
4437   }
4438 
4439   return false;
4440 }
4441 
4442 /// Handle __builtin_assume_aligned. This is declared
4443 /// as (const void*, size_t, ...) and can take one optional constant int arg.
4444 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
4445   unsigned NumArgs = TheCall->getNumArgs();
4446 
4447   if (NumArgs > 3)
4448     return Diag(TheCall->getLocEnd(),
4449              diag::err_typecheck_call_too_many_args_at_most)
4450              << 0 /*function call*/ << 3 << NumArgs
4451              << TheCall->getSourceRange();
4452 
4453   // The alignment must be a constant integer.
4454   Expr *Arg = TheCall->getArg(1);
4455 
4456   // We can't check the value of a dependent argument.
4457   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
4458     llvm::APSInt Result;
4459     if (SemaBuiltinConstantArg(TheCall, 1, Result))
4460       return true;
4461 
4462     if (!Result.isPowerOf2())
4463       return Diag(TheCall->getLocStart(),
4464                   diag::err_alignment_not_power_of_two)
4465            << Arg->getSourceRange();
4466   }
4467 
4468   if (NumArgs > 2) {
4469     ExprResult Arg(TheCall->getArg(2));
4470     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
4471       Context.getSizeType(), false);
4472     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4473     if (Arg.isInvalid()) return true;
4474     TheCall->setArg(2, Arg.get());
4475   }
4476 
4477   return false;
4478 }
4479 
4480 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
4481   unsigned BuiltinID =
4482       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
4483   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
4484 
4485   unsigned NumArgs = TheCall->getNumArgs();
4486   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
4487   if (NumArgs < NumRequiredArgs) {
4488     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
4489            << 0 /* function call */ << NumRequiredArgs << NumArgs
4490            << TheCall->getSourceRange();
4491   }
4492   if (NumArgs >= NumRequiredArgs + 0x100) {
4493     return Diag(TheCall->getLocEnd(),
4494                 diag::err_typecheck_call_too_many_args_at_most)
4495            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
4496            << TheCall->getSourceRange();
4497   }
4498   unsigned i = 0;
4499 
4500   // For formatting call, check buffer arg.
4501   if (!IsSizeCall) {
4502     ExprResult Arg(TheCall->getArg(i));
4503     InitializedEntity Entity = InitializedEntity::InitializeParameter(
4504         Context, Context.VoidPtrTy, false);
4505     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4506     if (Arg.isInvalid())
4507       return true;
4508     TheCall->setArg(i, Arg.get());
4509     i++;
4510   }
4511 
4512   // Check string literal arg.
4513   unsigned FormatIdx = i;
4514   {
4515     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
4516     if (Arg.isInvalid())
4517       return true;
4518     TheCall->setArg(i, Arg.get());
4519     i++;
4520   }
4521 
4522   // Make sure variadic args are scalar.
4523   unsigned FirstDataArg = i;
4524   while (i < NumArgs) {
4525     ExprResult Arg = DefaultVariadicArgumentPromotion(
4526         TheCall->getArg(i), VariadicFunction, nullptr);
4527     if (Arg.isInvalid())
4528       return true;
4529     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
4530     if (ArgSize.getQuantity() >= 0x100) {
4531       return Diag(Arg.get()->getLocEnd(), diag::err_os_log_argument_too_big)
4532              << i << (int)ArgSize.getQuantity() << 0xff
4533              << TheCall->getSourceRange();
4534     }
4535     TheCall->setArg(i, Arg.get());
4536     i++;
4537   }
4538 
4539   // Check formatting specifiers. NOTE: We're only doing this for the non-size
4540   // call to avoid duplicate diagnostics.
4541   if (!IsSizeCall) {
4542     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
4543     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
4544     bool Success = CheckFormatArguments(
4545         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
4546         VariadicFunction, TheCall->getLocStart(), SourceRange(),
4547         CheckedVarArgs);
4548     if (!Success)
4549       return true;
4550   }
4551 
4552   if (IsSizeCall) {
4553     TheCall->setType(Context.getSizeType());
4554   } else {
4555     TheCall->setType(Context.VoidPtrTy);
4556   }
4557   return false;
4558 }
4559 
4560 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
4561 /// TheCall is a constant expression.
4562 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
4563                                   llvm::APSInt &Result) {
4564   Expr *Arg = TheCall->getArg(ArgNum);
4565   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4566   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4567 
4568   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
4569 
4570   if (!Arg->isIntegerConstantExpr(Result, Context))
4571     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
4572                 << FDecl->getDeclName() <<  Arg->getSourceRange();
4573 
4574   return false;
4575 }
4576 
4577 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
4578 /// TheCall is a constant expression in the range [Low, High].
4579 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
4580                                        int Low, int High) {
4581   llvm::APSInt Result;
4582 
4583   // We can't check the value of a dependent argument.
4584   Expr *Arg = TheCall->getArg(ArgNum);
4585   if (Arg->isTypeDependent() || Arg->isValueDependent())
4586     return false;
4587 
4588   // Check constant-ness first.
4589   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4590     return true;
4591 
4592   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
4593     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
4594       << Low << High << Arg->getSourceRange();
4595 
4596   return false;
4597 }
4598 
4599 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
4600 /// TheCall is a constant expression is a multiple of Num..
4601 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
4602                                           unsigned Num) {
4603   llvm::APSInt Result;
4604 
4605   // We can't check the value of a dependent argument.
4606   Expr *Arg = TheCall->getArg(ArgNum);
4607   if (Arg->isTypeDependent() || Arg->isValueDependent())
4608     return false;
4609 
4610   // Check constant-ness first.
4611   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4612     return true;
4613 
4614   if (Result.getSExtValue() % Num != 0)
4615     return Diag(TheCall->getLocStart(), diag::err_argument_not_multiple)
4616       << Num << Arg->getSourceRange();
4617 
4618   return false;
4619 }
4620 
4621 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
4622 /// TheCall is an ARM/AArch64 special register string literal.
4623 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
4624                                     int ArgNum, unsigned ExpectedFieldNum,
4625                                     bool AllowName) {
4626   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
4627                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
4628                       BuiltinID == ARM::BI__builtin_arm_rsr ||
4629                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
4630                       BuiltinID == ARM::BI__builtin_arm_wsr ||
4631                       BuiltinID == ARM::BI__builtin_arm_wsrp;
4632   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4633                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
4634                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
4635                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4636                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
4637                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
4638   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
4639 
4640   // We can't check the value of a dependent argument.
4641   Expr *Arg = TheCall->getArg(ArgNum);
4642   if (Arg->isTypeDependent() || Arg->isValueDependent())
4643     return false;
4644 
4645   // Check if the argument is a string literal.
4646   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4647     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
4648            << Arg->getSourceRange();
4649 
4650   // Check the type of special register given.
4651   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4652   SmallVector<StringRef, 6> Fields;
4653   Reg.split(Fields, ":");
4654 
4655   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
4656     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
4657            << Arg->getSourceRange();
4658 
4659   // If the string is the name of a register then we cannot check that it is
4660   // valid here but if the string is of one the forms described in ACLE then we
4661   // can check that the supplied fields are integers and within the valid
4662   // ranges.
4663   if (Fields.size() > 1) {
4664     bool FiveFields = Fields.size() == 5;
4665 
4666     bool ValidString = true;
4667     if (IsARMBuiltin) {
4668       ValidString &= Fields[0].startswith_lower("cp") ||
4669                      Fields[0].startswith_lower("p");
4670       if (ValidString)
4671         Fields[0] =
4672           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
4673 
4674       ValidString &= Fields[2].startswith_lower("c");
4675       if (ValidString)
4676         Fields[2] = Fields[2].drop_front(1);
4677 
4678       if (FiveFields) {
4679         ValidString &= Fields[3].startswith_lower("c");
4680         if (ValidString)
4681           Fields[3] = Fields[3].drop_front(1);
4682       }
4683     }
4684 
4685     SmallVector<int, 5> Ranges;
4686     if (FiveFields)
4687       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
4688     else
4689       Ranges.append({15, 7, 15});
4690 
4691     for (unsigned i=0; i<Fields.size(); ++i) {
4692       int IntField;
4693       ValidString &= !Fields[i].getAsInteger(10, IntField);
4694       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
4695     }
4696 
4697     if (!ValidString)
4698       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
4699              << Arg->getSourceRange();
4700   } else if (IsAArch64Builtin && Fields.size() == 1) {
4701     // If the register name is one of those that appear in the condition below
4702     // and the special register builtin being used is one of the write builtins,
4703     // then we require that the argument provided for writing to the register
4704     // is an integer constant expression. This is because it will be lowered to
4705     // an MSR (immediate) instruction, so we need to know the immediate at
4706     // compile time.
4707     if (TheCall->getNumArgs() != 2)
4708       return false;
4709 
4710     std::string RegLower = Reg.lower();
4711     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
4712         RegLower != "pan" && RegLower != "uao")
4713       return false;
4714 
4715     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4716   }
4717 
4718   return false;
4719 }
4720 
4721 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
4722 /// This checks that the target supports __builtin_longjmp and
4723 /// that val is a constant 1.
4724 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
4725   if (!Context.getTargetInfo().hasSjLjLowering())
4726     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
4727              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
4728 
4729   Expr *Arg = TheCall->getArg(1);
4730   llvm::APSInt Result;
4731 
4732   // TODO: This is less than ideal. Overload this to take a value.
4733   if (SemaBuiltinConstantArg(TheCall, 1, Result))
4734     return true;
4735 
4736   if (Result != 1)
4737     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
4738              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
4739 
4740   return false;
4741 }
4742 
4743 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
4744 /// This checks that the target supports __builtin_setjmp.
4745 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
4746   if (!Context.getTargetInfo().hasSjLjLowering())
4747     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
4748              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
4749   return false;
4750 }
4751 
4752 namespace {
4753 
4754 class UncoveredArgHandler {
4755   enum { Unknown = -1, AllCovered = -2 };
4756 
4757   signed FirstUncoveredArg = Unknown;
4758   SmallVector<const Expr *, 4> DiagnosticExprs;
4759 
4760 public:
4761   UncoveredArgHandler() = default;
4762 
4763   bool hasUncoveredArg() const {
4764     return (FirstUncoveredArg >= 0);
4765   }
4766 
4767   unsigned getUncoveredArg() const {
4768     assert(hasUncoveredArg() && "no uncovered argument");
4769     return FirstUncoveredArg;
4770   }
4771 
4772   void setAllCovered() {
4773     // A string has been found with all arguments covered, so clear out
4774     // the diagnostics.
4775     DiagnosticExprs.clear();
4776     FirstUncoveredArg = AllCovered;
4777   }
4778 
4779   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
4780     assert(NewFirstUncoveredArg >= 0 && "Outside range");
4781 
4782     // Don't update if a previous string covers all arguments.
4783     if (FirstUncoveredArg == AllCovered)
4784       return;
4785 
4786     // UncoveredArgHandler tracks the highest uncovered argument index
4787     // and with it all the strings that match this index.
4788     if (NewFirstUncoveredArg == FirstUncoveredArg)
4789       DiagnosticExprs.push_back(StrExpr);
4790     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
4791       DiagnosticExprs.clear();
4792       DiagnosticExprs.push_back(StrExpr);
4793       FirstUncoveredArg = NewFirstUncoveredArg;
4794     }
4795   }
4796 
4797   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
4798 };
4799 
4800 enum StringLiteralCheckType {
4801   SLCT_NotALiteral,
4802   SLCT_UncheckedLiteral,
4803   SLCT_CheckedLiteral
4804 };
4805 
4806 } // namespace
4807 
4808 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
4809                                      BinaryOperatorKind BinOpKind,
4810                                      bool AddendIsRight) {
4811   unsigned BitWidth = Offset.getBitWidth();
4812   unsigned AddendBitWidth = Addend.getBitWidth();
4813   // There might be negative interim results.
4814   if (Addend.isUnsigned()) {
4815     Addend = Addend.zext(++AddendBitWidth);
4816     Addend.setIsSigned(true);
4817   }
4818   // Adjust the bit width of the APSInts.
4819   if (AddendBitWidth > BitWidth) {
4820     Offset = Offset.sext(AddendBitWidth);
4821     BitWidth = AddendBitWidth;
4822   } else if (BitWidth > AddendBitWidth) {
4823     Addend = Addend.sext(BitWidth);
4824   }
4825 
4826   bool Ov = false;
4827   llvm::APSInt ResOffset = Offset;
4828   if (BinOpKind == BO_Add)
4829     ResOffset = Offset.sadd_ov(Addend, Ov);
4830   else {
4831     assert(AddendIsRight && BinOpKind == BO_Sub &&
4832            "operator must be add or sub with addend on the right");
4833     ResOffset = Offset.ssub_ov(Addend, Ov);
4834   }
4835 
4836   // We add an offset to a pointer here so we should support an offset as big as
4837   // possible.
4838   if (Ov) {
4839     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
4840            "index (intermediate) result too big");
4841     Offset = Offset.sext(2 * BitWidth);
4842     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
4843     return;
4844   }
4845 
4846   Offset = ResOffset;
4847 }
4848 
4849 namespace {
4850 
4851 // This is a wrapper class around StringLiteral to support offsetted string
4852 // literals as format strings. It takes the offset into account when returning
4853 // the string and its length or the source locations to display notes correctly.
4854 class FormatStringLiteral {
4855   const StringLiteral *FExpr;
4856   int64_t Offset;
4857 
4858  public:
4859   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
4860       : FExpr(fexpr), Offset(Offset) {}
4861 
4862   StringRef getString() const {
4863     return FExpr->getString().drop_front(Offset);
4864   }
4865 
4866   unsigned getByteLength() const {
4867     return FExpr->getByteLength() - getCharByteWidth() * Offset;
4868   }
4869 
4870   unsigned getLength() const { return FExpr->getLength() - Offset; }
4871   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
4872 
4873   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
4874 
4875   QualType getType() const { return FExpr->getType(); }
4876 
4877   bool isAscii() const { return FExpr->isAscii(); }
4878   bool isWide() const { return FExpr->isWide(); }
4879   bool isUTF8() const { return FExpr->isUTF8(); }
4880   bool isUTF16() const { return FExpr->isUTF16(); }
4881   bool isUTF32() const { return FExpr->isUTF32(); }
4882   bool isPascal() const { return FExpr->isPascal(); }
4883 
4884   SourceLocation getLocationOfByte(
4885       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
4886       const TargetInfo &Target, unsigned *StartToken = nullptr,
4887       unsigned *StartTokenByteOffset = nullptr) const {
4888     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
4889                                     StartToken, StartTokenByteOffset);
4890   }
4891 
4892   SourceLocation getLocStart() const LLVM_READONLY {
4893     return FExpr->getLocStart().getLocWithOffset(Offset);
4894   }
4895 
4896   SourceLocation getLocEnd() const LLVM_READONLY { return FExpr->getLocEnd(); }
4897 };
4898 
4899 }  // namespace
4900 
4901 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
4902                               const Expr *OrigFormatExpr,
4903                               ArrayRef<const Expr *> Args,
4904                               bool HasVAListArg, unsigned format_idx,
4905                               unsigned firstDataArg,
4906                               Sema::FormatStringType Type,
4907                               bool inFunctionCall,
4908                               Sema::VariadicCallType CallType,
4909                               llvm::SmallBitVector &CheckedVarArgs,
4910                               UncoveredArgHandler &UncoveredArg);
4911 
4912 // Determine if an expression is a string literal or constant string.
4913 // If this function returns false on the arguments to a function expecting a
4914 // format string, we will usually need to emit a warning.
4915 // True string literals are then checked by CheckFormatString.
4916 static StringLiteralCheckType
4917 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
4918                       bool HasVAListArg, unsigned format_idx,
4919                       unsigned firstDataArg, Sema::FormatStringType Type,
4920                       Sema::VariadicCallType CallType, bool InFunctionCall,
4921                       llvm::SmallBitVector &CheckedVarArgs,
4922                       UncoveredArgHandler &UncoveredArg,
4923                       llvm::APSInt Offset) {
4924  tryAgain:
4925   assert(Offset.isSigned() && "invalid offset");
4926 
4927   if (E->isTypeDependent() || E->isValueDependent())
4928     return SLCT_NotALiteral;
4929 
4930   E = E->IgnoreParenCasts();
4931 
4932   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
4933     // Technically -Wformat-nonliteral does not warn about this case.
4934     // The behavior of printf and friends in this case is implementation
4935     // dependent.  Ideally if the format string cannot be null then
4936     // it should have a 'nonnull' attribute in the function prototype.
4937     return SLCT_UncheckedLiteral;
4938 
4939   switch (E->getStmtClass()) {
4940   case Stmt::BinaryConditionalOperatorClass:
4941   case Stmt::ConditionalOperatorClass: {
4942     // The expression is a literal if both sub-expressions were, and it was
4943     // completely checked only if both sub-expressions were checked.
4944     const AbstractConditionalOperator *C =
4945         cast<AbstractConditionalOperator>(E);
4946 
4947     // Determine whether it is necessary to check both sub-expressions, for
4948     // example, because the condition expression is a constant that can be
4949     // evaluated at compile time.
4950     bool CheckLeft = true, CheckRight = true;
4951 
4952     bool Cond;
4953     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) {
4954       if (Cond)
4955         CheckRight = false;
4956       else
4957         CheckLeft = false;
4958     }
4959 
4960     // We need to maintain the offsets for the right and the left hand side
4961     // separately to check if every possible indexed expression is a valid
4962     // string literal. They might have different offsets for different string
4963     // literals in the end.
4964     StringLiteralCheckType Left;
4965     if (!CheckLeft)
4966       Left = SLCT_UncheckedLiteral;
4967     else {
4968       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
4969                                    HasVAListArg, format_idx, firstDataArg,
4970                                    Type, CallType, InFunctionCall,
4971                                    CheckedVarArgs, UncoveredArg, Offset);
4972       if (Left == SLCT_NotALiteral || !CheckRight) {
4973         return Left;
4974       }
4975     }
4976 
4977     StringLiteralCheckType Right =
4978         checkFormatStringExpr(S, C->getFalseExpr(), Args,
4979                               HasVAListArg, format_idx, firstDataArg,
4980                               Type, CallType, InFunctionCall, CheckedVarArgs,
4981                               UncoveredArg, Offset);
4982 
4983     return (CheckLeft && Left < Right) ? Left : Right;
4984   }
4985 
4986   case Stmt::ImplicitCastExprClass:
4987     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4988     goto tryAgain;
4989 
4990   case Stmt::OpaqueValueExprClass:
4991     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
4992       E = src;
4993       goto tryAgain;
4994     }
4995     return SLCT_NotALiteral;
4996 
4997   case Stmt::PredefinedExprClass:
4998     // While __func__, etc., are technically not string literals, they
4999     // cannot contain format specifiers and thus are not a security
5000     // liability.
5001     return SLCT_UncheckedLiteral;
5002 
5003   case Stmt::DeclRefExprClass: {
5004     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
5005 
5006     // As an exception, do not flag errors for variables binding to
5007     // const string literals.
5008     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
5009       bool isConstant = false;
5010       QualType T = DR->getType();
5011 
5012       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
5013         isConstant = AT->getElementType().isConstant(S.Context);
5014       } else if (const PointerType *PT = T->getAs<PointerType>()) {
5015         isConstant = T.isConstant(S.Context) &&
5016                      PT->getPointeeType().isConstant(S.Context);
5017       } else if (T->isObjCObjectPointerType()) {
5018         // In ObjC, there is usually no "const ObjectPointer" type,
5019         // so don't check if the pointee type is constant.
5020         isConstant = T.isConstant(S.Context);
5021       }
5022 
5023       if (isConstant) {
5024         if (const Expr *Init = VD->getAnyInitializer()) {
5025           // Look through initializers like const char c[] = { "foo" }
5026           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
5027             if (InitList->isStringLiteralInit())
5028               Init = InitList->getInit(0)->IgnoreParenImpCasts();
5029           }
5030           return checkFormatStringExpr(S, Init, Args,
5031                                        HasVAListArg, format_idx,
5032                                        firstDataArg, Type, CallType,
5033                                        /*InFunctionCall*/ false, CheckedVarArgs,
5034                                        UncoveredArg, Offset);
5035         }
5036       }
5037 
5038       // For vprintf* functions (i.e., HasVAListArg==true), we add a
5039       // special check to see if the format string is a function parameter
5040       // of the function calling the printf function.  If the function
5041       // has an attribute indicating it is a printf-like function, then we
5042       // should suppress warnings concerning non-literals being used in a call
5043       // to a vprintf function.  For example:
5044       //
5045       // void
5046       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
5047       //      va_list ap;
5048       //      va_start(ap, fmt);
5049       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
5050       //      ...
5051       // }
5052       if (HasVAListArg) {
5053         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
5054           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
5055             int PVIndex = PV->getFunctionScopeIndex() + 1;
5056             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
5057               // adjust for implicit parameter
5058               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5059                 if (MD->isInstance())
5060                   ++PVIndex;
5061               // We also check if the formats are compatible.
5062               // We can't pass a 'scanf' string to a 'printf' function.
5063               if (PVIndex == PVFormat->getFormatIdx() &&
5064                   Type == S.GetFormatStringType(PVFormat))
5065                 return SLCT_UncheckedLiteral;
5066             }
5067           }
5068         }
5069       }
5070     }
5071 
5072     return SLCT_NotALiteral;
5073   }
5074 
5075   case Stmt::CallExprClass:
5076   case Stmt::CXXMemberCallExprClass: {
5077     const CallExpr *CE = cast<CallExpr>(E);
5078     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
5079       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
5080         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
5081         return checkFormatStringExpr(S, Arg, Args,
5082                                      HasVAListArg, format_idx, firstDataArg,
5083                                      Type, CallType, InFunctionCall,
5084                                      CheckedVarArgs, UncoveredArg, Offset);
5085       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
5086         unsigned BuiltinID = FD->getBuiltinID();
5087         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
5088             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
5089           const Expr *Arg = CE->getArg(0);
5090           return checkFormatStringExpr(S, Arg, Args,
5091                                        HasVAListArg, format_idx,
5092                                        firstDataArg, Type, CallType,
5093                                        InFunctionCall, CheckedVarArgs,
5094                                        UncoveredArg, Offset);
5095         }
5096       }
5097     }
5098 
5099     return SLCT_NotALiteral;
5100   }
5101   case Stmt::ObjCMessageExprClass: {
5102     const auto *ME = cast<ObjCMessageExpr>(E);
5103     if (const auto *ND = ME->getMethodDecl()) {
5104       if (const auto *FA = ND->getAttr<FormatArgAttr>()) {
5105         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
5106         return checkFormatStringExpr(
5107             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
5108             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset);
5109       }
5110     }
5111 
5112     return SLCT_NotALiteral;
5113   }
5114   case Stmt::ObjCStringLiteralClass:
5115   case Stmt::StringLiteralClass: {
5116     const StringLiteral *StrE = nullptr;
5117 
5118     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
5119       StrE = ObjCFExpr->getString();
5120     else
5121       StrE = cast<StringLiteral>(E);
5122 
5123     if (StrE) {
5124       if (Offset.isNegative() || Offset > StrE->getLength()) {
5125         // TODO: It would be better to have an explicit warning for out of
5126         // bounds literals.
5127         return SLCT_NotALiteral;
5128       }
5129       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
5130       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
5131                         firstDataArg, Type, InFunctionCall, CallType,
5132                         CheckedVarArgs, UncoveredArg);
5133       return SLCT_CheckedLiteral;
5134     }
5135 
5136     return SLCT_NotALiteral;
5137   }
5138   case Stmt::BinaryOperatorClass: {
5139     llvm::APSInt LResult;
5140     llvm::APSInt RResult;
5141 
5142     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
5143 
5144     // A string literal + an int offset is still a string literal.
5145     if (BinOp->isAdditiveOp()) {
5146       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context);
5147       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context);
5148 
5149       if (LIsInt != RIsInt) {
5150         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
5151 
5152         if (LIsInt) {
5153           if (BinOpKind == BO_Add) {
5154             sumOffsets(Offset, LResult, BinOpKind, RIsInt);
5155             E = BinOp->getRHS();
5156             goto tryAgain;
5157           }
5158         } else {
5159           sumOffsets(Offset, RResult, BinOpKind, RIsInt);
5160           E = BinOp->getLHS();
5161           goto tryAgain;
5162         }
5163       }
5164     }
5165 
5166     return SLCT_NotALiteral;
5167   }
5168   case Stmt::UnaryOperatorClass: {
5169     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
5170     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
5171     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
5172       llvm::APSInt IndexResult;
5173       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) {
5174         sumOffsets(Offset, IndexResult, BO_Add, /*RHS is int*/ true);
5175         E = ASE->getBase();
5176         goto tryAgain;
5177       }
5178     }
5179 
5180     return SLCT_NotALiteral;
5181   }
5182 
5183   default:
5184     return SLCT_NotALiteral;
5185   }
5186 }
5187 
5188 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
5189   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
5190       .Case("scanf", FST_Scanf)
5191       .Cases("printf", "printf0", FST_Printf)
5192       .Cases("NSString", "CFString", FST_NSString)
5193       .Case("strftime", FST_Strftime)
5194       .Case("strfmon", FST_Strfmon)
5195       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
5196       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
5197       .Case("os_trace", FST_OSLog)
5198       .Case("os_log", FST_OSLog)
5199       .Default(FST_Unknown);
5200 }
5201 
5202 /// CheckFormatArguments - Check calls to printf and scanf (and similar
5203 /// functions) for correct use of format strings.
5204 /// Returns true if a format string has been fully checked.
5205 bool Sema::CheckFormatArguments(const FormatAttr *Format,
5206                                 ArrayRef<const Expr *> Args,
5207                                 bool IsCXXMember,
5208                                 VariadicCallType CallType,
5209                                 SourceLocation Loc, SourceRange Range,
5210                                 llvm::SmallBitVector &CheckedVarArgs) {
5211   FormatStringInfo FSI;
5212   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
5213     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
5214                                 FSI.FirstDataArg, GetFormatStringType(Format),
5215                                 CallType, Loc, Range, CheckedVarArgs);
5216   return false;
5217 }
5218 
5219 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
5220                                 bool HasVAListArg, unsigned format_idx,
5221                                 unsigned firstDataArg, FormatStringType Type,
5222                                 VariadicCallType CallType,
5223                                 SourceLocation Loc, SourceRange Range,
5224                                 llvm::SmallBitVector &CheckedVarArgs) {
5225   // CHECK: printf/scanf-like function is called with no format string.
5226   if (format_idx >= Args.size()) {
5227     Diag(Loc, diag::warn_missing_format_string) << Range;
5228     return false;
5229   }
5230 
5231   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
5232 
5233   // CHECK: format string is not a string literal.
5234   //
5235   // Dynamically generated format strings are difficult to
5236   // automatically vet at compile time.  Requiring that format strings
5237   // are string literals: (1) permits the checking of format strings by
5238   // the compiler and thereby (2) can practically remove the source of
5239   // many format string exploits.
5240 
5241   // Format string can be either ObjC string (e.g. @"%d") or
5242   // C string (e.g. "%d")
5243   // ObjC string uses the same format specifiers as C string, so we can use
5244   // the same format string checking logic for both ObjC and C strings.
5245   UncoveredArgHandler UncoveredArg;
5246   StringLiteralCheckType CT =
5247       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
5248                             format_idx, firstDataArg, Type, CallType,
5249                             /*IsFunctionCall*/ true, CheckedVarArgs,
5250                             UncoveredArg,
5251                             /*no string offset*/ llvm::APSInt(64, false) = 0);
5252 
5253   // Generate a diagnostic where an uncovered argument is detected.
5254   if (UncoveredArg.hasUncoveredArg()) {
5255     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
5256     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
5257     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
5258   }
5259 
5260   if (CT != SLCT_NotALiteral)
5261     // Literal format string found, check done!
5262     return CT == SLCT_CheckedLiteral;
5263 
5264   // Strftime is particular as it always uses a single 'time' argument,
5265   // so it is safe to pass a non-literal string.
5266   if (Type == FST_Strftime)
5267     return false;
5268 
5269   // Do not emit diag when the string param is a macro expansion and the
5270   // format is either NSString or CFString. This is a hack to prevent
5271   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
5272   // which are usually used in place of NS and CF string literals.
5273   SourceLocation FormatLoc = Args[format_idx]->getLocStart();
5274   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
5275     return false;
5276 
5277   // If there are no arguments specified, warn with -Wformat-security, otherwise
5278   // warn only with -Wformat-nonliteral.
5279   if (Args.size() == firstDataArg) {
5280     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
5281       << OrigFormatExpr->getSourceRange();
5282     switch (Type) {
5283     default:
5284       break;
5285     case FST_Kprintf:
5286     case FST_FreeBSDKPrintf:
5287     case FST_Printf:
5288       Diag(FormatLoc, diag::note_format_security_fixit)
5289         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
5290       break;
5291     case FST_NSString:
5292       Diag(FormatLoc, diag::note_format_security_fixit)
5293         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
5294       break;
5295     }
5296   } else {
5297     Diag(FormatLoc, diag::warn_format_nonliteral)
5298       << OrigFormatExpr->getSourceRange();
5299   }
5300   return false;
5301 }
5302 
5303 namespace {
5304 
5305 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
5306 protected:
5307   Sema &S;
5308   const FormatStringLiteral *FExpr;
5309   const Expr *OrigFormatExpr;
5310   const Sema::FormatStringType FSType;
5311   const unsigned FirstDataArg;
5312   const unsigned NumDataArgs;
5313   const char *Beg; // Start of format string.
5314   const bool HasVAListArg;
5315   ArrayRef<const Expr *> Args;
5316   unsigned FormatIdx;
5317   llvm::SmallBitVector CoveredArgs;
5318   bool usesPositionalArgs = false;
5319   bool atFirstArg = true;
5320   bool inFunctionCall;
5321   Sema::VariadicCallType CallType;
5322   llvm::SmallBitVector &CheckedVarArgs;
5323   UncoveredArgHandler &UncoveredArg;
5324 
5325 public:
5326   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
5327                      const Expr *origFormatExpr,
5328                      const Sema::FormatStringType type, unsigned firstDataArg,
5329                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
5330                      ArrayRef<const Expr *> Args, unsigned formatIdx,
5331                      bool inFunctionCall, Sema::VariadicCallType callType,
5332                      llvm::SmallBitVector &CheckedVarArgs,
5333                      UncoveredArgHandler &UncoveredArg)
5334       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
5335         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
5336         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
5337         inFunctionCall(inFunctionCall), CallType(callType),
5338         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
5339     CoveredArgs.resize(numDataArgs);
5340     CoveredArgs.reset();
5341   }
5342 
5343   void DoneProcessing();
5344 
5345   void HandleIncompleteSpecifier(const char *startSpecifier,
5346                                  unsigned specifierLen) override;
5347 
5348   void HandleInvalidLengthModifier(
5349                            const analyze_format_string::FormatSpecifier &FS,
5350                            const analyze_format_string::ConversionSpecifier &CS,
5351                            const char *startSpecifier, unsigned specifierLen,
5352                            unsigned DiagID);
5353 
5354   void HandleNonStandardLengthModifier(
5355                     const analyze_format_string::FormatSpecifier &FS,
5356                     const char *startSpecifier, unsigned specifierLen);
5357 
5358   void HandleNonStandardConversionSpecifier(
5359                     const analyze_format_string::ConversionSpecifier &CS,
5360                     const char *startSpecifier, unsigned specifierLen);
5361 
5362   void HandlePosition(const char *startPos, unsigned posLen) override;
5363 
5364   void HandleInvalidPosition(const char *startSpecifier,
5365                              unsigned specifierLen,
5366                              analyze_format_string::PositionContext p) override;
5367 
5368   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
5369 
5370   void HandleNullChar(const char *nullCharacter) override;
5371 
5372   template <typename Range>
5373   static void
5374   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
5375                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
5376                        bool IsStringLocation, Range StringRange,
5377                        ArrayRef<FixItHint> Fixit = None);
5378 
5379 protected:
5380   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
5381                                         const char *startSpec,
5382                                         unsigned specifierLen,
5383                                         const char *csStart, unsigned csLen);
5384 
5385   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
5386                                          const char *startSpec,
5387                                          unsigned specifierLen);
5388 
5389   SourceRange getFormatStringRange();
5390   CharSourceRange getSpecifierRange(const char *startSpecifier,
5391                                     unsigned specifierLen);
5392   SourceLocation getLocationOfByte(const char *x);
5393 
5394   const Expr *getDataArg(unsigned i) const;
5395 
5396   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
5397                     const analyze_format_string::ConversionSpecifier &CS,
5398                     const char *startSpecifier, unsigned specifierLen,
5399                     unsigned argIndex);
5400 
5401   template <typename Range>
5402   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
5403                             bool IsStringLocation, Range StringRange,
5404                             ArrayRef<FixItHint> Fixit = None);
5405 };
5406 
5407 } // namespace
5408 
5409 SourceRange CheckFormatHandler::getFormatStringRange() {
5410   return OrigFormatExpr->getSourceRange();
5411 }
5412 
5413 CharSourceRange CheckFormatHandler::
5414 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
5415   SourceLocation Start = getLocationOfByte(startSpecifier);
5416   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
5417 
5418   // Advance the end SourceLocation by one due to half-open ranges.
5419   End = End.getLocWithOffset(1);
5420 
5421   return CharSourceRange::getCharRange(Start, End);
5422 }
5423 
5424 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
5425   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
5426                                   S.getLangOpts(), S.Context.getTargetInfo());
5427 }
5428 
5429 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
5430                                                    unsigned specifierLen){
5431   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
5432                        getLocationOfByte(startSpecifier),
5433                        /*IsStringLocation*/true,
5434                        getSpecifierRange(startSpecifier, specifierLen));
5435 }
5436 
5437 void CheckFormatHandler::HandleInvalidLengthModifier(
5438     const analyze_format_string::FormatSpecifier &FS,
5439     const analyze_format_string::ConversionSpecifier &CS,
5440     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
5441   using namespace analyze_format_string;
5442 
5443   const LengthModifier &LM = FS.getLengthModifier();
5444   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
5445 
5446   // See if we know how to fix this length modifier.
5447   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
5448   if (FixedLM) {
5449     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
5450                          getLocationOfByte(LM.getStart()),
5451                          /*IsStringLocation*/true,
5452                          getSpecifierRange(startSpecifier, specifierLen));
5453 
5454     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
5455       << FixedLM->toString()
5456       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
5457 
5458   } else {
5459     FixItHint Hint;
5460     if (DiagID == diag::warn_format_nonsensical_length)
5461       Hint = FixItHint::CreateRemoval(LMRange);
5462 
5463     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
5464                          getLocationOfByte(LM.getStart()),
5465                          /*IsStringLocation*/true,
5466                          getSpecifierRange(startSpecifier, specifierLen),
5467                          Hint);
5468   }
5469 }
5470 
5471 void CheckFormatHandler::HandleNonStandardLengthModifier(
5472     const analyze_format_string::FormatSpecifier &FS,
5473     const char *startSpecifier, unsigned specifierLen) {
5474   using namespace analyze_format_string;
5475 
5476   const LengthModifier &LM = FS.getLengthModifier();
5477   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
5478 
5479   // See if we know how to fix this length modifier.
5480   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
5481   if (FixedLM) {
5482     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
5483                            << LM.toString() << 0,
5484                          getLocationOfByte(LM.getStart()),
5485                          /*IsStringLocation*/true,
5486                          getSpecifierRange(startSpecifier, specifierLen));
5487 
5488     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
5489       << FixedLM->toString()
5490       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
5491 
5492   } else {
5493     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
5494                            << LM.toString() << 0,
5495                          getLocationOfByte(LM.getStart()),
5496                          /*IsStringLocation*/true,
5497                          getSpecifierRange(startSpecifier, specifierLen));
5498   }
5499 }
5500 
5501 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
5502     const analyze_format_string::ConversionSpecifier &CS,
5503     const char *startSpecifier, unsigned specifierLen) {
5504   using namespace analyze_format_string;
5505 
5506   // See if we know how to fix this conversion specifier.
5507   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
5508   if (FixedCS) {
5509     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
5510                           << CS.toString() << /*conversion specifier*/1,
5511                          getLocationOfByte(CS.getStart()),
5512                          /*IsStringLocation*/true,
5513                          getSpecifierRange(startSpecifier, specifierLen));
5514 
5515     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
5516     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
5517       << FixedCS->toString()
5518       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
5519   } else {
5520     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
5521                           << CS.toString() << /*conversion specifier*/1,
5522                          getLocationOfByte(CS.getStart()),
5523                          /*IsStringLocation*/true,
5524                          getSpecifierRange(startSpecifier, specifierLen));
5525   }
5526 }
5527 
5528 void CheckFormatHandler::HandlePosition(const char *startPos,
5529                                         unsigned posLen) {
5530   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
5531                                getLocationOfByte(startPos),
5532                                /*IsStringLocation*/true,
5533                                getSpecifierRange(startPos, posLen));
5534 }
5535 
5536 void
5537 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
5538                                      analyze_format_string::PositionContext p) {
5539   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
5540                          << (unsigned) p,
5541                        getLocationOfByte(startPos), /*IsStringLocation*/true,
5542                        getSpecifierRange(startPos, posLen));
5543 }
5544 
5545 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
5546                                             unsigned posLen) {
5547   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
5548                                getLocationOfByte(startPos),
5549                                /*IsStringLocation*/true,
5550                                getSpecifierRange(startPos, posLen));
5551 }
5552 
5553 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
5554   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
5555     // The presence of a null character is likely an error.
5556     EmitFormatDiagnostic(
5557       S.PDiag(diag::warn_printf_format_string_contains_null_char),
5558       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
5559       getFormatStringRange());
5560   }
5561 }
5562 
5563 // Note that this may return NULL if there was an error parsing or building
5564 // one of the argument expressions.
5565 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
5566   return Args[FirstDataArg + i];
5567 }
5568 
5569 void CheckFormatHandler::DoneProcessing() {
5570   // Does the number of data arguments exceed the number of
5571   // format conversions in the format string?
5572   if (!HasVAListArg) {
5573       // Find any arguments that weren't covered.
5574     CoveredArgs.flip();
5575     signed notCoveredArg = CoveredArgs.find_first();
5576     if (notCoveredArg >= 0) {
5577       assert((unsigned)notCoveredArg < NumDataArgs);
5578       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
5579     } else {
5580       UncoveredArg.setAllCovered();
5581     }
5582   }
5583 }
5584 
5585 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
5586                                    const Expr *ArgExpr) {
5587   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
5588          "Invalid state");
5589 
5590   if (!ArgExpr)
5591     return;
5592 
5593   SourceLocation Loc = ArgExpr->getLocStart();
5594 
5595   if (S.getSourceManager().isInSystemMacro(Loc))
5596     return;
5597 
5598   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
5599   for (auto E : DiagnosticExprs)
5600     PDiag << E->getSourceRange();
5601 
5602   CheckFormatHandler::EmitFormatDiagnostic(
5603                                   S, IsFunctionCall, DiagnosticExprs[0],
5604                                   PDiag, Loc, /*IsStringLocation*/false,
5605                                   DiagnosticExprs[0]->getSourceRange());
5606 }
5607 
5608 bool
5609 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
5610                                                      SourceLocation Loc,
5611                                                      const char *startSpec,
5612                                                      unsigned specifierLen,
5613                                                      const char *csStart,
5614                                                      unsigned csLen) {
5615   bool keepGoing = true;
5616   if (argIndex < NumDataArgs) {
5617     // Consider the argument coverered, even though the specifier doesn't
5618     // make sense.
5619     CoveredArgs.set(argIndex);
5620   }
5621   else {
5622     // If argIndex exceeds the number of data arguments we
5623     // don't issue a warning because that is just a cascade of warnings (and
5624     // they may have intended '%%' anyway). We don't want to continue processing
5625     // the format string after this point, however, as we will like just get
5626     // gibberish when trying to match arguments.
5627     keepGoing = false;
5628   }
5629 
5630   StringRef Specifier(csStart, csLen);
5631 
5632   // If the specifier in non-printable, it could be the first byte of a UTF-8
5633   // sequence. In that case, print the UTF-8 code point. If not, print the byte
5634   // hex value.
5635   std::string CodePointStr;
5636   if (!llvm::sys::locale::isPrint(*csStart)) {
5637     llvm::UTF32 CodePoint;
5638     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
5639     const llvm::UTF8 *E =
5640         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
5641     llvm::ConversionResult Result =
5642         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
5643 
5644     if (Result != llvm::conversionOK) {
5645       unsigned char FirstChar = *csStart;
5646       CodePoint = (llvm::UTF32)FirstChar;
5647     }
5648 
5649     llvm::raw_string_ostream OS(CodePointStr);
5650     if (CodePoint < 256)
5651       OS << "\\x" << llvm::format("%02x", CodePoint);
5652     else if (CodePoint <= 0xFFFF)
5653       OS << "\\u" << llvm::format("%04x", CodePoint);
5654     else
5655       OS << "\\U" << llvm::format("%08x", CodePoint);
5656     OS.flush();
5657     Specifier = CodePointStr;
5658   }
5659 
5660   EmitFormatDiagnostic(
5661       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
5662       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
5663 
5664   return keepGoing;
5665 }
5666 
5667 void
5668 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
5669                                                       const char *startSpec,
5670                                                       unsigned specifierLen) {
5671   EmitFormatDiagnostic(
5672     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
5673     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
5674 }
5675 
5676 bool
5677 CheckFormatHandler::CheckNumArgs(
5678   const analyze_format_string::FormatSpecifier &FS,
5679   const analyze_format_string::ConversionSpecifier &CS,
5680   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
5681 
5682   if (argIndex >= NumDataArgs) {
5683     PartialDiagnostic PDiag = FS.usesPositionalArg()
5684       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
5685            << (argIndex+1) << NumDataArgs)
5686       : S.PDiag(diag::warn_printf_insufficient_data_args);
5687     EmitFormatDiagnostic(
5688       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
5689       getSpecifierRange(startSpecifier, specifierLen));
5690 
5691     // Since more arguments than conversion tokens are given, by extension
5692     // all arguments are covered, so mark this as so.
5693     UncoveredArg.setAllCovered();
5694     return false;
5695   }
5696   return true;
5697 }
5698 
5699 template<typename Range>
5700 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
5701                                               SourceLocation Loc,
5702                                               bool IsStringLocation,
5703                                               Range StringRange,
5704                                               ArrayRef<FixItHint> FixIt) {
5705   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
5706                        Loc, IsStringLocation, StringRange, FixIt);
5707 }
5708 
5709 /// If the format string is not within the function call, emit a note
5710 /// so that the function call and string are in diagnostic messages.
5711 ///
5712 /// \param InFunctionCall if true, the format string is within the function
5713 /// call and only one diagnostic message will be produced.  Otherwise, an
5714 /// extra note will be emitted pointing to location of the format string.
5715 ///
5716 /// \param ArgumentExpr the expression that is passed as the format string
5717 /// argument in the function call.  Used for getting locations when two
5718 /// diagnostics are emitted.
5719 ///
5720 /// \param PDiag the callee should already have provided any strings for the
5721 /// diagnostic message.  This function only adds locations and fixits
5722 /// to diagnostics.
5723 ///
5724 /// \param Loc primary location for diagnostic.  If two diagnostics are
5725 /// required, one will be at Loc and a new SourceLocation will be created for
5726 /// the other one.
5727 ///
5728 /// \param IsStringLocation if true, Loc points to the format string should be
5729 /// used for the note.  Otherwise, Loc points to the argument list and will
5730 /// be used with PDiag.
5731 ///
5732 /// \param StringRange some or all of the string to highlight.  This is
5733 /// templated so it can accept either a CharSourceRange or a SourceRange.
5734 ///
5735 /// \param FixIt optional fix it hint for the format string.
5736 template <typename Range>
5737 void CheckFormatHandler::EmitFormatDiagnostic(
5738     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
5739     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
5740     Range StringRange, ArrayRef<FixItHint> FixIt) {
5741   if (InFunctionCall) {
5742     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
5743     D << StringRange;
5744     D << FixIt;
5745   } else {
5746     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
5747       << ArgumentExpr->getSourceRange();
5748 
5749     const Sema::SemaDiagnosticBuilder &Note =
5750       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
5751              diag::note_format_string_defined);
5752 
5753     Note << StringRange;
5754     Note << FixIt;
5755   }
5756 }
5757 
5758 //===--- CHECK: Printf format string checking ------------------------------===//
5759 
5760 namespace {
5761 
5762 class CheckPrintfHandler : public CheckFormatHandler {
5763 public:
5764   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
5765                      const Expr *origFormatExpr,
5766                      const Sema::FormatStringType type, unsigned firstDataArg,
5767                      unsigned numDataArgs, bool isObjC, const char *beg,
5768                      bool hasVAListArg, ArrayRef<const Expr *> Args,
5769                      unsigned formatIdx, bool inFunctionCall,
5770                      Sema::VariadicCallType CallType,
5771                      llvm::SmallBitVector &CheckedVarArgs,
5772                      UncoveredArgHandler &UncoveredArg)
5773       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
5774                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
5775                            inFunctionCall, CallType, CheckedVarArgs,
5776                            UncoveredArg) {}
5777 
5778   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
5779 
5780   /// Returns true if '%@' specifiers are allowed in the format string.
5781   bool allowsObjCArg() const {
5782     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
5783            FSType == Sema::FST_OSTrace;
5784   }
5785 
5786   bool HandleInvalidPrintfConversionSpecifier(
5787                                       const analyze_printf::PrintfSpecifier &FS,
5788                                       const char *startSpecifier,
5789                                       unsigned specifierLen) override;
5790 
5791   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
5792                              const char *startSpecifier,
5793                              unsigned specifierLen) override;
5794   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
5795                        const char *StartSpecifier,
5796                        unsigned SpecifierLen,
5797                        const Expr *E);
5798 
5799   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
5800                     const char *startSpecifier, unsigned specifierLen);
5801   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
5802                            const analyze_printf::OptionalAmount &Amt,
5803                            unsigned type,
5804                            const char *startSpecifier, unsigned specifierLen);
5805   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
5806                   const analyze_printf::OptionalFlag &flag,
5807                   const char *startSpecifier, unsigned specifierLen);
5808   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
5809                          const analyze_printf::OptionalFlag &ignoredFlag,
5810                          const analyze_printf::OptionalFlag &flag,
5811                          const char *startSpecifier, unsigned specifierLen);
5812   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
5813                            const Expr *E);
5814 
5815   void HandleEmptyObjCModifierFlag(const char *startFlag,
5816                                    unsigned flagLen) override;
5817 
5818   void HandleInvalidObjCModifierFlag(const char *startFlag,
5819                                             unsigned flagLen) override;
5820 
5821   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
5822                                            const char *flagsEnd,
5823                                            const char *conversionPosition)
5824                                              override;
5825 };
5826 
5827 } // namespace
5828 
5829 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
5830                                       const analyze_printf::PrintfSpecifier &FS,
5831                                       const char *startSpecifier,
5832                                       unsigned specifierLen) {
5833   const analyze_printf::PrintfConversionSpecifier &CS =
5834     FS.getConversionSpecifier();
5835 
5836   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
5837                                           getLocationOfByte(CS.getStart()),
5838                                           startSpecifier, specifierLen,
5839                                           CS.getStart(), CS.getLength());
5840 }
5841 
5842 bool CheckPrintfHandler::HandleAmount(
5843                                const analyze_format_string::OptionalAmount &Amt,
5844                                unsigned k, const char *startSpecifier,
5845                                unsigned specifierLen) {
5846   if (Amt.hasDataArgument()) {
5847     if (!HasVAListArg) {
5848       unsigned argIndex = Amt.getArgIndex();
5849       if (argIndex >= NumDataArgs) {
5850         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
5851                                << k,
5852                              getLocationOfByte(Amt.getStart()),
5853                              /*IsStringLocation*/true,
5854                              getSpecifierRange(startSpecifier, specifierLen));
5855         // Don't do any more checking.  We will just emit
5856         // spurious errors.
5857         return false;
5858       }
5859 
5860       // Type check the data argument.  It should be an 'int'.
5861       // Although not in conformance with C99, we also allow the argument to be
5862       // an 'unsigned int' as that is a reasonably safe case.  GCC also
5863       // doesn't emit a warning for that case.
5864       CoveredArgs.set(argIndex);
5865       const Expr *Arg = getDataArg(argIndex);
5866       if (!Arg)
5867         return false;
5868 
5869       QualType T = Arg->getType();
5870 
5871       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
5872       assert(AT.isValid());
5873 
5874       if (!AT.matchesType(S.Context, T)) {
5875         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
5876                                << k << AT.getRepresentativeTypeName(S.Context)
5877                                << T << Arg->getSourceRange(),
5878                              getLocationOfByte(Amt.getStart()),
5879                              /*IsStringLocation*/true,
5880                              getSpecifierRange(startSpecifier, specifierLen));
5881         // Don't do any more checking.  We will just emit
5882         // spurious errors.
5883         return false;
5884       }
5885     }
5886   }
5887   return true;
5888 }
5889 
5890 void CheckPrintfHandler::HandleInvalidAmount(
5891                                       const analyze_printf::PrintfSpecifier &FS,
5892                                       const analyze_printf::OptionalAmount &Amt,
5893                                       unsigned type,
5894                                       const char *startSpecifier,
5895                                       unsigned specifierLen) {
5896   const analyze_printf::PrintfConversionSpecifier &CS =
5897     FS.getConversionSpecifier();
5898 
5899   FixItHint fixit =
5900     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
5901       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
5902                                  Amt.getConstantLength()))
5903       : FixItHint();
5904 
5905   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
5906                          << type << CS.toString(),
5907                        getLocationOfByte(Amt.getStart()),
5908                        /*IsStringLocation*/true,
5909                        getSpecifierRange(startSpecifier, specifierLen),
5910                        fixit);
5911 }
5912 
5913 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
5914                                     const analyze_printf::OptionalFlag &flag,
5915                                     const char *startSpecifier,
5916                                     unsigned specifierLen) {
5917   // Warn about pointless flag with a fixit removal.
5918   const analyze_printf::PrintfConversionSpecifier &CS =
5919     FS.getConversionSpecifier();
5920   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
5921                          << flag.toString() << CS.toString(),
5922                        getLocationOfByte(flag.getPosition()),
5923                        /*IsStringLocation*/true,
5924                        getSpecifierRange(startSpecifier, specifierLen),
5925                        FixItHint::CreateRemoval(
5926                          getSpecifierRange(flag.getPosition(), 1)));
5927 }
5928 
5929 void CheckPrintfHandler::HandleIgnoredFlag(
5930                                 const analyze_printf::PrintfSpecifier &FS,
5931                                 const analyze_printf::OptionalFlag &ignoredFlag,
5932                                 const analyze_printf::OptionalFlag &flag,
5933                                 const char *startSpecifier,
5934                                 unsigned specifierLen) {
5935   // Warn about ignored flag with a fixit removal.
5936   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
5937                          << ignoredFlag.toString() << flag.toString(),
5938                        getLocationOfByte(ignoredFlag.getPosition()),
5939                        /*IsStringLocation*/true,
5940                        getSpecifierRange(startSpecifier, specifierLen),
5941                        FixItHint::CreateRemoval(
5942                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
5943 }
5944 
5945 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
5946                                                      unsigned flagLen) {
5947   // Warn about an empty flag.
5948   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
5949                        getLocationOfByte(startFlag),
5950                        /*IsStringLocation*/true,
5951                        getSpecifierRange(startFlag, flagLen));
5952 }
5953 
5954 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
5955                                                        unsigned flagLen) {
5956   // Warn about an invalid flag.
5957   auto Range = getSpecifierRange(startFlag, flagLen);
5958   StringRef flag(startFlag, flagLen);
5959   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
5960                       getLocationOfByte(startFlag),
5961                       /*IsStringLocation*/true,
5962                       Range, FixItHint::CreateRemoval(Range));
5963 }
5964 
5965 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
5966     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
5967     // Warn about using '[...]' without a '@' conversion.
5968     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
5969     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
5970     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
5971                          getLocationOfByte(conversionPosition),
5972                          /*IsStringLocation*/true,
5973                          Range, FixItHint::CreateRemoval(Range));
5974 }
5975 
5976 // Determines if the specified is a C++ class or struct containing
5977 // a member with the specified name and kind (e.g. a CXXMethodDecl named
5978 // "c_str()").
5979 template<typename MemberKind>
5980 static llvm::SmallPtrSet<MemberKind*, 1>
5981 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
5982   const RecordType *RT = Ty->getAs<RecordType>();
5983   llvm::SmallPtrSet<MemberKind*, 1> Results;
5984 
5985   if (!RT)
5986     return Results;
5987   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
5988   if (!RD || !RD->getDefinition())
5989     return Results;
5990 
5991   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
5992                  Sema::LookupMemberName);
5993   R.suppressDiagnostics();
5994 
5995   // We just need to include all members of the right kind turned up by the
5996   // filter, at this point.
5997   if (S.LookupQualifiedName(R, RT->getDecl()))
5998     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5999       NamedDecl *decl = (*I)->getUnderlyingDecl();
6000       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
6001         Results.insert(FK);
6002     }
6003   return Results;
6004 }
6005 
6006 /// Check if we could call '.c_str()' on an object.
6007 ///
6008 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
6009 /// allow the call, or if it would be ambiguous).
6010 bool Sema::hasCStrMethod(const Expr *E) {
6011   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
6012 
6013   MethodSet Results =
6014       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
6015   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
6016        MI != ME; ++MI)
6017     if ((*MI)->getMinRequiredArguments() == 0)
6018       return true;
6019   return false;
6020 }
6021 
6022 // Check if a (w)string was passed when a (w)char* was needed, and offer a
6023 // better diagnostic if so. AT is assumed to be valid.
6024 // Returns true when a c_str() conversion method is found.
6025 bool CheckPrintfHandler::checkForCStrMembers(
6026     const analyze_printf::ArgType &AT, const Expr *E) {
6027   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
6028 
6029   MethodSet Results =
6030       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
6031 
6032   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
6033        MI != ME; ++MI) {
6034     const CXXMethodDecl *Method = *MI;
6035     if (Method->getMinRequiredArguments() == 0 &&
6036         AT.matchesType(S.Context, Method->getReturnType())) {
6037       // FIXME: Suggest parens if the expression needs them.
6038       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
6039       S.Diag(E->getLocStart(), diag::note_printf_c_str)
6040           << "c_str()"
6041           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
6042       return true;
6043     }
6044   }
6045 
6046   return false;
6047 }
6048 
6049 bool
6050 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
6051                                             &FS,
6052                                           const char *startSpecifier,
6053                                           unsigned specifierLen) {
6054   using namespace analyze_format_string;
6055   using namespace analyze_printf;
6056 
6057   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
6058 
6059   if (FS.consumesDataArgument()) {
6060     if (atFirstArg) {
6061         atFirstArg = false;
6062         usesPositionalArgs = FS.usesPositionalArg();
6063     }
6064     else if (usesPositionalArgs != FS.usesPositionalArg()) {
6065       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
6066                                         startSpecifier, specifierLen);
6067       return false;
6068     }
6069   }
6070 
6071   // First check if the field width, precision, and conversion specifier
6072   // have matching data arguments.
6073   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
6074                     startSpecifier, specifierLen)) {
6075     return false;
6076   }
6077 
6078   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
6079                     startSpecifier, specifierLen)) {
6080     return false;
6081   }
6082 
6083   if (!CS.consumesDataArgument()) {
6084     // FIXME: Technically specifying a precision or field width here
6085     // makes no sense.  Worth issuing a warning at some point.
6086     return true;
6087   }
6088 
6089   // Consume the argument.
6090   unsigned argIndex = FS.getArgIndex();
6091   if (argIndex < NumDataArgs) {
6092     // The check to see if the argIndex is valid will come later.
6093     // We set the bit here because we may exit early from this
6094     // function if we encounter some other error.
6095     CoveredArgs.set(argIndex);
6096   }
6097 
6098   // FreeBSD kernel extensions.
6099   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
6100       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
6101     // We need at least two arguments.
6102     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
6103       return false;
6104 
6105     // Claim the second argument.
6106     CoveredArgs.set(argIndex + 1);
6107 
6108     // Type check the first argument (int for %b, pointer for %D)
6109     const Expr *Ex = getDataArg(argIndex);
6110     const analyze_printf::ArgType &AT =
6111       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
6112         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
6113     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
6114       EmitFormatDiagnostic(
6115         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
6116         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
6117         << false << Ex->getSourceRange(),
6118         Ex->getLocStart(), /*IsStringLocation*/false,
6119         getSpecifierRange(startSpecifier, specifierLen));
6120 
6121     // Type check the second argument (char * for both %b and %D)
6122     Ex = getDataArg(argIndex + 1);
6123     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
6124     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
6125       EmitFormatDiagnostic(
6126         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
6127         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
6128         << false << Ex->getSourceRange(),
6129         Ex->getLocStart(), /*IsStringLocation*/false,
6130         getSpecifierRange(startSpecifier, specifierLen));
6131 
6132      return true;
6133   }
6134 
6135   // Check for using an Objective-C specific conversion specifier
6136   // in a non-ObjC literal.
6137   if (!allowsObjCArg() && CS.isObjCArg()) {
6138     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
6139                                                   specifierLen);
6140   }
6141 
6142   // %P can only be used with os_log.
6143   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
6144     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
6145                                                   specifierLen);
6146   }
6147 
6148   // %n is not allowed with os_log.
6149   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
6150     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
6151                          getLocationOfByte(CS.getStart()),
6152                          /*IsStringLocation*/ false,
6153                          getSpecifierRange(startSpecifier, specifierLen));
6154 
6155     return true;
6156   }
6157 
6158   // Only scalars are allowed for os_trace.
6159   if (FSType == Sema::FST_OSTrace &&
6160       (CS.getKind() == ConversionSpecifier::PArg ||
6161        CS.getKind() == ConversionSpecifier::sArg ||
6162        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
6163     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
6164                                                   specifierLen);
6165   }
6166 
6167   // Check for use of public/private annotation outside of os_log().
6168   if (FSType != Sema::FST_OSLog) {
6169     if (FS.isPublic().isSet()) {
6170       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
6171                                << "public",
6172                            getLocationOfByte(FS.isPublic().getPosition()),
6173                            /*IsStringLocation*/ false,
6174                            getSpecifierRange(startSpecifier, specifierLen));
6175     }
6176     if (FS.isPrivate().isSet()) {
6177       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
6178                                << "private",
6179                            getLocationOfByte(FS.isPrivate().getPosition()),
6180                            /*IsStringLocation*/ false,
6181                            getSpecifierRange(startSpecifier, specifierLen));
6182     }
6183   }
6184 
6185   // Check for invalid use of field width
6186   if (!FS.hasValidFieldWidth()) {
6187     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
6188         startSpecifier, specifierLen);
6189   }
6190 
6191   // Check for invalid use of precision
6192   if (!FS.hasValidPrecision()) {
6193     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
6194         startSpecifier, specifierLen);
6195   }
6196 
6197   // Precision is mandatory for %P specifier.
6198   if (CS.getKind() == ConversionSpecifier::PArg &&
6199       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
6200     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
6201                          getLocationOfByte(startSpecifier),
6202                          /*IsStringLocation*/ false,
6203                          getSpecifierRange(startSpecifier, specifierLen));
6204   }
6205 
6206   // Check each flag does not conflict with any other component.
6207   if (!FS.hasValidThousandsGroupingPrefix())
6208     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
6209   if (!FS.hasValidLeadingZeros())
6210     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
6211   if (!FS.hasValidPlusPrefix())
6212     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
6213   if (!FS.hasValidSpacePrefix())
6214     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
6215   if (!FS.hasValidAlternativeForm())
6216     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
6217   if (!FS.hasValidLeftJustified())
6218     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
6219 
6220   // Check that flags are not ignored by another flag
6221   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
6222     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
6223         startSpecifier, specifierLen);
6224   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
6225     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
6226             startSpecifier, specifierLen);
6227 
6228   // Check the length modifier is valid with the given conversion specifier.
6229   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
6230     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6231                                 diag::warn_format_nonsensical_length);
6232   else if (!FS.hasStandardLengthModifier())
6233     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
6234   else if (!FS.hasStandardLengthConversionCombination())
6235     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6236                                 diag::warn_format_non_standard_conversion_spec);
6237 
6238   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
6239     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
6240 
6241   // The remaining checks depend on the data arguments.
6242   if (HasVAListArg)
6243     return true;
6244 
6245   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
6246     return false;
6247 
6248   const Expr *Arg = getDataArg(argIndex);
6249   if (!Arg)
6250     return true;
6251 
6252   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
6253 }
6254 
6255 static bool requiresParensToAddCast(const Expr *E) {
6256   // FIXME: We should have a general way to reason about operator
6257   // precedence and whether parens are actually needed here.
6258   // Take care of a few common cases where they aren't.
6259   const Expr *Inside = E->IgnoreImpCasts();
6260   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
6261     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
6262 
6263   switch (Inside->getStmtClass()) {
6264   case Stmt::ArraySubscriptExprClass:
6265   case Stmt::CallExprClass:
6266   case Stmt::CharacterLiteralClass:
6267   case Stmt::CXXBoolLiteralExprClass:
6268   case Stmt::DeclRefExprClass:
6269   case Stmt::FloatingLiteralClass:
6270   case Stmt::IntegerLiteralClass:
6271   case Stmt::MemberExprClass:
6272   case Stmt::ObjCArrayLiteralClass:
6273   case Stmt::ObjCBoolLiteralExprClass:
6274   case Stmt::ObjCBoxedExprClass:
6275   case Stmt::ObjCDictionaryLiteralClass:
6276   case Stmt::ObjCEncodeExprClass:
6277   case Stmt::ObjCIvarRefExprClass:
6278   case Stmt::ObjCMessageExprClass:
6279   case Stmt::ObjCPropertyRefExprClass:
6280   case Stmt::ObjCStringLiteralClass:
6281   case Stmt::ObjCSubscriptRefExprClass:
6282   case Stmt::ParenExprClass:
6283   case Stmt::StringLiteralClass:
6284   case Stmt::UnaryOperatorClass:
6285     return false;
6286   default:
6287     return true;
6288   }
6289 }
6290 
6291 static std::pair<QualType, StringRef>
6292 shouldNotPrintDirectly(const ASTContext &Context,
6293                        QualType IntendedTy,
6294                        const Expr *E) {
6295   // Use a 'while' to peel off layers of typedefs.
6296   QualType TyTy = IntendedTy;
6297   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
6298     StringRef Name = UserTy->getDecl()->getName();
6299     QualType CastTy = llvm::StringSwitch<QualType>(Name)
6300       .Case("CFIndex", Context.getNSIntegerType())
6301       .Case("NSInteger", Context.getNSIntegerType())
6302       .Case("NSUInteger", Context.getNSUIntegerType())
6303       .Case("SInt32", Context.IntTy)
6304       .Case("UInt32", Context.UnsignedIntTy)
6305       .Default(QualType());
6306 
6307     if (!CastTy.isNull())
6308       return std::make_pair(CastTy, Name);
6309 
6310     TyTy = UserTy->desugar();
6311   }
6312 
6313   // Strip parens if necessary.
6314   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
6315     return shouldNotPrintDirectly(Context,
6316                                   PE->getSubExpr()->getType(),
6317                                   PE->getSubExpr());
6318 
6319   // If this is a conditional expression, then its result type is constructed
6320   // via usual arithmetic conversions and thus there might be no necessary
6321   // typedef sugar there.  Recurse to operands to check for NSInteger &
6322   // Co. usage condition.
6323   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6324     QualType TrueTy, FalseTy;
6325     StringRef TrueName, FalseName;
6326 
6327     std::tie(TrueTy, TrueName) =
6328       shouldNotPrintDirectly(Context,
6329                              CO->getTrueExpr()->getType(),
6330                              CO->getTrueExpr());
6331     std::tie(FalseTy, FalseName) =
6332       shouldNotPrintDirectly(Context,
6333                              CO->getFalseExpr()->getType(),
6334                              CO->getFalseExpr());
6335 
6336     if (TrueTy == FalseTy)
6337       return std::make_pair(TrueTy, TrueName);
6338     else if (TrueTy.isNull())
6339       return std::make_pair(FalseTy, FalseName);
6340     else if (FalseTy.isNull())
6341       return std::make_pair(TrueTy, TrueName);
6342   }
6343 
6344   return std::make_pair(QualType(), StringRef());
6345 }
6346 
6347 bool
6348 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
6349                                     const char *StartSpecifier,
6350                                     unsigned SpecifierLen,
6351                                     const Expr *E) {
6352   using namespace analyze_format_string;
6353   using namespace analyze_printf;
6354 
6355   // Now type check the data expression that matches the
6356   // format specifier.
6357   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
6358   if (!AT.isValid())
6359     return true;
6360 
6361   QualType ExprTy = E->getType();
6362   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
6363     ExprTy = TET->getUnderlyingExpr()->getType();
6364   }
6365 
6366   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
6367 
6368   if (match == analyze_printf::ArgType::Match) {
6369     return true;
6370   }
6371 
6372   // Look through argument promotions for our error message's reported type.
6373   // This includes the integral and floating promotions, but excludes array
6374   // and function pointer decay; seeing that an argument intended to be a
6375   // string has type 'char [6]' is probably more confusing than 'char *'.
6376   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6377     if (ICE->getCastKind() == CK_IntegralCast ||
6378         ICE->getCastKind() == CK_FloatingCast) {
6379       E = ICE->getSubExpr();
6380       ExprTy = E->getType();
6381 
6382       // Check if we didn't match because of an implicit cast from a 'char'
6383       // or 'short' to an 'int'.  This is done because printf is a varargs
6384       // function.
6385       if (ICE->getType() == S.Context.IntTy ||
6386           ICE->getType() == S.Context.UnsignedIntTy) {
6387         // All further checking is done on the subexpression.
6388         if (AT.matchesType(S.Context, ExprTy))
6389           return true;
6390       }
6391     }
6392   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
6393     // Special case for 'a', which has type 'int' in C.
6394     // Note, however, that we do /not/ want to treat multibyte constants like
6395     // 'MooV' as characters! This form is deprecated but still exists.
6396     if (ExprTy == S.Context.IntTy)
6397       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
6398         ExprTy = S.Context.CharTy;
6399   }
6400 
6401   // Look through enums to their underlying type.
6402   bool IsEnum = false;
6403   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
6404     ExprTy = EnumTy->getDecl()->getIntegerType();
6405     IsEnum = true;
6406   }
6407 
6408   // %C in an Objective-C context prints a unichar, not a wchar_t.
6409   // If the argument is an integer of some kind, believe the %C and suggest
6410   // a cast instead of changing the conversion specifier.
6411   QualType IntendedTy = ExprTy;
6412   if (isObjCContext() &&
6413       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
6414     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
6415         !ExprTy->isCharType()) {
6416       // 'unichar' is defined as a typedef of unsigned short, but we should
6417       // prefer using the typedef if it is visible.
6418       IntendedTy = S.Context.UnsignedShortTy;
6419 
6420       // While we are here, check if the value is an IntegerLiteral that happens
6421       // to be within the valid range.
6422       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
6423         const llvm::APInt &V = IL->getValue();
6424         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
6425           return true;
6426       }
6427 
6428       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
6429                           Sema::LookupOrdinaryName);
6430       if (S.LookupName(Result, S.getCurScope())) {
6431         NamedDecl *ND = Result.getFoundDecl();
6432         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
6433           if (TD->getUnderlyingType() == IntendedTy)
6434             IntendedTy = S.Context.getTypedefType(TD);
6435       }
6436     }
6437   }
6438 
6439   // Special-case some of Darwin's platform-independence types by suggesting
6440   // casts to primitive types that are known to be large enough.
6441   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
6442   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
6443     QualType CastTy;
6444     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
6445     if (!CastTy.isNull()) {
6446       IntendedTy = CastTy;
6447       ShouldNotPrintDirectly = true;
6448     }
6449   }
6450 
6451   // We may be able to offer a FixItHint if it is a supported type.
6452   PrintfSpecifier fixedFS = FS;
6453   bool success =
6454       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
6455 
6456   if (success) {
6457     // Get the fix string from the fixed format specifier
6458     SmallString<16> buf;
6459     llvm::raw_svector_ostream os(buf);
6460     fixedFS.toString(os);
6461 
6462     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
6463 
6464     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
6465       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
6466       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
6467         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
6468       }
6469       // In this case, the specifier is wrong and should be changed to match
6470       // the argument.
6471       EmitFormatDiagnostic(S.PDiag(diag)
6472                                << AT.getRepresentativeTypeName(S.Context)
6473                                << IntendedTy << IsEnum << E->getSourceRange(),
6474                            E->getLocStart(),
6475                            /*IsStringLocation*/ false, SpecRange,
6476                            FixItHint::CreateReplacement(SpecRange, os.str()));
6477     } else {
6478       // The canonical type for formatting this value is different from the
6479       // actual type of the expression. (This occurs, for example, with Darwin's
6480       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
6481       // should be printed as 'long' for 64-bit compatibility.)
6482       // Rather than emitting a normal format/argument mismatch, we want to
6483       // add a cast to the recommended type (and correct the format string
6484       // if necessary).
6485       SmallString<16> CastBuf;
6486       llvm::raw_svector_ostream CastFix(CastBuf);
6487       CastFix << "(";
6488       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
6489       CastFix << ")";
6490 
6491       SmallVector<FixItHint,4> Hints;
6492       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
6493         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
6494 
6495       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
6496         // If there's already a cast present, just replace it.
6497         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
6498         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
6499 
6500       } else if (!requiresParensToAddCast(E)) {
6501         // If the expression has high enough precedence,
6502         // just write the C-style cast.
6503         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
6504                                                    CastFix.str()));
6505       } else {
6506         // Otherwise, add parens around the expression as well as the cast.
6507         CastFix << "(";
6508         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
6509                                                    CastFix.str()));
6510 
6511         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
6512         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
6513       }
6514 
6515       if (ShouldNotPrintDirectly) {
6516         // The expression has a type that should not be printed directly.
6517         // We extract the name from the typedef because we don't want to show
6518         // the underlying type in the diagnostic.
6519         StringRef Name;
6520         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
6521           Name = TypedefTy->getDecl()->getName();
6522         else
6523           Name = CastTyName;
6524         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
6525                                << Name << IntendedTy << IsEnum
6526                                << E->getSourceRange(),
6527                              E->getLocStart(), /*IsStringLocation=*/false,
6528                              SpecRange, Hints);
6529       } else {
6530         // In this case, the expression could be printed using a different
6531         // specifier, but we've decided that the specifier is probably correct
6532         // and we should cast instead. Just use the normal warning message.
6533         EmitFormatDiagnostic(
6534           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
6535             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
6536             << E->getSourceRange(),
6537           E->getLocStart(), /*IsStringLocation*/false,
6538           SpecRange, Hints);
6539       }
6540     }
6541   } else {
6542     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
6543                                                    SpecifierLen);
6544     // Since the warning for passing non-POD types to variadic functions
6545     // was deferred until now, we emit a warning for non-POD
6546     // arguments here.
6547     switch (S.isValidVarArgType(ExprTy)) {
6548     case Sema::VAK_Valid:
6549     case Sema::VAK_ValidInCXX11: {
6550       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
6551       if (match == analyze_printf::ArgType::NoMatchPedantic) {
6552         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
6553       }
6554 
6555       EmitFormatDiagnostic(
6556           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
6557                         << IsEnum << CSR << E->getSourceRange(),
6558           E->getLocStart(), /*IsStringLocation*/ false, CSR);
6559       break;
6560     }
6561     case Sema::VAK_Undefined:
6562     case Sema::VAK_MSVCUndefined:
6563       EmitFormatDiagnostic(
6564         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
6565           << S.getLangOpts().CPlusPlus11
6566           << ExprTy
6567           << CallType
6568           << AT.getRepresentativeTypeName(S.Context)
6569           << CSR
6570           << E->getSourceRange(),
6571         E->getLocStart(), /*IsStringLocation*/false, CSR);
6572       checkForCStrMembers(AT, E);
6573       break;
6574 
6575     case Sema::VAK_Invalid:
6576       if (ExprTy->isObjCObjectType())
6577         EmitFormatDiagnostic(
6578           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
6579             << S.getLangOpts().CPlusPlus11
6580             << ExprTy
6581             << CallType
6582             << AT.getRepresentativeTypeName(S.Context)
6583             << CSR
6584             << E->getSourceRange(),
6585           E->getLocStart(), /*IsStringLocation*/false, CSR);
6586       else
6587         // FIXME: If this is an initializer list, suggest removing the braces
6588         // or inserting a cast to the target type.
6589         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
6590           << isa<InitListExpr>(E) << ExprTy << CallType
6591           << AT.getRepresentativeTypeName(S.Context)
6592           << E->getSourceRange();
6593       break;
6594     }
6595 
6596     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
6597            "format string specifier index out of range");
6598     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
6599   }
6600 
6601   return true;
6602 }
6603 
6604 //===--- CHECK: Scanf format string checking ------------------------------===//
6605 
6606 namespace {
6607 
6608 class CheckScanfHandler : public CheckFormatHandler {
6609 public:
6610   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
6611                     const Expr *origFormatExpr, Sema::FormatStringType type,
6612                     unsigned firstDataArg, unsigned numDataArgs,
6613                     const char *beg, bool hasVAListArg,
6614                     ArrayRef<const Expr *> Args, unsigned formatIdx,
6615                     bool inFunctionCall, Sema::VariadicCallType CallType,
6616                     llvm::SmallBitVector &CheckedVarArgs,
6617                     UncoveredArgHandler &UncoveredArg)
6618       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
6619                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
6620                            inFunctionCall, CallType, CheckedVarArgs,
6621                            UncoveredArg) {}
6622 
6623   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
6624                             const char *startSpecifier,
6625                             unsigned specifierLen) override;
6626 
6627   bool HandleInvalidScanfConversionSpecifier(
6628           const analyze_scanf::ScanfSpecifier &FS,
6629           const char *startSpecifier,
6630           unsigned specifierLen) override;
6631 
6632   void HandleIncompleteScanList(const char *start, const char *end) override;
6633 };
6634 
6635 } // namespace
6636 
6637 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
6638                                                  const char *end) {
6639   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
6640                        getLocationOfByte(end), /*IsStringLocation*/true,
6641                        getSpecifierRange(start, end - start));
6642 }
6643 
6644 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
6645                                         const analyze_scanf::ScanfSpecifier &FS,
6646                                         const char *startSpecifier,
6647                                         unsigned specifierLen) {
6648   const analyze_scanf::ScanfConversionSpecifier &CS =
6649     FS.getConversionSpecifier();
6650 
6651   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
6652                                           getLocationOfByte(CS.getStart()),
6653                                           startSpecifier, specifierLen,
6654                                           CS.getStart(), CS.getLength());
6655 }
6656 
6657 bool CheckScanfHandler::HandleScanfSpecifier(
6658                                        const analyze_scanf::ScanfSpecifier &FS,
6659                                        const char *startSpecifier,
6660                                        unsigned specifierLen) {
6661   using namespace analyze_scanf;
6662   using namespace analyze_format_string;
6663 
6664   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
6665 
6666   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
6667   // be used to decide if we are using positional arguments consistently.
6668   if (FS.consumesDataArgument()) {
6669     if (atFirstArg) {
6670       atFirstArg = false;
6671       usesPositionalArgs = FS.usesPositionalArg();
6672     }
6673     else if (usesPositionalArgs != FS.usesPositionalArg()) {
6674       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
6675                                         startSpecifier, specifierLen);
6676       return false;
6677     }
6678   }
6679 
6680   // Check if the field with is non-zero.
6681   const OptionalAmount &Amt = FS.getFieldWidth();
6682   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
6683     if (Amt.getConstantAmount() == 0) {
6684       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
6685                                                    Amt.getConstantLength());
6686       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
6687                            getLocationOfByte(Amt.getStart()),
6688                            /*IsStringLocation*/true, R,
6689                            FixItHint::CreateRemoval(R));
6690     }
6691   }
6692 
6693   if (!FS.consumesDataArgument()) {
6694     // FIXME: Technically specifying a precision or field width here
6695     // makes no sense.  Worth issuing a warning at some point.
6696     return true;
6697   }
6698 
6699   // Consume the argument.
6700   unsigned argIndex = FS.getArgIndex();
6701   if (argIndex < NumDataArgs) {
6702       // The check to see if the argIndex is valid will come later.
6703       // We set the bit here because we may exit early from this
6704       // function if we encounter some other error.
6705     CoveredArgs.set(argIndex);
6706   }
6707 
6708   // Check the length modifier is valid with the given conversion specifier.
6709   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
6710     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6711                                 diag::warn_format_nonsensical_length);
6712   else if (!FS.hasStandardLengthModifier())
6713     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
6714   else if (!FS.hasStandardLengthConversionCombination())
6715     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6716                                 diag::warn_format_non_standard_conversion_spec);
6717 
6718   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
6719     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
6720 
6721   // The remaining checks depend on the data arguments.
6722   if (HasVAListArg)
6723     return true;
6724 
6725   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
6726     return false;
6727 
6728   // Check that the argument type matches the format specifier.
6729   const Expr *Ex = getDataArg(argIndex);
6730   if (!Ex)
6731     return true;
6732 
6733   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
6734 
6735   if (!AT.isValid()) {
6736     return true;
6737   }
6738 
6739   analyze_format_string::ArgType::MatchKind match =
6740       AT.matchesType(S.Context, Ex->getType());
6741   if (match == analyze_format_string::ArgType::Match) {
6742     return true;
6743   }
6744 
6745   ScanfSpecifier fixedFS = FS;
6746   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
6747                                  S.getLangOpts(), S.Context);
6748 
6749   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
6750   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
6751     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
6752   }
6753 
6754   if (success) {
6755     // Get the fix string from the fixed format specifier.
6756     SmallString<128> buf;
6757     llvm::raw_svector_ostream os(buf);
6758     fixedFS.toString(os);
6759 
6760     EmitFormatDiagnostic(
6761         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
6762                       << Ex->getType() << false << Ex->getSourceRange(),
6763         Ex->getLocStart(),
6764         /*IsStringLocation*/ false,
6765         getSpecifierRange(startSpecifier, specifierLen),
6766         FixItHint::CreateReplacement(
6767             getSpecifierRange(startSpecifier, specifierLen), os.str()));
6768   } else {
6769     EmitFormatDiagnostic(S.PDiag(diag)
6770                              << AT.getRepresentativeTypeName(S.Context)
6771                              << Ex->getType() << false << Ex->getSourceRange(),
6772                          Ex->getLocStart(),
6773                          /*IsStringLocation*/ false,
6774                          getSpecifierRange(startSpecifier, specifierLen));
6775   }
6776 
6777   return true;
6778 }
6779 
6780 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6781                               const Expr *OrigFormatExpr,
6782                               ArrayRef<const Expr *> Args,
6783                               bool HasVAListArg, unsigned format_idx,
6784                               unsigned firstDataArg,
6785                               Sema::FormatStringType Type,
6786                               bool inFunctionCall,
6787                               Sema::VariadicCallType CallType,
6788                               llvm::SmallBitVector &CheckedVarArgs,
6789                               UncoveredArgHandler &UncoveredArg) {
6790   // CHECK: is the format string a wide literal?
6791   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
6792     CheckFormatHandler::EmitFormatDiagnostic(
6793       S, inFunctionCall, Args[format_idx],
6794       S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
6795       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
6796     return;
6797   }
6798 
6799   // Str - The format string.  NOTE: this is NOT null-terminated!
6800   StringRef StrRef = FExpr->getString();
6801   const char *Str = StrRef.data();
6802   // Account for cases where the string literal is truncated in a declaration.
6803   const ConstantArrayType *T =
6804     S.Context.getAsConstantArrayType(FExpr->getType());
6805   assert(T && "String literal not of constant array type!");
6806   size_t TypeSize = T->getSize().getZExtValue();
6807   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
6808   const unsigned numDataArgs = Args.size() - firstDataArg;
6809 
6810   // Emit a warning if the string literal is truncated and does not contain an
6811   // embedded null character.
6812   if (TypeSize <= StrRef.size() &&
6813       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
6814     CheckFormatHandler::EmitFormatDiagnostic(
6815         S, inFunctionCall, Args[format_idx],
6816         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
6817         FExpr->getLocStart(),
6818         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
6819     return;
6820   }
6821 
6822   // CHECK: empty format string?
6823   if (StrLen == 0 && numDataArgs > 0) {
6824     CheckFormatHandler::EmitFormatDiagnostic(
6825       S, inFunctionCall, Args[format_idx],
6826       S.PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
6827       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
6828     return;
6829   }
6830 
6831   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
6832       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
6833       Type == Sema::FST_OSTrace) {
6834     CheckPrintfHandler H(
6835         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
6836         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
6837         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
6838         CheckedVarArgs, UncoveredArg);
6839 
6840     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
6841                                                   S.getLangOpts(),
6842                                                   S.Context.getTargetInfo(),
6843                                             Type == Sema::FST_FreeBSDKPrintf))
6844       H.DoneProcessing();
6845   } else if (Type == Sema::FST_Scanf) {
6846     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
6847                         numDataArgs, Str, HasVAListArg, Args, format_idx,
6848                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
6849 
6850     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
6851                                                  S.getLangOpts(),
6852                                                  S.Context.getTargetInfo()))
6853       H.DoneProcessing();
6854   } // TODO: handle other formats
6855 }
6856 
6857 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
6858   // Str - The format string.  NOTE: this is NOT null-terminated!
6859   StringRef StrRef = FExpr->getString();
6860   const char *Str = StrRef.data();
6861   // Account for cases where the string literal is truncated in a declaration.
6862   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
6863   assert(T && "String literal not of constant array type!");
6864   size_t TypeSize = T->getSize().getZExtValue();
6865   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
6866   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
6867                                                          getLangOpts(),
6868                                                          Context.getTargetInfo());
6869 }
6870 
6871 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
6872 
6873 // Returns the related absolute value function that is larger, of 0 if one
6874 // does not exist.
6875 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
6876   switch (AbsFunction) {
6877   default:
6878     return 0;
6879 
6880   case Builtin::BI__builtin_abs:
6881     return Builtin::BI__builtin_labs;
6882   case Builtin::BI__builtin_labs:
6883     return Builtin::BI__builtin_llabs;
6884   case Builtin::BI__builtin_llabs:
6885     return 0;
6886 
6887   case Builtin::BI__builtin_fabsf:
6888     return Builtin::BI__builtin_fabs;
6889   case Builtin::BI__builtin_fabs:
6890     return Builtin::BI__builtin_fabsl;
6891   case Builtin::BI__builtin_fabsl:
6892     return 0;
6893 
6894   case Builtin::BI__builtin_cabsf:
6895     return Builtin::BI__builtin_cabs;
6896   case Builtin::BI__builtin_cabs:
6897     return Builtin::BI__builtin_cabsl;
6898   case Builtin::BI__builtin_cabsl:
6899     return 0;
6900 
6901   case Builtin::BIabs:
6902     return Builtin::BIlabs;
6903   case Builtin::BIlabs:
6904     return Builtin::BIllabs;
6905   case Builtin::BIllabs:
6906     return 0;
6907 
6908   case Builtin::BIfabsf:
6909     return Builtin::BIfabs;
6910   case Builtin::BIfabs:
6911     return Builtin::BIfabsl;
6912   case Builtin::BIfabsl:
6913     return 0;
6914 
6915   case Builtin::BIcabsf:
6916    return Builtin::BIcabs;
6917   case Builtin::BIcabs:
6918     return Builtin::BIcabsl;
6919   case Builtin::BIcabsl:
6920     return 0;
6921   }
6922 }
6923 
6924 // Returns the argument type of the absolute value function.
6925 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
6926                                              unsigned AbsType) {
6927   if (AbsType == 0)
6928     return QualType();
6929 
6930   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
6931   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
6932   if (Error != ASTContext::GE_None)
6933     return QualType();
6934 
6935   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
6936   if (!FT)
6937     return QualType();
6938 
6939   if (FT->getNumParams() != 1)
6940     return QualType();
6941 
6942   return FT->getParamType(0);
6943 }
6944 
6945 // Returns the best absolute value function, or zero, based on type and
6946 // current absolute value function.
6947 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
6948                                    unsigned AbsFunctionKind) {
6949   unsigned BestKind = 0;
6950   uint64_t ArgSize = Context.getTypeSize(ArgType);
6951   for (unsigned Kind = AbsFunctionKind; Kind != 0;
6952        Kind = getLargerAbsoluteValueFunction(Kind)) {
6953     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
6954     if (Context.getTypeSize(ParamType) >= ArgSize) {
6955       if (BestKind == 0)
6956         BestKind = Kind;
6957       else if (Context.hasSameType(ParamType, ArgType)) {
6958         BestKind = Kind;
6959         break;
6960       }
6961     }
6962   }
6963   return BestKind;
6964 }
6965 
6966 enum AbsoluteValueKind {
6967   AVK_Integer,
6968   AVK_Floating,
6969   AVK_Complex
6970 };
6971 
6972 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
6973   if (T->isIntegralOrEnumerationType())
6974     return AVK_Integer;
6975   if (T->isRealFloatingType())
6976     return AVK_Floating;
6977   if (T->isAnyComplexType())
6978     return AVK_Complex;
6979 
6980   llvm_unreachable("Type not integer, floating, or complex");
6981 }
6982 
6983 // Changes the absolute value function to a different type.  Preserves whether
6984 // the function is a builtin.
6985 static unsigned changeAbsFunction(unsigned AbsKind,
6986                                   AbsoluteValueKind ValueKind) {
6987   switch (ValueKind) {
6988   case AVK_Integer:
6989     switch (AbsKind) {
6990     default:
6991       return 0;
6992     case Builtin::BI__builtin_fabsf:
6993     case Builtin::BI__builtin_fabs:
6994     case Builtin::BI__builtin_fabsl:
6995     case Builtin::BI__builtin_cabsf:
6996     case Builtin::BI__builtin_cabs:
6997     case Builtin::BI__builtin_cabsl:
6998       return Builtin::BI__builtin_abs;
6999     case Builtin::BIfabsf:
7000     case Builtin::BIfabs:
7001     case Builtin::BIfabsl:
7002     case Builtin::BIcabsf:
7003     case Builtin::BIcabs:
7004     case Builtin::BIcabsl:
7005       return Builtin::BIabs;
7006     }
7007   case AVK_Floating:
7008     switch (AbsKind) {
7009     default:
7010       return 0;
7011     case Builtin::BI__builtin_abs:
7012     case Builtin::BI__builtin_labs:
7013     case Builtin::BI__builtin_llabs:
7014     case Builtin::BI__builtin_cabsf:
7015     case Builtin::BI__builtin_cabs:
7016     case Builtin::BI__builtin_cabsl:
7017       return Builtin::BI__builtin_fabsf;
7018     case Builtin::BIabs:
7019     case Builtin::BIlabs:
7020     case Builtin::BIllabs:
7021     case Builtin::BIcabsf:
7022     case Builtin::BIcabs:
7023     case Builtin::BIcabsl:
7024       return Builtin::BIfabsf;
7025     }
7026   case AVK_Complex:
7027     switch (AbsKind) {
7028     default:
7029       return 0;
7030     case Builtin::BI__builtin_abs:
7031     case Builtin::BI__builtin_labs:
7032     case Builtin::BI__builtin_llabs:
7033     case Builtin::BI__builtin_fabsf:
7034     case Builtin::BI__builtin_fabs:
7035     case Builtin::BI__builtin_fabsl:
7036       return Builtin::BI__builtin_cabsf;
7037     case Builtin::BIabs:
7038     case Builtin::BIlabs:
7039     case Builtin::BIllabs:
7040     case Builtin::BIfabsf:
7041     case Builtin::BIfabs:
7042     case Builtin::BIfabsl:
7043       return Builtin::BIcabsf;
7044     }
7045   }
7046   llvm_unreachable("Unable to convert function");
7047 }
7048 
7049 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
7050   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
7051   if (!FnInfo)
7052     return 0;
7053 
7054   switch (FDecl->getBuiltinID()) {
7055   default:
7056     return 0;
7057   case Builtin::BI__builtin_abs:
7058   case Builtin::BI__builtin_fabs:
7059   case Builtin::BI__builtin_fabsf:
7060   case Builtin::BI__builtin_fabsl:
7061   case Builtin::BI__builtin_labs:
7062   case Builtin::BI__builtin_llabs:
7063   case Builtin::BI__builtin_cabs:
7064   case Builtin::BI__builtin_cabsf:
7065   case Builtin::BI__builtin_cabsl:
7066   case Builtin::BIabs:
7067   case Builtin::BIlabs:
7068   case Builtin::BIllabs:
7069   case Builtin::BIfabs:
7070   case Builtin::BIfabsf:
7071   case Builtin::BIfabsl:
7072   case Builtin::BIcabs:
7073   case Builtin::BIcabsf:
7074   case Builtin::BIcabsl:
7075     return FDecl->getBuiltinID();
7076   }
7077   llvm_unreachable("Unknown Builtin type");
7078 }
7079 
7080 // If the replacement is valid, emit a note with replacement function.
7081 // Additionally, suggest including the proper header if not already included.
7082 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
7083                             unsigned AbsKind, QualType ArgType) {
7084   bool EmitHeaderHint = true;
7085   const char *HeaderName = nullptr;
7086   const char *FunctionName = nullptr;
7087   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
7088     FunctionName = "std::abs";
7089     if (ArgType->isIntegralOrEnumerationType()) {
7090       HeaderName = "cstdlib";
7091     } else if (ArgType->isRealFloatingType()) {
7092       HeaderName = "cmath";
7093     } else {
7094       llvm_unreachable("Invalid Type");
7095     }
7096 
7097     // Lookup all std::abs
7098     if (NamespaceDecl *Std = S.getStdNamespace()) {
7099       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
7100       R.suppressDiagnostics();
7101       S.LookupQualifiedName(R, Std);
7102 
7103       for (const auto *I : R) {
7104         const FunctionDecl *FDecl = nullptr;
7105         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
7106           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
7107         } else {
7108           FDecl = dyn_cast<FunctionDecl>(I);
7109         }
7110         if (!FDecl)
7111           continue;
7112 
7113         // Found std::abs(), check that they are the right ones.
7114         if (FDecl->getNumParams() != 1)
7115           continue;
7116 
7117         // Check that the parameter type can handle the argument.
7118         QualType ParamType = FDecl->getParamDecl(0)->getType();
7119         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
7120             S.Context.getTypeSize(ArgType) <=
7121                 S.Context.getTypeSize(ParamType)) {
7122           // Found a function, don't need the header hint.
7123           EmitHeaderHint = false;
7124           break;
7125         }
7126       }
7127     }
7128   } else {
7129     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
7130     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
7131 
7132     if (HeaderName) {
7133       DeclarationName DN(&S.Context.Idents.get(FunctionName));
7134       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
7135       R.suppressDiagnostics();
7136       S.LookupName(R, S.getCurScope());
7137 
7138       if (R.isSingleResult()) {
7139         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
7140         if (FD && FD->getBuiltinID() == AbsKind) {
7141           EmitHeaderHint = false;
7142         } else {
7143           return;
7144         }
7145       } else if (!R.empty()) {
7146         return;
7147       }
7148     }
7149   }
7150 
7151   S.Diag(Loc, diag::note_replace_abs_function)
7152       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
7153 
7154   if (!HeaderName)
7155     return;
7156 
7157   if (!EmitHeaderHint)
7158     return;
7159 
7160   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
7161                                                     << FunctionName;
7162 }
7163 
7164 template <std::size_t StrLen>
7165 static bool IsStdFunction(const FunctionDecl *FDecl,
7166                           const char (&Str)[StrLen]) {
7167   if (!FDecl)
7168     return false;
7169   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
7170     return false;
7171   if (!FDecl->isInStdNamespace())
7172     return false;
7173 
7174   return true;
7175 }
7176 
7177 // Warn when using the wrong abs() function.
7178 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
7179                                       const FunctionDecl *FDecl) {
7180   if (Call->getNumArgs() != 1)
7181     return;
7182 
7183   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
7184   bool IsStdAbs = IsStdFunction(FDecl, "abs");
7185   if (AbsKind == 0 && !IsStdAbs)
7186     return;
7187 
7188   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
7189   QualType ParamType = Call->getArg(0)->getType();
7190 
7191   // Unsigned types cannot be negative.  Suggest removing the absolute value
7192   // function call.
7193   if (ArgType->isUnsignedIntegerType()) {
7194     const char *FunctionName =
7195         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
7196     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
7197     Diag(Call->getExprLoc(), diag::note_remove_abs)
7198         << FunctionName
7199         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
7200     return;
7201   }
7202 
7203   // Taking the absolute value of a pointer is very suspicious, they probably
7204   // wanted to index into an array, dereference a pointer, call a function, etc.
7205   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
7206     unsigned DiagType = 0;
7207     if (ArgType->isFunctionType())
7208       DiagType = 1;
7209     else if (ArgType->isArrayType())
7210       DiagType = 2;
7211 
7212     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
7213     return;
7214   }
7215 
7216   // std::abs has overloads which prevent most of the absolute value problems
7217   // from occurring.
7218   if (IsStdAbs)
7219     return;
7220 
7221   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
7222   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
7223 
7224   // The argument and parameter are the same kind.  Check if they are the right
7225   // size.
7226   if (ArgValueKind == ParamValueKind) {
7227     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
7228       return;
7229 
7230     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
7231     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
7232         << FDecl << ArgType << ParamType;
7233 
7234     if (NewAbsKind == 0)
7235       return;
7236 
7237     emitReplacement(*this, Call->getExprLoc(),
7238                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
7239     return;
7240   }
7241 
7242   // ArgValueKind != ParamValueKind
7243   // The wrong type of absolute value function was used.  Attempt to find the
7244   // proper one.
7245   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
7246   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
7247   if (NewAbsKind == 0)
7248     return;
7249 
7250   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
7251       << FDecl << ParamValueKind << ArgValueKind;
7252 
7253   emitReplacement(*this, Call->getExprLoc(),
7254                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
7255 }
7256 
7257 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
7258 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
7259                                 const FunctionDecl *FDecl) {
7260   if (!Call || !FDecl) return;
7261 
7262   // Ignore template specializations and macros.
7263   if (inTemplateInstantiation()) return;
7264   if (Call->getExprLoc().isMacroID()) return;
7265 
7266   // Only care about the one template argument, two function parameter std::max
7267   if (Call->getNumArgs() != 2) return;
7268   if (!IsStdFunction(FDecl, "max")) return;
7269   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
7270   if (!ArgList) return;
7271   if (ArgList->size() != 1) return;
7272 
7273   // Check that template type argument is unsigned integer.
7274   const auto& TA = ArgList->get(0);
7275   if (TA.getKind() != TemplateArgument::Type) return;
7276   QualType ArgType = TA.getAsType();
7277   if (!ArgType->isUnsignedIntegerType()) return;
7278 
7279   // See if either argument is a literal zero.
7280   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
7281     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
7282     if (!MTE) return false;
7283     const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr());
7284     if (!Num) return false;
7285     if (Num->getValue() != 0) return false;
7286     return true;
7287   };
7288 
7289   const Expr *FirstArg = Call->getArg(0);
7290   const Expr *SecondArg = Call->getArg(1);
7291   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
7292   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
7293 
7294   // Only warn when exactly one argument is zero.
7295   if (IsFirstArgZero == IsSecondArgZero) return;
7296 
7297   SourceRange FirstRange = FirstArg->getSourceRange();
7298   SourceRange SecondRange = SecondArg->getSourceRange();
7299 
7300   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
7301 
7302   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
7303       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
7304 
7305   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
7306   SourceRange RemovalRange;
7307   if (IsFirstArgZero) {
7308     RemovalRange = SourceRange(FirstRange.getBegin(),
7309                                SecondRange.getBegin().getLocWithOffset(-1));
7310   } else {
7311     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
7312                                SecondRange.getEnd());
7313   }
7314 
7315   Diag(Call->getExprLoc(), diag::note_remove_max_call)
7316         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
7317         << FixItHint::CreateRemoval(RemovalRange);
7318 }
7319 
7320 //===--- CHECK: Standard memory functions ---------------------------------===//
7321 
7322 /// Takes the expression passed to the size_t parameter of functions
7323 /// such as memcmp, strncat, etc and warns if it's a comparison.
7324 ///
7325 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
7326 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
7327                                            IdentifierInfo *FnName,
7328                                            SourceLocation FnLoc,
7329                                            SourceLocation RParenLoc) {
7330   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
7331   if (!Size)
7332     return false;
7333 
7334   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
7335   if (!Size->isComparisonOp() && !Size->isLogicalOp())
7336     return false;
7337 
7338   SourceRange SizeRange = Size->getSourceRange();
7339   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
7340       << SizeRange << FnName;
7341   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
7342       << FnName << FixItHint::CreateInsertion(
7343                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
7344       << FixItHint::CreateRemoval(RParenLoc);
7345   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
7346       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
7347       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
7348                                     ")");
7349 
7350   return true;
7351 }
7352 
7353 /// Determine whether the given type is or contains a dynamic class type
7354 /// (e.g., whether it has a vtable).
7355 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
7356                                                      bool &IsContained) {
7357   // Look through array types while ignoring qualifiers.
7358   const Type *Ty = T->getBaseElementTypeUnsafe();
7359   IsContained = false;
7360 
7361   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
7362   RD = RD ? RD->getDefinition() : nullptr;
7363   if (!RD || RD->isInvalidDecl())
7364     return nullptr;
7365 
7366   if (RD->isDynamicClass())
7367     return RD;
7368 
7369   // Check all the fields.  If any bases were dynamic, the class is dynamic.
7370   // It's impossible for a class to transitively contain itself by value, so
7371   // infinite recursion is impossible.
7372   for (auto *FD : RD->fields()) {
7373     bool SubContained;
7374     if (const CXXRecordDecl *ContainedRD =
7375             getContainedDynamicClass(FD->getType(), SubContained)) {
7376       IsContained = true;
7377       return ContainedRD;
7378     }
7379   }
7380 
7381   return nullptr;
7382 }
7383 
7384 /// If E is a sizeof expression, returns its argument expression,
7385 /// otherwise returns NULL.
7386 static const Expr *getSizeOfExprArg(const Expr *E) {
7387   if (const UnaryExprOrTypeTraitExpr *SizeOf =
7388       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
7389     if (SizeOf->getKind() == UETT_SizeOf && !SizeOf->isArgumentType())
7390       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
7391 
7392   return nullptr;
7393 }
7394 
7395 /// If E is a sizeof expression, returns its argument type.
7396 static QualType getSizeOfArgType(const Expr *E) {
7397   if (const UnaryExprOrTypeTraitExpr *SizeOf =
7398       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
7399     if (SizeOf->getKind() == UETT_SizeOf)
7400       return SizeOf->getTypeOfArgument();
7401 
7402   return QualType();
7403 }
7404 
7405 namespace {
7406 
7407 struct SearchNonTrivialToInitializeField
7408     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
7409   using Super =
7410       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
7411 
7412   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
7413 
7414   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
7415                      SourceLocation SL) {
7416     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
7417       asDerived().visitArray(PDIK, AT, SL);
7418       return;
7419     }
7420 
7421     Super::visitWithKind(PDIK, FT, SL);
7422   }
7423 
7424   void visitARCStrong(QualType FT, SourceLocation SL) {
7425     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
7426   }
7427   void visitARCWeak(QualType FT, SourceLocation SL) {
7428     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
7429   }
7430   void visitStruct(QualType FT, SourceLocation SL) {
7431     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
7432       visit(FD->getType(), FD->getLocation());
7433   }
7434   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
7435                   const ArrayType *AT, SourceLocation SL) {
7436     visit(getContext().getBaseElementType(AT), SL);
7437   }
7438   void visitTrivial(QualType FT, SourceLocation SL) {}
7439 
7440   static void diag(QualType RT, const Expr *E, Sema &S) {
7441     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
7442   }
7443 
7444   ASTContext &getContext() { return S.getASTContext(); }
7445 
7446   const Expr *E;
7447   Sema &S;
7448 };
7449 
7450 struct SearchNonTrivialToCopyField
7451     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
7452   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
7453 
7454   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
7455 
7456   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
7457                      SourceLocation SL) {
7458     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
7459       asDerived().visitArray(PCK, AT, SL);
7460       return;
7461     }
7462 
7463     Super::visitWithKind(PCK, FT, SL);
7464   }
7465 
7466   void visitARCStrong(QualType FT, SourceLocation SL) {
7467     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
7468   }
7469   void visitARCWeak(QualType FT, SourceLocation SL) {
7470     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
7471   }
7472   void visitStruct(QualType FT, SourceLocation SL) {
7473     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
7474       visit(FD->getType(), FD->getLocation());
7475   }
7476   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
7477                   SourceLocation SL) {
7478     visit(getContext().getBaseElementType(AT), SL);
7479   }
7480   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
7481                 SourceLocation SL) {}
7482   void visitTrivial(QualType FT, SourceLocation SL) {}
7483   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
7484 
7485   static void diag(QualType RT, const Expr *E, Sema &S) {
7486     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
7487   }
7488 
7489   ASTContext &getContext() { return S.getASTContext(); }
7490 
7491   const Expr *E;
7492   Sema &S;
7493 };
7494 
7495 }
7496 
7497 /// Check for dangerous or invalid arguments to memset().
7498 ///
7499 /// This issues warnings on known problematic, dangerous or unspecified
7500 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
7501 /// function calls.
7502 ///
7503 /// \param Call The call expression to diagnose.
7504 void Sema::CheckMemaccessArguments(const CallExpr *Call,
7505                                    unsigned BId,
7506                                    IdentifierInfo *FnName) {
7507   assert(BId != 0);
7508 
7509   // It is possible to have a non-standard definition of memset.  Validate
7510   // we have enough arguments, and if not, abort further checking.
7511   unsigned ExpectedNumArgs =
7512       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
7513   if (Call->getNumArgs() < ExpectedNumArgs)
7514     return;
7515 
7516   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
7517                       BId == Builtin::BIstrndup ? 1 : 2);
7518   unsigned LenArg =
7519       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
7520   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
7521 
7522   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
7523                                      Call->getLocStart(), Call->getRParenLoc()))
7524     return;
7525 
7526   // We have special checking when the length is a sizeof expression.
7527   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
7528   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
7529   llvm::FoldingSetNodeID SizeOfArgID;
7530 
7531   // Although widely used, 'bzero' is not a standard function. Be more strict
7532   // with the argument types before allowing diagnostics and only allow the
7533   // form bzero(ptr, sizeof(...)).
7534   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
7535   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
7536     return;
7537 
7538   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
7539     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
7540     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
7541 
7542     QualType DestTy = Dest->getType();
7543     QualType PointeeTy;
7544     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
7545       PointeeTy = DestPtrTy->getPointeeType();
7546 
7547       // Never warn about void type pointers. This can be used to suppress
7548       // false positives.
7549       if (PointeeTy->isVoidType())
7550         continue;
7551 
7552       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
7553       // actually comparing the expressions for equality. Because computing the
7554       // expression IDs can be expensive, we only do this if the diagnostic is
7555       // enabled.
7556       if (SizeOfArg &&
7557           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
7558                            SizeOfArg->getExprLoc())) {
7559         // We only compute IDs for expressions if the warning is enabled, and
7560         // cache the sizeof arg's ID.
7561         if (SizeOfArgID == llvm::FoldingSetNodeID())
7562           SizeOfArg->Profile(SizeOfArgID, Context, true);
7563         llvm::FoldingSetNodeID DestID;
7564         Dest->Profile(DestID, Context, true);
7565         if (DestID == SizeOfArgID) {
7566           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
7567           //       over sizeof(src) as well.
7568           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
7569           StringRef ReadableName = FnName->getName();
7570 
7571           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
7572             if (UnaryOp->getOpcode() == UO_AddrOf)
7573               ActionIdx = 1; // If its an address-of operator, just remove it.
7574           if (!PointeeTy->isIncompleteType() &&
7575               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
7576             ActionIdx = 2; // If the pointee's size is sizeof(char),
7577                            // suggest an explicit length.
7578 
7579           // If the function is defined as a builtin macro, do not show macro
7580           // expansion.
7581           SourceLocation SL = SizeOfArg->getExprLoc();
7582           SourceRange DSR = Dest->getSourceRange();
7583           SourceRange SSR = SizeOfArg->getSourceRange();
7584           SourceManager &SM = getSourceManager();
7585 
7586           if (SM.isMacroArgExpansion(SL)) {
7587             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
7588             SL = SM.getSpellingLoc(SL);
7589             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
7590                              SM.getSpellingLoc(DSR.getEnd()));
7591             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
7592                              SM.getSpellingLoc(SSR.getEnd()));
7593           }
7594 
7595           DiagRuntimeBehavior(SL, SizeOfArg,
7596                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
7597                                 << ReadableName
7598                                 << PointeeTy
7599                                 << DestTy
7600                                 << DSR
7601                                 << SSR);
7602           DiagRuntimeBehavior(SL, SizeOfArg,
7603                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
7604                                 << ActionIdx
7605                                 << SSR);
7606 
7607           break;
7608         }
7609       }
7610 
7611       // Also check for cases where the sizeof argument is the exact same
7612       // type as the memory argument, and where it points to a user-defined
7613       // record type.
7614       if (SizeOfArgTy != QualType()) {
7615         if (PointeeTy->isRecordType() &&
7616             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
7617           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
7618                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
7619                                 << FnName << SizeOfArgTy << ArgIdx
7620                                 << PointeeTy << Dest->getSourceRange()
7621                                 << LenExpr->getSourceRange());
7622           break;
7623         }
7624       }
7625     } else if (DestTy->isArrayType()) {
7626       PointeeTy = DestTy;
7627     }
7628 
7629     if (PointeeTy == QualType())
7630       continue;
7631 
7632     // Always complain about dynamic classes.
7633     bool IsContained;
7634     if (const CXXRecordDecl *ContainedRD =
7635             getContainedDynamicClass(PointeeTy, IsContained)) {
7636 
7637       unsigned OperationType = 0;
7638       // "overwritten" if we're warning about the destination for any call
7639       // but memcmp; otherwise a verb appropriate to the call.
7640       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
7641         if (BId == Builtin::BImemcpy)
7642           OperationType = 1;
7643         else if(BId == Builtin::BImemmove)
7644           OperationType = 2;
7645         else if (BId == Builtin::BImemcmp)
7646           OperationType = 3;
7647       }
7648 
7649       DiagRuntimeBehavior(
7650         Dest->getExprLoc(), Dest,
7651         PDiag(diag::warn_dyn_class_memaccess)
7652           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
7653           << FnName << IsContained << ContainedRD << OperationType
7654           << Call->getCallee()->getSourceRange());
7655     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
7656              BId != Builtin::BImemset)
7657       DiagRuntimeBehavior(
7658         Dest->getExprLoc(), Dest,
7659         PDiag(diag::warn_arc_object_memaccess)
7660           << ArgIdx << FnName << PointeeTy
7661           << Call->getCallee()->getSourceRange());
7662     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
7663       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
7664           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
7665         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
7666                             PDiag(diag::warn_cstruct_memaccess)
7667                                 << ArgIdx << FnName << PointeeTy << 0);
7668         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
7669       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
7670                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
7671         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
7672                             PDiag(diag::warn_cstruct_memaccess)
7673                                 << ArgIdx << FnName << PointeeTy << 1);
7674         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
7675       } else {
7676         continue;
7677       }
7678     } else
7679       continue;
7680 
7681     DiagRuntimeBehavior(
7682       Dest->getExprLoc(), Dest,
7683       PDiag(diag::note_bad_memaccess_silence)
7684         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
7685     break;
7686   }
7687 }
7688 
7689 // A little helper routine: ignore addition and subtraction of integer literals.
7690 // This intentionally does not ignore all integer constant expressions because
7691 // we don't want to remove sizeof().
7692 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
7693   Ex = Ex->IgnoreParenCasts();
7694 
7695   while (true) {
7696     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
7697     if (!BO || !BO->isAdditiveOp())
7698       break;
7699 
7700     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
7701     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
7702 
7703     if (isa<IntegerLiteral>(RHS))
7704       Ex = LHS;
7705     else if (isa<IntegerLiteral>(LHS))
7706       Ex = RHS;
7707     else
7708       break;
7709   }
7710 
7711   return Ex;
7712 }
7713 
7714 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
7715                                                       ASTContext &Context) {
7716   // Only handle constant-sized or VLAs, but not flexible members.
7717   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
7718     // Only issue the FIXIT for arrays of size > 1.
7719     if (CAT->getSize().getSExtValue() <= 1)
7720       return false;
7721   } else if (!Ty->isVariableArrayType()) {
7722     return false;
7723   }
7724   return true;
7725 }
7726 
7727 // Warn if the user has made the 'size' argument to strlcpy or strlcat
7728 // be the size of the source, instead of the destination.
7729 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
7730                                     IdentifierInfo *FnName) {
7731 
7732   // Don't crash if the user has the wrong number of arguments
7733   unsigned NumArgs = Call->getNumArgs();
7734   if ((NumArgs != 3) && (NumArgs != 4))
7735     return;
7736 
7737   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
7738   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
7739   const Expr *CompareWithSrc = nullptr;
7740 
7741   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
7742                                      Call->getLocStart(), Call->getRParenLoc()))
7743     return;
7744 
7745   // Look for 'strlcpy(dst, x, sizeof(x))'
7746   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
7747     CompareWithSrc = Ex;
7748   else {
7749     // Look for 'strlcpy(dst, x, strlen(x))'
7750     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
7751       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
7752           SizeCall->getNumArgs() == 1)
7753         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
7754     }
7755   }
7756 
7757   if (!CompareWithSrc)
7758     return;
7759 
7760   // Determine if the argument to sizeof/strlen is equal to the source
7761   // argument.  In principle there's all kinds of things you could do
7762   // here, for instance creating an == expression and evaluating it with
7763   // EvaluateAsBooleanCondition, but this uses a more direct technique:
7764   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
7765   if (!SrcArgDRE)
7766     return;
7767 
7768   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
7769   if (!CompareWithSrcDRE ||
7770       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
7771     return;
7772 
7773   const Expr *OriginalSizeArg = Call->getArg(2);
7774   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
7775     << OriginalSizeArg->getSourceRange() << FnName;
7776 
7777   // Output a FIXIT hint if the destination is an array (rather than a
7778   // pointer to an array).  This could be enhanced to handle some
7779   // pointers if we know the actual size, like if DstArg is 'array+2'
7780   // we could say 'sizeof(array)-2'.
7781   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
7782   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
7783     return;
7784 
7785   SmallString<128> sizeString;
7786   llvm::raw_svector_ostream OS(sizeString);
7787   OS << "sizeof(";
7788   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
7789   OS << ")";
7790 
7791   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
7792     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
7793                                     OS.str());
7794 }
7795 
7796 /// Check if two expressions refer to the same declaration.
7797 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
7798   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
7799     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
7800       return D1->getDecl() == D2->getDecl();
7801   return false;
7802 }
7803 
7804 static const Expr *getStrlenExprArg(const Expr *E) {
7805   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
7806     const FunctionDecl *FD = CE->getDirectCallee();
7807     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
7808       return nullptr;
7809     return CE->getArg(0)->IgnoreParenCasts();
7810   }
7811   return nullptr;
7812 }
7813 
7814 // Warn on anti-patterns as the 'size' argument to strncat.
7815 // The correct size argument should look like following:
7816 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
7817 void Sema::CheckStrncatArguments(const CallExpr *CE,
7818                                  IdentifierInfo *FnName) {
7819   // Don't crash if the user has the wrong number of arguments.
7820   if (CE->getNumArgs() < 3)
7821     return;
7822   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
7823   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
7824   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
7825 
7826   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
7827                                      CE->getRParenLoc()))
7828     return;
7829 
7830   // Identify common expressions, which are wrongly used as the size argument
7831   // to strncat and may lead to buffer overflows.
7832   unsigned PatternType = 0;
7833   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
7834     // - sizeof(dst)
7835     if (referToTheSameDecl(SizeOfArg, DstArg))
7836       PatternType = 1;
7837     // - sizeof(src)
7838     else if (referToTheSameDecl(SizeOfArg, SrcArg))
7839       PatternType = 2;
7840   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
7841     if (BE->getOpcode() == BO_Sub) {
7842       const Expr *L = BE->getLHS()->IgnoreParenCasts();
7843       const Expr *R = BE->getRHS()->IgnoreParenCasts();
7844       // - sizeof(dst) - strlen(dst)
7845       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
7846           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
7847         PatternType = 1;
7848       // - sizeof(src) - (anything)
7849       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
7850         PatternType = 2;
7851     }
7852   }
7853 
7854   if (PatternType == 0)
7855     return;
7856 
7857   // Generate the diagnostic.
7858   SourceLocation SL = LenArg->getLocStart();
7859   SourceRange SR = LenArg->getSourceRange();
7860   SourceManager &SM = getSourceManager();
7861 
7862   // If the function is defined as a builtin macro, do not show macro expansion.
7863   if (SM.isMacroArgExpansion(SL)) {
7864     SL = SM.getSpellingLoc(SL);
7865     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
7866                      SM.getSpellingLoc(SR.getEnd()));
7867   }
7868 
7869   // Check if the destination is an array (rather than a pointer to an array).
7870   QualType DstTy = DstArg->getType();
7871   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
7872                                                                     Context);
7873   if (!isKnownSizeArray) {
7874     if (PatternType == 1)
7875       Diag(SL, diag::warn_strncat_wrong_size) << SR;
7876     else
7877       Diag(SL, diag::warn_strncat_src_size) << SR;
7878     return;
7879   }
7880 
7881   if (PatternType == 1)
7882     Diag(SL, diag::warn_strncat_large_size) << SR;
7883   else
7884     Diag(SL, diag::warn_strncat_src_size) << SR;
7885 
7886   SmallString<128> sizeString;
7887   llvm::raw_svector_ostream OS(sizeString);
7888   OS << "sizeof(";
7889   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
7890   OS << ") - ";
7891   OS << "strlen(";
7892   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
7893   OS << ") - 1";
7894 
7895   Diag(SL, diag::note_strncat_wrong_size)
7896     << FixItHint::CreateReplacement(SR, OS.str());
7897 }
7898 
7899 //===--- CHECK: Return Address of Stack Variable --------------------------===//
7900 
7901 static const Expr *EvalVal(const Expr *E,
7902                            SmallVectorImpl<const DeclRefExpr *> &refVars,
7903                            const Decl *ParentDecl);
7904 static const Expr *EvalAddr(const Expr *E,
7905                             SmallVectorImpl<const DeclRefExpr *> &refVars,
7906                             const Decl *ParentDecl);
7907 
7908 /// CheckReturnStackAddr - Check if a return statement returns the address
7909 ///   of a stack variable.
7910 static void
7911 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
7912                      SourceLocation ReturnLoc) {
7913   const Expr *stackE = nullptr;
7914   SmallVector<const DeclRefExpr *, 8> refVars;
7915 
7916   // Perform checking for returned stack addresses, local blocks,
7917   // label addresses or references to temporaries.
7918   if (lhsType->isPointerType() ||
7919       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
7920     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
7921   } else if (lhsType->isReferenceType()) {
7922     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
7923   }
7924 
7925   if (!stackE)
7926     return; // Nothing suspicious was found.
7927 
7928   // Parameters are initialized in the calling scope, so taking the address
7929   // of a parameter reference doesn't need a warning.
7930   for (auto *DRE : refVars)
7931     if (isa<ParmVarDecl>(DRE->getDecl()))
7932       return;
7933 
7934   SourceLocation diagLoc;
7935   SourceRange diagRange;
7936   if (refVars.empty()) {
7937     diagLoc = stackE->getLocStart();
7938     diagRange = stackE->getSourceRange();
7939   } else {
7940     // We followed through a reference variable. 'stackE' contains the
7941     // problematic expression but we will warn at the return statement pointing
7942     // at the reference variable. We will later display the "trail" of
7943     // reference variables using notes.
7944     diagLoc = refVars[0]->getLocStart();
7945     diagRange = refVars[0]->getSourceRange();
7946   }
7947 
7948   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) {
7949     // address of local var
7950     S.Diag(diagLoc, diag::warn_ret_stack_addr_ref) << lhsType->isReferenceType()
7951      << DR->getDecl()->getDeclName() << diagRange;
7952   } else if (isa<BlockExpr>(stackE)) { // local block.
7953     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
7954   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
7955     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
7956   } else { // local temporary.
7957     // If there is an LValue->RValue conversion, then the value of the
7958     // reference type is used, not the reference.
7959     if (auto *ICE = dyn_cast<ImplicitCastExpr>(RetValExp)) {
7960       if (ICE->getCastKind() == CK_LValueToRValue) {
7961         return;
7962       }
7963     }
7964     S.Diag(diagLoc, diag::warn_ret_local_temp_addr_ref)
7965      << lhsType->isReferenceType() << diagRange;
7966   }
7967 
7968   // Display the "trail" of reference variables that we followed until we
7969   // found the problematic expression using notes.
7970   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
7971     const VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
7972     // If this var binds to another reference var, show the range of the next
7973     // var, otherwise the var binds to the problematic expression, in which case
7974     // show the range of the expression.
7975     SourceRange range = (i < e - 1) ? refVars[i + 1]->getSourceRange()
7976                                     : stackE->getSourceRange();
7977     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
7978         << VD->getDeclName() << range;
7979   }
7980 }
7981 
7982 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
7983 ///  check if the expression in a return statement evaluates to an address
7984 ///  to a location on the stack, a local block, an address of a label, or a
7985 ///  reference to local temporary. The recursion is used to traverse the
7986 ///  AST of the return expression, with recursion backtracking when we
7987 ///  encounter a subexpression that (1) clearly does not lead to one of the
7988 ///  above problematic expressions (2) is something we cannot determine leads to
7989 ///  a problematic expression based on such local checking.
7990 ///
7991 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
7992 ///  the expression that they point to. Such variables are added to the
7993 ///  'refVars' vector so that we know what the reference variable "trail" was.
7994 ///
7995 ///  EvalAddr processes expressions that are pointers that are used as
7996 ///  references (and not L-values).  EvalVal handles all other values.
7997 ///  At the base case of the recursion is a check for the above problematic
7998 ///  expressions.
7999 ///
8000 ///  This implementation handles:
8001 ///
8002 ///   * pointer-to-pointer casts
8003 ///   * implicit conversions from array references to pointers
8004 ///   * taking the address of fields
8005 ///   * arbitrary interplay between "&" and "*" operators
8006 ///   * pointer arithmetic from an address of a stack variable
8007 ///   * taking the address of an array element where the array is on the stack
8008 static const Expr *EvalAddr(const Expr *E,
8009                             SmallVectorImpl<const DeclRefExpr *> &refVars,
8010                             const Decl *ParentDecl) {
8011   if (E->isTypeDependent())
8012     return nullptr;
8013 
8014   // We should only be called for evaluating pointer expressions.
8015   assert((E->getType()->isAnyPointerType() ||
8016           E->getType()->isBlockPointerType() ||
8017           E->getType()->isObjCQualifiedIdType()) &&
8018          "EvalAddr only works on pointers");
8019 
8020   E = E->IgnoreParens();
8021 
8022   // Our "symbolic interpreter" is just a dispatch off the currently
8023   // viewed AST node.  We then recursively traverse the AST by calling
8024   // EvalAddr and EvalVal appropriately.
8025   switch (E->getStmtClass()) {
8026   case Stmt::DeclRefExprClass: {
8027     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8028 
8029     // If we leave the immediate function, the lifetime isn't about to end.
8030     if (DR->refersToEnclosingVariableOrCapture())
8031       return nullptr;
8032 
8033     if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
8034       // If this is a reference variable, follow through to the expression that
8035       // it points to.
8036       if (V->hasLocalStorage() &&
8037           V->getType()->isReferenceType() && V->hasInit()) {
8038         // Add the reference variable to the "trail".
8039         refVars.push_back(DR);
8040         return EvalAddr(V->getInit(), refVars, ParentDecl);
8041       }
8042 
8043     return nullptr;
8044   }
8045 
8046   case Stmt::UnaryOperatorClass: {
8047     // The only unary operator that make sense to handle here
8048     // is AddrOf.  All others don't make sense as pointers.
8049     const UnaryOperator *U = cast<UnaryOperator>(E);
8050 
8051     if (U->getOpcode() == UO_AddrOf)
8052       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
8053     return nullptr;
8054   }
8055 
8056   case Stmt::BinaryOperatorClass: {
8057     // Handle pointer arithmetic.  All other binary operators are not valid
8058     // in this context.
8059     const BinaryOperator *B = cast<BinaryOperator>(E);
8060     BinaryOperatorKind op = B->getOpcode();
8061 
8062     if (op != BO_Add && op != BO_Sub)
8063       return nullptr;
8064 
8065     const Expr *Base = B->getLHS();
8066 
8067     // Determine which argument is the real pointer base.  It could be
8068     // the RHS argument instead of the LHS.
8069     if (!Base->getType()->isPointerType())
8070       Base = B->getRHS();
8071 
8072     assert(Base->getType()->isPointerType());
8073     return EvalAddr(Base, refVars, ParentDecl);
8074   }
8075 
8076   // For conditional operators we need to see if either the LHS or RHS are
8077   // valid DeclRefExpr*s.  If one of them is valid, we return it.
8078   case Stmt::ConditionalOperatorClass: {
8079     const ConditionalOperator *C = cast<ConditionalOperator>(E);
8080 
8081     // Handle the GNU extension for missing LHS.
8082     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
8083     if (const Expr *LHSExpr = C->getLHS()) {
8084       // In C++, we can have a throw-expression, which has 'void' type.
8085       if (!LHSExpr->getType()->isVoidType())
8086         if (const Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
8087           return LHS;
8088     }
8089 
8090     // In C++, we can have a throw-expression, which has 'void' type.
8091     if (C->getRHS()->getType()->isVoidType())
8092       return nullptr;
8093 
8094     return EvalAddr(C->getRHS(), refVars, ParentDecl);
8095   }
8096 
8097   case Stmt::BlockExprClass:
8098     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
8099       return E; // local block.
8100     return nullptr;
8101 
8102   case Stmt::AddrLabelExprClass:
8103     return E; // address of label.
8104 
8105   case Stmt::ExprWithCleanupsClass:
8106     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
8107                     ParentDecl);
8108 
8109   // For casts, we need to handle conversions from arrays to
8110   // pointer values, and pointer-to-pointer conversions.
8111   case Stmt::ImplicitCastExprClass:
8112   case Stmt::CStyleCastExprClass:
8113   case Stmt::CXXFunctionalCastExprClass:
8114   case Stmt::ObjCBridgedCastExprClass:
8115   case Stmt::CXXStaticCastExprClass:
8116   case Stmt::CXXDynamicCastExprClass:
8117   case Stmt::CXXConstCastExprClass:
8118   case Stmt::CXXReinterpretCastExprClass: {
8119     const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
8120     switch (cast<CastExpr>(E)->getCastKind()) {
8121     case CK_LValueToRValue:
8122     case CK_NoOp:
8123     case CK_BaseToDerived:
8124     case CK_DerivedToBase:
8125     case CK_UncheckedDerivedToBase:
8126     case CK_Dynamic:
8127     case CK_CPointerToObjCPointerCast:
8128     case CK_BlockPointerToObjCPointerCast:
8129     case CK_AnyPointerToBlockPointerCast:
8130       return EvalAddr(SubExpr, refVars, ParentDecl);
8131 
8132     case CK_ArrayToPointerDecay:
8133       return EvalVal(SubExpr, refVars, ParentDecl);
8134 
8135     case CK_BitCast:
8136       if (SubExpr->getType()->isAnyPointerType() ||
8137           SubExpr->getType()->isBlockPointerType() ||
8138           SubExpr->getType()->isObjCQualifiedIdType())
8139         return EvalAddr(SubExpr, refVars, ParentDecl);
8140       else
8141         return nullptr;
8142 
8143     default:
8144       return nullptr;
8145     }
8146   }
8147 
8148   case Stmt::MaterializeTemporaryExprClass:
8149     if (const Expr *Result =
8150             EvalAddr(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
8151                      refVars, ParentDecl))
8152       return Result;
8153     return E;
8154 
8155   // Everything else: we simply don't reason about them.
8156   default:
8157     return nullptr;
8158   }
8159 }
8160 
8161 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
8162 ///   See the comments for EvalAddr for more details.
8163 static const Expr *EvalVal(const Expr *E,
8164                            SmallVectorImpl<const DeclRefExpr *> &refVars,
8165                            const Decl *ParentDecl) {
8166   do {
8167     // We should only be called for evaluating non-pointer expressions, or
8168     // expressions with a pointer type that are not used as references but
8169     // instead
8170     // are l-values (e.g., DeclRefExpr with a pointer type).
8171 
8172     // Our "symbolic interpreter" is just a dispatch off the currently
8173     // viewed AST node.  We then recursively traverse the AST by calling
8174     // EvalAddr and EvalVal appropriately.
8175 
8176     E = E->IgnoreParens();
8177     switch (E->getStmtClass()) {
8178     case Stmt::ImplicitCastExprClass: {
8179       const ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
8180       if (IE->getValueKind() == VK_LValue) {
8181         E = IE->getSubExpr();
8182         continue;
8183       }
8184       return nullptr;
8185     }
8186 
8187     case Stmt::ExprWithCleanupsClass:
8188       return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
8189                      ParentDecl);
8190 
8191     case Stmt::DeclRefExprClass: {
8192       // When we hit a DeclRefExpr we are looking at code that refers to a
8193       // variable's name. If it's not a reference variable we check if it has
8194       // local storage within the function, and if so, return the expression.
8195       const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8196 
8197       // If we leave the immediate function, the lifetime isn't about to end.
8198       if (DR->refersToEnclosingVariableOrCapture())
8199         return nullptr;
8200 
8201       if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
8202         // Check if it refers to itself, e.g. "int& i = i;".
8203         if (V == ParentDecl)
8204           return DR;
8205 
8206         if (V->hasLocalStorage()) {
8207           if (!V->getType()->isReferenceType())
8208             return DR;
8209 
8210           // Reference variable, follow through to the expression that
8211           // it points to.
8212           if (V->hasInit()) {
8213             // Add the reference variable to the "trail".
8214             refVars.push_back(DR);
8215             return EvalVal(V->getInit(), refVars, V);
8216           }
8217         }
8218       }
8219 
8220       return nullptr;
8221     }
8222 
8223     case Stmt::UnaryOperatorClass: {
8224       // The only unary operator that make sense to handle here
8225       // is Deref.  All others don't resolve to a "name."  This includes
8226       // handling all sorts of rvalues passed to a unary operator.
8227       const UnaryOperator *U = cast<UnaryOperator>(E);
8228 
8229       if (U->getOpcode() == UO_Deref)
8230         return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
8231 
8232       return nullptr;
8233     }
8234 
8235     case Stmt::ArraySubscriptExprClass: {
8236       // Array subscripts are potential references to data on the stack.  We
8237       // retrieve the DeclRefExpr* for the array variable if it indeed
8238       // has local storage.
8239       const auto *ASE = cast<ArraySubscriptExpr>(E);
8240       if (ASE->isTypeDependent())
8241         return nullptr;
8242       return EvalAddr(ASE->getBase(), refVars, ParentDecl);
8243     }
8244 
8245     case Stmt::OMPArraySectionExprClass: {
8246       return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
8247                       ParentDecl);
8248     }
8249 
8250     case Stmt::ConditionalOperatorClass: {
8251       // For conditional operators we need to see if either the LHS or RHS are
8252       // non-NULL Expr's.  If one is non-NULL, we return it.
8253       const ConditionalOperator *C = cast<ConditionalOperator>(E);
8254 
8255       // Handle the GNU extension for missing LHS.
8256       if (const Expr *LHSExpr = C->getLHS()) {
8257         // In C++, we can have a throw-expression, which has 'void' type.
8258         if (!LHSExpr->getType()->isVoidType())
8259           if (const Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
8260             return LHS;
8261       }
8262 
8263       // In C++, we can have a throw-expression, which has 'void' type.
8264       if (C->getRHS()->getType()->isVoidType())
8265         return nullptr;
8266 
8267       return EvalVal(C->getRHS(), refVars, ParentDecl);
8268     }
8269 
8270     // Accesses to members are potential references to data on the stack.
8271     case Stmt::MemberExprClass: {
8272       const MemberExpr *M = cast<MemberExpr>(E);
8273 
8274       // Check for indirect access.  We only want direct field accesses.
8275       if (M->isArrow())
8276         return nullptr;
8277 
8278       // Check whether the member type is itself a reference, in which case
8279       // we're not going to refer to the member, but to what the member refers
8280       // to.
8281       if (M->getMemberDecl()->getType()->isReferenceType())
8282         return nullptr;
8283 
8284       return EvalVal(M->getBase(), refVars, ParentDecl);
8285     }
8286 
8287     case Stmt::MaterializeTemporaryExprClass:
8288       if (const Expr *Result =
8289               EvalVal(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
8290                       refVars, ParentDecl))
8291         return Result;
8292       return E;
8293 
8294     default:
8295       // Check that we don't return or take the address of a reference to a
8296       // temporary. This is only useful in C++.
8297       if (!E->isTypeDependent() && E->isRValue())
8298         return E;
8299 
8300       // Everything else: we simply don't reason about them.
8301       return nullptr;
8302     }
8303   } while (true);
8304 }
8305 
8306 void
8307 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
8308                          SourceLocation ReturnLoc,
8309                          bool isObjCMethod,
8310                          const AttrVec *Attrs,
8311                          const FunctionDecl *FD) {
8312   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
8313 
8314   // Check if the return value is null but should not be.
8315   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
8316        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
8317       CheckNonNullExpr(*this, RetValExp))
8318     Diag(ReturnLoc, diag::warn_null_ret)
8319       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
8320 
8321   // C++11 [basic.stc.dynamic.allocation]p4:
8322   //   If an allocation function declared with a non-throwing
8323   //   exception-specification fails to allocate storage, it shall return
8324   //   a null pointer. Any other allocation function that fails to allocate
8325   //   storage shall indicate failure only by throwing an exception [...]
8326   if (FD) {
8327     OverloadedOperatorKind Op = FD->getOverloadedOperator();
8328     if (Op == OO_New || Op == OO_Array_New) {
8329       const FunctionProtoType *Proto
8330         = FD->getType()->castAs<FunctionProtoType>();
8331       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
8332           CheckNonNullExpr(*this, RetValExp))
8333         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
8334           << FD << getLangOpts().CPlusPlus11;
8335     }
8336   }
8337 }
8338 
8339 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
8340 
8341 /// Check for comparisons of floating point operands using != and ==.
8342 /// Issue a warning if these are no self-comparisons, as they are not likely
8343 /// to do what the programmer intended.
8344 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
8345   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
8346   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
8347 
8348   // Special case: check for x == x (which is OK).
8349   // Do not emit warnings for such cases.
8350   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
8351     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
8352       if (DRL->getDecl() == DRR->getDecl())
8353         return;
8354 
8355   // Special case: check for comparisons against literals that can be exactly
8356   //  represented by APFloat.  In such cases, do not emit a warning.  This
8357   //  is a heuristic: often comparison against such literals are used to
8358   //  detect if a value in a variable has not changed.  This clearly can
8359   //  lead to false negatives.
8360   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
8361     if (FLL->isExact())
8362       return;
8363   } else
8364     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
8365       if (FLR->isExact())
8366         return;
8367 
8368   // Check for comparisons with builtin types.
8369   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
8370     if (CL->getBuiltinCallee())
8371       return;
8372 
8373   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
8374     if (CR->getBuiltinCallee())
8375       return;
8376 
8377   // Emit the diagnostic.
8378   Diag(Loc, diag::warn_floatingpoint_eq)
8379     << LHS->getSourceRange() << RHS->getSourceRange();
8380 }
8381 
8382 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
8383 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
8384 
8385 namespace {
8386 
8387 /// Structure recording the 'active' range of an integer-valued
8388 /// expression.
8389 struct IntRange {
8390   /// The number of bits active in the int.
8391   unsigned Width;
8392 
8393   /// True if the int is known not to have negative values.
8394   bool NonNegative;
8395 
8396   IntRange(unsigned Width, bool NonNegative)
8397       : Width(Width), NonNegative(NonNegative) {}
8398 
8399   /// Returns the range of the bool type.
8400   static IntRange forBoolType() {
8401     return IntRange(1, true);
8402   }
8403 
8404   /// Returns the range of an opaque value of the given integral type.
8405   static IntRange forValueOfType(ASTContext &C, QualType T) {
8406     return forValueOfCanonicalType(C,
8407                           T->getCanonicalTypeInternal().getTypePtr());
8408   }
8409 
8410   /// Returns the range of an opaque value of a canonical integral type.
8411   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
8412     assert(T->isCanonicalUnqualified());
8413 
8414     if (const VectorType *VT = dyn_cast<VectorType>(T))
8415       T = VT->getElementType().getTypePtr();
8416     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
8417       T = CT->getElementType().getTypePtr();
8418     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
8419       T = AT->getValueType().getTypePtr();
8420 
8421     if (!C.getLangOpts().CPlusPlus) {
8422       // For enum types in C code, use the underlying datatype.
8423       if (const EnumType *ET = dyn_cast<EnumType>(T))
8424         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
8425     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
8426       // For enum types in C++, use the known bit width of the enumerators.
8427       EnumDecl *Enum = ET->getDecl();
8428       // In C++11, enums can have a fixed underlying type. Use this type to
8429       // compute the range.
8430       if (Enum->isFixed()) {
8431         return IntRange(C.getIntWidth(QualType(T, 0)),
8432                         !ET->isSignedIntegerOrEnumerationType());
8433       }
8434 
8435       unsigned NumPositive = Enum->getNumPositiveBits();
8436       unsigned NumNegative = Enum->getNumNegativeBits();
8437 
8438       if (NumNegative == 0)
8439         return IntRange(NumPositive, true/*NonNegative*/);
8440       else
8441         return IntRange(std::max(NumPositive + 1, NumNegative),
8442                         false/*NonNegative*/);
8443     }
8444 
8445     const BuiltinType *BT = cast<BuiltinType>(T);
8446     assert(BT->isInteger());
8447 
8448     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
8449   }
8450 
8451   /// Returns the "target" range of a canonical integral type, i.e.
8452   /// the range of values expressible in the type.
8453   ///
8454   /// This matches forValueOfCanonicalType except that enums have the
8455   /// full range of their type, not the range of their enumerators.
8456   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
8457     assert(T->isCanonicalUnqualified());
8458 
8459     if (const VectorType *VT = dyn_cast<VectorType>(T))
8460       T = VT->getElementType().getTypePtr();
8461     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
8462       T = CT->getElementType().getTypePtr();
8463     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
8464       T = AT->getValueType().getTypePtr();
8465     if (const EnumType *ET = dyn_cast<EnumType>(T))
8466       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
8467 
8468     const BuiltinType *BT = cast<BuiltinType>(T);
8469     assert(BT->isInteger());
8470 
8471     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
8472   }
8473 
8474   /// Returns the supremum of two ranges: i.e. their conservative merge.
8475   static IntRange join(IntRange L, IntRange R) {
8476     return IntRange(std::max(L.Width, R.Width),
8477                     L.NonNegative && R.NonNegative);
8478   }
8479 
8480   /// Returns the infinum of two ranges: i.e. their aggressive merge.
8481   static IntRange meet(IntRange L, IntRange R) {
8482     return IntRange(std::min(L.Width, R.Width),
8483                     L.NonNegative || R.NonNegative);
8484   }
8485 };
8486 
8487 } // namespace
8488 
8489 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
8490                               unsigned MaxWidth) {
8491   if (value.isSigned() && value.isNegative())
8492     return IntRange(value.getMinSignedBits(), false);
8493 
8494   if (value.getBitWidth() > MaxWidth)
8495     value = value.trunc(MaxWidth);
8496 
8497   // isNonNegative() just checks the sign bit without considering
8498   // signedness.
8499   return IntRange(value.getActiveBits(), true);
8500 }
8501 
8502 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
8503                               unsigned MaxWidth) {
8504   if (result.isInt())
8505     return GetValueRange(C, result.getInt(), MaxWidth);
8506 
8507   if (result.isVector()) {
8508     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
8509     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
8510       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
8511       R = IntRange::join(R, El);
8512     }
8513     return R;
8514   }
8515 
8516   if (result.isComplexInt()) {
8517     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
8518     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
8519     return IntRange::join(R, I);
8520   }
8521 
8522   // This can happen with lossless casts to intptr_t of "based" lvalues.
8523   // Assume it might use arbitrary bits.
8524   // FIXME: The only reason we need to pass the type in here is to get
8525   // the sign right on this one case.  It would be nice if APValue
8526   // preserved this.
8527   assert(result.isLValue() || result.isAddrLabelDiff());
8528   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
8529 }
8530 
8531 static QualType GetExprType(const Expr *E) {
8532   QualType Ty = E->getType();
8533   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
8534     Ty = AtomicRHS->getValueType();
8535   return Ty;
8536 }
8537 
8538 /// Pseudo-evaluate the given integer expression, estimating the
8539 /// range of values it might take.
8540 ///
8541 /// \param MaxWidth - the width to which the value will be truncated
8542 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) {
8543   E = E->IgnoreParens();
8544 
8545   // Try a full evaluation first.
8546   Expr::EvalResult result;
8547   if (E->EvaluateAsRValue(result, C))
8548     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
8549 
8550   // I think we only want to look through implicit casts here; if the
8551   // user has an explicit widening cast, we should treat the value as
8552   // being of the new, wider type.
8553   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
8554     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
8555       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
8556 
8557     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
8558 
8559     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
8560                          CE->getCastKind() == CK_BooleanToSignedIntegral;
8561 
8562     // Assume that non-integer casts can span the full range of the type.
8563     if (!isIntegerCast)
8564       return OutputTypeRange;
8565 
8566     IntRange SubRange
8567       = GetExprRange(C, CE->getSubExpr(),
8568                      std::min(MaxWidth, OutputTypeRange.Width));
8569 
8570     // Bail out if the subexpr's range is as wide as the cast type.
8571     if (SubRange.Width >= OutputTypeRange.Width)
8572       return OutputTypeRange;
8573 
8574     // Otherwise, we take the smaller width, and we're non-negative if
8575     // either the output type or the subexpr is.
8576     return IntRange(SubRange.Width,
8577                     SubRange.NonNegative || OutputTypeRange.NonNegative);
8578   }
8579 
8580   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
8581     // If we can fold the condition, just take that operand.
8582     bool CondResult;
8583     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
8584       return GetExprRange(C, CondResult ? CO->getTrueExpr()
8585                                         : CO->getFalseExpr(),
8586                           MaxWidth);
8587 
8588     // Otherwise, conservatively merge.
8589     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
8590     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
8591     return IntRange::join(L, R);
8592   }
8593 
8594   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
8595     switch (BO->getOpcode()) {
8596     case BO_Cmp:
8597       llvm_unreachable("builtin <=> should have class type");
8598 
8599     // Boolean-valued operations are single-bit and positive.
8600     case BO_LAnd:
8601     case BO_LOr:
8602     case BO_LT:
8603     case BO_GT:
8604     case BO_LE:
8605     case BO_GE:
8606     case BO_EQ:
8607     case BO_NE:
8608       return IntRange::forBoolType();
8609 
8610     // The type of the assignments is the type of the LHS, so the RHS
8611     // is not necessarily the same type.
8612     case BO_MulAssign:
8613     case BO_DivAssign:
8614     case BO_RemAssign:
8615     case BO_AddAssign:
8616     case BO_SubAssign:
8617     case BO_XorAssign:
8618     case BO_OrAssign:
8619       // TODO: bitfields?
8620       return IntRange::forValueOfType(C, GetExprType(E));
8621 
8622     // Simple assignments just pass through the RHS, which will have
8623     // been coerced to the LHS type.
8624     case BO_Assign:
8625       // TODO: bitfields?
8626       return GetExprRange(C, BO->getRHS(), MaxWidth);
8627 
8628     // Operations with opaque sources are black-listed.
8629     case BO_PtrMemD:
8630     case BO_PtrMemI:
8631       return IntRange::forValueOfType(C, GetExprType(E));
8632 
8633     // Bitwise-and uses the *infinum* of the two source ranges.
8634     case BO_And:
8635     case BO_AndAssign:
8636       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
8637                             GetExprRange(C, BO->getRHS(), MaxWidth));
8638 
8639     // Left shift gets black-listed based on a judgement call.
8640     case BO_Shl:
8641       // ...except that we want to treat '1 << (blah)' as logically
8642       // positive.  It's an important idiom.
8643       if (IntegerLiteral *I
8644             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
8645         if (I->getValue() == 1) {
8646           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
8647           return IntRange(R.Width, /*NonNegative*/ true);
8648         }
8649       }
8650       LLVM_FALLTHROUGH;
8651 
8652     case BO_ShlAssign:
8653       return IntRange::forValueOfType(C, GetExprType(E));
8654 
8655     // Right shift by a constant can narrow its left argument.
8656     case BO_Shr:
8657     case BO_ShrAssign: {
8658       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
8659 
8660       // If the shift amount is a positive constant, drop the width by
8661       // that much.
8662       llvm::APSInt shift;
8663       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
8664           shift.isNonNegative()) {
8665         unsigned zext = shift.getZExtValue();
8666         if (zext >= L.Width)
8667           L.Width = (L.NonNegative ? 0 : 1);
8668         else
8669           L.Width -= zext;
8670       }
8671 
8672       return L;
8673     }
8674 
8675     // Comma acts as its right operand.
8676     case BO_Comma:
8677       return GetExprRange(C, BO->getRHS(), MaxWidth);
8678 
8679     // Black-list pointer subtractions.
8680     case BO_Sub:
8681       if (BO->getLHS()->getType()->isPointerType())
8682         return IntRange::forValueOfType(C, GetExprType(E));
8683       break;
8684 
8685     // The width of a division result is mostly determined by the size
8686     // of the LHS.
8687     case BO_Div: {
8688       // Don't 'pre-truncate' the operands.
8689       unsigned opWidth = C.getIntWidth(GetExprType(E));
8690       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
8691 
8692       // If the divisor is constant, use that.
8693       llvm::APSInt divisor;
8694       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
8695         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
8696         if (log2 >= L.Width)
8697           L.Width = (L.NonNegative ? 0 : 1);
8698         else
8699           L.Width = std::min(L.Width - log2, MaxWidth);
8700         return L;
8701       }
8702 
8703       // Otherwise, just use the LHS's width.
8704       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
8705       return IntRange(L.Width, L.NonNegative && R.NonNegative);
8706     }
8707 
8708     // The result of a remainder can't be larger than the result of
8709     // either side.
8710     case BO_Rem: {
8711       // Don't 'pre-truncate' the operands.
8712       unsigned opWidth = C.getIntWidth(GetExprType(E));
8713       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
8714       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
8715 
8716       IntRange meet = IntRange::meet(L, R);
8717       meet.Width = std::min(meet.Width, MaxWidth);
8718       return meet;
8719     }
8720 
8721     // The default behavior is okay for these.
8722     case BO_Mul:
8723     case BO_Add:
8724     case BO_Xor:
8725     case BO_Or:
8726       break;
8727     }
8728 
8729     // The default case is to treat the operation as if it were closed
8730     // on the narrowest type that encompasses both operands.
8731     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
8732     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
8733     return IntRange::join(L, R);
8734   }
8735 
8736   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
8737     switch (UO->getOpcode()) {
8738     // Boolean-valued operations are white-listed.
8739     case UO_LNot:
8740       return IntRange::forBoolType();
8741 
8742     // Operations with opaque sources are black-listed.
8743     case UO_Deref:
8744     case UO_AddrOf: // should be impossible
8745       return IntRange::forValueOfType(C, GetExprType(E));
8746 
8747     default:
8748       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
8749     }
8750   }
8751 
8752   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
8753     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
8754 
8755   if (const auto *BitField = E->getSourceBitField())
8756     return IntRange(BitField->getBitWidthValue(C),
8757                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
8758 
8759   return IntRange::forValueOfType(C, GetExprType(E));
8760 }
8761 
8762 static IntRange GetExprRange(ASTContext &C, const Expr *E) {
8763   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
8764 }
8765 
8766 /// Checks whether the given value, which currently has the given
8767 /// source semantics, has the same value when coerced through the
8768 /// target semantics.
8769 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
8770                                  const llvm::fltSemantics &Src,
8771                                  const llvm::fltSemantics &Tgt) {
8772   llvm::APFloat truncated = value;
8773 
8774   bool ignored;
8775   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
8776   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
8777 
8778   return truncated.bitwiseIsEqual(value);
8779 }
8780 
8781 /// Checks whether the given value, which currently has the given
8782 /// source semantics, has the same value when coerced through the
8783 /// target semantics.
8784 ///
8785 /// The value might be a vector of floats (or a complex number).
8786 static bool IsSameFloatAfterCast(const APValue &value,
8787                                  const llvm::fltSemantics &Src,
8788                                  const llvm::fltSemantics &Tgt) {
8789   if (value.isFloat())
8790     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
8791 
8792   if (value.isVector()) {
8793     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
8794       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
8795         return false;
8796     return true;
8797   }
8798 
8799   assert(value.isComplexFloat());
8800   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
8801           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
8802 }
8803 
8804 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
8805 
8806 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
8807   // Suppress cases where we are comparing against an enum constant.
8808   if (const DeclRefExpr *DR =
8809       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
8810     if (isa<EnumConstantDecl>(DR->getDecl()))
8811       return true;
8812 
8813   // Suppress cases where the '0' value is expanded from a macro.
8814   if (E->getLocStart().isMacroID())
8815     return true;
8816 
8817   return false;
8818 }
8819 
8820 static bool isKnownToHaveUnsignedValue(Expr *E) {
8821   return E->getType()->isIntegerType() &&
8822          (!E->getType()->isSignedIntegerType() ||
8823           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
8824 }
8825 
8826 namespace {
8827 /// The promoted range of values of a type. In general this has the
8828 /// following structure:
8829 ///
8830 ///     |-----------| . . . |-----------|
8831 ///     ^           ^       ^           ^
8832 ///    Min       HoleMin  HoleMax      Max
8833 ///
8834 /// ... where there is only a hole if a signed type is promoted to unsigned
8835 /// (in which case Min and Max are the smallest and largest representable
8836 /// values).
8837 struct PromotedRange {
8838   // Min, or HoleMax if there is a hole.
8839   llvm::APSInt PromotedMin;
8840   // Max, or HoleMin if there is a hole.
8841   llvm::APSInt PromotedMax;
8842 
8843   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
8844     if (R.Width == 0)
8845       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
8846     else if (R.Width >= BitWidth && !Unsigned) {
8847       // Promotion made the type *narrower*. This happens when promoting
8848       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
8849       // Treat all values of 'signed int' as being in range for now.
8850       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
8851       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
8852     } else {
8853       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
8854                         .extOrTrunc(BitWidth);
8855       PromotedMin.setIsUnsigned(Unsigned);
8856 
8857       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
8858                         .extOrTrunc(BitWidth);
8859       PromotedMax.setIsUnsigned(Unsigned);
8860     }
8861   }
8862 
8863   // Determine whether this range is contiguous (has no hole).
8864   bool isContiguous() const { return PromotedMin <= PromotedMax; }
8865 
8866   // Where a constant value is within the range.
8867   enum ComparisonResult {
8868     LT = 0x1,
8869     LE = 0x2,
8870     GT = 0x4,
8871     GE = 0x8,
8872     EQ = 0x10,
8873     NE = 0x20,
8874     InRangeFlag = 0x40,
8875 
8876     Less = LE | LT | NE,
8877     Min = LE | InRangeFlag,
8878     InRange = InRangeFlag,
8879     Max = GE | InRangeFlag,
8880     Greater = GE | GT | NE,
8881 
8882     OnlyValue = LE | GE | EQ | InRangeFlag,
8883     InHole = NE
8884   };
8885 
8886   ComparisonResult compare(const llvm::APSInt &Value) const {
8887     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
8888            Value.isUnsigned() == PromotedMin.isUnsigned());
8889     if (!isContiguous()) {
8890       assert(Value.isUnsigned() && "discontiguous range for signed compare");
8891       if (Value.isMinValue()) return Min;
8892       if (Value.isMaxValue()) return Max;
8893       if (Value >= PromotedMin) return InRange;
8894       if (Value <= PromotedMax) return InRange;
8895       return InHole;
8896     }
8897 
8898     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
8899     case -1: return Less;
8900     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
8901     case 1:
8902       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
8903       case -1: return InRange;
8904       case 0: return Max;
8905       case 1: return Greater;
8906       }
8907     }
8908 
8909     llvm_unreachable("impossible compare result");
8910   }
8911 
8912   static llvm::Optional<StringRef>
8913   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
8914     if (Op == BO_Cmp) {
8915       ComparisonResult LTFlag = LT, GTFlag = GT;
8916       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
8917 
8918       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
8919       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
8920       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
8921       return llvm::None;
8922     }
8923 
8924     ComparisonResult TrueFlag, FalseFlag;
8925     if (Op == BO_EQ) {
8926       TrueFlag = EQ;
8927       FalseFlag = NE;
8928     } else if (Op == BO_NE) {
8929       TrueFlag = NE;
8930       FalseFlag = EQ;
8931     } else {
8932       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
8933         TrueFlag = LT;
8934         FalseFlag = GE;
8935       } else {
8936         TrueFlag = GT;
8937         FalseFlag = LE;
8938       }
8939       if (Op == BO_GE || Op == BO_LE)
8940         std::swap(TrueFlag, FalseFlag);
8941     }
8942     if (R & TrueFlag)
8943       return StringRef("true");
8944     if (R & FalseFlag)
8945       return StringRef("false");
8946     return llvm::None;
8947   }
8948 };
8949 }
8950 
8951 static bool HasEnumType(Expr *E) {
8952   // Strip off implicit integral promotions.
8953   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8954     if (ICE->getCastKind() != CK_IntegralCast &&
8955         ICE->getCastKind() != CK_NoOp)
8956       break;
8957     E = ICE->getSubExpr();
8958   }
8959 
8960   return E->getType()->isEnumeralType();
8961 }
8962 
8963 static int classifyConstantValue(Expr *Constant) {
8964   // The values of this enumeration are used in the diagnostics
8965   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
8966   enum ConstantValueKind {
8967     Miscellaneous = 0,
8968     LiteralTrue,
8969     LiteralFalse
8970   };
8971   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
8972     return BL->getValue() ? ConstantValueKind::LiteralTrue
8973                           : ConstantValueKind::LiteralFalse;
8974   return ConstantValueKind::Miscellaneous;
8975 }
8976 
8977 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
8978                                         Expr *Constant, Expr *Other,
8979                                         const llvm::APSInt &Value,
8980                                         bool RhsConstant) {
8981   if (S.inTemplateInstantiation())
8982     return false;
8983 
8984   Expr *OriginalOther = Other;
8985 
8986   Constant = Constant->IgnoreParenImpCasts();
8987   Other = Other->IgnoreParenImpCasts();
8988 
8989   // Suppress warnings on tautological comparisons between values of the same
8990   // enumeration type. There are only two ways we could warn on this:
8991   //  - If the constant is outside the range of representable values of
8992   //    the enumeration. In such a case, we should warn about the cast
8993   //    to enumeration type, not about the comparison.
8994   //  - If the constant is the maximum / minimum in-range value. For an
8995   //    enumeratin type, such comparisons can be meaningful and useful.
8996   if (Constant->getType()->isEnumeralType() &&
8997       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
8998     return false;
8999 
9000   // TODO: Investigate using GetExprRange() to get tighter bounds
9001   // on the bit ranges.
9002   QualType OtherT = Other->getType();
9003   if (const auto *AT = OtherT->getAs<AtomicType>())
9004     OtherT = AT->getValueType();
9005   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
9006 
9007   // Whether we're treating Other as being a bool because of the form of
9008   // expression despite it having another type (typically 'int' in C).
9009   bool OtherIsBooleanDespiteType =
9010       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
9011   if (OtherIsBooleanDespiteType)
9012     OtherRange = IntRange::forBoolType();
9013 
9014   // Determine the promoted range of the other type and see if a comparison of
9015   // the constant against that range is tautological.
9016   PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
9017                                    Value.isUnsigned());
9018   auto Cmp = OtherPromotedRange.compare(Value);
9019   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
9020   if (!Result)
9021     return false;
9022 
9023   // Suppress the diagnostic for an in-range comparison if the constant comes
9024   // from a macro or enumerator. We don't want to diagnose
9025   //
9026   //   some_long_value <= INT_MAX
9027   //
9028   // when sizeof(int) == sizeof(long).
9029   bool InRange = Cmp & PromotedRange::InRangeFlag;
9030   if (InRange && IsEnumConstOrFromMacro(S, Constant))
9031     return false;
9032 
9033   // If this is a comparison to an enum constant, include that
9034   // constant in the diagnostic.
9035   const EnumConstantDecl *ED = nullptr;
9036   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
9037     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
9038 
9039   // Should be enough for uint128 (39 decimal digits)
9040   SmallString<64> PrettySourceValue;
9041   llvm::raw_svector_ostream OS(PrettySourceValue);
9042   if (ED)
9043     OS << '\'' << *ED << "' (" << Value << ")";
9044   else
9045     OS << Value;
9046 
9047   // FIXME: We use a somewhat different formatting for the in-range cases and
9048   // cases involving boolean values for historical reasons. We should pick a
9049   // consistent way of presenting these diagnostics.
9050   if (!InRange || Other->isKnownToHaveBooleanValue()) {
9051     S.DiagRuntimeBehavior(
9052       E->getOperatorLoc(), E,
9053       S.PDiag(!InRange ? diag::warn_out_of_range_compare
9054                        : diag::warn_tautological_bool_compare)
9055           << OS.str() << classifyConstantValue(Constant)
9056           << OtherT << OtherIsBooleanDespiteType << *Result
9057           << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
9058   } else {
9059     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
9060                         ? (HasEnumType(OriginalOther)
9061                                ? diag::warn_unsigned_enum_always_true_comparison
9062                                : diag::warn_unsigned_always_true_comparison)
9063                         : diag::warn_tautological_constant_compare;
9064 
9065     S.Diag(E->getOperatorLoc(), Diag)
9066         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
9067         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
9068   }
9069 
9070   return true;
9071 }
9072 
9073 /// Analyze the operands of the given comparison.  Implements the
9074 /// fallback case from AnalyzeComparison.
9075 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
9076   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
9077   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
9078 }
9079 
9080 /// Implements -Wsign-compare.
9081 ///
9082 /// \param E the binary operator to check for warnings
9083 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
9084   // The type the comparison is being performed in.
9085   QualType T = E->getLHS()->getType();
9086 
9087   // Only analyze comparison operators where both sides have been converted to
9088   // the same type.
9089   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
9090     return AnalyzeImpConvsInComparison(S, E);
9091 
9092   // Don't analyze value-dependent comparisons directly.
9093   if (E->isValueDependent())
9094     return AnalyzeImpConvsInComparison(S, E);
9095 
9096   Expr *LHS = E->getLHS();
9097   Expr *RHS = E->getRHS();
9098 
9099   if (T->isIntegralType(S.Context)) {
9100     llvm::APSInt RHSValue;
9101     llvm::APSInt LHSValue;
9102 
9103     bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
9104     bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
9105 
9106     // We don't care about expressions whose result is a constant.
9107     if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
9108       return AnalyzeImpConvsInComparison(S, E);
9109 
9110     // We only care about expressions where just one side is literal
9111     if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
9112       // Is the constant on the RHS or LHS?
9113       const bool RhsConstant = IsRHSIntegralLiteral;
9114       Expr *Const = RhsConstant ? RHS : LHS;
9115       Expr *Other = RhsConstant ? LHS : RHS;
9116       const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
9117 
9118       // Check whether an integer constant comparison results in a value
9119       // of 'true' or 'false'.
9120       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
9121         return AnalyzeImpConvsInComparison(S, E);
9122     }
9123   }
9124 
9125   if (!T->hasUnsignedIntegerRepresentation()) {
9126     // We don't do anything special if this isn't an unsigned integral
9127     // comparison:  we're only interested in integral comparisons, and
9128     // signed comparisons only happen in cases we don't care to warn about.
9129     return AnalyzeImpConvsInComparison(S, E);
9130   }
9131 
9132   LHS = LHS->IgnoreParenImpCasts();
9133   RHS = RHS->IgnoreParenImpCasts();
9134 
9135   if (!S.getLangOpts().CPlusPlus) {
9136     // Avoid warning about comparison of integers with different signs when
9137     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
9138     // the type of `E`.
9139     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
9140       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
9141     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
9142       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
9143   }
9144 
9145   // Check to see if one of the (unmodified) operands is of different
9146   // signedness.
9147   Expr *signedOperand, *unsignedOperand;
9148   if (LHS->getType()->hasSignedIntegerRepresentation()) {
9149     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
9150            "unsigned comparison between two signed integer expressions?");
9151     signedOperand = LHS;
9152     unsignedOperand = RHS;
9153   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
9154     signedOperand = RHS;
9155     unsignedOperand = LHS;
9156   } else {
9157     return AnalyzeImpConvsInComparison(S, E);
9158   }
9159 
9160   // Otherwise, calculate the effective range of the signed operand.
9161   IntRange signedRange = GetExprRange(S.Context, signedOperand);
9162 
9163   // Go ahead and analyze implicit conversions in the operands.  Note
9164   // that we skip the implicit conversions on both sides.
9165   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
9166   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
9167 
9168   // If the signed range is non-negative, -Wsign-compare won't fire.
9169   if (signedRange.NonNegative)
9170     return;
9171 
9172   // For (in)equality comparisons, if the unsigned operand is a
9173   // constant which cannot collide with a overflowed signed operand,
9174   // then reinterpreting the signed operand as unsigned will not
9175   // change the result of the comparison.
9176   if (E->isEqualityOp()) {
9177     unsigned comparisonWidth = S.Context.getIntWidth(T);
9178     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
9179 
9180     // We should never be unable to prove that the unsigned operand is
9181     // non-negative.
9182     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
9183 
9184     if (unsignedRange.Width < comparisonWidth)
9185       return;
9186   }
9187 
9188   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
9189     S.PDiag(diag::warn_mixed_sign_comparison)
9190       << LHS->getType() << RHS->getType()
9191       << LHS->getSourceRange() << RHS->getSourceRange());
9192 }
9193 
9194 /// Analyzes an attempt to assign the given value to a bitfield.
9195 ///
9196 /// Returns true if there was something fishy about the attempt.
9197 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
9198                                       SourceLocation InitLoc) {
9199   assert(Bitfield->isBitField());
9200   if (Bitfield->isInvalidDecl())
9201     return false;
9202 
9203   // White-list bool bitfields.
9204   QualType BitfieldType = Bitfield->getType();
9205   if (BitfieldType->isBooleanType())
9206      return false;
9207 
9208   if (BitfieldType->isEnumeralType()) {
9209     EnumDecl *BitfieldEnumDecl = BitfieldType->getAs<EnumType>()->getDecl();
9210     // If the underlying enum type was not explicitly specified as an unsigned
9211     // type and the enum contain only positive values, MSVC++ will cause an
9212     // inconsistency by storing this as a signed type.
9213     if (S.getLangOpts().CPlusPlus11 &&
9214         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
9215         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
9216         BitfieldEnumDecl->getNumNegativeBits() == 0) {
9217       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
9218         << BitfieldEnumDecl->getNameAsString();
9219     }
9220   }
9221 
9222   if (Bitfield->getType()->isBooleanType())
9223     return false;
9224 
9225   // Ignore value- or type-dependent expressions.
9226   if (Bitfield->getBitWidth()->isValueDependent() ||
9227       Bitfield->getBitWidth()->isTypeDependent() ||
9228       Init->isValueDependent() ||
9229       Init->isTypeDependent())
9230     return false;
9231 
9232   Expr *OriginalInit = Init->IgnoreParenImpCasts();
9233   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
9234 
9235   llvm::APSInt Value;
9236   if (!OriginalInit->EvaluateAsInt(Value, S.Context,
9237                                    Expr::SE_AllowSideEffects)) {
9238     // The RHS is not constant.  If the RHS has an enum type, make sure the
9239     // bitfield is wide enough to hold all the values of the enum without
9240     // truncation.
9241     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
9242       EnumDecl *ED = EnumTy->getDecl();
9243       bool SignedBitfield = BitfieldType->isSignedIntegerType();
9244 
9245       // Enum types are implicitly signed on Windows, so check if there are any
9246       // negative enumerators to see if the enum was intended to be signed or
9247       // not.
9248       bool SignedEnum = ED->getNumNegativeBits() > 0;
9249 
9250       // Check for surprising sign changes when assigning enum values to a
9251       // bitfield of different signedness.  If the bitfield is signed and we
9252       // have exactly the right number of bits to store this unsigned enum,
9253       // suggest changing the enum to an unsigned type. This typically happens
9254       // on Windows where unfixed enums always use an underlying type of 'int'.
9255       unsigned DiagID = 0;
9256       if (SignedEnum && !SignedBitfield) {
9257         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
9258       } else if (SignedBitfield && !SignedEnum &&
9259                  ED->getNumPositiveBits() == FieldWidth) {
9260         DiagID = diag::warn_signed_bitfield_enum_conversion;
9261       }
9262 
9263       if (DiagID) {
9264         S.Diag(InitLoc, DiagID) << Bitfield << ED;
9265         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
9266         SourceRange TypeRange =
9267             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
9268         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
9269             << SignedEnum << TypeRange;
9270       }
9271 
9272       // Compute the required bitwidth. If the enum has negative values, we need
9273       // one more bit than the normal number of positive bits to represent the
9274       // sign bit.
9275       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
9276                                                   ED->getNumNegativeBits())
9277                                        : ED->getNumPositiveBits();
9278 
9279       // Check the bitwidth.
9280       if (BitsNeeded > FieldWidth) {
9281         Expr *WidthExpr = Bitfield->getBitWidth();
9282         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
9283             << Bitfield << ED;
9284         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
9285             << BitsNeeded << ED << WidthExpr->getSourceRange();
9286       }
9287     }
9288 
9289     return false;
9290   }
9291 
9292   unsigned OriginalWidth = Value.getBitWidth();
9293 
9294   if (!Value.isSigned() || Value.isNegative())
9295     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
9296       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
9297         OriginalWidth = Value.getMinSignedBits();
9298 
9299   if (OriginalWidth <= FieldWidth)
9300     return false;
9301 
9302   // Compute the value which the bitfield will contain.
9303   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
9304   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
9305 
9306   // Check whether the stored value is equal to the original value.
9307   TruncatedValue = TruncatedValue.extend(OriginalWidth);
9308   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
9309     return false;
9310 
9311   // Special-case bitfields of width 1: booleans are naturally 0/1, and
9312   // therefore don't strictly fit into a signed bitfield of width 1.
9313   if (FieldWidth == 1 && Value == 1)
9314     return false;
9315 
9316   std::string PrettyValue = Value.toString(10);
9317   std::string PrettyTrunc = TruncatedValue.toString(10);
9318 
9319   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
9320     << PrettyValue << PrettyTrunc << OriginalInit->getType()
9321     << Init->getSourceRange();
9322 
9323   return true;
9324 }
9325 
9326 /// Analyze the given simple or compound assignment for warning-worthy
9327 /// operations.
9328 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
9329   // Just recurse on the LHS.
9330   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
9331 
9332   // We want to recurse on the RHS as normal unless we're assigning to
9333   // a bitfield.
9334   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
9335     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
9336                                   E->getOperatorLoc())) {
9337       // Recurse, ignoring any implicit conversions on the RHS.
9338       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
9339                                         E->getOperatorLoc());
9340     }
9341   }
9342 
9343   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
9344 }
9345 
9346 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
9347 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
9348                             SourceLocation CContext, unsigned diag,
9349                             bool pruneControlFlow = false) {
9350   if (pruneControlFlow) {
9351     S.DiagRuntimeBehavior(E->getExprLoc(), E,
9352                           S.PDiag(diag)
9353                             << SourceType << T << E->getSourceRange()
9354                             << SourceRange(CContext));
9355     return;
9356   }
9357   S.Diag(E->getExprLoc(), diag)
9358     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
9359 }
9360 
9361 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
9362 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
9363                             SourceLocation CContext,
9364                             unsigned diag, bool pruneControlFlow = false) {
9365   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
9366 }
9367 
9368 /// Analyze the given compound assignment for the possible losing of
9369 /// floating-point precision.
9370 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
9371   assert(isa<CompoundAssignOperator>(E) &&
9372          "Must be compound assignment operation");
9373   // Recurse on the LHS and RHS in here
9374   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
9375   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
9376 
9377   // Now check the outermost expression
9378   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
9379   const auto *RBT = cast<CompoundAssignOperator>(E)
9380                         ->getComputationResultType()
9381                         ->getAs<BuiltinType>();
9382 
9383   // If both source and target are floating points.
9384   if (ResultBT && ResultBT->isFloatingPoint() && RBT && RBT->isFloatingPoint())
9385     // Builtin FP kinds are ordered by increasing FP rank.
9386     if (ResultBT->getKind() < RBT->getKind())
9387       // We don't want to warn for system macro.
9388       if (!S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
9389         // warn about dropping FP rank.
9390         DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(),
9391                         E->getOperatorLoc(),
9392                         diag::warn_impcast_float_result_precision);
9393 }
9394 
9395 /// Diagnose an implicit cast from a floating point value to an integer value.
9396 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
9397                                     SourceLocation CContext) {
9398   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
9399   const bool PruneWarnings = S.inTemplateInstantiation();
9400 
9401   Expr *InnerE = E->IgnoreParenImpCasts();
9402   // We also want to warn on, e.g., "int i = -1.234"
9403   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
9404     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
9405       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
9406 
9407   const bool IsLiteral =
9408       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
9409 
9410   llvm::APFloat Value(0.0);
9411   bool IsConstant =
9412     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
9413   if (!IsConstant) {
9414     return DiagnoseImpCast(S, E, T, CContext,
9415                            diag::warn_impcast_float_integer, PruneWarnings);
9416   }
9417 
9418   bool isExact = false;
9419 
9420   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
9421                             T->hasUnsignedIntegerRepresentation());
9422   llvm::APFloat::opStatus Result = Value.convertToInteger(
9423       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
9424 
9425   if (Result == llvm::APFloat::opOK && isExact) {
9426     if (IsLiteral) return;
9427     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
9428                            PruneWarnings);
9429   }
9430 
9431   // Conversion of a floating-point value to a non-bool integer where the
9432   // integral part cannot be represented by the integer type is undefined.
9433   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
9434     return DiagnoseImpCast(
9435         S, E, T, CContext,
9436         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
9437                   : diag::warn_impcast_float_to_integer_out_of_range);
9438 
9439   unsigned DiagID = 0;
9440   if (IsLiteral) {
9441     // Warn on floating point literal to integer.
9442     DiagID = diag::warn_impcast_literal_float_to_integer;
9443   } else if (IntegerValue == 0) {
9444     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
9445       return DiagnoseImpCast(S, E, T, CContext,
9446                              diag::warn_impcast_float_integer, PruneWarnings);
9447     }
9448     // Warn on non-zero to zero conversion.
9449     DiagID = diag::warn_impcast_float_to_integer_zero;
9450   } else {
9451     if (IntegerValue.isUnsigned()) {
9452       if (!IntegerValue.isMaxValue()) {
9453         return DiagnoseImpCast(S, E, T, CContext,
9454                                diag::warn_impcast_float_integer, PruneWarnings);
9455       }
9456     } else {  // IntegerValue.isSigned()
9457       if (!IntegerValue.isMaxSignedValue() &&
9458           !IntegerValue.isMinSignedValue()) {
9459         return DiagnoseImpCast(S, E, T, CContext,
9460                                diag::warn_impcast_float_integer, PruneWarnings);
9461       }
9462     }
9463     // Warn on evaluatable floating point expression to integer conversion.
9464     DiagID = diag::warn_impcast_float_to_integer;
9465   }
9466 
9467   // FIXME: Force the precision of the source value down so we don't print
9468   // digits which are usually useless (we don't really care here if we
9469   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
9470   // would automatically print the shortest representation, but it's a bit
9471   // tricky to implement.
9472   SmallString<16> PrettySourceValue;
9473   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
9474   precision = (precision * 59 + 195) / 196;
9475   Value.toString(PrettySourceValue, precision);
9476 
9477   SmallString<16> PrettyTargetValue;
9478   if (IsBool)
9479     PrettyTargetValue = Value.isZero() ? "false" : "true";
9480   else
9481     IntegerValue.toString(PrettyTargetValue);
9482 
9483   if (PruneWarnings) {
9484     S.DiagRuntimeBehavior(E->getExprLoc(), E,
9485                           S.PDiag(DiagID)
9486                               << E->getType() << T.getUnqualifiedType()
9487                               << PrettySourceValue << PrettyTargetValue
9488                               << E->getSourceRange() << SourceRange(CContext));
9489   } else {
9490     S.Diag(E->getExprLoc(), DiagID)
9491         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
9492         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
9493   }
9494 }
9495 
9496 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
9497                                       IntRange Range) {
9498   if (!Range.Width) return "0";
9499 
9500   llvm::APSInt ValueInRange = Value;
9501   ValueInRange.setIsSigned(!Range.NonNegative);
9502   ValueInRange = ValueInRange.trunc(Range.Width);
9503   return ValueInRange.toString(10);
9504 }
9505 
9506 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
9507   if (!isa<ImplicitCastExpr>(Ex))
9508     return false;
9509 
9510   Expr *InnerE = Ex->IgnoreParenImpCasts();
9511   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
9512   const Type *Source =
9513     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
9514   if (Target->isDependentType())
9515     return false;
9516 
9517   const BuiltinType *FloatCandidateBT =
9518     dyn_cast<BuiltinType>(ToBool ? Source : Target);
9519   const Type *BoolCandidateType = ToBool ? Target : Source;
9520 
9521   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
9522           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
9523 }
9524 
9525 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
9526                                              SourceLocation CC) {
9527   unsigned NumArgs = TheCall->getNumArgs();
9528   for (unsigned i = 0; i < NumArgs; ++i) {
9529     Expr *CurrA = TheCall->getArg(i);
9530     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
9531       continue;
9532 
9533     bool IsSwapped = ((i > 0) &&
9534         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
9535     IsSwapped |= ((i < (NumArgs - 1)) &&
9536         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
9537     if (IsSwapped) {
9538       // Warn on this floating-point to bool conversion.
9539       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
9540                       CurrA->getType(), CC,
9541                       diag::warn_impcast_floating_point_to_bool);
9542     }
9543   }
9544 }
9545 
9546 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
9547                                    SourceLocation CC) {
9548   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
9549                         E->getExprLoc()))
9550     return;
9551 
9552   // Don't warn on functions which have return type nullptr_t.
9553   if (isa<CallExpr>(E))
9554     return;
9555 
9556   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
9557   const Expr::NullPointerConstantKind NullKind =
9558       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
9559   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
9560     return;
9561 
9562   // Return if target type is a safe conversion.
9563   if (T->isAnyPointerType() || T->isBlockPointerType() ||
9564       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
9565     return;
9566 
9567   SourceLocation Loc = E->getSourceRange().getBegin();
9568 
9569   // Venture through the macro stacks to get to the source of macro arguments.
9570   // The new location is a better location than the complete location that was
9571   // passed in.
9572   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
9573   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
9574 
9575   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
9576   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
9577     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
9578         Loc, S.SourceMgr, S.getLangOpts());
9579     if (MacroName == "NULL")
9580       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
9581   }
9582 
9583   // Only warn if the null and context location are in the same macro expansion.
9584   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
9585     return;
9586 
9587   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
9588       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
9589       << FixItHint::CreateReplacement(Loc,
9590                                       S.getFixItZeroLiteralForType(T, Loc));
9591 }
9592 
9593 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
9594                                   ObjCArrayLiteral *ArrayLiteral);
9595 
9596 static void
9597 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
9598                            ObjCDictionaryLiteral *DictionaryLiteral);
9599 
9600 /// Check a single element within a collection literal against the
9601 /// target element type.
9602 static void checkObjCCollectionLiteralElement(Sema &S,
9603                                               QualType TargetElementType,
9604                                               Expr *Element,
9605                                               unsigned ElementKind) {
9606   // Skip a bitcast to 'id' or qualified 'id'.
9607   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
9608     if (ICE->getCastKind() == CK_BitCast &&
9609         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
9610       Element = ICE->getSubExpr();
9611   }
9612 
9613   QualType ElementType = Element->getType();
9614   ExprResult ElementResult(Element);
9615   if (ElementType->getAs<ObjCObjectPointerType>() &&
9616       S.CheckSingleAssignmentConstraints(TargetElementType,
9617                                          ElementResult,
9618                                          false, false)
9619         != Sema::Compatible) {
9620     S.Diag(Element->getLocStart(),
9621            diag::warn_objc_collection_literal_element)
9622       << ElementType << ElementKind << TargetElementType
9623       << Element->getSourceRange();
9624   }
9625 
9626   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
9627     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
9628   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
9629     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
9630 }
9631 
9632 /// Check an Objective-C array literal being converted to the given
9633 /// target type.
9634 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
9635                                   ObjCArrayLiteral *ArrayLiteral) {
9636   if (!S.NSArrayDecl)
9637     return;
9638 
9639   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
9640   if (!TargetObjCPtr)
9641     return;
9642 
9643   if (TargetObjCPtr->isUnspecialized() ||
9644       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
9645         != S.NSArrayDecl->getCanonicalDecl())
9646     return;
9647 
9648   auto TypeArgs = TargetObjCPtr->getTypeArgs();
9649   if (TypeArgs.size() != 1)
9650     return;
9651 
9652   QualType TargetElementType = TypeArgs[0];
9653   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
9654     checkObjCCollectionLiteralElement(S, TargetElementType,
9655                                       ArrayLiteral->getElement(I),
9656                                       0);
9657   }
9658 }
9659 
9660 /// Check an Objective-C dictionary literal being converted to the given
9661 /// target type.
9662 static void
9663 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
9664                            ObjCDictionaryLiteral *DictionaryLiteral) {
9665   if (!S.NSDictionaryDecl)
9666     return;
9667 
9668   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
9669   if (!TargetObjCPtr)
9670     return;
9671 
9672   if (TargetObjCPtr->isUnspecialized() ||
9673       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
9674         != S.NSDictionaryDecl->getCanonicalDecl())
9675     return;
9676 
9677   auto TypeArgs = TargetObjCPtr->getTypeArgs();
9678   if (TypeArgs.size() != 2)
9679     return;
9680 
9681   QualType TargetKeyType = TypeArgs[0];
9682   QualType TargetObjectType = TypeArgs[1];
9683   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
9684     auto Element = DictionaryLiteral->getKeyValueElement(I);
9685     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
9686     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
9687   }
9688 }
9689 
9690 // Helper function to filter out cases for constant width constant conversion.
9691 // Don't warn on char array initialization or for non-decimal values.
9692 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
9693                                           SourceLocation CC) {
9694   // If initializing from a constant, and the constant starts with '0',
9695   // then it is a binary, octal, or hexadecimal.  Allow these constants
9696   // to fill all the bits, even if there is a sign change.
9697   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
9698     const char FirstLiteralCharacter =
9699         S.getSourceManager().getCharacterData(IntLit->getLocStart())[0];
9700     if (FirstLiteralCharacter == '0')
9701       return false;
9702   }
9703 
9704   // If the CC location points to a '{', and the type is char, then assume
9705   // assume it is an array initialization.
9706   if (CC.isValid() && T->isCharType()) {
9707     const char FirstContextCharacter =
9708         S.getSourceManager().getCharacterData(CC)[0];
9709     if (FirstContextCharacter == '{')
9710       return false;
9711   }
9712 
9713   return true;
9714 }
9715 
9716 static void
9717 CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC,
9718                         bool *ICContext = nullptr) {
9719   if (E->isTypeDependent() || E->isValueDependent()) return;
9720 
9721   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
9722   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
9723   if (Source == Target) return;
9724   if (Target->isDependentType()) return;
9725 
9726   // If the conversion context location is invalid don't complain. We also
9727   // don't want to emit a warning if the issue occurs from the expansion of
9728   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
9729   // delay this check as long as possible. Once we detect we are in that
9730   // scenario, we just return.
9731   if (CC.isInvalid())
9732     return;
9733 
9734   // Diagnose implicit casts to bool.
9735   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
9736     if (isa<StringLiteral>(E))
9737       // Warn on string literal to bool.  Checks for string literals in logical
9738       // and expressions, for instance, assert(0 && "error here"), are
9739       // prevented by a check in AnalyzeImplicitConversions().
9740       return DiagnoseImpCast(S, E, T, CC,
9741                              diag::warn_impcast_string_literal_to_bool);
9742     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
9743         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
9744       // This covers the literal expressions that evaluate to Objective-C
9745       // objects.
9746       return DiagnoseImpCast(S, E, T, CC,
9747                              diag::warn_impcast_objective_c_literal_to_bool);
9748     }
9749     if (Source->isPointerType() || Source->canDecayToPointerType()) {
9750       // Warn on pointer to bool conversion that is always true.
9751       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
9752                                      SourceRange(CC));
9753     }
9754   }
9755 
9756   // Check implicit casts from Objective-C collection literals to specialized
9757   // collection types, e.g., NSArray<NSString *> *.
9758   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
9759     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
9760   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
9761     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
9762 
9763   // Strip vector types.
9764   if (isa<VectorType>(Source)) {
9765     if (!isa<VectorType>(Target)) {
9766       if (S.SourceMgr.isInSystemMacro(CC))
9767         return;
9768       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
9769     }
9770 
9771     // If the vector cast is cast between two vectors of the same size, it is
9772     // a bitcast, not a conversion.
9773     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
9774       return;
9775 
9776     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
9777     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
9778   }
9779   if (auto VecTy = dyn_cast<VectorType>(Target))
9780     Target = VecTy->getElementType().getTypePtr();
9781 
9782   // Strip complex types.
9783   if (isa<ComplexType>(Source)) {
9784     if (!isa<ComplexType>(Target)) {
9785       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
9786         return;
9787 
9788       return DiagnoseImpCast(S, E, T, CC,
9789                              S.getLangOpts().CPlusPlus
9790                                  ? diag::err_impcast_complex_scalar
9791                                  : diag::warn_impcast_complex_scalar);
9792     }
9793 
9794     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
9795     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
9796   }
9797 
9798   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
9799   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
9800 
9801   // If the source is floating point...
9802   if (SourceBT && SourceBT->isFloatingPoint()) {
9803     // ...and the target is floating point...
9804     if (TargetBT && TargetBT->isFloatingPoint()) {
9805       // ...then warn if we're dropping FP rank.
9806 
9807       // Builtin FP kinds are ordered by increasing FP rank.
9808       if (SourceBT->getKind() > TargetBT->getKind()) {
9809         // Don't warn about float constants that are precisely
9810         // representable in the target type.
9811         Expr::EvalResult result;
9812         if (E->EvaluateAsRValue(result, S.Context)) {
9813           // Value might be a float, a float vector, or a float complex.
9814           if (IsSameFloatAfterCast(result.Val,
9815                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
9816                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
9817             return;
9818         }
9819 
9820         if (S.SourceMgr.isInSystemMacro(CC))
9821           return;
9822 
9823         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
9824       }
9825       // ... or possibly if we're increasing rank, too
9826       else if (TargetBT->getKind() > SourceBT->getKind()) {
9827         if (S.SourceMgr.isInSystemMacro(CC))
9828           return;
9829 
9830         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
9831       }
9832       return;
9833     }
9834 
9835     // If the target is integral, always warn.
9836     if (TargetBT && TargetBT->isInteger()) {
9837       if (S.SourceMgr.isInSystemMacro(CC))
9838         return;
9839 
9840       DiagnoseFloatingImpCast(S, E, T, CC);
9841     }
9842 
9843     // Detect the case where a call result is converted from floating-point to
9844     // to bool, and the final argument to the call is converted from bool, to
9845     // discover this typo:
9846     //
9847     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
9848     //
9849     // FIXME: This is an incredibly special case; is there some more general
9850     // way to detect this class of misplaced-parentheses bug?
9851     if (Target->isBooleanType() && isa<CallExpr>(E)) {
9852       // Check last argument of function call to see if it is an
9853       // implicit cast from a type matching the type the result
9854       // is being cast to.
9855       CallExpr *CEx = cast<CallExpr>(E);
9856       if (unsigned NumArgs = CEx->getNumArgs()) {
9857         Expr *LastA = CEx->getArg(NumArgs - 1);
9858         Expr *InnerE = LastA->IgnoreParenImpCasts();
9859         if (isa<ImplicitCastExpr>(LastA) &&
9860             InnerE->getType()->isBooleanType()) {
9861           // Warn on this floating-point to bool conversion
9862           DiagnoseImpCast(S, E, T, CC,
9863                           diag::warn_impcast_floating_point_to_bool);
9864         }
9865       }
9866     }
9867     return;
9868   }
9869 
9870   DiagnoseNullConversion(S, E, T, CC);
9871 
9872   S.DiscardMisalignedMemberAddress(Target, E);
9873 
9874   if (!Source->isIntegerType() || !Target->isIntegerType())
9875     return;
9876 
9877   // TODO: remove this early return once the false positives for constant->bool
9878   // in templates, macros, etc, are reduced or removed.
9879   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
9880     return;
9881 
9882   IntRange SourceRange = GetExprRange(S.Context, E);
9883   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
9884 
9885   if (SourceRange.Width > TargetRange.Width) {
9886     // If the source is a constant, use a default-on diagnostic.
9887     // TODO: this should happen for bitfield stores, too.
9888     llvm::APSInt Value(32);
9889     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects)) {
9890       if (S.SourceMgr.isInSystemMacro(CC))
9891         return;
9892 
9893       std::string PrettySourceValue = Value.toString(10);
9894       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
9895 
9896       S.DiagRuntimeBehavior(E->getExprLoc(), E,
9897         S.PDiag(diag::warn_impcast_integer_precision_constant)
9898             << PrettySourceValue << PrettyTargetValue
9899             << E->getType() << T << E->getSourceRange()
9900             << clang::SourceRange(CC));
9901       return;
9902     }
9903 
9904     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
9905     if (S.SourceMgr.isInSystemMacro(CC))
9906       return;
9907 
9908     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
9909       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
9910                              /* pruneControlFlow */ true);
9911     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
9912   }
9913 
9914   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
9915       SourceRange.NonNegative && Source->isSignedIntegerType()) {
9916     // Warn when doing a signed to signed conversion, warn if the positive
9917     // source value is exactly the width of the target type, which will
9918     // cause a negative value to be stored.
9919 
9920     llvm::APSInt Value;
9921     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects) &&
9922         !S.SourceMgr.isInSystemMacro(CC)) {
9923       if (isSameWidthConstantConversion(S, E, T, CC)) {
9924         std::string PrettySourceValue = Value.toString(10);
9925         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
9926 
9927         S.DiagRuntimeBehavior(
9928             E->getExprLoc(), E,
9929             S.PDiag(diag::warn_impcast_integer_precision_constant)
9930                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
9931                 << E->getSourceRange() << clang::SourceRange(CC));
9932         return;
9933       }
9934     }
9935 
9936     // Fall through for non-constants to give a sign conversion warning.
9937   }
9938 
9939   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
9940       (!TargetRange.NonNegative && SourceRange.NonNegative &&
9941        SourceRange.Width == TargetRange.Width)) {
9942     if (S.SourceMgr.isInSystemMacro(CC))
9943       return;
9944 
9945     unsigned DiagID = diag::warn_impcast_integer_sign;
9946 
9947     // Traditionally, gcc has warned about this under -Wsign-compare.
9948     // We also want to warn about it in -Wconversion.
9949     // So if -Wconversion is off, use a completely identical diagnostic
9950     // in the sign-compare group.
9951     // The conditional-checking code will
9952     if (ICContext) {
9953       DiagID = diag::warn_impcast_integer_sign_conditional;
9954       *ICContext = true;
9955     }
9956 
9957     return DiagnoseImpCast(S, E, T, CC, DiagID);
9958   }
9959 
9960   // Diagnose conversions between different enumeration types.
9961   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
9962   // type, to give us better diagnostics.
9963   QualType SourceType = E->getType();
9964   if (!S.getLangOpts().CPlusPlus) {
9965     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9966       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
9967         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
9968         SourceType = S.Context.getTypeDeclType(Enum);
9969         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
9970       }
9971   }
9972 
9973   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
9974     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
9975       if (SourceEnum->getDecl()->hasNameForLinkage() &&
9976           TargetEnum->getDecl()->hasNameForLinkage() &&
9977           SourceEnum != TargetEnum) {
9978         if (S.SourceMgr.isInSystemMacro(CC))
9979           return;
9980 
9981         return DiagnoseImpCast(S, E, SourceType, T, CC,
9982                                diag::warn_impcast_different_enum_types);
9983       }
9984 }
9985 
9986 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
9987                                      SourceLocation CC, QualType T);
9988 
9989 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
9990                                     SourceLocation CC, bool &ICContext) {
9991   E = E->IgnoreParenImpCasts();
9992 
9993   if (isa<ConditionalOperator>(E))
9994     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
9995 
9996   AnalyzeImplicitConversions(S, E, CC);
9997   if (E->getType() != T)
9998     return CheckImplicitConversion(S, E, T, CC, &ICContext);
9999 }
10000 
10001 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
10002                                      SourceLocation CC, QualType T) {
10003   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
10004 
10005   bool Suspicious = false;
10006   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
10007   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
10008 
10009   // If -Wconversion would have warned about either of the candidates
10010   // for a signedness conversion to the context type...
10011   if (!Suspicious) return;
10012 
10013   // ...but it's currently ignored...
10014   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
10015     return;
10016 
10017   // ...then check whether it would have warned about either of the
10018   // candidates for a signedness conversion to the condition type.
10019   if (E->getType() == T) return;
10020 
10021   Suspicious = false;
10022   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
10023                           E->getType(), CC, &Suspicious);
10024   if (!Suspicious)
10025     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
10026                             E->getType(), CC, &Suspicious);
10027 }
10028 
10029 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
10030 /// Input argument E is a logical expression.
10031 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
10032   if (S.getLangOpts().Bool)
10033     return;
10034   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
10035 }
10036 
10037 /// AnalyzeImplicitConversions - Find and report any interesting
10038 /// implicit conversions in the given expression.  There are a couple
10039 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
10040 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE,
10041                                        SourceLocation CC) {
10042   QualType T = OrigE->getType();
10043   Expr *E = OrigE->IgnoreParenImpCasts();
10044 
10045   if (E->isTypeDependent() || E->isValueDependent())
10046     return;
10047 
10048   // For conditional operators, we analyze the arguments as if they
10049   // were being fed directly into the output.
10050   if (isa<ConditionalOperator>(E)) {
10051     ConditionalOperator *CO = cast<ConditionalOperator>(E);
10052     CheckConditionalOperator(S, CO, CC, T);
10053     return;
10054   }
10055 
10056   // Check implicit argument conversions for function calls.
10057   if (CallExpr *Call = dyn_cast<CallExpr>(E))
10058     CheckImplicitArgumentConversions(S, Call, CC);
10059 
10060   // Go ahead and check any implicit conversions we might have skipped.
10061   // The non-canonical typecheck is just an optimization;
10062   // CheckImplicitConversion will filter out dead implicit conversions.
10063   if (E->getType() != T)
10064     CheckImplicitConversion(S, E, T, CC);
10065 
10066   // Now continue drilling into this expression.
10067 
10068   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
10069     // The bound subexpressions in a PseudoObjectExpr are not reachable
10070     // as transitive children.
10071     // FIXME: Use a more uniform representation for this.
10072     for (auto *SE : POE->semantics())
10073       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
10074         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
10075   }
10076 
10077   // Skip past explicit casts.
10078   if (isa<ExplicitCastExpr>(E)) {
10079     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
10080     return AnalyzeImplicitConversions(S, E, CC);
10081   }
10082 
10083   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10084     // Do a somewhat different check with comparison operators.
10085     if (BO->isComparisonOp())
10086       return AnalyzeComparison(S, BO);
10087 
10088     // And with simple assignments.
10089     if (BO->getOpcode() == BO_Assign)
10090       return AnalyzeAssignment(S, BO);
10091     // And with compound assignments.
10092     if (BO->isAssignmentOp())
10093       return AnalyzeCompoundAssignment(S, BO);
10094   }
10095 
10096   // These break the otherwise-useful invariant below.  Fortunately,
10097   // we don't really need to recurse into them, because any internal
10098   // expressions should have been analyzed already when they were
10099   // built into statements.
10100   if (isa<StmtExpr>(E)) return;
10101 
10102   // Don't descend into unevaluated contexts.
10103   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
10104 
10105   // Now just recurse over the expression's children.
10106   CC = E->getExprLoc();
10107   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
10108   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
10109   for (Stmt *SubStmt : E->children()) {
10110     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
10111     if (!ChildExpr)
10112       continue;
10113 
10114     if (IsLogicalAndOperator &&
10115         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
10116       // Ignore checking string literals that are in logical and operators.
10117       // This is a common pattern for asserts.
10118       continue;
10119     AnalyzeImplicitConversions(S, ChildExpr, CC);
10120   }
10121 
10122   if (BO && BO->isLogicalOp()) {
10123     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
10124     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
10125       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
10126 
10127     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
10128     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
10129       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
10130   }
10131 
10132   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
10133     if (U->getOpcode() == UO_LNot)
10134       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
10135 }
10136 
10137 /// Diagnose integer type and any valid implicit conversion to it.
10138 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
10139   // Taking into account implicit conversions,
10140   // allow any integer.
10141   if (!E->getType()->isIntegerType()) {
10142     S.Diag(E->getLocStart(),
10143            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
10144     return true;
10145   }
10146   // Potentially emit standard warnings for implicit conversions if enabled
10147   // using -Wconversion.
10148   CheckImplicitConversion(S, E, IntT, E->getLocStart());
10149   return false;
10150 }
10151 
10152 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
10153 // Returns true when emitting a warning about taking the address of a reference.
10154 static bool CheckForReference(Sema &SemaRef, const Expr *E,
10155                               const PartialDiagnostic &PD) {
10156   E = E->IgnoreParenImpCasts();
10157 
10158   const FunctionDecl *FD = nullptr;
10159 
10160   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
10161     if (!DRE->getDecl()->getType()->isReferenceType())
10162       return false;
10163   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
10164     if (!M->getMemberDecl()->getType()->isReferenceType())
10165       return false;
10166   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
10167     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
10168       return false;
10169     FD = Call->getDirectCallee();
10170   } else {
10171     return false;
10172   }
10173 
10174   SemaRef.Diag(E->getExprLoc(), PD);
10175 
10176   // If possible, point to location of function.
10177   if (FD) {
10178     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
10179   }
10180 
10181   return true;
10182 }
10183 
10184 // Returns true if the SourceLocation is expanded from any macro body.
10185 // Returns false if the SourceLocation is invalid, is from not in a macro
10186 // expansion, or is from expanded from a top-level macro argument.
10187 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
10188   if (Loc.isInvalid())
10189     return false;
10190 
10191   while (Loc.isMacroID()) {
10192     if (SM.isMacroBodyExpansion(Loc))
10193       return true;
10194     Loc = SM.getImmediateMacroCallerLoc(Loc);
10195   }
10196 
10197   return false;
10198 }
10199 
10200 /// Diagnose pointers that are always non-null.
10201 /// \param E the expression containing the pointer
10202 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
10203 /// compared to a null pointer
10204 /// \param IsEqual True when the comparison is equal to a null pointer
10205 /// \param Range Extra SourceRange to highlight in the diagnostic
10206 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
10207                                         Expr::NullPointerConstantKind NullKind,
10208                                         bool IsEqual, SourceRange Range) {
10209   if (!E)
10210     return;
10211 
10212   // Don't warn inside macros.
10213   if (E->getExprLoc().isMacroID()) {
10214     const SourceManager &SM = getSourceManager();
10215     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
10216         IsInAnyMacroBody(SM, Range.getBegin()))
10217       return;
10218   }
10219   E = E->IgnoreImpCasts();
10220 
10221   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
10222 
10223   if (isa<CXXThisExpr>(E)) {
10224     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
10225                                 : diag::warn_this_bool_conversion;
10226     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
10227     return;
10228   }
10229 
10230   bool IsAddressOf = false;
10231 
10232   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
10233     if (UO->getOpcode() != UO_AddrOf)
10234       return;
10235     IsAddressOf = true;
10236     E = UO->getSubExpr();
10237   }
10238 
10239   if (IsAddressOf) {
10240     unsigned DiagID = IsCompare
10241                           ? diag::warn_address_of_reference_null_compare
10242                           : diag::warn_address_of_reference_bool_conversion;
10243     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
10244                                          << IsEqual;
10245     if (CheckForReference(*this, E, PD)) {
10246       return;
10247     }
10248   }
10249 
10250   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
10251     bool IsParam = isa<NonNullAttr>(NonnullAttr);
10252     std::string Str;
10253     llvm::raw_string_ostream S(Str);
10254     E->printPretty(S, nullptr, getPrintingPolicy());
10255     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
10256                                 : diag::warn_cast_nonnull_to_bool;
10257     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
10258       << E->getSourceRange() << Range << IsEqual;
10259     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
10260   };
10261 
10262   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
10263   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
10264     if (auto *Callee = Call->getDirectCallee()) {
10265       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
10266         ComplainAboutNonnullParamOrCall(A);
10267         return;
10268       }
10269     }
10270   }
10271 
10272   // Expect to find a single Decl.  Skip anything more complicated.
10273   ValueDecl *D = nullptr;
10274   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
10275     D = R->getDecl();
10276   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
10277     D = M->getMemberDecl();
10278   }
10279 
10280   // Weak Decls can be null.
10281   if (!D || D->isWeak())
10282     return;
10283 
10284   // Check for parameter decl with nonnull attribute
10285   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
10286     if (getCurFunction() &&
10287         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
10288       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
10289         ComplainAboutNonnullParamOrCall(A);
10290         return;
10291       }
10292 
10293       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
10294         auto ParamIter = llvm::find(FD->parameters(), PV);
10295         assert(ParamIter != FD->param_end());
10296         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
10297 
10298         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
10299           if (!NonNull->args_size()) {
10300               ComplainAboutNonnullParamOrCall(NonNull);
10301               return;
10302           }
10303 
10304           for (const ParamIdx &ArgNo : NonNull->args()) {
10305             if (ArgNo.getASTIndex() == ParamNo) {
10306               ComplainAboutNonnullParamOrCall(NonNull);
10307               return;
10308             }
10309           }
10310         }
10311       }
10312     }
10313   }
10314 
10315   QualType T = D->getType();
10316   const bool IsArray = T->isArrayType();
10317   const bool IsFunction = T->isFunctionType();
10318 
10319   // Address of function is used to silence the function warning.
10320   if (IsAddressOf && IsFunction) {
10321     return;
10322   }
10323 
10324   // Found nothing.
10325   if (!IsAddressOf && !IsFunction && !IsArray)
10326     return;
10327 
10328   // Pretty print the expression for the diagnostic.
10329   std::string Str;
10330   llvm::raw_string_ostream S(Str);
10331   E->printPretty(S, nullptr, getPrintingPolicy());
10332 
10333   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
10334                               : diag::warn_impcast_pointer_to_bool;
10335   enum {
10336     AddressOf,
10337     FunctionPointer,
10338     ArrayPointer
10339   } DiagType;
10340   if (IsAddressOf)
10341     DiagType = AddressOf;
10342   else if (IsFunction)
10343     DiagType = FunctionPointer;
10344   else if (IsArray)
10345     DiagType = ArrayPointer;
10346   else
10347     llvm_unreachable("Could not determine diagnostic.");
10348   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
10349                                 << Range << IsEqual;
10350 
10351   if (!IsFunction)
10352     return;
10353 
10354   // Suggest '&' to silence the function warning.
10355   Diag(E->getExprLoc(), diag::note_function_warning_silence)
10356       << FixItHint::CreateInsertion(E->getLocStart(), "&");
10357 
10358   // Check to see if '()' fixit should be emitted.
10359   QualType ReturnType;
10360   UnresolvedSet<4> NonTemplateOverloads;
10361   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
10362   if (ReturnType.isNull())
10363     return;
10364 
10365   if (IsCompare) {
10366     // There are two cases here.  If there is null constant, the only suggest
10367     // for a pointer return type.  If the null is 0, then suggest if the return
10368     // type is a pointer or an integer type.
10369     if (!ReturnType->isPointerType()) {
10370       if (NullKind == Expr::NPCK_ZeroExpression ||
10371           NullKind == Expr::NPCK_ZeroLiteral) {
10372         if (!ReturnType->isIntegerType())
10373           return;
10374       } else {
10375         return;
10376       }
10377     }
10378   } else { // !IsCompare
10379     // For function to bool, only suggest if the function pointer has bool
10380     // return type.
10381     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
10382       return;
10383   }
10384   Diag(E->getExprLoc(), diag::note_function_to_function_call)
10385       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
10386 }
10387 
10388 /// Diagnoses "dangerous" implicit conversions within the given
10389 /// expression (which is a full expression).  Implements -Wconversion
10390 /// and -Wsign-compare.
10391 ///
10392 /// \param CC the "context" location of the implicit conversion, i.e.
10393 ///   the most location of the syntactic entity requiring the implicit
10394 ///   conversion
10395 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
10396   // Don't diagnose in unevaluated contexts.
10397   if (isUnevaluatedContext())
10398     return;
10399 
10400   // Don't diagnose for value- or type-dependent expressions.
10401   if (E->isTypeDependent() || E->isValueDependent())
10402     return;
10403 
10404   // Check for array bounds violations in cases where the check isn't triggered
10405   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
10406   // ArraySubscriptExpr is on the RHS of a variable initialization.
10407   CheckArrayAccess(E);
10408 
10409   // This is not the right CC for (e.g.) a variable initialization.
10410   AnalyzeImplicitConversions(*this, E, CC);
10411 }
10412 
10413 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
10414 /// Input argument E is a logical expression.
10415 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
10416   ::CheckBoolLikeConversion(*this, E, CC);
10417 }
10418 
10419 /// Diagnose when expression is an integer constant expression and its evaluation
10420 /// results in integer overflow
10421 void Sema::CheckForIntOverflow (Expr *E) {
10422   // Use a work list to deal with nested struct initializers.
10423   SmallVector<Expr *, 2> Exprs(1, E);
10424 
10425   do {
10426     Expr *OriginalE = Exprs.pop_back_val();
10427     Expr *E = OriginalE->IgnoreParenCasts();
10428 
10429     if (isa<BinaryOperator>(E)) {
10430       E->EvaluateForOverflow(Context);
10431       continue;
10432     }
10433 
10434     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
10435       Exprs.append(InitList->inits().begin(), InitList->inits().end());
10436     else if (isa<ObjCBoxedExpr>(OriginalE))
10437       E->EvaluateForOverflow(Context);
10438     else if (auto Call = dyn_cast<CallExpr>(E))
10439       Exprs.append(Call->arg_begin(), Call->arg_end());
10440     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
10441       Exprs.append(Message->arg_begin(), Message->arg_end());
10442   } while (!Exprs.empty());
10443 }
10444 
10445 namespace {
10446 
10447 /// Visitor for expressions which looks for unsequenced operations on the
10448 /// same object.
10449 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
10450   using Base = EvaluatedExprVisitor<SequenceChecker>;
10451 
10452   /// A tree of sequenced regions within an expression. Two regions are
10453   /// unsequenced if one is an ancestor or a descendent of the other. When we
10454   /// finish processing an expression with sequencing, such as a comma
10455   /// expression, we fold its tree nodes into its parent, since they are
10456   /// unsequenced with respect to nodes we will visit later.
10457   class SequenceTree {
10458     struct Value {
10459       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
10460       unsigned Parent : 31;
10461       unsigned Merged : 1;
10462     };
10463     SmallVector<Value, 8> Values;
10464 
10465   public:
10466     /// A region within an expression which may be sequenced with respect
10467     /// to some other region.
10468     class Seq {
10469       friend class SequenceTree;
10470 
10471       unsigned Index = 0;
10472 
10473       explicit Seq(unsigned N) : Index(N) {}
10474 
10475     public:
10476       Seq() = default;
10477     };
10478 
10479     SequenceTree() { Values.push_back(Value(0)); }
10480     Seq root() const { return Seq(0); }
10481 
10482     /// Create a new sequence of operations, which is an unsequenced
10483     /// subset of \p Parent. This sequence of operations is sequenced with
10484     /// respect to other children of \p Parent.
10485     Seq allocate(Seq Parent) {
10486       Values.push_back(Value(Parent.Index));
10487       return Seq(Values.size() - 1);
10488     }
10489 
10490     /// Merge a sequence of operations into its parent.
10491     void merge(Seq S) {
10492       Values[S.Index].Merged = true;
10493     }
10494 
10495     /// Determine whether two operations are unsequenced. This operation
10496     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
10497     /// should have been merged into its parent as appropriate.
10498     bool isUnsequenced(Seq Cur, Seq Old) {
10499       unsigned C = representative(Cur.Index);
10500       unsigned Target = representative(Old.Index);
10501       while (C >= Target) {
10502         if (C == Target)
10503           return true;
10504         C = Values[C].Parent;
10505       }
10506       return false;
10507     }
10508 
10509   private:
10510     /// Pick a representative for a sequence.
10511     unsigned representative(unsigned K) {
10512       if (Values[K].Merged)
10513         // Perform path compression as we go.
10514         return Values[K].Parent = representative(Values[K].Parent);
10515       return K;
10516     }
10517   };
10518 
10519   /// An object for which we can track unsequenced uses.
10520   using Object = NamedDecl *;
10521 
10522   /// Different flavors of object usage which we track. We only track the
10523   /// least-sequenced usage of each kind.
10524   enum UsageKind {
10525     /// A read of an object. Multiple unsequenced reads are OK.
10526     UK_Use,
10527 
10528     /// A modification of an object which is sequenced before the value
10529     /// computation of the expression, such as ++n in C++.
10530     UK_ModAsValue,
10531 
10532     /// A modification of an object which is not sequenced before the value
10533     /// computation of the expression, such as n++.
10534     UK_ModAsSideEffect,
10535 
10536     UK_Count = UK_ModAsSideEffect + 1
10537   };
10538 
10539   struct Usage {
10540     Expr *Use = nullptr;
10541     SequenceTree::Seq Seq;
10542 
10543     Usage() = default;
10544   };
10545 
10546   struct UsageInfo {
10547     Usage Uses[UK_Count];
10548 
10549     /// Have we issued a diagnostic for this variable already?
10550     bool Diagnosed = false;
10551 
10552     UsageInfo() = default;
10553   };
10554   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
10555 
10556   Sema &SemaRef;
10557 
10558   /// Sequenced regions within the expression.
10559   SequenceTree Tree;
10560 
10561   /// Declaration modifications and references which we have seen.
10562   UsageInfoMap UsageMap;
10563 
10564   /// The region we are currently within.
10565   SequenceTree::Seq Region;
10566 
10567   /// Filled in with declarations which were modified as a side-effect
10568   /// (that is, post-increment operations).
10569   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
10570 
10571   /// Expressions to check later. We defer checking these to reduce
10572   /// stack usage.
10573   SmallVectorImpl<Expr *> &WorkList;
10574 
10575   /// RAII object wrapping the visitation of a sequenced subexpression of an
10576   /// expression. At the end of this process, the side-effects of the evaluation
10577   /// become sequenced with respect to the value computation of the result, so
10578   /// we downgrade any UK_ModAsSideEffect within the evaluation to
10579   /// UK_ModAsValue.
10580   struct SequencedSubexpression {
10581     SequencedSubexpression(SequenceChecker &Self)
10582       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
10583       Self.ModAsSideEffect = &ModAsSideEffect;
10584     }
10585 
10586     ~SequencedSubexpression() {
10587       for (auto &M : llvm::reverse(ModAsSideEffect)) {
10588         UsageInfo &U = Self.UsageMap[M.first];
10589         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
10590         Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue);
10591         SideEffectUsage = M.second;
10592       }
10593       Self.ModAsSideEffect = OldModAsSideEffect;
10594     }
10595 
10596     SequenceChecker &Self;
10597     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
10598     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
10599   };
10600 
10601   /// RAII object wrapping the visitation of a subexpression which we might
10602   /// choose to evaluate as a constant. If any subexpression is evaluated and
10603   /// found to be non-constant, this allows us to suppress the evaluation of
10604   /// the outer expression.
10605   class EvaluationTracker {
10606   public:
10607     EvaluationTracker(SequenceChecker &Self)
10608         : Self(Self), Prev(Self.EvalTracker) {
10609       Self.EvalTracker = this;
10610     }
10611 
10612     ~EvaluationTracker() {
10613       Self.EvalTracker = Prev;
10614       if (Prev)
10615         Prev->EvalOK &= EvalOK;
10616     }
10617 
10618     bool evaluate(const Expr *E, bool &Result) {
10619       if (!EvalOK || E->isValueDependent())
10620         return false;
10621       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
10622       return EvalOK;
10623     }
10624 
10625   private:
10626     SequenceChecker &Self;
10627     EvaluationTracker *Prev;
10628     bool EvalOK = true;
10629   } *EvalTracker = nullptr;
10630 
10631   /// Find the object which is produced by the specified expression,
10632   /// if any.
10633   Object getObject(Expr *E, bool Mod) const {
10634     E = E->IgnoreParenCasts();
10635     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
10636       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
10637         return getObject(UO->getSubExpr(), Mod);
10638     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10639       if (BO->getOpcode() == BO_Comma)
10640         return getObject(BO->getRHS(), Mod);
10641       if (Mod && BO->isAssignmentOp())
10642         return getObject(BO->getLHS(), Mod);
10643     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
10644       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
10645       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
10646         return ME->getMemberDecl();
10647     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
10648       // FIXME: If this is a reference, map through to its value.
10649       return DRE->getDecl();
10650     return nullptr;
10651   }
10652 
10653   /// Note that an object was modified or used by an expression.
10654   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
10655     Usage &U = UI.Uses[UK];
10656     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
10657       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
10658         ModAsSideEffect->push_back(std::make_pair(O, U));
10659       U.Use = Ref;
10660       U.Seq = Region;
10661     }
10662   }
10663 
10664   /// Check whether a modification or use conflicts with a prior usage.
10665   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
10666                   bool IsModMod) {
10667     if (UI.Diagnosed)
10668       return;
10669 
10670     const Usage &U = UI.Uses[OtherKind];
10671     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
10672       return;
10673 
10674     Expr *Mod = U.Use;
10675     Expr *ModOrUse = Ref;
10676     if (OtherKind == UK_Use)
10677       std::swap(Mod, ModOrUse);
10678 
10679     SemaRef.Diag(Mod->getExprLoc(),
10680                  IsModMod ? diag::warn_unsequenced_mod_mod
10681                           : diag::warn_unsequenced_mod_use)
10682       << O << SourceRange(ModOrUse->getExprLoc());
10683     UI.Diagnosed = true;
10684   }
10685 
10686   void notePreUse(Object O, Expr *Use) {
10687     UsageInfo &U = UsageMap[O];
10688     // Uses conflict with other modifications.
10689     checkUsage(O, U, Use, UK_ModAsValue, false);
10690   }
10691 
10692   void notePostUse(Object O, Expr *Use) {
10693     UsageInfo &U = UsageMap[O];
10694     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
10695     addUsage(U, O, Use, UK_Use);
10696   }
10697 
10698   void notePreMod(Object O, Expr *Mod) {
10699     UsageInfo &U = UsageMap[O];
10700     // Modifications conflict with other modifications and with uses.
10701     checkUsage(O, U, Mod, UK_ModAsValue, true);
10702     checkUsage(O, U, Mod, UK_Use, false);
10703   }
10704 
10705   void notePostMod(Object O, Expr *Use, UsageKind UK) {
10706     UsageInfo &U = UsageMap[O];
10707     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
10708     addUsage(U, O, Use, UK);
10709   }
10710 
10711 public:
10712   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
10713       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
10714     Visit(E);
10715   }
10716 
10717   void VisitStmt(Stmt *S) {
10718     // Skip all statements which aren't expressions for now.
10719   }
10720 
10721   void VisitExpr(Expr *E) {
10722     // By default, just recurse to evaluated subexpressions.
10723     Base::VisitStmt(E);
10724   }
10725 
10726   void VisitCastExpr(CastExpr *E) {
10727     Object O = Object();
10728     if (E->getCastKind() == CK_LValueToRValue)
10729       O = getObject(E->getSubExpr(), false);
10730 
10731     if (O)
10732       notePreUse(O, E);
10733     VisitExpr(E);
10734     if (O)
10735       notePostUse(O, E);
10736   }
10737 
10738   void VisitBinComma(BinaryOperator *BO) {
10739     // C++11 [expr.comma]p1:
10740     //   Every value computation and side effect associated with the left
10741     //   expression is sequenced before every value computation and side
10742     //   effect associated with the right expression.
10743     SequenceTree::Seq LHS = Tree.allocate(Region);
10744     SequenceTree::Seq RHS = Tree.allocate(Region);
10745     SequenceTree::Seq OldRegion = Region;
10746 
10747     {
10748       SequencedSubexpression SeqLHS(*this);
10749       Region = LHS;
10750       Visit(BO->getLHS());
10751     }
10752 
10753     Region = RHS;
10754     Visit(BO->getRHS());
10755 
10756     Region = OldRegion;
10757 
10758     // Forget that LHS and RHS are sequenced. They are both unsequenced
10759     // with respect to other stuff.
10760     Tree.merge(LHS);
10761     Tree.merge(RHS);
10762   }
10763 
10764   void VisitBinAssign(BinaryOperator *BO) {
10765     // The modification is sequenced after the value computation of the LHS
10766     // and RHS, so check it before inspecting the operands and update the
10767     // map afterwards.
10768     Object O = getObject(BO->getLHS(), true);
10769     if (!O)
10770       return VisitExpr(BO);
10771 
10772     notePreMod(O, BO);
10773 
10774     // C++11 [expr.ass]p7:
10775     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
10776     //   only once.
10777     //
10778     // Therefore, for a compound assignment operator, O is considered used
10779     // everywhere except within the evaluation of E1 itself.
10780     if (isa<CompoundAssignOperator>(BO))
10781       notePreUse(O, BO);
10782 
10783     Visit(BO->getLHS());
10784 
10785     if (isa<CompoundAssignOperator>(BO))
10786       notePostUse(O, BO);
10787 
10788     Visit(BO->getRHS());
10789 
10790     // C++11 [expr.ass]p1:
10791     //   the assignment is sequenced [...] before the value computation of the
10792     //   assignment expression.
10793     // C11 6.5.16/3 has no such rule.
10794     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
10795                                                        : UK_ModAsSideEffect);
10796   }
10797 
10798   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
10799     VisitBinAssign(CAO);
10800   }
10801 
10802   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
10803   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
10804   void VisitUnaryPreIncDec(UnaryOperator *UO) {
10805     Object O = getObject(UO->getSubExpr(), true);
10806     if (!O)
10807       return VisitExpr(UO);
10808 
10809     notePreMod(O, UO);
10810     Visit(UO->getSubExpr());
10811     // C++11 [expr.pre.incr]p1:
10812     //   the expression ++x is equivalent to x+=1
10813     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
10814                                                        : UK_ModAsSideEffect);
10815   }
10816 
10817   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
10818   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
10819   void VisitUnaryPostIncDec(UnaryOperator *UO) {
10820     Object O = getObject(UO->getSubExpr(), true);
10821     if (!O)
10822       return VisitExpr(UO);
10823 
10824     notePreMod(O, UO);
10825     Visit(UO->getSubExpr());
10826     notePostMod(O, UO, UK_ModAsSideEffect);
10827   }
10828 
10829   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
10830   void VisitBinLOr(BinaryOperator *BO) {
10831     // The side-effects of the LHS of an '&&' are sequenced before the
10832     // value computation of the RHS, and hence before the value computation
10833     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
10834     // as if they were unconditionally sequenced.
10835     EvaluationTracker Eval(*this);
10836     {
10837       SequencedSubexpression Sequenced(*this);
10838       Visit(BO->getLHS());
10839     }
10840 
10841     bool Result;
10842     if (Eval.evaluate(BO->getLHS(), Result)) {
10843       if (!Result)
10844         Visit(BO->getRHS());
10845     } else {
10846       // Check for unsequenced operations in the RHS, treating it as an
10847       // entirely separate evaluation.
10848       //
10849       // FIXME: If there are operations in the RHS which are unsequenced
10850       // with respect to operations outside the RHS, and those operations
10851       // are unconditionally evaluated, diagnose them.
10852       WorkList.push_back(BO->getRHS());
10853     }
10854   }
10855   void VisitBinLAnd(BinaryOperator *BO) {
10856     EvaluationTracker Eval(*this);
10857     {
10858       SequencedSubexpression Sequenced(*this);
10859       Visit(BO->getLHS());
10860     }
10861 
10862     bool Result;
10863     if (Eval.evaluate(BO->getLHS(), Result)) {
10864       if (Result)
10865         Visit(BO->getRHS());
10866     } else {
10867       WorkList.push_back(BO->getRHS());
10868     }
10869   }
10870 
10871   // Only visit the condition, unless we can be sure which subexpression will
10872   // be chosen.
10873   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
10874     EvaluationTracker Eval(*this);
10875     {
10876       SequencedSubexpression Sequenced(*this);
10877       Visit(CO->getCond());
10878     }
10879 
10880     bool Result;
10881     if (Eval.evaluate(CO->getCond(), Result))
10882       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
10883     else {
10884       WorkList.push_back(CO->getTrueExpr());
10885       WorkList.push_back(CO->getFalseExpr());
10886     }
10887   }
10888 
10889   void VisitCallExpr(CallExpr *CE) {
10890     // C++11 [intro.execution]p15:
10891     //   When calling a function [...], every value computation and side effect
10892     //   associated with any argument expression, or with the postfix expression
10893     //   designating the called function, is sequenced before execution of every
10894     //   expression or statement in the body of the function [and thus before
10895     //   the value computation of its result].
10896     SequencedSubexpression Sequenced(*this);
10897     Base::VisitCallExpr(CE);
10898 
10899     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
10900   }
10901 
10902   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
10903     // This is a call, so all subexpressions are sequenced before the result.
10904     SequencedSubexpression Sequenced(*this);
10905 
10906     if (!CCE->isListInitialization())
10907       return VisitExpr(CCE);
10908 
10909     // In C++11, list initializations are sequenced.
10910     SmallVector<SequenceTree::Seq, 32> Elts;
10911     SequenceTree::Seq Parent = Region;
10912     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
10913                                         E = CCE->arg_end();
10914          I != E; ++I) {
10915       Region = Tree.allocate(Parent);
10916       Elts.push_back(Region);
10917       Visit(*I);
10918     }
10919 
10920     // Forget that the initializers are sequenced.
10921     Region = Parent;
10922     for (unsigned I = 0; I < Elts.size(); ++I)
10923       Tree.merge(Elts[I]);
10924   }
10925 
10926   void VisitInitListExpr(InitListExpr *ILE) {
10927     if (!SemaRef.getLangOpts().CPlusPlus11)
10928       return VisitExpr(ILE);
10929 
10930     // In C++11, list initializations are sequenced.
10931     SmallVector<SequenceTree::Seq, 32> Elts;
10932     SequenceTree::Seq Parent = Region;
10933     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
10934       Expr *E = ILE->getInit(I);
10935       if (!E) continue;
10936       Region = Tree.allocate(Parent);
10937       Elts.push_back(Region);
10938       Visit(E);
10939     }
10940 
10941     // Forget that the initializers are sequenced.
10942     Region = Parent;
10943     for (unsigned I = 0; I < Elts.size(); ++I)
10944       Tree.merge(Elts[I]);
10945   }
10946 };
10947 
10948 } // namespace
10949 
10950 void Sema::CheckUnsequencedOperations(Expr *E) {
10951   SmallVector<Expr *, 8> WorkList;
10952   WorkList.push_back(E);
10953   while (!WorkList.empty()) {
10954     Expr *Item = WorkList.pop_back_val();
10955     SequenceChecker(*this, Item, WorkList);
10956   }
10957 }
10958 
10959 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
10960                               bool IsConstexpr) {
10961   CheckImplicitConversions(E, CheckLoc);
10962   if (!E->isInstantiationDependent())
10963     CheckUnsequencedOperations(E);
10964   if (!IsConstexpr && !E->isValueDependent())
10965     CheckForIntOverflow(E);
10966   DiagnoseMisalignedMembers();
10967 }
10968 
10969 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
10970                                        FieldDecl *BitField,
10971                                        Expr *Init) {
10972   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
10973 }
10974 
10975 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
10976                                          SourceLocation Loc) {
10977   if (!PType->isVariablyModifiedType())
10978     return;
10979   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
10980     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
10981     return;
10982   }
10983   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
10984     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
10985     return;
10986   }
10987   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
10988     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
10989     return;
10990   }
10991 
10992   const ArrayType *AT = S.Context.getAsArrayType(PType);
10993   if (!AT)
10994     return;
10995 
10996   if (AT->getSizeModifier() != ArrayType::Star) {
10997     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
10998     return;
10999   }
11000 
11001   S.Diag(Loc, diag::err_array_star_in_function_definition);
11002 }
11003 
11004 /// CheckParmsForFunctionDef - Check that the parameters of the given
11005 /// function are appropriate for the definition of a function. This
11006 /// takes care of any checks that cannot be performed on the
11007 /// declaration itself, e.g., that the types of each of the function
11008 /// parameters are complete.
11009 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
11010                                     bool CheckParameterNames) {
11011   bool HasInvalidParm = false;
11012   for (ParmVarDecl *Param : Parameters) {
11013     // C99 6.7.5.3p4: the parameters in a parameter type list in a
11014     // function declarator that is part of a function definition of
11015     // that function shall not have incomplete type.
11016     //
11017     // This is also C++ [dcl.fct]p6.
11018     if (!Param->isInvalidDecl() &&
11019         RequireCompleteType(Param->getLocation(), Param->getType(),
11020                             diag::err_typecheck_decl_incomplete_type)) {
11021       Param->setInvalidDecl();
11022       HasInvalidParm = true;
11023     }
11024 
11025     // C99 6.9.1p5: If the declarator includes a parameter type list, the
11026     // declaration of each parameter shall include an identifier.
11027     if (CheckParameterNames &&
11028         Param->getIdentifier() == nullptr &&
11029         !Param->isImplicit() &&
11030         !getLangOpts().CPlusPlus)
11031       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
11032 
11033     // C99 6.7.5.3p12:
11034     //   If the function declarator is not part of a definition of that
11035     //   function, parameters may have incomplete type and may use the [*]
11036     //   notation in their sequences of declarator specifiers to specify
11037     //   variable length array types.
11038     QualType PType = Param->getOriginalType();
11039     // FIXME: This diagnostic should point the '[*]' if source-location
11040     // information is added for it.
11041     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
11042 
11043     // If the parameter is a c++ class type and it has to be destructed in the
11044     // callee function, declare the destructor so that it can be called by the
11045     // callee function. Do not perform any direct access check on the dtor here.
11046     if (!Param->isInvalidDecl()) {
11047       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
11048         if (!ClassDecl->isInvalidDecl() &&
11049             !ClassDecl->hasIrrelevantDestructor() &&
11050             !ClassDecl->isDependentContext() &&
11051             Context.isParamDestroyedInCallee(Param->getType())) {
11052           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
11053           MarkFunctionReferenced(Param->getLocation(), Destructor);
11054           DiagnoseUseOfDecl(Destructor, Param->getLocation());
11055         }
11056       }
11057     }
11058 
11059     // Parameters with the pass_object_size attribute only need to be marked
11060     // constant at function definitions. Because we lack information about
11061     // whether we're on a declaration or definition when we're instantiating the
11062     // attribute, we need to check for constness here.
11063     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
11064       if (!Param->getType().isConstQualified())
11065         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
11066             << Attr->getSpelling() << 1;
11067   }
11068 
11069   return HasInvalidParm;
11070 }
11071 
11072 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr
11073 /// or MemberExpr.
11074 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
11075                               ASTContext &Context) {
11076   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
11077     return Context.getDeclAlign(DRE->getDecl());
11078 
11079   if (const auto *ME = dyn_cast<MemberExpr>(E))
11080     return Context.getDeclAlign(ME->getMemberDecl());
11081 
11082   return TypeAlign;
11083 }
11084 
11085 /// CheckCastAlign - Implements -Wcast-align, which warns when a
11086 /// pointer cast increases the alignment requirements.
11087 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
11088   // This is actually a lot of work to potentially be doing on every
11089   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
11090   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
11091     return;
11092 
11093   // Ignore dependent types.
11094   if (T->isDependentType() || Op->getType()->isDependentType())
11095     return;
11096 
11097   // Require that the destination be a pointer type.
11098   const PointerType *DestPtr = T->getAs<PointerType>();
11099   if (!DestPtr) return;
11100 
11101   // If the destination has alignment 1, we're done.
11102   QualType DestPointee = DestPtr->getPointeeType();
11103   if (DestPointee->isIncompleteType()) return;
11104   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
11105   if (DestAlign.isOne()) return;
11106 
11107   // Require that the source be a pointer type.
11108   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
11109   if (!SrcPtr) return;
11110   QualType SrcPointee = SrcPtr->getPointeeType();
11111 
11112   // Whitelist casts from cv void*.  We already implicitly
11113   // whitelisted casts to cv void*, since they have alignment 1.
11114   // Also whitelist casts involving incomplete types, which implicitly
11115   // includes 'void'.
11116   if (SrcPointee->isIncompleteType()) return;
11117 
11118   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
11119 
11120   if (auto *CE = dyn_cast<CastExpr>(Op)) {
11121     if (CE->getCastKind() == CK_ArrayToPointerDecay)
11122       SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
11123   } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
11124     if (UO->getOpcode() == UO_AddrOf)
11125       SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
11126   }
11127 
11128   if (SrcAlign >= DestAlign) return;
11129 
11130   Diag(TRange.getBegin(), diag::warn_cast_align)
11131     << Op->getType() << T
11132     << static_cast<unsigned>(SrcAlign.getQuantity())
11133     << static_cast<unsigned>(DestAlign.getQuantity())
11134     << TRange << Op->getSourceRange();
11135 }
11136 
11137 /// Check whether this array fits the idiom of a size-one tail padded
11138 /// array member of a struct.
11139 ///
11140 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
11141 /// commonly used to emulate flexible arrays in C89 code.
11142 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
11143                                     const NamedDecl *ND) {
11144   if (Size != 1 || !ND) return false;
11145 
11146   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
11147   if (!FD) return false;
11148 
11149   // Don't consider sizes resulting from macro expansions or template argument
11150   // substitution to form C89 tail-padded arrays.
11151 
11152   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
11153   while (TInfo) {
11154     TypeLoc TL = TInfo->getTypeLoc();
11155     // Look through typedefs.
11156     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
11157       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
11158       TInfo = TDL->getTypeSourceInfo();
11159       continue;
11160     }
11161     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
11162       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
11163       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
11164         return false;
11165     }
11166     break;
11167   }
11168 
11169   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
11170   if (!RD) return false;
11171   if (RD->isUnion()) return false;
11172   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
11173     if (!CRD->isStandardLayout()) return false;
11174   }
11175 
11176   // See if this is the last field decl in the record.
11177   const Decl *D = FD;
11178   while ((D = D->getNextDeclInContext()))
11179     if (isa<FieldDecl>(D))
11180       return false;
11181   return true;
11182 }
11183 
11184 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
11185                             const ArraySubscriptExpr *ASE,
11186                             bool AllowOnePastEnd, bool IndexNegated) {
11187   IndexExpr = IndexExpr->IgnoreParenImpCasts();
11188   if (IndexExpr->isValueDependent())
11189     return;
11190 
11191   const Type *EffectiveType =
11192       BaseExpr->getType()->getPointeeOrArrayElementType();
11193   BaseExpr = BaseExpr->IgnoreParenCasts();
11194   const ConstantArrayType *ArrayTy =
11195     Context.getAsConstantArrayType(BaseExpr->getType());
11196   if (!ArrayTy)
11197     return;
11198 
11199   llvm::APSInt index;
11200   if (!IndexExpr->EvaluateAsInt(index, Context, Expr::SE_AllowSideEffects))
11201     return;
11202   if (IndexNegated)
11203     index = -index;
11204 
11205   const NamedDecl *ND = nullptr;
11206   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
11207     ND = DRE->getDecl();
11208   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
11209     ND = ME->getMemberDecl();
11210 
11211   if (index.isUnsigned() || !index.isNegative()) {
11212     llvm::APInt size = ArrayTy->getSize();
11213     if (!size.isStrictlyPositive())
11214       return;
11215 
11216     const Type *BaseType = BaseExpr->getType()->getPointeeOrArrayElementType();
11217     if (BaseType != EffectiveType) {
11218       // Make sure we're comparing apples to apples when comparing index to size
11219       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
11220       uint64_t array_typesize = Context.getTypeSize(BaseType);
11221       // Handle ptrarith_typesize being zero, such as when casting to void*
11222       if (!ptrarith_typesize) ptrarith_typesize = 1;
11223       if (ptrarith_typesize != array_typesize) {
11224         // There's a cast to a different size type involved
11225         uint64_t ratio = array_typesize / ptrarith_typesize;
11226         // TODO: Be smarter about handling cases where array_typesize is not a
11227         // multiple of ptrarith_typesize
11228         if (ptrarith_typesize * ratio == array_typesize)
11229           size *= llvm::APInt(size.getBitWidth(), ratio);
11230       }
11231     }
11232 
11233     if (size.getBitWidth() > index.getBitWidth())
11234       index = index.zext(size.getBitWidth());
11235     else if (size.getBitWidth() < index.getBitWidth())
11236       size = size.zext(index.getBitWidth());
11237 
11238     // For array subscripting the index must be less than size, but for pointer
11239     // arithmetic also allow the index (offset) to be equal to size since
11240     // computing the next address after the end of the array is legal and
11241     // commonly done e.g. in C++ iterators and range-based for loops.
11242     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
11243       return;
11244 
11245     // Also don't warn for arrays of size 1 which are members of some
11246     // structure. These are often used to approximate flexible arrays in C89
11247     // code.
11248     if (IsTailPaddedMemberArray(*this, size, ND))
11249       return;
11250 
11251     // Suppress the warning if the subscript expression (as identified by the
11252     // ']' location) and the index expression are both from macro expansions
11253     // within a system header.
11254     if (ASE) {
11255       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
11256           ASE->getRBracketLoc());
11257       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
11258         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
11259             IndexExpr->getLocStart());
11260         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
11261           return;
11262       }
11263     }
11264 
11265     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
11266     if (ASE)
11267       DiagID = diag::warn_array_index_exceeds_bounds;
11268 
11269     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
11270                         PDiag(DiagID) << index.toString(10, true)
11271                           << size.toString(10, true)
11272                           << (unsigned)size.getLimitedValue(~0U)
11273                           << IndexExpr->getSourceRange());
11274   } else {
11275     unsigned DiagID = diag::warn_array_index_precedes_bounds;
11276     if (!ASE) {
11277       DiagID = diag::warn_ptr_arith_precedes_bounds;
11278       if (index.isNegative()) index = -index;
11279     }
11280 
11281     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
11282                         PDiag(DiagID) << index.toString(10, true)
11283                           << IndexExpr->getSourceRange());
11284   }
11285 
11286   if (!ND) {
11287     // Try harder to find a NamedDecl to point at in the note.
11288     while (const ArraySubscriptExpr *ASE =
11289            dyn_cast<ArraySubscriptExpr>(BaseExpr))
11290       BaseExpr = ASE->getBase()->IgnoreParenCasts();
11291     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
11292       ND = DRE->getDecl();
11293     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
11294       ND = ME->getMemberDecl();
11295   }
11296 
11297   if (ND)
11298     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
11299                         PDiag(diag::note_array_index_out_of_bounds)
11300                           << ND->getDeclName());
11301 }
11302 
11303 void Sema::CheckArrayAccess(const Expr *expr) {
11304   int AllowOnePastEnd = 0;
11305   while (expr) {
11306     expr = expr->IgnoreParenImpCasts();
11307     switch (expr->getStmtClass()) {
11308       case Stmt::ArraySubscriptExprClass: {
11309         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
11310         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
11311                          AllowOnePastEnd > 0);
11312         expr = ASE->getBase();
11313         break;
11314       }
11315       case Stmt::MemberExprClass: {
11316         expr = cast<MemberExpr>(expr)->getBase();
11317         break;
11318       }
11319       case Stmt::OMPArraySectionExprClass: {
11320         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
11321         if (ASE->getLowerBound())
11322           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
11323                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
11324         return;
11325       }
11326       case Stmt::UnaryOperatorClass: {
11327         // Only unwrap the * and & unary operators
11328         const UnaryOperator *UO = cast<UnaryOperator>(expr);
11329         expr = UO->getSubExpr();
11330         switch (UO->getOpcode()) {
11331           case UO_AddrOf:
11332             AllowOnePastEnd++;
11333             break;
11334           case UO_Deref:
11335             AllowOnePastEnd--;
11336             break;
11337           default:
11338             return;
11339         }
11340         break;
11341       }
11342       case Stmt::ConditionalOperatorClass: {
11343         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
11344         if (const Expr *lhs = cond->getLHS())
11345           CheckArrayAccess(lhs);
11346         if (const Expr *rhs = cond->getRHS())
11347           CheckArrayAccess(rhs);
11348         return;
11349       }
11350       case Stmt::CXXOperatorCallExprClass: {
11351         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
11352         for (const auto *Arg : OCE->arguments())
11353           CheckArrayAccess(Arg);
11354         return;
11355       }
11356       default:
11357         return;
11358     }
11359   }
11360 }
11361 
11362 //===--- CHECK: Objective-C retain cycles ----------------------------------//
11363 
11364 namespace {
11365 
11366 struct RetainCycleOwner {
11367   VarDecl *Variable = nullptr;
11368   SourceRange Range;
11369   SourceLocation Loc;
11370   bool Indirect = false;
11371 
11372   RetainCycleOwner() = default;
11373 
11374   void setLocsFrom(Expr *e) {
11375     Loc = e->getExprLoc();
11376     Range = e->getSourceRange();
11377   }
11378 };
11379 
11380 } // namespace
11381 
11382 /// Consider whether capturing the given variable can possibly lead to
11383 /// a retain cycle.
11384 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
11385   // In ARC, it's captured strongly iff the variable has __strong
11386   // lifetime.  In MRR, it's captured strongly if the variable is
11387   // __block and has an appropriate type.
11388   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
11389     return false;
11390 
11391   owner.Variable = var;
11392   if (ref)
11393     owner.setLocsFrom(ref);
11394   return true;
11395 }
11396 
11397 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
11398   while (true) {
11399     e = e->IgnoreParens();
11400     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
11401       switch (cast->getCastKind()) {
11402       case CK_BitCast:
11403       case CK_LValueBitCast:
11404       case CK_LValueToRValue:
11405       case CK_ARCReclaimReturnedObject:
11406         e = cast->getSubExpr();
11407         continue;
11408 
11409       default:
11410         return false;
11411       }
11412     }
11413 
11414     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
11415       ObjCIvarDecl *ivar = ref->getDecl();
11416       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
11417         return false;
11418 
11419       // Try to find a retain cycle in the base.
11420       if (!findRetainCycleOwner(S, ref->getBase(), owner))
11421         return false;
11422 
11423       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
11424       owner.Indirect = true;
11425       return true;
11426     }
11427 
11428     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
11429       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
11430       if (!var) return false;
11431       return considerVariable(var, ref, owner);
11432     }
11433 
11434     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
11435       if (member->isArrow()) return false;
11436 
11437       // Don't count this as an indirect ownership.
11438       e = member->getBase();
11439       continue;
11440     }
11441 
11442     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
11443       // Only pay attention to pseudo-objects on property references.
11444       ObjCPropertyRefExpr *pre
11445         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
11446                                               ->IgnoreParens());
11447       if (!pre) return false;
11448       if (pre->isImplicitProperty()) return false;
11449       ObjCPropertyDecl *property = pre->getExplicitProperty();
11450       if (!property->isRetaining() &&
11451           !(property->getPropertyIvarDecl() &&
11452             property->getPropertyIvarDecl()->getType()
11453               .getObjCLifetime() == Qualifiers::OCL_Strong))
11454           return false;
11455 
11456       owner.Indirect = true;
11457       if (pre->isSuperReceiver()) {
11458         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
11459         if (!owner.Variable)
11460           return false;
11461         owner.Loc = pre->getLocation();
11462         owner.Range = pre->getSourceRange();
11463         return true;
11464       }
11465       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
11466                               ->getSourceExpr());
11467       continue;
11468     }
11469 
11470     // Array ivars?
11471 
11472     return false;
11473   }
11474 }
11475 
11476 namespace {
11477 
11478   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
11479     ASTContext &Context;
11480     VarDecl *Variable;
11481     Expr *Capturer = nullptr;
11482     bool VarWillBeReased = false;
11483 
11484     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
11485         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
11486           Context(Context), Variable(variable) {}
11487 
11488     void VisitDeclRefExpr(DeclRefExpr *ref) {
11489       if (ref->getDecl() == Variable && !Capturer)
11490         Capturer = ref;
11491     }
11492 
11493     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
11494       if (Capturer) return;
11495       Visit(ref->getBase());
11496       if (Capturer && ref->isFreeIvar())
11497         Capturer = ref;
11498     }
11499 
11500     void VisitBlockExpr(BlockExpr *block) {
11501       // Look inside nested blocks
11502       if (block->getBlockDecl()->capturesVariable(Variable))
11503         Visit(block->getBlockDecl()->getBody());
11504     }
11505 
11506     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
11507       if (Capturer) return;
11508       if (OVE->getSourceExpr())
11509         Visit(OVE->getSourceExpr());
11510     }
11511 
11512     void VisitBinaryOperator(BinaryOperator *BinOp) {
11513       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
11514         return;
11515       Expr *LHS = BinOp->getLHS();
11516       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
11517         if (DRE->getDecl() != Variable)
11518           return;
11519         if (Expr *RHS = BinOp->getRHS()) {
11520           RHS = RHS->IgnoreParenCasts();
11521           llvm::APSInt Value;
11522           VarWillBeReased =
11523             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
11524         }
11525       }
11526     }
11527   };
11528 
11529 } // namespace
11530 
11531 /// Check whether the given argument is a block which captures a
11532 /// variable.
11533 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
11534   assert(owner.Variable && owner.Loc.isValid());
11535 
11536   e = e->IgnoreParenCasts();
11537 
11538   // Look through [^{...} copy] and Block_copy(^{...}).
11539   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
11540     Selector Cmd = ME->getSelector();
11541     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
11542       e = ME->getInstanceReceiver();
11543       if (!e)
11544         return nullptr;
11545       e = e->IgnoreParenCasts();
11546     }
11547   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
11548     if (CE->getNumArgs() == 1) {
11549       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
11550       if (Fn) {
11551         const IdentifierInfo *FnI = Fn->getIdentifier();
11552         if (FnI && FnI->isStr("_Block_copy")) {
11553           e = CE->getArg(0)->IgnoreParenCasts();
11554         }
11555       }
11556     }
11557   }
11558 
11559   BlockExpr *block = dyn_cast<BlockExpr>(e);
11560   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
11561     return nullptr;
11562 
11563   FindCaptureVisitor visitor(S.Context, owner.Variable);
11564   visitor.Visit(block->getBlockDecl()->getBody());
11565   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
11566 }
11567 
11568 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
11569                                 RetainCycleOwner &owner) {
11570   assert(capturer);
11571   assert(owner.Variable && owner.Loc.isValid());
11572 
11573   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
11574     << owner.Variable << capturer->getSourceRange();
11575   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
11576     << owner.Indirect << owner.Range;
11577 }
11578 
11579 /// Check for a keyword selector that starts with the word 'add' or
11580 /// 'set'.
11581 static bool isSetterLikeSelector(Selector sel) {
11582   if (sel.isUnarySelector()) return false;
11583 
11584   StringRef str = sel.getNameForSlot(0);
11585   while (!str.empty() && str.front() == '_') str = str.substr(1);
11586   if (str.startswith("set"))
11587     str = str.substr(3);
11588   else if (str.startswith("add")) {
11589     // Specially whitelist 'addOperationWithBlock:'.
11590     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
11591       return false;
11592     str = str.substr(3);
11593   }
11594   else
11595     return false;
11596 
11597   if (str.empty()) return true;
11598   return !isLowercase(str.front());
11599 }
11600 
11601 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
11602                                                     ObjCMessageExpr *Message) {
11603   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
11604                                                 Message->getReceiverInterface(),
11605                                                 NSAPI::ClassId_NSMutableArray);
11606   if (!IsMutableArray) {
11607     return None;
11608   }
11609 
11610   Selector Sel = Message->getSelector();
11611 
11612   Optional<NSAPI::NSArrayMethodKind> MKOpt =
11613     S.NSAPIObj->getNSArrayMethodKind(Sel);
11614   if (!MKOpt) {
11615     return None;
11616   }
11617 
11618   NSAPI::NSArrayMethodKind MK = *MKOpt;
11619 
11620   switch (MK) {
11621     case NSAPI::NSMutableArr_addObject:
11622     case NSAPI::NSMutableArr_insertObjectAtIndex:
11623     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
11624       return 0;
11625     case NSAPI::NSMutableArr_replaceObjectAtIndex:
11626       return 1;
11627 
11628     default:
11629       return None;
11630   }
11631 
11632   return None;
11633 }
11634 
11635 static
11636 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
11637                                                   ObjCMessageExpr *Message) {
11638   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
11639                                             Message->getReceiverInterface(),
11640                                             NSAPI::ClassId_NSMutableDictionary);
11641   if (!IsMutableDictionary) {
11642     return None;
11643   }
11644 
11645   Selector Sel = Message->getSelector();
11646 
11647   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
11648     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
11649   if (!MKOpt) {
11650     return None;
11651   }
11652 
11653   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
11654 
11655   switch (MK) {
11656     case NSAPI::NSMutableDict_setObjectForKey:
11657     case NSAPI::NSMutableDict_setValueForKey:
11658     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
11659       return 0;
11660 
11661     default:
11662       return None;
11663   }
11664 
11665   return None;
11666 }
11667 
11668 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
11669   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
11670                                                 Message->getReceiverInterface(),
11671                                                 NSAPI::ClassId_NSMutableSet);
11672 
11673   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
11674                                             Message->getReceiverInterface(),
11675                                             NSAPI::ClassId_NSMutableOrderedSet);
11676   if (!IsMutableSet && !IsMutableOrderedSet) {
11677     return None;
11678   }
11679 
11680   Selector Sel = Message->getSelector();
11681 
11682   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
11683   if (!MKOpt) {
11684     return None;
11685   }
11686 
11687   NSAPI::NSSetMethodKind MK = *MKOpt;
11688 
11689   switch (MK) {
11690     case NSAPI::NSMutableSet_addObject:
11691     case NSAPI::NSOrderedSet_setObjectAtIndex:
11692     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
11693     case NSAPI::NSOrderedSet_insertObjectAtIndex:
11694       return 0;
11695     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
11696       return 1;
11697   }
11698 
11699   return None;
11700 }
11701 
11702 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
11703   if (!Message->isInstanceMessage()) {
11704     return;
11705   }
11706 
11707   Optional<int> ArgOpt;
11708 
11709   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
11710       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
11711       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
11712     return;
11713   }
11714 
11715   int ArgIndex = *ArgOpt;
11716 
11717   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
11718   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
11719     Arg = OE->getSourceExpr()->IgnoreImpCasts();
11720   }
11721 
11722   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
11723     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
11724       if (ArgRE->isObjCSelfExpr()) {
11725         Diag(Message->getSourceRange().getBegin(),
11726              diag::warn_objc_circular_container)
11727           << ArgRE->getDecl() << StringRef("'super'");
11728       }
11729     }
11730   } else {
11731     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
11732 
11733     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
11734       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
11735     }
11736 
11737     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
11738       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
11739         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
11740           ValueDecl *Decl = ReceiverRE->getDecl();
11741           Diag(Message->getSourceRange().getBegin(),
11742                diag::warn_objc_circular_container)
11743             << Decl << Decl;
11744           if (!ArgRE->isObjCSelfExpr()) {
11745             Diag(Decl->getLocation(),
11746                  diag::note_objc_circular_container_declared_here)
11747               << Decl;
11748           }
11749         }
11750       }
11751     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
11752       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
11753         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
11754           ObjCIvarDecl *Decl = IvarRE->getDecl();
11755           Diag(Message->getSourceRange().getBegin(),
11756                diag::warn_objc_circular_container)
11757             << Decl << Decl;
11758           Diag(Decl->getLocation(),
11759                diag::note_objc_circular_container_declared_here)
11760             << Decl;
11761         }
11762       }
11763     }
11764   }
11765 }
11766 
11767 /// Check a message send to see if it's likely to cause a retain cycle.
11768 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
11769   // Only check instance methods whose selector looks like a setter.
11770   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
11771     return;
11772 
11773   // Try to find a variable that the receiver is strongly owned by.
11774   RetainCycleOwner owner;
11775   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
11776     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
11777       return;
11778   } else {
11779     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
11780     owner.Variable = getCurMethodDecl()->getSelfDecl();
11781     owner.Loc = msg->getSuperLoc();
11782     owner.Range = msg->getSuperLoc();
11783   }
11784 
11785   // Check whether the receiver is captured by any of the arguments.
11786   const ObjCMethodDecl *MD = msg->getMethodDecl();
11787   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
11788     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
11789       // noescape blocks should not be retained by the method.
11790       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
11791         continue;
11792       return diagnoseRetainCycle(*this, capturer, owner);
11793     }
11794   }
11795 }
11796 
11797 /// Check a property assign to see if it's likely to cause a retain cycle.
11798 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
11799   RetainCycleOwner owner;
11800   if (!findRetainCycleOwner(*this, receiver, owner))
11801     return;
11802 
11803   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
11804     diagnoseRetainCycle(*this, capturer, owner);
11805 }
11806 
11807 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
11808   RetainCycleOwner Owner;
11809   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
11810     return;
11811 
11812   // Because we don't have an expression for the variable, we have to set the
11813   // location explicitly here.
11814   Owner.Loc = Var->getLocation();
11815   Owner.Range = Var->getSourceRange();
11816 
11817   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
11818     diagnoseRetainCycle(*this, Capturer, Owner);
11819 }
11820 
11821 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
11822                                      Expr *RHS, bool isProperty) {
11823   // Check if RHS is an Objective-C object literal, which also can get
11824   // immediately zapped in a weak reference.  Note that we explicitly
11825   // allow ObjCStringLiterals, since those are designed to never really die.
11826   RHS = RHS->IgnoreParenImpCasts();
11827 
11828   // This enum needs to match with the 'select' in
11829   // warn_objc_arc_literal_assign (off-by-1).
11830   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
11831   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
11832     return false;
11833 
11834   S.Diag(Loc, diag::warn_arc_literal_assign)
11835     << (unsigned) Kind
11836     << (isProperty ? 0 : 1)
11837     << RHS->getSourceRange();
11838 
11839   return true;
11840 }
11841 
11842 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
11843                                     Qualifiers::ObjCLifetime LT,
11844                                     Expr *RHS, bool isProperty) {
11845   // Strip off any implicit cast added to get to the one ARC-specific.
11846   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
11847     if (cast->getCastKind() == CK_ARCConsumeObject) {
11848       S.Diag(Loc, diag::warn_arc_retained_assign)
11849         << (LT == Qualifiers::OCL_ExplicitNone)
11850         << (isProperty ? 0 : 1)
11851         << RHS->getSourceRange();
11852       return true;
11853     }
11854     RHS = cast->getSubExpr();
11855   }
11856 
11857   if (LT == Qualifiers::OCL_Weak &&
11858       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
11859     return true;
11860 
11861   return false;
11862 }
11863 
11864 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
11865                               QualType LHS, Expr *RHS) {
11866   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
11867 
11868   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
11869     return false;
11870 
11871   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
11872     return true;
11873 
11874   return false;
11875 }
11876 
11877 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
11878                               Expr *LHS, Expr *RHS) {
11879   QualType LHSType;
11880   // PropertyRef on LHS type need be directly obtained from
11881   // its declaration as it has a PseudoType.
11882   ObjCPropertyRefExpr *PRE
11883     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
11884   if (PRE && !PRE->isImplicitProperty()) {
11885     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
11886     if (PD)
11887       LHSType = PD->getType();
11888   }
11889 
11890   if (LHSType.isNull())
11891     LHSType = LHS->getType();
11892 
11893   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
11894 
11895   if (LT == Qualifiers::OCL_Weak) {
11896     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
11897       getCurFunction()->markSafeWeakUse(LHS);
11898   }
11899 
11900   if (checkUnsafeAssigns(Loc, LHSType, RHS))
11901     return;
11902 
11903   // FIXME. Check for other life times.
11904   if (LT != Qualifiers::OCL_None)
11905     return;
11906 
11907   if (PRE) {
11908     if (PRE->isImplicitProperty())
11909       return;
11910     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
11911     if (!PD)
11912       return;
11913 
11914     unsigned Attributes = PD->getPropertyAttributes();
11915     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
11916       // when 'assign' attribute was not explicitly specified
11917       // by user, ignore it and rely on property type itself
11918       // for lifetime info.
11919       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
11920       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
11921           LHSType->isObjCRetainableType())
11922         return;
11923 
11924       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
11925         if (cast->getCastKind() == CK_ARCConsumeObject) {
11926           Diag(Loc, diag::warn_arc_retained_property_assign)
11927           << RHS->getSourceRange();
11928           return;
11929         }
11930         RHS = cast->getSubExpr();
11931       }
11932     }
11933     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
11934       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
11935         return;
11936     }
11937   }
11938 }
11939 
11940 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
11941 
11942 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
11943                                         SourceLocation StmtLoc,
11944                                         const NullStmt *Body) {
11945   // Do not warn if the body is a macro that expands to nothing, e.g:
11946   //
11947   // #define CALL(x)
11948   // if (condition)
11949   //   CALL(0);
11950   if (Body->hasLeadingEmptyMacro())
11951     return false;
11952 
11953   // Get line numbers of statement and body.
11954   bool StmtLineInvalid;
11955   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
11956                                                       &StmtLineInvalid);
11957   if (StmtLineInvalid)
11958     return false;
11959 
11960   bool BodyLineInvalid;
11961   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
11962                                                       &BodyLineInvalid);
11963   if (BodyLineInvalid)
11964     return false;
11965 
11966   // Warn if null statement and body are on the same line.
11967   if (StmtLine != BodyLine)
11968     return false;
11969 
11970   return true;
11971 }
11972 
11973 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
11974                                  const Stmt *Body,
11975                                  unsigned DiagID) {
11976   // Since this is a syntactic check, don't emit diagnostic for template
11977   // instantiations, this just adds noise.
11978   if (CurrentInstantiationScope)
11979     return;
11980 
11981   // The body should be a null statement.
11982   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
11983   if (!NBody)
11984     return;
11985 
11986   // Do the usual checks.
11987   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
11988     return;
11989 
11990   Diag(NBody->getSemiLoc(), DiagID);
11991   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
11992 }
11993 
11994 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
11995                                  const Stmt *PossibleBody) {
11996   assert(!CurrentInstantiationScope); // Ensured by caller
11997 
11998   SourceLocation StmtLoc;
11999   const Stmt *Body;
12000   unsigned DiagID;
12001   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
12002     StmtLoc = FS->getRParenLoc();
12003     Body = FS->getBody();
12004     DiagID = diag::warn_empty_for_body;
12005   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
12006     StmtLoc = WS->getCond()->getSourceRange().getEnd();
12007     Body = WS->getBody();
12008     DiagID = diag::warn_empty_while_body;
12009   } else
12010     return; // Neither `for' nor `while'.
12011 
12012   // The body should be a null statement.
12013   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
12014   if (!NBody)
12015     return;
12016 
12017   // Skip expensive checks if diagnostic is disabled.
12018   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
12019     return;
12020 
12021   // Do the usual checks.
12022   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
12023     return;
12024 
12025   // `for(...);' and `while(...);' are popular idioms, so in order to keep
12026   // noise level low, emit diagnostics only if for/while is followed by a
12027   // CompoundStmt, e.g.:
12028   //    for (int i = 0; i < n; i++);
12029   //    {
12030   //      a(i);
12031   //    }
12032   // or if for/while is followed by a statement with more indentation
12033   // than for/while itself:
12034   //    for (int i = 0; i < n; i++);
12035   //      a(i);
12036   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
12037   if (!ProbableTypo) {
12038     bool BodyColInvalid;
12039     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
12040                              PossibleBody->getLocStart(),
12041                              &BodyColInvalid);
12042     if (BodyColInvalid)
12043       return;
12044 
12045     bool StmtColInvalid;
12046     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
12047                              S->getLocStart(),
12048                              &StmtColInvalid);
12049     if (StmtColInvalid)
12050       return;
12051 
12052     if (BodyCol > StmtCol)
12053       ProbableTypo = true;
12054   }
12055 
12056   if (ProbableTypo) {
12057     Diag(NBody->getSemiLoc(), DiagID);
12058     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
12059   }
12060 }
12061 
12062 //===--- CHECK: Warn on self move with std::move. -------------------------===//
12063 
12064 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
12065 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
12066                              SourceLocation OpLoc) {
12067   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
12068     return;
12069 
12070   if (inTemplateInstantiation())
12071     return;
12072 
12073   // Strip parens and casts away.
12074   LHSExpr = LHSExpr->IgnoreParenImpCasts();
12075   RHSExpr = RHSExpr->IgnoreParenImpCasts();
12076 
12077   // Check for a call expression
12078   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
12079   if (!CE || CE->getNumArgs() != 1)
12080     return;
12081 
12082   // Check for a call to std::move
12083   if (!CE->isCallToStdMove())
12084     return;
12085 
12086   // Get argument from std::move
12087   RHSExpr = CE->getArg(0);
12088 
12089   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
12090   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
12091 
12092   // Two DeclRefExpr's, check that the decls are the same.
12093   if (LHSDeclRef && RHSDeclRef) {
12094     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
12095       return;
12096     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
12097         RHSDeclRef->getDecl()->getCanonicalDecl())
12098       return;
12099 
12100     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
12101                                         << LHSExpr->getSourceRange()
12102                                         << RHSExpr->getSourceRange();
12103     return;
12104   }
12105 
12106   // Member variables require a different approach to check for self moves.
12107   // MemberExpr's are the same if every nested MemberExpr refers to the same
12108   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
12109   // the base Expr's are CXXThisExpr's.
12110   const Expr *LHSBase = LHSExpr;
12111   const Expr *RHSBase = RHSExpr;
12112   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
12113   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
12114   if (!LHSME || !RHSME)
12115     return;
12116 
12117   while (LHSME && RHSME) {
12118     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
12119         RHSME->getMemberDecl()->getCanonicalDecl())
12120       return;
12121 
12122     LHSBase = LHSME->getBase();
12123     RHSBase = RHSME->getBase();
12124     LHSME = dyn_cast<MemberExpr>(LHSBase);
12125     RHSME = dyn_cast<MemberExpr>(RHSBase);
12126   }
12127 
12128   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
12129   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
12130   if (LHSDeclRef && RHSDeclRef) {
12131     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
12132       return;
12133     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
12134         RHSDeclRef->getDecl()->getCanonicalDecl())
12135       return;
12136 
12137     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
12138                                         << LHSExpr->getSourceRange()
12139                                         << RHSExpr->getSourceRange();
12140     return;
12141   }
12142 
12143   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
12144     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
12145                                         << LHSExpr->getSourceRange()
12146                                         << RHSExpr->getSourceRange();
12147 }
12148 
12149 //===--- Layout compatibility ----------------------------------------------//
12150 
12151 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
12152 
12153 /// Check if two enumeration types are layout-compatible.
12154 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
12155   // C++11 [dcl.enum] p8:
12156   // Two enumeration types are layout-compatible if they have the same
12157   // underlying type.
12158   return ED1->isComplete() && ED2->isComplete() &&
12159          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
12160 }
12161 
12162 /// Check if two fields are layout-compatible.
12163 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
12164                                FieldDecl *Field2) {
12165   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
12166     return false;
12167 
12168   if (Field1->isBitField() != Field2->isBitField())
12169     return false;
12170 
12171   if (Field1->isBitField()) {
12172     // Make sure that the bit-fields are the same length.
12173     unsigned Bits1 = Field1->getBitWidthValue(C);
12174     unsigned Bits2 = Field2->getBitWidthValue(C);
12175 
12176     if (Bits1 != Bits2)
12177       return false;
12178   }
12179 
12180   return true;
12181 }
12182 
12183 /// Check if two standard-layout structs are layout-compatible.
12184 /// (C++11 [class.mem] p17)
12185 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
12186                                      RecordDecl *RD2) {
12187   // If both records are C++ classes, check that base classes match.
12188   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
12189     // If one of records is a CXXRecordDecl we are in C++ mode,
12190     // thus the other one is a CXXRecordDecl, too.
12191     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
12192     // Check number of base classes.
12193     if (D1CXX->getNumBases() != D2CXX->getNumBases())
12194       return false;
12195 
12196     // Check the base classes.
12197     for (CXXRecordDecl::base_class_const_iterator
12198                Base1 = D1CXX->bases_begin(),
12199            BaseEnd1 = D1CXX->bases_end(),
12200               Base2 = D2CXX->bases_begin();
12201          Base1 != BaseEnd1;
12202          ++Base1, ++Base2) {
12203       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
12204         return false;
12205     }
12206   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
12207     // If only RD2 is a C++ class, it should have zero base classes.
12208     if (D2CXX->getNumBases() > 0)
12209       return false;
12210   }
12211 
12212   // Check the fields.
12213   RecordDecl::field_iterator Field2 = RD2->field_begin(),
12214                              Field2End = RD2->field_end(),
12215                              Field1 = RD1->field_begin(),
12216                              Field1End = RD1->field_end();
12217   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
12218     if (!isLayoutCompatible(C, *Field1, *Field2))
12219       return false;
12220   }
12221   if (Field1 != Field1End || Field2 != Field2End)
12222     return false;
12223 
12224   return true;
12225 }
12226 
12227 /// Check if two standard-layout unions are layout-compatible.
12228 /// (C++11 [class.mem] p18)
12229 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
12230                                     RecordDecl *RD2) {
12231   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
12232   for (auto *Field2 : RD2->fields())
12233     UnmatchedFields.insert(Field2);
12234 
12235   for (auto *Field1 : RD1->fields()) {
12236     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
12237         I = UnmatchedFields.begin(),
12238         E = UnmatchedFields.end();
12239 
12240     for ( ; I != E; ++I) {
12241       if (isLayoutCompatible(C, Field1, *I)) {
12242         bool Result = UnmatchedFields.erase(*I);
12243         (void) Result;
12244         assert(Result);
12245         break;
12246       }
12247     }
12248     if (I == E)
12249       return false;
12250   }
12251 
12252   return UnmatchedFields.empty();
12253 }
12254 
12255 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
12256                                RecordDecl *RD2) {
12257   if (RD1->isUnion() != RD2->isUnion())
12258     return false;
12259 
12260   if (RD1->isUnion())
12261     return isLayoutCompatibleUnion(C, RD1, RD2);
12262   else
12263     return isLayoutCompatibleStruct(C, RD1, RD2);
12264 }
12265 
12266 /// Check if two types are layout-compatible in C++11 sense.
12267 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
12268   if (T1.isNull() || T2.isNull())
12269     return false;
12270 
12271   // C++11 [basic.types] p11:
12272   // If two types T1 and T2 are the same type, then T1 and T2 are
12273   // layout-compatible types.
12274   if (C.hasSameType(T1, T2))
12275     return true;
12276 
12277   T1 = T1.getCanonicalType().getUnqualifiedType();
12278   T2 = T2.getCanonicalType().getUnqualifiedType();
12279 
12280   const Type::TypeClass TC1 = T1->getTypeClass();
12281   const Type::TypeClass TC2 = T2->getTypeClass();
12282 
12283   if (TC1 != TC2)
12284     return false;
12285 
12286   if (TC1 == Type::Enum) {
12287     return isLayoutCompatible(C,
12288                               cast<EnumType>(T1)->getDecl(),
12289                               cast<EnumType>(T2)->getDecl());
12290   } else if (TC1 == Type::Record) {
12291     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
12292       return false;
12293 
12294     return isLayoutCompatible(C,
12295                               cast<RecordType>(T1)->getDecl(),
12296                               cast<RecordType>(T2)->getDecl());
12297   }
12298 
12299   return false;
12300 }
12301 
12302 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
12303 
12304 /// Given a type tag expression find the type tag itself.
12305 ///
12306 /// \param TypeExpr Type tag expression, as it appears in user's code.
12307 ///
12308 /// \param VD Declaration of an identifier that appears in a type tag.
12309 ///
12310 /// \param MagicValue Type tag magic value.
12311 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
12312                             const ValueDecl **VD, uint64_t *MagicValue) {
12313   while(true) {
12314     if (!TypeExpr)
12315       return false;
12316 
12317     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
12318 
12319     switch (TypeExpr->getStmtClass()) {
12320     case Stmt::UnaryOperatorClass: {
12321       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
12322       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
12323         TypeExpr = UO->getSubExpr();
12324         continue;
12325       }
12326       return false;
12327     }
12328 
12329     case Stmt::DeclRefExprClass: {
12330       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
12331       *VD = DRE->getDecl();
12332       return true;
12333     }
12334 
12335     case Stmt::IntegerLiteralClass: {
12336       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
12337       llvm::APInt MagicValueAPInt = IL->getValue();
12338       if (MagicValueAPInt.getActiveBits() <= 64) {
12339         *MagicValue = MagicValueAPInt.getZExtValue();
12340         return true;
12341       } else
12342         return false;
12343     }
12344 
12345     case Stmt::BinaryConditionalOperatorClass:
12346     case Stmt::ConditionalOperatorClass: {
12347       const AbstractConditionalOperator *ACO =
12348           cast<AbstractConditionalOperator>(TypeExpr);
12349       bool Result;
12350       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
12351         if (Result)
12352           TypeExpr = ACO->getTrueExpr();
12353         else
12354           TypeExpr = ACO->getFalseExpr();
12355         continue;
12356       }
12357       return false;
12358     }
12359 
12360     case Stmt::BinaryOperatorClass: {
12361       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
12362       if (BO->getOpcode() == BO_Comma) {
12363         TypeExpr = BO->getRHS();
12364         continue;
12365       }
12366       return false;
12367     }
12368 
12369     default:
12370       return false;
12371     }
12372   }
12373 }
12374 
12375 /// Retrieve the C type corresponding to type tag TypeExpr.
12376 ///
12377 /// \param TypeExpr Expression that specifies a type tag.
12378 ///
12379 /// \param MagicValues Registered magic values.
12380 ///
12381 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
12382 ///        kind.
12383 ///
12384 /// \param TypeInfo Information about the corresponding C type.
12385 ///
12386 /// \returns true if the corresponding C type was found.
12387 static bool GetMatchingCType(
12388         const IdentifierInfo *ArgumentKind,
12389         const Expr *TypeExpr, const ASTContext &Ctx,
12390         const llvm::DenseMap<Sema::TypeTagMagicValue,
12391                              Sema::TypeTagData> *MagicValues,
12392         bool &FoundWrongKind,
12393         Sema::TypeTagData &TypeInfo) {
12394   FoundWrongKind = false;
12395 
12396   // Variable declaration that has type_tag_for_datatype attribute.
12397   const ValueDecl *VD = nullptr;
12398 
12399   uint64_t MagicValue;
12400 
12401   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
12402     return false;
12403 
12404   if (VD) {
12405     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
12406       if (I->getArgumentKind() != ArgumentKind) {
12407         FoundWrongKind = true;
12408         return false;
12409       }
12410       TypeInfo.Type = I->getMatchingCType();
12411       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
12412       TypeInfo.MustBeNull = I->getMustBeNull();
12413       return true;
12414     }
12415     return false;
12416   }
12417 
12418   if (!MagicValues)
12419     return false;
12420 
12421   llvm::DenseMap<Sema::TypeTagMagicValue,
12422                  Sema::TypeTagData>::const_iterator I =
12423       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
12424   if (I == MagicValues->end())
12425     return false;
12426 
12427   TypeInfo = I->second;
12428   return true;
12429 }
12430 
12431 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12432                                       uint64_t MagicValue, QualType Type,
12433                                       bool LayoutCompatible,
12434                                       bool MustBeNull) {
12435   if (!TypeTagForDatatypeMagicValues)
12436     TypeTagForDatatypeMagicValues.reset(
12437         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
12438 
12439   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
12440   (*TypeTagForDatatypeMagicValues)[Magic] =
12441       TypeTagData(Type, LayoutCompatible, MustBeNull);
12442 }
12443 
12444 static bool IsSameCharType(QualType T1, QualType T2) {
12445   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
12446   if (!BT1)
12447     return false;
12448 
12449   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
12450   if (!BT2)
12451     return false;
12452 
12453   BuiltinType::Kind T1Kind = BT1->getKind();
12454   BuiltinType::Kind T2Kind = BT2->getKind();
12455 
12456   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
12457          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
12458          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
12459          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
12460 }
12461 
12462 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12463                                     const ArrayRef<const Expr *> ExprArgs,
12464                                     SourceLocation CallSiteLoc) {
12465   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
12466   bool IsPointerAttr = Attr->getIsPointer();
12467 
12468   // Retrieve the argument representing the 'type_tag'.
12469   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
12470   if (TypeTagIdxAST >= ExprArgs.size()) {
12471     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
12472         << 0 << Attr->getTypeTagIdx().getSourceIndex();
12473     return;
12474   }
12475   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
12476   bool FoundWrongKind;
12477   TypeTagData TypeInfo;
12478   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
12479                         TypeTagForDatatypeMagicValues.get(),
12480                         FoundWrongKind, TypeInfo)) {
12481     if (FoundWrongKind)
12482       Diag(TypeTagExpr->getExprLoc(),
12483            diag::warn_type_tag_for_datatype_wrong_kind)
12484         << TypeTagExpr->getSourceRange();
12485     return;
12486   }
12487 
12488   // Retrieve the argument representing the 'arg_idx'.
12489   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
12490   if (ArgumentIdxAST >= ExprArgs.size()) {
12491     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
12492         << 1 << Attr->getArgumentIdx().getSourceIndex();
12493     return;
12494   }
12495   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
12496   if (IsPointerAttr) {
12497     // Skip implicit cast of pointer to `void *' (as a function argument).
12498     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
12499       if (ICE->getType()->isVoidPointerType() &&
12500           ICE->getCastKind() == CK_BitCast)
12501         ArgumentExpr = ICE->getSubExpr();
12502   }
12503   QualType ArgumentType = ArgumentExpr->getType();
12504 
12505   // Passing a `void*' pointer shouldn't trigger a warning.
12506   if (IsPointerAttr && ArgumentType->isVoidPointerType())
12507     return;
12508 
12509   if (TypeInfo.MustBeNull) {
12510     // Type tag with matching void type requires a null pointer.
12511     if (!ArgumentExpr->isNullPointerConstant(Context,
12512                                              Expr::NPC_ValueDependentIsNotNull)) {
12513       Diag(ArgumentExpr->getExprLoc(),
12514            diag::warn_type_safety_null_pointer_required)
12515           << ArgumentKind->getName()
12516           << ArgumentExpr->getSourceRange()
12517           << TypeTagExpr->getSourceRange();
12518     }
12519     return;
12520   }
12521 
12522   QualType RequiredType = TypeInfo.Type;
12523   if (IsPointerAttr)
12524     RequiredType = Context.getPointerType(RequiredType);
12525 
12526   bool mismatch = false;
12527   if (!TypeInfo.LayoutCompatible) {
12528     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
12529 
12530     // C++11 [basic.fundamental] p1:
12531     // Plain char, signed char, and unsigned char are three distinct types.
12532     //
12533     // But we treat plain `char' as equivalent to `signed char' or `unsigned
12534     // char' depending on the current char signedness mode.
12535     if (mismatch)
12536       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
12537                                            RequiredType->getPointeeType())) ||
12538           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
12539         mismatch = false;
12540   } else
12541     if (IsPointerAttr)
12542       mismatch = !isLayoutCompatible(Context,
12543                                      ArgumentType->getPointeeType(),
12544                                      RequiredType->getPointeeType());
12545     else
12546       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
12547 
12548   if (mismatch)
12549     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
12550         << ArgumentType << ArgumentKind
12551         << TypeInfo.LayoutCompatible << RequiredType
12552         << ArgumentExpr->getSourceRange()
12553         << TypeTagExpr->getSourceRange();
12554 }
12555 
12556 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12557                                          CharUnits Alignment) {
12558   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
12559 }
12560 
12561 void Sema::DiagnoseMisalignedMembers() {
12562   for (MisalignedMember &m : MisalignedMembers) {
12563     const NamedDecl *ND = m.RD;
12564     if (ND->getName().empty()) {
12565       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
12566         ND = TD;
12567     }
12568     Diag(m.E->getLocStart(), diag::warn_taking_address_of_packed_member)
12569         << m.MD << ND << m.E->getSourceRange();
12570   }
12571   MisalignedMembers.clear();
12572 }
12573 
12574 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
12575   E = E->IgnoreParens();
12576   if (!T->isPointerType() && !T->isIntegerType())
12577     return;
12578   if (isa<UnaryOperator>(E) &&
12579       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
12580     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
12581     if (isa<MemberExpr>(Op)) {
12582       auto MA = std::find(MisalignedMembers.begin(), MisalignedMembers.end(),
12583                           MisalignedMember(Op));
12584       if (MA != MisalignedMembers.end() &&
12585           (T->isIntegerType() ||
12586            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
12587                                    Context.getTypeAlignInChars(
12588                                        T->getPointeeType()) <= MA->Alignment))))
12589         MisalignedMembers.erase(MA);
12590     }
12591   }
12592 }
12593 
12594 void Sema::RefersToMemberWithReducedAlignment(
12595     Expr *E,
12596     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12597         Action) {
12598   const auto *ME = dyn_cast<MemberExpr>(E);
12599   if (!ME)
12600     return;
12601 
12602   // No need to check expressions with an __unaligned-qualified type.
12603   if (E->getType().getQualifiers().hasUnaligned())
12604     return;
12605 
12606   // For a chain of MemberExpr like "a.b.c.d" this list
12607   // will keep FieldDecl's like [d, c, b].
12608   SmallVector<FieldDecl *, 4> ReverseMemberChain;
12609   const MemberExpr *TopME = nullptr;
12610   bool AnyIsPacked = false;
12611   do {
12612     QualType BaseType = ME->getBase()->getType();
12613     if (ME->isArrow())
12614       BaseType = BaseType->getPointeeType();
12615     RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl();
12616     if (RD->isInvalidDecl())
12617       return;
12618 
12619     ValueDecl *MD = ME->getMemberDecl();
12620     auto *FD = dyn_cast<FieldDecl>(MD);
12621     // We do not care about non-data members.
12622     if (!FD || FD->isInvalidDecl())
12623       return;
12624 
12625     AnyIsPacked =
12626         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
12627     ReverseMemberChain.push_back(FD);
12628 
12629     TopME = ME;
12630     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
12631   } while (ME);
12632   assert(TopME && "We did not compute a topmost MemberExpr!");
12633 
12634   // Not the scope of this diagnostic.
12635   if (!AnyIsPacked)
12636     return;
12637 
12638   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
12639   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
12640   // TODO: The innermost base of the member expression may be too complicated.
12641   // For now, just disregard these cases. This is left for future
12642   // improvement.
12643   if (!DRE && !isa<CXXThisExpr>(TopBase))
12644       return;
12645 
12646   // Alignment expected by the whole expression.
12647   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
12648 
12649   // No need to do anything else with this case.
12650   if (ExpectedAlignment.isOne())
12651     return;
12652 
12653   // Synthesize offset of the whole access.
12654   CharUnits Offset;
12655   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
12656        I++) {
12657     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
12658   }
12659 
12660   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
12661   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
12662       ReverseMemberChain.back()->getParent()->getTypeForDecl());
12663 
12664   // The base expression of the innermost MemberExpr may give
12665   // stronger guarantees than the class containing the member.
12666   if (DRE && !TopME->isArrow()) {
12667     const ValueDecl *VD = DRE->getDecl();
12668     if (!VD->getType()->isReferenceType())
12669       CompleteObjectAlignment =
12670           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
12671   }
12672 
12673   // Check if the synthesized offset fulfills the alignment.
12674   if (Offset % ExpectedAlignment != 0 ||
12675       // It may fulfill the offset it but the effective alignment may still be
12676       // lower than the expected expression alignment.
12677       CompleteObjectAlignment < ExpectedAlignment) {
12678     // If this happens, we want to determine a sensible culprit of this.
12679     // Intuitively, watching the chain of member expressions from right to
12680     // left, we start with the required alignment (as required by the field
12681     // type) but some packed attribute in that chain has reduced the alignment.
12682     // It may happen that another packed structure increases it again. But if
12683     // we are here such increase has not been enough. So pointing the first
12684     // FieldDecl that either is packed or else its RecordDecl is,
12685     // seems reasonable.
12686     FieldDecl *FD = nullptr;
12687     CharUnits Alignment;
12688     for (FieldDecl *FDI : ReverseMemberChain) {
12689       if (FDI->hasAttr<PackedAttr>() ||
12690           FDI->getParent()->hasAttr<PackedAttr>()) {
12691         FD = FDI;
12692         Alignment = std::min(
12693             Context.getTypeAlignInChars(FD->getType()),
12694             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
12695         break;
12696       }
12697     }
12698     assert(FD && "We did not find a packed FieldDecl!");
12699     Action(E, FD->getParent(), FD, Alignment);
12700   }
12701 }
12702 
12703 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
12704   using namespace std::placeholders;
12705 
12706   RefersToMemberWithReducedAlignment(
12707       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
12708                      _2, _3, _4));
12709 }
12710