1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/ExprOpenMP.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/Format.h"
41 #include "llvm/Support/Locale.h"
42 #include "llvm/Support/raw_ostream.h"
43 
44 using namespace clang;
45 using namespace sema;
46 
47 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
48                                                     unsigned ByteNo) const {
49   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
50                                Context.getTargetInfo());
51 }
52 
53 /// Checks that a call expression's argument count is the desired number.
54 /// This is useful when doing custom type-checking.  Returns true on error.
55 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
56   unsigned argCount = call->getNumArgs();
57   if (argCount == desiredArgCount) return false;
58 
59   if (argCount < desiredArgCount)
60     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
61         << 0 /*function call*/ << desiredArgCount << argCount
62         << call->getSourceRange();
63 
64   // Highlight all the excess arguments.
65   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
66                     call->getArg(argCount - 1)->getLocEnd());
67 
68   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
69     << 0 /*function call*/ << desiredArgCount << argCount
70     << call->getArg(1)->getSourceRange();
71 }
72 
73 /// Check that the first argument to __builtin_annotation is an integer
74 /// and the second argument is a non-wide string literal.
75 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
76   if (checkArgCount(S, TheCall, 2))
77     return true;
78 
79   // First argument should be an integer.
80   Expr *ValArg = TheCall->getArg(0);
81   QualType Ty = ValArg->getType();
82   if (!Ty->isIntegerType()) {
83     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
84       << ValArg->getSourceRange();
85     return true;
86   }
87 
88   // Second argument should be a constant string.
89   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
90   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
91   if (!Literal || !Literal->isAscii()) {
92     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
93       << StrArg->getSourceRange();
94     return true;
95   }
96 
97   TheCall->setType(Ty);
98   return false;
99 }
100 
101 /// Check that the argument to __builtin_addressof is a glvalue, and set the
102 /// result type to the corresponding pointer type.
103 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
104   if (checkArgCount(S, TheCall, 1))
105     return true;
106 
107   ExprResult Arg(TheCall->getArg(0));
108   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
109   if (ResultType.isNull())
110     return true;
111 
112   TheCall->setArg(0, Arg.get());
113   TheCall->setType(ResultType);
114   return false;
115 }
116 
117 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
118   if (checkArgCount(S, TheCall, 3))
119     return true;
120 
121   // First two arguments should be integers.
122   for (unsigned I = 0; I < 2; ++I) {
123     Expr *Arg = TheCall->getArg(I);
124     QualType Ty = Arg->getType();
125     if (!Ty->isIntegerType()) {
126       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_int)
127           << Ty << Arg->getSourceRange();
128       return true;
129     }
130   }
131 
132   // Third argument should be a pointer to a non-const integer.
133   // IRGen correctly handles volatile, restrict, and address spaces, and
134   // the other qualifiers aren't possible.
135   {
136     Expr *Arg = TheCall->getArg(2);
137     QualType Ty = Arg->getType();
138     const auto *PtrTy = Ty->getAs<PointerType>();
139     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
140           !PtrTy->getPointeeType().isConstQualified())) {
141       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_ptr_int)
142           << Ty << Arg->getSourceRange();
143       return true;
144     }
145   }
146 
147   return false;
148 }
149 
150 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
151 		                  CallExpr *TheCall, unsigned SizeIdx,
152                                   unsigned DstSizeIdx) {
153   if (TheCall->getNumArgs() <= SizeIdx ||
154       TheCall->getNumArgs() <= DstSizeIdx)
155     return;
156 
157   const Expr *SizeArg = TheCall->getArg(SizeIdx);
158   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
159 
160   llvm::APSInt Size, DstSize;
161 
162   // find out if both sizes are known at compile time
163   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
164       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
165     return;
166 
167   if (Size.ule(DstSize))
168     return;
169 
170   // confirmed overflow so generate the diagnostic.
171   IdentifierInfo *FnName = FDecl->getIdentifier();
172   SourceLocation SL = TheCall->getLocStart();
173   SourceRange SR = TheCall->getSourceRange();
174 
175   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
176 }
177 
178 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
179   if (checkArgCount(S, BuiltinCall, 2))
180     return true;
181 
182   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
183   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
184   Expr *Call = BuiltinCall->getArg(0);
185   Expr *Chain = BuiltinCall->getArg(1);
186 
187   if (Call->getStmtClass() != Stmt::CallExprClass) {
188     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
189         << Call->getSourceRange();
190     return true;
191   }
192 
193   auto CE = cast<CallExpr>(Call);
194   if (CE->getCallee()->getType()->isBlockPointerType()) {
195     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
196         << Call->getSourceRange();
197     return true;
198   }
199 
200   const Decl *TargetDecl = CE->getCalleeDecl();
201   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
202     if (FD->getBuiltinID()) {
203       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
204           << Call->getSourceRange();
205       return true;
206     }
207 
208   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
209     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
210         << Call->getSourceRange();
211     return true;
212   }
213 
214   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
215   if (ChainResult.isInvalid())
216     return true;
217   if (!ChainResult.get()->getType()->isPointerType()) {
218     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
219         << Chain->getSourceRange();
220     return true;
221   }
222 
223   QualType ReturnTy = CE->getCallReturnType(S.Context);
224   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
225   QualType BuiltinTy = S.Context.getFunctionType(
226       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
227   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
228 
229   Builtin =
230       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
231 
232   BuiltinCall->setType(CE->getType());
233   BuiltinCall->setValueKind(CE->getValueKind());
234   BuiltinCall->setObjectKind(CE->getObjectKind());
235   BuiltinCall->setCallee(Builtin);
236   BuiltinCall->setArg(1, ChainResult.get());
237 
238   return false;
239 }
240 
241 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
242                                      Scope::ScopeFlags NeededScopeFlags,
243                                      unsigned DiagID) {
244   // Scopes aren't available during instantiation. Fortunately, builtin
245   // functions cannot be template args so they cannot be formed through template
246   // instantiation. Therefore checking once during the parse is sufficient.
247   if (!SemaRef.ActiveTemplateInstantiations.empty())
248     return false;
249 
250   Scope *S = SemaRef.getCurScope();
251   while (S && !S->isSEHExceptScope())
252     S = S->getParent();
253   if (!S || !(S->getFlags() & NeededScopeFlags)) {
254     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
255     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
256         << DRE->getDecl()->getIdentifier();
257     return true;
258   }
259 
260   return false;
261 }
262 
263 static inline bool isBlockPointer(Expr *Arg) {
264   return Arg->getType()->isBlockPointerType();
265 }
266 
267 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
268 /// void*, which is a requirement of device side enqueue.
269 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
270   const BlockPointerType *BPT =
271       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
272   ArrayRef<QualType> Params =
273       BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes();
274   unsigned ArgCounter = 0;
275   bool IllegalParams = false;
276   // Iterate through the block parameters until either one is found that is not
277   // a local void*, or the block is valid.
278   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
279        I != E; ++I, ++ArgCounter) {
280     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
281         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
282             LangAS::opencl_local) {
283       // Get the location of the error. If a block literal has been passed
284       // (BlockExpr) then we can point straight to the offending argument,
285       // else we just point to the variable reference.
286       SourceLocation ErrorLoc;
287       if (isa<BlockExpr>(BlockArg)) {
288         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
289         ErrorLoc = BD->getParamDecl(ArgCounter)->getLocStart();
290       } else if (isa<DeclRefExpr>(BlockArg)) {
291         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getLocStart();
292       }
293       S.Diag(ErrorLoc,
294              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
295       IllegalParams = true;
296     }
297   }
298 
299   return IllegalParams;
300 }
301 
302 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
303 /// get_kernel_work_group_size
304 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
305 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
306   if (checkArgCount(S, TheCall, 1))
307     return true;
308 
309   Expr *BlockArg = TheCall->getArg(0);
310   if (!isBlockPointer(BlockArg)) {
311     S.Diag(BlockArg->getLocStart(),
312            diag::err_opencl_enqueue_kernel_expected_type) << "block";
313     return true;
314   }
315   return checkOpenCLBlockArgs(S, BlockArg);
316 }
317 
318 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
319                                             unsigned Start, unsigned End);
320 
321 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
322 /// 'local void*' parameter of passed block.
323 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
324                                            Expr *BlockArg,
325                                            unsigned NumNonVarArgs) {
326   const BlockPointerType *BPT =
327       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
328   unsigned NumBlockParams =
329       BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams();
330   unsigned TotalNumArgs = TheCall->getNumArgs();
331 
332   // For each argument passed to the block, a corresponding uint needs to
333   // be passed to describe the size of the local memory.
334   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
335     S.Diag(TheCall->getLocStart(),
336            diag::err_opencl_enqueue_kernel_local_size_args);
337     return true;
338   }
339 
340   // Check that the sizes of the local memory are specified by integers.
341   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
342                                          TotalNumArgs - 1);
343 }
344 
345 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
346 /// overload formats specified in Table 6.13.17.1.
347 /// int enqueue_kernel(queue_t queue,
348 ///                    kernel_enqueue_flags_t flags,
349 ///                    const ndrange_t ndrange,
350 ///                    void (^block)(void))
351 /// int enqueue_kernel(queue_t queue,
352 ///                    kernel_enqueue_flags_t flags,
353 ///                    const ndrange_t ndrange,
354 ///                    uint num_events_in_wait_list,
355 ///                    clk_event_t *event_wait_list,
356 ///                    clk_event_t *event_ret,
357 ///                    void (^block)(void))
358 /// int enqueue_kernel(queue_t queue,
359 ///                    kernel_enqueue_flags_t flags,
360 ///                    const ndrange_t ndrange,
361 ///                    void (^block)(local void*, ...),
362 ///                    uint size0, ...)
363 /// int enqueue_kernel(queue_t queue,
364 ///                    kernel_enqueue_flags_t flags,
365 ///                    const ndrange_t ndrange,
366 ///                    uint num_events_in_wait_list,
367 ///                    clk_event_t *event_wait_list,
368 ///                    clk_event_t *event_ret,
369 ///                    void (^block)(local void*, ...),
370 ///                    uint size0, ...)
371 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
372   unsigned NumArgs = TheCall->getNumArgs();
373 
374   if (NumArgs < 4) {
375     S.Diag(TheCall->getLocStart(), diag::err_typecheck_call_too_few_args);
376     return true;
377   }
378 
379   Expr *Arg0 = TheCall->getArg(0);
380   Expr *Arg1 = TheCall->getArg(1);
381   Expr *Arg2 = TheCall->getArg(2);
382   Expr *Arg3 = TheCall->getArg(3);
383 
384   // First argument always needs to be a queue_t type.
385   if (!Arg0->getType()->isQueueT()) {
386     S.Diag(TheCall->getArg(0)->getLocStart(),
387            diag::err_opencl_enqueue_kernel_expected_type)
388         << S.Context.OCLQueueTy;
389     return true;
390   }
391 
392   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
393   if (!Arg1->getType()->isIntegerType()) {
394     S.Diag(TheCall->getArg(1)->getLocStart(),
395            diag::err_opencl_enqueue_kernel_expected_type)
396         << "'kernel_enqueue_flags_t' (i.e. uint)";
397     return true;
398   }
399 
400   // Third argument is always an ndrange_t type.
401   if (!Arg2->getType()->isNDRangeT()) {
402     S.Diag(TheCall->getArg(2)->getLocStart(),
403            diag::err_opencl_enqueue_kernel_expected_type)
404         << S.Context.OCLNDRangeTy;
405     return true;
406   }
407 
408   // With four arguments, there is only one form that the function could be
409   // called in: no events and no variable arguments.
410   if (NumArgs == 4) {
411     // check that the last argument is the right block type.
412     if (!isBlockPointer(Arg3)) {
413       S.Diag(Arg3->getLocStart(), diag::err_opencl_enqueue_kernel_expected_type)
414           << "block";
415       return true;
416     }
417     // we have a block type, check the prototype
418     const BlockPointerType *BPT =
419         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
420     if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) {
421       S.Diag(Arg3->getLocStart(),
422              diag::err_opencl_enqueue_kernel_blocks_no_args);
423       return true;
424     }
425     return false;
426   }
427   // we can have block + varargs.
428   if (isBlockPointer(Arg3))
429     return (checkOpenCLBlockArgs(S, Arg3) ||
430             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
431   // last two cases with either exactly 7 args or 7 args and varargs.
432   if (NumArgs >= 7) {
433     // check common block argument.
434     Expr *Arg6 = TheCall->getArg(6);
435     if (!isBlockPointer(Arg6)) {
436       S.Diag(Arg6->getLocStart(), diag::err_opencl_enqueue_kernel_expected_type)
437           << "block";
438       return true;
439     }
440     if (checkOpenCLBlockArgs(S, Arg6))
441       return true;
442 
443     // Forth argument has to be any integer type.
444     if (!Arg3->getType()->isIntegerType()) {
445       S.Diag(TheCall->getArg(3)->getLocStart(),
446              diag::err_opencl_enqueue_kernel_expected_type)
447           << "integer";
448       return true;
449     }
450     // check remaining common arguments.
451     Expr *Arg4 = TheCall->getArg(4);
452     Expr *Arg5 = TheCall->getArg(5);
453 
454     // Fith argument is always passed as pointers to clk_event_t.
455     if (!Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
456       S.Diag(TheCall->getArg(4)->getLocStart(),
457              diag::err_opencl_enqueue_kernel_expected_type)
458           << S.Context.getPointerType(S.Context.OCLClkEventTy);
459       return true;
460     }
461 
462     // Sixth argument is always passed as pointers to clk_event_t.
463     if (!(Arg5->getType()->isPointerType() &&
464           Arg5->getType()->getPointeeType()->isClkEventT())) {
465       S.Diag(TheCall->getArg(5)->getLocStart(),
466              diag::err_opencl_enqueue_kernel_expected_type)
467           << S.Context.getPointerType(S.Context.OCLClkEventTy);
468       return true;
469     }
470 
471     if (NumArgs == 7)
472       return false;
473 
474     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
475   }
476 
477   // None of the specific case has been detected, give generic error
478   S.Diag(TheCall->getLocStart(),
479          diag::err_opencl_enqueue_kernel_incorrect_args);
480   return true;
481 }
482 
483 /// Returns OpenCL access qual.
484 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
485     return D->getAttr<OpenCLAccessAttr>();
486 }
487 
488 /// Returns true if pipe element type is different from the pointer.
489 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
490   const Expr *Arg0 = Call->getArg(0);
491   // First argument type should always be pipe.
492   if (!Arg0->getType()->isPipeType()) {
493     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
494         << Call->getDirectCallee() << Arg0->getSourceRange();
495     return true;
496   }
497   OpenCLAccessAttr *AccessQual =
498       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
499   // Validates the access qualifier is compatible with the call.
500   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
501   // read_only and write_only, and assumed to be read_only if no qualifier is
502   // specified.
503   switch (Call->getDirectCallee()->getBuiltinID()) {
504   case Builtin::BIread_pipe:
505   case Builtin::BIreserve_read_pipe:
506   case Builtin::BIcommit_read_pipe:
507   case Builtin::BIwork_group_reserve_read_pipe:
508   case Builtin::BIsub_group_reserve_read_pipe:
509   case Builtin::BIwork_group_commit_read_pipe:
510   case Builtin::BIsub_group_commit_read_pipe:
511     if (!(!AccessQual || AccessQual->isReadOnly())) {
512       S.Diag(Arg0->getLocStart(),
513              diag::err_opencl_builtin_pipe_invalid_access_modifier)
514           << "read_only" << Arg0->getSourceRange();
515       return true;
516     }
517     break;
518   case Builtin::BIwrite_pipe:
519   case Builtin::BIreserve_write_pipe:
520   case Builtin::BIcommit_write_pipe:
521   case Builtin::BIwork_group_reserve_write_pipe:
522   case Builtin::BIsub_group_reserve_write_pipe:
523   case Builtin::BIwork_group_commit_write_pipe:
524   case Builtin::BIsub_group_commit_write_pipe:
525     if (!(AccessQual && AccessQual->isWriteOnly())) {
526       S.Diag(Arg0->getLocStart(),
527              diag::err_opencl_builtin_pipe_invalid_access_modifier)
528           << "write_only" << Arg0->getSourceRange();
529       return true;
530     }
531     break;
532   default:
533     break;
534   }
535   return false;
536 }
537 
538 /// Returns true if pipe element type is different from the pointer.
539 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
540   const Expr *Arg0 = Call->getArg(0);
541   const Expr *ArgIdx = Call->getArg(Idx);
542   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
543   const QualType EltTy = PipeTy->getElementType();
544   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
545   // The Idx argument should be a pointer and the type of the pointer and
546   // the type of pipe element should also be the same.
547   if (!ArgTy ||
548       !S.Context.hasSameType(
549           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
550     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
551         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
552         << ArgIdx->getType() << ArgIdx->getSourceRange();
553     return true;
554   }
555   return false;
556 }
557 
558 // \brief Performs semantic analysis for the read/write_pipe call.
559 // \param S Reference to the semantic analyzer.
560 // \param Call A pointer to the builtin call.
561 // \return True if a semantic error has been found, false otherwise.
562 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
563   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
564   // functions have two forms.
565   switch (Call->getNumArgs()) {
566   case 2: {
567     if (checkOpenCLPipeArg(S, Call))
568       return true;
569     // The call with 2 arguments should be
570     // read/write_pipe(pipe T, T*).
571     // Check packet type T.
572     if (checkOpenCLPipePacketType(S, Call, 1))
573       return true;
574   } break;
575 
576   case 4: {
577     if (checkOpenCLPipeArg(S, Call))
578       return true;
579     // The call with 4 arguments should be
580     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
581     // Check reserve_id_t.
582     if (!Call->getArg(1)->getType()->isReserveIDT()) {
583       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
584           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
585           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
586       return true;
587     }
588 
589     // Check the index.
590     const Expr *Arg2 = Call->getArg(2);
591     if (!Arg2->getType()->isIntegerType() &&
592         !Arg2->getType()->isUnsignedIntegerType()) {
593       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
594           << Call->getDirectCallee() << S.Context.UnsignedIntTy
595           << Arg2->getType() << Arg2->getSourceRange();
596       return true;
597     }
598 
599     // Check packet type T.
600     if (checkOpenCLPipePacketType(S, Call, 3))
601       return true;
602   } break;
603   default:
604     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_arg_num)
605         << Call->getDirectCallee() << Call->getSourceRange();
606     return true;
607   }
608 
609   return false;
610 }
611 
612 // \brief Performs a semantic analysis on the {work_group_/sub_group_
613 //        /_}reserve_{read/write}_pipe
614 // \param S Reference to the semantic analyzer.
615 // \param Call The call to the builtin function to be analyzed.
616 // \return True if a semantic error was found, false otherwise.
617 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
618   if (checkArgCount(S, Call, 2))
619     return true;
620 
621   if (checkOpenCLPipeArg(S, Call))
622     return true;
623 
624   // Check the reserve size.
625   if (!Call->getArg(1)->getType()->isIntegerType() &&
626       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
627     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
628         << Call->getDirectCallee() << S.Context.UnsignedIntTy
629         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
630     return true;
631   }
632 
633   return false;
634 }
635 
636 // \brief Performs a semantic analysis on {work_group_/sub_group_
637 //        /_}commit_{read/write}_pipe
638 // \param S Reference to the semantic analyzer.
639 // \param Call The call to the builtin function to be analyzed.
640 // \return True if a semantic error was found, false otherwise.
641 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
642   if (checkArgCount(S, Call, 2))
643     return true;
644 
645   if (checkOpenCLPipeArg(S, Call))
646     return true;
647 
648   // Check reserve_id_t.
649   if (!Call->getArg(1)->getType()->isReserveIDT()) {
650     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
651         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
652         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
653     return true;
654   }
655 
656   return false;
657 }
658 
659 // \brief Performs a semantic analysis on the call to built-in Pipe
660 //        Query Functions.
661 // \param S Reference to the semantic analyzer.
662 // \param Call The call to the builtin function to be analyzed.
663 // \return True if a semantic error was found, false otherwise.
664 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
665   if (checkArgCount(S, Call, 1))
666     return true;
667 
668   if (!Call->getArg(0)->getType()->isPipeType()) {
669     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
670         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
671     return true;
672   }
673 
674   return false;
675 }
676 // \brief OpenCL v2.0 s6.13.9 - Address space qualifier functions.
677 // \brief Performs semantic analysis for the to_global/local/private call.
678 // \param S Reference to the semantic analyzer.
679 // \param BuiltinID ID of the builtin function.
680 // \param Call A pointer to the builtin call.
681 // \return True if a semantic error has been found, false otherwise.
682 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
683                                     CallExpr *Call) {
684   if (Call->getNumArgs() != 1) {
685     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_arg_num)
686         << Call->getDirectCallee() << Call->getSourceRange();
687     return true;
688   }
689 
690   auto RT = Call->getArg(0)->getType();
691   if (!RT->isPointerType() || RT->getPointeeType()
692       .getAddressSpace() == LangAS::opencl_constant) {
693     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_invalid_arg)
694         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
695     return true;
696   }
697 
698   RT = RT->getPointeeType();
699   auto Qual = RT.getQualifiers();
700   switch (BuiltinID) {
701   case Builtin::BIto_global:
702     Qual.setAddressSpace(LangAS::opencl_global);
703     break;
704   case Builtin::BIto_local:
705     Qual.setAddressSpace(LangAS::opencl_local);
706     break;
707   default:
708     Qual.removeAddressSpace();
709   }
710   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
711       RT.getUnqualifiedType(), Qual)));
712 
713   return false;
714 }
715 
716 ExprResult
717 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
718                                CallExpr *TheCall) {
719   ExprResult TheCallResult(TheCall);
720 
721   // Find out if any arguments are required to be integer constant expressions.
722   unsigned ICEArguments = 0;
723   ASTContext::GetBuiltinTypeError Error;
724   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
725   if (Error != ASTContext::GE_None)
726     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
727 
728   // If any arguments are required to be ICE's, check and diagnose.
729   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
730     // Skip arguments not required to be ICE's.
731     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
732 
733     llvm::APSInt Result;
734     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
735       return true;
736     ICEArguments &= ~(1 << ArgNo);
737   }
738 
739   switch (BuiltinID) {
740   case Builtin::BI__builtin___CFStringMakeConstantString:
741     assert(TheCall->getNumArgs() == 1 &&
742            "Wrong # arguments to builtin CFStringMakeConstantString");
743     if (CheckObjCString(TheCall->getArg(0)))
744       return ExprError();
745     break;
746   case Builtin::BI__builtin_stdarg_start:
747   case Builtin::BI__builtin_va_start:
748     if (SemaBuiltinVAStart(TheCall))
749       return ExprError();
750     break;
751   case Builtin::BI__va_start: {
752     switch (Context.getTargetInfo().getTriple().getArch()) {
753     case llvm::Triple::arm:
754     case llvm::Triple::thumb:
755       if (SemaBuiltinVAStartARM(TheCall))
756         return ExprError();
757       break;
758     default:
759       if (SemaBuiltinVAStart(TheCall))
760         return ExprError();
761       break;
762     }
763     break;
764   }
765   case Builtin::BI__builtin_isgreater:
766   case Builtin::BI__builtin_isgreaterequal:
767   case Builtin::BI__builtin_isless:
768   case Builtin::BI__builtin_islessequal:
769   case Builtin::BI__builtin_islessgreater:
770   case Builtin::BI__builtin_isunordered:
771     if (SemaBuiltinUnorderedCompare(TheCall))
772       return ExprError();
773     break;
774   case Builtin::BI__builtin_fpclassify:
775     if (SemaBuiltinFPClassification(TheCall, 6))
776       return ExprError();
777     break;
778   case Builtin::BI__builtin_isfinite:
779   case Builtin::BI__builtin_isinf:
780   case Builtin::BI__builtin_isinf_sign:
781   case Builtin::BI__builtin_isnan:
782   case Builtin::BI__builtin_isnormal:
783     if (SemaBuiltinFPClassification(TheCall, 1))
784       return ExprError();
785     break;
786   case Builtin::BI__builtin_shufflevector:
787     return SemaBuiltinShuffleVector(TheCall);
788     // TheCall will be freed by the smart pointer here, but that's fine, since
789     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
790   case Builtin::BI__builtin_prefetch:
791     if (SemaBuiltinPrefetch(TheCall))
792       return ExprError();
793     break;
794   case Builtin::BI__assume:
795   case Builtin::BI__builtin_assume:
796     if (SemaBuiltinAssume(TheCall))
797       return ExprError();
798     break;
799   case Builtin::BI__builtin_assume_aligned:
800     if (SemaBuiltinAssumeAligned(TheCall))
801       return ExprError();
802     break;
803   case Builtin::BI__builtin_object_size:
804     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
805       return ExprError();
806     break;
807   case Builtin::BI__builtin_longjmp:
808     if (SemaBuiltinLongjmp(TheCall))
809       return ExprError();
810     break;
811   case Builtin::BI__builtin_setjmp:
812     if (SemaBuiltinSetjmp(TheCall))
813       return ExprError();
814     break;
815   case Builtin::BI_setjmp:
816   case Builtin::BI_setjmpex:
817     if (checkArgCount(*this, TheCall, 1))
818       return true;
819     break;
820 
821   case Builtin::BI__builtin_classify_type:
822     if (checkArgCount(*this, TheCall, 1)) return true;
823     TheCall->setType(Context.IntTy);
824     break;
825   case Builtin::BI__builtin_constant_p:
826     if (checkArgCount(*this, TheCall, 1)) return true;
827     TheCall->setType(Context.IntTy);
828     break;
829   case Builtin::BI__sync_fetch_and_add:
830   case Builtin::BI__sync_fetch_and_add_1:
831   case Builtin::BI__sync_fetch_and_add_2:
832   case Builtin::BI__sync_fetch_and_add_4:
833   case Builtin::BI__sync_fetch_and_add_8:
834   case Builtin::BI__sync_fetch_and_add_16:
835   case Builtin::BI__sync_fetch_and_sub:
836   case Builtin::BI__sync_fetch_and_sub_1:
837   case Builtin::BI__sync_fetch_and_sub_2:
838   case Builtin::BI__sync_fetch_and_sub_4:
839   case Builtin::BI__sync_fetch_and_sub_8:
840   case Builtin::BI__sync_fetch_and_sub_16:
841   case Builtin::BI__sync_fetch_and_or:
842   case Builtin::BI__sync_fetch_and_or_1:
843   case Builtin::BI__sync_fetch_and_or_2:
844   case Builtin::BI__sync_fetch_and_or_4:
845   case Builtin::BI__sync_fetch_and_or_8:
846   case Builtin::BI__sync_fetch_and_or_16:
847   case Builtin::BI__sync_fetch_and_and:
848   case Builtin::BI__sync_fetch_and_and_1:
849   case Builtin::BI__sync_fetch_and_and_2:
850   case Builtin::BI__sync_fetch_and_and_4:
851   case Builtin::BI__sync_fetch_and_and_8:
852   case Builtin::BI__sync_fetch_and_and_16:
853   case Builtin::BI__sync_fetch_and_xor:
854   case Builtin::BI__sync_fetch_and_xor_1:
855   case Builtin::BI__sync_fetch_and_xor_2:
856   case Builtin::BI__sync_fetch_and_xor_4:
857   case Builtin::BI__sync_fetch_and_xor_8:
858   case Builtin::BI__sync_fetch_and_xor_16:
859   case Builtin::BI__sync_fetch_and_nand:
860   case Builtin::BI__sync_fetch_and_nand_1:
861   case Builtin::BI__sync_fetch_and_nand_2:
862   case Builtin::BI__sync_fetch_and_nand_4:
863   case Builtin::BI__sync_fetch_and_nand_8:
864   case Builtin::BI__sync_fetch_and_nand_16:
865   case Builtin::BI__sync_add_and_fetch:
866   case Builtin::BI__sync_add_and_fetch_1:
867   case Builtin::BI__sync_add_and_fetch_2:
868   case Builtin::BI__sync_add_and_fetch_4:
869   case Builtin::BI__sync_add_and_fetch_8:
870   case Builtin::BI__sync_add_and_fetch_16:
871   case Builtin::BI__sync_sub_and_fetch:
872   case Builtin::BI__sync_sub_and_fetch_1:
873   case Builtin::BI__sync_sub_and_fetch_2:
874   case Builtin::BI__sync_sub_and_fetch_4:
875   case Builtin::BI__sync_sub_and_fetch_8:
876   case Builtin::BI__sync_sub_and_fetch_16:
877   case Builtin::BI__sync_and_and_fetch:
878   case Builtin::BI__sync_and_and_fetch_1:
879   case Builtin::BI__sync_and_and_fetch_2:
880   case Builtin::BI__sync_and_and_fetch_4:
881   case Builtin::BI__sync_and_and_fetch_8:
882   case Builtin::BI__sync_and_and_fetch_16:
883   case Builtin::BI__sync_or_and_fetch:
884   case Builtin::BI__sync_or_and_fetch_1:
885   case Builtin::BI__sync_or_and_fetch_2:
886   case Builtin::BI__sync_or_and_fetch_4:
887   case Builtin::BI__sync_or_and_fetch_8:
888   case Builtin::BI__sync_or_and_fetch_16:
889   case Builtin::BI__sync_xor_and_fetch:
890   case Builtin::BI__sync_xor_and_fetch_1:
891   case Builtin::BI__sync_xor_and_fetch_2:
892   case Builtin::BI__sync_xor_and_fetch_4:
893   case Builtin::BI__sync_xor_and_fetch_8:
894   case Builtin::BI__sync_xor_and_fetch_16:
895   case Builtin::BI__sync_nand_and_fetch:
896   case Builtin::BI__sync_nand_and_fetch_1:
897   case Builtin::BI__sync_nand_and_fetch_2:
898   case Builtin::BI__sync_nand_and_fetch_4:
899   case Builtin::BI__sync_nand_and_fetch_8:
900   case Builtin::BI__sync_nand_and_fetch_16:
901   case Builtin::BI__sync_val_compare_and_swap:
902   case Builtin::BI__sync_val_compare_and_swap_1:
903   case Builtin::BI__sync_val_compare_and_swap_2:
904   case Builtin::BI__sync_val_compare_and_swap_4:
905   case Builtin::BI__sync_val_compare_and_swap_8:
906   case Builtin::BI__sync_val_compare_and_swap_16:
907   case Builtin::BI__sync_bool_compare_and_swap:
908   case Builtin::BI__sync_bool_compare_and_swap_1:
909   case Builtin::BI__sync_bool_compare_and_swap_2:
910   case Builtin::BI__sync_bool_compare_and_swap_4:
911   case Builtin::BI__sync_bool_compare_and_swap_8:
912   case Builtin::BI__sync_bool_compare_and_swap_16:
913   case Builtin::BI__sync_lock_test_and_set:
914   case Builtin::BI__sync_lock_test_and_set_1:
915   case Builtin::BI__sync_lock_test_and_set_2:
916   case Builtin::BI__sync_lock_test_and_set_4:
917   case Builtin::BI__sync_lock_test_and_set_8:
918   case Builtin::BI__sync_lock_test_and_set_16:
919   case Builtin::BI__sync_lock_release:
920   case Builtin::BI__sync_lock_release_1:
921   case Builtin::BI__sync_lock_release_2:
922   case Builtin::BI__sync_lock_release_4:
923   case Builtin::BI__sync_lock_release_8:
924   case Builtin::BI__sync_lock_release_16:
925   case Builtin::BI__sync_swap:
926   case Builtin::BI__sync_swap_1:
927   case Builtin::BI__sync_swap_2:
928   case Builtin::BI__sync_swap_4:
929   case Builtin::BI__sync_swap_8:
930   case Builtin::BI__sync_swap_16:
931     return SemaBuiltinAtomicOverloaded(TheCallResult);
932   case Builtin::BI__builtin_nontemporal_load:
933   case Builtin::BI__builtin_nontemporal_store:
934     return SemaBuiltinNontemporalOverloaded(TheCallResult);
935 #define BUILTIN(ID, TYPE, ATTRS)
936 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
937   case Builtin::BI##ID: \
938     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
939 #include "clang/Basic/Builtins.def"
940   case Builtin::BI__builtin_annotation:
941     if (SemaBuiltinAnnotation(*this, TheCall))
942       return ExprError();
943     break;
944   case Builtin::BI__builtin_addressof:
945     if (SemaBuiltinAddressof(*this, TheCall))
946       return ExprError();
947     break;
948   case Builtin::BI__builtin_add_overflow:
949   case Builtin::BI__builtin_sub_overflow:
950   case Builtin::BI__builtin_mul_overflow:
951     if (SemaBuiltinOverflow(*this, TheCall))
952       return ExprError();
953     break;
954   case Builtin::BI__builtin_operator_new:
955   case Builtin::BI__builtin_operator_delete:
956     if (!getLangOpts().CPlusPlus) {
957       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
958         << (BuiltinID == Builtin::BI__builtin_operator_new
959                 ? "__builtin_operator_new"
960                 : "__builtin_operator_delete")
961         << "C++";
962       return ExprError();
963     }
964     // CodeGen assumes it can find the global new and delete to call,
965     // so ensure that they are declared.
966     DeclareGlobalNewDelete();
967     break;
968 
969   // check secure string manipulation functions where overflows
970   // are detectable at compile time
971   case Builtin::BI__builtin___memcpy_chk:
972   case Builtin::BI__builtin___memmove_chk:
973   case Builtin::BI__builtin___memset_chk:
974   case Builtin::BI__builtin___strlcat_chk:
975   case Builtin::BI__builtin___strlcpy_chk:
976   case Builtin::BI__builtin___strncat_chk:
977   case Builtin::BI__builtin___strncpy_chk:
978   case Builtin::BI__builtin___stpncpy_chk:
979     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
980     break;
981   case Builtin::BI__builtin___memccpy_chk:
982     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
983     break;
984   case Builtin::BI__builtin___snprintf_chk:
985   case Builtin::BI__builtin___vsnprintf_chk:
986     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
987     break;
988   case Builtin::BI__builtin_call_with_static_chain:
989     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
990       return ExprError();
991     break;
992   case Builtin::BI__exception_code:
993   case Builtin::BI_exception_code:
994     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
995                                  diag::err_seh___except_block))
996       return ExprError();
997     break;
998   case Builtin::BI__exception_info:
999   case Builtin::BI_exception_info:
1000     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1001                                  diag::err_seh___except_filter))
1002       return ExprError();
1003     break;
1004   case Builtin::BI__GetExceptionInfo:
1005     if (checkArgCount(*this, TheCall, 1))
1006       return ExprError();
1007 
1008     if (CheckCXXThrowOperand(
1009             TheCall->getLocStart(),
1010             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1011             TheCall))
1012       return ExprError();
1013 
1014     TheCall->setType(Context.VoidPtrTy);
1015     break;
1016   // OpenCL v2.0, s6.13.16 - Pipe functions
1017   case Builtin::BIread_pipe:
1018   case Builtin::BIwrite_pipe:
1019     // Since those two functions are declared with var args, we need a semantic
1020     // check for the argument.
1021     if (SemaBuiltinRWPipe(*this, TheCall))
1022       return ExprError();
1023     TheCall->setType(Context.IntTy);
1024     break;
1025   case Builtin::BIreserve_read_pipe:
1026   case Builtin::BIreserve_write_pipe:
1027   case Builtin::BIwork_group_reserve_read_pipe:
1028   case Builtin::BIwork_group_reserve_write_pipe:
1029   case Builtin::BIsub_group_reserve_read_pipe:
1030   case Builtin::BIsub_group_reserve_write_pipe:
1031     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1032       return ExprError();
1033     // Since return type of reserve_read/write_pipe built-in function is
1034     // reserve_id_t, which is not defined in the builtin def file , we used int
1035     // as return type and need to override the return type of these functions.
1036     TheCall->setType(Context.OCLReserveIDTy);
1037     break;
1038   case Builtin::BIcommit_read_pipe:
1039   case Builtin::BIcommit_write_pipe:
1040   case Builtin::BIwork_group_commit_read_pipe:
1041   case Builtin::BIwork_group_commit_write_pipe:
1042   case Builtin::BIsub_group_commit_read_pipe:
1043   case Builtin::BIsub_group_commit_write_pipe:
1044     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1045       return ExprError();
1046     break;
1047   case Builtin::BIget_pipe_num_packets:
1048   case Builtin::BIget_pipe_max_packets:
1049     if (SemaBuiltinPipePackets(*this, TheCall))
1050       return ExprError();
1051     TheCall->setType(Context.UnsignedIntTy);
1052     break;
1053   case Builtin::BIto_global:
1054   case Builtin::BIto_local:
1055   case Builtin::BIto_private:
1056     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1057       return ExprError();
1058     break;
1059   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1060   case Builtin::BIenqueue_kernel:
1061     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1062       return ExprError();
1063     break;
1064   case Builtin::BIget_kernel_work_group_size:
1065   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1066     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1067       return ExprError();
1068   }
1069 
1070   // Since the target specific builtins for each arch overlap, only check those
1071   // of the arch we are compiling for.
1072   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1073     switch (Context.getTargetInfo().getTriple().getArch()) {
1074       case llvm::Triple::arm:
1075       case llvm::Triple::armeb:
1076       case llvm::Triple::thumb:
1077       case llvm::Triple::thumbeb:
1078         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1079           return ExprError();
1080         break;
1081       case llvm::Triple::aarch64:
1082       case llvm::Triple::aarch64_be:
1083         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1084           return ExprError();
1085         break;
1086       case llvm::Triple::mips:
1087       case llvm::Triple::mipsel:
1088       case llvm::Triple::mips64:
1089       case llvm::Triple::mips64el:
1090         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1091           return ExprError();
1092         break;
1093       case llvm::Triple::systemz:
1094         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1095           return ExprError();
1096         break;
1097       case llvm::Triple::x86:
1098       case llvm::Triple::x86_64:
1099         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1100           return ExprError();
1101         break;
1102       case llvm::Triple::ppc:
1103       case llvm::Triple::ppc64:
1104       case llvm::Triple::ppc64le:
1105         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1106           return ExprError();
1107         break;
1108       default:
1109         break;
1110     }
1111   }
1112 
1113   return TheCallResult;
1114 }
1115 
1116 // Get the valid immediate range for the specified NEON type code.
1117 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1118   NeonTypeFlags Type(t);
1119   int IsQuad = ForceQuad ? true : Type.isQuad();
1120   switch (Type.getEltType()) {
1121   case NeonTypeFlags::Int8:
1122   case NeonTypeFlags::Poly8:
1123     return shift ? 7 : (8 << IsQuad) - 1;
1124   case NeonTypeFlags::Int16:
1125   case NeonTypeFlags::Poly16:
1126     return shift ? 15 : (4 << IsQuad) - 1;
1127   case NeonTypeFlags::Int32:
1128     return shift ? 31 : (2 << IsQuad) - 1;
1129   case NeonTypeFlags::Int64:
1130   case NeonTypeFlags::Poly64:
1131     return shift ? 63 : (1 << IsQuad) - 1;
1132   case NeonTypeFlags::Poly128:
1133     return shift ? 127 : (1 << IsQuad) - 1;
1134   case NeonTypeFlags::Float16:
1135     assert(!shift && "cannot shift float types!");
1136     return (4 << IsQuad) - 1;
1137   case NeonTypeFlags::Float32:
1138     assert(!shift && "cannot shift float types!");
1139     return (2 << IsQuad) - 1;
1140   case NeonTypeFlags::Float64:
1141     assert(!shift && "cannot shift float types!");
1142     return (1 << IsQuad) - 1;
1143   }
1144   llvm_unreachable("Invalid NeonTypeFlag!");
1145 }
1146 
1147 /// getNeonEltType - Return the QualType corresponding to the elements of
1148 /// the vector type specified by the NeonTypeFlags.  This is used to check
1149 /// the pointer arguments for Neon load/store intrinsics.
1150 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1151                                bool IsPolyUnsigned, bool IsInt64Long) {
1152   switch (Flags.getEltType()) {
1153   case NeonTypeFlags::Int8:
1154     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1155   case NeonTypeFlags::Int16:
1156     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1157   case NeonTypeFlags::Int32:
1158     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1159   case NeonTypeFlags::Int64:
1160     if (IsInt64Long)
1161       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1162     else
1163       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1164                                 : Context.LongLongTy;
1165   case NeonTypeFlags::Poly8:
1166     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1167   case NeonTypeFlags::Poly16:
1168     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1169   case NeonTypeFlags::Poly64:
1170     if (IsInt64Long)
1171       return Context.UnsignedLongTy;
1172     else
1173       return Context.UnsignedLongLongTy;
1174   case NeonTypeFlags::Poly128:
1175     break;
1176   case NeonTypeFlags::Float16:
1177     return Context.HalfTy;
1178   case NeonTypeFlags::Float32:
1179     return Context.FloatTy;
1180   case NeonTypeFlags::Float64:
1181     return Context.DoubleTy;
1182   }
1183   llvm_unreachable("Invalid NeonTypeFlag!");
1184 }
1185 
1186 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1187   llvm::APSInt Result;
1188   uint64_t mask = 0;
1189   unsigned TV = 0;
1190   int PtrArgNum = -1;
1191   bool HasConstPtr = false;
1192   switch (BuiltinID) {
1193 #define GET_NEON_OVERLOAD_CHECK
1194 #include "clang/Basic/arm_neon.inc"
1195 #undef GET_NEON_OVERLOAD_CHECK
1196   }
1197 
1198   // For NEON intrinsics which are overloaded on vector element type, validate
1199   // the immediate which specifies which variant to emit.
1200   unsigned ImmArg = TheCall->getNumArgs()-1;
1201   if (mask) {
1202     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1203       return true;
1204 
1205     TV = Result.getLimitedValue(64);
1206     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1207       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
1208         << TheCall->getArg(ImmArg)->getSourceRange();
1209   }
1210 
1211   if (PtrArgNum >= 0) {
1212     // Check that pointer arguments have the specified type.
1213     Expr *Arg = TheCall->getArg(PtrArgNum);
1214     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1215       Arg = ICE->getSubExpr();
1216     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1217     QualType RHSTy = RHS.get()->getType();
1218 
1219     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1220     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
1221     bool IsInt64Long =
1222         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1223     QualType EltTy =
1224         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1225     if (HasConstPtr)
1226       EltTy = EltTy.withConst();
1227     QualType LHSTy = Context.getPointerType(EltTy);
1228     AssignConvertType ConvTy;
1229     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1230     if (RHS.isInvalid())
1231       return true;
1232     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
1233                                  RHS.get(), AA_Assigning))
1234       return true;
1235   }
1236 
1237   // For NEON intrinsics which take an immediate value as part of the
1238   // instruction, range check them here.
1239   unsigned i = 0, l = 0, u = 0;
1240   switch (BuiltinID) {
1241   default:
1242     return false;
1243 #define GET_NEON_IMMEDIATE_CHECK
1244 #include "clang/Basic/arm_neon.inc"
1245 #undef GET_NEON_IMMEDIATE_CHECK
1246   }
1247 
1248   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1249 }
1250 
1251 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1252                                         unsigned MaxWidth) {
1253   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1254           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1255           BuiltinID == ARM::BI__builtin_arm_strex ||
1256           BuiltinID == ARM::BI__builtin_arm_stlex ||
1257           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1258           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1259           BuiltinID == AArch64::BI__builtin_arm_strex ||
1260           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1261          "unexpected ARM builtin");
1262   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1263                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1264                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1265                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1266 
1267   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1268 
1269   // Ensure that we have the proper number of arguments.
1270   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1271     return true;
1272 
1273   // Inspect the pointer argument of the atomic builtin.  This should always be
1274   // a pointer type, whose element is an integral scalar or pointer type.
1275   // Because it is a pointer type, we don't have to worry about any implicit
1276   // casts here.
1277   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1278   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1279   if (PointerArgRes.isInvalid())
1280     return true;
1281   PointerArg = PointerArgRes.get();
1282 
1283   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1284   if (!pointerType) {
1285     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1286       << PointerArg->getType() << PointerArg->getSourceRange();
1287     return true;
1288   }
1289 
1290   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1291   // task is to insert the appropriate casts into the AST. First work out just
1292   // what the appropriate type is.
1293   QualType ValType = pointerType->getPointeeType();
1294   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1295   if (IsLdrex)
1296     AddrType.addConst();
1297 
1298   // Issue a warning if the cast is dodgy.
1299   CastKind CastNeeded = CK_NoOp;
1300   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1301     CastNeeded = CK_BitCast;
1302     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
1303       << PointerArg->getType()
1304       << Context.getPointerType(AddrType)
1305       << AA_Passing << PointerArg->getSourceRange();
1306   }
1307 
1308   // Finally, do the cast and replace the argument with the corrected version.
1309   AddrType = Context.getPointerType(AddrType);
1310   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1311   if (PointerArgRes.isInvalid())
1312     return true;
1313   PointerArg = PointerArgRes.get();
1314 
1315   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1316 
1317   // In general, we allow ints, floats and pointers to be loaded and stored.
1318   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1319       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1320     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1321       << PointerArg->getType() << PointerArg->getSourceRange();
1322     return true;
1323   }
1324 
1325   // But ARM doesn't have instructions to deal with 128-bit versions.
1326   if (Context.getTypeSize(ValType) > MaxWidth) {
1327     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1328     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
1329       << PointerArg->getType() << PointerArg->getSourceRange();
1330     return true;
1331   }
1332 
1333   switch (ValType.getObjCLifetime()) {
1334   case Qualifiers::OCL_None:
1335   case Qualifiers::OCL_ExplicitNone:
1336     // okay
1337     break;
1338 
1339   case Qualifiers::OCL_Weak:
1340   case Qualifiers::OCL_Strong:
1341   case Qualifiers::OCL_Autoreleasing:
1342     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1343       << ValType << PointerArg->getSourceRange();
1344     return true;
1345   }
1346 
1347   if (IsLdrex) {
1348     TheCall->setType(ValType);
1349     return false;
1350   }
1351 
1352   // Initialize the argument to be stored.
1353   ExprResult ValArg = TheCall->getArg(0);
1354   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1355       Context, ValType, /*consume*/ false);
1356   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1357   if (ValArg.isInvalid())
1358     return true;
1359   TheCall->setArg(0, ValArg.get());
1360 
1361   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1362   // but the custom checker bypasses all default analysis.
1363   TheCall->setType(Context.IntTy);
1364   return false;
1365 }
1366 
1367 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1368   llvm::APSInt Result;
1369 
1370   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1371       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1372       BuiltinID == ARM::BI__builtin_arm_strex ||
1373       BuiltinID == ARM::BI__builtin_arm_stlex) {
1374     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1375   }
1376 
1377   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1378     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1379       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1380   }
1381 
1382   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1383       BuiltinID == ARM::BI__builtin_arm_wsr64)
1384     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1385 
1386   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1387       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1388       BuiltinID == ARM::BI__builtin_arm_wsr ||
1389       BuiltinID == ARM::BI__builtin_arm_wsrp)
1390     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1391 
1392   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1393     return true;
1394 
1395   // For intrinsics which take an immediate value as part of the instruction,
1396   // range check them here.
1397   unsigned i = 0, l = 0, u = 0;
1398   switch (BuiltinID) {
1399   default: return false;
1400   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
1401   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
1402   case ARM::BI__builtin_arm_vcvtr_f:
1403   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
1404   case ARM::BI__builtin_arm_dmb:
1405   case ARM::BI__builtin_arm_dsb:
1406   case ARM::BI__builtin_arm_isb:
1407   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
1408   }
1409 
1410   // FIXME: VFP Intrinsics should error if VFP not present.
1411   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1412 }
1413 
1414 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1415                                          CallExpr *TheCall) {
1416   llvm::APSInt Result;
1417 
1418   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1419       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1420       BuiltinID == AArch64::BI__builtin_arm_strex ||
1421       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1422     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1423   }
1424 
1425   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1426     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1427       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1428       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1429       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
1430   }
1431 
1432   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1433       BuiltinID == AArch64::BI__builtin_arm_wsr64)
1434     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1435 
1436   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1437       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1438       BuiltinID == AArch64::BI__builtin_arm_wsr ||
1439       BuiltinID == AArch64::BI__builtin_arm_wsrp)
1440     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1441 
1442   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1443     return true;
1444 
1445   // For intrinsics which take an immediate value as part of the instruction,
1446   // range check them here.
1447   unsigned i = 0, l = 0, u = 0;
1448   switch (BuiltinID) {
1449   default: return false;
1450   case AArch64::BI__builtin_arm_dmb:
1451   case AArch64::BI__builtin_arm_dsb:
1452   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1453   }
1454 
1455   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1456 }
1457 
1458 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the
1459 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
1460 // ordering for DSP is unspecified. MSA is ordered by the data format used
1461 // by the underlying instruction i.e., df/m, df/n and then by size.
1462 //
1463 // FIXME: The size tests here should instead be tablegen'd along with the
1464 //        definitions from include/clang/Basic/BuiltinsMips.def.
1465 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
1466 //        be too.
1467 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1468   unsigned i = 0, l = 0, u = 0, m = 0;
1469   switch (BuiltinID) {
1470   default: return false;
1471   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
1472   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
1473   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
1474   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
1475   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
1476   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
1477   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
1478   // MSA instrinsics. Instructions (which the intrinsics maps to) which use the
1479   // df/m field.
1480   // These intrinsics take an unsigned 3 bit immediate.
1481   case Mips::BI__builtin_msa_bclri_b:
1482   case Mips::BI__builtin_msa_bnegi_b:
1483   case Mips::BI__builtin_msa_bseti_b:
1484   case Mips::BI__builtin_msa_sat_s_b:
1485   case Mips::BI__builtin_msa_sat_u_b:
1486   case Mips::BI__builtin_msa_slli_b:
1487   case Mips::BI__builtin_msa_srai_b:
1488   case Mips::BI__builtin_msa_srari_b:
1489   case Mips::BI__builtin_msa_srli_b:
1490   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
1491   case Mips::BI__builtin_msa_binsli_b:
1492   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
1493   // These intrinsics take an unsigned 4 bit immediate.
1494   case Mips::BI__builtin_msa_bclri_h:
1495   case Mips::BI__builtin_msa_bnegi_h:
1496   case Mips::BI__builtin_msa_bseti_h:
1497   case Mips::BI__builtin_msa_sat_s_h:
1498   case Mips::BI__builtin_msa_sat_u_h:
1499   case Mips::BI__builtin_msa_slli_h:
1500   case Mips::BI__builtin_msa_srai_h:
1501   case Mips::BI__builtin_msa_srari_h:
1502   case Mips::BI__builtin_msa_srli_h:
1503   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
1504   case Mips::BI__builtin_msa_binsli_h:
1505   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
1506   // These intrinsics take an unsigned 5 bit immedate.
1507   // The first block of intrinsics actually have an unsigned 5 bit field,
1508   // not a df/n field.
1509   case Mips::BI__builtin_msa_clei_u_b:
1510   case Mips::BI__builtin_msa_clei_u_h:
1511   case Mips::BI__builtin_msa_clei_u_w:
1512   case Mips::BI__builtin_msa_clei_u_d:
1513   case Mips::BI__builtin_msa_clti_u_b:
1514   case Mips::BI__builtin_msa_clti_u_h:
1515   case Mips::BI__builtin_msa_clti_u_w:
1516   case Mips::BI__builtin_msa_clti_u_d:
1517   case Mips::BI__builtin_msa_maxi_u_b:
1518   case Mips::BI__builtin_msa_maxi_u_h:
1519   case Mips::BI__builtin_msa_maxi_u_w:
1520   case Mips::BI__builtin_msa_maxi_u_d:
1521   case Mips::BI__builtin_msa_mini_u_b:
1522   case Mips::BI__builtin_msa_mini_u_h:
1523   case Mips::BI__builtin_msa_mini_u_w:
1524   case Mips::BI__builtin_msa_mini_u_d:
1525   case Mips::BI__builtin_msa_addvi_b:
1526   case Mips::BI__builtin_msa_addvi_h:
1527   case Mips::BI__builtin_msa_addvi_w:
1528   case Mips::BI__builtin_msa_addvi_d:
1529   case Mips::BI__builtin_msa_bclri_w:
1530   case Mips::BI__builtin_msa_bnegi_w:
1531   case Mips::BI__builtin_msa_bseti_w:
1532   case Mips::BI__builtin_msa_sat_s_w:
1533   case Mips::BI__builtin_msa_sat_u_w:
1534   case Mips::BI__builtin_msa_slli_w:
1535   case Mips::BI__builtin_msa_srai_w:
1536   case Mips::BI__builtin_msa_srari_w:
1537   case Mips::BI__builtin_msa_srli_w:
1538   case Mips::BI__builtin_msa_srlri_w:
1539   case Mips::BI__builtin_msa_subvi_b:
1540   case Mips::BI__builtin_msa_subvi_h:
1541   case Mips::BI__builtin_msa_subvi_w:
1542   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
1543   case Mips::BI__builtin_msa_binsli_w:
1544   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
1545   // These intrinsics take an unsigned 6 bit immediate.
1546   case Mips::BI__builtin_msa_bclri_d:
1547   case Mips::BI__builtin_msa_bnegi_d:
1548   case Mips::BI__builtin_msa_bseti_d:
1549   case Mips::BI__builtin_msa_sat_s_d:
1550   case Mips::BI__builtin_msa_sat_u_d:
1551   case Mips::BI__builtin_msa_slli_d:
1552   case Mips::BI__builtin_msa_srai_d:
1553   case Mips::BI__builtin_msa_srari_d:
1554   case Mips::BI__builtin_msa_srli_d:
1555   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
1556   case Mips::BI__builtin_msa_binsli_d:
1557   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
1558   // These intrinsics take a signed 5 bit immediate.
1559   case Mips::BI__builtin_msa_ceqi_b:
1560   case Mips::BI__builtin_msa_ceqi_h:
1561   case Mips::BI__builtin_msa_ceqi_w:
1562   case Mips::BI__builtin_msa_ceqi_d:
1563   case Mips::BI__builtin_msa_clti_s_b:
1564   case Mips::BI__builtin_msa_clti_s_h:
1565   case Mips::BI__builtin_msa_clti_s_w:
1566   case Mips::BI__builtin_msa_clti_s_d:
1567   case Mips::BI__builtin_msa_clei_s_b:
1568   case Mips::BI__builtin_msa_clei_s_h:
1569   case Mips::BI__builtin_msa_clei_s_w:
1570   case Mips::BI__builtin_msa_clei_s_d:
1571   case Mips::BI__builtin_msa_maxi_s_b:
1572   case Mips::BI__builtin_msa_maxi_s_h:
1573   case Mips::BI__builtin_msa_maxi_s_w:
1574   case Mips::BI__builtin_msa_maxi_s_d:
1575   case Mips::BI__builtin_msa_mini_s_b:
1576   case Mips::BI__builtin_msa_mini_s_h:
1577   case Mips::BI__builtin_msa_mini_s_w:
1578   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
1579   // These intrinsics take an unsigned 8 bit immediate.
1580   case Mips::BI__builtin_msa_andi_b:
1581   case Mips::BI__builtin_msa_nori_b:
1582   case Mips::BI__builtin_msa_ori_b:
1583   case Mips::BI__builtin_msa_shf_b:
1584   case Mips::BI__builtin_msa_shf_h:
1585   case Mips::BI__builtin_msa_shf_w:
1586   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
1587   case Mips::BI__builtin_msa_bseli_b:
1588   case Mips::BI__builtin_msa_bmnzi_b:
1589   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
1590   // df/n format
1591   // These intrinsics take an unsigned 4 bit immediate.
1592   case Mips::BI__builtin_msa_copy_s_b:
1593   case Mips::BI__builtin_msa_copy_u_b:
1594   case Mips::BI__builtin_msa_insve_b:
1595   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
1596   case Mips::BI__builtin_msa_sld_b:
1597   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
1598   // These intrinsics take an unsigned 3 bit immediate.
1599   case Mips::BI__builtin_msa_copy_s_h:
1600   case Mips::BI__builtin_msa_copy_u_h:
1601   case Mips::BI__builtin_msa_insve_h:
1602   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
1603   case Mips::BI__builtin_msa_sld_h:
1604   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
1605   // These intrinsics take an unsigned 2 bit immediate.
1606   case Mips::BI__builtin_msa_copy_s_w:
1607   case Mips::BI__builtin_msa_copy_u_w:
1608   case Mips::BI__builtin_msa_insve_w:
1609   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
1610   case Mips::BI__builtin_msa_sld_w:
1611   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
1612   // These intrinsics take an unsigned 1 bit immediate.
1613   case Mips::BI__builtin_msa_copy_s_d:
1614   case Mips::BI__builtin_msa_copy_u_d:
1615   case Mips::BI__builtin_msa_insve_d:
1616   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
1617   case Mips::BI__builtin_msa_sld_d:
1618   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
1619   // Memory offsets and immediate loads.
1620   // These intrinsics take a signed 10 bit immediate.
1621   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 127; break;
1622   case Mips::BI__builtin_msa_ldi_h:
1623   case Mips::BI__builtin_msa_ldi_w:
1624   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
1625   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 16; break;
1626   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 16; break;
1627   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 16; break;
1628   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 16; break;
1629   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 16; break;
1630   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 16; break;
1631   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 16; break;
1632   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 16; break;
1633   }
1634 
1635   if (!m)
1636     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1637 
1638   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
1639          SemaBuiltinConstantArgMultiple(TheCall, i, m);
1640 }
1641 
1642 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1643   unsigned i = 0, l = 0, u = 0;
1644   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
1645                       BuiltinID == PPC::BI__builtin_divdeu ||
1646                       BuiltinID == PPC::BI__builtin_bpermd;
1647   bool IsTarget64Bit = Context.getTargetInfo()
1648                               .getTypeWidth(Context
1649                                             .getTargetInfo()
1650                                             .getIntPtrType()) == 64;
1651   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
1652                        BuiltinID == PPC::BI__builtin_divweu ||
1653                        BuiltinID == PPC::BI__builtin_divde ||
1654                        BuiltinID == PPC::BI__builtin_divdeu;
1655 
1656   if (Is64BitBltin && !IsTarget64Bit)
1657       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
1658              << TheCall->getSourceRange();
1659 
1660   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
1661       (BuiltinID == PPC::BI__builtin_bpermd &&
1662        !Context.getTargetInfo().hasFeature("bpermd")))
1663     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
1664            << TheCall->getSourceRange();
1665 
1666   switch (BuiltinID) {
1667   default: return false;
1668   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
1669   case PPC::BI__builtin_altivec_crypto_vshasigmad:
1670     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1671            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1672   case PPC::BI__builtin_tbegin:
1673   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
1674   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
1675   case PPC::BI__builtin_tabortwc:
1676   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
1677   case PPC::BI__builtin_tabortwci:
1678   case PPC::BI__builtin_tabortdci:
1679     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
1680            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
1681   }
1682   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1683 }
1684 
1685 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
1686                                            CallExpr *TheCall) {
1687   if (BuiltinID == SystemZ::BI__builtin_tabort) {
1688     Expr *Arg = TheCall->getArg(0);
1689     llvm::APSInt AbortCode(32);
1690     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
1691         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
1692       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
1693              << Arg->getSourceRange();
1694   }
1695 
1696   // For intrinsics which take an immediate value as part of the instruction,
1697   // range check them here.
1698   unsigned i = 0, l = 0, u = 0;
1699   switch (BuiltinID) {
1700   default: return false;
1701   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
1702   case SystemZ::BI__builtin_s390_verimb:
1703   case SystemZ::BI__builtin_s390_verimh:
1704   case SystemZ::BI__builtin_s390_verimf:
1705   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
1706   case SystemZ::BI__builtin_s390_vfaeb:
1707   case SystemZ::BI__builtin_s390_vfaeh:
1708   case SystemZ::BI__builtin_s390_vfaef:
1709   case SystemZ::BI__builtin_s390_vfaebs:
1710   case SystemZ::BI__builtin_s390_vfaehs:
1711   case SystemZ::BI__builtin_s390_vfaefs:
1712   case SystemZ::BI__builtin_s390_vfaezb:
1713   case SystemZ::BI__builtin_s390_vfaezh:
1714   case SystemZ::BI__builtin_s390_vfaezf:
1715   case SystemZ::BI__builtin_s390_vfaezbs:
1716   case SystemZ::BI__builtin_s390_vfaezhs:
1717   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
1718   case SystemZ::BI__builtin_s390_vfidb:
1719     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
1720            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1721   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
1722   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
1723   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
1724   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
1725   case SystemZ::BI__builtin_s390_vstrcb:
1726   case SystemZ::BI__builtin_s390_vstrch:
1727   case SystemZ::BI__builtin_s390_vstrcf:
1728   case SystemZ::BI__builtin_s390_vstrczb:
1729   case SystemZ::BI__builtin_s390_vstrczh:
1730   case SystemZ::BI__builtin_s390_vstrczf:
1731   case SystemZ::BI__builtin_s390_vstrcbs:
1732   case SystemZ::BI__builtin_s390_vstrchs:
1733   case SystemZ::BI__builtin_s390_vstrcfs:
1734   case SystemZ::BI__builtin_s390_vstrczbs:
1735   case SystemZ::BI__builtin_s390_vstrczhs:
1736   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
1737   }
1738   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1739 }
1740 
1741 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
1742 /// This checks that the target supports __builtin_cpu_supports and
1743 /// that the string argument is constant and valid.
1744 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
1745   Expr *Arg = TheCall->getArg(0);
1746 
1747   // Check if the argument is a string literal.
1748   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
1749     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
1750            << Arg->getSourceRange();
1751 
1752   // Check the contents of the string.
1753   StringRef Feature =
1754       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
1755   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
1756     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
1757            << Arg->getSourceRange();
1758   return false;
1759 }
1760 
1761 // Check if the rounding mode is legal.
1762 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
1763   // Indicates if this instruction has rounding control or just SAE.
1764   bool HasRC = false;
1765 
1766   unsigned ArgNum = 0;
1767   switch (BuiltinID) {
1768   default:
1769     return false;
1770   case X86::BI__builtin_ia32_vcvttsd2si32:
1771   case X86::BI__builtin_ia32_vcvttsd2si64:
1772   case X86::BI__builtin_ia32_vcvttsd2usi32:
1773   case X86::BI__builtin_ia32_vcvttsd2usi64:
1774   case X86::BI__builtin_ia32_vcvttss2si32:
1775   case X86::BI__builtin_ia32_vcvttss2si64:
1776   case X86::BI__builtin_ia32_vcvttss2usi32:
1777   case X86::BI__builtin_ia32_vcvttss2usi64:
1778     ArgNum = 1;
1779     break;
1780   case X86::BI__builtin_ia32_cvtps2pd512_mask:
1781   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
1782   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
1783   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
1784   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
1785   case X86::BI__builtin_ia32_cvttps2dq512_mask:
1786   case X86::BI__builtin_ia32_cvttps2qq512_mask:
1787   case X86::BI__builtin_ia32_cvttps2udq512_mask:
1788   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
1789   case X86::BI__builtin_ia32_exp2pd_mask:
1790   case X86::BI__builtin_ia32_exp2ps_mask:
1791   case X86::BI__builtin_ia32_getexppd512_mask:
1792   case X86::BI__builtin_ia32_getexpps512_mask:
1793   case X86::BI__builtin_ia32_rcp28pd_mask:
1794   case X86::BI__builtin_ia32_rcp28ps_mask:
1795   case X86::BI__builtin_ia32_rsqrt28pd_mask:
1796   case X86::BI__builtin_ia32_rsqrt28ps_mask:
1797   case X86::BI__builtin_ia32_vcomisd:
1798   case X86::BI__builtin_ia32_vcomiss:
1799   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
1800     ArgNum = 3;
1801     break;
1802   case X86::BI__builtin_ia32_cmppd512_mask:
1803   case X86::BI__builtin_ia32_cmpps512_mask:
1804   case X86::BI__builtin_ia32_cmpsd_mask:
1805   case X86::BI__builtin_ia32_cmpss_mask:
1806   case X86::BI__builtin_ia32_getexpsd128_round_mask:
1807   case X86::BI__builtin_ia32_getexpss128_round_mask:
1808   case X86::BI__builtin_ia32_rcp28sd_round_mask:
1809   case X86::BI__builtin_ia32_rcp28ss_round_mask:
1810   case X86::BI__builtin_ia32_reducepd512_mask:
1811   case X86::BI__builtin_ia32_reduceps512_mask:
1812   case X86::BI__builtin_ia32_rndscalepd_mask:
1813   case X86::BI__builtin_ia32_rndscaleps_mask:
1814   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
1815   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
1816     ArgNum = 4;
1817     break;
1818   case X86::BI__builtin_ia32_fixupimmpd512_mask:
1819   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
1820   case X86::BI__builtin_ia32_fixupimmps512_mask:
1821   case X86::BI__builtin_ia32_fixupimmps512_maskz:
1822   case X86::BI__builtin_ia32_fixupimmsd_mask:
1823   case X86::BI__builtin_ia32_fixupimmsd_maskz:
1824   case X86::BI__builtin_ia32_fixupimmss_mask:
1825   case X86::BI__builtin_ia32_fixupimmss_maskz:
1826   case X86::BI__builtin_ia32_rangepd512_mask:
1827   case X86::BI__builtin_ia32_rangeps512_mask:
1828   case X86::BI__builtin_ia32_rangesd128_round_mask:
1829   case X86::BI__builtin_ia32_rangess128_round_mask:
1830   case X86::BI__builtin_ia32_reducesd_mask:
1831   case X86::BI__builtin_ia32_reducess_mask:
1832   case X86::BI__builtin_ia32_rndscalesd_round_mask:
1833   case X86::BI__builtin_ia32_rndscaless_round_mask:
1834     ArgNum = 5;
1835     break;
1836   case X86::BI__builtin_ia32_vcvtsd2si64:
1837   case X86::BI__builtin_ia32_vcvtsd2si32:
1838   case X86::BI__builtin_ia32_vcvtsd2usi32:
1839   case X86::BI__builtin_ia32_vcvtsd2usi64:
1840   case X86::BI__builtin_ia32_vcvtss2si32:
1841   case X86::BI__builtin_ia32_vcvtss2si64:
1842   case X86::BI__builtin_ia32_vcvtss2usi32:
1843   case X86::BI__builtin_ia32_vcvtss2usi64:
1844     ArgNum = 1;
1845     HasRC = true;
1846     break;
1847   case X86::BI__builtin_ia32_cvtusi2sd64:
1848   case X86::BI__builtin_ia32_cvtusi2ss32:
1849   case X86::BI__builtin_ia32_cvtusi2ss64:
1850     ArgNum = 2;
1851     HasRC = true;
1852     break;
1853   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
1854   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
1855   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
1856   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
1857   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
1858   case X86::BI__builtin_ia32_cvtps2qq512_mask:
1859   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
1860   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
1861   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
1862   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
1863   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
1864     ArgNum = 3;
1865     HasRC = true;
1866     break;
1867   case X86::BI__builtin_ia32_addpd512_mask:
1868   case X86::BI__builtin_ia32_addps512_mask:
1869   case X86::BI__builtin_ia32_divpd512_mask:
1870   case X86::BI__builtin_ia32_divps512_mask:
1871   case X86::BI__builtin_ia32_mulpd512_mask:
1872   case X86::BI__builtin_ia32_mulps512_mask:
1873   case X86::BI__builtin_ia32_subpd512_mask:
1874   case X86::BI__builtin_ia32_subps512_mask:
1875   case X86::BI__builtin_ia32_addss_round_mask:
1876   case X86::BI__builtin_ia32_addsd_round_mask:
1877   case X86::BI__builtin_ia32_divss_round_mask:
1878   case X86::BI__builtin_ia32_divsd_round_mask:
1879   case X86::BI__builtin_ia32_mulss_round_mask:
1880   case X86::BI__builtin_ia32_mulsd_round_mask:
1881   case X86::BI__builtin_ia32_subss_round_mask:
1882   case X86::BI__builtin_ia32_subsd_round_mask:
1883   case X86::BI__builtin_ia32_scalefpd512_mask:
1884   case X86::BI__builtin_ia32_scalefps512_mask:
1885   case X86::BI__builtin_ia32_scalefsd_round_mask:
1886   case X86::BI__builtin_ia32_scalefss_round_mask:
1887   case X86::BI__builtin_ia32_getmantpd512_mask:
1888   case X86::BI__builtin_ia32_getmantps512_mask:
1889   case X86::BI__builtin_ia32_vfmaddpd512_mask:
1890   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
1891   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
1892   case X86::BI__builtin_ia32_vfmaddps512_mask:
1893   case X86::BI__builtin_ia32_vfmaddps512_mask3:
1894   case X86::BI__builtin_ia32_vfmaddps512_maskz:
1895   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
1896   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
1897   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
1898   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
1899   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
1900   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
1901   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
1902   case X86::BI__builtin_ia32_vfmsubps512_mask3:
1903   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
1904   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
1905   case X86::BI__builtin_ia32_vfnmaddpd512_mask:
1906   case X86::BI__builtin_ia32_vfnmaddps512_mask:
1907   case X86::BI__builtin_ia32_vfnmsubpd512_mask:
1908   case X86::BI__builtin_ia32_vfnmsubpd512_mask3:
1909   case X86::BI__builtin_ia32_vfnmsubps512_mask:
1910   case X86::BI__builtin_ia32_vfnmsubps512_mask3:
1911   case X86::BI__builtin_ia32_vfmaddsd3_mask:
1912   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
1913   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
1914   case X86::BI__builtin_ia32_vfmaddss3_mask:
1915   case X86::BI__builtin_ia32_vfmaddss3_maskz:
1916   case X86::BI__builtin_ia32_vfmaddss3_mask3:
1917     ArgNum = 4;
1918     HasRC = true;
1919     break;
1920   case X86::BI__builtin_ia32_getmantsd_round_mask:
1921   case X86::BI__builtin_ia32_getmantss_round_mask:
1922     ArgNum = 5;
1923     HasRC = true;
1924     break;
1925   }
1926 
1927   llvm::APSInt Result;
1928 
1929   // We can't check the value of a dependent argument.
1930   Expr *Arg = TheCall->getArg(ArgNum);
1931   if (Arg->isTypeDependent() || Arg->isValueDependent())
1932     return false;
1933 
1934   // Check constant-ness first.
1935   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
1936     return true;
1937 
1938   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
1939   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
1940   // combined with ROUND_NO_EXC.
1941   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
1942       Result == 8/*ROUND_NO_EXC*/ ||
1943       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
1944     return false;
1945 
1946   return Diag(TheCall->getLocStart(), diag::err_x86_builtin_invalid_rounding)
1947     << Arg->getSourceRange();
1948 }
1949 
1950 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1951   if (BuiltinID == X86::BI__builtin_cpu_supports)
1952     return SemaBuiltinCpuSupports(*this, TheCall);
1953 
1954   if (BuiltinID == X86::BI__builtin_ms_va_start)
1955     return SemaBuiltinMSVAStart(TheCall);
1956 
1957   // If the intrinsic has rounding or SAE make sure its valid.
1958   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
1959     return true;
1960 
1961   // For intrinsics which take an immediate value as part of the instruction,
1962   // range check them here.
1963   int i = 0, l = 0, u = 0;
1964   switch (BuiltinID) {
1965   default:
1966     return false;
1967   case X86::BI__builtin_ia32_extractf64x4_mask:
1968   case X86::BI__builtin_ia32_extracti64x4_mask:
1969   case X86::BI__builtin_ia32_extractf32x8_mask:
1970   case X86::BI__builtin_ia32_extracti32x8_mask:
1971   case X86::BI__builtin_ia32_extractf64x2_256_mask:
1972   case X86::BI__builtin_ia32_extracti64x2_256_mask:
1973   case X86::BI__builtin_ia32_extractf32x4_256_mask:
1974   case X86::BI__builtin_ia32_extracti32x4_256_mask:
1975     i = 1; l = 0; u = 1;
1976     break;
1977   case X86::BI_mm_prefetch:
1978   case X86::BI__builtin_ia32_extractf32x4_mask:
1979   case X86::BI__builtin_ia32_extracti32x4_mask:
1980   case X86::BI__builtin_ia32_extractf64x2_512_mask:
1981   case X86::BI__builtin_ia32_extracti64x2_512_mask:
1982     i = 1; l = 0; u = 3;
1983     break;
1984   case X86::BI__builtin_ia32_insertf32x8_mask:
1985   case X86::BI__builtin_ia32_inserti32x8_mask:
1986   case X86::BI__builtin_ia32_insertf64x4_mask:
1987   case X86::BI__builtin_ia32_inserti64x4_mask:
1988   case X86::BI__builtin_ia32_insertf64x2_256_mask:
1989   case X86::BI__builtin_ia32_inserti64x2_256_mask:
1990   case X86::BI__builtin_ia32_insertf32x4_256_mask:
1991   case X86::BI__builtin_ia32_inserti32x4_256_mask:
1992     i = 2; l = 0; u = 1;
1993     break;
1994   case X86::BI__builtin_ia32_sha1rnds4:
1995   case X86::BI__builtin_ia32_shuf_f32x4_256_mask:
1996   case X86::BI__builtin_ia32_shuf_f64x2_256_mask:
1997   case X86::BI__builtin_ia32_shuf_i32x4_256_mask:
1998   case X86::BI__builtin_ia32_shuf_i64x2_256_mask:
1999   case X86::BI__builtin_ia32_insertf64x2_512_mask:
2000   case X86::BI__builtin_ia32_inserti64x2_512_mask:
2001   case X86::BI__builtin_ia32_insertf32x4_mask:
2002   case X86::BI__builtin_ia32_inserti32x4_mask:
2003     i = 2; l = 0; u = 3;
2004     break;
2005   case X86::BI__builtin_ia32_vpermil2pd:
2006   case X86::BI__builtin_ia32_vpermil2pd256:
2007   case X86::BI__builtin_ia32_vpermil2ps:
2008   case X86::BI__builtin_ia32_vpermil2ps256:
2009     i = 3; l = 0; u = 3;
2010     break;
2011   case X86::BI__builtin_ia32_cmpb128_mask:
2012   case X86::BI__builtin_ia32_cmpw128_mask:
2013   case X86::BI__builtin_ia32_cmpd128_mask:
2014   case X86::BI__builtin_ia32_cmpq128_mask:
2015   case X86::BI__builtin_ia32_cmpb256_mask:
2016   case X86::BI__builtin_ia32_cmpw256_mask:
2017   case X86::BI__builtin_ia32_cmpd256_mask:
2018   case X86::BI__builtin_ia32_cmpq256_mask:
2019   case X86::BI__builtin_ia32_cmpb512_mask:
2020   case X86::BI__builtin_ia32_cmpw512_mask:
2021   case X86::BI__builtin_ia32_cmpd512_mask:
2022   case X86::BI__builtin_ia32_cmpq512_mask:
2023   case X86::BI__builtin_ia32_ucmpb128_mask:
2024   case X86::BI__builtin_ia32_ucmpw128_mask:
2025   case X86::BI__builtin_ia32_ucmpd128_mask:
2026   case X86::BI__builtin_ia32_ucmpq128_mask:
2027   case X86::BI__builtin_ia32_ucmpb256_mask:
2028   case X86::BI__builtin_ia32_ucmpw256_mask:
2029   case X86::BI__builtin_ia32_ucmpd256_mask:
2030   case X86::BI__builtin_ia32_ucmpq256_mask:
2031   case X86::BI__builtin_ia32_ucmpb512_mask:
2032   case X86::BI__builtin_ia32_ucmpw512_mask:
2033   case X86::BI__builtin_ia32_ucmpd512_mask:
2034   case X86::BI__builtin_ia32_ucmpq512_mask:
2035   case X86::BI__builtin_ia32_vpcomub:
2036   case X86::BI__builtin_ia32_vpcomuw:
2037   case X86::BI__builtin_ia32_vpcomud:
2038   case X86::BI__builtin_ia32_vpcomuq:
2039   case X86::BI__builtin_ia32_vpcomb:
2040   case X86::BI__builtin_ia32_vpcomw:
2041   case X86::BI__builtin_ia32_vpcomd:
2042   case X86::BI__builtin_ia32_vpcomq:
2043     i = 2; l = 0; u = 7;
2044     break;
2045   case X86::BI__builtin_ia32_roundps:
2046   case X86::BI__builtin_ia32_roundpd:
2047   case X86::BI__builtin_ia32_roundps256:
2048   case X86::BI__builtin_ia32_roundpd256:
2049     i = 1; l = 0; u = 15;
2050     break;
2051   case X86::BI__builtin_ia32_roundss:
2052   case X86::BI__builtin_ia32_roundsd:
2053   case X86::BI__builtin_ia32_rangepd128_mask:
2054   case X86::BI__builtin_ia32_rangepd256_mask:
2055   case X86::BI__builtin_ia32_rangepd512_mask:
2056   case X86::BI__builtin_ia32_rangeps128_mask:
2057   case X86::BI__builtin_ia32_rangeps256_mask:
2058   case X86::BI__builtin_ia32_rangeps512_mask:
2059   case X86::BI__builtin_ia32_getmantsd_round_mask:
2060   case X86::BI__builtin_ia32_getmantss_round_mask:
2061     i = 2; l = 0; u = 15;
2062     break;
2063   case X86::BI__builtin_ia32_cmpps:
2064   case X86::BI__builtin_ia32_cmpss:
2065   case X86::BI__builtin_ia32_cmppd:
2066   case X86::BI__builtin_ia32_cmpsd:
2067   case X86::BI__builtin_ia32_cmpps256:
2068   case X86::BI__builtin_ia32_cmppd256:
2069   case X86::BI__builtin_ia32_cmpps128_mask:
2070   case X86::BI__builtin_ia32_cmppd128_mask:
2071   case X86::BI__builtin_ia32_cmpps256_mask:
2072   case X86::BI__builtin_ia32_cmppd256_mask:
2073   case X86::BI__builtin_ia32_cmpps512_mask:
2074   case X86::BI__builtin_ia32_cmppd512_mask:
2075   case X86::BI__builtin_ia32_cmpsd_mask:
2076   case X86::BI__builtin_ia32_cmpss_mask:
2077     i = 2; l = 0; u = 31;
2078     break;
2079   case X86::BI__builtin_ia32_xabort:
2080     i = 0; l = -128; u = 255;
2081     break;
2082   case X86::BI__builtin_ia32_pshufw:
2083   case X86::BI__builtin_ia32_aeskeygenassist128:
2084     i = 1; l = -128; u = 255;
2085     break;
2086   case X86::BI__builtin_ia32_vcvtps2ph:
2087   case X86::BI__builtin_ia32_vcvtps2ph256:
2088   case X86::BI__builtin_ia32_rndscaleps_128_mask:
2089   case X86::BI__builtin_ia32_rndscalepd_128_mask:
2090   case X86::BI__builtin_ia32_rndscaleps_256_mask:
2091   case X86::BI__builtin_ia32_rndscalepd_256_mask:
2092   case X86::BI__builtin_ia32_rndscaleps_mask:
2093   case X86::BI__builtin_ia32_rndscalepd_mask:
2094   case X86::BI__builtin_ia32_reducepd128_mask:
2095   case X86::BI__builtin_ia32_reducepd256_mask:
2096   case X86::BI__builtin_ia32_reducepd512_mask:
2097   case X86::BI__builtin_ia32_reduceps128_mask:
2098   case X86::BI__builtin_ia32_reduceps256_mask:
2099   case X86::BI__builtin_ia32_reduceps512_mask:
2100   case X86::BI__builtin_ia32_prold512_mask:
2101   case X86::BI__builtin_ia32_prolq512_mask:
2102   case X86::BI__builtin_ia32_prold128_mask:
2103   case X86::BI__builtin_ia32_prold256_mask:
2104   case X86::BI__builtin_ia32_prolq128_mask:
2105   case X86::BI__builtin_ia32_prolq256_mask:
2106   case X86::BI__builtin_ia32_prord128_mask:
2107   case X86::BI__builtin_ia32_prord256_mask:
2108   case X86::BI__builtin_ia32_prorq128_mask:
2109   case X86::BI__builtin_ia32_prorq256_mask:
2110   case X86::BI__builtin_ia32_psllwi512_mask:
2111   case X86::BI__builtin_ia32_psllwi128_mask:
2112   case X86::BI__builtin_ia32_psllwi256_mask:
2113   case X86::BI__builtin_ia32_psrldi128_mask:
2114   case X86::BI__builtin_ia32_psrldi256_mask:
2115   case X86::BI__builtin_ia32_psrldi512_mask:
2116   case X86::BI__builtin_ia32_psrlqi128_mask:
2117   case X86::BI__builtin_ia32_psrlqi256_mask:
2118   case X86::BI__builtin_ia32_psrlqi512_mask:
2119   case X86::BI__builtin_ia32_psrawi512_mask:
2120   case X86::BI__builtin_ia32_psrawi128_mask:
2121   case X86::BI__builtin_ia32_psrawi256_mask:
2122   case X86::BI__builtin_ia32_psrlwi512_mask:
2123   case X86::BI__builtin_ia32_psrlwi128_mask:
2124   case X86::BI__builtin_ia32_psrlwi256_mask:
2125   case X86::BI__builtin_ia32_psradi128_mask:
2126   case X86::BI__builtin_ia32_psradi256_mask:
2127   case X86::BI__builtin_ia32_psradi512_mask:
2128   case X86::BI__builtin_ia32_psraqi128_mask:
2129   case X86::BI__builtin_ia32_psraqi256_mask:
2130   case X86::BI__builtin_ia32_psraqi512_mask:
2131   case X86::BI__builtin_ia32_pslldi128_mask:
2132   case X86::BI__builtin_ia32_pslldi256_mask:
2133   case X86::BI__builtin_ia32_pslldi512_mask:
2134   case X86::BI__builtin_ia32_psllqi128_mask:
2135   case X86::BI__builtin_ia32_psllqi256_mask:
2136   case X86::BI__builtin_ia32_psllqi512_mask:
2137   case X86::BI__builtin_ia32_fpclasspd128_mask:
2138   case X86::BI__builtin_ia32_fpclasspd256_mask:
2139   case X86::BI__builtin_ia32_fpclassps128_mask:
2140   case X86::BI__builtin_ia32_fpclassps256_mask:
2141   case X86::BI__builtin_ia32_fpclassps512_mask:
2142   case X86::BI__builtin_ia32_fpclasspd512_mask:
2143   case X86::BI__builtin_ia32_fpclasssd_mask:
2144   case X86::BI__builtin_ia32_fpclassss_mask:
2145     i = 1; l = 0; u = 255;
2146     break;
2147   case X86::BI__builtin_ia32_palignr:
2148   case X86::BI__builtin_ia32_insertps128:
2149   case X86::BI__builtin_ia32_dpps:
2150   case X86::BI__builtin_ia32_dppd:
2151   case X86::BI__builtin_ia32_dpps256:
2152   case X86::BI__builtin_ia32_mpsadbw128:
2153   case X86::BI__builtin_ia32_mpsadbw256:
2154   case X86::BI__builtin_ia32_pcmpistrm128:
2155   case X86::BI__builtin_ia32_pcmpistri128:
2156   case X86::BI__builtin_ia32_pcmpistria128:
2157   case X86::BI__builtin_ia32_pcmpistric128:
2158   case X86::BI__builtin_ia32_pcmpistrio128:
2159   case X86::BI__builtin_ia32_pcmpistris128:
2160   case X86::BI__builtin_ia32_pcmpistriz128:
2161   case X86::BI__builtin_ia32_pclmulqdq128:
2162   case X86::BI__builtin_ia32_vperm2f128_pd256:
2163   case X86::BI__builtin_ia32_vperm2f128_ps256:
2164   case X86::BI__builtin_ia32_vperm2f128_si256:
2165   case X86::BI__builtin_ia32_permti256:
2166     i = 2; l = -128; u = 255;
2167     break;
2168   case X86::BI__builtin_ia32_palignr128:
2169   case X86::BI__builtin_ia32_palignr256:
2170   case X86::BI__builtin_ia32_palignr128_mask:
2171   case X86::BI__builtin_ia32_palignr256_mask:
2172   case X86::BI__builtin_ia32_palignr512_mask:
2173   case X86::BI__builtin_ia32_alignq512_mask:
2174   case X86::BI__builtin_ia32_alignd512_mask:
2175   case X86::BI__builtin_ia32_alignd128_mask:
2176   case X86::BI__builtin_ia32_alignd256_mask:
2177   case X86::BI__builtin_ia32_alignq128_mask:
2178   case X86::BI__builtin_ia32_alignq256_mask:
2179   case X86::BI__builtin_ia32_vcomisd:
2180   case X86::BI__builtin_ia32_vcomiss:
2181   case X86::BI__builtin_ia32_shuf_f32x4_mask:
2182   case X86::BI__builtin_ia32_shuf_f64x2_mask:
2183   case X86::BI__builtin_ia32_shuf_i32x4_mask:
2184   case X86::BI__builtin_ia32_shuf_i64x2_mask:
2185   case X86::BI__builtin_ia32_dbpsadbw128_mask:
2186   case X86::BI__builtin_ia32_dbpsadbw256_mask:
2187   case X86::BI__builtin_ia32_dbpsadbw512_mask:
2188     i = 2; l = 0; u = 255;
2189     break;
2190   case X86::BI__builtin_ia32_fixupimmpd512_mask:
2191   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
2192   case X86::BI__builtin_ia32_fixupimmps512_mask:
2193   case X86::BI__builtin_ia32_fixupimmps512_maskz:
2194   case X86::BI__builtin_ia32_fixupimmsd_mask:
2195   case X86::BI__builtin_ia32_fixupimmsd_maskz:
2196   case X86::BI__builtin_ia32_fixupimmss_mask:
2197   case X86::BI__builtin_ia32_fixupimmss_maskz:
2198   case X86::BI__builtin_ia32_fixupimmpd128_mask:
2199   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
2200   case X86::BI__builtin_ia32_fixupimmpd256_mask:
2201   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
2202   case X86::BI__builtin_ia32_fixupimmps128_mask:
2203   case X86::BI__builtin_ia32_fixupimmps128_maskz:
2204   case X86::BI__builtin_ia32_fixupimmps256_mask:
2205   case X86::BI__builtin_ia32_fixupimmps256_maskz:
2206   case X86::BI__builtin_ia32_pternlogd512_mask:
2207   case X86::BI__builtin_ia32_pternlogd512_maskz:
2208   case X86::BI__builtin_ia32_pternlogq512_mask:
2209   case X86::BI__builtin_ia32_pternlogq512_maskz:
2210   case X86::BI__builtin_ia32_pternlogd128_mask:
2211   case X86::BI__builtin_ia32_pternlogd128_maskz:
2212   case X86::BI__builtin_ia32_pternlogd256_mask:
2213   case X86::BI__builtin_ia32_pternlogd256_maskz:
2214   case X86::BI__builtin_ia32_pternlogq128_mask:
2215   case X86::BI__builtin_ia32_pternlogq128_maskz:
2216   case X86::BI__builtin_ia32_pternlogq256_mask:
2217   case X86::BI__builtin_ia32_pternlogq256_maskz:
2218     i = 3; l = 0; u = 255;
2219     break;
2220   case X86::BI__builtin_ia32_pcmpestrm128:
2221   case X86::BI__builtin_ia32_pcmpestri128:
2222   case X86::BI__builtin_ia32_pcmpestria128:
2223   case X86::BI__builtin_ia32_pcmpestric128:
2224   case X86::BI__builtin_ia32_pcmpestrio128:
2225   case X86::BI__builtin_ia32_pcmpestris128:
2226   case X86::BI__builtin_ia32_pcmpestriz128:
2227     i = 4; l = -128; u = 255;
2228     break;
2229   case X86::BI__builtin_ia32_rndscalesd_round_mask:
2230   case X86::BI__builtin_ia32_rndscaless_round_mask:
2231     i = 4; l = 0; u = 255;
2232     break;
2233   }
2234   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
2235 }
2236 
2237 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
2238 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
2239 /// Returns true when the format fits the function and the FormatStringInfo has
2240 /// been populated.
2241 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
2242                                FormatStringInfo *FSI) {
2243   FSI->HasVAListArg = Format->getFirstArg() == 0;
2244   FSI->FormatIdx = Format->getFormatIdx() - 1;
2245   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
2246 
2247   // The way the format attribute works in GCC, the implicit this argument
2248   // of member functions is counted. However, it doesn't appear in our own
2249   // lists, so decrement format_idx in that case.
2250   if (IsCXXMember) {
2251     if(FSI->FormatIdx == 0)
2252       return false;
2253     --FSI->FormatIdx;
2254     if (FSI->FirstDataArg != 0)
2255       --FSI->FirstDataArg;
2256   }
2257   return true;
2258 }
2259 
2260 /// Checks if a the given expression evaluates to null.
2261 ///
2262 /// \brief Returns true if the value evaluates to null.
2263 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
2264   // If the expression has non-null type, it doesn't evaluate to null.
2265   if (auto nullability
2266         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
2267     if (*nullability == NullabilityKind::NonNull)
2268       return false;
2269   }
2270 
2271   // As a special case, transparent unions initialized with zero are
2272   // considered null for the purposes of the nonnull attribute.
2273   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
2274     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2275       if (const CompoundLiteralExpr *CLE =
2276           dyn_cast<CompoundLiteralExpr>(Expr))
2277         if (const InitListExpr *ILE =
2278             dyn_cast<InitListExpr>(CLE->getInitializer()))
2279           Expr = ILE->getInit(0);
2280   }
2281 
2282   bool Result;
2283   return (!Expr->isValueDependent() &&
2284           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
2285           !Result);
2286 }
2287 
2288 static void CheckNonNullArgument(Sema &S,
2289                                  const Expr *ArgExpr,
2290                                  SourceLocation CallSiteLoc) {
2291   if (CheckNonNullExpr(S, ArgExpr))
2292     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
2293            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
2294 }
2295 
2296 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
2297   FormatStringInfo FSI;
2298   if ((GetFormatStringType(Format) == FST_NSString) &&
2299       getFormatStringInfo(Format, false, &FSI)) {
2300     Idx = FSI.FormatIdx;
2301     return true;
2302   }
2303   return false;
2304 }
2305 /// \brief Diagnose use of %s directive in an NSString which is being passed
2306 /// as formatting string to formatting method.
2307 static void
2308 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
2309                                         const NamedDecl *FDecl,
2310                                         Expr **Args,
2311                                         unsigned NumArgs) {
2312   unsigned Idx = 0;
2313   bool Format = false;
2314   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
2315   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
2316     Idx = 2;
2317     Format = true;
2318   }
2319   else
2320     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
2321       if (S.GetFormatNSStringIdx(I, Idx)) {
2322         Format = true;
2323         break;
2324       }
2325     }
2326   if (!Format || NumArgs <= Idx)
2327     return;
2328   const Expr *FormatExpr = Args[Idx];
2329   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
2330     FormatExpr = CSCE->getSubExpr();
2331   const StringLiteral *FormatString;
2332   if (const ObjCStringLiteral *OSL =
2333       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
2334     FormatString = OSL->getString();
2335   else
2336     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
2337   if (!FormatString)
2338     return;
2339   if (S.FormatStringHasSArg(FormatString)) {
2340     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2341       << "%s" << 1 << 1;
2342     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
2343       << FDecl->getDeclName();
2344   }
2345 }
2346 
2347 /// Determine whether the given type has a non-null nullability annotation.
2348 static bool isNonNullType(ASTContext &ctx, QualType type) {
2349   if (auto nullability = type->getNullability(ctx))
2350     return *nullability == NullabilityKind::NonNull;
2351 
2352   return false;
2353 }
2354 
2355 static void CheckNonNullArguments(Sema &S,
2356                                   const NamedDecl *FDecl,
2357                                   const FunctionProtoType *Proto,
2358                                   ArrayRef<const Expr *> Args,
2359                                   SourceLocation CallSiteLoc) {
2360   assert((FDecl || Proto) && "Need a function declaration or prototype");
2361 
2362   // Check the attributes attached to the method/function itself.
2363   llvm::SmallBitVector NonNullArgs;
2364   if (FDecl) {
2365     // Handle the nonnull attribute on the function/method declaration itself.
2366     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
2367       if (!NonNull->args_size()) {
2368         // Easy case: all pointer arguments are nonnull.
2369         for (const auto *Arg : Args)
2370           if (S.isValidPointerAttrType(Arg->getType()))
2371             CheckNonNullArgument(S, Arg, CallSiteLoc);
2372         return;
2373       }
2374 
2375       for (unsigned Val : NonNull->args()) {
2376         if (Val >= Args.size())
2377           continue;
2378         if (NonNullArgs.empty())
2379           NonNullArgs.resize(Args.size());
2380         NonNullArgs.set(Val);
2381       }
2382     }
2383   }
2384 
2385   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
2386     // Handle the nonnull attribute on the parameters of the
2387     // function/method.
2388     ArrayRef<ParmVarDecl*> parms;
2389     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
2390       parms = FD->parameters();
2391     else
2392       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
2393 
2394     unsigned ParamIndex = 0;
2395     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
2396          I != E; ++I, ++ParamIndex) {
2397       const ParmVarDecl *PVD = *I;
2398       if (PVD->hasAttr<NonNullAttr>() ||
2399           isNonNullType(S.Context, PVD->getType())) {
2400         if (NonNullArgs.empty())
2401           NonNullArgs.resize(Args.size());
2402 
2403         NonNullArgs.set(ParamIndex);
2404       }
2405     }
2406   } else {
2407     // If we have a non-function, non-method declaration but no
2408     // function prototype, try to dig out the function prototype.
2409     if (!Proto) {
2410       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
2411         QualType type = VD->getType().getNonReferenceType();
2412         if (auto pointerType = type->getAs<PointerType>())
2413           type = pointerType->getPointeeType();
2414         else if (auto blockType = type->getAs<BlockPointerType>())
2415           type = blockType->getPointeeType();
2416         // FIXME: data member pointers?
2417 
2418         // Dig out the function prototype, if there is one.
2419         Proto = type->getAs<FunctionProtoType>();
2420       }
2421     }
2422 
2423     // Fill in non-null argument information from the nullability
2424     // information on the parameter types (if we have them).
2425     if (Proto) {
2426       unsigned Index = 0;
2427       for (auto paramType : Proto->getParamTypes()) {
2428         if (isNonNullType(S.Context, paramType)) {
2429           if (NonNullArgs.empty())
2430             NonNullArgs.resize(Args.size());
2431 
2432           NonNullArgs.set(Index);
2433         }
2434 
2435         ++Index;
2436       }
2437     }
2438   }
2439 
2440   // Check for non-null arguments.
2441   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
2442        ArgIndex != ArgIndexEnd; ++ArgIndex) {
2443     if (NonNullArgs[ArgIndex])
2444       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
2445   }
2446 }
2447 
2448 /// Handles the checks for format strings, non-POD arguments to vararg
2449 /// functions, and NULL arguments passed to non-NULL parameters.
2450 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
2451                      ArrayRef<const Expr *> Args, bool IsMemberFunction,
2452                      SourceLocation Loc, SourceRange Range,
2453                      VariadicCallType CallType) {
2454   // FIXME: We should check as much as we can in the template definition.
2455   if (CurContext->isDependentContext())
2456     return;
2457 
2458   // Printf and scanf checking.
2459   llvm::SmallBitVector CheckedVarArgs;
2460   if (FDecl) {
2461     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
2462       // Only create vector if there are format attributes.
2463       CheckedVarArgs.resize(Args.size());
2464 
2465       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
2466                            CheckedVarArgs);
2467     }
2468   }
2469 
2470   // Refuse POD arguments that weren't caught by the format string
2471   // checks above.
2472   if (CallType != VariadicDoesNotApply) {
2473     unsigned NumParams = Proto ? Proto->getNumParams()
2474                        : FDecl && isa<FunctionDecl>(FDecl)
2475                            ? cast<FunctionDecl>(FDecl)->getNumParams()
2476                        : FDecl && isa<ObjCMethodDecl>(FDecl)
2477                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
2478                        : 0;
2479 
2480     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
2481       // Args[ArgIdx] can be null in malformed code.
2482       if (const Expr *Arg = Args[ArgIdx]) {
2483         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
2484           checkVariadicArgument(Arg, CallType);
2485       }
2486     }
2487   }
2488 
2489   if (FDecl || Proto) {
2490     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
2491 
2492     // Type safety checking.
2493     if (FDecl) {
2494       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
2495         CheckArgumentWithTypeTag(I, Args.data());
2496     }
2497   }
2498 }
2499 
2500 /// CheckConstructorCall - Check a constructor call for correctness and safety
2501 /// properties not enforced by the C type system.
2502 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
2503                                 ArrayRef<const Expr *> Args,
2504                                 const FunctionProtoType *Proto,
2505                                 SourceLocation Loc) {
2506   VariadicCallType CallType =
2507     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
2508   checkCall(FDecl, Proto, Args, /*IsMemberFunction=*/true, Loc, SourceRange(),
2509             CallType);
2510 }
2511 
2512 /// CheckFunctionCall - Check a direct function call for various correctness
2513 /// and safety properties not strictly enforced by the C type system.
2514 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
2515                              const FunctionProtoType *Proto) {
2516   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
2517                               isa<CXXMethodDecl>(FDecl);
2518   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2519                           IsMemberOperatorCall;
2520   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
2521                                                   TheCall->getCallee());
2522   Expr** Args = TheCall->getArgs();
2523   unsigned NumArgs = TheCall->getNumArgs();
2524   if (IsMemberOperatorCall) {
2525     // If this is a call to a member operator, hide the first argument
2526     // from checkCall.
2527     // FIXME: Our choice of AST representation here is less than ideal.
2528     ++Args;
2529     --NumArgs;
2530   }
2531   checkCall(FDecl, Proto, llvm::makeArrayRef(Args, NumArgs),
2532             IsMemberFunction, TheCall->getRParenLoc(),
2533             TheCall->getCallee()->getSourceRange(), CallType);
2534 
2535   IdentifierInfo *FnInfo = FDecl->getIdentifier();
2536   // None of the checks below are needed for functions that don't have
2537   // simple names (e.g., C++ conversion functions).
2538   if (!FnInfo)
2539     return false;
2540 
2541   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
2542   if (getLangOpts().ObjC1)
2543     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
2544 
2545   unsigned CMId = FDecl->getMemoryFunctionKind();
2546   if (CMId == 0)
2547     return false;
2548 
2549   // Handle memory setting and copying functions.
2550   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
2551     CheckStrlcpycatArguments(TheCall, FnInfo);
2552   else if (CMId == Builtin::BIstrncat)
2553     CheckStrncatArguments(TheCall, FnInfo);
2554   else
2555     CheckMemaccessArguments(TheCall, CMId, FnInfo);
2556 
2557   return false;
2558 }
2559 
2560 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
2561                                ArrayRef<const Expr *> Args) {
2562   VariadicCallType CallType =
2563       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
2564 
2565   checkCall(Method, nullptr, Args,
2566             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
2567             CallType);
2568 
2569   return false;
2570 }
2571 
2572 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
2573                             const FunctionProtoType *Proto) {
2574   QualType Ty;
2575   if (const auto *V = dyn_cast<VarDecl>(NDecl))
2576     Ty = V->getType().getNonReferenceType();
2577   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
2578     Ty = F->getType().getNonReferenceType();
2579   else
2580     return false;
2581 
2582   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
2583       !Ty->isFunctionProtoType())
2584     return false;
2585 
2586   VariadicCallType CallType;
2587   if (!Proto || !Proto->isVariadic()) {
2588     CallType = VariadicDoesNotApply;
2589   } else if (Ty->isBlockPointerType()) {
2590     CallType = VariadicBlock;
2591   } else { // Ty->isFunctionPointerType()
2592     CallType = VariadicFunction;
2593   }
2594 
2595   checkCall(NDecl, Proto,
2596             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2597             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2598             TheCall->getCallee()->getSourceRange(), CallType);
2599 
2600   return false;
2601 }
2602 
2603 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
2604 /// such as function pointers returned from functions.
2605 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
2606   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
2607                                                   TheCall->getCallee());
2608   checkCall(/*FDecl=*/nullptr, Proto,
2609             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2610             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2611             TheCall->getCallee()->getSourceRange(), CallType);
2612 
2613   return false;
2614 }
2615 
2616 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
2617   if (!llvm::isValidAtomicOrderingCABI(Ordering))
2618     return false;
2619 
2620   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
2621   switch (Op) {
2622   case AtomicExpr::AO__c11_atomic_init:
2623     llvm_unreachable("There is no ordering argument for an init");
2624 
2625   case AtomicExpr::AO__c11_atomic_load:
2626   case AtomicExpr::AO__atomic_load_n:
2627   case AtomicExpr::AO__atomic_load:
2628     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
2629            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2630 
2631   case AtomicExpr::AO__c11_atomic_store:
2632   case AtomicExpr::AO__atomic_store:
2633   case AtomicExpr::AO__atomic_store_n:
2634     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
2635            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
2636            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2637 
2638   default:
2639     return true;
2640   }
2641 }
2642 
2643 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
2644                                          AtomicExpr::AtomicOp Op) {
2645   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
2646   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2647 
2648   // All these operations take one of the following forms:
2649   enum {
2650     // C    __c11_atomic_init(A *, C)
2651     Init,
2652     // C    __c11_atomic_load(A *, int)
2653     Load,
2654     // void __atomic_load(A *, CP, int)
2655     LoadCopy,
2656     // void __atomic_store(A *, CP, int)
2657     Copy,
2658     // C    __c11_atomic_add(A *, M, int)
2659     Arithmetic,
2660     // C    __atomic_exchange_n(A *, CP, int)
2661     Xchg,
2662     // void __atomic_exchange(A *, C *, CP, int)
2663     GNUXchg,
2664     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
2665     C11CmpXchg,
2666     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
2667     GNUCmpXchg
2668   } Form = Init;
2669   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
2670   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
2671   // where:
2672   //   C is an appropriate type,
2673   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
2674   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
2675   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
2676   //   the int parameters are for orderings.
2677 
2678   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
2679                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
2680                         AtomicExpr::AO__atomic_load,
2681                 "need to update code for modified C11 atomics");
2682   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
2683                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
2684   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
2685              Op == AtomicExpr::AO__atomic_store_n ||
2686              Op == AtomicExpr::AO__atomic_exchange_n ||
2687              Op == AtomicExpr::AO__atomic_compare_exchange_n;
2688   bool IsAddSub = false;
2689 
2690   switch (Op) {
2691   case AtomicExpr::AO__c11_atomic_init:
2692     Form = Init;
2693     break;
2694 
2695   case AtomicExpr::AO__c11_atomic_load:
2696   case AtomicExpr::AO__atomic_load_n:
2697     Form = Load;
2698     break;
2699 
2700   case AtomicExpr::AO__atomic_load:
2701     Form = LoadCopy;
2702     break;
2703 
2704   case AtomicExpr::AO__c11_atomic_store:
2705   case AtomicExpr::AO__atomic_store:
2706   case AtomicExpr::AO__atomic_store_n:
2707     Form = Copy;
2708     break;
2709 
2710   case AtomicExpr::AO__c11_atomic_fetch_add:
2711   case AtomicExpr::AO__c11_atomic_fetch_sub:
2712   case AtomicExpr::AO__atomic_fetch_add:
2713   case AtomicExpr::AO__atomic_fetch_sub:
2714   case AtomicExpr::AO__atomic_add_fetch:
2715   case AtomicExpr::AO__atomic_sub_fetch:
2716     IsAddSub = true;
2717     // Fall through.
2718   case AtomicExpr::AO__c11_atomic_fetch_and:
2719   case AtomicExpr::AO__c11_atomic_fetch_or:
2720   case AtomicExpr::AO__c11_atomic_fetch_xor:
2721   case AtomicExpr::AO__atomic_fetch_and:
2722   case AtomicExpr::AO__atomic_fetch_or:
2723   case AtomicExpr::AO__atomic_fetch_xor:
2724   case AtomicExpr::AO__atomic_fetch_nand:
2725   case AtomicExpr::AO__atomic_and_fetch:
2726   case AtomicExpr::AO__atomic_or_fetch:
2727   case AtomicExpr::AO__atomic_xor_fetch:
2728   case AtomicExpr::AO__atomic_nand_fetch:
2729     Form = Arithmetic;
2730     break;
2731 
2732   case AtomicExpr::AO__c11_atomic_exchange:
2733   case AtomicExpr::AO__atomic_exchange_n:
2734     Form = Xchg;
2735     break;
2736 
2737   case AtomicExpr::AO__atomic_exchange:
2738     Form = GNUXchg;
2739     break;
2740 
2741   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2742   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2743     Form = C11CmpXchg;
2744     break;
2745 
2746   case AtomicExpr::AO__atomic_compare_exchange:
2747   case AtomicExpr::AO__atomic_compare_exchange_n:
2748     Form = GNUCmpXchg;
2749     break;
2750   }
2751 
2752   // Check we have the right number of arguments.
2753   if (TheCall->getNumArgs() < NumArgs[Form]) {
2754     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2755       << 0 << NumArgs[Form] << TheCall->getNumArgs()
2756       << TheCall->getCallee()->getSourceRange();
2757     return ExprError();
2758   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
2759     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
2760          diag::err_typecheck_call_too_many_args)
2761       << 0 << NumArgs[Form] << TheCall->getNumArgs()
2762       << TheCall->getCallee()->getSourceRange();
2763     return ExprError();
2764   }
2765 
2766   // Inspect the first argument of the atomic operation.
2767   Expr *Ptr = TheCall->getArg(0);
2768   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
2769   if (ConvertedPtr.isInvalid())
2770     return ExprError();
2771 
2772   Ptr = ConvertedPtr.get();
2773   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
2774   if (!pointerType) {
2775     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
2776       << Ptr->getType() << Ptr->getSourceRange();
2777     return ExprError();
2778   }
2779 
2780   // For a __c11 builtin, this should be a pointer to an _Atomic type.
2781   QualType AtomTy = pointerType->getPointeeType(); // 'A'
2782   QualType ValType = AtomTy; // 'C'
2783   if (IsC11) {
2784     if (!AtomTy->isAtomicType()) {
2785       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
2786         << Ptr->getType() << Ptr->getSourceRange();
2787       return ExprError();
2788     }
2789     if (AtomTy.isConstQualified()) {
2790       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
2791         << Ptr->getType() << Ptr->getSourceRange();
2792       return ExprError();
2793     }
2794     ValType = AtomTy->getAs<AtomicType>()->getValueType();
2795   } else if (Form != Load && Form != LoadCopy) {
2796     if (ValType.isConstQualified()) {
2797       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
2798         << Ptr->getType() << Ptr->getSourceRange();
2799       return ExprError();
2800     }
2801   }
2802 
2803   // For an arithmetic operation, the implied arithmetic must be well-formed.
2804   if (Form == Arithmetic) {
2805     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
2806     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
2807       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
2808         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2809       return ExprError();
2810     }
2811     if (!IsAddSub && !ValType->isIntegerType()) {
2812       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
2813         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2814       return ExprError();
2815     }
2816     if (IsC11 && ValType->isPointerType() &&
2817         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
2818                             diag::err_incomplete_type)) {
2819       return ExprError();
2820     }
2821   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
2822     // For __atomic_*_n operations, the value type must be a scalar integral or
2823     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
2824     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
2825       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2826     return ExprError();
2827   }
2828 
2829   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
2830       !AtomTy->isScalarType()) {
2831     // For GNU atomics, require a trivially-copyable type. This is not part of
2832     // the GNU atomics specification, but we enforce it for sanity.
2833     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
2834       << Ptr->getType() << Ptr->getSourceRange();
2835     return ExprError();
2836   }
2837 
2838   switch (ValType.getObjCLifetime()) {
2839   case Qualifiers::OCL_None:
2840   case Qualifiers::OCL_ExplicitNone:
2841     // okay
2842     break;
2843 
2844   case Qualifiers::OCL_Weak:
2845   case Qualifiers::OCL_Strong:
2846   case Qualifiers::OCL_Autoreleasing:
2847     // FIXME: Can this happen? By this point, ValType should be known
2848     // to be trivially copyable.
2849     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
2850       << ValType << Ptr->getSourceRange();
2851     return ExprError();
2852   }
2853 
2854   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
2855   // volatile-ness of the pointee-type inject itself into the result or the
2856   // other operands. Similarly atomic_load can take a pointer to a const 'A'.
2857   ValType.removeLocalVolatile();
2858   ValType.removeLocalConst();
2859   QualType ResultType = ValType;
2860   if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init)
2861     ResultType = Context.VoidTy;
2862   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
2863     ResultType = Context.BoolTy;
2864 
2865   // The type of a parameter passed 'by value'. In the GNU atomics, such
2866   // arguments are actually passed as pointers.
2867   QualType ByValType = ValType; // 'CP'
2868   if (!IsC11 && !IsN)
2869     ByValType = Ptr->getType();
2870 
2871   // The first argument --- the pointer --- has a fixed type; we
2872   // deduce the types of the rest of the arguments accordingly.  Walk
2873   // the remaining arguments, converting them to the deduced value type.
2874   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
2875     QualType Ty;
2876     if (i < NumVals[Form] + 1) {
2877       switch (i) {
2878       case 1:
2879         // The second argument is the non-atomic operand. For arithmetic, this
2880         // is always passed by value, and for a compare_exchange it is always
2881         // passed by address. For the rest, GNU uses by-address and C11 uses
2882         // by-value.
2883         assert(Form != Load);
2884         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
2885           Ty = ValType;
2886         else if (Form == Copy || Form == Xchg)
2887           Ty = ByValType;
2888         else if (Form == Arithmetic)
2889           Ty = Context.getPointerDiffType();
2890         else {
2891           Expr *ValArg = TheCall->getArg(i);
2892           unsigned AS = 0;
2893           // Keep address space of non-atomic pointer type.
2894           if (const PointerType *PtrTy =
2895                   ValArg->getType()->getAs<PointerType>()) {
2896             AS = PtrTy->getPointeeType().getAddressSpace();
2897           }
2898           Ty = Context.getPointerType(
2899               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
2900         }
2901         break;
2902       case 2:
2903         // The third argument to compare_exchange / GNU exchange is a
2904         // (pointer to a) desired value.
2905         Ty = ByValType;
2906         break;
2907       case 3:
2908         // The fourth argument to GNU compare_exchange is a 'weak' flag.
2909         Ty = Context.BoolTy;
2910         break;
2911       }
2912     } else {
2913       // The order(s) are always converted to int.
2914       Ty = Context.IntTy;
2915     }
2916 
2917     InitializedEntity Entity =
2918         InitializedEntity::InitializeParameter(Context, Ty, false);
2919     ExprResult Arg = TheCall->getArg(i);
2920     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2921     if (Arg.isInvalid())
2922       return true;
2923     TheCall->setArg(i, Arg.get());
2924   }
2925 
2926   // Permute the arguments into a 'consistent' order.
2927   SmallVector<Expr*, 5> SubExprs;
2928   SubExprs.push_back(Ptr);
2929   switch (Form) {
2930   case Init:
2931     // Note, AtomicExpr::getVal1() has a special case for this atomic.
2932     SubExprs.push_back(TheCall->getArg(1)); // Val1
2933     break;
2934   case Load:
2935     SubExprs.push_back(TheCall->getArg(1)); // Order
2936     break;
2937   case LoadCopy:
2938   case Copy:
2939   case Arithmetic:
2940   case Xchg:
2941     SubExprs.push_back(TheCall->getArg(2)); // Order
2942     SubExprs.push_back(TheCall->getArg(1)); // Val1
2943     break;
2944   case GNUXchg:
2945     // Note, AtomicExpr::getVal2() has a special case for this atomic.
2946     SubExprs.push_back(TheCall->getArg(3)); // Order
2947     SubExprs.push_back(TheCall->getArg(1)); // Val1
2948     SubExprs.push_back(TheCall->getArg(2)); // Val2
2949     break;
2950   case C11CmpXchg:
2951     SubExprs.push_back(TheCall->getArg(3)); // Order
2952     SubExprs.push_back(TheCall->getArg(1)); // Val1
2953     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
2954     SubExprs.push_back(TheCall->getArg(2)); // Val2
2955     break;
2956   case GNUCmpXchg:
2957     SubExprs.push_back(TheCall->getArg(4)); // Order
2958     SubExprs.push_back(TheCall->getArg(1)); // Val1
2959     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
2960     SubExprs.push_back(TheCall->getArg(2)); // Val2
2961     SubExprs.push_back(TheCall->getArg(3)); // Weak
2962     break;
2963   }
2964 
2965   if (SubExprs.size() >= 2 && Form != Init) {
2966     llvm::APSInt Result(32);
2967     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
2968         !isValidOrderingForOp(Result.getSExtValue(), Op))
2969       Diag(SubExprs[1]->getLocStart(),
2970            diag::warn_atomic_op_has_invalid_memory_order)
2971           << SubExprs[1]->getSourceRange();
2972   }
2973 
2974   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
2975                                             SubExprs, ResultType, Op,
2976                                             TheCall->getRParenLoc());
2977 
2978   if ((Op == AtomicExpr::AO__c11_atomic_load ||
2979        (Op == AtomicExpr::AO__c11_atomic_store)) &&
2980       Context.AtomicUsesUnsupportedLibcall(AE))
2981     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
2982     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
2983 
2984   return AE;
2985 }
2986 
2987 /// checkBuiltinArgument - Given a call to a builtin function, perform
2988 /// normal type-checking on the given argument, updating the call in
2989 /// place.  This is useful when a builtin function requires custom
2990 /// type-checking for some of its arguments but not necessarily all of
2991 /// them.
2992 ///
2993 /// Returns true on error.
2994 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
2995   FunctionDecl *Fn = E->getDirectCallee();
2996   assert(Fn && "builtin call without direct callee!");
2997 
2998   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
2999   InitializedEntity Entity =
3000     InitializedEntity::InitializeParameter(S.Context, Param);
3001 
3002   ExprResult Arg = E->getArg(0);
3003   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
3004   if (Arg.isInvalid())
3005     return true;
3006 
3007   E->setArg(ArgIndex, Arg.get());
3008   return false;
3009 }
3010 
3011 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
3012 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
3013 /// type of its first argument.  The main ActOnCallExpr routines have already
3014 /// promoted the types of arguments because all of these calls are prototyped as
3015 /// void(...).
3016 ///
3017 /// This function goes through and does final semantic checking for these
3018 /// builtins,
3019 ExprResult
3020 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
3021   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
3022   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3023   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3024 
3025   // Ensure that we have at least one argument to do type inference from.
3026   if (TheCall->getNumArgs() < 1) {
3027     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
3028       << 0 << 1 << TheCall->getNumArgs()
3029       << TheCall->getCallee()->getSourceRange();
3030     return ExprError();
3031   }
3032 
3033   // Inspect the first argument of the atomic builtin.  This should always be
3034   // a pointer type, whose element is an integral scalar or pointer type.
3035   // Because it is a pointer type, we don't have to worry about any implicit
3036   // casts here.
3037   // FIXME: We don't allow floating point scalars as input.
3038   Expr *FirstArg = TheCall->getArg(0);
3039   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
3040   if (FirstArgResult.isInvalid())
3041     return ExprError();
3042   FirstArg = FirstArgResult.get();
3043   TheCall->setArg(0, FirstArg);
3044 
3045   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
3046   if (!pointerType) {
3047     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
3048       << FirstArg->getType() << FirstArg->getSourceRange();
3049     return ExprError();
3050   }
3051 
3052   QualType ValType = pointerType->getPointeeType();
3053   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3054       !ValType->isBlockPointerType()) {
3055     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
3056       << FirstArg->getType() << FirstArg->getSourceRange();
3057     return ExprError();
3058   }
3059 
3060   switch (ValType.getObjCLifetime()) {
3061   case Qualifiers::OCL_None:
3062   case Qualifiers::OCL_ExplicitNone:
3063     // okay
3064     break;
3065 
3066   case Qualifiers::OCL_Weak:
3067   case Qualifiers::OCL_Strong:
3068   case Qualifiers::OCL_Autoreleasing:
3069     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
3070       << ValType << FirstArg->getSourceRange();
3071     return ExprError();
3072   }
3073 
3074   // Strip any qualifiers off ValType.
3075   ValType = ValType.getUnqualifiedType();
3076 
3077   // The majority of builtins return a value, but a few have special return
3078   // types, so allow them to override appropriately below.
3079   QualType ResultType = ValType;
3080 
3081   // We need to figure out which concrete builtin this maps onto.  For example,
3082   // __sync_fetch_and_add with a 2 byte object turns into
3083   // __sync_fetch_and_add_2.
3084 #define BUILTIN_ROW(x) \
3085   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
3086     Builtin::BI##x##_8, Builtin::BI##x##_16 }
3087 
3088   static const unsigned BuiltinIndices[][5] = {
3089     BUILTIN_ROW(__sync_fetch_and_add),
3090     BUILTIN_ROW(__sync_fetch_and_sub),
3091     BUILTIN_ROW(__sync_fetch_and_or),
3092     BUILTIN_ROW(__sync_fetch_and_and),
3093     BUILTIN_ROW(__sync_fetch_and_xor),
3094     BUILTIN_ROW(__sync_fetch_and_nand),
3095 
3096     BUILTIN_ROW(__sync_add_and_fetch),
3097     BUILTIN_ROW(__sync_sub_and_fetch),
3098     BUILTIN_ROW(__sync_and_and_fetch),
3099     BUILTIN_ROW(__sync_or_and_fetch),
3100     BUILTIN_ROW(__sync_xor_and_fetch),
3101     BUILTIN_ROW(__sync_nand_and_fetch),
3102 
3103     BUILTIN_ROW(__sync_val_compare_and_swap),
3104     BUILTIN_ROW(__sync_bool_compare_and_swap),
3105     BUILTIN_ROW(__sync_lock_test_and_set),
3106     BUILTIN_ROW(__sync_lock_release),
3107     BUILTIN_ROW(__sync_swap)
3108   };
3109 #undef BUILTIN_ROW
3110 
3111   // Determine the index of the size.
3112   unsigned SizeIndex;
3113   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
3114   case 1: SizeIndex = 0; break;
3115   case 2: SizeIndex = 1; break;
3116   case 4: SizeIndex = 2; break;
3117   case 8: SizeIndex = 3; break;
3118   case 16: SizeIndex = 4; break;
3119   default:
3120     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
3121       << FirstArg->getType() << FirstArg->getSourceRange();
3122     return ExprError();
3123   }
3124 
3125   // Each of these builtins has one pointer argument, followed by some number of
3126   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
3127   // that we ignore.  Find out which row of BuiltinIndices to read from as well
3128   // as the number of fixed args.
3129   unsigned BuiltinID = FDecl->getBuiltinID();
3130   unsigned BuiltinIndex, NumFixed = 1;
3131   bool WarnAboutSemanticsChange = false;
3132   switch (BuiltinID) {
3133   default: llvm_unreachable("Unknown overloaded atomic builtin!");
3134   case Builtin::BI__sync_fetch_and_add:
3135   case Builtin::BI__sync_fetch_and_add_1:
3136   case Builtin::BI__sync_fetch_and_add_2:
3137   case Builtin::BI__sync_fetch_and_add_4:
3138   case Builtin::BI__sync_fetch_and_add_8:
3139   case Builtin::BI__sync_fetch_and_add_16:
3140     BuiltinIndex = 0;
3141     break;
3142 
3143   case Builtin::BI__sync_fetch_and_sub:
3144   case Builtin::BI__sync_fetch_and_sub_1:
3145   case Builtin::BI__sync_fetch_and_sub_2:
3146   case Builtin::BI__sync_fetch_and_sub_4:
3147   case Builtin::BI__sync_fetch_and_sub_8:
3148   case Builtin::BI__sync_fetch_and_sub_16:
3149     BuiltinIndex = 1;
3150     break;
3151 
3152   case Builtin::BI__sync_fetch_and_or:
3153   case Builtin::BI__sync_fetch_and_or_1:
3154   case Builtin::BI__sync_fetch_and_or_2:
3155   case Builtin::BI__sync_fetch_and_or_4:
3156   case Builtin::BI__sync_fetch_and_or_8:
3157   case Builtin::BI__sync_fetch_and_or_16:
3158     BuiltinIndex = 2;
3159     break;
3160 
3161   case Builtin::BI__sync_fetch_and_and:
3162   case Builtin::BI__sync_fetch_and_and_1:
3163   case Builtin::BI__sync_fetch_and_and_2:
3164   case Builtin::BI__sync_fetch_and_and_4:
3165   case Builtin::BI__sync_fetch_and_and_8:
3166   case Builtin::BI__sync_fetch_and_and_16:
3167     BuiltinIndex = 3;
3168     break;
3169 
3170   case Builtin::BI__sync_fetch_and_xor:
3171   case Builtin::BI__sync_fetch_and_xor_1:
3172   case Builtin::BI__sync_fetch_and_xor_2:
3173   case Builtin::BI__sync_fetch_and_xor_4:
3174   case Builtin::BI__sync_fetch_and_xor_8:
3175   case Builtin::BI__sync_fetch_and_xor_16:
3176     BuiltinIndex = 4;
3177     break;
3178 
3179   case Builtin::BI__sync_fetch_and_nand:
3180   case Builtin::BI__sync_fetch_and_nand_1:
3181   case Builtin::BI__sync_fetch_and_nand_2:
3182   case Builtin::BI__sync_fetch_and_nand_4:
3183   case Builtin::BI__sync_fetch_and_nand_8:
3184   case Builtin::BI__sync_fetch_and_nand_16:
3185     BuiltinIndex = 5;
3186     WarnAboutSemanticsChange = true;
3187     break;
3188 
3189   case Builtin::BI__sync_add_and_fetch:
3190   case Builtin::BI__sync_add_and_fetch_1:
3191   case Builtin::BI__sync_add_and_fetch_2:
3192   case Builtin::BI__sync_add_and_fetch_4:
3193   case Builtin::BI__sync_add_and_fetch_8:
3194   case Builtin::BI__sync_add_and_fetch_16:
3195     BuiltinIndex = 6;
3196     break;
3197 
3198   case Builtin::BI__sync_sub_and_fetch:
3199   case Builtin::BI__sync_sub_and_fetch_1:
3200   case Builtin::BI__sync_sub_and_fetch_2:
3201   case Builtin::BI__sync_sub_and_fetch_4:
3202   case Builtin::BI__sync_sub_and_fetch_8:
3203   case Builtin::BI__sync_sub_and_fetch_16:
3204     BuiltinIndex = 7;
3205     break;
3206 
3207   case Builtin::BI__sync_and_and_fetch:
3208   case Builtin::BI__sync_and_and_fetch_1:
3209   case Builtin::BI__sync_and_and_fetch_2:
3210   case Builtin::BI__sync_and_and_fetch_4:
3211   case Builtin::BI__sync_and_and_fetch_8:
3212   case Builtin::BI__sync_and_and_fetch_16:
3213     BuiltinIndex = 8;
3214     break;
3215 
3216   case Builtin::BI__sync_or_and_fetch:
3217   case Builtin::BI__sync_or_and_fetch_1:
3218   case Builtin::BI__sync_or_and_fetch_2:
3219   case Builtin::BI__sync_or_and_fetch_4:
3220   case Builtin::BI__sync_or_and_fetch_8:
3221   case Builtin::BI__sync_or_and_fetch_16:
3222     BuiltinIndex = 9;
3223     break;
3224 
3225   case Builtin::BI__sync_xor_and_fetch:
3226   case Builtin::BI__sync_xor_and_fetch_1:
3227   case Builtin::BI__sync_xor_and_fetch_2:
3228   case Builtin::BI__sync_xor_and_fetch_4:
3229   case Builtin::BI__sync_xor_and_fetch_8:
3230   case Builtin::BI__sync_xor_and_fetch_16:
3231     BuiltinIndex = 10;
3232     break;
3233 
3234   case Builtin::BI__sync_nand_and_fetch:
3235   case Builtin::BI__sync_nand_and_fetch_1:
3236   case Builtin::BI__sync_nand_and_fetch_2:
3237   case Builtin::BI__sync_nand_and_fetch_4:
3238   case Builtin::BI__sync_nand_and_fetch_8:
3239   case Builtin::BI__sync_nand_and_fetch_16:
3240     BuiltinIndex = 11;
3241     WarnAboutSemanticsChange = true;
3242     break;
3243 
3244   case Builtin::BI__sync_val_compare_and_swap:
3245   case Builtin::BI__sync_val_compare_and_swap_1:
3246   case Builtin::BI__sync_val_compare_and_swap_2:
3247   case Builtin::BI__sync_val_compare_and_swap_4:
3248   case Builtin::BI__sync_val_compare_and_swap_8:
3249   case Builtin::BI__sync_val_compare_and_swap_16:
3250     BuiltinIndex = 12;
3251     NumFixed = 2;
3252     break;
3253 
3254   case Builtin::BI__sync_bool_compare_and_swap:
3255   case Builtin::BI__sync_bool_compare_and_swap_1:
3256   case Builtin::BI__sync_bool_compare_and_swap_2:
3257   case Builtin::BI__sync_bool_compare_and_swap_4:
3258   case Builtin::BI__sync_bool_compare_and_swap_8:
3259   case Builtin::BI__sync_bool_compare_and_swap_16:
3260     BuiltinIndex = 13;
3261     NumFixed = 2;
3262     ResultType = Context.BoolTy;
3263     break;
3264 
3265   case Builtin::BI__sync_lock_test_and_set:
3266   case Builtin::BI__sync_lock_test_and_set_1:
3267   case Builtin::BI__sync_lock_test_and_set_2:
3268   case Builtin::BI__sync_lock_test_and_set_4:
3269   case Builtin::BI__sync_lock_test_and_set_8:
3270   case Builtin::BI__sync_lock_test_and_set_16:
3271     BuiltinIndex = 14;
3272     break;
3273 
3274   case Builtin::BI__sync_lock_release:
3275   case Builtin::BI__sync_lock_release_1:
3276   case Builtin::BI__sync_lock_release_2:
3277   case Builtin::BI__sync_lock_release_4:
3278   case Builtin::BI__sync_lock_release_8:
3279   case Builtin::BI__sync_lock_release_16:
3280     BuiltinIndex = 15;
3281     NumFixed = 0;
3282     ResultType = Context.VoidTy;
3283     break;
3284 
3285   case Builtin::BI__sync_swap:
3286   case Builtin::BI__sync_swap_1:
3287   case Builtin::BI__sync_swap_2:
3288   case Builtin::BI__sync_swap_4:
3289   case Builtin::BI__sync_swap_8:
3290   case Builtin::BI__sync_swap_16:
3291     BuiltinIndex = 16;
3292     break;
3293   }
3294 
3295   // Now that we know how many fixed arguments we expect, first check that we
3296   // have at least that many.
3297   if (TheCall->getNumArgs() < 1+NumFixed) {
3298     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
3299       << 0 << 1+NumFixed << TheCall->getNumArgs()
3300       << TheCall->getCallee()->getSourceRange();
3301     return ExprError();
3302   }
3303 
3304   if (WarnAboutSemanticsChange) {
3305     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
3306       << TheCall->getCallee()->getSourceRange();
3307   }
3308 
3309   // Get the decl for the concrete builtin from this, we can tell what the
3310   // concrete integer type we should convert to is.
3311   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
3312   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
3313   FunctionDecl *NewBuiltinDecl;
3314   if (NewBuiltinID == BuiltinID)
3315     NewBuiltinDecl = FDecl;
3316   else {
3317     // Perform builtin lookup to avoid redeclaring it.
3318     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
3319     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
3320     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
3321     assert(Res.getFoundDecl());
3322     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
3323     if (!NewBuiltinDecl)
3324       return ExprError();
3325   }
3326 
3327   // The first argument --- the pointer --- has a fixed type; we
3328   // deduce the types of the rest of the arguments accordingly.  Walk
3329   // the remaining arguments, converting them to the deduced value type.
3330   for (unsigned i = 0; i != NumFixed; ++i) {
3331     ExprResult Arg = TheCall->getArg(i+1);
3332 
3333     // GCC does an implicit conversion to the pointer or integer ValType.  This
3334     // can fail in some cases (1i -> int**), check for this error case now.
3335     // Initialize the argument.
3336     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
3337                                                    ValType, /*consume*/ false);
3338     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3339     if (Arg.isInvalid())
3340       return ExprError();
3341 
3342     // Okay, we have something that *can* be converted to the right type.  Check
3343     // to see if there is a potentially weird extension going on here.  This can
3344     // happen when you do an atomic operation on something like an char* and
3345     // pass in 42.  The 42 gets converted to char.  This is even more strange
3346     // for things like 45.123 -> char, etc.
3347     // FIXME: Do this check.
3348     TheCall->setArg(i+1, Arg.get());
3349   }
3350 
3351   ASTContext& Context = this->getASTContext();
3352 
3353   // Create a new DeclRefExpr to refer to the new decl.
3354   DeclRefExpr* NewDRE = DeclRefExpr::Create(
3355       Context,
3356       DRE->getQualifierLoc(),
3357       SourceLocation(),
3358       NewBuiltinDecl,
3359       /*enclosing*/ false,
3360       DRE->getLocation(),
3361       Context.BuiltinFnTy,
3362       DRE->getValueKind());
3363 
3364   // Set the callee in the CallExpr.
3365   // FIXME: This loses syntactic information.
3366   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
3367   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
3368                                               CK_BuiltinFnToFnPtr);
3369   TheCall->setCallee(PromotedCall.get());
3370 
3371   // Change the result type of the call to match the original value type. This
3372   // is arbitrary, but the codegen for these builtins ins design to handle it
3373   // gracefully.
3374   TheCall->setType(ResultType);
3375 
3376   return TheCallResult;
3377 }
3378 
3379 /// SemaBuiltinNontemporalOverloaded - We have a call to
3380 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
3381 /// overloaded function based on the pointer type of its last argument.
3382 ///
3383 /// This function goes through and does final semantic checking for these
3384 /// builtins.
3385 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
3386   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
3387   DeclRefExpr *DRE =
3388       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3389   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3390   unsigned BuiltinID = FDecl->getBuiltinID();
3391   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
3392           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
3393          "Unexpected nontemporal load/store builtin!");
3394   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
3395   unsigned numArgs = isStore ? 2 : 1;
3396 
3397   // Ensure that we have the proper number of arguments.
3398   if (checkArgCount(*this, TheCall, numArgs))
3399     return ExprError();
3400 
3401   // Inspect the last argument of the nontemporal builtin.  This should always
3402   // be a pointer type, from which we imply the type of the memory access.
3403   // Because it is a pointer type, we don't have to worry about any implicit
3404   // casts here.
3405   Expr *PointerArg = TheCall->getArg(numArgs - 1);
3406   ExprResult PointerArgResult =
3407       DefaultFunctionArrayLvalueConversion(PointerArg);
3408 
3409   if (PointerArgResult.isInvalid())
3410     return ExprError();
3411   PointerArg = PointerArgResult.get();
3412   TheCall->setArg(numArgs - 1, PointerArg);
3413 
3414   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3415   if (!pointerType) {
3416     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
3417         << PointerArg->getType() << PointerArg->getSourceRange();
3418     return ExprError();
3419   }
3420 
3421   QualType ValType = pointerType->getPointeeType();
3422 
3423   // Strip any qualifiers off ValType.
3424   ValType = ValType.getUnqualifiedType();
3425   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3426       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
3427       !ValType->isVectorType()) {
3428     Diag(DRE->getLocStart(),
3429          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
3430         << PointerArg->getType() << PointerArg->getSourceRange();
3431     return ExprError();
3432   }
3433 
3434   if (!isStore) {
3435     TheCall->setType(ValType);
3436     return TheCallResult;
3437   }
3438 
3439   ExprResult ValArg = TheCall->getArg(0);
3440   InitializedEntity Entity = InitializedEntity::InitializeParameter(
3441       Context, ValType, /*consume*/ false);
3442   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3443   if (ValArg.isInvalid())
3444     return ExprError();
3445 
3446   TheCall->setArg(0, ValArg.get());
3447   TheCall->setType(Context.VoidTy);
3448   return TheCallResult;
3449 }
3450 
3451 /// CheckObjCString - Checks that the argument to the builtin
3452 /// CFString constructor is correct
3453 /// Note: It might also make sense to do the UTF-16 conversion here (would
3454 /// simplify the backend).
3455 bool Sema::CheckObjCString(Expr *Arg) {
3456   Arg = Arg->IgnoreParenCasts();
3457   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
3458 
3459   if (!Literal || !Literal->isAscii()) {
3460     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
3461       << Arg->getSourceRange();
3462     return true;
3463   }
3464 
3465   if (Literal->containsNonAsciiOrNull()) {
3466     StringRef String = Literal->getString();
3467     unsigned NumBytes = String.size();
3468     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
3469     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3470     llvm::UTF16 *ToPtr = &ToBuf[0];
3471 
3472     llvm::ConversionResult Result =
3473         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3474                                  ToPtr + NumBytes, llvm::strictConversion);
3475     // Check for conversion failure.
3476     if (Result != llvm::conversionOK)
3477       Diag(Arg->getLocStart(),
3478            diag::warn_cfstring_truncated) << Arg->getSourceRange();
3479   }
3480   return false;
3481 }
3482 
3483 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
3484 /// for validity.  Emit an error and return true on failure; return false
3485 /// on success.
3486 bool Sema::SemaBuiltinVAStartImpl(CallExpr *TheCall) {
3487   Expr *Fn = TheCall->getCallee();
3488   if (TheCall->getNumArgs() > 2) {
3489     Diag(TheCall->getArg(2)->getLocStart(),
3490          diag::err_typecheck_call_too_many_args)
3491       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3492       << Fn->getSourceRange()
3493       << SourceRange(TheCall->getArg(2)->getLocStart(),
3494                      (*(TheCall->arg_end()-1))->getLocEnd());
3495     return true;
3496   }
3497 
3498   if (TheCall->getNumArgs() < 2) {
3499     return Diag(TheCall->getLocEnd(),
3500       diag::err_typecheck_call_too_few_args_at_least)
3501       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
3502   }
3503 
3504   // Type-check the first argument normally.
3505   if (checkBuiltinArgument(*this, TheCall, 0))
3506     return true;
3507 
3508   // Determine whether the current function is variadic or not.
3509   BlockScopeInfo *CurBlock = getCurBlock();
3510   bool isVariadic;
3511   if (CurBlock)
3512     isVariadic = CurBlock->TheDecl->isVariadic();
3513   else if (FunctionDecl *FD = getCurFunctionDecl())
3514     isVariadic = FD->isVariadic();
3515   else
3516     isVariadic = getCurMethodDecl()->isVariadic();
3517 
3518   if (!isVariadic) {
3519     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
3520     return true;
3521   }
3522 
3523   // Verify that the second argument to the builtin is the last argument of the
3524   // current function or method.
3525   bool SecondArgIsLastNamedArgument = false;
3526   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
3527 
3528   // These are valid if SecondArgIsLastNamedArgument is false after the next
3529   // block.
3530   QualType Type;
3531   SourceLocation ParamLoc;
3532   bool IsCRegister = false;
3533 
3534   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
3535     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
3536       // FIXME: This isn't correct for methods (results in bogus warning).
3537       // Get the last formal in the current function.
3538       const ParmVarDecl *LastArg;
3539       if (CurBlock)
3540         LastArg = CurBlock->TheDecl->parameters().back();
3541       else if (FunctionDecl *FD = getCurFunctionDecl())
3542         LastArg = FD->parameters().back();
3543       else
3544         LastArg = getCurMethodDecl()->parameters().back();
3545       SecondArgIsLastNamedArgument = PV == LastArg;
3546 
3547       Type = PV->getType();
3548       ParamLoc = PV->getLocation();
3549       IsCRegister =
3550           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
3551     }
3552   }
3553 
3554   if (!SecondArgIsLastNamedArgument)
3555     Diag(TheCall->getArg(1)->getLocStart(),
3556          diag::warn_second_arg_of_va_start_not_last_named_param);
3557   else if (IsCRegister || Type->isReferenceType() ||
3558            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
3559              // Promotable integers are UB, but enumerations need a bit of
3560              // extra checking to see what their promotable type actually is.
3561              if (!Type->isPromotableIntegerType())
3562                return false;
3563              if (!Type->isEnumeralType())
3564                return true;
3565              const EnumDecl *ED = Type->getAs<EnumType>()->getDecl();
3566              return !(ED &&
3567                       Context.typesAreCompatible(ED->getPromotionType(), Type));
3568            }()) {
3569     unsigned Reason = 0;
3570     if (Type->isReferenceType())  Reason = 1;
3571     else if (IsCRegister)         Reason = 2;
3572     Diag(Arg->getLocStart(), diag::warn_va_start_type_is_undefined) << Reason;
3573     Diag(ParamLoc, diag::note_parameter_type) << Type;
3574   }
3575 
3576   TheCall->setType(Context.VoidTy);
3577   return false;
3578 }
3579 
3580 /// Check the arguments to '__builtin_va_start' for validity, and that
3581 /// it was called from a function of the native ABI.
3582 /// Emit an error and return true on failure; return false on success.
3583 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
3584   // On x86-64 Unix, don't allow this in Win64 ABI functions.
3585   // On x64 Windows, don't allow this in System V ABI functions.
3586   // (Yes, that means there's no corresponding way to support variadic
3587   // System V ABI functions on Windows.)
3588   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) {
3589     unsigned OS = Context.getTargetInfo().getTriple().getOS();
3590     clang::CallingConv CC = CC_C;
3591     if (const FunctionDecl *FD = getCurFunctionDecl())
3592       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
3593     if ((OS == llvm::Triple::Win32 && CC == CC_X86_64SysV) ||
3594         (OS != llvm::Triple::Win32 && CC == CC_X86_64Win64))
3595       return Diag(TheCall->getCallee()->getLocStart(),
3596                   diag::err_va_start_used_in_wrong_abi_function)
3597              << (OS != llvm::Triple::Win32);
3598   }
3599   return SemaBuiltinVAStartImpl(TheCall);
3600 }
3601 
3602 /// Check the arguments to '__builtin_ms_va_start' for validity, and that
3603 /// it was called from a Win64 ABI function.
3604 /// Emit an error and return true on failure; return false on success.
3605 bool Sema::SemaBuiltinMSVAStart(CallExpr *TheCall) {
3606   // This only makes sense for x86-64.
3607   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3608   Expr *Callee = TheCall->getCallee();
3609   if (TT.getArch() != llvm::Triple::x86_64)
3610     return Diag(Callee->getLocStart(), diag::err_x86_builtin_32_bit_tgt);
3611   // Don't allow this in System V ABI functions.
3612   clang::CallingConv CC = CC_C;
3613   if (const FunctionDecl *FD = getCurFunctionDecl())
3614     CC = FD->getType()->getAs<FunctionType>()->getCallConv();
3615   if (CC == CC_X86_64SysV ||
3616       (TT.getOS() != llvm::Triple::Win32 && CC != CC_X86_64Win64))
3617     return Diag(Callee->getLocStart(),
3618                 diag::err_ms_va_start_used_in_sysv_function);
3619   return SemaBuiltinVAStartImpl(TheCall);
3620 }
3621 
3622 bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
3623   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
3624   //                 const char *named_addr);
3625 
3626   Expr *Func = Call->getCallee();
3627 
3628   if (Call->getNumArgs() < 3)
3629     return Diag(Call->getLocEnd(),
3630                 diag::err_typecheck_call_too_few_args_at_least)
3631            << 0 /*function call*/ << 3 << Call->getNumArgs();
3632 
3633   // Determine whether the current function is variadic or not.
3634   bool IsVariadic;
3635   if (BlockScopeInfo *CurBlock = getCurBlock())
3636     IsVariadic = CurBlock->TheDecl->isVariadic();
3637   else if (FunctionDecl *FD = getCurFunctionDecl())
3638     IsVariadic = FD->isVariadic();
3639   else if (ObjCMethodDecl *MD = getCurMethodDecl())
3640     IsVariadic = MD->isVariadic();
3641   else
3642     llvm_unreachable("unexpected statement type");
3643 
3644   if (!IsVariadic) {
3645     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
3646     return true;
3647   }
3648 
3649   // Type-check the first argument normally.
3650   if (checkBuiltinArgument(*this, Call, 0))
3651     return true;
3652 
3653   const struct {
3654     unsigned ArgNo;
3655     QualType Type;
3656   } ArgumentTypes[] = {
3657     { 1, Context.getPointerType(Context.CharTy.withConst()) },
3658     { 2, Context.getSizeType() },
3659   };
3660 
3661   for (const auto &AT : ArgumentTypes) {
3662     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
3663     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
3664       continue;
3665     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
3666       << Arg->getType() << AT.Type << 1 /* different class */
3667       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
3668       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
3669   }
3670 
3671   return false;
3672 }
3673 
3674 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
3675 /// friends.  This is declared to take (...), so we have to check everything.
3676 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
3677   if (TheCall->getNumArgs() < 2)
3678     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
3679       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
3680   if (TheCall->getNumArgs() > 2)
3681     return Diag(TheCall->getArg(2)->getLocStart(),
3682                 diag::err_typecheck_call_too_many_args)
3683       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3684       << SourceRange(TheCall->getArg(2)->getLocStart(),
3685                      (*(TheCall->arg_end()-1))->getLocEnd());
3686 
3687   ExprResult OrigArg0 = TheCall->getArg(0);
3688   ExprResult OrigArg1 = TheCall->getArg(1);
3689 
3690   // Do standard promotions between the two arguments, returning their common
3691   // type.
3692   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
3693   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
3694     return true;
3695 
3696   // Make sure any conversions are pushed back into the call; this is
3697   // type safe since unordered compare builtins are declared as "_Bool
3698   // foo(...)".
3699   TheCall->setArg(0, OrigArg0.get());
3700   TheCall->setArg(1, OrigArg1.get());
3701 
3702   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
3703     return false;
3704 
3705   // If the common type isn't a real floating type, then the arguments were
3706   // invalid for this operation.
3707   if (Res.isNull() || !Res->isRealFloatingType())
3708     return Diag(OrigArg0.get()->getLocStart(),
3709                 diag::err_typecheck_call_invalid_ordered_compare)
3710       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
3711       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
3712 
3713   return false;
3714 }
3715 
3716 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
3717 /// __builtin_isnan and friends.  This is declared to take (...), so we have
3718 /// to check everything. We expect the last argument to be a floating point
3719 /// value.
3720 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
3721   if (TheCall->getNumArgs() < NumArgs)
3722     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
3723       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
3724   if (TheCall->getNumArgs() > NumArgs)
3725     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
3726                 diag::err_typecheck_call_too_many_args)
3727       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
3728       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
3729                      (*(TheCall->arg_end()-1))->getLocEnd());
3730 
3731   Expr *OrigArg = TheCall->getArg(NumArgs-1);
3732 
3733   if (OrigArg->isTypeDependent())
3734     return false;
3735 
3736   // This operation requires a non-_Complex floating-point number.
3737   if (!OrigArg->getType()->isRealFloatingType())
3738     return Diag(OrigArg->getLocStart(),
3739                 diag::err_typecheck_call_invalid_unary_fp)
3740       << OrigArg->getType() << OrigArg->getSourceRange();
3741 
3742   // If this is an implicit conversion from float -> double, remove it.
3743   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
3744     Expr *CastArg = Cast->getSubExpr();
3745     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
3746       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
3747              "promotion from float to double is the only expected cast here");
3748       Cast->setSubExpr(nullptr);
3749       TheCall->setArg(NumArgs-1, CastArg);
3750     }
3751   }
3752 
3753   return false;
3754 }
3755 
3756 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
3757 // This is declared to take (...), so we have to check everything.
3758 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
3759   if (TheCall->getNumArgs() < 2)
3760     return ExprError(Diag(TheCall->getLocEnd(),
3761                           diag::err_typecheck_call_too_few_args_at_least)
3762                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3763                      << TheCall->getSourceRange());
3764 
3765   // Determine which of the following types of shufflevector we're checking:
3766   // 1) unary, vector mask: (lhs, mask)
3767   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
3768   QualType resType = TheCall->getArg(0)->getType();
3769   unsigned numElements = 0;
3770 
3771   if (!TheCall->getArg(0)->isTypeDependent() &&
3772       !TheCall->getArg(1)->isTypeDependent()) {
3773     QualType LHSType = TheCall->getArg(0)->getType();
3774     QualType RHSType = TheCall->getArg(1)->getType();
3775 
3776     if (!LHSType->isVectorType() || !RHSType->isVectorType())
3777       return ExprError(Diag(TheCall->getLocStart(),
3778                             diag::err_shufflevector_non_vector)
3779                        << SourceRange(TheCall->getArg(0)->getLocStart(),
3780                                       TheCall->getArg(1)->getLocEnd()));
3781 
3782     numElements = LHSType->getAs<VectorType>()->getNumElements();
3783     unsigned numResElements = TheCall->getNumArgs() - 2;
3784 
3785     // Check to see if we have a call with 2 vector arguments, the unary shuffle
3786     // with mask.  If so, verify that RHS is an integer vector type with the
3787     // same number of elts as lhs.
3788     if (TheCall->getNumArgs() == 2) {
3789       if (!RHSType->hasIntegerRepresentation() ||
3790           RHSType->getAs<VectorType>()->getNumElements() != numElements)
3791         return ExprError(Diag(TheCall->getLocStart(),
3792                               diag::err_shufflevector_incompatible_vector)
3793                          << SourceRange(TheCall->getArg(1)->getLocStart(),
3794                                         TheCall->getArg(1)->getLocEnd()));
3795     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
3796       return ExprError(Diag(TheCall->getLocStart(),
3797                             diag::err_shufflevector_incompatible_vector)
3798                        << SourceRange(TheCall->getArg(0)->getLocStart(),
3799                                       TheCall->getArg(1)->getLocEnd()));
3800     } else if (numElements != numResElements) {
3801       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
3802       resType = Context.getVectorType(eltType, numResElements,
3803                                       VectorType::GenericVector);
3804     }
3805   }
3806 
3807   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
3808     if (TheCall->getArg(i)->isTypeDependent() ||
3809         TheCall->getArg(i)->isValueDependent())
3810       continue;
3811 
3812     llvm::APSInt Result(32);
3813     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
3814       return ExprError(Diag(TheCall->getLocStart(),
3815                             diag::err_shufflevector_nonconstant_argument)
3816                        << TheCall->getArg(i)->getSourceRange());
3817 
3818     // Allow -1 which will be translated to undef in the IR.
3819     if (Result.isSigned() && Result.isAllOnesValue())
3820       continue;
3821 
3822     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
3823       return ExprError(Diag(TheCall->getLocStart(),
3824                             diag::err_shufflevector_argument_too_large)
3825                        << TheCall->getArg(i)->getSourceRange());
3826   }
3827 
3828   SmallVector<Expr*, 32> exprs;
3829 
3830   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
3831     exprs.push_back(TheCall->getArg(i));
3832     TheCall->setArg(i, nullptr);
3833   }
3834 
3835   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
3836                                          TheCall->getCallee()->getLocStart(),
3837                                          TheCall->getRParenLoc());
3838 }
3839 
3840 /// SemaConvertVectorExpr - Handle __builtin_convertvector
3841 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
3842                                        SourceLocation BuiltinLoc,
3843                                        SourceLocation RParenLoc) {
3844   ExprValueKind VK = VK_RValue;
3845   ExprObjectKind OK = OK_Ordinary;
3846   QualType DstTy = TInfo->getType();
3847   QualType SrcTy = E->getType();
3848 
3849   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
3850     return ExprError(Diag(BuiltinLoc,
3851                           diag::err_convertvector_non_vector)
3852                      << E->getSourceRange());
3853   if (!DstTy->isVectorType() && !DstTy->isDependentType())
3854     return ExprError(Diag(BuiltinLoc,
3855                           diag::err_convertvector_non_vector_type));
3856 
3857   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
3858     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
3859     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
3860     if (SrcElts != DstElts)
3861       return ExprError(Diag(BuiltinLoc,
3862                             diag::err_convertvector_incompatible_vector)
3863                        << E->getSourceRange());
3864   }
3865 
3866   return new (Context)
3867       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
3868 }
3869 
3870 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
3871 // This is declared to take (const void*, ...) and can take two
3872 // optional constant int args.
3873 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
3874   unsigned NumArgs = TheCall->getNumArgs();
3875 
3876   if (NumArgs > 3)
3877     return Diag(TheCall->getLocEnd(),
3878              diag::err_typecheck_call_too_many_args_at_most)
3879              << 0 /*function call*/ << 3 << NumArgs
3880              << TheCall->getSourceRange();
3881 
3882   // Argument 0 is checked for us and the remaining arguments must be
3883   // constant integers.
3884   for (unsigned i = 1; i != NumArgs; ++i)
3885     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
3886       return true;
3887 
3888   return false;
3889 }
3890 
3891 /// SemaBuiltinAssume - Handle __assume (MS Extension).
3892 // __assume does not evaluate its arguments, and should warn if its argument
3893 // has side effects.
3894 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
3895   Expr *Arg = TheCall->getArg(0);
3896   if (Arg->isInstantiationDependent()) return false;
3897 
3898   if (Arg->HasSideEffects(Context))
3899     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
3900       << Arg->getSourceRange()
3901       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
3902 
3903   return false;
3904 }
3905 
3906 /// Handle __builtin_assume_aligned. This is declared
3907 /// as (const void*, size_t, ...) and can take one optional constant int arg.
3908 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
3909   unsigned NumArgs = TheCall->getNumArgs();
3910 
3911   if (NumArgs > 3)
3912     return Diag(TheCall->getLocEnd(),
3913              diag::err_typecheck_call_too_many_args_at_most)
3914              << 0 /*function call*/ << 3 << NumArgs
3915              << TheCall->getSourceRange();
3916 
3917   // The alignment must be a constant integer.
3918   Expr *Arg = TheCall->getArg(1);
3919 
3920   // We can't check the value of a dependent argument.
3921   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
3922     llvm::APSInt Result;
3923     if (SemaBuiltinConstantArg(TheCall, 1, Result))
3924       return true;
3925 
3926     if (!Result.isPowerOf2())
3927       return Diag(TheCall->getLocStart(),
3928                   diag::err_alignment_not_power_of_two)
3929            << Arg->getSourceRange();
3930   }
3931 
3932   if (NumArgs > 2) {
3933     ExprResult Arg(TheCall->getArg(2));
3934     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
3935       Context.getSizeType(), false);
3936     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3937     if (Arg.isInvalid()) return true;
3938     TheCall->setArg(2, Arg.get());
3939   }
3940 
3941   return false;
3942 }
3943 
3944 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
3945 /// TheCall is a constant expression.
3946 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
3947                                   llvm::APSInt &Result) {
3948   Expr *Arg = TheCall->getArg(ArgNum);
3949   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3950   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3951 
3952   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
3953 
3954   if (!Arg->isIntegerConstantExpr(Result, Context))
3955     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
3956                 << FDecl->getDeclName() <<  Arg->getSourceRange();
3957 
3958   return false;
3959 }
3960 
3961 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
3962 /// TheCall is a constant expression in the range [Low, High].
3963 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
3964                                        int Low, int High) {
3965   llvm::APSInt Result;
3966 
3967   // We can't check the value of a dependent argument.
3968   Expr *Arg = TheCall->getArg(ArgNum);
3969   if (Arg->isTypeDependent() || Arg->isValueDependent())
3970     return false;
3971 
3972   // Check constant-ness first.
3973   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3974     return true;
3975 
3976   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
3977     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
3978       << Low << High << Arg->getSourceRange();
3979 
3980   return false;
3981 }
3982 
3983 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
3984 /// TheCall is a constant expression is a multiple of Num..
3985 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
3986                                           unsigned Num) {
3987   llvm::APSInt Result;
3988 
3989   // We can't check the value of a dependent argument.
3990   Expr *Arg = TheCall->getArg(ArgNum);
3991   if (Arg->isTypeDependent() || Arg->isValueDependent())
3992     return false;
3993 
3994   // Check constant-ness first.
3995   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3996     return true;
3997 
3998   if (Result.getSExtValue() % Num != 0)
3999     return Diag(TheCall->getLocStart(), diag::err_argument_not_multiple)
4000       << Num << Arg->getSourceRange();
4001 
4002   return false;
4003 }
4004 
4005 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
4006 /// TheCall is an ARM/AArch64 special register string literal.
4007 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
4008                                     int ArgNum, unsigned ExpectedFieldNum,
4009                                     bool AllowName) {
4010   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
4011                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
4012                       BuiltinID == ARM::BI__builtin_arm_rsr ||
4013                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
4014                       BuiltinID == ARM::BI__builtin_arm_wsr ||
4015                       BuiltinID == ARM::BI__builtin_arm_wsrp;
4016   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4017                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
4018                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
4019                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4020                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
4021                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
4022   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
4023 
4024   // We can't check the value of a dependent argument.
4025   Expr *Arg = TheCall->getArg(ArgNum);
4026   if (Arg->isTypeDependent() || Arg->isValueDependent())
4027     return false;
4028 
4029   // Check if the argument is a string literal.
4030   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4031     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
4032            << Arg->getSourceRange();
4033 
4034   // Check the type of special register given.
4035   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4036   SmallVector<StringRef, 6> Fields;
4037   Reg.split(Fields, ":");
4038 
4039   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
4040     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
4041            << Arg->getSourceRange();
4042 
4043   // If the string is the name of a register then we cannot check that it is
4044   // valid here but if the string is of one the forms described in ACLE then we
4045   // can check that the supplied fields are integers and within the valid
4046   // ranges.
4047   if (Fields.size() > 1) {
4048     bool FiveFields = Fields.size() == 5;
4049 
4050     bool ValidString = true;
4051     if (IsARMBuiltin) {
4052       ValidString &= Fields[0].startswith_lower("cp") ||
4053                      Fields[0].startswith_lower("p");
4054       if (ValidString)
4055         Fields[0] =
4056           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
4057 
4058       ValidString &= Fields[2].startswith_lower("c");
4059       if (ValidString)
4060         Fields[2] = Fields[2].drop_front(1);
4061 
4062       if (FiveFields) {
4063         ValidString &= Fields[3].startswith_lower("c");
4064         if (ValidString)
4065           Fields[3] = Fields[3].drop_front(1);
4066       }
4067     }
4068 
4069     SmallVector<int, 5> Ranges;
4070     if (FiveFields)
4071       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 7, 15, 15});
4072     else
4073       Ranges.append({15, 7, 15});
4074 
4075     for (unsigned i=0; i<Fields.size(); ++i) {
4076       int IntField;
4077       ValidString &= !Fields[i].getAsInteger(10, IntField);
4078       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
4079     }
4080 
4081     if (!ValidString)
4082       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
4083              << Arg->getSourceRange();
4084 
4085   } else if (IsAArch64Builtin && Fields.size() == 1) {
4086     // If the register name is one of those that appear in the condition below
4087     // and the special register builtin being used is one of the write builtins,
4088     // then we require that the argument provided for writing to the register
4089     // is an integer constant expression. This is because it will be lowered to
4090     // an MSR (immediate) instruction, so we need to know the immediate at
4091     // compile time.
4092     if (TheCall->getNumArgs() != 2)
4093       return false;
4094 
4095     std::string RegLower = Reg.lower();
4096     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
4097         RegLower != "pan" && RegLower != "uao")
4098       return false;
4099 
4100     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4101   }
4102 
4103   return false;
4104 }
4105 
4106 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
4107 /// This checks that the target supports __builtin_longjmp and
4108 /// that val is a constant 1.
4109 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
4110   if (!Context.getTargetInfo().hasSjLjLowering())
4111     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
4112              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
4113 
4114   Expr *Arg = TheCall->getArg(1);
4115   llvm::APSInt Result;
4116 
4117   // TODO: This is less than ideal. Overload this to take a value.
4118   if (SemaBuiltinConstantArg(TheCall, 1, Result))
4119     return true;
4120 
4121   if (Result != 1)
4122     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
4123              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
4124 
4125   return false;
4126 }
4127 
4128 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
4129 /// This checks that the target supports __builtin_setjmp.
4130 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
4131   if (!Context.getTargetInfo().hasSjLjLowering())
4132     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
4133              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
4134   return false;
4135 }
4136 
4137 namespace {
4138 class UncoveredArgHandler {
4139   enum { Unknown = -1, AllCovered = -2 };
4140   signed FirstUncoveredArg;
4141   SmallVector<const Expr *, 4> DiagnosticExprs;
4142 
4143 public:
4144   UncoveredArgHandler() : FirstUncoveredArg(Unknown) { }
4145 
4146   bool hasUncoveredArg() const {
4147     return (FirstUncoveredArg >= 0);
4148   }
4149 
4150   unsigned getUncoveredArg() const {
4151     assert(hasUncoveredArg() && "no uncovered argument");
4152     return FirstUncoveredArg;
4153   }
4154 
4155   void setAllCovered() {
4156     // A string has been found with all arguments covered, so clear out
4157     // the diagnostics.
4158     DiagnosticExprs.clear();
4159     FirstUncoveredArg = AllCovered;
4160   }
4161 
4162   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
4163     assert(NewFirstUncoveredArg >= 0 && "Outside range");
4164 
4165     // Don't update if a previous string covers all arguments.
4166     if (FirstUncoveredArg == AllCovered)
4167       return;
4168 
4169     // UncoveredArgHandler tracks the highest uncovered argument index
4170     // and with it all the strings that match this index.
4171     if (NewFirstUncoveredArg == FirstUncoveredArg)
4172       DiagnosticExprs.push_back(StrExpr);
4173     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
4174       DiagnosticExprs.clear();
4175       DiagnosticExprs.push_back(StrExpr);
4176       FirstUncoveredArg = NewFirstUncoveredArg;
4177     }
4178   }
4179 
4180   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
4181 };
4182 
4183 enum StringLiteralCheckType {
4184   SLCT_NotALiteral,
4185   SLCT_UncheckedLiteral,
4186   SLCT_CheckedLiteral
4187 };
4188 } // end anonymous namespace
4189 
4190 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
4191                                      BinaryOperatorKind BinOpKind,
4192                                      bool AddendIsRight) {
4193   unsigned BitWidth = Offset.getBitWidth();
4194   unsigned AddendBitWidth = Addend.getBitWidth();
4195   // There might be negative interim results.
4196   if (Addend.isUnsigned()) {
4197     Addend = Addend.zext(++AddendBitWidth);
4198     Addend.setIsSigned(true);
4199   }
4200   // Adjust the bit width of the APSInts.
4201   if (AddendBitWidth > BitWidth) {
4202     Offset = Offset.sext(AddendBitWidth);
4203     BitWidth = AddendBitWidth;
4204   } else if (BitWidth > AddendBitWidth) {
4205     Addend = Addend.sext(BitWidth);
4206   }
4207 
4208   bool Ov = false;
4209   llvm::APSInt ResOffset = Offset;
4210   if (BinOpKind == BO_Add)
4211     ResOffset = Offset.sadd_ov(Addend, Ov);
4212   else {
4213     assert(AddendIsRight && BinOpKind == BO_Sub &&
4214            "operator must be add or sub with addend on the right");
4215     ResOffset = Offset.ssub_ov(Addend, Ov);
4216   }
4217 
4218   // We add an offset to a pointer here so we should support an offset as big as
4219   // possible.
4220   if (Ov) {
4221     assert(BitWidth <= UINT_MAX / 2 && "index (intermediate) result too big");
4222     Offset = Offset.sext(2 * BitWidth);
4223     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
4224     return;
4225   }
4226 
4227   Offset = ResOffset;
4228 }
4229 
4230 namespace {
4231 // This is a wrapper class around StringLiteral to support offsetted string
4232 // literals as format strings. It takes the offset into account when returning
4233 // the string and its length or the source locations to display notes correctly.
4234 class FormatStringLiteral {
4235   const StringLiteral *FExpr;
4236   int64_t Offset;
4237 
4238  public:
4239   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
4240       : FExpr(fexpr), Offset(Offset) {}
4241 
4242   StringRef getString() const {
4243     return FExpr->getString().drop_front(Offset);
4244   }
4245 
4246   unsigned getByteLength() const {
4247     return FExpr->getByteLength() - getCharByteWidth() * Offset;
4248   }
4249   unsigned getLength() const { return FExpr->getLength() - Offset; }
4250   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
4251 
4252   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
4253 
4254   QualType getType() const { return FExpr->getType(); }
4255 
4256   bool isAscii() const { return FExpr->isAscii(); }
4257   bool isWide() const { return FExpr->isWide(); }
4258   bool isUTF8() const { return FExpr->isUTF8(); }
4259   bool isUTF16() const { return FExpr->isUTF16(); }
4260   bool isUTF32() const { return FExpr->isUTF32(); }
4261   bool isPascal() const { return FExpr->isPascal(); }
4262 
4263   SourceLocation getLocationOfByte(
4264       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
4265       const TargetInfo &Target, unsigned *StartToken = nullptr,
4266       unsigned *StartTokenByteOffset = nullptr) const {
4267     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
4268                                     StartToken, StartTokenByteOffset);
4269   }
4270 
4271   SourceLocation getLocStart() const LLVM_READONLY {
4272     return FExpr->getLocStart().getLocWithOffset(Offset);
4273   }
4274   SourceLocation getLocEnd() const LLVM_READONLY { return FExpr->getLocEnd(); }
4275 };
4276 }  // end anonymous namespace
4277 
4278 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
4279                               const Expr *OrigFormatExpr,
4280                               ArrayRef<const Expr *> Args,
4281                               bool HasVAListArg, unsigned format_idx,
4282                               unsigned firstDataArg,
4283                               Sema::FormatStringType Type,
4284                               bool inFunctionCall,
4285                               Sema::VariadicCallType CallType,
4286                               llvm::SmallBitVector &CheckedVarArgs,
4287                               UncoveredArgHandler &UncoveredArg);
4288 
4289 // Determine if an expression is a string literal or constant string.
4290 // If this function returns false on the arguments to a function expecting a
4291 // format string, we will usually need to emit a warning.
4292 // True string literals are then checked by CheckFormatString.
4293 static StringLiteralCheckType
4294 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
4295                       bool HasVAListArg, unsigned format_idx,
4296                       unsigned firstDataArg, Sema::FormatStringType Type,
4297                       Sema::VariadicCallType CallType, bool InFunctionCall,
4298                       llvm::SmallBitVector &CheckedVarArgs,
4299                       UncoveredArgHandler &UncoveredArg,
4300                       llvm::APSInt Offset) {
4301  tryAgain:
4302   assert(Offset.isSigned() && "invalid offset");
4303 
4304   if (E->isTypeDependent() || E->isValueDependent())
4305     return SLCT_NotALiteral;
4306 
4307   E = E->IgnoreParenCasts();
4308 
4309   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
4310     // Technically -Wformat-nonliteral does not warn about this case.
4311     // The behavior of printf and friends in this case is implementation
4312     // dependent.  Ideally if the format string cannot be null then
4313     // it should have a 'nonnull' attribute in the function prototype.
4314     return SLCT_UncheckedLiteral;
4315 
4316   switch (E->getStmtClass()) {
4317   case Stmt::BinaryConditionalOperatorClass:
4318   case Stmt::ConditionalOperatorClass: {
4319     // The expression is a literal if both sub-expressions were, and it was
4320     // completely checked only if both sub-expressions were checked.
4321     const AbstractConditionalOperator *C =
4322         cast<AbstractConditionalOperator>(E);
4323 
4324     // Determine whether it is necessary to check both sub-expressions, for
4325     // example, because the condition expression is a constant that can be
4326     // evaluated at compile time.
4327     bool CheckLeft = true, CheckRight = true;
4328 
4329     bool Cond;
4330     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) {
4331       if (Cond)
4332         CheckRight = false;
4333       else
4334         CheckLeft = false;
4335     }
4336 
4337     // We need to maintain the offsets for the right and the left hand side
4338     // separately to check if every possible indexed expression is a valid
4339     // string literal. They might have different offsets for different string
4340     // literals in the end.
4341     StringLiteralCheckType Left;
4342     if (!CheckLeft)
4343       Left = SLCT_UncheckedLiteral;
4344     else {
4345       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
4346                                    HasVAListArg, format_idx, firstDataArg,
4347                                    Type, CallType, InFunctionCall,
4348                                    CheckedVarArgs, UncoveredArg, Offset);
4349       if (Left == SLCT_NotALiteral || !CheckRight) {
4350         return Left;
4351       }
4352     }
4353 
4354     StringLiteralCheckType Right =
4355         checkFormatStringExpr(S, C->getFalseExpr(), Args,
4356                               HasVAListArg, format_idx, firstDataArg,
4357                               Type, CallType, InFunctionCall, CheckedVarArgs,
4358                               UncoveredArg, Offset);
4359 
4360     return (CheckLeft && Left < Right) ? Left : Right;
4361   }
4362 
4363   case Stmt::ImplicitCastExprClass: {
4364     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4365     goto tryAgain;
4366   }
4367 
4368   case Stmt::OpaqueValueExprClass:
4369     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
4370       E = src;
4371       goto tryAgain;
4372     }
4373     return SLCT_NotALiteral;
4374 
4375   case Stmt::PredefinedExprClass:
4376     // While __func__, etc., are technically not string literals, they
4377     // cannot contain format specifiers and thus are not a security
4378     // liability.
4379     return SLCT_UncheckedLiteral;
4380 
4381   case Stmt::DeclRefExprClass: {
4382     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
4383 
4384     // As an exception, do not flag errors for variables binding to
4385     // const string literals.
4386     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
4387       bool isConstant = false;
4388       QualType T = DR->getType();
4389 
4390       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
4391         isConstant = AT->getElementType().isConstant(S.Context);
4392       } else if (const PointerType *PT = T->getAs<PointerType>()) {
4393         isConstant = T.isConstant(S.Context) &&
4394                      PT->getPointeeType().isConstant(S.Context);
4395       } else if (T->isObjCObjectPointerType()) {
4396         // In ObjC, there is usually no "const ObjectPointer" type,
4397         // so don't check if the pointee type is constant.
4398         isConstant = T.isConstant(S.Context);
4399       }
4400 
4401       if (isConstant) {
4402         if (const Expr *Init = VD->getAnyInitializer()) {
4403           // Look through initializers like const char c[] = { "foo" }
4404           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4405             if (InitList->isStringLiteralInit())
4406               Init = InitList->getInit(0)->IgnoreParenImpCasts();
4407           }
4408           return checkFormatStringExpr(S, Init, Args,
4409                                        HasVAListArg, format_idx,
4410                                        firstDataArg, Type, CallType,
4411                                        /*InFunctionCall*/ false, CheckedVarArgs,
4412                                        UncoveredArg, Offset);
4413         }
4414       }
4415 
4416       // For vprintf* functions (i.e., HasVAListArg==true), we add a
4417       // special check to see if the format string is a function parameter
4418       // of the function calling the printf function.  If the function
4419       // has an attribute indicating it is a printf-like function, then we
4420       // should suppress warnings concerning non-literals being used in a call
4421       // to a vprintf function.  For example:
4422       //
4423       // void
4424       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
4425       //      va_list ap;
4426       //      va_start(ap, fmt);
4427       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
4428       //      ...
4429       // }
4430       if (HasVAListArg) {
4431         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
4432           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
4433             int PVIndex = PV->getFunctionScopeIndex() + 1;
4434             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
4435               // adjust for implicit parameter
4436               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
4437                 if (MD->isInstance())
4438                   ++PVIndex;
4439               // We also check if the formats are compatible.
4440               // We can't pass a 'scanf' string to a 'printf' function.
4441               if (PVIndex == PVFormat->getFormatIdx() &&
4442                   Type == S.GetFormatStringType(PVFormat))
4443                 return SLCT_UncheckedLiteral;
4444             }
4445           }
4446         }
4447       }
4448     }
4449 
4450     return SLCT_NotALiteral;
4451   }
4452 
4453   case Stmt::CallExprClass:
4454   case Stmt::CXXMemberCallExprClass: {
4455     const CallExpr *CE = cast<CallExpr>(E);
4456     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
4457       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
4458         unsigned ArgIndex = FA->getFormatIdx();
4459         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
4460           if (MD->isInstance())
4461             --ArgIndex;
4462         const Expr *Arg = CE->getArg(ArgIndex - 1);
4463 
4464         return checkFormatStringExpr(S, Arg, Args,
4465                                      HasVAListArg, format_idx, firstDataArg,
4466                                      Type, CallType, InFunctionCall,
4467                                      CheckedVarArgs, UncoveredArg, Offset);
4468       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4469         unsigned BuiltinID = FD->getBuiltinID();
4470         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4471             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
4472           const Expr *Arg = CE->getArg(0);
4473           return checkFormatStringExpr(S, Arg, Args,
4474                                        HasVAListArg, format_idx,
4475                                        firstDataArg, Type, CallType,
4476                                        InFunctionCall, CheckedVarArgs,
4477                                        UncoveredArg, Offset);
4478         }
4479       }
4480     }
4481 
4482     return SLCT_NotALiteral;
4483   }
4484   case Stmt::ObjCStringLiteralClass:
4485   case Stmt::StringLiteralClass: {
4486     const StringLiteral *StrE = nullptr;
4487 
4488     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
4489       StrE = ObjCFExpr->getString();
4490     else
4491       StrE = cast<StringLiteral>(E);
4492 
4493     if (StrE) {
4494       if (Offset.isNegative() || Offset > StrE->getLength()) {
4495         // TODO: It would be better to have an explicit warning for out of
4496         // bounds literals.
4497         return SLCT_NotALiteral;
4498       }
4499       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
4500       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
4501                         firstDataArg, Type, InFunctionCall, CallType,
4502                         CheckedVarArgs, UncoveredArg);
4503       return SLCT_CheckedLiteral;
4504     }
4505 
4506     return SLCT_NotALiteral;
4507   }
4508   case Stmt::BinaryOperatorClass: {
4509     llvm::APSInt LResult;
4510     llvm::APSInt RResult;
4511 
4512     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
4513 
4514     // A string literal + an int offset is still a string literal.
4515     if (BinOp->isAdditiveOp()) {
4516       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context);
4517       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context);
4518 
4519       if (LIsInt != RIsInt) {
4520         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
4521 
4522         if (LIsInt) {
4523           if (BinOpKind == BO_Add) {
4524             sumOffsets(Offset, LResult, BinOpKind, RIsInt);
4525             E = BinOp->getRHS();
4526             goto tryAgain;
4527           }
4528         } else {
4529           sumOffsets(Offset, RResult, BinOpKind, RIsInt);
4530           E = BinOp->getLHS();
4531           goto tryAgain;
4532         }
4533       }
4534     }
4535 
4536     return SLCT_NotALiteral;
4537   }
4538   case Stmt::UnaryOperatorClass: {
4539     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
4540     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
4541     if (UnaOp->getOpcode() == clang::UO_AddrOf && ASE) {
4542       llvm::APSInt IndexResult;
4543       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) {
4544         sumOffsets(Offset, IndexResult, BO_Add, /*RHS is int*/ true);
4545         E = ASE->getBase();
4546         goto tryAgain;
4547       }
4548     }
4549 
4550     return SLCT_NotALiteral;
4551   }
4552 
4553   default:
4554     return SLCT_NotALiteral;
4555   }
4556 }
4557 
4558 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
4559   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
4560   .Case("scanf", FST_Scanf)
4561   .Cases("printf", "printf0", FST_Printf)
4562   .Cases("NSString", "CFString", FST_NSString)
4563   .Case("strftime", FST_Strftime)
4564   .Case("strfmon", FST_Strfmon)
4565   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
4566   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
4567   .Case("os_trace", FST_OSTrace)
4568   .Default(FST_Unknown);
4569 }
4570 
4571 /// CheckFormatArguments - Check calls to printf and scanf (and similar
4572 /// functions) for correct use of format strings.
4573 /// Returns true if a format string has been fully checked.
4574 bool Sema::CheckFormatArguments(const FormatAttr *Format,
4575                                 ArrayRef<const Expr *> Args,
4576                                 bool IsCXXMember,
4577                                 VariadicCallType CallType,
4578                                 SourceLocation Loc, SourceRange Range,
4579                                 llvm::SmallBitVector &CheckedVarArgs) {
4580   FormatStringInfo FSI;
4581   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
4582     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
4583                                 FSI.FirstDataArg, GetFormatStringType(Format),
4584                                 CallType, Loc, Range, CheckedVarArgs);
4585   return false;
4586 }
4587 
4588 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
4589                                 bool HasVAListArg, unsigned format_idx,
4590                                 unsigned firstDataArg, FormatStringType Type,
4591                                 VariadicCallType CallType,
4592                                 SourceLocation Loc, SourceRange Range,
4593                                 llvm::SmallBitVector &CheckedVarArgs) {
4594   // CHECK: printf/scanf-like function is called with no format string.
4595   if (format_idx >= Args.size()) {
4596     Diag(Loc, diag::warn_missing_format_string) << Range;
4597     return false;
4598   }
4599 
4600   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
4601 
4602   // CHECK: format string is not a string literal.
4603   //
4604   // Dynamically generated format strings are difficult to
4605   // automatically vet at compile time.  Requiring that format strings
4606   // are string literals: (1) permits the checking of format strings by
4607   // the compiler and thereby (2) can practically remove the source of
4608   // many format string exploits.
4609 
4610   // Format string can be either ObjC string (e.g. @"%d") or
4611   // C string (e.g. "%d")
4612   // ObjC string uses the same format specifiers as C string, so we can use
4613   // the same format string checking logic for both ObjC and C strings.
4614   UncoveredArgHandler UncoveredArg;
4615   StringLiteralCheckType CT =
4616       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
4617                             format_idx, firstDataArg, Type, CallType,
4618                             /*IsFunctionCall*/ true, CheckedVarArgs,
4619                             UncoveredArg,
4620                             /*no string offset*/ llvm::APSInt(64, false) = 0);
4621 
4622   // Generate a diagnostic where an uncovered argument is detected.
4623   if (UncoveredArg.hasUncoveredArg()) {
4624     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
4625     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
4626     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
4627   }
4628 
4629   if (CT != SLCT_NotALiteral)
4630     // Literal format string found, check done!
4631     return CT == SLCT_CheckedLiteral;
4632 
4633   // Strftime is particular as it always uses a single 'time' argument,
4634   // so it is safe to pass a non-literal string.
4635   if (Type == FST_Strftime)
4636     return false;
4637 
4638   // Do not emit diag when the string param is a macro expansion and the
4639   // format is either NSString or CFString. This is a hack to prevent
4640   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
4641   // which are usually used in place of NS and CF string literals.
4642   SourceLocation FormatLoc = Args[format_idx]->getLocStart();
4643   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
4644     return false;
4645 
4646   // If there are no arguments specified, warn with -Wformat-security, otherwise
4647   // warn only with -Wformat-nonliteral.
4648   if (Args.size() == firstDataArg) {
4649     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
4650       << OrigFormatExpr->getSourceRange();
4651     switch (Type) {
4652     default:
4653       break;
4654     case FST_Kprintf:
4655     case FST_FreeBSDKPrintf:
4656     case FST_Printf:
4657       Diag(FormatLoc, diag::note_format_security_fixit)
4658         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
4659       break;
4660     case FST_NSString:
4661       Diag(FormatLoc, diag::note_format_security_fixit)
4662         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
4663       break;
4664     }
4665   } else {
4666     Diag(FormatLoc, diag::warn_format_nonliteral)
4667       << OrigFormatExpr->getSourceRange();
4668   }
4669   return false;
4670 }
4671 
4672 namespace {
4673 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
4674 protected:
4675   Sema &S;
4676   const FormatStringLiteral *FExpr;
4677   const Expr *OrigFormatExpr;
4678   const unsigned FirstDataArg;
4679   const unsigned NumDataArgs;
4680   const char *Beg; // Start of format string.
4681   const bool HasVAListArg;
4682   ArrayRef<const Expr *> Args;
4683   unsigned FormatIdx;
4684   llvm::SmallBitVector CoveredArgs;
4685   bool usesPositionalArgs;
4686   bool atFirstArg;
4687   bool inFunctionCall;
4688   Sema::VariadicCallType CallType;
4689   llvm::SmallBitVector &CheckedVarArgs;
4690   UncoveredArgHandler &UncoveredArg;
4691 
4692 public:
4693   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
4694                      const Expr *origFormatExpr, unsigned firstDataArg,
4695                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
4696                      ArrayRef<const Expr *> Args,
4697                      unsigned formatIdx, bool inFunctionCall,
4698                      Sema::VariadicCallType callType,
4699                      llvm::SmallBitVector &CheckedVarArgs,
4700                      UncoveredArgHandler &UncoveredArg)
4701     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
4702       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
4703       Beg(beg), HasVAListArg(hasVAListArg),
4704       Args(Args), FormatIdx(formatIdx),
4705       usesPositionalArgs(false), atFirstArg(true),
4706       inFunctionCall(inFunctionCall), CallType(callType),
4707       CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
4708     CoveredArgs.resize(numDataArgs);
4709     CoveredArgs.reset();
4710   }
4711 
4712   void DoneProcessing();
4713 
4714   void HandleIncompleteSpecifier(const char *startSpecifier,
4715                                  unsigned specifierLen) override;
4716 
4717   void HandleInvalidLengthModifier(
4718                            const analyze_format_string::FormatSpecifier &FS,
4719                            const analyze_format_string::ConversionSpecifier &CS,
4720                            const char *startSpecifier, unsigned specifierLen,
4721                            unsigned DiagID);
4722 
4723   void HandleNonStandardLengthModifier(
4724                     const analyze_format_string::FormatSpecifier &FS,
4725                     const char *startSpecifier, unsigned specifierLen);
4726 
4727   void HandleNonStandardConversionSpecifier(
4728                     const analyze_format_string::ConversionSpecifier &CS,
4729                     const char *startSpecifier, unsigned specifierLen);
4730 
4731   void HandlePosition(const char *startPos, unsigned posLen) override;
4732 
4733   void HandleInvalidPosition(const char *startSpecifier,
4734                              unsigned specifierLen,
4735                              analyze_format_string::PositionContext p) override;
4736 
4737   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
4738 
4739   void HandleNullChar(const char *nullCharacter) override;
4740 
4741   template <typename Range>
4742   static void
4743   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
4744                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
4745                        bool IsStringLocation, Range StringRange,
4746                        ArrayRef<FixItHint> Fixit = None);
4747 
4748 protected:
4749   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
4750                                         const char *startSpec,
4751                                         unsigned specifierLen,
4752                                         const char *csStart, unsigned csLen);
4753 
4754   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
4755                                          const char *startSpec,
4756                                          unsigned specifierLen);
4757 
4758   SourceRange getFormatStringRange();
4759   CharSourceRange getSpecifierRange(const char *startSpecifier,
4760                                     unsigned specifierLen);
4761   SourceLocation getLocationOfByte(const char *x);
4762 
4763   const Expr *getDataArg(unsigned i) const;
4764 
4765   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
4766                     const analyze_format_string::ConversionSpecifier &CS,
4767                     const char *startSpecifier, unsigned specifierLen,
4768                     unsigned argIndex);
4769 
4770   template <typename Range>
4771   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
4772                             bool IsStringLocation, Range StringRange,
4773                             ArrayRef<FixItHint> Fixit = None);
4774 };
4775 } // end anonymous namespace
4776 
4777 SourceRange CheckFormatHandler::getFormatStringRange() {
4778   return OrigFormatExpr->getSourceRange();
4779 }
4780 
4781 CharSourceRange CheckFormatHandler::
4782 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
4783   SourceLocation Start = getLocationOfByte(startSpecifier);
4784   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
4785 
4786   // Advance the end SourceLocation by one due to half-open ranges.
4787   End = End.getLocWithOffset(1);
4788 
4789   return CharSourceRange::getCharRange(Start, End);
4790 }
4791 
4792 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
4793   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
4794                                   S.getLangOpts(), S.Context.getTargetInfo());
4795 }
4796 
4797 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
4798                                                    unsigned specifierLen){
4799   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
4800                        getLocationOfByte(startSpecifier),
4801                        /*IsStringLocation*/true,
4802                        getSpecifierRange(startSpecifier, specifierLen));
4803 }
4804 
4805 void CheckFormatHandler::HandleInvalidLengthModifier(
4806     const analyze_format_string::FormatSpecifier &FS,
4807     const analyze_format_string::ConversionSpecifier &CS,
4808     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
4809   using namespace analyze_format_string;
4810 
4811   const LengthModifier &LM = FS.getLengthModifier();
4812   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
4813 
4814   // See if we know how to fix this length modifier.
4815   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
4816   if (FixedLM) {
4817     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
4818                          getLocationOfByte(LM.getStart()),
4819                          /*IsStringLocation*/true,
4820                          getSpecifierRange(startSpecifier, specifierLen));
4821 
4822     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
4823       << FixedLM->toString()
4824       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
4825 
4826   } else {
4827     FixItHint Hint;
4828     if (DiagID == diag::warn_format_nonsensical_length)
4829       Hint = FixItHint::CreateRemoval(LMRange);
4830 
4831     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
4832                          getLocationOfByte(LM.getStart()),
4833                          /*IsStringLocation*/true,
4834                          getSpecifierRange(startSpecifier, specifierLen),
4835                          Hint);
4836   }
4837 }
4838 
4839 void CheckFormatHandler::HandleNonStandardLengthModifier(
4840     const analyze_format_string::FormatSpecifier &FS,
4841     const char *startSpecifier, unsigned specifierLen) {
4842   using namespace analyze_format_string;
4843 
4844   const LengthModifier &LM = FS.getLengthModifier();
4845   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
4846 
4847   // See if we know how to fix this length modifier.
4848   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
4849   if (FixedLM) {
4850     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4851                            << LM.toString() << 0,
4852                          getLocationOfByte(LM.getStart()),
4853                          /*IsStringLocation*/true,
4854                          getSpecifierRange(startSpecifier, specifierLen));
4855 
4856     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
4857       << FixedLM->toString()
4858       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
4859 
4860   } else {
4861     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4862                            << LM.toString() << 0,
4863                          getLocationOfByte(LM.getStart()),
4864                          /*IsStringLocation*/true,
4865                          getSpecifierRange(startSpecifier, specifierLen));
4866   }
4867 }
4868 
4869 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
4870     const analyze_format_string::ConversionSpecifier &CS,
4871     const char *startSpecifier, unsigned specifierLen) {
4872   using namespace analyze_format_string;
4873 
4874   // See if we know how to fix this conversion specifier.
4875   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
4876   if (FixedCS) {
4877     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4878                           << CS.toString() << /*conversion specifier*/1,
4879                          getLocationOfByte(CS.getStart()),
4880                          /*IsStringLocation*/true,
4881                          getSpecifierRange(startSpecifier, specifierLen));
4882 
4883     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
4884     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
4885       << FixedCS->toString()
4886       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
4887   } else {
4888     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4889                           << CS.toString() << /*conversion specifier*/1,
4890                          getLocationOfByte(CS.getStart()),
4891                          /*IsStringLocation*/true,
4892                          getSpecifierRange(startSpecifier, specifierLen));
4893   }
4894 }
4895 
4896 void CheckFormatHandler::HandlePosition(const char *startPos,
4897                                         unsigned posLen) {
4898   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
4899                                getLocationOfByte(startPos),
4900                                /*IsStringLocation*/true,
4901                                getSpecifierRange(startPos, posLen));
4902 }
4903 
4904 void
4905 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
4906                                      analyze_format_string::PositionContext p) {
4907   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
4908                          << (unsigned) p,
4909                        getLocationOfByte(startPos), /*IsStringLocation*/true,
4910                        getSpecifierRange(startPos, posLen));
4911 }
4912 
4913 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
4914                                             unsigned posLen) {
4915   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
4916                                getLocationOfByte(startPos),
4917                                /*IsStringLocation*/true,
4918                                getSpecifierRange(startPos, posLen));
4919 }
4920 
4921 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
4922   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
4923     // The presence of a null character is likely an error.
4924     EmitFormatDiagnostic(
4925       S.PDiag(diag::warn_printf_format_string_contains_null_char),
4926       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
4927       getFormatStringRange());
4928   }
4929 }
4930 
4931 // Note that this may return NULL if there was an error parsing or building
4932 // one of the argument expressions.
4933 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
4934   return Args[FirstDataArg + i];
4935 }
4936 
4937 void CheckFormatHandler::DoneProcessing() {
4938   // Does the number of data arguments exceed the number of
4939   // format conversions in the format string?
4940   if (!HasVAListArg) {
4941       // Find any arguments that weren't covered.
4942     CoveredArgs.flip();
4943     signed notCoveredArg = CoveredArgs.find_first();
4944     if (notCoveredArg >= 0) {
4945       assert((unsigned)notCoveredArg < NumDataArgs);
4946       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
4947     } else {
4948       UncoveredArg.setAllCovered();
4949     }
4950   }
4951 }
4952 
4953 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
4954                                    const Expr *ArgExpr) {
4955   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
4956          "Invalid state");
4957 
4958   if (!ArgExpr)
4959     return;
4960 
4961   SourceLocation Loc = ArgExpr->getLocStart();
4962 
4963   if (S.getSourceManager().isInSystemMacro(Loc))
4964     return;
4965 
4966   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
4967   for (auto E : DiagnosticExprs)
4968     PDiag << E->getSourceRange();
4969 
4970   CheckFormatHandler::EmitFormatDiagnostic(
4971                                   S, IsFunctionCall, DiagnosticExprs[0],
4972                                   PDiag, Loc, /*IsStringLocation*/false,
4973                                   DiagnosticExprs[0]->getSourceRange());
4974 }
4975 
4976 bool
4977 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
4978                                                      SourceLocation Loc,
4979                                                      const char *startSpec,
4980                                                      unsigned specifierLen,
4981                                                      const char *csStart,
4982                                                      unsigned csLen) {
4983   bool keepGoing = true;
4984   if (argIndex < NumDataArgs) {
4985     // Consider the argument coverered, even though the specifier doesn't
4986     // make sense.
4987     CoveredArgs.set(argIndex);
4988   }
4989   else {
4990     // If argIndex exceeds the number of data arguments we
4991     // don't issue a warning because that is just a cascade of warnings (and
4992     // they may have intended '%%' anyway). We don't want to continue processing
4993     // the format string after this point, however, as we will like just get
4994     // gibberish when trying to match arguments.
4995     keepGoing = false;
4996   }
4997 
4998   StringRef Specifier(csStart, csLen);
4999 
5000   // If the specifier in non-printable, it could be the first byte of a UTF-8
5001   // sequence. In that case, print the UTF-8 code point. If not, print the byte
5002   // hex value.
5003   std::string CodePointStr;
5004   if (!llvm::sys::locale::isPrint(*csStart)) {
5005     llvm::UTF32 CodePoint;
5006     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
5007     const llvm::UTF8 *E =
5008         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
5009     llvm::ConversionResult Result =
5010         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
5011 
5012     if (Result != llvm::conversionOK) {
5013       unsigned char FirstChar = *csStart;
5014       CodePoint = (llvm::UTF32)FirstChar;
5015     }
5016 
5017     llvm::raw_string_ostream OS(CodePointStr);
5018     if (CodePoint < 256)
5019       OS << "\\x" << llvm::format("%02x", CodePoint);
5020     else if (CodePoint <= 0xFFFF)
5021       OS << "\\u" << llvm::format("%04x", CodePoint);
5022     else
5023       OS << "\\U" << llvm::format("%08x", CodePoint);
5024     OS.flush();
5025     Specifier = CodePointStr;
5026   }
5027 
5028   EmitFormatDiagnostic(
5029       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
5030       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
5031 
5032   return keepGoing;
5033 }
5034 
5035 void
5036 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
5037                                                       const char *startSpec,
5038                                                       unsigned specifierLen) {
5039   EmitFormatDiagnostic(
5040     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
5041     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
5042 }
5043 
5044 bool
5045 CheckFormatHandler::CheckNumArgs(
5046   const analyze_format_string::FormatSpecifier &FS,
5047   const analyze_format_string::ConversionSpecifier &CS,
5048   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
5049 
5050   if (argIndex >= NumDataArgs) {
5051     PartialDiagnostic PDiag = FS.usesPositionalArg()
5052       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
5053            << (argIndex+1) << NumDataArgs)
5054       : S.PDiag(diag::warn_printf_insufficient_data_args);
5055     EmitFormatDiagnostic(
5056       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
5057       getSpecifierRange(startSpecifier, specifierLen));
5058 
5059     // Since more arguments than conversion tokens are given, by extension
5060     // all arguments are covered, so mark this as so.
5061     UncoveredArg.setAllCovered();
5062     return false;
5063   }
5064   return true;
5065 }
5066 
5067 template<typename Range>
5068 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
5069                                               SourceLocation Loc,
5070                                               bool IsStringLocation,
5071                                               Range StringRange,
5072                                               ArrayRef<FixItHint> FixIt) {
5073   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
5074                        Loc, IsStringLocation, StringRange, FixIt);
5075 }
5076 
5077 /// \brief If the format string is not within the funcion call, emit a note
5078 /// so that the function call and string are in diagnostic messages.
5079 ///
5080 /// \param InFunctionCall if true, the format string is within the function
5081 /// call and only one diagnostic message will be produced.  Otherwise, an
5082 /// extra note will be emitted pointing to location of the format string.
5083 ///
5084 /// \param ArgumentExpr the expression that is passed as the format string
5085 /// argument in the function call.  Used for getting locations when two
5086 /// diagnostics are emitted.
5087 ///
5088 /// \param PDiag the callee should already have provided any strings for the
5089 /// diagnostic message.  This function only adds locations and fixits
5090 /// to diagnostics.
5091 ///
5092 /// \param Loc primary location for diagnostic.  If two diagnostics are
5093 /// required, one will be at Loc and a new SourceLocation will be created for
5094 /// the other one.
5095 ///
5096 /// \param IsStringLocation if true, Loc points to the format string should be
5097 /// used for the note.  Otherwise, Loc points to the argument list and will
5098 /// be used with PDiag.
5099 ///
5100 /// \param StringRange some or all of the string to highlight.  This is
5101 /// templated so it can accept either a CharSourceRange or a SourceRange.
5102 ///
5103 /// \param FixIt optional fix it hint for the format string.
5104 template <typename Range>
5105 void CheckFormatHandler::EmitFormatDiagnostic(
5106     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
5107     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
5108     Range StringRange, ArrayRef<FixItHint> FixIt) {
5109   if (InFunctionCall) {
5110     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
5111     D << StringRange;
5112     D << FixIt;
5113   } else {
5114     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
5115       << ArgumentExpr->getSourceRange();
5116 
5117     const Sema::SemaDiagnosticBuilder &Note =
5118       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
5119              diag::note_format_string_defined);
5120 
5121     Note << StringRange;
5122     Note << FixIt;
5123   }
5124 }
5125 
5126 //===--- CHECK: Printf format string checking ------------------------------===//
5127 
5128 namespace {
5129 class CheckPrintfHandler : public CheckFormatHandler {
5130   bool ObjCContext;
5131 
5132 public:
5133   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
5134                      const Expr *origFormatExpr, unsigned firstDataArg,
5135                      unsigned numDataArgs, bool isObjC,
5136                      const char *beg, bool hasVAListArg,
5137                      ArrayRef<const Expr *> Args,
5138                      unsigned formatIdx, bool inFunctionCall,
5139                      Sema::VariadicCallType CallType,
5140                      llvm::SmallBitVector &CheckedVarArgs,
5141                      UncoveredArgHandler &UncoveredArg)
5142     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
5143                          numDataArgs, beg, hasVAListArg, Args,
5144                          formatIdx, inFunctionCall, CallType, CheckedVarArgs,
5145                          UncoveredArg),
5146       ObjCContext(isObjC)
5147   {}
5148 
5149   bool HandleInvalidPrintfConversionSpecifier(
5150                                       const analyze_printf::PrintfSpecifier &FS,
5151                                       const char *startSpecifier,
5152                                       unsigned specifierLen) override;
5153 
5154   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
5155                              const char *startSpecifier,
5156                              unsigned specifierLen) override;
5157   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
5158                        const char *StartSpecifier,
5159                        unsigned SpecifierLen,
5160                        const Expr *E);
5161 
5162   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
5163                     const char *startSpecifier, unsigned specifierLen);
5164   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
5165                            const analyze_printf::OptionalAmount &Amt,
5166                            unsigned type,
5167                            const char *startSpecifier, unsigned specifierLen);
5168   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
5169                   const analyze_printf::OptionalFlag &flag,
5170                   const char *startSpecifier, unsigned specifierLen);
5171   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
5172                          const analyze_printf::OptionalFlag &ignoredFlag,
5173                          const analyze_printf::OptionalFlag &flag,
5174                          const char *startSpecifier, unsigned specifierLen);
5175   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
5176                            const Expr *E);
5177 
5178   void HandleEmptyObjCModifierFlag(const char *startFlag,
5179                                    unsigned flagLen) override;
5180 
5181   void HandleInvalidObjCModifierFlag(const char *startFlag,
5182                                             unsigned flagLen) override;
5183 
5184   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
5185                                            const char *flagsEnd,
5186                                            const char *conversionPosition)
5187                                              override;
5188 };
5189 } // end anonymous namespace
5190 
5191 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
5192                                       const analyze_printf::PrintfSpecifier &FS,
5193                                       const char *startSpecifier,
5194                                       unsigned specifierLen) {
5195   const analyze_printf::PrintfConversionSpecifier &CS =
5196     FS.getConversionSpecifier();
5197 
5198   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
5199                                           getLocationOfByte(CS.getStart()),
5200                                           startSpecifier, specifierLen,
5201                                           CS.getStart(), CS.getLength());
5202 }
5203 
5204 bool CheckPrintfHandler::HandleAmount(
5205                                const analyze_format_string::OptionalAmount &Amt,
5206                                unsigned k, const char *startSpecifier,
5207                                unsigned specifierLen) {
5208   if (Amt.hasDataArgument()) {
5209     if (!HasVAListArg) {
5210       unsigned argIndex = Amt.getArgIndex();
5211       if (argIndex >= NumDataArgs) {
5212         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
5213                                << k,
5214                              getLocationOfByte(Amt.getStart()),
5215                              /*IsStringLocation*/true,
5216                              getSpecifierRange(startSpecifier, specifierLen));
5217         // Don't do any more checking.  We will just emit
5218         // spurious errors.
5219         return false;
5220       }
5221 
5222       // Type check the data argument.  It should be an 'int'.
5223       // Although not in conformance with C99, we also allow the argument to be
5224       // an 'unsigned int' as that is a reasonably safe case.  GCC also
5225       // doesn't emit a warning for that case.
5226       CoveredArgs.set(argIndex);
5227       const Expr *Arg = getDataArg(argIndex);
5228       if (!Arg)
5229         return false;
5230 
5231       QualType T = Arg->getType();
5232 
5233       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
5234       assert(AT.isValid());
5235 
5236       if (!AT.matchesType(S.Context, T)) {
5237         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
5238                                << k << AT.getRepresentativeTypeName(S.Context)
5239                                << T << Arg->getSourceRange(),
5240                              getLocationOfByte(Amt.getStart()),
5241                              /*IsStringLocation*/true,
5242                              getSpecifierRange(startSpecifier, specifierLen));
5243         // Don't do any more checking.  We will just emit
5244         // spurious errors.
5245         return false;
5246       }
5247     }
5248   }
5249   return true;
5250 }
5251 
5252 void CheckPrintfHandler::HandleInvalidAmount(
5253                                       const analyze_printf::PrintfSpecifier &FS,
5254                                       const analyze_printf::OptionalAmount &Amt,
5255                                       unsigned type,
5256                                       const char *startSpecifier,
5257                                       unsigned specifierLen) {
5258   const analyze_printf::PrintfConversionSpecifier &CS =
5259     FS.getConversionSpecifier();
5260 
5261   FixItHint fixit =
5262     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
5263       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
5264                                  Amt.getConstantLength()))
5265       : FixItHint();
5266 
5267   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
5268                          << type << CS.toString(),
5269                        getLocationOfByte(Amt.getStart()),
5270                        /*IsStringLocation*/true,
5271                        getSpecifierRange(startSpecifier, specifierLen),
5272                        fixit);
5273 }
5274 
5275 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
5276                                     const analyze_printf::OptionalFlag &flag,
5277                                     const char *startSpecifier,
5278                                     unsigned specifierLen) {
5279   // Warn about pointless flag with a fixit removal.
5280   const analyze_printf::PrintfConversionSpecifier &CS =
5281     FS.getConversionSpecifier();
5282   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
5283                          << flag.toString() << CS.toString(),
5284                        getLocationOfByte(flag.getPosition()),
5285                        /*IsStringLocation*/true,
5286                        getSpecifierRange(startSpecifier, specifierLen),
5287                        FixItHint::CreateRemoval(
5288                          getSpecifierRange(flag.getPosition(), 1)));
5289 }
5290 
5291 void CheckPrintfHandler::HandleIgnoredFlag(
5292                                 const analyze_printf::PrintfSpecifier &FS,
5293                                 const analyze_printf::OptionalFlag &ignoredFlag,
5294                                 const analyze_printf::OptionalFlag &flag,
5295                                 const char *startSpecifier,
5296                                 unsigned specifierLen) {
5297   // Warn about ignored flag with a fixit removal.
5298   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
5299                          << ignoredFlag.toString() << flag.toString(),
5300                        getLocationOfByte(ignoredFlag.getPosition()),
5301                        /*IsStringLocation*/true,
5302                        getSpecifierRange(startSpecifier, specifierLen),
5303                        FixItHint::CreateRemoval(
5304                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
5305 }
5306 
5307 //  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
5308 //                            bool IsStringLocation, Range StringRange,
5309 //                            ArrayRef<FixItHint> Fixit = None);
5310 
5311 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
5312                                                      unsigned flagLen) {
5313   // Warn about an empty flag.
5314   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
5315                        getLocationOfByte(startFlag),
5316                        /*IsStringLocation*/true,
5317                        getSpecifierRange(startFlag, flagLen));
5318 }
5319 
5320 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
5321                                                        unsigned flagLen) {
5322   // Warn about an invalid flag.
5323   auto Range = getSpecifierRange(startFlag, flagLen);
5324   StringRef flag(startFlag, flagLen);
5325   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
5326                       getLocationOfByte(startFlag),
5327                       /*IsStringLocation*/true,
5328                       Range, FixItHint::CreateRemoval(Range));
5329 }
5330 
5331 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
5332     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
5333     // Warn about using '[...]' without a '@' conversion.
5334     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
5335     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
5336     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
5337                          getLocationOfByte(conversionPosition),
5338                          /*IsStringLocation*/true,
5339                          Range, FixItHint::CreateRemoval(Range));
5340 }
5341 
5342 // Determines if the specified is a C++ class or struct containing
5343 // a member with the specified name and kind (e.g. a CXXMethodDecl named
5344 // "c_str()").
5345 template<typename MemberKind>
5346 static llvm::SmallPtrSet<MemberKind*, 1>
5347 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
5348   const RecordType *RT = Ty->getAs<RecordType>();
5349   llvm::SmallPtrSet<MemberKind*, 1> Results;
5350 
5351   if (!RT)
5352     return Results;
5353   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
5354   if (!RD || !RD->getDefinition())
5355     return Results;
5356 
5357   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
5358                  Sema::LookupMemberName);
5359   R.suppressDiagnostics();
5360 
5361   // We just need to include all members of the right kind turned up by the
5362   // filter, at this point.
5363   if (S.LookupQualifiedName(R, RT->getDecl()))
5364     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5365       NamedDecl *decl = (*I)->getUnderlyingDecl();
5366       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
5367         Results.insert(FK);
5368     }
5369   return Results;
5370 }
5371 
5372 /// Check if we could call '.c_str()' on an object.
5373 ///
5374 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
5375 /// allow the call, or if it would be ambiguous).
5376 bool Sema::hasCStrMethod(const Expr *E) {
5377   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
5378   MethodSet Results =
5379       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
5380   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
5381        MI != ME; ++MI)
5382     if ((*MI)->getMinRequiredArguments() == 0)
5383       return true;
5384   return false;
5385 }
5386 
5387 // Check if a (w)string was passed when a (w)char* was needed, and offer a
5388 // better diagnostic if so. AT is assumed to be valid.
5389 // Returns true when a c_str() conversion method is found.
5390 bool CheckPrintfHandler::checkForCStrMembers(
5391     const analyze_printf::ArgType &AT, const Expr *E) {
5392   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
5393 
5394   MethodSet Results =
5395       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
5396 
5397   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
5398        MI != ME; ++MI) {
5399     const CXXMethodDecl *Method = *MI;
5400     if (Method->getMinRequiredArguments() == 0 &&
5401         AT.matchesType(S.Context, Method->getReturnType())) {
5402       // FIXME: Suggest parens if the expression needs them.
5403       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
5404       S.Diag(E->getLocStart(), diag::note_printf_c_str)
5405           << "c_str()"
5406           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
5407       return true;
5408     }
5409   }
5410 
5411   return false;
5412 }
5413 
5414 bool
5415 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
5416                                             &FS,
5417                                           const char *startSpecifier,
5418                                           unsigned specifierLen) {
5419   using namespace analyze_format_string;
5420   using namespace analyze_printf;
5421   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
5422 
5423   if (FS.consumesDataArgument()) {
5424     if (atFirstArg) {
5425         atFirstArg = false;
5426         usesPositionalArgs = FS.usesPositionalArg();
5427     }
5428     else if (usesPositionalArgs != FS.usesPositionalArg()) {
5429       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
5430                                         startSpecifier, specifierLen);
5431       return false;
5432     }
5433   }
5434 
5435   // First check if the field width, precision, and conversion specifier
5436   // have matching data arguments.
5437   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
5438                     startSpecifier, specifierLen)) {
5439     return false;
5440   }
5441 
5442   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
5443                     startSpecifier, specifierLen)) {
5444     return false;
5445   }
5446 
5447   if (!CS.consumesDataArgument()) {
5448     // FIXME: Technically specifying a precision or field width here
5449     // makes no sense.  Worth issuing a warning at some point.
5450     return true;
5451   }
5452 
5453   // Consume the argument.
5454   unsigned argIndex = FS.getArgIndex();
5455   if (argIndex < NumDataArgs) {
5456     // The check to see if the argIndex is valid will come later.
5457     // We set the bit here because we may exit early from this
5458     // function if we encounter some other error.
5459     CoveredArgs.set(argIndex);
5460   }
5461 
5462   // FreeBSD kernel extensions.
5463   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
5464       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
5465     // We need at least two arguments.
5466     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
5467       return false;
5468 
5469     // Claim the second argument.
5470     CoveredArgs.set(argIndex + 1);
5471 
5472     // Type check the first argument (int for %b, pointer for %D)
5473     const Expr *Ex = getDataArg(argIndex);
5474     const analyze_printf::ArgType &AT =
5475       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
5476         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
5477     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
5478       EmitFormatDiagnostic(
5479         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
5480         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
5481         << false << Ex->getSourceRange(),
5482         Ex->getLocStart(), /*IsStringLocation*/false,
5483         getSpecifierRange(startSpecifier, specifierLen));
5484 
5485     // Type check the second argument (char * for both %b and %D)
5486     Ex = getDataArg(argIndex + 1);
5487     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
5488     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
5489       EmitFormatDiagnostic(
5490         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
5491         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
5492         << false << Ex->getSourceRange(),
5493         Ex->getLocStart(), /*IsStringLocation*/false,
5494         getSpecifierRange(startSpecifier, specifierLen));
5495 
5496      return true;
5497   }
5498 
5499   // Check for using an Objective-C specific conversion specifier
5500   // in a non-ObjC literal.
5501   if (!ObjCContext && CS.isObjCArg()) {
5502     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
5503                                                   specifierLen);
5504   }
5505 
5506   // Check for invalid use of field width
5507   if (!FS.hasValidFieldWidth()) {
5508     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
5509         startSpecifier, specifierLen);
5510   }
5511 
5512   // Check for invalid use of precision
5513   if (!FS.hasValidPrecision()) {
5514     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
5515         startSpecifier, specifierLen);
5516   }
5517 
5518   // Check each flag does not conflict with any other component.
5519   if (!FS.hasValidThousandsGroupingPrefix())
5520     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
5521   if (!FS.hasValidLeadingZeros())
5522     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
5523   if (!FS.hasValidPlusPrefix())
5524     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
5525   if (!FS.hasValidSpacePrefix())
5526     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
5527   if (!FS.hasValidAlternativeForm())
5528     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
5529   if (!FS.hasValidLeftJustified())
5530     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
5531 
5532   // Check that flags are not ignored by another flag
5533   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
5534     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
5535         startSpecifier, specifierLen);
5536   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
5537     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
5538             startSpecifier, specifierLen);
5539 
5540   // Check the length modifier is valid with the given conversion specifier.
5541   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
5542     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
5543                                 diag::warn_format_nonsensical_length);
5544   else if (!FS.hasStandardLengthModifier())
5545     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
5546   else if (!FS.hasStandardLengthConversionCombination())
5547     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
5548                                 diag::warn_format_non_standard_conversion_spec);
5549 
5550   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
5551     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
5552 
5553   // The remaining checks depend on the data arguments.
5554   if (HasVAListArg)
5555     return true;
5556 
5557   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
5558     return false;
5559 
5560   const Expr *Arg = getDataArg(argIndex);
5561   if (!Arg)
5562     return true;
5563 
5564   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
5565 }
5566 
5567 static bool requiresParensToAddCast(const Expr *E) {
5568   // FIXME: We should have a general way to reason about operator
5569   // precedence and whether parens are actually needed here.
5570   // Take care of a few common cases where they aren't.
5571   const Expr *Inside = E->IgnoreImpCasts();
5572   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
5573     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
5574 
5575   switch (Inside->getStmtClass()) {
5576   case Stmt::ArraySubscriptExprClass:
5577   case Stmt::CallExprClass:
5578   case Stmt::CharacterLiteralClass:
5579   case Stmt::CXXBoolLiteralExprClass:
5580   case Stmt::DeclRefExprClass:
5581   case Stmt::FloatingLiteralClass:
5582   case Stmt::IntegerLiteralClass:
5583   case Stmt::MemberExprClass:
5584   case Stmt::ObjCArrayLiteralClass:
5585   case Stmt::ObjCBoolLiteralExprClass:
5586   case Stmt::ObjCBoxedExprClass:
5587   case Stmt::ObjCDictionaryLiteralClass:
5588   case Stmt::ObjCEncodeExprClass:
5589   case Stmt::ObjCIvarRefExprClass:
5590   case Stmt::ObjCMessageExprClass:
5591   case Stmt::ObjCPropertyRefExprClass:
5592   case Stmt::ObjCStringLiteralClass:
5593   case Stmt::ObjCSubscriptRefExprClass:
5594   case Stmt::ParenExprClass:
5595   case Stmt::StringLiteralClass:
5596   case Stmt::UnaryOperatorClass:
5597     return false;
5598   default:
5599     return true;
5600   }
5601 }
5602 
5603 static std::pair<QualType, StringRef>
5604 shouldNotPrintDirectly(const ASTContext &Context,
5605                        QualType IntendedTy,
5606                        const Expr *E) {
5607   // Use a 'while' to peel off layers of typedefs.
5608   QualType TyTy = IntendedTy;
5609   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
5610     StringRef Name = UserTy->getDecl()->getName();
5611     QualType CastTy = llvm::StringSwitch<QualType>(Name)
5612       .Case("NSInteger", Context.LongTy)
5613       .Case("NSUInteger", Context.UnsignedLongTy)
5614       .Case("SInt32", Context.IntTy)
5615       .Case("UInt32", Context.UnsignedIntTy)
5616       .Default(QualType());
5617 
5618     if (!CastTy.isNull())
5619       return std::make_pair(CastTy, Name);
5620 
5621     TyTy = UserTy->desugar();
5622   }
5623 
5624   // Strip parens if necessary.
5625   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
5626     return shouldNotPrintDirectly(Context,
5627                                   PE->getSubExpr()->getType(),
5628                                   PE->getSubExpr());
5629 
5630   // If this is a conditional expression, then its result type is constructed
5631   // via usual arithmetic conversions and thus there might be no necessary
5632   // typedef sugar there.  Recurse to operands to check for NSInteger &
5633   // Co. usage condition.
5634   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5635     QualType TrueTy, FalseTy;
5636     StringRef TrueName, FalseName;
5637 
5638     std::tie(TrueTy, TrueName) =
5639       shouldNotPrintDirectly(Context,
5640                              CO->getTrueExpr()->getType(),
5641                              CO->getTrueExpr());
5642     std::tie(FalseTy, FalseName) =
5643       shouldNotPrintDirectly(Context,
5644                              CO->getFalseExpr()->getType(),
5645                              CO->getFalseExpr());
5646 
5647     if (TrueTy == FalseTy)
5648       return std::make_pair(TrueTy, TrueName);
5649     else if (TrueTy.isNull())
5650       return std::make_pair(FalseTy, FalseName);
5651     else if (FalseTy.isNull())
5652       return std::make_pair(TrueTy, TrueName);
5653   }
5654 
5655   return std::make_pair(QualType(), StringRef());
5656 }
5657 
5658 bool
5659 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
5660                                     const char *StartSpecifier,
5661                                     unsigned SpecifierLen,
5662                                     const Expr *E) {
5663   using namespace analyze_format_string;
5664   using namespace analyze_printf;
5665   // Now type check the data expression that matches the
5666   // format specifier.
5667   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
5668                                                     ObjCContext);
5669   if (!AT.isValid())
5670     return true;
5671 
5672   QualType ExprTy = E->getType();
5673   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
5674     ExprTy = TET->getUnderlyingExpr()->getType();
5675   }
5676 
5677   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
5678 
5679   if (match == analyze_printf::ArgType::Match) {
5680     return true;
5681   }
5682 
5683   // Look through argument promotions for our error message's reported type.
5684   // This includes the integral and floating promotions, but excludes array
5685   // and function pointer decay; seeing that an argument intended to be a
5686   // string has type 'char [6]' is probably more confusing than 'char *'.
5687   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5688     if (ICE->getCastKind() == CK_IntegralCast ||
5689         ICE->getCastKind() == CK_FloatingCast) {
5690       E = ICE->getSubExpr();
5691       ExprTy = E->getType();
5692 
5693       // Check if we didn't match because of an implicit cast from a 'char'
5694       // or 'short' to an 'int'.  This is done because printf is a varargs
5695       // function.
5696       if (ICE->getType() == S.Context.IntTy ||
5697           ICE->getType() == S.Context.UnsignedIntTy) {
5698         // All further checking is done on the subexpression.
5699         if (AT.matchesType(S.Context, ExprTy))
5700           return true;
5701       }
5702     }
5703   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
5704     // Special case for 'a', which has type 'int' in C.
5705     // Note, however, that we do /not/ want to treat multibyte constants like
5706     // 'MooV' as characters! This form is deprecated but still exists.
5707     if (ExprTy == S.Context.IntTy)
5708       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
5709         ExprTy = S.Context.CharTy;
5710   }
5711 
5712   // Look through enums to their underlying type.
5713   bool IsEnum = false;
5714   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
5715     ExprTy = EnumTy->getDecl()->getIntegerType();
5716     IsEnum = true;
5717   }
5718 
5719   // %C in an Objective-C context prints a unichar, not a wchar_t.
5720   // If the argument is an integer of some kind, believe the %C and suggest
5721   // a cast instead of changing the conversion specifier.
5722   QualType IntendedTy = ExprTy;
5723   if (ObjCContext &&
5724       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
5725     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
5726         !ExprTy->isCharType()) {
5727       // 'unichar' is defined as a typedef of unsigned short, but we should
5728       // prefer using the typedef if it is visible.
5729       IntendedTy = S.Context.UnsignedShortTy;
5730 
5731       // While we are here, check if the value is an IntegerLiteral that happens
5732       // to be within the valid range.
5733       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
5734         const llvm::APInt &V = IL->getValue();
5735         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
5736           return true;
5737       }
5738 
5739       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
5740                           Sema::LookupOrdinaryName);
5741       if (S.LookupName(Result, S.getCurScope())) {
5742         NamedDecl *ND = Result.getFoundDecl();
5743         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
5744           if (TD->getUnderlyingType() == IntendedTy)
5745             IntendedTy = S.Context.getTypedefType(TD);
5746       }
5747     }
5748   }
5749 
5750   // Special-case some of Darwin's platform-independence types by suggesting
5751   // casts to primitive types that are known to be large enough.
5752   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
5753   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
5754     QualType CastTy;
5755     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
5756     if (!CastTy.isNull()) {
5757       IntendedTy = CastTy;
5758       ShouldNotPrintDirectly = true;
5759     }
5760   }
5761 
5762   // We may be able to offer a FixItHint if it is a supported type.
5763   PrintfSpecifier fixedFS = FS;
5764   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
5765                                  S.Context, ObjCContext);
5766 
5767   if (success) {
5768     // Get the fix string from the fixed format specifier
5769     SmallString<16> buf;
5770     llvm::raw_svector_ostream os(buf);
5771     fixedFS.toString(os);
5772 
5773     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
5774 
5775     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
5776       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
5777       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
5778         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
5779       }
5780       // In this case, the specifier is wrong and should be changed to match
5781       // the argument.
5782       EmitFormatDiagnostic(S.PDiag(diag)
5783                                << AT.getRepresentativeTypeName(S.Context)
5784                                << IntendedTy << IsEnum << E->getSourceRange(),
5785                            E->getLocStart(),
5786                            /*IsStringLocation*/ false, SpecRange,
5787                            FixItHint::CreateReplacement(SpecRange, os.str()));
5788     } else {
5789       // The canonical type for formatting this value is different from the
5790       // actual type of the expression. (This occurs, for example, with Darwin's
5791       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
5792       // should be printed as 'long' for 64-bit compatibility.)
5793       // Rather than emitting a normal format/argument mismatch, we want to
5794       // add a cast to the recommended type (and correct the format string
5795       // if necessary).
5796       SmallString<16> CastBuf;
5797       llvm::raw_svector_ostream CastFix(CastBuf);
5798       CastFix << "(";
5799       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
5800       CastFix << ")";
5801 
5802       SmallVector<FixItHint,4> Hints;
5803       if (!AT.matchesType(S.Context, IntendedTy))
5804         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
5805 
5806       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
5807         // If there's already a cast present, just replace it.
5808         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
5809         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
5810 
5811       } else if (!requiresParensToAddCast(E)) {
5812         // If the expression has high enough precedence,
5813         // just write the C-style cast.
5814         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
5815                                                    CastFix.str()));
5816       } else {
5817         // Otherwise, add parens around the expression as well as the cast.
5818         CastFix << "(";
5819         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
5820                                                    CastFix.str()));
5821 
5822         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
5823         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
5824       }
5825 
5826       if (ShouldNotPrintDirectly) {
5827         // The expression has a type that should not be printed directly.
5828         // We extract the name from the typedef because we don't want to show
5829         // the underlying type in the diagnostic.
5830         StringRef Name;
5831         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
5832           Name = TypedefTy->getDecl()->getName();
5833         else
5834           Name = CastTyName;
5835         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
5836                                << Name << IntendedTy << IsEnum
5837                                << E->getSourceRange(),
5838                              E->getLocStart(), /*IsStringLocation=*/false,
5839                              SpecRange, Hints);
5840       } else {
5841         // In this case, the expression could be printed using a different
5842         // specifier, but we've decided that the specifier is probably correct
5843         // and we should cast instead. Just use the normal warning message.
5844         EmitFormatDiagnostic(
5845           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
5846             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
5847             << E->getSourceRange(),
5848           E->getLocStart(), /*IsStringLocation*/false,
5849           SpecRange, Hints);
5850       }
5851     }
5852   } else {
5853     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
5854                                                    SpecifierLen);
5855     // Since the warning for passing non-POD types to variadic functions
5856     // was deferred until now, we emit a warning for non-POD
5857     // arguments here.
5858     switch (S.isValidVarArgType(ExprTy)) {
5859     case Sema::VAK_Valid:
5860     case Sema::VAK_ValidInCXX11: {
5861       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
5862       if (match == analyze_printf::ArgType::NoMatchPedantic) {
5863         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
5864       }
5865 
5866       EmitFormatDiagnostic(
5867           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
5868                         << IsEnum << CSR << E->getSourceRange(),
5869           E->getLocStart(), /*IsStringLocation*/ false, CSR);
5870       break;
5871     }
5872     case Sema::VAK_Undefined:
5873     case Sema::VAK_MSVCUndefined:
5874       EmitFormatDiagnostic(
5875         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
5876           << S.getLangOpts().CPlusPlus11
5877           << ExprTy
5878           << CallType
5879           << AT.getRepresentativeTypeName(S.Context)
5880           << CSR
5881           << E->getSourceRange(),
5882         E->getLocStart(), /*IsStringLocation*/false, CSR);
5883       checkForCStrMembers(AT, E);
5884       break;
5885 
5886     case Sema::VAK_Invalid:
5887       if (ExprTy->isObjCObjectType())
5888         EmitFormatDiagnostic(
5889           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
5890             << S.getLangOpts().CPlusPlus11
5891             << ExprTy
5892             << CallType
5893             << AT.getRepresentativeTypeName(S.Context)
5894             << CSR
5895             << E->getSourceRange(),
5896           E->getLocStart(), /*IsStringLocation*/false, CSR);
5897       else
5898         // FIXME: If this is an initializer list, suggest removing the braces
5899         // or inserting a cast to the target type.
5900         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
5901           << isa<InitListExpr>(E) << ExprTy << CallType
5902           << AT.getRepresentativeTypeName(S.Context)
5903           << E->getSourceRange();
5904       break;
5905     }
5906 
5907     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
5908            "format string specifier index out of range");
5909     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
5910   }
5911 
5912   return true;
5913 }
5914 
5915 //===--- CHECK: Scanf format string checking ------------------------------===//
5916 
5917 namespace {
5918 class CheckScanfHandler : public CheckFormatHandler {
5919 public:
5920   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
5921                     const Expr *origFormatExpr, unsigned firstDataArg,
5922                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
5923                     ArrayRef<const Expr *> Args,
5924                     unsigned formatIdx, bool inFunctionCall,
5925                     Sema::VariadicCallType CallType,
5926                     llvm::SmallBitVector &CheckedVarArgs,
5927                     UncoveredArgHandler &UncoveredArg)
5928     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
5929                          numDataArgs, beg, hasVAListArg,
5930                          Args, formatIdx, inFunctionCall, CallType,
5931                          CheckedVarArgs, UncoveredArg)
5932   {}
5933 
5934   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
5935                             const char *startSpecifier,
5936                             unsigned specifierLen) override;
5937 
5938   bool HandleInvalidScanfConversionSpecifier(
5939           const analyze_scanf::ScanfSpecifier &FS,
5940           const char *startSpecifier,
5941           unsigned specifierLen) override;
5942 
5943   void HandleIncompleteScanList(const char *start, const char *end) override;
5944 };
5945 } // end anonymous namespace
5946 
5947 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
5948                                                  const char *end) {
5949   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
5950                        getLocationOfByte(end), /*IsStringLocation*/true,
5951                        getSpecifierRange(start, end - start));
5952 }
5953 
5954 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
5955                                         const analyze_scanf::ScanfSpecifier &FS,
5956                                         const char *startSpecifier,
5957                                         unsigned specifierLen) {
5958 
5959   const analyze_scanf::ScanfConversionSpecifier &CS =
5960     FS.getConversionSpecifier();
5961 
5962   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
5963                                           getLocationOfByte(CS.getStart()),
5964                                           startSpecifier, specifierLen,
5965                                           CS.getStart(), CS.getLength());
5966 }
5967 
5968 bool CheckScanfHandler::HandleScanfSpecifier(
5969                                        const analyze_scanf::ScanfSpecifier &FS,
5970                                        const char *startSpecifier,
5971                                        unsigned specifierLen) {
5972   using namespace analyze_scanf;
5973   using namespace analyze_format_string;
5974 
5975   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
5976 
5977   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
5978   // be used to decide if we are using positional arguments consistently.
5979   if (FS.consumesDataArgument()) {
5980     if (atFirstArg) {
5981       atFirstArg = false;
5982       usesPositionalArgs = FS.usesPositionalArg();
5983     }
5984     else if (usesPositionalArgs != FS.usesPositionalArg()) {
5985       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
5986                                         startSpecifier, specifierLen);
5987       return false;
5988     }
5989   }
5990 
5991   // Check if the field with is non-zero.
5992   const OptionalAmount &Amt = FS.getFieldWidth();
5993   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
5994     if (Amt.getConstantAmount() == 0) {
5995       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
5996                                                    Amt.getConstantLength());
5997       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
5998                            getLocationOfByte(Amt.getStart()),
5999                            /*IsStringLocation*/true, R,
6000                            FixItHint::CreateRemoval(R));
6001     }
6002   }
6003 
6004   if (!FS.consumesDataArgument()) {
6005     // FIXME: Technically specifying a precision or field width here
6006     // makes no sense.  Worth issuing a warning at some point.
6007     return true;
6008   }
6009 
6010   // Consume the argument.
6011   unsigned argIndex = FS.getArgIndex();
6012   if (argIndex < NumDataArgs) {
6013       // The check to see if the argIndex is valid will come later.
6014       // We set the bit here because we may exit early from this
6015       // function if we encounter some other error.
6016     CoveredArgs.set(argIndex);
6017   }
6018 
6019   // Check the length modifier is valid with the given conversion specifier.
6020   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
6021     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6022                                 diag::warn_format_nonsensical_length);
6023   else if (!FS.hasStandardLengthModifier())
6024     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
6025   else if (!FS.hasStandardLengthConversionCombination())
6026     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
6027                                 diag::warn_format_non_standard_conversion_spec);
6028 
6029   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
6030     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
6031 
6032   // The remaining checks depend on the data arguments.
6033   if (HasVAListArg)
6034     return true;
6035 
6036   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
6037     return false;
6038 
6039   // Check that the argument type matches the format specifier.
6040   const Expr *Ex = getDataArg(argIndex);
6041   if (!Ex)
6042     return true;
6043 
6044   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
6045 
6046   if (!AT.isValid()) {
6047     return true;
6048   }
6049 
6050   analyze_format_string::ArgType::MatchKind match =
6051       AT.matchesType(S.Context, Ex->getType());
6052   if (match == analyze_format_string::ArgType::Match) {
6053     return true;
6054   }
6055 
6056   ScanfSpecifier fixedFS = FS;
6057   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
6058                                  S.getLangOpts(), S.Context);
6059 
6060   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
6061   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
6062     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
6063   }
6064 
6065   if (success) {
6066     // Get the fix string from the fixed format specifier.
6067     SmallString<128> buf;
6068     llvm::raw_svector_ostream os(buf);
6069     fixedFS.toString(os);
6070 
6071     EmitFormatDiagnostic(
6072         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
6073                       << Ex->getType() << false << Ex->getSourceRange(),
6074         Ex->getLocStart(),
6075         /*IsStringLocation*/ false,
6076         getSpecifierRange(startSpecifier, specifierLen),
6077         FixItHint::CreateReplacement(
6078             getSpecifierRange(startSpecifier, specifierLen), os.str()));
6079   } else {
6080     EmitFormatDiagnostic(S.PDiag(diag)
6081                              << AT.getRepresentativeTypeName(S.Context)
6082                              << Ex->getType() << false << Ex->getSourceRange(),
6083                          Ex->getLocStart(),
6084                          /*IsStringLocation*/ false,
6085                          getSpecifierRange(startSpecifier, specifierLen));
6086   }
6087 
6088   return true;
6089 }
6090 
6091 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6092                               const Expr *OrigFormatExpr,
6093                               ArrayRef<const Expr *> Args,
6094                               bool HasVAListArg, unsigned format_idx,
6095                               unsigned firstDataArg,
6096                               Sema::FormatStringType Type,
6097                               bool inFunctionCall,
6098                               Sema::VariadicCallType CallType,
6099                               llvm::SmallBitVector &CheckedVarArgs,
6100                               UncoveredArgHandler &UncoveredArg) {
6101   // CHECK: is the format string a wide literal?
6102   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
6103     CheckFormatHandler::EmitFormatDiagnostic(
6104       S, inFunctionCall, Args[format_idx],
6105       S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
6106       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
6107     return;
6108   }
6109 
6110   // Str - The format string.  NOTE: this is NOT null-terminated!
6111   StringRef StrRef = FExpr->getString();
6112   const char *Str = StrRef.data();
6113   // Account for cases where the string literal is truncated in a declaration.
6114   const ConstantArrayType *T =
6115     S.Context.getAsConstantArrayType(FExpr->getType());
6116   assert(T && "String literal not of constant array type!");
6117   size_t TypeSize = T->getSize().getZExtValue();
6118   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
6119   const unsigned numDataArgs = Args.size() - firstDataArg;
6120 
6121   // Emit a warning if the string literal is truncated and does not contain an
6122   // embedded null character.
6123   if (TypeSize <= StrRef.size() &&
6124       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
6125     CheckFormatHandler::EmitFormatDiagnostic(
6126         S, inFunctionCall, Args[format_idx],
6127         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
6128         FExpr->getLocStart(),
6129         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
6130     return;
6131   }
6132 
6133   // CHECK: empty format string?
6134   if (StrLen == 0 && numDataArgs > 0) {
6135     CheckFormatHandler::EmitFormatDiagnostic(
6136       S, inFunctionCall, Args[format_idx],
6137       S.PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
6138       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
6139     return;
6140   }
6141 
6142   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
6143       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSTrace) {
6144     CheckPrintfHandler H(S, FExpr, OrigFormatExpr, firstDataArg,
6145                          numDataArgs, (Type == Sema::FST_NSString ||
6146                                        Type == Sema::FST_OSTrace),
6147                          Str, HasVAListArg, Args, format_idx,
6148                          inFunctionCall, CallType, CheckedVarArgs,
6149                          UncoveredArg);
6150 
6151     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
6152                                                   S.getLangOpts(),
6153                                                   S.Context.getTargetInfo(),
6154                                             Type == Sema::FST_FreeBSDKPrintf))
6155       H.DoneProcessing();
6156   } else if (Type == Sema::FST_Scanf) {
6157     CheckScanfHandler H(S, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
6158                         Str, HasVAListArg, Args, format_idx,
6159                         inFunctionCall, CallType, CheckedVarArgs,
6160                         UncoveredArg);
6161 
6162     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
6163                                                  S.getLangOpts(),
6164                                                  S.Context.getTargetInfo()))
6165       H.DoneProcessing();
6166   } // TODO: handle other formats
6167 }
6168 
6169 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
6170   // Str - The format string.  NOTE: this is NOT null-terminated!
6171   StringRef StrRef = FExpr->getString();
6172   const char *Str = StrRef.data();
6173   // Account for cases where the string literal is truncated in a declaration.
6174   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
6175   assert(T && "String literal not of constant array type!");
6176   size_t TypeSize = T->getSize().getZExtValue();
6177   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
6178   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
6179                                                          getLangOpts(),
6180                                                          Context.getTargetInfo());
6181 }
6182 
6183 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
6184 
6185 // Returns the related absolute value function that is larger, of 0 if one
6186 // does not exist.
6187 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
6188   switch (AbsFunction) {
6189   default:
6190     return 0;
6191 
6192   case Builtin::BI__builtin_abs:
6193     return Builtin::BI__builtin_labs;
6194   case Builtin::BI__builtin_labs:
6195     return Builtin::BI__builtin_llabs;
6196   case Builtin::BI__builtin_llabs:
6197     return 0;
6198 
6199   case Builtin::BI__builtin_fabsf:
6200     return Builtin::BI__builtin_fabs;
6201   case Builtin::BI__builtin_fabs:
6202     return Builtin::BI__builtin_fabsl;
6203   case Builtin::BI__builtin_fabsl:
6204     return 0;
6205 
6206   case Builtin::BI__builtin_cabsf:
6207     return Builtin::BI__builtin_cabs;
6208   case Builtin::BI__builtin_cabs:
6209     return Builtin::BI__builtin_cabsl;
6210   case Builtin::BI__builtin_cabsl:
6211     return 0;
6212 
6213   case Builtin::BIabs:
6214     return Builtin::BIlabs;
6215   case Builtin::BIlabs:
6216     return Builtin::BIllabs;
6217   case Builtin::BIllabs:
6218     return 0;
6219 
6220   case Builtin::BIfabsf:
6221     return Builtin::BIfabs;
6222   case Builtin::BIfabs:
6223     return Builtin::BIfabsl;
6224   case Builtin::BIfabsl:
6225     return 0;
6226 
6227   case Builtin::BIcabsf:
6228    return Builtin::BIcabs;
6229   case Builtin::BIcabs:
6230     return Builtin::BIcabsl;
6231   case Builtin::BIcabsl:
6232     return 0;
6233   }
6234 }
6235 
6236 // Returns the argument type of the absolute value function.
6237 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
6238                                              unsigned AbsType) {
6239   if (AbsType == 0)
6240     return QualType();
6241 
6242   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
6243   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
6244   if (Error != ASTContext::GE_None)
6245     return QualType();
6246 
6247   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
6248   if (!FT)
6249     return QualType();
6250 
6251   if (FT->getNumParams() != 1)
6252     return QualType();
6253 
6254   return FT->getParamType(0);
6255 }
6256 
6257 // Returns the best absolute value function, or zero, based on type and
6258 // current absolute value function.
6259 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
6260                                    unsigned AbsFunctionKind) {
6261   unsigned BestKind = 0;
6262   uint64_t ArgSize = Context.getTypeSize(ArgType);
6263   for (unsigned Kind = AbsFunctionKind; Kind != 0;
6264        Kind = getLargerAbsoluteValueFunction(Kind)) {
6265     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
6266     if (Context.getTypeSize(ParamType) >= ArgSize) {
6267       if (BestKind == 0)
6268         BestKind = Kind;
6269       else if (Context.hasSameType(ParamType, ArgType)) {
6270         BestKind = Kind;
6271         break;
6272       }
6273     }
6274   }
6275   return BestKind;
6276 }
6277 
6278 enum AbsoluteValueKind {
6279   AVK_Integer,
6280   AVK_Floating,
6281   AVK_Complex
6282 };
6283 
6284 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
6285   if (T->isIntegralOrEnumerationType())
6286     return AVK_Integer;
6287   if (T->isRealFloatingType())
6288     return AVK_Floating;
6289   if (T->isAnyComplexType())
6290     return AVK_Complex;
6291 
6292   llvm_unreachable("Type not integer, floating, or complex");
6293 }
6294 
6295 // Changes the absolute value function to a different type.  Preserves whether
6296 // the function is a builtin.
6297 static unsigned changeAbsFunction(unsigned AbsKind,
6298                                   AbsoluteValueKind ValueKind) {
6299   switch (ValueKind) {
6300   case AVK_Integer:
6301     switch (AbsKind) {
6302     default:
6303       return 0;
6304     case Builtin::BI__builtin_fabsf:
6305     case Builtin::BI__builtin_fabs:
6306     case Builtin::BI__builtin_fabsl:
6307     case Builtin::BI__builtin_cabsf:
6308     case Builtin::BI__builtin_cabs:
6309     case Builtin::BI__builtin_cabsl:
6310       return Builtin::BI__builtin_abs;
6311     case Builtin::BIfabsf:
6312     case Builtin::BIfabs:
6313     case Builtin::BIfabsl:
6314     case Builtin::BIcabsf:
6315     case Builtin::BIcabs:
6316     case Builtin::BIcabsl:
6317       return Builtin::BIabs;
6318     }
6319   case AVK_Floating:
6320     switch (AbsKind) {
6321     default:
6322       return 0;
6323     case Builtin::BI__builtin_abs:
6324     case Builtin::BI__builtin_labs:
6325     case Builtin::BI__builtin_llabs:
6326     case Builtin::BI__builtin_cabsf:
6327     case Builtin::BI__builtin_cabs:
6328     case Builtin::BI__builtin_cabsl:
6329       return Builtin::BI__builtin_fabsf;
6330     case Builtin::BIabs:
6331     case Builtin::BIlabs:
6332     case Builtin::BIllabs:
6333     case Builtin::BIcabsf:
6334     case Builtin::BIcabs:
6335     case Builtin::BIcabsl:
6336       return Builtin::BIfabsf;
6337     }
6338   case AVK_Complex:
6339     switch (AbsKind) {
6340     default:
6341       return 0;
6342     case Builtin::BI__builtin_abs:
6343     case Builtin::BI__builtin_labs:
6344     case Builtin::BI__builtin_llabs:
6345     case Builtin::BI__builtin_fabsf:
6346     case Builtin::BI__builtin_fabs:
6347     case Builtin::BI__builtin_fabsl:
6348       return Builtin::BI__builtin_cabsf;
6349     case Builtin::BIabs:
6350     case Builtin::BIlabs:
6351     case Builtin::BIllabs:
6352     case Builtin::BIfabsf:
6353     case Builtin::BIfabs:
6354     case Builtin::BIfabsl:
6355       return Builtin::BIcabsf;
6356     }
6357   }
6358   llvm_unreachable("Unable to convert function");
6359 }
6360 
6361 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
6362   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
6363   if (!FnInfo)
6364     return 0;
6365 
6366   switch (FDecl->getBuiltinID()) {
6367   default:
6368     return 0;
6369   case Builtin::BI__builtin_abs:
6370   case Builtin::BI__builtin_fabs:
6371   case Builtin::BI__builtin_fabsf:
6372   case Builtin::BI__builtin_fabsl:
6373   case Builtin::BI__builtin_labs:
6374   case Builtin::BI__builtin_llabs:
6375   case Builtin::BI__builtin_cabs:
6376   case Builtin::BI__builtin_cabsf:
6377   case Builtin::BI__builtin_cabsl:
6378   case Builtin::BIabs:
6379   case Builtin::BIlabs:
6380   case Builtin::BIllabs:
6381   case Builtin::BIfabs:
6382   case Builtin::BIfabsf:
6383   case Builtin::BIfabsl:
6384   case Builtin::BIcabs:
6385   case Builtin::BIcabsf:
6386   case Builtin::BIcabsl:
6387     return FDecl->getBuiltinID();
6388   }
6389   llvm_unreachable("Unknown Builtin type");
6390 }
6391 
6392 // If the replacement is valid, emit a note with replacement function.
6393 // Additionally, suggest including the proper header if not already included.
6394 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
6395                             unsigned AbsKind, QualType ArgType) {
6396   bool EmitHeaderHint = true;
6397   const char *HeaderName = nullptr;
6398   const char *FunctionName = nullptr;
6399   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
6400     FunctionName = "std::abs";
6401     if (ArgType->isIntegralOrEnumerationType()) {
6402       HeaderName = "cstdlib";
6403     } else if (ArgType->isRealFloatingType()) {
6404       HeaderName = "cmath";
6405     } else {
6406       llvm_unreachable("Invalid Type");
6407     }
6408 
6409     // Lookup all std::abs
6410     if (NamespaceDecl *Std = S.getStdNamespace()) {
6411       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
6412       R.suppressDiagnostics();
6413       S.LookupQualifiedName(R, Std);
6414 
6415       for (const auto *I : R) {
6416         const FunctionDecl *FDecl = nullptr;
6417         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
6418           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
6419         } else {
6420           FDecl = dyn_cast<FunctionDecl>(I);
6421         }
6422         if (!FDecl)
6423           continue;
6424 
6425         // Found std::abs(), check that they are the right ones.
6426         if (FDecl->getNumParams() != 1)
6427           continue;
6428 
6429         // Check that the parameter type can handle the argument.
6430         QualType ParamType = FDecl->getParamDecl(0)->getType();
6431         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
6432             S.Context.getTypeSize(ArgType) <=
6433                 S.Context.getTypeSize(ParamType)) {
6434           // Found a function, don't need the header hint.
6435           EmitHeaderHint = false;
6436           break;
6437         }
6438       }
6439     }
6440   } else {
6441     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
6442     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
6443 
6444     if (HeaderName) {
6445       DeclarationName DN(&S.Context.Idents.get(FunctionName));
6446       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
6447       R.suppressDiagnostics();
6448       S.LookupName(R, S.getCurScope());
6449 
6450       if (R.isSingleResult()) {
6451         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
6452         if (FD && FD->getBuiltinID() == AbsKind) {
6453           EmitHeaderHint = false;
6454         } else {
6455           return;
6456         }
6457       } else if (!R.empty()) {
6458         return;
6459       }
6460     }
6461   }
6462 
6463   S.Diag(Loc, diag::note_replace_abs_function)
6464       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
6465 
6466   if (!HeaderName)
6467     return;
6468 
6469   if (!EmitHeaderHint)
6470     return;
6471 
6472   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
6473                                                     << FunctionName;
6474 }
6475 
6476 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
6477   if (!FDecl)
6478     return false;
6479 
6480   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
6481     return false;
6482 
6483   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
6484 
6485   while (ND && ND->isInlineNamespace()) {
6486     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
6487   }
6488 
6489   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
6490     return false;
6491 
6492   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
6493     return false;
6494 
6495   return true;
6496 }
6497 
6498 // Warn when using the wrong abs() function.
6499 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
6500                                       const FunctionDecl *FDecl,
6501                                       IdentifierInfo *FnInfo) {
6502   if (Call->getNumArgs() != 1)
6503     return;
6504 
6505   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
6506   bool IsStdAbs = IsFunctionStdAbs(FDecl);
6507   if (AbsKind == 0 && !IsStdAbs)
6508     return;
6509 
6510   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
6511   QualType ParamType = Call->getArg(0)->getType();
6512 
6513   // Unsigned types cannot be negative.  Suggest removing the absolute value
6514   // function call.
6515   if (ArgType->isUnsignedIntegerType()) {
6516     const char *FunctionName =
6517         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
6518     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
6519     Diag(Call->getExprLoc(), diag::note_remove_abs)
6520         << FunctionName
6521         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
6522     return;
6523   }
6524 
6525   // Taking the absolute value of a pointer is very suspicious, they probably
6526   // wanted to index into an array, dereference a pointer, call a function, etc.
6527   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
6528     unsigned DiagType = 0;
6529     if (ArgType->isFunctionType())
6530       DiagType = 1;
6531     else if (ArgType->isArrayType())
6532       DiagType = 2;
6533 
6534     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
6535     return;
6536   }
6537 
6538   // std::abs has overloads which prevent most of the absolute value problems
6539   // from occurring.
6540   if (IsStdAbs)
6541     return;
6542 
6543   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
6544   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
6545 
6546   // The argument and parameter are the same kind.  Check if they are the right
6547   // size.
6548   if (ArgValueKind == ParamValueKind) {
6549     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
6550       return;
6551 
6552     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
6553     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
6554         << FDecl << ArgType << ParamType;
6555 
6556     if (NewAbsKind == 0)
6557       return;
6558 
6559     emitReplacement(*this, Call->getExprLoc(),
6560                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
6561     return;
6562   }
6563 
6564   // ArgValueKind != ParamValueKind
6565   // The wrong type of absolute value function was used.  Attempt to find the
6566   // proper one.
6567   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
6568   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
6569   if (NewAbsKind == 0)
6570     return;
6571 
6572   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
6573       << FDecl << ParamValueKind << ArgValueKind;
6574 
6575   emitReplacement(*this, Call->getExprLoc(),
6576                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
6577 }
6578 
6579 //===--- CHECK: Standard memory functions ---------------------------------===//
6580 
6581 /// \brief Takes the expression passed to the size_t parameter of functions
6582 /// such as memcmp, strncat, etc and warns if it's a comparison.
6583 ///
6584 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
6585 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
6586                                            IdentifierInfo *FnName,
6587                                            SourceLocation FnLoc,
6588                                            SourceLocation RParenLoc) {
6589   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
6590   if (!Size)
6591     return false;
6592 
6593   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
6594   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
6595     return false;
6596 
6597   SourceRange SizeRange = Size->getSourceRange();
6598   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
6599       << SizeRange << FnName;
6600   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
6601       << FnName << FixItHint::CreateInsertion(
6602                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
6603       << FixItHint::CreateRemoval(RParenLoc);
6604   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
6605       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
6606       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
6607                                     ")");
6608 
6609   return true;
6610 }
6611 
6612 /// \brief Determine whether the given type is or contains a dynamic class type
6613 /// (e.g., whether it has a vtable).
6614 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
6615                                                      bool &IsContained) {
6616   // Look through array types while ignoring qualifiers.
6617   const Type *Ty = T->getBaseElementTypeUnsafe();
6618   IsContained = false;
6619 
6620   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
6621   RD = RD ? RD->getDefinition() : nullptr;
6622   if (!RD || RD->isInvalidDecl())
6623     return nullptr;
6624 
6625   if (RD->isDynamicClass())
6626     return RD;
6627 
6628   // Check all the fields.  If any bases were dynamic, the class is dynamic.
6629   // It's impossible for a class to transitively contain itself by value, so
6630   // infinite recursion is impossible.
6631   for (auto *FD : RD->fields()) {
6632     bool SubContained;
6633     if (const CXXRecordDecl *ContainedRD =
6634             getContainedDynamicClass(FD->getType(), SubContained)) {
6635       IsContained = true;
6636       return ContainedRD;
6637     }
6638   }
6639 
6640   return nullptr;
6641 }
6642 
6643 /// \brief If E is a sizeof expression, returns its argument expression,
6644 /// otherwise returns NULL.
6645 static const Expr *getSizeOfExprArg(const Expr *E) {
6646   if (const UnaryExprOrTypeTraitExpr *SizeOf =
6647       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
6648     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
6649       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
6650 
6651   return nullptr;
6652 }
6653 
6654 /// \brief If E is a sizeof expression, returns its argument type.
6655 static QualType getSizeOfArgType(const Expr *E) {
6656   if (const UnaryExprOrTypeTraitExpr *SizeOf =
6657       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
6658     if (SizeOf->getKind() == clang::UETT_SizeOf)
6659       return SizeOf->getTypeOfArgument();
6660 
6661   return QualType();
6662 }
6663 
6664 /// \brief Check for dangerous or invalid arguments to memset().
6665 ///
6666 /// This issues warnings on known problematic, dangerous or unspecified
6667 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
6668 /// function calls.
6669 ///
6670 /// \param Call The call expression to diagnose.
6671 void Sema::CheckMemaccessArguments(const CallExpr *Call,
6672                                    unsigned BId,
6673                                    IdentifierInfo *FnName) {
6674   assert(BId != 0);
6675 
6676   // It is possible to have a non-standard definition of memset.  Validate
6677   // we have enough arguments, and if not, abort further checking.
6678   unsigned ExpectedNumArgs =
6679       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
6680   if (Call->getNumArgs() < ExpectedNumArgs)
6681     return;
6682 
6683   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
6684                       BId == Builtin::BIstrndup ? 1 : 2);
6685   unsigned LenArg =
6686       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
6687   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
6688 
6689   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
6690                                      Call->getLocStart(), Call->getRParenLoc()))
6691     return;
6692 
6693   // We have special checking when the length is a sizeof expression.
6694   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
6695   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
6696   llvm::FoldingSetNodeID SizeOfArgID;
6697 
6698   // Although widely used, 'bzero' is not a standard function. Be more strict
6699   // with the argument types before allowing diagnostics and only allow the
6700   // form bzero(ptr, sizeof(...)).
6701   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
6702   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
6703     return;
6704 
6705   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
6706     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
6707     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
6708 
6709     QualType DestTy = Dest->getType();
6710     QualType PointeeTy;
6711     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
6712       PointeeTy = DestPtrTy->getPointeeType();
6713 
6714       // Never warn about void type pointers. This can be used to suppress
6715       // false positives.
6716       if (PointeeTy->isVoidType())
6717         continue;
6718 
6719       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
6720       // actually comparing the expressions for equality. Because computing the
6721       // expression IDs can be expensive, we only do this if the diagnostic is
6722       // enabled.
6723       if (SizeOfArg &&
6724           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
6725                            SizeOfArg->getExprLoc())) {
6726         // We only compute IDs for expressions if the warning is enabled, and
6727         // cache the sizeof arg's ID.
6728         if (SizeOfArgID == llvm::FoldingSetNodeID())
6729           SizeOfArg->Profile(SizeOfArgID, Context, true);
6730         llvm::FoldingSetNodeID DestID;
6731         Dest->Profile(DestID, Context, true);
6732         if (DestID == SizeOfArgID) {
6733           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
6734           //       over sizeof(src) as well.
6735           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
6736           StringRef ReadableName = FnName->getName();
6737 
6738           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
6739             if (UnaryOp->getOpcode() == UO_AddrOf)
6740               ActionIdx = 1; // If its an address-of operator, just remove it.
6741           if (!PointeeTy->isIncompleteType() &&
6742               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
6743             ActionIdx = 2; // If the pointee's size is sizeof(char),
6744                            // suggest an explicit length.
6745 
6746           // If the function is defined as a builtin macro, do not show macro
6747           // expansion.
6748           SourceLocation SL = SizeOfArg->getExprLoc();
6749           SourceRange DSR = Dest->getSourceRange();
6750           SourceRange SSR = SizeOfArg->getSourceRange();
6751           SourceManager &SM = getSourceManager();
6752 
6753           if (SM.isMacroArgExpansion(SL)) {
6754             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
6755             SL = SM.getSpellingLoc(SL);
6756             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
6757                              SM.getSpellingLoc(DSR.getEnd()));
6758             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
6759                              SM.getSpellingLoc(SSR.getEnd()));
6760           }
6761 
6762           DiagRuntimeBehavior(SL, SizeOfArg,
6763                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
6764                                 << ReadableName
6765                                 << PointeeTy
6766                                 << DestTy
6767                                 << DSR
6768                                 << SSR);
6769           DiagRuntimeBehavior(SL, SizeOfArg,
6770                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
6771                                 << ActionIdx
6772                                 << SSR);
6773 
6774           break;
6775         }
6776       }
6777 
6778       // Also check for cases where the sizeof argument is the exact same
6779       // type as the memory argument, and where it points to a user-defined
6780       // record type.
6781       if (SizeOfArgTy != QualType()) {
6782         if (PointeeTy->isRecordType() &&
6783             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
6784           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
6785                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
6786                                 << FnName << SizeOfArgTy << ArgIdx
6787                                 << PointeeTy << Dest->getSourceRange()
6788                                 << LenExpr->getSourceRange());
6789           break;
6790         }
6791       }
6792     } else if (DestTy->isArrayType()) {
6793       PointeeTy = DestTy;
6794     }
6795 
6796     if (PointeeTy == QualType())
6797       continue;
6798 
6799     // Always complain about dynamic classes.
6800     bool IsContained;
6801     if (const CXXRecordDecl *ContainedRD =
6802             getContainedDynamicClass(PointeeTy, IsContained)) {
6803 
6804       unsigned OperationType = 0;
6805       // "overwritten" if we're warning about the destination for any call
6806       // but memcmp; otherwise a verb appropriate to the call.
6807       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
6808         if (BId == Builtin::BImemcpy)
6809           OperationType = 1;
6810         else if(BId == Builtin::BImemmove)
6811           OperationType = 2;
6812         else if (BId == Builtin::BImemcmp)
6813           OperationType = 3;
6814       }
6815 
6816       DiagRuntimeBehavior(
6817         Dest->getExprLoc(), Dest,
6818         PDiag(diag::warn_dyn_class_memaccess)
6819           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
6820           << FnName << IsContained << ContainedRD << OperationType
6821           << Call->getCallee()->getSourceRange());
6822     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
6823              BId != Builtin::BImemset)
6824       DiagRuntimeBehavior(
6825         Dest->getExprLoc(), Dest,
6826         PDiag(diag::warn_arc_object_memaccess)
6827           << ArgIdx << FnName << PointeeTy
6828           << Call->getCallee()->getSourceRange());
6829     else
6830       continue;
6831 
6832     DiagRuntimeBehavior(
6833       Dest->getExprLoc(), Dest,
6834       PDiag(diag::note_bad_memaccess_silence)
6835         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
6836     break;
6837   }
6838 }
6839 
6840 // A little helper routine: ignore addition and subtraction of integer literals.
6841 // This intentionally does not ignore all integer constant expressions because
6842 // we don't want to remove sizeof().
6843 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
6844   Ex = Ex->IgnoreParenCasts();
6845 
6846   for (;;) {
6847     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
6848     if (!BO || !BO->isAdditiveOp())
6849       break;
6850 
6851     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
6852     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
6853 
6854     if (isa<IntegerLiteral>(RHS))
6855       Ex = LHS;
6856     else if (isa<IntegerLiteral>(LHS))
6857       Ex = RHS;
6858     else
6859       break;
6860   }
6861 
6862   return Ex;
6863 }
6864 
6865 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
6866                                                       ASTContext &Context) {
6867   // Only handle constant-sized or VLAs, but not flexible members.
6868   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
6869     // Only issue the FIXIT for arrays of size > 1.
6870     if (CAT->getSize().getSExtValue() <= 1)
6871       return false;
6872   } else if (!Ty->isVariableArrayType()) {
6873     return false;
6874   }
6875   return true;
6876 }
6877 
6878 // Warn if the user has made the 'size' argument to strlcpy or strlcat
6879 // be the size of the source, instead of the destination.
6880 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
6881                                     IdentifierInfo *FnName) {
6882 
6883   // Don't crash if the user has the wrong number of arguments
6884   unsigned NumArgs = Call->getNumArgs();
6885   if ((NumArgs != 3) && (NumArgs != 4))
6886     return;
6887 
6888   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
6889   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
6890   const Expr *CompareWithSrc = nullptr;
6891 
6892   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
6893                                      Call->getLocStart(), Call->getRParenLoc()))
6894     return;
6895 
6896   // Look for 'strlcpy(dst, x, sizeof(x))'
6897   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
6898     CompareWithSrc = Ex;
6899   else {
6900     // Look for 'strlcpy(dst, x, strlen(x))'
6901     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
6902       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
6903           SizeCall->getNumArgs() == 1)
6904         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
6905     }
6906   }
6907 
6908   if (!CompareWithSrc)
6909     return;
6910 
6911   // Determine if the argument to sizeof/strlen is equal to the source
6912   // argument.  In principle there's all kinds of things you could do
6913   // here, for instance creating an == expression and evaluating it with
6914   // EvaluateAsBooleanCondition, but this uses a more direct technique:
6915   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
6916   if (!SrcArgDRE)
6917     return;
6918 
6919   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
6920   if (!CompareWithSrcDRE ||
6921       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
6922     return;
6923 
6924   const Expr *OriginalSizeArg = Call->getArg(2);
6925   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
6926     << OriginalSizeArg->getSourceRange() << FnName;
6927 
6928   // Output a FIXIT hint if the destination is an array (rather than a
6929   // pointer to an array).  This could be enhanced to handle some
6930   // pointers if we know the actual size, like if DstArg is 'array+2'
6931   // we could say 'sizeof(array)-2'.
6932   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
6933   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
6934     return;
6935 
6936   SmallString<128> sizeString;
6937   llvm::raw_svector_ostream OS(sizeString);
6938   OS << "sizeof(";
6939   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
6940   OS << ")";
6941 
6942   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
6943     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
6944                                     OS.str());
6945 }
6946 
6947 /// Check if two expressions refer to the same declaration.
6948 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
6949   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
6950     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
6951       return D1->getDecl() == D2->getDecl();
6952   return false;
6953 }
6954 
6955 static const Expr *getStrlenExprArg(const Expr *E) {
6956   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
6957     const FunctionDecl *FD = CE->getDirectCallee();
6958     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
6959       return nullptr;
6960     return CE->getArg(0)->IgnoreParenCasts();
6961   }
6962   return nullptr;
6963 }
6964 
6965 // Warn on anti-patterns as the 'size' argument to strncat.
6966 // The correct size argument should look like following:
6967 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
6968 void Sema::CheckStrncatArguments(const CallExpr *CE,
6969                                  IdentifierInfo *FnName) {
6970   // Don't crash if the user has the wrong number of arguments.
6971   if (CE->getNumArgs() < 3)
6972     return;
6973   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
6974   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
6975   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
6976 
6977   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
6978                                      CE->getRParenLoc()))
6979     return;
6980 
6981   // Identify common expressions, which are wrongly used as the size argument
6982   // to strncat and may lead to buffer overflows.
6983   unsigned PatternType = 0;
6984   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
6985     // - sizeof(dst)
6986     if (referToTheSameDecl(SizeOfArg, DstArg))
6987       PatternType = 1;
6988     // - sizeof(src)
6989     else if (referToTheSameDecl(SizeOfArg, SrcArg))
6990       PatternType = 2;
6991   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
6992     if (BE->getOpcode() == BO_Sub) {
6993       const Expr *L = BE->getLHS()->IgnoreParenCasts();
6994       const Expr *R = BE->getRHS()->IgnoreParenCasts();
6995       // - sizeof(dst) - strlen(dst)
6996       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
6997           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
6998         PatternType = 1;
6999       // - sizeof(src) - (anything)
7000       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
7001         PatternType = 2;
7002     }
7003   }
7004 
7005   if (PatternType == 0)
7006     return;
7007 
7008   // Generate the diagnostic.
7009   SourceLocation SL = LenArg->getLocStart();
7010   SourceRange SR = LenArg->getSourceRange();
7011   SourceManager &SM = getSourceManager();
7012 
7013   // If the function is defined as a builtin macro, do not show macro expansion.
7014   if (SM.isMacroArgExpansion(SL)) {
7015     SL = SM.getSpellingLoc(SL);
7016     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
7017                      SM.getSpellingLoc(SR.getEnd()));
7018   }
7019 
7020   // Check if the destination is an array (rather than a pointer to an array).
7021   QualType DstTy = DstArg->getType();
7022   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
7023                                                                     Context);
7024   if (!isKnownSizeArray) {
7025     if (PatternType == 1)
7026       Diag(SL, diag::warn_strncat_wrong_size) << SR;
7027     else
7028       Diag(SL, diag::warn_strncat_src_size) << SR;
7029     return;
7030   }
7031 
7032   if (PatternType == 1)
7033     Diag(SL, diag::warn_strncat_large_size) << SR;
7034   else
7035     Diag(SL, diag::warn_strncat_src_size) << SR;
7036 
7037   SmallString<128> sizeString;
7038   llvm::raw_svector_ostream OS(sizeString);
7039   OS << "sizeof(";
7040   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
7041   OS << ") - ";
7042   OS << "strlen(";
7043   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
7044   OS << ") - 1";
7045 
7046   Diag(SL, diag::note_strncat_wrong_size)
7047     << FixItHint::CreateReplacement(SR, OS.str());
7048 }
7049 
7050 //===--- CHECK: Return Address of Stack Variable --------------------------===//
7051 
7052 static const Expr *EvalVal(const Expr *E,
7053                            SmallVectorImpl<const DeclRefExpr *> &refVars,
7054                            const Decl *ParentDecl);
7055 static const Expr *EvalAddr(const Expr *E,
7056                             SmallVectorImpl<const DeclRefExpr *> &refVars,
7057                             const Decl *ParentDecl);
7058 
7059 /// CheckReturnStackAddr - Check if a return statement returns the address
7060 ///   of a stack variable.
7061 static void
7062 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
7063                      SourceLocation ReturnLoc) {
7064 
7065   const Expr *stackE = nullptr;
7066   SmallVector<const DeclRefExpr *, 8> refVars;
7067 
7068   // Perform checking for returned stack addresses, local blocks,
7069   // label addresses or references to temporaries.
7070   if (lhsType->isPointerType() ||
7071       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
7072     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
7073   } else if (lhsType->isReferenceType()) {
7074     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
7075   }
7076 
7077   if (!stackE)
7078     return; // Nothing suspicious was found.
7079 
7080   // Parameters are initalized in the calling scope, so taking the address
7081   // of a parameter reference doesn't need a warning.
7082   for (auto *DRE : refVars)
7083     if (isa<ParmVarDecl>(DRE->getDecl()))
7084       return;
7085 
7086   SourceLocation diagLoc;
7087   SourceRange diagRange;
7088   if (refVars.empty()) {
7089     diagLoc = stackE->getLocStart();
7090     diagRange = stackE->getSourceRange();
7091   } else {
7092     // We followed through a reference variable. 'stackE' contains the
7093     // problematic expression but we will warn at the return statement pointing
7094     // at the reference variable. We will later display the "trail" of
7095     // reference variables using notes.
7096     diagLoc = refVars[0]->getLocStart();
7097     diagRange = refVars[0]->getSourceRange();
7098   }
7099 
7100   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) {
7101     // address of local var
7102     S.Diag(diagLoc, diag::warn_ret_stack_addr_ref) << lhsType->isReferenceType()
7103      << DR->getDecl()->getDeclName() << diagRange;
7104   } else if (isa<BlockExpr>(stackE)) { // local block.
7105     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
7106   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
7107     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
7108   } else { // local temporary.
7109     // If there is an LValue->RValue conversion, then the value of the
7110     // reference type is used, not the reference.
7111     if (auto *ICE = dyn_cast<ImplicitCastExpr>(RetValExp)) {
7112       if (ICE->getCastKind() == CK_LValueToRValue) {
7113         return;
7114       }
7115     }
7116     S.Diag(diagLoc, diag::warn_ret_local_temp_addr_ref)
7117      << lhsType->isReferenceType() << diagRange;
7118   }
7119 
7120   // Display the "trail" of reference variables that we followed until we
7121   // found the problematic expression using notes.
7122   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
7123     const VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
7124     // If this var binds to another reference var, show the range of the next
7125     // var, otherwise the var binds to the problematic expression, in which case
7126     // show the range of the expression.
7127     SourceRange range = (i < e - 1) ? refVars[i + 1]->getSourceRange()
7128                                     : stackE->getSourceRange();
7129     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
7130         << VD->getDeclName() << range;
7131   }
7132 }
7133 
7134 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
7135 ///  check if the expression in a return statement evaluates to an address
7136 ///  to a location on the stack, a local block, an address of a label, or a
7137 ///  reference to local temporary. The recursion is used to traverse the
7138 ///  AST of the return expression, with recursion backtracking when we
7139 ///  encounter a subexpression that (1) clearly does not lead to one of the
7140 ///  above problematic expressions (2) is something we cannot determine leads to
7141 ///  a problematic expression based on such local checking.
7142 ///
7143 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
7144 ///  the expression that they point to. Such variables are added to the
7145 ///  'refVars' vector so that we know what the reference variable "trail" was.
7146 ///
7147 ///  EvalAddr processes expressions that are pointers that are used as
7148 ///  references (and not L-values).  EvalVal handles all other values.
7149 ///  At the base case of the recursion is a check for the above problematic
7150 ///  expressions.
7151 ///
7152 ///  This implementation handles:
7153 ///
7154 ///   * pointer-to-pointer casts
7155 ///   * implicit conversions from array references to pointers
7156 ///   * taking the address of fields
7157 ///   * arbitrary interplay between "&" and "*" operators
7158 ///   * pointer arithmetic from an address of a stack variable
7159 ///   * taking the address of an array element where the array is on the stack
7160 static const Expr *EvalAddr(const Expr *E,
7161                             SmallVectorImpl<const DeclRefExpr *> &refVars,
7162                             const Decl *ParentDecl) {
7163   if (E->isTypeDependent())
7164     return nullptr;
7165 
7166   // We should only be called for evaluating pointer expressions.
7167   assert((E->getType()->isAnyPointerType() ||
7168           E->getType()->isBlockPointerType() ||
7169           E->getType()->isObjCQualifiedIdType()) &&
7170          "EvalAddr only works on pointers");
7171 
7172   E = E->IgnoreParens();
7173 
7174   // Our "symbolic interpreter" is just a dispatch off the currently
7175   // viewed AST node.  We then recursively traverse the AST by calling
7176   // EvalAddr and EvalVal appropriately.
7177   switch (E->getStmtClass()) {
7178   case Stmt::DeclRefExprClass: {
7179     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7180 
7181     // If we leave the immediate function, the lifetime isn't about to end.
7182     if (DR->refersToEnclosingVariableOrCapture())
7183       return nullptr;
7184 
7185     if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
7186       // If this is a reference variable, follow through to the expression that
7187       // it points to.
7188       if (V->hasLocalStorage() &&
7189           V->getType()->isReferenceType() && V->hasInit()) {
7190         // Add the reference variable to the "trail".
7191         refVars.push_back(DR);
7192         return EvalAddr(V->getInit(), refVars, ParentDecl);
7193       }
7194 
7195     return nullptr;
7196   }
7197 
7198   case Stmt::UnaryOperatorClass: {
7199     // The only unary operator that make sense to handle here
7200     // is AddrOf.  All others don't make sense as pointers.
7201     const UnaryOperator *U = cast<UnaryOperator>(E);
7202 
7203     if (U->getOpcode() == UO_AddrOf)
7204       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
7205     return nullptr;
7206   }
7207 
7208   case Stmt::BinaryOperatorClass: {
7209     // Handle pointer arithmetic.  All other binary operators are not valid
7210     // in this context.
7211     const BinaryOperator *B = cast<BinaryOperator>(E);
7212     BinaryOperatorKind op = B->getOpcode();
7213 
7214     if (op != BO_Add && op != BO_Sub)
7215       return nullptr;
7216 
7217     const Expr *Base = B->getLHS();
7218 
7219     // Determine which argument is the real pointer base.  It could be
7220     // the RHS argument instead of the LHS.
7221     if (!Base->getType()->isPointerType())
7222       Base = B->getRHS();
7223 
7224     assert(Base->getType()->isPointerType());
7225     return EvalAddr(Base, refVars, ParentDecl);
7226   }
7227 
7228   // For conditional operators we need to see if either the LHS or RHS are
7229   // valid DeclRefExpr*s.  If one of them is valid, we return it.
7230   case Stmt::ConditionalOperatorClass: {
7231     const ConditionalOperator *C = cast<ConditionalOperator>(E);
7232 
7233     // Handle the GNU extension for missing LHS.
7234     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
7235     if (const Expr *LHSExpr = C->getLHS()) {
7236       // In C++, we can have a throw-expression, which has 'void' type.
7237       if (!LHSExpr->getType()->isVoidType())
7238         if (const Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
7239           return LHS;
7240     }
7241 
7242     // In C++, we can have a throw-expression, which has 'void' type.
7243     if (C->getRHS()->getType()->isVoidType())
7244       return nullptr;
7245 
7246     return EvalAddr(C->getRHS(), refVars, ParentDecl);
7247   }
7248 
7249   case Stmt::BlockExprClass:
7250     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
7251       return E; // local block.
7252     return nullptr;
7253 
7254   case Stmt::AddrLabelExprClass:
7255     return E; // address of label.
7256 
7257   case Stmt::ExprWithCleanupsClass:
7258     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
7259                     ParentDecl);
7260 
7261   // For casts, we need to handle conversions from arrays to
7262   // pointer values, and pointer-to-pointer conversions.
7263   case Stmt::ImplicitCastExprClass:
7264   case Stmt::CStyleCastExprClass:
7265   case Stmt::CXXFunctionalCastExprClass:
7266   case Stmt::ObjCBridgedCastExprClass:
7267   case Stmt::CXXStaticCastExprClass:
7268   case Stmt::CXXDynamicCastExprClass:
7269   case Stmt::CXXConstCastExprClass:
7270   case Stmt::CXXReinterpretCastExprClass: {
7271     const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
7272     switch (cast<CastExpr>(E)->getCastKind()) {
7273     case CK_LValueToRValue:
7274     case CK_NoOp:
7275     case CK_BaseToDerived:
7276     case CK_DerivedToBase:
7277     case CK_UncheckedDerivedToBase:
7278     case CK_Dynamic:
7279     case CK_CPointerToObjCPointerCast:
7280     case CK_BlockPointerToObjCPointerCast:
7281     case CK_AnyPointerToBlockPointerCast:
7282       return EvalAddr(SubExpr, refVars, ParentDecl);
7283 
7284     case CK_ArrayToPointerDecay:
7285       return EvalVal(SubExpr, refVars, ParentDecl);
7286 
7287     case CK_BitCast:
7288       if (SubExpr->getType()->isAnyPointerType() ||
7289           SubExpr->getType()->isBlockPointerType() ||
7290           SubExpr->getType()->isObjCQualifiedIdType())
7291         return EvalAddr(SubExpr, refVars, ParentDecl);
7292       else
7293         return nullptr;
7294 
7295     default:
7296       return nullptr;
7297     }
7298   }
7299 
7300   case Stmt::MaterializeTemporaryExprClass:
7301     if (const Expr *Result =
7302             EvalAddr(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
7303                      refVars, ParentDecl))
7304       return Result;
7305     return E;
7306 
7307   // Everything else: we simply don't reason about them.
7308   default:
7309     return nullptr;
7310   }
7311 }
7312 
7313 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
7314 ///   See the comments for EvalAddr for more details.
7315 static const Expr *EvalVal(const Expr *E,
7316                            SmallVectorImpl<const DeclRefExpr *> &refVars,
7317                            const Decl *ParentDecl) {
7318   do {
7319     // We should only be called for evaluating non-pointer expressions, or
7320     // expressions with a pointer type that are not used as references but
7321     // instead
7322     // are l-values (e.g., DeclRefExpr with a pointer type).
7323 
7324     // Our "symbolic interpreter" is just a dispatch off the currently
7325     // viewed AST node.  We then recursively traverse the AST by calling
7326     // EvalAddr and EvalVal appropriately.
7327 
7328     E = E->IgnoreParens();
7329     switch (E->getStmtClass()) {
7330     case Stmt::ImplicitCastExprClass: {
7331       const ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
7332       if (IE->getValueKind() == VK_LValue) {
7333         E = IE->getSubExpr();
7334         continue;
7335       }
7336       return nullptr;
7337     }
7338 
7339     case Stmt::ExprWithCleanupsClass:
7340       return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
7341                      ParentDecl);
7342 
7343     case Stmt::DeclRefExprClass: {
7344       // When we hit a DeclRefExpr we are looking at code that refers to a
7345       // variable's name. If it's not a reference variable we check if it has
7346       // local storage within the function, and if so, return the expression.
7347       const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7348 
7349       // If we leave the immediate function, the lifetime isn't about to end.
7350       if (DR->refersToEnclosingVariableOrCapture())
7351         return nullptr;
7352 
7353       if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
7354         // Check if it refers to itself, e.g. "int& i = i;".
7355         if (V == ParentDecl)
7356           return DR;
7357 
7358         if (V->hasLocalStorage()) {
7359           if (!V->getType()->isReferenceType())
7360             return DR;
7361 
7362           // Reference variable, follow through to the expression that
7363           // it points to.
7364           if (V->hasInit()) {
7365             // Add the reference variable to the "trail".
7366             refVars.push_back(DR);
7367             return EvalVal(V->getInit(), refVars, V);
7368           }
7369         }
7370       }
7371 
7372       return nullptr;
7373     }
7374 
7375     case Stmt::UnaryOperatorClass: {
7376       // The only unary operator that make sense to handle here
7377       // is Deref.  All others don't resolve to a "name."  This includes
7378       // handling all sorts of rvalues passed to a unary operator.
7379       const UnaryOperator *U = cast<UnaryOperator>(E);
7380 
7381       if (U->getOpcode() == UO_Deref)
7382         return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
7383 
7384       return nullptr;
7385     }
7386 
7387     case Stmt::ArraySubscriptExprClass: {
7388       // Array subscripts are potential references to data on the stack.  We
7389       // retrieve the DeclRefExpr* for the array variable if it indeed
7390       // has local storage.
7391       const auto *ASE = cast<ArraySubscriptExpr>(E);
7392       if (ASE->isTypeDependent())
7393         return nullptr;
7394       return EvalAddr(ASE->getBase(), refVars, ParentDecl);
7395     }
7396 
7397     case Stmt::OMPArraySectionExprClass: {
7398       return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
7399                       ParentDecl);
7400     }
7401 
7402     case Stmt::ConditionalOperatorClass: {
7403       // For conditional operators we need to see if either the LHS or RHS are
7404       // non-NULL Expr's.  If one is non-NULL, we return it.
7405       const ConditionalOperator *C = cast<ConditionalOperator>(E);
7406 
7407       // Handle the GNU extension for missing LHS.
7408       if (const Expr *LHSExpr = C->getLHS()) {
7409         // In C++, we can have a throw-expression, which has 'void' type.
7410         if (!LHSExpr->getType()->isVoidType())
7411           if (const Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
7412             return LHS;
7413       }
7414 
7415       // In C++, we can have a throw-expression, which has 'void' type.
7416       if (C->getRHS()->getType()->isVoidType())
7417         return nullptr;
7418 
7419       return EvalVal(C->getRHS(), refVars, ParentDecl);
7420     }
7421 
7422     // Accesses to members are potential references to data on the stack.
7423     case Stmt::MemberExprClass: {
7424       const MemberExpr *M = cast<MemberExpr>(E);
7425 
7426       // Check for indirect access.  We only want direct field accesses.
7427       if (M->isArrow())
7428         return nullptr;
7429 
7430       // Check whether the member type is itself a reference, in which case
7431       // we're not going to refer to the member, but to what the member refers
7432       // to.
7433       if (M->getMemberDecl()->getType()->isReferenceType())
7434         return nullptr;
7435 
7436       return EvalVal(M->getBase(), refVars, ParentDecl);
7437     }
7438 
7439     case Stmt::MaterializeTemporaryExprClass:
7440       if (const Expr *Result =
7441               EvalVal(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
7442                       refVars, ParentDecl))
7443         return Result;
7444       return E;
7445 
7446     default:
7447       // Check that we don't return or take the address of a reference to a
7448       // temporary. This is only useful in C++.
7449       if (!E->isTypeDependent() && E->isRValue())
7450         return E;
7451 
7452       // Everything else: we simply don't reason about them.
7453       return nullptr;
7454     }
7455   } while (true);
7456 }
7457 
7458 void
7459 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
7460                          SourceLocation ReturnLoc,
7461                          bool isObjCMethod,
7462                          const AttrVec *Attrs,
7463                          const FunctionDecl *FD) {
7464   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
7465 
7466   // Check if the return value is null but should not be.
7467   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
7468        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
7469       CheckNonNullExpr(*this, RetValExp))
7470     Diag(ReturnLoc, diag::warn_null_ret)
7471       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
7472 
7473   // C++11 [basic.stc.dynamic.allocation]p4:
7474   //   If an allocation function declared with a non-throwing
7475   //   exception-specification fails to allocate storage, it shall return
7476   //   a null pointer. Any other allocation function that fails to allocate
7477   //   storage shall indicate failure only by throwing an exception [...]
7478   if (FD) {
7479     OverloadedOperatorKind Op = FD->getOverloadedOperator();
7480     if (Op == OO_New || Op == OO_Array_New) {
7481       const FunctionProtoType *Proto
7482         = FD->getType()->castAs<FunctionProtoType>();
7483       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
7484           CheckNonNullExpr(*this, RetValExp))
7485         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
7486           << FD << getLangOpts().CPlusPlus11;
7487     }
7488   }
7489 }
7490 
7491 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
7492 
7493 /// Check for comparisons of floating point operands using != and ==.
7494 /// Issue a warning if these are no self-comparisons, as they are not likely
7495 /// to do what the programmer intended.
7496 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
7497   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
7498   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
7499 
7500   // Special case: check for x == x (which is OK).
7501   // Do not emit warnings for such cases.
7502   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
7503     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
7504       if (DRL->getDecl() == DRR->getDecl())
7505         return;
7506 
7507   // Special case: check for comparisons against literals that can be exactly
7508   //  represented by APFloat.  In such cases, do not emit a warning.  This
7509   //  is a heuristic: often comparison against such literals are used to
7510   //  detect if a value in a variable has not changed.  This clearly can
7511   //  lead to false negatives.
7512   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
7513     if (FLL->isExact())
7514       return;
7515   } else
7516     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
7517       if (FLR->isExact())
7518         return;
7519 
7520   // Check for comparisons with builtin types.
7521   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
7522     if (CL->getBuiltinCallee())
7523       return;
7524 
7525   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
7526     if (CR->getBuiltinCallee())
7527       return;
7528 
7529   // Emit the diagnostic.
7530   Diag(Loc, diag::warn_floatingpoint_eq)
7531     << LHS->getSourceRange() << RHS->getSourceRange();
7532 }
7533 
7534 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
7535 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
7536 
7537 namespace {
7538 
7539 /// Structure recording the 'active' range of an integer-valued
7540 /// expression.
7541 struct IntRange {
7542   /// The number of bits active in the int.
7543   unsigned Width;
7544 
7545   /// True if the int is known not to have negative values.
7546   bool NonNegative;
7547 
7548   IntRange(unsigned Width, bool NonNegative)
7549     : Width(Width), NonNegative(NonNegative)
7550   {}
7551 
7552   /// Returns the range of the bool type.
7553   static IntRange forBoolType() {
7554     return IntRange(1, true);
7555   }
7556 
7557   /// Returns the range of an opaque value of the given integral type.
7558   static IntRange forValueOfType(ASTContext &C, QualType T) {
7559     return forValueOfCanonicalType(C,
7560                           T->getCanonicalTypeInternal().getTypePtr());
7561   }
7562 
7563   /// Returns the range of an opaque value of a canonical integral type.
7564   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
7565     assert(T->isCanonicalUnqualified());
7566 
7567     if (const VectorType *VT = dyn_cast<VectorType>(T))
7568       T = VT->getElementType().getTypePtr();
7569     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
7570       T = CT->getElementType().getTypePtr();
7571     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
7572       T = AT->getValueType().getTypePtr();
7573 
7574     // For enum types, use the known bit width of the enumerators.
7575     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
7576       EnumDecl *Enum = ET->getDecl();
7577       if (!Enum->isCompleteDefinition())
7578         return IntRange(C.getIntWidth(QualType(T, 0)), false);
7579 
7580       unsigned NumPositive = Enum->getNumPositiveBits();
7581       unsigned NumNegative = Enum->getNumNegativeBits();
7582 
7583       if (NumNegative == 0)
7584         return IntRange(NumPositive, true/*NonNegative*/);
7585       else
7586         return IntRange(std::max(NumPositive + 1, NumNegative),
7587                         false/*NonNegative*/);
7588     }
7589 
7590     const BuiltinType *BT = cast<BuiltinType>(T);
7591     assert(BT->isInteger());
7592 
7593     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
7594   }
7595 
7596   /// Returns the "target" range of a canonical integral type, i.e.
7597   /// the range of values expressible in the type.
7598   ///
7599   /// This matches forValueOfCanonicalType except that enums have the
7600   /// full range of their type, not the range of their enumerators.
7601   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
7602     assert(T->isCanonicalUnqualified());
7603 
7604     if (const VectorType *VT = dyn_cast<VectorType>(T))
7605       T = VT->getElementType().getTypePtr();
7606     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
7607       T = CT->getElementType().getTypePtr();
7608     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
7609       T = AT->getValueType().getTypePtr();
7610     if (const EnumType *ET = dyn_cast<EnumType>(T))
7611       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
7612 
7613     const BuiltinType *BT = cast<BuiltinType>(T);
7614     assert(BT->isInteger());
7615 
7616     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
7617   }
7618 
7619   /// Returns the supremum of two ranges: i.e. their conservative merge.
7620   static IntRange join(IntRange L, IntRange R) {
7621     return IntRange(std::max(L.Width, R.Width),
7622                     L.NonNegative && R.NonNegative);
7623   }
7624 
7625   /// Returns the infinum of two ranges: i.e. their aggressive merge.
7626   static IntRange meet(IntRange L, IntRange R) {
7627     return IntRange(std::min(L.Width, R.Width),
7628                     L.NonNegative || R.NonNegative);
7629   }
7630 };
7631 
7632 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
7633   if (value.isSigned() && value.isNegative())
7634     return IntRange(value.getMinSignedBits(), false);
7635 
7636   if (value.getBitWidth() > MaxWidth)
7637     value = value.trunc(MaxWidth);
7638 
7639   // isNonNegative() just checks the sign bit without considering
7640   // signedness.
7641   return IntRange(value.getActiveBits(), true);
7642 }
7643 
7644 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
7645                        unsigned MaxWidth) {
7646   if (result.isInt())
7647     return GetValueRange(C, result.getInt(), MaxWidth);
7648 
7649   if (result.isVector()) {
7650     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
7651     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
7652       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
7653       R = IntRange::join(R, El);
7654     }
7655     return R;
7656   }
7657 
7658   if (result.isComplexInt()) {
7659     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
7660     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
7661     return IntRange::join(R, I);
7662   }
7663 
7664   // This can happen with lossless casts to intptr_t of "based" lvalues.
7665   // Assume it might use arbitrary bits.
7666   // FIXME: The only reason we need to pass the type in here is to get
7667   // the sign right on this one case.  It would be nice if APValue
7668   // preserved this.
7669   assert(result.isLValue() || result.isAddrLabelDiff());
7670   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
7671 }
7672 
7673 QualType GetExprType(const Expr *E) {
7674   QualType Ty = E->getType();
7675   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
7676     Ty = AtomicRHS->getValueType();
7677   return Ty;
7678 }
7679 
7680 /// Pseudo-evaluate the given integer expression, estimating the
7681 /// range of values it might take.
7682 ///
7683 /// \param MaxWidth - the width to which the value will be truncated
7684 IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) {
7685   E = E->IgnoreParens();
7686 
7687   // Try a full evaluation first.
7688   Expr::EvalResult result;
7689   if (E->EvaluateAsRValue(result, C))
7690     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
7691 
7692   // I think we only want to look through implicit casts here; if the
7693   // user has an explicit widening cast, we should treat the value as
7694   // being of the new, wider type.
7695   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
7696     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
7697       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
7698 
7699     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
7700 
7701     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
7702                          CE->getCastKind() == CK_BooleanToSignedIntegral;
7703 
7704     // Assume that non-integer casts can span the full range of the type.
7705     if (!isIntegerCast)
7706       return OutputTypeRange;
7707 
7708     IntRange SubRange
7709       = GetExprRange(C, CE->getSubExpr(),
7710                      std::min(MaxWidth, OutputTypeRange.Width));
7711 
7712     // Bail out if the subexpr's range is as wide as the cast type.
7713     if (SubRange.Width >= OutputTypeRange.Width)
7714       return OutputTypeRange;
7715 
7716     // Otherwise, we take the smaller width, and we're non-negative if
7717     // either the output type or the subexpr is.
7718     return IntRange(SubRange.Width,
7719                     SubRange.NonNegative || OutputTypeRange.NonNegative);
7720   }
7721 
7722   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
7723     // If we can fold the condition, just take that operand.
7724     bool CondResult;
7725     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
7726       return GetExprRange(C, CondResult ? CO->getTrueExpr()
7727                                         : CO->getFalseExpr(),
7728                           MaxWidth);
7729 
7730     // Otherwise, conservatively merge.
7731     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
7732     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
7733     return IntRange::join(L, R);
7734   }
7735 
7736   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
7737     switch (BO->getOpcode()) {
7738 
7739     // Boolean-valued operations are single-bit and positive.
7740     case BO_LAnd:
7741     case BO_LOr:
7742     case BO_LT:
7743     case BO_GT:
7744     case BO_LE:
7745     case BO_GE:
7746     case BO_EQ:
7747     case BO_NE:
7748       return IntRange::forBoolType();
7749 
7750     // The type of the assignments is the type of the LHS, so the RHS
7751     // is not necessarily the same type.
7752     case BO_MulAssign:
7753     case BO_DivAssign:
7754     case BO_RemAssign:
7755     case BO_AddAssign:
7756     case BO_SubAssign:
7757     case BO_XorAssign:
7758     case BO_OrAssign:
7759       // TODO: bitfields?
7760       return IntRange::forValueOfType(C, GetExprType(E));
7761 
7762     // Simple assignments just pass through the RHS, which will have
7763     // been coerced to the LHS type.
7764     case BO_Assign:
7765       // TODO: bitfields?
7766       return GetExprRange(C, BO->getRHS(), MaxWidth);
7767 
7768     // Operations with opaque sources are black-listed.
7769     case BO_PtrMemD:
7770     case BO_PtrMemI:
7771       return IntRange::forValueOfType(C, GetExprType(E));
7772 
7773     // Bitwise-and uses the *infinum* of the two source ranges.
7774     case BO_And:
7775     case BO_AndAssign:
7776       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
7777                             GetExprRange(C, BO->getRHS(), MaxWidth));
7778 
7779     // Left shift gets black-listed based on a judgement call.
7780     case BO_Shl:
7781       // ...except that we want to treat '1 << (blah)' as logically
7782       // positive.  It's an important idiom.
7783       if (IntegerLiteral *I
7784             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
7785         if (I->getValue() == 1) {
7786           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
7787           return IntRange(R.Width, /*NonNegative*/ true);
7788         }
7789       }
7790       // fallthrough
7791 
7792     case BO_ShlAssign:
7793       return IntRange::forValueOfType(C, GetExprType(E));
7794 
7795     // Right shift by a constant can narrow its left argument.
7796     case BO_Shr:
7797     case BO_ShrAssign: {
7798       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
7799 
7800       // If the shift amount is a positive constant, drop the width by
7801       // that much.
7802       llvm::APSInt shift;
7803       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
7804           shift.isNonNegative()) {
7805         unsigned zext = shift.getZExtValue();
7806         if (zext >= L.Width)
7807           L.Width = (L.NonNegative ? 0 : 1);
7808         else
7809           L.Width -= zext;
7810       }
7811 
7812       return L;
7813     }
7814 
7815     // Comma acts as its right operand.
7816     case BO_Comma:
7817       return GetExprRange(C, BO->getRHS(), MaxWidth);
7818 
7819     // Black-list pointer subtractions.
7820     case BO_Sub:
7821       if (BO->getLHS()->getType()->isPointerType())
7822         return IntRange::forValueOfType(C, GetExprType(E));
7823       break;
7824 
7825     // The width of a division result is mostly determined by the size
7826     // of the LHS.
7827     case BO_Div: {
7828       // Don't 'pre-truncate' the operands.
7829       unsigned opWidth = C.getIntWidth(GetExprType(E));
7830       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
7831 
7832       // If the divisor is constant, use that.
7833       llvm::APSInt divisor;
7834       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
7835         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
7836         if (log2 >= L.Width)
7837           L.Width = (L.NonNegative ? 0 : 1);
7838         else
7839           L.Width = std::min(L.Width - log2, MaxWidth);
7840         return L;
7841       }
7842 
7843       // Otherwise, just use the LHS's width.
7844       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
7845       return IntRange(L.Width, L.NonNegative && R.NonNegative);
7846     }
7847 
7848     // The result of a remainder can't be larger than the result of
7849     // either side.
7850     case BO_Rem: {
7851       // Don't 'pre-truncate' the operands.
7852       unsigned opWidth = C.getIntWidth(GetExprType(E));
7853       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
7854       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
7855 
7856       IntRange meet = IntRange::meet(L, R);
7857       meet.Width = std::min(meet.Width, MaxWidth);
7858       return meet;
7859     }
7860 
7861     // The default behavior is okay for these.
7862     case BO_Mul:
7863     case BO_Add:
7864     case BO_Xor:
7865     case BO_Or:
7866       break;
7867     }
7868 
7869     // The default case is to treat the operation as if it were closed
7870     // on the narrowest type that encompasses both operands.
7871     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
7872     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
7873     return IntRange::join(L, R);
7874   }
7875 
7876   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
7877     switch (UO->getOpcode()) {
7878     // Boolean-valued operations are white-listed.
7879     case UO_LNot:
7880       return IntRange::forBoolType();
7881 
7882     // Operations with opaque sources are black-listed.
7883     case UO_Deref:
7884     case UO_AddrOf: // should be impossible
7885       return IntRange::forValueOfType(C, GetExprType(E));
7886 
7887     default:
7888       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
7889     }
7890   }
7891 
7892   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
7893     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
7894 
7895   if (const auto *BitField = E->getSourceBitField())
7896     return IntRange(BitField->getBitWidthValue(C),
7897                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
7898 
7899   return IntRange::forValueOfType(C, GetExprType(E));
7900 }
7901 
7902 IntRange GetExprRange(ASTContext &C, const Expr *E) {
7903   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
7904 }
7905 
7906 /// Checks whether the given value, which currently has the given
7907 /// source semantics, has the same value when coerced through the
7908 /// target semantics.
7909 bool IsSameFloatAfterCast(const llvm::APFloat &value,
7910                           const llvm::fltSemantics &Src,
7911                           const llvm::fltSemantics &Tgt) {
7912   llvm::APFloat truncated = value;
7913 
7914   bool ignored;
7915   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
7916   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
7917 
7918   return truncated.bitwiseIsEqual(value);
7919 }
7920 
7921 /// Checks whether the given value, which currently has the given
7922 /// source semantics, has the same value when coerced through the
7923 /// target semantics.
7924 ///
7925 /// The value might be a vector of floats (or a complex number).
7926 bool IsSameFloatAfterCast(const APValue &value,
7927                           const llvm::fltSemantics &Src,
7928                           const llvm::fltSemantics &Tgt) {
7929   if (value.isFloat())
7930     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
7931 
7932   if (value.isVector()) {
7933     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
7934       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
7935         return false;
7936     return true;
7937   }
7938 
7939   assert(value.isComplexFloat());
7940   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
7941           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
7942 }
7943 
7944 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
7945 
7946 bool IsZero(Sema &S, Expr *E) {
7947   // Suppress cases where we are comparing against an enum constant.
7948   if (const DeclRefExpr *DR =
7949       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
7950     if (isa<EnumConstantDecl>(DR->getDecl()))
7951       return false;
7952 
7953   // Suppress cases where the '0' value is expanded from a macro.
7954   if (E->getLocStart().isMacroID())
7955     return false;
7956 
7957   llvm::APSInt Value;
7958   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
7959 }
7960 
7961 bool HasEnumType(Expr *E) {
7962   // Strip off implicit integral promotions.
7963   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7964     if (ICE->getCastKind() != CK_IntegralCast &&
7965         ICE->getCastKind() != CK_NoOp)
7966       break;
7967     E = ICE->getSubExpr();
7968   }
7969 
7970   return E->getType()->isEnumeralType();
7971 }
7972 
7973 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
7974   // Disable warning in template instantiations.
7975   if (!S.ActiveTemplateInstantiations.empty())
7976     return;
7977 
7978   BinaryOperatorKind op = E->getOpcode();
7979   if (E->isValueDependent())
7980     return;
7981 
7982   if (op == BO_LT && IsZero(S, E->getRHS())) {
7983     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
7984       << "< 0" << "false" << HasEnumType(E->getLHS())
7985       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7986   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
7987     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
7988       << ">= 0" << "true" << HasEnumType(E->getLHS())
7989       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7990   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
7991     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
7992       << "0 >" << "false" << HasEnumType(E->getRHS())
7993       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7994   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
7995     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
7996       << "0 <=" << "true" << HasEnumType(E->getRHS())
7997       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7998   }
7999 }
8000 
8001 void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E, Expr *Constant,
8002                                   Expr *Other, const llvm::APSInt &Value,
8003                                   bool RhsConstant) {
8004   // Disable warning in template instantiations.
8005   if (!S.ActiveTemplateInstantiations.empty())
8006     return;
8007 
8008   // TODO: Investigate using GetExprRange() to get tighter bounds
8009   // on the bit ranges.
8010   QualType OtherT = Other->getType();
8011   if (const auto *AT = OtherT->getAs<AtomicType>())
8012     OtherT = AT->getValueType();
8013   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
8014   unsigned OtherWidth = OtherRange.Width;
8015 
8016   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
8017 
8018   // 0 values are handled later by CheckTrivialUnsignedComparison().
8019   if ((Value == 0) && (!OtherIsBooleanType))
8020     return;
8021 
8022   BinaryOperatorKind op = E->getOpcode();
8023   bool IsTrue = true;
8024 
8025   // Used for diagnostic printout.
8026   enum {
8027     LiteralConstant = 0,
8028     CXXBoolLiteralTrue,
8029     CXXBoolLiteralFalse
8030   } LiteralOrBoolConstant = LiteralConstant;
8031 
8032   if (!OtherIsBooleanType) {
8033     QualType ConstantT = Constant->getType();
8034     QualType CommonT = E->getLHS()->getType();
8035 
8036     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
8037       return;
8038     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
8039            "comparison with non-integer type");
8040 
8041     bool ConstantSigned = ConstantT->isSignedIntegerType();
8042     bool CommonSigned = CommonT->isSignedIntegerType();
8043 
8044     bool EqualityOnly = false;
8045 
8046     if (CommonSigned) {
8047       // The common type is signed, therefore no signed to unsigned conversion.
8048       if (!OtherRange.NonNegative) {
8049         // Check that the constant is representable in type OtherT.
8050         if (ConstantSigned) {
8051           if (OtherWidth >= Value.getMinSignedBits())
8052             return;
8053         } else { // !ConstantSigned
8054           if (OtherWidth >= Value.getActiveBits() + 1)
8055             return;
8056         }
8057       } else { // !OtherSigned
8058                // Check that the constant is representable in type OtherT.
8059         // Negative values are out of range.
8060         if (ConstantSigned) {
8061           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
8062             return;
8063         } else { // !ConstantSigned
8064           if (OtherWidth >= Value.getActiveBits())
8065             return;
8066         }
8067       }
8068     } else { // !CommonSigned
8069       if (OtherRange.NonNegative) {
8070         if (OtherWidth >= Value.getActiveBits())
8071           return;
8072       } else { // OtherSigned
8073         assert(!ConstantSigned &&
8074                "Two signed types converted to unsigned types.");
8075         // Check to see if the constant is representable in OtherT.
8076         if (OtherWidth > Value.getActiveBits())
8077           return;
8078         // Check to see if the constant is equivalent to a negative value
8079         // cast to CommonT.
8080         if (S.Context.getIntWidth(ConstantT) ==
8081                 S.Context.getIntWidth(CommonT) &&
8082             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
8083           return;
8084         // The constant value rests between values that OtherT can represent
8085         // after conversion.  Relational comparison still works, but equality
8086         // comparisons will be tautological.
8087         EqualityOnly = true;
8088       }
8089     }
8090 
8091     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
8092 
8093     if (op == BO_EQ || op == BO_NE) {
8094       IsTrue = op == BO_NE;
8095     } else if (EqualityOnly) {
8096       return;
8097     } else if (RhsConstant) {
8098       if (op == BO_GT || op == BO_GE)
8099         IsTrue = !PositiveConstant;
8100       else // op == BO_LT || op == BO_LE
8101         IsTrue = PositiveConstant;
8102     } else {
8103       if (op == BO_LT || op == BO_LE)
8104         IsTrue = !PositiveConstant;
8105       else // op == BO_GT || op == BO_GE
8106         IsTrue = PositiveConstant;
8107     }
8108   } else {
8109     // Other isKnownToHaveBooleanValue
8110     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
8111     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
8112     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
8113 
8114     static const struct LinkedConditions {
8115       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
8116       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
8117       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
8118       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
8119       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
8120       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
8121 
8122     } TruthTable = {
8123         // Constant on LHS.              | Constant on RHS.              |
8124         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
8125         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
8126         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
8127         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
8128         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
8129         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
8130         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
8131       };
8132 
8133     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
8134 
8135     enum ConstantValue ConstVal = Zero;
8136     if (Value.isUnsigned() || Value.isNonNegative()) {
8137       if (Value == 0) {
8138         LiteralOrBoolConstant =
8139             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
8140         ConstVal = Zero;
8141       } else if (Value == 1) {
8142         LiteralOrBoolConstant =
8143             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
8144         ConstVal = One;
8145       } else {
8146         LiteralOrBoolConstant = LiteralConstant;
8147         ConstVal = GT_One;
8148       }
8149     } else {
8150       ConstVal = LT_Zero;
8151     }
8152 
8153     CompareBoolWithConstantResult CmpRes;
8154 
8155     switch (op) {
8156     case BO_LT:
8157       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
8158       break;
8159     case BO_GT:
8160       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
8161       break;
8162     case BO_LE:
8163       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
8164       break;
8165     case BO_GE:
8166       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
8167       break;
8168     case BO_EQ:
8169       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
8170       break;
8171     case BO_NE:
8172       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
8173       break;
8174     default:
8175       CmpRes = Unkwn;
8176       break;
8177     }
8178 
8179     if (CmpRes == AFals) {
8180       IsTrue = false;
8181     } else if (CmpRes == ATrue) {
8182       IsTrue = true;
8183     } else {
8184       return;
8185     }
8186   }
8187 
8188   // If this is a comparison to an enum constant, include that
8189   // constant in the diagnostic.
8190   const EnumConstantDecl *ED = nullptr;
8191   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
8192     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
8193 
8194   SmallString<64> PrettySourceValue;
8195   llvm::raw_svector_ostream OS(PrettySourceValue);
8196   if (ED)
8197     OS << '\'' << *ED << "' (" << Value << ")";
8198   else
8199     OS << Value;
8200 
8201   S.DiagRuntimeBehavior(
8202     E->getOperatorLoc(), E,
8203     S.PDiag(diag::warn_out_of_range_compare)
8204         << OS.str() << LiteralOrBoolConstant
8205         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
8206         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
8207 }
8208 
8209 /// Analyze the operands of the given comparison.  Implements the
8210 /// fallback case from AnalyzeComparison.
8211 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
8212   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
8213   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
8214 }
8215 
8216 /// \brief Implements -Wsign-compare.
8217 ///
8218 /// \param E the binary operator to check for warnings
8219 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
8220   // The type the comparison is being performed in.
8221   QualType T = E->getLHS()->getType();
8222 
8223   // Only analyze comparison operators where both sides have been converted to
8224   // the same type.
8225   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
8226     return AnalyzeImpConvsInComparison(S, E);
8227 
8228   // Don't analyze value-dependent comparisons directly.
8229   if (E->isValueDependent())
8230     return AnalyzeImpConvsInComparison(S, E);
8231 
8232   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
8233   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
8234 
8235   bool IsComparisonConstant = false;
8236 
8237   // Check whether an integer constant comparison results in a value
8238   // of 'true' or 'false'.
8239   if (T->isIntegralType(S.Context)) {
8240     llvm::APSInt RHSValue;
8241     bool IsRHSIntegralLiteral =
8242       RHS->isIntegerConstantExpr(RHSValue, S.Context);
8243     llvm::APSInt LHSValue;
8244     bool IsLHSIntegralLiteral =
8245       LHS->isIntegerConstantExpr(LHSValue, S.Context);
8246     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
8247         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
8248     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
8249       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
8250     else
8251       IsComparisonConstant =
8252         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
8253   } else if (!T->hasUnsignedIntegerRepresentation())
8254       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
8255 
8256   // We don't do anything special if this isn't an unsigned integral
8257   // comparison:  we're only interested in integral comparisons, and
8258   // signed comparisons only happen in cases we don't care to warn about.
8259   //
8260   // We also don't care about value-dependent expressions or expressions
8261   // whose result is a constant.
8262   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
8263     return AnalyzeImpConvsInComparison(S, E);
8264 
8265   // Check to see if one of the (unmodified) operands is of different
8266   // signedness.
8267   Expr *signedOperand, *unsignedOperand;
8268   if (LHS->getType()->hasSignedIntegerRepresentation()) {
8269     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
8270            "unsigned comparison between two signed integer expressions?");
8271     signedOperand = LHS;
8272     unsignedOperand = RHS;
8273   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
8274     signedOperand = RHS;
8275     unsignedOperand = LHS;
8276   } else {
8277     CheckTrivialUnsignedComparison(S, E);
8278     return AnalyzeImpConvsInComparison(S, E);
8279   }
8280 
8281   // Otherwise, calculate the effective range of the signed operand.
8282   IntRange signedRange = GetExprRange(S.Context, signedOperand);
8283 
8284   // Go ahead and analyze implicit conversions in the operands.  Note
8285   // that we skip the implicit conversions on both sides.
8286   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
8287   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
8288 
8289   // If the signed range is non-negative, -Wsign-compare won't fire,
8290   // but we should still check for comparisons which are always true
8291   // or false.
8292   if (signedRange.NonNegative)
8293     return CheckTrivialUnsignedComparison(S, E);
8294 
8295   // For (in)equality comparisons, if the unsigned operand is a
8296   // constant which cannot collide with a overflowed signed operand,
8297   // then reinterpreting the signed operand as unsigned will not
8298   // change the result of the comparison.
8299   if (E->isEqualityOp()) {
8300     unsigned comparisonWidth = S.Context.getIntWidth(T);
8301     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
8302 
8303     // We should never be unable to prove that the unsigned operand is
8304     // non-negative.
8305     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
8306 
8307     if (unsignedRange.Width < comparisonWidth)
8308       return;
8309   }
8310 
8311   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
8312     S.PDiag(diag::warn_mixed_sign_comparison)
8313       << LHS->getType() << RHS->getType()
8314       << LHS->getSourceRange() << RHS->getSourceRange());
8315 }
8316 
8317 /// Analyzes an attempt to assign the given value to a bitfield.
8318 ///
8319 /// Returns true if there was something fishy about the attempt.
8320 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
8321                                SourceLocation InitLoc) {
8322   assert(Bitfield->isBitField());
8323   if (Bitfield->isInvalidDecl())
8324     return false;
8325 
8326   // White-list bool bitfields.
8327   if (Bitfield->getType()->isBooleanType())
8328     return false;
8329 
8330   // Ignore value- or type-dependent expressions.
8331   if (Bitfield->getBitWidth()->isValueDependent() ||
8332       Bitfield->getBitWidth()->isTypeDependent() ||
8333       Init->isValueDependent() ||
8334       Init->isTypeDependent())
8335     return false;
8336 
8337   Expr *OriginalInit = Init->IgnoreParenImpCasts();
8338 
8339   llvm::APSInt Value;
8340   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
8341     return false;
8342 
8343   unsigned OriginalWidth = Value.getBitWidth();
8344   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
8345 
8346   if (!Value.isSigned() || Value.isNegative())
8347     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
8348       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
8349         OriginalWidth = Value.getMinSignedBits();
8350 
8351   if (OriginalWidth <= FieldWidth)
8352     return false;
8353 
8354   // Compute the value which the bitfield will contain.
8355   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
8356   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
8357 
8358   // Check whether the stored value is equal to the original value.
8359   TruncatedValue = TruncatedValue.extend(OriginalWidth);
8360   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
8361     return false;
8362 
8363   // Special-case bitfields of width 1: booleans are naturally 0/1, and
8364   // therefore don't strictly fit into a signed bitfield of width 1.
8365   if (FieldWidth == 1 && Value == 1)
8366     return false;
8367 
8368   std::string PrettyValue = Value.toString(10);
8369   std::string PrettyTrunc = TruncatedValue.toString(10);
8370 
8371   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
8372     << PrettyValue << PrettyTrunc << OriginalInit->getType()
8373     << Init->getSourceRange();
8374 
8375   return true;
8376 }
8377 
8378 /// Analyze the given simple or compound assignment for warning-worthy
8379 /// operations.
8380 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
8381   // Just recurse on the LHS.
8382   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
8383 
8384   // We want to recurse on the RHS as normal unless we're assigning to
8385   // a bitfield.
8386   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
8387     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
8388                                   E->getOperatorLoc())) {
8389       // Recurse, ignoring any implicit conversions on the RHS.
8390       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
8391                                         E->getOperatorLoc());
8392     }
8393   }
8394 
8395   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
8396 }
8397 
8398 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
8399 void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
8400                      SourceLocation CContext, unsigned diag,
8401                      bool pruneControlFlow = false) {
8402   if (pruneControlFlow) {
8403     S.DiagRuntimeBehavior(E->getExprLoc(), E,
8404                           S.PDiag(diag)
8405                             << SourceType << T << E->getSourceRange()
8406                             << SourceRange(CContext));
8407     return;
8408   }
8409   S.Diag(E->getExprLoc(), diag)
8410     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
8411 }
8412 
8413 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
8414 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
8415                      unsigned diag, bool pruneControlFlow = false) {
8416   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
8417 }
8418 
8419 
8420 /// Diagnose an implicit cast from a floating point value to an integer value.
8421 void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
8422 
8423                              SourceLocation CContext) {
8424   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
8425   const bool PruneWarnings = !S.ActiveTemplateInstantiations.empty();
8426 
8427   Expr *InnerE = E->IgnoreParenImpCasts();
8428   // We also want to warn on, e.g., "int i = -1.234"
8429   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
8430     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
8431       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
8432 
8433   const bool IsLiteral =
8434       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
8435 
8436   llvm::APFloat Value(0.0);
8437   bool IsConstant =
8438     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
8439   if (!IsConstant) {
8440     return DiagnoseImpCast(S, E, T, CContext,
8441                            diag::warn_impcast_float_integer, PruneWarnings);
8442   }
8443 
8444   bool isExact = false;
8445 
8446   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
8447                             T->hasUnsignedIntegerRepresentation());
8448   if (Value.convertToInteger(IntegerValue, llvm::APFloat::rmTowardZero,
8449                              &isExact) == llvm::APFloat::opOK &&
8450       isExact) {
8451     if (IsLiteral) return;
8452     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
8453                            PruneWarnings);
8454   }
8455 
8456   unsigned DiagID = 0;
8457   if (IsLiteral) {
8458     // Warn on floating point literal to integer.
8459     DiagID = diag::warn_impcast_literal_float_to_integer;
8460   } else if (IntegerValue == 0) {
8461     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
8462       return DiagnoseImpCast(S, E, T, CContext,
8463                              diag::warn_impcast_float_integer, PruneWarnings);
8464     }
8465     // Warn on non-zero to zero conversion.
8466     DiagID = diag::warn_impcast_float_to_integer_zero;
8467   } else {
8468     if (IntegerValue.isUnsigned()) {
8469       if (!IntegerValue.isMaxValue()) {
8470         return DiagnoseImpCast(S, E, T, CContext,
8471                                diag::warn_impcast_float_integer, PruneWarnings);
8472       }
8473     } else {  // IntegerValue.isSigned()
8474       if (!IntegerValue.isMaxSignedValue() &&
8475           !IntegerValue.isMinSignedValue()) {
8476         return DiagnoseImpCast(S, E, T, CContext,
8477                                diag::warn_impcast_float_integer, PruneWarnings);
8478       }
8479     }
8480     // Warn on evaluatable floating point expression to integer conversion.
8481     DiagID = diag::warn_impcast_float_to_integer;
8482   }
8483 
8484   // FIXME: Force the precision of the source value down so we don't print
8485   // digits which are usually useless (we don't really care here if we
8486   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
8487   // would automatically print the shortest representation, but it's a bit
8488   // tricky to implement.
8489   SmallString<16> PrettySourceValue;
8490   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
8491   precision = (precision * 59 + 195) / 196;
8492   Value.toString(PrettySourceValue, precision);
8493 
8494   SmallString<16> PrettyTargetValue;
8495   if (IsBool)
8496     PrettyTargetValue = Value.isZero() ? "false" : "true";
8497   else
8498     IntegerValue.toString(PrettyTargetValue);
8499 
8500   if (PruneWarnings) {
8501     S.DiagRuntimeBehavior(E->getExprLoc(), E,
8502                           S.PDiag(DiagID)
8503                               << E->getType() << T.getUnqualifiedType()
8504                               << PrettySourceValue << PrettyTargetValue
8505                               << E->getSourceRange() << SourceRange(CContext));
8506   } else {
8507     S.Diag(E->getExprLoc(), DiagID)
8508         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
8509         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
8510   }
8511 }
8512 
8513 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
8514   if (!Range.Width) return "0";
8515 
8516   llvm::APSInt ValueInRange = Value;
8517   ValueInRange.setIsSigned(!Range.NonNegative);
8518   ValueInRange = ValueInRange.trunc(Range.Width);
8519   return ValueInRange.toString(10);
8520 }
8521 
8522 bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
8523   if (!isa<ImplicitCastExpr>(Ex))
8524     return false;
8525 
8526   Expr *InnerE = Ex->IgnoreParenImpCasts();
8527   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
8528   const Type *Source =
8529     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
8530   if (Target->isDependentType())
8531     return false;
8532 
8533   const BuiltinType *FloatCandidateBT =
8534     dyn_cast<BuiltinType>(ToBool ? Source : Target);
8535   const Type *BoolCandidateType = ToBool ? Target : Source;
8536 
8537   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
8538           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
8539 }
8540 
8541 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
8542                                       SourceLocation CC) {
8543   unsigned NumArgs = TheCall->getNumArgs();
8544   for (unsigned i = 0; i < NumArgs; ++i) {
8545     Expr *CurrA = TheCall->getArg(i);
8546     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
8547       continue;
8548 
8549     bool IsSwapped = ((i > 0) &&
8550         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
8551     IsSwapped |= ((i < (NumArgs - 1)) &&
8552         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
8553     if (IsSwapped) {
8554       // Warn on this floating-point to bool conversion.
8555       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
8556                       CurrA->getType(), CC,
8557                       diag::warn_impcast_floating_point_to_bool);
8558     }
8559   }
8560 }
8561 
8562 void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, SourceLocation CC) {
8563   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
8564                         E->getExprLoc()))
8565     return;
8566 
8567   // Don't warn on functions which have return type nullptr_t.
8568   if (isa<CallExpr>(E))
8569     return;
8570 
8571   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
8572   const Expr::NullPointerConstantKind NullKind =
8573       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
8574   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
8575     return;
8576 
8577   // Return if target type is a safe conversion.
8578   if (T->isAnyPointerType() || T->isBlockPointerType() ||
8579       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
8580     return;
8581 
8582   SourceLocation Loc = E->getSourceRange().getBegin();
8583 
8584   // Venture through the macro stacks to get to the source of macro arguments.
8585   // The new location is a better location than the complete location that was
8586   // passed in.
8587   while (S.SourceMgr.isMacroArgExpansion(Loc))
8588     Loc = S.SourceMgr.getImmediateMacroCallerLoc(Loc);
8589 
8590   while (S.SourceMgr.isMacroArgExpansion(CC))
8591     CC = S.SourceMgr.getImmediateMacroCallerLoc(CC);
8592 
8593   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
8594   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
8595     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
8596         Loc, S.SourceMgr, S.getLangOpts());
8597     if (MacroName == "NULL")
8598       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
8599   }
8600 
8601   // Only warn if the null and context location are in the same macro expansion.
8602   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
8603     return;
8604 
8605   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
8606       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
8607       << FixItHint::CreateReplacement(Loc,
8608                                       S.getFixItZeroLiteralForType(T, Loc));
8609 }
8610 
8611 void checkObjCArrayLiteral(Sema &S, QualType TargetType,
8612                            ObjCArrayLiteral *ArrayLiteral);
8613 void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
8614                                 ObjCDictionaryLiteral *DictionaryLiteral);
8615 
8616 /// Check a single element within a collection literal against the
8617 /// target element type.
8618 void checkObjCCollectionLiteralElement(Sema &S, QualType TargetElementType,
8619                                        Expr *Element, unsigned ElementKind) {
8620   // Skip a bitcast to 'id' or qualified 'id'.
8621   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
8622     if (ICE->getCastKind() == CK_BitCast &&
8623         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
8624       Element = ICE->getSubExpr();
8625   }
8626 
8627   QualType ElementType = Element->getType();
8628   ExprResult ElementResult(Element);
8629   if (ElementType->getAs<ObjCObjectPointerType>() &&
8630       S.CheckSingleAssignmentConstraints(TargetElementType,
8631                                          ElementResult,
8632                                          false, false)
8633         != Sema::Compatible) {
8634     S.Diag(Element->getLocStart(),
8635            diag::warn_objc_collection_literal_element)
8636       << ElementType << ElementKind << TargetElementType
8637       << Element->getSourceRange();
8638   }
8639 
8640   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
8641     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
8642   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
8643     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
8644 }
8645 
8646 /// Check an Objective-C array literal being converted to the given
8647 /// target type.
8648 void checkObjCArrayLiteral(Sema &S, QualType TargetType,
8649                            ObjCArrayLiteral *ArrayLiteral) {
8650   if (!S.NSArrayDecl)
8651     return;
8652 
8653   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
8654   if (!TargetObjCPtr)
8655     return;
8656 
8657   if (TargetObjCPtr->isUnspecialized() ||
8658       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
8659         != S.NSArrayDecl->getCanonicalDecl())
8660     return;
8661 
8662   auto TypeArgs = TargetObjCPtr->getTypeArgs();
8663   if (TypeArgs.size() != 1)
8664     return;
8665 
8666   QualType TargetElementType = TypeArgs[0];
8667   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
8668     checkObjCCollectionLiteralElement(S, TargetElementType,
8669                                       ArrayLiteral->getElement(I),
8670                                       0);
8671   }
8672 }
8673 
8674 /// Check an Objective-C dictionary literal being converted to the given
8675 /// target type.
8676 void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
8677                                 ObjCDictionaryLiteral *DictionaryLiteral) {
8678   if (!S.NSDictionaryDecl)
8679     return;
8680 
8681   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
8682   if (!TargetObjCPtr)
8683     return;
8684 
8685   if (TargetObjCPtr->isUnspecialized() ||
8686       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
8687         != S.NSDictionaryDecl->getCanonicalDecl())
8688     return;
8689 
8690   auto TypeArgs = TargetObjCPtr->getTypeArgs();
8691   if (TypeArgs.size() != 2)
8692     return;
8693 
8694   QualType TargetKeyType = TypeArgs[0];
8695   QualType TargetObjectType = TypeArgs[1];
8696   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
8697     auto Element = DictionaryLiteral->getKeyValueElement(I);
8698     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
8699     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
8700   }
8701 }
8702 
8703 // Helper function to filter out cases for constant width constant conversion.
8704 // Don't warn on char array initialization or for non-decimal values.
8705 bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
8706                                    SourceLocation CC) {
8707   // If initializing from a constant, and the constant starts with '0',
8708   // then it is a binary, octal, or hexadecimal.  Allow these constants
8709   // to fill all the bits, even if there is a sign change.
8710   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
8711     const char FirstLiteralCharacter =
8712         S.getSourceManager().getCharacterData(IntLit->getLocStart())[0];
8713     if (FirstLiteralCharacter == '0')
8714       return false;
8715   }
8716 
8717   // If the CC location points to a '{', and the type is char, then assume
8718   // assume it is an array initialization.
8719   if (CC.isValid() && T->isCharType()) {
8720     const char FirstContextCharacter =
8721         S.getSourceManager().getCharacterData(CC)[0];
8722     if (FirstContextCharacter == '{')
8723       return false;
8724   }
8725 
8726   return true;
8727 }
8728 
8729 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
8730                              SourceLocation CC, bool *ICContext = nullptr) {
8731   if (E->isTypeDependent() || E->isValueDependent()) return;
8732 
8733   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
8734   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
8735   if (Source == Target) return;
8736   if (Target->isDependentType()) return;
8737 
8738   // If the conversion context location is invalid don't complain. We also
8739   // don't want to emit a warning if the issue occurs from the expansion of
8740   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
8741   // delay this check as long as possible. Once we detect we are in that
8742   // scenario, we just return.
8743   if (CC.isInvalid())
8744     return;
8745 
8746   // Diagnose implicit casts to bool.
8747   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
8748     if (isa<StringLiteral>(E))
8749       // Warn on string literal to bool.  Checks for string literals in logical
8750       // and expressions, for instance, assert(0 && "error here"), are
8751       // prevented by a check in AnalyzeImplicitConversions().
8752       return DiagnoseImpCast(S, E, T, CC,
8753                              diag::warn_impcast_string_literal_to_bool);
8754     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
8755         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
8756       // This covers the literal expressions that evaluate to Objective-C
8757       // objects.
8758       return DiagnoseImpCast(S, E, T, CC,
8759                              diag::warn_impcast_objective_c_literal_to_bool);
8760     }
8761     if (Source->isPointerType() || Source->canDecayToPointerType()) {
8762       // Warn on pointer to bool conversion that is always true.
8763       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
8764                                      SourceRange(CC));
8765     }
8766   }
8767 
8768   // Check implicit casts from Objective-C collection literals to specialized
8769   // collection types, e.g., NSArray<NSString *> *.
8770   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
8771     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
8772   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
8773     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
8774 
8775   // Strip vector types.
8776   if (isa<VectorType>(Source)) {
8777     if (!isa<VectorType>(Target)) {
8778       if (S.SourceMgr.isInSystemMacro(CC))
8779         return;
8780       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
8781     }
8782 
8783     // If the vector cast is cast between two vectors of the same size, it is
8784     // a bitcast, not a conversion.
8785     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
8786       return;
8787 
8788     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
8789     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
8790   }
8791   if (auto VecTy = dyn_cast<VectorType>(Target))
8792     Target = VecTy->getElementType().getTypePtr();
8793 
8794   // Strip complex types.
8795   if (isa<ComplexType>(Source)) {
8796     if (!isa<ComplexType>(Target)) {
8797       if (S.SourceMgr.isInSystemMacro(CC))
8798         return;
8799 
8800       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
8801     }
8802 
8803     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
8804     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
8805   }
8806 
8807   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
8808   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
8809 
8810   // If the source is floating point...
8811   if (SourceBT && SourceBT->isFloatingPoint()) {
8812     // ...and the target is floating point...
8813     if (TargetBT && TargetBT->isFloatingPoint()) {
8814       // ...then warn if we're dropping FP rank.
8815 
8816       // Builtin FP kinds are ordered by increasing FP rank.
8817       if (SourceBT->getKind() > TargetBT->getKind()) {
8818         // Don't warn about float constants that are precisely
8819         // representable in the target type.
8820         Expr::EvalResult result;
8821         if (E->EvaluateAsRValue(result, S.Context)) {
8822           // Value might be a float, a float vector, or a float complex.
8823           if (IsSameFloatAfterCast(result.Val,
8824                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
8825                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
8826             return;
8827         }
8828 
8829         if (S.SourceMgr.isInSystemMacro(CC))
8830           return;
8831 
8832         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
8833       }
8834       // ... or possibly if we're increasing rank, too
8835       else if (TargetBT->getKind() > SourceBT->getKind()) {
8836         if (S.SourceMgr.isInSystemMacro(CC))
8837           return;
8838 
8839         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
8840       }
8841       return;
8842     }
8843 
8844     // If the target is integral, always warn.
8845     if (TargetBT && TargetBT->isInteger()) {
8846       if (S.SourceMgr.isInSystemMacro(CC))
8847         return;
8848 
8849       DiagnoseFloatingImpCast(S, E, T, CC);
8850     }
8851 
8852     // Detect the case where a call result is converted from floating-point to
8853     // to bool, and the final argument to the call is converted from bool, to
8854     // discover this typo:
8855     //
8856     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
8857     //
8858     // FIXME: This is an incredibly special case; is there some more general
8859     // way to detect this class of misplaced-parentheses bug?
8860     if (Target->isBooleanType() && isa<CallExpr>(E)) {
8861       // Check last argument of function call to see if it is an
8862       // implicit cast from a type matching the type the result
8863       // is being cast to.
8864       CallExpr *CEx = cast<CallExpr>(E);
8865       if (unsigned NumArgs = CEx->getNumArgs()) {
8866         Expr *LastA = CEx->getArg(NumArgs - 1);
8867         Expr *InnerE = LastA->IgnoreParenImpCasts();
8868         if (isa<ImplicitCastExpr>(LastA) &&
8869             InnerE->getType()->isBooleanType()) {
8870           // Warn on this floating-point to bool conversion
8871           DiagnoseImpCast(S, E, T, CC,
8872                           diag::warn_impcast_floating_point_to_bool);
8873         }
8874       }
8875     }
8876     return;
8877   }
8878 
8879   DiagnoseNullConversion(S, E, T, CC);
8880 
8881   S.DiscardMisalignedMemberAddress(Target, E);
8882 
8883   if (!Source->isIntegerType() || !Target->isIntegerType())
8884     return;
8885 
8886   // TODO: remove this early return once the false positives for constant->bool
8887   // in templates, macros, etc, are reduced or removed.
8888   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
8889     return;
8890 
8891   IntRange SourceRange = GetExprRange(S.Context, E);
8892   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
8893 
8894   if (SourceRange.Width > TargetRange.Width) {
8895     // If the source is a constant, use a default-on diagnostic.
8896     // TODO: this should happen for bitfield stores, too.
8897     llvm::APSInt Value(32);
8898     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects)) {
8899       if (S.SourceMgr.isInSystemMacro(CC))
8900         return;
8901 
8902       std::string PrettySourceValue = Value.toString(10);
8903       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
8904 
8905       S.DiagRuntimeBehavior(E->getExprLoc(), E,
8906         S.PDiag(diag::warn_impcast_integer_precision_constant)
8907             << PrettySourceValue << PrettyTargetValue
8908             << E->getType() << T << E->getSourceRange()
8909             << clang::SourceRange(CC));
8910       return;
8911     }
8912 
8913     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
8914     if (S.SourceMgr.isInSystemMacro(CC))
8915       return;
8916 
8917     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
8918       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
8919                              /* pruneControlFlow */ true);
8920     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
8921   }
8922 
8923   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
8924       SourceRange.NonNegative && Source->isSignedIntegerType()) {
8925     // Warn when doing a signed to signed conversion, warn if the positive
8926     // source value is exactly the width of the target type, which will
8927     // cause a negative value to be stored.
8928 
8929     llvm::APSInt Value;
8930     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects) &&
8931         !S.SourceMgr.isInSystemMacro(CC)) {
8932       if (isSameWidthConstantConversion(S, E, T, CC)) {
8933         std::string PrettySourceValue = Value.toString(10);
8934         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
8935 
8936         S.DiagRuntimeBehavior(
8937             E->getExprLoc(), E,
8938             S.PDiag(diag::warn_impcast_integer_precision_constant)
8939                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
8940                 << E->getSourceRange() << clang::SourceRange(CC));
8941         return;
8942       }
8943     }
8944 
8945     // Fall through for non-constants to give a sign conversion warning.
8946   }
8947 
8948   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
8949       (!TargetRange.NonNegative && SourceRange.NonNegative &&
8950        SourceRange.Width == TargetRange.Width)) {
8951     if (S.SourceMgr.isInSystemMacro(CC))
8952       return;
8953 
8954     unsigned DiagID = diag::warn_impcast_integer_sign;
8955 
8956     // Traditionally, gcc has warned about this under -Wsign-compare.
8957     // We also want to warn about it in -Wconversion.
8958     // So if -Wconversion is off, use a completely identical diagnostic
8959     // in the sign-compare group.
8960     // The conditional-checking code will
8961     if (ICContext) {
8962       DiagID = diag::warn_impcast_integer_sign_conditional;
8963       *ICContext = true;
8964     }
8965 
8966     return DiagnoseImpCast(S, E, T, CC, DiagID);
8967   }
8968 
8969   // Diagnose conversions between different enumeration types.
8970   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
8971   // type, to give us better diagnostics.
8972   QualType SourceType = E->getType();
8973   if (!S.getLangOpts().CPlusPlus) {
8974     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8975       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
8976         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
8977         SourceType = S.Context.getTypeDeclType(Enum);
8978         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
8979       }
8980   }
8981 
8982   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
8983     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
8984       if (SourceEnum->getDecl()->hasNameForLinkage() &&
8985           TargetEnum->getDecl()->hasNameForLinkage() &&
8986           SourceEnum != TargetEnum) {
8987         if (S.SourceMgr.isInSystemMacro(CC))
8988           return;
8989 
8990         return DiagnoseImpCast(S, E, SourceType, T, CC,
8991                                diag::warn_impcast_different_enum_types);
8992       }
8993 }
8994 
8995 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
8996                               SourceLocation CC, QualType T);
8997 
8998 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
8999                              SourceLocation CC, bool &ICContext) {
9000   E = E->IgnoreParenImpCasts();
9001 
9002   if (isa<ConditionalOperator>(E))
9003     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
9004 
9005   AnalyzeImplicitConversions(S, E, CC);
9006   if (E->getType() != T)
9007     return CheckImplicitConversion(S, E, T, CC, &ICContext);
9008 }
9009 
9010 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
9011                               SourceLocation CC, QualType T) {
9012   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
9013 
9014   bool Suspicious = false;
9015   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
9016   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
9017 
9018   // If -Wconversion would have warned about either of the candidates
9019   // for a signedness conversion to the context type...
9020   if (!Suspicious) return;
9021 
9022   // ...but it's currently ignored...
9023   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
9024     return;
9025 
9026   // ...then check whether it would have warned about either of the
9027   // candidates for a signedness conversion to the condition type.
9028   if (E->getType() == T) return;
9029 
9030   Suspicious = false;
9031   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
9032                           E->getType(), CC, &Suspicious);
9033   if (!Suspicious)
9034     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
9035                             E->getType(), CC, &Suspicious);
9036 }
9037 
9038 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
9039 /// Input argument E is a logical expression.
9040 void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
9041   if (S.getLangOpts().Bool)
9042     return;
9043   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
9044 }
9045 
9046 /// AnalyzeImplicitConversions - Find and report any interesting
9047 /// implicit conversions in the given expression.  There are a couple
9048 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
9049 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
9050   QualType T = OrigE->getType();
9051   Expr *E = OrigE->IgnoreParenImpCasts();
9052 
9053   if (E->isTypeDependent() || E->isValueDependent())
9054     return;
9055 
9056   // For conditional operators, we analyze the arguments as if they
9057   // were being fed directly into the output.
9058   if (isa<ConditionalOperator>(E)) {
9059     ConditionalOperator *CO = cast<ConditionalOperator>(E);
9060     CheckConditionalOperator(S, CO, CC, T);
9061     return;
9062   }
9063 
9064   // Check implicit argument conversions for function calls.
9065   if (CallExpr *Call = dyn_cast<CallExpr>(E))
9066     CheckImplicitArgumentConversions(S, Call, CC);
9067 
9068   // Go ahead and check any implicit conversions we might have skipped.
9069   // The non-canonical typecheck is just an optimization;
9070   // CheckImplicitConversion will filter out dead implicit conversions.
9071   if (E->getType() != T)
9072     CheckImplicitConversion(S, E, T, CC);
9073 
9074   // Now continue drilling into this expression.
9075 
9076   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
9077     // The bound subexpressions in a PseudoObjectExpr are not reachable
9078     // as transitive children.
9079     // FIXME: Use a more uniform representation for this.
9080     for (auto *SE : POE->semantics())
9081       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
9082         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
9083   }
9084 
9085   // Skip past explicit casts.
9086   if (isa<ExplicitCastExpr>(E)) {
9087     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
9088     return AnalyzeImplicitConversions(S, E, CC);
9089   }
9090 
9091   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
9092     // Do a somewhat different check with comparison operators.
9093     if (BO->isComparisonOp())
9094       return AnalyzeComparison(S, BO);
9095 
9096     // And with simple assignments.
9097     if (BO->getOpcode() == BO_Assign)
9098       return AnalyzeAssignment(S, BO);
9099   }
9100 
9101   // These break the otherwise-useful invariant below.  Fortunately,
9102   // we don't really need to recurse into them, because any internal
9103   // expressions should have been analyzed already when they were
9104   // built into statements.
9105   if (isa<StmtExpr>(E)) return;
9106 
9107   // Don't descend into unevaluated contexts.
9108   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
9109 
9110   // Now just recurse over the expression's children.
9111   CC = E->getExprLoc();
9112   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
9113   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
9114   for (Stmt *SubStmt : E->children()) {
9115     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
9116     if (!ChildExpr)
9117       continue;
9118 
9119     if (IsLogicalAndOperator &&
9120         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
9121       // Ignore checking string literals that are in logical and operators.
9122       // This is a common pattern for asserts.
9123       continue;
9124     AnalyzeImplicitConversions(S, ChildExpr, CC);
9125   }
9126 
9127   if (BO && BO->isLogicalOp()) {
9128     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
9129     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
9130       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
9131 
9132     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
9133     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
9134       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
9135   }
9136 
9137   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
9138     if (U->getOpcode() == UO_LNot)
9139       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
9140 }
9141 
9142 } // end anonymous namespace
9143 
9144 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
9145                                             unsigned Start, unsigned End) {
9146   bool IllegalParams = false;
9147   for (unsigned I = Start; I <= End; ++I) {
9148     QualType Ty = TheCall->getArg(I)->getType();
9149     // Taking into account implicit conversions,
9150     // allow any integer within 32 bits range
9151     if (!Ty->isIntegerType() ||
9152         S.Context.getTypeSizeInChars(Ty).getQuantity() > 4) {
9153       S.Diag(TheCall->getArg(I)->getLocStart(),
9154              diag::err_opencl_enqueue_kernel_invalid_local_size_type);
9155       IllegalParams = true;
9156     }
9157     // Potentially emit standard warnings for implicit conversions if enabled
9158     // using -Wconversion.
9159     CheckImplicitConversion(S, TheCall->getArg(I), S.Context.UnsignedIntTy,
9160                             TheCall->getArg(I)->getLocStart());
9161   }
9162   return IllegalParams;
9163 }
9164 
9165 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
9166 // Returns true when emitting a warning about taking the address of a reference.
9167 static bool CheckForReference(Sema &SemaRef, const Expr *E,
9168                               const PartialDiagnostic &PD) {
9169   E = E->IgnoreParenImpCasts();
9170 
9171   const FunctionDecl *FD = nullptr;
9172 
9173   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9174     if (!DRE->getDecl()->getType()->isReferenceType())
9175       return false;
9176   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
9177     if (!M->getMemberDecl()->getType()->isReferenceType())
9178       return false;
9179   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
9180     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
9181       return false;
9182     FD = Call->getDirectCallee();
9183   } else {
9184     return false;
9185   }
9186 
9187   SemaRef.Diag(E->getExprLoc(), PD);
9188 
9189   // If possible, point to location of function.
9190   if (FD) {
9191     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
9192   }
9193 
9194   return true;
9195 }
9196 
9197 // Returns true if the SourceLocation is expanded from any macro body.
9198 // Returns false if the SourceLocation is invalid, is from not in a macro
9199 // expansion, or is from expanded from a top-level macro argument.
9200 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
9201   if (Loc.isInvalid())
9202     return false;
9203 
9204   while (Loc.isMacroID()) {
9205     if (SM.isMacroBodyExpansion(Loc))
9206       return true;
9207     Loc = SM.getImmediateMacroCallerLoc(Loc);
9208   }
9209 
9210   return false;
9211 }
9212 
9213 /// \brief Diagnose pointers that are always non-null.
9214 /// \param E the expression containing the pointer
9215 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
9216 /// compared to a null pointer
9217 /// \param IsEqual True when the comparison is equal to a null pointer
9218 /// \param Range Extra SourceRange to highlight in the diagnostic
9219 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
9220                                         Expr::NullPointerConstantKind NullKind,
9221                                         bool IsEqual, SourceRange Range) {
9222   if (!E)
9223     return;
9224 
9225   // Don't warn inside macros.
9226   if (E->getExprLoc().isMacroID()) {
9227     const SourceManager &SM = getSourceManager();
9228     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
9229         IsInAnyMacroBody(SM, Range.getBegin()))
9230       return;
9231   }
9232   E = E->IgnoreImpCasts();
9233 
9234   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
9235 
9236   if (isa<CXXThisExpr>(E)) {
9237     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
9238                                 : diag::warn_this_bool_conversion;
9239     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
9240     return;
9241   }
9242 
9243   bool IsAddressOf = false;
9244 
9245   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
9246     if (UO->getOpcode() != UO_AddrOf)
9247       return;
9248     IsAddressOf = true;
9249     E = UO->getSubExpr();
9250   }
9251 
9252   if (IsAddressOf) {
9253     unsigned DiagID = IsCompare
9254                           ? diag::warn_address_of_reference_null_compare
9255                           : diag::warn_address_of_reference_bool_conversion;
9256     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
9257                                          << IsEqual;
9258     if (CheckForReference(*this, E, PD)) {
9259       return;
9260     }
9261   }
9262 
9263   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
9264     bool IsParam = isa<NonNullAttr>(NonnullAttr);
9265     std::string Str;
9266     llvm::raw_string_ostream S(Str);
9267     E->printPretty(S, nullptr, getPrintingPolicy());
9268     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
9269                                 : diag::warn_cast_nonnull_to_bool;
9270     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
9271       << E->getSourceRange() << Range << IsEqual;
9272     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
9273   };
9274 
9275   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
9276   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
9277     if (auto *Callee = Call->getDirectCallee()) {
9278       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
9279         ComplainAboutNonnullParamOrCall(A);
9280         return;
9281       }
9282     }
9283   }
9284 
9285   // Expect to find a single Decl.  Skip anything more complicated.
9286   ValueDecl *D = nullptr;
9287   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
9288     D = R->getDecl();
9289   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
9290     D = M->getMemberDecl();
9291   }
9292 
9293   // Weak Decls can be null.
9294   if (!D || D->isWeak())
9295     return;
9296 
9297   // Check for parameter decl with nonnull attribute
9298   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
9299     if (getCurFunction() &&
9300         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
9301       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
9302         ComplainAboutNonnullParamOrCall(A);
9303         return;
9304       }
9305 
9306       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
9307         auto ParamIter = llvm::find(FD->parameters(), PV);
9308         assert(ParamIter != FD->param_end());
9309         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
9310 
9311         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
9312           if (!NonNull->args_size()) {
9313               ComplainAboutNonnullParamOrCall(NonNull);
9314               return;
9315           }
9316 
9317           for (unsigned ArgNo : NonNull->args()) {
9318             if (ArgNo == ParamNo) {
9319               ComplainAboutNonnullParamOrCall(NonNull);
9320               return;
9321             }
9322           }
9323         }
9324       }
9325     }
9326   }
9327 
9328   QualType T = D->getType();
9329   const bool IsArray = T->isArrayType();
9330   const bool IsFunction = T->isFunctionType();
9331 
9332   // Address of function is used to silence the function warning.
9333   if (IsAddressOf && IsFunction) {
9334     return;
9335   }
9336 
9337   // Found nothing.
9338   if (!IsAddressOf && !IsFunction && !IsArray)
9339     return;
9340 
9341   // Pretty print the expression for the diagnostic.
9342   std::string Str;
9343   llvm::raw_string_ostream S(Str);
9344   E->printPretty(S, nullptr, getPrintingPolicy());
9345 
9346   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
9347                               : diag::warn_impcast_pointer_to_bool;
9348   enum {
9349     AddressOf,
9350     FunctionPointer,
9351     ArrayPointer
9352   } DiagType;
9353   if (IsAddressOf)
9354     DiagType = AddressOf;
9355   else if (IsFunction)
9356     DiagType = FunctionPointer;
9357   else if (IsArray)
9358     DiagType = ArrayPointer;
9359   else
9360     llvm_unreachable("Could not determine diagnostic.");
9361   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
9362                                 << Range << IsEqual;
9363 
9364   if (!IsFunction)
9365     return;
9366 
9367   // Suggest '&' to silence the function warning.
9368   Diag(E->getExprLoc(), diag::note_function_warning_silence)
9369       << FixItHint::CreateInsertion(E->getLocStart(), "&");
9370 
9371   // Check to see if '()' fixit should be emitted.
9372   QualType ReturnType;
9373   UnresolvedSet<4> NonTemplateOverloads;
9374   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
9375   if (ReturnType.isNull())
9376     return;
9377 
9378   if (IsCompare) {
9379     // There are two cases here.  If there is null constant, the only suggest
9380     // for a pointer return type.  If the null is 0, then suggest if the return
9381     // type is a pointer or an integer type.
9382     if (!ReturnType->isPointerType()) {
9383       if (NullKind == Expr::NPCK_ZeroExpression ||
9384           NullKind == Expr::NPCK_ZeroLiteral) {
9385         if (!ReturnType->isIntegerType())
9386           return;
9387       } else {
9388         return;
9389       }
9390     }
9391   } else { // !IsCompare
9392     // For function to bool, only suggest if the function pointer has bool
9393     // return type.
9394     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
9395       return;
9396   }
9397   Diag(E->getExprLoc(), diag::note_function_to_function_call)
9398       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
9399 }
9400 
9401 /// Diagnoses "dangerous" implicit conversions within the given
9402 /// expression (which is a full expression).  Implements -Wconversion
9403 /// and -Wsign-compare.
9404 ///
9405 /// \param CC the "context" location of the implicit conversion, i.e.
9406 ///   the most location of the syntactic entity requiring the implicit
9407 ///   conversion
9408 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
9409   // Don't diagnose in unevaluated contexts.
9410   if (isUnevaluatedContext())
9411     return;
9412 
9413   // Don't diagnose for value- or type-dependent expressions.
9414   if (E->isTypeDependent() || E->isValueDependent())
9415     return;
9416 
9417   // Check for array bounds violations in cases where the check isn't triggered
9418   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
9419   // ArraySubscriptExpr is on the RHS of a variable initialization.
9420   CheckArrayAccess(E);
9421 
9422   // This is not the right CC for (e.g.) a variable initialization.
9423   AnalyzeImplicitConversions(*this, E, CC);
9424 }
9425 
9426 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
9427 /// Input argument E is a logical expression.
9428 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
9429   ::CheckBoolLikeConversion(*this, E, CC);
9430 }
9431 
9432 /// Diagnose when expression is an integer constant expression and its evaluation
9433 /// results in integer overflow
9434 void Sema::CheckForIntOverflow (Expr *E) {
9435   // Use a work list to deal with nested struct initializers.
9436   SmallVector<Expr *, 2> Exprs(1, E);
9437 
9438   do {
9439     Expr *E = Exprs.pop_back_val();
9440 
9441     if (isa<BinaryOperator>(E->IgnoreParenCasts())) {
9442       E->IgnoreParenCasts()->EvaluateForOverflow(Context);
9443       continue;
9444     }
9445 
9446     if (auto InitList = dyn_cast<InitListExpr>(E))
9447       Exprs.append(InitList->inits().begin(), InitList->inits().end());
9448   } while (!Exprs.empty());
9449 }
9450 
9451 namespace {
9452 /// \brief Visitor for expressions which looks for unsequenced operations on the
9453 /// same object.
9454 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
9455   typedef EvaluatedExprVisitor<SequenceChecker> Base;
9456 
9457   /// \brief A tree of sequenced regions within an expression. Two regions are
9458   /// unsequenced if one is an ancestor or a descendent of the other. When we
9459   /// finish processing an expression with sequencing, such as a comma
9460   /// expression, we fold its tree nodes into its parent, since they are
9461   /// unsequenced with respect to nodes we will visit later.
9462   class SequenceTree {
9463     struct Value {
9464       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
9465       unsigned Parent : 31;
9466       unsigned Merged : 1;
9467     };
9468     SmallVector<Value, 8> Values;
9469 
9470   public:
9471     /// \brief A region within an expression which may be sequenced with respect
9472     /// to some other region.
9473     class Seq {
9474       explicit Seq(unsigned N) : Index(N) {}
9475       unsigned Index;
9476       friend class SequenceTree;
9477     public:
9478       Seq() : Index(0) {}
9479     };
9480 
9481     SequenceTree() { Values.push_back(Value(0)); }
9482     Seq root() const { return Seq(0); }
9483 
9484     /// \brief Create a new sequence of operations, which is an unsequenced
9485     /// subset of \p Parent. This sequence of operations is sequenced with
9486     /// respect to other children of \p Parent.
9487     Seq allocate(Seq Parent) {
9488       Values.push_back(Value(Parent.Index));
9489       return Seq(Values.size() - 1);
9490     }
9491 
9492     /// \brief Merge a sequence of operations into its parent.
9493     void merge(Seq S) {
9494       Values[S.Index].Merged = true;
9495     }
9496 
9497     /// \brief Determine whether two operations are unsequenced. This operation
9498     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
9499     /// should have been merged into its parent as appropriate.
9500     bool isUnsequenced(Seq Cur, Seq Old) {
9501       unsigned C = representative(Cur.Index);
9502       unsigned Target = representative(Old.Index);
9503       while (C >= Target) {
9504         if (C == Target)
9505           return true;
9506         C = Values[C].Parent;
9507       }
9508       return false;
9509     }
9510 
9511   private:
9512     /// \brief Pick a representative for a sequence.
9513     unsigned representative(unsigned K) {
9514       if (Values[K].Merged)
9515         // Perform path compression as we go.
9516         return Values[K].Parent = representative(Values[K].Parent);
9517       return K;
9518     }
9519   };
9520 
9521   /// An object for which we can track unsequenced uses.
9522   typedef NamedDecl *Object;
9523 
9524   /// Different flavors of object usage which we track. We only track the
9525   /// least-sequenced usage of each kind.
9526   enum UsageKind {
9527     /// A read of an object. Multiple unsequenced reads are OK.
9528     UK_Use,
9529     /// A modification of an object which is sequenced before the value
9530     /// computation of the expression, such as ++n in C++.
9531     UK_ModAsValue,
9532     /// A modification of an object which is not sequenced before the value
9533     /// computation of the expression, such as n++.
9534     UK_ModAsSideEffect,
9535 
9536     UK_Count = UK_ModAsSideEffect + 1
9537   };
9538 
9539   struct Usage {
9540     Usage() : Use(nullptr), Seq() {}
9541     Expr *Use;
9542     SequenceTree::Seq Seq;
9543   };
9544 
9545   struct UsageInfo {
9546     UsageInfo() : Diagnosed(false) {}
9547     Usage Uses[UK_Count];
9548     /// Have we issued a diagnostic for this variable already?
9549     bool Diagnosed;
9550   };
9551   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
9552 
9553   Sema &SemaRef;
9554   /// Sequenced regions within the expression.
9555   SequenceTree Tree;
9556   /// Declaration modifications and references which we have seen.
9557   UsageInfoMap UsageMap;
9558   /// The region we are currently within.
9559   SequenceTree::Seq Region;
9560   /// Filled in with declarations which were modified as a side-effect
9561   /// (that is, post-increment operations).
9562   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
9563   /// Expressions to check later. We defer checking these to reduce
9564   /// stack usage.
9565   SmallVectorImpl<Expr *> &WorkList;
9566 
9567   /// RAII object wrapping the visitation of a sequenced subexpression of an
9568   /// expression. At the end of this process, the side-effects of the evaluation
9569   /// become sequenced with respect to the value computation of the result, so
9570   /// we downgrade any UK_ModAsSideEffect within the evaluation to
9571   /// UK_ModAsValue.
9572   struct SequencedSubexpression {
9573     SequencedSubexpression(SequenceChecker &Self)
9574       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
9575       Self.ModAsSideEffect = &ModAsSideEffect;
9576     }
9577     ~SequencedSubexpression() {
9578       for (auto &M : llvm::reverse(ModAsSideEffect)) {
9579         UsageInfo &U = Self.UsageMap[M.first];
9580         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
9581         Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue);
9582         SideEffectUsage = M.second;
9583       }
9584       Self.ModAsSideEffect = OldModAsSideEffect;
9585     }
9586 
9587     SequenceChecker &Self;
9588     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
9589     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
9590   };
9591 
9592   /// RAII object wrapping the visitation of a subexpression which we might
9593   /// choose to evaluate as a constant. If any subexpression is evaluated and
9594   /// found to be non-constant, this allows us to suppress the evaluation of
9595   /// the outer expression.
9596   class EvaluationTracker {
9597   public:
9598     EvaluationTracker(SequenceChecker &Self)
9599         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
9600       Self.EvalTracker = this;
9601     }
9602     ~EvaluationTracker() {
9603       Self.EvalTracker = Prev;
9604       if (Prev)
9605         Prev->EvalOK &= EvalOK;
9606     }
9607 
9608     bool evaluate(const Expr *E, bool &Result) {
9609       if (!EvalOK || E->isValueDependent())
9610         return false;
9611       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
9612       return EvalOK;
9613     }
9614 
9615   private:
9616     SequenceChecker &Self;
9617     EvaluationTracker *Prev;
9618     bool EvalOK;
9619   } *EvalTracker;
9620 
9621   /// \brief Find the object which is produced by the specified expression,
9622   /// if any.
9623   Object getObject(Expr *E, bool Mod) const {
9624     E = E->IgnoreParenCasts();
9625     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
9626       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
9627         return getObject(UO->getSubExpr(), Mod);
9628     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
9629       if (BO->getOpcode() == BO_Comma)
9630         return getObject(BO->getRHS(), Mod);
9631       if (Mod && BO->isAssignmentOp())
9632         return getObject(BO->getLHS(), Mod);
9633     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9634       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
9635       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
9636         return ME->getMemberDecl();
9637     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9638       // FIXME: If this is a reference, map through to its value.
9639       return DRE->getDecl();
9640     return nullptr;
9641   }
9642 
9643   /// \brief Note that an object was modified or used by an expression.
9644   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
9645     Usage &U = UI.Uses[UK];
9646     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
9647       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
9648         ModAsSideEffect->push_back(std::make_pair(O, U));
9649       U.Use = Ref;
9650       U.Seq = Region;
9651     }
9652   }
9653   /// \brief Check whether a modification or use conflicts with a prior usage.
9654   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
9655                   bool IsModMod) {
9656     if (UI.Diagnosed)
9657       return;
9658 
9659     const Usage &U = UI.Uses[OtherKind];
9660     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
9661       return;
9662 
9663     Expr *Mod = U.Use;
9664     Expr *ModOrUse = Ref;
9665     if (OtherKind == UK_Use)
9666       std::swap(Mod, ModOrUse);
9667 
9668     SemaRef.Diag(Mod->getExprLoc(),
9669                  IsModMod ? diag::warn_unsequenced_mod_mod
9670                           : diag::warn_unsequenced_mod_use)
9671       << O << SourceRange(ModOrUse->getExprLoc());
9672     UI.Diagnosed = true;
9673   }
9674 
9675   void notePreUse(Object O, Expr *Use) {
9676     UsageInfo &U = UsageMap[O];
9677     // Uses conflict with other modifications.
9678     checkUsage(O, U, Use, UK_ModAsValue, false);
9679   }
9680   void notePostUse(Object O, Expr *Use) {
9681     UsageInfo &U = UsageMap[O];
9682     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
9683     addUsage(U, O, Use, UK_Use);
9684   }
9685 
9686   void notePreMod(Object O, Expr *Mod) {
9687     UsageInfo &U = UsageMap[O];
9688     // Modifications conflict with other modifications and with uses.
9689     checkUsage(O, U, Mod, UK_ModAsValue, true);
9690     checkUsage(O, U, Mod, UK_Use, false);
9691   }
9692   void notePostMod(Object O, Expr *Use, UsageKind UK) {
9693     UsageInfo &U = UsageMap[O];
9694     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
9695     addUsage(U, O, Use, UK);
9696   }
9697 
9698 public:
9699   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
9700       : Base(S.Context), SemaRef(S), Region(Tree.root()),
9701         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
9702     Visit(E);
9703   }
9704 
9705   void VisitStmt(Stmt *S) {
9706     // Skip all statements which aren't expressions for now.
9707   }
9708 
9709   void VisitExpr(Expr *E) {
9710     // By default, just recurse to evaluated subexpressions.
9711     Base::VisitStmt(E);
9712   }
9713 
9714   void VisitCastExpr(CastExpr *E) {
9715     Object O = Object();
9716     if (E->getCastKind() == CK_LValueToRValue)
9717       O = getObject(E->getSubExpr(), false);
9718 
9719     if (O)
9720       notePreUse(O, E);
9721     VisitExpr(E);
9722     if (O)
9723       notePostUse(O, E);
9724   }
9725 
9726   void VisitBinComma(BinaryOperator *BO) {
9727     // C++11 [expr.comma]p1:
9728     //   Every value computation and side effect associated with the left
9729     //   expression is sequenced before every value computation and side
9730     //   effect associated with the right expression.
9731     SequenceTree::Seq LHS = Tree.allocate(Region);
9732     SequenceTree::Seq RHS = Tree.allocate(Region);
9733     SequenceTree::Seq OldRegion = Region;
9734 
9735     {
9736       SequencedSubexpression SeqLHS(*this);
9737       Region = LHS;
9738       Visit(BO->getLHS());
9739     }
9740 
9741     Region = RHS;
9742     Visit(BO->getRHS());
9743 
9744     Region = OldRegion;
9745 
9746     // Forget that LHS and RHS are sequenced. They are both unsequenced
9747     // with respect to other stuff.
9748     Tree.merge(LHS);
9749     Tree.merge(RHS);
9750   }
9751 
9752   void VisitBinAssign(BinaryOperator *BO) {
9753     // The modification is sequenced after the value computation of the LHS
9754     // and RHS, so check it before inspecting the operands and update the
9755     // map afterwards.
9756     Object O = getObject(BO->getLHS(), true);
9757     if (!O)
9758       return VisitExpr(BO);
9759 
9760     notePreMod(O, BO);
9761 
9762     // C++11 [expr.ass]p7:
9763     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
9764     //   only once.
9765     //
9766     // Therefore, for a compound assignment operator, O is considered used
9767     // everywhere except within the evaluation of E1 itself.
9768     if (isa<CompoundAssignOperator>(BO))
9769       notePreUse(O, BO);
9770 
9771     Visit(BO->getLHS());
9772 
9773     if (isa<CompoundAssignOperator>(BO))
9774       notePostUse(O, BO);
9775 
9776     Visit(BO->getRHS());
9777 
9778     // C++11 [expr.ass]p1:
9779     //   the assignment is sequenced [...] before the value computation of the
9780     //   assignment expression.
9781     // C11 6.5.16/3 has no such rule.
9782     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
9783                                                        : UK_ModAsSideEffect);
9784   }
9785 
9786   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
9787     VisitBinAssign(CAO);
9788   }
9789 
9790   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
9791   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
9792   void VisitUnaryPreIncDec(UnaryOperator *UO) {
9793     Object O = getObject(UO->getSubExpr(), true);
9794     if (!O)
9795       return VisitExpr(UO);
9796 
9797     notePreMod(O, UO);
9798     Visit(UO->getSubExpr());
9799     // C++11 [expr.pre.incr]p1:
9800     //   the expression ++x is equivalent to x+=1
9801     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
9802                                                        : UK_ModAsSideEffect);
9803   }
9804 
9805   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
9806   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
9807   void VisitUnaryPostIncDec(UnaryOperator *UO) {
9808     Object O = getObject(UO->getSubExpr(), true);
9809     if (!O)
9810       return VisitExpr(UO);
9811 
9812     notePreMod(O, UO);
9813     Visit(UO->getSubExpr());
9814     notePostMod(O, UO, UK_ModAsSideEffect);
9815   }
9816 
9817   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
9818   void VisitBinLOr(BinaryOperator *BO) {
9819     // The side-effects of the LHS of an '&&' are sequenced before the
9820     // value computation of the RHS, and hence before the value computation
9821     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
9822     // as if they were unconditionally sequenced.
9823     EvaluationTracker Eval(*this);
9824     {
9825       SequencedSubexpression Sequenced(*this);
9826       Visit(BO->getLHS());
9827     }
9828 
9829     bool Result;
9830     if (Eval.evaluate(BO->getLHS(), Result)) {
9831       if (!Result)
9832         Visit(BO->getRHS());
9833     } else {
9834       // Check for unsequenced operations in the RHS, treating it as an
9835       // entirely separate evaluation.
9836       //
9837       // FIXME: If there are operations in the RHS which are unsequenced
9838       // with respect to operations outside the RHS, and those operations
9839       // are unconditionally evaluated, diagnose them.
9840       WorkList.push_back(BO->getRHS());
9841     }
9842   }
9843   void VisitBinLAnd(BinaryOperator *BO) {
9844     EvaluationTracker Eval(*this);
9845     {
9846       SequencedSubexpression Sequenced(*this);
9847       Visit(BO->getLHS());
9848     }
9849 
9850     bool Result;
9851     if (Eval.evaluate(BO->getLHS(), Result)) {
9852       if (Result)
9853         Visit(BO->getRHS());
9854     } else {
9855       WorkList.push_back(BO->getRHS());
9856     }
9857   }
9858 
9859   // Only visit the condition, unless we can be sure which subexpression will
9860   // be chosen.
9861   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
9862     EvaluationTracker Eval(*this);
9863     {
9864       SequencedSubexpression Sequenced(*this);
9865       Visit(CO->getCond());
9866     }
9867 
9868     bool Result;
9869     if (Eval.evaluate(CO->getCond(), Result))
9870       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
9871     else {
9872       WorkList.push_back(CO->getTrueExpr());
9873       WorkList.push_back(CO->getFalseExpr());
9874     }
9875   }
9876 
9877   void VisitCallExpr(CallExpr *CE) {
9878     // C++11 [intro.execution]p15:
9879     //   When calling a function [...], every value computation and side effect
9880     //   associated with any argument expression, or with the postfix expression
9881     //   designating the called function, is sequenced before execution of every
9882     //   expression or statement in the body of the function [and thus before
9883     //   the value computation of its result].
9884     SequencedSubexpression Sequenced(*this);
9885     Base::VisitCallExpr(CE);
9886 
9887     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
9888   }
9889 
9890   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
9891     // This is a call, so all subexpressions are sequenced before the result.
9892     SequencedSubexpression Sequenced(*this);
9893 
9894     if (!CCE->isListInitialization())
9895       return VisitExpr(CCE);
9896 
9897     // In C++11, list initializations are sequenced.
9898     SmallVector<SequenceTree::Seq, 32> Elts;
9899     SequenceTree::Seq Parent = Region;
9900     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
9901                                         E = CCE->arg_end();
9902          I != E; ++I) {
9903       Region = Tree.allocate(Parent);
9904       Elts.push_back(Region);
9905       Visit(*I);
9906     }
9907 
9908     // Forget that the initializers are sequenced.
9909     Region = Parent;
9910     for (unsigned I = 0; I < Elts.size(); ++I)
9911       Tree.merge(Elts[I]);
9912   }
9913 
9914   void VisitInitListExpr(InitListExpr *ILE) {
9915     if (!SemaRef.getLangOpts().CPlusPlus11)
9916       return VisitExpr(ILE);
9917 
9918     // In C++11, list initializations are sequenced.
9919     SmallVector<SequenceTree::Seq, 32> Elts;
9920     SequenceTree::Seq Parent = Region;
9921     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
9922       Expr *E = ILE->getInit(I);
9923       if (!E) continue;
9924       Region = Tree.allocate(Parent);
9925       Elts.push_back(Region);
9926       Visit(E);
9927     }
9928 
9929     // Forget that the initializers are sequenced.
9930     Region = Parent;
9931     for (unsigned I = 0; I < Elts.size(); ++I)
9932       Tree.merge(Elts[I]);
9933   }
9934 };
9935 } // end anonymous namespace
9936 
9937 void Sema::CheckUnsequencedOperations(Expr *E) {
9938   SmallVector<Expr *, 8> WorkList;
9939   WorkList.push_back(E);
9940   while (!WorkList.empty()) {
9941     Expr *Item = WorkList.pop_back_val();
9942     SequenceChecker(*this, Item, WorkList);
9943   }
9944 }
9945 
9946 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
9947                               bool IsConstexpr) {
9948   CheckImplicitConversions(E, CheckLoc);
9949   if (!E->isInstantiationDependent())
9950     CheckUnsequencedOperations(E);
9951   if (!IsConstexpr && !E->isValueDependent())
9952     CheckForIntOverflow(E);
9953   DiagnoseMisalignedMembers();
9954 }
9955 
9956 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
9957                                        FieldDecl *BitField,
9958                                        Expr *Init) {
9959   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
9960 }
9961 
9962 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
9963                                          SourceLocation Loc) {
9964   if (!PType->isVariablyModifiedType())
9965     return;
9966   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
9967     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
9968     return;
9969   }
9970   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
9971     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
9972     return;
9973   }
9974   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
9975     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
9976     return;
9977   }
9978 
9979   const ArrayType *AT = S.Context.getAsArrayType(PType);
9980   if (!AT)
9981     return;
9982 
9983   if (AT->getSizeModifier() != ArrayType::Star) {
9984     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
9985     return;
9986   }
9987 
9988   S.Diag(Loc, diag::err_array_star_in_function_definition);
9989 }
9990 
9991 /// CheckParmsForFunctionDef - Check that the parameters of the given
9992 /// function are appropriate for the definition of a function. This
9993 /// takes care of any checks that cannot be performed on the
9994 /// declaration itself, e.g., that the types of each of the function
9995 /// parameters are complete.
9996 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
9997                                     bool CheckParameterNames) {
9998   bool HasInvalidParm = false;
9999   for (ParmVarDecl *Param : Parameters) {
10000     // C99 6.7.5.3p4: the parameters in a parameter type list in a
10001     // function declarator that is part of a function definition of
10002     // that function shall not have incomplete type.
10003     //
10004     // This is also C++ [dcl.fct]p6.
10005     if (!Param->isInvalidDecl() &&
10006         RequireCompleteType(Param->getLocation(), Param->getType(),
10007                             diag::err_typecheck_decl_incomplete_type)) {
10008       Param->setInvalidDecl();
10009       HasInvalidParm = true;
10010     }
10011 
10012     // C99 6.9.1p5: If the declarator includes a parameter type list, the
10013     // declaration of each parameter shall include an identifier.
10014     if (CheckParameterNames &&
10015         Param->getIdentifier() == nullptr &&
10016         !Param->isImplicit() &&
10017         !getLangOpts().CPlusPlus)
10018       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10019 
10020     // C99 6.7.5.3p12:
10021     //   If the function declarator is not part of a definition of that
10022     //   function, parameters may have incomplete type and may use the [*]
10023     //   notation in their sequences of declarator specifiers to specify
10024     //   variable length array types.
10025     QualType PType = Param->getOriginalType();
10026     // FIXME: This diagnostic should point the '[*]' if source-location
10027     // information is added for it.
10028     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
10029 
10030     // MSVC destroys objects passed by value in the callee.  Therefore a
10031     // function definition which takes such a parameter must be able to call the
10032     // object's destructor.  However, we don't perform any direct access check
10033     // on the dtor.
10034     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
10035                                        .getCXXABI()
10036                                        .areArgsDestroyedLeftToRightInCallee()) {
10037       if (!Param->isInvalidDecl()) {
10038         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
10039           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
10040           if (!ClassDecl->isInvalidDecl() &&
10041               !ClassDecl->hasIrrelevantDestructor() &&
10042               !ClassDecl->isDependentContext()) {
10043             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10044             MarkFunctionReferenced(Param->getLocation(), Destructor);
10045             DiagnoseUseOfDecl(Destructor, Param->getLocation());
10046           }
10047         }
10048       }
10049     }
10050 
10051     // Parameters with the pass_object_size attribute only need to be marked
10052     // constant at function definitions. Because we lack information about
10053     // whether we're on a declaration or definition when we're instantiating the
10054     // attribute, we need to check for constness here.
10055     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
10056       if (!Param->getType().isConstQualified())
10057         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
10058             << Attr->getSpelling() << 1;
10059   }
10060 
10061   return HasInvalidParm;
10062 }
10063 
10064 /// CheckCastAlign - Implements -Wcast-align, which warns when a
10065 /// pointer cast increases the alignment requirements.
10066 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
10067   // This is actually a lot of work to potentially be doing on every
10068   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
10069   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
10070     return;
10071 
10072   // Ignore dependent types.
10073   if (T->isDependentType() || Op->getType()->isDependentType())
10074     return;
10075 
10076   // Require that the destination be a pointer type.
10077   const PointerType *DestPtr = T->getAs<PointerType>();
10078   if (!DestPtr) return;
10079 
10080   // If the destination has alignment 1, we're done.
10081   QualType DestPointee = DestPtr->getPointeeType();
10082   if (DestPointee->isIncompleteType()) return;
10083   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
10084   if (DestAlign.isOne()) return;
10085 
10086   // Require that the source be a pointer type.
10087   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
10088   if (!SrcPtr) return;
10089   QualType SrcPointee = SrcPtr->getPointeeType();
10090 
10091   // Whitelist casts from cv void*.  We already implicitly
10092   // whitelisted casts to cv void*, since they have alignment 1.
10093   // Also whitelist casts involving incomplete types, which implicitly
10094   // includes 'void'.
10095   if (SrcPointee->isIncompleteType()) return;
10096 
10097   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
10098   if (SrcAlign >= DestAlign) return;
10099 
10100   Diag(TRange.getBegin(), diag::warn_cast_align)
10101     << Op->getType() << T
10102     << static_cast<unsigned>(SrcAlign.getQuantity())
10103     << static_cast<unsigned>(DestAlign.getQuantity())
10104     << TRange << Op->getSourceRange();
10105 }
10106 
10107 /// \brief Check whether this array fits the idiom of a size-one tail padded
10108 /// array member of a struct.
10109 ///
10110 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
10111 /// commonly used to emulate flexible arrays in C89 code.
10112 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
10113                                     const NamedDecl *ND) {
10114   if (Size != 1 || !ND) return false;
10115 
10116   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
10117   if (!FD) return false;
10118 
10119   // Don't consider sizes resulting from macro expansions or template argument
10120   // substitution to form C89 tail-padded arrays.
10121 
10122   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
10123   while (TInfo) {
10124     TypeLoc TL = TInfo->getTypeLoc();
10125     // Look through typedefs.
10126     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
10127       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
10128       TInfo = TDL->getTypeSourceInfo();
10129       continue;
10130     }
10131     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
10132       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
10133       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
10134         return false;
10135     }
10136     break;
10137   }
10138 
10139   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
10140   if (!RD) return false;
10141   if (RD->isUnion()) return false;
10142   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
10143     if (!CRD->isStandardLayout()) return false;
10144   }
10145 
10146   // See if this is the last field decl in the record.
10147   const Decl *D = FD;
10148   while ((D = D->getNextDeclInContext()))
10149     if (isa<FieldDecl>(D))
10150       return false;
10151   return true;
10152 }
10153 
10154 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
10155                             const ArraySubscriptExpr *ASE,
10156                             bool AllowOnePastEnd, bool IndexNegated) {
10157   IndexExpr = IndexExpr->IgnoreParenImpCasts();
10158   if (IndexExpr->isValueDependent())
10159     return;
10160 
10161   const Type *EffectiveType =
10162       BaseExpr->getType()->getPointeeOrArrayElementType();
10163   BaseExpr = BaseExpr->IgnoreParenCasts();
10164   const ConstantArrayType *ArrayTy =
10165     Context.getAsConstantArrayType(BaseExpr->getType());
10166   if (!ArrayTy)
10167     return;
10168 
10169   llvm::APSInt index;
10170   if (!IndexExpr->EvaluateAsInt(index, Context, Expr::SE_AllowSideEffects))
10171     return;
10172   if (IndexNegated)
10173     index = -index;
10174 
10175   const NamedDecl *ND = nullptr;
10176   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
10177     ND = dyn_cast<NamedDecl>(DRE->getDecl());
10178   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
10179     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
10180 
10181   if (index.isUnsigned() || !index.isNegative()) {
10182     llvm::APInt size = ArrayTy->getSize();
10183     if (!size.isStrictlyPositive())
10184       return;
10185 
10186     const Type *BaseType = BaseExpr->getType()->getPointeeOrArrayElementType();
10187     if (BaseType != EffectiveType) {
10188       // Make sure we're comparing apples to apples when comparing index to size
10189       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
10190       uint64_t array_typesize = Context.getTypeSize(BaseType);
10191       // Handle ptrarith_typesize being zero, such as when casting to void*
10192       if (!ptrarith_typesize) ptrarith_typesize = 1;
10193       if (ptrarith_typesize != array_typesize) {
10194         // There's a cast to a different size type involved
10195         uint64_t ratio = array_typesize / ptrarith_typesize;
10196         // TODO: Be smarter about handling cases where array_typesize is not a
10197         // multiple of ptrarith_typesize
10198         if (ptrarith_typesize * ratio == array_typesize)
10199           size *= llvm::APInt(size.getBitWidth(), ratio);
10200       }
10201     }
10202 
10203     if (size.getBitWidth() > index.getBitWidth())
10204       index = index.zext(size.getBitWidth());
10205     else if (size.getBitWidth() < index.getBitWidth())
10206       size = size.zext(index.getBitWidth());
10207 
10208     // For array subscripting the index must be less than size, but for pointer
10209     // arithmetic also allow the index (offset) to be equal to size since
10210     // computing the next address after the end of the array is legal and
10211     // commonly done e.g. in C++ iterators and range-based for loops.
10212     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
10213       return;
10214 
10215     // Also don't warn for arrays of size 1 which are members of some
10216     // structure. These are often used to approximate flexible arrays in C89
10217     // code.
10218     if (IsTailPaddedMemberArray(*this, size, ND))
10219       return;
10220 
10221     // Suppress the warning if the subscript expression (as identified by the
10222     // ']' location) and the index expression are both from macro expansions
10223     // within a system header.
10224     if (ASE) {
10225       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
10226           ASE->getRBracketLoc());
10227       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
10228         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
10229             IndexExpr->getLocStart());
10230         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
10231           return;
10232       }
10233     }
10234 
10235     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
10236     if (ASE)
10237       DiagID = diag::warn_array_index_exceeds_bounds;
10238 
10239     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
10240                         PDiag(DiagID) << index.toString(10, true)
10241                           << size.toString(10, true)
10242                           << (unsigned)size.getLimitedValue(~0U)
10243                           << IndexExpr->getSourceRange());
10244   } else {
10245     unsigned DiagID = diag::warn_array_index_precedes_bounds;
10246     if (!ASE) {
10247       DiagID = diag::warn_ptr_arith_precedes_bounds;
10248       if (index.isNegative()) index = -index;
10249     }
10250 
10251     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
10252                         PDiag(DiagID) << index.toString(10, true)
10253                           << IndexExpr->getSourceRange());
10254   }
10255 
10256   if (!ND) {
10257     // Try harder to find a NamedDecl to point at in the note.
10258     while (const ArraySubscriptExpr *ASE =
10259            dyn_cast<ArraySubscriptExpr>(BaseExpr))
10260       BaseExpr = ASE->getBase()->IgnoreParenCasts();
10261     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
10262       ND = dyn_cast<NamedDecl>(DRE->getDecl());
10263     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
10264       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
10265   }
10266 
10267   if (ND)
10268     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
10269                         PDiag(diag::note_array_index_out_of_bounds)
10270                           << ND->getDeclName());
10271 }
10272 
10273 void Sema::CheckArrayAccess(const Expr *expr) {
10274   int AllowOnePastEnd = 0;
10275   while (expr) {
10276     expr = expr->IgnoreParenImpCasts();
10277     switch (expr->getStmtClass()) {
10278       case Stmt::ArraySubscriptExprClass: {
10279         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
10280         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
10281                          AllowOnePastEnd > 0);
10282         return;
10283       }
10284       case Stmt::OMPArraySectionExprClass: {
10285         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
10286         if (ASE->getLowerBound())
10287           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
10288                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
10289         return;
10290       }
10291       case Stmt::UnaryOperatorClass: {
10292         // Only unwrap the * and & unary operators
10293         const UnaryOperator *UO = cast<UnaryOperator>(expr);
10294         expr = UO->getSubExpr();
10295         switch (UO->getOpcode()) {
10296           case UO_AddrOf:
10297             AllowOnePastEnd++;
10298             break;
10299           case UO_Deref:
10300             AllowOnePastEnd--;
10301             break;
10302           default:
10303             return;
10304         }
10305         break;
10306       }
10307       case Stmt::ConditionalOperatorClass: {
10308         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
10309         if (const Expr *lhs = cond->getLHS())
10310           CheckArrayAccess(lhs);
10311         if (const Expr *rhs = cond->getRHS())
10312           CheckArrayAccess(rhs);
10313         return;
10314       }
10315       default:
10316         return;
10317     }
10318   }
10319 }
10320 
10321 //===--- CHECK: Objective-C retain cycles ----------------------------------//
10322 
10323 namespace {
10324   struct RetainCycleOwner {
10325     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
10326     VarDecl *Variable;
10327     SourceRange Range;
10328     SourceLocation Loc;
10329     bool Indirect;
10330 
10331     void setLocsFrom(Expr *e) {
10332       Loc = e->getExprLoc();
10333       Range = e->getSourceRange();
10334     }
10335   };
10336 } // end anonymous namespace
10337 
10338 /// Consider whether capturing the given variable can possibly lead to
10339 /// a retain cycle.
10340 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
10341   // In ARC, it's captured strongly iff the variable has __strong
10342   // lifetime.  In MRR, it's captured strongly if the variable is
10343   // __block and has an appropriate type.
10344   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
10345     return false;
10346 
10347   owner.Variable = var;
10348   if (ref)
10349     owner.setLocsFrom(ref);
10350   return true;
10351 }
10352 
10353 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
10354   while (true) {
10355     e = e->IgnoreParens();
10356     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
10357       switch (cast->getCastKind()) {
10358       case CK_BitCast:
10359       case CK_LValueBitCast:
10360       case CK_LValueToRValue:
10361       case CK_ARCReclaimReturnedObject:
10362         e = cast->getSubExpr();
10363         continue;
10364 
10365       default:
10366         return false;
10367       }
10368     }
10369 
10370     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
10371       ObjCIvarDecl *ivar = ref->getDecl();
10372       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
10373         return false;
10374 
10375       // Try to find a retain cycle in the base.
10376       if (!findRetainCycleOwner(S, ref->getBase(), owner))
10377         return false;
10378 
10379       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
10380       owner.Indirect = true;
10381       return true;
10382     }
10383 
10384     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
10385       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
10386       if (!var) return false;
10387       return considerVariable(var, ref, owner);
10388     }
10389 
10390     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
10391       if (member->isArrow()) return false;
10392 
10393       // Don't count this as an indirect ownership.
10394       e = member->getBase();
10395       continue;
10396     }
10397 
10398     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
10399       // Only pay attention to pseudo-objects on property references.
10400       ObjCPropertyRefExpr *pre
10401         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
10402                                               ->IgnoreParens());
10403       if (!pre) return false;
10404       if (pre->isImplicitProperty()) return false;
10405       ObjCPropertyDecl *property = pre->getExplicitProperty();
10406       if (!property->isRetaining() &&
10407           !(property->getPropertyIvarDecl() &&
10408             property->getPropertyIvarDecl()->getType()
10409               .getObjCLifetime() == Qualifiers::OCL_Strong))
10410           return false;
10411 
10412       owner.Indirect = true;
10413       if (pre->isSuperReceiver()) {
10414         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
10415         if (!owner.Variable)
10416           return false;
10417         owner.Loc = pre->getLocation();
10418         owner.Range = pre->getSourceRange();
10419         return true;
10420       }
10421       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
10422                               ->getSourceExpr());
10423       continue;
10424     }
10425 
10426     // Array ivars?
10427 
10428     return false;
10429   }
10430 }
10431 
10432 namespace {
10433   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
10434     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
10435       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
10436         Context(Context), Variable(variable), Capturer(nullptr),
10437         VarWillBeReased(false) {}
10438     ASTContext &Context;
10439     VarDecl *Variable;
10440     Expr *Capturer;
10441     bool VarWillBeReased;
10442 
10443     void VisitDeclRefExpr(DeclRefExpr *ref) {
10444       if (ref->getDecl() == Variable && !Capturer)
10445         Capturer = ref;
10446     }
10447 
10448     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
10449       if (Capturer) return;
10450       Visit(ref->getBase());
10451       if (Capturer && ref->isFreeIvar())
10452         Capturer = ref;
10453     }
10454 
10455     void VisitBlockExpr(BlockExpr *block) {
10456       // Look inside nested blocks
10457       if (block->getBlockDecl()->capturesVariable(Variable))
10458         Visit(block->getBlockDecl()->getBody());
10459     }
10460 
10461     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
10462       if (Capturer) return;
10463       if (OVE->getSourceExpr())
10464         Visit(OVE->getSourceExpr());
10465     }
10466     void VisitBinaryOperator(BinaryOperator *BinOp) {
10467       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
10468         return;
10469       Expr *LHS = BinOp->getLHS();
10470       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
10471         if (DRE->getDecl() != Variable)
10472           return;
10473         if (Expr *RHS = BinOp->getRHS()) {
10474           RHS = RHS->IgnoreParenCasts();
10475           llvm::APSInt Value;
10476           VarWillBeReased =
10477             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
10478         }
10479       }
10480     }
10481   };
10482 } // end anonymous namespace
10483 
10484 /// Check whether the given argument is a block which captures a
10485 /// variable.
10486 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
10487   assert(owner.Variable && owner.Loc.isValid());
10488 
10489   e = e->IgnoreParenCasts();
10490 
10491   // Look through [^{...} copy] and Block_copy(^{...}).
10492   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
10493     Selector Cmd = ME->getSelector();
10494     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
10495       e = ME->getInstanceReceiver();
10496       if (!e)
10497         return nullptr;
10498       e = e->IgnoreParenCasts();
10499     }
10500   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
10501     if (CE->getNumArgs() == 1) {
10502       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
10503       if (Fn) {
10504         const IdentifierInfo *FnI = Fn->getIdentifier();
10505         if (FnI && FnI->isStr("_Block_copy")) {
10506           e = CE->getArg(0)->IgnoreParenCasts();
10507         }
10508       }
10509     }
10510   }
10511 
10512   BlockExpr *block = dyn_cast<BlockExpr>(e);
10513   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
10514     return nullptr;
10515 
10516   FindCaptureVisitor visitor(S.Context, owner.Variable);
10517   visitor.Visit(block->getBlockDecl()->getBody());
10518   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
10519 }
10520 
10521 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
10522                                 RetainCycleOwner &owner) {
10523   assert(capturer);
10524   assert(owner.Variable && owner.Loc.isValid());
10525 
10526   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
10527     << owner.Variable << capturer->getSourceRange();
10528   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
10529     << owner.Indirect << owner.Range;
10530 }
10531 
10532 /// Check for a keyword selector that starts with the word 'add' or
10533 /// 'set'.
10534 static bool isSetterLikeSelector(Selector sel) {
10535   if (sel.isUnarySelector()) return false;
10536 
10537   StringRef str = sel.getNameForSlot(0);
10538   while (!str.empty() && str.front() == '_') str = str.substr(1);
10539   if (str.startswith("set"))
10540     str = str.substr(3);
10541   else if (str.startswith("add")) {
10542     // Specially whitelist 'addOperationWithBlock:'.
10543     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
10544       return false;
10545     str = str.substr(3);
10546   }
10547   else
10548     return false;
10549 
10550   if (str.empty()) return true;
10551   return !isLowercase(str.front());
10552 }
10553 
10554 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
10555                                                     ObjCMessageExpr *Message) {
10556   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
10557                                                 Message->getReceiverInterface(),
10558                                                 NSAPI::ClassId_NSMutableArray);
10559   if (!IsMutableArray) {
10560     return None;
10561   }
10562 
10563   Selector Sel = Message->getSelector();
10564 
10565   Optional<NSAPI::NSArrayMethodKind> MKOpt =
10566     S.NSAPIObj->getNSArrayMethodKind(Sel);
10567   if (!MKOpt) {
10568     return None;
10569   }
10570 
10571   NSAPI::NSArrayMethodKind MK = *MKOpt;
10572 
10573   switch (MK) {
10574     case NSAPI::NSMutableArr_addObject:
10575     case NSAPI::NSMutableArr_insertObjectAtIndex:
10576     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
10577       return 0;
10578     case NSAPI::NSMutableArr_replaceObjectAtIndex:
10579       return 1;
10580 
10581     default:
10582       return None;
10583   }
10584 
10585   return None;
10586 }
10587 
10588 static
10589 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
10590                                                   ObjCMessageExpr *Message) {
10591   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
10592                                             Message->getReceiverInterface(),
10593                                             NSAPI::ClassId_NSMutableDictionary);
10594   if (!IsMutableDictionary) {
10595     return None;
10596   }
10597 
10598   Selector Sel = Message->getSelector();
10599 
10600   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
10601     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
10602   if (!MKOpt) {
10603     return None;
10604   }
10605 
10606   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
10607 
10608   switch (MK) {
10609     case NSAPI::NSMutableDict_setObjectForKey:
10610     case NSAPI::NSMutableDict_setValueForKey:
10611     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
10612       return 0;
10613 
10614     default:
10615       return None;
10616   }
10617 
10618   return None;
10619 }
10620 
10621 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
10622   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
10623                                                 Message->getReceiverInterface(),
10624                                                 NSAPI::ClassId_NSMutableSet);
10625 
10626   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
10627                                             Message->getReceiverInterface(),
10628                                             NSAPI::ClassId_NSMutableOrderedSet);
10629   if (!IsMutableSet && !IsMutableOrderedSet) {
10630     return None;
10631   }
10632 
10633   Selector Sel = Message->getSelector();
10634 
10635   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
10636   if (!MKOpt) {
10637     return None;
10638   }
10639 
10640   NSAPI::NSSetMethodKind MK = *MKOpt;
10641 
10642   switch (MK) {
10643     case NSAPI::NSMutableSet_addObject:
10644     case NSAPI::NSOrderedSet_setObjectAtIndex:
10645     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
10646     case NSAPI::NSOrderedSet_insertObjectAtIndex:
10647       return 0;
10648     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
10649       return 1;
10650   }
10651 
10652   return None;
10653 }
10654 
10655 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
10656   if (!Message->isInstanceMessage()) {
10657     return;
10658   }
10659 
10660   Optional<int> ArgOpt;
10661 
10662   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
10663       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
10664       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
10665     return;
10666   }
10667 
10668   int ArgIndex = *ArgOpt;
10669 
10670   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
10671   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
10672     Arg = OE->getSourceExpr()->IgnoreImpCasts();
10673   }
10674 
10675   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
10676     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
10677       if (ArgRE->isObjCSelfExpr()) {
10678         Diag(Message->getSourceRange().getBegin(),
10679              diag::warn_objc_circular_container)
10680           << ArgRE->getDecl()->getName() << StringRef("super");
10681       }
10682     }
10683   } else {
10684     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
10685 
10686     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
10687       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
10688     }
10689 
10690     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
10691       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
10692         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
10693           ValueDecl *Decl = ReceiverRE->getDecl();
10694           Diag(Message->getSourceRange().getBegin(),
10695                diag::warn_objc_circular_container)
10696             << Decl->getName() << Decl->getName();
10697           if (!ArgRE->isObjCSelfExpr()) {
10698             Diag(Decl->getLocation(),
10699                  diag::note_objc_circular_container_declared_here)
10700               << Decl->getName();
10701           }
10702         }
10703       }
10704     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
10705       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
10706         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
10707           ObjCIvarDecl *Decl = IvarRE->getDecl();
10708           Diag(Message->getSourceRange().getBegin(),
10709                diag::warn_objc_circular_container)
10710             << Decl->getName() << Decl->getName();
10711           Diag(Decl->getLocation(),
10712                diag::note_objc_circular_container_declared_here)
10713             << Decl->getName();
10714         }
10715       }
10716     }
10717   }
10718 }
10719 
10720 /// Check a message send to see if it's likely to cause a retain cycle.
10721 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
10722   // Only check instance methods whose selector looks like a setter.
10723   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
10724     return;
10725 
10726   // Try to find a variable that the receiver is strongly owned by.
10727   RetainCycleOwner owner;
10728   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
10729     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
10730       return;
10731   } else {
10732     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
10733     owner.Variable = getCurMethodDecl()->getSelfDecl();
10734     owner.Loc = msg->getSuperLoc();
10735     owner.Range = msg->getSuperLoc();
10736   }
10737 
10738   // Check whether the receiver is captured by any of the arguments.
10739   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
10740     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
10741       return diagnoseRetainCycle(*this, capturer, owner);
10742 }
10743 
10744 /// Check a property assign to see if it's likely to cause a retain cycle.
10745 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
10746   RetainCycleOwner owner;
10747   if (!findRetainCycleOwner(*this, receiver, owner))
10748     return;
10749 
10750   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
10751     diagnoseRetainCycle(*this, capturer, owner);
10752 }
10753 
10754 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
10755   RetainCycleOwner Owner;
10756   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
10757     return;
10758 
10759   // Because we don't have an expression for the variable, we have to set the
10760   // location explicitly here.
10761   Owner.Loc = Var->getLocation();
10762   Owner.Range = Var->getSourceRange();
10763 
10764   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
10765     diagnoseRetainCycle(*this, Capturer, Owner);
10766 }
10767 
10768 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
10769                                      Expr *RHS, bool isProperty) {
10770   // Check if RHS is an Objective-C object literal, which also can get
10771   // immediately zapped in a weak reference.  Note that we explicitly
10772   // allow ObjCStringLiterals, since those are designed to never really die.
10773   RHS = RHS->IgnoreParenImpCasts();
10774 
10775   // This enum needs to match with the 'select' in
10776   // warn_objc_arc_literal_assign (off-by-1).
10777   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
10778   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
10779     return false;
10780 
10781   S.Diag(Loc, diag::warn_arc_literal_assign)
10782     << (unsigned) Kind
10783     << (isProperty ? 0 : 1)
10784     << RHS->getSourceRange();
10785 
10786   return true;
10787 }
10788 
10789 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
10790                                     Qualifiers::ObjCLifetime LT,
10791                                     Expr *RHS, bool isProperty) {
10792   // Strip off any implicit cast added to get to the one ARC-specific.
10793   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
10794     if (cast->getCastKind() == CK_ARCConsumeObject) {
10795       S.Diag(Loc, diag::warn_arc_retained_assign)
10796         << (LT == Qualifiers::OCL_ExplicitNone)
10797         << (isProperty ? 0 : 1)
10798         << RHS->getSourceRange();
10799       return true;
10800     }
10801     RHS = cast->getSubExpr();
10802   }
10803 
10804   if (LT == Qualifiers::OCL_Weak &&
10805       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
10806     return true;
10807 
10808   return false;
10809 }
10810 
10811 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
10812                               QualType LHS, Expr *RHS) {
10813   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
10814 
10815   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
10816     return false;
10817 
10818   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
10819     return true;
10820 
10821   return false;
10822 }
10823 
10824 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
10825                               Expr *LHS, Expr *RHS) {
10826   QualType LHSType;
10827   // PropertyRef on LHS type need be directly obtained from
10828   // its declaration as it has a PseudoType.
10829   ObjCPropertyRefExpr *PRE
10830     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
10831   if (PRE && !PRE->isImplicitProperty()) {
10832     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
10833     if (PD)
10834       LHSType = PD->getType();
10835   }
10836 
10837   if (LHSType.isNull())
10838     LHSType = LHS->getType();
10839 
10840   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
10841 
10842   if (LT == Qualifiers::OCL_Weak) {
10843     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
10844       getCurFunction()->markSafeWeakUse(LHS);
10845   }
10846 
10847   if (checkUnsafeAssigns(Loc, LHSType, RHS))
10848     return;
10849 
10850   // FIXME. Check for other life times.
10851   if (LT != Qualifiers::OCL_None)
10852     return;
10853 
10854   if (PRE) {
10855     if (PRE->isImplicitProperty())
10856       return;
10857     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
10858     if (!PD)
10859       return;
10860 
10861     unsigned Attributes = PD->getPropertyAttributes();
10862     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
10863       // when 'assign' attribute was not explicitly specified
10864       // by user, ignore it and rely on property type itself
10865       // for lifetime info.
10866       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
10867       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
10868           LHSType->isObjCRetainableType())
10869         return;
10870 
10871       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
10872         if (cast->getCastKind() == CK_ARCConsumeObject) {
10873           Diag(Loc, diag::warn_arc_retained_property_assign)
10874           << RHS->getSourceRange();
10875           return;
10876         }
10877         RHS = cast->getSubExpr();
10878       }
10879     }
10880     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
10881       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
10882         return;
10883     }
10884   }
10885 }
10886 
10887 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
10888 
10889 namespace {
10890 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
10891                                  SourceLocation StmtLoc,
10892                                  const NullStmt *Body) {
10893   // Do not warn if the body is a macro that expands to nothing, e.g:
10894   //
10895   // #define CALL(x)
10896   // if (condition)
10897   //   CALL(0);
10898   //
10899   if (Body->hasLeadingEmptyMacro())
10900     return false;
10901 
10902   // Get line numbers of statement and body.
10903   bool StmtLineInvalid;
10904   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
10905                                                       &StmtLineInvalid);
10906   if (StmtLineInvalid)
10907     return false;
10908 
10909   bool BodyLineInvalid;
10910   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
10911                                                       &BodyLineInvalid);
10912   if (BodyLineInvalid)
10913     return false;
10914 
10915   // Warn if null statement and body are on the same line.
10916   if (StmtLine != BodyLine)
10917     return false;
10918 
10919   return true;
10920 }
10921 } // end anonymous namespace
10922 
10923 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
10924                                  const Stmt *Body,
10925                                  unsigned DiagID) {
10926   // Since this is a syntactic check, don't emit diagnostic for template
10927   // instantiations, this just adds noise.
10928   if (CurrentInstantiationScope)
10929     return;
10930 
10931   // The body should be a null statement.
10932   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
10933   if (!NBody)
10934     return;
10935 
10936   // Do the usual checks.
10937   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
10938     return;
10939 
10940   Diag(NBody->getSemiLoc(), DiagID);
10941   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
10942 }
10943 
10944 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
10945                                  const Stmt *PossibleBody) {
10946   assert(!CurrentInstantiationScope); // Ensured by caller
10947 
10948   SourceLocation StmtLoc;
10949   const Stmt *Body;
10950   unsigned DiagID;
10951   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
10952     StmtLoc = FS->getRParenLoc();
10953     Body = FS->getBody();
10954     DiagID = diag::warn_empty_for_body;
10955   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
10956     StmtLoc = WS->getCond()->getSourceRange().getEnd();
10957     Body = WS->getBody();
10958     DiagID = diag::warn_empty_while_body;
10959   } else
10960     return; // Neither `for' nor `while'.
10961 
10962   // The body should be a null statement.
10963   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
10964   if (!NBody)
10965     return;
10966 
10967   // Skip expensive checks if diagnostic is disabled.
10968   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
10969     return;
10970 
10971   // Do the usual checks.
10972   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
10973     return;
10974 
10975   // `for(...);' and `while(...);' are popular idioms, so in order to keep
10976   // noise level low, emit diagnostics only if for/while is followed by a
10977   // CompoundStmt, e.g.:
10978   //    for (int i = 0; i < n; i++);
10979   //    {
10980   //      a(i);
10981   //    }
10982   // or if for/while is followed by a statement with more indentation
10983   // than for/while itself:
10984   //    for (int i = 0; i < n; i++);
10985   //      a(i);
10986   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
10987   if (!ProbableTypo) {
10988     bool BodyColInvalid;
10989     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
10990                              PossibleBody->getLocStart(),
10991                              &BodyColInvalid);
10992     if (BodyColInvalid)
10993       return;
10994 
10995     bool StmtColInvalid;
10996     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
10997                              S->getLocStart(),
10998                              &StmtColInvalid);
10999     if (StmtColInvalid)
11000       return;
11001 
11002     if (BodyCol > StmtCol)
11003       ProbableTypo = true;
11004   }
11005 
11006   if (ProbableTypo) {
11007     Diag(NBody->getSemiLoc(), DiagID);
11008     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
11009   }
11010 }
11011 
11012 //===--- CHECK: Warn on self move with std::move. -------------------------===//
11013 
11014 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
11015 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
11016                              SourceLocation OpLoc) {
11017   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
11018     return;
11019 
11020   if (!ActiveTemplateInstantiations.empty())
11021     return;
11022 
11023   // Strip parens and casts away.
11024   LHSExpr = LHSExpr->IgnoreParenImpCasts();
11025   RHSExpr = RHSExpr->IgnoreParenImpCasts();
11026 
11027   // Check for a call expression
11028   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
11029   if (!CE || CE->getNumArgs() != 1)
11030     return;
11031 
11032   // Check for a call to std::move
11033   const FunctionDecl *FD = CE->getDirectCallee();
11034   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
11035       !FD->getIdentifier()->isStr("move"))
11036     return;
11037 
11038   // Get argument from std::move
11039   RHSExpr = CE->getArg(0);
11040 
11041   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
11042   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
11043 
11044   // Two DeclRefExpr's, check that the decls are the same.
11045   if (LHSDeclRef && RHSDeclRef) {
11046     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
11047       return;
11048     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
11049         RHSDeclRef->getDecl()->getCanonicalDecl())
11050       return;
11051 
11052     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
11053                                         << LHSExpr->getSourceRange()
11054                                         << RHSExpr->getSourceRange();
11055     return;
11056   }
11057 
11058   // Member variables require a different approach to check for self moves.
11059   // MemberExpr's are the same if every nested MemberExpr refers to the same
11060   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
11061   // the base Expr's are CXXThisExpr's.
11062   const Expr *LHSBase = LHSExpr;
11063   const Expr *RHSBase = RHSExpr;
11064   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
11065   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
11066   if (!LHSME || !RHSME)
11067     return;
11068 
11069   while (LHSME && RHSME) {
11070     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
11071         RHSME->getMemberDecl()->getCanonicalDecl())
11072       return;
11073 
11074     LHSBase = LHSME->getBase();
11075     RHSBase = RHSME->getBase();
11076     LHSME = dyn_cast<MemberExpr>(LHSBase);
11077     RHSME = dyn_cast<MemberExpr>(RHSBase);
11078   }
11079 
11080   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
11081   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
11082   if (LHSDeclRef && RHSDeclRef) {
11083     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
11084       return;
11085     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
11086         RHSDeclRef->getDecl()->getCanonicalDecl())
11087       return;
11088 
11089     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
11090                                         << LHSExpr->getSourceRange()
11091                                         << RHSExpr->getSourceRange();
11092     return;
11093   }
11094 
11095   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
11096     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
11097                                         << LHSExpr->getSourceRange()
11098                                         << RHSExpr->getSourceRange();
11099 }
11100 
11101 //===--- Layout compatibility ----------------------------------------------//
11102 
11103 namespace {
11104 
11105 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
11106 
11107 /// \brief Check if two enumeration types are layout-compatible.
11108 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
11109   // C++11 [dcl.enum] p8:
11110   // Two enumeration types are layout-compatible if they have the same
11111   // underlying type.
11112   return ED1->isComplete() && ED2->isComplete() &&
11113          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
11114 }
11115 
11116 /// \brief Check if two fields are layout-compatible.
11117 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
11118   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
11119     return false;
11120 
11121   if (Field1->isBitField() != Field2->isBitField())
11122     return false;
11123 
11124   if (Field1->isBitField()) {
11125     // Make sure that the bit-fields are the same length.
11126     unsigned Bits1 = Field1->getBitWidthValue(C);
11127     unsigned Bits2 = Field2->getBitWidthValue(C);
11128 
11129     if (Bits1 != Bits2)
11130       return false;
11131   }
11132 
11133   return true;
11134 }
11135 
11136 /// \brief Check if two standard-layout structs are layout-compatible.
11137 /// (C++11 [class.mem] p17)
11138 bool isLayoutCompatibleStruct(ASTContext &C,
11139                               RecordDecl *RD1,
11140                               RecordDecl *RD2) {
11141   // If both records are C++ classes, check that base classes match.
11142   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
11143     // If one of records is a CXXRecordDecl we are in C++ mode,
11144     // thus the other one is a CXXRecordDecl, too.
11145     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
11146     // Check number of base classes.
11147     if (D1CXX->getNumBases() != D2CXX->getNumBases())
11148       return false;
11149 
11150     // Check the base classes.
11151     for (CXXRecordDecl::base_class_const_iterator
11152                Base1 = D1CXX->bases_begin(),
11153            BaseEnd1 = D1CXX->bases_end(),
11154               Base2 = D2CXX->bases_begin();
11155          Base1 != BaseEnd1;
11156          ++Base1, ++Base2) {
11157       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
11158         return false;
11159     }
11160   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
11161     // If only RD2 is a C++ class, it should have zero base classes.
11162     if (D2CXX->getNumBases() > 0)
11163       return false;
11164   }
11165 
11166   // Check the fields.
11167   RecordDecl::field_iterator Field2 = RD2->field_begin(),
11168                              Field2End = RD2->field_end(),
11169                              Field1 = RD1->field_begin(),
11170                              Field1End = RD1->field_end();
11171   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
11172     if (!isLayoutCompatible(C, *Field1, *Field2))
11173       return false;
11174   }
11175   if (Field1 != Field1End || Field2 != Field2End)
11176     return false;
11177 
11178   return true;
11179 }
11180 
11181 /// \brief Check if two standard-layout unions are layout-compatible.
11182 /// (C++11 [class.mem] p18)
11183 bool isLayoutCompatibleUnion(ASTContext &C,
11184                              RecordDecl *RD1,
11185                              RecordDecl *RD2) {
11186   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
11187   for (auto *Field2 : RD2->fields())
11188     UnmatchedFields.insert(Field2);
11189 
11190   for (auto *Field1 : RD1->fields()) {
11191     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
11192         I = UnmatchedFields.begin(),
11193         E = UnmatchedFields.end();
11194 
11195     for ( ; I != E; ++I) {
11196       if (isLayoutCompatible(C, Field1, *I)) {
11197         bool Result = UnmatchedFields.erase(*I);
11198         (void) Result;
11199         assert(Result);
11200         break;
11201       }
11202     }
11203     if (I == E)
11204       return false;
11205   }
11206 
11207   return UnmatchedFields.empty();
11208 }
11209 
11210 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
11211   if (RD1->isUnion() != RD2->isUnion())
11212     return false;
11213 
11214   if (RD1->isUnion())
11215     return isLayoutCompatibleUnion(C, RD1, RD2);
11216   else
11217     return isLayoutCompatibleStruct(C, RD1, RD2);
11218 }
11219 
11220 /// \brief Check if two types are layout-compatible in C++11 sense.
11221 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
11222   if (T1.isNull() || T2.isNull())
11223     return false;
11224 
11225   // C++11 [basic.types] p11:
11226   // If two types T1 and T2 are the same type, then T1 and T2 are
11227   // layout-compatible types.
11228   if (C.hasSameType(T1, T2))
11229     return true;
11230 
11231   T1 = T1.getCanonicalType().getUnqualifiedType();
11232   T2 = T2.getCanonicalType().getUnqualifiedType();
11233 
11234   const Type::TypeClass TC1 = T1->getTypeClass();
11235   const Type::TypeClass TC2 = T2->getTypeClass();
11236 
11237   if (TC1 != TC2)
11238     return false;
11239 
11240   if (TC1 == Type::Enum) {
11241     return isLayoutCompatible(C,
11242                               cast<EnumType>(T1)->getDecl(),
11243                               cast<EnumType>(T2)->getDecl());
11244   } else if (TC1 == Type::Record) {
11245     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
11246       return false;
11247 
11248     return isLayoutCompatible(C,
11249                               cast<RecordType>(T1)->getDecl(),
11250                               cast<RecordType>(T2)->getDecl());
11251   }
11252 
11253   return false;
11254 }
11255 } // end anonymous namespace
11256 
11257 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
11258 
11259 namespace {
11260 /// \brief Given a type tag expression find the type tag itself.
11261 ///
11262 /// \param TypeExpr Type tag expression, as it appears in user's code.
11263 ///
11264 /// \param VD Declaration of an identifier that appears in a type tag.
11265 ///
11266 /// \param MagicValue Type tag magic value.
11267 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
11268                      const ValueDecl **VD, uint64_t *MagicValue) {
11269   while(true) {
11270     if (!TypeExpr)
11271       return false;
11272 
11273     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
11274 
11275     switch (TypeExpr->getStmtClass()) {
11276     case Stmt::UnaryOperatorClass: {
11277       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
11278       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
11279         TypeExpr = UO->getSubExpr();
11280         continue;
11281       }
11282       return false;
11283     }
11284 
11285     case Stmt::DeclRefExprClass: {
11286       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
11287       *VD = DRE->getDecl();
11288       return true;
11289     }
11290 
11291     case Stmt::IntegerLiteralClass: {
11292       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
11293       llvm::APInt MagicValueAPInt = IL->getValue();
11294       if (MagicValueAPInt.getActiveBits() <= 64) {
11295         *MagicValue = MagicValueAPInt.getZExtValue();
11296         return true;
11297       } else
11298         return false;
11299     }
11300 
11301     case Stmt::BinaryConditionalOperatorClass:
11302     case Stmt::ConditionalOperatorClass: {
11303       const AbstractConditionalOperator *ACO =
11304           cast<AbstractConditionalOperator>(TypeExpr);
11305       bool Result;
11306       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
11307         if (Result)
11308           TypeExpr = ACO->getTrueExpr();
11309         else
11310           TypeExpr = ACO->getFalseExpr();
11311         continue;
11312       }
11313       return false;
11314     }
11315 
11316     case Stmt::BinaryOperatorClass: {
11317       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
11318       if (BO->getOpcode() == BO_Comma) {
11319         TypeExpr = BO->getRHS();
11320         continue;
11321       }
11322       return false;
11323     }
11324 
11325     default:
11326       return false;
11327     }
11328   }
11329 }
11330 
11331 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
11332 ///
11333 /// \param TypeExpr Expression that specifies a type tag.
11334 ///
11335 /// \param MagicValues Registered magic values.
11336 ///
11337 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
11338 ///        kind.
11339 ///
11340 /// \param TypeInfo Information about the corresponding C type.
11341 ///
11342 /// \returns true if the corresponding C type was found.
11343 bool GetMatchingCType(
11344         const IdentifierInfo *ArgumentKind,
11345         const Expr *TypeExpr, const ASTContext &Ctx,
11346         const llvm::DenseMap<Sema::TypeTagMagicValue,
11347                              Sema::TypeTagData> *MagicValues,
11348         bool &FoundWrongKind,
11349         Sema::TypeTagData &TypeInfo) {
11350   FoundWrongKind = false;
11351 
11352   // Variable declaration that has type_tag_for_datatype attribute.
11353   const ValueDecl *VD = nullptr;
11354 
11355   uint64_t MagicValue;
11356 
11357   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
11358     return false;
11359 
11360   if (VD) {
11361     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
11362       if (I->getArgumentKind() != ArgumentKind) {
11363         FoundWrongKind = true;
11364         return false;
11365       }
11366       TypeInfo.Type = I->getMatchingCType();
11367       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
11368       TypeInfo.MustBeNull = I->getMustBeNull();
11369       return true;
11370     }
11371     return false;
11372   }
11373 
11374   if (!MagicValues)
11375     return false;
11376 
11377   llvm::DenseMap<Sema::TypeTagMagicValue,
11378                  Sema::TypeTagData>::const_iterator I =
11379       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
11380   if (I == MagicValues->end())
11381     return false;
11382 
11383   TypeInfo = I->second;
11384   return true;
11385 }
11386 } // end anonymous namespace
11387 
11388 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
11389                                       uint64_t MagicValue, QualType Type,
11390                                       bool LayoutCompatible,
11391                                       bool MustBeNull) {
11392   if (!TypeTagForDatatypeMagicValues)
11393     TypeTagForDatatypeMagicValues.reset(
11394         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
11395 
11396   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
11397   (*TypeTagForDatatypeMagicValues)[Magic] =
11398       TypeTagData(Type, LayoutCompatible, MustBeNull);
11399 }
11400 
11401 namespace {
11402 bool IsSameCharType(QualType T1, QualType T2) {
11403   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
11404   if (!BT1)
11405     return false;
11406 
11407   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
11408   if (!BT2)
11409     return false;
11410 
11411   BuiltinType::Kind T1Kind = BT1->getKind();
11412   BuiltinType::Kind T2Kind = BT2->getKind();
11413 
11414   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
11415          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
11416          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
11417          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
11418 }
11419 } // end anonymous namespace
11420 
11421 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
11422                                     const Expr * const *ExprArgs) {
11423   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
11424   bool IsPointerAttr = Attr->getIsPointer();
11425 
11426   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
11427   bool FoundWrongKind;
11428   TypeTagData TypeInfo;
11429   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
11430                         TypeTagForDatatypeMagicValues.get(),
11431                         FoundWrongKind, TypeInfo)) {
11432     if (FoundWrongKind)
11433       Diag(TypeTagExpr->getExprLoc(),
11434            diag::warn_type_tag_for_datatype_wrong_kind)
11435         << TypeTagExpr->getSourceRange();
11436     return;
11437   }
11438 
11439   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
11440   if (IsPointerAttr) {
11441     // Skip implicit cast of pointer to `void *' (as a function argument).
11442     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
11443       if (ICE->getType()->isVoidPointerType() &&
11444           ICE->getCastKind() == CK_BitCast)
11445         ArgumentExpr = ICE->getSubExpr();
11446   }
11447   QualType ArgumentType = ArgumentExpr->getType();
11448 
11449   // Passing a `void*' pointer shouldn't trigger a warning.
11450   if (IsPointerAttr && ArgumentType->isVoidPointerType())
11451     return;
11452 
11453   if (TypeInfo.MustBeNull) {
11454     // Type tag with matching void type requires a null pointer.
11455     if (!ArgumentExpr->isNullPointerConstant(Context,
11456                                              Expr::NPC_ValueDependentIsNotNull)) {
11457       Diag(ArgumentExpr->getExprLoc(),
11458            diag::warn_type_safety_null_pointer_required)
11459           << ArgumentKind->getName()
11460           << ArgumentExpr->getSourceRange()
11461           << TypeTagExpr->getSourceRange();
11462     }
11463     return;
11464   }
11465 
11466   QualType RequiredType = TypeInfo.Type;
11467   if (IsPointerAttr)
11468     RequiredType = Context.getPointerType(RequiredType);
11469 
11470   bool mismatch = false;
11471   if (!TypeInfo.LayoutCompatible) {
11472     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
11473 
11474     // C++11 [basic.fundamental] p1:
11475     // Plain char, signed char, and unsigned char are three distinct types.
11476     //
11477     // But we treat plain `char' as equivalent to `signed char' or `unsigned
11478     // char' depending on the current char signedness mode.
11479     if (mismatch)
11480       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
11481                                            RequiredType->getPointeeType())) ||
11482           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
11483         mismatch = false;
11484   } else
11485     if (IsPointerAttr)
11486       mismatch = !isLayoutCompatible(Context,
11487                                      ArgumentType->getPointeeType(),
11488                                      RequiredType->getPointeeType());
11489     else
11490       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
11491 
11492   if (mismatch)
11493     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
11494         << ArgumentType << ArgumentKind
11495         << TypeInfo.LayoutCompatible << RequiredType
11496         << ArgumentExpr->getSourceRange()
11497         << TypeTagExpr->getSourceRange();
11498 }
11499 
11500 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
11501                                          CharUnits Alignment) {
11502   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
11503 }
11504 
11505 void Sema::DiagnoseMisalignedMembers() {
11506   for (MisalignedMember &m : MisalignedMembers) {
11507     const NamedDecl *ND = m.RD;
11508     if (ND->getName().empty()) {
11509       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
11510         ND = TD;
11511     }
11512     Diag(m.E->getLocStart(), diag::warn_taking_address_of_packed_member)
11513         << m.MD << ND << m.E->getSourceRange();
11514   }
11515   MisalignedMembers.clear();
11516 }
11517 
11518 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
11519   if (!T->isPointerType())
11520     return;
11521   if (isa<UnaryOperator>(E) &&
11522       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
11523     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
11524     if (isa<MemberExpr>(Op)) {
11525       auto MA = std::find(MisalignedMembers.begin(), MisalignedMembers.end(),
11526                           MisalignedMember(Op));
11527       if (MA != MisalignedMembers.end() &&
11528           Context.getTypeAlignInChars(T->getPointeeType()) <= MA->Alignment)
11529         MisalignedMembers.erase(MA);
11530     }
11531   }
11532 }
11533 
11534 void Sema::RefersToMemberWithReducedAlignment(
11535     Expr *E,
11536     std::function<void(Expr *, RecordDecl *, ValueDecl *, CharUnits)> Action) {
11537   const auto *ME = dyn_cast<MemberExpr>(E);
11538   while (ME && isa<FieldDecl>(ME->getMemberDecl())) {
11539     QualType BaseType = ME->getBase()->getType();
11540     if (ME->isArrow())
11541       BaseType = BaseType->getPointeeType();
11542     RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl();
11543 
11544     ValueDecl *MD = ME->getMemberDecl();
11545     bool ByteAligned = Context.getTypeAlignInChars(MD->getType()).isOne();
11546     if (ByteAligned) // Attribute packed does not have any effect.
11547       break;
11548 
11549     if (!ByteAligned &&
11550         (RD->hasAttr<PackedAttr>() || (MD->hasAttr<PackedAttr>()))) {
11551       CharUnits Alignment = std::min(Context.getTypeAlignInChars(MD->getType()),
11552                                      Context.getTypeAlignInChars(BaseType));
11553       // Notify that this expression designates a member with reduced alignment
11554       Action(E, RD, MD, Alignment);
11555       break;
11556     }
11557     ME = dyn_cast<MemberExpr>(ME->getBase());
11558   }
11559 }
11560 
11561 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
11562   using namespace std::placeholders;
11563   RefersToMemberWithReducedAlignment(
11564       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
11565                      _2, _3, _4));
11566 }
11567 
11568