1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/AST/UnresolvedSet.h"
38 #include "clang/Basic/AddressSpaces.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/OpenCLOptions.h"
45 #include "clang/Basic/OperatorKinds.h"
46 #include "clang/Basic/PartialDiagnostic.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/SyncScope.h"
51 #include "clang/Basic/TargetBuiltins.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/TypeTraits.h"
55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
56 #include "clang/Sema/Initialization.h"
57 #include "clang/Sema/Lookup.h"
58 #include "clang/Sema/Ownership.h"
59 #include "clang/Sema/Scope.h"
60 #include "clang/Sema/ScopeInfo.h"
61 #include "clang/Sema/Sema.h"
62 #include "clang/Sema/SemaInternal.h"
63 #include "llvm/ADT/APFloat.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/FoldingSet.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallBitVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallString.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/StringSwitch.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ConvertUTF.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/Format.h"
85 #include "llvm/Support/Locale.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstddef>
91 #include <cstdint>
92 #include <functional>
93 #include <limits>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 
98 using namespace clang;
99 using namespace sema;
100 
101 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
102                                                     unsigned ByteNo) const {
103   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
104                                Context.getTargetInfo());
105 }
106 
107 /// Checks that a call expression's argument count is the desired number.
108 /// This is useful when doing custom type-checking.  Returns true on error.
109 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
110   unsigned argCount = call->getNumArgs();
111   if (argCount == desiredArgCount) return false;
112 
113   if (argCount < desiredArgCount)
114     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
115            << 0 /*function call*/ << desiredArgCount << argCount
116            << call->getSourceRange();
117 
118   // Highlight all the excess arguments.
119   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
120                     call->getArg(argCount - 1)->getEndLoc());
121 
122   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
123     << 0 /*function call*/ << desiredArgCount << argCount
124     << call->getArg(1)->getSourceRange();
125 }
126 
127 /// Check that the first argument to __builtin_annotation is an integer
128 /// and the second argument is a non-wide string literal.
129 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
130   if (checkArgCount(S, TheCall, 2))
131     return true;
132 
133   // First argument should be an integer.
134   Expr *ValArg = TheCall->getArg(0);
135   QualType Ty = ValArg->getType();
136   if (!Ty->isIntegerType()) {
137     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
138         << ValArg->getSourceRange();
139     return true;
140   }
141 
142   // Second argument should be a constant string.
143   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
144   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
145   if (!Literal || !Literal->isAscii()) {
146     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
147         << StrArg->getSourceRange();
148     return true;
149   }
150 
151   TheCall->setType(Ty);
152   return false;
153 }
154 
155 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
156   // We need at least one argument.
157   if (TheCall->getNumArgs() < 1) {
158     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
159         << 0 << 1 << TheCall->getNumArgs()
160         << TheCall->getCallee()->getSourceRange();
161     return true;
162   }
163 
164   // All arguments should be wide string literals.
165   for (Expr *Arg : TheCall->arguments()) {
166     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
167     if (!Literal || !Literal->isWide()) {
168       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
169           << Arg->getSourceRange();
170       return true;
171     }
172   }
173 
174   return false;
175 }
176 
177 /// Check that the argument to __builtin_addressof is a glvalue, and set the
178 /// result type to the corresponding pointer type.
179 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
180   if (checkArgCount(S, TheCall, 1))
181     return true;
182 
183   ExprResult Arg(TheCall->getArg(0));
184   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
185   if (ResultType.isNull())
186     return true;
187 
188   TheCall->setArg(0, Arg.get());
189   TheCall->setType(ResultType);
190   return false;
191 }
192 
193 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
194   if (checkArgCount(S, TheCall, 3))
195     return true;
196 
197   // First two arguments should be integers.
198   for (unsigned I = 0; I < 2; ++I) {
199     ExprResult Arg = TheCall->getArg(I);
200     QualType Ty = Arg.get()->getType();
201     if (!Ty->isIntegerType()) {
202       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
203           << Ty << Arg.get()->getSourceRange();
204       return true;
205     }
206     InitializedEntity Entity = InitializedEntity::InitializeParameter(
207         S.getASTContext(), Ty, /*consume*/ false);
208     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
209     if (Arg.isInvalid())
210       return true;
211     TheCall->setArg(I, Arg.get());
212   }
213 
214   // Third argument should be a pointer to a non-const integer.
215   // IRGen correctly handles volatile, restrict, and address spaces, and
216   // the other qualifiers aren't possible.
217   {
218     ExprResult Arg = TheCall->getArg(2);
219     QualType Ty = Arg.get()->getType();
220     const auto *PtrTy = Ty->getAs<PointerType>();
221     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
222           !PtrTy->getPointeeType().isConstQualified())) {
223       S.Diag(Arg.get()->getBeginLoc(),
224              diag::err_overflow_builtin_must_be_ptr_int)
225           << Ty << Arg.get()->getSourceRange();
226       return true;
227     }
228     InitializedEntity Entity = InitializedEntity::InitializeParameter(
229         S.getASTContext(), Ty, /*consume*/ false);
230     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
231     if (Arg.isInvalid())
232       return true;
233     TheCall->setArg(2, Arg.get());
234   }
235   return false;
236 }
237 
238 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
239   if (checkArgCount(S, BuiltinCall, 2))
240     return true;
241 
242   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
243   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
244   Expr *Call = BuiltinCall->getArg(0);
245   Expr *Chain = BuiltinCall->getArg(1);
246 
247   if (Call->getStmtClass() != Stmt::CallExprClass) {
248     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
249         << Call->getSourceRange();
250     return true;
251   }
252 
253   auto CE = cast<CallExpr>(Call);
254   if (CE->getCallee()->getType()->isBlockPointerType()) {
255     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
256         << Call->getSourceRange();
257     return true;
258   }
259 
260   const Decl *TargetDecl = CE->getCalleeDecl();
261   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
262     if (FD->getBuiltinID()) {
263       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
264           << Call->getSourceRange();
265       return true;
266     }
267 
268   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
269     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
270         << Call->getSourceRange();
271     return true;
272   }
273 
274   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
275   if (ChainResult.isInvalid())
276     return true;
277   if (!ChainResult.get()->getType()->isPointerType()) {
278     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
279         << Chain->getSourceRange();
280     return true;
281   }
282 
283   QualType ReturnTy = CE->getCallReturnType(S.Context);
284   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
285   QualType BuiltinTy = S.Context.getFunctionType(
286       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
287   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
288 
289   Builtin =
290       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
291 
292   BuiltinCall->setType(CE->getType());
293   BuiltinCall->setValueKind(CE->getValueKind());
294   BuiltinCall->setObjectKind(CE->getObjectKind());
295   BuiltinCall->setCallee(Builtin);
296   BuiltinCall->setArg(1, ChainResult.get());
297 
298   return false;
299 }
300 
301 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
302 /// __builtin_*_chk function, then use the object size argument specified in the
303 /// source. Otherwise, infer the object size using __builtin_object_size.
304 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
305                                                CallExpr *TheCall) {
306   // FIXME: There are some more useful checks we could be doing here:
307   //  - Analyze the format string of sprintf to see how much of buffer is used.
308   //  - Evaluate strlen of strcpy arguments, use as object size.
309 
310   if (TheCall->isValueDependent() || TheCall->isTypeDependent())
311     return;
312 
313   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
314   if (!BuiltinID)
315     return;
316 
317   unsigned DiagID = 0;
318   bool IsChkVariant = false;
319   unsigned SizeIndex, ObjectIndex;
320   switch (BuiltinID) {
321   default:
322     return;
323   case Builtin::BI__builtin___memcpy_chk:
324   case Builtin::BI__builtin___memmove_chk:
325   case Builtin::BI__builtin___memset_chk:
326   case Builtin::BI__builtin___strlcat_chk:
327   case Builtin::BI__builtin___strlcpy_chk:
328   case Builtin::BI__builtin___strncat_chk:
329   case Builtin::BI__builtin___strncpy_chk:
330   case Builtin::BI__builtin___stpncpy_chk:
331   case Builtin::BI__builtin___memccpy_chk: {
332     DiagID = diag::warn_builtin_chk_overflow;
333     IsChkVariant = true;
334     SizeIndex = TheCall->getNumArgs() - 2;
335     ObjectIndex = TheCall->getNumArgs() - 1;
336     break;
337   }
338 
339   case Builtin::BI__builtin___snprintf_chk:
340   case Builtin::BI__builtin___vsnprintf_chk: {
341     DiagID = diag::warn_builtin_chk_overflow;
342     IsChkVariant = true;
343     SizeIndex = 1;
344     ObjectIndex = 3;
345     break;
346   }
347 
348   case Builtin::BIstrncat:
349   case Builtin::BI__builtin_strncat:
350   case Builtin::BIstrncpy:
351   case Builtin::BI__builtin_strncpy:
352   case Builtin::BIstpncpy:
353   case Builtin::BI__builtin_stpncpy: {
354     // Whether these functions overflow depends on the runtime strlen of the
355     // string, not just the buffer size, so emitting the "always overflow"
356     // diagnostic isn't quite right. We should still diagnose passing a buffer
357     // size larger than the destination buffer though; this is a runtime abort
358     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
359     DiagID = diag::warn_fortify_source_size_mismatch;
360     SizeIndex = TheCall->getNumArgs() - 1;
361     ObjectIndex = 0;
362     break;
363   }
364 
365   case Builtin::BImemcpy:
366   case Builtin::BI__builtin_memcpy:
367   case Builtin::BImemmove:
368   case Builtin::BI__builtin_memmove:
369   case Builtin::BImemset:
370   case Builtin::BI__builtin_memset: {
371     DiagID = diag::warn_fortify_source_overflow;
372     SizeIndex = TheCall->getNumArgs() - 1;
373     ObjectIndex = 0;
374     break;
375   }
376   case Builtin::BIsnprintf:
377   case Builtin::BI__builtin_snprintf:
378   case Builtin::BIvsnprintf:
379   case Builtin::BI__builtin_vsnprintf: {
380     DiagID = diag::warn_fortify_source_size_mismatch;
381     SizeIndex = 1;
382     ObjectIndex = 0;
383     break;
384   }
385   }
386 
387   llvm::APSInt ObjectSize;
388   // For __builtin___*_chk, the object size is explicitly provided by the caller
389   // (usually using __builtin_object_size). Use that value to check this call.
390   if (IsChkVariant) {
391     Expr::EvalResult Result;
392     Expr *SizeArg = TheCall->getArg(ObjectIndex);
393     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
394       return;
395     ObjectSize = Result.Val.getInt();
396 
397   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
398   } else {
399     // If the parameter has a pass_object_size attribute, then we should use its
400     // (potentially) more strict checking mode. Otherwise, conservatively assume
401     // type 0.
402     int BOSType = 0;
403     if (const auto *POS =
404             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
405       BOSType = POS->getType();
406 
407     Expr *ObjArg = TheCall->getArg(ObjectIndex);
408     uint64_t Result;
409     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
410       return;
411     // Get the object size in the target's size_t width.
412     const TargetInfo &TI = getASTContext().getTargetInfo();
413     unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
414     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
415   }
416 
417   // Evaluate the number of bytes of the object that this call will use.
418   Expr::EvalResult Result;
419   Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
420   if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
421     return;
422   llvm::APSInt UsedSize = Result.Val.getInt();
423 
424   if (UsedSize.ule(ObjectSize))
425     return;
426 
427   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
428   // Skim off the details of whichever builtin was called to produce a better
429   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
430   if (IsChkVariant) {
431     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
432     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
433   } else if (FunctionName.startswith("__builtin_")) {
434     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
435   }
436 
437   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
438                       PDiag(DiagID)
439                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
440                           << UsedSize.toString(/*Radix=*/10));
441 }
442 
443 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
444                                      Scope::ScopeFlags NeededScopeFlags,
445                                      unsigned DiagID) {
446   // Scopes aren't available during instantiation. Fortunately, builtin
447   // functions cannot be template args so they cannot be formed through template
448   // instantiation. Therefore checking once during the parse is sufficient.
449   if (SemaRef.inTemplateInstantiation())
450     return false;
451 
452   Scope *S = SemaRef.getCurScope();
453   while (S && !S->isSEHExceptScope())
454     S = S->getParent();
455   if (!S || !(S->getFlags() & NeededScopeFlags)) {
456     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
457     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
458         << DRE->getDecl()->getIdentifier();
459     return true;
460   }
461 
462   return false;
463 }
464 
465 static inline bool isBlockPointer(Expr *Arg) {
466   return Arg->getType()->isBlockPointerType();
467 }
468 
469 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
470 /// void*, which is a requirement of device side enqueue.
471 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
472   const BlockPointerType *BPT =
473       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
474   ArrayRef<QualType> Params =
475       BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes();
476   unsigned ArgCounter = 0;
477   bool IllegalParams = false;
478   // Iterate through the block parameters until either one is found that is not
479   // a local void*, or the block is valid.
480   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
481        I != E; ++I, ++ArgCounter) {
482     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
483         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
484             LangAS::opencl_local) {
485       // Get the location of the error. If a block literal has been passed
486       // (BlockExpr) then we can point straight to the offending argument,
487       // else we just point to the variable reference.
488       SourceLocation ErrorLoc;
489       if (isa<BlockExpr>(BlockArg)) {
490         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
491         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
492       } else if (isa<DeclRefExpr>(BlockArg)) {
493         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
494       }
495       S.Diag(ErrorLoc,
496              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
497       IllegalParams = true;
498     }
499   }
500 
501   return IllegalParams;
502 }
503 
504 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
505   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
506     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
507         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
508     return true;
509   }
510   return false;
511 }
512 
513 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
514   if (checkArgCount(S, TheCall, 2))
515     return true;
516 
517   if (checkOpenCLSubgroupExt(S, TheCall))
518     return true;
519 
520   // First argument is an ndrange_t type.
521   Expr *NDRangeArg = TheCall->getArg(0);
522   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
523     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
524         << TheCall->getDirectCallee() << "'ndrange_t'";
525     return true;
526   }
527 
528   Expr *BlockArg = TheCall->getArg(1);
529   if (!isBlockPointer(BlockArg)) {
530     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
531         << TheCall->getDirectCallee() << "block";
532     return true;
533   }
534   return checkOpenCLBlockArgs(S, BlockArg);
535 }
536 
537 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
538 /// get_kernel_work_group_size
539 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
540 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
541   if (checkArgCount(S, TheCall, 1))
542     return true;
543 
544   Expr *BlockArg = TheCall->getArg(0);
545   if (!isBlockPointer(BlockArg)) {
546     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
547         << TheCall->getDirectCallee() << "block";
548     return true;
549   }
550   return checkOpenCLBlockArgs(S, BlockArg);
551 }
552 
553 /// Diagnose integer type and any valid implicit conversion to it.
554 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
555                                       const QualType &IntType);
556 
557 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
558                                             unsigned Start, unsigned End) {
559   bool IllegalParams = false;
560   for (unsigned I = Start; I <= End; ++I)
561     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
562                                               S.Context.getSizeType());
563   return IllegalParams;
564 }
565 
566 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
567 /// 'local void*' parameter of passed block.
568 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
569                                            Expr *BlockArg,
570                                            unsigned NumNonVarArgs) {
571   const BlockPointerType *BPT =
572       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
573   unsigned NumBlockParams =
574       BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams();
575   unsigned TotalNumArgs = TheCall->getNumArgs();
576 
577   // For each argument passed to the block, a corresponding uint needs to
578   // be passed to describe the size of the local memory.
579   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
580     S.Diag(TheCall->getBeginLoc(),
581            diag::err_opencl_enqueue_kernel_local_size_args);
582     return true;
583   }
584 
585   // Check that the sizes of the local memory are specified by integers.
586   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
587                                          TotalNumArgs - 1);
588 }
589 
590 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
591 /// overload formats specified in Table 6.13.17.1.
592 /// int enqueue_kernel(queue_t queue,
593 ///                    kernel_enqueue_flags_t flags,
594 ///                    const ndrange_t ndrange,
595 ///                    void (^block)(void))
596 /// int enqueue_kernel(queue_t queue,
597 ///                    kernel_enqueue_flags_t flags,
598 ///                    const ndrange_t ndrange,
599 ///                    uint num_events_in_wait_list,
600 ///                    clk_event_t *event_wait_list,
601 ///                    clk_event_t *event_ret,
602 ///                    void (^block)(void))
603 /// int enqueue_kernel(queue_t queue,
604 ///                    kernel_enqueue_flags_t flags,
605 ///                    const ndrange_t ndrange,
606 ///                    void (^block)(local void*, ...),
607 ///                    uint size0, ...)
608 /// int enqueue_kernel(queue_t queue,
609 ///                    kernel_enqueue_flags_t flags,
610 ///                    const ndrange_t ndrange,
611 ///                    uint num_events_in_wait_list,
612 ///                    clk_event_t *event_wait_list,
613 ///                    clk_event_t *event_ret,
614 ///                    void (^block)(local void*, ...),
615 ///                    uint size0, ...)
616 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
617   unsigned NumArgs = TheCall->getNumArgs();
618 
619   if (NumArgs < 4) {
620     S.Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_few_args);
621     return true;
622   }
623 
624   Expr *Arg0 = TheCall->getArg(0);
625   Expr *Arg1 = TheCall->getArg(1);
626   Expr *Arg2 = TheCall->getArg(2);
627   Expr *Arg3 = TheCall->getArg(3);
628 
629   // First argument always needs to be a queue_t type.
630   if (!Arg0->getType()->isQueueT()) {
631     S.Diag(TheCall->getArg(0)->getBeginLoc(),
632            diag::err_opencl_builtin_expected_type)
633         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
634     return true;
635   }
636 
637   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
638   if (!Arg1->getType()->isIntegerType()) {
639     S.Diag(TheCall->getArg(1)->getBeginLoc(),
640            diag::err_opencl_builtin_expected_type)
641         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
642     return true;
643   }
644 
645   // Third argument is always an ndrange_t type.
646   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
647     S.Diag(TheCall->getArg(2)->getBeginLoc(),
648            diag::err_opencl_builtin_expected_type)
649         << TheCall->getDirectCallee() << "'ndrange_t'";
650     return true;
651   }
652 
653   // With four arguments, there is only one form that the function could be
654   // called in: no events and no variable arguments.
655   if (NumArgs == 4) {
656     // check that the last argument is the right block type.
657     if (!isBlockPointer(Arg3)) {
658       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
659           << TheCall->getDirectCallee() << "block";
660       return true;
661     }
662     // we have a block type, check the prototype
663     const BlockPointerType *BPT =
664         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
665     if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) {
666       S.Diag(Arg3->getBeginLoc(),
667              diag::err_opencl_enqueue_kernel_blocks_no_args);
668       return true;
669     }
670     return false;
671   }
672   // we can have block + varargs.
673   if (isBlockPointer(Arg3))
674     return (checkOpenCLBlockArgs(S, Arg3) ||
675             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
676   // last two cases with either exactly 7 args or 7 args and varargs.
677   if (NumArgs >= 7) {
678     // check common block argument.
679     Expr *Arg6 = TheCall->getArg(6);
680     if (!isBlockPointer(Arg6)) {
681       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
682           << TheCall->getDirectCallee() << "block";
683       return true;
684     }
685     if (checkOpenCLBlockArgs(S, Arg6))
686       return true;
687 
688     // Forth argument has to be any integer type.
689     if (!Arg3->getType()->isIntegerType()) {
690       S.Diag(TheCall->getArg(3)->getBeginLoc(),
691              diag::err_opencl_builtin_expected_type)
692           << TheCall->getDirectCallee() << "integer";
693       return true;
694     }
695     // check remaining common arguments.
696     Expr *Arg4 = TheCall->getArg(4);
697     Expr *Arg5 = TheCall->getArg(5);
698 
699     // Fifth argument is always passed as a pointer to clk_event_t.
700     if (!Arg4->isNullPointerConstant(S.Context,
701                                      Expr::NPC_ValueDependentIsNotNull) &&
702         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
703       S.Diag(TheCall->getArg(4)->getBeginLoc(),
704              diag::err_opencl_builtin_expected_type)
705           << TheCall->getDirectCallee()
706           << S.Context.getPointerType(S.Context.OCLClkEventTy);
707       return true;
708     }
709 
710     // Sixth argument is always passed as a pointer to clk_event_t.
711     if (!Arg5->isNullPointerConstant(S.Context,
712                                      Expr::NPC_ValueDependentIsNotNull) &&
713         !(Arg5->getType()->isPointerType() &&
714           Arg5->getType()->getPointeeType()->isClkEventT())) {
715       S.Diag(TheCall->getArg(5)->getBeginLoc(),
716              diag::err_opencl_builtin_expected_type)
717           << TheCall->getDirectCallee()
718           << S.Context.getPointerType(S.Context.OCLClkEventTy);
719       return true;
720     }
721 
722     if (NumArgs == 7)
723       return false;
724 
725     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
726   }
727 
728   // None of the specific case has been detected, give generic error
729   S.Diag(TheCall->getBeginLoc(),
730          diag::err_opencl_enqueue_kernel_incorrect_args);
731   return true;
732 }
733 
734 /// Returns OpenCL access qual.
735 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
736     return D->getAttr<OpenCLAccessAttr>();
737 }
738 
739 /// Returns true if pipe element type is different from the pointer.
740 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
741   const Expr *Arg0 = Call->getArg(0);
742   // First argument type should always be pipe.
743   if (!Arg0->getType()->isPipeType()) {
744     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
745         << Call->getDirectCallee() << Arg0->getSourceRange();
746     return true;
747   }
748   OpenCLAccessAttr *AccessQual =
749       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
750   // Validates the access qualifier is compatible with the call.
751   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
752   // read_only and write_only, and assumed to be read_only if no qualifier is
753   // specified.
754   switch (Call->getDirectCallee()->getBuiltinID()) {
755   case Builtin::BIread_pipe:
756   case Builtin::BIreserve_read_pipe:
757   case Builtin::BIcommit_read_pipe:
758   case Builtin::BIwork_group_reserve_read_pipe:
759   case Builtin::BIsub_group_reserve_read_pipe:
760   case Builtin::BIwork_group_commit_read_pipe:
761   case Builtin::BIsub_group_commit_read_pipe:
762     if (!(!AccessQual || AccessQual->isReadOnly())) {
763       S.Diag(Arg0->getBeginLoc(),
764              diag::err_opencl_builtin_pipe_invalid_access_modifier)
765           << "read_only" << Arg0->getSourceRange();
766       return true;
767     }
768     break;
769   case Builtin::BIwrite_pipe:
770   case Builtin::BIreserve_write_pipe:
771   case Builtin::BIcommit_write_pipe:
772   case Builtin::BIwork_group_reserve_write_pipe:
773   case Builtin::BIsub_group_reserve_write_pipe:
774   case Builtin::BIwork_group_commit_write_pipe:
775   case Builtin::BIsub_group_commit_write_pipe:
776     if (!(AccessQual && AccessQual->isWriteOnly())) {
777       S.Diag(Arg0->getBeginLoc(),
778              diag::err_opencl_builtin_pipe_invalid_access_modifier)
779           << "write_only" << Arg0->getSourceRange();
780       return true;
781     }
782     break;
783   default:
784     break;
785   }
786   return false;
787 }
788 
789 /// Returns true if pipe element type is different from the pointer.
790 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
791   const Expr *Arg0 = Call->getArg(0);
792   const Expr *ArgIdx = Call->getArg(Idx);
793   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
794   const QualType EltTy = PipeTy->getElementType();
795   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
796   // The Idx argument should be a pointer and the type of the pointer and
797   // the type of pipe element should also be the same.
798   if (!ArgTy ||
799       !S.Context.hasSameType(
800           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
801     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
802         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
803         << ArgIdx->getType() << ArgIdx->getSourceRange();
804     return true;
805   }
806   return false;
807 }
808 
809 // Performs semantic analysis for the read/write_pipe call.
810 // \param S Reference to the semantic analyzer.
811 // \param Call A pointer to the builtin call.
812 // \return True if a semantic error has been found, false otherwise.
813 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
814   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
815   // functions have two forms.
816   switch (Call->getNumArgs()) {
817   case 2:
818     if (checkOpenCLPipeArg(S, Call))
819       return true;
820     // The call with 2 arguments should be
821     // read/write_pipe(pipe T, T*).
822     // Check packet type T.
823     if (checkOpenCLPipePacketType(S, Call, 1))
824       return true;
825     break;
826 
827   case 4: {
828     if (checkOpenCLPipeArg(S, Call))
829       return true;
830     // The call with 4 arguments should be
831     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
832     // Check reserve_id_t.
833     if (!Call->getArg(1)->getType()->isReserveIDT()) {
834       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
835           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
836           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
837       return true;
838     }
839 
840     // Check the index.
841     const Expr *Arg2 = Call->getArg(2);
842     if (!Arg2->getType()->isIntegerType() &&
843         !Arg2->getType()->isUnsignedIntegerType()) {
844       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
845           << Call->getDirectCallee() << S.Context.UnsignedIntTy
846           << Arg2->getType() << Arg2->getSourceRange();
847       return true;
848     }
849 
850     // Check packet type T.
851     if (checkOpenCLPipePacketType(S, Call, 3))
852       return true;
853   } break;
854   default:
855     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
856         << Call->getDirectCallee() << Call->getSourceRange();
857     return true;
858   }
859 
860   return false;
861 }
862 
863 // Performs a semantic analysis on the {work_group_/sub_group_
864 //        /_}reserve_{read/write}_pipe
865 // \param S Reference to the semantic analyzer.
866 // \param Call The call to the builtin function to be analyzed.
867 // \return True if a semantic error was found, false otherwise.
868 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
869   if (checkArgCount(S, Call, 2))
870     return true;
871 
872   if (checkOpenCLPipeArg(S, Call))
873     return true;
874 
875   // Check the reserve size.
876   if (!Call->getArg(1)->getType()->isIntegerType() &&
877       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
878     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
879         << Call->getDirectCallee() << S.Context.UnsignedIntTy
880         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
881     return true;
882   }
883 
884   // Since return type of reserve_read/write_pipe built-in function is
885   // reserve_id_t, which is not defined in the builtin def file , we used int
886   // as return type and need to override the return type of these functions.
887   Call->setType(S.Context.OCLReserveIDTy);
888 
889   return false;
890 }
891 
892 // Performs a semantic analysis on {work_group_/sub_group_
893 //        /_}commit_{read/write}_pipe
894 // \param S Reference to the semantic analyzer.
895 // \param Call The call to the builtin function to be analyzed.
896 // \return True if a semantic error was found, false otherwise.
897 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
898   if (checkArgCount(S, Call, 2))
899     return true;
900 
901   if (checkOpenCLPipeArg(S, Call))
902     return true;
903 
904   // Check reserve_id_t.
905   if (!Call->getArg(1)->getType()->isReserveIDT()) {
906     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
907         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
908         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
909     return true;
910   }
911 
912   return false;
913 }
914 
915 // Performs a semantic analysis on the call to built-in Pipe
916 //        Query Functions.
917 // \param S Reference to the semantic analyzer.
918 // \param Call The call to the builtin function to be analyzed.
919 // \return True if a semantic error was found, false otherwise.
920 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
921   if (checkArgCount(S, Call, 1))
922     return true;
923 
924   if (!Call->getArg(0)->getType()->isPipeType()) {
925     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
926         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
927     return true;
928   }
929 
930   return false;
931 }
932 
933 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
934 // Performs semantic analysis for the to_global/local/private call.
935 // \param S Reference to the semantic analyzer.
936 // \param BuiltinID ID of the builtin function.
937 // \param Call A pointer to the builtin call.
938 // \return True if a semantic error has been found, false otherwise.
939 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
940                                     CallExpr *Call) {
941   if (Call->getNumArgs() != 1) {
942     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num)
943         << Call->getDirectCallee() << Call->getSourceRange();
944     return true;
945   }
946 
947   auto RT = Call->getArg(0)->getType();
948   if (!RT->isPointerType() || RT->getPointeeType()
949       .getAddressSpace() == LangAS::opencl_constant) {
950     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
951         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
952     return true;
953   }
954 
955   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
956     S.Diag(Call->getArg(0)->getBeginLoc(),
957            diag::warn_opencl_generic_address_space_arg)
958         << Call->getDirectCallee()->getNameInfo().getAsString()
959         << Call->getArg(0)->getSourceRange();
960   }
961 
962   RT = RT->getPointeeType();
963   auto Qual = RT.getQualifiers();
964   switch (BuiltinID) {
965   case Builtin::BIto_global:
966     Qual.setAddressSpace(LangAS::opencl_global);
967     break;
968   case Builtin::BIto_local:
969     Qual.setAddressSpace(LangAS::opencl_local);
970     break;
971   case Builtin::BIto_private:
972     Qual.setAddressSpace(LangAS::opencl_private);
973     break;
974   default:
975     llvm_unreachable("Invalid builtin function");
976   }
977   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
978       RT.getUnqualifiedType(), Qual)));
979 
980   return false;
981 }
982 
983 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
984   if (checkArgCount(S, TheCall, 1))
985     return ExprError();
986 
987   // Compute __builtin_launder's parameter type from the argument.
988   // The parameter type is:
989   //  * The type of the argument if it's not an array or function type,
990   //  Otherwise,
991   //  * The decayed argument type.
992   QualType ParamTy = [&]() {
993     QualType ArgTy = TheCall->getArg(0)->getType();
994     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
995       return S.Context.getPointerType(Ty->getElementType());
996     if (ArgTy->isFunctionType()) {
997       return S.Context.getPointerType(ArgTy);
998     }
999     return ArgTy;
1000   }();
1001 
1002   TheCall->setType(ParamTy);
1003 
1004   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1005     if (!ParamTy->isPointerType())
1006       return 0;
1007     if (ParamTy->isFunctionPointerType())
1008       return 1;
1009     if (ParamTy->isVoidPointerType())
1010       return 2;
1011     return llvm::Optional<unsigned>{};
1012   }();
1013   if (DiagSelect.hasValue()) {
1014     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1015         << DiagSelect.getValue() << TheCall->getSourceRange();
1016     return ExprError();
1017   }
1018 
1019   // We either have an incomplete class type, or we have a class template
1020   // whose instantiation has not been forced. Example:
1021   //
1022   //   template <class T> struct Foo { T value; };
1023   //   Foo<int> *p = nullptr;
1024   //   auto *d = __builtin_launder(p);
1025   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1026                             diag::err_incomplete_type))
1027     return ExprError();
1028 
1029   assert(ParamTy->getPointeeType()->isObjectType() &&
1030          "Unhandled non-object pointer case");
1031 
1032   InitializedEntity Entity =
1033       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1034   ExprResult Arg =
1035       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1036   if (Arg.isInvalid())
1037     return ExprError();
1038   TheCall->setArg(0, Arg.get());
1039 
1040   return TheCall;
1041 }
1042 
1043 // Emit an error and return true if the current architecture is not in the list
1044 // of supported architectures.
1045 static bool
1046 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1047                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1048   llvm::Triple::ArchType CurArch =
1049       S.getASTContext().getTargetInfo().getTriple().getArch();
1050   if (llvm::is_contained(SupportedArchs, CurArch))
1051     return false;
1052   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1053       << TheCall->getSourceRange();
1054   return true;
1055 }
1056 
1057 ExprResult
1058 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1059                                CallExpr *TheCall) {
1060   ExprResult TheCallResult(TheCall);
1061 
1062   // Find out if any arguments are required to be integer constant expressions.
1063   unsigned ICEArguments = 0;
1064   ASTContext::GetBuiltinTypeError Error;
1065   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1066   if (Error != ASTContext::GE_None)
1067     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1068 
1069   // If any arguments are required to be ICE's, check and diagnose.
1070   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1071     // Skip arguments not required to be ICE's.
1072     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1073 
1074     llvm::APSInt Result;
1075     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1076       return true;
1077     ICEArguments &= ~(1 << ArgNo);
1078   }
1079 
1080   switch (BuiltinID) {
1081   case Builtin::BI__builtin___CFStringMakeConstantString:
1082     assert(TheCall->getNumArgs() == 1 &&
1083            "Wrong # arguments to builtin CFStringMakeConstantString");
1084     if (CheckObjCString(TheCall->getArg(0)))
1085       return ExprError();
1086     break;
1087   case Builtin::BI__builtin_ms_va_start:
1088   case Builtin::BI__builtin_stdarg_start:
1089   case Builtin::BI__builtin_va_start:
1090     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1091       return ExprError();
1092     break;
1093   case Builtin::BI__va_start: {
1094     switch (Context.getTargetInfo().getTriple().getArch()) {
1095     case llvm::Triple::aarch64:
1096     case llvm::Triple::arm:
1097     case llvm::Triple::thumb:
1098       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1099         return ExprError();
1100       break;
1101     default:
1102       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1103         return ExprError();
1104       break;
1105     }
1106     break;
1107   }
1108 
1109   // The acquire, release, and no fence variants are ARM and AArch64 only.
1110   case Builtin::BI_interlockedbittestandset_acq:
1111   case Builtin::BI_interlockedbittestandset_rel:
1112   case Builtin::BI_interlockedbittestandset_nf:
1113   case Builtin::BI_interlockedbittestandreset_acq:
1114   case Builtin::BI_interlockedbittestandreset_rel:
1115   case Builtin::BI_interlockedbittestandreset_nf:
1116     if (CheckBuiltinTargetSupport(
1117             *this, BuiltinID, TheCall,
1118             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1119       return ExprError();
1120     break;
1121 
1122   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1123   case Builtin::BI_bittest64:
1124   case Builtin::BI_bittestandcomplement64:
1125   case Builtin::BI_bittestandreset64:
1126   case Builtin::BI_bittestandset64:
1127   case Builtin::BI_interlockedbittestandreset64:
1128   case Builtin::BI_interlockedbittestandset64:
1129     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1130                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1131                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1132       return ExprError();
1133     break;
1134 
1135   case Builtin::BI__builtin_isgreater:
1136   case Builtin::BI__builtin_isgreaterequal:
1137   case Builtin::BI__builtin_isless:
1138   case Builtin::BI__builtin_islessequal:
1139   case Builtin::BI__builtin_islessgreater:
1140   case Builtin::BI__builtin_isunordered:
1141     if (SemaBuiltinUnorderedCompare(TheCall))
1142       return ExprError();
1143     break;
1144   case Builtin::BI__builtin_fpclassify:
1145     if (SemaBuiltinFPClassification(TheCall, 6))
1146       return ExprError();
1147     break;
1148   case Builtin::BI__builtin_isfinite:
1149   case Builtin::BI__builtin_isinf:
1150   case Builtin::BI__builtin_isinf_sign:
1151   case Builtin::BI__builtin_isnan:
1152   case Builtin::BI__builtin_isnormal:
1153   case Builtin::BI__builtin_signbit:
1154   case Builtin::BI__builtin_signbitf:
1155   case Builtin::BI__builtin_signbitl:
1156     if (SemaBuiltinFPClassification(TheCall, 1))
1157       return ExprError();
1158     break;
1159   case Builtin::BI__builtin_shufflevector:
1160     return SemaBuiltinShuffleVector(TheCall);
1161     // TheCall will be freed by the smart pointer here, but that's fine, since
1162     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1163   case Builtin::BI__builtin_prefetch:
1164     if (SemaBuiltinPrefetch(TheCall))
1165       return ExprError();
1166     break;
1167   case Builtin::BI__builtin_alloca_with_align:
1168     if (SemaBuiltinAllocaWithAlign(TheCall))
1169       return ExprError();
1170     break;
1171   case Builtin::BI__assume:
1172   case Builtin::BI__builtin_assume:
1173     if (SemaBuiltinAssume(TheCall))
1174       return ExprError();
1175     break;
1176   case Builtin::BI__builtin_assume_aligned:
1177     if (SemaBuiltinAssumeAligned(TheCall))
1178       return ExprError();
1179     break;
1180   case Builtin::BI__builtin_dynamic_object_size:
1181   case Builtin::BI__builtin_object_size:
1182     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1183       return ExprError();
1184     break;
1185   case Builtin::BI__builtin_longjmp:
1186     if (SemaBuiltinLongjmp(TheCall))
1187       return ExprError();
1188     break;
1189   case Builtin::BI__builtin_setjmp:
1190     if (SemaBuiltinSetjmp(TheCall))
1191       return ExprError();
1192     break;
1193   case Builtin::BI_setjmp:
1194   case Builtin::BI_setjmpex:
1195     if (checkArgCount(*this, TheCall, 1))
1196       return true;
1197     break;
1198   case Builtin::BI__builtin_classify_type:
1199     if (checkArgCount(*this, TheCall, 1)) return true;
1200     TheCall->setType(Context.IntTy);
1201     break;
1202   case Builtin::BI__builtin_constant_p: {
1203     if (checkArgCount(*this, TheCall, 1)) return true;
1204     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1205     if (Arg.isInvalid()) return true;
1206     TheCall->setArg(0, Arg.get());
1207     TheCall->setType(Context.IntTy);
1208     break;
1209   }
1210   case Builtin::BI__builtin_launder:
1211     return SemaBuiltinLaunder(*this, TheCall);
1212   case Builtin::BI__sync_fetch_and_add:
1213   case Builtin::BI__sync_fetch_and_add_1:
1214   case Builtin::BI__sync_fetch_and_add_2:
1215   case Builtin::BI__sync_fetch_and_add_4:
1216   case Builtin::BI__sync_fetch_and_add_8:
1217   case Builtin::BI__sync_fetch_and_add_16:
1218   case Builtin::BI__sync_fetch_and_sub:
1219   case Builtin::BI__sync_fetch_and_sub_1:
1220   case Builtin::BI__sync_fetch_and_sub_2:
1221   case Builtin::BI__sync_fetch_and_sub_4:
1222   case Builtin::BI__sync_fetch_and_sub_8:
1223   case Builtin::BI__sync_fetch_and_sub_16:
1224   case Builtin::BI__sync_fetch_and_or:
1225   case Builtin::BI__sync_fetch_and_or_1:
1226   case Builtin::BI__sync_fetch_and_or_2:
1227   case Builtin::BI__sync_fetch_and_or_4:
1228   case Builtin::BI__sync_fetch_and_or_8:
1229   case Builtin::BI__sync_fetch_and_or_16:
1230   case Builtin::BI__sync_fetch_and_and:
1231   case Builtin::BI__sync_fetch_and_and_1:
1232   case Builtin::BI__sync_fetch_and_and_2:
1233   case Builtin::BI__sync_fetch_and_and_4:
1234   case Builtin::BI__sync_fetch_and_and_8:
1235   case Builtin::BI__sync_fetch_and_and_16:
1236   case Builtin::BI__sync_fetch_and_xor:
1237   case Builtin::BI__sync_fetch_and_xor_1:
1238   case Builtin::BI__sync_fetch_and_xor_2:
1239   case Builtin::BI__sync_fetch_and_xor_4:
1240   case Builtin::BI__sync_fetch_and_xor_8:
1241   case Builtin::BI__sync_fetch_and_xor_16:
1242   case Builtin::BI__sync_fetch_and_nand:
1243   case Builtin::BI__sync_fetch_and_nand_1:
1244   case Builtin::BI__sync_fetch_and_nand_2:
1245   case Builtin::BI__sync_fetch_and_nand_4:
1246   case Builtin::BI__sync_fetch_and_nand_8:
1247   case Builtin::BI__sync_fetch_and_nand_16:
1248   case Builtin::BI__sync_add_and_fetch:
1249   case Builtin::BI__sync_add_and_fetch_1:
1250   case Builtin::BI__sync_add_and_fetch_2:
1251   case Builtin::BI__sync_add_and_fetch_4:
1252   case Builtin::BI__sync_add_and_fetch_8:
1253   case Builtin::BI__sync_add_and_fetch_16:
1254   case Builtin::BI__sync_sub_and_fetch:
1255   case Builtin::BI__sync_sub_and_fetch_1:
1256   case Builtin::BI__sync_sub_and_fetch_2:
1257   case Builtin::BI__sync_sub_and_fetch_4:
1258   case Builtin::BI__sync_sub_and_fetch_8:
1259   case Builtin::BI__sync_sub_and_fetch_16:
1260   case Builtin::BI__sync_and_and_fetch:
1261   case Builtin::BI__sync_and_and_fetch_1:
1262   case Builtin::BI__sync_and_and_fetch_2:
1263   case Builtin::BI__sync_and_and_fetch_4:
1264   case Builtin::BI__sync_and_and_fetch_8:
1265   case Builtin::BI__sync_and_and_fetch_16:
1266   case Builtin::BI__sync_or_and_fetch:
1267   case Builtin::BI__sync_or_and_fetch_1:
1268   case Builtin::BI__sync_or_and_fetch_2:
1269   case Builtin::BI__sync_or_and_fetch_4:
1270   case Builtin::BI__sync_or_and_fetch_8:
1271   case Builtin::BI__sync_or_and_fetch_16:
1272   case Builtin::BI__sync_xor_and_fetch:
1273   case Builtin::BI__sync_xor_and_fetch_1:
1274   case Builtin::BI__sync_xor_and_fetch_2:
1275   case Builtin::BI__sync_xor_and_fetch_4:
1276   case Builtin::BI__sync_xor_and_fetch_8:
1277   case Builtin::BI__sync_xor_and_fetch_16:
1278   case Builtin::BI__sync_nand_and_fetch:
1279   case Builtin::BI__sync_nand_and_fetch_1:
1280   case Builtin::BI__sync_nand_and_fetch_2:
1281   case Builtin::BI__sync_nand_and_fetch_4:
1282   case Builtin::BI__sync_nand_and_fetch_8:
1283   case Builtin::BI__sync_nand_and_fetch_16:
1284   case Builtin::BI__sync_val_compare_and_swap:
1285   case Builtin::BI__sync_val_compare_and_swap_1:
1286   case Builtin::BI__sync_val_compare_and_swap_2:
1287   case Builtin::BI__sync_val_compare_and_swap_4:
1288   case Builtin::BI__sync_val_compare_and_swap_8:
1289   case Builtin::BI__sync_val_compare_and_swap_16:
1290   case Builtin::BI__sync_bool_compare_and_swap:
1291   case Builtin::BI__sync_bool_compare_and_swap_1:
1292   case Builtin::BI__sync_bool_compare_and_swap_2:
1293   case Builtin::BI__sync_bool_compare_and_swap_4:
1294   case Builtin::BI__sync_bool_compare_and_swap_8:
1295   case Builtin::BI__sync_bool_compare_and_swap_16:
1296   case Builtin::BI__sync_lock_test_and_set:
1297   case Builtin::BI__sync_lock_test_and_set_1:
1298   case Builtin::BI__sync_lock_test_and_set_2:
1299   case Builtin::BI__sync_lock_test_and_set_4:
1300   case Builtin::BI__sync_lock_test_and_set_8:
1301   case Builtin::BI__sync_lock_test_and_set_16:
1302   case Builtin::BI__sync_lock_release:
1303   case Builtin::BI__sync_lock_release_1:
1304   case Builtin::BI__sync_lock_release_2:
1305   case Builtin::BI__sync_lock_release_4:
1306   case Builtin::BI__sync_lock_release_8:
1307   case Builtin::BI__sync_lock_release_16:
1308   case Builtin::BI__sync_swap:
1309   case Builtin::BI__sync_swap_1:
1310   case Builtin::BI__sync_swap_2:
1311   case Builtin::BI__sync_swap_4:
1312   case Builtin::BI__sync_swap_8:
1313   case Builtin::BI__sync_swap_16:
1314     return SemaBuiltinAtomicOverloaded(TheCallResult);
1315   case Builtin::BI__sync_synchronize:
1316     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1317         << TheCall->getCallee()->getSourceRange();
1318     break;
1319   case Builtin::BI__builtin_nontemporal_load:
1320   case Builtin::BI__builtin_nontemporal_store:
1321     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1322 #define BUILTIN(ID, TYPE, ATTRS)
1323 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1324   case Builtin::BI##ID: \
1325     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1326 #include "clang/Basic/Builtins.def"
1327   case Builtin::BI__annotation:
1328     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1329       return ExprError();
1330     break;
1331   case Builtin::BI__builtin_annotation:
1332     if (SemaBuiltinAnnotation(*this, TheCall))
1333       return ExprError();
1334     break;
1335   case Builtin::BI__builtin_addressof:
1336     if (SemaBuiltinAddressof(*this, TheCall))
1337       return ExprError();
1338     break;
1339   case Builtin::BI__builtin_add_overflow:
1340   case Builtin::BI__builtin_sub_overflow:
1341   case Builtin::BI__builtin_mul_overflow:
1342     if (SemaBuiltinOverflow(*this, TheCall))
1343       return ExprError();
1344     break;
1345   case Builtin::BI__builtin_operator_new:
1346   case Builtin::BI__builtin_operator_delete: {
1347     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1348     ExprResult Res =
1349         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1350     if (Res.isInvalid())
1351       CorrectDelayedTyposInExpr(TheCallResult.get());
1352     return Res;
1353   }
1354   case Builtin::BI__builtin_dump_struct: {
1355     // We first want to ensure we are called with 2 arguments
1356     if (checkArgCount(*this, TheCall, 2))
1357       return ExprError();
1358     // Ensure that the first argument is of type 'struct XX *'
1359     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1360     const QualType PtrArgType = PtrArg->getType();
1361     if (!PtrArgType->isPointerType() ||
1362         !PtrArgType->getPointeeType()->isRecordType()) {
1363       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1364           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1365           << "structure pointer";
1366       return ExprError();
1367     }
1368 
1369     // Ensure that the second argument is of type 'FunctionType'
1370     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1371     const QualType FnPtrArgType = FnPtrArg->getType();
1372     if (!FnPtrArgType->isPointerType()) {
1373       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1374           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1375           << FnPtrArgType << "'int (*)(const char *, ...)'";
1376       return ExprError();
1377     }
1378 
1379     const auto *FuncType =
1380         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1381 
1382     if (!FuncType) {
1383       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1384           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1385           << FnPtrArgType << "'int (*)(const char *, ...)'";
1386       return ExprError();
1387     }
1388 
1389     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1390       if (!FT->getNumParams()) {
1391         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1392             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1393             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1394         return ExprError();
1395       }
1396       QualType PT = FT->getParamType(0);
1397       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1398           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1399           !PT->getPointeeType().isConstQualified()) {
1400         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1401             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1402             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1403         return ExprError();
1404       }
1405     }
1406 
1407     TheCall->setType(Context.IntTy);
1408     break;
1409   }
1410   case Builtin::BI__builtin_call_with_static_chain:
1411     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1412       return ExprError();
1413     break;
1414   case Builtin::BI__exception_code:
1415   case Builtin::BI_exception_code:
1416     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1417                                  diag::err_seh___except_block))
1418       return ExprError();
1419     break;
1420   case Builtin::BI__exception_info:
1421   case Builtin::BI_exception_info:
1422     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1423                                  diag::err_seh___except_filter))
1424       return ExprError();
1425     break;
1426   case Builtin::BI__GetExceptionInfo:
1427     if (checkArgCount(*this, TheCall, 1))
1428       return ExprError();
1429 
1430     if (CheckCXXThrowOperand(
1431             TheCall->getBeginLoc(),
1432             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1433             TheCall))
1434       return ExprError();
1435 
1436     TheCall->setType(Context.VoidPtrTy);
1437     break;
1438   // OpenCL v2.0, s6.13.16 - Pipe functions
1439   case Builtin::BIread_pipe:
1440   case Builtin::BIwrite_pipe:
1441     // Since those two functions are declared with var args, we need a semantic
1442     // check for the argument.
1443     if (SemaBuiltinRWPipe(*this, TheCall))
1444       return ExprError();
1445     break;
1446   case Builtin::BIreserve_read_pipe:
1447   case Builtin::BIreserve_write_pipe:
1448   case Builtin::BIwork_group_reserve_read_pipe:
1449   case Builtin::BIwork_group_reserve_write_pipe:
1450     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1451       return ExprError();
1452     break;
1453   case Builtin::BIsub_group_reserve_read_pipe:
1454   case Builtin::BIsub_group_reserve_write_pipe:
1455     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1456         SemaBuiltinReserveRWPipe(*this, TheCall))
1457       return ExprError();
1458     break;
1459   case Builtin::BIcommit_read_pipe:
1460   case Builtin::BIcommit_write_pipe:
1461   case Builtin::BIwork_group_commit_read_pipe:
1462   case Builtin::BIwork_group_commit_write_pipe:
1463     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1464       return ExprError();
1465     break;
1466   case Builtin::BIsub_group_commit_read_pipe:
1467   case Builtin::BIsub_group_commit_write_pipe:
1468     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1469         SemaBuiltinCommitRWPipe(*this, TheCall))
1470       return ExprError();
1471     break;
1472   case Builtin::BIget_pipe_num_packets:
1473   case Builtin::BIget_pipe_max_packets:
1474     if (SemaBuiltinPipePackets(*this, TheCall))
1475       return ExprError();
1476     break;
1477   case Builtin::BIto_global:
1478   case Builtin::BIto_local:
1479   case Builtin::BIto_private:
1480     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1481       return ExprError();
1482     break;
1483   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1484   case Builtin::BIenqueue_kernel:
1485     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1486       return ExprError();
1487     break;
1488   case Builtin::BIget_kernel_work_group_size:
1489   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1490     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1491       return ExprError();
1492     break;
1493   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1494   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1495     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1496       return ExprError();
1497     break;
1498   case Builtin::BI__builtin_os_log_format:
1499   case Builtin::BI__builtin_os_log_format_buffer_size:
1500     if (SemaBuiltinOSLogFormat(TheCall))
1501       return ExprError();
1502     break;
1503   }
1504 
1505   // Since the target specific builtins for each arch overlap, only check those
1506   // of the arch we are compiling for.
1507   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1508     switch (Context.getTargetInfo().getTriple().getArch()) {
1509       case llvm::Triple::arm:
1510       case llvm::Triple::armeb:
1511       case llvm::Triple::thumb:
1512       case llvm::Triple::thumbeb:
1513         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1514           return ExprError();
1515         break;
1516       case llvm::Triple::aarch64:
1517       case llvm::Triple::aarch64_be:
1518         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1519           return ExprError();
1520         break;
1521       case llvm::Triple::hexagon:
1522         if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall))
1523           return ExprError();
1524         break;
1525       case llvm::Triple::mips:
1526       case llvm::Triple::mipsel:
1527       case llvm::Triple::mips64:
1528       case llvm::Triple::mips64el:
1529         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1530           return ExprError();
1531         break;
1532       case llvm::Triple::systemz:
1533         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1534           return ExprError();
1535         break;
1536       case llvm::Triple::x86:
1537       case llvm::Triple::x86_64:
1538         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1539           return ExprError();
1540         break;
1541       case llvm::Triple::ppc:
1542       case llvm::Triple::ppc64:
1543       case llvm::Triple::ppc64le:
1544         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1545           return ExprError();
1546         break;
1547       default:
1548         break;
1549     }
1550   }
1551 
1552   return TheCallResult;
1553 }
1554 
1555 // Get the valid immediate range for the specified NEON type code.
1556 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1557   NeonTypeFlags Type(t);
1558   int IsQuad = ForceQuad ? true : Type.isQuad();
1559   switch (Type.getEltType()) {
1560   case NeonTypeFlags::Int8:
1561   case NeonTypeFlags::Poly8:
1562     return shift ? 7 : (8 << IsQuad) - 1;
1563   case NeonTypeFlags::Int16:
1564   case NeonTypeFlags::Poly16:
1565     return shift ? 15 : (4 << IsQuad) - 1;
1566   case NeonTypeFlags::Int32:
1567     return shift ? 31 : (2 << IsQuad) - 1;
1568   case NeonTypeFlags::Int64:
1569   case NeonTypeFlags::Poly64:
1570     return shift ? 63 : (1 << IsQuad) - 1;
1571   case NeonTypeFlags::Poly128:
1572     return shift ? 127 : (1 << IsQuad) - 1;
1573   case NeonTypeFlags::Float16:
1574     assert(!shift && "cannot shift float types!");
1575     return (4 << IsQuad) - 1;
1576   case NeonTypeFlags::Float32:
1577     assert(!shift && "cannot shift float types!");
1578     return (2 << IsQuad) - 1;
1579   case NeonTypeFlags::Float64:
1580     assert(!shift && "cannot shift float types!");
1581     return (1 << IsQuad) - 1;
1582   }
1583   llvm_unreachable("Invalid NeonTypeFlag!");
1584 }
1585 
1586 /// getNeonEltType - Return the QualType corresponding to the elements of
1587 /// the vector type specified by the NeonTypeFlags.  This is used to check
1588 /// the pointer arguments for Neon load/store intrinsics.
1589 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1590                                bool IsPolyUnsigned, bool IsInt64Long) {
1591   switch (Flags.getEltType()) {
1592   case NeonTypeFlags::Int8:
1593     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1594   case NeonTypeFlags::Int16:
1595     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1596   case NeonTypeFlags::Int32:
1597     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1598   case NeonTypeFlags::Int64:
1599     if (IsInt64Long)
1600       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1601     else
1602       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1603                                 : Context.LongLongTy;
1604   case NeonTypeFlags::Poly8:
1605     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1606   case NeonTypeFlags::Poly16:
1607     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1608   case NeonTypeFlags::Poly64:
1609     if (IsInt64Long)
1610       return Context.UnsignedLongTy;
1611     else
1612       return Context.UnsignedLongLongTy;
1613   case NeonTypeFlags::Poly128:
1614     break;
1615   case NeonTypeFlags::Float16:
1616     return Context.HalfTy;
1617   case NeonTypeFlags::Float32:
1618     return Context.FloatTy;
1619   case NeonTypeFlags::Float64:
1620     return Context.DoubleTy;
1621   }
1622   llvm_unreachable("Invalid NeonTypeFlag!");
1623 }
1624 
1625 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1626   llvm::APSInt Result;
1627   uint64_t mask = 0;
1628   unsigned TV = 0;
1629   int PtrArgNum = -1;
1630   bool HasConstPtr = false;
1631   switch (BuiltinID) {
1632 #define GET_NEON_OVERLOAD_CHECK
1633 #include "clang/Basic/arm_neon.inc"
1634 #include "clang/Basic/arm_fp16.inc"
1635 #undef GET_NEON_OVERLOAD_CHECK
1636   }
1637 
1638   // For NEON intrinsics which are overloaded on vector element type, validate
1639   // the immediate which specifies which variant to emit.
1640   unsigned ImmArg = TheCall->getNumArgs()-1;
1641   if (mask) {
1642     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1643       return true;
1644 
1645     TV = Result.getLimitedValue(64);
1646     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1647       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
1648              << TheCall->getArg(ImmArg)->getSourceRange();
1649   }
1650 
1651   if (PtrArgNum >= 0) {
1652     // Check that pointer arguments have the specified type.
1653     Expr *Arg = TheCall->getArg(PtrArgNum);
1654     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1655       Arg = ICE->getSubExpr();
1656     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1657     QualType RHSTy = RHS.get()->getType();
1658 
1659     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1660     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
1661                           Arch == llvm::Triple::aarch64_be;
1662     bool IsInt64Long =
1663         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1664     QualType EltTy =
1665         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1666     if (HasConstPtr)
1667       EltTy = EltTy.withConst();
1668     QualType LHSTy = Context.getPointerType(EltTy);
1669     AssignConvertType ConvTy;
1670     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1671     if (RHS.isInvalid())
1672       return true;
1673     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
1674                                  RHS.get(), AA_Assigning))
1675       return true;
1676   }
1677 
1678   // For NEON intrinsics which take an immediate value as part of the
1679   // instruction, range check them here.
1680   unsigned i = 0, l = 0, u = 0;
1681   switch (BuiltinID) {
1682   default:
1683     return false;
1684   #define GET_NEON_IMMEDIATE_CHECK
1685   #include "clang/Basic/arm_neon.inc"
1686   #include "clang/Basic/arm_fp16.inc"
1687   #undef GET_NEON_IMMEDIATE_CHECK
1688   }
1689 
1690   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1691 }
1692 
1693 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1694                                         unsigned MaxWidth) {
1695   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1696           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1697           BuiltinID == ARM::BI__builtin_arm_strex ||
1698           BuiltinID == ARM::BI__builtin_arm_stlex ||
1699           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1700           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1701           BuiltinID == AArch64::BI__builtin_arm_strex ||
1702           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1703          "unexpected ARM builtin");
1704   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1705                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1706                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1707                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1708 
1709   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1710 
1711   // Ensure that we have the proper number of arguments.
1712   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1713     return true;
1714 
1715   // Inspect the pointer argument of the atomic builtin.  This should always be
1716   // a pointer type, whose element is an integral scalar or pointer type.
1717   // Because it is a pointer type, we don't have to worry about any implicit
1718   // casts here.
1719   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1720   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1721   if (PointerArgRes.isInvalid())
1722     return true;
1723   PointerArg = PointerArgRes.get();
1724 
1725   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1726   if (!pointerType) {
1727     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
1728         << PointerArg->getType() << PointerArg->getSourceRange();
1729     return true;
1730   }
1731 
1732   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1733   // task is to insert the appropriate casts into the AST. First work out just
1734   // what the appropriate type is.
1735   QualType ValType = pointerType->getPointeeType();
1736   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1737   if (IsLdrex)
1738     AddrType.addConst();
1739 
1740   // Issue a warning if the cast is dodgy.
1741   CastKind CastNeeded = CK_NoOp;
1742   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1743     CastNeeded = CK_BitCast;
1744     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
1745         << PointerArg->getType() << Context.getPointerType(AddrType)
1746         << AA_Passing << PointerArg->getSourceRange();
1747   }
1748 
1749   // Finally, do the cast and replace the argument with the corrected version.
1750   AddrType = Context.getPointerType(AddrType);
1751   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1752   if (PointerArgRes.isInvalid())
1753     return true;
1754   PointerArg = PointerArgRes.get();
1755 
1756   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1757 
1758   // In general, we allow ints, floats and pointers to be loaded and stored.
1759   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1760       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1761     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1762         << PointerArg->getType() << PointerArg->getSourceRange();
1763     return true;
1764   }
1765 
1766   // But ARM doesn't have instructions to deal with 128-bit versions.
1767   if (Context.getTypeSize(ValType) > MaxWidth) {
1768     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1769     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
1770         << PointerArg->getType() << PointerArg->getSourceRange();
1771     return true;
1772   }
1773 
1774   switch (ValType.getObjCLifetime()) {
1775   case Qualifiers::OCL_None:
1776   case Qualifiers::OCL_ExplicitNone:
1777     // okay
1778     break;
1779 
1780   case Qualifiers::OCL_Weak:
1781   case Qualifiers::OCL_Strong:
1782   case Qualifiers::OCL_Autoreleasing:
1783     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
1784         << ValType << PointerArg->getSourceRange();
1785     return true;
1786   }
1787 
1788   if (IsLdrex) {
1789     TheCall->setType(ValType);
1790     return false;
1791   }
1792 
1793   // Initialize the argument to be stored.
1794   ExprResult ValArg = TheCall->getArg(0);
1795   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1796       Context, ValType, /*consume*/ false);
1797   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1798   if (ValArg.isInvalid())
1799     return true;
1800   TheCall->setArg(0, ValArg.get());
1801 
1802   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1803   // but the custom checker bypasses all default analysis.
1804   TheCall->setType(Context.IntTy);
1805   return false;
1806 }
1807 
1808 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1809   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1810       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1811       BuiltinID == ARM::BI__builtin_arm_strex ||
1812       BuiltinID == ARM::BI__builtin_arm_stlex) {
1813     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1814   }
1815 
1816   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1817     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1818       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1819   }
1820 
1821   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1822       BuiltinID == ARM::BI__builtin_arm_wsr64)
1823     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1824 
1825   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1826       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1827       BuiltinID == ARM::BI__builtin_arm_wsr ||
1828       BuiltinID == ARM::BI__builtin_arm_wsrp)
1829     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1830 
1831   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1832     return true;
1833 
1834   // For intrinsics which take an immediate value as part of the instruction,
1835   // range check them here.
1836   // FIXME: VFP Intrinsics should error if VFP not present.
1837   switch (BuiltinID) {
1838   default: return false;
1839   case ARM::BI__builtin_arm_ssat:
1840     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
1841   case ARM::BI__builtin_arm_usat:
1842     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
1843   case ARM::BI__builtin_arm_ssat16:
1844     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
1845   case ARM::BI__builtin_arm_usat16:
1846     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
1847   case ARM::BI__builtin_arm_vcvtr_f:
1848   case ARM::BI__builtin_arm_vcvtr_d:
1849     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
1850   case ARM::BI__builtin_arm_dmb:
1851   case ARM::BI__builtin_arm_dsb:
1852   case ARM::BI__builtin_arm_isb:
1853   case ARM::BI__builtin_arm_dbg:
1854     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
1855   }
1856 }
1857 
1858 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1859                                          CallExpr *TheCall) {
1860   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1861       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1862       BuiltinID == AArch64::BI__builtin_arm_strex ||
1863       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1864     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1865   }
1866 
1867   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1868     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1869       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1870       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1871       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
1872   }
1873 
1874   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1875       BuiltinID == AArch64::BI__builtin_arm_wsr64)
1876     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1877 
1878   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1879       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1880       BuiltinID == AArch64::BI__builtin_arm_wsr ||
1881       BuiltinID == AArch64::BI__builtin_arm_wsrp)
1882     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1883 
1884   // Only check the valid encoding range. Any constant in this range would be
1885   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
1886   // an exception for incorrect registers. This matches MSVC behavior.
1887   if (BuiltinID == AArch64::BI_ReadStatusReg ||
1888       BuiltinID == AArch64::BI_WriteStatusReg)
1889     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
1890 
1891   if (BuiltinID == AArch64::BI__getReg)
1892     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
1893 
1894   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1895     return true;
1896 
1897   // For intrinsics which take an immediate value as part of the instruction,
1898   // range check them here.
1899   unsigned i = 0, l = 0, u = 0;
1900   switch (BuiltinID) {
1901   default: return false;
1902   case AArch64::BI__builtin_arm_dmb:
1903   case AArch64::BI__builtin_arm_dsb:
1904   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1905   }
1906 
1907   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1908 }
1909 
1910 bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
1911   struct BuiltinAndString {
1912     unsigned BuiltinID;
1913     const char *Str;
1914   };
1915 
1916   static BuiltinAndString ValidCPU[] = {
1917     { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" },
1918     { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" },
1919     { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" },
1920     { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" },
1921     { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" },
1922     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" },
1923     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" },
1924     { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" },
1925     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" },
1926     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" },
1927     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" },
1928     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" },
1929     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" },
1930     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" },
1931     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" },
1932     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" },
1933     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" },
1934     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" },
1935     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" },
1936     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" },
1937     { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" },
1938     { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" },
1939     { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" },
1940   };
1941 
1942   static BuiltinAndString ValidHVX[] = {
1943     { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" },
1944     { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" },
1945     { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" },
1946     { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" },
1947     { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" },
1948     { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" },
1949     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" },
1950     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" },
1951     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" },
1952     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" },
1953     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" },
1954     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" },
1955     { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" },
1956     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" },
1957     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" },
1958     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" },
1959     { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" },
1960     { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" },
1961     { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" },
1962     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" },
1963     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" },
1964     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" },
1965     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" },
1966     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" },
1967     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" },
1968     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" },
1969     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" },
1970     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" },
1971     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" },
1972     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" },
1973     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" },
1974     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" },
1975     { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" },
1976     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" },
1977     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" },
1978     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" },
1979     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" },
1980     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" },
1981     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" },
1982     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" },
1983     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" },
1984     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" },
1985     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" },
1986     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" },
1987     { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" },
1988     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" },
1989     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" },
1990     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" },
1991     { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" },
1992     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" },
1993     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" },
1994     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" },
1995     { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" },
1996     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" },
1997     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" },
1998     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" },
1999     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" },
2000     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" },
2001     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" },
2002     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" },
2003     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" },
2004     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" },
2005     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" },
2006     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" },
2007     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" },
2008     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" },
2009     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" },
2010     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" },
2011     { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" },
2012     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" },
2013     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" },
2014     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" },
2015     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" },
2016     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" },
2017     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" },
2018     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" },
2019     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" },
2020     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" },
2021     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" },
2022     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" },
2023     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" },
2024     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" },
2025     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" },
2026     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" },
2027     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" },
2028     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" },
2029     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" },
2030     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" },
2031     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" },
2032     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" },
2033     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" },
2034     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" },
2035     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" },
2036     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" },
2037     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" },
2038     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" },
2039     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" },
2040     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" },
2041     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" },
2042     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" },
2043     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" },
2044     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" },
2045     { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" },
2046     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" },
2047     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" },
2048     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" },
2049     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" },
2050     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" },
2051     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" },
2052     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" },
2053     { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" },
2054     { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" },
2055     { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" },
2056     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" },
2057     { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" },
2058     { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" },
2059     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" },
2060     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" },
2061     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" },
2062     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" },
2063     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" },
2064     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" },
2065     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" },
2066     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" },
2067     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" },
2068     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" },
2069     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" },
2070     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" },
2071     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" },
2072     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" },
2073     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" },
2074     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" },
2075     { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" },
2076     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" },
2077     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" },
2078     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" },
2079     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" },
2080     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" },
2081     { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" },
2082     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" },
2083     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" },
2084     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" },
2085     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" },
2086     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" },
2087     { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" },
2088     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" },
2089     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" },
2090     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" },
2091     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" },
2092     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" },
2093     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" },
2094     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" },
2095     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" },
2096     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" },
2097     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" },
2098     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" },
2099     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" },
2100     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" },
2101     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" },
2102     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" },
2103     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" },
2104     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" },
2105     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" },
2106     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" },
2107     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" },
2108     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" },
2109     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" },
2110     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" },
2111     { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" },
2112     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" },
2113     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" },
2114     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" },
2115     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" },
2116     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" },
2117     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" },
2118     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" },
2119     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" },
2120     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" },
2121     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" },
2122     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" },
2123     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" },
2124     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" },
2125     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" },
2126     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" },
2127     { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" },
2128     { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" },
2129     { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" },
2130     { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" },
2131     { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" },
2132     { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" },
2133     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" },
2134     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" },
2135     { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" },
2136     { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" },
2137     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" },
2138     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" },
2139     { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" },
2140     { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" },
2141     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" },
2142     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" },
2143     { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" },
2144     { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" },
2145     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" },
2146     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" },
2147     { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" },
2148     { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" },
2149     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" },
2150     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" },
2151     { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" },
2152     { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" },
2153     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" },
2154     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" },
2155     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" },
2156     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" },
2157     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" },
2158     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" },
2159     { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" },
2160     { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" },
2161     { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" },
2162     { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" },
2163     { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" },
2164     { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" },
2165     { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" },
2166     { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" },
2167     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" },
2168     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" },
2169     { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" },
2170     { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" },
2171     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" },
2172     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" },
2173     { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" },
2174     { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" },
2175     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" },
2176     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" },
2177     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" },
2178     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" },
2179     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" },
2180     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" },
2181     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" },
2182     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" },
2183     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" },
2184     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" },
2185     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" },
2186     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" },
2187     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" },
2188     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" },
2189     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" },
2190     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" },
2191     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" },
2192     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" },
2193     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" },
2194     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" },
2195     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" },
2196     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" },
2197     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" },
2198     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" },
2199     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" },
2200     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" },
2201     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" },
2202     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" },
2203     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" },
2204     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" },
2205     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" },
2206     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" },
2207     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" },
2208     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" },
2209     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" },
2210     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" },
2211     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" },
2212     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" },
2213     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" },
2214     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" },
2215     { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" },
2216     { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" },
2217     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" },
2218     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" },
2219     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" },
2220     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" },
2221     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" },
2222     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" },
2223     { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" },
2224     { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" },
2225     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" },
2226     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" },
2227     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" },
2228     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" },
2229     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" },
2230     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" },
2231     { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" },
2232     { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" },
2233     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" },
2234     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" },
2235     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" },
2236     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" },
2237     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" },
2238     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" },
2239     { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" },
2240     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" },
2241     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" },
2242     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" },
2243     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" },
2244     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" },
2245     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" },
2246     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" },
2247     { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" },
2248     { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" },
2249     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" },
2250     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" },
2251     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" },
2252     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" },
2253     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" },
2254     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" },
2255     { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" },
2256     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" },
2257     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" },
2258     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" },
2259     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" },
2260     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" },
2261     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" },
2262     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" },
2263     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" },
2264     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" },
2265     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" },
2266     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" },
2267     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" },
2268     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" },
2269     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" },
2270     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" },
2271     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" },
2272     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" },
2273     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" },
2274     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" },
2275     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" },
2276     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" },
2277     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" },
2278     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" },
2279     { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" },
2280     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" },
2281     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" },
2282     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" },
2283     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" },
2284     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" },
2285     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" },
2286     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" },
2287     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" },
2288     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" },
2289     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" },
2290     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" },
2291     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" },
2292     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" },
2293     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" },
2294     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" },
2295     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" },
2296     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" },
2297     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" },
2298     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" },
2299     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" },
2300     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" },
2301     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" },
2302     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" },
2303     { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" },
2304     { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" },
2305     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" },
2306     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" },
2307     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" },
2308     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" },
2309     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" },
2310     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" },
2311     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" },
2312     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" },
2313     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" },
2314     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" },
2315     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" },
2316     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" },
2317     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" },
2318     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" },
2319     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" },
2320     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" },
2321     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" },
2322     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" },
2323     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" },
2324     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" },
2325     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" },
2326     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" },
2327     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" },
2328     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" },
2329     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" },
2330     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" },
2331     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" },
2332     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" },
2333     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" },
2334     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" },
2335     { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" },
2336     { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" },
2337     { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" },
2338     { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" },
2339     { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" },
2340     { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" },
2341     { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" },
2342     { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" },
2343     { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" },
2344     { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" },
2345     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" },
2346     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" },
2347     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" },
2348     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" },
2349     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" },
2350     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" },
2351     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" },
2352     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" },
2353     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" },
2354     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" },
2355     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" },
2356     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" },
2357     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" },
2358     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" },
2359     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" },
2360     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" },
2361     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" },
2362     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" },
2363     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" },
2364     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" },
2365     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" },
2366     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" },
2367     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" },
2368     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" },
2369     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" },
2370     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" },
2371     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" },
2372     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" },
2373     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" },
2374     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" },
2375     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" },
2376     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" },
2377     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" },
2378     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" },
2379     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" },
2380     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" },
2381     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" },
2382     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" },
2383     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" },
2384     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" },
2385     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" },
2386     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" },
2387     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" },
2388     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" },
2389     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" },
2390     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" },
2391     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" },
2392     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" },
2393     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" },
2394     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" },
2395     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" },
2396     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" },
2397     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" },
2398     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" },
2399     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" },
2400     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" },
2401     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" },
2402     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" },
2403     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" },
2404     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" },
2405     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" },
2406     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" },
2407     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" },
2408     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" },
2409     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" },
2410     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" },
2411     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" },
2412     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" },
2413     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" },
2414     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" },
2415     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" },
2416     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" },
2417     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" },
2418     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" },
2419     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" },
2420     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" },
2421     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" },
2422     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" },
2423     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" },
2424     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" },
2425     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" },
2426     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" },
2427     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" },
2428     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" },
2429     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" },
2430     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" },
2431     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" },
2432     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" },
2433     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" },
2434     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" },
2435     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" },
2436     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" },
2437     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" },
2438     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" },
2439     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" },
2440     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" },
2441     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" },
2442     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" },
2443     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" },
2444     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" },
2445     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" },
2446     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" },
2447     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" },
2448     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" },
2449     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" },
2450     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" },
2451     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" },
2452     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" },
2453     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" },
2454     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" },
2455     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" },
2456     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" },
2457     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" },
2458     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" },
2459     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" },
2460     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" },
2461     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" },
2462     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" },
2463     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" },
2464     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" },
2465     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" },
2466     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" },
2467     { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" },
2468     { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" },
2469     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" },
2470     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" },
2471     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" },
2472     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" },
2473     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" },
2474     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" },
2475     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" },
2476     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" },
2477     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" },
2478     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" },
2479     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" },
2480     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" },
2481     { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" },
2482     { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" },
2483     { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" },
2484     { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" },
2485     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" },
2486     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" },
2487     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" },
2488     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" },
2489     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" },
2490     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" },
2491     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" },
2492     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" },
2493     { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" },
2494     { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" },
2495     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" },
2496     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" },
2497     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" },
2498     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" },
2499     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" },
2500     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" },
2501     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" },
2502     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" },
2503     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" },
2504     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" },
2505     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" },
2506     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" },
2507     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" },
2508     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" },
2509     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" },
2510     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" },
2511     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" },
2512     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" },
2513     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" },
2514     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" },
2515     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" },
2516     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" },
2517     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" },
2518     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" },
2519     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" },
2520     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" },
2521     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" },
2522     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" },
2523     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" },
2524     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" },
2525     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" },
2526     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" },
2527     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" },
2528     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" },
2529     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" },
2530     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" },
2531     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" },
2532     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" },
2533     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" },
2534     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" },
2535     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" },
2536     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" },
2537     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" },
2538     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" },
2539     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" },
2540     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" },
2541     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" },
2542     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" },
2543     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" },
2544     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" },
2545     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" },
2546     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" },
2547     { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" },
2548     { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" },
2549     { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" },
2550     { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" },
2551     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" },
2552     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" },
2553     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" },
2554     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" },
2555     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" },
2556     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" },
2557     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" },
2558     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" },
2559     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" },
2560     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" },
2561     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" },
2562     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" },
2563     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" },
2564     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" },
2565     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" },
2566     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" },
2567     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" },
2568     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" },
2569     { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" },
2570     { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" },
2571     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" },
2572     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" },
2573     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" },
2574     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" },
2575     { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" },
2576     { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" },
2577     { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" },
2578     { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" },
2579     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" },
2580     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" },
2581     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" },
2582     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" },
2583     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" },
2584     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" },
2585     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" },
2586     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" },
2587     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" },
2588     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" },
2589     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" },
2590     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" },
2591     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" },
2592     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" },
2593     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" },
2594     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" },
2595     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" },
2596     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" },
2597     { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" },
2598     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" },
2599     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" },
2600     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" },
2601     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" },
2602     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" },
2603     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" },
2604     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" },
2605     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" },
2606     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" },
2607     { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" },
2608     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" },
2609     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" },
2610     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" },
2611     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" },
2612     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" },
2613     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" },
2614     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" },
2615     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" },
2616     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" },
2617     { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" },
2618     { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" },
2619     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" },
2620     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" },
2621     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" },
2622     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" },
2623     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" },
2624     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" },
2625     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" },
2626     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" },
2627     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" },
2628     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" },
2629     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" },
2630     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" },
2631     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" },
2632     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" },
2633     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" },
2634     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" },
2635     { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" },
2636     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" },
2637     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" },
2638     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" },
2639     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" },
2640     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" },
2641     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" },
2642     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" },
2643     { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" },
2644     { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" },
2645     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" },
2646     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" },
2647     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" },
2648     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" },
2649     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" },
2650     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" },
2651     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" },
2652     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" },
2653     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" },
2654     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" },
2655     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" },
2656     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" },
2657     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" },
2658     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" },
2659     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" },
2660     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" },
2661     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" },
2662     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" },
2663     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" },
2664     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" },
2665     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" },
2666     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" },
2667     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" },
2668     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" },
2669     { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" },
2670     { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" },
2671     { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" },
2672     { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" },
2673     { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" },
2674     { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" },
2675   };
2676 
2677   // Sort the tables on first execution so we can binary search them.
2678   auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) {
2679     return LHS.BuiltinID < RHS.BuiltinID;
2680   };
2681   static const bool SortOnce =
2682       (llvm::sort(ValidCPU, SortCmp),
2683        llvm::sort(ValidHVX, SortCmp), true);
2684   (void)SortOnce;
2685   auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) {
2686     return BI.BuiltinID < BuiltinID;
2687   };
2688 
2689   const TargetInfo &TI = Context.getTargetInfo();
2690 
2691   const BuiltinAndString *FC =
2692       std::lower_bound(std::begin(ValidCPU), std::end(ValidCPU), BuiltinID,
2693                        LowerBoundCmp);
2694   if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) {
2695     const TargetOptions &Opts = TI.getTargetOpts();
2696     StringRef CPU = Opts.CPU;
2697     if (!CPU.empty()) {
2698       assert(CPU.startswith("hexagon") && "Unexpected CPU name");
2699       CPU.consume_front("hexagon");
2700       SmallVector<StringRef, 3> CPUs;
2701       StringRef(FC->Str).split(CPUs, ',');
2702       if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; }))
2703         return Diag(TheCall->getBeginLoc(),
2704                     diag::err_hexagon_builtin_unsupported_cpu);
2705     }
2706   }
2707 
2708   const BuiltinAndString *FH =
2709       std::lower_bound(std::begin(ValidHVX), std::end(ValidHVX), BuiltinID,
2710                        LowerBoundCmp);
2711   if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) {
2712     if (!TI.hasFeature("hvx"))
2713       return Diag(TheCall->getBeginLoc(),
2714                   diag::err_hexagon_builtin_requires_hvx);
2715 
2716     SmallVector<StringRef, 3> HVXs;
2717     StringRef(FH->Str).split(HVXs, ',');
2718     bool IsValid = llvm::any_of(HVXs,
2719                                 [&TI] (StringRef V) {
2720                                   std::string F = "hvx" + V.str();
2721                                   return TI.hasFeature(F);
2722                                 });
2723     if (!IsValid)
2724       return Diag(TheCall->getBeginLoc(),
2725                   diag::err_hexagon_builtin_unsupported_hvx);
2726   }
2727 
2728   return false;
2729 }
2730 
2731 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2732   struct ArgInfo {
2733     uint8_t OpNum;
2734     bool IsSigned;
2735     uint8_t BitWidth;
2736     uint8_t Align;
2737   };
2738   struct BuiltinInfo {
2739     unsigned BuiltinID;
2740     ArgInfo Infos[2];
2741   };
2742 
2743   static BuiltinInfo Infos[] = {
2744     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2745     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2746     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2747     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  0 }} },
2748     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2749     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2750     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2751     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2752     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2753     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2754     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2755 
2756     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2757     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2758     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2759     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2760     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2761     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2762     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2763     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2764     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2765     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2766     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2767 
2768     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2769     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2770     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2771     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2772     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2774     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2775     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2776     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2777     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2778     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2782     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2785     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2788     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2797     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2820                                                       {{ 1, false, 6,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2828                                                       {{ 1, false, 5,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2835                                                        { 2, false, 5,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2837                                                        { 2, false, 6,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2839                                                        { 3, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2841                                                        { 3, false, 6,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2845     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2848     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2849     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2851     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2852     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2858                                                       {{ 2, false, 4,  0 },
2859                                                        { 3, false, 5,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2861                                                       {{ 2, false, 4,  0 },
2862                                                        { 3, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2864                                                       {{ 2, false, 4,  0 },
2865                                                        { 3, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2867                                                       {{ 2, false, 4,  0 },
2868                                                        { 3, false, 5,  0 }} },
2869     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2871     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2872     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2880                                                        { 2, false, 5,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2882                                                        { 2, false, 6,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2890     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2892                                                       {{ 1, false, 4,  0 }} },
2893     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2895                                                       {{ 1, false, 4,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2900     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2905     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2911     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2912     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2913     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2914     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2915     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2916                                                       {{ 3, false, 1,  0 }} },
2917     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2918     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2919     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2921                                                       {{ 3, false, 1,  0 }} },
2922     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2923     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2924     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2925     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2926                                                       {{ 3, false, 1,  0 }} },
2927   };
2928 
2929   // Use a dynamically initialized static to sort the table exactly once on
2930   // first run.
2931   static const bool SortOnce =
2932       (llvm::sort(Infos,
2933                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2934                    return LHS.BuiltinID < RHS.BuiltinID;
2935                  }),
2936        true);
2937   (void)SortOnce;
2938 
2939   const BuiltinInfo *F =
2940       std::lower_bound(std::begin(Infos), std::end(Infos), BuiltinID,
2941                        [](const BuiltinInfo &BI, unsigned BuiltinID) {
2942                          return BI.BuiltinID < BuiltinID;
2943                        });
2944   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2945     return false;
2946 
2947   bool Error = false;
2948 
2949   for (const ArgInfo &A : F->Infos) {
2950     // Ignore empty ArgInfo elements.
2951     if (A.BitWidth == 0)
2952       continue;
2953 
2954     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2955     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2956     if (!A.Align) {
2957       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2958     } else {
2959       unsigned M = 1 << A.Align;
2960       Min *= M;
2961       Max *= M;
2962       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2963                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2964     }
2965   }
2966   return Error;
2967 }
2968 
2969 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2970                                            CallExpr *TheCall) {
2971   return CheckHexagonBuiltinCpu(BuiltinID, TheCall) ||
2972          CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2973 }
2974 
2975 
2976 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the
2977 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2978 // ordering for DSP is unspecified. MSA is ordered by the data format used
2979 // by the underlying instruction i.e., df/m, df/n and then by size.
2980 //
2981 // FIXME: The size tests here should instead be tablegen'd along with the
2982 //        definitions from include/clang/Basic/BuiltinsMips.def.
2983 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
2984 //        be too.
2985 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2986   unsigned i = 0, l = 0, u = 0, m = 0;
2987   switch (BuiltinID) {
2988   default: return false;
2989   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
2990   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
2991   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
2992   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
2993   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
2994   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
2995   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
2996   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
2997   // df/m field.
2998   // These intrinsics take an unsigned 3 bit immediate.
2999   case Mips::BI__builtin_msa_bclri_b:
3000   case Mips::BI__builtin_msa_bnegi_b:
3001   case Mips::BI__builtin_msa_bseti_b:
3002   case Mips::BI__builtin_msa_sat_s_b:
3003   case Mips::BI__builtin_msa_sat_u_b:
3004   case Mips::BI__builtin_msa_slli_b:
3005   case Mips::BI__builtin_msa_srai_b:
3006   case Mips::BI__builtin_msa_srari_b:
3007   case Mips::BI__builtin_msa_srli_b:
3008   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3009   case Mips::BI__builtin_msa_binsli_b:
3010   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3011   // These intrinsics take an unsigned 4 bit immediate.
3012   case Mips::BI__builtin_msa_bclri_h:
3013   case Mips::BI__builtin_msa_bnegi_h:
3014   case Mips::BI__builtin_msa_bseti_h:
3015   case Mips::BI__builtin_msa_sat_s_h:
3016   case Mips::BI__builtin_msa_sat_u_h:
3017   case Mips::BI__builtin_msa_slli_h:
3018   case Mips::BI__builtin_msa_srai_h:
3019   case Mips::BI__builtin_msa_srari_h:
3020   case Mips::BI__builtin_msa_srli_h:
3021   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3022   case Mips::BI__builtin_msa_binsli_h:
3023   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3024   // These intrinsics take an unsigned 5 bit immediate.
3025   // The first block of intrinsics actually have an unsigned 5 bit field,
3026   // not a df/n field.
3027   case Mips::BI__builtin_msa_clei_u_b:
3028   case Mips::BI__builtin_msa_clei_u_h:
3029   case Mips::BI__builtin_msa_clei_u_w:
3030   case Mips::BI__builtin_msa_clei_u_d:
3031   case Mips::BI__builtin_msa_clti_u_b:
3032   case Mips::BI__builtin_msa_clti_u_h:
3033   case Mips::BI__builtin_msa_clti_u_w:
3034   case Mips::BI__builtin_msa_clti_u_d:
3035   case Mips::BI__builtin_msa_maxi_u_b:
3036   case Mips::BI__builtin_msa_maxi_u_h:
3037   case Mips::BI__builtin_msa_maxi_u_w:
3038   case Mips::BI__builtin_msa_maxi_u_d:
3039   case Mips::BI__builtin_msa_mini_u_b:
3040   case Mips::BI__builtin_msa_mini_u_h:
3041   case Mips::BI__builtin_msa_mini_u_w:
3042   case Mips::BI__builtin_msa_mini_u_d:
3043   case Mips::BI__builtin_msa_addvi_b:
3044   case Mips::BI__builtin_msa_addvi_h:
3045   case Mips::BI__builtin_msa_addvi_w:
3046   case Mips::BI__builtin_msa_addvi_d:
3047   case Mips::BI__builtin_msa_bclri_w:
3048   case Mips::BI__builtin_msa_bnegi_w:
3049   case Mips::BI__builtin_msa_bseti_w:
3050   case Mips::BI__builtin_msa_sat_s_w:
3051   case Mips::BI__builtin_msa_sat_u_w:
3052   case Mips::BI__builtin_msa_slli_w:
3053   case Mips::BI__builtin_msa_srai_w:
3054   case Mips::BI__builtin_msa_srari_w:
3055   case Mips::BI__builtin_msa_srli_w:
3056   case Mips::BI__builtin_msa_srlri_w:
3057   case Mips::BI__builtin_msa_subvi_b:
3058   case Mips::BI__builtin_msa_subvi_h:
3059   case Mips::BI__builtin_msa_subvi_w:
3060   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3061   case Mips::BI__builtin_msa_binsli_w:
3062   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3063   // These intrinsics take an unsigned 6 bit immediate.
3064   case Mips::BI__builtin_msa_bclri_d:
3065   case Mips::BI__builtin_msa_bnegi_d:
3066   case Mips::BI__builtin_msa_bseti_d:
3067   case Mips::BI__builtin_msa_sat_s_d:
3068   case Mips::BI__builtin_msa_sat_u_d:
3069   case Mips::BI__builtin_msa_slli_d:
3070   case Mips::BI__builtin_msa_srai_d:
3071   case Mips::BI__builtin_msa_srari_d:
3072   case Mips::BI__builtin_msa_srli_d:
3073   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3074   case Mips::BI__builtin_msa_binsli_d:
3075   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3076   // These intrinsics take a signed 5 bit immediate.
3077   case Mips::BI__builtin_msa_ceqi_b:
3078   case Mips::BI__builtin_msa_ceqi_h:
3079   case Mips::BI__builtin_msa_ceqi_w:
3080   case Mips::BI__builtin_msa_ceqi_d:
3081   case Mips::BI__builtin_msa_clti_s_b:
3082   case Mips::BI__builtin_msa_clti_s_h:
3083   case Mips::BI__builtin_msa_clti_s_w:
3084   case Mips::BI__builtin_msa_clti_s_d:
3085   case Mips::BI__builtin_msa_clei_s_b:
3086   case Mips::BI__builtin_msa_clei_s_h:
3087   case Mips::BI__builtin_msa_clei_s_w:
3088   case Mips::BI__builtin_msa_clei_s_d:
3089   case Mips::BI__builtin_msa_maxi_s_b:
3090   case Mips::BI__builtin_msa_maxi_s_h:
3091   case Mips::BI__builtin_msa_maxi_s_w:
3092   case Mips::BI__builtin_msa_maxi_s_d:
3093   case Mips::BI__builtin_msa_mini_s_b:
3094   case Mips::BI__builtin_msa_mini_s_h:
3095   case Mips::BI__builtin_msa_mini_s_w:
3096   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3097   // These intrinsics take an unsigned 8 bit immediate.
3098   case Mips::BI__builtin_msa_andi_b:
3099   case Mips::BI__builtin_msa_nori_b:
3100   case Mips::BI__builtin_msa_ori_b:
3101   case Mips::BI__builtin_msa_shf_b:
3102   case Mips::BI__builtin_msa_shf_h:
3103   case Mips::BI__builtin_msa_shf_w:
3104   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3105   case Mips::BI__builtin_msa_bseli_b:
3106   case Mips::BI__builtin_msa_bmnzi_b:
3107   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3108   // df/n format
3109   // These intrinsics take an unsigned 4 bit immediate.
3110   case Mips::BI__builtin_msa_copy_s_b:
3111   case Mips::BI__builtin_msa_copy_u_b:
3112   case Mips::BI__builtin_msa_insve_b:
3113   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3114   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3115   // These intrinsics take an unsigned 3 bit immediate.
3116   case Mips::BI__builtin_msa_copy_s_h:
3117   case Mips::BI__builtin_msa_copy_u_h:
3118   case Mips::BI__builtin_msa_insve_h:
3119   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3120   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3121   // These intrinsics take an unsigned 2 bit immediate.
3122   case Mips::BI__builtin_msa_copy_s_w:
3123   case Mips::BI__builtin_msa_copy_u_w:
3124   case Mips::BI__builtin_msa_insve_w:
3125   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3126   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3127   // These intrinsics take an unsigned 1 bit immediate.
3128   case Mips::BI__builtin_msa_copy_s_d:
3129   case Mips::BI__builtin_msa_copy_u_d:
3130   case Mips::BI__builtin_msa_insve_d:
3131   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3132   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3133   // Memory offsets and immediate loads.
3134   // These intrinsics take a signed 10 bit immediate.
3135   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3136   case Mips::BI__builtin_msa_ldi_h:
3137   case Mips::BI__builtin_msa_ldi_w:
3138   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3139   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3140   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3141   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3142   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3143   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3144   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3145   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3146   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3147   }
3148 
3149   if (!m)
3150     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3151 
3152   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3153          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3154 }
3155 
3156 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3157   unsigned i = 0, l = 0, u = 0;
3158   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3159                       BuiltinID == PPC::BI__builtin_divdeu ||
3160                       BuiltinID == PPC::BI__builtin_bpermd;
3161   bool IsTarget64Bit = Context.getTargetInfo()
3162                               .getTypeWidth(Context
3163                                             .getTargetInfo()
3164                                             .getIntPtrType()) == 64;
3165   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3166                        BuiltinID == PPC::BI__builtin_divweu ||
3167                        BuiltinID == PPC::BI__builtin_divde ||
3168                        BuiltinID == PPC::BI__builtin_divdeu;
3169 
3170   if (Is64BitBltin && !IsTarget64Bit)
3171     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3172            << TheCall->getSourceRange();
3173 
3174   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
3175       (BuiltinID == PPC::BI__builtin_bpermd &&
3176        !Context.getTargetInfo().hasFeature("bpermd")))
3177     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3178            << TheCall->getSourceRange();
3179 
3180   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3181     if (!Context.getTargetInfo().hasFeature("vsx"))
3182       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3183              << TheCall->getSourceRange();
3184     return false;
3185   };
3186 
3187   switch (BuiltinID) {
3188   default: return false;
3189   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3190   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3191     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3192            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3193   case PPC::BI__builtin_tbegin:
3194   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3195   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3196   case PPC::BI__builtin_tabortwc:
3197   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3198   case PPC::BI__builtin_tabortwci:
3199   case PPC::BI__builtin_tabortdci:
3200     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3201            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3202   case PPC::BI__builtin_vsx_xxpermdi:
3203   case PPC::BI__builtin_vsx_xxsldwi:
3204     return SemaBuiltinVSX(TheCall);
3205   case PPC::BI__builtin_unpack_vector_int128:
3206     return SemaVSXCheck(TheCall) ||
3207            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3208   case PPC::BI__builtin_pack_vector_int128:
3209     return SemaVSXCheck(TheCall);
3210   }
3211   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3212 }
3213 
3214 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3215                                            CallExpr *TheCall) {
3216   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3217     Expr *Arg = TheCall->getArg(0);
3218     llvm::APSInt AbortCode(32);
3219     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
3220         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
3221       return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3222              << Arg->getSourceRange();
3223   }
3224 
3225   // For intrinsics which take an immediate value as part of the instruction,
3226   // range check them here.
3227   unsigned i = 0, l = 0, u = 0;
3228   switch (BuiltinID) {
3229   default: return false;
3230   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3231   case SystemZ::BI__builtin_s390_verimb:
3232   case SystemZ::BI__builtin_s390_verimh:
3233   case SystemZ::BI__builtin_s390_verimf:
3234   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3235   case SystemZ::BI__builtin_s390_vfaeb:
3236   case SystemZ::BI__builtin_s390_vfaeh:
3237   case SystemZ::BI__builtin_s390_vfaef:
3238   case SystemZ::BI__builtin_s390_vfaebs:
3239   case SystemZ::BI__builtin_s390_vfaehs:
3240   case SystemZ::BI__builtin_s390_vfaefs:
3241   case SystemZ::BI__builtin_s390_vfaezb:
3242   case SystemZ::BI__builtin_s390_vfaezh:
3243   case SystemZ::BI__builtin_s390_vfaezf:
3244   case SystemZ::BI__builtin_s390_vfaezbs:
3245   case SystemZ::BI__builtin_s390_vfaezhs:
3246   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3247   case SystemZ::BI__builtin_s390_vfisb:
3248   case SystemZ::BI__builtin_s390_vfidb:
3249     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3250            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3251   case SystemZ::BI__builtin_s390_vftcisb:
3252   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3253   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3254   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3255   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3256   case SystemZ::BI__builtin_s390_vstrcb:
3257   case SystemZ::BI__builtin_s390_vstrch:
3258   case SystemZ::BI__builtin_s390_vstrcf:
3259   case SystemZ::BI__builtin_s390_vstrczb:
3260   case SystemZ::BI__builtin_s390_vstrczh:
3261   case SystemZ::BI__builtin_s390_vstrczf:
3262   case SystemZ::BI__builtin_s390_vstrcbs:
3263   case SystemZ::BI__builtin_s390_vstrchs:
3264   case SystemZ::BI__builtin_s390_vstrcfs:
3265   case SystemZ::BI__builtin_s390_vstrczbs:
3266   case SystemZ::BI__builtin_s390_vstrczhs:
3267   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3268   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3269   case SystemZ::BI__builtin_s390_vfminsb:
3270   case SystemZ::BI__builtin_s390_vfmaxsb:
3271   case SystemZ::BI__builtin_s390_vfmindb:
3272   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3273   }
3274   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3275 }
3276 
3277 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3278 /// This checks that the target supports __builtin_cpu_supports and
3279 /// that the string argument is constant and valid.
3280 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
3281   Expr *Arg = TheCall->getArg(0);
3282 
3283   // Check if the argument is a string literal.
3284   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3285     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3286            << Arg->getSourceRange();
3287 
3288   // Check the contents of the string.
3289   StringRef Feature =
3290       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3291   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
3292     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3293            << Arg->getSourceRange();
3294   return false;
3295 }
3296 
3297 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3298 /// This checks that the target supports __builtin_cpu_is and
3299 /// that the string argument is constant and valid.
3300 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
3301   Expr *Arg = TheCall->getArg(0);
3302 
3303   // Check if the argument is a string literal.
3304   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3305     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3306            << Arg->getSourceRange();
3307 
3308   // Check the contents of the string.
3309   StringRef Feature =
3310       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3311   if (!S.Context.getTargetInfo().validateCpuIs(Feature))
3312     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3313            << Arg->getSourceRange();
3314   return false;
3315 }
3316 
3317 // Check if the rounding mode is legal.
3318 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3319   // Indicates if this instruction has rounding control or just SAE.
3320   bool HasRC = false;
3321 
3322   unsigned ArgNum = 0;
3323   switch (BuiltinID) {
3324   default:
3325     return false;
3326   case X86::BI__builtin_ia32_vcvttsd2si32:
3327   case X86::BI__builtin_ia32_vcvttsd2si64:
3328   case X86::BI__builtin_ia32_vcvttsd2usi32:
3329   case X86::BI__builtin_ia32_vcvttsd2usi64:
3330   case X86::BI__builtin_ia32_vcvttss2si32:
3331   case X86::BI__builtin_ia32_vcvttss2si64:
3332   case X86::BI__builtin_ia32_vcvttss2usi32:
3333   case X86::BI__builtin_ia32_vcvttss2usi64:
3334     ArgNum = 1;
3335     break;
3336   case X86::BI__builtin_ia32_maxpd512:
3337   case X86::BI__builtin_ia32_maxps512:
3338   case X86::BI__builtin_ia32_minpd512:
3339   case X86::BI__builtin_ia32_minps512:
3340     ArgNum = 2;
3341     break;
3342   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3343   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3344   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3345   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3346   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3347   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3348   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3349   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3350   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3351   case X86::BI__builtin_ia32_exp2pd_mask:
3352   case X86::BI__builtin_ia32_exp2ps_mask:
3353   case X86::BI__builtin_ia32_getexppd512_mask:
3354   case X86::BI__builtin_ia32_getexpps512_mask:
3355   case X86::BI__builtin_ia32_rcp28pd_mask:
3356   case X86::BI__builtin_ia32_rcp28ps_mask:
3357   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3358   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3359   case X86::BI__builtin_ia32_vcomisd:
3360   case X86::BI__builtin_ia32_vcomiss:
3361   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3362     ArgNum = 3;
3363     break;
3364   case X86::BI__builtin_ia32_cmppd512_mask:
3365   case X86::BI__builtin_ia32_cmpps512_mask:
3366   case X86::BI__builtin_ia32_cmpsd_mask:
3367   case X86::BI__builtin_ia32_cmpss_mask:
3368   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3369   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3370   case X86::BI__builtin_ia32_getexpss128_round_mask:
3371   case X86::BI__builtin_ia32_maxsd_round_mask:
3372   case X86::BI__builtin_ia32_maxss_round_mask:
3373   case X86::BI__builtin_ia32_minsd_round_mask:
3374   case X86::BI__builtin_ia32_minss_round_mask:
3375   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3376   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3377   case X86::BI__builtin_ia32_reducepd512_mask:
3378   case X86::BI__builtin_ia32_reduceps512_mask:
3379   case X86::BI__builtin_ia32_rndscalepd_mask:
3380   case X86::BI__builtin_ia32_rndscaleps_mask:
3381   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3382   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3383     ArgNum = 4;
3384     break;
3385   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3386   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3387   case X86::BI__builtin_ia32_fixupimmps512_mask:
3388   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3389   case X86::BI__builtin_ia32_fixupimmsd_mask:
3390   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3391   case X86::BI__builtin_ia32_fixupimmss_mask:
3392   case X86::BI__builtin_ia32_fixupimmss_maskz:
3393   case X86::BI__builtin_ia32_rangepd512_mask:
3394   case X86::BI__builtin_ia32_rangeps512_mask:
3395   case X86::BI__builtin_ia32_rangesd128_round_mask:
3396   case X86::BI__builtin_ia32_rangess128_round_mask:
3397   case X86::BI__builtin_ia32_reducesd_mask:
3398   case X86::BI__builtin_ia32_reducess_mask:
3399   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3400   case X86::BI__builtin_ia32_rndscaless_round_mask:
3401     ArgNum = 5;
3402     break;
3403   case X86::BI__builtin_ia32_vcvtsd2si64:
3404   case X86::BI__builtin_ia32_vcvtsd2si32:
3405   case X86::BI__builtin_ia32_vcvtsd2usi32:
3406   case X86::BI__builtin_ia32_vcvtsd2usi64:
3407   case X86::BI__builtin_ia32_vcvtss2si32:
3408   case X86::BI__builtin_ia32_vcvtss2si64:
3409   case X86::BI__builtin_ia32_vcvtss2usi32:
3410   case X86::BI__builtin_ia32_vcvtss2usi64:
3411   case X86::BI__builtin_ia32_sqrtpd512:
3412   case X86::BI__builtin_ia32_sqrtps512:
3413     ArgNum = 1;
3414     HasRC = true;
3415     break;
3416   case X86::BI__builtin_ia32_addpd512:
3417   case X86::BI__builtin_ia32_addps512:
3418   case X86::BI__builtin_ia32_divpd512:
3419   case X86::BI__builtin_ia32_divps512:
3420   case X86::BI__builtin_ia32_mulpd512:
3421   case X86::BI__builtin_ia32_mulps512:
3422   case X86::BI__builtin_ia32_subpd512:
3423   case X86::BI__builtin_ia32_subps512:
3424   case X86::BI__builtin_ia32_cvtsi2sd64:
3425   case X86::BI__builtin_ia32_cvtsi2ss32:
3426   case X86::BI__builtin_ia32_cvtsi2ss64:
3427   case X86::BI__builtin_ia32_cvtusi2sd64:
3428   case X86::BI__builtin_ia32_cvtusi2ss32:
3429   case X86::BI__builtin_ia32_cvtusi2ss64:
3430     ArgNum = 2;
3431     HasRC = true;
3432     break;
3433   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3434   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3435   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3436   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3437   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3438   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3439   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3440   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3441   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3442   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3443   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3444   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3445   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3446   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3447   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3448     ArgNum = 3;
3449     HasRC = true;
3450     break;
3451   case X86::BI__builtin_ia32_addss_round_mask:
3452   case X86::BI__builtin_ia32_addsd_round_mask:
3453   case X86::BI__builtin_ia32_divss_round_mask:
3454   case X86::BI__builtin_ia32_divsd_round_mask:
3455   case X86::BI__builtin_ia32_mulss_round_mask:
3456   case X86::BI__builtin_ia32_mulsd_round_mask:
3457   case X86::BI__builtin_ia32_subss_round_mask:
3458   case X86::BI__builtin_ia32_subsd_round_mask:
3459   case X86::BI__builtin_ia32_scalefpd512_mask:
3460   case X86::BI__builtin_ia32_scalefps512_mask:
3461   case X86::BI__builtin_ia32_scalefsd_round_mask:
3462   case X86::BI__builtin_ia32_scalefss_round_mask:
3463   case X86::BI__builtin_ia32_getmantpd512_mask:
3464   case X86::BI__builtin_ia32_getmantps512_mask:
3465   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3466   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3467   case X86::BI__builtin_ia32_sqrtss_round_mask:
3468   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3469   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3470   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3471   case X86::BI__builtin_ia32_vfmaddss3_mask:
3472   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3473   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3474   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3475   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3476   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3477   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3478   case X86::BI__builtin_ia32_vfmaddps512_mask:
3479   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3480   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3481   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3482   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3483   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3484   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3485   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3486   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3487   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3488   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3489   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3490     ArgNum = 4;
3491     HasRC = true;
3492     break;
3493   case X86::BI__builtin_ia32_getmantsd_round_mask:
3494   case X86::BI__builtin_ia32_getmantss_round_mask:
3495     ArgNum = 5;
3496     HasRC = true;
3497     break;
3498   }
3499 
3500   llvm::APSInt Result;
3501 
3502   // We can't check the value of a dependent argument.
3503   Expr *Arg = TheCall->getArg(ArgNum);
3504   if (Arg->isTypeDependent() || Arg->isValueDependent())
3505     return false;
3506 
3507   // Check constant-ness first.
3508   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3509     return true;
3510 
3511   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3512   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3513   // combined with ROUND_NO_EXC.
3514   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3515       Result == 8/*ROUND_NO_EXC*/ ||
3516       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3517     return false;
3518 
3519   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3520          << Arg->getSourceRange();
3521 }
3522 
3523 // Check if the gather/scatter scale is legal.
3524 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3525                                              CallExpr *TheCall) {
3526   unsigned ArgNum = 0;
3527   switch (BuiltinID) {
3528   default:
3529     return false;
3530   case X86::BI__builtin_ia32_gatherpfdpd:
3531   case X86::BI__builtin_ia32_gatherpfdps:
3532   case X86::BI__builtin_ia32_gatherpfqpd:
3533   case X86::BI__builtin_ia32_gatherpfqps:
3534   case X86::BI__builtin_ia32_scatterpfdpd:
3535   case X86::BI__builtin_ia32_scatterpfdps:
3536   case X86::BI__builtin_ia32_scatterpfqpd:
3537   case X86::BI__builtin_ia32_scatterpfqps:
3538     ArgNum = 3;
3539     break;
3540   case X86::BI__builtin_ia32_gatherd_pd:
3541   case X86::BI__builtin_ia32_gatherd_pd256:
3542   case X86::BI__builtin_ia32_gatherq_pd:
3543   case X86::BI__builtin_ia32_gatherq_pd256:
3544   case X86::BI__builtin_ia32_gatherd_ps:
3545   case X86::BI__builtin_ia32_gatherd_ps256:
3546   case X86::BI__builtin_ia32_gatherq_ps:
3547   case X86::BI__builtin_ia32_gatherq_ps256:
3548   case X86::BI__builtin_ia32_gatherd_q:
3549   case X86::BI__builtin_ia32_gatherd_q256:
3550   case X86::BI__builtin_ia32_gatherq_q:
3551   case X86::BI__builtin_ia32_gatherq_q256:
3552   case X86::BI__builtin_ia32_gatherd_d:
3553   case X86::BI__builtin_ia32_gatherd_d256:
3554   case X86::BI__builtin_ia32_gatherq_d:
3555   case X86::BI__builtin_ia32_gatherq_d256:
3556   case X86::BI__builtin_ia32_gather3div2df:
3557   case X86::BI__builtin_ia32_gather3div2di:
3558   case X86::BI__builtin_ia32_gather3div4df:
3559   case X86::BI__builtin_ia32_gather3div4di:
3560   case X86::BI__builtin_ia32_gather3div4sf:
3561   case X86::BI__builtin_ia32_gather3div4si:
3562   case X86::BI__builtin_ia32_gather3div8sf:
3563   case X86::BI__builtin_ia32_gather3div8si:
3564   case X86::BI__builtin_ia32_gather3siv2df:
3565   case X86::BI__builtin_ia32_gather3siv2di:
3566   case X86::BI__builtin_ia32_gather3siv4df:
3567   case X86::BI__builtin_ia32_gather3siv4di:
3568   case X86::BI__builtin_ia32_gather3siv4sf:
3569   case X86::BI__builtin_ia32_gather3siv4si:
3570   case X86::BI__builtin_ia32_gather3siv8sf:
3571   case X86::BI__builtin_ia32_gather3siv8si:
3572   case X86::BI__builtin_ia32_gathersiv8df:
3573   case X86::BI__builtin_ia32_gathersiv16sf:
3574   case X86::BI__builtin_ia32_gatherdiv8df:
3575   case X86::BI__builtin_ia32_gatherdiv16sf:
3576   case X86::BI__builtin_ia32_gathersiv8di:
3577   case X86::BI__builtin_ia32_gathersiv16si:
3578   case X86::BI__builtin_ia32_gatherdiv8di:
3579   case X86::BI__builtin_ia32_gatherdiv16si:
3580   case X86::BI__builtin_ia32_scatterdiv2df:
3581   case X86::BI__builtin_ia32_scatterdiv2di:
3582   case X86::BI__builtin_ia32_scatterdiv4df:
3583   case X86::BI__builtin_ia32_scatterdiv4di:
3584   case X86::BI__builtin_ia32_scatterdiv4sf:
3585   case X86::BI__builtin_ia32_scatterdiv4si:
3586   case X86::BI__builtin_ia32_scatterdiv8sf:
3587   case X86::BI__builtin_ia32_scatterdiv8si:
3588   case X86::BI__builtin_ia32_scattersiv2df:
3589   case X86::BI__builtin_ia32_scattersiv2di:
3590   case X86::BI__builtin_ia32_scattersiv4df:
3591   case X86::BI__builtin_ia32_scattersiv4di:
3592   case X86::BI__builtin_ia32_scattersiv4sf:
3593   case X86::BI__builtin_ia32_scattersiv4si:
3594   case X86::BI__builtin_ia32_scattersiv8sf:
3595   case X86::BI__builtin_ia32_scattersiv8si:
3596   case X86::BI__builtin_ia32_scattersiv8df:
3597   case X86::BI__builtin_ia32_scattersiv16sf:
3598   case X86::BI__builtin_ia32_scatterdiv8df:
3599   case X86::BI__builtin_ia32_scatterdiv16sf:
3600   case X86::BI__builtin_ia32_scattersiv8di:
3601   case X86::BI__builtin_ia32_scattersiv16si:
3602   case X86::BI__builtin_ia32_scatterdiv8di:
3603   case X86::BI__builtin_ia32_scatterdiv16si:
3604     ArgNum = 4;
3605     break;
3606   }
3607 
3608   llvm::APSInt Result;
3609 
3610   // We can't check the value of a dependent argument.
3611   Expr *Arg = TheCall->getArg(ArgNum);
3612   if (Arg->isTypeDependent() || Arg->isValueDependent())
3613     return false;
3614 
3615   // Check constant-ness first.
3616   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3617     return true;
3618 
3619   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3620     return false;
3621 
3622   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3623          << Arg->getSourceRange();
3624 }
3625 
3626 static bool isX86_32Builtin(unsigned BuiltinID) {
3627   // These builtins only work on x86-32 targets.
3628   switch (BuiltinID) {
3629   case X86::BI__builtin_ia32_readeflags_u32:
3630   case X86::BI__builtin_ia32_writeeflags_u32:
3631     return true;
3632   }
3633 
3634   return false;
3635 }
3636 
3637 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3638   if (BuiltinID == X86::BI__builtin_cpu_supports)
3639     return SemaBuiltinCpuSupports(*this, TheCall);
3640 
3641   if (BuiltinID == X86::BI__builtin_cpu_is)
3642     return SemaBuiltinCpuIs(*this, TheCall);
3643 
3644   // Check for 32-bit only builtins on a 64-bit target.
3645   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3646   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3647     return Diag(TheCall->getCallee()->getBeginLoc(),
3648                 diag::err_32_bit_builtin_64_bit_tgt);
3649 
3650   // If the intrinsic has rounding or SAE make sure its valid.
3651   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3652     return true;
3653 
3654   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3655   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3656     return true;
3657 
3658   // For intrinsics which take an immediate value as part of the instruction,
3659   // range check them here.
3660   int i = 0, l = 0, u = 0;
3661   switch (BuiltinID) {
3662   default:
3663     return false;
3664   case X86::BI__builtin_ia32_vec_ext_v2si:
3665   case X86::BI__builtin_ia32_vec_ext_v2di:
3666   case X86::BI__builtin_ia32_vextractf128_pd256:
3667   case X86::BI__builtin_ia32_vextractf128_ps256:
3668   case X86::BI__builtin_ia32_vextractf128_si256:
3669   case X86::BI__builtin_ia32_extract128i256:
3670   case X86::BI__builtin_ia32_extractf64x4_mask:
3671   case X86::BI__builtin_ia32_extracti64x4_mask:
3672   case X86::BI__builtin_ia32_extractf32x8_mask:
3673   case X86::BI__builtin_ia32_extracti32x8_mask:
3674   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3675   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3676   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3677   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3678     i = 1; l = 0; u = 1;
3679     break;
3680   case X86::BI__builtin_ia32_vec_set_v2di:
3681   case X86::BI__builtin_ia32_vinsertf128_pd256:
3682   case X86::BI__builtin_ia32_vinsertf128_ps256:
3683   case X86::BI__builtin_ia32_vinsertf128_si256:
3684   case X86::BI__builtin_ia32_insert128i256:
3685   case X86::BI__builtin_ia32_insertf32x8:
3686   case X86::BI__builtin_ia32_inserti32x8:
3687   case X86::BI__builtin_ia32_insertf64x4:
3688   case X86::BI__builtin_ia32_inserti64x4:
3689   case X86::BI__builtin_ia32_insertf64x2_256:
3690   case X86::BI__builtin_ia32_inserti64x2_256:
3691   case X86::BI__builtin_ia32_insertf32x4_256:
3692   case X86::BI__builtin_ia32_inserti32x4_256:
3693     i = 2; l = 0; u = 1;
3694     break;
3695   case X86::BI__builtin_ia32_vpermilpd:
3696   case X86::BI__builtin_ia32_vec_ext_v4hi:
3697   case X86::BI__builtin_ia32_vec_ext_v4si:
3698   case X86::BI__builtin_ia32_vec_ext_v4sf:
3699   case X86::BI__builtin_ia32_vec_ext_v4di:
3700   case X86::BI__builtin_ia32_extractf32x4_mask:
3701   case X86::BI__builtin_ia32_extracti32x4_mask:
3702   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3703   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3704     i = 1; l = 0; u = 3;
3705     break;
3706   case X86::BI_mm_prefetch:
3707   case X86::BI__builtin_ia32_vec_ext_v8hi:
3708   case X86::BI__builtin_ia32_vec_ext_v8si:
3709     i = 1; l = 0; u = 7;
3710     break;
3711   case X86::BI__builtin_ia32_sha1rnds4:
3712   case X86::BI__builtin_ia32_blendpd:
3713   case X86::BI__builtin_ia32_shufpd:
3714   case X86::BI__builtin_ia32_vec_set_v4hi:
3715   case X86::BI__builtin_ia32_vec_set_v4si:
3716   case X86::BI__builtin_ia32_vec_set_v4di:
3717   case X86::BI__builtin_ia32_shuf_f32x4_256:
3718   case X86::BI__builtin_ia32_shuf_f64x2_256:
3719   case X86::BI__builtin_ia32_shuf_i32x4_256:
3720   case X86::BI__builtin_ia32_shuf_i64x2_256:
3721   case X86::BI__builtin_ia32_insertf64x2_512:
3722   case X86::BI__builtin_ia32_inserti64x2_512:
3723   case X86::BI__builtin_ia32_insertf32x4:
3724   case X86::BI__builtin_ia32_inserti32x4:
3725     i = 2; l = 0; u = 3;
3726     break;
3727   case X86::BI__builtin_ia32_vpermil2pd:
3728   case X86::BI__builtin_ia32_vpermil2pd256:
3729   case X86::BI__builtin_ia32_vpermil2ps:
3730   case X86::BI__builtin_ia32_vpermil2ps256:
3731     i = 3; l = 0; u = 3;
3732     break;
3733   case X86::BI__builtin_ia32_cmpb128_mask:
3734   case X86::BI__builtin_ia32_cmpw128_mask:
3735   case X86::BI__builtin_ia32_cmpd128_mask:
3736   case X86::BI__builtin_ia32_cmpq128_mask:
3737   case X86::BI__builtin_ia32_cmpb256_mask:
3738   case X86::BI__builtin_ia32_cmpw256_mask:
3739   case X86::BI__builtin_ia32_cmpd256_mask:
3740   case X86::BI__builtin_ia32_cmpq256_mask:
3741   case X86::BI__builtin_ia32_cmpb512_mask:
3742   case X86::BI__builtin_ia32_cmpw512_mask:
3743   case X86::BI__builtin_ia32_cmpd512_mask:
3744   case X86::BI__builtin_ia32_cmpq512_mask:
3745   case X86::BI__builtin_ia32_ucmpb128_mask:
3746   case X86::BI__builtin_ia32_ucmpw128_mask:
3747   case X86::BI__builtin_ia32_ucmpd128_mask:
3748   case X86::BI__builtin_ia32_ucmpq128_mask:
3749   case X86::BI__builtin_ia32_ucmpb256_mask:
3750   case X86::BI__builtin_ia32_ucmpw256_mask:
3751   case X86::BI__builtin_ia32_ucmpd256_mask:
3752   case X86::BI__builtin_ia32_ucmpq256_mask:
3753   case X86::BI__builtin_ia32_ucmpb512_mask:
3754   case X86::BI__builtin_ia32_ucmpw512_mask:
3755   case X86::BI__builtin_ia32_ucmpd512_mask:
3756   case X86::BI__builtin_ia32_ucmpq512_mask:
3757   case X86::BI__builtin_ia32_vpcomub:
3758   case X86::BI__builtin_ia32_vpcomuw:
3759   case X86::BI__builtin_ia32_vpcomud:
3760   case X86::BI__builtin_ia32_vpcomuq:
3761   case X86::BI__builtin_ia32_vpcomb:
3762   case X86::BI__builtin_ia32_vpcomw:
3763   case X86::BI__builtin_ia32_vpcomd:
3764   case X86::BI__builtin_ia32_vpcomq:
3765   case X86::BI__builtin_ia32_vec_set_v8hi:
3766   case X86::BI__builtin_ia32_vec_set_v8si:
3767     i = 2; l = 0; u = 7;
3768     break;
3769   case X86::BI__builtin_ia32_vpermilpd256:
3770   case X86::BI__builtin_ia32_roundps:
3771   case X86::BI__builtin_ia32_roundpd:
3772   case X86::BI__builtin_ia32_roundps256:
3773   case X86::BI__builtin_ia32_roundpd256:
3774   case X86::BI__builtin_ia32_getmantpd128_mask:
3775   case X86::BI__builtin_ia32_getmantpd256_mask:
3776   case X86::BI__builtin_ia32_getmantps128_mask:
3777   case X86::BI__builtin_ia32_getmantps256_mask:
3778   case X86::BI__builtin_ia32_getmantpd512_mask:
3779   case X86::BI__builtin_ia32_getmantps512_mask:
3780   case X86::BI__builtin_ia32_vec_ext_v16qi:
3781   case X86::BI__builtin_ia32_vec_ext_v16hi:
3782     i = 1; l = 0; u = 15;
3783     break;
3784   case X86::BI__builtin_ia32_pblendd128:
3785   case X86::BI__builtin_ia32_blendps:
3786   case X86::BI__builtin_ia32_blendpd256:
3787   case X86::BI__builtin_ia32_shufpd256:
3788   case X86::BI__builtin_ia32_roundss:
3789   case X86::BI__builtin_ia32_roundsd:
3790   case X86::BI__builtin_ia32_rangepd128_mask:
3791   case X86::BI__builtin_ia32_rangepd256_mask:
3792   case X86::BI__builtin_ia32_rangepd512_mask:
3793   case X86::BI__builtin_ia32_rangeps128_mask:
3794   case X86::BI__builtin_ia32_rangeps256_mask:
3795   case X86::BI__builtin_ia32_rangeps512_mask:
3796   case X86::BI__builtin_ia32_getmantsd_round_mask:
3797   case X86::BI__builtin_ia32_getmantss_round_mask:
3798   case X86::BI__builtin_ia32_vec_set_v16qi:
3799   case X86::BI__builtin_ia32_vec_set_v16hi:
3800     i = 2; l = 0; u = 15;
3801     break;
3802   case X86::BI__builtin_ia32_vec_ext_v32qi:
3803     i = 1; l = 0; u = 31;
3804     break;
3805   case X86::BI__builtin_ia32_cmpps:
3806   case X86::BI__builtin_ia32_cmpss:
3807   case X86::BI__builtin_ia32_cmppd:
3808   case X86::BI__builtin_ia32_cmpsd:
3809   case X86::BI__builtin_ia32_cmpps256:
3810   case X86::BI__builtin_ia32_cmppd256:
3811   case X86::BI__builtin_ia32_cmpps128_mask:
3812   case X86::BI__builtin_ia32_cmppd128_mask:
3813   case X86::BI__builtin_ia32_cmpps256_mask:
3814   case X86::BI__builtin_ia32_cmppd256_mask:
3815   case X86::BI__builtin_ia32_cmpps512_mask:
3816   case X86::BI__builtin_ia32_cmppd512_mask:
3817   case X86::BI__builtin_ia32_cmpsd_mask:
3818   case X86::BI__builtin_ia32_cmpss_mask:
3819   case X86::BI__builtin_ia32_vec_set_v32qi:
3820     i = 2; l = 0; u = 31;
3821     break;
3822   case X86::BI__builtin_ia32_permdf256:
3823   case X86::BI__builtin_ia32_permdi256:
3824   case X86::BI__builtin_ia32_permdf512:
3825   case X86::BI__builtin_ia32_permdi512:
3826   case X86::BI__builtin_ia32_vpermilps:
3827   case X86::BI__builtin_ia32_vpermilps256:
3828   case X86::BI__builtin_ia32_vpermilpd512:
3829   case X86::BI__builtin_ia32_vpermilps512:
3830   case X86::BI__builtin_ia32_pshufd:
3831   case X86::BI__builtin_ia32_pshufd256:
3832   case X86::BI__builtin_ia32_pshufd512:
3833   case X86::BI__builtin_ia32_pshufhw:
3834   case X86::BI__builtin_ia32_pshufhw256:
3835   case X86::BI__builtin_ia32_pshufhw512:
3836   case X86::BI__builtin_ia32_pshuflw:
3837   case X86::BI__builtin_ia32_pshuflw256:
3838   case X86::BI__builtin_ia32_pshuflw512:
3839   case X86::BI__builtin_ia32_vcvtps2ph:
3840   case X86::BI__builtin_ia32_vcvtps2ph_mask:
3841   case X86::BI__builtin_ia32_vcvtps2ph256:
3842   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
3843   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
3844   case X86::BI__builtin_ia32_rndscaleps_128_mask:
3845   case X86::BI__builtin_ia32_rndscalepd_128_mask:
3846   case X86::BI__builtin_ia32_rndscaleps_256_mask:
3847   case X86::BI__builtin_ia32_rndscalepd_256_mask:
3848   case X86::BI__builtin_ia32_rndscaleps_mask:
3849   case X86::BI__builtin_ia32_rndscalepd_mask:
3850   case X86::BI__builtin_ia32_reducepd128_mask:
3851   case X86::BI__builtin_ia32_reducepd256_mask:
3852   case X86::BI__builtin_ia32_reducepd512_mask:
3853   case X86::BI__builtin_ia32_reduceps128_mask:
3854   case X86::BI__builtin_ia32_reduceps256_mask:
3855   case X86::BI__builtin_ia32_reduceps512_mask:
3856   case X86::BI__builtin_ia32_prold512:
3857   case X86::BI__builtin_ia32_prolq512:
3858   case X86::BI__builtin_ia32_prold128:
3859   case X86::BI__builtin_ia32_prold256:
3860   case X86::BI__builtin_ia32_prolq128:
3861   case X86::BI__builtin_ia32_prolq256:
3862   case X86::BI__builtin_ia32_prord512:
3863   case X86::BI__builtin_ia32_prorq512:
3864   case X86::BI__builtin_ia32_prord128:
3865   case X86::BI__builtin_ia32_prord256:
3866   case X86::BI__builtin_ia32_prorq128:
3867   case X86::BI__builtin_ia32_prorq256:
3868   case X86::BI__builtin_ia32_fpclasspd128_mask:
3869   case X86::BI__builtin_ia32_fpclasspd256_mask:
3870   case X86::BI__builtin_ia32_fpclassps128_mask:
3871   case X86::BI__builtin_ia32_fpclassps256_mask:
3872   case X86::BI__builtin_ia32_fpclassps512_mask:
3873   case X86::BI__builtin_ia32_fpclasspd512_mask:
3874   case X86::BI__builtin_ia32_fpclasssd_mask:
3875   case X86::BI__builtin_ia32_fpclassss_mask:
3876   case X86::BI__builtin_ia32_pslldqi128_byteshift:
3877   case X86::BI__builtin_ia32_pslldqi256_byteshift:
3878   case X86::BI__builtin_ia32_pslldqi512_byteshift:
3879   case X86::BI__builtin_ia32_psrldqi128_byteshift:
3880   case X86::BI__builtin_ia32_psrldqi256_byteshift:
3881   case X86::BI__builtin_ia32_psrldqi512_byteshift:
3882   case X86::BI__builtin_ia32_kshiftliqi:
3883   case X86::BI__builtin_ia32_kshiftlihi:
3884   case X86::BI__builtin_ia32_kshiftlisi:
3885   case X86::BI__builtin_ia32_kshiftlidi:
3886   case X86::BI__builtin_ia32_kshiftriqi:
3887   case X86::BI__builtin_ia32_kshiftrihi:
3888   case X86::BI__builtin_ia32_kshiftrisi:
3889   case X86::BI__builtin_ia32_kshiftridi:
3890     i = 1; l = 0; u = 255;
3891     break;
3892   case X86::BI__builtin_ia32_vperm2f128_pd256:
3893   case X86::BI__builtin_ia32_vperm2f128_ps256:
3894   case X86::BI__builtin_ia32_vperm2f128_si256:
3895   case X86::BI__builtin_ia32_permti256:
3896   case X86::BI__builtin_ia32_pblendw128:
3897   case X86::BI__builtin_ia32_pblendw256:
3898   case X86::BI__builtin_ia32_blendps256:
3899   case X86::BI__builtin_ia32_pblendd256:
3900   case X86::BI__builtin_ia32_palignr128:
3901   case X86::BI__builtin_ia32_palignr256:
3902   case X86::BI__builtin_ia32_palignr512:
3903   case X86::BI__builtin_ia32_alignq512:
3904   case X86::BI__builtin_ia32_alignd512:
3905   case X86::BI__builtin_ia32_alignd128:
3906   case X86::BI__builtin_ia32_alignd256:
3907   case X86::BI__builtin_ia32_alignq128:
3908   case X86::BI__builtin_ia32_alignq256:
3909   case X86::BI__builtin_ia32_vcomisd:
3910   case X86::BI__builtin_ia32_vcomiss:
3911   case X86::BI__builtin_ia32_shuf_f32x4:
3912   case X86::BI__builtin_ia32_shuf_f64x2:
3913   case X86::BI__builtin_ia32_shuf_i32x4:
3914   case X86::BI__builtin_ia32_shuf_i64x2:
3915   case X86::BI__builtin_ia32_shufpd512:
3916   case X86::BI__builtin_ia32_shufps:
3917   case X86::BI__builtin_ia32_shufps256:
3918   case X86::BI__builtin_ia32_shufps512:
3919   case X86::BI__builtin_ia32_dbpsadbw128:
3920   case X86::BI__builtin_ia32_dbpsadbw256:
3921   case X86::BI__builtin_ia32_dbpsadbw512:
3922   case X86::BI__builtin_ia32_vpshldd128:
3923   case X86::BI__builtin_ia32_vpshldd256:
3924   case X86::BI__builtin_ia32_vpshldd512:
3925   case X86::BI__builtin_ia32_vpshldq128:
3926   case X86::BI__builtin_ia32_vpshldq256:
3927   case X86::BI__builtin_ia32_vpshldq512:
3928   case X86::BI__builtin_ia32_vpshldw128:
3929   case X86::BI__builtin_ia32_vpshldw256:
3930   case X86::BI__builtin_ia32_vpshldw512:
3931   case X86::BI__builtin_ia32_vpshrdd128:
3932   case X86::BI__builtin_ia32_vpshrdd256:
3933   case X86::BI__builtin_ia32_vpshrdd512:
3934   case X86::BI__builtin_ia32_vpshrdq128:
3935   case X86::BI__builtin_ia32_vpshrdq256:
3936   case X86::BI__builtin_ia32_vpshrdq512:
3937   case X86::BI__builtin_ia32_vpshrdw128:
3938   case X86::BI__builtin_ia32_vpshrdw256:
3939   case X86::BI__builtin_ia32_vpshrdw512:
3940     i = 2; l = 0; u = 255;
3941     break;
3942   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3943   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3944   case X86::BI__builtin_ia32_fixupimmps512_mask:
3945   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3946   case X86::BI__builtin_ia32_fixupimmsd_mask:
3947   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3948   case X86::BI__builtin_ia32_fixupimmss_mask:
3949   case X86::BI__builtin_ia32_fixupimmss_maskz:
3950   case X86::BI__builtin_ia32_fixupimmpd128_mask:
3951   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
3952   case X86::BI__builtin_ia32_fixupimmpd256_mask:
3953   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
3954   case X86::BI__builtin_ia32_fixupimmps128_mask:
3955   case X86::BI__builtin_ia32_fixupimmps128_maskz:
3956   case X86::BI__builtin_ia32_fixupimmps256_mask:
3957   case X86::BI__builtin_ia32_fixupimmps256_maskz:
3958   case X86::BI__builtin_ia32_pternlogd512_mask:
3959   case X86::BI__builtin_ia32_pternlogd512_maskz:
3960   case X86::BI__builtin_ia32_pternlogq512_mask:
3961   case X86::BI__builtin_ia32_pternlogq512_maskz:
3962   case X86::BI__builtin_ia32_pternlogd128_mask:
3963   case X86::BI__builtin_ia32_pternlogd128_maskz:
3964   case X86::BI__builtin_ia32_pternlogd256_mask:
3965   case X86::BI__builtin_ia32_pternlogd256_maskz:
3966   case X86::BI__builtin_ia32_pternlogq128_mask:
3967   case X86::BI__builtin_ia32_pternlogq128_maskz:
3968   case X86::BI__builtin_ia32_pternlogq256_mask:
3969   case X86::BI__builtin_ia32_pternlogq256_maskz:
3970     i = 3; l = 0; u = 255;
3971     break;
3972   case X86::BI__builtin_ia32_gatherpfdpd:
3973   case X86::BI__builtin_ia32_gatherpfdps:
3974   case X86::BI__builtin_ia32_gatherpfqpd:
3975   case X86::BI__builtin_ia32_gatherpfqps:
3976   case X86::BI__builtin_ia32_scatterpfdpd:
3977   case X86::BI__builtin_ia32_scatterpfdps:
3978   case X86::BI__builtin_ia32_scatterpfqpd:
3979   case X86::BI__builtin_ia32_scatterpfqps:
3980     i = 4; l = 2; u = 3;
3981     break;
3982   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3983   case X86::BI__builtin_ia32_rndscaless_round_mask:
3984     i = 4; l = 0; u = 255;
3985     break;
3986   }
3987 
3988   // Note that we don't force a hard error on the range check here, allowing
3989   // template-generated or macro-generated dead code to potentially have out-of-
3990   // range values. These need to code generate, but don't need to necessarily
3991   // make any sense. We use a warning that defaults to an error.
3992   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
3993 }
3994 
3995 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
3996 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
3997 /// Returns true when the format fits the function and the FormatStringInfo has
3998 /// been populated.
3999 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4000                                FormatStringInfo *FSI) {
4001   FSI->HasVAListArg = Format->getFirstArg() == 0;
4002   FSI->FormatIdx = Format->getFormatIdx() - 1;
4003   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4004 
4005   // The way the format attribute works in GCC, the implicit this argument
4006   // of member functions is counted. However, it doesn't appear in our own
4007   // lists, so decrement format_idx in that case.
4008   if (IsCXXMember) {
4009     if(FSI->FormatIdx == 0)
4010       return false;
4011     --FSI->FormatIdx;
4012     if (FSI->FirstDataArg != 0)
4013       --FSI->FirstDataArg;
4014   }
4015   return true;
4016 }
4017 
4018 /// Checks if a the given expression evaluates to null.
4019 ///
4020 /// Returns true if the value evaluates to null.
4021 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4022   // If the expression has non-null type, it doesn't evaluate to null.
4023   if (auto nullability
4024         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4025     if (*nullability == NullabilityKind::NonNull)
4026       return false;
4027   }
4028 
4029   // As a special case, transparent unions initialized with zero are
4030   // considered null for the purposes of the nonnull attribute.
4031   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4032     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4033       if (const CompoundLiteralExpr *CLE =
4034           dyn_cast<CompoundLiteralExpr>(Expr))
4035         if (const InitListExpr *ILE =
4036             dyn_cast<InitListExpr>(CLE->getInitializer()))
4037           Expr = ILE->getInit(0);
4038   }
4039 
4040   bool Result;
4041   return (!Expr->isValueDependent() &&
4042           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4043           !Result);
4044 }
4045 
4046 static void CheckNonNullArgument(Sema &S,
4047                                  const Expr *ArgExpr,
4048                                  SourceLocation CallSiteLoc) {
4049   if (CheckNonNullExpr(S, ArgExpr))
4050     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4051            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
4052 }
4053 
4054 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4055   FormatStringInfo FSI;
4056   if ((GetFormatStringType(Format) == FST_NSString) &&
4057       getFormatStringInfo(Format, false, &FSI)) {
4058     Idx = FSI.FormatIdx;
4059     return true;
4060   }
4061   return false;
4062 }
4063 
4064 /// Diagnose use of %s directive in an NSString which is being passed
4065 /// as formatting string to formatting method.
4066 static void
4067 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4068                                         const NamedDecl *FDecl,
4069                                         Expr **Args,
4070                                         unsigned NumArgs) {
4071   unsigned Idx = 0;
4072   bool Format = false;
4073   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4074   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4075     Idx = 2;
4076     Format = true;
4077   }
4078   else
4079     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4080       if (S.GetFormatNSStringIdx(I, Idx)) {
4081         Format = true;
4082         break;
4083       }
4084     }
4085   if (!Format || NumArgs <= Idx)
4086     return;
4087   const Expr *FormatExpr = Args[Idx];
4088   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4089     FormatExpr = CSCE->getSubExpr();
4090   const StringLiteral *FormatString;
4091   if (const ObjCStringLiteral *OSL =
4092       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4093     FormatString = OSL->getString();
4094   else
4095     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4096   if (!FormatString)
4097     return;
4098   if (S.FormatStringHasSArg(FormatString)) {
4099     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4100       << "%s" << 1 << 1;
4101     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4102       << FDecl->getDeclName();
4103   }
4104 }
4105 
4106 /// Determine whether the given type has a non-null nullability annotation.
4107 static bool isNonNullType(ASTContext &ctx, QualType type) {
4108   if (auto nullability = type->getNullability(ctx))
4109     return *nullability == NullabilityKind::NonNull;
4110 
4111   return false;
4112 }
4113 
4114 static void CheckNonNullArguments(Sema &S,
4115                                   const NamedDecl *FDecl,
4116                                   const FunctionProtoType *Proto,
4117                                   ArrayRef<const Expr *> Args,
4118                                   SourceLocation CallSiteLoc) {
4119   assert((FDecl || Proto) && "Need a function declaration or prototype");
4120 
4121   // Check the attributes attached to the method/function itself.
4122   llvm::SmallBitVector NonNullArgs;
4123   if (FDecl) {
4124     // Handle the nonnull attribute on the function/method declaration itself.
4125     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4126       if (!NonNull->args_size()) {
4127         // Easy case: all pointer arguments are nonnull.
4128         for (const auto *Arg : Args)
4129           if (S.isValidPointerAttrType(Arg->getType()))
4130             CheckNonNullArgument(S, Arg, CallSiteLoc);
4131         return;
4132       }
4133 
4134       for (const ParamIdx &Idx : NonNull->args()) {
4135         unsigned IdxAST = Idx.getASTIndex();
4136         if (IdxAST >= Args.size())
4137           continue;
4138         if (NonNullArgs.empty())
4139           NonNullArgs.resize(Args.size());
4140         NonNullArgs.set(IdxAST);
4141       }
4142     }
4143   }
4144 
4145   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4146     // Handle the nonnull attribute on the parameters of the
4147     // function/method.
4148     ArrayRef<ParmVarDecl*> parms;
4149     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4150       parms = FD->parameters();
4151     else
4152       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4153 
4154     unsigned ParamIndex = 0;
4155     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4156          I != E; ++I, ++ParamIndex) {
4157       const ParmVarDecl *PVD = *I;
4158       if (PVD->hasAttr<NonNullAttr>() ||
4159           isNonNullType(S.Context, PVD->getType())) {
4160         if (NonNullArgs.empty())
4161           NonNullArgs.resize(Args.size());
4162 
4163         NonNullArgs.set(ParamIndex);
4164       }
4165     }
4166   } else {
4167     // If we have a non-function, non-method declaration but no
4168     // function prototype, try to dig out the function prototype.
4169     if (!Proto) {
4170       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4171         QualType type = VD->getType().getNonReferenceType();
4172         if (auto pointerType = type->getAs<PointerType>())
4173           type = pointerType->getPointeeType();
4174         else if (auto blockType = type->getAs<BlockPointerType>())
4175           type = blockType->getPointeeType();
4176         // FIXME: data member pointers?
4177 
4178         // Dig out the function prototype, if there is one.
4179         Proto = type->getAs<FunctionProtoType>();
4180       }
4181     }
4182 
4183     // Fill in non-null argument information from the nullability
4184     // information on the parameter types (if we have them).
4185     if (Proto) {
4186       unsigned Index = 0;
4187       for (auto paramType : Proto->getParamTypes()) {
4188         if (isNonNullType(S.Context, paramType)) {
4189           if (NonNullArgs.empty())
4190             NonNullArgs.resize(Args.size());
4191 
4192           NonNullArgs.set(Index);
4193         }
4194 
4195         ++Index;
4196       }
4197     }
4198   }
4199 
4200   // Check for non-null arguments.
4201   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4202        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4203     if (NonNullArgs[ArgIndex])
4204       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4205   }
4206 }
4207 
4208 /// Handles the checks for format strings, non-POD arguments to vararg
4209 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4210 /// attributes.
4211 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4212                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4213                      bool IsMemberFunction, SourceLocation Loc,
4214                      SourceRange Range, VariadicCallType CallType) {
4215   // FIXME: We should check as much as we can in the template definition.
4216   if (CurContext->isDependentContext())
4217     return;
4218 
4219   // Printf and scanf checking.
4220   llvm::SmallBitVector CheckedVarArgs;
4221   if (FDecl) {
4222     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4223       // Only create vector if there are format attributes.
4224       CheckedVarArgs.resize(Args.size());
4225 
4226       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4227                            CheckedVarArgs);
4228     }
4229   }
4230 
4231   // Refuse POD arguments that weren't caught by the format string
4232   // checks above.
4233   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4234   if (CallType != VariadicDoesNotApply &&
4235       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4236     unsigned NumParams = Proto ? Proto->getNumParams()
4237                        : FDecl && isa<FunctionDecl>(FDecl)
4238                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4239                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4240                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4241                        : 0;
4242 
4243     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4244       // Args[ArgIdx] can be null in malformed code.
4245       if (const Expr *Arg = Args[ArgIdx]) {
4246         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4247           checkVariadicArgument(Arg, CallType);
4248       }
4249     }
4250   }
4251 
4252   if (FDecl || Proto) {
4253     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4254 
4255     // Type safety checking.
4256     if (FDecl) {
4257       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4258         CheckArgumentWithTypeTag(I, Args, Loc);
4259     }
4260   }
4261 
4262   if (FD)
4263     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4264 }
4265 
4266 /// CheckConstructorCall - Check a constructor call for correctness and safety
4267 /// properties not enforced by the C type system.
4268 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4269                                 ArrayRef<const Expr *> Args,
4270                                 const FunctionProtoType *Proto,
4271                                 SourceLocation Loc) {
4272   VariadicCallType CallType =
4273     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4274   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4275             Loc, SourceRange(), CallType);
4276 }
4277 
4278 /// CheckFunctionCall - Check a direct function call for various correctness
4279 /// and safety properties not strictly enforced by the C type system.
4280 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4281                              const FunctionProtoType *Proto) {
4282   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4283                               isa<CXXMethodDecl>(FDecl);
4284   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4285                           IsMemberOperatorCall;
4286   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4287                                                   TheCall->getCallee());
4288   Expr** Args = TheCall->getArgs();
4289   unsigned NumArgs = TheCall->getNumArgs();
4290 
4291   Expr *ImplicitThis = nullptr;
4292   if (IsMemberOperatorCall) {
4293     // If this is a call to a member operator, hide the first argument
4294     // from checkCall.
4295     // FIXME: Our choice of AST representation here is less than ideal.
4296     ImplicitThis = Args[0];
4297     ++Args;
4298     --NumArgs;
4299   } else if (IsMemberFunction)
4300     ImplicitThis =
4301         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4302 
4303   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4304             IsMemberFunction, TheCall->getRParenLoc(),
4305             TheCall->getCallee()->getSourceRange(), CallType);
4306 
4307   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4308   // None of the checks below are needed for functions that don't have
4309   // simple names (e.g., C++ conversion functions).
4310   if (!FnInfo)
4311     return false;
4312 
4313   CheckAbsoluteValueFunction(TheCall, FDecl);
4314   CheckMaxUnsignedZero(TheCall, FDecl);
4315 
4316   if (getLangOpts().ObjC)
4317     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4318 
4319   unsigned CMId = FDecl->getMemoryFunctionKind();
4320   if (CMId == 0)
4321     return false;
4322 
4323   // Handle memory setting and copying functions.
4324   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
4325     CheckStrlcpycatArguments(TheCall, FnInfo);
4326   else if (CMId == Builtin::BIstrncat)
4327     CheckStrncatArguments(TheCall, FnInfo);
4328   else
4329     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4330 
4331   return false;
4332 }
4333 
4334 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4335                                ArrayRef<const Expr *> Args) {
4336   VariadicCallType CallType =
4337       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4338 
4339   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4340             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4341             CallType);
4342 
4343   return false;
4344 }
4345 
4346 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4347                             const FunctionProtoType *Proto) {
4348   QualType Ty;
4349   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4350     Ty = V->getType().getNonReferenceType();
4351   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4352     Ty = F->getType().getNonReferenceType();
4353   else
4354     return false;
4355 
4356   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4357       !Ty->isFunctionProtoType())
4358     return false;
4359 
4360   VariadicCallType CallType;
4361   if (!Proto || !Proto->isVariadic()) {
4362     CallType = VariadicDoesNotApply;
4363   } else if (Ty->isBlockPointerType()) {
4364     CallType = VariadicBlock;
4365   } else { // Ty->isFunctionPointerType()
4366     CallType = VariadicFunction;
4367   }
4368 
4369   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4370             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4371             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4372             TheCall->getCallee()->getSourceRange(), CallType);
4373 
4374   return false;
4375 }
4376 
4377 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4378 /// such as function pointers returned from functions.
4379 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4380   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4381                                                   TheCall->getCallee());
4382   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4383             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4384             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4385             TheCall->getCallee()->getSourceRange(), CallType);
4386 
4387   return false;
4388 }
4389 
4390 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4391   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4392     return false;
4393 
4394   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4395   switch (Op) {
4396   case AtomicExpr::AO__c11_atomic_init:
4397   case AtomicExpr::AO__opencl_atomic_init:
4398     llvm_unreachable("There is no ordering argument for an init");
4399 
4400   case AtomicExpr::AO__c11_atomic_load:
4401   case AtomicExpr::AO__opencl_atomic_load:
4402   case AtomicExpr::AO__atomic_load_n:
4403   case AtomicExpr::AO__atomic_load:
4404     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4405            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4406 
4407   case AtomicExpr::AO__c11_atomic_store:
4408   case AtomicExpr::AO__opencl_atomic_store:
4409   case AtomicExpr::AO__atomic_store:
4410   case AtomicExpr::AO__atomic_store_n:
4411     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4412            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4413            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4414 
4415   default:
4416     return true;
4417   }
4418 }
4419 
4420 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4421                                          AtomicExpr::AtomicOp Op) {
4422   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4423   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4424 
4425   // All the non-OpenCL operations take one of the following forms.
4426   // The OpenCL operations take the __c11 forms with one extra argument for
4427   // synchronization scope.
4428   enum {
4429     // C    __c11_atomic_init(A *, C)
4430     Init,
4431 
4432     // C    __c11_atomic_load(A *, int)
4433     Load,
4434 
4435     // void __atomic_load(A *, CP, int)
4436     LoadCopy,
4437 
4438     // void __atomic_store(A *, CP, int)
4439     Copy,
4440 
4441     // C    __c11_atomic_add(A *, M, int)
4442     Arithmetic,
4443 
4444     // C    __atomic_exchange_n(A *, CP, int)
4445     Xchg,
4446 
4447     // void __atomic_exchange(A *, C *, CP, int)
4448     GNUXchg,
4449 
4450     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4451     C11CmpXchg,
4452 
4453     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4454     GNUCmpXchg
4455   } Form = Init;
4456 
4457   const unsigned NumForm = GNUCmpXchg + 1;
4458   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4459   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4460   // where:
4461   //   C is an appropriate type,
4462   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4463   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4464   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4465   //   the int parameters are for orderings.
4466 
4467   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4468       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4469       "need to update code for modified forms");
4470   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4471                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
4472                         AtomicExpr::AO__atomic_load,
4473                 "need to update code for modified C11 atomics");
4474   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4475                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4476   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4477                Op <= AtomicExpr::AO__c11_atomic_fetch_xor) ||
4478                IsOpenCL;
4479   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4480              Op == AtomicExpr::AO__atomic_store_n ||
4481              Op == AtomicExpr::AO__atomic_exchange_n ||
4482              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4483   bool IsAddSub = false;
4484   bool IsMinMax = false;
4485 
4486   switch (Op) {
4487   case AtomicExpr::AO__c11_atomic_init:
4488   case AtomicExpr::AO__opencl_atomic_init:
4489     Form = Init;
4490     break;
4491 
4492   case AtomicExpr::AO__c11_atomic_load:
4493   case AtomicExpr::AO__opencl_atomic_load:
4494   case AtomicExpr::AO__atomic_load_n:
4495     Form = Load;
4496     break;
4497 
4498   case AtomicExpr::AO__atomic_load:
4499     Form = LoadCopy;
4500     break;
4501 
4502   case AtomicExpr::AO__c11_atomic_store:
4503   case AtomicExpr::AO__opencl_atomic_store:
4504   case AtomicExpr::AO__atomic_store:
4505   case AtomicExpr::AO__atomic_store_n:
4506     Form = Copy;
4507     break;
4508 
4509   case AtomicExpr::AO__c11_atomic_fetch_add:
4510   case AtomicExpr::AO__c11_atomic_fetch_sub:
4511   case AtomicExpr::AO__opencl_atomic_fetch_add:
4512   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4513   case AtomicExpr::AO__opencl_atomic_fetch_min:
4514   case AtomicExpr::AO__opencl_atomic_fetch_max:
4515   case AtomicExpr::AO__atomic_fetch_add:
4516   case AtomicExpr::AO__atomic_fetch_sub:
4517   case AtomicExpr::AO__atomic_add_fetch:
4518   case AtomicExpr::AO__atomic_sub_fetch:
4519     IsAddSub = true;
4520     LLVM_FALLTHROUGH;
4521   case AtomicExpr::AO__c11_atomic_fetch_and:
4522   case AtomicExpr::AO__c11_atomic_fetch_or:
4523   case AtomicExpr::AO__c11_atomic_fetch_xor:
4524   case AtomicExpr::AO__opencl_atomic_fetch_and:
4525   case AtomicExpr::AO__opencl_atomic_fetch_or:
4526   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4527   case AtomicExpr::AO__atomic_fetch_and:
4528   case AtomicExpr::AO__atomic_fetch_or:
4529   case AtomicExpr::AO__atomic_fetch_xor:
4530   case AtomicExpr::AO__atomic_fetch_nand:
4531   case AtomicExpr::AO__atomic_and_fetch:
4532   case AtomicExpr::AO__atomic_or_fetch:
4533   case AtomicExpr::AO__atomic_xor_fetch:
4534   case AtomicExpr::AO__atomic_nand_fetch:
4535     Form = Arithmetic;
4536     break;
4537 
4538   case AtomicExpr::AO__atomic_fetch_min:
4539   case AtomicExpr::AO__atomic_fetch_max:
4540     IsMinMax = true;
4541     Form = Arithmetic;
4542     break;
4543 
4544   case AtomicExpr::AO__c11_atomic_exchange:
4545   case AtomicExpr::AO__opencl_atomic_exchange:
4546   case AtomicExpr::AO__atomic_exchange_n:
4547     Form = Xchg;
4548     break;
4549 
4550   case AtomicExpr::AO__atomic_exchange:
4551     Form = GNUXchg;
4552     break;
4553 
4554   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4555   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4556   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4557   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4558     Form = C11CmpXchg;
4559     break;
4560 
4561   case AtomicExpr::AO__atomic_compare_exchange:
4562   case AtomicExpr::AO__atomic_compare_exchange_n:
4563     Form = GNUCmpXchg;
4564     break;
4565   }
4566 
4567   unsigned AdjustedNumArgs = NumArgs[Form];
4568   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4569     ++AdjustedNumArgs;
4570   // Check we have the right number of arguments.
4571   if (TheCall->getNumArgs() < AdjustedNumArgs) {
4572     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
4573         << 0 << AdjustedNumArgs << TheCall->getNumArgs()
4574         << TheCall->getCallee()->getSourceRange();
4575     return ExprError();
4576   } else if (TheCall->getNumArgs() > AdjustedNumArgs) {
4577     Diag(TheCall->getArg(AdjustedNumArgs)->getBeginLoc(),
4578          diag::err_typecheck_call_too_many_args)
4579         << 0 << AdjustedNumArgs << TheCall->getNumArgs()
4580         << TheCall->getCallee()->getSourceRange();
4581     return ExprError();
4582   }
4583 
4584   // Inspect the first argument of the atomic operation.
4585   Expr *Ptr = TheCall->getArg(0);
4586   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4587   if (ConvertedPtr.isInvalid())
4588     return ExprError();
4589 
4590   Ptr = ConvertedPtr.get();
4591   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4592   if (!pointerType) {
4593     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4594         << Ptr->getType() << Ptr->getSourceRange();
4595     return ExprError();
4596   }
4597 
4598   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4599   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4600   QualType ValType = AtomTy; // 'C'
4601   if (IsC11) {
4602     if (!AtomTy->isAtomicType()) {
4603       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic)
4604           << Ptr->getType() << Ptr->getSourceRange();
4605       return ExprError();
4606     }
4607     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4608         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4609       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_atomic)
4610           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4611           << Ptr->getSourceRange();
4612       return ExprError();
4613     }
4614     ValType = AtomTy->getAs<AtomicType>()->getValueType();
4615   } else if (Form != Load && Form != LoadCopy) {
4616     if (ValType.isConstQualified()) {
4617       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_pointer)
4618           << Ptr->getType() << Ptr->getSourceRange();
4619       return ExprError();
4620     }
4621   }
4622 
4623   // For an arithmetic operation, the implied arithmetic must be well-formed.
4624   if (Form == Arithmetic) {
4625     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4626     if (IsAddSub && !ValType->isIntegerType()
4627         && !ValType->isPointerType()) {
4628       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4629           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4630       return ExprError();
4631     }
4632     if (IsMinMax) {
4633       const BuiltinType *BT = ValType->getAs<BuiltinType>();
4634       if (!BT || (BT->getKind() != BuiltinType::Int &&
4635                   BT->getKind() != BuiltinType::UInt)) {
4636         Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_int32_or_ptr);
4637         return ExprError();
4638       }
4639     }
4640     if (!IsAddSub && !IsMinMax && !ValType->isIntegerType()) {
4641       Diag(DRE->getBeginLoc(), diag::err_atomic_op_bitwise_needs_atomic_int)
4642           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4643       return ExprError();
4644     }
4645     if (IsC11 && ValType->isPointerType() &&
4646         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4647                             diag::err_incomplete_type)) {
4648       return ExprError();
4649     }
4650   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4651     // For __atomic_*_n operations, the value type must be a scalar integral or
4652     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4653     Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4654         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4655     return ExprError();
4656   }
4657 
4658   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4659       !AtomTy->isScalarType()) {
4660     // For GNU atomics, require a trivially-copyable type. This is not part of
4661     // the GNU atomics specification, but we enforce it for sanity.
4662     Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_trivial_copy)
4663         << Ptr->getType() << Ptr->getSourceRange();
4664     return ExprError();
4665   }
4666 
4667   switch (ValType.getObjCLifetime()) {
4668   case Qualifiers::OCL_None:
4669   case Qualifiers::OCL_ExplicitNone:
4670     // okay
4671     break;
4672 
4673   case Qualifiers::OCL_Weak:
4674   case Qualifiers::OCL_Strong:
4675   case Qualifiers::OCL_Autoreleasing:
4676     // FIXME: Can this happen? By this point, ValType should be known
4677     // to be trivially copyable.
4678     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4679         << ValType << Ptr->getSourceRange();
4680     return ExprError();
4681   }
4682 
4683   // All atomic operations have an overload which takes a pointer to a volatile
4684   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4685   // into the result or the other operands. Similarly atomic_load takes a
4686   // pointer to a const 'A'.
4687   ValType.removeLocalVolatile();
4688   ValType.removeLocalConst();
4689   QualType ResultType = ValType;
4690   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4691       Form == Init)
4692     ResultType = Context.VoidTy;
4693   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4694     ResultType = Context.BoolTy;
4695 
4696   // The type of a parameter passed 'by value'. In the GNU atomics, such
4697   // arguments are actually passed as pointers.
4698   QualType ByValType = ValType; // 'CP'
4699   bool IsPassedByAddress = false;
4700   if (!IsC11 && !IsN) {
4701     ByValType = Ptr->getType();
4702     IsPassedByAddress = true;
4703   }
4704 
4705   // The first argument's non-CV pointer type is used to deduce the type of
4706   // subsequent arguments, except for:
4707   //  - weak flag (always converted to bool)
4708   //  - memory order (always converted to int)
4709   //  - scope  (always converted to int)
4710   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
4711     QualType Ty;
4712     if (i < NumVals[Form] + 1) {
4713       switch (i) {
4714       case 0:
4715         // The first argument is always a pointer. It has a fixed type.
4716         // It is always dereferenced, a nullptr is undefined.
4717         CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4718         // Nothing else to do: we already know all we want about this pointer.
4719         continue;
4720       case 1:
4721         // The second argument is the non-atomic operand. For arithmetic, this
4722         // is always passed by value, and for a compare_exchange it is always
4723         // passed by address. For the rest, GNU uses by-address and C11 uses
4724         // by-value.
4725         assert(Form != Load);
4726         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
4727           Ty = ValType;
4728         else if (Form == Copy || Form == Xchg) {
4729           if (IsPassedByAddress)
4730             // The value pointer is always dereferenced, a nullptr is undefined.
4731             CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4732           Ty = ByValType;
4733         } else if (Form == Arithmetic)
4734           Ty = Context.getPointerDiffType();
4735         else {
4736           Expr *ValArg = TheCall->getArg(i);
4737           // The value pointer is always dereferenced, a nullptr is undefined.
4738           CheckNonNullArgument(*this, ValArg, DRE->getBeginLoc());
4739           LangAS AS = LangAS::Default;
4740           // Keep address space of non-atomic pointer type.
4741           if (const PointerType *PtrTy =
4742                   ValArg->getType()->getAs<PointerType>()) {
4743             AS = PtrTy->getPointeeType().getAddressSpace();
4744           }
4745           Ty = Context.getPointerType(
4746               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
4747         }
4748         break;
4749       case 2:
4750         // The third argument to compare_exchange / GNU exchange is the desired
4751         // value, either by-value (for the C11 and *_n variant) or as a pointer.
4752         if (IsPassedByAddress)
4753           CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4754         Ty = ByValType;
4755         break;
4756       case 3:
4757         // The fourth argument to GNU compare_exchange is a 'weak' flag.
4758         Ty = Context.BoolTy;
4759         break;
4760       }
4761     } else {
4762       // The order(s) and scope are always converted to int.
4763       Ty = Context.IntTy;
4764     }
4765 
4766     InitializedEntity Entity =
4767         InitializedEntity::InitializeParameter(Context, Ty, false);
4768     ExprResult Arg = TheCall->getArg(i);
4769     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4770     if (Arg.isInvalid())
4771       return true;
4772     TheCall->setArg(i, Arg.get());
4773   }
4774 
4775   // Permute the arguments into a 'consistent' order.
4776   SmallVector<Expr*, 5> SubExprs;
4777   SubExprs.push_back(Ptr);
4778   switch (Form) {
4779   case Init:
4780     // Note, AtomicExpr::getVal1() has a special case for this atomic.
4781     SubExprs.push_back(TheCall->getArg(1)); // Val1
4782     break;
4783   case Load:
4784     SubExprs.push_back(TheCall->getArg(1)); // Order
4785     break;
4786   case LoadCopy:
4787   case Copy:
4788   case Arithmetic:
4789   case Xchg:
4790     SubExprs.push_back(TheCall->getArg(2)); // Order
4791     SubExprs.push_back(TheCall->getArg(1)); // Val1
4792     break;
4793   case GNUXchg:
4794     // Note, AtomicExpr::getVal2() has a special case for this atomic.
4795     SubExprs.push_back(TheCall->getArg(3)); // Order
4796     SubExprs.push_back(TheCall->getArg(1)); // Val1
4797     SubExprs.push_back(TheCall->getArg(2)); // Val2
4798     break;
4799   case C11CmpXchg:
4800     SubExprs.push_back(TheCall->getArg(3)); // Order
4801     SubExprs.push_back(TheCall->getArg(1)); // Val1
4802     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
4803     SubExprs.push_back(TheCall->getArg(2)); // Val2
4804     break;
4805   case GNUCmpXchg:
4806     SubExprs.push_back(TheCall->getArg(4)); // Order
4807     SubExprs.push_back(TheCall->getArg(1)); // Val1
4808     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
4809     SubExprs.push_back(TheCall->getArg(2)); // Val2
4810     SubExprs.push_back(TheCall->getArg(3)); // Weak
4811     break;
4812   }
4813 
4814   if (SubExprs.size() >= 2 && Form != Init) {
4815     llvm::APSInt Result(32);
4816     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
4817         !isValidOrderingForOp(Result.getSExtValue(), Op))
4818       Diag(SubExprs[1]->getBeginLoc(),
4819            diag::warn_atomic_op_has_invalid_memory_order)
4820           << SubExprs[1]->getSourceRange();
4821   }
4822 
4823   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
4824     auto *Scope = TheCall->getArg(TheCall->getNumArgs() - 1);
4825     llvm::APSInt Result(32);
4826     if (Scope->isIntegerConstantExpr(Result, Context) &&
4827         !ScopeModel->isValid(Result.getZExtValue())) {
4828       Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
4829           << Scope->getSourceRange();
4830     }
4831     SubExprs.push_back(Scope);
4832   }
4833 
4834   AtomicExpr *AE =
4835       new (Context) AtomicExpr(TheCall->getCallee()->getBeginLoc(), SubExprs,
4836                                ResultType, Op, TheCall->getRParenLoc());
4837 
4838   if ((Op == AtomicExpr::AO__c11_atomic_load ||
4839        Op == AtomicExpr::AO__c11_atomic_store ||
4840        Op == AtomicExpr::AO__opencl_atomic_load ||
4841        Op == AtomicExpr::AO__opencl_atomic_store ) &&
4842       Context.AtomicUsesUnsupportedLibcall(AE))
4843     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
4844         << ((Op == AtomicExpr::AO__c11_atomic_load ||
4845              Op == AtomicExpr::AO__opencl_atomic_load)
4846                 ? 0
4847                 : 1);
4848 
4849   return AE;
4850 }
4851 
4852 /// checkBuiltinArgument - Given a call to a builtin function, perform
4853 /// normal type-checking on the given argument, updating the call in
4854 /// place.  This is useful when a builtin function requires custom
4855 /// type-checking for some of its arguments but not necessarily all of
4856 /// them.
4857 ///
4858 /// Returns true on error.
4859 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
4860   FunctionDecl *Fn = E->getDirectCallee();
4861   assert(Fn && "builtin call without direct callee!");
4862 
4863   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
4864   InitializedEntity Entity =
4865     InitializedEntity::InitializeParameter(S.Context, Param);
4866 
4867   ExprResult Arg = E->getArg(0);
4868   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
4869   if (Arg.isInvalid())
4870     return true;
4871 
4872   E->setArg(ArgIndex, Arg.get());
4873   return false;
4874 }
4875 
4876 /// We have a call to a function like __sync_fetch_and_add, which is an
4877 /// overloaded function based on the pointer type of its first argument.
4878 /// The main ActOnCallExpr routines have already promoted the types of
4879 /// arguments because all of these calls are prototyped as void(...).
4880 ///
4881 /// This function goes through and does final semantic checking for these
4882 /// builtins, as well as generating any warnings.
4883 ExprResult
4884 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
4885   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
4886   Expr *Callee = TheCall->getCallee();
4887   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
4888   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4889 
4890   // Ensure that we have at least one argument to do type inference from.
4891   if (TheCall->getNumArgs() < 1) {
4892     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4893         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
4894     return ExprError();
4895   }
4896 
4897   // Inspect the first argument of the atomic builtin.  This should always be
4898   // a pointer type, whose element is an integral scalar or pointer type.
4899   // Because it is a pointer type, we don't have to worry about any implicit
4900   // casts here.
4901   // FIXME: We don't allow floating point scalars as input.
4902   Expr *FirstArg = TheCall->getArg(0);
4903   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
4904   if (FirstArgResult.isInvalid())
4905     return ExprError();
4906   FirstArg = FirstArgResult.get();
4907   TheCall->setArg(0, FirstArg);
4908 
4909   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
4910   if (!pointerType) {
4911     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4912         << FirstArg->getType() << FirstArg->getSourceRange();
4913     return ExprError();
4914   }
4915 
4916   QualType ValType = pointerType->getPointeeType();
4917   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4918       !ValType->isBlockPointerType()) {
4919     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
4920         << FirstArg->getType() << FirstArg->getSourceRange();
4921     return ExprError();
4922   }
4923 
4924   if (ValType.isConstQualified()) {
4925     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
4926         << FirstArg->getType() << FirstArg->getSourceRange();
4927     return ExprError();
4928   }
4929 
4930   switch (ValType.getObjCLifetime()) {
4931   case Qualifiers::OCL_None:
4932   case Qualifiers::OCL_ExplicitNone:
4933     // okay
4934     break;
4935 
4936   case Qualifiers::OCL_Weak:
4937   case Qualifiers::OCL_Strong:
4938   case Qualifiers::OCL_Autoreleasing:
4939     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4940         << ValType << FirstArg->getSourceRange();
4941     return ExprError();
4942   }
4943 
4944   // Strip any qualifiers off ValType.
4945   ValType = ValType.getUnqualifiedType();
4946 
4947   // The majority of builtins return a value, but a few have special return
4948   // types, so allow them to override appropriately below.
4949   QualType ResultType = ValType;
4950 
4951   // We need to figure out which concrete builtin this maps onto.  For example,
4952   // __sync_fetch_and_add with a 2 byte object turns into
4953   // __sync_fetch_and_add_2.
4954 #define BUILTIN_ROW(x) \
4955   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
4956     Builtin::BI##x##_8, Builtin::BI##x##_16 }
4957 
4958   static const unsigned BuiltinIndices[][5] = {
4959     BUILTIN_ROW(__sync_fetch_and_add),
4960     BUILTIN_ROW(__sync_fetch_and_sub),
4961     BUILTIN_ROW(__sync_fetch_and_or),
4962     BUILTIN_ROW(__sync_fetch_and_and),
4963     BUILTIN_ROW(__sync_fetch_and_xor),
4964     BUILTIN_ROW(__sync_fetch_and_nand),
4965 
4966     BUILTIN_ROW(__sync_add_and_fetch),
4967     BUILTIN_ROW(__sync_sub_and_fetch),
4968     BUILTIN_ROW(__sync_and_and_fetch),
4969     BUILTIN_ROW(__sync_or_and_fetch),
4970     BUILTIN_ROW(__sync_xor_and_fetch),
4971     BUILTIN_ROW(__sync_nand_and_fetch),
4972 
4973     BUILTIN_ROW(__sync_val_compare_and_swap),
4974     BUILTIN_ROW(__sync_bool_compare_and_swap),
4975     BUILTIN_ROW(__sync_lock_test_and_set),
4976     BUILTIN_ROW(__sync_lock_release),
4977     BUILTIN_ROW(__sync_swap)
4978   };
4979 #undef BUILTIN_ROW
4980 
4981   // Determine the index of the size.
4982   unsigned SizeIndex;
4983   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4984   case 1: SizeIndex = 0; break;
4985   case 2: SizeIndex = 1; break;
4986   case 4: SizeIndex = 2; break;
4987   case 8: SizeIndex = 3; break;
4988   case 16: SizeIndex = 4; break;
4989   default:
4990     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
4991         << FirstArg->getType() << FirstArg->getSourceRange();
4992     return ExprError();
4993   }
4994 
4995   // Each of these builtins has one pointer argument, followed by some number of
4996   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
4997   // that we ignore.  Find out which row of BuiltinIndices to read from as well
4998   // as the number of fixed args.
4999   unsigned BuiltinID = FDecl->getBuiltinID();
5000   unsigned BuiltinIndex, NumFixed = 1;
5001   bool WarnAboutSemanticsChange = false;
5002   switch (BuiltinID) {
5003   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5004   case Builtin::BI__sync_fetch_and_add:
5005   case Builtin::BI__sync_fetch_and_add_1:
5006   case Builtin::BI__sync_fetch_and_add_2:
5007   case Builtin::BI__sync_fetch_and_add_4:
5008   case Builtin::BI__sync_fetch_and_add_8:
5009   case Builtin::BI__sync_fetch_and_add_16:
5010     BuiltinIndex = 0;
5011     break;
5012 
5013   case Builtin::BI__sync_fetch_and_sub:
5014   case Builtin::BI__sync_fetch_and_sub_1:
5015   case Builtin::BI__sync_fetch_and_sub_2:
5016   case Builtin::BI__sync_fetch_and_sub_4:
5017   case Builtin::BI__sync_fetch_and_sub_8:
5018   case Builtin::BI__sync_fetch_and_sub_16:
5019     BuiltinIndex = 1;
5020     break;
5021 
5022   case Builtin::BI__sync_fetch_and_or:
5023   case Builtin::BI__sync_fetch_and_or_1:
5024   case Builtin::BI__sync_fetch_and_or_2:
5025   case Builtin::BI__sync_fetch_and_or_4:
5026   case Builtin::BI__sync_fetch_and_or_8:
5027   case Builtin::BI__sync_fetch_and_or_16:
5028     BuiltinIndex = 2;
5029     break;
5030 
5031   case Builtin::BI__sync_fetch_and_and:
5032   case Builtin::BI__sync_fetch_and_and_1:
5033   case Builtin::BI__sync_fetch_and_and_2:
5034   case Builtin::BI__sync_fetch_and_and_4:
5035   case Builtin::BI__sync_fetch_and_and_8:
5036   case Builtin::BI__sync_fetch_and_and_16:
5037     BuiltinIndex = 3;
5038     break;
5039 
5040   case Builtin::BI__sync_fetch_and_xor:
5041   case Builtin::BI__sync_fetch_and_xor_1:
5042   case Builtin::BI__sync_fetch_and_xor_2:
5043   case Builtin::BI__sync_fetch_and_xor_4:
5044   case Builtin::BI__sync_fetch_and_xor_8:
5045   case Builtin::BI__sync_fetch_and_xor_16:
5046     BuiltinIndex = 4;
5047     break;
5048 
5049   case Builtin::BI__sync_fetch_and_nand:
5050   case Builtin::BI__sync_fetch_and_nand_1:
5051   case Builtin::BI__sync_fetch_and_nand_2:
5052   case Builtin::BI__sync_fetch_and_nand_4:
5053   case Builtin::BI__sync_fetch_and_nand_8:
5054   case Builtin::BI__sync_fetch_and_nand_16:
5055     BuiltinIndex = 5;
5056     WarnAboutSemanticsChange = true;
5057     break;
5058 
5059   case Builtin::BI__sync_add_and_fetch:
5060   case Builtin::BI__sync_add_and_fetch_1:
5061   case Builtin::BI__sync_add_and_fetch_2:
5062   case Builtin::BI__sync_add_and_fetch_4:
5063   case Builtin::BI__sync_add_and_fetch_8:
5064   case Builtin::BI__sync_add_and_fetch_16:
5065     BuiltinIndex = 6;
5066     break;
5067 
5068   case Builtin::BI__sync_sub_and_fetch:
5069   case Builtin::BI__sync_sub_and_fetch_1:
5070   case Builtin::BI__sync_sub_and_fetch_2:
5071   case Builtin::BI__sync_sub_and_fetch_4:
5072   case Builtin::BI__sync_sub_and_fetch_8:
5073   case Builtin::BI__sync_sub_and_fetch_16:
5074     BuiltinIndex = 7;
5075     break;
5076 
5077   case Builtin::BI__sync_and_and_fetch:
5078   case Builtin::BI__sync_and_and_fetch_1:
5079   case Builtin::BI__sync_and_and_fetch_2:
5080   case Builtin::BI__sync_and_and_fetch_4:
5081   case Builtin::BI__sync_and_and_fetch_8:
5082   case Builtin::BI__sync_and_and_fetch_16:
5083     BuiltinIndex = 8;
5084     break;
5085 
5086   case Builtin::BI__sync_or_and_fetch:
5087   case Builtin::BI__sync_or_and_fetch_1:
5088   case Builtin::BI__sync_or_and_fetch_2:
5089   case Builtin::BI__sync_or_and_fetch_4:
5090   case Builtin::BI__sync_or_and_fetch_8:
5091   case Builtin::BI__sync_or_and_fetch_16:
5092     BuiltinIndex = 9;
5093     break;
5094 
5095   case Builtin::BI__sync_xor_and_fetch:
5096   case Builtin::BI__sync_xor_and_fetch_1:
5097   case Builtin::BI__sync_xor_and_fetch_2:
5098   case Builtin::BI__sync_xor_and_fetch_4:
5099   case Builtin::BI__sync_xor_and_fetch_8:
5100   case Builtin::BI__sync_xor_and_fetch_16:
5101     BuiltinIndex = 10;
5102     break;
5103 
5104   case Builtin::BI__sync_nand_and_fetch:
5105   case Builtin::BI__sync_nand_and_fetch_1:
5106   case Builtin::BI__sync_nand_and_fetch_2:
5107   case Builtin::BI__sync_nand_and_fetch_4:
5108   case Builtin::BI__sync_nand_and_fetch_8:
5109   case Builtin::BI__sync_nand_and_fetch_16:
5110     BuiltinIndex = 11;
5111     WarnAboutSemanticsChange = true;
5112     break;
5113 
5114   case Builtin::BI__sync_val_compare_and_swap:
5115   case Builtin::BI__sync_val_compare_and_swap_1:
5116   case Builtin::BI__sync_val_compare_and_swap_2:
5117   case Builtin::BI__sync_val_compare_and_swap_4:
5118   case Builtin::BI__sync_val_compare_and_swap_8:
5119   case Builtin::BI__sync_val_compare_and_swap_16:
5120     BuiltinIndex = 12;
5121     NumFixed = 2;
5122     break;
5123 
5124   case Builtin::BI__sync_bool_compare_and_swap:
5125   case Builtin::BI__sync_bool_compare_and_swap_1:
5126   case Builtin::BI__sync_bool_compare_and_swap_2:
5127   case Builtin::BI__sync_bool_compare_and_swap_4:
5128   case Builtin::BI__sync_bool_compare_and_swap_8:
5129   case Builtin::BI__sync_bool_compare_and_swap_16:
5130     BuiltinIndex = 13;
5131     NumFixed = 2;
5132     ResultType = Context.BoolTy;
5133     break;
5134 
5135   case Builtin::BI__sync_lock_test_and_set:
5136   case Builtin::BI__sync_lock_test_and_set_1:
5137   case Builtin::BI__sync_lock_test_and_set_2:
5138   case Builtin::BI__sync_lock_test_and_set_4:
5139   case Builtin::BI__sync_lock_test_and_set_8:
5140   case Builtin::BI__sync_lock_test_and_set_16:
5141     BuiltinIndex = 14;
5142     break;
5143 
5144   case Builtin::BI__sync_lock_release:
5145   case Builtin::BI__sync_lock_release_1:
5146   case Builtin::BI__sync_lock_release_2:
5147   case Builtin::BI__sync_lock_release_4:
5148   case Builtin::BI__sync_lock_release_8:
5149   case Builtin::BI__sync_lock_release_16:
5150     BuiltinIndex = 15;
5151     NumFixed = 0;
5152     ResultType = Context.VoidTy;
5153     break;
5154 
5155   case Builtin::BI__sync_swap:
5156   case Builtin::BI__sync_swap_1:
5157   case Builtin::BI__sync_swap_2:
5158   case Builtin::BI__sync_swap_4:
5159   case Builtin::BI__sync_swap_8:
5160   case Builtin::BI__sync_swap_16:
5161     BuiltinIndex = 16;
5162     break;
5163   }
5164 
5165   // Now that we know how many fixed arguments we expect, first check that we
5166   // have at least that many.
5167   if (TheCall->getNumArgs() < 1+NumFixed) {
5168     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5169         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5170         << Callee->getSourceRange();
5171     return ExprError();
5172   }
5173 
5174   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5175       << Callee->getSourceRange();
5176 
5177   if (WarnAboutSemanticsChange) {
5178     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5179         << Callee->getSourceRange();
5180   }
5181 
5182   // Get the decl for the concrete builtin from this, we can tell what the
5183   // concrete integer type we should convert to is.
5184   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5185   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5186   FunctionDecl *NewBuiltinDecl;
5187   if (NewBuiltinID == BuiltinID)
5188     NewBuiltinDecl = FDecl;
5189   else {
5190     // Perform builtin lookup to avoid redeclaring it.
5191     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5192     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5193     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5194     assert(Res.getFoundDecl());
5195     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5196     if (!NewBuiltinDecl)
5197       return ExprError();
5198   }
5199 
5200   // The first argument --- the pointer --- has a fixed type; we
5201   // deduce the types of the rest of the arguments accordingly.  Walk
5202   // the remaining arguments, converting them to the deduced value type.
5203   for (unsigned i = 0; i != NumFixed; ++i) {
5204     ExprResult Arg = TheCall->getArg(i+1);
5205 
5206     // GCC does an implicit conversion to the pointer or integer ValType.  This
5207     // can fail in some cases (1i -> int**), check for this error case now.
5208     // Initialize the argument.
5209     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5210                                                    ValType, /*consume*/ false);
5211     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5212     if (Arg.isInvalid())
5213       return ExprError();
5214 
5215     // Okay, we have something that *can* be converted to the right type.  Check
5216     // to see if there is a potentially weird extension going on here.  This can
5217     // happen when you do an atomic operation on something like an char* and
5218     // pass in 42.  The 42 gets converted to char.  This is even more strange
5219     // for things like 45.123 -> char, etc.
5220     // FIXME: Do this check.
5221     TheCall->setArg(i+1, Arg.get());
5222   }
5223 
5224   // Create a new DeclRefExpr to refer to the new decl.
5225   DeclRefExpr* NewDRE = DeclRefExpr::Create(
5226       Context,
5227       DRE->getQualifierLoc(),
5228       SourceLocation(),
5229       NewBuiltinDecl,
5230       /*enclosing*/ false,
5231       DRE->getLocation(),
5232       Context.BuiltinFnTy,
5233       DRE->getValueKind());
5234 
5235   // Set the callee in the CallExpr.
5236   // FIXME: This loses syntactic information.
5237   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5238   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5239                                               CK_BuiltinFnToFnPtr);
5240   TheCall->setCallee(PromotedCall.get());
5241 
5242   // Change the result type of the call to match the original value type. This
5243   // is arbitrary, but the codegen for these builtins ins design to handle it
5244   // gracefully.
5245   TheCall->setType(ResultType);
5246 
5247   return TheCallResult;
5248 }
5249 
5250 /// SemaBuiltinNontemporalOverloaded - We have a call to
5251 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5252 /// overloaded function based on the pointer type of its last argument.
5253 ///
5254 /// This function goes through and does final semantic checking for these
5255 /// builtins.
5256 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5257   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5258   DeclRefExpr *DRE =
5259       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5260   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5261   unsigned BuiltinID = FDecl->getBuiltinID();
5262   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5263           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5264          "Unexpected nontemporal load/store builtin!");
5265   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5266   unsigned numArgs = isStore ? 2 : 1;
5267 
5268   // Ensure that we have the proper number of arguments.
5269   if (checkArgCount(*this, TheCall, numArgs))
5270     return ExprError();
5271 
5272   // Inspect the last argument of the nontemporal builtin.  This should always
5273   // be a pointer type, from which we imply the type of the memory access.
5274   // Because it is a pointer type, we don't have to worry about any implicit
5275   // casts here.
5276   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5277   ExprResult PointerArgResult =
5278       DefaultFunctionArrayLvalueConversion(PointerArg);
5279 
5280   if (PointerArgResult.isInvalid())
5281     return ExprError();
5282   PointerArg = PointerArgResult.get();
5283   TheCall->setArg(numArgs - 1, PointerArg);
5284 
5285   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5286   if (!pointerType) {
5287     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5288         << PointerArg->getType() << PointerArg->getSourceRange();
5289     return ExprError();
5290   }
5291 
5292   QualType ValType = pointerType->getPointeeType();
5293 
5294   // Strip any qualifiers off ValType.
5295   ValType = ValType.getUnqualifiedType();
5296   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5297       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5298       !ValType->isVectorType()) {
5299     Diag(DRE->getBeginLoc(),
5300          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5301         << PointerArg->getType() << PointerArg->getSourceRange();
5302     return ExprError();
5303   }
5304 
5305   if (!isStore) {
5306     TheCall->setType(ValType);
5307     return TheCallResult;
5308   }
5309 
5310   ExprResult ValArg = TheCall->getArg(0);
5311   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5312       Context, ValType, /*consume*/ false);
5313   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5314   if (ValArg.isInvalid())
5315     return ExprError();
5316 
5317   TheCall->setArg(0, ValArg.get());
5318   TheCall->setType(Context.VoidTy);
5319   return TheCallResult;
5320 }
5321 
5322 /// CheckObjCString - Checks that the argument to the builtin
5323 /// CFString constructor is correct
5324 /// Note: It might also make sense to do the UTF-16 conversion here (would
5325 /// simplify the backend).
5326 bool Sema::CheckObjCString(Expr *Arg) {
5327   Arg = Arg->IgnoreParenCasts();
5328   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5329 
5330   if (!Literal || !Literal->isAscii()) {
5331     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5332         << Arg->getSourceRange();
5333     return true;
5334   }
5335 
5336   if (Literal->containsNonAsciiOrNull()) {
5337     StringRef String = Literal->getString();
5338     unsigned NumBytes = String.size();
5339     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5340     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5341     llvm::UTF16 *ToPtr = &ToBuf[0];
5342 
5343     llvm::ConversionResult Result =
5344         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5345                                  ToPtr + NumBytes, llvm::strictConversion);
5346     // Check for conversion failure.
5347     if (Result != llvm::conversionOK)
5348       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5349           << Arg->getSourceRange();
5350   }
5351   return false;
5352 }
5353 
5354 /// CheckObjCString - Checks that the format string argument to the os_log()
5355 /// and os_trace() functions is correct, and converts it to const char *.
5356 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5357   Arg = Arg->IgnoreParenCasts();
5358   auto *Literal = dyn_cast<StringLiteral>(Arg);
5359   if (!Literal) {
5360     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5361       Literal = ObjcLiteral->getString();
5362     }
5363   }
5364 
5365   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5366     return ExprError(
5367         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5368         << Arg->getSourceRange());
5369   }
5370 
5371   ExprResult Result(Literal);
5372   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5373   InitializedEntity Entity =
5374       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5375   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5376   return Result;
5377 }
5378 
5379 /// Check that the user is calling the appropriate va_start builtin for the
5380 /// target and calling convention.
5381 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5382   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5383   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5384   bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64;
5385   bool IsWindows = TT.isOSWindows();
5386   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5387   if (IsX64 || IsAArch64) {
5388     CallingConv CC = CC_C;
5389     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5390       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
5391     if (IsMSVAStart) {
5392       // Don't allow this in System V ABI functions.
5393       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5394         return S.Diag(Fn->getBeginLoc(),
5395                       diag::err_ms_va_start_used_in_sysv_function);
5396     } else {
5397       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5398       // On x64 Windows, don't allow this in System V ABI functions.
5399       // (Yes, that means there's no corresponding way to support variadic
5400       // System V ABI functions on Windows.)
5401       if ((IsWindows && CC == CC_X86_64SysV) ||
5402           (!IsWindows && CC == CC_Win64))
5403         return S.Diag(Fn->getBeginLoc(),
5404                       diag::err_va_start_used_in_wrong_abi_function)
5405                << !IsWindows;
5406     }
5407     return false;
5408   }
5409 
5410   if (IsMSVAStart)
5411     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5412   return false;
5413 }
5414 
5415 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5416                                              ParmVarDecl **LastParam = nullptr) {
5417   // Determine whether the current function, block, or obj-c method is variadic
5418   // and get its parameter list.
5419   bool IsVariadic = false;
5420   ArrayRef<ParmVarDecl *> Params;
5421   DeclContext *Caller = S.CurContext;
5422   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5423     IsVariadic = Block->isVariadic();
5424     Params = Block->parameters();
5425   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5426     IsVariadic = FD->isVariadic();
5427     Params = FD->parameters();
5428   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5429     IsVariadic = MD->isVariadic();
5430     // FIXME: This isn't correct for methods (results in bogus warning).
5431     Params = MD->parameters();
5432   } else if (isa<CapturedDecl>(Caller)) {
5433     // We don't support va_start in a CapturedDecl.
5434     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5435     return true;
5436   } else {
5437     // This must be some other declcontext that parses exprs.
5438     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5439     return true;
5440   }
5441 
5442   if (!IsVariadic) {
5443     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5444     return true;
5445   }
5446 
5447   if (LastParam)
5448     *LastParam = Params.empty() ? nullptr : Params.back();
5449 
5450   return false;
5451 }
5452 
5453 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5454 /// for validity.  Emit an error and return true on failure; return false
5455 /// on success.
5456 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5457   Expr *Fn = TheCall->getCallee();
5458 
5459   if (checkVAStartABI(*this, BuiltinID, Fn))
5460     return true;
5461 
5462   if (TheCall->getNumArgs() > 2) {
5463     Diag(TheCall->getArg(2)->getBeginLoc(),
5464          diag::err_typecheck_call_too_many_args)
5465         << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5466         << Fn->getSourceRange()
5467         << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5468                        (*(TheCall->arg_end() - 1))->getEndLoc());
5469     return true;
5470   }
5471 
5472   if (TheCall->getNumArgs() < 2) {
5473     return Diag(TheCall->getEndLoc(),
5474                 diag::err_typecheck_call_too_few_args_at_least)
5475            << 0 /*function call*/ << 2 << TheCall->getNumArgs();
5476   }
5477 
5478   // Type-check the first argument normally.
5479   if (checkBuiltinArgument(*this, TheCall, 0))
5480     return true;
5481 
5482   // Check that the current function is variadic, and get its last parameter.
5483   ParmVarDecl *LastParam;
5484   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5485     return true;
5486 
5487   // Verify that the second argument to the builtin is the last argument of the
5488   // current function or method.
5489   bool SecondArgIsLastNamedArgument = false;
5490   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5491 
5492   // These are valid if SecondArgIsLastNamedArgument is false after the next
5493   // block.
5494   QualType Type;
5495   SourceLocation ParamLoc;
5496   bool IsCRegister = false;
5497 
5498   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5499     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5500       SecondArgIsLastNamedArgument = PV == LastParam;
5501 
5502       Type = PV->getType();
5503       ParamLoc = PV->getLocation();
5504       IsCRegister =
5505           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5506     }
5507   }
5508 
5509   if (!SecondArgIsLastNamedArgument)
5510     Diag(TheCall->getArg(1)->getBeginLoc(),
5511          diag::warn_second_arg_of_va_start_not_last_named_param);
5512   else if (IsCRegister || Type->isReferenceType() ||
5513            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5514              // Promotable integers are UB, but enumerations need a bit of
5515              // extra checking to see what their promotable type actually is.
5516              if (!Type->isPromotableIntegerType())
5517                return false;
5518              if (!Type->isEnumeralType())
5519                return true;
5520              const EnumDecl *ED = Type->getAs<EnumType>()->getDecl();
5521              return !(ED &&
5522                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5523            }()) {
5524     unsigned Reason = 0;
5525     if (Type->isReferenceType())  Reason = 1;
5526     else if (IsCRegister)         Reason = 2;
5527     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5528     Diag(ParamLoc, diag::note_parameter_type) << Type;
5529   }
5530 
5531   TheCall->setType(Context.VoidTy);
5532   return false;
5533 }
5534 
5535 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5536   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5537   //                 const char *named_addr);
5538 
5539   Expr *Func = Call->getCallee();
5540 
5541   if (Call->getNumArgs() < 3)
5542     return Diag(Call->getEndLoc(),
5543                 diag::err_typecheck_call_too_few_args_at_least)
5544            << 0 /*function call*/ << 3 << Call->getNumArgs();
5545 
5546   // Type-check the first argument normally.
5547   if (checkBuiltinArgument(*this, Call, 0))
5548     return true;
5549 
5550   // Check that the current function is variadic.
5551   if (checkVAStartIsInVariadicFunction(*this, Func))
5552     return true;
5553 
5554   // __va_start on Windows does not validate the parameter qualifiers
5555 
5556   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5557   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5558 
5559   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5560   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5561 
5562   const QualType &ConstCharPtrTy =
5563       Context.getPointerType(Context.CharTy.withConst());
5564   if (!Arg1Ty->isPointerType() ||
5565       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5566     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5567         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5568         << 0                                      /* qualifier difference */
5569         << 3                                      /* parameter mismatch */
5570         << 2 << Arg1->getType() << ConstCharPtrTy;
5571 
5572   const QualType SizeTy = Context.getSizeType();
5573   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5574     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5575         << Arg2->getType() << SizeTy << 1 /* different class */
5576         << 0                              /* qualifier difference */
5577         << 3                              /* parameter mismatch */
5578         << 3 << Arg2->getType() << SizeTy;
5579 
5580   return false;
5581 }
5582 
5583 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5584 /// friends.  This is declared to take (...), so we have to check everything.
5585 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5586   if (TheCall->getNumArgs() < 2)
5587     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5588            << 0 << 2 << TheCall->getNumArgs() /*function call*/;
5589   if (TheCall->getNumArgs() > 2)
5590     return Diag(TheCall->getArg(2)->getBeginLoc(),
5591                 diag::err_typecheck_call_too_many_args)
5592            << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5593            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5594                           (*(TheCall->arg_end() - 1))->getEndLoc());
5595 
5596   ExprResult OrigArg0 = TheCall->getArg(0);
5597   ExprResult OrigArg1 = TheCall->getArg(1);
5598 
5599   // Do standard promotions between the two arguments, returning their common
5600   // type.
5601   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
5602   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5603     return true;
5604 
5605   // Make sure any conversions are pushed back into the call; this is
5606   // type safe since unordered compare builtins are declared as "_Bool
5607   // foo(...)".
5608   TheCall->setArg(0, OrigArg0.get());
5609   TheCall->setArg(1, OrigArg1.get());
5610 
5611   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5612     return false;
5613 
5614   // If the common type isn't a real floating type, then the arguments were
5615   // invalid for this operation.
5616   if (Res.isNull() || !Res->isRealFloatingType())
5617     return Diag(OrigArg0.get()->getBeginLoc(),
5618                 diag::err_typecheck_call_invalid_ordered_compare)
5619            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5620            << SourceRange(OrigArg0.get()->getBeginLoc(),
5621                           OrigArg1.get()->getEndLoc());
5622 
5623   return false;
5624 }
5625 
5626 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5627 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5628 /// to check everything. We expect the last argument to be a floating point
5629 /// value.
5630 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5631   if (TheCall->getNumArgs() < NumArgs)
5632     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5633            << 0 << NumArgs << TheCall->getNumArgs() /*function call*/;
5634   if (TheCall->getNumArgs() > NumArgs)
5635     return Diag(TheCall->getArg(NumArgs)->getBeginLoc(),
5636                 diag::err_typecheck_call_too_many_args)
5637            << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
5638            << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(),
5639                           (*(TheCall->arg_end() - 1))->getEndLoc());
5640 
5641   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5642 
5643   if (OrigArg->isTypeDependent())
5644     return false;
5645 
5646   // This operation requires a non-_Complex floating-point number.
5647   if (!OrigArg->getType()->isRealFloatingType())
5648     return Diag(OrigArg->getBeginLoc(),
5649                 diag::err_typecheck_call_invalid_unary_fp)
5650            << OrigArg->getType() << OrigArg->getSourceRange();
5651 
5652   // If this is an implicit conversion from float -> float, double, or
5653   // long double, remove it.
5654   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
5655     // Only remove standard FloatCasts, leaving other casts inplace
5656     if (Cast->getCastKind() == CK_FloatingCast) {
5657       Expr *CastArg = Cast->getSubExpr();
5658       if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
5659         assert(
5660             (Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) ||
5661              Cast->getType()->isSpecificBuiltinType(BuiltinType::Float) ||
5662              Cast->getType()->isSpecificBuiltinType(BuiltinType::LongDouble)) &&
5663             "promotion from float to either float, double, or long double is "
5664             "the only expected cast here");
5665         Cast->setSubExpr(nullptr);
5666         TheCall->setArg(NumArgs-1, CastArg);
5667       }
5668     }
5669   }
5670 
5671   return false;
5672 }
5673 
5674 // Customized Sema Checking for VSX builtins that have the following signature:
5675 // vector [...] builtinName(vector [...], vector [...], const int);
5676 // Which takes the same type of vectors (any legal vector type) for the first
5677 // two arguments and takes compile time constant for the third argument.
5678 // Example builtins are :
5679 // vector double vec_xxpermdi(vector double, vector double, int);
5680 // vector short vec_xxsldwi(vector short, vector short, int);
5681 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
5682   unsigned ExpectedNumArgs = 3;
5683   if (TheCall->getNumArgs() < ExpectedNumArgs)
5684     return Diag(TheCall->getEndLoc(),
5685                 diag::err_typecheck_call_too_few_args_at_least)
5686            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5687            << TheCall->getSourceRange();
5688 
5689   if (TheCall->getNumArgs() > ExpectedNumArgs)
5690     return Diag(TheCall->getEndLoc(),
5691                 diag::err_typecheck_call_too_many_args_at_most)
5692            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5693            << TheCall->getSourceRange();
5694 
5695   // Check the third argument is a compile time constant
5696   llvm::APSInt Value;
5697   if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
5698     return Diag(TheCall->getBeginLoc(),
5699                 diag::err_vsx_builtin_nonconstant_argument)
5700            << 3 /* argument index */ << TheCall->getDirectCallee()
5701            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5702                           TheCall->getArg(2)->getEndLoc());
5703 
5704   QualType Arg1Ty = TheCall->getArg(0)->getType();
5705   QualType Arg2Ty = TheCall->getArg(1)->getType();
5706 
5707   // Check the type of argument 1 and argument 2 are vectors.
5708   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
5709   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
5710       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
5711     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
5712            << TheCall->getDirectCallee()
5713            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5714                           TheCall->getArg(1)->getEndLoc());
5715   }
5716 
5717   // Check the first two arguments are the same type.
5718   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
5719     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
5720            << TheCall->getDirectCallee()
5721            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5722                           TheCall->getArg(1)->getEndLoc());
5723   }
5724 
5725   // When default clang type checking is turned off and the customized type
5726   // checking is used, the returning type of the function must be explicitly
5727   // set. Otherwise it is _Bool by default.
5728   TheCall->setType(Arg1Ty);
5729 
5730   return false;
5731 }
5732 
5733 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
5734 // This is declared to take (...), so we have to check everything.
5735 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
5736   if (TheCall->getNumArgs() < 2)
5737     return ExprError(Diag(TheCall->getEndLoc(),
5738                           diag::err_typecheck_call_too_few_args_at_least)
5739                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5740                      << TheCall->getSourceRange());
5741 
5742   // Determine which of the following types of shufflevector we're checking:
5743   // 1) unary, vector mask: (lhs, mask)
5744   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5745   QualType resType = TheCall->getArg(0)->getType();
5746   unsigned numElements = 0;
5747 
5748   if (!TheCall->getArg(0)->isTypeDependent() &&
5749       !TheCall->getArg(1)->isTypeDependent()) {
5750     QualType LHSType = TheCall->getArg(0)->getType();
5751     QualType RHSType = TheCall->getArg(1)->getType();
5752 
5753     if (!LHSType->isVectorType() || !RHSType->isVectorType())
5754       return ExprError(
5755           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5756           << TheCall->getDirectCallee()
5757           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5758                          TheCall->getArg(1)->getEndLoc()));
5759 
5760     numElements = LHSType->getAs<VectorType>()->getNumElements();
5761     unsigned numResElements = TheCall->getNumArgs() - 2;
5762 
5763     // Check to see if we have a call with 2 vector arguments, the unary shuffle
5764     // with mask.  If so, verify that RHS is an integer vector type with the
5765     // same number of elts as lhs.
5766     if (TheCall->getNumArgs() == 2) {
5767       if (!RHSType->hasIntegerRepresentation() ||
5768           RHSType->getAs<VectorType>()->getNumElements() != numElements)
5769         return ExprError(Diag(TheCall->getBeginLoc(),
5770                               diag::err_vec_builtin_incompatible_vector)
5771                          << TheCall->getDirectCallee()
5772                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
5773                                         TheCall->getArg(1)->getEndLoc()));
5774     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
5775       return ExprError(Diag(TheCall->getBeginLoc(),
5776                             diag::err_vec_builtin_incompatible_vector)
5777                        << TheCall->getDirectCallee()
5778                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5779                                       TheCall->getArg(1)->getEndLoc()));
5780     } else if (numElements != numResElements) {
5781       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
5782       resType = Context.getVectorType(eltType, numResElements,
5783                                       VectorType::GenericVector);
5784     }
5785   }
5786 
5787   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
5788     if (TheCall->getArg(i)->isTypeDependent() ||
5789         TheCall->getArg(i)->isValueDependent())
5790       continue;
5791 
5792     llvm::APSInt Result(32);
5793     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
5794       return ExprError(Diag(TheCall->getBeginLoc(),
5795                             diag::err_shufflevector_nonconstant_argument)
5796                        << TheCall->getArg(i)->getSourceRange());
5797 
5798     // Allow -1 which will be translated to undef in the IR.
5799     if (Result.isSigned() && Result.isAllOnesValue())
5800       continue;
5801 
5802     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
5803       return ExprError(Diag(TheCall->getBeginLoc(),
5804                             diag::err_shufflevector_argument_too_large)
5805                        << TheCall->getArg(i)->getSourceRange());
5806   }
5807 
5808   SmallVector<Expr*, 32> exprs;
5809 
5810   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
5811     exprs.push_back(TheCall->getArg(i));
5812     TheCall->setArg(i, nullptr);
5813   }
5814 
5815   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
5816                                          TheCall->getCallee()->getBeginLoc(),
5817                                          TheCall->getRParenLoc());
5818 }
5819 
5820 /// SemaConvertVectorExpr - Handle __builtin_convertvector
5821 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
5822                                        SourceLocation BuiltinLoc,
5823                                        SourceLocation RParenLoc) {
5824   ExprValueKind VK = VK_RValue;
5825   ExprObjectKind OK = OK_Ordinary;
5826   QualType DstTy = TInfo->getType();
5827   QualType SrcTy = E->getType();
5828 
5829   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
5830     return ExprError(Diag(BuiltinLoc,
5831                           diag::err_convertvector_non_vector)
5832                      << E->getSourceRange());
5833   if (!DstTy->isVectorType() && !DstTy->isDependentType())
5834     return ExprError(Diag(BuiltinLoc,
5835                           diag::err_convertvector_non_vector_type));
5836 
5837   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
5838     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
5839     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
5840     if (SrcElts != DstElts)
5841       return ExprError(Diag(BuiltinLoc,
5842                             diag::err_convertvector_incompatible_vector)
5843                        << E->getSourceRange());
5844   }
5845 
5846   return new (Context)
5847       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5848 }
5849 
5850 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
5851 // This is declared to take (const void*, ...) and can take two
5852 // optional constant int args.
5853 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
5854   unsigned NumArgs = TheCall->getNumArgs();
5855 
5856   if (NumArgs > 3)
5857     return Diag(TheCall->getEndLoc(),
5858                 diag::err_typecheck_call_too_many_args_at_most)
5859            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
5860 
5861   // Argument 0 is checked for us and the remaining arguments must be
5862   // constant integers.
5863   for (unsigned i = 1; i != NumArgs; ++i)
5864     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
5865       return true;
5866 
5867   return false;
5868 }
5869 
5870 /// SemaBuiltinAssume - Handle __assume (MS Extension).
5871 // __assume does not evaluate its arguments, and should warn if its argument
5872 // has side effects.
5873 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
5874   Expr *Arg = TheCall->getArg(0);
5875   if (Arg->isInstantiationDependent()) return false;
5876 
5877   if (Arg->HasSideEffects(Context))
5878     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
5879         << Arg->getSourceRange()
5880         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
5881 
5882   return false;
5883 }
5884 
5885 /// Handle __builtin_alloca_with_align. This is declared
5886 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
5887 /// than 8.
5888 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
5889   // The alignment must be a constant integer.
5890   Expr *Arg = TheCall->getArg(1);
5891 
5892   // We can't check the value of a dependent argument.
5893   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5894     if (const auto *UE =
5895             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
5896       if (UE->getKind() == UETT_AlignOf ||
5897           UE->getKind() == UETT_PreferredAlignOf)
5898         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
5899             << Arg->getSourceRange();
5900 
5901     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
5902 
5903     if (!Result.isPowerOf2())
5904       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5905              << Arg->getSourceRange();
5906 
5907     if (Result < Context.getCharWidth())
5908       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
5909              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
5910 
5911     if (Result > std::numeric_limits<int32_t>::max())
5912       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
5913              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
5914   }
5915 
5916   return false;
5917 }
5918 
5919 /// Handle __builtin_assume_aligned. This is declared
5920 /// as (const void*, size_t, ...) and can take one optional constant int arg.
5921 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
5922   unsigned NumArgs = TheCall->getNumArgs();
5923 
5924   if (NumArgs > 3)
5925     return Diag(TheCall->getEndLoc(),
5926                 diag::err_typecheck_call_too_many_args_at_most)
5927            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
5928 
5929   // The alignment must be a constant integer.
5930   Expr *Arg = TheCall->getArg(1);
5931 
5932   // We can't check the value of a dependent argument.
5933   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5934     llvm::APSInt Result;
5935     if (SemaBuiltinConstantArg(TheCall, 1, Result))
5936       return true;
5937 
5938     if (!Result.isPowerOf2())
5939       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5940              << Arg->getSourceRange();
5941   }
5942 
5943   if (NumArgs > 2) {
5944     ExprResult Arg(TheCall->getArg(2));
5945     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5946       Context.getSizeType(), false);
5947     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5948     if (Arg.isInvalid()) return true;
5949     TheCall->setArg(2, Arg.get());
5950   }
5951 
5952   return false;
5953 }
5954 
5955 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
5956   unsigned BuiltinID =
5957       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
5958   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
5959 
5960   unsigned NumArgs = TheCall->getNumArgs();
5961   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
5962   if (NumArgs < NumRequiredArgs) {
5963     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5964            << 0 /* function call */ << NumRequiredArgs << NumArgs
5965            << TheCall->getSourceRange();
5966   }
5967   if (NumArgs >= NumRequiredArgs + 0x100) {
5968     return Diag(TheCall->getEndLoc(),
5969                 diag::err_typecheck_call_too_many_args_at_most)
5970            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
5971            << TheCall->getSourceRange();
5972   }
5973   unsigned i = 0;
5974 
5975   // For formatting call, check buffer arg.
5976   if (!IsSizeCall) {
5977     ExprResult Arg(TheCall->getArg(i));
5978     InitializedEntity Entity = InitializedEntity::InitializeParameter(
5979         Context, Context.VoidPtrTy, false);
5980     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5981     if (Arg.isInvalid())
5982       return true;
5983     TheCall->setArg(i, Arg.get());
5984     i++;
5985   }
5986 
5987   // Check string literal arg.
5988   unsigned FormatIdx = i;
5989   {
5990     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
5991     if (Arg.isInvalid())
5992       return true;
5993     TheCall->setArg(i, Arg.get());
5994     i++;
5995   }
5996 
5997   // Make sure variadic args are scalar.
5998   unsigned FirstDataArg = i;
5999   while (i < NumArgs) {
6000     ExprResult Arg = DefaultVariadicArgumentPromotion(
6001         TheCall->getArg(i), VariadicFunction, nullptr);
6002     if (Arg.isInvalid())
6003       return true;
6004     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6005     if (ArgSize.getQuantity() >= 0x100) {
6006       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6007              << i << (int)ArgSize.getQuantity() << 0xff
6008              << TheCall->getSourceRange();
6009     }
6010     TheCall->setArg(i, Arg.get());
6011     i++;
6012   }
6013 
6014   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6015   // call to avoid duplicate diagnostics.
6016   if (!IsSizeCall) {
6017     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6018     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6019     bool Success = CheckFormatArguments(
6020         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6021         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6022         CheckedVarArgs);
6023     if (!Success)
6024       return true;
6025   }
6026 
6027   if (IsSizeCall) {
6028     TheCall->setType(Context.getSizeType());
6029   } else {
6030     TheCall->setType(Context.VoidPtrTy);
6031   }
6032   return false;
6033 }
6034 
6035 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6036 /// TheCall is a constant expression.
6037 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6038                                   llvm::APSInt &Result) {
6039   Expr *Arg = TheCall->getArg(ArgNum);
6040   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6041   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6042 
6043   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6044 
6045   if (!Arg->isIntegerConstantExpr(Result, Context))
6046     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6047            << FDecl->getDeclName() << Arg->getSourceRange();
6048 
6049   return false;
6050 }
6051 
6052 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6053 /// TheCall is a constant expression in the range [Low, High].
6054 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6055                                        int Low, int High, bool RangeIsError) {
6056   llvm::APSInt Result;
6057 
6058   // We can't check the value of a dependent argument.
6059   Expr *Arg = TheCall->getArg(ArgNum);
6060   if (Arg->isTypeDependent() || Arg->isValueDependent())
6061     return false;
6062 
6063   // Check constant-ness first.
6064   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6065     return true;
6066 
6067   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6068     if (RangeIsError)
6069       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6070              << Result.toString(10) << Low << High << Arg->getSourceRange();
6071     else
6072       // Defer the warning until we know if the code will be emitted so that
6073       // dead code can ignore this.
6074       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6075                           PDiag(diag::warn_argument_invalid_range)
6076                               << Result.toString(10) << Low << High
6077                               << Arg->getSourceRange());
6078   }
6079 
6080   return false;
6081 }
6082 
6083 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6084 /// TheCall is a constant expression is a multiple of Num..
6085 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6086                                           unsigned Num) {
6087   llvm::APSInt Result;
6088 
6089   // We can't check the value of a dependent argument.
6090   Expr *Arg = TheCall->getArg(ArgNum);
6091   if (Arg->isTypeDependent() || Arg->isValueDependent())
6092     return false;
6093 
6094   // Check constant-ness first.
6095   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6096     return true;
6097 
6098   if (Result.getSExtValue() % Num != 0)
6099     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6100            << Num << Arg->getSourceRange();
6101 
6102   return false;
6103 }
6104 
6105 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6106 /// TheCall is an ARM/AArch64 special register string literal.
6107 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6108                                     int ArgNum, unsigned ExpectedFieldNum,
6109                                     bool AllowName) {
6110   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6111                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6112                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6113                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6114                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6115                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6116   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6117                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6118                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6119                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6120                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6121                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6122   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6123 
6124   // We can't check the value of a dependent argument.
6125   Expr *Arg = TheCall->getArg(ArgNum);
6126   if (Arg->isTypeDependent() || Arg->isValueDependent())
6127     return false;
6128 
6129   // Check if the argument is a string literal.
6130   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6131     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6132            << Arg->getSourceRange();
6133 
6134   // Check the type of special register given.
6135   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6136   SmallVector<StringRef, 6> Fields;
6137   Reg.split(Fields, ":");
6138 
6139   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6140     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6141            << Arg->getSourceRange();
6142 
6143   // If the string is the name of a register then we cannot check that it is
6144   // valid here but if the string is of one the forms described in ACLE then we
6145   // can check that the supplied fields are integers and within the valid
6146   // ranges.
6147   if (Fields.size() > 1) {
6148     bool FiveFields = Fields.size() == 5;
6149 
6150     bool ValidString = true;
6151     if (IsARMBuiltin) {
6152       ValidString &= Fields[0].startswith_lower("cp") ||
6153                      Fields[0].startswith_lower("p");
6154       if (ValidString)
6155         Fields[0] =
6156           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6157 
6158       ValidString &= Fields[2].startswith_lower("c");
6159       if (ValidString)
6160         Fields[2] = Fields[2].drop_front(1);
6161 
6162       if (FiveFields) {
6163         ValidString &= Fields[3].startswith_lower("c");
6164         if (ValidString)
6165           Fields[3] = Fields[3].drop_front(1);
6166       }
6167     }
6168 
6169     SmallVector<int, 5> Ranges;
6170     if (FiveFields)
6171       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6172     else
6173       Ranges.append({15, 7, 15});
6174 
6175     for (unsigned i=0; i<Fields.size(); ++i) {
6176       int IntField;
6177       ValidString &= !Fields[i].getAsInteger(10, IntField);
6178       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6179     }
6180 
6181     if (!ValidString)
6182       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6183              << Arg->getSourceRange();
6184   } else if (IsAArch64Builtin && Fields.size() == 1) {
6185     // If the register name is one of those that appear in the condition below
6186     // and the special register builtin being used is one of the write builtins,
6187     // then we require that the argument provided for writing to the register
6188     // is an integer constant expression. This is because it will be lowered to
6189     // an MSR (immediate) instruction, so we need to know the immediate at
6190     // compile time.
6191     if (TheCall->getNumArgs() != 2)
6192       return false;
6193 
6194     std::string RegLower = Reg.lower();
6195     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6196         RegLower != "pan" && RegLower != "uao")
6197       return false;
6198 
6199     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6200   }
6201 
6202   return false;
6203 }
6204 
6205 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6206 /// This checks that the target supports __builtin_longjmp and
6207 /// that val is a constant 1.
6208 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6209   if (!Context.getTargetInfo().hasSjLjLowering())
6210     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6211            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6212 
6213   Expr *Arg = TheCall->getArg(1);
6214   llvm::APSInt Result;
6215 
6216   // TODO: This is less than ideal. Overload this to take a value.
6217   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6218     return true;
6219 
6220   if (Result != 1)
6221     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6222            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6223 
6224   return false;
6225 }
6226 
6227 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6228 /// This checks that the target supports __builtin_setjmp.
6229 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6230   if (!Context.getTargetInfo().hasSjLjLowering())
6231     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6232            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6233   return false;
6234 }
6235 
6236 namespace {
6237 
6238 class UncoveredArgHandler {
6239   enum { Unknown = -1, AllCovered = -2 };
6240 
6241   signed FirstUncoveredArg = Unknown;
6242   SmallVector<const Expr *, 4> DiagnosticExprs;
6243 
6244 public:
6245   UncoveredArgHandler() = default;
6246 
6247   bool hasUncoveredArg() const {
6248     return (FirstUncoveredArg >= 0);
6249   }
6250 
6251   unsigned getUncoveredArg() const {
6252     assert(hasUncoveredArg() && "no uncovered argument");
6253     return FirstUncoveredArg;
6254   }
6255 
6256   void setAllCovered() {
6257     // A string has been found with all arguments covered, so clear out
6258     // the diagnostics.
6259     DiagnosticExprs.clear();
6260     FirstUncoveredArg = AllCovered;
6261   }
6262 
6263   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6264     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6265 
6266     // Don't update if a previous string covers all arguments.
6267     if (FirstUncoveredArg == AllCovered)
6268       return;
6269 
6270     // UncoveredArgHandler tracks the highest uncovered argument index
6271     // and with it all the strings that match this index.
6272     if (NewFirstUncoveredArg == FirstUncoveredArg)
6273       DiagnosticExprs.push_back(StrExpr);
6274     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6275       DiagnosticExprs.clear();
6276       DiagnosticExprs.push_back(StrExpr);
6277       FirstUncoveredArg = NewFirstUncoveredArg;
6278     }
6279   }
6280 
6281   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6282 };
6283 
6284 enum StringLiteralCheckType {
6285   SLCT_NotALiteral,
6286   SLCT_UncheckedLiteral,
6287   SLCT_CheckedLiteral
6288 };
6289 
6290 } // namespace
6291 
6292 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6293                                      BinaryOperatorKind BinOpKind,
6294                                      bool AddendIsRight) {
6295   unsigned BitWidth = Offset.getBitWidth();
6296   unsigned AddendBitWidth = Addend.getBitWidth();
6297   // There might be negative interim results.
6298   if (Addend.isUnsigned()) {
6299     Addend = Addend.zext(++AddendBitWidth);
6300     Addend.setIsSigned(true);
6301   }
6302   // Adjust the bit width of the APSInts.
6303   if (AddendBitWidth > BitWidth) {
6304     Offset = Offset.sext(AddendBitWidth);
6305     BitWidth = AddendBitWidth;
6306   } else if (BitWidth > AddendBitWidth) {
6307     Addend = Addend.sext(BitWidth);
6308   }
6309 
6310   bool Ov = false;
6311   llvm::APSInt ResOffset = Offset;
6312   if (BinOpKind == BO_Add)
6313     ResOffset = Offset.sadd_ov(Addend, Ov);
6314   else {
6315     assert(AddendIsRight && BinOpKind == BO_Sub &&
6316            "operator must be add or sub with addend on the right");
6317     ResOffset = Offset.ssub_ov(Addend, Ov);
6318   }
6319 
6320   // We add an offset to a pointer here so we should support an offset as big as
6321   // possible.
6322   if (Ov) {
6323     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6324            "index (intermediate) result too big");
6325     Offset = Offset.sext(2 * BitWidth);
6326     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6327     return;
6328   }
6329 
6330   Offset = ResOffset;
6331 }
6332 
6333 namespace {
6334 
6335 // This is a wrapper class around StringLiteral to support offsetted string
6336 // literals as format strings. It takes the offset into account when returning
6337 // the string and its length or the source locations to display notes correctly.
6338 class FormatStringLiteral {
6339   const StringLiteral *FExpr;
6340   int64_t Offset;
6341 
6342  public:
6343   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
6344       : FExpr(fexpr), Offset(Offset) {}
6345 
6346   StringRef getString() const {
6347     return FExpr->getString().drop_front(Offset);
6348   }
6349 
6350   unsigned getByteLength() const {
6351     return FExpr->getByteLength() - getCharByteWidth() * Offset;
6352   }
6353 
6354   unsigned getLength() const { return FExpr->getLength() - Offset; }
6355   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
6356 
6357   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
6358 
6359   QualType getType() const { return FExpr->getType(); }
6360 
6361   bool isAscii() const { return FExpr->isAscii(); }
6362   bool isWide() const { return FExpr->isWide(); }
6363   bool isUTF8() const { return FExpr->isUTF8(); }
6364   bool isUTF16() const { return FExpr->isUTF16(); }
6365   bool isUTF32() const { return FExpr->isUTF32(); }
6366   bool isPascal() const { return FExpr->isPascal(); }
6367 
6368   SourceLocation getLocationOfByte(
6369       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
6370       const TargetInfo &Target, unsigned *StartToken = nullptr,
6371       unsigned *StartTokenByteOffset = nullptr) const {
6372     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
6373                                     StartToken, StartTokenByteOffset);
6374   }
6375 
6376   SourceLocation getBeginLoc() const LLVM_READONLY {
6377     return FExpr->getBeginLoc().getLocWithOffset(Offset);
6378   }
6379 
6380   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
6381 };
6382 
6383 }  // namespace
6384 
6385 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6386                               const Expr *OrigFormatExpr,
6387                               ArrayRef<const Expr *> Args,
6388                               bool HasVAListArg, unsigned format_idx,
6389                               unsigned firstDataArg,
6390                               Sema::FormatStringType Type,
6391                               bool inFunctionCall,
6392                               Sema::VariadicCallType CallType,
6393                               llvm::SmallBitVector &CheckedVarArgs,
6394                               UncoveredArgHandler &UncoveredArg);
6395 
6396 // Determine if an expression is a string literal or constant string.
6397 // If this function returns false on the arguments to a function expecting a
6398 // format string, we will usually need to emit a warning.
6399 // True string literals are then checked by CheckFormatString.
6400 static StringLiteralCheckType
6401 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
6402                       bool HasVAListArg, unsigned format_idx,
6403                       unsigned firstDataArg, Sema::FormatStringType Type,
6404                       Sema::VariadicCallType CallType, bool InFunctionCall,
6405                       llvm::SmallBitVector &CheckedVarArgs,
6406                       UncoveredArgHandler &UncoveredArg,
6407                       llvm::APSInt Offset) {
6408  tryAgain:
6409   assert(Offset.isSigned() && "invalid offset");
6410 
6411   if (E->isTypeDependent() || E->isValueDependent())
6412     return SLCT_NotALiteral;
6413 
6414   E = E->IgnoreParenCasts();
6415 
6416   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6417     // Technically -Wformat-nonliteral does not warn about this case.
6418     // The behavior of printf and friends in this case is implementation
6419     // dependent.  Ideally if the format string cannot be null then
6420     // it should have a 'nonnull' attribute in the function prototype.
6421     return SLCT_UncheckedLiteral;
6422 
6423   switch (E->getStmtClass()) {
6424   case Stmt::BinaryConditionalOperatorClass:
6425   case Stmt::ConditionalOperatorClass: {
6426     // The expression is a literal if both sub-expressions were, and it was
6427     // completely checked only if both sub-expressions were checked.
6428     const AbstractConditionalOperator *C =
6429         cast<AbstractConditionalOperator>(E);
6430 
6431     // Determine whether it is necessary to check both sub-expressions, for
6432     // example, because the condition expression is a constant that can be
6433     // evaluated at compile time.
6434     bool CheckLeft = true, CheckRight = true;
6435 
6436     bool Cond;
6437     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) {
6438       if (Cond)
6439         CheckRight = false;
6440       else
6441         CheckLeft = false;
6442     }
6443 
6444     // We need to maintain the offsets for the right and the left hand side
6445     // separately to check if every possible indexed expression is a valid
6446     // string literal. They might have different offsets for different string
6447     // literals in the end.
6448     StringLiteralCheckType Left;
6449     if (!CheckLeft)
6450       Left = SLCT_UncheckedLiteral;
6451     else {
6452       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
6453                                    HasVAListArg, format_idx, firstDataArg,
6454                                    Type, CallType, InFunctionCall,
6455                                    CheckedVarArgs, UncoveredArg, Offset);
6456       if (Left == SLCT_NotALiteral || !CheckRight) {
6457         return Left;
6458       }
6459     }
6460 
6461     StringLiteralCheckType Right =
6462         checkFormatStringExpr(S, C->getFalseExpr(), Args,
6463                               HasVAListArg, format_idx, firstDataArg,
6464                               Type, CallType, InFunctionCall, CheckedVarArgs,
6465                               UncoveredArg, Offset);
6466 
6467     return (CheckLeft && Left < Right) ? Left : Right;
6468   }
6469 
6470   case Stmt::ImplicitCastExprClass:
6471     E = cast<ImplicitCastExpr>(E)->getSubExpr();
6472     goto tryAgain;
6473 
6474   case Stmt::OpaqueValueExprClass:
6475     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
6476       E = src;
6477       goto tryAgain;
6478     }
6479     return SLCT_NotALiteral;
6480 
6481   case Stmt::PredefinedExprClass:
6482     // While __func__, etc., are technically not string literals, they
6483     // cannot contain format specifiers and thus are not a security
6484     // liability.
6485     return SLCT_UncheckedLiteral;
6486 
6487   case Stmt::DeclRefExprClass: {
6488     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
6489 
6490     // As an exception, do not flag errors for variables binding to
6491     // const string literals.
6492     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
6493       bool isConstant = false;
6494       QualType T = DR->getType();
6495 
6496       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
6497         isConstant = AT->getElementType().isConstant(S.Context);
6498       } else if (const PointerType *PT = T->getAs<PointerType>()) {
6499         isConstant = T.isConstant(S.Context) &&
6500                      PT->getPointeeType().isConstant(S.Context);
6501       } else if (T->isObjCObjectPointerType()) {
6502         // In ObjC, there is usually no "const ObjectPointer" type,
6503         // so don't check if the pointee type is constant.
6504         isConstant = T.isConstant(S.Context);
6505       }
6506 
6507       if (isConstant) {
6508         if (const Expr *Init = VD->getAnyInitializer()) {
6509           // Look through initializers like const char c[] = { "foo" }
6510           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
6511             if (InitList->isStringLiteralInit())
6512               Init = InitList->getInit(0)->IgnoreParenImpCasts();
6513           }
6514           return checkFormatStringExpr(S, Init, Args,
6515                                        HasVAListArg, format_idx,
6516                                        firstDataArg, Type, CallType,
6517                                        /*InFunctionCall*/ false, CheckedVarArgs,
6518                                        UncoveredArg, Offset);
6519         }
6520       }
6521 
6522       // For vprintf* functions (i.e., HasVAListArg==true), we add a
6523       // special check to see if the format string is a function parameter
6524       // of the function calling the printf function.  If the function
6525       // has an attribute indicating it is a printf-like function, then we
6526       // should suppress warnings concerning non-literals being used in a call
6527       // to a vprintf function.  For example:
6528       //
6529       // void
6530       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
6531       //      va_list ap;
6532       //      va_start(ap, fmt);
6533       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
6534       //      ...
6535       // }
6536       if (HasVAListArg) {
6537         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
6538           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
6539             int PVIndex = PV->getFunctionScopeIndex() + 1;
6540             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
6541               // adjust for implicit parameter
6542               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6543                 if (MD->isInstance())
6544                   ++PVIndex;
6545               // We also check if the formats are compatible.
6546               // We can't pass a 'scanf' string to a 'printf' function.
6547               if (PVIndex == PVFormat->getFormatIdx() &&
6548                   Type == S.GetFormatStringType(PVFormat))
6549                 return SLCT_UncheckedLiteral;
6550             }
6551           }
6552         }
6553       }
6554     }
6555 
6556     return SLCT_NotALiteral;
6557   }
6558 
6559   case Stmt::CallExprClass:
6560   case Stmt::CXXMemberCallExprClass: {
6561     const CallExpr *CE = cast<CallExpr>(E);
6562     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
6563       bool IsFirst = true;
6564       StringLiteralCheckType CommonResult;
6565       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
6566         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
6567         StringLiteralCheckType Result = checkFormatStringExpr(
6568             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
6569             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset);
6570         if (IsFirst) {
6571           CommonResult = Result;
6572           IsFirst = false;
6573         }
6574       }
6575       if (!IsFirst)
6576         return CommonResult;
6577 
6578       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
6579         unsigned BuiltinID = FD->getBuiltinID();
6580         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
6581             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
6582           const Expr *Arg = CE->getArg(0);
6583           return checkFormatStringExpr(S, Arg, Args,
6584                                        HasVAListArg, format_idx,
6585                                        firstDataArg, Type, CallType,
6586                                        InFunctionCall, CheckedVarArgs,
6587                                        UncoveredArg, Offset);
6588         }
6589       }
6590     }
6591 
6592     return SLCT_NotALiteral;
6593   }
6594   case Stmt::ObjCMessageExprClass: {
6595     const auto *ME = cast<ObjCMessageExpr>(E);
6596     if (const auto *ND = ME->getMethodDecl()) {
6597       if (const auto *FA = ND->getAttr<FormatArgAttr>()) {
6598         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
6599         return checkFormatStringExpr(
6600             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
6601             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset);
6602       }
6603     }
6604 
6605     return SLCT_NotALiteral;
6606   }
6607   case Stmt::ObjCStringLiteralClass:
6608   case Stmt::StringLiteralClass: {
6609     const StringLiteral *StrE = nullptr;
6610 
6611     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
6612       StrE = ObjCFExpr->getString();
6613     else
6614       StrE = cast<StringLiteral>(E);
6615 
6616     if (StrE) {
6617       if (Offset.isNegative() || Offset > StrE->getLength()) {
6618         // TODO: It would be better to have an explicit warning for out of
6619         // bounds literals.
6620         return SLCT_NotALiteral;
6621       }
6622       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
6623       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
6624                         firstDataArg, Type, InFunctionCall, CallType,
6625                         CheckedVarArgs, UncoveredArg);
6626       return SLCT_CheckedLiteral;
6627     }
6628 
6629     return SLCT_NotALiteral;
6630   }
6631   case Stmt::BinaryOperatorClass: {
6632     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
6633 
6634     // A string literal + an int offset is still a string literal.
6635     if (BinOp->isAdditiveOp()) {
6636       Expr::EvalResult LResult, RResult;
6637 
6638       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context);
6639       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context);
6640 
6641       if (LIsInt != RIsInt) {
6642         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
6643 
6644         if (LIsInt) {
6645           if (BinOpKind == BO_Add) {
6646             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
6647             E = BinOp->getRHS();
6648             goto tryAgain;
6649           }
6650         } else {
6651           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
6652           E = BinOp->getLHS();
6653           goto tryAgain;
6654         }
6655       }
6656     }
6657 
6658     return SLCT_NotALiteral;
6659   }
6660   case Stmt::UnaryOperatorClass: {
6661     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
6662     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
6663     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
6664       Expr::EvalResult IndexResult;
6665       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) {
6666         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
6667                    /*RHS is int*/ true);
6668         E = ASE->getBase();
6669         goto tryAgain;
6670       }
6671     }
6672 
6673     return SLCT_NotALiteral;
6674   }
6675 
6676   default:
6677     return SLCT_NotALiteral;
6678   }
6679 }
6680 
6681 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
6682   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
6683       .Case("scanf", FST_Scanf)
6684       .Cases("printf", "printf0", FST_Printf)
6685       .Cases("NSString", "CFString", FST_NSString)
6686       .Case("strftime", FST_Strftime)
6687       .Case("strfmon", FST_Strfmon)
6688       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
6689       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
6690       .Case("os_trace", FST_OSLog)
6691       .Case("os_log", FST_OSLog)
6692       .Default(FST_Unknown);
6693 }
6694 
6695 /// CheckFormatArguments - Check calls to printf and scanf (and similar
6696 /// functions) for correct use of format strings.
6697 /// Returns true if a format string has been fully checked.
6698 bool Sema::CheckFormatArguments(const FormatAttr *Format,
6699                                 ArrayRef<const Expr *> Args,
6700                                 bool IsCXXMember,
6701                                 VariadicCallType CallType,
6702                                 SourceLocation Loc, SourceRange Range,
6703                                 llvm::SmallBitVector &CheckedVarArgs) {
6704   FormatStringInfo FSI;
6705   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
6706     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
6707                                 FSI.FirstDataArg, GetFormatStringType(Format),
6708                                 CallType, Loc, Range, CheckedVarArgs);
6709   return false;
6710 }
6711 
6712 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
6713                                 bool HasVAListArg, unsigned format_idx,
6714                                 unsigned firstDataArg, FormatStringType Type,
6715                                 VariadicCallType CallType,
6716                                 SourceLocation Loc, SourceRange Range,
6717                                 llvm::SmallBitVector &CheckedVarArgs) {
6718   // CHECK: printf/scanf-like function is called with no format string.
6719   if (format_idx >= Args.size()) {
6720     Diag(Loc, diag::warn_missing_format_string) << Range;
6721     return false;
6722   }
6723 
6724   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
6725 
6726   // CHECK: format string is not a string literal.
6727   //
6728   // Dynamically generated format strings are difficult to
6729   // automatically vet at compile time.  Requiring that format strings
6730   // are string literals: (1) permits the checking of format strings by
6731   // the compiler and thereby (2) can practically remove the source of
6732   // many format string exploits.
6733 
6734   // Format string can be either ObjC string (e.g. @"%d") or
6735   // C string (e.g. "%d")
6736   // ObjC string uses the same format specifiers as C string, so we can use
6737   // the same format string checking logic for both ObjC and C strings.
6738   UncoveredArgHandler UncoveredArg;
6739   StringLiteralCheckType CT =
6740       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
6741                             format_idx, firstDataArg, Type, CallType,
6742                             /*IsFunctionCall*/ true, CheckedVarArgs,
6743                             UncoveredArg,
6744                             /*no string offset*/ llvm::APSInt(64, false) = 0);
6745 
6746   // Generate a diagnostic where an uncovered argument is detected.
6747   if (UncoveredArg.hasUncoveredArg()) {
6748     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
6749     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
6750     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
6751   }
6752 
6753   if (CT != SLCT_NotALiteral)
6754     // Literal format string found, check done!
6755     return CT == SLCT_CheckedLiteral;
6756 
6757   // Strftime is particular as it always uses a single 'time' argument,
6758   // so it is safe to pass a non-literal string.
6759   if (Type == FST_Strftime)
6760     return false;
6761 
6762   // Do not emit diag when the string param is a macro expansion and the
6763   // format is either NSString or CFString. This is a hack to prevent
6764   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
6765   // which are usually used in place of NS and CF string literals.
6766   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
6767   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
6768     return false;
6769 
6770   // If there are no arguments specified, warn with -Wformat-security, otherwise
6771   // warn only with -Wformat-nonliteral.
6772   if (Args.size() == firstDataArg) {
6773     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
6774       << OrigFormatExpr->getSourceRange();
6775     switch (Type) {
6776     default:
6777       break;
6778     case FST_Kprintf:
6779     case FST_FreeBSDKPrintf:
6780     case FST_Printf:
6781       Diag(FormatLoc, diag::note_format_security_fixit)
6782         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
6783       break;
6784     case FST_NSString:
6785       Diag(FormatLoc, diag::note_format_security_fixit)
6786         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
6787       break;
6788     }
6789   } else {
6790     Diag(FormatLoc, diag::warn_format_nonliteral)
6791       << OrigFormatExpr->getSourceRange();
6792   }
6793   return false;
6794 }
6795 
6796 namespace {
6797 
6798 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
6799 protected:
6800   Sema &S;
6801   const FormatStringLiteral *FExpr;
6802   const Expr *OrigFormatExpr;
6803   const Sema::FormatStringType FSType;
6804   const unsigned FirstDataArg;
6805   const unsigned NumDataArgs;
6806   const char *Beg; // Start of format string.
6807   const bool HasVAListArg;
6808   ArrayRef<const Expr *> Args;
6809   unsigned FormatIdx;
6810   llvm::SmallBitVector CoveredArgs;
6811   bool usesPositionalArgs = false;
6812   bool atFirstArg = true;
6813   bool inFunctionCall;
6814   Sema::VariadicCallType CallType;
6815   llvm::SmallBitVector &CheckedVarArgs;
6816   UncoveredArgHandler &UncoveredArg;
6817 
6818 public:
6819   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
6820                      const Expr *origFormatExpr,
6821                      const Sema::FormatStringType type, unsigned firstDataArg,
6822                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
6823                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6824                      bool inFunctionCall, Sema::VariadicCallType callType,
6825                      llvm::SmallBitVector &CheckedVarArgs,
6826                      UncoveredArgHandler &UncoveredArg)
6827       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
6828         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
6829         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
6830         inFunctionCall(inFunctionCall), CallType(callType),
6831         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
6832     CoveredArgs.resize(numDataArgs);
6833     CoveredArgs.reset();
6834   }
6835 
6836   void DoneProcessing();
6837 
6838   void HandleIncompleteSpecifier(const char *startSpecifier,
6839                                  unsigned specifierLen) override;
6840 
6841   void HandleInvalidLengthModifier(
6842                            const analyze_format_string::FormatSpecifier &FS,
6843                            const analyze_format_string::ConversionSpecifier &CS,
6844                            const char *startSpecifier, unsigned specifierLen,
6845                            unsigned DiagID);
6846 
6847   void HandleNonStandardLengthModifier(
6848                     const analyze_format_string::FormatSpecifier &FS,
6849                     const char *startSpecifier, unsigned specifierLen);
6850 
6851   void HandleNonStandardConversionSpecifier(
6852                     const analyze_format_string::ConversionSpecifier &CS,
6853                     const char *startSpecifier, unsigned specifierLen);
6854 
6855   void HandlePosition(const char *startPos, unsigned posLen) override;
6856 
6857   void HandleInvalidPosition(const char *startSpecifier,
6858                              unsigned specifierLen,
6859                              analyze_format_string::PositionContext p) override;
6860 
6861   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
6862 
6863   void HandleNullChar(const char *nullCharacter) override;
6864 
6865   template <typename Range>
6866   static void
6867   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
6868                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
6869                        bool IsStringLocation, Range StringRange,
6870                        ArrayRef<FixItHint> Fixit = None);
6871 
6872 protected:
6873   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
6874                                         const char *startSpec,
6875                                         unsigned specifierLen,
6876                                         const char *csStart, unsigned csLen);
6877 
6878   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
6879                                          const char *startSpec,
6880                                          unsigned specifierLen);
6881 
6882   SourceRange getFormatStringRange();
6883   CharSourceRange getSpecifierRange(const char *startSpecifier,
6884                                     unsigned specifierLen);
6885   SourceLocation getLocationOfByte(const char *x);
6886 
6887   const Expr *getDataArg(unsigned i) const;
6888 
6889   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
6890                     const analyze_format_string::ConversionSpecifier &CS,
6891                     const char *startSpecifier, unsigned specifierLen,
6892                     unsigned argIndex);
6893 
6894   template <typename Range>
6895   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
6896                             bool IsStringLocation, Range StringRange,
6897                             ArrayRef<FixItHint> Fixit = None);
6898 };
6899 
6900 } // namespace
6901 
6902 SourceRange CheckFormatHandler::getFormatStringRange() {
6903   return OrigFormatExpr->getSourceRange();
6904 }
6905 
6906 CharSourceRange CheckFormatHandler::
6907 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
6908   SourceLocation Start = getLocationOfByte(startSpecifier);
6909   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
6910 
6911   // Advance the end SourceLocation by one due to half-open ranges.
6912   End = End.getLocWithOffset(1);
6913 
6914   return CharSourceRange::getCharRange(Start, End);
6915 }
6916 
6917 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
6918   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
6919                                   S.getLangOpts(), S.Context.getTargetInfo());
6920 }
6921 
6922 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
6923                                                    unsigned specifierLen){
6924   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
6925                        getLocationOfByte(startSpecifier),
6926                        /*IsStringLocation*/true,
6927                        getSpecifierRange(startSpecifier, specifierLen));
6928 }
6929 
6930 void CheckFormatHandler::HandleInvalidLengthModifier(
6931     const analyze_format_string::FormatSpecifier &FS,
6932     const analyze_format_string::ConversionSpecifier &CS,
6933     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
6934   using namespace analyze_format_string;
6935 
6936   const LengthModifier &LM = FS.getLengthModifier();
6937   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6938 
6939   // See if we know how to fix this length modifier.
6940   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6941   if (FixedLM) {
6942     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6943                          getLocationOfByte(LM.getStart()),
6944                          /*IsStringLocation*/true,
6945                          getSpecifierRange(startSpecifier, specifierLen));
6946 
6947     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6948       << FixedLM->toString()
6949       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6950 
6951   } else {
6952     FixItHint Hint;
6953     if (DiagID == diag::warn_format_nonsensical_length)
6954       Hint = FixItHint::CreateRemoval(LMRange);
6955 
6956     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6957                          getLocationOfByte(LM.getStart()),
6958                          /*IsStringLocation*/true,
6959                          getSpecifierRange(startSpecifier, specifierLen),
6960                          Hint);
6961   }
6962 }
6963 
6964 void CheckFormatHandler::HandleNonStandardLengthModifier(
6965     const analyze_format_string::FormatSpecifier &FS,
6966     const char *startSpecifier, unsigned specifierLen) {
6967   using namespace analyze_format_string;
6968 
6969   const LengthModifier &LM = FS.getLengthModifier();
6970   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6971 
6972   // See if we know how to fix this length modifier.
6973   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6974   if (FixedLM) {
6975     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6976                            << LM.toString() << 0,
6977                          getLocationOfByte(LM.getStart()),
6978                          /*IsStringLocation*/true,
6979                          getSpecifierRange(startSpecifier, specifierLen));
6980 
6981     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6982       << FixedLM->toString()
6983       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6984 
6985   } else {
6986     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6987                            << LM.toString() << 0,
6988                          getLocationOfByte(LM.getStart()),
6989                          /*IsStringLocation*/true,
6990                          getSpecifierRange(startSpecifier, specifierLen));
6991   }
6992 }
6993 
6994 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
6995     const analyze_format_string::ConversionSpecifier &CS,
6996     const char *startSpecifier, unsigned specifierLen) {
6997   using namespace analyze_format_string;
6998 
6999   // See if we know how to fix this conversion specifier.
7000   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7001   if (FixedCS) {
7002     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7003                           << CS.toString() << /*conversion specifier*/1,
7004                          getLocationOfByte(CS.getStart()),
7005                          /*IsStringLocation*/true,
7006                          getSpecifierRange(startSpecifier, specifierLen));
7007 
7008     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7009     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7010       << FixedCS->toString()
7011       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7012   } else {
7013     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7014                           << CS.toString() << /*conversion specifier*/1,
7015                          getLocationOfByte(CS.getStart()),
7016                          /*IsStringLocation*/true,
7017                          getSpecifierRange(startSpecifier, specifierLen));
7018   }
7019 }
7020 
7021 void CheckFormatHandler::HandlePosition(const char *startPos,
7022                                         unsigned posLen) {
7023   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7024                                getLocationOfByte(startPos),
7025                                /*IsStringLocation*/true,
7026                                getSpecifierRange(startPos, posLen));
7027 }
7028 
7029 void
7030 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7031                                      analyze_format_string::PositionContext p) {
7032   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7033                          << (unsigned) p,
7034                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7035                        getSpecifierRange(startPos, posLen));
7036 }
7037 
7038 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7039                                             unsigned posLen) {
7040   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7041                                getLocationOfByte(startPos),
7042                                /*IsStringLocation*/true,
7043                                getSpecifierRange(startPos, posLen));
7044 }
7045 
7046 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7047   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7048     // The presence of a null character is likely an error.
7049     EmitFormatDiagnostic(
7050       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7051       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7052       getFormatStringRange());
7053   }
7054 }
7055 
7056 // Note that this may return NULL if there was an error parsing or building
7057 // one of the argument expressions.
7058 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7059   return Args[FirstDataArg + i];
7060 }
7061 
7062 void CheckFormatHandler::DoneProcessing() {
7063   // Does the number of data arguments exceed the number of
7064   // format conversions in the format string?
7065   if (!HasVAListArg) {
7066       // Find any arguments that weren't covered.
7067     CoveredArgs.flip();
7068     signed notCoveredArg = CoveredArgs.find_first();
7069     if (notCoveredArg >= 0) {
7070       assert((unsigned)notCoveredArg < NumDataArgs);
7071       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7072     } else {
7073       UncoveredArg.setAllCovered();
7074     }
7075   }
7076 }
7077 
7078 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7079                                    const Expr *ArgExpr) {
7080   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7081          "Invalid state");
7082 
7083   if (!ArgExpr)
7084     return;
7085 
7086   SourceLocation Loc = ArgExpr->getBeginLoc();
7087 
7088   if (S.getSourceManager().isInSystemMacro(Loc))
7089     return;
7090 
7091   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7092   for (auto E : DiagnosticExprs)
7093     PDiag << E->getSourceRange();
7094 
7095   CheckFormatHandler::EmitFormatDiagnostic(
7096                                   S, IsFunctionCall, DiagnosticExprs[0],
7097                                   PDiag, Loc, /*IsStringLocation*/false,
7098                                   DiagnosticExprs[0]->getSourceRange());
7099 }
7100 
7101 bool
7102 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7103                                                      SourceLocation Loc,
7104                                                      const char *startSpec,
7105                                                      unsigned specifierLen,
7106                                                      const char *csStart,
7107                                                      unsigned csLen) {
7108   bool keepGoing = true;
7109   if (argIndex < NumDataArgs) {
7110     // Consider the argument coverered, even though the specifier doesn't
7111     // make sense.
7112     CoveredArgs.set(argIndex);
7113   }
7114   else {
7115     // If argIndex exceeds the number of data arguments we
7116     // don't issue a warning because that is just a cascade of warnings (and
7117     // they may have intended '%%' anyway). We don't want to continue processing
7118     // the format string after this point, however, as we will like just get
7119     // gibberish when trying to match arguments.
7120     keepGoing = false;
7121   }
7122 
7123   StringRef Specifier(csStart, csLen);
7124 
7125   // If the specifier in non-printable, it could be the first byte of a UTF-8
7126   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7127   // hex value.
7128   std::string CodePointStr;
7129   if (!llvm::sys::locale::isPrint(*csStart)) {
7130     llvm::UTF32 CodePoint;
7131     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7132     const llvm::UTF8 *E =
7133         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7134     llvm::ConversionResult Result =
7135         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7136 
7137     if (Result != llvm::conversionOK) {
7138       unsigned char FirstChar = *csStart;
7139       CodePoint = (llvm::UTF32)FirstChar;
7140     }
7141 
7142     llvm::raw_string_ostream OS(CodePointStr);
7143     if (CodePoint < 256)
7144       OS << "\\x" << llvm::format("%02x", CodePoint);
7145     else if (CodePoint <= 0xFFFF)
7146       OS << "\\u" << llvm::format("%04x", CodePoint);
7147     else
7148       OS << "\\U" << llvm::format("%08x", CodePoint);
7149     OS.flush();
7150     Specifier = CodePointStr;
7151   }
7152 
7153   EmitFormatDiagnostic(
7154       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7155       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7156 
7157   return keepGoing;
7158 }
7159 
7160 void
7161 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7162                                                       const char *startSpec,
7163                                                       unsigned specifierLen) {
7164   EmitFormatDiagnostic(
7165     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7166     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7167 }
7168 
7169 bool
7170 CheckFormatHandler::CheckNumArgs(
7171   const analyze_format_string::FormatSpecifier &FS,
7172   const analyze_format_string::ConversionSpecifier &CS,
7173   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7174 
7175   if (argIndex >= NumDataArgs) {
7176     PartialDiagnostic PDiag = FS.usesPositionalArg()
7177       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7178            << (argIndex+1) << NumDataArgs)
7179       : S.PDiag(diag::warn_printf_insufficient_data_args);
7180     EmitFormatDiagnostic(
7181       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7182       getSpecifierRange(startSpecifier, specifierLen));
7183 
7184     // Since more arguments than conversion tokens are given, by extension
7185     // all arguments are covered, so mark this as so.
7186     UncoveredArg.setAllCovered();
7187     return false;
7188   }
7189   return true;
7190 }
7191 
7192 template<typename Range>
7193 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7194                                               SourceLocation Loc,
7195                                               bool IsStringLocation,
7196                                               Range StringRange,
7197                                               ArrayRef<FixItHint> FixIt) {
7198   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7199                        Loc, IsStringLocation, StringRange, FixIt);
7200 }
7201 
7202 /// If the format string is not within the function call, emit a note
7203 /// so that the function call and string are in diagnostic messages.
7204 ///
7205 /// \param InFunctionCall if true, the format string is within the function
7206 /// call and only one diagnostic message will be produced.  Otherwise, an
7207 /// extra note will be emitted pointing to location of the format string.
7208 ///
7209 /// \param ArgumentExpr the expression that is passed as the format string
7210 /// argument in the function call.  Used for getting locations when two
7211 /// diagnostics are emitted.
7212 ///
7213 /// \param PDiag the callee should already have provided any strings for the
7214 /// diagnostic message.  This function only adds locations and fixits
7215 /// to diagnostics.
7216 ///
7217 /// \param Loc primary location for diagnostic.  If two diagnostics are
7218 /// required, one will be at Loc and a new SourceLocation will be created for
7219 /// the other one.
7220 ///
7221 /// \param IsStringLocation if true, Loc points to the format string should be
7222 /// used for the note.  Otherwise, Loc points to the argument list and will
7223 /// be used with PDiag.
7224 ///
7225 /// \param StringRange some or all of the string to highlight.  This is
7226 /// templated so it can accept either a CharSourceRange or a SourceRange.
7227 ///
7228 /// \param FixIt optional fix it hint for the format string.
7229 template <typename Range>
7230 void CheckFormatHandler::EmitFormatDiagnostic(
7231     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7232     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7233     Range StringRange, ArrayRef<FixItHint> FixIt) {
7234   if (InFunctionCall) {
7235     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7236     D << StringRange;
7237     D << FixIt;
7238   } else {
7239     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7240       << ArgumentExpr->getSourceRange();
7241 
7242     const Sema::SemaDiagnosticBuilder &Note =
7243       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7244              diag::note_format_string_defined);
7245 
7246     Note << StringRange;
7247     Note << FixIt;
7248   }
7249 }
7250 
7251 //===--- CHECK: Printf format string checking ------------------------------===//
7252 
7253 namespace {
7254 
7255 class CheckPrintfHandler : public CheckFormatHandler {
7256 public:
7257   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7258                      const Expr *origFormatExpr,
7259                      const Sema::FormatStringType type, unsigned firstDataArg,
7260                      unsigned numDataArgs, bool isObjC, const char *beg,
7261                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7262                      unsigned formatIdx, bool inFunctionCall,
7263                      Sema::VariadicCallType CallType,
7264                      llvm::SmallBitVector &CheckedVarArgs,
7265                      UncoveredArgHandler &UncoveredArg)
7266       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7267                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7268                            inFunctionCall, CallType, CheckedVarArgs,
7269                            UncoveredArg) {}
7270 
7271   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7272 
7273   /// Returns true if '%@' specifiers are allowed in the format string.
7274   bool allowsObjCArg() const {
7275     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7276            FSType == Sema::FST_OSTrace;
7277   }
7278 
7279   bool HandleInvalidPrintfConversionSpecifier(
7280                                       const analyze_printf::PrintfSpecifier &FS,
7281                                       const char *startSpecifier,
7282                                       unsigned specifierLen) override;
7283 
7284   void handleInvalidMaskType(StringRef MaskType) override;
7285 
7286   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7287                              const char *startSpecifier,
7288                              unsigned specifierLen) override;
7289   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7290                        const char *StartSpecifier,
7291                        unsigned SpecifierLen,
7292                        const Expr *E);
7293 
7294   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7295                     const char *startSpecifier, unsigned specifierLen);
7296   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7297                            const analyze_printf::OptionalAmount &Amt,
7298                            unsigned type,
7299                            const char *startSpecifier, unsigned specifierLen);
7300   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7301                   const analyze_printf::OptionalFlag &flag,
7302                   const char *startSpecifier, unsigned specifierLen);
7303   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7304                          const analyze_printf::OptionalFlag &ignoredFlag,
7305                          const analyze_printf::OptionalFlag &flag,
7306                          const char *startSpecifier, unsigned specifierLen);
7307   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7308                            const Expr *E);
7309 
7310   void HandleEmptyObjCModifierFlag(const char *startFlag,
7311                                    unsigned flagLen) override;
7312 
7313   void HandleInvalidObjCModifierFlag(const char *startFlag,
7314                                             unsigned flagLen) override;
7315 
7316   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
7317                                            const char *flagsEnd,
7318                                            const char *conversionPosition)
7319                                              override;
7320 };
7321 
7322 } // namespace
7323 
7324 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
7325                                       const analyze_printf::PrintfSpecifier &FS,
7326                                       const char *startSpecifier,
7327                                       unsigned specifierLen) {
7328   const analyze_printf::PrintfConversionSpecifier &CS =
7329     FS.getConversionSpecifier();
7330 
7331   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7332                                           getLocationOfByte(CS.getStart()),
7333                                           startSpecifier, specifierLen,
7334                                           CS.getStart(), CS.getLength());
7335 }
7336 
7337 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
7338   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
7339 }
7340 
7341 bool CheckPrintfHandler::HandleAmount(
7342                                const analyze_format_string::OptionalAmount &Amt,
7343                                unsigned k, const char *startSpecifier,
7344                                unsigned specifierLen) {
7345   if (Amt.hasDataArgument()) {
7346     if (!HasVAListArg) {
7347       unsigned argIndex = Amt.getArgIndex();
7348       if (argIndex >= NumDataArgs) {
7349         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
7350                                << k,
7351                              getLocationOfByte(Amt.getStart()),
7352                              /*IsStringLocation*/true,
7353                              getSpecifierRange(startSpecifier, specifierLen));
7354         // Don't do any more checking.  We will just emit
7355         // spurious errors.
7356         return false;
7357       }
7358 
7359       // Type check the data argument.  It should be an 'int'.
7360       // Although not in conformance with C99, we also allow the argument to be
7361       // an 'unsigned int' as that is a reasonably safe case.  GCC also
7362       // doesn't emit a warning for that case.
7363       CoveredArgs.set(argIndex);
7364       const Expr *Arg = getDataArg(argIndex);
7365       if (!Arg)
7366         return false;
7367 
7368       QualType T = Arg->getType();
7369 
7370       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
7371       assert(AT.isValid());
7372 
7373       if (!AT.matchesType(S.Context, T)) {
7374         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
7375                                << k << AT.getRepresentativeTypeName(S.Context)
7376                                << T << Arg->getSourceRange(),
7377                              getLocationOfByte(Amt.getStart()),
7378                              /*IsStringLocation*/true,
7379                              getSpecifierRange(startSpecifier, specifierLen));
7380         // Don't do any more checking.  We will just emit
7381         // spurious errors.
7382         return false;
7383       }
7384     }
7385   }
7386   return true;
7387 }
7388 
7389 void CheckPrintfHandler::HandleInvalidAmount(
7390                                       const analyze_printf::PrintfSpecifier &FS,
7391                                       const analyze_printf::OptionalAmount &Amt,
7392                                       unsigned type,
7393                                       const char *startSpecifier,
7394                                       unsigned specifierLen) {
7395   const analyze_printf::PrintfConversionSpecifier &CS =
7396     FS.getConversionSpecifier();
7397 
7398   FixItHint fixit =
7399     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
7400       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
7401                                  Amt.getConstantLength()))
7402       : FixItHint();
7403 
7404   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
7405                          << type << CS.toString(),
7406                        getLocationOfByte(Amt.getStart()),
7407                        /*IsStringLocation*/true,
7408                        getSpecifierRange(startSpecifier, specifierLen),
7409                        fixit);
7410 }
7411 
7412 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7413                                     const analyze_printf::OptionalFlag &flag,
7414                                     const char *startSpecifier,
7415                                     unsigned specifierLen) {
7416   // Warn about pointless flag with a fixit removal.
7417   const analyze_printf::PrintfConversionSpecifier &CS =
7418     FS.getConversionSpecifier();
7419   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
7420                          << flag.toString() << CS.toString(),
7421                        getLocationOfByte(flag.getPosition()),
7422                        /*IsStringLocation*/true,
7423                        getSpecifierRange(startSpecifier, specifierLen),
7424                        FixItHint::CreateRemoval(
7425                          getSpecifierRange(flag.getPosition(), 1)));
7426 }
7427 
7428 void CheckPrintfHandler::HandleIgnoredFlag(
7429                                 const analyze_printf::PrintfSpecifier &FS,
7430                                 const analyze_printf::OptionalFlag &ignoredFlag,
7431                                 const analyze_printf::OptionalFlag &flag,
7432                                 const char *startSpecifier,
7433                                 unsigned specifierLen) {
7434   // Warn about ignored flag with a fixit removal.
7435   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7436                          << ignoredFlag.toString() << flag.toString(),
7437                        getLocationOfByte(ignoredFlag.getPosition()),
7438                        /*IsStringLocation*/true,
7439                        getSpecifierRange(startSpecifier, specifierLen),
7440                        FixItHint::CreateRemoval(
7441                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
7442 }
7443 
7444 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7445                                                      unsigned flagLen) {
7446   // Warn about an empty flag.
7447   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7448                        getLocationOfByte(startFlag),
7449                        /*IsStringLocation*/true,
7450                        getSpecifierRange(startFlag, flagLen));
7451 }
7452 
7453 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7454                                                        unsigned flagLen) {
7455   // Warn about an invalid flag.
7456   auto Range = getSpecifierRange(startFlag, flagLen);
7457   StringRef flag(startFlag, flagLen);
7458   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7459                       getLocationOfByte(startFlag),
7460                       /*IsStringLocation*/true,
7461                       Range, FixItHint::CreateRemoval(Range));
7462 }
7463 
7464 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
7465     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
7466     // Warn about using '[...]' without a '@' conversion.
7467     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
7468     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
7469     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
7470                          getLocationOfByte(conversionPosition),
7471                          /*IsStringLocation*/true,
7472                          Range, FixItHint::CreateRemoval(Range));
7473 }
7474 
7475 // Determines if the specified is a C++ class or struct containing
7476 // a member with the specified name and kind (e.g. a CXXMethodDecl named
7477 // "c_str()").
7478 template<typename MemberKind>
7479 static llvm::SmallPtrSet<MemberKind*, 1>
7480 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
7481   const RecordType *RT = Ty->getAs<RecordType>();
7482   llvm::SmallPtrSet<MemberKind*, 1> Results;
7483 
7484   if (!RT)
7485     return Results;
7486   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
7487   if (!RD || !RD->getDefinition())
7488     return Results;
7489 
7490   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
7491                  Sema::LookupMemberName);
7492   R.suppressDiagnostics();
7493 
7494   // We just need to include all members of the right kind turned up by the
7495   // filter, at this point.
7496   if (S.LookupQualifiedName(R, RT->getDecl()))
7497     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7498       NamedDecl *decl = (*I)->getUnderlyingDecl();
7499       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
7500         Results.insert(FK);
7501     }
7502   return Results;
7503 }
7504 
7505 /// Check if we could call '.c_str()' on an object.
7506 ///
7507 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
7508 /// allow the call, or if it would be ambiguous).
7509 bool Sema::hasCStrMethod(const Expr *E) {
7510   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7511 
7512   MethodSet Results =
7513       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
7514   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7515        MI != ME; ++MI)
7516     if ((*MI)->getMinRequiredArguments() == 0)
7517       return true;
7518   return false;
7519 }
7520 
7521 // Check if a (w)string was passed when a (w)char* was needed, and offer a
7522 // better diagnostic if so. AT is assumed to be valid.
7523 // Returns true when a c_str() conversion method is found.
7524 bool CheckPrintfHandler::checkForCStrMembers(
7525     const analyze_printf::ArgType &AT, const Expr *E) {
7526   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7527 
7528   MethodSet Results =
7529       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
7530 
7531   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7532        MI != ME; ++MI) {
7533     const CXXMethodDecl *Method = *MI;
7534     if (Method->getMinRequiredArguments() == 0 &&
7535         AT.matchesType(S.Context, Method->getReturnType())) {
7536       // FIXME: Suggest parens if the expression needs them.
7537       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
7538       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
7539           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
7540       return true;
7541     }
7542   }
7543 
7544   return false;
7545 }
7546 
7547 bool
7548 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
7549                                             &FS,
7550                                           const char *startSpecifier,
7551                                           unsigned specifierLen) {
7552   using namespace analyze_format_string;
7553   using namespace analyze_printf;
7554 
7555   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
7556 
7557   if (FS.consumesDataArgument()) {
7558     if (atFirstArg) {
7559         atFirstArg = false;
7560         usesPositionalArgs = FS.usesPositionalArg();
7561     }
7562     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7563       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7564                                         startSpecifier, specifierLen);
7565       return false;
7566     }
7567   }
7568 
7569   // First check if the field width, precision, and conversion specifier
7570   // have matching data arguments.
7571   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
7572                     startSpecifier, specifierLen)) {
7573     return false;
7574   }
7575 
7576   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
7577                     startSpecifier, specifierLen)) {
7578     return false;
7579   }
7580 
7581   if (!CS.consumesDataArgument()) {
7582     // FIXME: Technically specifying a precision or field width here
7583     // makes no sense.  Worth issuing a warning at some point.
7584     return true;
7585   }
7586 
7587   // Consume the argument.
7588   unsigned argIndex = FS.getArgIndex();
7589   if (argIndex < NumDataArgs) {
7590     // The check to see if the argIndex is valid will come later.
7591     // We set the bit here because we may exit early from this
7592     // function if we encounter some other error.
7593     CoveredArgs.set(argIndex);
7594   }
7595 
7596   // FreeBSD kernel extensions.
7597   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
7598       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
7599     // We need at least two arguments.
7600     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
7601       return false;
7602 
7603     // Claim the second argument.
7604     CoveredArgs.set(argIndex + 1);
7605 
7606     // Type check the first argument (int for %b, pointer for %D)
7607     const Expr *Ex = getDataArg(argIndex);
7608     const analyze_printf::ArgType &AT =
7609       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
7610         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
7611     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
7612       EmitFormatDiagnostic(
7613           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7614               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
7615               << false << Ex->getSourceRange(),
7616           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7617           getSpecifierRange(startSpecifier, specifierLen));
7618 
7619     // Type check the second argument (char * for both %b and %D)
7620     Ex = getDataArg(argIndex + 1);
7621     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
7622     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
7623       EmitFormatDiagnostic(
7624           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7625               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
7626               << false << Ex->getSourceRange(),
7627           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7628           getSpecifierRange(startSpecifier, specifierLen));
7629 
7630      return true;
7631   }
7632 
7633   // Check for using an Objective-C specific conversion specifier
7634   // in a non-ObjC literal.
7635   if (!allowsObjCArg() && CS.isObjCArg()) {
7636     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7637                                                   specifierLen);
7638   }
7639 
7640   // %P can only be used with os_log.
7641   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
7642     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7643                                                   specifierLen);
7644   }
7645 
7646   // %n is not allowed with os_log.
7647   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
7648     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
7649                          getLocationOfByte(CS.getStart()),
7650                          /*IsStringLocation*/ false,
7651                          getSpecifierRange(startSpecifier, specifierLen));
7652 
7653     return true;
7654   }
7655 
7656   // Only scalars are allowed for os_trace.
7657   if (FSType == Sema::FST_OSTrace &&
7658       (CS.getKind() == ConversionSpecifier::PArg ||
7659        CS.getKind() == ConversionSpecifier::sArg ||
7660        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
7661     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7662                                                   specifierLen);
7663   }
7664 
7665   // Check for use of public/private annotation outside of os_log().
7666   if (FSType != Sema::FST_OSLog) {
7667     if (FS.isPublic().isSet()) {
7668       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7669                                << "public",
7670                            getLocationOfByte(FS.isPublic().getPosition()),
7671                            /*IsStringLocation*/ false,
7672                            getSpecifierRange(startSpecifier, specifierLen));
7673     }
7674     if (FS.isPrivate().isSet()) {
7675       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7676                                << "private",
7677                            getLocationOfByte(FS.isPrivate().getPosition()),
7678                            /*IsStringLocation*/ false,
7679                            getSpecifierRange(startSpecifier, specifierLen));
7680     }
7681   }
7682 
7683   // Check for invalid use of field width
7684   if (!FS.hasValidFieldWidth()) {
7685     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
7686         startSpecifier, specifierLen);
7687   }
7688 
7689   // Check for invalid use of precision
7690   if (!FS.hasValidPrecision()) {
7691     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
7692         startSpecifier, specifierLen);
7693   }
7694 
7695   // Precision is mandatory for %P specifier.
7696   if (CS.getKind() == ConversionSpecifier::PArg &&
7697       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
7698     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
7699                          getLocationOfByte(startSpecifier),
7700                          /*IsStringLocation*/ false,
7701                          getSpecifierRange(startSpecifier, specifierLen));
7702   }
7703 
7704   // Check each flag does not conflict with any other component.
7705   if (!FS.hasValidThousandsGroupingPrefix())
7706     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
7707   if (!FS.hasValidLeadingZeros())
7708     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
7709   if (!FS.hasValidPlusPrefix())
7710     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
7711   if (!FS.hasValidSpacePrefix())
7712     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
7713   if (!FS.hasValidAlternativeForm())
7714     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
7715   if (!FS.hasValidLeftJustified())
7716     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
7717 
7718   // Check that flags are not ignored by another flag
7719   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
7720     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
7721         startSpecifier, specifierLen);
7722   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
7723     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
7724             startSpecifier, specifierLen);
7725 
7726   // Check the length modifier is valid with the given conversion specifier.
7727   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7728                                  S.getLangOpts()))
7729     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7730                                 diag::warn_format_nonsensical_length);
7731   else if (!FS.hasStandardLengthModifier())
7732     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7733   else if (!FS.hasStandardLengthConversionCombination())
7734     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7735                                 diag::warn_format_non_standard_conversion_spec);
7736 
7737   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7738     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7739 
7740   // The remaining checks depend on the data arguments.
7741   if (HasVAListArg)
7742     return true;
7743 
7744   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7745     return false;
7746 
7747   const Expr *Arg = getDataArg(argIndex);
7748   if (!Arg)
7749     return true;
7750 
7751   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
7752 }
7753 
7754 static bool requiresParensToAddCast(const Expr *E) {
7755   // FIXME: We should have a general way to reason about operator
7756   // precedence and whether parens are actually needed here.
7757   // Take care of a few common cases where they aren't.
7758   const Expr *Inside = E->IgnoreImpCasts();
7759   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
7760     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
7761 
7762   switch (Inside->getStmtClass()) {
7763   case Stmt::ArraySubscriptExprClass:
7764   case Stmt::CallExprClass:
7765   case Stmt::CharacterLiteralClass:
7766   case Stmt::CXXBoolLiteralExprClass:
7767   case Stmt::DeclRefExprClass:
7768   case Stmt::FloatingLiteralClass:
7769   case Stmt::IntegerLiteralClass:
7770   case Stmt::MemberExprClass:
7771   case Stmt::ObjCArrayLiteralClass:
7772   case Stmt::ObjCBoolLiteralExprClass:
7773   case Stmt::ObjCBoxedExprClass:
7774   case Stmt::ObjCDictionaryLiteralClass:
7775   case Stmt::ObjCEncodeExprClass:
7776   case Stmt::ObjCIvarRefExprClass:
7777   case Stmt::ObjCMessageExprClass:
7778   case Stmt::ObjCPropertyRefExprClass:
7779   case Stmt::ObjCStringLiteralClass:
7780   case Stmt::ObjCSubscriptRefExprClass:
7781   case Stmt::ParenExprClass:
7782   case Stmt::StringLiteralClass:
7783   case Stmt::UnaryOperatorClass:
7784     return false;
7785   default:
7786     return true;
7787   }
7788 }
7789 
7790 static std::pair<QualType, StringRef>
7791 shouldNotPrintDirectly(const ASTContext &Context,
7792                        QualType IntendedTy,
7793                        const Expr *E) {
7794   // Use a 'while' to peel off layers of typedefs.
7795   QualType TyTy = IntendedTy;
7796   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
7797     StringRef Name = UserTy->getDecl()->getName();
7798     QualType CastTy = llvm::StringSwitch<QualType>(Name)
7799       .Case("CFIndex", Context.getNSIntegerType())
7800       .Case("NSInteger", Context.getNSIntegerType())
7801       .Case("NSUInteger", Context.getNSUIntegerType())
7802       .Case("SInt32", Context.IntTy)
7803       .Case("UInt32", Context.UnsignedIntTy)
7804       .Default(QualType());
7805 
7806     if (!CastTy.isNull())
7807       return std::make_pair(CastTy, Name);
7808 
7809     TyTy = UserTy->desugar();
7810   }
7811 
7812   // Strip parens if necessary.
7813   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
7814     return shouldNotPrintDirectly(Context,
7815                                   PE->getSubExpr()->getType(),
7816                                   PE->getSubExpr());
7817 
7818   // If this is a conditional expression, then its result type is constructed
7819   // via usual arithmetic conversions and thus there might be no necessary
7820   // typedef sugar there.  Recurse to operands to check for NSInteger &
7821   // Co. usage condition.
7822   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7823     QualType TrueTy, FalseTy;
7824     StringRef TrueName, FalseName;
7825 
7826     std::tie(TrueTy, TrueName) =
7827       shouldNotPrintDirectly(Context,
7828                              CO->getTrueExpr()->getType(),
7829                              CO->getTrueExpr());
7830     std::tie(FalseTy, FalseName) =
7831       shouldNotPrintDirectly(Context,
7832                              CO->getFalseExpr()->getType(),
7833                              CO->getFalseExpr());
7834 
7835     if (TrueTy == FalseTy)
7836       return std::make_pair(TrueTy, TrueName);
7837     else if (TrueTy.isNull())
7838       return std::make_pair(FalseTy, FalseName);
7839     else if (FalseTy.isNull())
7840       return std::make_pair(TrueTy, TrueName);
7841   }
7842 
7843   return std::make_pair(QualType(), StringRef());
7844 }
7845 
7846 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
7847 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
7848 /// type do not count.
7849 static bool
7850 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
7851   QualType From = ICE->getSubExpr()->getType();
7852   QualType To = ICE->getType();
7853   // It's an integer promotion if the destination type is the promoted
7854   // source type.
7855   if (ICE->getCastKind() == CK_IntegralCast &&
7856       From->isPromotableIntegerType() &&
7857       S.Context.getPromotedIntegerType(From) == To)
7858     return true;
7859   // Look through vector types, since we do default argument promotion for
7860   // those in OpenCL.
7861   if (const auto *VecTy = From->getAs<ExtVectorType>())
7862     From = VecTy->getElementType();
7863   if (const auto *VecTy = To->getAs<ExtVectorType>())
7864     To = VecTy->getElementType();
7865   // It's a floating promotion if the source type is a lower rank.
7866   return ICE->getCastKind() == CK_FloatingCast &&
7867          S.Context.getFloatingTypeOrder(From, To) < 0;
7868 }
7869 
7870 bool
7871 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7872                                     const char *StartSpecifier,
7873                                     unsigned SpecifierLen,
7874                                     const Expr *E) {
7875   using namespace analyze_format_string;
7876   using namespace analyze_printf;
7877 
7878   // Now type check the data expression that matches the
7879   // format specifier.
7880   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
7881   if (!AT.isValid())
7882     return true;
7883 
7884   QualType ExprTy = E->getType();
7885   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
7886     ExprTy = TET->getUnderlyingExpr()->getType();
7887   }
7888 
7889   const analyze_printf::ArgType::MatchKind Match =
7890       AT.matchesType(S.Context, ExprTy);
7891   bool Pedantic = Match == analyze_printf::ArgType::NoMatchPedantic;
7892   if (Match == analyze_printf::ArgType::Match)
7893     return true;
7894 
7895   // Look through argument promotions for our error message's reported type.
7896   // This includes the integral and floating promotions, but excludes array
7897   // and function pointer decay (seeing that an argument intended to be a
7898   // string has type 'char [6]' is probably more confusing than 'char *') and
7899   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
7900   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7901     if (isArithmeticArgumentPromotion(S, ICE)) {
7902       E = ICE->getSubExpr();
7903       ExprTy = E->getType();
7904 
7905       // Check if we didn't match because of an implicit cast from a 'char'
7906       // or 'short' to an 'int'.  This is done because printf is a varargs
7907       // function.
7908       if (ICE->getType() == S.Context.IntTy ||
7909           ICE->getType() == S.Context.UnsignedIntTy) {
7910         // All further checking is done on the subexpression.
7911         if (AT.matchesType(S.Context, ExprTy))
7912           return true;
7913       }
7914     }
7915   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
7916     // Special case for 'a', which has type 'int' in C.
7917     // Note, however, that we do /not/ want to treat multibyte constants like
7918     // 'MooV' as characters! This form is deprecated but still exists.
7919     if (ExprTy == S.Context.IntTy)
7920       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
7921         ExprTy = S.Context.CharTy;
7922   }
7923 
7924   // Look through enums to their underlying type.
7925   bool IsEnum = false;
7926   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
7927     ExprTy = EnumTy->getDecl()->getIntegerType();
7928     IsEnum = true;
7929   }
7930 
7931   // %C in an Objective-C context prints a unichar, not a wchar_t.
7932   // If the argument is an integer of some kind, believe the %C and suggest
7933   // a cast instead of changing the conversion specifier.
7934   QualType IntendedTy = ExprTy;
7935   if (isObjCContext() &&
7936       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
7937     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
7938         !ExprTy->isCharType()) {
7939       // 'unichar' is defined as a typedef of unsigned short, but we should
7940       // prefer using the typedef if it is visible.
7941       IntendedTy = S.Context.UnsignedShortTy;
7942 
7943       // While we are here, check if the value is an IntegerLiteral that happens
7944       // to be within the valid range.
7945       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
7946         const llvm::APInt &V = IL->getValue();
7947         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
7948           return true;
7949       }
7950 
7951       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
7952                           Sema::LookupOrdinaryName);
7953       if (S.LookupName(Result, S.getCurScope())) {
7954         NamedDecl *ND = Result.getFoundDecl();
7955         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
7956           if (TD->getUnderlyingType() == IntendedTy)
7957             IntendedTy = S.Context.getTypedefType(TD);
7958       }
7959     }
7960   }
7961 
7962   // Special-case some of Darwin's platform-independence types by suggesting
7963   // casts to primitive types that are known to be large enough.
7964   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
7965   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
7966     QualType CastTy;
7967     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
7968     if (!CastTy.isNull()) {
7969       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
7970       // (long in ASTContext). Only complain to pedants.
7971       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
7972           (AT.isSizeT() || AT.isPtrdiffT()) &&
7973           AT.matchesType(S.Context, CastTy))
7974         Pedantic = true;
7975       IntendedTy = CastTy;
7976       ShouldNotPrintDirectly = true;
7977     }
7978   }
7979 
7980   // We may be able to offer a FixItHint if it is a supported type.
7981   PrintfSpecifier fixedFS = FS;
7982   bool Success =
7983       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
7984 
7985   if (Success) {
7986     // Get the fix string from the fixed format specifier
7987     SmallString<16> buf;
7988     llvm::raw_svector_ostream os(buf);
7989     fixedFS.toString(os);
7990 
7991     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
7992 
7993     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
7994       unsigned Diag =
7995           Pedantic
7996               ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7997               : diag::warn_format_conversion_argument_type_mismatch;
7998       // In this case, the specifier is wrong and should be changed to match
7999       // the argument.
8000       EmitFormatDiagnostic(S.PDiag(Diag)
8001                                << AT.getRepresentativeTypeName(S.Context)
8002                                << IntendedTy << IsEnum << E->getSourceRange(),
8003                            E->getBeginLoc(),
8004                            /*IsStringLocation*/ false, SpecRange,
8005                            FixItHint::CreateReplacement(SpecRange, os.str()));
8006     } else {
8007       // The canonical type for formatting this value is different from the
8008       // actual type of the expression. (This occurs, for example, with Darwin's
8009       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8010       // should be printed as 'long' for 64-bit compatibility.)
8011       // Rather than emitting a normal format/argument mismatch, we want to
8012       // add a cast to the recommended type (and correct the format string
8013       // if necessary).
8014       SmallString<16> CastBuf;
8015       llvm::raw_svector_ostream CastFix(CastBuf);
8016       CastFix << "(";
8017       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8018       CastFix << ")";
8019 
8020       SmallVector<FixItHint,4> Hints;
8021       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8022         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8023 
8024       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8025         // If there's already a cast present, just replace it.
8026         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8027         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8028 
8029       } else if (!requiresParensToAddCast(E)) {
8030         // If the expression has high enough precedence,
8031         // just write the C-style cast.
8032         Hints.push_back(
8033             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8034       } else {
8035         // Otherwise, add parens around the expression as well as the cast.
8036         CastFix << "(";
8037         Hints.push_back(
8038             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8039 
8040         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8041         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8042       }
8043 
8044       if (ShouldNotPrintDirectly) {
8045         // The expression has a type that should not be printed directly.
8046         // We extract the name from the typedef because we don't want to show
8047         // the underlying type in the diagnostic.
8048         StringRef Name;
8049         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8050           Name = TypedefTy->getDecl()->getName();
8051         else
8052           Name = CastTyName;
8053         unsigned Diag = Pedantic
8054                             ? diag::warn_format_argument_needs_cast_pedantic
8055                             : diag::warn_format_argument_needs_cast;
8056         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8057                                            << E->getSourceRange(),
8058                              E->getBeginLoc(), /*IsStringLocation=*/false,
8059                              SpecRange, Hints);
8060       } else {
8061         // In this case, the expression could be printed using a different
8062         // specifier, but we've decided that the specifier is probably correct
8063         // and we should cast instead. Just use the normal warning message.
8064         EmitFormatDiagnostic(
8065             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8066                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8067                 << E->getSourceRange(),
8068             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8069       }
8070     }
8071   } else {
8072     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8073                                                    SpecifierLen);
8074     // Since the warning for passing non-POD types to variadic functions
8075     // was deferred until now, we emit a warning for non-POD
8076     // arguments here.
8077     switch (S.isValidVarArgType(ExprTy)) {
8078     case Sema::VAK_Valid:
8079     case Sema::VAK_ValidInCXX11: {
8080       unsigned Diag =
8081           Pedantic
8082               ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8083               : diag::warn_format_conversion_argument_type_mismatch;
8084 
8085       EmitFormatDiagnostic(
8086           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8087                         << IsEnum << CSR << E->getSourceRange(),
8088           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8089       break;
8090     }
8091     case Sema::VAK_Undefined:
8092     case Sema::VAK_MSVCUndefined:
8093       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8094                                << S.getLangOpts().CPlusPlus11 << ExprTy
8095                                << CallType
8096                                << AT.getRepresentativeTypeName(S.Context) << CSR
8097                                << E->getSourceRange(),
8098                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8099       checkForCStrMembers(AT, E);
8100       break;
8101 
8102     case Sema::VAK_Invalid:
8103       if (ExprTy->isObjCObjectType())
8104         EmitFormatDiagnostic(
8105             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8106                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8107                 << AT.getRepresentativeTypeName(S.Context) << CSR
8108                 << E->getSourceRange(),
8109             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8110       else
8111         // FIXME: If this is an initializer list, suggest removing the braces
8112         // or inserting a cast to the target type.
8113         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8114             << isa<InitListExpr>(E) << ExprTy << CallType
8115             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8116       break;
8117     }
8118 
8119     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8120            "format string specifier index out of range");
8121     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8122   }
8123 
8124   return true;
8125 }
8126 
8127 //===--- CHECK: Scanf format string checking ------------------------------===//
8128 
8129 namespace {
8130 
8131 class CheckScanfHandler : public CheckFormatHandler {
8132 public:
8133   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8134                     const Expr *origFormatExpr, Sema::FormatStringType type,
8135                     unsigned firstDataArg, unsigned numDataArgs,
8136                     const char *beg, bool hasVAListArg,
8137                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8138                     bool inFunctionCall, Sema::VariadicCallType CallType,
8139                     llvm::SmallBitVector &CheckedVarArgs,
8140                     UncoveredArgHandler &UncoveredArg)
8141       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8142                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8143                            inFunctionCall, CallType, CheckedVarArgs,
8144                            UncoveredArg) {}
8145 
8146   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8147                             const char *startSpecifier,
8148                             unsigned specifierLen) override;
8149 
8150   bool HandleInvalidScanfConversionSpecifier(
8151           const analyze_scanf::ScanfSpecifier &FS,
8152           const char *startSpecifier,
8153           unsigned specifierLen) override;
8154 
8155   void HandleIncompleteScanList(const char *start, const char *end) override;
8156 };
8157 
8158 } // namespace
8159 
8160 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8161                                                  const char *end) {
8162   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8163                        getLocationOfByte(end), /*IsStringLocation*/true,
8164                        getSpecifierRange(start, end - start));
8165 }
8166 
8167 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8168                                         const analyze_scanf::ScanfSpecifier &FS,
8169                                         const char *startSpecifier,
8170                                         unsigned specifierLen) {
8171   const analyze_scanf::ScanfConversionSpecifier &CS =
8172     FS.getConversionSpecifier();
8173 
8174   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8175                                           getLocationOfByte(CS.getStart()),
8176                                           startSpecifier, specifierLen,
8177                                           CS.getStart(), CS.getLength());
8178 }
8179 
8180 bool CheckScanfHandler::HandleScanfSpecifier(
8181                                        const analyze_scanf::ScanfSpecifier &FS,
8182                                        const char *startSpecifier,
8183                                        unsigned specifierLen) {
8184   using namespace analyze_scanf;
8185   using namespace analyze_format_string;
8186 
8187   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8188 
8189   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8190   // be used to decide if we are using positional arguments consistently.
8191   if (FS.consumesDataArgument()) {
8192     if (atFirstArg) {
8193       atFirstArg = false;
8194       usesPositionalArgs = FS.usesPositionalArg();
8195     }
8196     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8197       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8198                                         startSpecifier, specifierLen);
8199       return false;
8200     }
8201   }
8202 
8203   // Check if the field with is non-zero.
8204   const OptionalAmount &Amt = FS.getFieldWidth();
8205   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8206     if (Amt.getConstantAmount() == 0) {
8207       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8208                                                    Amt.getConstantLength());
8209       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8210                            getLocationOfByte(Amt.getStart()),
8211                            /*IsStringLocation*/true, R,
8212                            FixItHint::CreateRemoval(R));
8213     }
8214   }
8215 
8216   if (!FS.consumesDataArgument()) {
8217     // FIXME: Technically specifying a precision or field width here
8218     // makes no sense.  Worth issuing a warning at some point.
8219     return true;
8220   }
8221 
8222   // Consume the argument.
8223   unsigned argIndex = FS.getArgIndex();
8224   if (argIndex < NumDataArgs) {
8225       // The check to see if the argIndex is valid will come later.
8226       // We set the bit here because we may exit early from this
8227       // function if we encounter some other error.
8228     CoveredArgs.set(argIndex);
8229   }
8230 
8231   // Check the length modifier is valid with the given conversion specifier.
8232   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8233                                  S.getLangOpts()))
8234     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8235                                 diag::warn_format_nonsensical_length);
8236   else if (!FS.hasStandardLengthModifier())
8237     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8238   else if (!FS.hasStandardLengthConversionCombination())
8239     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8240                                 diag::warn_format_non_standard_conversion_spec);
8241 
8242   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8243     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8244 
8245   // The remaining checks depend on the data arguments.
8246   if (HasVAListArg)
8247     return true;
8248 
8249   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8250     return false;
8251 
8252   // Check that the argument type matches the format specifier.
8253   const Expr *Ex = getDataArg(argIndex);
8254   if (!Ex)
8255     return true;
8256 
8257   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8258 
8259   if (!AT.isValid()) {
8260     return true;
8261   }
8262 
8263   analyze_format_string::ArgType::MatchKind Match =
8264       AT.matchesType(S.Context, Ex->getType());
8265   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8266   if (Match == analyze_format_string::ArgType::Match)
8267     return true;
8268 
8269   ScanfSpecifier fixedFS = FS;
8270   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8271                                  S.getLangOpts(), S.Context);
8272 
8273   unsigned Diag =
8274       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8275                : diag::warn_format_conversion_argument_type_mismatch;
8276 
8277   if (Success) {
8278     // Get the fix string from the fixed format specifier.
8279     SmallString<128> buf;
8280     llvm::raw_svector_ostream os(buf);
8281     fixedFS.toString(os);
8282 
8283     EmitFormatDiagnostic(
8284         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8285                       << Ex->getType() << false << Ex->getSourceRange(),
8286         Ex->getBeginLoc(),
8287         /*IsStringLocation*/ false,
8288         getSpecifierRange(startSpecifier, specifierLen),
8289         FixItHint::CreateReplacement(
8290             getSpecifierRange(startSpecifier, specifierLen), os.str()));
8291   } else {
8292     EmitFormatDiagnostic(S.PDiag(Diag)
8293                              << AT.getRepresentativeTypeName(S.Context)
8294                              << Ex->getType() << false << Ex->getSourceRange(),
8295                          Ex->getBeginLoc(),
8296                          /*IsStringLocation*/ false,
8297                          getSpecifierRange(startSpecifier, specifierLen));
8298   }
8299 
8300   return true;
8301 }
8302 
8303 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8304                               const Expr *OrigFormatExpr,
8305                               ArrayRef<const Expr *> Args,
8306                               bool HasVAListArg, unsigned format_idx,
8307                               unsigned firstDataArg,
8308                               Sema::FormatStringType Type,
8309                               bool inFunctionCall,
8310                               Sema::VariadicCallType CallType,
8311                               llvm::SmallBitVector &CheckedVarArgs,
8312                               UncoveredArgHandler &UncoveredArg) {
8313   // CHECK: is the format string a wide literal?
8314   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8315     CheckFormatHandler::EmitFormatDiagnostic(
8316         S, inFunctionCall, Args[format_idx],
8317         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8318         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8319     return;
8320   }
8321 
8322   // Str - The format string.  NOTE: this is NOT null-terminated!
8323   StringRef StrRef = FExpr->getString();
8324   const char *Str = StrRef.data();
8325   // Account for cases where the string literal is truncated in a declaration.
8326   const ConstantArrayType *T =
8327     S.Context.getAsConstantArrayType(FExpr->getType());
8328   assert(T && "String literal not of constant array type!");
8329   size_t TypeSize = T->getSize().getZExtValue();
8330   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8331   const unsigned numDataArgs = Args.size() - firstDataArg;
8332 
8333   // Emit a warning if the string literal is truncated and does not contain an
8334   // embedded null character.
8335   if (TypeSize <= StrRef.size() &&
8336       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
8337     CheckFormatHandler::EmitFormatDiagnostic(
8338         S, inFunctionCall, Args[format_idx],
8339         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8340         FExpr->getBeginLoc(),
8341         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8342     return;
8343   }
8344 
8345   // CHECK: empty format string?
8346   if (StrLen == 0 && numDataArgs > 0) {
8347     CheckFormatHandler::EmitFormatDiagnostic(
8348         S, inFunctionCall, Args[format_idx],
8349         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8350         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8351     return;
8352   }
8353 
8354   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8355       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8356       Type == Sema::FST_OSTrace) {
8357     CheckPrintfHandler H(
8358         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8359         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
8360         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
8361         CheckedVarArgs, UncoveredArg);
8362 
8363     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
8364                                                   S.getLangOpts(),
8365                                                   S.Context.getTargetInfo(),
8366                                             Type == Sema::FST_FreeBSDKPrintf))
8367       H.DoneProcessing();
8368   } else if (Type == Sema::FST_Scanf) {
8369     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8370                         numDataArgs, Str, HasVAListArg, Args, format_idx,
8371                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
8372 
8373     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
8374                                                  S.getLangOpts(),
8375                                                  S.Context.getTargetInfo()))
8376       H.DoneProcessing();
8377   } // TODO: handle other formats
8378 }
8379 
8380 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8381   // Str - The format string.  NOTE: this is NOT null-terminated!
8382   StringRef StrRef = FExpr->getString();
8383   const char *Str = StrRef.data();
8384   // Account for cases where the string literal is truncated in a declaration.
8385   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8386   assert(T && "String literal not of constant array type!");
8387   size_t TypeSize = T->getSize().getZExtValue();
8388   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8389   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8390                                                          getLangOpts(),
8391                                                          Context.getTargetInfo());
8392 }
8393 
8394 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8395 
8396 // Returns the related absolute value function that is larger, of 0 if one
8397 // does not exist.
8398 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8399   switch (AbsFunction) {
8400   default:
8401     return 0;
8402 
8403   case Builtin::BI__builtin_abs:
8404     return Builtin::BI__builtin_labs;
8405   case Builtin::BI__builtin_labs:
8406     return Builtin::BI__builtin_llabs;
8407   case Builtin::BI__builtin_llabs:
8408     return 0;
8409 
8410   case Builtin::BI__builtin_fabsf:
8411     return Builtin::BI__builtin_fabs;
8412   case Builtin::BI__builtin_fabs:
8413     return Builtin::BI__builtin_fabsl;
8414   case Builtin::BI__builtin_fabsl:
8415     return 0;
8416 
8417   case Builtin::BI__builtin_cabsf:
8418     return Builtin::BI__builtin_cabs;
8419   case Builtin::BI__builtin_cabs:
8420     return Builtin::BI__builtin_cabsl;
8421   case Builtin::BI__builtin_cabsl:
8422     return 0;
8423 
8424   case Builtin::BIabs:
8425     return Builtin::BIlabs;
8426   case Builtin::BIlabs:
8427     return Builtin::BIllabs;
8428   case Builtin::BIllabs:
8429     return 0;
8430 
8431   case Builtin::BIfabsf:
8432     return Builtin::BIfabs;
8433   case Builtin::BIfabs:
8434     return Builtin::BIfabsl;
8435   case Builtin::BIfabsl:
8436     return 0;
8437 
8438   case Builtin::BIcabsf:
8439    return Builtin::BIcabs;
8440   case Builtin::BIcabs:
8441     return Builtin::BIcabsl;
8442   case Builtin::BIcabsl:
8443     return 0;
8444   }
8445 }
8446 
8447 // Returns the argument type of the absolute value function.
8448 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
8449                                              unsigned AbsType) {
8450   if (AbsType == 0)
8451     return QualType();
8452 
8453   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
8454   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
8455   if (Error != ASTContext::GE_None)
8456     return QualType();
8457 
8458   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
8459   if (!FT)
8460     return QualType();
8461 
8462   if (FT->getNumParams() != 1)
8463     return QualType();
8464 
8465   return FT->getParamType(0);
8466 }
8467 
8468 // Returns the best absolute value function, or zero, based on type and
8469 // current absolute value function.
8470 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
8471                                    unsigned AbsFunctionKind) {
8472   unsigned BestKind = 0;
8473   uint64_t ArgSize = Context.getTypeSize(ArgType);
8474   for (unsigned Kind = AbsFunctionKind; Kind != 0;
8475        Kind = getLargerAbsoluteValueFunction(Kind)) {
8476     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
8477     if (Context.getTypeSize(ParamType) >= ArgSize) {
8478       if (BestKind == 0)
8479         BestKind = Kind;
8480       else if (Context.hasSameType(ParamType, ArgType)) {
8481         BestKind = Kind;
8482         break;
8483       }
8484     }
8485   }
8486   return BestKind;
8487 }
8488 
8489 enum AbsoluteValueKind {
8490   AVK_Integer,
8491   AVK_Floating,
8492   AVK_Complex
8493 };
8494 
8495 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
8496   if (T->isIntegralOrEnumerationType())
8497     return AVK_Integer;
8498   if (T->isRealFloatingType())
8499     return AVK_Floating;
8500   if (T->isAnyComplexType())
8501     return AVK_Complex;
8502 
8503   llvm_unreachable("Type not integer, floating, or complex");
8504 }
8505 
8506 // Changes the absolute value function to a different type.  Preserves whether
8507 // the function is a builtin.
8508 static unsigned changeAbsFunction(unsigned AbsKind,
8509                                   AbsoluteValueKind ValueKind) {
8510   switch (ValueKind) {
8511   case AVK_Integer:
8512     switch (AbsKind) {
8513     default:
8514       return 0;
8515     case Builtin::BI__builtin_fabsf:
8516     case Builtin::BI__builtin_fabs:
8517     case Builtin::BI__builtin_fabsl:
8518     case Builtin::BI__builtin_cabsf:
8519     case Builtin::BI__builtin_cabs:
8520     case Builtin::BI__builtin_cabsl:
8521       return Builtin::BI__builtin_abs;
8522     case Builtin::BIfabsf:
8523     case Builtin::BIfabs:
8524     case Builtin::BIfabsl:
8525     case Builtin::BIcabsf:
8526     case Builtin::BIcabs:
8527     case Builtin::BIcabsl:
8528       return Builtin::BIabs;
8529     }
8530   case AVK_Floating:
8531     switch (AbsKind) {
8532     default:
8533       return 0;
8534     case Builtin::BI__builtin_abs:
8535     case Builtin::BI__builtin_labs:
8536     case Builtin::BI__builtin_llabs:
8537     case Builtin::BI__builtin_cabsf:
8538     case Builtin::BI__builtin_cabs:
8539     case Builtin::BI__builtin_cabsl:
8540       return Builtin::BI__builtin_fabsf;
8541     case Builtin::BIabs:
8542     case Builtin::BIlabs:
8543     case Builtin::BIllabs:
8544     case Builtin::BIcabsf:
8545     case Builtin::BIcabs:
8546     case Builtin::BIcabsl:
8547       return Builtin::BIfabsf;
8548     }
8549   case AVK_Complex:
8550     switch (AbsKind) {
8551     default:
8552       return 0;
8553     case Builtin::BI__builtin_abs:
8554     case Builtin::BI__builtin_labs:
8555     case Builtin::BI__builtin_llabs:
8556     case Builtin::BI__builtin_fabsf:
8557     case Builtin::BI__builtin_fabs:
8558     case Builtin::BI__builtin_fabsl:
8559       return Builtin::BI__builtin_cabsf;
8560     case Builtin::BIabs:
8561     case Builtin::BIlabs:
8562     case Builtin::BIllabs:
8563     case Builtin::BIfabsf:
8564     case Builtin::BIfabs:
8565     case Builtin::BIfabsl:
8566       return Builtin::BIcabsf;
8567     }
8568   }
8569   llvm_unreachable("Unable to convert function");
8570 }
8571 
8572 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
8573   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
8574   if (!FnInfo)
8575     return 0;
8576 
8577   switch (FDecl->getBuiltinID()) {
8578   default:
8579     return 0;
8580   case Builtin::BI__builtin_abs:
8581   case Builtin::BI__builtin_fabs:
8582   case Builtin::BI__builtin_fabsf:
8583   case Builtin::BI__builtin_fabsl:
8584   case Builtin::BI__builtin_labs:
8585   case Builtin::BI__builtin_llabs:
8586   case Builtin::BI__builtin_cabs:
8587   case Builtin::BI__builtin_cabsf:
8588   case Builtin::BI__builtin_cabsl:
8589   case Builtin::BIabs:
8590   case Builtin::BIlabs:
8591   case Builtin::BIllabs:
8592   case Builtin::BIfabs:
8593   case Builtin::BIfabsf:
8594   case Builtin::BIfabsl:
8595   case Builtin::BIcabs:
8596   case Builtin::BIcabsf:
8597   case Builtin::BIcabsl:
8598     return FDecl->getBuiltinID();
8599   }
8600   llvm_unreachable("Unknown Builtin type");
8601 }
8602 
8603 // If the replacement is valid, emit a note with replacement function.
8604 // Additionally, suggest including the proper header if not already included.
8605 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
8606                             unsigned AbsKind, QualType ArgType) {
8607   bool EmitHeaderHint = true;
8608   const char *HeaderName = nullptr;
8609   const char *FunctionName = nullptr;
8610   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
8611     FunctionName = "std::abs";
8612     if (ArgType->isIntegralOrEnumerationType()) {
8613       HeaderName = "cstdlib";
8614     } else if (ArgType->isRealFloatingType()) {
8615       HeaderName = "cmath";
8616     } else {
8617       llvm_unreachable("Invalid Type");
8618     }
8619 
8620     // Lookup all std::abs
8621     if (NamespaceDecl *Std = S.getStdNamespace()) {
8622       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
8623       R.suppressDiagnostics();
8624       S.LookupQualifiedName(R, Std);
8625 
8626       for (const auto *I : R) {
8627         const FunctionDecl *FDecl = nullptr;
8628         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
8629           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
8630         } else {
8631           FDecl = dyn_cast<FunctionDecl>(I);
8632         }
8633         if (!FDecl)
8634           continue;
8635 
8636         // Found std::abs(), check that they are the right ones.
8637         if (FDecl->getNumParams() != 1)
8638           continue;
8639 
8640         // Check that the parameter type can handle the argument.
8641         QualType ParamType = FDecl->getParamDecl(0)->getType();
8642         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
8643             S.Context.getTypeSize(ArgType) <=
8644                 S.Context.getTypeSize(ParamType)) {
8645           // Found a function, don't need the header hint.
8646           EmitHeaderHint = false;
8647           break;
8648         }
8649       }
8650     }
8651   } else {
8652     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
8653     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
8654 
8655     if (HeaderName) {
8656       DeclarationName DN(&S.Context.Idents.get(FunctionName));
8657       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
8658       R.suppressDiagnostics();
8659       S.LookupName(R, S.getCurScope());
8660 
8661       if (R.isSingleResult()) {
8662         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
8663         if (FD && FD->getBuiltinID() == AbsKind) {
8664           EmitHeaderHint = false;
8665         } else {
8666           return;
8667         }
8668       } else if (!R.empty()) {
8669         return;
8670       }
8671     }
8672   }
8673 
8674   S.Diag(Loc, diag::note_replace_abs_function)
8675       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
8676 
8677   if (!HeaderName)
8678     return;
8679 
8680   if (!EmitHeaderHint)
8681     return;
8682 
8683   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
8684                                                     << FunctionName;
8685 }
8686 
8687 template <std::size_t StrLen>
8688 static bool IsStdFunction(const FunctionDecl *FDecl,
8689                           const char (&Str)[StrLen]) {
8690   if (!FDecl)
8691     return false;
8692   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
8693     return false;
8694   if (!FDecl->isInStdNamespace())
8695     return false;
8696 
8697   return true;
8698 }
8699 
8700 // Warn when using the wrong abs() function.
8701 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
8702                                       const FunctionDecl *FDecl) {
8703   if (Call->getNumArgs() != 1)
8704     return;
8705 
8706   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
8707   bool IsStdAbs = IsStdFunction(FDecl, "abs");
8708   if (AbsKind == 0 && !IsStdAbs)
8709     return;
8710 
8711   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8712   QualType ParamType = Call->getArg(0)->getType();
8713 
8714   // Unsigned types cannot be negative.  Suggest removing the absolute value
8715   // function call.
8716   if (ArgType->isUnsignedIntegerType()) {
8717     const char *FunctionName =
8718         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
8719     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
8720     Diag(Call->getExprLoc(), diag::note_remove_abs)
8721         << FunctionName
8722         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
8723     return;
8724   }
8725 
8726   // Taking the absolute value of a pointer is very suspicious, they probably
8727   // wanted to index into an array, dereference a pointer, call a function, etc.
8728   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
8729     unsigned DiagType = 0;
8730     if (ArgType->isFunctionType())
8731       DiagType = 1;
8732     else if (ArgType->isArrayType())
8733       DiagType = 2;
8734 
8735     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
8736     return;
8737   }
8738 
8739   // std::abs has overloads which prevent most of the absolute value problems
8740   // from occurring.
8741   if (IsStdAbs)
8742     return;
8743 
8744   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
8745   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
8746 
8747   // The argument and parameter are the same kind.  Check if they are the right
8748   // size.
8749   if (ArgValueKind == ParamValueKind) {
8750     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
8751       return;
8752 
8753     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
8754     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
8755         << FDecl << ArgType << ParamType;
8756 
8757     if (NewAbsKind == 0)
8758       return;
8759 
8760     emitReplacement(*this, Call->getExprLoc(),
8761                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8762     return;
8763   }
8764 
8765   // ArgValueKind != ParamValueKind
8766   // The wrong type of absolute value function was used.  Attempt to find the
8767   // proper one.
8768   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
8769   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
8770   if (NewAbsKind == 0)
8771     return;
8772 
8773   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
8774       << FDecl << ParamValueKind << ArgValueKind;
8775 
8776   emitReplacement(*this, Call->getExprLoc(),
8777                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8778 }
8779 
8780 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
8781 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
8782                                 const FunctionDecl *FDecl) {
8783   if (!Call || !FDecl) return;
8784 
8785   // Ignore template specializations and macros.
8786   if (inTemplateInstantiation()) return;
8787   if (Call->getExprLoc().isMacroID()) return;
8788 
8789   // Only care about the one template argument, two function parameter std::max
8790   if (Call->getNumArgs() != 2) return;
8791   if (!IsStdFunction(FDecl, "max")) return;
8792   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
8793   if (!ArgList) return;
8794   if (ArgList->size() != 1) return;
8795 
8796   // Check that template type argument is unsigned integer.
8797   const auto& TA = ArgList->get(0);
8798   if (TA.getKind() != TemplateArgument::Type) return;
8799   QualType ArgType = TA.getAsType();
8800   if (!ArgType->isUnsignedIntegerType()) return;
8801 
8802   // See if either argument is a literal zero.
8803   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
8804     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
8805     if (!MTE) return false;
8806     const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr());
8807     if (!Num) return false;
8808     if (Num->getValue() != 0) return false;
8809     return true;
8810   };
8811 
8812   const Expr *FirstArg = Call->getArg(0);
8813   const Expr *SecondArg = Call->getArg(1);
8814   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
8815   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
8816 
8817   // Only warn when exactly one argument is zero.
8818   if (IsFirstArgZero == IsSecondArgZero) return;
8819 
8820   SourceRange FirstRange = FirstArg->getSourceRange();
8821   SourceRange SecondRange = SecondArg->getSourceRange();
8822 
8823   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
8824 
8825   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
8826       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
8827 
8828   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
8829   SourceRange RemovalRange;
8830   if (IsFirstArgZero) {
8831     RemovalRange = SourceRange(FirstRange.getBegin(),
8832                                SecondRange.getBegin().getLocWithOffset(-1));
8833   } else {
8834     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
8835                                SecondRange.getEnd());
8836   }
8837 
8838   Diag(Call->getExprLoc(), diag::note_remove_max_call)
8839         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
8840         << FixItHint::CreateRemoval(RemovalRange);
8841 }
8842 
8843 //===--- CHECK: Standard memory functions ---------------------------------===//
8844 
8845 /// Takes the expression passed to the size_t parameter of functions
8846 /// such as memcmp, strncat, etc and warns if it's a comparison.
8847 ///
8848 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
8849 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
8850                                            IdentifierInfo *FnName,
8851                                            SourceLocation FnLoc,
8852                                            SourceLocation RParenLoc) {
8853   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
8854   if (!Size)
8855     return false;
8856 
8857   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
8858   if (!Size->isComparisonOp() && !Size->isLogicalOp())
8859     return false;
8860 
8861   SourceRange SizeRange = Size->getSourceRange();
8862   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
8863       << SizeRange << FnName;
8864   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
8865       << FnName
8866       << FixItHint::CreateInsertion(
8867              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
8868       << FixItHint::CreateRemoval(RParenLoc);
8869   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
8870       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
8871       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
8872                                     ")");
8873 
8874   return true;
8875 }
8876 
8877 /// Determine whether the given type is or contains a dynamic class type
8878 /// (e.g., whether it has a vtable).
8879 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
8880                                                      bool &IsContained) {
8881   // Look through array types while ignoring qualifiers.
8882   const Type *Ty = T->getBaseElementTypeUnsafe();
8883   IsContained = false;
8884 
8885   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
8886   RD = RD ? RD->getDefinition() : nullptr;
8887   if (!RD || RD->isInvalidDecl())
8888     return nullptr;
8889 
8890   if (RD->isDynamicClass())
8891     return RD;
8892 
8893   // Check all the fields.  If any bases were dynamic, the class is dynamic.
8894   // It's impossible for a class to transitively contain itself by value, so
8895   // infinite recursion is impossible.
8896   for (auto *FD : RD->fields()) {
8897     bool SubContained;
8898     if (const CXXRecordDecl *ContainedRD =
8899             getContainedDynamicClass(FD->getType(), SubContained)) {
8900       IsContained = true;
8901       return ContainedRD;
8902     }
8903   }
8904 
8905   return nullptr;
8906 }
8907 
8908 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
8909   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
8910     if (Unary->getKind() == UETT_SizeOf)
8911       return Unary;
8912   return nullptr;
8913 }
8914 
8915 /// If E is a sizeof expression, returns its argument expression,
8916 /// otherwise returns NULL.
8917 static const Expr *getSizeOfExprArg(const Expr *E) {
8918   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8919     if (!SizeOf->isArgumentType())
8920       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
8921   return nullptr;
8922 }
8923 
8924 /// If E is a sizeof expression, returns its argument type.
8925 static QualType getSizeOfArgType(const Expr *E) {
8926   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8927     return SizeOf->getTypeOfArgument();
8928   return QualType();
8929 }
8930 
8931 namespace {
8932 
8933 struct SearchNonTrivialToInitializeField
8934     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
8935   using Super =
8936       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
8937 
8938   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
8939 
8940   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
8941                      SourceLocation SL) {
8942     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8943       asDerived().visitArray(PDIK, AT, SL);
8944       return;
8945     }
8946 
8947     Super::visitWithKind(PDIK, FT, SL);
8948   }
8949 
8950   void visitARCStrong(QualType FT, SourceLocation SL) {
8951     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8952   }
8953   void visitARCWeak(QualType FT, SourceLocation SL) {
8954     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8955   }
8956   void visitStruct(QualType FT, SourceLocation SL) {
8957     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8958       visit(FD->getType(), FD->getLocation());
8959   }
8960   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
8961                   const ArrayType *AT, SourceLocation SL) {
8962     visit(getContext().getBaseElementType(AT), SL);
8963   }
8964   void visitTrivial(QualType FT, SourceLocation SL) {}
8965 
8966   static void diag(QualType RT, const Expr *E, Sema &S) {
8967     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
8968   }
8969 
8970   ASTContext &getContext() { return S.getASTContext(); }
8971 
8972   const Expr *E;
8973   Sema &S;
8974 };
8975 
8976 struct SearchNonTrivialToCopyField
8977     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
8978   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
8979 
8980   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
8981 
8982   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
8983                      SourceLocation SL) {
8984     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8985       asDerived().visitArray(PCK, AT, SL);
8986       return;
8987     }
8988 
8989     Super::visitWithKind(PCK, FT, SL);
8990   }
8991 
8992   void visitARCStrong(QualType FT, SourceLocation SL) {
8993     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8994   }
8995   void visitARCWeak(QualType FT, SourceLocation SL) {
8996     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8997   }
8998   void visitStruct(QualType FT, SourceLocation SL) {
8999     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9000       visit(FD->getType(), FD->getLocation());
9001   }
9002   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9003                   SourceLocation SL) {
9004     visit(getContext().getBaseElementType(AT), SL);
9005   }
9006   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9007                 SourceLocation SL) {}
9008   void visitTrivial(QualType FT, SourceLocation SL) {}
9009   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9010 
9011   static void diag(QualType RT, const Expr *E, Sema &S) {
9012     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9013   }
9014 
9015   ASTContext &getContext() { return S.getASTContext(); }
9016 
9017   const Expr *E;
9018   Sema &S;
9019 };
9020 
9021 }
9022 
9023 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9024 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9025   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9026 
9027   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9028     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9029       return false;
9030 
9031     return doesExprLikelyComputeSize(BO->getLHS()) ||
9032            doesExprLikelyComputeSize(BO->getRHS());
9033   }
9034 
9035   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9036 }
9037 
9038 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9039 ///
9040 /// \code
9041 ///   #define MACRO 0
9042 ///   foo(MACRO);
9043 ///   foo(0);
9044 /// \endcode
9045 ///
9046 /// This should return true for the first call to foo, but not for the second
9047 /// (regardless of whether foo is a macro or function).
9048 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9049                                         SourceLocation CallLoc,
9050                                         SourceLocation ArgLoc) {
9051   if (!CallLoc.isMacroID())
9052     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9053 
9054   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9055          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9056 }
9057 
9058 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9059 /// last two arguments transposed.
9060 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9061   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9062     return;
9063 
9064   const Expr *SizeArg =
9065     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9066 
9067   auto isLiteralZero = [](const Expr *E) {
9068     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9069   };
9070 
9071   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9072   SourceLocation CallLoc = Call->getRParenLoc();
9073   SourceManager &SM = S.getSourceManager();
9074   if (isLiteralZero(SizeArg) &&
9075       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9076 
9077     SourceLocation DiagLoc = SizeArg->getExprLoc();
9078 
9079     // Some platforms #define bzero to __builtin_memset. See if this is the
9080     // case, and if so, emit a better diagnostic.
9081     if (BId == Builtin::BIbzero ||
9082         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9083                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9084       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9085       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9086     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9087       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9088       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9089     }
9090     return;
9091   }
9092 
9093   // If the second argument to a memset is a sizeof expression and the third
9094   // isn't, this is also likely an error. This should catch
9095   // 'memset(buf, sizeof(buf), 0xff)'.
9096   if (BId == Builtin::BImemset &&
9097       doesExprLikelyComputeSize(Call->getArg(1)) &&
9098       !doesExprLikelyComputeSize(Call->getArg(2))) {
9099     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9100     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9101     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9102     return;
9103   }
9104 }
9105 
9106 /// Check for dangerous or invalid arguments to memset().
9107 ///
9108 /// This issues warnings on known problematic, dangerous or unspecified
9109 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9110 /// function calls.
9111 ///
9112 /// \param Call The call expression to diagnose.
9113 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9114                                    unsigned BId,
9115                                    IdentifierInfo *FnName) {
9116   assert(BId != 0);
9117 
9118   // It is possible to have a non-standard definition of memset.  Validate
9119   // we have enough arguments, and if not, abort further checking.
9120   unsigned ExpectedNumArgs =
9121       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9122   if (Call->getNumArgs() < ExpectedNumArgs)
9123     return;
9124 
9125   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9126                       BId == Builtin::BIstrndup ? 1 : 2);
9127   unsigned LenArg =
9128       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9129   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9130 
9131   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9132                                      Call->getBeginLoc(), Call->getRParenLoc()))
9133     return;
9134 
9135   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9136   CheckMemaccessSize(*this, BId, Call);
9137 
9138   // We have special checking when the length is a sizeof expression.
9139   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9140   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9141   llvm::FoldingSetNodeID SizeOfArgID;
9142 
9143   // Although widely used, 'bzero' is not a standard function. Be more strict
9144   // with the argument types before allowing diagnostics and only allow the
9145   // form bzero(ptr, sizeof(...)).
9146   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9147   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9148     return;
9149 
9150   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9151     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9152     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9153 
9154     QualType DestTy = Dest->getType();
9155     QualType PointeeTy;
9156     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9157       PointeeTy = DestPtrTy->getPointeeType();
9158 
9159       // Never warn about void type pointers. This can be used to suppress
9160       // false positives.
9161       if (PointeeTy->isVoidType())
9162         continue;
9163 
9164       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9165       // actually comparing the expressions for equality. Because computing the
9166       // expression IDs can be expensive, we only do this if the diagnostic is
9167       // enabled.
9168       if (SizeOfArg &&
9169           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9170                            SizeOfArg->getExprLoc())) {
9171         // We only compute IDs for expressions if the warning is enabled, and
9172         // cache the sizeof arg's ID.
9173         if (SizeOfArgID == llvm::FoldingSetNodeID())
9174           SizeOfArg->Profile(SizeOfArgID, Context, true);
9175         llvm::FoldingSetNodeID DestID;
9176         Dest->Profile(DestID, Context, true);
9177         if (DestID == SizeOfArgID) {
9178           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9179           //       over sizeof(src) as well.
9180           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9181           StringRef ReadableName = FnName->getName();
9182 
9183           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9184             if (UnaryOp->getOpcode() == UO_AddrOf)
9185               ActionIdx = 1; // If its an address-of operator, just remove it.
9186           if (!PointeeTy->isIncompleteType() &&
9187               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9188             ActionIdx = 2; // If the pointee's size is sizeof(char),
9189                            // suggest an explicit length.
9190 
9191           // If the function is defined as a builtin macro, do not show macro
9192           // expansion.
9193           SourceLocation SL = SizeOfArg->getExprLoc();
9194           SourceRange DSR = Dest->getSourceRange();
9195           SourceRange SSR = SizeOfArg->getSourceRange();
9196           SourceManager &SM = getSourceManager();
9197 
9198           if (SM.isMacroArgExpansion(SL)) {
9199             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9200             SL = SM.getSpellingLoc(SL);
9201             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9202                              SM.getSpellingLoc(DSR.getEnd()));
9203             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9204                              SM.getSpellingLoc(SSR.getEnd()));
9205           }
9206 
9207           DiagRuntimeBehavior(SL, SizeOfArg,
9208                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9209                                 << ReadableName
9210                                 << PointeeTy
9211                                 << DestTy
9212                                 << DSR
9213                                 << SSR);
9214           DiagRuntimeBehavior(SL, SizeOfArg,
9215                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9216                                 << ActionIdx
9217                                 << SSR);
9218 
9219           break;
9220         }
9221       }
9222 
9223       // Also check for cases where the sizeof argument is the exact same
9224       // type as the memory argument, and where it points to a user-defined
9225       // record type.
9226       if (SizeOfArgTy != QualType()) {
9227         if (PointeeTy->isRecordType() &&
9228             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9229           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9230                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9231                                 << FnName << SizeOfArgTy << ArgIdx
9232                                 << PointeeTy << Dest->getSourceRange()
9233                                 << LenExpr->getSourceRange());
9234           break;
9235         }
9236       }
9237     } else if (DestTy->isArrayType()) {
9238       PointeeTy = DestTy;
9239     }
9240 
9241     if (PointeeTy == QualType())
9242       continue;
9243 
9244     // Always complain about dynamic classes.
9245     bool IsContained;
9246     if (const CXXRecordDecl *ContainedRD =
9247             getContainedDynamicClass(PointeeTy, IsContained)) {
9248 
9249       unsigned OperationType = 0;
9250       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9251       // "overwritten" if we're warning about the destination for any call
9252       // but memcmp; otherwise a verb appropriate to the call.
9253       if (ArgIdx != 0 || IsCmp) {
9254         if (BId == Builtin::BImemcpy)
9255           OperationType = 1;
9256         else if(BId == Builtin::BImemmove)
9257           OperationType = 2;
9258         else if (IsCmp)
9259           OperationType = 3;
9260       }
9261 
9262       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9263                           PDiag(diag::warn_dyn_class_memaccess)
9264                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9265                               << IsContained << ContainedRD << OperationType
9266                               << Call->getCallee()->getSourceRange());
9267     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9268              BId != Builtin::BImemset)
9269       DiagRuntimeBehavior(
9270         Dest->getExprLoc(), Dest,
9271         PDiag(diag::warn_arc_object_memaccess)
9272           << ArgIdx << FnName << PointeeTy
9273           << Call->getCallee()->getSourceRange());
9274     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9275       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9276           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9277         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9278                             PDiag(diag::warn_cstruct_memaccess)
9279                                 << ArgIdx << FnName << PointeeTy << 0);
9280         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9281       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9282                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9283         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9284                             PDiag(diag::warn_cstruct_memaccess)
9285                                 << ArgIdx << FnName << PointeeTy << 1);
9286         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9287       } else {
9288         continue;
9289       }
9290     } else
9291       continue;
9292 
9293     DiagRuntimeBehavior(
9294       Dest->getExprLoc(), Dest,
9295       PDiag(diag::note_bad_memaccess_silence)
9296         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9297     break;
9298   }
9299 }
9300 
9301 // A little helper routine: ignore addition and subtraction of integer literals.
9302 // This intentionally does not ignore all integer constant expressions because
9303 // we don't want to remove sizeof().
9304 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9305   Ex = Ex->IgnoreParenCasts();
9306 
9307   while (true) {
9308     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9309     if (!BO || !BO->isAdditiveOp())
9310       break;
9311 
9312     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9313     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9314 
9315     if (isa<IntegerLiteral>(RHS))
9316       Ex = LHS;
9317     else if (isa<IntegerLiteral>(LHS))
9318       Ex = RHS;
9319     else
9320       break;
9321   }
9322 
9323   return Ex;
9324 }
9325 
9326 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9327                                                       ASTContext &Context) {
9328   // Only handle constant-sized or VLAs, but not flexible members.
9329   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9330     // Only issue the FIXIT for arrays of size > 1.
9331     if (CAT->getSize().getSExtValue() <= 1)
9332       return false;
9333   } else if (!Ty->isVariableArrayType()) {
9334     return false;
9335   }
9336   return true;
9337 }
9338 
9339 // Warn if the user has made the 'size' argument to strlcpy or strlcat
9340 // be the size of the source, instead of the destination.
9341 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9342                                     IdentifierInfo *FnName) {
9343 
9344   // Don't crash if the user has the wrong number of arguments
9345   unsigned NumArgs = Call->getNumArgs();
9346   if ((NumArgs != 3) && (NumArgs != 4))
9347     return;
9348 
9349   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9350   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9351   const Expr *CompareWithSrc = nullptr;
9352 
9353   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9354                                      Call->getBeginLoc(), Call->getRParenLoc()))
9355     return;
9356 
9357   // Look for 'strlcpy(dst, x, sizeof(x))'
9358   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9359     CompareWithSrc = Ex;
9360   else {
9361     // Look for 'strlcpy(dst, x, strlen(x))'
9362     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9363       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9364           SizeCall->getNumArgs() == 1)
9365         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9366     }
9367   }
9368 
9369   if (!CompareWithSrc)
9370     return;
9371 
9372   // Determine if the argument to sizeof/strlen is equal to the source
9373   // argument.  In principle there's all kinds of things you could do
9374   // here, for instance creating an == expression and evaluating it with
9375   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9376   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9377   if (!SrcArgDRE)
9378     return;
9379 
9380   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9381   if (!CompareWithSrcDRE ||
9382       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9383     return;
9384 
9385   const Expr *OriginalSizeArg = Call->getArg(2);
9386   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9387       << OriginalSizeArg->getSourceRange() << FnName;
9388 
9389   // Output a FIXIT hint if the destination is an array (rather than a
9390   // pointer to an array).  This could be enhanced to handle some
9391   // pointers if we know the actual size, like if DstArg is 'array+2'
9392   // we could say 'sizeof(array)-2'.
9393   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9394   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9395     return;
9396 
9397   SmallString<128> sizeString;
9398   llvm::raw_svector_ostream OS(sizeString);
9399   OS << "sizeof(";
9400   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9401   OS << ")";
9402 
9403   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9404       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9405                                       OS.str());
9406 }
9407 
9408 /// Check if two expressions refer to the same declaration.
9409 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9410   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9411     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9412       return D1->getDecl() == D2->getDecl();
9413   return false;
9414 }
9415 
9416 static const Expr *getStrlenExprArg(const Expr *E) {
9417   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9418     const FunctionDecl *FD = CE->getDirectCallee();
9419     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
9420       return nullptr;
9421     return CE->getArg(0)->IgnoreParenCasts();
9422   }
9423   return nullptr;
9424 }
9425 
9426 // Warn on anti-patterns as the 'size' argument to strncat.
9427 // The correct size argument should look like following:
9428 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
9429 void Sema::CheckStrncatArguments(const CallExpr *CE,
9430                                  IdentifierInfo *FnName) {
9431   // Don't crash if the user has the wrong number of arguments.
9432   if (CE->getNumArgs() < 3)
9433     return;
9434   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
9435   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
9436   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
9437 
9438   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
9439                                      CE->getRParenLoc()))
9440     return;
9441 
9442   // Identify common expressions, which are wrongly used as the size argument
9443   // to strncat and may lead to buffer overflows.
9444   unsigned PatternType = 0;
9445   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
9446     // - sizeof(dst)
9447     if (referToTheSameDecl(SizeOfArg, DstArg))
9448       PatternType = 1;
9449     // - sizeof(src)
9450     else if (referToTheSameDecl(SizeOfArg, SrcArg))
9451       PatternType = 2;
9452   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
9453     if (BE->getOpcode() == BO_Sub) {
9454       const Expr *L = BE->getLHS()->IgnoreParenCasts();
9455       const Expr *R = BE->getRHS()->IgnoreParenCasts();
9456       // - sizeof(dst) - strlen(dst)
9457       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
9458           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
9459         PatternType = 1;
9460       // - sizeof(src) - (anything)
9461       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
9462         PatternType = 2;
9463     }
9464   }
9465 
9466   if (PatternType == 0)
9467     return;
9468 
9469   // Generate the diagnostic.
9470   SourceLocation SL = LenArg->getBeginLoc();
9471   SourceRange SR = LenArg->getSourceRange();
9472   SourceManager &SM = getSourceManager();
9473 
9474   // If the function is defined as a builtin macro, do not show macro expansion.
9475   if (SM.isMacroArgExpansion(SL)) {
9476     SL = SM.getSpellingLoc(SL);
9477     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
9478                      SM.getSpellingLoc(SR.getEnd()));
9479   }
9480 
9481   // Check if the destination is an array (rather than a pointer to an array).
9482   QualType DstTy = DstArg->getType();
9483   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
9484                                                                     Context);
9485   if (!isKnownSizeArray) {
9486     if (PatternType == 1)
9487       Diag(SL, diag::warn_strncat_wrong_size) << SR;
9488     else
9489       Diag(SL, diag::warn_strncat_src_size) << SR;
9490     return;
9491   }
9492 
9493   if (PatternType == 1)
9494     Diag(SL, diag::warn_strncat_large_size) << SR;
9495   else
9496     Diag(SL, diag::warn_strncat_src_size) << SR;
9497 
9498   SmallString<128> sizeString;
9499   llvm::raw_svector_ostream OS(sizeString);
9500   OS << "sizeof(";
9501   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9502   OS << ") - ";
9503   OS << "strlen(";
9504   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9505   OS << ") - 1";
9506 
9507   Diag(SL, diag::note_strncat_wrong_size)
9508     << FixItHint::CreateReplacement(SR, OS.str());
9509 }
9510 
9511 void
9512 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
9513                          SourceLocation ReturnLoc,
9514                          bool isObjCMethod,
9515                          const AttrVec *Attrs,
9516                          const FunctionDecl *FD) {
9517   // Check if the return value is null but should not be.
9518   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
9519        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
9520       CheckNonNullExpr(*this, RetValExp))
9521     Diag(ReturnLoc, diag::warn_null_ret)
9522       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
9523 
9524   // C++11 [basic.stc.dynamic.allocation]p4:
9525   //   If an allocation function declared with a non-throwing
9526   //   exception-specification fails to allocate storage, it shall return
9527   //   a null pointer. Any other allocation function that fails to allocate
9528   //   storage shall indicate failure only by throwing an exception [...]
9529   if (FD) {
9530     OverloadedOperatorKind Op = FD->getOverloadedOperator();
9531     if (Op == OO_New || Op == OO_Array_New) {
9532       const FunctionProtoType *Proto
9533         = FD->getType()->castAs<FunctionProtoType>();
9534       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
9535           CheckNonNullExpr(*this, RetValExp))
9536         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
9537           << FD << getLangOpts().CPlusPlus11;
9538     }
9539   }
9540 }
9541 
9542 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
9543 
9544 /// Check for comparisons of floating point operands using != and ==.
9545 /// Issue a warning if these are no self-comparisons, as they are not likely
9546 /// to do what the programmer intended.
9547 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
9548   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
9549   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
9550 
9551   // Special case: check for x == x (which is OK).
9552   // Do not emit warnings for such cases.
9553   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
9554     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
9555       if (DRL->getDecl() == DRR->getDecl())
9556         return;
9557 
9558   // Special case: check for comparisons against literals that can be exactly
9559   //  represented by APFloat.  In such cases, do not emit a warning.  This
9560   //  is a heuristic: often comparison against such literals are used to
9561   //  detect if a value in a variable has not changed.  This clearly can
9562   //  lead to false negatives.
9563   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
9564     if (FLL->isExact())
9565       return;
9566   } else
9567     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
9568       if (FLR->isExact())
9569         return;
9570 
9571   // Check for comparisons with builtin types.
9572   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
9573     if (CL->getBuiltinCallee())
9574       return;
9575 
9576   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
9577     if (CR->getBuiltinCallee())
9578       return;
9579 
9580   // Emit the diagnostic.
9581   Diag(Loc, diag::warn_floatingpoint_eq)
9582     << LHS->getSourceRange() << RHS->getSourceRange();
9583 }
9584 
9585 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
9586 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
9587 
9588 namespace {
9589 
9590 /// Structure recording the 'active' range of an integer-valued
9591 /// expression.
9592 struct IntRange {
9593   /// The number of bits active in the int.
9594   unsigned Width;
9595 
9596   /// True if the int is known not to have negative values.
9597   bool NonNegative;
9598 
9599   IntRange(unsigned Width, bool NonNegative)
9600       : Width(Width), NonNegative(NonNegative) {}
9601 
9602   /// Returns the range of the bool type.
9603   static IntRange forBoolType() {
9604     return IntRange(1, true);
9605   }
9606 
9607   /// Returns the range of an opaque value of the given integral type.
9608   static IntRange forValueOfType(ASTContext &C, QualType T) {
9609     return forValueOfCanonicalType(C,
9610                           T->getCanonicalTypeInternal().getTypePtr());
9611   }
9612 
9613   /// Returns the range of an opaque value of a canonical integral type.
9614   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
9615     assert(T->isCanonicalUnqualified());
9616 
9617     if (const VectorType *VT = dyn_cast<VectorType>(T))
9618       T = VT->getElementType().getTypePtr();
9619     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9620       T = CT->getElementType().getTypePtr();
9621     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9622       T = AT->getValueType().getTypePtr();
9623 
9624     if (!C.getLangOpts().CPlusPlus) {
9625       // For enum types in C code, use the underlying datatype.
9626       if (const EnumType *ET = dyn_cast<EnumType>(T))
9627         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
9628     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
9629       // For enum types in C++, use the known bit width of the enumerators.
9630       EnumDecl *Enum = ET->getDecl();
9631       // In C++11, enums can have a fixed underlying type. Use this type to
9632       // compute the range.
9633       if (Enum->isFixed()) {
9634         return IntRange(C.getIntWidth(QualType(T, 0)),
9635                         !ET->isSignedIntegerOrEnumerationType());
9636       }
9637 
9638       unsigned NumPositive = Enum->getNumPositiveBits();
9639       unsigned NumNegative = Enum->getNumNegativeBits();
9640 
9641       if (NumNegative == 0)
9642         return IntRange(NumPositive, true/*NonNegative*/);
9643       else
9644         return IntRange(std::max(NumPositive + 1, NumNegative),
9645                         false/*NonNegative*/);
9646     }
9647 
9648     const BuiltinType *BT = cast<BuiltinType>(T);
9649     assert(BT->isInteger());
9650 
9651     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9652   }
9653 
9654   /// Returns the "target" range of a canonical integral type, i.e.
9655   /// the range of values expressible in the type.
9656   ///
9657   /// This matches forValueOfCanonicalType except that enums have the
9658   /// full range of their type, not the range of their enumerators.
9659   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
9660     assert(T->isCanonicalUnqualified());
9661 
9662     if (const VectorType *VT = dyn_cast<VectorType>(T))
9663       T = VT->getElementType().getTypePtr();
9664     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9665       T = CT->getElementType().getTypePtr();
9666     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9667       T = AT->getValueType().getTypePtr();
9668     if (const EnumType *ET = dyn_cast<EnumType>(T))
9669       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
9670 
9671     const BuiltinType *BT = cast<BuiltinType>(T);
9672     assert(BT->isInteger());
9673 
9674     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9675   }
9676 
9677   /// Returns the supremum of two ranges: i.e. their conservative merge.
9678   static IntRange join(IntRange L, IntRange R) {
9679     return IntRange(std::max(L.Width, R.Width),
9680                     L.NonNegative && R.NonNegative);
9681   }
9682 
9683   /// Returns the infinum of two ranges: i.e. their aggressive merge.
9684   static IntRange meet(IntRange L, IntRange R) {
9685     return IntRange(std::min(L.Width, R.Width),
9686                     L.NonNegative || R.NonNegative);
9687   }
9688 };
9689 
9690 } // namespace
9691 
9692 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
9693                               unsigned MaxWidth) {
9694   if (value.isSigned() && value.isNegative())
9695     return IntRange(value.getMinSignedBits(), false);
9696 
9697   if (value.getBitWidth() > MaxWidth)
9698     value = value.trunc(MaxWidth);
9699 
9700   // isNonNegative() just checks the sign bit without considering
9701   // signedness.
9702   return IntRange(value.getActiveBits(), true);
9703 }
9704 
9705 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
9706                               unsigned MaxWidth) {
9707   if (result.isInt())
9708     return GetValueRange(C, result.getInt(), MaxWidth);
9709 
9710   if (result.isVector()) {
9711     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
9712     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
9713       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
9714       R = IntRange::join(R, El);
9715     }
9716     return R;
9717   }
9718 
9719   if (result.isComplexInt()) {
9720     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
9721     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
9722     return IntRange::join(R, I);
9723   }
9724 
9725   // This can happen with lossless casts to intptr_t of "based" lvalues.
9726   // Assume it might use arbitrary bits.
9727   // FIXME: The only reason we need to pass the type in here is to get
9728   // the sign right on this one case.  It would be nice if APValue
9729   // preserved this.
9730   assert(result.isLValue() || result.isAddrLabelDiff());
9731   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
9732 }
9733 
9734 static QualType GetExprType(const Expr *E) {
9735   QualType Ty = E->getType();
9736   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
9737     Ty = AtomicRHS->getValueType();
9738   return Ty;
9739 }
9740 
9741 /// Pseudo-evaluate the given integer expression, estimating the
9742 /// range of values it might take.
9743 ///
9744 /// \param MaxWidth - the width to which the value will be truncated
9745 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) {
9746   E = E->IgnoreParens();
9747 
9748   // Try a full evaluation first.
9749   Expr::EvalResult result;
9750   if (E->EvaluateAsRValue(result, C))
9751     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
9752 
9753   // I think we only want to look through implicit casts here; if the
9754   // user has an explicit widening cast, we should treat the value as
9755   // being of the new, wider type.
9756   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
9757     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
9758       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
9759 
9760     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
9761 
9762     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
9763                          CE->getCastKind() == CK_BooleanToSignedIntegral;
9764 
9765     // Assume that non-integer casts can span the full range of the type.
9766     if (!isIntegerCast)
9767       return OutputTypeRange;
9768 
9769     IntRange SubRange
9770       = GetExprRange(C, CE->getSubExpr(),
9771                      std::min(MaxWidth, OutputTypeRange.Width));
9772 
9773     // Bail out if the subexpr's range is as wide as the cast type.
9774     if (SubRange.Width >= OutputTypeRange.Width)
9775       return OutputTypeRange;
9776 
9777     // Otherwise, we take the smaller width, and we're non-negative if
9778     // either the output type or the subexpr is.
9779     return IntRange(SubRange.Width,
9780                     SubRange.NonNegative || OutputTypeRange.NonNegative);
9781   }
9782 
9783   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
9784     // If we can fold the condition, just take that operand.
9785     bool CondResult;
9786     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
9787       return GetExprRange(C, CondResult ? CO->getTrueExpr()
9788                                         : CO->getFalseExpr(),
9789                           MaxWidth);
9790 
9791     // Otherwise, conservatively merge.
9792     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
9793     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
9794     return IntRange::join(L, R);
9795   }
9796 
9797   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
9798     switch (BO->getOpcode()) {
9799     case BO_Cmp:
9800       llvm_unreachable("builtin <=> should have class type");
9801 
9802     // Boolean-valued operations are single-bit and positive.
9803     case BO_LAnd:
9804     case BO_LOr:
9805     case BO_LT:
9806     case BO_GT:
9807     case BO_LE:
9808     case BO_GE:
9809     case BO_EQ:
9810     case BO_NE:
9811       return IntRange::forBoolType();
9812 
9813     // The type of the assignments is the type of the LHS, so the RHS
9814     // is not necessarily the same type.
9815     case BO_MulAssign:
9816     case BO_DivAssign:
9817     case BO_RemAssign:
9818     case BO_AddAssign:
9819     case BO_SubAssign:
9820     case BO_XorAssign:
9821     case BO_OrAssign:
9822       // TODO: bitfields?
9823       return IntRange::forValueOfType(C, GetExprType(E));
9824 
9825     // Simple assignments just pass through the RHS, which will have
9826     // been coerced to the LHS type.
9827     case BO_Assign:
9828       // TODO: bitfields?
9829       return GetExprRange(C, BO->getRHS(), MaxWidth);
9830 
9831     // Operations with opaque sources are black-listed.
9832     case BO_PtrMemD:
9833     case BO_PtrMemI:
9834       return IntRange::forValueOfType(C, GetExprType(E));
9835 
9836     // Bitwise-and uses the *infinum* of the two source ranges.
9837     case BO_And:
9838     case BO_AndAssign:
9839       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
9840                             GetExprRange(C, BO->getRHS(), MaxWidth));
9841 
9842     // Left shift gets black-listed based on a judgement call.
9843     case BO_Shl:
9844       // ...except that we want to treat '1 << (blah)' as logically
9845       // positive.  It's an important idiom.
9846       if (IntegerLiteral *I
9847             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
9848         if (I->getValue() == 1) {
9849           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
9850           return IntRange(R.Width, /*NonNegative*/ true);
9851         }
9852       }
9853       LLVM_FALLTHROUGH;
9854 
9855     case BO_ShlAssign:
9856       return IntRange::forValueOfType(C, GetExprType(E));
9857 
9858     // Right shift by a constant can narrow its left argument.
9859     case BO_Shr:
9860     case BO_ShrAssign: {
9861       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
9862 
9863       // If the shift amount is a positive constant, drop the width by
9864       // that much.
9865       llvm::APSInt shift;
9866       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
9867           shift.isNonNegative()) {
9868         unsigned zext = shift.getZExtValue();
9869         if (zext >= L.Width)
9870           L.Width = (L.NonNegative ? 0 : 1);
9871         else
9872           L.Width -= zext;
9873       }
9874 
9875       return L;
9876     }
9877 
9878     // Comma acts as its right operand.
9879     case BO_Comma:
9880       return GetExprRange(C, BO->getRHS(), MaxWidth);
9881 
9882     // Black-list pointer subtractions.
9883     case BO_Sub:
9884       if (BO->getLHS()->getType()->isPointerType())
9885         return IntRange::forValueOfType(C, GetExprType(E));
9886       break;
9887 
9888     // The width of a division result is mostly determined by the size
9889     // of the LHS.
9890     case BO_Div: {
9891       // Don't 'pre-truncate' the operands.
9892       unsigned opWidth = C.getIntWidth(GetExprType(E));
9893       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
9894 
9895       // If the divisor is constant, use that.
9896       llvm::APSInt divisor;
9897       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
9898         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
9899         if (log2 >= L.Width)
9900           L.Width = (L.NonNegative ? 0 : 1);
9901         else
9902           L.Width = std::min(L.Width - log2, MaxWidth);
9903         return L;
9904       }
9905 
9906       // Otherwise, just use the LHS's width.
9907       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
9908       return IntRange(L.Width, L.NonNegative && R.NonNegative);
9909     }
9910 
9911     // The result of a remainder can't be larger than the result of
9912     // either side.
9913     case BO_Rem: {
9914       // Don't 'pre-truncate' the operands.
9915       unsigned opWidth = C.getIntWidth(GetExprType(E));
9916       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
9917       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
9918 
9919       IntRange meet = IntRange::meet(L, R);
9920       meet.Width = std::min(meet.Width, MaxWidth);
9921       return meet;
9922     }
9923 
9924     // The default behavior is okay for these.
9925     case BO_Mul:
9926     case BO_Add:
9927     case BO_Xor:
9928     case BO_Or:
9929       break;
9930     }
9931 
9932     // The default case is to treat the operation as if it were closed
9933     // on the narrowest type that encompasses both operands.
9934     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
9935     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
9936     return IntRange::join(L, R);
9937   }
9938 
9939   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
9940     switch (UO->getOpcode()) {
9941     // Boolean-valued operations are white-listed.
9942     case UO_LNot:
9943       return IntRange::forBoolType();
9944 
9945     // Operations with opaque sources are black-listed.
9946     case UO_Deref:
9947     case UO_AddrOf: // should be impossible
9948       return IntRange::forValueOfType(C, GetExprType(E));
9949 
9950     default:
9951       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
9952     }
9953   }
9954 
9955   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
9956     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
9957 
9958   if (const auto *BitField = E->getSourceBitField())
9959     return IntRange(BitField->getBitWidthValue(C),
9960                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
9961 
9962   return IntRange::forValueOfType(C, GetExprType(E));
9963 }
9964 
9965 static IntRange GetExprRange(ASTContext &C, const Expr *E) {
9966   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
9967 }
9968 
9969 /// Checks whether the given value, which currently has the given
9970 /// source semantics, has the same value when coerced through the
9971 /// target semantics.
9972 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
9973                                  const llvm::fltSemantics &Src,
9974                                  const llvm::fltSemantics &Tgt) {
9975   llvm::APFloat truncated = value;
9976 
9977   bool ignored;
9978   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
9979   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
9980 
9981   return truncated.bitwiseIsEqual(value);
9982 }
9983 
9984 /// Checks whether the given value, which currently has the given
9985 /// source semantics, has the same value when coerced through the
9986 /// target semantics.
9987 ///
9988 /// The value might be a vector of floats (or a complex number).
9989 static bool IsSameFloatAfterCast(const APValue &value,
9990                                  const llvm::fltSemantics &Src,
9991                                  const llvm::fltSemantics &Tgt) {
9992   if (value.isFloat())
9993     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
9994 
9995   if (value.isVector()) {
9996     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
9997       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
9998         return false;
9999     return true;
10000   }
10001 
10002   assert(value.isComplexFloat());
10003   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10004           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10005 }
10006 
10007 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
10008 
10009 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10010   // Suppress cases where we are comparing against an enum constant.
10011   if (const DeclRefExpr *DR =
10012       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10013     if (isa<EnumConstantDecl>(DR->getDecl()))
10014       return true;
10015 
10016   // Suppress cases where the '0' value is expanded from a macro.
10017   if (E->getBeginLoc().isMacroID())
10018     return true;
10019 
10020   return false;
10021 }
10022 
10023 static bool isKnownToHaveUnsignedValue(Expr *E) {
10024   return E->getType()->isIntegerType() &&
10025          (!E->getType()->isSignedIntegerType() ||
10026           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10027 }
10028 
10029 namespace {
10030 /// The promoted range of values of a type. In general this has the
10031 /// following structure:
10032 ///
10033 ///     |-----------| . . . |-----------|
10034 ///     ^           ^       ^           ^
10035 ///    Min       HoleMin  HoleMax      Max
10036 ///
10037 /// ... where there is only a hole if a signed type is promoted to unsigned
10038 /// (in which case Min and Max are the smallest and largest representable
10039 /// values).
10040 struct PromotedRange {
10041   // Min, or HoleMax if there is a hole.
10042   llvm::APSInt PromotedMin;
10043   // Max, or HoleMin if there is a hole.
10044   llvm::APSInt PromotedMax;
10045 
10046   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10047     if (R.Width == 0)
10048       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10049     else if (R.Width >= BitWidth && !Unsigned) {
10050       // Promotion made the type *narrower*. This happens when promoting
10051       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10052       // Treat all values of 'signed int' as being in range for now.
10053       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10054       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10055     } else {
10056       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10057                         .extOrTrunc(BitWidth);
10058       PromotedMin.setIsUnsigned(Unsigned);
10059 
10060       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10061                         .extOrTrunc(BitWidth);
10062       PromotedMax.setIsUnsigned(Unsigned);
10063     }
10064   }
10065 
10066   // Determine whether this range is contiguous (has no hole).
10067   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10068 
10069   // Where a constant value is within the range.
10070   enum ComparisonResult {
10071     LT = 0x1,
10072     LE = 0x2,
10073     GT = 0x4,
10074     GE = 0x8,
10075     EQ = 0x10,
10076     NE = 0x20,
10077     InRangeFlag = 0x40,
10078 
10079     Less = LE | LT | NE,
10080     Min = LE | InRangeFlag,
10081     InRange = InRangeFlag,
10082     Max = GE | InRangeFlag,
10083     Greater = GE | GT | NE,
10084 
10085     OnlyValue = LE | GE | EQ | InRangeFlag,
10086     InHole = NE
10087   };
10088 
10089   ComparisonResult compare(const llvm::APSInt &Value) const {
10090     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10091            Value.isUnsigned() == PromotedMin.isUnsigned());
10092     if (!isContiguous()) {
10093       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10094       if (Value.isMinValue()) return Min;
10095       if (Value.isMaxValue()) return Max;
10096       if (Value >= PromotedMin) return InRange;
10097       if (Value <= PromotedMax) return InRange;
10098       return InHole;
10099     }
10100 
10101     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10102     case -1: return Less;
10103     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10104     case 1:
10105       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10106       case -1: return InRange;
10107       case 0: return Max;
10108       case 1: return Greater;
10109       }
10110     }
10111 
10112     llvm_unreachable("impossible compare result");
10113   }
10114 
10115   static llvm::Optional<StringRef>
10116   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10117     if (Op == BO_Cmp) {
10118       ComparisonResult LTFlag = LT, GTFlag = GT;
10119       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10120 
10121       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10122       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10123       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10124       return llvm::None;
10125     }
10126 
10127     ComparisonResult TrueFlag, FalseFlag;
10128     if (Op == BO_EQ) {
10129       TrueFlag = EQ;
10130       FalseFlag = NE;
10131     } else if (Op == BO_NE) {
10132       TrueFlag = NE;
10133       FalseFlag = EQ;
10134     } else {
10135       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10136         TrueFlag = LT;
10137         FalseFlag = GE;
10138       } else {
10139         TrueFlag = GT;
10140         FalseFlag = LE;
10141       }
10142       if (Op == BO_GE || Op == BO_LE)
10143         std::swap(TrueFlag, FalseFlag);
10144     }
10145     if (R & TrueFlag)
10146       return StringRef("true");
10147     if (R & FalseFlag)
10148       return StringRef("false");
10149     return llvm::None;
10150   }
10151 };
10152 }
10153 
10154 static bool HasEnumType(Expr *E) {
10155   // Strip off implicit integral promotions.
10156   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10157     if (ICE->getCastKind() != CK_IntegralCast &&
10158         ICE->getCastKind() != CK_NoOp)
10159       break;
10160     E = ICE->getSubExpr();
10161   }
10162 
10163   return E->getType()->isEnumeralType();
10164 }
10165 
10166 static int classifyConstantValue(Expr *Constant) {
10167   // The values of this enumeration are used in the diagnostics
10168   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10169   enum ConstantValueKind {
10170     Miscellaneous = 0,
10171     LiteralTrue,
10172     LiteralFalse
10173   };
10174   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10175     return BL->getValue() ? ConstantValueKind::LiteralTrue
10176                           : ConstantValueKind::LiteralFalse;
10177   return ConstantValueKind::Miscellaneous;
10178 }
10179 
10180 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10181                                         Expr *Constant, Expr *Other,
10182                                         const llvm::APSInt &Value,
10183                                         bool RhsConstant) {
10184   if (S.inTemplateInstantiation())
10185     return false;
10186 
10187   Expr *OriginalOther = Other;
10188 
10189   Constant = Constant->IgnoreParenImpCasts();
10190   Other = Other->IgnoreParenImpCasts();
10191 
10192   // Suppress warnings on tautological comparisons between values of the same
10193   // enumeration type. There are only two ways we could warn on this:
10194   //  - If the constant is outside the range of representable values of
10195   //    the enumeration. In such a case, we should warn about the cast
10196   //    to enumeration type, not about the comparison.
10197   //  - If the constant is the maximum / minimum in-range value. For an
10198   //    enumeratin type, such comparisons can be meaningful and useful.
10199   if (Constant->getType()->isEnumeralType() &&
10200       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10201     return false;
10202 
10203   // TODO: Investigate using GetExprRange() to get tighter bounds
10204   // on the bit ranges.
10205   QualType OtherT = Other->getType();
10206   if (const auto *AT = OtherT->getAs<AtomicType>())
10207     OtherT = AT->getValueType();
10208   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
10209 
10210   // Whether we're treating Other as being a bool because of the form of
10211   // expression despite it having another type (typically 'int' in C).
10212   bool OtherIsBooleanDespiteType =
10213       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10214   if (OtherIsBooleanDespiteType)
10215     OtherRange = IntRange::forBoolType();
10216 
10217   // Determine the promoted range of the other type and see if a comparison of
10218   // the constant against that range is tautological.
10219   PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
10220                                    Value.isUnsigned());
10221   auto Cmp = OtherPromotedRange.compare(Value);
10222   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10223   if (!Result)
10224     return false;
10225 
10226   // Suppress the diagnostic for an in-range comparison if the constant comes
10227   // from a macro or enumerator. We don't want to diagnose
10228   //
10229   //   some_long_value <= INT_MAX
10230   //
10231   // when sizeof(int) == sizeof(long).
10232   bool InRange = Cmp & PromotedRange::InRangeFlag;
10233   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10234     return false;
10235 
10236   // If this is a comparison to an enum constant, include that
10237   // constant in the diagnostic.
10238   const EnumConstantDecl *ED = nullptr;
10239   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10240     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10241 
10242   // Should be enough for uint128 (39 decimal digits)
10243   SmallString<64> PrettySourceValue;
10244   llvm::raw_svector_ostream OS(PrettySourceValue);
10245   if (ED)
10246     OS << '\'' << *ED << "' (" << Value << ")";
10247   else
10248     OS << Value;
10249 
10250   // FIXME: We use a somewhat different formatting for the in-range cases and
10251   // cases involving boolean values for historical reasons. We should pick a
10252   // consistent way of presenting these diagnostics.
10253   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10254     S.DiagRuntimeBehavior(
10255       E->getOperatorLoc(), E,
10256       S.PDiag(!InRange ? diag::warn_out_of_range_compare
10257                        : diag::warn_tautological_bool_compare)
10258           << OS.str() << classifyConstantValue(Constant)
10259           << OtherT << OtherIsBooleanDespiteType << *Result
10260           << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10261   } else {
10262     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10263                         ? (HasEnumType(OriginalOther)
10264                                ? diag::warn_unsigned_enum_always_true_comparison
10265                                : diag::warn_unsigned_always_true_comparison)
10266                         : diag::warn_tautological_constant_compare;
10267 
10268     S.Diag(E->getOperatorLoc(), Diag)
10269         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10270         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10271   }
10272 
10273   return true;
10274 }
10275 
10276 /// Analyze the operands of the given comparison.  Implements the
10277 /// fallback case from AnalyzeComparison.
10278 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10279   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10280   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10281 }
10282 
10283 /// Implements -Wsign-compare.
10284 ///
10285 /// \param E the binary operator to check for warnings
10286 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10287   // The type the comparison is being performed in.
10288   QualType T = E->getLHS()->getType();
10289 
10290   // Only analyze comparison operators where both sides have been converted to
10291   // the same type.
10292   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10293     return AnalyzeImpConvsInComparison(S, E);
10294 
10295   // Don't analyze value-dependent comparisons directly.
10296   if (E->isValueDependent())
10297     return AnalyzeImpConvsInComparison(S, E);
10298 
10299   Expr *LHS = E->getLHS();
10300   Expr *RHS = E->getRHS();
10301 
10302   if (T->isIntegralType(S.Context)) {
10303     llvm::APSInt RHSValue;
10304     llvm::APSInt LHSValue;
10305 
10306     bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
10307     bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
10308 
10309     // We don't care about expressions whose result is a constant.
10310     if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
10311       return AnalyzeImpConvsInComparison(S, E);
10312 
10313     // We only care about expressions where just one side is literal
10314     if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
10315       // Is the constant on the RHS or LHS?
10316       const bool RhsConstant = IsRHSIntegralLiteral;
10317       Expr *Const = RhsConstant ? RHS : LHS;
10318       Expr *Other = RhsConstant ? LHS : RHS;
10319       const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
10320 
10321       // Check whether an integer constant comparison results in a value
10322       // of 'true' or 'false'.
10323       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10324         return AnalyzeImpConvsInComparison(S, E);
10325     }
10326   }
10327 
10328   if (!T->hasUnsignedIntegerRepresentation()) {
10329     // We don't do anything special if this isn't an unsigned integral
10330     // comparison:  we're only interested in integral comparisons, and
10331     // signed comparisons only happen in cases we don't care to warn about.
10332     return AnalyzeImpConvsInComparison(S, E);
10333   }
10334 
10335   LHS = LHS->IgnoreParenImpCasts();
10336   RHS = RHS->IgnoreParenImpCasts();
10337 
10338   if (!S.getLangOpts().CPlusPlus) {
10339     // Avoid warning about comparison of integers with different signs when
10340     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10341     // the type of `E`.
10342     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10343       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10344     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10345       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10346   }
10347 
10348   // Check to see if one of the (unmodified) operands is of different
10349   // signedness.
10350   Expr *signedOperand, *unsignedOperand;
10351   if (LHS->getType()->hasSignedIntegerRepresentation()) {
10352     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10353            "unsigned comparison between two signed integer expressions?");
10354     signedOperand = LHS;
10355     unsignedOperand = RHS;
10356   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10357     signedOperand = RHS;
10358     unsignedOperand = LHS;
10359   } else {
10360     return AnalyzeImpConvsInComparison(S, E);
10361   }
10362 
10363   // Otherwise, calculate the effective range of the signed operand.
10364   IntRange signedRange = GetExprRange(S.Context, signedOperand);
10365 
10366   // Go ahead and analyze implicit conversions in the operands.  Note
10367   // that we skip the implicit conversions on both sides.
10368   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10369   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10370 
10371   // If the signed range is non-negative, -Wsign-compare won't fire.
10372   if (signedRange.NonNegative)
10373     return;
10374 
10375   // For (in)equality comparisons, if the unsigned operand is a
10376   // constant which cannot collide with a overflowed signed operand,
10377   // then reinterpreting the signed operand as unsigned will not
10378   // change the result of the comparison.
10379   if (E->isEqualityOp()) {
10380     unsigned comparisonWidth = S.Context.getIntWidth(T);
10381     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
10382 
10383     // We should never be unable to prove that the unsigned operand is
10384     // non-negative.
10385     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
10386 
10387     if (unsignedRange.Width < comparisonWidth)
10388       return;
10389   }
10390 
10391   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10392     S.PDiag(diag::warn_mixed_sign_comparison)
10393       << LHS->getType() << RHS->getType()
10394       << LHS->getSourceRange() << RHS->getSourceRange());
10395 }
10396 
10397 /// Analyzes an attempt to assign the given value to a bitfield.
10398 ///
10399 /// Returns true if there was something fishy about the attempt.
10400 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
10401                                       SourceLocation InitLoc) {
10402   assert(Bitfield->isBitField());
10403   if (Bitfield->isInvalidDecl())
10404     return false;
10405 
10406   // White-list bool bitfields.
10407   QualType BitfieldType = Bitfield->getType();
10408   if (BitfieldType->isBooleanType())
10409      return false;
10410 
10411   if (BitfieldType->isEnumeralType()) {
10412     EnumDecl *BitfieldEnumDecl = BitfieldType->getAs<EnumType>()->getDecl();
10413     // If the underlying enum type was not explicitly specified as an unsigned
10414     // type and the enum contain only positive values, MSVC++ will cause an
10415     // inconsistency by storing this as a signed type.
10416     if (S.getLangOpts().CPlusPlus11 &&
10417         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
10418         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
10419         BitfieldEnumDecl->getNumNegativeBits() == 0) {
10420       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
10421         << BitfieldEnumDecl->getNameAsString();
10422     }
10423   }
10424 
10425   if (Bitfield->getType()->isBooleanType())
10426     return false;
10427 
10428   // Ignore value- or type-dependent expressions.
10429   if (Bitfield->getBitWidth()->isValueDependent() ||
10430       Bitfield->getBitWidth()->isTypeDependent() ||
10431       Init->isValueDependent() ||
10432       Init->isTypeDependent())
10433     return false;
10434 
10435   Expr *OriginalInit = Init->IgnoreParenImpCasts();
10436   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
10437 
10438   Expr::EvalResult Result;
10439   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
10440                                    Expr::SE_AllowSideEffects)) {
10441     // The RHS is not constant.  If the RHS has an enum type, make sure the
10442     // bitfield is wide enough to hold all the values of the enum without
10443     // truncation.
10444     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
10445       EnumDecl *ED = EnumTy->getDecl();
10446       bool SignedBitfield = BitfieldType->isSignedIntegerType();
10447 
10448       // Enum types are implicitly signed on Windows, so check if there are any
10449       // negative enumerators to see if the enum was intended to be signed or
10450       // not.
10451       bool SignedEnum = ED->getNumNegativeBits() > 0;
10452 
10453       // Check for surprising sign changes when assigning enum values to a
10454       // bitfield of different signedness.  If the bitfield is signed and we
10455       // have exactly the right number of bits to store this unsigned enum,
10456       // suggest changing the enum to an unsigned type. This typically happens
10457       // on Windows where unfixed enums always use an underlying type of 'int'.
10458       unsigned DiagID = 0;
10459       if (SignedEnum && !SignedBitfield) {
10460         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
10461       } else if (SignedBitfield && !SignedEnum &&
10462                  ED->getNumPositiveBits() == FieldWidth) {
10463         DiagID = diag::warn_signed_bitfield_enum_conversion;
10464       }
10465 
10466       if (DiagID) {
10467         S.Diag(InitLoc, DiagID) << Bitfield << ED;
10468         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
10469         SourceRange TypeRange =
10470             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
10471         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
10472             << SignedEnum << TypeRange;
10473       }
10474 
10475       // Compute the required bitwidth. If the enum has negative values, we need
10476       // one more bit than the normal number of positive bits to represent the
10477       // sign bit.
10478       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
10479                                                   ED->getNumNegativeBits())
10480                                        : ED->getNumPositiveBits();
10481 
10482       // Check the bitwidth.
10483       if (BitsNeeded > FieldWidth) {
10484         Expr *WidthExpr = Bitfield->getBitWidth();
10485         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
10486             << Bitfield << ED;
10487         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
10488             << BitsNeeded << ED << WidthExpr->getSourceRange();
10489       }
10490     }
10491 
10492     return false;
10493   }
10494 
10495   llvm::APSInt Value = Result.Val.getInt();
10496 
10497   unsigned OriginalWidth = Value.getBitWidth();
10498 
10499   if (!Value.isSigned() || Value.isNegative())
10500     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
10501       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
10502         OriginalWidth = Value.getMinSignedBits();
10503 
10504   if (OriginalWidth <= FieldWidth)
10505     return false;
10506 
10507   // Compute the value which the bitfield will contain.
10508   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
10509   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
10510 
10511   // Check whether the stored value is equal to the original value.
10512   TruncatedValue = TruncatedValue.extend(OriginalWidth);
10513   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
10514     return false;
10515 
10516   // Special-case bitfields of width 1: booleans are naturally 0/1, and
10517   // therefore don't strictly fit into a signed bitfield of width 1.
10518   if (FieldWidth == 1 && Value == 1)
10519     return false;
10520 
10521   std::string PrettyValue = Value.toString(10);
10522   std::string PrettyTrunc = TruncatedValue.toString(10);
10523 
10524   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
10525     << PrettyValue << PrettyTrunc << OriginalInit->getType()
10526     << Init->getSourceRange();
10527 
10528   return true;
10529 }
10530 
10531 /// Analyze the given simple or compound assignment for warning-worthy
10532 /// operations.
10533 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
10534   // Just recurse on the LHS.
10535   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10536 
10537   // We want to recurse on the RHS as normal unless we're assigning to
10538   // a bitfield.
10539   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
10540     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
10541                                   E->getOperatorLoc())) {
10542       // Recurse, ignoring any implicit conversions on the RHS.
10543       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
10544                                         E->getOperatorLoc());
10545     }
10546   }
10547 
10548   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10549 
10550   // Diagnose implicitly sequentially-consistent atomic assignment.
10551   if (E->getLHS()->getType()->isAtomicType())
10552     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
10553 }
10554 
10555 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10556 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
10557                             SourceLocation CContext, unsigned diag,
10558                             bool pruneControlFlow = false) {
10559   if (pruneControlFlow) {
10560     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10561                           S.PDiag(diag)
10562                             << SourceType << T << E->getSourceRange()
10563                             << SourceRange(CContext));
10564     return;
10565   }
10566   S.Diag(E->getExprLoc(), diag)
10567     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
10568 }
10569 
10570 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10571 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
10572                             SourceLocation CContext,
10573                             unsigned diag, bool pruneControlFlow = false) {
10574   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
10575 }
10576 
10577 /// Diagnose an implicit cast from a floating point value to an integer value.
10578 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
10579                                     SourceLocation CContext) {
10580   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
10581   const bool PruneWarnings = S.inTemplateInstantiation();
10582 
10583   Expr *InnerE = E->IgnoreParenImpCasts();
10584   // We also want to warn on, e.g., "int i = -1.234"
10585   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
10586     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
10587       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
10588 
10589   const bool IsLiteral =
10590       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
10591 
10592   llvm::APFloat Value(0.0);
10593   bool IsConstant =
10594     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
10595   if (!IsConstant) {
10596     return DiagnoseImpCast(S, E, T, CContext,
10597                            diag::warn_impcast_float_integer, PruneWarnings);
10598   }
10599 
10600   bool isExact = false;
10601 
10602   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
10603                             T->hasUnsignedIntegerRepresentation());
10604   llvm::APFloat::opStatus Result = Value.convertToInteger(
10605       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
10606 
10607   if (Result == llvm::APFloat::opOK && isExact) {
10608     if (IsLiteral) return;
10609     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
10610                            PruneWarnings);
10611   }
10612 
10613   // Conversion of a floating-point value to a non-bool integer where the
10614   // integral part cannot be represented by the integer type is undefined.
10615   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
10616     return DiagnoseImpCast(
10617         S, E, T, CContext,
10618         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
10619                   : diag::warn_impcast_float_to_integer_out_of_range,
10620         PruneWarnings);
10621 
10622   unsigned DiagID = 0;
10623   if (IsLiteral) {
10624     // Warn on floating point literal to integer.
10625     DiagID = diag::warn_impcast_literal_float_to_integer;
10626   } else if (IntegerValue == 0) {
10627     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
10628       return DiagnoseImpCast(S, E, T, CContext,
10629                              diag::warn_impcast_float_integer, PruneWarnings);
10630     }
10631     // Warn on non-zero to zero conversion.
10632     DiagID = diag::warn_impcast_float_to_integer_zero;
10633   } else {
10634     if (IntegerValue.isUnsigned()) {
10635       if (!IntegerValue.isMaxValue()) {
10636         return DiagnoseImpCast(S, E, T, CContext,
10637                                diag::warn_impcast_float_integer, PruneWarnings);
10638       }
10639     } else {  // IntegerValue.isSigned()
10640       if (!IntegerValue.isMaxSignedValue() &&
10641           !IntegerValue.isMinSignedValue()) {
10642         return DiagnoseImpCast(S, E, T, CContext,
10643                                diag::warn_impcast_float_integer, PruneWarnings);
10644       }
10645     }
10646     // Warn on evaluatable floating point expression to integer conversion.
10647     DiagID = diag::warn_impcast_float_to_integer;
10648   }
10649 
10650   // FIXME: Force the precision of the source value down so we don't print
10651   // digits which are usually useless (we don't really care here if we
10652   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
10653   // would automatically print the shortest representation, but it's a bit
10654   // tricky to implement.
10655   SmallString<16> PrettySourceValue;
10656   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
10657   precision = (precision * 59 + 195) / 196;
10658   Value.toString(PrettySourceValue, precision);
10659 
10660   SmallString<16> PrettyTargetValue;
10661   if (IsBool)
10662     PrettyTargetValue = Value.isZero() ? "false" : "true";
10663   else
10664     IntegerValue.toString(PrettyTargetValue);
10665 
10666   if (PruneWarnings) {
10667     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10668                           S.PDiag(DiagID)
10669                               << E->getType() << T.getUnqualifiedType()
10670                               << PrettySourceValue << PrettyTargetValue
10671                               << E->getSourceRange() << SourceRange(CContext));
10672   } else {
10673     S.Diag(E->getExprLoc(), DiagID)
10674         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
10675         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
10676   }
10677 }
10678 
10679 /// Analyze the given compound assignment for the possible losing of
10680 /// floating-point precision.
10681 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
10682   assert(isa<CompoundAssignOperator>(E) &&
10683          "Must be compound assignment operation");
10684   // Recurse on the LHS and RHS in here
10685   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10686   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10687 
10688   if (E->getLHS()->getType()->isAtomicType())
10689     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
10690 
10691   // Now check the outermost expression
10692   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
10693   const auto *RBT = cast<CompoundAssignOperator>(E)
10694                         ->getComputationResultType()
10695                         ->getAs<BuiltinType>();
10696 
10697   // The below checks assume source is floating point.
10698   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
10699 
10700   // If source is floating point but target is an integer.
10701   if (ResultBT->isInteger())
10702     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
10703                            E->getExprLoc(), diag::warn_impcast_float_integer);
10704 
10705   if (!ResultBT->isFloatingPoint())
10706     return;
10707 
10708   // If both source and target are floating points, warn about losing precision.
10709   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
10710       QualType(ResultBT, 0), QualType(RBT, 0));
10711   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
10712     // warn about dropping FP rank.
10713     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
10714                     diag::warn_impcast_float_result_precision);
10715 }
10716 
10717 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
10718                                       IntRange Range) {
10719   if (!Range.Width) return "0";
10720 
10721   llvm::APSInt ValueInRange = Value;
10722   ValueInRange.setIsSigned(!Range.NonNegative);
10723   ValueInRange = ValueInRange.trunc(Range.Width);
10724   return ValueInRange.toString(10);
10725 }
10726 
10727 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
10728   if (!isa<ImplicitCastExpr>(Ex))
10729     return false;
10730 
10731   Expr *InnerE = Ex->IgnoreParenImpCasts();
10732   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
10733   const Type *Source =
10734     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
10735   if (Target->isDependentType())
10736     return false;
10737 
10738   const BuiltinType *FloatCandidateBT =
10739     dyn_cast<BuiltinType>(ToBool ? Source : Target);
10740   const Type *BoolCandidateType = ToBool ? Target : Source;
10741 
10742   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
10743           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
10744 }
10745 
10746 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
10747                                              SourceLocation CC) {
10748   unsigned NumArgs = TheCall->getNumArgs();
10749   for (unsigned i = 0; i < NumArgs; ++i) {
10750     Expr *CurrA = TheCall->getArg(i);
10751     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
10752       continue;
10753 
10754     bool IsSwapped = ((i > 0) &&
10755         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
10756     IsSwapped |= ((i < (NumArgs - 1)) &&
10757         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
10758     if (IsSwapped) {
10759       // Warn on this floating-point to bool conversion.
10760       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
10761                       CurrA->getType(), CC,
10762                       diag::warn_impcast_floating_point_to_bool);
10763     }
10764   }
10765 }
10766 
10767 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
10768                                    SourceLocation CC) {
10769   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
10770                         E->getExprLoc()))
10771     return;
10772 
10773   // Don't warn on functions which have return type nullptr_t.
10774   if (isa<CallExpr>(E))
10775     return;
10776 
10777   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
10778   const Expr::NullPointerConstantKind NullKind =
10779       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
10780   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
10781     return;
10782 
10783   // Return if target type is a safe conversion.
10784   if (T->isAnyPointerType() || T->isBlockPointerType() ||
10785       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
10786     return;
10787 
10788   SourceLocation Loc = E->getSourceRange().getBegin();
10789 
10790   // Venture through the macro stacks to get to the source of macro arguments.
10791   // The new location is a better location than the complete location that was
10792   // passed in.
10793   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
10794   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
10795 
10796   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
10797   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
10798     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
10799         Loc, S.SourceMgr, S.getLangOpts());
10800     if (MacroName == "NULL")
10801       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
10802   }
10803 
10804   // Only warn if the null and context location are in the same macro expansion.
10805   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
10806     return;
10807 
10808   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
10809       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
10810       << FixItHint::CreateReplacement(Loc,
10811                                       S.getFixItZeroLiteralForType(T, Loc));
10812 }
10813 
10814 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
10815                                   ObjCArrayLiteral *ArrayLiteral);
10816 
10817 static void
10818 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
10819                            ObjCDictionaryLiteral *DictionaryLiteral);
10820 
10821 /// Check a single element within a collection literal against the
10822 /// target element type.
10823 static void checkObjCCollectionLiteralElement(Sema &S,
10824                                               QualType TargetElementType,
10825                                               Expr *Element,
10826                                               unsigned ElementKind) {
10827   // Skip a bitcast to 'id' or qualified 'id'.
10828   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
10829     if (ICE->getCastKind() == CK_BitCast &&
10830         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
10831       Element = ICE->getSubExpr();
10832   }
10833 
10834   QualType ElementType = Element->getType();
10835   ExprResult ElementResult(Element);
10836   if (ElementType->getAs<ObjCObjectPointerType>() &&
10837       S.CheckSingleAssignmentConstraints(TargetElementType,
10838                                          ElementResult,
10839                                          false, false)
10840         != Sema::Compatible) {
10841     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
10842         << ElementType << ElementKind << TargetElementType
10843         << Element->getSourceRange();
10844   }
10845 
10846   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
10847     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
10848   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
10849     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
10850 }
10851 
10852 /// Check an Objective-C array literal being converted to the given
10853 /// target type.
10854 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
10855                                   ObjCArrayLiteral *ArrayLiteral) {
10856   if (!S.NSArrayDecl)
10857     return;
10858 
10859   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
10860   if (!TargetObjCPtr)
10861     return;
10862 
10863   if (TargetObjCPtr->isUnspecialized() ||
10864       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
10865         != S.NSArrayDecl->getCanonicalDecl())
10866     return;
10867 
10868   auto TypeArgs = TargetObjCPtr->getTypeArgs();
10869   if (TypeArgs.size() != 1)
10870     return;
10871 
10872   QualType TargetElementType = TypeArgs[0];
10873   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
10874     checkObjCCollectionLiteralElement(S, TargetElementType,
10875                                       ArrayLiteral->getElement(I),
10876                                       0);
10877   }
10878 }
10879 
10880 /// Check an Objective-C dictionary literal being converted to the given
10881 /// target type.
10882 static void
10883 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
10884                            ObjCDictionaryLiteral *DictionaryLiteral) {
10885   if (!S.NSDictionaryDecl)
10886     return;
10887 
10888   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
10889   if (!TargetObjCPtr)
10890     return;
10891 
10892   if (TargetObjCPtr->isUnspecialized() ||
10893       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
10894         != S.NSDictionaryDecl->getCanonicalDecl())
10895     return;
10896 
10897   auto TypeArgs = TargetObjCPtr->getTypeArgs();
10898   if (TypeArgs.size() != 2)
10899     return;
10900 
10901   QualType TargetKeyType = TypeArgs[0];
10902   QualType TargetObjectType = TypeArgs[1];
10903   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
10904     auto Element = DictionaryLiteral->getKeyValueElement(I);
10905     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
10906     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
10907   }
10908 }
10909 
10910 // Helper function to filter out cases for constant width constant conversion.
10911 // Don't warn on char array initialization or for non-decimal values.
10912 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
10913                                           SourceLocation CC) {
10914   // If initializing from a constant, and the constant starts with '0',
10915   // then it is a binary, octal, or hexadecimal.  Allow these constants
10916   // to fill all the bits, even if there is a sign change.
10917   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
10918     const char FirstLiteralCharacter =
10919         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
10920     if (FirstLiteralCharacter == '0')
10921       return false;
10922   }
10923 
10924   // If the CC location points to a '{', and the type is char, then assume
10925   // assume it is an array initialization.
10926   if (CC.isValid() && T->isCharType()) {
10927     const char FirstContextCharacter =
10928         S.getSourceManager().getCharacterData(CC)[0];
10929     if (FirstContextCharacter == '{')
10930       return false;
10931   }
10932 
10933   return true;
10934 }
10935 
10936 static void
10937 CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC,
10938                         bool *ICContext = nullptr) {
10939   if (E->isTypeDependent() || E->isValueDependent()) return;
10940 
10941   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
10942   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
10943   if (Source == Target) return;
10944   if (Target->isDependentType()) return;
10945 
10946   // If the conversion context location is invalid don't complain. We also
10947   // don't want to emit a warning if the issue occurs from the expansion of
10948   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
10949   // delay this check as long as possible. Once we detect we are in that
10950   // scenario, we just return.
10951   if (CC.isInvalid())
10952     return;
10953 
10954   if (Source->isAtomicType())
10955     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
10956 
10957   // Diagnose implicit casts to bool.
10958   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
10959     if (isa<StringLiteral>(E))
10960       // Warn on string literal to bool.  Checks for string literals in logical
10961       // and expressions, for instance, assert(0 && "error here"), are
10962       // prevented by a check in AnalyzeImplicitConversions().
10963       return DiagnoseImpCast(S, E, T, CC,
10964                              diag::warn_impcast_string_literal_to_bool);
10965     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
10966         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
10967       // This covers the literal expressions that evaluate to Objective-C
10968       // objects.
10969       return DiagnoseImpCast(S, E, T, CC,
10970                              diag::warn_impcast_objective_c_literal_to_bool);
10971     }
10972     if (Source->isPointerType() || Source->canDecayToPointerType()) {
10973       // Warn on pointer to bool conversion that is always true.
10974       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
10975                                      SourceRange(CC));
10976     }
10977   }
10978 
10979   // Check implicit casts from Objective-C collection literals to specialized
10980   // collection types, e.g., NSArray<NSString *> *.
10981   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
10982     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
10983   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
10984     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
10985 
10986   // Strip vector types.
10987   if (isa<VectorType>(Source)) {
10988     if (!isa<VectorType>(Target)) {
10989       if (S.SourceMgr.isInSystemMacro(CC))
10990         return;
10991       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
10992     }
10993 
10994     // If the vector cast is cast between two vectors of the same size, it is
10995     // a bitcast, not a conversion.
10996     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
10997       return;
10998 
10999     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11000     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11001   }
11002   if (auto VecTy = dyn_cast<VectorType>(Target))
11003     Target = VecTy->getElementType().getTypePtr();
11004 
11005   // Strip complex types.
11006   if (isa<ComplexType>(Source)) {
11007     if (!isa<ComplexType>(Target)) {
11008       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11009         return;
11010 
11011       return DiagnoseImpCast(S, E, T, CC,
11012                              S.getLangOpts().CPlusPlus
11013                                  ? diag::err_impcast_complex_scalar
11014                                  : diag::warn_impcast_complex_scalar);
11015     }
11016 
11017     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11018     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11019   }
11020 
11021   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11022   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11023 
11024   // If the source is floating point...
11025   if (SourceBT && SourceBT->isFloatingPoint()) {
11026     // ...and the target is floating point...
11027     if (TargetBT && TargetBT->isFloatingPoint()) {
11028       // ...then warn if we're dropping FP rank.
11029 
11030       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11031           QualType(SourceBT, 0), QualType(TargetBT, 0));
11032       if (Order > 0) {
11033         // Don't warn about float constants that are precisely
11034         // representable in the target type.
11035         Expr::EvalResult result;
11036         if (E->EvaluateAsRValue(result, S.Context)) {
11037           // Value might be a float, a float vector, or a float complex.
11038           if (IsSameFloatAfterCast(result.Val,
11039                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11040                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11041             return;
11042         }
11043 
11044         if (S.SourceMgr.isInSystemMacro(CC))
11045           return;
11046 
11047         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
11048       }
11049       // ... or possibly if we're increasing rank, too
11050       else if (Order < 0) {
11051         if (S.SourceMgr.isInSystemMacro(CC))
11052           return;
11053 
11054         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
11055       }
11056       return;
11057     }
11058 
11059     // If the target is integral, always warn.
11060     if (TargetBT && TargetBT->isInteger()) {
11061       if (S.SourceMgr.isInSystemMacro(CC))
11062         return;
11063 
11064       DiagnoseFloatingImpCast(S, E, T, CC);
11065     }
11066 
11067     // Detect the case where a call result is converted from floating-point to
11068     // to bool, and the final argument to the call is converted from bool, to
11069     // discover this typo:
11070     //
11071     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11072     //
11073     // FIXME: This is an incredibly special case; is there some more general
11074     // way to detect this class of misplaced-parentheses bug?
11075     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11076       // Check last argument of function call to see if it is an
11077       // implicit cast from a type matching the type the result
11078       // is being cast to.
11079       CallExpr *CEx = cast<CallExpr>(E);
11080       if (unsigned NumArgs = CEx->getNumArgs()) {
11081         Expr *LastA = CEx->getArg(NumArgs - 1);
11082         Expr *InnerE = LastA->IgnoreParenImpCasts();
11083         if (isa<ImplicitCastExpr>(LastA) &&
11084             InnerE->getType()->isBooleanType()) {
11085           // Warn on this floating-point to bool conversion
11086           DiagnoseImpCast(S, E, T, CC,
11087                           diag::warn_impcast_floating_point_to_bool);
11088         }
11089       }
11090     }
11091     return;
11092   }
11093 
11094   // Valid casts involving fixed point types should be accounted for here.
11095   if (Source->isFixedPointType()) {
11096     if (Target->isUnsaturatedFixedPointType()) {
11097       Expr::EvalResult Result;
11098       if (E->EvaluateAsFixedPoint(Result, S.Context,
11099                                   Expr::SE_AllowSideEffects)) {
11100         APFixedPoint Value = Result.Val.getFixedPoint();
11101         APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
11102         APFixedPoint MinVal = S.Context.getFixedPointMin(T);
11103         if (Value > MaxVal || Value < MinVal) {
11104           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11105                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11106                                     << Value.toString() << T
11107                                     << E->getSourceRange()
11108                                     << clang::SourceRange(CC));
11109           return;
11110         }
11111       }
11112     } else if (Target->isIntegerType()) {
11113       Expr::EvalResult Result;
11114       if (E->EvaluateAsFixedPoint(Result, S.Context,
11115                                   Expr::SE_AllowSideEffects)) {
11116         APFixedPoint FXResult = Result.Val.getFixedPoint();
11117 
11118         bool Overflowed;
11119         llvm::APSInt IntResult = FXResult.convertToInt(
11120             S.Context.getIntWidth(T),
11121             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
11122 
11123         if (Overflowed) {
11124           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11125                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11126                                     << FXResult.toString() << T
11127                                     << E->getSourceRange()
11128                                     << clang::SourceRange(CC));
11129           return;
11130         }
11131       }
11132     }
11133   } else if (Target->isUnsaturatedFixedPointType()) {
11134     if (Source->isIntegerType()) {
11135       Expr::EvalResult Result;
11136       if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11137         llvm::APSInt Value = Result.Val.getInt();
11138 
11139         bool Overflowed;
11140         APFixedPoint IntResult = APFixedPoint::getFromIntValue(
11141             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
11142 
11143         if (Overflowed) {
11144           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11145                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11146                                     << Value.toString(/*radix=*/10) << T
11147                                     << E->getSourceRange()
11148                                     << clang::SourceRange(CC));
11149           return;
11150         }
11151       }
11152     }
11153   }
11154 
11155   DiagnoseNullConversion(S, E, T, CC);
11156 
11157   S.DiscardMisalignedMemberAddress(Target, E);
11158 
11159   if (!Source->isIntegerType() || !Target->isIntegerType())
11160     return;
11161 
11162   // TODO: remove this early return once the false positives for constant->bool
11163   // in templates, macros, etc, are reduced or removed.
11164   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11165     return;
11166 
11167   IntRange SourceRange = GetExprRange(S.Context, E);
11168   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
11169 
11170   if (SourceRange.Width > TargetRange.Width) {
11171     // If the source is a constant, use a default-on diagnostic.
11172     // TODO: this should happen for bitfield stores, too.
11173     Expr::EvalResult Result;
11174     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11175       llvm::APSInt Value(32);
11176       Value = Result.Val.getInt();
11177 
11178       if (S.SourceMgr.isInSystemMacro(CC))
11179         return;
11180 
11181       std::string PrettySourceValue = Value.toString(10);
11182       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11183 
11184       S.DiagRuntimeBehavior(E->getExprLoc(), E,
11185         S.PDiag(diag::warn_impcast_integer_precision_constant)
11186             << PrettySourceValue << PrettyTargetValue
11187             << E->getType() << T << E->getSourceRange()
11188             << clang::SourceRange(CC));
11189       return;
11190     }
11191 
11192     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11193     if (S.SourceMgr.isInSystemMacro(CC))
11194       return;
11195 
11196     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
11197       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
11198                              /* pruneControlFlow */ true);
11199     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
11200   }
11201 
11202   if (TargetRange.Width > SourceRange.Width) {
11203     if (auto *UO = dyn_cast<UnaryOperator>(E))
11204       if (UO->getOpcode() == UO_Minus)
11205         if (Source->isUnsignedIntegerType()) {
11206           if (Target->isUnsignedIntegerType())
11207             return DiagnoseImpCast(S, E, T, CC,
11208                                    diag::warn_impcast_high_order_zero_bits);
11209           if (Target->isSignedIntegerType())
11210             return DiagnoseImpCast(S, E, T, CC,
11211                                    diag::warn_impcast_nonnegative_result);
11212         }
11213   }
11214 
11215   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
11216       SourceRange.NonNegative && Source->isSignedIntegerType()) {
11217     // Warn when doing a signed to signed conversion, warn if the positive
11218     // source value is exactly the width of the target type, which will
11219     // cause a negative value to be stored.
11220 
11221     Expr::EvalResult Result;
11222     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
11223         !S.SourceMgr.isInSystemMacro(CC)) {
11224       llvm::APSInt Value = Result.Val.getInt();
11225       if (isSameWidthConstantConversion(S, E, T, CC)) {
11226         std::string PrettySourceValue = Value.toString(10);
11227         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11228 
11229         S.DiagRuntimeBehavior(
11230             E->getExprLoc(), E,
11231             S.PDiag(diag::warn_impcast_integer_precision_constant)
11232                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
11233                 << E->getSourceRange() << clang::SourceRange(CC));
11234         return;
11235       }
11236     }
11237 
11238     // Fall through for non-constants to give a sign conversion warning.
11239   }
11240 
11241   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
11242       (!TargetRange.NonNegative && SourceRange.NonNegative &&
11243        SourceRange.Width == TargetRange.Width)) {
11244     if (S.SourceMgr.isInSystemMacro(CC))
11245       return;
11246 
11247     unsigned DiagID = diag::warn_impcast_integer_sign;
11248 
11249     // Traditionally, gcc has warned about this under -Wsign-compare.
11250     // We also want to warn about it in -Wconversion.
11251     // So if -Wconversion is off, use a completely identical diagnostic
11252     // in the sign-compare group.
11253     // The conditional-checking code will
11254     if (ICContext) {
11255       DiagID = diag::warn_impcast_integer_sign_conditional;
11256       *ICContext = true;
11257     }
11258 
11259     return DiagnoseImpCast(S, E, T, CC, DiagID);
11260   }
11261 
11262   // Diagnose conversions between different enumeration types.
11263   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
11264   // type, to give us better diagnostics.
11265   QualType SourceType = E->getType();
11266   if (!S.getLangOpts().CPlusPlus) {
11267     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11268       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
11269         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
11270         SourceType = S.Context.getTypeDeclType(Enum);
11271         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
11272       }
11273   }
11274 
11275   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
11276     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
11277       if (SourceEnum->getDecl()->hasNameForLinkage() &&
11278           TargetEnum->getDecl()->hasNameForLinkage() &&
11279           SourceEnum != TargetEnum) {
11280         if (S.SourceMgr.isInSystemMacro(CC))
11281           return;
11282 
11283         return DiagnoseImpCast(S, E, SourceType, T, CC,
11284                                diag::warn_impcast_different_enum_types);
11285       }
11286 }
11287 
11288 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
11289                                      SourceLocation CC, QualType T);
11290 
11291 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
11292                                     SourceLocation CC, bool &ICContext) {
11293   E = E->IgnoreParenImpCasts();
11294 
11295   if (isa<ConditionalOperator>(E))
11296     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
11297 
11298   AnalyzeImplicitConversions(S, E, CC);
11299   if (E->getType() != T)
11300     return CheckImplicitConversion(S, E, T, CC, &ICContext);
11301 }
11302 
11303 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
11304                                      SourceLocation CC, QualType T) {
11305   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
11306 
11307   bool Suspicious = false;
11308   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
11309   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
11310 
11311   // If -Wconversion would have warned about either of the candidates
11312   // for a signedness conversion to the context type...
11313   if (!Suspicious) return;
11314 
11315   // ...but it's currently ignored...
11316   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
11317     return;
11318 
11319   // ...then check whether it would have warned about either of the
11320   // candidates for a signedness conversion to the condition type.
11321   if (E->getType() == T) return;
11322 
11323   Suspicious = false;
11324   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
11325                           E->getType(), CC, &Suspicious);
11326   if (!Suspicious)
11327     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
11328                             E->getType(), CC, &Suspicious);
11329 }
11330 
11331 /// Check conversion of given expression to boolean.
11332 /// Input argument E is a logical expression.
11333 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
11334   if (S.getLangOpts().Bool)
11335     return;
11336   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
11337     return;
11338   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
11339 }
11340 
11341 /// AnalyzeImplicitConversions - Find and report any interesting
11342 /// implicit conversions in the given expression.  There are a couple
11343 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
11344 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE,
11345                                        SourceLocation CC) {
11346   QualType T = OrigE->getType();
11347   Expr *E = OrigE->IgnoreParenImpCasts();
11348 
11349   if (E->isTypeDependent() || E->isValueDependent())
11350     return;
11351 
11352   // For conditional operators, we analyze the arguments as if they
11353   // were being fed directly into the output.
11354   if (isa<ConditionalOperator>(E)) {
11355     ConditionalOperator *CO = cast<ConditionalOperator>(E);
11356     CheckConditionalOperator(S, CO, CC, T);
11357     return;
11358   }
11359 
11360   // Check implicit argument conversions for function calls.
11361   if (CallExpr *Call = dyn_cast<CallExpr>(E))
11362     CheckImplicitArgumentConversions(S, Call, CC);
11363 
11364   // Go ahead and check any implicit conversions we might have skipped.
11365   // The non-canonical typecheck is just an optimization;
11366   // CheckImplicitConversion will filter out dead implicit conversions.
11367   if (E->getType() != T)
11368     CheckImplicitConversion(S, E, T, CC);
11369 
11370   // Now continue drilling into this expression.
11371 
11372   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
11373     // The bound subexpressions in a PseudoObjectExpr are not reachable
11374     // as transitive children.
11375     // FIXME: Use a more uniform representation for this.
11376     for (auto *SE : POE->semantics())
11377       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
11378         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
11379   }
11380 
11381   // Skip past explicit casts.
11382   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
11383     E = CE->getSubExpr()->IgnoreParenImpCasts();
11384     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
11385       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11386     return AnalyzeImplicitConversions(S, E, CC);
11387   }
11388 
11389   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11390     // Do a somewhat different check with comparison operators.
11391     if (BO->isComparisonOp())
11392       return AnalyzeComparison(S, BO);
11393 
11394     // And with simple assignments.
11395     if (BO->getOpcode() == BO_Assign)
11396       return AnalyzeAssignment(S, BO);
11397     // And with compound assignments.
11398     if (BO->isAssignmentOp())
11399       return AnalyzeCompoundAssignment(S, BO);
11400   }
11401 
11402   // These break the otherwise-useful invariant below.  Fortunately,
11403   // we don't really need to recurse into them, because any internal
11404   // expressions should have been analyzed already when they were
11405   // built into statements.
11406   if (isa<StmtExpr>(E)) return;
11407 
11408   // Don't descend into unevaluated contexts.
11409   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
11410 
11411   // Now just recurse over the expression's children.
11412   CC = E->getExprLoc();
11413   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
11414   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
11415   for (Stmt *SubStmt : E->children()) {
11416     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
11417     if (!ChildExpr)
11418       continue;
11419 
11420     if (IsLogicalAndOperator &&
11421         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
11422       // Ignore checking string literals that are in logical and operators.
11423       // This is a common pattern for asserts.
11424       continue;
11425     AnalyzeImplicitConversions(S, ChildExpr, CC);
11426   }
11427 
11428   if (BO && BO->isLogicalOp()) {
11429     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
11430     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11431       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11432 
11433     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
11434     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11435       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11436   }
11437 
11438   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
11439     if (U->getOpcode() == UO_LNot) {
11440       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
11441     } else if (U->getOpcode() != UO_AddrOf) {
11442       if (U->getSubExpr()->getType()->isAtomicType())
11443         S.Diag(U->getSubExpr()->getBeginLoc(),
11444                diag::warn_atomic_implicit_seq_cst);
11445     }
11446   }
11447 }
11448 
11449 /// Diagnose integer type and any valid implicit conversion to it.
11450 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
11451   // Taking into account implicit conversions,
11452   // allow any integer.
11453   if (!E->getType()->isIntegerType()) {
11454     S.Diag(E->getBeginLoc(),
11455            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
11456     return true;
11457   }
11458   // Potentially emit standard warnings for implicit conversions if enabled
11459   // using -Wconversion.
11460   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
11461   return false;
11462 }
11463 
11464 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
11465 // Returns true when emitting a warning about taking the address of a reference.
11466 static bool CheckForReference(Sema &SemaRef, const Expr *E,
11467                               const PartialDiagnostic &PD) {
11468   E = E->IgnoreParenImpCasts();
11469 
11470   const FunctionDecl *FD = nullptr;
11471 
11472   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11473     if (!DRE->getDecl()->getType()->isReferenceType())
11474       return false;
11475   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11476     if (!M->getMemberDecl()->getType()->isReferenceType())
11477       return false;
11478   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
11479     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
11480       return false;
11481     FD = Call->getDirectCallee();
11482   } else {
11483     return false;
11484   }
11485 
11486   SemaRef.Diag(E->getExprLoc(), PD);
11487 
11488   // If possible, point to location of function.
11489   if (FD) {
11490     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
11491   }
11492 
11493   return true;
11494 }
11495 
11496 // Returns true if the SourceLocation is expanded from any macro body.
11497 // Returns false if the SourceLocation is invalid, is from not in a macro
11498 // expansion, or is from expanded from a top-level macro argument.
11499 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
11500   if (Loc.isInvalid())
11501     return false;
11502 
11503   while (Loc.isMacroID()) {
11504     if (SM.isMacroBodyExpansion(Loc))
11505       return true;
11506     Loc = SM.getImmediateMacroCallerLoc(Loc);
11507   }
11508 
11509   return false;
11510 }
11511 
11512 /// Diagnose pointers that are always non-null.
11513 /// \param E the expression containing the pointer
11514 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
11515 /// compared to a null pointer
11516 /// \param IsEqual True when the comparison is equal to a null pointer
11517 /// \param Range Extra SourceRange to highlight in the diagnostic
11518 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
11519                                         Expr::NullPointerConstantKind NullKind,
11520                                         bool IsEqual, SourceRange Range) {
11521   if (!E)
11522     return;
11523 
11524   // Don't warn inside macros.
11525   if (E->getExprLoc().isMacroID()) {
11526     const SourceManager &SM = getSourceManager();
11527     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
11528         IsInAnyMacroBody(SM, Range.getBegin()))
11529       return;
11530   }
11531   E = E->IgnoreImpCasts();
11532 
11533   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
11534 
11535   if (isa<CXXThisExpr>(E)) {
11536     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
11537                                 : diag::warn_this_bool_conversion;
11538     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
11539     return;
11540   }
11541 
11542   bool IsAddressOf = false;
11543 
11544   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
11545     if (UO->getOpcode() != UO_AddrOf)
11546       return;
11547     IsAddressOf = true;
11548     E = UO->getSubExpr();
11549   }
11550 
11551   if (IsAddressOf) {
11552     unsigned DiagID = IsCompare
11553                           ? diag::warn_address_of_reference_null_compare
11554                           : diag::warn_address_of_reference_bool_conversion;
11555     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
11556                                          << IsEqual;
11557     if (CheckForReference(*this, E, PD)) {
11558       return;
11559     }
11560   }
11561 
11562   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
11563     bool IsParam = isa<NonNullAttr>(NonnullAttr);
11564     std::string Str;
11565     llvm::raw_string_ostream S(Str);
11566     E->printPretty(S, nullptr, getPrintingPolicy());
11567     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
11568                                 : diag::warn_cast_nonnull_to_bool;
11569     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
11570       << E->getSourceRange() << Range << IsEqual;
11571     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
11572   };
11573 
11574   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
11575   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
11576     if (auto *Callee = Call->getDirectCallee()) {
11577       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
11578         ComplainAboutNonnullParamOrCall(A);
11579         return;
11580       }
11581     }
11582   }
11583 
11584   // Expect to find a single Decl.  Skip anything more complicated.
11585   ValueDecl *D = nullptr;
11586   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
11587     D = R->getDecl();
11588   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11589     D = M->getMemberDecl();
11590   }
11591 
11592   // Weak Decls can be null.
11593   if (!D || D->isWeak())
11594     return;
11595 
11596   // Check for parameter decl with nonnull attribute
11597   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
11598     if (getCurFunction() &&
11599         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
11600       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
11601         ComplainAboutNonnullParamOrCall(A);
11602         return;
11603       }
11604 
11605       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
11606         // Skip function template not specialized yet.
11607         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11608           return;
11609         auto ParamIter = llvm::find(FD->parameters(), PV);
11610         assert(ParamIter != FD->param_end());
11611         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
11612 
11613         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
11614           if (!NonNull->args_size()) {
11615               ComplainAboutNonnullParamOrCall(NonNull);
11616               return;
11617           }
11618 
11619           for (const ParamIdx &ArgNo : NonNull->args()) {
11620             if (ArgNo.getASTIndex() == ParamNo) {
11621               ComplainAboutNonnullParamOrCall(NonNull);
11622               return;
11623             }
11624           }
11625         }
11626       }
11627     }
11628   }
11629 
11630   QualType T = D->getType();
11631   const bool IsArray = T->isArrayType();
11632   const bool IsFunction = T->isFunctionType();
11633 
11634   // Address of function is used to silence the function warning.
11635   if (IsAddressOf && IsFunction) {
11636     return;
11637   }
11638 
11639   // Found nothing.
11640   if (!IsAddressOf && !IsFunction && !IsArray)
11641     return;
11642 
11643   // Pretty print the expression for the diagnostic.
11644   std::string Str;
11645   llvm::raw_string_ostream S(Str);
11646   E->printPretty(S, nullptr, getPrintingPolicy());
11647 
11648   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
11649                               : diag::warn_impcast_pointer_to_bool;
11650   enum {
11651     AddressOf,
11652     FunctionPointer,
11653     ArrayPointer
11654   } DiagType;
11655   if (IsAddressOf)
11656     DiagType = AddressOf;
11657   else if (IsFunction)
11658     DiagType = FunctionPointer;
11659   else if (IsArray)
11660     DiagType = ArrayPointer;
11661   else
11662     llvm_unreachable("Could not determine diagnostic.");
11663   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
11664                                 << Range << IsEqual;
11665 
11666   if (!IsFunction)
11667     return;
11668 
11669   // Suggest '&' to silence the function warning.
11670   Diag(E->getExprLoc(), diag::note_function_warning_silence)
11671       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
11672 
11673   // Check to see if '()' fixit should be emitted.
11674   QualType ReturnType;
11675   UnresolvedSet<4> NonTemplateOverloads;
11676   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
11677   if (ReturnType.isNull())
11678     return;
11679 
11680   if (IsCompare) {
11681     // There are two cases here.  If there is null constant, the only suggest
11682     // for a pointer return type.  If the null is 0, then suggest if the return
11683     // type is a pointer or an integer type.
11684     if (!ReturnType->isPointerType()) {
11685       if (NullKind == Expr::NPCK_ZeroExpression ||
11686           NullKind == Expr::NPCK_ZeroLiteral) {
11687         if (!ReturnType->isIntegerType())
11688           return;
11689       } else {
11690         return;
11691       }
11692     }
11693   } else { // !IsCompare
11694     // For function to bool, only suggest if the function pointer has bool
11695     // return type.
11696     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
11697       return;
11698   }
11699   Diag(E->getExprLoc(), diag::note_function_to_function_call)
11700       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
11701 }
11702 
11703 /// Diagnoses "dangerous" implicit conversions within the given
11704 /// expression (which is a full expression).  Implements -Wconversion
11705 /// and -Wsign-compare.
11706 ///
11707 /// \param CC the "context" location of the implicit conversion, i.e.
11708 ///   the most location of the syntactic entity requiring the implicit
11709 ///   conversion
11710 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
11711   // Don't diagnose in unevaluated contexts.
11712   if (isUnevaluatedContext())
11713     return;
11714 
11715   // Don't diagnose for value- or type-dependent expressions.
11716   if (E->isTypeDependent() || E->isValueDependent())
11717     return;
11718 
11719   // Check for array bounds violations in cases where the check isn't triggered
11720   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
11721   // ArraySubscriptExpr is on the RHS of a variable initialization.
11722   CheckArrayAccess(E);
11723 
11724   // This is not the right CC for (e.g.) a variable initialization.
11725   AnalyzeImplicitConversions(*this, E, CC);
11726 }
11727 
11728 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
11729 /// Input argument E is a logical expression.
11730 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
11731   ::CheckBoolLikeConversion(*this, E, CC);
11732 }
11733 
11734 /// Diagnose when expression is an integer constant expression and its evaluation
11735 /// results in integer overflow
11736 void Sema::CheckForIntOverflow (Expr *E) {
11737   // Use a work list to deal with nested struct initializers.
11738   SmallVector<Expr *, 2> Exprs(1, E);
11739 
11740   do {
11741     Expr *OriginalE = Exprs.pop_back_val();
11742     Expr *E = OriginalE->IgnoreParenCasts();
11743 
11744     if (isa<BinaryOperator>(E)) {
11745       E->EvaluateForOverflow(Context);
11746       continue;
11747     }
11748 
11749     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
11750       Exprs.append(InitList->inits().begin(), InitList->inits().end());
11751     else if (isa<ObjCBoxedExpr>(OriginalE))
11752       E->EvaluateForOverflow(Context);
11753     else if (auto Call = dyn_cast<CallExpr>(E))
11754       Exprs.append(Call->arg_begin(), Call->arg_end());
11755     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
11756       Exprs.append(Message->arg_begin(), Message->arg_end());
11757   } while (!Exprs.empty());
11758 }
11759 
11760 namespace {
11761 
11762 /// Visitor for expressions which looks for unsequenced operations on the
11763 /// same object.
11764 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
11765   using Base = EvaluatedExprVisitor<SequenceChecker>;
11766 
11767   /// A tree of sequenced regions within an expression. Two regions are
11768   /// unsequenced if one is an ancestor or a descendent of the other. When we
11769   /// finish processing an expression with sequencing, such as a comma
11770   /// expression, we fold its tree nodes into its parent, since they are
11771   /// unsequenced with respect to nodes we will visit later.
11772   class SequenceTree {
11773     struct Value {
11774       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
11775       unsigned Parent : 31;
11776       unsigned Merged : 1;
11777     };
11778     SmallVector<Value, 8> Values;
11779 
11780   public:
11781     /// A region within an expression which may be sequenced with respect
11782     /// to some other region.
11783     class Seq {
11784       friend class SequenceTree;
11785 
11786       unsigned Index;
11787 
11788       explicit Seq(unsigned N) : Index(N) {}
11789 
11790     public:
11791       Seq() : Index(0) {}
11792     };
11793 
11794     SequenceTree() { Values.push_back(Value(0)); }
11795     Seq root() const { return Seq(0); }
11796 
11797     /// Create a new sequence of operations, which is an unsequenced
11798     /// subset of \p Parent. This sequence of operations is sequenced with
11799     /// respect to other children of \p Parent.
11800     Seq allocate(Seq Parent) {
11801       Values.push_back(Value(Parent.Index));
11802       return Seq(Values.size() - 1);
11803     }
11804 
11805     /// Merge a sequence of operations into its parent.
11806     void merge(Seq S) {
11807       Values[S.Index].Merged = true;
11808     }
11809 
11810     /// Determine whether two operations are unsequenced. This operation
11811     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
11812     /// should have been merged into its parent as appropriate.
11813     bool isUnsequenced(Seq Cur, Seq Old) {
11814       unsigned C = representative(Cur.Index);
11815       unsigned Target = representative(Old.Index);
11816       while (C >= Target) {
11817         if (C == Target)
11818           return true;
11819         C = Values[C].Parent;
11820       }
11821       return false;
11822     }
11823 
11824   private:
11825     /// Pick a representative for a sequence.
11826     unsigned representative(unsigned K) {
11827       if (Values[K].Merged)
11828         // Perform path compression as we go.
11829         return Values[K].Parent = representative(Values[K].Parent);
11830       return K;
11831     }
11832   };
11833 
11834   /// An object for which we can track unsequenced uses.
11835   using Object = NamedDecl *;
11836 
11837   /// Different flavors of object usage which we track. We only track the
11838   /// least-sequenced usage of each kind.
11839   enum UsageKind {
11840     /// A read of an object. Multiple unsequenced reads are OK.
11841     UK_Use,
11842 
11843     /// A modification of an object which is sequenced before the value
11844     /// computation of the expression, such as ++n in C++.
11845     UK_ModAsValue,
11846 
11847     /// A modification of an object which is not sequenced before the value
11848     /// computation of the expression, such as n++.
11849     UK_ModAsSideEffect,
11850 
11851     UK_Count = UK_ModAsSideEffect + 1
11852   };
11853 
11854   struct Usage {
11855     Expr *Use;
11856     SequenceTree::Seq Seq;
11857 
11858     Usage() : Use(nullptr), Seq() {}
11859   };
11860 
11861   struct UsageInfo {
11862     Usage Uses[UK_Count];
11863 
11864     /// Have we issued a diagnostic for this variable already?
11865     bool Diagnosed;
11866 
11867     UsageInfo() : Uses(), Diagnosed(false) {}
11868   };
11869   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
11870 
11871   Sema &SemaRef;
11872 
11873   /// Sequenced regions within the expression.
11874   SequenceTree Tree;
11875 
11876   /// Declaration modifications and references which we have seen.
11877   UsageInfoMap UsageMap;
11878 
11879   /// The region we are currently within.
11880   SequenceTree::Seq Region;
11881 
11882   /// Filled in with declarations which were modified as a side-effect
11883   /// (that is, post-increment operations).
11884   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
11885 
11886   /// Expressions to check later. We defer checking these to reduce
11887   /// stack usage.
11888   SmallVectorImpl<Expr *> &WorkList;
11889 
11890   /// RAII object wrapping the visitation of a sequenced subexpression of an
11891   /// expression. At the end of this process, the side-effects of the evaluation
11892   /// become sequenced with respect to the value computation of the result, so
11893   /// we downgrade any UK_ModAsSideEffect within the evaluation to
11894   /// UK_ModAsValue.
11895   struct SequencedSubexpression {
11896     SequencedSubexpression(SequenceChecker &Self)
11897       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
11898       Self.ModAsSideEffect = &ModAsSideEffect;
11899     }
11900 
11901     ~SequencedSubexpression() {
11902       for (auto &M : llvm::reverse(ModAsSideEffect)) {
11903         UsageInfo &U = Self.UsageMap[M.first];
11904         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
11905         Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue);
11906         SideEffectUsage = M.second;
11907       }
11908       Self.ModAsSideEffect = OldModAsSideEffect;
11909     }
11910 
11911     SequenceChecker &Self;
11912     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
11913     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
11914   };
11915 
11916   /// RAII object wrapping the visitation of a subexpression which we might
11917   /// choose to evaluate as a constant. If any subexpression is evaluated and
11918   /// found to be non-constant, this allows us to suppress the evaluation of
11919   /// the outer expression.
11920   class EvaluationTracker {
11921   public:
11922     EvaluationTracker(SequenceChecker &Self)
11923         : Self(Self), Prev(Self.EvalTracker) {
11924       Self.EvalTracker = this;
11925     }
11926 
11927     ~EvaluationTracker() {
11928       Self.EvalTracker = Prev;
11929       if (Prev)
11930         Prev->EvalOK &= EvalOK;
11931     }
11932 
11933     bool evaluate(const Expr *E, bool &Result) {
11934       if (!EvalOK || E->isValueDependent())
11935         return false;
11936       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
11937       return EvalOK;
11938     }
11939 
11940   private:
11941     SequenceChecker &Self;
11942     EvaluationTracker *Prev;
11943     bool EvalOK = true;
11944   } *EvalTracker = nullptr;
11945 
11946   /// Find the object which is produced by the specified expression,
11947   /// if any.
11948   Object getObject(Expr *E, bool Mod) const {
11949     E = E->IgnoreParenCasts();
11950     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
11951       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
11952         return getObject(UO->getSubExpr(), Mod);
11953     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11954       if (BO->getOpcode() == BO_Comma)
11955         return getObject(BO->getRHS(), Mod);
11956       if (Mod && BO->isAssignmentOp())
11957         return getObject(BO->getLHS(), Mod);
11958     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
11959       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
11960       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
11961         return ME->getMemberDecl();
11962     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11963       // FIXME: If this is a reference, map through to its value.
11964       return DRE->getDecl();
11965     return nullptr;
11966   }
11967 
11968   /// Note that an object was modified or used by an expression.
11969   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
11970     Usage &U = UI.Uses[UK];
11971     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
11972       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
11973         ModAsSideEffect->push_back(std::make_pair(O, U));
11974       U.Use = Ref;
11975       U.Seq = Region;
11976     }
11977   }
11978 
11979   /// Check whether a modification or use conflicts with a prior usage.
11980   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
11981                   bool IsModMod) {
11982     if (UI.Diagnosed)
11983       return;
11984 
11985     const Usage &U = UI.Uses[OtherKind];
11986     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
11987       return;
11988 
11989     Expr *Mod = U.Use;
11990     Expr *ModOrUse = Ref;
11991     if (OtherKind == UK_Use)
11992       std::swap(Mod, ModOrUse);
11993 
11994     SemaRef.Diag(Mod->getExprLoc(),
11995                  IsModMod ? diag::warn_unsequenced_mod_mod
11996                           : diag::warn_unsequenced_mod_use)
11997       << O << SourceRange(ModOrUse->getExprLoc());
11998     UI.Diagnosed = true;
11999   }
12000 
12001   void notePreUse(Object O, Expr *Use) {
12002     UsageInfo &U = UsageMap[O];
12003     // Uses conflict with other modifications.
12004     checkUsage(O, U, Use, UK_ModAsValue, false);
12005   }
12006 
12007   void notePostUse(Object O, Expr *Use) {
12008     UsageInfo &U = UsageMap[O];
12009     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
12010     addUsage(U, O, Use, UK_Use);
12011   }
12012 
12013   void notePreMod(Object O, Expr *Mod) {
12014     UsageInfo &U = UsageMap[O];
12015     // Modifications conflict with other modifications and with uses.
12016     checkUsage(O, U, Mod, UK_ModAsValue, true);
12017     checkUsage(O, U, Mod, UK_Use, false);
12018   }
12019 
12020   void notePostMod(Object O, Expr *Use, UsageKind UK) {
12021     UsageInfo &U = UsageMap[O];
12022     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
12023     addUsage(U, O, Use, UK);
12024   }
12025 
12026 public:
12027   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
12028       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12029     Visit(E);
12030   }
12031 
12032   void VisitStmt(Stmt *S) {
12033     // Skip all statements which aren't expressions for now.
12034   }
12035 
12036   void VisitExpr(Expr *E) {
12037     // By default, just recurse to evaluated subexpressions.
12038     Base::VisitStmt(E);
12039   }
12040 
12041   void VisitCastExpr(CastExpr *E) {
12042     Object O = Object();
12043     if (E->getCastKind() == CK_LValueToRValue)
12044       O = getObject(E->getSubExpr(), false);
12045 
12046     if (O)
12047       notePreUse(O, E);
12048     VisitExpr(E);
12049     if (O)
12050       notePostUse(O, E);
12051   }
12052 
12053   void VisitSequencedExpressions(Expr *SequencedBefore, Expr *SequencedAfter) {
12054     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12055     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12056     SequenceTree::Seq OldRegion = Region;
12057 
12058     {
12059       SequencedSubexpression SeqBefore(*this);
12060       Region = BeforeRegion;
12061       Visit(SequencedBefore);
12062     }
12063 
12064     Region = AfterRegion;
12065     Visit(SequencedAfter);
12066 
12067     Region = OldRegion;
12068 
12069     Tree.merge(BeforeRegion);
12070     Tree.merge(AfterRegion);
12071   }
12072 
12073   void VisitArraySubscriptExpr(ArraySubscriptExpr *ASE) {
12074     // C++17 [expr.sub]p1:
12075     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12076     //   expression E1 is sequenced before the expression E2.
12077     if (SemaRef.getLangOpts().CPlusPlus17)
12078       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12079     else
12080       Base::VisitStmt(ASE);
12081   }
12082 
12083   void VisitBinComma(BinaryOperator *BO) {
12084     // C++11 [expr.comma]p1:
12085     //   Every value computation and side effect associated with the left
12086     //   expression is sequenced before every value computation and side
12087     //   effect associated with the right expression.
12088     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12089   }
12090 
12091   void VisitBinAssign(BinaryOperator *BO) {
12092     // The modification is sequenced after the value computation of the LHS
12093     // and RHS, so check it before inspecting the operands and update the
12094     // map afterwards.
12095     Object O = getObject(BO->getLHS(), true);
12096     if (!O)
12097       return VisitExpr(BO);
12098 
12099     notePreMod(O, BO);
12100 
12101     // C++11 [expr.ass]p7:
12102     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
12103     //   only once.
12104     //
12105     // Therefore, for a compound assignment operator, O is considered used
12106     // everywhere except within the evaluation of E1 itself.
12107     if (isa<CompoundAssignOperator>(BO))
12108       notePreUse(O, BO);
12109 
12110     Visit(BO->getLHS());
12111 
12112     if (isa<CompoundAssignOperator>(BO))
12113       notePostUse(O, BO);
12114 
12115     Visit(BO->getRHS());
12116 
12117     // C++11 [expr.ass]p1:
12118     //   the assignment is sequenced [...] before the value computation of the
12119     //   assignment expression.
12120     // C11 6.5.16/3 has no such rule.
12121     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12122                                                        : UK_ModAsSideEffect);
12123   }
12124 
12125   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
12126     VisitBinAssign(CAO);
12127   }
12128 
12129   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12130   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12131   void VisitUnaryPreIncDec(UnaryOperator *UO) {
12132     Object O = getObject(UO->getSubExpr(), true);
12133     if (!O)
12134       return VisitExpr(UO);
12135 
12136     notePreMod(O, UO);
12137     Visit(UO->getSubExpr());
12138     // C++11 [expr.pre.incr]p1:
12139     //   the expression ++x is equivalent to x+=1
12140     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12141                                                        : UK_ModAsSideEffect);
12142   }
12143 
12144   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12145   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12146   void VisitUnaryPostIncDec(UnaryOperator *UO) {
12147     Object O = getObject(UO->getSubExpr(), true);
12148     if (!O)
12149       return VisitExpr(UO);
12150 
12151     notePreMod(O, UO);
12152     Visit(UO->getSubExpr());
12153     notePostMod(O, UO, UK_ModAsSideEffect);
12154   }
12155 
12156   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
12157   void VisitBinLOr(BinaryOperator *BO) {
12158     // The side-effects of the LHS of an '&&' are sequenced before the
12159     // value computation of the RHS, and hence before the value computation
12160     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
12161     // as if they were unconditionally sequenced.
12162     EvaluationTracker Eval(*this);
12163     {
12164       SequencedSubexpression Sequenced(*this);
12165       Visit(BO->getLHS());
12166     }
12167 
12168     bool Result;
12169     if (Eval.evaluate(BO->getLHS(), Result)) {
12170       if (!Result)
12171         Visit(BO->getRHS());
12172     } else {
12173       // Check for unsequenced operations in the RHS, treating it as an
12174       // entirely separate evaluation.
12175       //
12176       // FIXME: If there are operations in the RHS which are unsequenced
12177       // with respect to operations outside the RHS, and those operations
12178       // are unconditionally evaluated, diagnose them.
12179       WorkList.push_back(BO->getRHS());
12180     }
12181   }
12182   void VisitBinLAnd(BinaryOperator *BO) {
12183     EvaluationTracker Eval(*this);
12184     {
12185       SequencedSubexpression Sequenced(*this);
12186       Visit(BO->getLHS());
12187     }
12188 
12189     bool Result;
12190     if (Eval.evaluate(BO->getLHS(), Result)) {
12191       if (Result)
12192         Visit(BO->getRHS());
12193     } else {
12194       WorkList.push_back(BO->getRHS());
12195     }
12196   }
12197 
12198   // Only visit the condition, unless we can be sure which subexpression will
12199   // be chosen.
12200   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
12201     EvaluationTracker Eval(*this);
12202     {
12203       SequencedSubexpression Sequenced(*this);
12204       Visit(CO->getCond());
12205     }
12206 
12207     bool Result;
12208     if (Eval.evaluate(CO->getCond(), Result))
12209       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
12210     else {
12211       WorkList.push_back(CO->getTrueExpr());
12212       WorkList.push_back(CO->getFalseExpr());
12213     }
12214   }
12215 
12216   void VisitCallExpr(CallExpr *CE) {
12217     // C++11 [intro.execution]p15:
12218     //   When calling a function [...], every value computation and side effect
12219     //   associated with any argument expression, or with the postfix expression
12220     //   designating the called function, is sequenced before execution of every
12221     //   expression or statement in the body of the function [and thus before
12222     //   the value computation of its result].
12223     SequencedSubexpression Sequenced(*this);
12224     Base::VisitCallExpr(CE);
12225 
12226     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
12227   }
12228 
12229   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
12230     // This is a call, so all subexpressions are sequenced before the result.
12231     SequencedSubexpression Sequenced(*this);
12232 
12233     if (!CCE->isListInitialization())
12234       return VisitExpr(CCE);
12235 
12236     // In C++11, list initializations are sequenced.
12237     SmallVector<SequenceTree::Seq, 32> Elts;
12238     SequenceTree::Seq Parent = Region;
12239     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
12240                                         E = CCE->arg_end();
12241          I != E; ++I) {
12242       Region = Tree.allocate(Parent);
12243       Elts.push_back(Region);
12244       Visit(*I);
12245     }
12246 
12247     // Forget that the initializers are sequenced.
12248     Region = Parent;
12249     for (unsigned I = 0; I < Elts.size(); ++I)
12250       Tree.merge(Elts[I]);
12251   }
12252 
12253   void VisitInitListExpr(InitListExpr *ILE) {
12254     if (!SemaRef.getLangOpts().CPlusPlus11)
12255       return VisitExpr(ILE);
12256 
12257     // In C++11, list initializations are sequenced.
12258     SmallVector<SequenceTree::Seq, 32> Elts;
12259     SequenceTree::Seq Parent = Region;
12260     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
12261       Expr *E = ILE->getInit(I);
12262       if (!E) continue;
12263       Region = Tree.allocate(Parent);
12264       Elts.push_back(Region);
12265       Visit(E);
12266     }
12267 
12268     // Forget that the initializers are sequenced.
12269     Region = Parent;
12270     for (unsigned I = 0; I < Elts.size(); ++I)
12271       Tree.merge(Elts[I]);
12272   }
12273 };
12274 
12275 } // namespace
12276 
12277 void Sema::CheckUnsequencedOperations(Expr *E) {
12278   SmallVector<Expr *, 8> WorkList;
12279   WorkList.push_back(E);
12280   while (!WorkList.empty()) {
12281     Expr *Item = WorkList.pop_back_val();
12282     SequenceChecker(*this, Item, WorkList);
12283   }
12284 }
12285 
12286 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
12287                               bool IsConstexpr) {
12288   CheckImplicitConversions(E, CheckLoc);
12289   if (!E->isInstantiationDependent())
12290     CheckUnsequencedOperations(E);
12291   if (!IsConstexpr && !E->isValueDependent())
12292     CheckForIntOverflow(E);
12293   DiagnoseMisalignedMembers();
12294 }
12295 
12296 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
12297                                        FieldDecl *BitField,
12298                                        Expr *Init) {
12299   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
12300 }
12301 
12302 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
12303                                          SourceLocation Loc) {
12304   if (!PType->isVariablyModifiedType())
12305     return;
12306   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
12307     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
12308     return;
12309   }
12310   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
12311     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
12312     return;
12313   }
12314   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
12315     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
12316     return;
12317   }
12318 
12319   const ArrayType *AT = S.Context.getAsArrayType(PType);
12320   if (!AT)
12321     return;
12322 
12323   if (AT->getSizeModifier() != ArrayType::Star) {
12324     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
12325     return;
12326   }
12327 
12328   S.Diag(Loc, diag::err_array_star_in_function_definition);
12329 }
12330 
12331 /// CheckParmsForFunctionDef - Check that the parameters of the given
12332 /// function are appropriate for the definition of a function. This
12333 /// takes care of any checks that cannot be performed on the
12334 /// declaration itself, e.g., that the types of each of the function
12335 /// parameters are complete.
12336 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
12337                                     bool CheckParameterNames) {
12338   bool HasInvalidParm = false;
12339   for (ParmVarDecl *Param : Parameters) {
12340     // C99 6.7.5.3p4: the parameters in a parameter type list in a
12341     // function declarator that is part of a function definition of
12342     // that function shall not have incomplete type.
12343     //
12344     // This is also C++ [dcl.fct]p6.
12345     if (!Param->isInvalidDecl() &&
12346         RequireCompleteType(Param->getLocation(), Param->getType(),
12347                             diag::err_typecheck_decl_incomplete_type)) {
12348       Param->setInvalidDecl();
12349       HasInvalidParm = true;
12350     }
12351 
12352     // C99 6.9.1p5: If the declarator includes a parameter type list, the
12353     // declaration of each parameter shall include an identifier.
12354     if (CheckParameterNames &&
12355         Param->getIdentifier() == nullptr &&
12356         !Param->isImplicit() &&
12357         !getLangOpts().CPlusPlus)
12358       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
12359 
12360     // C99 6.7.5.3p12:
12361     //   If the function declarator is not part of a definition of that
12362     //   function, parameters may have incomplete type and may use the [*]
12363     //   notation in their sequences of declarator specifiers to specify
12364     //   variable length array types.
12365     QualType PType = Param->getOriginalType();
12366     // FIXME: This diagnostic should point the '[*]' if source-location
12367     // information is added for it.
12368     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
12369 
12370     // If the parameter is a c++ class type and it has to be destructed in the
12371     // callee function, declare the destructor so that it can be called by the
12372     // callee function. Do not perform any direct access check on the dtor here.
12373     if (!Param->isInvalidDecl()) {
12374       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
12375         if (!ClassDecl->isInvalidDecl() &&
12376             !ClassDecl->hasIrrelevantDestructor() &&
12377             !ClassDecl->isDependentContext() &&
12378             ClassDecl->isParamDestroyedInCallee()) {
12379           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
12380           MarkFunctionReferenced(Param->getLocation(), Destructor);
12381           DiagnoseUseOfDecl(Destructor, Param->getLocation());
12382         }
12383       }
12384     }
12385 
12386     // Parameters with the pass_object_size attribute only need to be marked
12387     // constant at function definitions. Because we lack information about
12388     // whether we're on a declaration or definition when we're instantiating the
12389     // attribute, we need to check for constness here.
12390     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
12391       if (!Param->getType().isConstQualified())
12392         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
12393             << Attr->getSpelling() << 1;
12394 
12395     // Check for parameter names shadowing fields from the class.
12396     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
12397       // The owning context for the parameter should be the function, but we
12398       // want to see if this function's declaration context is a record.
12399       DeclContext *DC = Param->getDeclContext();
12400       if (DC && DC->isFunctionOrMethod()) {
12401         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
12402           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
12403                                      RD, /*DeclIsField*/ false);
12404       }
12405     }
12406   }
12407 
12408   return HasInvalidParm;
12409 }
12410 
12411 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr
12412 /// or MemberExpr.
12413 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
12414                               ASTContext &Context) {
12415   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
12416     return Context.getDeclAlign(DRE->getDecl());
12417 
12418   if (const auto *ME = dyn_cast<MemberExpr>(E))
12419     return Context.getDeclAlign(ME->getMemberDecl());
12420 
12421   return TypeAlign;
12422 }
12423 
12424 /// CheckCastAlign - Implements -Wcast-align, which warns when a
12425 /// pointer cast increases the alignment requirements.
12426 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
12427   // This is actually a lot of work to potentially be doing on every
12428   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
12429   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
12430     return;
12431 
12432   // Ignore dependent types.
12433   if (T->isDependentType() || Op->getType()->isDependentType())
12434     return;
12435 
12436   // Require that the destination be a pointer type.
12437   const PointerType *DestPtr = T->getAs<PointerType>();
12438   if (!DestPtr) return;
12439 
12440   // If the destination has alignment 1, we're done.
12441   QualType DestPointee = DestPtr->getPointeeType();
12442   if (DestPointee->isIncompleteType()) return;
12443   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
12444   if (DestAlign.isOne()) return;
12445 
12446   // Require that the source be a pointer type.
12447   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
12448   if (!SrcPtr) return;
12449   QualType SrcPointee = SrcPtr->getPointeeType();
12450 
12451   // Whitelist casts from cv void*.  We already implicitly
12452   // whitelisted casts to cv void*, since they have alignment 1.
12453   // Also whitelist casts involving incomplete types, which implicitly
12454   // includes 'void'.
12455   if (SrcPointee->isIncompleteType()) return;
12456 
12457   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
12458 
12459   if (auto *CE = dyn_cast<CastExpr>(Op)) {
12460     if (CE->getCastKind() == CK_ArrayToPointerDecay)
12461       SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
12462   } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
12463     if (UO->getOpcode() == UO_AddrOf)
12464       SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
12465   }
12466 
12467   if (SrcAlign >= DestAlign) return;
12468 
12469   Diag(TRange.getBegin(), diag::warn_cast_align)
12470     << Op->getType() << T
12471     << static_cast<unsigned>(SrcAlign.getQuantity())
12472     << static_cast<unsigned>(DestAlign.getQuantity())
12473     << TRange << Op->getSourceRange();
12474 }
12475 
12476 /// Check whether this array fits the idiom of a size-one tail padded
12477 /// array member of a struct.
12478 ///
12479 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
12480 /// commonly used to emulate flexible arrays in C89 code.
12481 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
12482                                     const NamedDecl *ND) {
12483   if (Size != 1 || !ND) return false;
12484 
12485   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
12486   if (!FD) return false;
12487 
12488   // Don't consider sizes resulting from macro expansions or template argument
12489   // substitution to form C89 tail-padded arrays.
12490 
12491   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
12492   while (TInfo) {
12493     TypeLoc TL = TInfo->getTypeLoc();
12494     // Look through typedefs.
12495     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
12496       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
12497       TInfo = TDL->getTypeSourceInfo();
12498       continue;
12499     }
12500     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
12501       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
12502       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
12503         return false;
12504     }
12505     break;
12506   }
12507 
12508   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
12509   if (!RD) return false;
12510   if (RD->isUnion()) return false;
12511   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
12512     if (!CRD->isStandardLayout()) return false;
12513   }
12514 
12515   // See if this is the last field decl in the record.
12516   const Decl *D = FD;
12517   while ((D = D->getNextDeclInContext()))
12518     if (isa<FieldDecl>(D))
12519       return false;
12520   return true;
12521 }
12522 
12523 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12524                             const ArraySubscriptExpr *ASE,
12525                             bool AllowOnePastEnd, bool IndexNegated) {
12526   IndexExpr = IndexExpr->IgnoreParenImpCasts();
12527   if (IndexExpr->isValueDependent())
12528     return;
12529 
12530   const Type *EffectiveType =
12531       BaseExpr->getType()->getPointeeOrArrayElementType();
12532   BaseExpr = BaseExpr->IgnoreParenCasts();
12533   const ConstantArrayType *ArrayTy =
12534       Context.getAsConstantArrayType(BaseExpr->getType());
12535 
12536   if (!ArrayTy)
12537     return;
12538 
12539   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
12540   if (EffectiveType->isDependentType() || BaseType->isDependentType())
12541     return;
12542 
12543   Expr::EvalResult Result;
12544   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
12545     return;
12546 
12547   llvm::APSInt index = Result.Val.getInt();
12548   if (IndexNegated)
12549     index = -index;
12550 
12551   const NamedDecl *ND = nullptr;
12552   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
12553     ND = DRE->getDecl();
12554   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
12555     ND = ME->getMemberDecl();
12556 
12557   if (index.isUnsigned() || !index.isNegative()) {
12558     // It is possible that the type of the base expression after
12559     // IgnoreParenCasts is incomplete, even though the type of the base
12560     // expression before IgnoreParenCasts is complete (see PR39746 for an
12561     // example). In this case we have no information about whether the array
12562     // access exceeds the array bounds. However we can still diagnose an array
12563     // access which precedes the array bounds.
12564     if (BaseType->isIncompleteType())
12565       return;
12566 
12567     llvm::APInt size = ArrayTy->getSize();
12568     if (!size.isStrictlyPositive())
12569       return;
12570 
12571     if (BaseType != EffectiveType) {
12572       // Make sure we're comparing apples to apples when comparing index to size
12573       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
12574       uint64_t array_typesize = Context.getTypeSize(BaseType);
12575       // Handle ptrarith_typesize being zero, such as when casting to void*
12576       if (!ptrarith_typesize) ptrarith_typesize = 1;
12577       if (ptrarith_typesize != array_typesize) {
12578         // There's a cast to a different size type involved
12579         uint64_t ratio = array_typesize / ptrarith_typesize;
12580         // TODO: Be smarter about handling cases where array_typesize is not a
12581         // multiple of ptrarith_typesize
12582         if (ptrarith_typesize * ratio == array_typesize)
12583           size *= llvm::APInt(size.getBitWidth(), ratio);
12584       }
12585     }
12586 
12587     if (size.getBitWidth() > index.getBitWidth())
12588       index = index.zext(size.getBitWidth());
12589     else if (size.getBitWidth() < index.getBitWidth())
12590       size = size.zext(index.getBitWidth());
12591 
12592     // For array subscripting the index must be less than size, but for pointer
12593     // arithmetic also allow the index (offset) to be equal to size since
12594     // computing the next address after the end of the array is legal and
12595     // commonly done e.g. in C++ iterators and range-based for loops.
12596     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
12597       return;
12598 
12599     // Also don't warn for arrays of size 1 which are members of some
12600     // structure. These are often used to approximate flexible arrays in C89
12601     // code.
12602     if (IsTailPaddedMemberArray(*this, size, ND))
12603       return;
12604 
12605     // Suppress the warning if the subscript expression (as identified by the
12606     // ']' location) and the index expression are both from macro expansions
12607     // within a system header.
12608     if (ASE) {
12609       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
12610           ASE->getRBracketLoc());
12611       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
12612         SourceLocation IndexLoc =
12613             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
12614         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
12615           return;
12616       }
12617     }
12618 
12619     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
12620     if (ASE)
12621       DiagID = diag::warn_array_index_exceeds_bounds;
12622 
12623     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
12624                         PDiag(DiagID) << index.toString(10, true)
12625                                       << size.toString(10, true)
12626                                       << (unsigned)size.getLimitedValue(~0U)
12627                                       << IndexExpr->getSourceRange());
12628   } else {
12629     unsigned DiagID = diag::warn_array_index_precedes_bounds;
12630     if (!ASE) {
12631       DiagID = diag::warn_ptr_arith_precedes_bounds;
12632       if (index.isNegative()) index = -index;
12633     }
12634 
12635     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
12636                         PDiag(DiagID) << index.toString(10, true)
12637                                       << IndexExpr->getSourceRange());
12638   }
12639 
12640   if (!ND) {
12641     // Try harder to find a NamedDecl to point at in the note.
12642     while (const ArraySubscriptExpr *ASE =
12643            dyn_cast<ArraySubscriptExpr>(BaseExpr))
12644       BaseExpr = ASE->getBase()->IgnoreParenCasts();
12645     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
12646       ND = DRE->getDecl();
12647     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
12648       ND = ME->getMemberDecl();
12649   }
12650 
12651   if (ND)
12652     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
12653                         PDiag(diag::note_array_index_out_of_bounds)
12654                             << ND->getDeclName());
12655 }
12656 
12657 void Sema::CheckArrayAccess(const Expr *expr) {
12658   int AllowOnePastEnd = 0;
12659   while (expr) {
12660     expr = expr->IgnoreParenImpCasts();
12661     switch (expr->getStmtClass()) {
12662       case Stmt::ArraySubscriptExprClass: {
12663         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
12664         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
12665                          AllowOnePastEnd > 0);
12666         expr = ASE->getBase();
12667         break;
12668       }
12669       case Stmt::MemberExprClass: {
12670         expr = cast<MemberExpr>(expr)->getBase();
12671         break;
12672       }
12673       case Stmt::OMPArraySectionExprClass: {
12674         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
12675         if (ASE->getLowerBound())
12676           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
12677                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
12678         return;
12679       }
12680       case Stmt::UnaryOperatorClass: {
12681         // Only unwrap the * and & unary operators
12682         const UnaryOperator *UO = cast<UnaryOperator>(expr);
12683         expr = UO->getSubExpr();
12684         switch (UO->getOpcode()) {
12685           case UO_AddrOf:
12686             AllowOnePastEnd++;
12687             break;
12688           case UO_Deref:
12689             AllowOnePastEnd--;
12690             break;
12691           default:
12692             return;
12693         }
12694         break;
12695       }
12696       case Stmt::ConditionalOperatorClass: {
12697         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
12698         if (const Expr *lhs = cond->getLHS())
12699           CheckArrayAccess(lhs);
12700         if (const Expr *rhs = cond->getRHS())
12701           CheckArrayAccess(rhs);
12702         return;
12703       }
12704       case Stmt::CXXOperatorCallExprClass: {
12705         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
12706         for (const auto *Arg : OCE->arguments())
12707           CheckArrayAccess(Arg);
12708         return;
12709       }
12710       default:
12711         return;
12712     }
12713   }
12714 }
12715 
12716 //===--- CHECK: Objective-C retain cycles ----------------------------------//
12717 
12718 namespace {
12719 
12720 struct RetainCycleOwner {
12721   VarDecl *Variable = nullptr;
12722   SourceRange Range;
12723   SourceLocation Loc;
12724   bool Indirect = false;
12725 
12726   RetainCycleOwner() = default;
12727 
12728   void setLocsFrom(Expr *e) {
12729     Loc = e->getExprLoc();
12730     Range = e->getSourceRange();
12731   }
12732 };
12733 
12734 } // namespace
12735 
12736 /// Consider whether capturing the given variable can possibly lead to
12737 /// a retain cycle.
12738 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
12739   // In ARC, it's captured strongly iff the variable has __strong
12740   // lifetime.  In MRR, it's captured strongly if the variable is
12741   // __block and has an appropriate type.
12742   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
12743     return false;
12744 
12745   owner.Variable = var;
12746   if (ref)
12747     owner.setLocsFrom(ref);
12748   return true;
12749 }
12750 
12751 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
12752   while (true) {
12753     e = e->IgnoreParens();
12754     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
12755       switch (cast->getCastKind()) {
12756       case CK_BitCast:
12757       case CK_LValueBitCast:
12758       case CK_LValueToRValue:
12759       case CK_ARCReclaimReturnedObject:
12760         e = cast->getSubExpr();
12761         continue;
12762 
12763       default:
12764         return false;
12765       }
12766     }
12767 
12768     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
12769       ObjCIvarDecl *ivar = ref->getDecl();
12770       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
12771         return false;
12772 
12773       // Try to find a retain cycle in the base.
12774       if (!findRetainCycleOwner(S, ref->getBase(), owner))
12775         return false;
12776 
12777       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
12778       owner.Indirect = true;
12779       return true;
12780     }
12781 
12782     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
12783       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
12784       if (!var) return false;
12785       return considerVariable(var, ref, owner);
12786     }
12787 
12788     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
12789       if (member->isArrow()) return false;
12790 
12791       // Don't count this as an indirect ownership.
12792       e = member->getBase();
12793       continue;
12794     }
12795 
12796     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
12797       // Only pay attention to pseudo-objects on property references.
12798       ObjCPropertyRefExpr *pre
12799         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
12800                                               ->IgnoreParens());
12801       if (!pre) return false;
12802       if (pre->isImplicitProperty()) return false;
12803       ObjCPropertyDecl *property = pre->getExplicitProperty();
12804       if (!property->isRetaining() &&
12805           !(property->getPropertyIvarDecl() &&
12806             property->getPropertyIvarDecl()->getType()
12807               .getObjCLifetime() == Qualifiers::OCL_Strong))
12808           return false;
12809 
12810       owner.Indirect = true;
12811       if (pre->isSuperReceiver()) {
12812         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
12813         if (!owner.Variable)
12814           return false;
12815         owner.Loc = pre->getLocation();
12816         owner.Range = pre->getSourceRange();
12817         return true;
12818       }
12819       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
12820                               ->getSourceExpr());
12821       continue;
12822     }
12823 
12824     // Array ivars?
12825 
12826     return false;
12827   }
12828 }
12829 
12830 namespace {
12831 
12832   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
12833     ASTContext &Context;
12834     VarDecl *Variable;
12835     Expr *Capturer = nullptr;
12836     bool VarWillBeReased = false;
12837 
12838     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
12839         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
12840           Context(Context), Variable(variable) {}
12841 
12842     void VisitDeclRefExpr(DeclRefExpr *ref) {
12843       if (ref->getDecl() == Variable && !Capturer)
12844         Capturer = ref;
12845     }
12846 
12847     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
12848       if (Capturer) return;
12849       Visit(ref->getBase());
12850       if (Capturer && ref->isFreeIvar())
12851         Capturer = ref;
12852     }
12853 
12854     void VisitBlockExpr(BlockExpr *block) {
12855       // Look inside nested blocks
12856       if (block->getBlockDecl()->capturesVariable(Variable))
12857         Visit(block->getBlockDecl()->getBody());
12858     }
12859 
12860     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
12861       if (Capturer) return;
12862       if (OVE->getSourceExpr())
12863         Visit(OVE->getSourceExpr());
12864     }
12865 
12866     void VisitBinaryOperator(BinaryOperator *BinOp) {
12867       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
12868         return;
12869       Expr *LHS = BinOp->getLHS();
12870       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
12871         if (DRE->getDecl() != Variable)
12872           return;
12873         if (Expr *RHS = BinOp->getRHS()) {
12874           RHS = RHS->IgnoreParenCasts();
12875           llvm::APSInt Value;
12876           VarWillBeReased =
12877             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
12878         }
12879       }
12880     }
12881   };
12882 
12883 } // namespace
12884 
12885 /// Check whether the given argument is a block which captures a
12886 /// variable.
12887 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
12888   assert(owner.Variable && owner.Loc.isValid());
12889 
12890   e = e->IgnoreParenCasts();
12891 
12892   // Look through [^{...} copy] and Block_copy(^{...}).
12893   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
12894     Selector Cmd = ME->getSelector();
12895     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
12896       e = ME->getInstanceReceiver();
12897       if (!e)
12898         return nullptr;
12899       e = e->IgnoreParenCasts();
12900     }
12901   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
12902     if (CE->getNumArgs() == 1) {
12903       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
12904       if (Fn) {
12905         const IdentifierInfo *FnI = Fn->getIdentifier();
12906         if (FnI && FnI->isStr("_Block_copy")) {
12907           e = CE->getArg(0)->IgnoreParenCasts();
12908         }
12909       }
12910     }
12911   }
12912 
12913   BlockExpr *block = dyn_cast<BlockExpr>(e);
12914   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
12915     return nullptr;
12916 
12917   FindCaptureVisitor visitor(S.Context, owner.Variable);
12918   visitor.Visit(block->getBlockDecl()->getBody());
12919   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
12920 }
12921 
12922 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
12923                                 RetainCycleOwner &owner) {
12924   assert(capturer);
12925   assert(owner.Variable && owner.Loc.isValid());
12926 
12927   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
12928     << owner.Variable << capturer->getSourceRange();
12929   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
12930     << owner.Indirect << owner.Range;
12931 }
12932 
12933 /// Check for a keyword selector that starts with the word 'add' or
12934 /// 'set'.
12935 static bool isSetterLikeSelector(Selector sel) {
12936   if (sel.isUnarySelector()) return false;
12937 
12938   StringRef str = sel.getNameForSlot(0);
12939   while (!str.empty() && str.front() == '_') str = str.substr(1);
12940   if (str.startswith("set"))
12941     str = str.substr(3);
12942   else if (str.startswith("add")) {
12943     // Specially whitelist 'addOperationWithBlock:'.
12944     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
12945       return false;
12946     str = str.substr(3);
12947   }
12948   else
12949     return false;
12950 
12951   if (str.empty()) return true;
12952   return !isLowercase(str.front());
12953 }
12954 
12955 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
12956                                                     ObjCMessageExpr *Message) {
12957   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
12958                                                 Message->getReceiverInterface(),
12959                                                 NSAPI::ClassId_NSMutableArray);
12960   if (!IsMutableArray) {
12961     return None;
12962   }
12963 
12964   Selector Sel = Message->getSelector();
12965 
12966   Optional<NSAPI::NSArrayMethodKind> MKOpt =
12967     S.NSAPIObj->getNSArrayMethodKind(Sel);
12968   if (!MKOpt) {
12969     return None;
12970   }
12971 
12972   NSAPI::NSArrayMethodKind MK = *MKOpt;
12973 
12974   switch (MK) {
12975     case NSAPI::NSMutableArr_addObject:
12976     case NSAPI::NSMutableArr_insertObjectAtIndex:
12977     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
12978       return 0;
12979     case NSAPI::NSMutableArr_replaceObjectAtIndex:
12980       return 1;
12981 
12982     default:
12983       return None;
12984   }
12985 
12986   return None;
12987 }
12988 
12989 static
12990 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
12991                                                   ObjCMessageExpr *Message) {
12992   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
12993                                             Message->getReceiverInterface(),
12994                                             NSAPI::ClassId_NSMutableDictionary);
12995   if (!IsMutableDictionary) {
12996     return None;
12997   }
12998 
12999   Selector Sel = Message->getSelector();
13000 
13001   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
13002     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
13003   if (!MKOpt) {
13004     return None;
13005   }
13006 
13007   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
13008 
13009   switch (MK) {
13010     case NSAPI::NSMutableDict_setObjectForKey:
13011     case NSAPI::NSMutableDict_setValueForKey:
13012     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
13013       return 0;
13014 
13015     default:
13016       return None;
13017   }
13018 
13019   return None;
13020 }
13021 
13022 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
13023   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
13024                                                 Message->getReceiverInterface(),
13025                                                 NSAPI::ClassId_NSMutableSet);
13026 
13027   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
13028                                             Message->getReceiverInterface(),
13029                                             NSAPI::ClassId_NSMutableOrderedSet);
13030   if (!IsMutableSet && !IsMutableOrderedSet) {
13031     return None;
13032   }
13033 
13034   Selector Sel = Message->getSelector();
13035 
13036   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
13037   if (!MKOpt) {
13038     return None;
13039   }
13040 
13041   NSAPI::NSSetMethodKind MK = *MKOpt;
13042 
13043   switch (MK) {
13044     case NSAPI::NSMutableSet_addObject:
13045     case NSAPI::NSOrderedSet_setObjectAtIndex:
13046     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
13047     case NSAPI::NSOrderedSet_insertObjectAtIndex:
13048       return 0;
13049     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
13050       return 1;
13051   }
13052 
13053   return None;
13054 }
13055 
13056 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
13057   if (!Message->isInstanceMessage()) {
13058     return;
13059   }
13060 
13061   Optional<int> ArgOpt;
13062 
13063   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
13064       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
13065       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
13066     return;
13067   }
13068 
13069   int ArgIndex = *ArgOpt;
13070 
13071   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
13072   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
13073     Arg = OE->getSourceExpr()->IgnoreImpCasts();
13074   }
13075 
13076   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
13077     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
13078       if (ArgRE->isObjCSelfExpr()) {
13079         Diag(Message->getSourceRange().getBegin(),
13080              diag::warn_objc_circular_container)
13081           << ArgRE->getDecl() << StringRef("'super'");
13082       }
13083     }
13084   } else {
13085     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
13086 
13087     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
13088       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
13089     }
13090 
13091     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
13092       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
13093         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
13094           ValueDecl *Decl = ReceiverRE->getDecl();
13095           Diag(Message->getSourceRange().getBegin(),
13096                diag::warn_objc_circular_container)
13097             << Decl << Decl;
13098           if (!ArgRE->isObjCSelfExpr()) {
13099             Diag(Decl->getLocation(),
13100                  diag::note_objc_circular_container_declared_here)
13101               << Decl;
13102           }
13103         }
13104       }
13105     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
13106       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
13107         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
13108           ObjCIvarDecl *Decl = IvarRE->getDecl();
13109           Diag(Message->getSourceRange().getBegin(),
13110                diag::warn_objc_circular_container)
13111             << Decl << Decl;
13112           Diag(Decl->getLocation(),
13113                diag::note_objc_circular_container_declared_here)
13114             << Decl;
13115         }
13116       }
13117     }
13118   }
13119 }
13120 
13121 /// Check a message send to see if it's likely to cause a retain cycle.
13122 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
13123   // Only check instance methods whose selector looks like a setter.
13124   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
13125     return;
13126 
13127   // Try to find a variable that the receiver is strongly owned by.
13128   RetainCycleOwner owner;
13129   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
13130     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
13131       return;
13132   } else {
13133     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
13134     owner.Variable = getCurMethodDecl()->getSelfDecl();
13135     owner.Loc = msg->getSuperLoc();
13136     owner.Range = msg->getSuperLoc();
13137   }
13138 
13139   // Check whether the receiver is captured by any of the arguments.
13140   const ObjCMethodDecl *MD = msg->getMethodDecl();
13141   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
13142     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
13143       // noescape blocks should not be retained by the method.
13144       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
13145         continue;
13146       return diagnoseRetainCycle(*this, capturer, owner);
13147     }
13148   }
13149 }
13150 
13151 /// Check a property assign to see if it's likely to cause a retain cycle.
13152 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
13153   RetainCycleOwner owner;
13154   if (!findRetainCycleOwner(*this, receiver, owner))
13155     return;
13156 
13157   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
13158     diagnoseRetainCycle(*this, capturer, owner);
13159 }
13160 
13161 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
13162   RetainCycleOwner Owner;
13163   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
13164     return;
13165 
13166   // Because we don't have an expression for the variable, we have to set the
13167   // location explicitly here.
13168   Owner.Loc = Var->getLocation();
13169   Owner.Range = Var->getSourceRange();
13170 
13171   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
13172     diagnoseRetainCycle(*this, Capturer, Owner);
13173 }
13174 
13175 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
13176                                      Expr *RHS, bool isProperty) {
13177   // Check if RHS is an Objective-C object literal, which also can get
13178   // immediately zapped in a weak reference.  Note that we explicitly
13179   // allow ObjCStringLiterals, since those are designed to never really die.
13180   RHS = RHS->IgnoreParenImpCasts();
13181 
13182   // This enum needs to match with the 'select' in
13183   // warn_objc_arc_literal_assign (off-by-1).
13184   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
13185   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
13186     return false;
13187 
13188   S.Diag(Loc, diag::warn_arc_literal_assign)
13189     << (unsigned) Kind
13190     << (isProperty ? 0 : 1)
13191     << RHS->getSourceRange();
13192 
13193   return true;
13194 }
13195 
13196 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
13197                                     Qualifiers::ObjCLifetime LT,
13198                                     Expr *RHS, bool isProperty) {
13199   // Strip off any implicit cast added to get to the one ARC-specific.
13200   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13201     if (cast->getCastKind() == CK_ARCConsumeObject) {
13202       S.Diag(Loc, diag::warn_arc_retained_assign)
13203         << (LT == Qualifiers::OCL_ExplicitNone)
13204         << (isProperty ? 0 : 1)
13205         << RHS->getSourceRange();
13206       return true;
13207     }
13208     RHS = cast->getSubExpr();
13209   }
13210 
13211   if (LT == Qualifiers::OCL_Weak &&
13212       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
13213     return true;
13214 
13215   return false;
13216 }
13217 
13218 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
13219                               QualType LHS, Expr *RHS) {
13220   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
13221 
13222   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
13223     return false;
13224 
13225   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
13226     return true;
13227 
13228   return false;
13229 }
13230 
13231 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
13232                               Expr *LHS, Expr *RHS) {
13233   QualType LHSType;
13234   // PropertyRef on LHS type need be directly obtained from
13235   // its declaration as it has a PseudoType.
13236   ObjCPropertyRefExpr *PRE
13237     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
13238   if (PRE && !PRE->isImplicitProperty()) {
13239     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13240     if (PD)
13241       LHSType = PD->getType();
13242   }
13243 
13244   if (LHSType.isNull())
13245     LHSType = LHS->getType();
13246 
13247   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
13248 
13249   if (LT == Qualifiers::OCL_Weak) {
13250     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
13251       getCurFunction()->markSafeWeakUse(LHS);
13252   }
13253 
13254   if (checkUnsafeAssigns(Loc, LHSType, RHS))
13255     return;
13256 
13257   // FIXME. Check for other life times.
13258   if (LT != Qualifiers::OCL_None)
13259     return;
13260 
13261   if (PRE) {
13262     if (PRE->isImplicitProperty())
13263       return;
13264     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13265     if (!PD)
13266       return;
13267 
13268     unsigned Attributes = PD->getPropertyAttributes();
13269     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
13270       // when 'assign' attribute was not explicitly specified
13271       // by user, ignore it and rely on property type itself
13272       // for lifetime info.
13273       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
13274       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
13275           LHSType->isObjCRetainableType())
13276         return;
13277 
13278       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13279         if (cast->getCastKind() == CK_ARCConsumeObject) {
13280           Diag(Loc, diag::warn_arc_retained_property_assign)
13281           << RHS->getSourceRange();
13282           return;
13283         }
13284         RHS = cast->getSubExpr();
13285       }
13286     }
13287     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
13288       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
13289         return;
13290     }
13291   }
13292 }
13293 
13294 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
13295 
13296 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
13297                                         SourceLocation StmtLoc,
13298                                         const NullStmt *Body) {
13299   // Do not warn if the body is a macro that expands to nothing, e.g:
13300   //
13301   // #define CALL(x)
13302   // if (condition)
13303   //   CALL(0);
13304   if (Body->hasLeadingEmptyMacro())
13305     return false;
13306 
13307   // Get line numbers of statement and body.
13308   bool StmtLineInvalid;
13309   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
13310                                                       &StmtLineInvalid);
13311   if (StmtLineInvalid)
13312     return false;
13313 
13314   bool BodyLineInvalid;
13315   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
13316                                                       &BodyLineInvalid);
13317   if (BodyLineInvalid)
13318     return false;
13319 
13320   // Warn if null statement and body are on the same line.
13321   if (StmtLine != BodyLine)
13322     return false;
13323 
13324   return true;
13325 }
13326 
13327 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
13328                                  const Stmt *Body,
13329                                  unsigned DiagID) {
13330   // Since this is a syntactic check, don't emit diagnostic for template
13331   // instantiations, this just adds noise.
13332   if (CurrentInstantiationScope)
13333     return;
13334 
13335   // The body should be a null statement.
13336   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13337   if (!NBody)
13338     return;
13339 
13340   // Do the usual checks.
13341   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13342     return;
13343 
13344   Diag(NBody->getSemiLoc(), DiagID);
13345   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13346 }
13347 
13348 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
13349                                  const Stmt *PossibleBody) {
13350   assert(!CurrentInstantiationScope); // Ensured by caller
13351 
13352   SourceLocation StmtLoc;
13353   const Stmt *Body;
13354   unsigned DiagID;
13355   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
13356     StmtLoc = FS->getRParenLoc();
13357     Body = FS->getBody();
13358     DiagID = diag::warn_empty_for_body;
13359   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
13360     StmtLoc = WS->getCond()->getSourceRange().getEnd();
13361     Body = WS->getBody();
13362     DiagID = diag::warn_empty_while_body;
13363   } else
13364     return; // Neither `for' nor `while'.
13365 
13366   // The body should be a null statement.
13367   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13368   if (!NBody)
13369     return;
13370 
13371   // Skip expensive checks if diagnostic is disabled.
13372   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
13373     return;
13374 
13375   // Do the usual checks.
13376   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13377     return;
13378 
13379   // `for(...);' and `while(...);' are popular idioms, so in order to keep
13380   // noise level low, emit diagnostics only if for/while is followed by a
13381   // CompoundStmt, e.g.:
13382   //    for (int i = 0; i < n; i++);
13383   //    {
13384   //      a(i);
13385   //    }
13386   // or if for/while is followed by a statement with more indentation
13387   // than for/while itself:
13388   //    for (int i = 0; i < n; i++);
13389   //      a(i);
13390   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
13391   if (!ProbableTypo) {
13392     bool BodyColInvalid;
13393     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
13394         PossibleBody->getBeginLoc(), &BodyColInvalid);
13395     if (BodyColInvalid)
13396       return;
13397 
13398     bool StmtColInvalid;
13399     unsigned StmtCol =
13400         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
13401     if (StmtColInvalid)
13402       return;
13403 
13404     if (BodyCol > StmtCol)
13405       ProbableTypo = true;
13406   }
13407 
13408   if (ProbableTypo) {
13409     Diag(NBody->getSemiLoc(), DiagID);
13410     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13411   }
13412 }
13413 
13414 //===--- CHECK: Warn on self move with std::move. -------------------------===//
13415 
13416 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
13417 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
13418                              SourceLocation OpLoc) {
13419   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
13420     return;
13421 
13422   if (inTemplateInstantiation())
13423     return;
13424 
13425   // Strip parens and casts away.
13426   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13427   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13428 
13429   // Check for a call expression
13430   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
13431   if (!CE || CE->getNumArgs() != 1)
13432     return;
13433 
13434   // Check for a call to std::move
13435   if (!CE->isCallToStdMove())
13436     return;
13437 
13438   // Get argument from std::move
13439   RHSExpr = CE->getArg(0);
13440 
13441   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13442   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13443 
13444   // Two DeclRefExpr's, check that the decls are the same.
13445   if (LHSDeclRef && RHSDeclRef) {
13446     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13447       return;
13448     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13449         RHSDeclRef->getDecl()->getCanonicalDecl())
13450       return;
13451 
13452     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13453                                         << LHSExpr->getSourceRange()
13454                                         << RHSExpr->getSourceRange();
13455     return;
13456   }
13457 
13458   // Member variables require a different approach to check for self moves.
13459   // MemberExpr's are the same if every nested MemberExpr refers to the same
13460   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
13461   // the base Expr's are CXXThisExpr's.
13462   const Expr *LHSBase = LHSExpr;
13463   const Expr *RHSBase = RHSExpr;
13464   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
13465   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
13466   if (!LHSME || !RHSME)
13467     return;
13468 
13469   while (LHSME && RHSME) {
13470     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
13471         RHSME->getMemberDecl()->getCanonicalDecl())
13472       return;
13473 
13474     LHSBase = LHSME->getBase();
13475     RHSBase = RHSME->getBase();
13476     LHSME = dyn_cast<MemberExpr>(LHSBase);
13477     RHSME = dyn_cast<MemberExpr>(RHSBase);
13478   }
13479 
13480   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
13481   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
13482   if (LHSDeclRef && RHSDeclRef) {
13483     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13484       return;
13485     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13486         RHSDeclRef->getDecl()->getCanonicalDecl())
13487       return;
13488 
13489     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13490                                         << LHSExpr->getSourceRange()
13491                                         << RHSExpr->getSourceRange();
13492     return;
13493   }
13494 
13495   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
13496     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13497                                         << LHSExpr->getSourceRange()
13498                                         << RHSExpr->getSourceRange();
13499 }
13500 
13501 //===--- Layout compatibility ----------------------------------------------//
13502 
13503 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
13504 
13505 /// Check if two enumeration types are layout-compatible.
13506 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
13507   // C++11 [dcl.enum] p8:
13508   // Two enumeration types are layout-compatible if they have the same
13509   // underlying type.
13510   return ED1->isComplete() && ED2->isComplete() &&
13511          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
13512 }
13513 
13514 /// Check if two fields are layout-compatible.
13515 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
13516                                FieldDecl *Field2) {
13517   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
13518     return false;
13519 
13520   if (Field1->isBitField() != Field2->isBitField())
13521     return false;
13522 
13523   if (Field1->isBitField()) {
13524     // Make sure that the bit-fields are the same length.
13525     unsigned Bits1 = Field1->getBitWidthValue(C);
13526     unsigned Bits2 = Field2->getBitWidthValue(C);
13527 
13528     if (Bits1 != Bits2)
13529       return false;
13530   }
13531 
13532   return true;
13533 }
13534 
13535 /// Check if two standard-layout structs are layout-compatible.
13536 /// (C++11 [class.mem] p17)
13537 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
13538                                      RecordDecl *RD2) {
13539   // If both records are C++ classes, check that base classes match.
13540   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
13541     // If one of records is a CXXRecordDecl we are in C++ mode,
13542     // thus the other one is a CXXRecordDecl, too.
13543     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
13544     // Check number of base classes.
13545     if (D1CXX->getNumBases() != D2CXX->getNumBases())
13546       return false;
13547 
13548     // Check the base classes.
13549     for (CXXRecordDecl::base_class_const_iterator
13550                Base1 = D1CXX->bases_begin(),
13551            BaseEnd1 = D1CXX->bases_end(),
13552               Base2 = D2CXX->bases_begin();
13553          Base1 != BaseEnd1;
13554          ++Base1, ++Base2) {
13555       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
13556         return false;
13557     }
13558   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
13559     // If only RD2 is a C++ class, it should have zero base classes.
13560     if (D2CXX->getNumBases() > 0)
13561       return false;
13562   }
13563 
13564   // Check the fields.
13565   RecordDecl::field_iterator Field2 = RD2->field_begin(),
13566                              Field2End = RD2->field_end(),
13567                              Field1 = RD1->field_begin(),
13568                              Field1End = RD1->field_end();
13569   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
13570     if (!isLayoutCompatible(C, *Field1, *Field2))
13571       return false;
13572   }
13573   if (Field1 != Field1End || Field2 != Field2End)
13574     return false;
13575 
13576   return true;
13577 }
13578 
13579 /// Check if two standard-layout unions are layout-compatible.
13580 /// (C++11 [class.mem] p18)
13581 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
13582                                     RecordDecl *RD2) {
13583   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
13584   for (auto *Field2 : RD2->fields())
13585     UnmatchedFields.insert(Field2);
13586 
13587   for (auto *Field1 : RD1->fields()) {
13588     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
13589         I = UnmatchedFields.begin(),
13590         E = UnmatchedFields.end();
13591 
13592     for ( ; I != E; ++I) {
13593       if (isLayoutCompatible(C, Field1, *I)) {
13594         bool Result = UnmatchedFields.erase(*I);
13595         (void) Result;
13596         assert(Result);
13597         break;
13598       }
13599     }
13600     if (I == E)
13601       return false;
13602   }
13603 
13604   return UnmatchedFields.empty();
13605 }
13606 
13607 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
13608                                RecordDecl *RD2) {
13609   if (RD1->isUnion() != RD2->isUnion())
13610     return false;
13611 
13612   if (RD1->isUnion())
13613     return isLayoutCompatibleUnion(C, RD1, RD2);
13614   else
13615     return isLayoutCompatibleStruct(C, RD1, RD2);
13616 }
13617 
13618 /// Check if two types are layout-compatible in C++11 sense.
13619 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
13620   if (T1.isNull() || T2.isNull())
13621     return false;
13622 
13623   // C++11 [basic.types] p11:
13624   // If two types T1 and T2 are the same type, then T1 and T2 are
13625   // layout-compatible types.
13626   if (C.hasSameType(T1, T2))
13627     return true;
13628 
13629   T1 = T1.getCanonicalType().getUnqualifiedType();
13630   T2 = T2.getCanonicalType().getUnqualifiedType();
13631 
13632   const Type::TypeClass TC1 = T1->getTypeClass();
13633   const Type::TypeClass TC2 = T2->getTypeClass();
13634 
13635   if (TC1 != TC2)
13636     return false;
13637 
13638   if (TC1 == Type::Enum) {
13639     return isLayoutCompatible(C,
13640                               cast<EnumType>(T1)->getDecl(),
13641                               cast<EnumType>(T2)->getDecl());
13642   } else if (TC1 == Type::Record) {
13643     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
13644       return false;
13645 
13646     return isLayoutCompatible(C,
13647                               cast<RecordType>(T1)->getDecl(),
13648                               cast<RecordType>(T2)->getDecl());
13649   }
13650 
13651   return false;
13652 }
13653 
13654 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
13655 
13656 /// Given a type tag expression find the type tag itself.
13657 ///
13658 /// \param TypeExpr Type tag expression, as it appears in user's code.
13659 ///
13660 /// \param VD Declaration of an identifier that appears in a type tag.
13661 ///
13662 /// \param MagicValue Type tag magic value.
13663 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
13664                             const ValueDecl **VD, uint64_t *MagicValue) {
13665   while(true) {
13666     if (!TypeExpr)
13667       return false;
13668 
13669     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
13670 
13671     switch (TypeExpr->getStmtClass()) {
13672     case Stmt::UnaryOperatorClass: {
13673       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
13674       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
13675         TypeExpr = UO->getSubExpr();
13676         continue;
13677       }
13678       return false;
13679     }
13680 
13681     case Stmt::DeclRefExprClass: {
13682       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
13683       *VD = DRE->getDecl();
13684       return true;
13685     }
13686 
13687     case Stmt::IntegerLiteralClass: {
13688       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
13689       llvm::APInt MagicValueAPInt = IL->getValue();
13690       if (MagicValueAPInt.getActiveBits() <= 64) {
13691         *MagicValue = MagicValueAPInt.getZExtValue();
13692         return true;
13693       } else
13694         return false;
13695     }
13696 
13697     case Stmt::BinaryConditionalOperatorClass:
13698     case Stmt::ConditionalOperatorClass: {
13699       const AbstractConditionalOperator *ACO =
13700           cast<AbstractConditionalOperator>(TypeExpr);
13701       bool Result;
13702       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
13703         if (Result)
13704           TypeExpr = ACO->getTrueExpr();
13705         else
13706           TypeExpr = ACO->getFalseExpr();
13707         continue;
13708       }
13709       return false;
13710     }
13711 
13712     case Stmt::BinaryOperatorClass: {
13713       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
13714       if (BO->getOpcode() == BO_Comma) {
13715         TypeExpr = BO->getRHS();
13716         continue;
13717       }
13718       return false;
13719     }
13720 
13721     default:
13722       return false;
13723     }
13724   }
13725 }
13726 
13727 /// Retrieve the C type corresponding to type tag TypeExpr.
13728 ///
13729 /// \param TypeExpr Expression that specifies a type tag.
13730 ///
13731 /// \param MagicValues Registered magic values.
13732 ///
13733 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
13734 ///        kind.
13735 ///
13736 /// \param TypeInfo Information about the corresponding C type.
13737 ///
13738 /// \returns true if the corresponding C type was found.
13739 static bool GetMatchingCType(
13740         const IdentifierInfo *ArgumentKind,
13741         const Expr *TypeExpr, const ASTContext &Ctx,
13742         const llvm::DenseMap<Sema::TypeTagMagicValue,
13743                              Sema::TypeTagData> *MagicValues,
13744         bool &FoundWrongKind,
13745         Sema::TypeTagData &TypeInfo) {
13746   FoundWrongKind = false;
13747 
13748   // Variable declaration that has type_tag_for_datatype attribute.
13749   const ValueDecl *VD = nullptr;
13750 
13751   uint64_t MagicValue;
13752 
13753   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
13754     return false;
13755 
13756   if (VD) {
13757     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
13758       if (I->getArgumentKind() != ArgumentKind) {
13759         FoundWrongKind = true;
13760         return false;
13761       }
13762       TypeInfo.Type = I->getMatchingCType();
13763       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
13764       TypeInfo.MustBeNull = I->getMustBeNull();
13765       return true;
13766     }
13767     return false;
13768   }
13769 
13770   if (!MagicValues)
13771     return false;
13772 
13773   llvm::DenseMap<Sema::TypeTagMagicValue,
13774                  Sema::TypeTagData>::const_iterator I =
13775       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
13776   if (I == MagicValues->end())
13777     return false;
13778 
13779   TypeInfo = I->second;
13780   return true;
13781 }
13782 
13783 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
13784                                       uint64_t MagicValue, QualType Type,
13785                                       bool LayoutCompatible,
13786                                       bool MustBeNull) {
13787   if (!TypeTagForDatatypeMagicValues)
13788     TypeTagForDatatypeMagicValues.reset(
13789         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
13790 
13791   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
13792   (*TypeTagForDatatypeMagicValues)[Magic] =
13793       TypeTagData(Type, LayoutCompatible, MustBeNull);
13794 }
13795 
13796 static bool IsSameCharType(QualType T1, QualType T2) {
13797   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
13798   if (!BT1)
13799     return false;
13800 
13801   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
13802   if (!BT2)
13803     return false;
13804 
13805   BuiltinType::Kind T1Kind = BT1->getKind();
13806   BuiltinType::Kind T2Kind = BT2->getKind();
13807 
13808   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
13809          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
13810          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
13811          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
13812 }
13813 
13814 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
13815                                     const ArrayRef<const Expr *> ExprArgs,
13816                                     SourceLocation CallSiteLoc) {
13817   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
13818   bool IsPointerAttr = Attr->getIsPointer();
13819 
13820   // Retrieve the argument representing the 'type_tag'.
13821   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
13822   if (TypeTagIdxAST >= ExprArgs.size()) {
13823     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
13824         << 0 << Attr->getTypeTagIdx().getSourceIndex();
13825     return;
13826   }
13827   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
13828   bool FoundWrongKind;
13829   TypeTagData TypeInfo;
13830   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
13831                         TypeTagForDatatypeMagicValues.get(),
13832                         FoundWrongKind, TypeInfo)) {
13833     if (FoundWrongKind)
13834       Diag(TypeTagExpr->getExprLoc(),
13835            diag::warn_type_tag_for_datatype_wrong_kind)
13836         << TypeTagExpr->getSourceRange();
13837     return;
13838   }
13839 
13840   // Retrieve the argument representing the 'arg_idx'.
13841   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
13842   if (ArgumentIdxAST >= ExprArgs.size()) {
13843     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
13844         << 1 << Attr->getArgumentIdx().getSourceIndex();
13845     return;
13846   }
13847   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
13848   if (IsPointerAttr) {
13849     // Skip implicit cast of pointer to `void *' (as a function argument).
13850     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
13851       if (ICE->getType()->isVoidPointerType() &&
13852           ICE->getCastKind() == CK_BitCast)
13853         ArgumentExpr = ICE->getSubExpr();
13854   }
13855   QualType ArgumentType = ArgumentExpr->getType();
13856 
13857   // Passing a `void*' pointer shouldn't trigger a warning.
13858   if (IsPointerAttr && ArgumentType->isVoidPointerType())
13859     return;
13860 
13861   if (TypeInfo.MustBeNull) {
13862     // Type tag with matching void type requires a null pointer.
13863     if (!ArgumentExpr->isNullPointerConstant(Context,
13864                                              Expr::NPC_ValueDependentIsNotNull)) {
13865       Diag(ArgumentExpr->getExprLoc(),
13866            diag::warn_type_safety_null_pointer_required)
13867           << ArgumentKind->getName()
13868           << ArgumentExpr->getSourceRange()
13869           << TypeTagExpr->getSourceRange();
13870     }
13871     return;
13872   }
13873 
13874   QualType RequiredType = TypeInfo.Type;
13875   if (IsPointerAttr)
13876     RequiredType = Context.getPointerType(RequiredType);
13877 
13878   bool mismatch = false;
13879   if (!TypeInfo.LayoutCompatible) {
13880     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
13881 
13882     // C++11 [basic.fundamental] p1:
13883     // Plain char, signed char, and unsigned char are three distinct types.
13884     //
13885     // But we treat plain `char' as equivalent to `signed char' or `unsigned
13886     // char' depending on the current char signedness mode.
13887     if (mismatch)
13888       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
13889                                            RequiredType->getPointeeType())) ||
13890           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
13891         mismatch = false;
13892   } else
13893     if (IsPointerAttr)
13894       mismatch = !isLayoutCompatible(Context,
13895                                      ArgumentType->getPointeeType(),
13896                                      RequiredType->getPointeeType());
13897     else
13898       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
13899 
13900   if (mismatch)
13901     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
13902         << ArgumentType << ArgumentKind
13903         << TypeInfo.LayoutCompatible << RequiredType
13904         << ArgumentExpr->getSourceRange()
13905         << TypeTagExpr->getSourceRange();
13906 }
13907 
13908 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
13909                                          CharUnits Alignment) {
13910   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
13911 }
13912 
13913 void Sema::DiagnoseMisalignedMembers() {
13914   for (MisalignedMember &m : MisalignedMembers) {
13915     const NamedDecl *ND = m.RD;
13916     if (ND->getName().empty()) {
13917       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
13918         ND = TD;
13919     }
13920     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
13921         << m.MD << ND << m.E->getSourceRange();
13922   }
13923   MisalignedMembers.clear();
13924 }
13925 
13926 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
13927   E = E->IgnoreParens();
13928   if (!T->isPointerType() && !T->isIntegerType())
13929     return;
13930   if (isa<UnaryOperator>(E) &&
13931       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
13932     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
13933     if (isa<MemberExpr>(Op)) {
13934       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
13935       if (MA != MisalignedMembers.end() &&
13936           (T->isIntegerType() ||
13937            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
13938                                    Context.getTypeAlignInChars(
13939                                        T->getPointeeType()) <= MA->Alignment))))
13940         MisalignedMembers.erase(MA);
13941     }
13942   }
13943 }
13944 
13945 void Sema::RefersToMemberWithReducedAlignment(
13946     Expr *E,
13947     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
13948         Action) {
13949   const auto *ME = dyn_cast<MemberExpr>(E);
13950   if (!ME)
13951     return;
13952 
13953   // No need to check expressions with an __unaligned-qualified type.
13954   if (E->getType().getQualifiers().hasUnaligned())
13955     return;
13956 
13957   // For a chain of MemberExpr like "a.b.c.d" this list
13958   // will keep FieldDecl's like [d, c, b].
13959   SmallVector<FieldDecl *, 4> ReverseMemberChain;
13960   const MemberExpr *TopME = nullptr;
13961   bool AnyIsPacked = false;
13962   do {
13963     QualType BaseType = ME->getBase()->getType();
13964     if (ME->isArrow())
13965       BaseType = BaseType->getPointeeType();
13966     RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl();
13967     if (RD->isInvalidDecl())
13968       return;
13969 
13970     ValueDecl *MD = ME->getMemberDecl();
13971     auto *FD = dyn_cast<FieldDecl>(MD);
13972     // We do not care about non-data members.
13973     if (!FD || FD->isInvalidDecl())
13974       return;
13975 
13976     AnyIsPacked =
13977         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
13978     ReverseMemberChain.push_back(FD);
13979 
13980     TopME = ME;
13981     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
13982   } while (ME);
13983   assert(TopME && "We did not compute a topmost MemberExpr!");
13984 
13985   // Not the scope of this diagnostic.
13986   if (!AnyIsPacked)
13987     return;
13988 
13989   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
13990   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
13991   // TODO: The innermost base of the member expression may be too complicated.
13992   // For now, just disregard these cases. This is left for future
13993   // improvement.
13994   if (!DRE && !isa<CXXThisExpr>(TopBase))
13995       return;
13996 
13997   // Alignment expected by the whole expression.
13998   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
13999 
14000   // No need to do anything else with this case.
14001   if (ExpectedAlignment.isOne())
14002     return;
14003 
14004   // Synthesize offset of the whole access.
14005   CharUnits Offset;
14006   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
14007        I++) {
14008     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
14009   }
14010 
14011   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14012   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
14013       ReverseMemberChain.back()->getParent()->getTypeForDecl());
14014 
14015   // The base expression of the innermost MemberExpr may give
14016   // stronger guarantees than the class containing the member.
14017   if (DRE && !TopME->isArrow()) {
14018     const ValueDecl *VD = DRE->getDecl();
14019     if (!VD->getType()->isReferenceType())
14020       CompleteObjectAlignment =
14021           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
14022   }
14023 
14024   // Check if the synthesized offset fulfills the alignment.
14025   if (Offset % ExpectedAlignment != 0 ||
14026       // It may fulfill the offset it but the effective alignment may still be
14027       // lower than the expected expression alignment.
14028       CompleteObjectAlignment < ExpectedAlignment) {
14029     // If this happens, we want to determine a sensible culprit of this.
14030     // Intuitively, watching the chain of member expressions from right to
14031     // left, we start with the required alignment (as required by the field
14032     // type) but some packed attribute in that chain has reduced the alignment.
14033     // It may happen that another packed structure increases it again. But if
14034     // we are here such increase has not been enough. So pointing the first
14035     // FieldDecl that either is packed or else its RecordDecl is,
14036     // seems reasonable.
14037     FieldDecl *FD = nullptr;
14038     CharUnits Alignment;
14039     for (FieldDecl *FDI : ReverseMemberChain) {
14040       if (FDI->hasAttr<PackedAttr>() ||
14041           FDI->getParent()->hasAttr<PackedAttr>()) {
14042         FD = FDI;
14043         Alignment = std::min(
14044             Context.getTypeAlignInChars(FD->getType()),
14045             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
14046         break;
14047       }
14048     }
14049     assert(FD && "We did not find a packed FieldDecl!");
14050     Action(E, FD->getParent(), FD, Alignment);
14051   }
14052 }
14053 
14054 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
14055   using namespace std::placeholders;
14056 
14057   RefersToMemberWithReducedAlignment(
14058       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
14059                      _2, _3, _4));
14060 }
14061