1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/Stmt.h" 34 #include "clang/AST/TemplateBase.h" 35 #include "clang/AST/Type.h" 36 #include "clang/AST/TypeLoc.h" 37 #include "clang/AST/UnresolvedSet.h" 38 #include "clang/Basic/AddressSpaces.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/OpenCLOptions.h" 45 #include "clang/Basic/OperatorKinds.h" 46 #include "clang/Basic/PartialDiagnostic.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/SyncScope.h" 51 #include "clang/Basic/TargetBuiltins.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/TypeTraits.h" 55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 56 #include "clang/Sema/Initialization.h" 57 #include "clang/Sema/Lookup.h" 58 #include "clang/Sema/Ownership.h" 59 #include "clang/Sema/Scope.h" 60 #include "clang/Sema/ScopeInfo.h" 61 #include "clang/Sema/Sema.h" 62 #include "clang/Sema/SemaInternal.h" 63 #include "llvm/ADT/APFloat.h" 64 #include "llvm/ADT/APInt.h" 65 #include "llvm/ADT/APSInt.h" 66 #include "llvm/ADT/ArrayRef.h" 67 #include "llvm/ADT/DenseMap.h" 68 #include "llvm/ADT/FoldingSet.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallBitVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallString.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/StringSwitch.h" 78 #include "llvm/ADT/Triple.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/ConvertUTF.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/Format.h" 85 #include "llvm/Support/Locale.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/SaveAndRestore.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstddef> 92 #include <cstdint> 93 #include <functional> 94 #include <limits> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 99 using namespace clang; 100 using namespace sema; 101 102 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 103 unsigned ByteNo) const { 104 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 105 Context.getTargetInfo()); 106 } 107 108 /// Checks that a call expression's argument count is the desired number. 109 /// This is useful when doing custom type-checking. Returns true on error. 110 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 111 unsigned argCount = call->getNumArgs(); 112 if (argCount == desiredArgCount) return false; 113 114 if (argCount < desiredArgCount) 115 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 116 << 0 /*function call*/ << desiredArgCount << argCount 117 << call->getSourceRange(); 118 119 // Highlight all the excess arguments. 120 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 121 call->getArg(argCount - 1)->getEndLoc()); 122 123 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 124 << 0 /*function call*/ << desiredArgCount << argCount 125 << call->getArg(1)->getSourceRange(); 126 } 127 128 /// Check that the first argument to __builtin_annotation is an integer 129 /// and the second argument is a non-wide string literal. 130 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 131 if (checkArgCount(S, TheCall, 2)) 132 return true; 133 134 // First argument should be an integer. 135 Expr *ValArg = TheCall->getArg(0); 136 QualType Ty = ValArg->getType(); 137 if (!Ty->isIntegerType()) { 138 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 139 << ValArg->getSourceRange(); 140 return true; 141 } 142 143 // Second argument should be a constant string. 144 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 145 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 146 if (!Literal || !Literal->isAscii()) { 147 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 148 << StrArg->getSourceRange(); 149 return true; 150 } 151 152 TheCall->setType(Ty); 153 return false; 154 } 155 156 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 157 // We need at least one argument. 158 if (TheCall->getNumArgs() < 1) { 159 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 160 << 0 << 1 << TheCall->getNumArgs() 161 << TheCall->getCallee()->getSourceRange(); 162 return true; 163 } 164 165 // All arguments should be wide string literals. 166 for (Expr *Arg : TheCall->arguments()) { 167 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 168 if (!Literal || !Literal->isWide()) { 169 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 170 << Arg->getSourceRange(); 171 return true; 172 } 173 } 174 175 return false; 176 } 177 178 /// Check that the argument to __builtin_addressof is a glvalue, and set the 179 /// result type to the corresponding pointer type. 180 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 181 if (checkArgCount(S, TheCall, 1)) 182 return true; 183 184 ExprResult Arg(TheCall->getArg(0)); 185 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 186 if (ResultType.isNull()) 187 return true; 188 189 TheCall->setArg(0, Arg.get()); 190 TheCall->setType(ResultType); 191 return false; 192 } 193 194 /// Check the number of arguments and set the result type to 195 /// the argument type. 196 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 197 if (checkArgCount(S, TheCall, 1)) 198 return true; 199 200 TheCall->setType(TheCall->getArg(0)->getType()); 201 return false; 202 } 203 204 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 205 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 206 /// type (but not a function pointer) and that the alignment is a power-of-two. 207 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 208 if (checkArgCount(S, TheCall, 2)) 209 return true; 210 211 clang::Expr *Source = TheCall->getArg(0); 212 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 213 214 auto IsValidIntegerType = [](QualType Ty) { 215 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 216 }; 217 QualType SrcTy = Source->getType(); 218 // We should also be able to use it with arrays (but not functions!). 219 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 220 SrcTy = S.Context.getDecayedType(SrcTy); 221 } 222 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 223 SrcTy->isFunctionPointerType()) { 224 // FIXME: this is not quite the right error message since we don't allow 225 // floating point types, or member pointers. 226 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 227 << SrcTy; 228 return true; 229 } 230 231 clang::Expr *AlignOp = TheCall->getArg(1); 232 if (!IsValidIntegerType(AlignOp->getType())) { 233 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 234 << AlignOp->getType(); 235 return true; 236 } 237 Expr::EvalResult AlignResult; 238 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 239 // We can't check validity of alignment if it is type dependent. 240 if (!AlignOp->isInstantiationDependent() && 241 AlignOp->EvaluateAsInt(AlignResult, S.Context, 242 Expr::SE_AllowSideEffects)) { 243 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 244 llvm::APSInt MaxValue( 245 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 246 if (AlignValue < 1) { 247 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 248 return true; 249 } 250 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 251 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 252 << MaxValue.toString(10); 253 return true; 254 } 255 if (!AlignValue.isPowerOf2()) { 256 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 257 return true; 258 } 259 if (AlignValue == 1) { 260 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 261 << IsBooleanAlignBuiltin; 262 } 263 } 264 265 ExprResult SrcArg = S.PerformCopyInitialization( 266 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 267 SourceLocation(), Source); 268 if (SrcArg.isInvalid()) 269 return true; 270 TheCall->setArg(0, SrcArg.get()); 271 ExprResult AlignArg = 272 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 273 S.Context, AlignOp->getType(), false), 274 SourceLocation(), AlignOp); 275 if (AlignArg.isInvalid()) 276 return true; 277 TheCall->setArg(1, AlignArg.get()); 278 // For align_up/align_down, the return type is the same as the (potentially 279 // decayed) argument type including qualifiers. For is_aligned(), the result 280 // is always bool. 281 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 282 return false; 283 } 284 285 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) { 286 if (checkArgCount(S, TheCall, 3)) 287 return true; 288 289 // First two arguments should be integers. 290 for (unsigned I = 0; I < 2; ++I) { 291 ExprResult Arg = TheCall->getArg(I); 292 QualType Ty = Arg.get()->getType(); 293 if (!Ty->isIntegerType()) { 294 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 295 << Ty << Arg.get()->getSourceRange(); 296 return true; 297 } 298 InitializedEntity Entity = InitializedEntity::InitializeParameter( 299 S.getASTContext(), Ty, /*consume*/ false); 300 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 301 if (Arg.isInvalid()) 302 return true; 303 TheCall->setArg(I, Arg.get()); 304 } 305 306 // Third argument should be a pointer to a non-const integer. 307 // IRGen correctly handles volatile, restrict, and address spaces, and 308 // the other qualifiers aren't possible. 309 { 310 ExprResult Arg = TheCall->getArg(2); 311 QualType Ty = Arg.get()->getType(); 312 const auto *PtrTy = Ty->getAs<PointerType>(); 313 if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() && 314 !PtrTy->getPointeeType().isConstQualified())) { 315 S.Diag(Arg.get()->getBeginLoc(), 316 diag::err_overflow_builtin_must_be_ptr_int) 317 << Ty << Arg.get()->getSourceRange(); 318 return true; 319 } 320 InitializedEntity Entity = InitializedEntity::InitializeParameter( 321 S.getASTContext(), Ty, /*consume*/ false); 322 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 323 if (Arg.isInvalid()) 324 return true; 325 TheCall->setArg(2, Arg.get()); 326 } 327 return false; 328 } 329 330 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 331 if (checkArgCount(S, BuiltinCall, 2)) 332 return true; 333 334 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 335 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 336 Expr *Call = BuiltinCall->getArg(0); 337 Expr *Chain = BuiltinCall->getArg(1); 338 339 if (Call->getStmtClass() != Stmt::CallExprClass) { 340 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 341 << Call->getSourceRange(); 342 return true; 343 } 344 345 auto CE = cast<CallExpr>(Call); 346 if (CE->getCallee()->getType()->isBlockPointerType()) { 347 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 348 << Call->getSourceRange(); 349 return true; 350 } 351 352 const Decl *TargetDecl = CE->getCalleeDecl(); 353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 354 if (FD->getBuiltinID()) { 355 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 356 << Call->getSourceRange(); 357 return true; 358 } 359 360 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 361 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 362 << Call->getSourceRange(); 363 return true; 364 } 365 366 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 367 if (ChainResult.isInvalid()) 368 return true; 369 if (!ChainResult.get()->getType()->isPointerType()) { 370 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 371 << Chain->getSourceRange(); 372 return true; 373 } 374 375 QualType ReturnTy = CE->getCallReturnType(S.Context); 376 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 377 QualType BuiltinTy = S.Context.getFunctionType( 378 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 379 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 380 381 Builtin = 382 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 383 384 BuiltinCall->setType(CE->getType()); 385 BuiltinCall->setValueKind(CE->getValueKind()); 386 BuiltinCall->setObjectKind(CE->getObjectKind()); 387 BuiltinCall->setCallee(Builtin); 388 BuiltinCall->setArg(1, ChainResult.get()); 389 390 return false; 391 } 392 393 namespace { 394 395 class EstimateSizeFormatHandler 396 : public analyze_format_string::FormatStringHandler { 397 size_t Size; 398 399 public: 400 EstimateSizeFormatHandler(StringRef Format) 401 : Size(std::min(Format.find(0), Format.size()) + 402 1 /* null byte always written by sprintf */) {} 403 404 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 405 const char *, unsigned SpecifierLen) override { 406 407 const size_t FieldWidth = computeFieldWidth(FS); 408 const size_t Precision = computePrecision(FS); 409 410 // The actual format. 411 switch (FS.getConversionSpecifier().getKind()) { 412 // Just a char. 413 case analyze_format_string::ConversionSpecifier::cArg: 414 case analyze_format_string::ConversionSpecifier::CArg: 415 Size += std::max(FieldWidth, (size_t)1); 416 break; 417 // Just an integer. 418 case analyze_format_string::ConversionSpecifier::dArg: 419 case analyze_format_string::ConversionSpecifier::DArg: 420 case analyze_format_string::ConversionSpecifier::iArg: 421 case analyze_format_string::ConversionSpecifier::oArg: 422 case analyze_format_string::ConversionSpecifier::OArg: 423 case analyze_format_string::ConversionSpecifier::uArg: 424 case analyze_format_string::ConversionSpecifier::UArg: 425 case analyze_format_string::ConversionSpecifier::xArg: 426 case analyze_format_string::ConversionSpecifier::XArg: 427 Size += std::max(FieldWidth, Precision); 428 break; 429 430 // %g style conversion switches between %f or %e style dynamically. 431 // %f always takes less space, so default to it. 432 case analyze_format_string::ConversionSpecifier::gArg: 433 case analyze_format_string::ConversionSpecifier::GArg: 434 435 // Floating point number in the form '[+]ddd.ddd'. 436 case analyze_format_string::ConversionSpecifier::fArg: 437 case analyze_format_string::ConversionSpecifier::FArg: 438 Size += std::max(FieldWidth, 1 /* integer part */ + 439 (Precision ? 1 + Precision 440 : 0) /* period + decimal */); 441 break; 442 443 // Floating point number in the form '[-]d.ddde[+-]dd'. 444 case analyze_format_string::ConversionSpecifier::eArg: 445 case analyze_format_string::ConversionSpecifier::EArg: 446 Size += 447 std::max(FieldWidth, 448 1 /* integer part */ + 449 (Precision ? 1 + Precision : 0) /* period + decimal */ + 450 1 /* e or E letter */ + 2 /* exponent */); 451 break; 452 453 // Floating point number in the form '[-]0xh.hhhhp±dd'. 454 case analyze_format_string::ConversionSpecifier::aArg: 455 case analyze_format_string::ConversionSpecifier::AArg: 456 Size += 457 std::max(FieldWidth, 458 2 /* 0x */ + 1 /* integer part */ + 459 (Precision ? 1 + Precision : 0) /* period + decimal */ + 460 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 461 break; 462 463 // Just a string. 464 case analyze_format_string::ConversionSpecifier::sArg: 465 case analyze_format_string::ConversionSpecifier::SArg: 466 Size += FieldWidth; 467 break; 468 469 // Just a pointer in the form '0xddd'. 470 case analyze_format_string::ConversionSpecifier::pArg: 471 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 472 break; 473 474 // A plain percent. 475 case analyze_format_string::ConversionSpecifier::PercentArg: 476 Size += 1; 477 break; 478 479 default: 480 break; 481 } 482 483 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 484 485 if (FS.hasAlternativeForm()) { 486 switch (FS.getConversionSpecifier().getKind()) { 487 default: 488 break; 489 // Force a leading '0'. 490 case analyze_format_string::ConversionSpecifier::oArg: 491 Size += 1; 492 break; 493 // Force a leading '0x'. 494 case analyze_format_string::ConversionSpecifier::xArg: 495 case analyze_format_string::ConversionSpecifier::XArg: 496 Size += 2; 497 break; 498 // Force a period '.' before decimal, even if precision is 0. 499 case analyze_format_string::ConversionSpecifier::aArg: 500 case analyze_format_string::ConversionSpecifier::AArg: 501 case analyze_format_string::ConversionSpecifier::eArg: 502 case analyze_format_string::ConversionSpecifier::EArg: 503 case analyze_format_string::ConversionSpecifier::fArg: 504 case analyze_format_string::ConversionSpecifier::FArg: 505 case analyze_format_string::ConversionSpecifier::gArg: 506 case analyze_format_string::ConversionSpecifier::GArg: 507 Size += (Precision ? 0 : 1); 508 break; 509 } 510 } 511 assert(SpecifierLen <= Size && "no underflow"); 512 Size -= SpecifierLen; 513 return true; 514 } 515 516 size_t getSizeLowerBound() const { return Size; } 517 518 private: 519 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 520 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 521 size_t FieldWidth = 0; 522 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 523 FieldWidth = FW.getConstantAmount(); 524 return FieldWidth; 525 } 526 527 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 528 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 529 size_t Precision = 0; 530 531 // See man 3 printf for default precision value based on the specifier. 532 switch (FW.getHowSpecified()) { 533 case analyze_format_string::OptionalAmount::NotSpecified: 534 switch (FS.getConversionSpecifier().getKind()) { 535 default: 536 break; 537 case analyze_format_string::ConversionSpecifier::dArg: // %d 538 case analyze_format_string::ConversionSpecifier::DArg: // %D 539 case analyze_format_string::ConversionSpecifier::iArg: // %i 540 Precision = 1; 541 break; 542 case analyze_format_string::ConversionSpecifier::oArg: // %d 543 case analyze_format_string::ConversionSpecifier::OArg: // %D 544 case analyze_format_string::ConversionSpecifier::uArg: // %d 545 case analyze_format_string::ConversionSpecifier::UArg: // %D 546 case analyze_format_string::ConversionSpecifier::xArg: // %d 547 case analyze_format_string::ConversionSpecifier::XArg: // %D 548 Precision = 1; 549 break; 550 case analyze_format_string::ConversionSpecifier::fArg: // %f 551 case analyze_format_string::ConversionSpecifier::FArg: // %F 552 case analyze_format_string::ConversionSpecifier::eArg: // %e 553 case analyze_format_string::ConversionSpecifier::EArg: // %E 554 case analyze_format_string::ConversionSpecifier::gArg: // %g 555 case analyze_format_string::ConversionSpecifier::GArg: // %G 556 Precision = 6; 557 break; 558 case analyze_format_string::ConversionSpecifier::pArg: // %d 559 Precision = 1; 560 break; 561 } 562 break; 563 case analyze_format_string::OptionalAmount::Constant: 564 Precision = FW.getConstantAmount(); 565 break; 566 default: 567 break; 568 } 569 return Precision; 570 } 571 }; 572 573 } // namespace 574 575 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 576 /// __builtin_*_chk function, then use the object size argument specified in the 577 /// source. Otherwise, infer the object size using __builtin_object_size. 578 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 579 CallExpr *TheCall) { 580 // FIXME: There are some more useful checks we could be doing here: 581 // - Evaluate strlen of strcpy arguments, use as object size. 582 583 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 584 isConstantEvaluated()) 585 return; 586 587 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 588 if (!BuiltinID) 589 return; 590 591 const TargetInfo &TI = getASTContext().getTargetInfo(); 592 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 593 594 unsigned DiagID = 0; 595 bool IsChkVariant = false; 596 Optional<llvm::APSInt> UsedSize; 597 unsigned SizeIndex, ObjectIndex; 598 switch (BuiltinID) { 599 default: 600 return; 601 case Builtin::BIsprintf: 602 case Builtin::BI__builtin___sprintf_chk: { 603 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 604 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 605 606 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 607 608 if (!Format->isAscii() && !Format->isUTF8()) 609 return; 610 611 StringRef FormatStrRef = Format->getString(); 612 EstimateSizeFormatHandler H(FormatStrRef); 613 const char *FormatBytes = FormatStrRef.data(); 614 const ConstantArrayType *T = 615 Context.getAsConstantArrayType(Format->getType()); 616 assert(T && "String literal not of constant array type!"); 617 size_t TypeSize = T->getSize().getZExtValue(); 618 619 // In case there's a null byte somewhere. 620 size_t StrLen = 621 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 622 if (!analyze_format_string::ParsePrintfString( 623 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 624 Context.getTargetInfo(), false)) { 625 DiagID = diag::warn_fortify_source_format_overflow; 626 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 627 .extOrTrunc(SizeTypeWidth); 628 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 629 IsChkVariant = true; 630 ObjectIndex = 2; 631 } else { 632 IsChkVariant = false; 633 ObjectIndex = 0; 634 } 635 break; 636 } 637 } 638 return; 639 } 640 case Builtin::BI__builtin___memcpy_chk: 641 case Builtin::BI__builtin___memmove_chk: 642 case Builtin::BI__builtin___memset_chk: 643 case Builtin::BI__builtin___strlcat_chk: 644 case Builtin::BI__builtin___strlcpy_chk: 645 case Builtin::BI__builtin___strncat_chk: 646 case Builtin::BI__builtin___strncpy_chk: 647 case Builtin::BI__builtin___stpncpy_chk: 648 case Builtin::BI__builtin___memccpy_chk: 649 case Builtin::BI__builtin___mempcpy_chk: { 650 DiagID = diag::warn_builtin_chk_overflow; 651 IsChkVariant = true; 652 SizeIndex = TheCall->getNumArgs() - 2; 653 ObjectIndex = TheCall->getNumArgs() - 1; 654 break; 655 } 656 657 case Builtin::BI__builtin___snprintf_chk: 658 case Builtin::BI__builtin___vsnprintf_chk: { 659 DiagID = diag::warn_builtin_chk_overflow; 660 IsChkVariant = true; 661 SizeIndex = 1; 662 ObjectIndex = 3; 663 break; 664 } 665 666 case Builtin::BIstrncat: 667 case Builtin::BI__builtin_strncat: 668 case Builtin::BIstrncpy: 669 case Builtin::BI__builtin_strncpy: 670 case Builtin::BIstpncpy: 671 case Builtin::BI__builtin_stpncpy: { 672 // Whether these functions overflow depends on the runtime strlen of the 673 // string, not just the buffer size, so emitting the "always overflow" 674 // diagnostic isn't quite right. We should still diagnose passing a buffer 675 // size larger than the destination buffer though; this is a runtime abort 676 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 677 DiagID = diag::warn_fortify_source_size_mismatch; 678 SizeIndex = TheCall->getNumArgs() - 1; 679 ObjectIndex = 0; 680 break; 681 } 682 683 case Builtin::BImemcpy: 684 case Builtin::BI__builtin_memcpy: 685 case Builtin::BImemmove: 686 case Builtin::BI__builtin_memmove: 687 case Builtin::BImemset: 688 case Builtin::BI__builtin_memset: 689 case Builtin::BImempcpy: 690 case Builtin::BI__builtin_mempcpy: { 691 DiagID = diag::warn_fortify_source_overflow; 692 SizeIndex = TheCall->getNumArgs() - 1; 693 ObjectIndex = 0; 694 break; 695 } 696 case Builtin::BIsnprintf: 697 case Builtin::BI__builtin_snprintf: 698 case Builtin::BIvsnprintf: 699 case Builtin::BI__builtin_vsnprintf: { 700 DiagID = diag::warn_fortify_source_size_mismatch; 701 SizeIndex = 1; 702 ObjectIndex = 0; 703 break; 704 } 705 } 706 707 llvm::APSInt ObjectSize; 708 // For __builtin___*_chk, the object size is explicitly provided by the caller 709 // (usually using __builtin_object_size). Use that value to check this call. 710 if (IsChkVariant) { 711 Expr::EvalResult Result; 712 Expr *SizeArg = TheCall->getArg(ObjectIndex); 713 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 714 return; 715 ObjectSize = Result.Val.getInt(); 716 717 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 718 } else { 719 // If the parameter has a pass_object_size attribute, then we should use its 720 // (potentially) more strict checking mode. Otherwise, conservatively assume 721 // type 0. 722 int BOSType = 0; 723 if (const auto *POS = 724 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 725 BOSType = POS->getType(); 726 727 Expr *ObjArg = TheCall->getArg(ObjectIndex); 728 uint64_t Result; 729 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 730 return; 731 // Get the object size in the target's size_t width. 732 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 733 } 734 735 // Evaluate the number of bytes of the object that this call will use. 736 if (!UsedSize) { 737 Expr::EvalResult Result; 738 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 739 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 740 return; 741 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 742 } 743 744 if (UsedSize.getValue().ule(ObjectSize)) 745 return; 746 747 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 748 // Skim off the details of whichever builtin was called to produce a better 749 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 750 if (IsChkVariant) { 751 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 752 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 753 } else if (FunctionName.startswith("__builtin_")) { 754 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 755 } 756 757 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 758 PDiag(DiagID) 759 << FunctionName << ObjectSize.toString(/*Radix=*/10) 760 << UsedSize.getValue().toString(/*Radix=*/10)); 761 } 762 763 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 764 Scope::ScopeFlags NeededScopeFlags, 765 unsigned DiagID) { 766 // Scopes aren't available during instantiation. Fortunately, builtin 767 // functions cannot be template args so they cannot be formed through template 768 // instantiation. Therefore checking once during the parse is sufficient. 769 if (SemaRef.inTemplateInstantiation()) 770 return false; 771 772 Scope *S = SemaRef.getCurScope(); 773 while (S && !S->isSEHExceptScope()) 774 S = S->getParent(); 775 if (!S || !(S->getFlags() & NeededScopeFlags)) { 776 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 777 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 778 << DRE->getDecl()->getIdentifier(); 779 return true; 780 } 781 782 return false; 783 } 784 785 static inline bool isBlockPointer(Expr *Arg) { 786 return Arg->getType()->isBlockPointerType(); 787 } 788 789 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 790 /// void*, which is a requirement of device side enqueue. 791 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 792 const BlockPointerType *BPT = 793 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 794 ArrayRef<QualType> Params = 795 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 796 unsigned ArgCounter = 0; 797 bool IllegalParams = false; 798 // Iterate through the block parameters until either one is found that is not 799 // a local void*, or the block is valid. 800 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 801 I != E; ++I, ++ArgCounter) { 802 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 803 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 804 LangAS::opencl_local) { 805 // Get the location of the error. If a block literal has been passed 806 // (BlockExpr) then we can point straight to the offending argument, 807 // else we just point to the variable reference. 808 SourceLocation ErrorLoc; 809 if (isa<BlockExpr>(BlockArg)) { 810 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 811 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 812 } else if (isa<DeclRefExpr>(BlockArg)) { 813 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 814 } 815 S.Diag(ErrorLoc, 816 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 817 IllegalParams = true; 818 } 819 } 820 821 return IllegalParams; 822 } 823 824 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 825 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 826 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 827 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 828 return true; 829 } 830 return false; 831 } 832 833 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 834 if (checkArgCount(S, TheCall, 2)) 835 return true; 836 837 if (checkOpenCLSubgroupExt(S, TheCall)) 838 return true; 839 840 // First argument is an ndrange_t type. 841 Expr *NDRangeArg = TheCall->getArg(0); 842 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 843 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 844 << TheCall->getDirectCallee() << "'ndrange_t'"; 845 return true; 846 } 847 848 Expr *BlockArg = TheCall->getArg(1); 849 if (!isBlockPointer(BlockArg)) { 850 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 851 << TheCall->getDirectCallee() << "block"; 852 return true; 853 } 854 return checkOpenCLBlockArgs(S, BlockArg); 855 } 856 857 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 858 /// get_kernel_work_group_size 859 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 860 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 861 if (checkArgCount(S, TheCall, 1)) 862 return true; 863 864 Expr *BlockArg = TheCall->getArg(0); 865 if (!isBlockPointer(BlockArg)) { 866 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 867 << TheCall->getDirectCallee() << "block"; 868 return true; 869 } 870 return checkOpenCLBlockArgs(S, BlockArg); 871 } 872 873 /// Diagnose integer type and any valid implicit conversion to it. 874 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 875 const QualType &IntType); 876 877 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 878 unsigned Start, unsigned End) { 879 bool IllegalParams = false; 880 for (unsigned I = Start; I <= End; ++I) 881 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 882 S.Context.getSizeType()); 883 return IllegalParams; 884 } 885 886 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 887 /// 'local void*' parameter of passed block. 888 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 889 Expr *BlockArg, 890 unsigned NumNonVarArgs) { 891 const BlockPointerType *BPT = 892 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 893 unsigned NumBlockParams = 894 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 895 unsigned TotalNumArgs = TheCall->getNumArgs(); 896 897 // For each argument passed to the block, a corresponding uint needs to 898 // be passed to describe the size of the local memory. 899 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 900 S.Diag(TheCall->getBeginLoc(), 901 diag::err_opencl_enqueue_kernel_local_size_args); 902 return true; 903 } 904 905 // Check that the sizes of the local memory are specified by integers. 906 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 907 TotalNumArgs - 1); 908 } 909 910 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 911 /// overload formats specified in Table 6.13.17.1. 912 /// int enqueue_kernel(queue_t queue, 913 /// kernel_enqueue_flags_t flags, 914 /// const ndrange_t ndrange, 915 /// void (^block)(void)) 916 /// int enqueue_kernel(queue_t queue, 917 /// kernel_enqueue_flags_t flags, 918 /// const ndrange_t ndrange, 919 /// uint num_events_in_wait_list, 920 /// clk_event_t *event_wait_list, 921 /// clk_event_t *event_ret, 922 /// void (^block)(void)) 923 /// int enqueue_kernel(queue_t queue, 924 /// kernel_enqueue_flags_t flags, 925 /// const ndrange_t ndrange, 926 /// void (^block)(local void*, ...), 927 /// uint size0, ...) 928 /// int enqueue_kernel(queue_t queue, 929 /// kernel_enqueue_flags_t flags, 930 /// const ndrange_t ndrange, 931 /// uint num_events_in_wait_list, 932 /// clk_event_t *event_wait_list, 933 /// clk_event_t *event_ret, 934 /// void (^block)(local void*, ...), 935 /// uint size0, ...) 936 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 937 unsigned NumArgs = TheCall->getNumArgs(); 938 939 if (NumArgs < 4) { 940 S.Diag(TheCall->getBeginLoc(), 941 diag::err_typecheck_call_too_few_args_at_least) 942 << 0 << 4 << NumArgs; 943 return true; 944 } 945 946 Expr *Arg0 = TheCall->getArg(0); 947 Expr *Arg1 = TheCall->getArg(1); 948 Expr *Arg2 = TheCall->getArg(2); 949 Expr *Arg3 = TheCall->getArg(3); 950 951 // First argument always needs to be a queue_t type. 952 if (!Arg0->getType()->isQueueT()) { 953 S.Diag(TheCall->getArg(0)->getBeginLoc(), 954 diag::err_opencl_builtin_expected_type) 955 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 956 return true; 957 } 958 959 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 960 if (!Arg1->getType()->isIntegerType()) { 961 S.Diag(TheCall->getArg(1)->getBeginLoc(), 962 diag::err_opencl_builtin_expected_type) 963 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 964 return true; 965 } 966 967 // Third argument is always an ndrange_t type. 968 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 969 S.Diag(TheCall->getArg(2)->getBeginLoc(), 970 diag::err_opencl_builtin_expected_type) 971 << TheCall->getDirectCallee() << "'ndrange_t'"; 972 return true; 973 } 974 975 // With four arguments, there is only one form that the function could be 976 // called in: no events and no variable arguments. 977 if (NumArgs == 4) { 978 // check that the last argument is the right block type. 979 if (!isBlockPointer(Arg3)) { 980 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 981 << TheCall->getDirectCallee() << "block"; 982 return true; 983 } 984 // we have a block type, check the prototype 985 const BlockPointerType *BPT = 986 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 987 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 988 S.Diag(Arg3->getBeginLoc(), 989 diag::err_opencl_enqueue_kernel_blocks_no_args); 990 return true; 991 } 992 return false; 993 } 994 // we can have block + varargs. 995 if (isBlockPointer(Arg3)) 996 return (checkOpenCLBlockArgs(S, Arg3) || 997 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 998 // last two cases with either exactly 7 args or 7 args and varargs. 999 if (NumArgs >= 7) { 1000 // check common block argument. 1001 Expr *Arg6 = TheCall->getArg(6); 1002 if (!isBlockPointer(Arg6)) { 1003 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1004 << TheCall->getDirectCallee() << "block"; 1005 return true; 1006 } 1007 if (checkOpenCLBlockArgs(S, Arg6)) 1008 return true; 1009 1010 // Forth argument has to be any integer type. 1011 if (!Arg3->getType()->isIntegerType()) { 1012 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1013 diag::err_opencl_builtin_expected_type) 1014 << TheCall->getDirectCallee() << "integer"; 1015 return true; 1016 } 1017 // check remaining common arguments. 1018 Expr *Arg4 = TheCall->getArg(4); 1019 Expr *Arg5 = TheCall->getArg(5); 1020 1021 // Fifth argument is always passed as a pointer to clk_event_t. 1022 if (!Arg4->isNullPointerConstant(S.Context, 1023 Expr::NPC_ValueDependentIsNotNull) && 1024 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1025 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1026 diag::err_opencl_builtin_expected_type) 1027 << TheCall->getDirectCallee() 1028 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1029 return true; 1030 } 1031 1032 // Sixth argument is always passed as a pointer to clk_event_t. 1033 if (!Arg5->isNullPointerConstant(S.Context, 1034 Expr::NPC_ValueDependentIsNotNull) && 1035 !(Arg5->getType()->isPointerType() && 1036 Arg5->getType()->getPointeeType()->isClkEventT())) { 1037 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1038 diag::err_opencl_builtin_expected_type) 1039 << TheCall->getDirectCallee() 1040 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1041 return true; 1042 } 1043 1044 if (NumArgs == 7) 1045 return false; 1046 1047 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1048 } 1049 1050 // None of the specific case has been detected, give generic error 1051 S.Diag(TheCall->getBeginLoc(), 1052 diag::err_opencl_enqueue_kernel_incorrect_args); 1053 return true; 1054 } 1055 1056 /// Returns OpenCL access qual. 1057 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1058 return D->getAttr<OpenCLAccessAttr>(); 1059 } 1060 1061 /// Returns true if pipe element type is different from the pointer. 1062 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1063 const Expr *Arg0 = Call->getArg(0); 1064 // First argument type should always be pipe. 1065 if (!Arg0->getType()->isPipeType()) { 1066 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1067 << Call->getDirectCallee() << Arg0->getSourceRange(); 1068 return true; 1069 } 1070 OpenCLAccessAttr *AccessQual = 1071 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1072 // Validates the access qualifier is compatible with the call. 1073 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1074 // read_only and write_only, and assumed to be read_only if no qualifier is 1075 // specified. 1076 switch (Call->getDirectCallee()->getBuiltinID()) { 1077 case Builtin::BIread_pipe: 1078 case Builtin::BIreserve_read_pipe: 1079 case Builtin::BIcommit_read_pipe: 1080 case Builtin::BIwork_group_reserve_read_pipe: 1081 case Builtin::BIsub_group_reserve_read_pipe: 1082 case Builtin::BIwork_group_commit_read_pipe: 1083 case Builtin::BIsub_group_commit_read_pipe: 1084 if (!(!AccessQual || AccessQual->isReadOnly())) { 1085 S.Diag(Arg0->getBeginLoc(), 1086 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1087 << "read_only" << Arg0->getSourceRange(); 1088 return true; 1089 } 1090 break; 1091 case Builtin::BIwrite_pipe: 1092 case Builtin::BIreserve_write_pipe: 1093 case Builtin::BIcommit_write_pipe: 1094 case Builtin::BIwork_group_reserve_write_pipe: 1095 case Builtin::BIsub_group_reserve_write_pipe: 1096 case Builtin::BIwork_group_commit_write_pipe: 1097 case Builtin::BIsub_group_commit_write_pipe: 1098 if (!(AccessQual && AccessQual->isWriteOnly())) { 1099 S.Diag(Arg0->getBeginLoc(), 1100 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1101 << "write_only" << Arg0->getSourceRange(); 1102 return true; 1103 } 1104 break; 1105 default: 1106 break; 1107 } 1108 return false; 1109 } 1110 1111 /// Returns true if pipe element type is different from the pointer. 1112 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1113 const Expr *Arg0 = Call->getArg(0); 1114 const Expr *ArgIdx = Call->getArg(Idx); 1115 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1116 const QualType EltTy = PipeTy->getElementType(); 1117 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1118 // The Idx argument should be a pointer and the type of the pointer and 1119 // the type of pipe element should also be the same. 1120 if (!ArgTy || 1121 !S.Context.hasSameType( 1122 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1123 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1124 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1125 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1126 return true; 1127 } 1128 return false; 1129 } 1130 1131 // Performs semantic analysis for the read/write_pipe call. 1132 // \param S Reference to the semantic analyzer. 1133 // \param Call A pointer to the builtin call. 1134 // \return True if a semantic error has been found, false otherwise. 1135 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1136 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1137 // functions have two forms. 1138 switch (Call->getNumArgs()) { 1139 case 2: 1140 if (checkOpenCLPipeArg(S, Call)) 1141 return true; 1142 // The call with 2 arguments should be 1143 // read/write_pipe(pipe T, T*). 1144 // Check packet type T. 1145 if (checkOpenCLPipePacketType(S, Call, 1)) 1146 return true; 1147 break; 1148 1149 case 4: { 1150 if (checkOpenCLPipeArg(S, Call)) 1151 return true; 1152 // The call with 4 arguments should be 1153 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1154 // Check reserve_id_t. 1155 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1156 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1157 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1158 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1159 return true; 1160 } 1161 1162 // Check the index. 1163 const Expr *Arg2 = Call->getArg(2); 1164 if (!Arg2->getType()->isIntegerType() && 1165 !Arg2->getType()->isUnsignedIntegerType()) { 1166 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1167 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1168 << Arg2->getType() << Arg2->getSourceRange(); 1169 return true; 1170 } 1171 1172 // Check packet type T. 1173 if (checkOpenCLPipePacketType(S, Call, 3)) 1174 return true; 1175 } break; 1176 default: 1177 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1178 << Call->getDirectCallee() << Call->getSourceRange(); 1179 return true; 1180 } 1181 1182 return false; 1183 } 1184 1185 // Performs a semantic analysis on the {work_group_/sub_group_ 1186 // /_}reserve_{read/write}_pipe 1187 // \param S Reference to the semantic analyzer. 1188 // \param Call The call to the builtin function to be analyzed. 1189 // \return True if a semantic error was found, false otherwise. 1190 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1191 if (checkArgCount(S, Call, 2)) 1192 return true; 1193 1194 if (checkOpenCLPipeArg(S, Call)) 1195 return true; 1196 1197 // Check the reserve size. 1198 if (!Call->getArg(1)->getType()->isIntegerType() && 1199 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1200 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1201 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1202 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1203 return true; 1204 } 1205 1206 // Since return type of reserve_read/write_pipe built-in function is 1207 // reserve_id_t, which is not defined in the builtin def file , we used int 1208 // as return type and need to override the return type of these functions. 1209 Call->setType(S.Context.OCLReserveIDTy); 1210 1211 return false; 1212 } 1213 1214 // Performs a semantic analysis on {work_group_/sub_group_ 1215 // /_}commit_{read/write}_pipe 1216 // \param S Reference to the semantic analyzer. 1217 // \param Call The call to the builtin function to be analyzed. 1218 // \return True if a semantic error was found, false otherwise. 1219 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1220 if (checkArgCount(S, Call, 2)) 1221 return true; 1222 1223 if (checkOpenCLPipeArg(S, Call)) 1224 return true; 1225 1226 // Check reserve_id_t. 1227 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1228 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1229 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1230 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1231 return true; 1232 } 1233 1234 return false; 1235 } 1236 1237 // Performs a semantic analysis on the call to built-in Pipe 1238 // Query Functions. 1239 // \param S Reference to the semantic analyzer. 1240 // \param Call The call to the builtin function to be analyzed. 1241 // \return True if a semantic error was found, false otherwise. 1242 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1243 if (checkArgCount(S, Call, 1)) 1244 return true; 1245 1246 if (!Call->getArg(0)->getType()->isPipeType()) { 1247 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1248 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1249 return true; 1250 } 1251 1252 return false; 1253 } 1254 1255 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1256 // Performs semantic analysis for the to_global/local/private call. 1257 // \param S Reference to the semantic analyzer. 1258 // \param BuiltinID ID of the builtin function. 1259 // \param Call A pointer to the builtin call. 1260 // \return True if a semantic error has been found, false otherwise. 1261 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1262 CallExpr *Call) { 1263 if (Call->getNumArgs() != 1) { 1264 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) 1265 << Call->getDirectCallee() << Call->getSourceRange(); 1266 return true; 1267 } 1268 1269 auto RT = Call->getArg(0)->getType(); 1270 if (!RT->isPointerType() || RT->getPointeeType() 1271 .getAddressSpace() == LangAS::opencl_constant) { 1272 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1273 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1274 return true; 1275 } 1276 1277 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1278 S.Diag(Call->getArg(0)->getBeginLoc(), 1279 diag::warn_opencl_generic_address_space_arg) 1280 << Call->getDirectCallee()->getNameInfo().getAsString() 1281 << Call->getArg(0)->getSourceRange(); 1282 } 1283 1284 RT = RT->getPointeeType(); 1285 auto Qual = RT.getQualifiers(); 1286 switch (BuiltinID) { 1287 case Builtin::BIto_global: 1288 Qual.setAddressSpace(LangAS::opencl_global); 1289 break; 1290 case Builtin::BIto_local: 1291 Qual.setAddressSpace(LangAS::opencl_local); 1292 break; 1293 case Builtin::BIto_private: 1294 Qual.setAddressSpace(LangAS::opencl_private); 1295 break; 1296 default: 1297 llvm_unreachable("Invalid builtin function"); 1298 } 1299 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1300 RT.getUnqualifiedType(), Qual))); 1301 1302 return false; 1303 } 1304 1305 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1306 if (checkArgCount(S, TheCall, 1)) 1307 return ExprError(); 1308 1309 // Compute __builtin_launder's parameter type from the argument. 1310 // The parameter type is: 1311 // * The type of the argument if it's not an array or function type, 1312 // Otherwise, 1313 // * The decayed argument type. 1314 QualType ParamTy = [&]() { 1315 QualType ArgTy = TheCall->getArg(0)->getType(); 1316 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1317 return S.Context.getPointerType(Ty->getElementType()); 1318 if (ArgTy->isFunctionType()) { 1319 return S.Context.getPointerType(ArgTy); 1320 } 1321 return ArgTy; 1322 }(); 1323 1324 TheCall->setType(ParamTy); 1325 1326 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1327 if (!ParamTy->isPointerType()) 1328 return 0; 1329 if (ParamTy->isFunctionPointerType()) 1330 return 1; 1331 if (ParamTy->isVoidPointerType()) 1332 return 2; 1333 return llvm::Optional<unsigned>{}; 1334 }(); 1335 if (DiagSelect.hasValue()) { 1336 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1337 << DiagSelect.getValue() << TheCall->getSourceRange(); 1338 return ExprError(); 1339 } 1340 1341 // We either have an incomplete class type, or we have a class template 1342 // whose instantiation has not been forced. Example: 1343 // 1344 // template <class T> struct Foo { T value; }; 1345 // Foo<int> *p = nullptr; 1346 // auto *d = __builtin_launder(p); 1347 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1348 diag::err_incomplete_type)) 1349 return ExprError(); 1350 1351 assert(ParamTy->getPointeeType()->isObjectType() && 1352 "Unhandled non-object pointer case"); 1353 1354 InitializedEntity Entity = 1355 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1356 ExprResult Arg = 1357 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1358 if (Arg.isInvalid()) 1359 return ExprError(); 1360 TheCall->setArg(0, Arg.get()); 1361 1362 return TheCall; 1363 } 1364 1365 // Emit an error and return true if the current architecture is not in the list 1366 // of supported architectures. 1367 static bool 1368 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1369 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1370 llvm::Triple::ArchType CurArch = 1371 S.getASTContext().getTargetInfo().getTriple().getArch(); 1372 if (llvm::is_contained(SupportedArchs, CurArch)) 1373 return false; 1374 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1375 << TheCall->getSourceRange(); 1376 return true; 1377 } 1378 1379 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1380 SourceLocation CallSiteLoc); 1381 1382 bool Sema::CheckTSBuiltinFunctionCall(llvm::Triple::ArchType Arch, 1383 unsigned BuiltinID, CallExpr *TheCall) { 1384 switch (Arch) { 1385 default: 1386 // Some builtins don't require additional checking, so just consider these 1387 // acceptable. 1388 return false; 1389 case llvm::Triple::arm: 1390 case llvm::Triple::armeb: 1391 case llvm::Triple::thumb: 1392 case llvm::Triple::thumbeb: 1393 return CheckARMBuiltinFunctionCall(BuiltinID, TheCall); 1394 case llvm::Triple::aarch64: 1395 case llvm::Triple::aarch64_32: 1396 case llvm::Triple::aarch64_be: 1397 return CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall); 1398 case llvm::Triple::bpfeb: 1399 case llvm::Triple::bpfel: 1400 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1401 case llvm::Triple::hexagon: 1402 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1403 case llvm::Triple::mips: 1404 case llvm::Triple::mipsel: 1405 case llvm::Triple::mips64: 1406 case llvm::Triple::mips64el: 1407 return CheckMipsBuiltinFunctionCall(BuiltinID, TheCall); 1408 case llvm::Triple::systemz: 1409 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1410 case llvm::Triple::x86: 1411 case llvm::Triple::x86_64: 1412 return CheckX86BuiltinFunctionCall(BuiltinID, TheCall); 1413 case llvm::Triple::ppc: 1414 case llvm::Triple::ppc64: 1415 case llvm::Triple::ppc64le: 1416 return CheckPPCBuiltinFunctionCall(BuiltinID, TheCall); 1417 case llvm::Triple::amdgcn: 1418 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1419 } 1420 } 1421 1422 ExprResult 1423 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1424 CallExpr *TheCall) { 1425 ExprResult TheCallResult(TheCall); 1426 1427 // Find out if any arguments are required to be integer constant expressions. 1428 unsigned ICEArguments = 0; 1429 ASTContext::GetBuiltinTypeError Error; 1430 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1431 if (Error != ASTContext::GE_None) 1432 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1433 1434 // If any arguments are required to be ICE's, check and diagnose. 1435 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1436 // Skip arguments not required to be ICE's. 1437 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1438 1439 llvm::APSInt Result; 1440 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1441 return true; 1442 ICEArguments &= ~(1 << ArgNo); 1443 } 1444 1445 switch (BuiltinID) { 1446 case Builtin::BI__builtin___CFStringMakeConstantString: 1447 assert(TheCall->getNumArgs() == 1 && 1448 "Wrong # arguments to builtin CFStringMakeConstantString"); 1449 if (CheckObjCString(TheCall->getArg(0))) 1450 return ExprError(); 1451 break; 1452 case Builtin::BI__builtin_ms_va_start: 1453 case Builtin::BI__builtin_stdarg_start: 1454 case Builtin::BI__builtin_va_start: 1455 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1456 return ExprError(); 1457 break; 1458 case Builtin::BI__va_start: { 1459 switch (Context.getTargetInfo().getTriple().getArch()) { 1460 case llvm::Triple::aarch64: 1461 case llvm::Triple::arm: 1462 case llvm::Triple::thumb: 1463 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1464 return ExprError(); 1465 break; 1466 default: 1467 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1468 return ExprError(); 1469 break; 1470 } 1471 break; 1472 } 1473 1474 // The acquire, release, and no fence variants are ARM and AArch64 only. 1475 case Builtin::BI_interlockedbittestandset_acq: 1476 case Builtin::BI_interlockedbittestandset_rel: 1477 case Builtin::BI_interlockedbittestandset_nf: 1478 case Builtin::BI_interlockedbittestandreset_acq: 1479 case Builtin::BI_interlockedbittestandreset_rel: 1480 case Builtin::BI_interlockedbittestandreset_nf: 1481 if (CheckBuiltinTargetSupport( 1482 *this, BuiltinID, TheCall, 1483 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1484 return ExprError(); 1485 break; 1486 1487 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1488 case Builtin::BI_bittest64: 1489 case Builtin::BI_bittestandcomplement64: 1490 case Builtin::BI_bittestandreset64: 1491 case Builtin::BI_bittestandset64: 1492 case Builtin::BI_interlockedbittestandreset64: 1493 case Builtin::BI_interlockedbittestandset64: 1494 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1495 {llvm::Triple::x86_64, llvm::Triple::arm, 1496 llvm::Triple::thumb, llvm::Triple::aarch64})) 1497 return ExprError(); 1498 break; 1499 1500 case Builtin::BI__builtin_isgreater: 1501 case Builtin::BI__builtin_isgreaterequal: 1502 case Builtin::BI__builtin_isless: 1503 case Builtin::BI__builtin_islessequal: 1504 case Builtin::BI__builtin_islessgreater: 1505 case Builtin::BI__builtin_isunordered: 1506 if (SemaBuiltinUnorderedCompare(TheCall)) 1507 return ExprError(); 1508 break; 1509 case Builtin::BI__builtin_fpclassify: 1510 if (SemaBuiltinFPClassification(TheCall, 6)) 1511 return ExprError(); 1512 break; 1513 case Builtin::BI__builtin_isfinite: 1514 case Builtin::BI__builtin_isinf: 1515 case Builtin::BI__builtin_isinf_sign: 1516 case Builtin::BI__builtin_isnan: 1517 case Builtin::BI__builtin_isnormal: 1518 case Builtin::BI__builtin_signbit: 1519 case Builtin::BI__builtin_signbitf: 1520 case Builtin::BI__builtin_signbitl: 1521 if (SemaBuiltinFPClassification(TheCall, 1)) 1522 return ExprError(); 1523 break; 1524 case Builtin::BI__builtin_shufflevector: 1525 return SemaBuiltinShuffleVector(TheCall); 1526 // TheCall will be freed by the smart pointer here, but that's fine, since 1527 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1528 case Builtin::BI__builtin_prefetch: 1529 if (SemaBuiltinPrefetch(TheCall)) 1530 return ExprError(); 1531 break; 1532 case Builtin::BI__builtin_alloca_with_align: 1533 if (SemaBuiltinAllocaWithAlign(TheCall)) 1534 return ExprError(); 1535 LLVM_FALLTHROUGH; 1536 case Builtin::BI__builtin_alloca: 1537 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1538 << TheCall->getDirectCallee(); 1539 break; 1540 case Builtin::BI__assume: 1541 case Builtin::BI__builtin_assume: 1542 if (SemaBuiltinAssume(TheCall)) 1543 return ExprError(); 1544 break; 1545 case Builtin::BI__builtin_assume_aligned: 1546 if (SemaBuiltinAssumeAligned(TheCall)) 1547 return ExprError(); 1548 break; 1549 case Builtin::BI__builtin_dynamic_object_size: 1550 case Builtin::BI__builtin_object_size: 1551 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1552 return ExprError(); 1553 break; 1554 case Builtin::BI__builtin_longjmp: 1555 if (SemaBuiltinLongjmp(TheCall)) 1556 return ExprError(); 1557 break; 1558 case Builtin::BI__builtin_setjmp: 1559 if (SemaBuiltinSetjmp(TheCall)) 1560 return ExprError(); 1561 break; 1562 case Builtin::BI_setjmp: 1563 case Builtin::BI_setjmpex: 1564 if (checkArgCount(*this, TheCall, 1)) 1565 return true; 1566 break; 1567 case Builtin::BI__builtin_classify_type: 1568 if (checkArgCount(*this, TheCall, 1)) return true; 1569 TheCall->setType(Context.IntTy); 1570 break; 1571 case Builtin::BI__builtin_constant_p: { 1572 if (checkArgCount(*this, TheCall, 1)) return true; 1573 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1574 if (Arg.isInvalid()) return true; 1575 TheCall->setArg(0, Arg.get()); 1576 TheCall->setType(Context.IntTy); 1577 break; 1578 } 1579 case Builtin::BI__builtin_launder: 1580 return SemaBuiltinLaunder(*this, TheCall); 1581 case Builtin::BI__sync_fetch_and_add: 1582 case Builtin::BI__sync_fetch_and_add_1: 1583 case Builtin::BI__sync_fetch_and_add_2: 1584 case Builtin::BI__sync_fetch_and_add_4: 1585 case Builtin::BI__sync_fetch_and_add_8: 1586 case Builtin::BI__sync_fetch_and_add_16: 1587 case Builtin::BI__sync_fetch_and_sub: 1588 case Builtin::BI__sync_fetch_and_sub_1: 1589 case Builtin::BI__sync_fetch_and_sub_2: 1590 case Builtin::BI__sync_fetch_and_sub_4: 1591 case Builtin::BI__sync_fetch_and_sub_8: 1592 case Builtin::BI__sync_fetch_and_sub_16: 1593 case Builtin::BI__sync_fetch_and_or: 1594 case Builtin::BI__sync_fetch_and_or_1: 1595 case Builtin::BI__sync_fetch_and_or_2: 1596 case Builtin::BI__sync_fetch_and_or_4: 1597 case Builtin::BI__sync_fetch_and_or_8: 1598 case Builtin::BI__sync_fetch_and_or_16: 1599 case Builtin::BI__sync_fetch_and_and: 1600 case Builtin::BI__sync_fetch_and_and_1: 1601 case Builtin::BI__sync_fetch_and_and_2: 1602 case Builtin::BI__sync_fetch_and_and_4: 1603 case Builtin::BI__sync_fetch_and_and_8: 1604 case Builtin::BI__sync_fetch_and_and_16: 1605 case Builtin::BI__sync_fetch_and_xor: 1606 case Builtin::BI__sync_fetch_and_xor_1: 1607 case Builtin::BI__sync_fetch_and_xor_2: 1608 case Builtin::BI__sync_fetch_and_xor_4: 1609 case Builtin::BI__sync_fetch_and_xor_8: 1610 case Builtin::BI__sync_fetch_and_xor_16: 1611 case Builtin::BI__sync_fetch_and_nand: 1612 case Builtin::BI__sync_fetch_and_nand_1: 1613 case Builtin::BI__sync_fetch_and_nand_2: 1614 case Builtin::BI__sync_fetch_and_nand_4: 1615 case Builtin::BI__sync_fetch_and_nand_8: 1616 case Builtin::BI__sync_fetch_and_nand_16: 1617 case Builtin::BI__sync_add_and_fetch: 1618 case Builtin::BI__sync_add_and_fetch_1: 1619 case Builtin::BI__sync_add_and_fetch_2: 1620 case Builtin::BI__sync_add_and_fetch_4: 1621 case Builtin::BI__sync_add_and_fetch_8: 1622 case Builtin::BI__sync_add_and_fetch_16: 1623 case Builtin::BI__sync_sub_and_fetch: 1624 case Builtin::BI__sync_sub_and_fetch_1: 1625 case Builtin::BI__sync_sub_and_fetch_2: 1626 case Builtin::BI__sync_sub_and_fetch_4: 1627 case Builtin::BI__sync_sub_and_fetch_8: 1628 case Builtin::BI__sync_sub_and_fetch_16: 1629 case Builtin::BI__sync_and_and_fetch: 1630 case Builtin::BI__sync_and_and_fetch_1: 1631 case Builtin::BI__sync_and_and_fetch_2: 1632 case Builtin::BI__sync_and_and_fetch_4: 1633 case Builtin::BI__sync_and_and_fetch_8: 1634 case Builtin::BI__sync_and_and_fetch_16: 1635 case Builtin::BI__sync_or_and_fetch: 1636 case Builtin::BI__sync_or_and_fetch_1: 1637 case Builtin::BI__sync_or_and_fetch_2: 1638 case Builtin::BI__sync_or_and_fetch_4: 1639 case Builtin::BI__sync_or_and_fetch_8: 1640 case Builtin::BI__sync_or_and_fetch_16: 1641 case Builtin::BI__sync_xor_and_fetch: 1642 case Builtin::BI__sync_xor_and_fetch_1: 1643 case Builtin::BI__sync_xor_and_fetch_2: 1644 case Builtin::BI__sync_xor_and_fetch_4: 1645 case Builtin::BI__sync_xor_and_fetch_8: 1646 case Builtin::BI__sync_xor_and_fetch_16: 1647 case Builtin::BI__sync_nand_and_fetch: 1648 case Builtin::BI__sync_nand_and_fetch_1: 1649 case Builtin::BI__sync_nand_and_fetch_2: 1650 case Builtin::BI__sync_nand_and_fetch_4: 1651 case Builtin::BI__sync_nand_and_fetch_8: 1652 case Builtin::BI__sync_nand_and_fetch_16: 1653 case Builtin::BI__sync_val_compare_and_swap: 1654 case Builtin::BI__sync_val_compare_and_swap_1: 1655 case Builtin::BI__sync_val_compare_and_swap_2: 1656 case Builtin::BI__sync_val_compare_and_swap_4: 1657 case Builtin::BI__sync_val_compare_and_swap_8: 1658 case Builtin::BI__sync_val_compare_and_swap_16: 1659 case Builtin::BI__sync_bool_compare_and_swap: 1660 case Builtin::BI__sync_bool_compare_and_swap_1: 1661 case Builtin::BI__sync_bool_compare_and_swap_2: 1662 case Builtin::BI__sync_bool_compare_and_swap_4: 1663 case Builtin::BI__sync_bool_compare_and_swap_8: 1664 case Builtin::BI__sync_bool_compare_and_swap_16: 1665 case Builtin::BI__sync_lock_test_and_set: 1666 case Builtin::BI__sync_lock_test_and_set_1: 1667 case Builtin::BI__sync_lock_test_and_set_2: 1668 case Builtin::BI__sync_lock_test_and_set_4: 1669 case Builtin::BI__sync_lock_test_and_set_8: 1670 case Builtin::BI__sync_lock_test_and_set_16: 1671 case Builtin::BI__sync_lock_release: 1672 case Builtin::BI__sync_lock_release_1: 1673 case Builtin::BI__sync_lock_release_2: 1674 case Builtin::BI__sync_lock_release_4: 1675 case Builtin::BI__sync_lock_release_8: 1676 case Builtin::BI__sync_lock_release_16: 1677 case Builtin::BI__sync_swap: 1678 case Builtin::BI__sync_swap_1: 1679 case Builtin::BI__sync_swap_2: 1680 case Builtin::BI__sync_swap_4: 1681 case Builtin::BI__sync_swap_8: 1682 case Builtin::BI__sync_swap_16: 1683 return SemaBuiltinAtomicOverloaded(TheCallResult); 1684 case Builtin::BI__sync_synchronize: 1685 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1686 << TheCall->getCallee()->getSourceRange(); 1687 break; 1688 case Builtin::BI__builtin_nontemporal_load: 1689 case Builtin::BI__builtin_nontemporal_store: 1690 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1691 case Builtin::BI__builtin_memcpy_inline: { 1692 clang::Expr *SizeOp = TheCall->getArg(2); 1693 // We warn about copying to or from `nullptr` pointers when `size` is 1694 // greater than 0. When `size` is value dependent we cannot evaluate its 1695 // value so we bail out. 1696 if (SizeOp->isValueDependent()) 1697 break; 1698 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1699 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1700 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1701 } 1702 break; 1703 } 1704 #define BUILTIN(ID, TYPE, ATTRS) 1705 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1706 case Builtin::BI##ID: \ 1707 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1708 #include "clang/Basic/Builtins.def" 1709 case Builtin::BI__annotation: 1710 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1711 return ExprError(); 1712 break; 1713 case Builtin::BI__builtin_annotation: 1714 if (SemaBuiltinAnnotation(*this, TheCall)) 1715 return ExprError(); 1716 break; 1717 case Builtin::BI__builtin_addressof: 1718 if (SemaBuiltinAddressof(*this, TheCall)) 1719 return ExprError(); 1720 break; 1721 case Builtin::BI__builtin_is_aligned: 1722 case Builtin::BI__builtin_align_up: 1723 case Builtin::BI__builtin_align_down: 1724 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1725 return ExprError(); 1726 break; 1727 case Builtin::BI__builtin_add_overflow: 1728 case Builtin::BI__builtin_sub_overflow: 1729 case Builtin::BI__builtin_mul_overflow: 1730 if (SemaBuiltinOverflow(*this, TheCall)) 1731 return ExprError(); 1732 break; 1733 case Builtin::BI__builtin_operator_new: 1734 case Builtin::BI__builtin_operator_delete: { 1735 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1736 ExprResult Res = 1737 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1738 if (Res.isInvalid()) 1739 CorrectDelayedTyposInExpr(TheCallResult.get()); 1740 return Res; 1741 } 1742 case Builtin::BI__builtin_dump_struct: { 1743 // We first want to ensure we are called with 2 arguments 1744 if (checkArgCount(*this, TheCall, 2)) 1745 return ExprError(); 1746 // Ensure that the first argument is of type 'struct XX *' 1747 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1748 const QualType PtrArgType = PtrArg->getType(); 1749 if (!PtrArgType->isPointerType() || 1750 !PtrArgType->getPointeeType()->isRecordType()) { 1751 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1752 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1753 << "structure pointer"; 1754 return ExprError(); 1755 } 1756 1757 // Ensure that the second argument is of type 'FunctionType' 1758 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1759 const QualType FnPtrArgType = FnPtrArg->getType(); 1760 if (!FnPtrArgType->isPointerType()) { 1761 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1762 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1763 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1764 return ExprError(); 1765 } 1766 1767 const auto *FuncType = 1768 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1769 1770 if (!FuncType) { 1771 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1772 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1773 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1774 return ExprError(); 1775 } 1776 1777 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1778 if (!FT->getNumParams()) { 1779 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1780 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1781 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1782 return ExprError(); 1783 } 1784 QualType PT = FT->getParamType(0); 1785 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1786 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1787 !PT->getPointeeType().isConstQualified()) { 1788 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1789 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1790 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1791 return ExprError(); 1792 } 1793 } 1794 1795 TheCall->setType(Context.IntTy); 1796 break; 1797 } 1798 case Builtin::BI__builtin_preserve_access_index: 1799 if (SemaBuiltinPreserveAI(*this, TheCall)) 1800 return ExprError(); 1801 break; 1802 case Builtin::BI__builtin_call_with_static_chain: 1803 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1804 return ExprError(); 1805 break; 1806 case Builtin::BI__exception_code: 1807 case Builtin::BI_exception_code: 1808 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1809 diag::err_seh___except_block)) 1810 return ExprError(); 1811 break; 1812 case Builtin::BI__exception_info: 1813 case Builtin::BI_exception_info: 1814 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1815 diag::err_seh___except_filter)) 1816 return ExprError(); 1817 break; 1818 case Builtin::BI__GetExceptionInfo: 1819 if (checkArgCount(*this, TheCall, 1)) 1820 return ExprError(); 1821 1822 if (CheckCXXThrowOperand( 1823 TheCall->getBeginLoc(), 1824 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1825 TheCall)) 1826 return ExprError(); 1827 1828 TheCall->setType(Context.VoidPtrTy); 1829 break; 1830 // OpenCL v2.0, s6.13.16 - Pipe functions 1831 case Builtin::BIread_pipe: 1832 case Builtin::BIwrite_pipe: 1833 // Since those two functions are declared with var args, we need a semantic 1834 // check for the argument. 1835 if (SemaBuiltinRWPipe(*this, TheCall)) 1836 return ExprError(); 1837 break; 1838 case Builtin::BIreserve_read_pipe: 1839 case Builtin::BIreserve_write_pipe: 1840 case Builtin::BIwork_group_reserve_read_pipe: 1841 case Builtin::BIwork_group_reserve_write_pipe: 1842 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1843 return ExprError(); 1844 break; 1845 case Builtin::BIsub_group_reserve_read_pipe: 1846 case Builtin::BIsub_group_reserve_write_pipe: 1847 if (checkOpenCLSubgroupExt(*this, TheCall) || 1848 SemaBuiltinReserveRWPipe(*this, TheCall)) 1849 return ExprError(); 1850 break; 1851 case Builtin::BIcommit_read_pipe: 1852 case Builtin::BIcommit_write_pipe: 1853 case Builtin::BIwork_group_commit_read_pipe: 1854 case Builtin::BIwork_group_commit_write_pipe: 1855 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1856 return ExprError(); 1857 break; 1858 case Builtin::BIsub_group_commit_read_pipe: 1859 case Builtin::BIsub_group_commit_write_pipe: 1860 if (checkOpenCLSubgroupExt(*this, TheCall) || 1861 SemaBuiltinCommitRWPipe(*this, TheCall)) 1862 return ExprError(); 1863 break; 1864 case Builtin::BIget_pipe_num_packets: 1865 case Builtin::BIget_pipe_max_packets: 1866 if (SemaBuiltinPipePackets(*this, TheCall)) 1867 return ExprError(); 1868 break; 1869 case Builtin::BIto_global: 1870 case Builtin::BIto_local: 1871 case Builtin::BIto_private: 1872 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1873 return ExprError(); 1874 break; 1875 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1876 case Builtin::BIenqueue_kernel: 1877 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1878 return ExprError(); 1879 break; 1880 case Builtin::BIget_kernel_work_group_size: 1881 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1882 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1883 return ExprError(); 1884 break; 1885 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1886 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1887 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1888 return ExprError(); 1889 break; 1890 case Builtin::BI__builtin_os_log_format: 1891 Cleanup.setExprNeedsCleanups(true); 1892 LLVM_FALLTHROUGH; 1893 case Builtin::BI__builtin_os_log_format_buffer_size: 1894 if (SemaBuiltinOSLogFormat(TheCall)) 1895 return ExprError(); 1896 break; 1897 case Builtin::BI__builtin_frame_address: 1898 case Builtin::BI__builtin_return_address: 1899 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1900 return ExprError(); 1901 1902 // -Wframe-address warning if non-zero passed to builtin 1903 // return/frame address. 1904 Expr::EvalResult Result; 1905 if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1906 Result.Val.getInt() != 0) 1907 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1908 << ((BuiltinID == Builtin::BI__builtin_return_address) 1909 ? "__builtin_return_address" 1910 : "__builtin_frame_address") 1911 << TheCall->getSourceRange(); 1912 break; 1913 } 1914 1915 // Since the target specific builtins for each arch overlap, only check those 1916 // of the arch we are compiling for. 1917 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1918 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1919 assert(Context.getAuxTargetInfo() && 1920 "Aux Target Builtin, but not an aux target?"); 1921 1922 if (CheckTSBuiltinFunctionCall( 1923 Context.getAuxTargetInfo()->getTriple().getArch(), 1924 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 1925 return ExprError(); 1926 } else { 1927 if (CheckTSBuiltinFunctionCall( 1928 Context.getTargetInfo().getTriple().getArch(), BuiltinID, 1929 TheCall)) 1930 return ExprError(); 1931 } 1932 } 1933 1934 return TheCallResult; 1935 } 1936 1937 // Get the valid immediate range for the specified NEON type code. 1938 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1939 NeonTypeFlags Type(t); 1940 int IsQuad = ForceQuad ? true : Type.isQuad(); 1941 switch (Type.getEltType()) { 1942 case NeonTypeFlags::Int8: 1943 case NeonTypeFlags::Poly8: 1944 return shift ? 7 : (8 << IsQuad) - 1; 1945 case NeonTypeFlags::Int16: 1946 case NeonTypeFlags::Poly16: 1947 return shift ? 15 : (4 << IsQuad) - 1; 1948 case NeonTypeFlags::Int32: 1949 return shift ? 31 : (2 << IsQuad) - 1; 1950 case NeonTypeFlags::Int64: 1951 case NeonTypeFlags::Poly64: 1952 return shift ? 63 : (1 << IsQuad) - 1; 1953 case NeonTypeFlags::Poly128: 1954 return shift ? 127 : (1 << IsQuad) - 1; 1955 case NeonTypeFlags::Float16: 1956 assert(!shift && "cannot shift float types!"); 1957 return (4 << IsQuad) - 1; 1958 case NeonTypeFlags::Float32: 1959 assert(!shift && "cannot shift float types!"); 1960 return (2 << IsQuad) - 1; 1961 case NeonTypeFlags::Float64: 1962 assert(!shift && "cannot shift float types!"); 1963 return (1 << IsQuad) - 1; 1964 } 1965 llvm_unreachable("Invalid NeonTypeFlag!"); 1966 } 1967 1968 /// getNeonEltType - Return the QualType corresponding to the elements of 1969 /// the vector type specified by the NeonTypeFlags. This is used to check 1970 /// the pointer arguments for Neon load/store intrinsics. 1971 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 1972 bool IsPolyUnsigned, bool IsInt64Long) { 1973 switch (Flags.getEltType()) { 1974 case NeonTypeFlags::Int8: 1975 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 1976 case NeonTypeFlags::Int16: 1977 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 1978 case NeonTypeFlags::Int32: 1979 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 1980 case NeonTypeFlags::Int64: 1981 if (IsInt64Long) 1982 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 1983 else 1984 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 1985 : Context.LongLongTy; 1986 case NeonTypeFlags::Poly8: 1987 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 1988 case NeonTypeFlags::Poly16: 1989 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 1990 case NeonTypeFlags::Poly64: 1991 if (IsInt64Long) 1992 return Context.UnsignedLongTy; 1993 else 1994 return Context.UnsignedLongLongTy; 1995 case NeonTypeFlags::Poly128: 1996 break; 1997 case NeonTypeFlags::Float16: 1998 return Context.HalfTy; 1999 case NeonTypeFlags::Float32: 2000 return Context.FloatTy; 2001 case NeonTypeFlags::Float64: 2002 return Context.DoubleTy; 2003 } 2004 llvm_unreachable("Invalid NeonTypeFlag!"); 2005 } 2006 2007 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2008 // Range check SVE intrinsics that take immediate values. 2009 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2010 2011 switch (BuiltinID) { 2012 default: 2013 return false; 2014 #define GET_SVE_IMMEDIATE_CHECK 2015 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2016 #undef GET_SVE_IMMEDIATE_CHECK 2017 } 2018 2019 // Perform all the immediate checks for this builtin call. 2020 bool HasError = false; 2021 for (auto &I : ImmChecks) { 2022 int ArgNum, CheckTy, ElementSizeInBits; 2023 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2024 2025 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2026 2027 // Function that checks whether the operand (ArgNum) is an immediate 2028 // that is one of the predefined values. 2029 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2030 int ErrDiag) -> bool { 2031 // We can't check the value of a dependent argument. 2032 Expr *Arg = TheCall->getArg(ArgNum); 2033 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2034 return false; 2035 2036 // Check constant-ness first. 2037 llvm::APSInt Imm; 2038 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2039 return true; 2040 2041 if (!CheckImm(Imm.getSExtValue())) 2042 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2043 return false; 2044 }; 2045 2046 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2047 case SVETypeFlags::ImmCheck0_31: 2048 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2049 HasError = true; 2050 break; 2051 case SVETypeFlags::ImmCheck0_13: 2052 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2053 HasError = true; 2054 break; 2055 case SVETypeFlags::ImmCheck1_16: 2056 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2057 HasError = true; 2058 break; 2059 case SVETypeFlags::ImmCheck0_7: 2060 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2061 HasError = true; 2062 break; 2063 case SVETypeFlags::ImmCheckExtract: 2064 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2065 (2048 / ElementSizeInBits) - 1)) 2066 HasError = true; 2067 break; 2068 case SVETypeFlags::ImmCheckShiftRight: 2069 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2070 HasError = true; 2071 break; 2072 case SVETypeFlags::ImmCheckShiftRightNarrow: 2073 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2074 ElementSizeInBits / 2)) 2075 HasError = true; 2076 break; 2077 case SVETypeFlags::ImmCheckShiftLeft: 2078 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2079 ElementSizeInBits - 1)) 2080 HasError = true; 2081 break; 2082 case SVETypeFlags::ImmCheckLaneIndex: 2083 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2084 (128 / (1 * ElementSizeInBits)) - 1)) 2085 HasError = true; 2086 break; 2087 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2088 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2089 (128 / (2 * ElementSizeInBits)) - 1)) 2090 HasError = true; 2091 break; 2092 case SVETypeFlags::ImmCheckLaneIndexDot: 2093 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2094 (128 / (4 * ElementSizeInBits)) - 1)) 2095 HasError = true; 2096 break; 2097 case SVETypeFlags::ImmCheckComplexRot90_270: 2098 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2099 diag::err_rotation_argument_to_cadd)) 2100 HasError = true; 2101 break; 2102 case SVETypeFlags::ImmCheckComplexRotAll90: 2103 if (CheckImmediateInSet( 2104 [](int64_t V) { 2105 return V == 0 || V == 90 || V == 180 || V == 270; 2106 }, 2107 diag::err_rotation_argument_to_cmla)) 2108 HasError = true; 2109 break; 2110 } 2111 } 2112 2113 return HasError; 2114 } 2115 2116 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2117 llvm::APSInt Result; 2118 uint64_t mask = 0; 2119 unsigned TV = 0; 2120 int PtrArgNum = -1; 2121 bool HasConstPtr = false; 2122 switch (BuiltinID) { 2123 #define GET_NEON_OVERLOAD_CHECK 2124 #include "clang/Basic/arm_neon.inc" 2125 #include "clang/Basic/arm_fp16.inc" 2126 #undef GET_NEON_OVERLOAD_CHECK 2127 } 2128 2129 // For NEON intrinsics which are overloaded on vector element type, validate 2130 // the immediate which specifies which variant to emit. 2131 unsigned ImmArg = TheCall->getNumArgs()-1; 2132 if (mask) { 2133 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2134 return true; 2135 2136 TV = Result.getLimitedValue(64); 2137 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2138 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2139 << TheCall->getArg(ImmArg)->getSourceRange(); 2140 } 2141 2142 if (PtrArgNum >= 0) { 2143 // Check that pointer arguments have the specified type. 2144 Expr *Arg = TheCall->getArg(PtrArgNum); 2145 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2146 Arg = ICE->getSubExpr(); 2147 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2148 QualType RHSTy = RHS.get()->getType(); 2149 2150 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 2151 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2152 Arch == llvm::Triple::aarch64_32 || 2153 Arch == llvm::Triple::aarch64_be; 2154 bool IsInt64Long = 2155 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong; 2156 QualType EltTy = 2157 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2158 if (HasConstPtr) 2159 EltTy = EltTy.withConst(); 2160 QualType LHSTy = Context.getPointerType(EltTy); 2161 AssignConvertType ConvTy; 2162 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2163 if (RHS.isInvalid()) 2164 return true; 2165 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2166 RHS.get(), AA_Assigning)) 2167 return true; 2168 } 2169 2170 // For NEON intrinsics which take an immediate value as part of the 2171 // instruction, range check them here. 2172 unsigned i = 0, l = 0, u = 0; 2173 switch (BuiltinID) { 2174 default: 2175 return false; 2176 #define GET_NEON_IMMEDIATE_CHECK 2177 #include "clang/Basic/arm_neon.inc" 2178 #include "clang/Basic/arm_fp16.inc" 2179 #undef GET_NEON_IMMEDIATE_CHECK 2180 } 2181 2182 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2183 } 2184 2185 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2186 switch (BuiltinID) { 2187 default: 2188 return false; 2189 #include "clang/Basic/arm_mve_builtin_sema.inc" 2190 } 2191 } 2192 2193 bool Sema::CheckCDEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2194 bool Err = false; 2195 switch (BuiltinID) { 2196 default: 2197 return false; 2198 #include "clang/Basic/arm_cde_builtin_sema.inc" 2199 } 2200 2201 if (Err) 2202 return true; 2203 2204 return CheckARMCoprocessorImmediate(TheCall->getArg(0), /*WantCDE*/ true); 2205 } 2206 2207 bool Sema::CheckARMCoprocessorImmediate(const Expr *CoprocArg, bool WantCDE) { 2208 if (isConstantEvaluated()) 2209 return false; 2210 2211 // We can't check the value of a dependent argument. 2212 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2213 return false; 2214 2215 llvm::APSInt CoprocNoAP; 2216 bool IsICE = CoprocArg->isIntegerConstantExpr(CoprocNoAP, Context); 2217 (void)IsICE; 2218 assert(IsICE && "Coprocossor immediate is not a constant expression"); 2219 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2220 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2221 2222 uint32_t CDECoprocMask = Context.getTargetInfo().getARMCDECoprocMask(); 2223 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2224 2225 if (IsCDECoproc != WantCDE) 2226 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2227 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2228 2229 return false; 2230 } 2231 2232 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2233 unsigned MaxWidth) { 2234 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2235 BuiltinID == ARM::BI__builtin_arm_ldaex || 2236 BuiltinID == ARM::BI__builtin_arm_strex || 2237 BuiltinID == ARM::BI__builtin_arm_stlex || 2238 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2239 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2240 BuiltinID == AArch64::BI__builtin_arm_strex || 2241 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2242 "unexpected ARM builtin"); 2243 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2244 BuiltinID == ARM::BI__builtin_arm_ldaex || 2245 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2246 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2247 2248 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2249 2250 // Ensure that we have the proper number of arguments. 2251 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2252 return true; 2253 2254 // Inspect the pointer argument of the atomic builtin. This should always be 2255 // a pointer type, whose element is an integral scalar or pointer type. 2256 // Because it is a pointer type, we don't have to worry about any implicit 2257 // casts here. 2258 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2259 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2260 if (PointerArgRes.isInvalid()) 2261 return true; 2262 PointerArg = PointerArgRes.get(); 2263 2264 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2265 if (!pointerType) { 2266 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2267 << PointerArg->getType() << PointerArg->getSourceRange(); 2268 return true; 2269 } 2270 2271 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2272 // task is to insert the appropriate casts into the AST. First work out just 2273 // what the appropriate type is. 2274 QualType ValType = pointerType->getPointeeType(); 2275 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2276 if (IsLdrex) 2277 AddrType.addConst(); 2278 2279 // Issue a warning if the cast is dodgy. 2280 CastKind CastNeeded = CK_NoOp; 2281 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2282 CastNeeded = CK_BitCast; 2283 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2284 << PointerArg->getType() << Context.getPointerType(AddrType) 2285 << AA_Passing << PointerArg->getSourceRange(); 2286 } 2287 2288 // Finally, do the cast and replace the argument with the corrected version. 2289 AddrType = Context.getPointerType(AddrType); 2290 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2291 if (PointerArgRes.isInvalid()) 2292 return true; 2293 PointerArg = PointerArgRes.get(); 2294 2295 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2296 2297 // In general, we allow ints, floats and pointers to be loaded and stored. 2298 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2299 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2300 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2301 << PointerArg->getType() << PointerArg->getSourceRange(); 2302 return true; 2303 } 2304 2305 // But ARM doesn't have instructions to deal with 128-bit versions. 2306 if (Context.getTypeSize(ValType) > MaxWidth) { 2307 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2308 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2309 << PointerArg->getType() << PointerArg->getSourceRange(); 2310 return true; 2311 } 2312 2313 switch (ValType.getObjCLifetime()) { 2314 case Qualifiers::OCL_None: 2315 case Qualifiers::OCL_ExplicitNone: 2316 // okay 2317 break; 2318 2319 case Qualifiers::OCL_Weak: 2320 case Qualifiers::OCL_Strong: 2321 case Qualifiers::OCL_Autoreleasing: 2322 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2323 << ValType << PointerArg->getSourceRange(); 2324 return true; 2325 } 2326 2327 if (IsLdrex) { 2328 TheCall->setType(ValType); 2329 return false; 2330 } 2331 2332 // Initialize the argument to be stored. 2333 ExprResult ValArg = TheCall->getArg(0); 2334 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2335 Context, ValType, /*consume*/ false); 2336 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2337 if (ValArg.isInvalid()) 2338 return true; 2339 TheCall->setArg(0, ValArg.get()); 2340 2341 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2342 // but the custom checker bypasses all default analysis. 2343 TheCall->setType(Context.IntTy); 2344 return false; 2345 } 2346 2347 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2348 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2349 BuiltinID == ARM::BI__builtin_arm_ldaex || 2350 BuiltinID == ARM::BI__builtin_arm_strex || 2351 BuiltinID == ARM::BI__builtin_arm_stlex) { 2352 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2353 } 2354 2355 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2356 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2357 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2358 } 2359 2360 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2361 BuiltinID == ARM::BI__builtin_arm_wsr64) 2362 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2363 2364 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2365 BuiltinID == ARM::BI__builtin_arm_rsrp || 2366 BuiltinID == ARM::BI__builtin_arm_wsr || 2367 BuiltinID == ARM::BI__builtin_arm_wsrp) 2368 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2369 2370 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 2371 return true; 2372 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2373 return true; 2374 if (CheckCDEBuiltinFunctionCall(BuiltinID, TheCall)) 2375 return true; 2376 2377 // For intrinsics which take an immediate value as part of the instruction, 2378 // range check them here. 2379 // FIXME: VFP Intrinsics should error if VFP not present. 2380 switch (BuiltinID) { 2381 default: return false; 2382 case ARM::BI__builtin_arm_ssat: 2383 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2384 case ARM::BI__builtin_arm_usat: 2385 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2386 case ARM::BI__builtin_arm_ssat16: 2387 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2388 case ARM::BI__builtin_arm_usat16: 2389 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2390 case ARM::BI__builtin_arm_vcvtr_f: 2391 case ARM::BI__builtin_arm_vcvtr_d: 2392 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2393 case ARM::BI__builtin_arm_dmb: 2394 case ARM::BI__builtin_arm_dsb: 2395 case ARM::BI__builtin_arm_isb: 2396 case ARM::BI__builtin_arm_dbg: 2397 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2398 case ARM::BI__builtin_arm_cdp: 2399 case ARM::BI__builtin_arm_cdp2: 2400 case ARM::BI__builtin_arm_mcr: 2401 case ARM::BI__builtin_arm_mcr2: 2402 case ARM::BI__builtin_arm_mrc: 2403 case ARM::BI__builtin_arm_mrc2: 2404 case ARM::BI__builtin_arm_mcrr: 2405 case ARM::BI__builtin_arm_mcrr2: 2406 case ARM::BI__builtin_arm_mrrc: 2407 case ARM::BI__builtin_arm_mrrc2: 2408 case ARM::BI__builtin_arm_ldc: 2409 case ARM::BI__builtin_arm_ldcl: 2410 case ARM::BI__builtin_arm_ldc2: 2411 case ARM::BI__builtin_arm_ldc2l: 2412 case ARM::BI__builtin_arm_stc: 2413 case ARM::BI__builtin_arm_stcl: 2414 case ARM::BI__builtin_arm_stc2: 2415 case ARM::BI__builtin_arm_stc2l: 2416 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2417 CheckARMCoprocessorImmediate(TheCall->getArg(0), /*WantCDE*/ false); 2418 } 2419 } 2420 2421 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, 2422 CallExpr *TheCall) { 2423 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2424 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2425 BuiltinID == AArch64::BI__builtin_arm_strex || 2426 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2427 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2428 } 2429 2430 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2431 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2432 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2433 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2434 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2435 } 2436 2437 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2438 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2439 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2440 2441 // Memory Tagging Extensions (MTE) Intrinsics 2442 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2443 BuiltinID == AArch64::BI__builtin_arm_addg || 2444 BuiltinID == AArch64::BI__builtin_arm_gmi || 2445 BuiltinID == AArch64::BI__builtin_arm_ldg || 2446 BuiltinID == AArch64::BI__builtin_arm_stg || 2447 BuiltinID == AArch64::BI__builtin_arm_subp) { 2448 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2449 } 2450 2451 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2452 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2453 BuiltinID == AArch64::BI__builtin_arm_wsr || 2454 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2455 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2456 2457 // Only check the valid encoding range. Any constant in this range would be 2458 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2459 // an exception for incorrect registers. This matches MSVC behavior. 2460 if (BuiltinID == AArch64::BI_ReadStatusReg || 2461 BuiltinID == AArch64::BI_WriteStatusReg) 2462 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2463 2464 if (BuiltinID == AArch64::BI__getReg) 2465 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2466 2467 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 2468 return true; 2469 2470 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2471 return true; 2472 2473 // For intrinsics which take an immediate value as part of the instruction, 2474 // range check them here. 2475 unsigned i = 0, l = 0, u = 0; 2476 switch (BuiltinID) { 2477 default: return false; 2478 case AArch64::BI__builtin_arm_dmb: 2479 case AArch64::BI__builtin_arm_dsb: 2480 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2481 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2482 } 2483 2484 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2485 } 2486 2487 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2488 CallExpr *TheCall) { 2489 assert(BuiltinID == BPF::BI__builtin_preserve_field_info && 2490 "unexpected ARM builtin"); 2491 2492 if (checkArgCount(*this, TheCall, 2)) 2493 return true; 2494 2495 // The first argument needs to be a record field access. 2496 // If it is an array element access, we delay decision 2497 // to BPF backend to check whether the access is a 2498 // field access or not. 2499 Expr *Arg = TheCall->getArg(0); 2500 if (Arg->getType()->getAsPlaceholderType() || 2501 (Arg->IgnoreParens()->getObjectKind() != OK_BitField && 2502 !dyn_cast<MemberExpr>(Arg->IgnoreParens()) && 2503 !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) { 2504 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field) 2505 << 1 << Arg->getSourceRange(); 2506 return true; 2507 } 2508 2509 // The second argument needs to be a constant int 2510 llvm::APSInt Value; 2511 if (!TheCall->getArg(1)->isIntegerConstantExpr(Value, Context)) { 2512 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const) 2513 << 2 << Arg->getSourceRange(); 2514 return true; 2515 } 2516 2517 TheCall->setType(Context.UnsignedIntTy); 2518 return false; 2519 } 2520 2521 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2522 struct ArgInfo { 2523 uint8_t OpNum; 2524 bool IsSigned; 2525 uint8_t BitWidth; 2526 uint8_t Align; 2527 }; 2528 struct BuiltinInfo { 2529 unsigned BuiltinID; 2530 ArgInfo Infos[2]; 2531 }; 2532 2533 static BuiltinInfo Infos[] = { 2534 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2535 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2536 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2537 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2538 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2539 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2540 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2541 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2542 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2543 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2544 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2545 2546 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2547 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2548 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2549 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2550 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2551 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2552 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2553 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2554 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2555 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2556 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2557 2558 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2559 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2560 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2561 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2562 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2563 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2564 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2565 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2566 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2567 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2568 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2569 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2570 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2571 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2572 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2573 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2574 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2575 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2576 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2577 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2578 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2579 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2580 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2581 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2582 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2583 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2584 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2585 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2586 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2587 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2588 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2589 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2590 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2591 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2592 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2593 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2594 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2595 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2596 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2597 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2598 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2599 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2600 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2601 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2602 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2603 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2604 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2605 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2606 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2607 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2608 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2609 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2610 {{ 1, false, 6, 0 }} }, 2611 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2612 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2613 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2614 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2615 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2616 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2617 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2618 {{ 1, false, 5, 0 }} }, 2619 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2620 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2621 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2622 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2623 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2624 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2625 { 2, false, 5, 0 }} }, 2626 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2627 { 2, false, 6, 0 }} }, 2628 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2629 { 3, false, 5, 0 }} }, 2630 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2631 { 3, false, 6, 0 }} }, 2632 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2633 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2634 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2635 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2636 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2637 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2638 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2639 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2640 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2641 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2642 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2643 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2644 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2645 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2646 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2647 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2648 {{ 2, false, 4, 0 }, 2649 { 3, false, 5, 0 }} }, 2650 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2651 {{ 2, false, 4, 0 }, 2652 { 3, false, 5, 0 }} }, 2653 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2654 {{ 2, false, 4, 0 }, 2655 { 3, false, 5, 0 }} }, 2656 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2657 {{ 2, false, 4, 0 }, 2658 { 3, false, 5, 0 }} }, 2659 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2660 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2661 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2662 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2663 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2664 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2665 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2666 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2667 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2668 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2669 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2670 { 2, false, 5, 0 }} }, 2671 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2672 { 2, false, 6, 0 }} }, 2673 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2674 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2675 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2676 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2677 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2678 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2679 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2680 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2681 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2682 {{ 1, false, 4, 0 }} }, 2683 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2684 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2685 {{ 1, false, 4, 0 }} }, 2686 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2687 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2688 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2689 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2690 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2691 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2692 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2693 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2694 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2695 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2696 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2697 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2698 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2699 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2700 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2701 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2702 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2703 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2704 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2705 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2706 {{ 3, false, 1, 0 }} }, 2707 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2708 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2709 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2710 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2711 {{ 3, false, 1, 0 }} }, 2712 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2713 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2714 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2715 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2716 {{ 3, false, 1, 0 }} }, 2717 }; 2718 2719 // Use a dynamically initialized static to sort the table exactly once on 2720 // first run. 2721 static const bool SortOnce = 2722 (llvm::sort(Infos, 2723 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2724 return LHS.BuiltinID < RHS.BuiltinID; 2725 }), 2726 true); 2727 (void)SortOnce; 2728 2729 const BuiltinInfo *F = llvm::partition_point( 2730 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2731 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2732 return false; 2733 2734 bool Error = false; 2735 2736 for (const ArgInfo &A : F->Infos) { 2737 // Ignore empty ArgInfo elements. 2738 if (A.BitWidth == 0) 2739 continue; 2740 2741 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2742 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2743 if (!A.Align) { 2744 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2745 } else { 2746 unsigned M = 1 << A.Align; 2747 Min *= M; 2748 Max *= M; 2749 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2750 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2751 } 2752 } 2753 return Error; 2754 } 2755 2756 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2757 CallExpr *TheCall) { 2758 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2759 } 2760 2761 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2762 return CheckMipsBuiltinCpu(BuiltinID, TheCall) || 2763 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2764 } 2765 2766 bool Sema::CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) { 2767 const TargetInfo &TI = Context.getTargetInfo(); 2768 2769 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2770 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2771 if (!TI.hasFeature("dsp")) 2772 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2773 } 2774 2775 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 2776 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 2777 if (!TI.hasFeature("dspr2")) 2778 return Diag(TheCall->getBeginLoc(), 2779 diag::err_mips_builtin_requires_dspr2); 2780 } 2781 2782 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 2783 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 2784 if (!TI.hasFeature("msa")) 2785 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 2786 } 2787 2788 return false; 2789 } 2790 2791 // CheckMipsBuiltinArgument - Checks the constant value passed to the 2792 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2793 // ordering for DSP is unspecified. MSA is ordered by the data format used 2794 // by the underlying instruction i.e., df/m, df/n and then by size. 2795 // 2796 // FIXME: The size tests here should instead be tablegen'd along with the 2797 // definitions from include/clang/Basic/BuiltinsMips.def. 2798 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2799 // be too. 2800 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2801 unsigned i = 0, l = 0, u = 0, m = 0; 2802 switch (BuiltinID) { 2803 default: return false; 2804 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 2805 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 2806 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 2807 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 2808 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 2809 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 2810 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 2811 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 2812 // df/m field. 2813 // These intrinsics take an unsigned 3 bit immediate. 2814 case Mips::BI__builtin_msa_bclri_b: 2815 case Mips::BI__builtin_msa_bnegi_b: 2816 case Mips::BI__builtin_msa_bseti_b: 2817 case Mips::BI__builtin_msa_sat_s_b: 2818 case Mips::BI__builtin_msa_sat_u_b: 2819 case Mips::BI__builtin_msa_slli_b: 2820 case Mips::BI__builtin_msa_srai_b: 2821 case Mips::BI__builtin_msa_srari_b: 2822 case Mips::BI__builtin_msa_srli_b: 2823 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 2824 case Mips::BI__builtin_msa_binsli_b: 2825 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 2826 // These intrinsics take an unsigned 4 bit immediate. 2827 case Mips::BI__builtin_msa_bclri_h: 2828 case Mips::BI__builtin_msa_bnegi_h: 2829 case Mips::BI__builtin_msa_bseti_h: 2830 case Mips::BI__builtin_msa_sat_s_h: 2831 case Mips::BI__builtin_msa_sat_u_h: 2832 case Mips::BI__builtin_msa_slli_h: 2833 case Mips::BI__builtin_msa_srai_h: 2834 case Mips::BI__builtin_msa_srari_h: 2835 case Mips::BI__builtin_msa_srli_h: 2836 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 2837 case Mips::BI__builtin_msa_binsli_h: 2838 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 2839 // These intrinsics take an unsigned 5 bit immediate. 2840 // The first block of intrinsics actually have an unsigned 5 bit field, 2841 // not a df/n field. 2842 case Mips::BI__builtin_msa_cfcmsa: 2843 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 2844 case Mips::BI__builtin_msa_clei_u_b: 2845 case Mips::BI__builtin_msa_clei_u_h: 2846 case Mips::BI__builtin_msa_clei_u_w: 2847 case Mips::BI__builtin_msa_clei_u_d: 2848 case Mips::BI__builtin_msa_clti_u_b: 2849 case Mips::BI__builtin_msa_clti_u_h: 2850 case Mips::BI__builtin_msa_clti_u_w: 2851 case Mips::BI__builtin_msa_clti_u_d: 2852 case Mips::BI__builtin_msa_maxi_u_b: 2853 case Mips::BI__builtin_msa_maxi_u_h: 2854 case Mips::BI__builtin_msa_maxi_u_w: 2855 case Mips::BI__builtin_msa_maxi_u_d: 2856 case Mips::BI__builtin_msa_mini_u_b: 2857 case Mips::BI__builtin_msa_mini_u_h: 2858 case Mips::BI__builtin_msa_mini_u_w: 2859 case Mips::BI__builtin_msa_mini_u_d: 2860 case Mips::BI__builtin_msa_addvi_b: 2861 case Mips::BI__builtin_msa_addvi_h: 2862 case Mips::BI__builtin_msa_addvi_w: 2863 case Mips::BI__builtin_msa_addvi_d: 2864 case Mips::BI__builtin_msa_bclri_w: 2865 case Mips::BI__builtin_msa_bnegi_w: 2866 case Mips::BI__builtin_msa_bseti_w: 2867 case Mips::BI__builtin_msa_sat_s_w: 2868 case Mips::BI__builtin_msa_sat_u_w: 2869 case Mips::BI__builtin_msa_slli_w: 2870 case Mips::BI__builtin_msa_srai_w: 2871 case Mips::BI__builtin_msa_srari_w: 2872 case Mips::BI__builtin_msa_srli_w: 2873 case Mips::BI__builtin_msa_srlri_w: 2874 case Mips::BI__builtin_msa_subvi_b: 2875 case Mips::BI__builtin_msa_subvi_h: 2876 case Mips::BI__builtin_msa_subvi_w: 2877 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 2878 case Mips::BI__builtin_msa_binsli_w: 2879 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 2880 // These intrinsics take an unsigned 6 bit immediate. 2881 case Mips::BI__builtin_msa_bclri_d: 2882 case Mips::BI__builtin_msa_bnegi_d: 2883 case Mips::BI__builtin_msa_bseti_d: 2884 case Mips::BI__builtin_msa_sat_s_d: 2885 case Mips::BI__builtin_msa_sat_u_d: 2886 case Mips::BI__builtin_msa_slli_d: 2887 case Mips::BI__builtin_msa_srai_d: 2888 case Mips::BI__builtin_msa_srari_d: 2889 case Mips::BI__builtin_msa_srli_d: 2890 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 2891 case Mips::BI__builtin_msa_binsli_d: 2892 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 2893 // These intrinsics take a signed 5 bit immediate. 2894 case Mips::BI__builtin_msa_ceqi_b: 2895 case Mips::BI__builtin_msa_ceqi_h: 2896 case Mips::BI__builtin_msa_ceqi_w: 2897 case Mips::BI__builtin_msa_ceqi_d: 2898 case Mips::BI__builtin_msa_clti_s_b: 2899 case Mips::BI__builtin_msa_clti_s_h: 2900 case Mips::BI__builtin_msa_clti_s_w: 2901 case Mips::BI__builtin_msa_clti_s_d: 2902 case Mips::BI__builtin_msa_clei_s_b: 2903 case Mips::BI__builtin_msa_clei_s_h: 2904 case Mips::BI__builtin_msa_clei_s_w: 2905 case Mips::BI__builtin_msa_clei_s_d: 2906 case Mips::BI__builtin_msa_maxi_s_b: 2907 case Mips::BI__builtin_msa_maxi_s_h: 2908 case Mips::BI__builtin_msa_maxi_s_w: 2909 case Mips::BI__builtin_msa_maxi_s_d: 2910 case Mips::BI__builtin_msa_mini_s_b: 2911 case Mips::BI__builtin_msa_mini_s_h: 2912 case Mips::BI__builtin_msa_mini_s_w: 2913 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 2914 // These intrinsics take an unsigned 8 bit immediate. 2915 case Mips::BI__builtin_msa_andi_b: 2916 case Mips::BI__builtin_msa_nori_b: 2917 case Mips::BI__builtin_msa_ori_b: 2918 case Mips::BI__builtin_msa_shf_b: 2919 case Mips::BI__builtin_msa_shf_h: 2920 case Mips::BI__builtin_msa_shf_w: 2921 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 2922 case Mips::BI__builtin_msa_bseli_b: 2923 case Mips::BI__builtin_msa_bmnzi_b: 2924 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 2925 // df/n format 2926 // These intrinsics take an unsigned 4 bit immediate. 2927 case Mips::BI__builtin_msa_copy_s_b: 2928 case Mips::BI__builtin_msa_copy_u_b: 2929 case Mips::BI__builtin_msa_insve_b: 2930 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 2931 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 2932 // These intrinsics take an unsigned 3 bit immediate. 2933 case Mips::BI__builtin_msa_copy_s_h: 2934 case Mips::BI__builtin_msa_copy_u_h: 2935 case Mips::BI__builtin_msa_insve_h: 2936 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 2937 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 2938 // These intrinsics take an unsigned 2 bit immediate. 2939 case Mips::BI__builtin_msa_copy_s_w: 2940 case Mips::BI__builtin_msa_copy_u_w: 2941 case Mips::BI__builtin_msa_insve_w: 2942 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 2943 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 2944 // These intrinsics take an unsigned 1 bit immediate. 2945 case Mips::BI__builtin_msa_copy_s_d: 2946 case Mips::BI__builtin_msa_copy_u_d: 2947 case Mips::BI__builtin_msa_insve_d: 2948 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 2949 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 2950 // Memory offsets and immediate loads. 2951 // These intrinsics take a signed 10 bit immediate. 2952 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 2953 case Mips::BI__builtin_msa_ldi_h: 2954 case Mips::BI__builtin_msa_ldi_w: 2955 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 2956 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 2957 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 2958 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 2959 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 2960 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 2961 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 2962 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 2963 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 2964 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 2965 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 2966 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 2967 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 2968 } 2969 2970 if (!m) 2971 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 2972 2973 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 2974 SemaBuiltinConstantArgMultiple(TheCall, i, m); 2975 } 2976 2977 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2978 unsigned i = 0, l = 0, u = 0; 2979 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 2980 BuiltinID == PPC::BI__builtin_divdeu || 2981 BuiltinID == PPC::BI__builtin_bpermd; 2982 bool IsTarget64Bit = Context.getTargetInfo() 2983 .getTypeWidth(Context 2984 .getTargetInfo() 2985 .getIntPtrType()) == 64; 2986 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 2987 BuiltinID == PPC::BI__builtin_divweu || 2988 BuiltinID == PPC::BI__builtin_divde || 2989 BuiltinID == PPC::BI__builtin_divdeu; 2990 2991 if (Is64BitBltin && !IsTarget64Bit) 2992 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 2993 << TheCall->getSourceRange(); 2994 2995 if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) || 2996 (BuiltinID == PPC::BI__builtin_bpermd && 2997 !Context.getTargetInfo().hasFeature("bpermd"))) 2998 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 2999 << TheCall->getSourceRange(); 3000 3001 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3002 if (!Context.getTargetInfo().hasFeature("vsx")) 3003 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3004 << TheCall->getSourceRange(); 3005 return false; 3006 }; 3007 3008 switch (BuiltinID) { 3009 default: return false; 3010 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3011 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3012 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3013 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3014 case PPC::BI__builtin_altivec_dss: 3015 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3016 case PPC::BI__builtin_tbegin: 3017 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3018 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3019 case PPC::BI__builtin_tabortwc: 3020 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3021 case PPC::BI__builtin_tabortwci: 3022 case PPC::BI__builtin_tabortdci: 3023 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3024 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3025 case PPC::BI__builtin_altivec_dst: 3026 case PPC::BI__builtin_altivec_dstt: 3027 case PPC::BI__builtin_altivec_dstst: 3028 case PPC::BI__builtin_altivec_dststt: 3029 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3030 case PPC::BI__builtin_vsx_xxpermdi: 3031 case PPC::BI__builtin_vsx_xxsldwi: 3032 return SemaBuiltinVSX(TheCall); 3033 case PPC::BI__builtin_unpack_vector_int128: 3034 return SemaVSXCheck(TheCall) || 3035 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3036 case PPC::BI__builtin_pack_vector_int128: 3037 return SemaVSXCheck(TheCall); 3038 } 3039 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3040 } 3041 3042 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3043 CallExpr *TheCall) { 3044 switch (BuiltinID) { 3045 case AMDGPU::BI__builtin_amdgcn_fence: { 3046 ExprResult Arg = TheCall->getArg(0); 3047 auto ArgExpr = Arg.get(); 3048 Expr::EvalResult ArgResult; 3049 3050 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3051 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3052 << ArgExpr->getType(); 3053 int ord = ArgResult.Val.getInt().getZExtValue(); 3054 3055 // Check valididty of memory ordering as per C11 / C++11's memody model. 3056 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 3057 case llvm::AtomicOrderingCABI::acquire: 3058 case llvm::AtomicOrderingCABI::release: 3059 case llvm::AtomicOrderingCABI::acq_rel: 3060 case llvm::AtomicOrderingCABI::seq_cst: 3061 break; 3062 default: { 3063 return Diag(ArgExpr->getBeginLoc(), 3064 diag::warn_atomic_op_has_invalid_memory_order) 3065 << ArgExpr->getSourceRange(); 3066 } 3067 } 3068 3069 Arg = TheCall->getArg(1); 3070 ArgExpr = Arg.get(); 3071 Expr::EvalResult ArgResult1; 3072 // Check that sync scope is a constant literal 3073 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Expr::EvaluateForCodeGen, 3074 Context)) 3075 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3076 << ArgExpr->getType(); 3077 } break; 3078 } 3079 return false; 3080 } 3081 3082 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3083 CallExpr *TheCall) { 3084 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3085 Expr *Arg = TheCall->getArg(0); 3086 llvm::APSInt AbortCode(32); 3087 if (Arg->isIntegerConstantExpr(AbortCode, Context) && 3088 AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) 3089 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3090 << Arg->getSourceRange(); 3091 } 3092 3093 // For intrinsics which take an immediate value as part of the instruction, 3094 // range check them here. 3095 unsigned i = 0, l = 0, u = 0; 3096 switch (BuiltinID) { 3097 default: return false; 3098 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3099 case SystemZ::BI__builtin_s390_verimb: 3100 case SystemZ::BI__builtin_s390_verimh: 3101 case SystemZ::BI__builtin_s390_verimf: 3102 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3103 case SystemZ::BI__builtin_s390_vfaeb: 3104 case SystemZ::BI__builtin_s390_vfaeh: 3105 case SystemZ::BI__builtin_s390_vfaef: 3106 case SystemZ::BI__builtin_s390_vfaebs: 3107 case SystemZ::BI__builtin_s390_vfaehs: 3108 case SystemZ::BI__builtin_s390_vfaefs: 3109 case SystemZ::BI__builtin_s390_vfaezb: 3110 case SystemZ::BI__builtin_s390_vfaezh: 3111 case SystemZ::BI__builtin_s390_vfaezf: 3112 case SystemZ::BI__builtin_s390_vfaezbs: 3113 case SystemZ::BI__builtin_s390_vfaezhs: 3114 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3115 case SystemZ::BI__builtin_s390_vfisb: 3116 case SystemZ::BI__builtin_s390_vfidb: 3117 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3118 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3119 case SystemZ::BI__builtin_s390_vftcisb: 3120 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3121 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3122 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3123 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3124 case SystemZ::BI__builtin_s390_vstrcb: 3125 case SystemZ::BI__builtin_s390_vstrch: 3126 case SystemZ::BI__builtin_s390_vstrcf: 3127 case SystemZ::BI__builtin_s390_vstrczb: 3128 case SystemZ::BI__builtin_s390_vstrczh: 3129 case SystemZ::BI__builtin_s390_vstrczf: 3130 case SystemZ::BI__builtin_s390_vstrcbs: 3131 case SystemZ::BI__builtin_s390_vstrchs: 3132 case SystemZ::BI__builtin_s390_vstrcfs: 3133 case SystemZ::BI__builtin_s390_vstrczbs: 3134 case SystemZ::BI__builtin_s390_vstrczhs: 3135 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3136 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3137 case SystemZ::BI__builtin_s390_vfminsb: 3138 case SystemZ::BI__builtin_s390_vfmaxsb: 3139 case SystemZ::BI__builtin_s390_vfmindb: 3140 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3141 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3142 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3143 } 3144 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3145 } 3146 3147 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3148 /// This checks that the target supports __builtin_cpu_supports and 3149 /// that the string argument is constant and valid. 3150 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) { 3151 Expr *Arg = TheCall->getArg(0); 3152 3153 // Check if the argument is a string literal. 3154 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3155 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3156 << Arg->getSourceRange(); 3157 3158 // Check the contents of the string. 3159 StringRef Feature = 3160 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3161 if (!S.Context.getTargetInfo().validateCpuSupports(Feature)) 3162 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3163 << Arg->getSourceRange(); 3164 return false; 3165 } 3166 3167 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3168 /// This checks that the target supports __builtin_cpu_is and 3169 /// that the string argument is constant and valid. 3170 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) { 3171 Expr *Arg = TheCall->getArg(0); 3172 3173 // Check if the argument is a string literal. 3174 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3175 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3176 << Arg->getSourceRange(); 3177 3178 // Check the contents of the string. 3179 StringRef Feature = 3180 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3181 if (!S.Context.getTargetInfo().validateCpuIs(Feature)) 3182 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3183 << Arg->getSourceRange(); 3184 return false; 3185 } 3186 3187 // Check if the rounding mode is legal. 3188 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3189 // Indicates if this instruction has rounding control or just SAE. 3190 bool HasRC = false; 3191 3192 unsigned ArgNum = 0; 3193 switch (BuiltinID) { 3194 default: 3195 return false; 3196 case X86::BI__builtin_ia32_vcvttsd2si32: 3197 case X86::BI__builtin_ia32_vcvttsd2si64: 3198 case X86::BI__builtin_ia32_vcvttsd2usi32: 3199 case X86::BI__builtin_ia32_vcvttsd2usi64: 3200 case X86::BI__builtin_ia32_vcvttss2si32: 3201 case X86::BI__builtin_ia32_vcvttss2si64: 3202 case X86::BI__builtin_ia32_vcvttss2usi32: 3203 case X86::BI__builtin_ia32_vcvttss2usi64: 3204 ArgNum = 1; 3205 break; 3206 case X86::BI__builtin_ia32_maxpd512: 3207 case X86::BI__builtin_ia32_maxps512: 3208 case X86::BI__builtin_ia32_minpd512: 3209 case X86::BI__builtin_ia32_minps512: 3210 ArgNum = 2; 3211 break; 3212 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3213 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3214 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3215 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3216 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3217 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3218 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3219 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3220 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3221 case X86::BI__builtin_ia32_exp2pd_mask: 3222 case X86::BI__builtin_ia32_exp2ps_mask: 3223 case X86::BI__builtin_ia32_getexppd512_mask: 3224 case X86::BI__builtin_ia32_getexpps512_mask: 3225 case X86::BI__builtin_ia32_rcp28pd_mask: 3226 case X86::BI__builtin_ia32_rcp28ps_mask: 3227 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3228 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3229 case X86::BI__builtin_ia32_vcomisd: 3230 case X86::BI__builtin_ia32_vcomiss: 3231 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3232 ArgNum = 3; 3233 break; 3234 case X86::BI__builtin_ia32_cmppd512_mask: 3235 case X86::BI__builtin_ia32_cmpps512_mask: 3236 case X86::BI__builtin_ia32_cmpsd_mask: 3237 case X86::BI__builtin_ia32_cmpss_mask: 3238 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3239 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3240 case X86::BI__builtin_ia32_getexpss128_round_mask: 3241 case X86::BI__builtin_ia32_getmantpd512_mask: 3242 case X86::BI__builtin_ia32_getmantps512_mask: 3243 case X86::BI__builtin_ia32_maxsd_round_mask: 3244 case X86::BI__builtin_ia32_maxss_round_mask: 3245 case X86::BI__builtin_ia32_minsd_round_mask: 3246 case X86::BI__builtin_ia32_minss_round_mask: 3247 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3248 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3249 case X86::BI__builtin_ia32_reducepd512_mask: 3250 case X86::BI__builtin_ia32_reduceps512_mask: 3251 case X86::BI__builtin_ia32_rndscalepd_mask: 3252 case X86::BI__builtin_ia32_rndscaleps_mask: 3253 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3254 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3255 ArgNum = 4; 3256 break; 3257 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3258 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3259 case X86::BI__builtin_ia32_fixupimmps512_mask: 3260 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3261 case X86::BI__builtin_ia32_fixupimmsd_mask: 3262 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3263 case X86::BI__builtin_ia32_fixupimmss_mask: 3264 case X86::BI__builtin_ia32_fixupimmss_maskz: 3265 case X86::BI__builtin_ia32_getmantsd_round_mask: 3266 case X86::BI__builtin_ia32_getmantss_round_mask: 3267 case X86::BI__builtin_ia32_rangepd512_mask: 3268 case X86::BI__builtin_ia32_rangeps512_mask: 3269 case X86::BI__builtin_ia32_rangesd128_round_mask: 3270 case X86::BI__builtin_ia32_rangess128_round_mask: 3271 case X86::BI__builtin_ia32_reducesd_mask: 3272 case X86::BI__builtin_ia32_reducess_mask: 3273 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3274 case X86::BI__builtin_ia32_rndscaless_round_mask: 3275 ArgNum = 5; 3276 break; 3277 case X86::BI__builtin_ia32_vcvtsd2si64: 3278 case X86::BI__builtin_ia32_vcvtsd2si32: 3279 case X86::BI__builtin_ia32_vcvtsd2usi32: 3280 case X86::BI__builtin_ia32_vcvtsd2usi64: 3281 case X86::BI__builtin_ia32_vcvtss2si32: 3282 case X86::BI__builtin_ia32_vcvtss2si64: 3283 case X86::BI__builtin_ia32_vcvtss2usi32: 3284 case X86::BI__builtin_ia32_vcvtss2usi64: 3285 case X86::BI__builtin_ia32_sqrtpd512: 3286 case X86::BI__builtin_ia32_sqrtps512: 3287 ArgNum = 1; 3288 HasRC = true; 3289 break; 3290 case X86::BI__builtin_ia32_addpd512: 3291 case X86::BI__builtin_ia32_addps512: 3292 case X86::BI__builtin_ia32_divpd512: 3293 case X86::BI__builtin_ia32_divps512: 3294 case X86::BI__builtin_ia32_mulpd512: 3295 case X86::BI__builtin_ia32_mulps512: 3296 case X86::BI__builtin_ia32_subpd512: 3297 case X86::BI__builtin_ia32_subps512: 3298 case X86::BI__builtin_ia32_cvtsi2sd64: 3299 case X86::BI__builtin_ia32_cvtsi2ss32: 3300 case X86::BI__builtin_ia32_cvtsi2ss64: 3301 case X86::BI__builtin_ia32_cvtusi2sd64: 3302 case X86::BI__builtin_ia32_cvtusi2ss32: 3303 case X86::BI__builtin_ia32_cvtusi2ss64: 3304 ArgNum = 2; 3305 HasRC = true; 3306 break; 3307 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3308 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3309 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3310 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3311 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3312 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3313 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3314 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3315 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3316 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3317 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3318 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3319 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3320 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3321 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3322 ArgNum = 3; 3323 HasRC = true; 3324 break; 3325 case X86::BI__builtin_ia32_addss_round_mask: 3326 case X86::BI__builtin_ia32_addsd_round_mask: 3327 case X86::BI__builtin_ia32_divss_round_mask: 3328 case X86::BI__builtin_ia32_divsd_round_mask: 3329 case X86::BI__builtin_ia32_mulss_round_mask: 3330 case X86::BI__builtin_ia32_mulsd_round_mask: 3331 case X86::BI__builtin_ia32_subss_round_mask: 3332 case X86::BI__builtin_ia32_subsd_round_mask: 3333 case X86::BI__builtin_ia32_scalefpd512_mask: 3334 case X86::BI__builtin_ia32_scalefps512_mask: 3335 case X86::BI__builtin_ia32_scalefsd_round_mask: 3336 case X86::BI__builtin_ia32_scalefss_round_mask: 3337 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3338 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3339 case X86::BI__builtin_ia32_sqrtss_round_mask: 3340 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3341 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3342 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3343 case X86::BI__builtin_ia32_vfmaddss3_mask: 3344 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3345 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3346 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3347 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3348 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3349 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3350 case X86::BI__builtin_ia32_vfmaddps512_mask: 3351 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3352 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3353 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3354 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3355 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3356 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3357 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3358 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3359 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3360 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3361 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3362 ArgNum = 4; 3363 HasRC = true; 3364 break; 3365 } 3366 3367 llvm::APSInt Result; 3368 3369 // We can't check the value of a dependent argument. 3370 Expr *Arg = TheCall->getArg(ArgNum); 3371 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3372 return false; 3373 3374 // Check constant-ness first. 3375 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3376 return true; 3377 3378 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3379 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3380 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3381 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3382 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3383 Result == 8/*ROUND_NO_EXC*/ || 3384 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3385 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3386 return false; 3387 3388 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3389 << Arg->getSourceRange(); 3390 } 3391 3392 // Check if the gather/scatter scale is legal. 3393 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3394 CallExpr *TheCall) { 3395 unsigned ArgNum = 0; 3396 switch (BuiltinID) { 3397 default: 3398 return false; 3399 case X86::BI__builtin_ia32_gatherpfdpd: 3400 case X86::BI__builtin_ia32_gatherpfdps: 3401 case X86::BI__builtin_ia32_gatherpfqpd: 3402 case X86::BI__builtin_ia32_gatherpfqps: 3403 case X86::BI__builtin_ia32_scatterpfdpd: 3404 case X86::BI__builtin_ia32_scatterpfdps: 3405 case X86::BI__builtin_ia32_scatterpfqpd: 3406 case X86::BI__builtin_ia32_scatterpfqps: 3407 ArgNum = 3; 3408 break; 3409 case X86::BI__builtin_ia32_gatherd_pd: 3410 case X86::BI__builtin_ia32_gatherd_pd256: 3411 case X86::BI__builtin_ia32_gatherq_pd: 3412 case X86::BI__builtin_ia32_gatherq_pd256: 3413 case X86::BI__builtin_ia32_gatherd_ps: 3414 case X86::BI__builtin_ia32_gatherd_ps256: 3415 case X86::BI__builtin_ia32_gatherq_ps: 3416 case X86::BI__builtin_ia32_gatherq_ps256: 3417 case X86::BI__builtin_ia32_gatherd_q: 3418 case X86::BI__builtin_ia32_gatherd_q256: 3419 case X86::BI__builtin_ia32_gatherq_q: 3420 case X86::BI__builtin_ia32_gatherq_q256: 3421 case X86::BI__builtin_ia32_gatherd_d: 3422 case X86::BI__builtin_ia32_gatherd_d256: 3423 case X86::BI__builtin_ia32_gatherq_d: 3424 case X86::BI__builtin_ia32_gatherq_d256: 3425 case X86::BI__builtin_ia32_gather3div2df: 3426 case X86::BI__builtin_ia32_gather3div2di: 3427 case X86::BI__builtin_ia32_gather3div4df: 3428 case X86::BI__builtin_ia32_gather3div4di: 3429 case X86::BI__builtin_ia32_gather3div4sf: 3430 case X86::BI__builtin_ia32_gather3div4si: 3431 case X86::BI__builtin_ia32_gather3div8sf: 3432 case X86::BI__builtin_ia32_gather3div8si: 3433 case X86::BI__builtin_ia32_gather3siv2df: 3434 case X86::BI__builtin_ia32_gather3siv2di: 3435 case X86::BI__builtin_ia32_gather3siv4df: 3436 case X86::BI__builtin_ia32_gather3siv4di: 3437 case X86::BI__builtin_ia32_gather3siv4sf: 3438 case X86::BI__builtin_ia32_gather3siv4si: 3439 case X86::BI__builtin_ia32_gather3siv8sf: 3440 case X86::BI__builtin_ia32_gather3siv8si: 3441 case X86::BI__builtin_ia32_gathersiv8df: 3442 case X86::BI__builtin_ia32_gathersiv16sf: 3443 case X86::BI__builtin_ia32_gatherdiv8df: 3444 case X86::BI__builtin_ia32_gatherdiv16sf: 3445 case X86::BI__builtin_ia32_gathersiv8di: 3446 case X86::BI__builtin_ia32_gathersiv16si: 3447 case X86::BI__builtin_ia32_gatherdiv8di: 3448 case X86::BI__builtin_ia32_gatherdiv16si: 3449 case X86::BI__builtin_ia32_scatterdiv2df: 3450 case X86::BI__builtin_ia32_scatterdiv2di: 3451 case X86::BI__builtin_ia32_scatterdiv4df: 3452 case X86::BI__builtin_ia32_scatterdiv4di: 3453 case X86::BI__builtin_ia32_scatterdiv4sf: 3454 case X86::BI__builtin_ia32_scatterdiv4si: 3455 case X86::BI__builtin_ia32_scatterdiv8sf: 3456 case X86::BI__builtin_ia32_scatterdiv8si: 3457 case X86::BI__builtin_ia32_scattersiv2df: 3458 case X86::BI__builtin_ia32_scattersiv2di: 3459 case X86::BI__builtin_ia32_scattersiv4df: 3460 case X86::BI__builtin_ia32_scattersiv4di: 3461 case X86::BI__builtin_ia32_scattersiv4sf: 3462 case X86::BI__builtin_ia32_scattersiv4si: 3463 case X86::BI__builtin_ia32_scattersiv8sf: 3464 case X86::BI__builtin_ia32_scattersiv8si: 3465 case X86::BI__builtin_ia32_scattersiv8df: 3466 case X86::BI__builtin_ia32_scattersiv16sf: 3467 case X86::BI__builtin_ia32_scatterdiv8df: 3468 case X86::BI__builtin_ia32_scatterdiv16sf: 3469 case X86::BI__builtin_ia32_scattersiv8di: 3470 case X86::BI__builtin_ia32_scattersiv16si: 3471 case X86::BI__builtin_ia32_scatterdiv8di: 3472 case X86::BI__builtin_ia32_scatterdiv16si: 3473 ArgNum = 4; 3474 break; 3475 } 3476 3477 llvm::APSInt Result; 3478 3479 // We can't check the value of a dependent argument. 3480 Expr *Arg = TheCall->getArg(ArgNum); 3481 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3482 return false; 3483 3484 // Check constant-ness first. 3485 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3486 return true; 3487 3488 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3489 return false; 3490 3491 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3492 << Arg->getSourceRange(); 3493 } 3494 3495 static bool isX86_32Builtin(unsigned BuiltinID) { 3496 // These builtins only work on x86-32 targets. 3497 switch (BuiltinID) { 3498 case X86::BI__builtin_ia32_readeflags_u32: 3499 case X86::BI__builtin_ia32_writeeflags_u32: 3500 return true; 3501 } 3502 3503 return false; 3504 } 3505 3506 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3507 if (BuiltinID == X86::BI__builtin_cpu_supports) 3508 return SemaBuiltinCpuSupports(*this, TheCall); 3509 3510 if (BuiltinID == X86::BI__builtin_cpu_is) 3511 return SemaBuiltinCpuIs(*this, TheCall); 3512 3513 // Check for 32-bit only builtins on a 64-bit target. 3514 const llvm::Triple &TT = Context.getTargetInfo().getTriple(); 3515 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3516 return Diag(TheCall->getCallee()->getBeginLoc(), 3517 diag::err_32_bit_builtin_64_bit_tgt); 3518 3519 // If the intrinsic has rounding or SAE make sure its valid. 3520 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3521 return true; 3522 3523 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3524 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3525 return true; 3526 3527 // For intrinsics which take an immediate value as part of the instruction, 3528 // range check them here. 3529 int i = 0, l = 0, u = 0; 3530 switch (BuiltinID) { 3531 default: 3532 return false; 3533 case X86::BI__builtin_ia32_vec_ext_v2si: 3534 case X86::BI__builtin_ia32_vec_ext_v2di: 3535 case X86::BI__builtin_ia32_vextractf128_pd256: 3536 case X86::BI__builtin_ia32_vextractf128_ps256: 3537 case X86::BI__builtin_ia32_vextractf128_si256: 3538 case X86::BI__builtin_ia32_extract128i256: 3539 case X86::BI__builtin_ia32_extractf64x4_mask: 3540 case X86::BI__builtin_ia32_extracti64x4_mask: 3541 case X86::BI__builtin_ia32_extractf32x8_mask: 3542 case X86::BI__builtin_ia32_extracti32x8_mask: 3543 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3544 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3545 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3546 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3547 i = 1; l = 0; u = 1; 3548 break; 3549 case X86::BI__builtin_ia32_vec_set_v2di: 3550 case X86::BI__builtin_ia32_vinsertf128_pd256: 3551 case X86::BI__builtin_ia32_vinsertf128_ps256: 3552 case X86::BI__builtin_ia32_vinsertf128_si256: 3553 case X86::BI__builtin_ia32_insert128i256: 3554 case X86::BI__builtin_ia32_insertf32x8: 3555 case X86::BI__builtin_ia32_inserti32x8: 3556 case X86::BI__builtin_ia32_insertf64x4: 3557 case X86::BI__builtin_ia32_inserti64x4: 3558 case X86::BI__builtin_ia32_insertf64x2_256: 3559 case X86::BI__builtin_ia32_inserti64x2_256: 3560 case X86::BI__builtin_ia32_insertf32x4_256: 3561 case X86::BI__builtin_ia32_inserti32x4_256: 3562 i = 2; l = 0; u = 1; 3563 break; 3564 case X86::BI__builtin_ia32_vpermilpd: 3565 case X86::BI__builtin_ia32_vec_ext_v4hi: 3566 case X86::BI__builtin_ia32_vec_ext_v4si: 3567 case X86::BI__builtin_ia32_vec_ext_v4sf: 3568 case X86::BI__builtin_ia32_vec_ext_v4di: 3569 case X86::BI__builtin_ia32_extractf32x4_mask: 3570 case X86::BI__builtin_ia32_extracti32x4_mask: 3571 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3572 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3573 i = 1; l = 0; u = 3; 3574 break; 3575 case X86::BI_mm_prefetch: 3576 case X86::BI__builtin_ia32_vec_ext_v8hi: 3577 case X86::BI__builtin_ia32_vec_ext_v8si: 3578 i = 1; l = 0; u = 7; 3579 break; 3580 case X86::BI__builtin_ia32_sha1rnds4: 3581 case X86::BI__builtin_ia32_blendpd: 3582 case X86::BI__builtin_ia32_shufpd: 3583 case X86::BI__builtin_ia32_vec_set_v4hi: 3584 case X86::BI__builtin_ia32_vec_set_v4si: 3585 case X86::BI__builtin_ia32_vec_set_v4di: 3586 case X86::BI__builtin_ia32_shuf_f32x4_256: 3587 case X86::BI__builtin_ia32_shuf_f64x2_256: 3588 case X86::BI__builtin_ia32_shuf_i32x4_256: 3589 case X86::BI__builtin_ia32_shuf_i64x2_256: 3590 case X86::BI__builtin_ia32_insertf64x2_512: 3591 case X86::BI__builtin_ia32_inserti64x2_512: 3592 case X86::BI__builtin_ia32_insertf32x4: 3593 case X86::BI__builtin_ia32_inserti32x4: 3594 i = 2; l = 0; u = 3; 3595 break; 3596 case X86::BI__builtin_ia32_vpermil2pd: 3597 case X86::BI__builtin_ia32_vpermil2pd256: 3598 case X86::BI__builtin_ia32_vpermil2ps: 3599 case X86::BI__builtin_ia32_vpermil2ps256: 3600 i = 3; l = 0; u = 3; 3601 break; 3602 case X86::BI__builtin_ia32_cmpb128_mask: 3603 case X86::BI__builtin_ia32_cmpw128_mask: 3604 case X86::BI__builtin_ia32_cmpd128_mask: 3605 case X86::BI__builtin_ia32_cmpq128_mask: 3606 case X86::BI__builtin_ia32_cmpb256_mask: 3607 case X86::BI__builtin_ia32_cmpw256_mask: 3608 case X86::BI__builtin_ia32_cmpd256_mask: 3609 case X86::BI__builtin_ia32_cmpq256_mask: 3610 case X86::BI__builtin_ia32_cmpb512_mask: 3611 case X86::BI__builtin_ia32_cmpw512_mask: 3612 case X86::BI__builtin_ia32_cmpd512_mask: 3613 case X86::BI__builtin_ia32_cmpq512_mask: 3614 case X86::BI__builtin_ia32_ucmpb128_mask: 3615 case X86::BI__builtin_ia32_ucmpw128_mask: 3616 case X86::BI__builtin_ia32_ucmpd128_mask: 3617 case X86::BI__builtin_ia32_ucmpq128_mask: 3618 case X86::BI__builtin_ia32_ucmpb256_mask: 3619 case X86::BI__builtin_ia32_ucmpw256_mask: 3620 case X86::BI__builtin_ia32_ucmpd256_mask: 3621 case X86::BI__builtin_ia32_ucmpq256_mask: 3622 case X86::BI__builtin_ia32_ucmpb512_mask: 3623 case X86::BI__builtin_ia32_ucmpw512_mask: 3624 case X86::BI__builtin_ia32_ucmpd512_mask: 3625 case X86::BI__builtin_ia32_ucmpq512_mask: 3626 case X86::BI__builtin_ia32_vpcomub: 3627 case X86::BI__builtin_ia32_vpcomuw: 3628 case X86::BI__builtin_ia32_vpcomud: 3629 case X86::BI__builtin_ia32_vpcomuq: 3630 case X86::BI__builtin_ia32_vpcomb: 3631 case X86::BI__builtin_ia32_vpcomw: 3632 case X86::BI__builtin_ia32_vpcomd: 3633 case X86::BI__builtin_ia32_vpcomq: 3634 case X86::BI__builtin_ia32_vec_set_v8hi: 3635 case X86::BI__builtin_ia32_vec_set_v8si: 3636 i = 2; l = 0; u = 7; 3637 break; 3638 case X86::BI__builtin_ia32_vpermilpd256: 3639 case X86::BI__builtin_ia32_roundps: 3640 case X86::BI__builtin_ia32_roundpd: 3641 case X86::BI__builtin_ia32_roundps256: 3642 case X86::BI__builtin_ia32_roundpd256: 3643 case X86::BI__builtin_ia32_getmantpd128_mask: 3644 case X86::BI__builtin_ia32_getmantpd256_mask: 3645 case X86::BI__builtin_ia32_getmantps128_mask: 3646 case X86::BI__builtin_ia32_getmantps256_mask: 3647 case X86::BI__builtin_ia32_getmantpd512_mask: 3648 case X86::BI__builtin_ia32_getmantps512_mask: 3649 case X86::BI__builtin_ia32_vec_ext_v16qi: 3650 case X86::BI__builtin_ia32_vec_ext_v16hi: 3651 i = 1; l = 0; u = 15; 3652 break; 3653 case X86::BI__builtin_ia32_pblendd128: 3654 case X86::BI__builtin_ia32_blendps: 3655 case X86::BI__builtin_ia32_blendpd256: 3656 case X86::BI__builtin_ia32_shufpd256: 3657 case X86::BI__builtin_ia32_roundss: 3658 case X86::BI__builtin_ia32_roundsd: 3659 case X86::BI__builtin_ia32_rangepd128_mask: 3660 case X86::BI__builtin_ia32_rangepd256_mask: 3661 case X86::BI__builtin_ia32_rangepd512_mask: 3662 case X86::BI__builtin_ia32_rangeps128_mask: 3663 case X86::BI__builtin_ia32_rangeps256_mask: 3664 case X86::BI__builtin_ia32_rangeps512_mask: 3665 case X86::BI__builtin_ia32_getmantsd_round_mask: 3666 case X86::BI__builtin_ia32_getmantss_round_mask: 3667 case X86::BI__builtin_ia32_vec_set_v16qi: 3668 case X86::BI__builtin_ia32_vec_set_v16hi: 3669 i = 2; l = 0; u = 15; 3670 break; 3671 case X86::BI__builtin_ia32_vec_ext_v32qi: 3672 i = 1; l = 0; u = 31; 3673 break; 3674 case X86::BI__builtin_ia32_cmpps: 3675 case X86::BI__builtin_ia32_cmpss: 3676 case X86::BI__builtin_ia32_cmppd: 3677 case X86::BI__builtin_ia32_cmpsd: 3678 case X86::BI__builtin_ia32_cmpps256: 3679 case X86::BI__builtin_ia32_cmppd256: 3680 case X86::BI__builtin_ia32_cmpps128_mask: 3681 case X86::BI__builtin_ia32_cmppd128_mask: 3682 case X86::BI__builtin_ia32_cmpps256_mask: 3683 case X86::BI__builtin_ia32_cmppd256_mask: 3684 case X86::BI__builtin_ia32_cmpps512_mask: 3685 case X86::BI__builtin_ia32_cmppd512_mask: 3686 case X86::BI__builtin_ia32_cmpsd_mask: 3687 case X86::BI__builtin_ia32_cmpss_mask: 3688 case X86::BI__builtin_ia32_vec_set_v32qi: 3689 i = 2; l = 0; u = 31; 3690 break; 3691 case X86::BI__builtin_ia32_permdf256: 3692 case X86::BI__builtin_ia32_permdi256: 3693 case X86::BI__builtin_ia32_permdf512: 3694 case X86::BI__builtin_ia32_permdi512: 3695 case X86::BI__builtin_ia32_vpermilps: 3696 case X86::BI__builtin_ia32_vpermilps256: 3697 case X86::BI__builtin_ia32_vpermilpd512: 3698 case X86::BI__builtin_ia32_vpermilps512: 3699 case X86::BI__builtin_ia32_pshufd: 3700 case X86::BI__builtin_ia32_pshufd256: 3701 case X86::BI__builtin_ia32_pshufd512: 3702 case X86::BI__builtin_ia32_pshufhw: 3703 case X86::BI__builtin_ia32_pshufhw256: 3704 case X86::BI__builtin_ia32_pshufhw512: 3705 case X86::BI__builtin_ia32_pshuflw: 3706 case X86::BI__builtin_ia32_pshuflw256: 3707 case X86::BI__builtin_ia32_pshuflw512: 3708 case X86::BI__builtin_ia32_vcvtps2ph: 3709 case X86::BI__builtin_ia32_vcvtps2ph_mask: 3710 case X86::BI__builtin_ia32_vcvtps2ph256: 3711 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 3712 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 3713 case X86::BI__builtin_ia32_rndscaleps_128_mask: 3714 case X86::BI__builtin_ia32_rndscalepd_128_mask: 3715 case X86::BI__builtin_ia32_rndscaleps_256_mask: 3716 case X86::BI__builtin_ia32_rndscalepd_256_mask: 3717 case X86::BI__builtin_ia32_rndscaleps_mask: 3718 case X86::BI__builtin_ia32_rndscalepd_mask: 3719 case X86::BI__builtin_ia32_reducepd128_mask: 3720 case X86::BI__builtin_ia32_reducepd256_mask: 3721 case X86::BI__builtin_ia32_reducepd512_mask: 3722 case X86::BI__builtin_ia32_reduceps128_mask: 3723 case X86::BI__builtin_ia32_reduceps256_mask: 3724 case X86::BI__builtin_ia32_reduceps512_mask: 3725 case X86::BI__builtin_ia32_prold512: 3726 case X86::BI__builtin_ia32_prolq512: 3727 case X86::BI__builtin_ia32_prold128: 3728 case X86::BI__builtin_ia32_prold256: 3729 case X86::BI__builtin_ia32_prolq128: 3730 case X86::BI__builtin_ia32_prolq256: 3731 case X86::BI__builtin_ia32_prord512: 3732 case X86::BI__builtin_ia32_prorq512: 3733 case X86::BI__builtin_ia32_prord128: 3734 case X86::BI__builtin_ia32_prord256: 3735 case X86::BI__builtin_ia32_prorq128: 3736 case X86::BI__builtin_ia32_prorq256: 3737 case X86::BI__builtin_ia32_fpclasspd128_mask: 3738 case X86::BI__builtin_ia32_fpclasspd256_mask: 3739 case X86::BI__builtin_ia32_fpclassps128_mask: 3740 case X86::BI__builtin_ia32_fpclassps256_mask: 3741 case X86::BI__builtin_ia32_fpclassps512_mask: 3742 case X86::BI__builtin_ia32_fpclasspd512_mask: 3743 case X86::BI__builtin_ia32_fpclasssd_mask: 3744 case X86::BI__builtin_ia32_fpclassss_mask: 3745 case X86::BI__builtin_ia32_pslldqi128_byteshift: 3746 case X86::BI__builtin_ia32_pslldqi256_byteshift: 3747 case X86::BI__builtin_ia32_pslldqi512_byteshift: 3748 case X86::BI__builtin_ia32_psrldqi128_byteshift: 3749 case X86::BI__builtin_ia32_psrldqi256_byteshift: 3750 case X86::BI__builtin_ia32_psrldqi512_byteshift: 3751 case X86::BI__builtin_ia32_kshiftliqi: 3752 case X86::BI__builtin_ia32_kshiftlihi: 3753 case X86::BI__builtin_ia32_kshiftlisi: 3754 case X86::BI__builtin_ia32_kshiftlidi: 3755 case X86::BI__builtin_ia32_kshiftriqi: 3756 case X86::BI__builtin_ia32_kshiftrihi: 3757 case X86::BI__builtin_ia32_kshiftrisi: 3758 case X86::BI__builtin_ia32_kshiftridi: 3759 i = 1; l = 0; u = 255; 3760 break; 3761 case X86::BI__builtin_ia32_vperm2f128_pd256: 3762 case X86::BI__builtin_ia32_vperm2f128_ps256: 3763 case X86::BI__builtin_ia32_vperm2f128_si256: 3764 case X86::BI__builtin_ia32_permti256: 3765 case X86::BI__builtin_ia32_pblendw128: 3766 case X86::BI__builtin_ia32_pblendw256: 3767 case X86::BI__builtin_ia32_blendps256: 3768 case X86::BI__builtin_ia32_pblendd256: 3769 case X86::BI__builtin_ia32_palignr128: 3770 case X86::BI__builtin_ia32_palignr256: 3771 case X86::BI__builtin_ia32_palignr512: 3772 case X86::BI__builtin_ia32_alignq512: 3773 case X86::BI__builtin_ia32_alignd512: 3774 case X86::BI__builtin_ia32_alignd128: 3775 case X86::BI__builtin_ia32_alignd256: 3776 case X86::BI__builtin_ia32_alignq128: 3777 case X86::BI__builtin_ia32_alignq256: 3778 case X86::BI__builtin_ia32_vcomisd: 3779 case X86::BI__builtin_ia32_vcomiss: 3780 case X86::BI__builtin_ia32_shuf_f32x4: 3781 case X86::BI__builtin_ia32_shuf_f64x2: 3782 case X86::BI__builtin_ia32_shuf_i32x4: 3783 case X86::BI__builtin_ia32_shuf_i64x2: 3784 case X86::BI__builtin_ia32_shufpd512: 3785 case X86::BI__builtin_ia32_shufps: 3786 case X86::BI__builtin_ia32_shufps256: 3787 case X86::BI__builtin_ia32_shufps512: 3788 case X86::BI__builtin_ia32_dbpsadbw128: 3789 case X86::BI__builtin_ia32_dbpsadbw256: 3790 case X86::BI__builtin_ia32_dbpsadbw512: 3791 case X86::BI__builtin_ia32_vpshldd128: 3792 case X86::BI__builtin_ia32_vpshldd256: 3793 case X86::BI__builtin_ia32_vpshldd512: 3794 case X86::BI__builtin_ia32_vpshldq128: 3795 case X86::BI__builtin_ia32_vpshldq256: 3796 case X86::BI__builtin_ia32_vpshldq512: 3797 case X86::BI__builtin_ia32_vpshldw128: 3798 case X86::BI__builtin_ia32_vpshldw256: 3799 case X86::BI__builtin_ia32_vpshldw512: 3800 case X86::BI__builtin_ia32_vpshrdd128: 3801 case X86::BI__builtin_ia32_vpshrdd256: 3802 case X86::BI__builtin_ia32_vpshrdd512: 3803 case X86::BI__builtin_ia32_vpshrdq128: 3804 case X86::BI__builtin_ia32_vpshrdq256: 3805 case X86::BI__builtin_ia32_vpshrdq512: 3806 case X86::BI__builtin_ia32_vpshrdw128: 3807 case X86::BI__builtin_ia32_vpshrdw256: 3808 case X86::BI__builtin_ia32_vpshrdw512: 3809 i = 2; l = 0; u = 255; 3810 break; 3811 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3812 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3813 case X86::BI__builtin_ia32_fixupimmps512_mask: 3814 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3815 case X86::BI__builtin_ia32_fixupimmsd_mask: 3816 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3817 case X86::BI__builtin_ia32_fixupimmss_mask: 3818 case X86::BI__builtin_ia32_fixupimmss_maskz: 3819 case X86::BI__builtin_ia32_fixupimmpd128_mask: 3820 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 3821 case X86::BI__builtin_ia32_fixupimmpd256_mask: 3822 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 3823 case X86::BI__builtin_ia32_fixupimmps128_mask: 3824 case X86::BI__builtin_ia32_fixupimmps128_maskz: 3825 case X86::BI__builtin_ia32_fixupimmps256_mask: 3826 case X86::BI__builtin_ia32_fixupimmps256_maskz: 3827 case X86::BI__builtin_ia32_pternlogd512_mask: 3828 case X86::BI__builtin_ia32_pternlogd512_maskz: 3829 case X86::BI__builtin_ia32_pternlogq512_mask: 3830 case X86::BI__builtin_ia32_pternlogq512_maskz: 3831 case X86::BI__builtin_ia32_pternlogd128_mask: 3832 case X86::BI__builtin_ia32_pternlogd128_maskz: 3833 case X86::BI__builtin_ia32_pternlogd256_mask: 3834 case X86::BI__builtin_ia32_pternlogd256_maskz: 3835 case X86::BI__builtin_ia32_pternlogq128_mask: 3836 case X86::BI__builtin_ia32_pternlogq128_maskz: 3837 case X86::BI__builtin_ia32_pternlogq256_mask: 3838 case X86::BI__builtin_ia32_pternlogq256_maskz: 3839 i = 3; l = 0; u = 255; 3840 break; 3841 case X86::BI__builtin_ia32_gatherpfdpd: 3842 case X86::BI__builtin_ia32_gatherpfdps: 3843 case X86::BI__builtin_ia32_gatherpfqpd: 3844 case X86::BI__builtin_ia32_gatherpfqps: 3845 case X86::BI__builtin_ia32_scatterpfdpd: 3846 case X86::BI__builtin_ia32_scatterpfdps: 3847 case X86::BI__builtin_ia32_scatterpfqpd: 3848 case X86::BI__builtin_ia32_scatterpfqps: 3849 i = 4; l = 2; u = 3; 3850 break; 3851 case X86::BI__builtin_ia32_reducesd_mask: 3852 case X86::BI__builtin_ia32_reducess_mask: 3853 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3854 case X86::BI__builtin_ia32_rndscaless_round_mask: 3855 i = 4; l = 0; u = 255; 3856 break; 3857 } 3858 3859 // Note that we don't force a hard error on the range check here, allowing 3860 // template-generated or macro-generated dead code to potentially have out-of- 3861 // range values. These need to code generate, but don't need to necessarily 3862 // make any sense. We use a warning that defaults to an error. 3863 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 3864 } 3865 3866 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 3867 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 3868 /// Returns true when the format fits the function and the FormatStringInfo has 3869 /// been populated. 3870 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 3871 FormatStringInfo *FSI) { 3872 FSI->HasVAListArg = Format->getFirstArg() == 0; 3873 FSI->FormatIdx = Format->getFormatIdx() - 1; 3874 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 3875 3876 // The way the format attribute works in GCC, the implicit this argument 3877 // of member functions is counted. However, it doesn't appear in our own 3878 // lists, so decrement format_idx in that case. 3879 if (IsCXXMember) { 3880 if(FSI->FormatIdx == 0) 3881 return false; 3882 --FSI->FormatIdx; 3883 if (FSI->FirstDataArg != 0) 3884 --FSI->FirstDataArg; 3885 } 3886 return true; 3887 } 3888 3889 /// Checks if a the given expression evaluates to null. 3890 /// 3891 /// Returns true if the value evaluates to null. 3892 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 3893 // If the expression has non-null type, it doesn't evaluate to null. 3894 if (auto nullability 3895 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 3896 if (*nullability == NullabilityKind::NonNull) 3897 return false; 3898 } 3899 3900 // As a special case, transparent unions initialized with zero are 3901 // considered null for the purposes of the nonnull attribute. 3902 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 3903 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3904 if (const CompoundLiteralExpr *CLE = 3905 dyn_cast<CompoundLiteralExpr>(Expr)) 3906 if (const InitListExpr *ILE = 3907 dyn_cast<InitListExpr>(CLE->getInitializer())) 3908 Expr = ILE->getInit(0); 3909 } 3910 3911 bool Result; 3912 return (!Expr->isValueDependent() && 3913 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 3914 !Result); 3915 } 3916 3917 static void CheckNonNullArgument(Sema &S, 3918 const Expr *ArgExpr, 3919 SourceLocation CallSiteLoc) { 3920 if (CheckNonNullExpr(S, ArgExpr)) 3921 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 3922 S.PDiag(diag::warn_null_arg) 3923 << ArgExpr->getSourceRange()); 3924 } 3925 3926 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 3927 FormatStringInfo FSI; 3928 if ((GetFormatStringType(Format) == FST_NSString) && 3929 getFormatStringInfo(Format, false, &FSI)) { 3930 Idx = FSI.FormatIdx; 3931 return true; 3932 } 3933 return false; 3934 } 3935 3936 /// Diagnose use of %s directive in an NSString which is being passed 3937 /// as formatting string to formatting method. 3938 static void 3939 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 3940 const NamedDecl *FDecl, 3941 Expr **Args, 3942 unsigned NumArgs) { 3943 unsigned Idx = 0; 3944 bool Format = false; 3945 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 3946 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 3947 Idx = 2; 3948 Format = true; 3949 } 3950 else 3951 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 3952 if (S.GetFormatNSStringIdx(I, Idx)) { 3953 Format = true; 3954 break; 3955 } 3956 } 3957 if (!Format || NumArgs <= Idx) 3958 return; 3959 const Expr *FormatExpr = Args[Idx]; 3960 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 3961 FormatExpr = CSCE->getSubExpr(); 3962 const StringLiteral *FormatString; 3963 if (const ObjCStringLiteral *OSL = 3964 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 3965 FormatString = OSL->getString(); 3966 else 3967 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 3968 if (!FormatString) 3969 return; 3970 if (S.FormatStringHasSArg(FormatString)) { 3971 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 3972 << "%s" << 1 << 1; 3973 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 3974 << FDecl->getDeclName(); 3975 } 3976 } 3977 3978 /// Determine whether the given type has a non-null nullability annotation. 3979 static bool isNonNullType(ASTContext &ctx, QualType type) { 3980 if (auto nullability = type->getNullability(ctx)) 3981 return *nullability == NullabilityKind::NonNull; 3982 3983 return false; 3984 } 3985 3986 static void CheckNonNullArguments(Sema &S, 3987 const NamedDecl *FDecl, 3988 const FunctionProtoType *Proto, 3989 ArrayRef<const Expr *> Args, 3990 SourceLocation CallSiteLoc) { 3991 assert((FDecl || Proto) && "Need a function declaration or prototype"); 3992 3993 // Already checked by by constant evaluator. 3994 if (S.isConstantEvaluated()) 3995 return; 3996 // Check the attributes attached to the method/function itself. 3997 llvm::SmallBitVector NonNullArgs; 3998 if (FDecl) { 3999 // Handle the nonnull attribute on the function/method declaration itself. 4000 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4001 if (!NonNull->args_size()) { 4002 // Easy case: all pointer arguments are nonnull. 4003 for (const auto *Arg : Args) 4004 if (S.isValidPointerAttrType(Arg->getType())) 4005 CheckNonNullArgument(S, Arg, CallSiteLoc); 4006 return; 4007 } 4008 4009 for (const ParamIdx &Idx : NonNull->args()) { 4010 unsigned IdxAST = Idx.getASTIndex(); 4011 if (IdxAST >= Args.size()) 4012 continue; 4013 if (NonNullArgs.empty()) 4014 NonNullArgs.resize(Args.size()); 4015 NonNullArgs.set(IdxAST); 4016 } 4017 } 4018 } 4019 4020 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4021 // Handle the nonnull attribute on the parameters of the 4022 // function/method. 4023 ArrayRef<ParmVarDecl*> parms; 4024 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4025 parms = FD->parameters(); 4026 else 4027 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4028 4029 unsigned ParamIndex = 0; 4030 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4031 I != E; ++I, ++ParamIndex) { 4032 const ParmVarDecl *PVD = *I; 4033 if (PVD->hasAttr<NonNullAttr>() || 4034 isNonNullType(S.Context, PVD->getType())) { 4035 if (NonNullArgs.empty()) 4036 NonNullArgs.resize(Args.size()); 4037 4038 NonNullArgs.set(ParamIndex); 4039 } 4040 } 4041 } else { 4042 // If we have a non-function, non-method declaration but no 4043 // function prototype, try to dig out the function prototype. 4044 if (!Proto) { 4045 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4046 QualType type = VD->getType().getNonReferenceType(); 4047 if (auto pointerType = type->getAs<PointerType>()) 4048 type = pointerType->getPointeeType(); 4049 else if (auto blockType = type->getAs<BlockPointerType>()) 4050 type = blockType->getPointeeType(); 4051 // FIXME: data member pointers? 4052 4053 // Dig out the function prototype, if there is one. 4054 Proto = type->getAs<FunctionProtoType>(); 4055 } 4056 } 4057 4058 // Fill in non-null argument information from the nullability 4059 // information on the parameter types (if we have them). 4060 if (Proto) { 4061 unsigned Index = 0; 4062 for (auto paramType : Proto->getParamTypes()) { 4063 if (isNonNullType(S.Context, paramType)) { 4064 if (NonNullArgs.empty()) 4065 NonNullArgs.resize(Args.size()); 4066 4067 NonNullArgs.set(Index); 4068 } 4069 4070 ++Index; 4071 } 4072 } 4073 } 4074 4075 // Check for non-null arguments. 4076 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4077 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4078 if (NonNullArgs[ArgIndex]) 4079 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4080 } 4081 } 4082 4083 /// Handles the checks for format strings, non-POD arguments to vararg 4084 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4085 /// attributes. 4086 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4087 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4088 bool IsMemberFunction, SourceLocation Loc, 4089 SourceRange Range, VariadicCallType CallType) { 4090 // FIXME: We should check as much as we can in the template definition. 4091 if (CurContext->isDependentContext()) 4092 return; 4093 4094 // Printf and scanf checking. 4095 llvm::SmallBitVector CheckedVarArgs; 4096 if (FDecl) { 4097 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4098 // Only create vector if there are format attributes. 4099 CheckedVarArgs.resize(Args.size()); 4100 4101 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4102 CheckedVarArgs); 4103 } 4104 } 4105 4106 // Refuse POD arguments that weren't caught by the format string 4107 // checks above. 4108 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4109 if (CallType != VariadicDoesNotApply && 4110 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4111 unsigned NumParams = Proto ? Proto->getNumParams() 4112 : FDecl && isa<FunctionDecl>(FDecl) 4113 ? cast<FunctionDecl>(FDecl)->getNumParams() 4114 : FDecl && isa<ObjCMethodDecl>(FDecl) 4115 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4116 : 0; 4117 4118 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4119 // Args[ArgIdx] can be null in malformed code. 4120 if (const Expr *Arg = Args[ArgIdx]) { 4121 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4122 checkVariadicArgument(Arg, CallType); 4123 } 4124 } 4125 } 4126 4127 if (FDecl || Proto) { 4128 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4129 4130 // Type safety checking. 4131 if (FDecl) { 4132 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4133 CheckArgumentWithTypeTag(I, Args, Loc); 4134 } 4135 } 4136 4137 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4138 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4139 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4140 if (!Arg->isValueDependent()) { 4141 Expr::EvalResult Align; 4142 if (Arg->EvaluateAsInt(Align, Context)) { 4143 const llvm::APSInt &I = Align.Val.getInt(); 4144 if (!I.isPowerOf2()) 4145 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4146 << Arg->getSourceRange(); 4147 4148 if (I > Sema::MaximumAlignment) 4149 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4150 << Arg->getSourceRange() << Sema::MaximumAlignment; 4151 } 4152 } 4153 } 4154 4155 if (FD) 4156 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4157 } 4158 4159 /// CheckConstructorCall - Check a constructor call for correctness and safety 4160 /// properties not enforced by the C type system. 4161 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4162 ArrayRef<const Expr *> Args, 4163 const FunctionProtoType *Proto, 4164 SourceLocation Loc) { 4165 VariadicCallType CallType = 4166 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4167 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4168 Loc, SourceRange(), CallType); 4169 } 4170 4171 /// CheckFunctionCall - Check a direct function call for various correctness 4172 /// and safety properties not strictly enforced by the C type system. 4173 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4174 const FunctionProtoType *Proto) { 4175 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4176 isa<CXXMethodDecl>(FDecl); 4177 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4178 IsMemberOperatorCall; 4179 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4180 TheCall->getCallee()); 4181 Expr** Args = TheCall->getArgs(); 4182 unsigned NumArgs = TheCall->getNumArgs(); 4183 4184 Expr *ImplicitThis = nullptr; 4185 if (IsMemberOperatorCall) { 4186 // If this is a call to a member operator, hide the first argument 4187 // from checkCall. 4188 // FIXME: Our choice of AST representation here is less than ideal. 4189 ImplicitThis = Args[0]; 4190 ++Args; 4191 --NumArgs; 4192 } else if (IsMemberFunction) 4193 ImplicitThis = 4194 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4195 4196 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4197 IsMemberFunction, TheCall->getRParenLoc(), 4198 TheCall->getCallee()->getSourceRange(), CallType); 4199 4200 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4201 // None of the checks below are needed for functions that don't have 4202 // simple names (e.g., C++ conversion functions). 4203 if (!FnInfo) 4204 return false; 4205 4206 CheckAbsoluteValueFunction(TheCall, FDecl); 4207 CheckMaxUnsignedZero(TheCall, FDecl); 4208 4209 if (getLangOpts().ObjC) 4210 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4211 4212 unsigned CMId = FDecl->getMemoryFunctionKind(); 4213 if (CMId == 0) 4214 return false; 4215 4216 // Handle memory setting and copying functions. 4217 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) 4218 CheckStrlcpycatArguments(TheCall, FnInfo); 4219 else if (CMId == Builtin::BIstrncat) 4220 CheckStrncatArguments(TheCall, FnInfo); 4221 else 4222 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4223 4224 return false; 4225 } 4226 4227 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4228 ArrayRef<const Expr *> Args) { 4229 VariadicCallType CallType = 4230 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4231 4232 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4233 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4234 CallType); 4235 4236 return false; 4237 } 4238 4239 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4240 const FunctionProtoType *Proto) { 4241 QualType Ty; 4242 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4243 Ty = V->getType().getNonReferenceType(); 4244 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4245 Ty = F->getType().getNonReferenceType(); 4246 else 4247 return false; 4248 4249 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4250 !Ty->isFunctionProtoType()) 4251 return false; 4252 4253 VariadicCallType CallType; 4254 if (!Proto || !Proto->isVariadic()) { 4255 CallType = VariadicDoesNotApply; 4256 } else if (Ty->isBlockPointerType()) { 4257 CallType = VariadicBlock; 4258 } else { // Ty->isFunctionPointerType() 4259 CallType = VariadicFunction; 4260 } 4261 4262 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4263 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4264 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4265 TheCall->getCallee()->getSourceRange(), CallType); 4266 4267 return false; 4268 } 4269 4270 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4271 /// such as function pointers returned from functions. 4272 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4273 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4274 TheCall->getCallee()); 4275 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4276 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4277 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4278 TheCall->getCallee()->getSourceRange(), CallType); 4279 4280 return false; 4281 } 4282 4283 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4284 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4285 return false; 4286 4287 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4288 switch (Op) { 4289 case AtomicExpr::AO__c11_atomic_init: 4290 case AtomicExpr::AO__opencl_atomic_init: 4291 llvm_unreachable("There is no ordering argument for an init"); 4292 4293 case AtomicExpr::AO__c11_atomic_load: 4294 case AtomicExpr::AO__opencl_atomic_load: 4295 case AtomicExpr::AO__atomic_load_n: 4296 case AtomicExpr::AO__atomic_load: 4297 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4298 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4299 4300 case AtomicExpr::AO__c11_atomic_store: 4301 case AtomicExpr::AO__opencl_atomic_store: 4302 case AtomicExpr::AO__atomic_store: 4303 case AtomicExpr::AO__atomic_store_n: 4304 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4305 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4306 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4307 4308 default: 4309 return true; 4310 } 4311 } 4312 4313 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4314 AtomicExpr::AtomicOp Op) { 4315 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4316 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4317 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4318 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4319 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4320 Op); 4321 } 4322 4323 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4324 SourceLocation RParenLoc, MultiExprArg Args, 4325 AtomicExpr::AtomicOp Op, 4326 AtomicArgumentOrder ArgOrder) { 4327 // All the non-OpenCL operations take one of the following forms. 4328 // The OpenCL operations take the __c11 forms with one extra argument for 4329 // synchronization scope. 4330 enum { 4331 // C __c11_atomic_init(A *, C) 4332 Init, 4333 4334 // C __c11_atomic_load(A *, int) 4335 Load, 4336 4337 // void __atomic_load(A *, CP, int) 4338 LoadCopy, 4339 4340 // void __atomic_store(A *, CP, int) 4341 Copy, 4342 4343 // C __c11_atomic_add(A *, M, int) 4344 Arithmetic, 4345 4346 // C __atomic_exchange_n(A *, CP, int) 4347 Xchg, 4348 4349 // void __atomic_exchange(A *, C *, CP, int) 4350 GNUXchg, 4351 4352 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4353 C11CmpXchg, 4354 4355 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4356 GNUCmpXchg 4357 } Form = Init; 4358 4359 const unsigned NumForm = GNUCmpXchg + 1; 4360 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4361 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4362 // where: 4363 // C is an appropriate type, 4364 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4365 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4366 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4367 // the int parameters are for orderings. 4368 4369 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4370 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4371 "need to update code for modified forms"); 4372 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4373 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4374 AtomicExpr::AO__atomic_load, 4375 "need to update code for modified C11 atomics"); 4376 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4377 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4378 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4379 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4380 IsOpenCL; 4381 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4382 Op == AtomicExpr::AO__atomic_store_n || 4383 Op == AtomicExpr::AO__atomic_exchange_n || 4384 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4385 bool IsAddSub = false; 4386 4387 switch (Op) { 4388 case AtomicExpr::AO__c11_atomic_init: 4389 case AtomicExpr::AO__opencl_atomic_init: 4390 Form = Init; 4391 break; 4392 4393 case AtomicExpr::AO__c11_atomic_load: 4394 case AtomicExpr::AO__opencl_atomic_load: 4395 case AtomicExpr::AO__atomic_load_n: 4396 Form = Load; 4397 break; 4398 4399 case AtomicExpr::AO__atomic_load: 4400 Form = LoadCopy; 4401 break; 4402 4403 case AtomicExpr::AO__c11_atomic_store: 4404 case AtomicExpr::AO__opencl_atomic_store: 4405 case AtomicExpr::AO__atomic_store: 4406 case AtomicExpr::AO__atomic_store_n: 4407 Form = Copy; 4408 break; 4409 4410 case AtomicExpr::AO__c11_atomic_fetch_add: 4411 case AtomicExpr::AO__c11_atomic_fetch_sub: 4412 case AtomicExpr::AO__opencl_atomic_fetch_add: 4413 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4414 case AtomicExpr::AO__atomic_fetch_add: 4415 case AtomicExpr::AO__atomic_fetch_sub: 4416 case AtomicExpr::AO__atomic_add_fetch: 4417 case AtomicExpr::AO__atomic_sub_fetch: 4418 IsAddSub = true; 4419 LLVM_FALLTHROUGH; 4420 case AtomicExpr::AO__c11_atomic_fetch_and: 4421 case AtomicExpr::AO__c11_atomic_fetch_or: 4422 case AtomicExpr::AO__c11_atomic_fetch_xor: 4423 case AtomicExpr::AO__opencl_atomic_fetch_and: 4424 case AtomicExpr::AO__opencl_atomic_fetch_or: 4425 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4426 case AtomicExpr::AO__atomic_fetch_and: 4427 case AtomicExpr::AO__atomic_fetch_or: 4428 case AtomicExpr::AO__atomic_fetch_xor: 4429 case AtomicExpr::AO__atomic_fetch_nand: 4430 case AtomicExpr::AO__atomic_and_fetch: 4431 case AtomicExpr::AO__atomic_or_fetch: 4432 case AtomicExpr::AO__atomic_xor_fetch: 4433 case AtomicExpr::AO__atomic_nand_fetch: 4434 case AtomicExpr::AO__c11_atomic_fetch_min: 4435 case AtomicExpr::AO__c11_atomic_fetch_max: 4436 case AtomicExpr::AO__opencl_atomic_fetch_min: 4437 case AtomicExpr::AO__opencl_atomic_fetch_max: 4438 case AtomicExpr::AO__atomic_min_fetch: 4439 case AtomicExpr::AO__atomic_max_fetch: 4440 case AtomicExpr::AO__atomic_fetch_min: 4441 case AtomicExpr::AO__atomic_fetch_max: 4442 Form = Arithmetic; 4443 break; 4444 4445 case AtomicExpr::AO__c11_atomic_exchange: 4446 case AtomicExpr::AO__opencl_atomic_exchange: 4447 case AtomicExpr::AO__atomic_exchange_n: 4448 Form = Xchg; 4449 break; 4450 4451 case AtomicExpr::AO__atomic_exchange: 4452 Form = GNUXchg; 4453 break; 4454 4455 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4456 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4457 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4458 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4459 Form = C11CmpXchg; 4460 break; 4461 4462 case AtomicExpr::AO__atomic_compare_exchange: 4463 case AtomicExpr::AO__atomic_compare_exchange_n: 4464 Form = GNUCmpXchg; 4465 break; 4466 } 4467 4468 unsigned AdjustedNumArgs = NumArgs[Form]; 4469 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4470 ++AdjustedNumArgs; 4471 // Check we have the right number of arguments. 4472 if (Args.size() < AdjustedNumArgs) { 4473 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4474 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4475 << ExprRange; 4476 return ExprError(); 4477 } else if (Args.size() > AdjustedNumArgs) { 4478 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4479 diag::err_typecheck_call_too_many_args) 4480 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4481 << ExprRange; 4482 return ExprError(); 4483 } 4484 4485 // Inspect the first argument of the atomic operation. 4486 Expr *Ptr = Args[0]; 4487 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4488 if (ConvertedPtr.isInvalid()) 4489 return ExprError(); 4490 4491 Ptr = ConvertedPtr.get(); 4492 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4493 if (!pointerType) { 4494 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4495 << Ptr->getType() << Ptr->getSourceRange(); 4496 return ExprError(); 4497 } 4498 4499 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4500 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4501 QualType ValType = AtomTy; // 'C' 4502 if (IsC11) { 4503 if (!AtomTy->isAtomicType()) { 4504 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4505 << Ptr->getType() << Ptr->getSourceRange(); 4506 return ExprError(); 4507 } 4508 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4509 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4510 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4511 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4512 << Ptr->getSourceRange(); 4513 return ExprError(); 4514 } 4515 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4516 } else if (Form != Load && Form != LoadCopy) { 4517 if (ValType.isConstQualified()) { 4518 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4519 << Ptr->getType() << Ptr->getSourceRange(); 4520 return ExprError(); 4521 } 4522 } 4523 4524 // For an arithmetic operation, the implied arithmetic must be well-formed. 4525 if (Form == Arithmetic) { 4526 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4527 if (IsAddSub && !ValType->isIntegerType() 4528 && !ValType->isPointerType()) { 4529 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4530 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4531 return ExprError(); 4532 } 4533 if (!IsAddSub && !ValType->isIntegerType()) { 4534 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 4535 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4536 return ExprError(); 4537 } 4538 if (IsC11 && ValType->isPointerType() && 4539 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4540 diag::err_incomplete_type)) { 4541 return ExprError(); 4542 } 4543 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4544 // For __atomic_*_n operations, the value type must be a scalar integral or 4545 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4546 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4547 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4548 return ExprError(); 4549 } 4550 4551 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4552 !AtomTy->isScalarType()) { 4553 // For GNU atomics, require a trivially-copyable type. This is not part of 4554 // the GNU atomics specification, but we enforce it for sanity. 4555 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4556 << Ptr->getType() << Ptr->getSourceRange(); 4557 return ExprError(); 4558 } 4559 4560 switch (ValType.getObjCLifetime()) { 4561 case Qualifiers::OCL_None: 4562 case Qualifiers::OCL_ExplicitNone: 4563 // okay 4564 break; 4565 4566 case Qualifiers::OCL_Weak: 4567 case Qualifiers::OCL_Strong: 4568 case Qualifiers::OCL_Autoreleasing: 4569 // FIXME: Can this happen? By this point, ValType should be known 4570 // to be trivially copyable. 4571 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4572 << ValType << Ptr->getSourceRange(); 4573 return ExprError(); 4574 } 4575 4576 // All atomic operations have an overload which takes a pointer to a volatile 4577 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4578 // into the result or the other operands. Similarly atomic_load takes a 4579 // pointer to a const 'A'. 4580 ValType.removeLocalVolatile(); 4581 ValType.removeLocalConst(); 4582 QualType ResultType = ValType; 4583 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4584 Form == Init) 4585 ResultType = Context.VoidTy; 4586 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4587 ResultType = Context.BoolTy; 4588 4589 // The type of a parameter passed 'by value'. In the GNU atomics, such 4590 // arguments are actually passed as pointers. 4591 QualType ByValType = ValType; // 'CP' 4592 bool IsPassedByAddress = false; 4593 if (!IsC11 && !IsN) { 4594 ByValType = Ptr->getType(); 4595 IsPassedByAddress = true; 4596 } 4597 4598 SmallVector<Expr *, 5> APIOrderedArgs; 4599 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4600 APIOrderedArgs.push_back(Args[0]); 4601 switch (Form) { 4602 case Init: 4603 case Load: 4604 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4605 break; 4606 case LoadCopy: 4607 case Copy: 4608 case Arithmetic: 4609 case Xchg: 4610 APIOrderedArgs.push_back(Args[2]); // Val1 4611 APIOrderedArgs.push_back(Args[1]); // Order 4612 break; 4613 case GNUXchg: 4614 APIOrderedArgs.push_back(Args[2]); // Val1 4615 APIOrderedArgs.push_back(Args[3]); // Val2 4616 APIOrderedArgs.push_back(Args[1]); // Order 4617 break; 4618 case C11CmpXchg: 4619 APIOrderedArgs.push_back(Args[2]); // Val1 4620 APIOrderedArgs.push_back(Args[4]); // Val2 4621 APIOrderedArgs.push_back(Args[1]); // Order 4622 APIOrderedArgs.push_back(Args[3]); // OrderFail 4623 break; 4624 case GNUCmpXchg: 4625 APIOrderedArgs.push_back(Args[2]); // Val1 4626 APIOrderedArgs.push_back(Args[4]); // Val2 4627 APIOrderedArgs.push_back(Args[5]); // Weak 4628 APIOrderedArgs.push_back(Args[1]); // Order 4629 APIOrderedArgs.push_back(Args[3]); // OrderFail 4630 break; 4631 } 4632 } else 4633 APIOrderedArgs.append(Args.begin(), Args.end()); 4634 4635 // The first argument's non-CV pointer type is used to deduce the type of 4636 // subsequent arguments, except for: 4637 // - weak flag (always converted to bool) 4638 // - memory order (always converted to int) 4639 // - scope (always converted to int) 4640 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 4641 QualType Ty; 4642 if (i < NumVals[Form] + 1) { 4643 switch (i) { 4644 case 0: 4645 // The first argument is always a pointer. It has a fixed type. 4646 // It is always dereferenced, a nullptr is undefined. 4647 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4648 // Nothing else to do: we already know all we want about this pointer. 4649 continue; 4650 case 1: 4651 // The second argument is the non-atomic operand. For arithmetic, this 4652 // is always passed by value, and for a compare_exchange it is always 4653 // passed by address. For the rest, GNU uses by-address and C11 uses 4654 // by-value. 4655 assert(Form != Load); 4656 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 4657 Ty = ValType; 4658 else if (Form == Copy || Form == Xchg) { 4659 if (IsPassedByAddress) { 4660 // The value pointer is always dereferenced, a nullptr is undefined. 4661 CheckNonNullArgument(*this, APIOrderedArgs[i], 4662 ExprRange.getBegin()); 4663 } 4664 Ty = ByValType; 4665 } else if (Form == Arithmetic) 4666 Ty = Context.getPointerDiffType(); 4667 else { 4668 Expr *ValArg = APIOrderedArgs[i]; 4669 // The value pointer is always dereferenced, a nullptr is undefined. 4670 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 4671 LangAS AS = LangAS::Default; 4672 // Keep address space of non-atomic pointer type. 4673 if (const PointerType *PtrTy = 4674 ValArg->getType()->getAs<PointerType>()) { 4675 AS = PtrTy->getPointeeType().getAddressSpace(); 4676 } 4677 Ty = Context.getPointerType( 4678 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 4679 } 4680 break; 4681 case 2: 4682 // The third argument to compare_exchange / GNU exchange is the desired 4683 // value, either by-value (for the C11 and *_n variant) or as a pointer. 4684 if (IsPassedByAddress) 4685 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4686 Ty = ByValType; 4687 break; 4688 case 3: 4689 // The fourth argument to GNU compare_exchange is a 'weak' flag. 4690 Ty = Context.BoolTy; 4691 break; 4692 } 4693 } else { 4694 // The order(s) and scope are always converted to int. 4695 Ty = Context.IntTy; 4696 } 4697 4698 InitializedEntity Entity = 4699 InitializedEntity::InitializeParameter(Context, Ty, false); 4700 ExprResult Arg = APIOrderedArgs[i]; 4701 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 4702 if (Arg.isInvalid()) 4703 return true; 4704 APIOrderedArgs[i] = Arg.get(); 4705 } 4706 4707 // Permute the arguments into a 'consistent' order. 4708 SmallVector<Expr*, 5> SubExprs; 4709 SubExprs.push_back(Ptr); 4710 switch (Form) { 4711 case Init: 4712 // Note, AtomicExpr::getVal1() has a special case for this atomic. 4713 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4714 break; 4715 case Load: 4716 SubExprs.push_back(APIOrderedArgs[1]); // Order 4717 break; 4718 case LoadCopy: 4719 case Copy: 4720 case Arithmetic: 4721 case Xchg: 4722 SubExprs.push_back(APIOrderedArgs[2]); // Order 4723 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4724 break; 4725 case GNUXchg: 4726 // Note, AtomicExpr::getVal2() has a special case for this atomic. 4727 SubExprs.push_back(APIOrderedArgs[3]); // Order 4728 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4729 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4730 break; 4731 case C11CmpXchg: 4732 SubExprs.push_back(APIOrderedArgs[3]); // Order 4733 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4734 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 4735 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4736 break; 4737 case GNUCmpXchg: 4738 SubExprs.push_back(APIOrderedArgs[4]); // Order 4739 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4740 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 4741 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4742 SubExprs.push_back(APIOrderedArgs[3]); // Weak 4743 break; 4744 } 4745 4746 if (SubExprs.size() >= 2 && Form != Init) { 4747 llvm::APSInt Result(32); 4748 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && 4749 !isValidOrderingForOp(Result.getSExtValue(), Op)) 4750 Diag(SubExprs[1]->getBeginLoc(), 4751 diag::warn_atomic_op_has_invalid_memory_order) 4752 << SubExprs[1]->getSourceRange(); 4753 } 4754 4755 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 4756 auto *Scope = Args[Args.size() - 1]; 4757 llvm::APSInt Result(32); 4758 if (Scope->isIntegerConstantExpr(Result, Context) && 4759 !ScopeModel->isValid(Result.getZExtValue())) { 4760 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 4761 << Scope->getSourceRange(); 4762 } 4763 SubExprs.push_back(Scope); 4764 } 4765 4766 AtomicExpr *AE = new (Context) 4767 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 4768 4769 if ((Op == AtomicExpr::AO__c11_atomic_load || 4770 Op == AtomicExpr::AO__c11_atomic_store || 4771 Op == AtomicExpr::AO__opencl_atomic_load || 4772 Op == AtomicExpr::AO__opencl_atomic_store ) && 4773 Context.AtomicUsesUnsupportedLibcall(AE)) 4774 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 4775 << ((Op == AtomicExpr::AO__c11_atomic_load || 4776 Op == AtomicExpr::AO__opencl_atomic_load) 4777 ? 0 4778 : 1); 4779 4780 return AE; 4781 } 4782 4783 /// checkBuiltinArgument - Given a call to a builtin function, perform 4784 /// normal type-checking on the given argument, updating the call in 4785 /// place. This is useful when a builtin function requires custom 4786 /// type-checking for some of its arguments but not necessarily all of 4787 /// them. 4788 /// 4789 /// Returns true on error. 4790 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 4791 FunctionDecl *Fn = E->getDirectCallee(); 4792 assert(Fn && "builtin call without direct callee!"); 4793 4794 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 4795 InitializedEntity Entity = 4796 InitializedEntity::InitializeParameter(S.Context, Param); 4797 4798 ExprResult Arg = E->getArg(0); 4799 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 4800 if (Arg.isInvalid()) 4801 return true; 4802 4803 E->setArg(ArgIndex, Arg.get()); 4804 return false; 4805 } 4806 4807 /// We have a call to a function like __sync_fetch_and_add, which is an 4808 /// overloaded function based on the pointer type of its first argument. 4809 /// The main BuildCallExpr routines have already promoted the types of 4810 /// arguments because all of these calls are prototyped as void(...). 4811 /// 4812 /// This function goes through and does final semantic checking for these 4813 /// builtins, as well as generating any warnings. 4814 ExprResult 4815 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 4816 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 4817 Expr *Callee = TheCall->getCallee(); 4818 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 4819 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 4820 4821 // Ensure that we have at least one argument to do type inference from. 4822 if (TheCall->getNumArgs() < 1) { 4823 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 4824 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 4825 return ExprError(); 4826 } 4827 4828 // Inspect the first argument of the atomic builtin. This should always be 4829 // a pointer type, whose element is an integral scalar or pointer type. 4830 // Because it is a pointer type, we don't have to worry about any implicit 4831 // casts here. 4832 // FIXME: We don't allow floating point scalars as input. 4833 Expr *FirstArg = TheCall->getArg(0); 4834 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 4835 if (FirstArgResult.isInvalid()) 4836 return ExprError(); 4837 FirstArg = FirstArgResult.get(); 4838 TheCall->setArg(0, FirstArg); 4839 4840 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 4841 if (!pointerType) { 4842 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 4843 << FirstArg->getType() << FirstArg->getSourceRange(); 4844 return ExprError(); 4845 } 4846 4847 QualType ValType = pointerType->getPointeeType(); 4848 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 4849 !ValType->isBlockPointerType()) { 4850 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 4851 << FirstArg->getType() << FirstArg->getSourceRange(); 4852 return ExprError(); 4853 } 4854 4855 if (ValType.isConstQualified()) { 4856 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 4857 << FirstArg->getType() << FirstArg->getSourceRange(); 4858 return ExprError(); 4859 } 4860 4861 switch (ValType.getObjCLifetime()) { 4862 case Qualifiers::OCL_None: 4863 case Qualifiers::OCL_ExplicitNone: 4864 // okay 4865 break; 4866 4867 case Qualifiers::OCL_Weak: 4868 case Qualifiers::OCL_Strong: 4869 case Qualifiers::OCL_Autoreleasing: 4870 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 4871 << ValType << FirstArg->getSourceRange(); 4872 return ExprError(); 4873 } 4874 4875 // Strip any qualifiers off ValType. 4876 ValType = ValType.getUnqualifiedType(); 4877 4878 // The majority of builtins return a value, but a few have special return 4879 // types, so allow them to override appropriately below. 4880 QualType ResultType = ValType; 4881 4882 // We need to figure out which concrete builtin this maps onto. For example, 4883 // __sync_fetch_and_add with a 2 byte object turns into 4884 // __sync_fetch_and_add_2. 4885 #define BUILTIN_ROW(x) \ 4886 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 4887 Builtin::BI##x##_8, Builtin::BI##x##_16 } 4888 4889 static const unsigned BuiltinIndices[][5] = { 4890 BUILTIN_ROW(__sync_fetch_and_add), 4891 BUILTIN_ROW(__sync_fetch_and_sub), 4892 BUILTIN_ROW(__sync_fetch_and_or), 4893 BUILTIN_ROW(__sync_fetch_and_and), 4894 BUILTIN_ROW(__sync_fetch_and_xor), 4895 BUILTIN_ROW(__sync_fetch_and_nand), 4896 4897 BUILTIN_ROW(__sync_add_and_fetch), 4898 BUILTIN_ROW(__sync_sub_and_fetch), 4899 BUILTIN_ROW(__sync_and_and_fetch), 4900 BUILTIN_ROW(__sync_or_and_fetch), 4901 BUILTIN_ROW(__sync_xor_and_fetch), 4902 BUILTIN_ROW(__sync_nand_and_fetch), 4903 4904 BUILTIN_ROW(__sync_val_compare_and_swap), 4905 BUILTIN_ROW(__sync_bool_compare_and_swap), 4906 BUILTIN_ROW(__sync_lock_test_and_set), 4907 BUILTIN_ROW(__sync_lock_release), 4908 BUILTIN_ROW(__sync_swap) 4909 }; 4910 #undef BUILTIN_ROW 4911 4912 // Determine the index of the size. 4913 unsigned SizeIndex; 4914 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 4915 case 1: SizeIndex = 0; break; 4916 case 2: SizeIndex = 1; break; 4917 case 4: SizeIndex = 2; break; 4918 case 8: SizeIndex = 3; break; 4919 case 16: SizeIndex = 4; break; 4920 default: 4921 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 4922 << FirstArg->getType() << FirstArg->getSourceRange(); 4923 return ExprError(); 4924 } 4925 4926 // Each of these builtins has one pointer argument, followed by some number of 4927 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 4928 // that we ignore. Find out which row of BuiltinIndices to read from as well 4929 // as the number of fixed args. 4930 unsigned BuiltinID = FDecl->getBuiltinID(); 4931 unsigned BuiltinIndex, NumFixed = 1; 4932 bool WarnAboutSemanticsChange = false; 4933 switch (BuiltinID) { 4934 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 4935 case Builtin::BI__sync_fetch_and_add: 4936 case Builtin::BI__sync_fetch_and_add_1: 4937 case Builtin::BI__sync_fetch_and_add_2: 4938 case Builtin::BI__sync_fetch_and_add_4: 4939 case Builtin::BI__sync_fetch_and_add_8: 4940 case Builtin::BI__sync_fetch_and_add_16: 4941 BuiltinIndex = 0; 4942 break; 4943 4944 case Builtin::BI__sync_fetch_and_sub: 4945 case Builtin::BI__sync_fetch_and_sub_1: 4946 case Builtin::BI__sync_fetch_and_sub_2: 4947 case Builtin::BI__sync_fetch_and_sub_4: 4948 case Builtin::BI__sync_fetch_and_sub_8: 4949 case Builtin::BI__sync_fetch_and_sub_16: 4950 BuiltinIndex = 1; 4951 break; 4952 4953 case Builtin::BI__sync_fetch_and_or: 4954 case Builtin::BI__sync_fetch_and_or_1: 4955 case Builtin::BI__sync_fetch_and_or_2: 4956 case Builtin::BI__sync_fetch_and_or_4: 4957 case Builtin::BI__sync_fetch_and_or_8: 4958 case Builtin::BI__sync_fetch_and_or_16: 4959 BuiltinIndex = 2; 4960 break; 4961 4962 case Builtin::BI__sync_fetch_and_and: 4963 case Builtin::BI__sync_fetch_and_and_1: 4964 case Builtin::BI__sync_fetch_and_and_2: 4965 case Builtin::BI__sync_fetch_and_and_4: 4966 case Builtin::BI__sync_fetch_and_and_8: 4967 case Builtin::BI__sync_fetch_and_and_16: 4968 BuiltinIndex = 3; 4969 break; 4970 4971 case Builtin::BI__sync_fetch_and_xor: 4972 case Builtin::BI__sync_fetch_and_xor_1: 4973 case Builtin::BI__sync_fetch_and_xor_2: 4974 case Builtin::BI__sync_fetch_and_xor_4: 4975 case Builtin::BI__sync_fetch_and_xor_8: 4976 case Builtin::BI__sync_fetch_and_xor_16: 4977 BuiltinIndex = 4; 4978 break; 4979 4980 case Builtin::BI__sync_fetch_and_nand: 4981 case Builtin::BI__sync_fetch_and_nand_1: 4982 case Builtin::BI__sync_fetch_and_nand_2: 4983 case Builtin::BI__sync_fetch_and_nand_4: 4984 case Builtin::BI__sync_fetch_and_nand_8: 4985 case Builtin::BI__sync_fetch_and_nand_16: 4986 BuiltinIndex = 5; 4987 WarnAboutSemanticsChange = true; 4988 break; 4989 4990 case Builtin::BI__sync_add_and_fetch: 4991 case Builtin::BI__sync_add_and_fetch_1: 4992 case Builtin::BI__sync_add_and_fetch_2: 4993 case Builtin::BI__sync_add_and_fetch_4: 4994 case Builtin::BI__sync_add_and_fetch_8: 4995 case Builtin::BI__sync_add_and_fetch_16: 4996 BuiltinIndex = 6; 4997 break; 4998 4999 case Builtin::BI__sync_sub_and_fetch: 5000 case Builtin::BI__sync_sub_and_fetch_1: 5001 case Builtin::BI__sync_sub_and_fetch_2: 5002 case Builtin::BI__sync_sub_and_fetch_4: 5003 case Builtin::BI__sync_sub_and_fetch_8: 5004 case Builtin::BI__sync_sub_and_fetch_16: 5005 BuiltinIndex = 7; 5006 break; 5007 5008 case Builtin::BI__sync_and_and_fetch: 5009 case Builtin::BI__sync_and_and_fetch_1: 5010 case Builtin::BI__sync_and_and_fetch_2: 5011 case Builtin::BI__sync_and_and_fetch_4: 5012 case Builtin::BI__sync_and_and_fetch_8: 5013 case Builtin::BI__sync_and_and_fetch_16: 5014 BuiltinIndex = 8; 5015 break; 5016 5017 case Builtin::BI__sync_or_and_fetch: 5018 case Builtin::BI__sync_or_and_fetch_1: 5019 case Builtin::BI__sync_or_and_fetch_2: 5020 case Builtin::BI__sync_or_and_fetch_4: 5021 case Builtin::BI__sync_or_and_fetch_8: 5022 case Builtin::BI__sync_or_and_fetch_16: 5023 BuiltinIndex = 9; 5024 break; 5025 5026 case Builtin::BI__sync_xor_and_fetch: 5027 case Builtin::BI__sync_xor_and_fetch_1: 5028 case Builtin::BI__sync_xor_and_fetch_2: 5029 case Builtin::BI__sync_xor_and_fetch_4: 5030 case Builtin::BI__sync_xor_and_fetch_8: 5031 case Builtin::BI__sync_xor_and_fetch_16: 5032 BuiltinIndex = 10; 5033 break; 5034 5035 case Builtin::BI__sync_nand_and_fetch: 5036 case Builtin::BI__sync_nand_and_fetch_1: 5037 case Builtin::BI__sync_nand_and_fetch_2: 5038 case Builtin::BI__sync_nand_and_fetch_4: 5039 case Builtin::BI__sync_nand_and_fetch_8: 5040 case Builtin::BI__sync_nand_and_fetch_16: 5041 BuiltinIndex = 11; 5042 WarnAboutSemanticsChange = true; 5043 break; 5044 5045 case Builtin::BI__sync_val_compare_and_swap: 5046 case Builtin::BI__sync_val_compare_and_swap_1: 5047 case Builtin::BI__sync_val_compare_and_swap_2: 5048 case Builtin::BI__sync_val_compare_and_swap_4: 5049 case Builtin::BI__sync_val_compare_and_swap_8: 5050 case Builtin::BI__sync_val_compare_and_swap_16: 5051 BuiltinIndex = 12; 5052 NumFixed = 2; 5053 break; 5054 5055 case Builtin::BI__sync_bool_compare_and_swap: 5056 case Builtin::BI__sync_bool_compare_and_swap_1: 5057 case Builtin::BI__sync_bool_compare_and_swap_2: 5058 case Builtin::BI__sync_bool_compare_and_swap_4: 5059 case Builtin::BI__sync_bool_compare_and_swap_8: 5060 case Builtin::BI__sync_bool_compare_and_swap_16: 5061 BuiltinIndex = 13; 5062 NumFixed = 2; 5063 ResultType = Context.BoolTy; 5064 break; 5065 5066 case Builtin::BI__sync_lock_test_and_set: 5067 case Builtin::BI__sync_lock_test_and_set_1: 5068 case Builtin::BI__sync_lock_test_and_set_2: 5069 case Builtin::BI__sync_lock_test_and_set_4: 5070 case Builtin::BI__sync_lock_test_and_set_8: 5071 case Builtin::BI__sync_lock_test_and_set_16: 5072 BuiltinIndex = 14; 5073 break; 5074 5075 case Builtin::BI__sync_lock_release: 5076 case Builtin::BI__sync_lock_release_1: 5077 case Builtin::BI__sync_lock_release_2: 5078 case Builtin::BI__sync_lock_release_4: 5079 case Builtin::BI__sync_lock_release_8: 5080 case Builtin::BI__sync_lock_release_16: 5081 BuiltinIndex = 15; 5082 NumFixed = 0; 5083 ResultType = Context.VoidTy; 5084 break; 5085 5086 case Builtin::BI__sync_swap: 5087 case Builtin::BI__sync_swap_1: 5088 case Builtin::BI__sync_swap_2: 5089 case Builtin::BI__sync_swap_4: 5090 case Builtin::BI__sync_swap_8: 5091 case Builtin::BI__sync_swap_16: 5092 BuiltinIndex = 16; 5093 break; 5094 } 5095 5096 // Now that we know how many fixed arguments we expect, first check that we 5097 // have at least that many. 5098 if (TheCall->getNumArgs() < 1+NumFixed) { 5099 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5100 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5101 << Callee->getSourceRange(); 5102 return ExprError(); 5103 } 5104 5105 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5106 << Callee->getSourceRange(); 5107 5108 if (WarnAboutSemanticsChange) { 5109 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5110 << Callee->getSourceRange(); 5111 } 5112 5113 // Get the decl for the concrete builtin from this, we can tell what the 5114 // concrete integer type we should convert to is. 5115 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5116 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5117 FunctionDecl *NewBuiltinDecl; 5118 if (NewBuiltinID == BuiltinID) 5119 NewBuiltinDecl = FDecl; 5120 else { 5121 // Perform builtin lookup to avoid redeclaring it. 5122 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5123 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5124 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5125 assert(Res.getFoundDecl()); 5126 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5127 if (!NewBuiltinDecl) 5128 return ExprError(); 5129 } 5130 5131 // The first argument --- the pointer --- has a fixed type; we 5132 // deduce the types of the rest of the arguments accordingly. Walk 5133 // the remaining arguments, converting them to the deduced value type. 5134 for (unsigned i = 0; i != NumFixed; ++i) { 5135 ExprResult Arg = TheCall->getArg(i+1); 5136 5137 // GCC does an implicit conversion to the pointer or integer ValType. This 5138 // can fail in some cases (1i -> int**), check for this error case now. 5139 // Initialize the argument. 5140 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5141 ValType, /*consume*/ false); 5142 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5143 if (Arg.isInvalid()) 5144 return ExprError(); 5145 5146 // Okay, we have something that *can* be converted to the right type. Check 5147 // to see if there is a potentially weird extension going on here. This can 5148 // happen when you do an atomic operation on something like an char* and 5149 // pass in 42. The 42 gets converted to char. This is even more strange 5150 // for things like 45.123 -> char, etc. 5151 // FIXME: Do this check. 5152 TheCall->setArg(i+1, Arg.get()); 5153 } 5154 5155 // Create a new DeclRefExpr to refer to the new decl. 5156 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5157 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5158 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5159 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5160 5161 // Set the callee in the CallExpr. 5162 // FIXME: This loses syntactic information. 5163 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5164 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5165 CK_BuiltinFnToFnPtr); 5166 TheCall->setCallee(PromotedCall.get()); 5167 5168 // Change the result type of the call to match the original value type. This 5169 // is arbitrary, but the codegen for these builtins ins design to handle it 5170 // gracefully. 5171 TheCall->setType(ResultType); 5172 5173 return TheCallResult; 5174 } 5175 5176 /// SemaBuiltinNontemporalOverloaded - We have a call to 5177 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5178 /// overloaded function based on the pointer type of its last argument. 5179 /// 5180 /// This function goes through and does final semantic checking for these 5181 /// builtins. 5182 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5183 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5184 DeclRefExpr *DRE = 5185 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5186 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5187 unsigned BuiltinID = FDecl->getBuiltinID(); 5188 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5189 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5190 "Unexpected nontemporal load/store builtin!"); 5191 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5192 unsigned numArgs = isStore ? 2 : 1; 5193 5194 // Ensure that we have the proper number of arguments. 5195 if (checkArgCount(*this, TheCall, numArgs)) 5196 return ExprError(); 5197 5198 // Inspect the last argument of the nontemporal builtin. This should always 5199 // be a pointer type, from which we imply the type of the memory access. 5200 // Because it is a pointer type, we don't have to worry about any implicit 5201 // casts here. 5202 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5203 ExprResult PointerArgResult = 5204 DefaultFunctionArrayLvalueConversion(PointerArg); 5205 5206 if (PointerArgResult.isInvalid()) 5207 return ExprError(); 5208 PointerArg = PointerArgResult.get(); 5209 TheCall->setArg(numArgs - 1, PointerArg); 5210 5211 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5212 if (!pointerType) { 5213 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5214 << PointerArg->getType() << PointerArg->getSourceRange(); 5215 return ExprError(); 5216 } 5217 5218 QualType ValType = pointerType->getPointeeType(); 5219 5220 // Strip any qualifiers off ValType. 5221 ValType = ValType.getUnqualifiedType(); 5222 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5223 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5224 !ValType->isVectorType()) { 5225 Diag(DRE->getBeginLoc(), 5226 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5227 << PointerArg->getType() << PointerArg->getSourceRange(); 5228 return ExprError(); 5229 } 5230 5231 if (!isStore) { 5232 TheCall->setType(ValType); 5233 return TheCallResult; 5234 } 5235 5236 ExprResult ValArg = TheCall->getArg(0); 5237 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5238 Context, ValType, /*consume*/ false); 5239 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5240 if (ValArg.isInvalid()) 5241 return ExprError(); 5242 5243 TheCall->setArg(0, ValArg.get()); 5244 TheCall->setType(Context.VoidTy); 5245 return TheCallResult; 5246 } 5247 5248 /// CheckObjCString - Checks that the argument to the builtin 5249 /// CFString constructor is correct 5250 /// Note: It might also make sense to do the UTF-16 conversion here (would 5251 /// simplify the backend). 5252 bool Sema::CheckObjCString(Expr *Arg) { 5253 Arg = Arg->IgnoreParenCasts(); 5254 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5255 5256 if (!Literal || !Literal->isAscii()) { 5257 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5258 << Arg->getSourceRange(); 5259 return true; 5260 } 5261 5262 if (Literal->containsNonAsciiOrNull()) { 5263 StringRef String = Literal->getString(); 5264 unsigned NumBytes = String.size(); 5265 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5266 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5267 llvm::UTF16 *ToPtr = &ToBuf[0]; 5268 5269 llvm::ConversionResult Result = 5270 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5271 ToPtr + NumBytes, llvm::strictConversion); 5272 // Check for conversion failure. 5273 if (Result != llvm::conversionOK) 5274 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5275 << Arg->getSourceRange(); 5276 } 5277 return false; 5278 } 5279 5280 /// CheckObjCString - Checks that the format string argument to the os_log() 5281 /// and os_trace() functions is correct, and converts it to const char *. 5282 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5283 Arg = Arg->IgnoreParenCasts(); 5284 auto *Literal = dyn_cast<StringLiteral>(Arg); 5285 if (!Literal) { 5286 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5287 Literal = ObjcLiteral->getString(); 5288 } 5289 } 5290 5291 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5292 return ExprError( 5293 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5294 << Arg->getSourceRange()); 5295 } 5296 5297 ExprResult Result(Literal); 5298 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5299 InitializedEntity Entity = 5300 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5301 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5302 return Result; 5303 } 5304 5305 /// Check that the user is calling the appropriate va_start builtin for the 5306 /// target and calling convention. 5307 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5308 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5309 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5310 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5311 TT.getArch() == llvm::Triple::aarch64_32); 5312 bool IsWindows = TT.isOSWindows(); 5313 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5314 if (IsX64 || IsAArch64) { 5315 CallingConv CC = CC_C; 5316 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5317 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5318 if (IsMSVAStart) { 5319 // Don't allow this in System V ABI functions. 5320 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5321 return S.Diag(Fn->getBeginLoc(), 5322 diag::err_ms_va_start_used_in_sysv_function); 5323 } else { 5324 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5325 // On x64 Windows, don't allow this in System V ABI functions. 5326 // (Yes, that means there's no corresponding way to support variadic 5327 // System V ABI functions on Windows.) 5328 if ((IsWindows && CC == CC_X86_64SysV) || 5329 (!IsWindows && CC == CC_Win64)) 5330 return S.Diag(Fn->getBeginLoc(), 5331 diag::err_va_start_used_in_wrong_abi_function) 5332 << !IsWindows; 5333 } 5334 return false; 5335 } 5336 5337 if (IsMSVAStart) 5338 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5339 return false; 5340 } 5341 5342 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5343 ParmVarDecl **LastParam = nullptr) { 5344 // Determine whether the current function, block, or obj-c method is variadic 5345 // and get its parameter list. 5346 bool IsVariadic = false; 5347 ArrayRef<ParmVarDecl *> Params; 5348 DeclContext *Caller = S.CurContext; 5349 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5350 IsVariadic = Block->isVariadic(); 5351 Params = Block->parameters(); 5352 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5353 IsVariadic = FD->isVariadic(); 5354 Params = FD->parameters(); 5355 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5356 IsVariadic = MD->isVariadic(); 5357 // FIXME: This isn't correct for methods (results in bogus warning). 5358 Params = MD->parameters(); 5359 } else if (isa<CapturedDecl>(Caller)) { 5360 // We don't support va_start in a CapturedDecl. 5361 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5362 return true; 5363 } else { 5364 // This must be some other declcontext that parses exprs. 5365 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5366 return true; 5367 } 5368 5369 if (!IsVariadic) { 5370 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5371 return true; 5372 } 5373 5374 if (LastParam) 5375 *LastParam = Params.empty() ? nullptr : Params.back(); 5376 5377 return false; 5378 } 5379 5380 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5381 /// for validity. Emit an error and return true on failure; return false 5382 /// on success. 5383 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5384 Expr *Fn = TheCall->getCallee(); 5385 5386 if (checkVAStartABI(*this, BuiltinID, Fn)) 5387 return true; 5388 5389 if (TheCall->getNumArgs() > 2) { 5390 Diag(TheCall->getArg(2)->getBeginLoc(), 5391 diag::err_typecheck_call_too_many_args) 5392 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5393 << Fn->getSourceRange() 5394 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5395 (*(TheCall->arg_end() - 1))->getEndLoc()); 5396 return true; 5397 } 5398 5399 if (TheCall->getNumArgs() < 2) { 5400 return Diag(TheCall->getEndLoc(), 5401 diag::err_typecheck_call_too_few_args_at_least) 5402 << 0 /*function call*/ << 2 << TheCall->getNumArgs(); 5403 } 5404 5405 // Type-check the first argument normally. 5406 if (checkBuiltinArgument(*this, TheCall, 0)) 5407 return true; 5408 5409 // Check that the current function is variadic, and get its last parameter. 5410 ParmVarDecl *LastParam; 5411 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5412 return true; 5413 5414 // Verify that the second argument to the builtin is the last argument of the 5415 // current function or method. 5416 bool SecondArgIsLastNamedArgument = false; 5417 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5418 5419 // These are valid if SecondArgIsLastNamedArgument is false after the next 5420 // block. 5421 QualType Type; 5422 SourceLocation ParamLoc; 5423 bool IsCRegister = false; 5424 5425 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5426 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5427 SecondArgIsLastNamedArgument = PV == LastParam; 5428 5429 Type = PV->getType(); 5430 ParamLoc = PV->getLocation(); 5431 IsCRegister = 5432 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5433 } 5434 } 5435 5436 if (!SecondArgIsLastNamedArgument) 5437 Diag(TheCall->getArg(1)->getBeginLoc(), 5438 diag::warn_second_arg_of_va_start_not_last_named_param); 5439 else if (IsCRegister || Type->isReferenceType() || 5440 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5441 // Promotable integers are UB, but enumerations need a bit of 5442 // extra checking to see what their promotable type actually is. 5443 if (!Type->isPromotableIntegerType()) 5444 return false; 5445 if (!Type->isEnumeralType()) 5446 return true; 5447 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5448 return !(ED && 5449 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5450 }()) { 5451 unsigned Reason = 0; 5452 if (Type->isReferenceType()) Reason = 1; 5453 else if (IsCRegister) Reason = 2; 5454 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5455 Diag(ParamLoc, diag::note_parameter_type) << Type; 5456 } 5457 5458 TheCall->setType(Context.VoidTy); 5459 return false; 5460 } 5461 5462 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5463 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5464 // const char *named_addr); 5465 5466 Expr *Func = Call->getCallee(); 5467 5468 if (Call->getNumArgs() < 3) 5469 return Diag(Call->getEndLoc(), 5470 diag::err_typecheck_call_too_few_args_at_least) 5471 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5472 5473 // Type-check the first argument normally. 5474 if (checkBuiltinArgument(*this, Call, 0)) 5475 return true; 5476 5477 // Check that the current function is variadic. 5478 if (checkVAStartIsInVariadicFunction(*this, Func)) 5479 return true; 5480 5481 // __va_start on Windows does not validate the parameter qualifiers 5482 5483 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5484 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5485 5486 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5487 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5488 5489 const QualType &ConstCharPtrTy = 5490 Context.getPointerType(Context.CharTy.withConst()); 5491 if (!Arg1Ty->isPointerType() || 5492 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5493 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5494 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5495 << 0 /* qualifier difference */ 5496 << 3 /* parameter mismatch */ 5497 << 2 << Arg1->getType() << ConstCharPtrTy; 5498 5499 const QualType SizeTy = Context.getSizeType(); 5500 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5501 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5502 << Arg2->getType() << SizeTy << 1 /* different class */ 5503 << 0 /* qualifier difference */ 5504 << 3 /* parameter mismatch */ 5505 << 3 << Arg2->getType() << SizeTy; 5506 5507 return false; 5508 } 5509 5510 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5511 /// friends. This is declared to take (...), so we have to check everything. 5512 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5513 if (TheCall->getNumArgs() < 2) 5514 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5515 << 0 << 2 << TheCall->getNumArgs() /*function call*/; 5516 if (TheCall->getNumArgs() > 2) 5517 return Diag(TheCall->getArg(2)->getBeginLoc(), 5518 diag::err_typecheck_call_too_many_args) 5519 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5520 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5521 (*(TheCall->arg_end() - 1))->getEndLoc()); 5522 5523 ExprResult OrigArg0 = TheCall->getArg(0); 5524 ExprResult OrigArg1 = TheCall->getArg(1); 5525 5526 // Do standard promotions between the two arguments, returning their common 5527 // type. 5528 QualType Res = UsualArithmeticConversions( 5529 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 5530 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5531 return true; 5532 5533 // Make sure any conversions are pushed back into the call; this is 5534 // type safe since unordered compare builtins are declared as "_Bool 5535 // foo(...)". 5536 TheCall->setArg(0, OrigArg0.get()); 5537 TheCall->setArg(1, OrigArg1.get()); 5538 5539 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5540 return false; 5541 5542 // If the common type isn't a real floating type, then the arguments were 5543 // invalid for this operation. 5544 if (Res.isNull() || !Res->isRealFloatingType()) 5545 return Diag(OrigArg0.get()->getBeginLoc(), 5546 diag::err_typecheck_call_invalid_ordered_compare) 5547 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5548 << SourceRange(OrigArg0.get()->getBeginLoc(), 5549 OrigArg1.get()->getEndLoc()); 5550 5551 return false; 5552 } 5553 5554 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5555 /// __builtin_isnan and friends. This is declared to take (...), so we have 5556 /// to check everything. We expect the last argument to be a floating point 5557 /// value. 5558 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5559 if (TheCall->getNumArgs() < NumArgs) 5560 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5561 << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; 5562 if (TheCall->getNumArgs() > NumArgs) 5563 return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), 5564 diag::err_typecheck_call_too_many_args) 5565 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() 5566 << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), 5567 (*(TheCall->arg_end() - 1))->getEndLoc()); 5568 5569 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 5570 // on all preceding parameters just being int. Try all of those. 5571 for (unsigned i = 0; i < NumArgs - 1; ++i) { 5572 Expr *Arg = TheCall->getArg(i); 5573 5574 if (Arg->isTypeDependent()) 5575 return false; 5576 5577 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 5578 5579 if (Res.isInvalid()) 5580 return true; 5581 TheCall->setArg(i, Res.get()); 5582 } 5583 5584 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5585 5586 if (OrigArg->isTypeDependent()) 5587 return false; 5588 5589 // Usual Unary Conversions will convert half to float, which we want for 5590 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 5591 // type how it is, but do normal L->Rvalue conversions. 5592 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 5593 OrigArg = UsualUnaryConversions(OrigArg).get(); 5594 else 5595 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 5596 TheCall->setArg(NumArgs - 1, OrigArg); 5597 5598 // This operation requires a non-_Complex floating-point number. 5599 if (!OrigArg->getType()->isRealFloatingType()) 5600 return Diag(OrigArg->getBeginLoc(), 5601 diag::err_typecheck_call_invalid_unary_fp) 5602 << OrigArg->getType() << OrigArg->getSourceRange(); 5603 5604 return false; 5605 } 5606 5607 // Customized Sema Checking for VSX builtins that have the following signature: 5608 // vector [...] builtinName(vector [...], vector [...], const int); 5609 // Which takes the same type of vectors (any legal vector type) for the first 5610 // two arguments and takes compile time constant for the third argument. 5611 // Example builtins are : 5612 // vector double vec_xxpermdi(vector double, vector double, int); 5613 // vector short vec_xxsldwi(vector short, vector short, int); 5614 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 5615 unsigned ExpectedNumArgs = 3; 5616 if (TheCall->getNumArgs() < ExpectedNumArgs) 5617 return Diag(TheCall->getEndLoc(), 5618 diag::err_typecheck_call_too_few_args_at_least) 5619 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5620 << TheCall->getSourceRange(); 5621 5622 if (TheCall->getNumArgs() > ExpectedNumArgs) 5623 return Diag(TheCall->getEndLoc(), 5624 diag::err_typecheck_call_too_many_args_at_most) 5625 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5626 << TheCall->getSourceRange(); 5627 5628 // Check the third argument is a compile time constant 5629 llvm::APSInt Value; 5630 if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) 5631 return Diag(TheCall->getBeginLoc(), 5632 diag::err_vsx_builtin_nonconstant_argument) 5633 << 3 /* argument index */ << TheCall->getDirectCallee() 5634 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5635 TheCall->getArg(2)->getEndLoc()); 5636 5637 QualType Arg1Ty = TheCall->getArg(0)->getType(); 5638 QualType Arg2Ty = TheCall->getArg(1)->getType(); 5639 5640 // Check the type of argument 1 and argument 2 are vectors. 5641 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 5642 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 5643 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 5644 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 5645 << TheCall->getDirectCallee() 5646 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5647 TheCall->getArg(1)->getEndLoc()); 5648 } 5649 5650 // Check the first two arguments are the same type. 5651 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 5652 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 5653 << TheCall->getDirectCallee() 5654 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5655 TheCall->getArg(1)->getEndLoc()); 5656 } 5657 5658 // When default clang type checking is turned off and the customized type 5659 // checking is used, the returning type of the function must be explicitly 5660 // set. Otherwise it is _Bool by default. 5661 TheCall->setType(Arg1Ty); 5662 5663 return false; 5664 } 5665 5666 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 5667 // This is declared to take (...), so we have to check everything. 5668 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 5669 if (TheCall->getNumArgs() < 2) 5670 return ExprError(Diag(TheCall->getEndLoc(), 5671 diag::err_typecheck_call_too_few_args_at_least) 5672 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5673 << TheCall->getSourceRange()); 5674 5675 // Determine which of the following types of shufflevector we're checking: 5676 // 1) unary, vector mask: (lhs, mask) 5677 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 5678 QualType resType = TheCall->getArg(0)->getType(); 5679 unsigned numElements = 0; 5680 5681 if (!TheCall->getArg(0)->isTypeDependent() && 5682 !TheCall->getArg(1)->isTypeDependent()) { 5683 QualType LHSType = TheCall->getArg(0)->getType(); 5684 QualType RHSType = TheCall->getArg(1)->getType(); 5685 5686 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 5687 return ExprError( 5688 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 5689 << TheCall->getDirectCallee() 5690 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5691 TheCall->getArg(1)->getEndLoc())); 5692 5693 numElements = LHSType->castAs<VectorType>()->getNumElements(); 5694 unsigned numResElements = TheCall->getNumArgs() - 2; 5695 5696 // Check to see if we have a call with 2 vector arguments, the unary shuffle 5697 // with mask. If so, verify that RHS is an integer vector type with the 5698 // same number of elts as lhs. 5699 if (TheCall->getNumArgs() == 2) { 5700 if (!RHSType->hasIntegerRepresentation() || 5701 RHSType->castAs<VectorType>()->getNumElements() != numElements) 5702 return ExprError(Diag(TheCall->getBeginLoc(), 5703 diag::err_vec_builtin_incompatible_vector) 5704 << TheCall->getDirectCallee() 5705 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 5706 TheCall->getArg(1)->getEndLoc())); 5707 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 5708 return ExprError(Diag(TheCall->getBeginLoc(), 5709 diag::err_vec_builtin_incompatible_vector) 5710 << TheCall->getDirectCallee() 5711 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5712 TheCall->getArg(1)->getEndLoc())); 5713 } else if (numElements != numResElements) { 5714 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 5715 resType = Context.getVectorType(eltType, numResElements, 5716 VectorType::GenericVector); 5717 } 5718 } 5719 5720 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 5721 if (TheCall->getArg(i)->isTypeDependent() || 5722 TheCall->getArg(i)->isValueDependent()) 5723 continue; 5724 5725 llvm::APSInt Result(32); 5726 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) 5727 return ExprError(Diag(TheCall->getBeginLoc(), 5728 diag::err_shufflevector_nonconstant_argument) 5729 << TheCall->getArg(i)->getSourceRange()); 5730 5731 // Allow -1 which will be translated to undef in the IR. 5732 if (Result.isSigned() && Result.isAllOnesValue()) 5733 continue; 5734 5735 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) 5736 return ExprError(Diag(TheCall->getBeginLoc(), 5737 diag::err_shufflevector_argument_too_large) 5738 << TheCall->getArg(i)->getSourceRange()); 5739 } 5740 5741 SmallVector<Expr*, 32> exprs; 5742 5743 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 5744 exprs.push_back(TheCall->getArg(i)); 5745 TheCall->setArg(i, nullptr); 5746 } 5747 5748 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 5749 TheCall->getCallee()->getBeginLoc(), 5750 TheCall->getRParenLoc()); 5751 } 5752 5753 /// SemaConvertVectorExpr - Handle __builtin_convertvector 5754 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 5755 SourceLocation BuiltinLoc, 5756 SourceLocation RParenLoc) { 5757 ExprValueKind VK = VK_RValue; 5758 ExprObjectKind OK = OK_Ordinary; 5759 QualType DstTy = TInfo->getType(); 5760 QualType SrcTy = E->getType(); 5761 5762 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 5763 return ExprError(Diag(BuiltinLoc, 5764 diag::err_convertvector_non_vector) 5765 << E->getSourceRange()); 5766 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 5767 return ExprError(Diag(BuiltinLoc, 5768 diag::err_convertvector_non_vector_type)); 5769 5770 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 5771 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 5772 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 5773 if (SrcElts != DstElts) 5774 return ExprError(Diag(BuiltinLoc, 5775 diag::err_convertvector_incompatible_vector) 5776 << E->getSourceRange()); 5777 } 5778 5779 return new (Context) 5780 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 5781 } 5782 5783 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 5784 // This is declared to take (const void*, ...) and can take two 5785 // optional constant int args. 5786 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 5787 unsigned NumArgs = TheCall->getNumArgs(); 5788 5789 if (NumArgs > 3) 5790 return Diag(TheCall->getEndLoc(), 5791 diag::err_typecheck_call_too_many_args_at_most) 5792 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5793 5794 // Argument 0 is checked for us and the remaining arguments must be 5795 // constant integers. 5796 for (unsigned i = 1; i != NumArgs; ++i) 5797 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 5798 return true; 5799 5800 return false; 5801 } 5802 5803 /// SemaBuiltinAssume - Handle __assume (MS Extension). 5804 // __assume does not evaluate its arguments, and should warn if its argument 5805 // has side effects. 5806 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 5807 Expr *Arg = TheCall->getArg(0); 5808 if (Arg->isInstantiationDependent()) return false; 5809 5810 if (Arg->HasSideEffects(Context)) 5811 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 5812 << Arg->getSourceRange() 5813 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 5814 5815 return false; 5816 } 5817 5818 /// Handle __builtin_alloca_with_align. This is declared 5819 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 5820 /// than 8. 5821 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 5822 // The alignment must be a constant integer. 5823 Expr *Arg = TheCall->getArg(1); 5824 5825 // We can't check the value of a dependent argument. 5826 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 5827 if (const auto *UE = 5828 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 5829 if (UE->getKind() == UETT_AlignOf || 5830 UE->getKind() == UETT_PreferredAlignOf) 5831 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 5832 << Arg->getSourceRange(); 5833 5834 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 5835 5836 if (!Result.isPowerOf2()) 5837 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 5838 << Arg->getSourceRange(); 5839 5840 if (Result < Context.getCharWidth()) 5841 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 5842 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 5843 5844 if (Result > std::numeric_limits<int32_t>::max()) 5845 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 5846 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 5847 } 5848 5849 return false; 5850 } 5851 5852 /// Handle __builtin_assume_aligned. This is declared 5853 /// as (const void*, size_t, ...) and can take one optional constant int arg. 5854 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 5855 unsigned NumArgs = TheCall->getNumArgs(); 5856 5857 if (NumArgs > 3) 5858 return Diag(TheCall->getEndLoc(), 5859 diag::err_typecheck_call_too_many_args_at_most) 5860 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5861 5862 // The alignment must be a constant integer. 5863 Expr *Arg = TheCall->getArg(1); 5864 5865 // We can't check the value of a dependent argument. 5866 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 5867 llvm::APSInt Result; 5868 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 5869 return true; 5870 5871 if (!Result.isPowerOf2()) 5872 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 5873 << Arg->getSourceRange(); 5874 5875 if (Result > Sema::MaximumAlignment) 5876 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 5877 << Arg->getSourceRange() << Sema::MaximumAlignment; 5878 } 5879 5880 if (NumArgs > 2) { 5881 ExprResult Arg(TheCall->getArg(2)); 5882 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5883 Context.getSizeType(), false); 5884 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5885 if (Arg.isInvalid()) return true; 5886 TheCall->setArg(2, Arg.get()); 5887 } 5888 5889 return false; 5890 } 5891 5892 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 5893 unsigned BuiltinID = 5894 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 5895 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 5896 5897 unsigned NumArgs = TheCall->getNumArgs(); 5898 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 5899 if (NumArgs < NumRequiredArgs) { 5900 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5901 << 0 /* function call */ << NumRequiredArgs << NumArgs 5902 << TheCall->getSourceRange(); 5903 } 5904 if (NumArgs >= NumRequiredArgs + 0x100) { 5905 return Diag(TheCall->getEndLoc(), 5906 diag::err_typecheck_call_too_many_args_at_most) 5907 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 5908 << TheCall->getSourceRange(); 5909 } 5910 unsigned i = 0; 5911 5912 // For formatting call, check buffer arg. 5913 if (!IsSizeCall) { 5914 ExprResult Arg(TheCall->getArg(i)); 5915 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5916 Context, Context.VoidPtrTy, false); 5917 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5918 if (Arg.isInvalid()) 5919 return true; 5920 TheCall->setArg(i, Arg.get()); 5921 i++; 5922 } 5923 5924 // Check string literal arg. 5925 unsigned FormatIdx = i; 5926 { 5927 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 5928 if (Arg.isInvalid()) 5929 return true; 5930 TheCall->setArg(i, Arg.get()); 5931 i++; 5932 } 5933 5934 // Make sure variadic args are scalar. 5935 unsigned FirstDataArg = i; 5936 while (i < NumArgs) { 5937 ExprResult Arg = DefaultVariadicArgumentPromotion( 5938 TheCall->getArg(i), VariadicFunction, nullptr); 5939 if (Arg.isInvalid()) 5940 return true; 5941 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 5942 if (ArgSize.getQuantity() >= 0x100) { 5943 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 5944 << i << (int)ArgSize.getQuantity() << 0xff 5945 << TheCall->getSourceRange(); 5946 } 5947 TheCall->setArg(i, Arg.get()); 5948 i++; 5949 } 5950 5951 // Check formatting specifiers. NOTE: We're only doing this for the non-size 5952 // call to avoid duplicate diagnostics. 5953 if (!IsSizeCall) { 5954 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 5955 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 5956 bool Success = CheckFormatArguments( 5957 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 5958 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 5959 CheckedVarArgs); 5960 if (!Success) 5961 return true; 5962 } 5963 5964 if (IsSizeCall) { 5965 TheCall->setType(Context.getSizeType()); 5966 } else { 5967 TheCall->setType(Context.VoidPtrTy); 5968 } 5969 return false; 5970 } 5971 5972 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 5973 /// TheCall is a constant expression. 5974 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 5975 llvm::APSInt &Result) { 5976 Expr *Arg = TheCall->getArg(ArgNum); 5977 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5978 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5979 5980 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 5981 5982 if (!Arg->isIntegerConstantExpr(Result, Context)) 5983 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 5984 << FDecl->getDeclName() << Arg->getSourceRange(); 5985 5986 return false; 5987 } 5988 5989 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 5990 /// TheCall is a constant expression in the range [Low, High]. 5991 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 5992 int Low, int High, bool RangeIsError) { 5993 if (isConstantEvaluated()) 5994 return false; 5995 llvm::APSInt Result; 5996 5997 // We can't check the value of a dependent argument. 5998 Expr *Arg = TheCall->getArg(ArgNum); 5999 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6000 return false; 6001 6002 // Check constant-ness first. 6003 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6004 return true; 6005 6006 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6007 if (RangeIsError) 6008 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6009 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6010 else 6011 // Defer the warning until we know if the code will be emitted so that 6012 // dead code can ignore this. 6013 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6014 PDiag(diag::warn_argument_invalid_range) 6015 << Result.toString(10) << Low << High 6016 << Arg->getSourceRange()); 6017 } 6018 6019 return false; 6020 } 6021 6022 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6023 /// TheCall is a constant expression is a multiple of Num.. 6024 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6025 unsigned Num) { 6026 llvm::APSInt Result; 6027 6028 // We can't check the value of a dependent argument. 6029 Expr *Arg = TheCall->getArg(ArgNum); 6030 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6031 return false; 6032 6033 // Check constant-ness first. 6034 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6035 return true; 6036 6037 if (Result.getSExtValue() % Num != 0) 6038 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6039 << Num << Arg->getSourceRange(); 6040 6041 return false; 6042 } 6043 6044 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6045 /// constant expression representing a power of 2. 6046 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6047 llvm::APSInt Result; 6048 6049 // We can't check the value of a dependent argument. 6050 Expr *Arg = TheCall->getArg(ArgNum); 6051 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6052 return false; 6053 6054 // Check constant-ness first. 6055 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6056 return true; 6057 6058 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6059 // and only if x is a power of 2. 6060 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6061 return false; 6062 6063 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6064 << Arg->getSourceRange(); 6065 } 6066 6067 static bool IsShiftedByte(llvm::APSInt Value) { 6068 if (Value.isNegative()) 6069 return false; 6070 6071 // Check if it's a shifted byte, by shifting it down 6072 while (true) { 6073 // If the value fits in the bottom byte, the check passes. 6074 if (Value < 0x100) 6075 return true; 6076 6077 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6078 // fails. 6079 if ((Value & 0xFF) != 0) 6080 return false; 6081 6082 // If the bottom 8 bits are all 0, but something above that is nonzero, 6083 // then shifting the value right by 8 bits won't affect whether it's a 6084 // shifted byte or not. So do that, and go round again. 6085 Value >>= 8; 6086 } 6087 } 6088 6089 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6090 /// a constant expression representing an arbitrary byte value shifted left by 6091 /// a multiple of 8 bits. 6092 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6093 unsigned ArgBits) { 6094 llvm::APSInt Result; 6095 6096 // We can't check the value of a dependent argument. 6097 Expr *Arg = TheCall->getArg(ArgNum); 6098 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6099 return false; 6100 6101 // Check constant-ness first. 6102 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6103 return true; 6104 6105 // Truncate to the given size. 6106 Result = Result.getLoBits(ArgBits); 6107 Result.setIsUnsigned(true); 6108 6109 if (IsShiftedByte(Result)) 6110 return false; 6111 6112 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6113 << Arg->getSourceRange(); 6114 } 6115 6116 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6117 /// TheCall is a constant expression representing either a shifted byte value, 6118 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6119 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6120 /// Arm MVE intrinsics. 6121 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6122 int ArgNum, 6123 unsigned ArgBits) { 6124 llvm::APSInt Result; 6125 6126 // We can't check the value of a dependent argument. 6127 Expr *Arg = TheCall->getArg(ArgNum); 6128 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6129 return false; 6130 6131 // Check constant-ness first. 6132 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6133 return true; 6134 6135 // Truncate to the given size. 6136 Result = Result.getLoBits(ArgBits); 6137 Result.setIsUnsigned(true); 6138 6139 // Check to see if it's in either of the required forms. 6140 if (IsShiftedByte(Result) || 6141 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6142 return false; 6143 6144 return Diag(TheCall->getBeginLoc(), 6145 diag::err_argument_not_shifted_byte_or_xxff) 6146 << Arg->getSourceRange(); 6147 } 6148 6149 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6150 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6151 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6152 if (checkArgCount(*this, TheCall, 2)) 6153 return true; 6154 Expr *Arg0 = TheCall->getArg(0); 6155 Expr *Arg1 = TheCall->getArg(1); 6156 6157 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6158 if (FirstArg.isInvalid()) 6159 return true; 6160 QualType FirstArgType = FirstArg.get()->getType(); 6161 if (!FirstArgType->isAnyPointerType()) 6162 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6163 << "first" << FirstArgType << Arg0->getSourceRange(); 6164 TheCall->setArg(0, FirstArg.get()); 6165 6166 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6167 if (SecArg.isInvalid()) 6168 return true; 6169 QualType SecArgType = SecArg.get()->getType(); 6170 if (!SecArgType->isIntegerType()) 6171 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6172 << "second" << SecArgType << Arg1->getSourceRange(); 6173 6174 // Derive the return type from the pointer argument. 6175 TheCall->setType(FirstArgType); 6176 return false; 6177 } 6178 6179 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6180 if (checkArgCount(*this, TheCall, 2)) 6181 return true; 6182 6183 Expr *Arg0 = TheCall->getArg(0); 6184 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6185 if (FirstArg.isInvalid()) 6186 return true; 6187 QualType FirstArgType = FirstArg.get()->getType(); 6188 if (!FirstArgType->isAnyPointerType()) 6189 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6190 << "first" << FirstArgType << Arg0->getSourceRange(); 6191 TheCall->setArg(0, FirstArg.get()); 6192 6193 // Derive the return type from the pointer argument. 6194 TheCall->setType(FirstArgType); 6195 6196 // Second arg must be an constant in range [0,15] 6197 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6198 } 6199 6200 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6201 if (checkArgCount(*this, TheCall, 2)) 6202 return true; 6203 Expr *Arg0 = TheCall->getArg(0); 6204 Expr *Arg1 = TheCall->getArg(1); 6205 6206 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6207 if (FirstArg.isInvalid()) 6208 return true; 6209 QualType FirstArgType = FirstArg.get()->getType(); 6210 if (!FirstArgType->isAnyPointerType()) 6211 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6212 << "first" << FirstArgType << Arg0->getSourceRange(); 6213 6214 QualType SecArgType = Arg1->getType(); 6215 if (!SecArgType->isIntegerType()) 6216 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6217 << "second" << SecArgType << Arg1->getSourceRange(); 6218 TheCall->setType(Context.IntTy); 6219 return false; 6220 } 6221 6222 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6223 BuiltinID == AArch64::BI__builtin_arm_stg) { 6224 if (checkArgCount(*this, TheCall, 1)) 6225 return true; 6226 Expr *Arg0 = TheCall->getArg(0); 6227 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6228 if (FirstArg.isInvalid()) 6229 return true; 6230 6231 QualType FirstArgType = FirstArg.get()->getType(); 6232 if (!FirstArgType->isAnyPointerType()) 6233 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6234 << "first" << FirstArgType << Arg0->getSourceRange(); 6235 TheCall->setArg(0, FirstArg.get()); 6236 6237 // Derive the return type from the pointer argument. 6238 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6239 TheCall->setType(FirstArgType); 6240 return false; 6241 } 6242 6243 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6244 Expr *ArgA = TheCall->getArg(0); 6245 Expr *ArgB = TheCall->getArg(1); 6246 6247 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6248 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6249 6250 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6251 return true; 6252 6253 QualType ArgTypeA = ArgExprA.get()->getType(); 6254 QualType ArgTypeB = ArgExprB.get()->getType(); 6255 6256 auto isNull = [&] (Expr *E) -> bool { 6257 return E->isNullPointerConstant( 6258 Context, Expr::NPC_ValueDependentIsNotNull); }; 6259 6260 // argument should be either a pointer or null 6261 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6262 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6263 << "first" << ArgTypeA << ArgA->getSourceRange(); 6264 6265 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6266 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6267 << "second" << ArgTypeB << ArgB->getSourceRange(); 6268 6269 // Ensure Pointee types are compatible 6270 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6271 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6272 QualType pointeeA = ArgTypeA->getPointeeType(); 6273 QualType pointeeB = ArgTypeB->getPointeeType(); 6274 if (!Context.typesAreCompatible( 6275 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6276 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6277 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6278 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6279 << ArgB->getSourceRange(); 6280 } 6281 } 6282 6283 // at least one argument should be pointer type 6284 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6285 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6286 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6287 6288 if (isNull(ArgA)) // adopt type of the other pointer 6289 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6290 6291 if (isNull(ArgB)) 6292 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6293 6294 TheCall->setArg(0, ArgExprA.get()); 6295 TheCall->setArg(1, ArgExprB.get()); 6296 TheCall->setType(Context.LongLongTy); 6297 return false; 6298 } 6299 assert(false && "Unhandled ARM MTE intrinsic"); 6300 return true; 6301 } 6302 6303 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6304 /// TheCall is an ARM/AArch64 special register string literal. 6305 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6306 int ArgNum, unsigned ExpectedFieldNum, 6307 bool AllowName) { 6308 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6309 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6310 BuiltinID == ARM::BI__builtin_arm_rsr || 6311 BuiltinID == ARM::BI__builtin_arm_rsrp || 6312 BuiltinID == ARM::BI__builtin_arm_wsr || 6313 BuiltinID == ARM::BI__builtin_arm_wsrp; 6314 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6315 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6316 BuiltinID == AArch64::BI__builtin_arm_rsr || 6317 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6318 BuiltinID == AArch64::BI__builtin_arm_wsr || 6319 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6320 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6321 6322 // We can't check the value of a dependent argument. 6323 Expr *Arg = TheCall->getArg(ArgNum); 6324 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6325 return false; 6326 6327 // Check if the argument is a string literal. 6328 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6329 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6330 << Arg->getSourceRange(); 6331 6332 // Check the type of special register given. 6333 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6334 SmallVector<StringRef, 6> Fields; 6335 Reg.split(Fields, ":"); 6336 6337 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6338 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6339 << Arg->getSourceRange(); 6340 6341 // If the string is the name of a register then we cannot check that it is 6342 // valid here but if the string is of one the forms described in ACLE then we 6343 // can check that the supplied fields are integers and within the valid 6344 // ranges. 6345 if (Fields.size() > 1) { 6346 bool FiveFields = Fields.size() == 5; 6347 6348 bool ValidString = true; 6349 if (IsARMBuiltin) { 6350 ValidString &= Fields[0].startswith_lower("cp") || 6351 Fields[0].startswith_lower("p"); 6352 if (ValidString) 6353 Fields[0] = 6354 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6355 6356 ValidString &= Fields[2].startswith_lower("c"); 6357 if (ValidString) 6358 Fields[2] = Fields[2].drop_front(1); 6359 6360 if (FiveFields) { 6361 ValidString &= Fields[3].startswith_lower("c"); 6362 if (ValidString) 6363 Fields[3] = Fields[3].drop_front(1); 6364 } 6365 } 6366 6367 SmallVector<int, 5> Ranges; 6368 if (FiveFields) 6369 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6370 else 6371 Ranges.append({15, 7, 15}); 6372 6373 for (unsigned i=0; i<Fields.size(); ++i) { 6374 int IntField; 6375 ValidString &= !Fields[i].getAsInteger(10, IntField); 6376 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6377 } 6378 6379 if (!ValidString) 6380 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6381 << Arg->getSourceRange(); 6382 } else if (IsAArch64Builtin && Fields.size() == 1) { 6383 // If the register name is one of those that appear in the condition below 6384 // and the special register builtin being used is one of the write builtins, 6385 // then we require that the argument provided for writing to the register 6386 // is an integer constant expression. This is because it will be lowered to 6387 // an MSR (immediate) instruction, so we need to know the immediate at 6388 // compile time. 6389 if (TheCall->getNumArgs() != 2) 6390 return false; 6391 6392 std::string RegLower = Reg.lower(); 6393 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6394 RegLower != "pan" && RegLower != "uao") 6395 return false; 6396 6397 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6398 } 6399 6400 return false; 6401 } 6402 6403 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6404 /// This checks that the target supports __builtin_longjmp and 6405 /// that val is a constant 1. 6406 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6407 if (!Context.getTargetInfo().hasSjLjLowering()) 6408 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6409 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6410 6411 Expr *Arg = TheCall->getArg(1); 6412 llvm::APSInt Result; 6413 6414 // TODO: This is less than ideal. Overload this to take a value. 6415 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6416 return true; 6417 6418 if (Result != 1) 6419 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6420 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6421 6422 return false; 6423 } 6424 6425 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6426 /// This checks that the target supports __builtin_setjmp. 6427 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6428 if (!Context.getTargetInfo().hasSjLjLowering()) 6429 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6430 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6431 return false; 6432 } 6433 6434 namespace { 6435 6436 class UncoveredArgHandler { 6437 enum { Unknown = -1, AllCovered = -2 }; 6438 6439 signed FirstUncoveredArg = Unknown; 6440 SmallVector<const Expr *, 4> DiagnosticExprs; 6441 6442 public: 6443 UncoveredArgHandler() = default; 6444 6445 bool hasUncoveredArg() const { 6446 return (FirstUncoveredArg >= 0); 6447 } 6448 6449 unsigned getUncoveredArg() const { 6450 assert(hasUncoveredArg() && "no uncovered argument"); 6451 return FirstUncoveredArg; 6452 } 6453 6454 void setAllCovered() { 6455 // A string has been found with all arguments covered, so clear out 6456 // the diagnostics. 6457 DiagnosticExprs.clear(); 6458 FirstUncoveredArg = AllCovered; 6459 } 6460 6461 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6462 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6463 6464 // Don't update if a previous string covers all arguments. 6465 if (FirstUncoveredArg == AllCovered) 6466 return; 6467 6468 // UncoveredArgHandler tracks the highest uncovered argument index 6469 // and with it all the strings that match this index. 6470 if (NewFirstUncoveredArg == FirstUncoveredArg) 6471 DiagnosticExprs.push_back(StrExpr); 6472 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6473 DiagnosticExprs.clear(); 6474 DiagnosticExprs.push_back(StrExpr); 6475 FirstUncoveredArg = NewFirstUncoveredArg; 6476 } 6477 } 6478 6479 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6480 }; 6481 6482 enum StringLiteralCheckType { 6483 SLCT_NotALiteral, 6484 SLCT_UncheckedLiteral, 6485 SLCT_CheckedLiteral 6486 }; 6487 6488 } // namespace 6489 6490 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6491 BinaryOperatorKind BinOpKind, 6492 bool AddendIsRight) { 6493 unsigned BitWidth = Offset.getBitWidth(); 6494 unsigned AddendBitWidth = Addend.getBitWidth(); 6495 // There might be negative interim results. 6496 if (Addend.isUnsigned()) { 6497 Addend = Addend.zext(++AddendBitWidth); 6498 Addend.setIsSigned(true); 6499 } 6500 // Adjust the bit width of the APSInts. 6501 if (AddendBitWidth > BitWidth) { 6502 Offset = Offset.sext(AddendBitWidth); 6503 BitWidth = AddendBitWidth; 6504 } else if (BitWidth > AddendBitWidth) { 6505 Addend = Addend.sext(BitWidth); 6506 } 6507 6508 bool Ov = false; 6509 llvm::APSInt ResOffset = Offset; 6510 if (BinOpKind == BO_Add) 6511 ResOffset = Offset.sadd_ov(Addend, Ov); 6512 else { 6513 assert(AddendIsRight && BinOpKind == BO_Sub && 6514 "operator must be add or sub with addend on the right"); 6515 ResOffset = Offset.ssub_ov(Addend, Ov); 6516 } 6517 6518 // We add an offset to a pointer here so we should support an offset as big as 6519 // possible. 6520 if (Ov) { 6521 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6522 "index (intermediate) result too big"); 6523 Offset = Offset.sext(2 * BitWidth); 6524 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6525 return; 6526 } 6527 6528 Offset = ResOffset; 6529 } 6530 6531 namespace { 6532 6533 // This is a wrapper class around StringLiteral to support offsetted string 6534 // literals as format strings. It takes the offset into account when returning 6535 // the string and its length or the source locations to display notes correctly. 6536 class FormatStringLiteral { 6537 const StringLiteral *FExpr; 6538 int64_t Offset; 6539 6540 public: 6541 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 6542 : FExpr(fexpr), Offset(Offset) {} 6543 6544 StringRef getString() const { 6545 return FExpr->getString().drop_front(Offset); 6546 } 6547 6548 unsigned getByteLength() const { 6549 return FExpr->getByteLength() - getCharByteWidth() * Offset; 6550 } 6551 6552 unsigned getLength() const { return FExpr->getLength() - Offset; } 6553 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 6554 6555 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 6556 6557 QualType getType() const { return FExpr->getType(); } 6558 6559 bool isAscii() const { return FExpr->isAscii(); } 6560 bool isWide() const { return FExpr->isWide(); } 6561 bool isUTF8() const { return FExpr->isUTF8(); } 6562 bool isUTF16() const { return FExpr->isUTF16(); } 6563 bool isUTF32() const { return FExpr->isUTF32(); } 6564 bool isPascal() const { return FExpr->isPascal(); } 6565 6566 SourceLocation getLocationOfByte( 6567 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 6568 const TargetInfo &Target, unsigned *StartToken = nullptr, 6569 unsigned *StartTokenByteOffset = nullptr) const { 6570 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 6571 StartToken, StartTokenByteOffset); 6572 } 6573 6574 SourceLocation getBeginLoc() const LLVM_READONLY { 6575 return FExpr->getBeginLoc().getLocWithOffset(Offset); 6576 } 6577 6578 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 6579 }; 6580 6581 } // namespace 6582 6583 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 6584 const Expr *OrigFormatExpr, 6585 ArrayRef<const Expr *> Args, 6586 bool HasVAListArg, unsigned format_idx, 6587 unsigned firstDataArg, 6588 Sema::FormatStringType Type, 6589 bool inFunctionCall, 6590 Sema::VariadicCallType CallType, 6591 llvm::SmallBitVector &CheckedVarArgs, 6592 UncoveredArgHandler &UncoveredArg, 6593 bool IgnoreStringsWithoutSpecifiers); 6594 6595 // Determine if an expression is a string literal or constant string. 6596 // If this function returns false on the arguments to a function expecting a 6597 // format string, we will usually need to emit a warning. 6598 // True string literals are then checked by CheckFormatString. 6599 static StringLiteralCheckType 6600 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 6601 bool HasVAListArg, unsigned format_idx, 6602 unsigned firstDataArg, Sema::FormatStringType Type, 6603 Sema::VariadicCallType CallType, bool InFunctionCall, 6604 llvm::SmallBitVector &CheckedVarArgs, 6605 UncoveredArgHandler &UncoveredArg, 6606 llvm::APSInt Offset, 6607 bool IgnoreStringsWithoutSpecifiers = false) { 6608 if (S.isConstantEvaluated()) 6609 return SLCT_NotALiteral; 6610 tryAgain: 6611 assert(Offset.isSigned() && "invalid offset"); 6612 6613 if (E->isTypeDependent() || E->isValueDependent()) 6614 return SLCT_NotALiteral; 6615 6616 E = E->IgnoreParenCasts(); 6617 6618 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6619 // Technically -Wformat-nonliteral does not warn about this case. 6620 // The behavior of printf and friends in this case is implementation 6621 // dependent. Ideally if the format string cannot be null then 6622 // it should have a 'nonnull' attribute in the function prototype. 6623 return SLCT_UncheckedLiteral; 6624 6625 switch (E->getStmtClass()) { 6626 case Stmt::BinaryConditionalOperatorClass: 6627 case Stmt::ConditionalOperatorClass: { 6628 // The expression is a literal if both sub-expressions were, and it was 6629 // completely checked only if both sub-expressions were checked. 6630 const AbstractConditionalOperator *C = 6631 cast<AbstractConditionalOperator>(E); 6632 6633 // Determine whether it is necessary to check both sub-expressions, for 6634 // example, because the condition expression is a constant that can be 6635 // evaluated at compile time. 6636 bool CheckLeft = true, CheckRight = true; 6637 6638 bool Cond; 6639 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 6640 S.isConstantEvaluated())) { 6641 if (Cond) 6642 CheckRight = false; 6643 else 6644 CheckLeft = false; 6645 } 6646 6647 // We need to maintain the offsets for the right and the left hand side 6648 // separately to check if every possible indexed expression is a valid 6649 // string literal. They might have different offsets for different string 6650 // literals in the end. 6651 StringLiteralCheckType Left; 6652 if (!CheckLeft) 6653 Left = SLCT_UncheckedLiteral; 6654 else { 6655 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 6656 HasVAListArg, format_idx, firstDataArg, 6657 Type, CallType, InFunctionCall, 6658 CheckedVarArgs, UncoveredArg, Offset, 6659 IgnoreStringsWithoutSpecifiers); 6660 if (Left == SLCT_NotALiteral || !CheckRight) { 6661 return Left; 6662 } 6663 } 6664 6665 StringLiteralCheckType Right = checkFormatStringExpr( 6666 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 6667 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6668 IgnoreStringsWithoutSpecifiers); 6669 6670 return (CheckLeft && Left < Right) ? Left : Right; 6671 } 6672 6673 case Stmt::ImplicitCastExprClass: 6674 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 6675 goto tryAgain; 6676 6677 case Stmt::OpaqueValueExprClass: 6678 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 6679 E = src; 6680 goto tryAgain; 6681 } 6682 return SLCT_NotALiteral; 6683 6684 case Stmt::PredefinedExprClass: 6685 // While __func__, etc., are technically not string literals, they 6686 // cannot contain format specifiers and thus are not a security 6687 // liability. 6688 return SLCT_UncheckedLiteral; 6689 6690 case Stmt::DeclRefExprClass: { 6691 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 6692 6693 // As an exception, do not flag errors for variables binding to 6694 // const string literals. 6695 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 6696 bool isConstant = false; 6697 QualType T = DR->getType(); 6698 6699 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 6700 isConstant = AT->getElementType().isConstant(S.Context); 6701 } else if (const PointerType *PT = T->getAs<PointerType>()) { 6702 isConstant = T.isConstant(S.Context) && 6703 PT->getPointeeType().isConstant(S.Context); 6704 } else if (T->isObjCObjectPointerType()) { 6705 // In ObjC, there is usually no "const ObjectPointer" type, 6706 // so don't check if the pointee type is constant. 6707 isConstant = T.isConstant(S.Context); 6708 } 6709 6710 if (isConstant) { 6711 if (const Expr *Init = VD->getAnyInitializer()) { 6712 // Look through initializers like const char c[] = { "foo" } 6713 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 6714 if (InitList->isStringLiteralInit()) 6715 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 6716 } 6717 return checkFormatStringExpr(S, Init, Args, 6718 HasVAListArg, format_idx, 6719 firstDataArg, Type, CallType, 6720 /*InFunctionCall*/ false, CheckedVarArgs, 6721 UncoveredArg, Offset); 6722 } 6723 } 6724 6725 // For vprintf* functions (i.e., HasVAListArg==true), we add a 6726 // special check to see if the format string is a function parameter 6727 // of the function calling the printf function. If the function 6728 // has an attribute indicating it is a printf-like function, then we 6729 // should suppress warnings concerning non-literals being used in a call 6730 // to a vprintf function. For example: 6731 // 6732 // void 6733 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 6734 // va_list ap; 6735 // va_start(ap, fmt); 6736 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 6737 // ... 6738 // } 6739 if (HasVAListArg) { 6740 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 6741 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 6742 int PVIndex = PV->getFunctionScopeIndex() + 1; 6743 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 6744 // adjust for implicit parameter 6745 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6746 if (MD->isInstance()) 6747 ++PVIndex; 6748 // We also check if the formats are compatible. 6749 // We can't pass a 'scanf' string to a 'printf' function. 6750 if (PVIndex == PVFormat->getFormatIdx() && 6751 Type == S.GetFormatStringType(PVFormat)) 6752 return SLCT_UncheckedLiteral; 6753 } 6754 } 6755 } 6756 } 6757 } 6758 6759 return SLCT_NotALiteral; 6760 } 6761 6762 case Stmt::CallExprClass: 6763 case Stmt::CXXMemberCallExprClass: { 6764 const CallExpr *CE = cast<CallExpr>(E); 6765 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 6766 bool IsFirst = true; 6767 StringLiteralCheckType CommonResult; 6768 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 6769 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 6770 StringLiteralCheckType Result = checkFormatStringExpr( 6771 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6772 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6773 IgnoreStringsWithoutSpecifiers); 6774 if (IsFirst) { 6775 CommonResult = Result; 6776 IsFirst = false; 6777 } 6778 } 6779 if (!IsFirst) 6780 return CommonResult; 6781 6782 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 6783 unsigned BuiltinID = FD->getBuiltinID(); 6784 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 6785 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 6786 const Expr *Arg = CE->getArg(0); 6787 return checkFormatStringExpr(S, Arg, Args, 6788 HasVAListArg, format_idx, 6789 firstDataArg, Type, CallType, 6790 InFunctionCall, CheckedVarArgs, 6791 UncoveredArg, Offset, 6792 IgnoreStringsWithoutSpecifiers); 6793 } 6794 } 6795 } 6796 6797 return SLCT_NotALiteral; 6798 } 6799 case Stmt::ObjCMessageExprClass: { 6800 const auto *ME = cast<ObjCMessageExpr>(E); 6801 if (const auto *MD = ME->getMethodDecl()) { 6802 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 6803 // As a special case heuristic, if we're using the method -[NSBundle 6804 // localizedStringForKey:value:table:], ignore any key strings that lack 6805 // format specifiers. The idea is that if the key doesn't have any 6806 // format specifiers then its probably just a key to map to the 6807 // localized strings. If it does have format specifiers though, then its 6808 // likely that the text of the key is the format string in the 6809 // programmer's language, and should be checked. 6810 const ObjCInterfaceDecl *IFace; 6811 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 6812 IFace->getIdentifier()->isStr("NSBundle") && 6813 MD->getSelector().isKeywordSelector( 6814 {"localizedStringForKey", "value", "table"})) { 6815 IgnoreStringsWithoutSpecifiers = true; 6816 } 6817 6818 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 6819 return checkFormatStringExpr( 6820 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6821 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6822 IgnoreStringsWithoutSpecifiers); 6823 } 6824 } 6825 6826 return SLCT_NotALiteral; 6827 } 6828 case Stmt::ObjCStringLiteralClass: 6829 case Stmt::StringLiteralClass: { 6830 const StringLiteral *StrE = nullptr; 6831 6832 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 6833 StrE = ObjCFExpr->getString(); 6834 else 6835 StrE = cast<StringLiteral>(E); 6836 6837 if (StrE) { 6838 if (Offset.isNegative() || Offset > StrE->getLength()) { 6839 // TODO: It would be better to have an explicit warning for out of 6840 // bounds literals. 6841 return SLCT_NotALiteral; 6842 } 6843 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 6844 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 6845 firstDataArg, Type, InFunctionCall, CallType, 6846 CheckedVarArgs, UncoveredArg, 6847 IgnoreStringsWithoutSpecifiers); 6848 return SLCT_CheckedLiteral; 6849 } 6850 6851 return SLCT_NotALiteral; 6852 } 6853 case Stmt::BinaryOperatorClass: { 6854 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 6855 6856 // A string literal + an int offset is still a string literal. 6857 if (BinOp->isAdditiveOp()) { 6858 Expr::EvalResult LResult, RResult; 6859 6860 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 6861 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 6862 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 6863 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 6864 6865 if (LIsInt != RIsInt) { 6866 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 6867 6868 if (LIsInt) { 6869 if (BinOpKind == BO_Add) { 6870 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 6871 E = BinOp->getRHS(); 6872 goto tryAgain; 6873 } 6874 } else { 6875 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 6876 E = BinOp->getLHS(); 6877 goto tryAgain; 6878 } 6879 } 6880 } 6881 6882 return SLCT_NotALiteral; 6883 } 6884 case Stmt::UnaryOperatorClass: { 6885 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 6886 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 6887 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 6888 Expr::EvalResult IndexResult; 6889 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 6890 Expr::SE_NoSideEffects, 6891 S.isConstantEvaluated())) { 6892 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 6893 /*RHS is int*/ true); 6894 E = ASE->getBase(); 6895 goto tryAgain; 6896 } 6897 } 6898 6899 return SLCT_NotALiteral; 6900 } 6901 6902 default: 6903 return SLCT_NotALiteral; 6904 } 6905 } 6906 6907 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 6908 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 6909 .Case("scanf", FST_Scanf) 6910 .Cases("printf", "printf0", FST_Printf) 6911 .Cases("NSString", "CFString", FST_NSString) 6912 .Case("strftime", FST_Strftime) 6913 .Case("strfmon", FST_Strfmon) 6914 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 6915 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 6916 .Case("os_trace", FST_OSLog) 6917 .Case("os_log", FST_OSLog) 6918 .Default(FST_Unknown); 6919 } 6920 6921 /// CheckFormatArguments - Check calls to printf and scanf (and similar 6922 /// functions) for correct use of format strings. 6923 /// Returns true if a format string has been fully checked. 6924 bool Sema::CheckFormatArguments(const FormatAttr *Format, 6925 ArrayRef<const Expr *> Args, 6926 bool IsCXXMember, 6927 VariadicCallType CallType, 6928 SourceLocation Loc, SourceRange Range, 6929 llvm::SmallBitVector &CheckedVarArgs) { 6930 FormatStringInfo FSI; 6931 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 6932 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 6933 FSI.FirstDataArg, GetFormatStringType(Format), 6934 CallType, Loc, Range, CheckedVarArgs); 6935 return false; 6936 } 6937 6938 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 6939 bool HasVAListArg, unsigned format_idx, 6940 unsigned firstDataArg, FormatStringType Type, 6941 VariadicCallType CallType, 6942 SourceLocation Loc, SourceRange Range, 6943 llvm::SmallBitVector &CheckedVarArgs) { 6944 // CHECK: printf/scanf-like function is called with no format string. 6945 if (format_idx >= Args.size()) { 6946 Diag(Loc, diag::warn_missing_format_string) << Range; 6947 return false; 6948 } 6949 6950 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 6951 6952 // CHECK: format string is not a string literal. 6953 // 6954 // Dynamically generated format strings are difficult to 6955 // automatically vet at compile time. Requiring that format strings 6956 // are string literals: (1) permits the checking of format strings by 6957 // the compiler and thereby (2) can practically remove the source of 6958 // many format string exploits. 6959 6960 // Format string can be either ObjC string (e.g. @"%d") or 6961 // C string (e.g. "%d") 6962 // ObjC string uses the same format specifiers as C string, so we can use 6963 // the same format string checking logic for both ObjC and C strings. 6964 UncoveredArgHandler UncoveredArg; 6965 StringLiteralCheckType CT = 6966 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 6967 format_idx, firstDataArg, Type, CallType, 6968 /*IsFunctionCall*/ true, CheckedVarArgs, 6969 UncoveredArg, 6970 /*no string offset*/ llvm::APSInt(64, false) = 0); 6971 6972 // Generate a diagnostic where an uncovered argument is detected. 6973 if (UncoveredArg.hasUncoveredArg()) { 6974 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 6975 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 6976 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 6977 } 6978 6979 if (CT != SLCT_NotALiteral) 6980 // Literal format string found, check done! 6981 return CT == SLCT_CheckedLiteral; 6982 6983 // Strftime is particular as it always uses a single 'time' argument, 6984 // so it is safe to pass a non-literal string. 6985 if (Type == FST_Strftime) 6986 return false; 6987 6988 // Do not emit diag when the string param is a macro expansion and the 6989 // format is either NSString or CFString. This is a hack to prevent 6990 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 6991 // which are usually used in place of NS and CF string literals. 6992 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 6993 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 6994 return false; 6995 6996 // If there are no arguments specified, warn with -Wformat-security, otherwise 6997 // warn only with -Wformat-nonliteral. 6998 if (Args.size() == firstDataArg) { 6999 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7000 << OrigFormatExpr->getSourceRange(); 7001 switch (Type) { 7002 default: 7003 break; 7004 case FST_Kprintf: 7005 case FST_FreeBSDKPrintf: 7006 case FST_Printf: 7007 Diag(FormatLoc, diag::note_format_security_fixit) 7008 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7009 break; 7010 case FST_NSString: 7011 Diag(FormatLoc, diag::note_format_security_fixit) 7012 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7013 break; 7014 } 7015 } else { 7016 Diag(FormatLoc, diag::warn_format_nonliteral) 7017 << OrigFormatExpr->getSourceRange(); 7018 } 7019 return false; 7020 } 7021 7022 namespace { 7023 7024 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7025 protected: 7026 Sema &S; 7027 const FormatStringLiteral *FExpr; 7028 const Expr *OrigFormatExpr; 7029 const Sema::FormatStringType FSType; 7030 const unsigned FirstDataArg; 7031 const unsigned NumDataArgs; 7032 const char *Beg; // Start of format string. 7033 const bool HasVAListArg; 7034 ArrayRef<const Expr *> Args; 7035 unsigned FormatIdx; 7036 llvm::SmallBitVector CoveredArgs; 7037 bool usesPositionalArgs = false; 7038 bool atFirstArg = true; 7039 bool inFunctionCall; 7040 Sema::VariadicCallType CallType; 7041 llvm::SmallBitVector &CheckedVarArgs; 7042 UncoveredArgHandler &UncoveredArg; 7043 7044 public: 7045 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7046 const Expr *origFormatExpr, 7047 const Sema::FormatStringType type, unsigned firstDataArg, 7048 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7049 ArrayRef<const Expr *> Args, unsigned formatIdx, 7050 bool inFunctionCall, Sema::VariadicCallType callType, 7051 llvm::SmallBitVector &CheckedVarArgs, 7052 UncoveredArgHandler &UncoveredArg) 7053 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7054 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7055 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7056 inFunctionCall(inFunctionCall), CallType(callType), 7057 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7058 CoveredArgs.resize(numDataArgs); 7059 CoveredArgs.reset(); 7060 } 7061 7062 void DoneProcessing(); 7063 7064 void HandleIncompleteSpecifier(const char *startSpecifier, 7065 unsigned specifierLen) override; 7066 7067 void HandleInvalidLengthModifier( 7068 const analyze_format_string::FormatSpecifier &FS, 7069 const analyze_format_string::ConversionSpecifier &CS, 7070 const char *startSpecifier, unsigned specifierLen, 7071 unsigned DiagID); 7072 7073 void HandleNonStandardLengthModifier( 7074 const analyze_format_string::FormatSpecifier &FS, 7075 const char *startSpecifier, unsigned specifierLen); 7076 7077 void HandleNonStandardConversionSpecifier( 7078 const analyze_format_string::ConversionSpecifier &CS, 7079 const char *startSpecifier, unsigned specifierLen); 7080 7081 void HandlePosition(const char *startPos, unsigned posLen) override; 7082 7083 void HandleInvalidPosition(const char *startSpecifier, 7084 unsigned specifierLen, 7085 analyze_format_string::PositionContext p) override; 7086 7087 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7088 7089 void HandleNullChar(const char *nullCharacter) override; 7090 7091 template <typename Range> 7092 static void 7093 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7094 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7095 bool IsStringLocation, Range StringRange, 7096 ArrayRef<FixItHint> Fixit = None); 7097 7098 protected: 7099 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7100 const char *startSpec, 7101 unsigned specifierLen, 7102 const char *csStart, unsigned csLen); 7103 7104 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7105 const char *startSpec, 7106 unsigned specifierLen); 7107 7108 SourceRange getFormatStringRange(); 7109 CharSourceRange getSpecifierRange(const char *startSpecifier, 7110 unsigned specifierLen); 7111 SourceLocation getLocationOfByte(const char *x); 7112 7113 const Expr *getDataArg(unsigned i) const; 7114 7115 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7116 const analyze_format_string::ConversionSpecifier &CS, 7117 const char *startSpecifier, unsigned specifierLen, 7118 unsigned argIndex); 7119 7120 template <typename Range> 7121 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7122 bool IsStringLocation, Range StringRange, 7123 ArrayRef<FixItHint> Fixit = None); 7124 }; 7125 7126 } // namespace 7127 7128 SourceRange CheckFormatHandler::getFormatStringRange() { 7129 return OrigFormatExpr->getSourceRange(); 7130 } 7131 7132 CharSourceRange CheckFormatHandler:: 7133 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7134 SourceLocation Start = getLocationOfByte(startSpecifier); 7135 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7136 7137 // Advance the end SourceLocation by one due to half-open ranges. 7138 End = End.getLocWithOffset(1); 7139 7140 return CharSourceRange::getCharRange(Start, End); 7141 } 7142 7143 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7144 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7145 S.getLangOpts(), S.Context.getTargetInfo()); 7146 } 7147 7148 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7149 unsigned specifierLen){ 7150 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7151 getLocationOfByte(startSpecifier), 7152 /*IsStringLocation*/true, 7153 getSpecifierRange(startSpecifier, specifierLen)); 7154 } 7155 7156 void CheckFormatHandler::HandleInvalidLengthModifier( 7157 const analyze_format_string::FormatSpecifier &FS, 7158 const analyze_format_string::ConversionSpecifier &CS, 7159 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7160 using namespace analyze_format_string; 7161 7162 const LengthModifier &LM = FS.getLengthModifier(); 7163 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7164 7165 // See if we know how to fix this length modifier. 7166 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7167 if (FixedLM) { 7168 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7169 getLocationOfByte(LM.getStart()), 7170 /*IsStringLocation*/true, 7171 getSpecifierRange(startSpecifier, specifierLen)); 7172 7173 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7174 << FixedLM->toString() 7175 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7176 7177 } else { 7178 FixItHint Hint; 7179 if (DiagID == diag::warn_format_nonsensical_length) 7180 Hint = FixItHint::CreateRemoval(LMRange); 7181 7182 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7183 getLocationOfByte(LM.getStart()), 7184 /*IsStringLocation*/true, 7185 getSpecifierRange(startSpecifier, specifierLen), 7186 Hint); 7187 } 7188 } 7189 7190 void CheckFormatHandler::HandleNonStandardLengthModifier( 7191 const analyze_format_string::FormatSpecifier &FS, 7192 const char *startSpecifier, unsigned specifierLen) { 7193 using namespace analyze_format_string; 7194 7195 const LengthModifier &LM = FS.getLengthModifier(); 7196 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7197 7198 // See if we know how to fix this length modifier. 7199 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7200 if (FixedLM) { 7201 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7202 << LM.toString() << 0, 7203 getLocationOfByte(LM.getStart()), 7204 /*IsStringLocation*/true, 7205 getSpecifierRange(startSpecifier, specifierLen)); 7206 7207 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7208 << FixedLM->toString() 7209 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7210 7211 } else { 7212 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7213 << LM.toString() << 0, 7214 getLocationOfByte(LM.getStart()), 7215 /*IsStringLocation*/true, 7216 getSpecifierRange(startSpecifier, specifierLen)); 7217 } 7218 } 7219 7220 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7221 const analyze_format_string::ConversionSpecifier &CS, 7222 const char *startSpecifier, unsigned specifierLen) { 7223 using namespace analyze_format_string; 7224 7225 // See if we know how to fix this conversion specifier. 7226 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7227 if (FixedCS) { 7228 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7229 << CS.toString() << /*conversion specifier*/1, 7230 getLocationOfByte(CS.getStart()), 7231 /*IsStringLocation*/true, 7232 getSpecifierRange(startSpecifier, specifierLen)); 7233 7234 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7235 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7236 << FixedCS->toString() 7237 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7238 } else { 7239 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7240 << CS.toString() << /*conversion specifier*/1, 7241 getLocationOfByte(CS.getStart()), 7242 /*IsStringLocation*/true, 7243 getSpecifierRange(startSpecifier, specifierLen)); 7244 } 7245 } 7246 7247 void CheckFormatHandler::HandlePosition(const char *startPos, 7248 unsigned posLen) { 7249 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7250 getLocationOfByte(startPos), 7251 /*IsStringLocation*/true, 7252 getSpecifierRange(startPos, posLen)); 7253 } 7254 7255 void 7256 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7257 analyze_format_string::PositionContext p) { 7258 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7259 << (unsigned) p, 7260 getLocationOfByte(startPos), /*IsStringLocation*/true, 7261 getSpecifierRange(startPos, posLen)); 7262 } 7263 7264 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7265 unsigned posLen) { 7266 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7267 getLocationOfByte(startPos), 7268 /*IsStringLocation*/true, 7269 getSpecifierRange(startPos, posLen)); 7270 } 7271 7272 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7273 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7274 // The presence of a null character is likely an error. 7275 EmitFormatDiagnostic( 7276 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7277 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7278 getFormatStringRange()); 7279 } 7280 } 7281 7282 // Note that this may return NULL if there was an error parsing or building 7283 // one of the argument expressions. 7284 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7285 return Args[FirstDataArg + i]; 7286 } 7287 7288 void CheckFormatHandler::DoneProcessing() { 7289 // Does the number of data arguments exceed the number of 7290 // format conversions in the format string? 7291 if (!HasVAListArg) { 7292 // Find any arguments that weren't covered. 7293 CoveredArgs.flip(); 7294 signed notCoveredArg = CoveredArgs.find_first(); 7295 if (notCoveredArg >= 0) { 7296 assert((unsigned)notCoveredArg < NumDataArgs); 7297 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7298 } else { 7299 UncoveredArg.setAllCovered(); 7300 } 7301 } 7302 } 7303 7304 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7305 const Expr *ArgExpr) { 7306 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7307 "Invalid state"); 7308 7309 if (!ArgExpr) 7310 return; 7311 7312 SourceLocation Loc = ArgExpr->getBeginLoc(); 7313 7314 if (S.getSourceManager().isInSystemMacro(Loc)) 7315 return; 7316 7317 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7318 for (auto E : DiagnosticExprs) 7319 PDiag << E->getSourceRange(); 7320 7321 CheckFormatHandler::EmitFormatDiagnostic( 7322 S, IsFunctionCall, DiagnosticExprs[0], 7323 PDiag, Loc, /*IsStringLocation*/false, 7324 DiagnosticExprs[0]->getSourceRange()); 7325 } 7326 7327 bool 7328 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7329 SourceLocation Loc, 7330 const char *startSpec, 7331 unsigned specifierLen, 7332 const char *csStart, 7333 unsigned csLen) { 7334 bool keepGoing = true; 7335 if (argIndex < NumDataArgs) { 7336 // Consider the argument coverered, even though the specifier doesn't 7337 // make sense. 7338 CoveredArgs.set(argIndex); 7339 } 7340 else { 7341 // If argIndex exceeds the number of data arguments we 7342 // don't issue a warning because that is just a cascade of warnings (and 7343 // they may have intended '%%' anyway). We don't want to continue processing 7344 // the format string after this point, however, as we will like just get 7345 // gibberish when trying to match arguments. 7346 keepGoing = false; 7347 } 7348 7349 StringRef Specifier(csStart, csLen); 7350 7351 // If the specifier in non-printable, it could be the first byte of a UTF-8 7352 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7353 // hex value. 7354 std::string CodePointStr; 7355 if (!llvm::sys::locale::isPrint(*csStart)) { 7356 llvm::UTF32 CodePoint; 7357 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7358 const llvm::UTF8 *E = 7359 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7360 llvm::ConversionResult Result = 7361 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7362 7363 if (Result != llvm::conversionOK) { 7364 unsigned char FirstChar = *csStart; 7365 CodePoint = (llvm::UTF32)FirstChar; 7366 } 7367 7368 llvm::raw_string_ostream OS(CodePointStr); 7369 if (CodePoint < 256) 7370 OS << "\\x" << llvm::format("%02x", CodePoint); 7371 else if (CodePoint <= 0xFFFF) 7372 OS << "\\u" << llvm::format("%04x", CodePoint); 7373 else 7374 OS << "\\U" << llvm::format("%08x", CodePoint); 7375 OS.flush(); 7376 Specifier = CodePointStr; 7377 } 7378 7379 EmitFormatDiagnostic( 7380 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7381 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7382 7383 return keepGoing; 7384 } 7385 7386 void 7387 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7388 const char *startSpec, 7389 unsigned specifierLen) { 7390 EmitFormatDiagnostic( 7391 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7392 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7393 } 7394 7395 bool 7396 CheckFormatHandler::CheckNumArgs( 7397 const analyze_format_string::FormatSpecifier &FS, 7398 const analyze_format_string::ConversionSpecifier &CS, 7399 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7400 7401 if (argIndex >= NumDataArgs) { 7402 PartialDiagnostic PDiag = FS.usesPositionalArg() 7403 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7404 << (argIndex+1) << NumDataArgs) 7405 : S.PDiag(diag::warn_printf_insufficient_data_args); 7406 EmitFormatDiagnostic( 7407 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7408 getSpecifierRange(startSpecifier, specifierLen)); 7409 7410 // Since more arguments than conversion tokens are given, by extension 7411 // all arguments are covered, so mark this as so. 7412 UncoveredArg.setAllCovered(); 7413 return false; 7414 } 7415 return true; 7416 } 7417 7418 template<typename Range> 7419 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7420 SourceLocation Loc, 7421 bool IsStringLocation, 7422 Range StringRange, 7423 ArrayRef<FixItHint> FixIt) { 7424 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7425 Loc, IsStringLocation, StringRange, FixIt); 7426 } 7427 7428 /// If the format string is not within the function call, emit a note 7429 /// so that the function call and string are in diagnostic messages. 7430 /// 7431 /// \param InFunctionCall if true, the format string is within the function 7432 /// call and only one diagnostic message will be produced. Otherwise, an 7433 /// extra note will be emitted pointing to location of the format string. 7434 /// 7435 /// \param ArgumentExpr the expression that is passed as the format string 7436 /// argument in the function call. Used for getting locations when two 7437 /// diagnostics are emitted. 7438 /// 7439 /// \param PDiag the callee should already have provided any strings for the 7440 /// diagnostic message. This function only adds locations and fixits 7441 /// to diagnostics. 7442 /// 7443 /// \param Loc primary location for diagnostic. If two diagnostics are 7444 /// required, one will be at Loc and a new SourceLocation will be created for 7445 /// the other one. 7446 /// 7447 /// \param IsStringLocation if true, Loc points to the format string should be 7448 /// used for the note. Otherwise, Loc points to the argument list and will 7449 /// be used with PDiag. 7450 /// 7451 /// \param StringRange some or all of the string to highlight. This is 7452 /// templated so it can accept either a CharSourceRange or a SourceRange. 7453 /// 7454 /// \param FixIt optional fix it hint for the format string. 7455 template <typename Range> 7456 void CheckFormatHandler::EmitFormatDiagnostic( 7457 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7458 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7459 Range StringRange, ArrayRef<FixItHint> FixIt) { 7460 if (InFunctionCall) { 7461 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7462 D << StringRange; 7463 D << FixIt; 7464 } else { 7465 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7466 << ArgumentExpr->getSourceRange(); 7467 7468 const Sema::SemaDiagnosticBuilder &Note = 7469 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7470 diag::note_format_string_defined); 7471 7472 Note << StringRange; 7473 Note << FixIt; 7474 } 7475 } 7476 7477 //===--- CHECK: Printf format string checking ------------------------------===// 7478 7479 namespace { 7480 7481 class CheckPrintfHandler : public CheckFormatHandler { 7482 public: 7483 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7484 const Expr *origFormatExpr, 7485 const Sema::FormatStringType type, unsigned firstDataArg, 7486 unsigned numDataArgs, bool isObjC, const char *beg, 7487 bool hasVAListArg, ArrayRef<const Expr *> Args, 7488 unsigned formatIdx, bool inFunctionCall, 7489 Sema::VariadicCallType CallType, 7490 llvm::SmallBitVector &CheckedVarArgs, 7491 UncoveredArgHandler &UncoveredArg) 7492 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7493 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7494 inFunctionCall, CallType, CheckedVarArgs, 7495 UncoveredArg) {} 7496 7497 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7498 7499 /// Returns true if '%@' specifiers are allowed in the format string. 7500 bool allowsObjCArg() const { 7501 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7502 FSType == Sema::FST_OSTrace; 7503 } 7504 7505 bool HandleInvalidPrintfConversionSpecifier( 7506 const analyze_printf::PrintfSpecifier &FS, 7507 const char *startSpecifier, 7508 unsigned specifierLen) override; 7509 7510 void handleInvalidMaskType(StringRef MaskType) override; 7511 7512 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7513 const char *startSpecifier, 7514 unsigned specifierLen) override; 7515 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7516 const char *StartSpecifier, 7517 unsigned SpecifierLen, 7518 const Expr *E); 7519 7520 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7521 const char *startSpecifier, unsigned specifierLen); 7522 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7523 const analyze_printf::OptionalAmount &Amt, 7524 unsigned type, 7525 const char *startSpecifier, unsigned specifierLen); 7526 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7527 const analyze_printf::OptionalFlag &flag, 7528 const char *startSpecifier, unsigned specifierLen); 7529 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7530 const analyze_printf::OptionalFlag &ignoredFlag, 7531 const analyze_printf::OptionalFlag &flag, 7532 const char *startSpecifier, unsigned specifierLen); 7533 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7534 const Expr *E); 7535 7536 void HandleEmptyObjCModifierFlag(const char *startFlag, 7537 unsigned flagLen) override; 7538 7539 void HandleInvalidObjCModifierFlag(const char *startFlag, 7540 unsigned flagLen) override; 7541 7542 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 7543 const char *flagsEnd, 7544 const char *conversionPosition) 7545 override; 7546 }; 7547 7548 } // namespace 7549 7550 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 7551 const analyze_printf::PrintfSpecifier &FS, 7552 const char *startSpecifier, 7553 unsigned specifierLen) { 7554 const analyze_printf::PrintfConversionSpecifier &CS = 7555 FS.getConversionSpecifier(); 7556 7557 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 7558 getLocationOfByte(CS.getStart()), 7559 startSpecifier, specifierLen, 7560 CS.getStart(), CS.getLength()); 7561 } 7562 7563 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 7564 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 7565 } 7566 7567 bool CheckPrintfHandler::HandleAmount( 7568 const analyze_format_string::OptionalAmount &Amt, 7569 unsigned k, const char *startSpecifier, 7570 unsigned specifierLen) { 7571 if (Amt.hasDataArgument()) { 7572 if (!HasVAListArg) { 7573 unsigned argIndex = Amt.getArgIndex(); 7574 if (argIndex >= NumDataArgs) { 7575 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 7576 << k, 7577 getLocationOfByte(Amt.getStart()), 7578 /*IsStringLocation*/true, 7579 getSpecifierRange(startSpecifier, specifierLen)); 7580 // Don't do any more checking. We will just emit 7581 // spurious errors. 7582 return false; 7583 } 7584 7585 // Type check the data argument. It should be an 'int'. 7586 // Although not in conformance with C99, we also allow the argument to be 7587 // an 'unsigned int' as that is a reasonably safe case. GCC also 7588 // doesn't emit a warning for that case. 7589 CoveredArgs.set(argIndex); 7590 const Expr *Arg = getDataArg(argIndex); 7591 if (!Arg) 7592 return false; 7593 7594 QualType T = Arg->getType(); 7595 7596 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 7597 assert(AT.isValid()); 7598 7599 if (!AT.matchesType(S.Context, T)) { 7600 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 7601 << k << AT.getRepresentativeTypeName(S.Context) 7602 << T << Arg->getSourceRange(), 7603 getLocationOfByte(Amt.getStart()), 7604 /*IsStringLocation*/true, 7605 getSpecifierRange(startSpecifier, specifierLen)); 7606 // Don't do any more checking. We will just emit 7607 // spurious errors. 7608 return false; 7609 } 7610 } 7611 } 7612 return true; 7613 } 7614 7615 void CheckPrintfHandler::HandleInvalidAmount( 7616 const analyze_printf::PrintfSpecifier &FS, 7617 const analyze_printf::OptionalAmount &Amt, 7618 unsigned type, 7619 const char *startSpecifier, 7620 unsigned specifierLen) { 7621 const analyze_printf::PrintfConversionSpecifier &CS = 7622 FS.getConversionSpecifier(); 7623 7624 FixItHint fixit = 7625 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 7626 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 7627 Amt.getConstantLength())) 7628 : FixItHint(); 7629 7630 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 7631 << type << CS.toString(), 7632 getLocationOfByte(Amt.getStart()), 7633 /*IsStringLocation*/true, 7634 getSpecifierRange(startSpecifier, specifierLen), 7635 fixit); 7636 } 7637 7638 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7639 const analyze_printf::OptionalFlag &flag, 7640 const char *startSpecifier, 7641 unsigned specifierLen) { 7642 // Warn about pointless flag with a fixit removal. 7643 const analyze_printf::PrintfConversionSpecifier &CS = 7644 FS.getConversionSpecifier(); 7645 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 7646 << flag.toString() << CS.toString(), 7647 getLocationOfByte(flag.getPosition()), 7648 /*IsStringLocation*/true, 7649 getSpecifierRange(startSpecifier, specifierLen), 7650 FixItHint::CreateRemoval( 7651 getSpecifierRange(flag.getPosition(), 1))); 7652 } 7653 7654 void CheckPrintfHandler::HandleIgnoredFlag( 7655 const analyze_printf::PrintfSpecifier &FS, 7656 const analyze_printf::OptionalFlag &ignoredFlag, 7657 const analyze_printf::OptionalFlag &flag, 7658 const char *startSpecifier, 7659 unsigned specifierLen) { 7660 // Warn about ignored flag with a fixit removal. 7661 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 7662 << ignoredFlag.toString() << flag.toString(), 7663 getLocationOfByte(ignoredFlag.getPosition()), 7664 /*IsStringLocation*/true, 7665 getSpecifierRange(startSpecifier, specifierLen), 7666 FixItHint::CreateRemoval( 7667 getSpecifierRange(ignoredFlag.getPosition(), 1))); 7668 } 7669 7670 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 7671 unsigned flagLen) { 7672 // Warn about an empty flag. 7673 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 7674 getLocationOfByte(startFlag), 7675 /*IsStringLocation*/true, 7676 getSpecifierRange(startFlag, flagLen)); 7677 } 7678 7679 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 7680 unsigned flagLen) { 7681 // Warn about an invalid flag. 7682 auto Range = getSpecifierRange(startFlag, flagLen); 7683 StringRef flag(startFlag, flagLen); 7684 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 7685 getLocationOfByte(startFlag), 7686 /*IsStringLocation*/true, 7687 Range, FixItHint::CreateRemoval(Range)); 7688 } 7689 7690 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 7691 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 7692 // Warn about using '[...]' without a '@' conversion. 7693 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 7694 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 7695 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 7696 getLocationOfByte(conversionPosition), 7697 /*IsStringLocation*/true, 7698 Range, FixItHint::CreateRemoval(Range)); 7699 } 7700 7701 // Determines if the specified is a C++ class or struct containing 7702 // a member with the specified name and kind (e.g. a CXXMethodDecl named 7703 // "c_str()"). 7704 template<typename MemberKind> 7705 static llvm::SmallPtrSet<MemberKind*, 1> 7706 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 7707 const RecordType *RT = Ty->getAs<RecordType>(); 7708 llvm::SmallPtrSet<MemberKind*, 1> Results; 7709 7710 if (!RT) 7711 return Results; 7712 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 7713 if (!RD || !RD->getDefinition()) 7714 return Results; 7715 7716 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 7717 Sema::LookupMemberName); 7718 R.suppressDiagnostics(); 7719 7720 // We just need to include all members of the right kind turned up by the 7721 // filter, at this point. 7722 if (S.LookupQualifiedName(R, RT->getDecl())) 7723 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 7724 NamedDecl *decl = (*I)->getUnderlyingDecl(); 7725 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 7726 Results.insert(FK); 7727 } 7728 return Results; 7729 } 7730 7731 /// Check if we could call '.c_str()' on an object. 7732 /// 7733 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 7734 /// allow the call, or if it would be ambiguous). 7735 bool Sema::hasCStrMethod(const Expr *E) { 7736 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7737 7738 MethodSet Results = 7739 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 7740 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7741 MI != ME; ++MI) 7742 if ((*MI)->getMinRequiredArguments() == 0) 7743 return true; 7744 return false; 7745 } 7746 7747 // Check if a (w)string was passed when a (w)char* was needed, and offer a 7748 // better diagnostic if so. AT is assumed to be valid. 7749 // Returns true when a c_str() conversion method is found. 7750 bool CheckPrintfHandler::checkForCStrMembers( 7751 const analyze_printf::ArgType &AT, const Expr *E) { 7752 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7753 7754 MethodSet Results = 7755 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 7756 7757 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7758 MI != ME; ++MI) { 7759 const CXXMethodDecl *Method = *MI; 7760 if (Method->getMinRequiredArguments() == 0 && 7761 AT.matchesType(S.Context, Method->getReturnType())) { 7762 // FIXME: Suggest parens if the expression needs them. 7763 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 7764 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 7765 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 7766 return true; 7767 } 7768 } 7769 7770 return false; 7771 } 7772 7773 bool 7774 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 7775 &FS, 7776 const char *startSpecifier, 7777 unsigned specifierLen) { 7778 using namespace analyze_format_string; 7779 using namespace analyze_printf; 7780 7781 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 7782 7783 if (FS.consumesDataArgument()) { 7784 if (atFirstArg) { 7785 atFirstArg = false; 7786 usesPositionalArgs = FS.usesPositionalArg(); 7787 } 7788 else if (usesPositionalArgs != FS.usesPositionalArg()) { 7789 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 7790 startSpecifier, specifierLen); 7791 return false; 7792 } 7793 } 7794 7795 // First check if the field width, precision, and conversion specifier 7796 // have matching data arguments. 7797 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 7798 startSpecifier, specifierLen)) { 7799 return false; 7800 } 7801 7802 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 7803 startSpecifier, specifierLen)) { 7804 return false; 7805 } 7806 7807 if (!CS.consumesDataArgument()) { 7808 // FIXME: Technically specifying a precision or field width here 7809 // makes no sense. Worth issuing a warning at some point. 7810 return true; 7811 } 7812 7813 // Consume the argument. 7814 unsigned argIndex = FS.getArgIndex(); 7815 if (argIndex < NumDataArgs) { 7816 // The check to see if the argIndex is valid will come later. 7817 // We set the bit here because we may exit early from this 7818 // function if we encounter some other error. 7819 CoveredArgs.set(argIndex); 7820 } 7821 7822 // FreeBSD kernel extensions. 7823 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 7824 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 7825 // We need at least two arguments. 7826 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 7827 return false; 7828 7829 // Claim the second argument. 7830 CoveredArgs.set(argIndex + 1); 7831 7832 // Type check the first argument (int for %b, pointer for %D) 7833 const Expr *Ex = getDataArg(argIndex); 7834 const analyze_printf::ArgType &AT = 7835 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 7836 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 7837 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 7838 EmitFormatDiagnostic( 7839 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7840 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 7841 << false << Ex->getSourceRange(), 7842 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7843 getSpecifierRange(startSpecifier, specifierLen)); 7844 7845 // Type check the second argument (char * for both %b and %D) 7846 Ex = getDataArg(argIndex + 1); 7847 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 7848 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 7849 EmitFormatDiagnostic( 7850 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7851 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 7852 << false << Ex->getSourceRange(), 7853 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7854 getSpecifierRange(startSpecifier, specifierLen)); 7855 7856 return true; 7857 } 7858 7859 // Check for using an Objective-C specific conversion specifier 7860 // in a non-ObjC literal. 7861 if (!allowsObjCArg() && CS.isObjCArg()) { 7862 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7863 specifierLen); 7864 } 7865 7866 // %P can only be used with os_log. 7867 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 7868 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7869 specifierLen); 7870 } 7871 7872 // %n is not allowed with os_log. 7873 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 7874 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 7875 getLocationOfByte(CS.getStart()), 7876 /*IsStringLocation*/ false, 7877 getSpecifierRange(startSpecifier, specifierLen)); 7878 7879 return true; 7880 } 7881 7882 // Only scalars are allowed for os_trace. 7883 if (FSType == Sema::FST_OSTrace && 7884 (CS.getKind() == ConversionSpecifier::PArg || 7885 CS.getKind() == ConversionSpecifier::sArg || 7886 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 7887 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7888 specifierLen); 7889 } 7890 7891 // Check for use of public/private annotation outside of os_log(). 7892 if (FSType != Sema::FST_OSLog) { 7893 if (FS.isPublic().isSet()) { 7894 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7895 << "public", 7896 getLocationOfByte(FS.isPublic().getPosition()), 7897 /*IsStringLocation*/ false, 7898 getSpecifierRange(startSpecifier, specifierLen)); 7899 } 7900 if (FS.isPrivate().isSet()) { 7901 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7902 << "private", 7903 getLocationOfByte(FS.isPrivate().getPosition()), 7904 /*IsStringLocation*/ false, 7905 getSpecifierRange(startSpecifier, specifierLen)); 7906 } 7907 } 7908 7909 // Check for invalid use of field width 7910 if (!FS.hasValidFieldWidth()) { 7911 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 7912 startSpecifier, specifierLen); 7913 } 7914 7915 // Check for invalid use of precision 7916 if (!FS.hasValidPrecision()) { 7917 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 7918 startSpecifier, specifierLen); 7919 } 7920 7921 // Precision is mandatory for %P specifier. 7922 if (CS.getKind() == ConversionSpecifier::PArg && 7923 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 7924 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 7925 getLocationOfByte(startSpecifier), 7926 /*IsStringLocation*/ false, 7927 getSpecifierRange(startSpecifier, specifierLen)); 7928 } 7929 7930 // Check each flag does not conflict with any other component. 7931 if (!FS.hasValidThousandsGroupingPrefix()) 7932 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 7933 if (!FS.hasValidLeadingZeros()) 7934 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 7935 if (!FS.hasValidPlusPrefix()) 7936 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 7937 if (!FS.hasValidSpacePrefix()) 7938 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 7939 if (!FS.hasValidAlternativeForm()) 7940 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 7941 if (!FS.hasValidLeftJustified()) 7942 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 7943 7944 // Check that flags are not ignored by another flag 7945 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 7946 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 7947 startSpecifier, specifierLen); 7948 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 7949 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 7950 startSpecifier, specifierLen); 7951 7952 // Check the length modifier is valid with the given conversion specifier. 7953 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 7954 S.getLangOpts())) 7955 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 7956 diag::warn_format_nonsensical_length); 7957 else if (!FS.hasStandardLengthModifier()) 7958 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 7959 else if (!FS.hasStandardLengthConversionCombination()) 7960 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 7961 diag::warn_format_non_standard_conversion_spec); 7962 7963 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 7964 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 7965 7966 // The remaining checks depend on the data arguments. 7967 if (HasVAListArg) 7968 return true; 7969 7970 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 7971 return false; 7972 7973 const Expr *Arg = getDataArg(argIndex); 7974 if (!Arg) 7975 return true; 7976 7977 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 7978 } 7979 7980 static bool requiresParensToAddCast(const Expr *E) { 7981 // FIXME: We should have a general way to reason about operator 7982 // precedence and whether parens are actually needed here. 7983 // Take care of a few common cases where they aren't. 7984 const Expr *Inside = E->IgnoreImpCasts(); 7985 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 7986 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 7987 7988 switch (Inside->getStmtClass()) { 7989 case Stmt::ArraySubscriptExprClass: 7990 case Stmt::CallExprClass: 7991 case Stmt::CharacterLiteralClass: 7992 case Stmt::CXXBoolLiteralExprClass: 7993 case Stmt::DeclRefExprClass: 7994 case Stmt::FloatingLiteralClass: 7995 case Stmt::IntegerLiteralClass: 7996 case Stmt::MemberExprClass: 7997 case Stmt::ObjCArrayLiteralClass: 7998 case Stmt::ObjCBoolLiteralExprClass: 7999 case Stmt::ObjCBoxedExprClass: 8000 case Stmt::ObjCDictionaryLiteralClass: 8001 case Stmt::ObjCEncodeExprClass: 8002 case Stmt::ObjCIvarRefExprClass: 8003 case Stmt::ObjCMessageExprClass: 8004 case Stmt::ObjCPropertyRefExprClass: 8005 case Stmt::ObjCStringLiteralClass: 8006 case Stmt::ObjCSubscriptRefExprClass: 8007 case Stmt::ParenExprClass: 8008 case Stmt::StringLiteralClass: 8009 case Stmt::UnaryOperatorClass: 8010 return false; 8011 default: 8012 return true; 8013 } 8014 } 8015 8016 static std::pair<QualType, StringRef> 8017 shouldNotPrintDirectly(const ASTContext &Context, 8018 QualType IntendedTy, 8019 const Expr *E) { 8020 // Use a 'while' to peel off layers of typedefs. 8021 QualType TyTy = IntendedTy; 8022 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8023 StringRef Name = UserTy->getDecl()->getName(); 8024 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8025 .Case("CFIndex", Context.getNSIntegerType()) 8026 .Case("NSInteger", Context.getNSIntegerType()) 8027 .Case("NSUInteger", Context.getNSUIntegerType()) 8028 .Case("SInt32", Context.IntTy) 8029 .Case("UInt32", Context.UnsignedIntTy) 8030 .Default(QualType()); 8031 8032 if (!CastTy.isNull()) 8033 return std::make_pair(CastTy, Name); 8034 8035 TyTy = UserTy->desugar(); 8036 } 8037 8038 // Strip parens if necessary. 8039 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8040 return shouldNotPrintDirectly(Context, 8041 PE->getSubExpr()->getType(), 8042 PE->getSubExpr()); 8043 8044 // If this is a conditional expression, then its result type is constructed 8045 // via usual arithmetic conversions and thus there might be no necessary 8046 // typedef sugar there. Recurse to operands to check for NSInteger & 8047 // Co. usage condition. 8048 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8049 QualType TrueTy, FalseTy; 8050 StringRef TrueName, FalseName; 8051 8052 std::tie(TrueTy, TrueName) = 8053 shouldNotPrintDirectly(Context, 8054 CO->getTrueExpr()->getType(), 8055 CO->getTrueExpr()); 8056 std::tie(FalseTy, FalseName) = 8057 shouldNotPrintDirectly(Context, 8058 CO->getFalseExpr()->getType(), 8059 CO->getFalseExpr()); 8060 8061 if (TrueTy == FalseTy) 8062 return std::make_pair(TrueTy, TrueName); 8063 else if (TrueTy.isNull()) 8064 return std::make_pair(FalseTy, FalseName); 8065 else if (FalseTy.isNull()) 8066 return std::make_pair(TrueTy, TrueName); 8067 } 8068 8069 return std::make_pair(QualType(), StringRef()); 8070 } 8071 8072 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8073 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8074 /// type do not count. 8075 static bool 8076 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8077 QualType From = ICE->getSubExpr()->getType(); 8078 QualType To = ICE->getType(); 8079 // It's an integer promotion if the destination type is the promoted 8080 // source type. 8081 if (ICE->getCastKind() == CK_IntegralCast && 8082 From->isPromotableIntegerType() && 8083 S.Context.getPromotedIntegerType(From) == To) 8084 return true; 8085 // Look through vector types, since we do default argument promotion for 8086 // those in OpenCL. 8087 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8088 From = VecTy->getElementType(); 8089 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8090 To = VecTy->getElementType(); 8091 // It's a floating promotion if the source type is a lower rank. 8092 return ICE->getCastKind() == CK_FloatingCast && 8093 S.Context.getFloatingTypeOrder(From, To) < 0; 8094 } 8095 8096 bool 8097 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8098 const char *StartSpecifier, 8099 unsigned SpecifierLen, 8100 const Expr *E) { 8101 using namespace analyze_format_string; 8102 using namespace analyze_printf; 8103 8104 // Now type check the data expression that matches the 8105 // format specifier. 8106 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8107 if (!AT.isValid()) 8108 return true; 8109 8110 QualType ExprTy = E->getType(); 8111 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8112 ExprTy = TET->getUnderlyingExpr()->getType(); 8113 } 8114 8115 // Diagnose attempts to print a boolean value as a character. Unlike other 8116 // -Wformat diagnostics, this is fine from a type perspective, but it still 8117 // doesn't make sense. 8118 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8119 E->isKnownToHaveBooleanValue()) { 8120 const CharSourceRange &CSR = 8121 getSpecifierRange(StartSpecifier, SpecifierLen); 8122 SmallString<4> FSString; 8123 llvm::raw_svector_ostream os(FSString); 8124 FS.toString(os); 8125 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8126 << FSString, 8127 E->getExprLoc(), false, CSR); 8128 return true; 8129 } 8130 8131 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8132 if (Match == analyze_printf::ArgType::Match) 8133 return true; 8134 8135 // Look through argument promotions for our error message's reported type. 8136 // This includes the integral and floating promotions, but excludes array 8137 // and function pointer decay (seeing that an argument intended to be a 8138 // string has type 'char [6]' is probably more confusing than 'char *') and 8139 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8140 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8141 if (isArithmeticArgumentPromotion(S, ICE)) { 8142 E = ICE->getSubExpr(); 8143 ExprTy = E->getType(); 8144 8145 // Check if we didn't match because of an implicit cast from a 'char' 8146 // or 'short' to an 'int'. This is done because printf is a varargs 8147 // function. 8148 if (ICE->getType() == S.Context.IntTy || 8149 ICE->getType() == S.Context.UnsignedIntTy) { 8150 // All further checking is done on the subexpression 8151 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8152 AT.matchesType(S.Context, ExprTy); 8153 if (ImplicitMatch == analyze_printf::ArgType::Match) 8154 return true; 8155 if (ImplicitMatch == ArgType::NoMatchPedantic || 8156 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8157 Match = ImplicitMatch; 8158 } 8159 } 8160 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8161 // Special case for 'a', which has type 'int' in C. 8162 // Note, however, that we do /not/ want to treat multibyte constants like 8163 // 'MooV' as characters! This form is deprecated but still exists. 8164 if (ExprTy == S.Context.IntTy) 8165 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8166 ExprTy = S.Context.CharTy; 8167 } 8168 8169 // Look through enums to their underlying type. 8170 bool IsEnum = false; 8171 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8172 ExprTy = EnumTy->getDecl()->getIntegerType(); 8173 IsEnum = true; 8174 } 8175 8176 // %C in an Objective-C context prints a unichar, not a wchar_t. 8177 // If the argument is an integer of some kind, believe the %C and suggest 8178 // a cast instead of changing the conversion specifier. 8179 QualType IntendedTy = ExprTy; 8180 if (isObjCContext() && 8181 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8182 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8183 !ExprTy->isCharType()) { 8184 // 'unichar' is defined as a typedef of unsigned short, but we should 8185 // prefer using the typedef if it is visible. 8186 IntendedTy = S.Context.UnsignedShortTy; 8187 8188 // While we are here, check if the value is an IntegerLiteral that happens 8189 // to be within the valid range. 8190 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8191 const llvm::APInt &V = IL->getValue(); 8192 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8193 return true; 8194 } 8195 8196 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8197 Sema::LookupOrdinaryName); 8198 if (S.LookupName(Result, S.getCurScope())) { 8199 NamedDecl *ND = Result.getFoundDecl(); 8200 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8201 if (TD->getUnderlyingType() == IntendedTy) 8202 IntendedTy = S.Context.getTypedefType(TD); 8203 } 8204 } 8205 } 8206 8207 // Special-case some of Darwin's platform-independence types by suggesting 8208 // casts to primitive types that are known to be large enough. 8209 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8210 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8211 QualType CastTy; 8212 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8213 if (!CastTy.isNull()) { 8214 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8215 // (long in ASTContext). Only complain to pedants. 8216 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8217 (AT.isSizeT() || AT.isPtrdiffT()) && 8218 AT.matchesType(S.Context, CastTy)) 8219 Match = ArgType::NoMatchPedantic; 8220 IntendedTy = CastTy; 8221 ShouldNotPrintDirectly = true; 8222 } 8223 } 8224 8225 // We may be able to offer a FixItHint if it is a supported type. 8226 PrintfSpecifier fixedFS = FS; 8227 bool Success = 8228 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8229 8230 if (Success) { 8231 // Get the fix string from the fixed format specifier 8232 SmallString<16> buf; 8233 llvm::raw_svector_ostream os(buf); 8234 fixedFS.toString(os); 8235 8236 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8237 8238 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8239 unsigned Diag; 8240 switch (Match) { 8241 case ArgType::Match: llvm_unreachable("expected non-matching"); 8242 case ArgType::NoMatchPedantic: 8243 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8244 break; 8245 case ArgType::NoMatchTypeConfusion: 8246 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8247 break; 8248 case ArgType::NoMatch: 8249 Diag = diag::warn_format_conversion_argument_type_mismatch; 8250 break; 8251 } 8252 8253 // In this case, the specifier is wrong and should be changed to match 8254 // the argument. 8255 EmitFormatDiagnostic(S.PDiag(Diag) 8256 << AT.getRepresentativeTypeName(S.Context) 8257 << IntendedTy << IsEnum << E->getSourceRange(), 8258 E->getBeginLoc(), 8259 /*IsStringLocation*/ false, SpecRange, 8260 FixItHint::CreateReplacement(SpecRange, os.str())); 8261 } else { 8262 // The canonical type for formatting this value is different from the 8263 // actual type of the expression. (This occurs, for example, with Darwin's 8264 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8265 // should be printed as 'long' for 64-bit compatibility.) 8266 // Rather than emitting a normal format/argument mismatch, we want to 8267 // add a cast to the recommended type (and correct the format string 8268 // if necessary). 8269 SmallString<16> CastBuf; 8270 llvm::raw_svector_ostream CastFix(CastBuf); 8271 CastFix << "("; 8272 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8273 CastFix << ")"; 8274 8275 SmallVector<FixItHint,4> Hints; 8276 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8277 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8278 8279 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8280 // If there's already a cast present, just replace it. 8281 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8282 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8283 8284 } else if (!requiresParensToAddCast(E)) { 8285 // If the expression has high enough precedence, 8286 // just write the C-style cast. 8287 Hints.push_back( 8288 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8289 } else { 8290 // Otherwise, add parens around the expression as well as the cast. 8291 CastFix << "("; 8292 Hints.push_back( 8293 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8294 8295 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8296 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8297 } 8298 8299 if (ShouldNotPrintDirectly) { 8300 // The expression has a type that should not be printed directly. 8301 // We extract the name from the typedef because we don't want to show 8302 // the underlying type in the diagnostic. 8303 StringRef Name; 8304 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8305 Name = TypedefTy->getDecl()->getName(); 8306 else 8307 Name = CastTyName; 8308 unsigned Diag = Match == ArgType::NoMatchPedantic 8309 ? diag::warn_format_argument_needs_cast_pedantic 8310 : diag::warn_format_argument_needs_cast; 8311 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8312 << E->getSourceRange(), 8313 E->getBeginLoc(), /*IsStringLocation=*/false, 8314 SpecRange, Hints); 8315 } else { 8316 // In this case, the expression could be printed using a different 8317 // specifier, but we've decided that the specifier is probably correct 8318 // and we should cast instead. Just use the normal warning message. 8319 EmitFormatDiagnostic( 8320 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8321 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8322 << E->getSourceRange(), 8323 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8324 } 8325 } 8326 } else { 8327 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8328 SpecifierLen); 8329 // Since the warning for passing non-POD types to variadic functions 8330 // was deferred until now, we emit a warning for non-POD 8331 // arguments here. 8332 switch (S.isValidVarArgType(ExprTy)) { 8333 case Sema::VAK_Valid: 8334 case Sema::VAK_ValidInCXX11: { 8335 unsigned Diag; 8336 switch (Match) { 8337 case ArgType::Match: llvm_unreachable("expected non-matching"); 8338 case ArgType::NoMatchPedantic: 8339 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8340 break; 8341 case ArgType::NoMatchTypeConfusion: 8342 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8343 break; 8344 case ArgType::NoMatch: 8345 Diag = diag::warn_format_conversion_argument_type_mismatch; 8346 break; 8347 } 8348 8349 EmitFormatDiagnostic( 8350 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8351 << IsEnum << CSR << E->getSourceRange(), 8352 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8353 break; 8354 } 8355 case Sema::VAK_Undefined: 8356 case Sema::VAK_MSVCUndefined: 8357 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8358 << S.getLangOpts().CPlusPlus11 << ExprTy 8359 << CallType 8360 << AT.getRepresentativeTypeName(S.Context) << CSR 8361 << E->getSourceRange(), 8362 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8363 checkForCStrMembers(AT, E); 8364 break; 8365 8366 case Sema::VAK_Invalid: 8367 if (ExprTy->isObjCObjectType()) 8368 EmitFormatDiagnostic( 8369 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8370 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8371 << AT.getRepresentativeTypeName(S.Context) << CSR 8372 << E->getSourceRange(), 8373 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8374 else 8375 // FIXME: If this is an initializer list, suggest removing the braces 8376 // or inserting a cast to the target type. 8377 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8378 << isa<InitListExpr>(E) << ExprTy << CallType 8379 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8380 break; 8381 } 8382 8383 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8384 "format string specifier index out of range"); 8385 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8386 } 8387 8388 return true; 8389 } 8390 8391 //===--- CHECK: Scanf format string checking ------------------------------===// 8392 8393 namespace { 8394 8395 class CheckScanfHandler : public CheckFormatHandler { 8396 public: 8397 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8398 const Expr *origFormatExpr, Sema::FormatStringType type, 8399 unsigned firstDataArg, unsigned numDataArgs, 8400 const char *beg, bool hasVAListArg, 8401 ArrayRef<const Expr *> Args, unsigned formatIdx, 8402 bool inFunctionCall, Sema::VariadicCallType CallType, 8403 llvm::SmallBitVector &CheckedVarArgs, 8404 UncoveredArgHandler &UncoveredArg) 8405 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8406 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8407 inFunctionCall, CallType, CheckedVarArgs, 8408 UncoveredArg) {} 8409 8410 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8411 const char *startSpecifier, 8412 unsigned specifierLen) override; 8413 8414 bool HandleInvalidScanfConversionSpecifier( 8415 const analyze_scanf::ScanfSpecifier &FS, 8416 const char *startSpecifier, 8417 unsigned specifierLen) override; 8418 8419 void HandleIncompleteScanList(const char *start, const char *end) override; 8420 }; 8421 8422 } // namespace 8423 8424 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8425 const char *end) { 8426 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8427 getLocationOfByte(end), /*IsStringLocation*/true, 8428 getSpecifierRange(start, end - start)); 8429 } 8430 8431 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8432 const analyze_scanf::ScanfSpecifier &FS, 8433 const char *startSpecifier, 8434 unsigned specifierLen) { 8435 const analyze_scanf::ScanfConversionSpecifier &CS = 8436 FS.getConversionSpecifier(); 8437 8438 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8439 getLocationOfByte(CS.getStart()), 8440 startSpecifier, specifierLen, 8441 CS.getStart(), CS.getLength()); 8442 } 8443 8444 bool CheckScanfHandler::HandleScanfSpecifier( 8445 const analyze_scanf::ScanfSpecifier &FS, 8446 const char *startSpecifier, 8447 unsigned specifierLen) { 8448 using namespace analyze_scanf; 8449 using namespace analyze_format_string; 8450 8451 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8452 8453 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8454 // be used to decide if we are using positional arguments consistently. 8455 if (FS.consumesDataArgument()) { 8456 if (atFirstArg) { 8457 atFirstArg = false; 8458 usesPositionalArgs = FS.usesPositionalArg(); 8459 } 8460 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8461 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8462 startSpecifier, specifierLen); 8463 return false; 8464 } 8465 } 8466 8467 // Check if the field with is non-zero. 8468 const OptionalAmount &Amt = FS.getFieldWidth(); 8469 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8470 if (Amt.getConstantAmount() == 0) { 8471 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8472 Amt.getConstantLength()); 8473 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8474 getLocationOfByte(Amt.getStart()), 8475 /*IsStringLocation*/true, R, 8476 FixItHint::CreateRemoval(R)); 8477 } 8478 } 8479 8480 if (!FS.consumesDataArgument()) { 8481 // FIXME: Technically specifying a precision or field width here 8482 // makes no sense. Worth issuing a warning at some point. 8483 return true; 8484 } 8485 8486 // Consume the argument. 8487 unsigned argIndex = FS.getArgIndex(); 8488 if (argIndex < NumDataArgs) { 8489 // The check to see if the argIndex is valid will come later. 8490 // We set the bit here because we may exit early from this 8491 // function if we encounter some other error. 8492 CoveredArgs.set(argIndex); 8493 } 8494 8495 // Check the length modifier is valid with the given conversion specifier. 8496 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8497 S.getLangOpts())) 8498 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8499 diag::warn_format_nonsensical_length); 8500 else if (!FS.hasStandardLengthModifier()) 8501 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8502 else if (!FS.hasStandardLengthConversionCombination()) 8503 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8504 diag::warn_format_non_standard_conversion_spec); 8505 8506 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8507 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8508 8509 // The remaining checks depend on the data arguments. 8510 if (HasVAListArg) 8511 return true; 8512 8513 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8514 return false; 8515 8516 // Check that the argument type matches the format specifier. 8517 const Expr *Ex = getDataArg(argIndex); 8518 if (!Ex) 8519 return true; 8520 8521 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8522 8523 if (!AT.isValid()) { 8524 return true; 8525 } 8526 8527 analyze_format_string::ArgType::MatchKind Match = 8528 AT.matchesType(S.Context, Ex->getType()); 8529 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8530 if (Match == analyze_format_string::ArgType::Match) 8531 return true; 8532 8533 ScanfSpecifier fixedFS = FS; 8534 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 8535 S.getLangOpts(), S.Context); 8536 8537 unsigned Diag = 8538 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8539 : diag::warn_format_conversion_argument_type_mismatch; 8540 8541 if (Success) { 8542 // Get the fix string from the fixed format specifier. 8543 SmallString<128> buf; 8544 llvm::raw_svector_ostream os(buf); 8545 fixedFS.toString(os); 8546 8547 EmitFormatDiagnostic( 8548 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 8549 << Ex->getType() << false << Ex->getSourceRange(), 8550 Ex->getBeginLoc(), 8551 /*IsStringLocation*/ false, 8552 getSpecifierRange(startSpecifier, specifierLen), 8553 FixItHint::CreateReplacement( 8554 getSpecifierRange(startSpecifier, specifierLen), os.str())); 8555 } else { 8556 EmitFormatDiagnostic(S.PDiag(Diag) 8557 << AT.getRepresentativeTypeName(S.Context) 8558 << Ex->getType() << false << Ex->getSourceRange(), 8559 Ex->getBeginLoc(), 8560 /*IsStringLocation*/ false, 8561 getSpecifierRange(startSpecifier, specifierLen)); 8562 } 8563 8564 return true; 8565 } 8566 8567 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8568 const Expr *OrigFormatExpr, 8569 ArrayRef<const Expr *> Args, 8570 bool HasVAListArg, unsigned format_idx, 8571 unsigned firstDataArg, 8572 Sema::FormatStringType Type, 8573 bool inFunctionCall, 8574 Sema::VariadicCallType CallType, 8575 llvm::SmallBitVector &CheckedVarArgs, 8576 UncoveredArgHandler &UncoveredArg, 8577 bool IgnoreStringsWithoutSpecifiers) { 8578 // CHECK: is the format string a wide literal? 8579 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 8580 CheckFormatHandler::EmitFormatDiagnostic( 8581 S, inFunctionCall, Args[format_idx], 8582 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 8583 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8584 return; 8585 } 8586 8587 // Str - The format string. NOTE: this is NOT null-terminated! 8588 StringRef StrRef = FExpr->getString(); 8589 const char *Str = StrRef.data(); 8590 // Account for cases where the string literal is truncated in a declaration. 8591 const ConstantArrayType *T = 8592 S.Context.getAsConstantArrayType(FExpr->getType()); 8593 assert(T && "String literal not of constant array type!"); 8594 size_t TypeSize = T->getSize().getZExtValue(); 8595 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8596 const unsigned numDataArgs = Args.size() - firstDataArg; 8597 8598 if (IgnoreStringsWithoutSpecifiers && 8599 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 8600 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 8601 return; 8602 8603 // Emit a warning if the string literal is truncated and does not contain an 8604 // embedded null character. 8605 if (TypeSize <= StrRef.size() && 8606 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 8607 CheckFormatHandler::EmitFormatDiagnostic( 8608 S, inFunctionCall, Args[format_idx], 8609 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 8610 FExpr->getBeginLoc(), 8611 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 8612 return; 8613 } 8614 8615 // CHECK: empty format string? 8616 if (StrLen == 0 && numDataArgs > 0) { 8617 CheckFormatHandler::EmitFormatDiagnostic( 8618 S, inFunctionCall, Args[format_idx], 8619 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 8620 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8621 return; 8622 } 8623 8624 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 8625 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 8626 Type == Sema::FST_OSTrace) { 8627 CheckPrintfHandler H( 8628 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 8629 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 8630 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 8631 CheckedVarArgs, UncoveredArg); 8632 8633 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 8634 S.getLangOpts(), 8635 S.Context.getTargetInfo(), 8636 Type == Sema::FST_FreeBSDKPrintf)) 8637 H.DoneProcessing(); 8638 } else if (Type == Sema::FST_Scanf) { 8639 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 8640 numDataArgs, Str, HasVAListArg, Args, format_idx, 8641 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 8642 8643 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 8644 S.getLangOpts(), 8645 S.Context.getTargetInfo())) 8646 H.DoneProcessing(); 8647 } // TODO: handle other formats 8648 } 8649 8650 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 8651 // Str - The format string. NOTE: this is NOT null-terminated! 8652 StringRef StrRef = FExpr->getString(); 8653 const char *Str = StrRef.data(); 8654 // Account for cases where the string literal is truncated in a declaration. 8655 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 8656 assert(T && "String literal not of constant array type!"); 8657 size_t TypeSize = T->getSize().getZExtValue(); 8658 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8659 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 8660 getLangOpts(), 8661 Context.getTargetInfo()); 8662 } 8663 8664 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 8665 8666 // Returns the related absolute value function that is larger, of 0 if one 8667 // does not exist. 8668 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 8669 switch (AbsFunction) { 8670 default: 8671 return 0; 8672 8673 case Builtin::BI__builtin_abs: 8674 return Builtin::BI__builtin_labs; 8675 case Builtin::BI__builtin_labs: 8676 return Builtin::BI__builtin_llabs; 8677 case Builtin::BI__builtin_llabs: 8678 return 0; 8679 8680 case Builtin::BI__builtin_fabsf: 8681 return Builtin::BI__builtin_fabs; 8682 case Builtin::BI__builtin_fabs: 8683 return Builtin::BI__builtin_fabsl; 8684 case Builtin::BI__builtin_fabsl: 8685 return 0; 8686 8687 case Builtin::BI__builtin_cabsf: 8688 return Builtin::BI__builtin_cabs; 8689 case Builtin::BI__builtin_cabs: 8690 return Builtin::BI__builtin_cabsl; 8691 case Builtin::BI__builtin_cabsl: 8692 return 0; 8693 8694 case Builtin::BIabs: 8695 return Builtin::BIlabs; 8696 case Builtin::BIlabs: 8697 return Builtin::BIllabs; 8698 case Builtin::BIllabs: 8699 return 0; 8700 8701 case Builtin::BIfabsf: 8702 return Builtin::BIfabs; 8703 case Builtin::BIfabs: 8704 return Builtin::BIfabsl; 8705 case Builtin::BIfabsl: 8706 return 0; 8707 8708 case Builtin::BIcabsf: 8709 return Builtin::BIcabs; 8710 case Builtin::BIcabs: 8711 return Builtin::BIcabsl; 8712 case Builtin::BIcabsl: 8713 return 0; 8714 } 8715 } 8716 8717 // Returns the argument type of the absolute value function. 8718 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 8719 unsigned AbsType) { 8720 if (AbsType == 0) 8721 return QualType(); 8722 8723 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 8724 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 8725 if (Error != ASTContext::GE_None) 8726 return QualType(); 8727 8728 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 8729 if (!FT) 8730 return QualType(); 8731 8732 if (FT->getNumParams() != 1) 8733 return QualType(); 8734 8735 return FT->getParamType(0); 8736 } 8737 8738 // Returns the best absolute value function, or zero, based on type and 8739 // current absolute value function. 8740 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 8741 unsigned AbsFunctionKind) { 8742 unsigned BestKind = 0; 8743 uint64_t ArgSize = Context.getTypeSize(ArgType); 8744 for (unsigned Kind = AbsFunctionKind; Kind != 0; 8745 Kind = getLargerAbsoluteValueFunction(Kind)) { 8746 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 8747 if (Context.getTypeSize(ParamType) >= ArgSize) { 8748 if (BestKind == 0) 8749 BestKind = Kind; 8750 else if (Context.hasSameType(ParamType, ArgType)) { 8751 BestKind = Kind; 8752 break; 8753 } 8754 } 8755 } 8756 return BestKind; 8757 } 8758 8759 enum AbsoluteValueKind { 8760 AVK_Integer, 8761 AVK_Floating, 8762 AVK_Complex 8763 }; 8764 8765 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 8766 if (T->isIntegralOrEnumerationType()) 8767 return AVK_Integer; 8768 if (T->isRealFloatingType()) 8769 return AVK_Floating; 8770 if (T->isAnyComplexType()) 8771 return AVK_Complex; 8772 8773 llvm_unreachable("Type not integer, floating, or complex"); 8774 } 8775 8776 // Changes the absolute value function to a different type. Preserves whether 8777 // the function is a builtin. 8778 static unsigned changeAbsFunction(unsigned AbsKind, 8779 AbsoluteValueKind ValueKind) { 8780 switch (ValueKind) { 8781 case AVK_Integer: 8782 switch (AbsKind) { 8783 default: 8784 return 0; 8785 case Builtin::BI__builtin_fabsf: 8786 case Builtin::BI__builtin_fabs: 8787 case Builtin::BI__builtin_fabsl: 8788 case Builtin::BI__builtin_cabsf: 8789 case Builtin::BI__builtin_cabs: 8790 case Builtin::BI__builtin_cabsl: 8791 return Builtin::BI__builtin_abs; 8792 case Builtin::BIfabsf: 8793 case Builtin::BIfabs: 8794 case Builtin::BIfabsl: 8795 case Builtin::BIcabsf: 8796 case Builtin::BIcabs: 8797 case Builtin::BIcabsl: 8798 return Builtin::BIabs; 8799 } 8800 case AVK_Floating: 8801 switch (AbsKind) { 8802 default: 8803 return 0; 8804 case Builtin::BI__builtin_abs: 8805 case Builtin::BI__builtin_labs: 8806 case Builtin::BI__builtin_llabs: 8807 case Builtin::BI__builtin_cabsf: 8808 case Builtin::BI__builtin_cabs: 8809 case Builtin::BI__builtin_cabsl: 8810 return Builtin::BI__builtin_fabsf; 8811 case Builtin::BIabs: 8812 case Builtin::BIlabs: 8813 case Builtin::BIllabs: 8814 case Builtin::BIcabsf: 8815 case Builtin::BIcabs: 8816 case Builtin::BIcabsl: 8817 return Builtin::BIfabsf; 8818 } 8819 case AVK_Complex: 8820 switch (AbsKind) { 8821 default: 8822 return 0; 8823 case Builtin::BI__builtin_abs: 8824 case Builtin::BI__builtin_labs: 8825 case Builtin::BI__builtin_llabs: 8826 case Builtin::BI__builtin_fabsf: 8827 case Builtin::BI__builtin_fabs: 8828 case Builtin::BI__builtin_fabsl: 8829 return Builtin::BI__builtin_cabsf; 8830 case Builtin::BIabs: 8831 case Builtin::BIlabs: 8832 case Builtin::BIllabs: 8833 case Builtin::BIfabsf: 8834 case Builtin::BIfabs: 8835 case Builtin::BIfabsl: 8836 return Builtin::BIcabsf; 8837 } 8838 } 8839 llvm_unreachable("Unable to convert function"); 8840 } 8841 8842 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 8843 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 8844 if (!FnInfo) 8845 return 0; 8846 8847 switch (FDecl->getBuiltinID()) { 8848 default: 8849 return 0; 8850 case Builtin::BI__builtin_abs: 8851 case Builtin::BI__builtin_fabs: 8852 case Builtin::BI__builtin_fabsf: 8853 case Builtin::BI__builtin_fabsl: 8854 case Builtin::BI__builtin_labs: 8855 case Builtin::BI__builtin_llabs: 8856 case Builtin::BI__builtin_cabs: 8857 case Builtin::BI__builtin_cabsf: 8858 case Builtin::BI__builtin_cabsl: 8859 case Builtin::BIabs: 8860 case Builtin::BIlabs: 8861 case Builtin::BIllabs: 8862 case Builtin::BIfabs: 8863 case Builtin::BIfabsf: 8864 case Builtin::BIfabsl: 8865 case Builtin::BIcabs: 8866 case Builtin::BIcabsf: 8867 case Builtin::BIcabsl: 8868 return FDecl->getBuiltinID(); 8869 } 8870 llvm_unreachable("Unknown Builtin type"); 8871 } 8872 8873 // If the replacement is valid, emit a note with replacement function. 8874 // Additionally, suggest including the proper header if not already included. 8875 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 8876 unsigned AbsKind, QualType ArgType) { 8877 bool EmitHeaderHint = true; 8878 const char *HeaderName = nullptr; 8879 const char *FunctionName = nullptr; 8880 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 8881 FunctionName = "std::abs"; 8882 if (ArgType->isIntegralOrEnumerationType()) { 8883 HeaderName = "cstdlib"; 8884 } else if (ArgType->isRealFloatingType()) { 8885 HeaderName = "cmath"; 8886 } else { 8887 llvm_unreachable("Invalid Type"); 8888 } 8889 8890 // Lookup all std::abs 8891 if (NamespaceDecl *Std = S.getStdNamespace()) { 8892 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 8893 R.suppressDiagnostics(); 8894 S.LookupQualifiedName(R, Std); 8895 8896 for (const auto *I : R) { 8897 const FunctionDecl *FDecl = nullptr; 8898 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 8899 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 8900 } else { 8901 FDecl = dyn_cast<FunctionDecl>(I); 8902 } 8903 if (!FDecl) 8904 continue; 8905 8906 // Found std::abs(), check that they are the right ones. 8907 if (FDecl->getNumParams() != 1) 8908 continue; 8909 8910 // Check that the parameter type can handle the argument. 8911 QualType ParamType = FDecl->getParamDecl(0)->getType(); 8912 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 8913 S.Context.getTypeSize(ArgType) <= 8914 S.Context.getTypeSize(ParamType)) { 8915 // Found a function, don't need the header hint. 8916 EmitHeaderHint = false; 8917 break; 8918 } 8919 } 8920 } 8921 } else { 8922 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 8923 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 8924 8925 if (HeaderName) { 8926 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 8927 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 8928 R.suppressDiagnostics(); 8929 S.LookupName(R, S.getCurScope()); 8930 8931 if (R.isSingleResult()) { 8932 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 8933 if (FD && FD->getBuiltinID() == AbsKind) { 8934 EmitHeaderHint = false; 8935 } else { 8936 return; 8937 } 8938 } else if (!R.empty()) { 8939 return; 8940 } 8941 } 8942 } 8943 8944 S.Diag(Loc, diag::note_replace_abs_function) 8945 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 8946 8947 if (!HeaderName) 8948 return; 8949 8950 if (!EmitHeaderHint) 8951 return; 8952 8953 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 8954 << FunctionName; 8955 } 8956 8957 template <std::size_t StrLen> 8958 static bool IsStdFunction(const FunctionDecl *FDecl, 8959 const char (&Str)[StrLen]) { 8960 if (!FDecl) 8961 return false; 8962 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 8963 return false; 8964 if (!FDecl->isInStdNamespace()) 8965 return false; 8966 8967 return true; 8968 } 8969 8970 // Warn when using the wrong abs() function. 8971 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 8972 const FunctionDecl *FDecl) { 8973 if (Call->getNumArgs() != 1) 8974 return; 8975 8976 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 8977 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 8978 if (AbsKind == 0 && !IsStdAbs) 8979 return; 8980 8981 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 8982 QualType ParamType = Call->getArg(0)->getType(); 8983 8984 // Unsigned types cannot be negative. Suggest removing the absolute value 8985 // function call. 8986 if (ArgType->isUnsignedIntegerType()) { 8987 const char *FunctionName = 8988 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 8989 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 8990 Diag(Call->getExprLoc(), diag::note_remove_abs) 8991 << FunctionName 8992 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 8993 return; 8994 } 8995 8996 // Taking the absolute value of a pointer is very suspicious, they probably 8997 // wanted to index into an array, dereference a pointer, call a function, etc. 8998 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 8999 unsigned DiagType = 0; 9000 if (ArgType->isFunctionType()) 9001 DiagType = 1; 9002 else if (ArgType->isArrayType()) 9003 DiagType = 2; 9004 9005 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9006 return; 9007 } 9008 9009 // std::abs has overloads which prevent most of the absolute value problems 9010 // from occurring. 9011 if (IsStdAbs) 9012 return; 9013 9014 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9015 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9016 9017 // The argument and parameter are the same kind. Check if they are the right 9018 // size. 9019 if (ArgValueKind == ParamValueKind) { 9020 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9021 return; 9022 9023 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9024 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9025 << FDecl << ArgType << ParamType; 9026 9027 if (NewAbsKind == 0) 9028 return; 9029 9030 emitReplacement(*this, Call->getExprLoc(), 9031 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9032 return; 9033 } 9034 9035 // ArgValueKind != ParamValueKind 9036 // The wrong type of absolute value function was used. Attempt to find the 9037 // proper one. 9038 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9039 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9040 if (NewAbsKind == 0) 9041 return; 9042 9043 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9044 << FDecl << ParamValueKind << ArgValueKind; 9045 9046 emitReplacement(*this, Call->getExprLoc(), 9047 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9048 } 9049 9050 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9051 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9052 const FunctionDecl *FDecl) { 9053 if (!Call || !FDecl) return; 9054 9055 // Ignore template specializations and macros. 9056 if (inTemplateInstantiation()) return; 9057 if (Call->getExprLoc().isMacroID()) return; 9058 9059 // Only care about the one template argument, two function parameter std::max 9060 if (Call->getNumArgs() != 2) return; 9061 if (!IsStdFunction(FDecl, "max")) return; 9062 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9063 if (!ArgList) return; 9064 if (ArgList->size() != 1) return; 9065 9066 // Check that template type argument is unsigned integer. 9067 const auto& TA = ArgList->get(0); 9068 if (TA.getKind() != TemplateArgument::Type) return; 9069 QualType ArgType = TA.getAsType(); 9070 if (!ArgType->isUnsignedIntegerType()) return; 9071 9072 // See if either argument is a literal zero. 9073 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9074 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9075 if (!MTE) return false; 9076 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9077 if (!Num) return false; 9078 if (Num->getValue() != 0) return false; 9079 return true; 9080 }; 9081 9082 const Expr *FirstArg = Call->getArg(0); 9083 const Expr *SecondArg = Call->getArg(1); 9084 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9085 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9086 9087 // Only warn when exactly one argument is zero. 9088 if (IsFirstArgZero == IsSecondArgZero) return; 9089 9090 SourceRange FirstRange = FirstArg->getSourceRange(); 9091 SourceRange SecondRange = SecondArg->getSourceRange(); 9092 9093 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9094 9095 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9096 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9097 9098 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9099 SourceRange RemovalRange; 9100 if (IsFirstArgZero) { 9101 RemovalRange = SourceRange(FirstRange.getBegin(), 9102 SecondRange.getBegin().getLocWithOffset(-1)); 9103 } else { 9104 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9105 SecondRange.getEnd()); 9106 } 9107 9108 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9109 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9110 << FixItHint::CreateRemoval(RemovalRange); 9111 } 9112 9113 //===--- CHECK: Standard memory functions ---------------------------------===// 9114 9115 /// Takes the expression passed to the size_t parameter of functions 9116 /// such as memcmp, strncat, etc and warns if it's a comparison. 9117 /// 9118 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9119 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9120 IdentifierInfo *FnName, 9121 SourceLocation FnLoc, 9122 SourceLocation RParenLoc) { 9123 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9124 if (!Size) 9125 return false; 9126 9127 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9128 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9129 return false; 9130 9131 SourceRange SizeRange = Size->getSourceRange(); 9132 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9133 << SizeRange << FnName; 9134 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9135 << FnName 9136 << FixItHint::CreateInsertion( 9137 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9138 << FixItHint::CreateRemoval(RParenLoc); 9139 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9140 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9141 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9142 ")"); 9143 9144 return true; 9145 } 9146 9147 /// Determine whether the given type is or contains a dynamic class type 9148 /// (e.g., whether it has a vtable). 9149 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9150 bool &IsContained) { 9151 // Look through array types while ignoring qualifiers. 9152 const Type *Ty = T->getBaseElementTypeUnsafe(); 9153 IsContained = false; 9154 9155 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9156 RD = RD ? RD->getDefinition() : nullptr; 9157 if (!RD || RD->isInvalidDecl()) 9158 return nullptr; 9159 9160 if (RD->isDynamicClass()) 9161 return RD; 9162 9163 // Check all the fields. If any bases were dynamic, the class is dynamic. 9164 // It's impossible for a class to transitively contain itself by value, so 9165 // infinite recursion is impossible. 9166 for (auto *FD : RD->fields()) { 9167 bool SubContained; 9168 if (const CXXRecordDecl *ContainedRD = 9169 getContainedDynamicClass(FD->getType(), SubContained)) { 9170 IsContained = true; 9171 return ContainedRD; 9172 } 9173 } 9174 9175 return nullptr; 9176 } 9177 9178 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9179 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9180 if (Unary->getKind() == UETT_SizeOf) 9181 return Unary; 9182 return nullptr; 9183 } 9184 9185 /// If E is a sizeof expression, returns its argument expression, 9186 /// otherwise returns NULL. 9187 static const Expr *getSizeOfExprArg(const Expr *E) { 9188 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9189 if (!SizeOf->isArgumentType()) 9190 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9191 return nullptr; 9192 } 9193 9194 /// If E is a sizeof expression, returns its argument type. 9195 static QualType getSizeOfArgType(const Expr *E) { 9196 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9197 return SizeOf->getTypeOfArgument(); 9198 return QualType(); 9199 } 9200 9201 namespace { 9202 9203 struct SearchNonTrivialToInitializeField 9204 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9205 using Super = 9206 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9207 9208 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9209 9210 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9211 SourceLocation SL) { 9212 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9213 asDerived().visitArray(PDIK, AT, SL); 9214 return; 9215 } 9216 9217 Super::visitWithKind(PDIK, FT, SL); 9218 } 9219 9220 void visitARCStrong(QualType FT, SourceLocation SL) { 9221 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9222 } 9223 void visitARCWeak(QualType FT, SourceLocation SL) { 9224 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9225 } 9226 void visitStruct(QualType FT, SourceLocation SL) { 9227 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9228 visit(FD->getType(), FD->getLocation()); 9229 } 9230 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9231 const ArrayType *AT, SourceLocation SL) { 9232 visit(getContext().getBaseElementType(AT), SL); 9233 } 9234 void visitTrivial(QualType FT, SourceLocation SL) {} 9235 9236 static void diag(QualType RT, const Expr *E, Sema &S) { 9237 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9238 } 9239 9240 ASTContext &getContext() { return S.getASTContext(); } 9241 9242 const Expr *E; 9243 Sema &S; 9244 }; 9245 9246 struct SearchNonTrivialToCopyField 9247 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9248 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9249 9250 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9251 9252 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9253 SourceLocation SL) { 9254 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9255 asDerived().visitArray(PCK, AT, SL); 9256 return; 9257 } 9258 9259 Super::visitWithKind(PCK, FT, SL); 9260 } 9261 9262 void visitARCStrong(QualType FT, SourceLocation SL) { 9263 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9264 } 9265 void visitARCWeak(QualType FT, SourceLocation SL) { 9266 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9267 } 9268 void visitStruct(QualType FT, SourceLocation SL) { 9269 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9270 visit(FD->getType(), FD->getLocation()); 9271 } 9272 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9273 SourceLocation SL) { 9274 visit(getContext().getBaseElementType(AT), SL); 9275 } 9276 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9277 SourceLocation SL) {} 9278 void visitTrivial(QualType FT, SourceLocation SL) {} 9279 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9280 9281 static void diag(QualType RT, const Expr *E, Sema &S) { 9282 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9283 } 9284 9285 ASTContext &getContext() { return S.getASTContext(); } 9286 9287 const Expr *E; 9288 Sema &S; 9289 }; 9290 9291 } 9292 9293 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9294 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9295 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9296 9297 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9298 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9299 return false; 9300 9301 return doesExprLikelyComputeSize(BO->getLHS()) || 9302 doesExprLikelyComputeSize(BO->getRHS()); 9303 } 9304 9305 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9306 } 9307 9308 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9309 /// 9310 /// \code 9311 /// #define MACRO 0 9312 /// foo(MACRO); 9313 /// foo(0); 9314 /// \endcode 9315 /// 9316 /// This should return true for the first call to foo, but not for the second 9317 /// (regardless of whether foo is a macro or function). 9318 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9319 SourceLocation CallLoc, 9320 SourceLocation ArgLoc) { 9321 if (!CallLoc.isMacroID()) 9322 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9323 9324 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9325 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9326 } 9327 9328 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9329 /// last two arguments transposed. 9330 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9331 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9332 return; 9333 9334 const Expr *SizeArg = 9335 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9336 9337 auto isLiteralZero = [](const Expr *E) { 9338 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9339 }; 9340 9341 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9342 SourceLocation CallLoc = Call->getRParenLoc(); 9343 SourceManager &SM = S.getSourceManager(); 9344 if (isLiteralZero(SizeArg) && 9345 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9346 9347 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9348 9349 // Some platforms #define bzero to __builtin_memset. See if this is the 9350 // case, and if so, emit a better diagnostic. 9351 if (BId == Builtin::BIbzero || 9352 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9353 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9354 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9355 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9356 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9357 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9358 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9359 } 9360 return; 9361 } 9362 9363 // If the second argument to a memset is a sizeof expression and the third 9364 // isn't, this is also likely an error. This should catch 9365 // 'memset(buf, sizeof(buf), 0xff)'. 9366 if (BId == Builtin::BImemset && 9367 doesExprLikelyComputeSize(Call->getArg(1)) && 9368 !doesExprLikelyComputeSize(Call->getArg(2))) { 9369 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9370 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9371 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9372 return; 9373 } 9374 } 9375 9376 /// Check for dangerous or invalid arguments to memset(). 9377 /// 9378 /// This issues warnings on known problematic, dangerous or unspecified 9379 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9380 /// function calls. 9381 /// 9382 /// \param Call The call expression to diagnose. 9383 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9384 unsigned BId, 9385 IdentifierInfo *FnName) { 9386 assert(BId != 0); 9387 9388 // It is possible to have a non-standard definition of memset. Validate 9389 // we have enough arguments, and if not, abort further checking. 9390 unsigned ExpectedNumArgs = 9391 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9392 if (Call->getNumArgs() < ExpectedNumArgs) 9393 return; 9394 9395 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9396 BId == Builtin::BIstrndup ? 1 : 2); 9397 unsigned LenArg = 9398 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9399 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9400 9401 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9402 Call->getBeginLoc(), Call->getRParenLoc())) 9403 return; 9404 9405 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9406 CheckMemaccessSize(*this, BId, Call); 9407 9408 // We have special checking when the length is a sizeof expression. 9409 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9410 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9411 llvm::FoldingSetNodeID SizeOfArgID; 9412 9413 // Although widely used, 'bzero' is not a standard function. Be more strict 9414 // with the argument types before allowing diagnostics and only allow the 9415 // form bzero(ptr, sizeof(...)). 9416 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9417 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9418 return; 9419 9420 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9421 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9422 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9423 9424 QualType DestTy = Dest->getType(); 9425 QualType PointeeTy; 9426 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9427 PointeeTy = DestPtrTy->getPointeeType(); 9428 9429 // Never warn about void type pointers. This can be used to suppress 9430 // false positives. 9431 if (PointeeTy->isVoidType()) 9432 continue; 9433 9434 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9435 // actually comparing the expressions for equality. Because computing the 9436 // expression IDs can be expensive, we only do this if the diagnostic is 9437 // enabled. 9438 if (SizeOfArg && 9439 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9440 SizeOfArg->getExprLoc())) { 9441 // We only compute IDs for expressions if the warning is enabled, and 9442 // cache the sizeof arg's ID. 9443 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9444 SizeOfArg->Profile(SizeOfArgID, Context, true); 9445 llvm::FoldingSetNodeID DestID; 9446 Dest->Profile(DestID, Context, true); 9447 if (DestID == SizeOfArgID) { 9448 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9449 // over sizeof(src) as well. 9450 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9451 StringRef ReadableName = FnName->getName(); 9452 9453 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9454 if (UnaryOp->getOpcode() == UO_AddrOf) 9455 ActionIdx = 1; // If its an address-of operator, just remove it. 9456 if (!PointeeTy->isIncompleteType() && 9457 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9458 ActionIdx = 2; // If the pointee's size is sizeof(char), 9459 // suggest an explicit length. 9460 9461 // If the function is defined as a builtin macro, do not show macro 9462 // expansion. 9463 SourceLocation SL = SizeOfArg->getExprLoc(); 9464 SourceRange DSR = Dest->getSourceRange(); 9465 SourceRange SSR = SizeOfArg->getSourceRange(); 9466 SourceManager &SM = getSourceManager(); 9467 9468 if (SM.isMacroArgExpansion(SL)) { 9469 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9470 SL = SM.getSpellingLoc(SL); 9471 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9472 SM.getSpellingLoc(DSR.getEnd())); 9473 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9474 SM.getSpellingLoc(SSR.getEnd())); 9475 } 9476 9477 DiagRuntimeBehavior(SL, SizeOfArg, 9478 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9479 << ReadableName 9480 << PointeeTy 9481 << DestTy 9482 << DSR 9483 << SSR); 9484 DiagRuntimeBehavior(SL, SizeOfArg, 9485 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9486 << ActionIdx 9487 << SSR); 9488 9489 break; 9490 } 9491 } 9492 9493 // Also check for cases where the sizeof argument is the exact same 9494 // type as the memory argument, and where it points to a user-defined 9495 // record type. 9496 if (SizeOfArgTy != QualType()) { 9497 if (PointeeTy->isRecordType() && 9498 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9499 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9500 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9501 << FnName << SizeOfArgTy << ArgIdx 9502 << PointeeTy << Dest->getSourceRange() 9503 << LenExpr->getSourceRange()); 9504 break; 9505 } 9506 } 9507 } else if (DestTy->isArrayType()) { 9508 PointeeTy = DestTy; 9509 } 9510 9511 if (PointeeTy == QualType()) 9512 continue; 9513 9514 // Always complain about dynamic classes. 9515 bool IsContained; 9516 if (const CXXRecordDecl *ContainedRD = 9517 getContainedDynamicClass(PointeeTy, IsContained)) { 9518 9519 unsigned OperationType = 0; 9520 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9521 // "overwritten" if we're warning about the destination for any call 9522 // but memcmp; otherwise a verb appropriate to the call. 9523 if (ArgIdx != 0 || IsCmp) { 9524 if (BId == Builtin::BImemcpy) 9525 OperationType = 1; 9526 else if(BId == Builtin::BImemmove) 9527 OperationType = 2; 9528 else if (IsCmp) 9529 OperationType = 3; 9530 } 9531 9532 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9533 PDiag(diag::warn_dyn_class_memaccess) 9534 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 9535 << IsContained << ContainedRD << OperationType 9536 << Call->getCallee()->getSourceRange()); 9537 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 9538 BId != Builtin::BImemset) 9539 DiagRuntimeBehavior( 9540 Dest->getExprLoc(), Dest, 9541 PDiag(diag::warn_arc_object_memaccess) 9542 << ArgIdx << FnName << PointeeTy 9543 << Call->getCallee()->getSourceRange()); 9544 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 9545 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 9546 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 9547 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9548 PDiag(diag::warn_cstruct_memaccess) 9549 << ArgIdx << FnName << PointeeTy << 0); 9550 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 9551 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 9552 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 9553 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9554 PDiag(diag::warn_cstruct_memaccess) 9555 << ArgIdx << FnName << PointeeTy << 1); 9556 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 9557 } else { 9558 continue; 9559 } 9560 } else 9561 continue; 9562 9563 DiagRuntimeBehavior( 9564 Dest->getExprLoc(), Dest, 9565 PDiag(diag::note_bad_memaccess_silence) 9566 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 9567 break; 9568 } 9569 } 9570 9571 // A little helper routine: ignore addition and subtraction of integer literals. 9572 // This intentionally does not ignore all integer constant expressions because 9573 // we don't want to remove sizeof(). 9574 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 9575 Ex = Ex->IgnoreParenCasts(); 9576 9577 while (true) { 9578 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 9579 if (!BO || !BO->isAdditiveOp()) 9580 break; 9581 9582 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 9583 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 9584 9585 if (isa<IntegerLiteral>(RHS)) 9586 Ex = LHS; 9587 else if (isa<IntegerLiteral>(LHS)) 9588 Ex = RHS; 9589 else 9590 break; 9591 } 9592 9593 return Ex; 9594 } 9595 9596 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 9597 ASTContext &Context) { 9598 // Only handle constant-sized or VLAs, but not flexible members. 9599 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 9600 // Only issue the FIXIT for arrays of size > 1. 9601 if (CAT->getSize().getSExtValue() <= 1) 9602 return false; 9603 } else if (!Ty->isVariableArrayType()) { 9604 return false; 9605 } 9606 return true; 9607 } 9608 9609 // Warn if the user has made the 'size' argument to strlcpy or strlcat 9610 // be the size of the source, instead of the destination. 9611 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 9612 IdentifierInfo *FnName) { 9613 9614 // Don't crash if the user has the wrong number of arguments 9615 unsigned NumArgs = Call->getNumArgs(); 9616 if ((NumArgs != 3) && (NumArgs != 4)) 9617 return; 9618 9619 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 9620 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 9621 const Expr *CompareWithSrc = nullptr; 9622 9623 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 9624 Call->getBeginLoc(), Call->getRParenLoc())) 9625 return; 9626 9627 // Look for 'strlcpy(dst, x, sizeof(x))' 9628 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 9629 CompareWithSrc = Ex; 9630 else { 9631 // Look for 'strlcpy(dst, x, strlen(x))' 9632 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 9633 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 9634 SizeCall->getNumArgs() == 1) 9635 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 9636 } 9637 } 9638 9639 if (!CompareWithSrc) 9640 return; 9641 9642 // Determine if the argument to sizeof/strlen is equal to the source 9643 // argument. In principle there's all kinds of things you could do 9644 // here, for instance creating an == expression and evaluating it with 9645 // EvaluateAsBooleanCondition, but this uses a more direct technique: 9646 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 9647 if (!SrcArgDRE) 9648 return; 9649 9650 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 9651 if (!CompareWithSrcDRE || 9652 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 9653 return; 9654 9655 const Expr *OriginalSizeArg = Call->getArg(2); 9656 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 9657 << OriginalSizeArg->getSourceRange() << FnName; 9658 9659 // Output a FIXIT hint if the destination is an array (rather than a 9660 // pointer to an array). This could be enhanced to handle some 9661 // pointers if we know the actual size, like if DstArg is 'array+2' 9662 // we could say 'sizeof(array)-2'. 9663 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 9664 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 9665 return; 9666 9667 SmallString<128> sizeString; 9668 llvm::raw_svector_ostream OS(sizeString); 9669 OS << "sizeof("; 9670 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9671 OS << ")"; 9672 9673 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 9674 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 9675 OS.str()); 9676 } 9677 9678 /// Check if two expressions refer to the same declaration. 9679 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 9680 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 9681 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 9682 return D1->getDecl() == D2->getDecl(); 9683 return false; 9684 } 9685 9686 static const Expr *getStrlenExprArg(const Expr *E) { 9687 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 9688 const FunctionDecl *FD = CE->getDirectCallee(); 9689 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 9690 return nullptr; 9691 return CE->getArg(0)->IgnoreParenCasts(); 9692 } 9693 return nullptr; 9694 } 9695 9696 // Warn on anti-patterns as the 'size' argument to strncat. 9697 // The correct size argument should look like following: 9698 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 9699 void Sema::CheckStrncatArguments(const CallExpr *CE, 9700 IdentifierInfo *FnName) { 9701 // Don't crash if the user has the wrong number of arguments. 9702 if (CE->getNumArgs() < 3) 9703 return; 9704 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 9705 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 9706 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 9707 9708 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 9709 CE->getRParenLoc())) 9710 return; 9711 9712 // Identify common expressions, which are wrongly used as the size argument 9713 // to strncat and may lead to buffer overflows. 9714 unsigned PatternType = 0; 9715 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 9716 // - sizeof(dst) 9717 if (referToTheSameDecl(SizeOfArg, DstArg)) 9718 PatternType = 1; 9719 // - sizeof(src) 9720 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 9721 PatternType = 2; 9722 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 9723 if (BE->getOpcode() == BO_Sub) { 9724 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 9725 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 9726 // - sizeof(dst) - strlen(dst) 9727 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 9728 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 9729 PatternType = 1; 9730 // - sizeof(src) - (anything) 9731 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 9732 PatternType = 2; 9733 } 9734 } 9735 9736 if (PatternType == 0) 9737 return; 9738 9739 // Generate the diagnostic. 9740 SourceLocation SL = LenArg->getBeginLoc(); 9741 SourceRange SR = LenArg->getSourceRange(); 9742 SourceManager &SM = getSourceManager(); 9743 9744 // If the function is defined as a builtin macro, do not show macro expansion. 9745 if (SM.isMacroArgExpansion(SL)) { 9746 SL = SM.getSpellingLoc(SL); 9747 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 9748 SM.getSpellingLoc(SR.getEnd())); 9749 } 9750 9751 // Check if the destination is an array (rather than a pointer to an array). 9752 QualType DstTy = DstArg->getType(); 9753 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 9754 Context); 9755 if (!isKnownSizeArray) { 9756 if (PatternType == 1) 9757 Diag(SL, diag::warn_strncat_wrong_size) << SR; 9758 else 9759 Diag(SL, diag::warn_strncat_src_size) << SR; 9760 return; 9761 } 9762 9763 if (PatternType == 1) 9764 Diag(SL, diag::warn_strncat_large_size) << SR; 9765 else 9766 Diag(SL, diag::warn_strncat_src_size) << SR; 9767 9768 SmallString<128> sizeString; 9769 llvm::raw_svector_ostream OS(sizeString); 9770 OS << "sizeof("; 9771 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9772 OS << ") - "; 9773 OS << "strlen("; 9774 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9775 OS << ") - 1"; 9776 9777 Diag(SL, diag::note_strncat_wrong_size) 9778 << FixItHint::CreateReplacement(SR, OS.str()); 9779 } 9780 9781 void 9782 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 9783 SourceLocation ReturnLoc, 9784 bool isObjCMethod, 9785 const AttrVec *Attrs, 9786 const FunctionDecl *FD) { 9787 // Check if the return value is null but should not be. 9788 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 9789 (!isObjCMethod && isNonNullType(Context, lhsType))) && 9790 CheckNonNullExpr(*this, RetValExp)) 9791 Diag(ReturnLoc, diag::warn_null_ret) 9792 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 9793 9794 // C++11 [basic.stc.dynamic.allocation]p4: 9795 // If an allocation function declared with a non-throwing 9796 // exception-specification fails to allocate storage, it shall return 9797 // a null pointer. Any other allocation function that fails to allocate 9798 // storage shall indicate failure only by throwing an exception [...] 9799 if (FD) { 9800 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 9801 if (Op == OO_New || Op == OO_Array_New) { 9802 const FunctionProtoType *Proto 9803 = FD->getType()->castAs<FunctionProtoType>(); 9804 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 9805 CheckNonNullExpr(*this, RetValExp)) 9806 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 9807 << FD << getLangOpts().CPlusPlus11; 9808 } 9809 } 9810 } 9811 9812 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 9813 9814 /// Check for comparisons of floating point operands using != and ==. 9815 /// Issue a warning if these are no self-comparisons, as they are not likely 9816 /// to do what the programmer intended. 9817 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 9818 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 9819 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 9820 9821 // Special case: check for x == x (which is OK). 9822 // Do not emit warnings for such cases. 9823 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 9824 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 9825 if (DRL->getDecl() == DRR->getDecl()) 9826 return; 9827 9828 // Special case: check for comparisons against literals that can be exactly 9829 // represented by APFloat. In such cases, do not emit a warning. This 9830 // is a heuristic: often comparison against such literals are used to 9831 // detect if a value in a variable has not changed. This clearly can 9832 // lead to false negatives. 9833 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 9834 if (FLL->isExact()) 9835 return; 9836 } else 9837 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 9838 if (FLR->isExact()) 9839 return; 9840 9841 // Check for comparisons with builtin types. 9842 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 9843 if (CL->getBuiltinCallee()) 9844 return; 9845 9846 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 9847 if (CR->getBuiltinCallee()) 9848 return; 9849 9850 // Emit the diagnostic. 9851 Diag(Loc, diag::warn_floatingpoint_eq) 9852 << LHS->getSourceRange() << RHS->getSourceRange(); 9853 } 9854 9855 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 9856 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 9857 9858 namespace { 9859 9860 /// Structure recording the 'active' range of an integer-valued 9861 /// expression. 9862 struct IntRange { 9863 /// The number of bits active in the int. 9864 unsigned Width; 9865 9866 /// True if the int is known not to have negative values. 9867 bool NonNegative; 9868 9869 IntRange(unsigned Width, bool NonNegative) 9870 : Width(Width), NonNegative(NonNegative) {} 9871 9872 /// Returns the range of the bool type. 9873 static IntRange forBoolType() { 9874 return IntRange(1, true); 9875 } 9876 9877 /// Returns the range of an opaque value of the given integral type. 9878 static IntRange forValueOfType(ASTContext &C, QualType T) { 9879 return forValueOfCanonicalType(C, 9880 T->getCanonicalTypeInternal().getTypePtr()); 9881 } 9882 9883 /// Returns the range of an opaque value of a canonical integral type. 9884 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 9885 assert(T->isCanonicalUnqualified()); 9886 9887 if (const VectorType *VT = dyn_cast<VectorType>(T)) 9888 T = VT->getElementType().getTypePtr(); 9889 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 9890 T = CT->getElementType().getTypePtr(); 9891 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 9892 T = AT->getValueType().getTypePtr(); 9893 9894 if (!C.getLangOpts().CPlusPlus) { 9895 // For enum types in C code, use the underlying datatype. 9896 if (const EnumType *ET = dyn_cast<EnumType>(T)) 9897 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 9898 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 9899 // For enum types in C++, use the known bit width of the enumerators. 9900 EnumDecl *Enum = ET->getDecl(); 9901 // In C++11, enums can have a fixed underlying type. Use this type to 9902 // compute the range. 9903 if (Enum->isFixed()) { 9904 return IntRange(C.getIntWidth(QualType(T, 0)), 9905 !ET->isSignedIntegerOrEnumerationType()); 9906 } 9907 9908 unsigned NumPositive = Enum->getNumPositiveBits(); 9909 unsigned NumNegative = Enum->getNumNegativeBits(); 9910 9911 if (NumNegative == 0) 9912 return IntRange(NumPositive, true/*NonNegative*/); 9913 else 9914 return IntRange(std::max(NumPositive + 1, NumNegative), 9915 false/*NonNegative*/); 9916 } 9917 9918 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 9919 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 9920 9921 const BuiltinType *BT = cast<BuiltinType>(T); 9922 assert(BT->isInteger()); 9923 9924 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 9925 } 9926 9927 /// Returns the "target" range of a canonical integral type, i.e. 9928 /// the range of values expressible in the type. 9929 /// 9930 /// This matches forValueOfCanonicalType except that enums have the 9931 /// full range of their type, not the range of their enumerators. 9932 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 9933 assert(T->isCanonicalUnqualified()); 9934 9935 if (const VectorType *VT = dyn_cast<VectorType>(T)) 9936 T = VT->getElementType().getTypePtr(); 9937 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 9938 T = CT->getElementType().getTypePtr(); 9939 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 9940 T = AT->getValueType().getTypePtr(); 9941 if (const EnumType *ET = dyn_cast<EnumType>(T)) 9942 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 9943 9944 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 9945 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 9946 9947 const BuiltinType *BT = cast<BuiltinType>(T); 9948 assert(BT->isInteger()); 9949 9950 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 9951 } 9952 9953 /// Returns the supremum of two ranges: i.e. their conservative merge. 9954 static IntRange join(IntRange L, IntRange R) { 9955 return IntRange(std::max(L.Width, R.Width), 9956 L.NonNegative && R.NonNegative); 9957 } 9958 9959 /// Returns the infinum of two ranges: i.e. their aggressive merge. 9960 static IntRange meet(IntRange L, IntRange R) { 9961 return IntRange(std::min(L.Width, R.Width), 9962 L.NonNegative || R.NonNegative); 9963 } 9964 }; 9965 9966 } // namespace 9967 9968 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 9969 unsigned MaxWidth) { 9970 if (value.isSigned() && value.isNegative()) 9971 return IntRange(value.getMinSignedBits(), false); 9972 9973 if (value.getBitWidth() > MaxWidth) 9974 value = value.trunc(MaxWidth); 9975 9976 // isNonNegative() just checks the sign bit without considering 9977 // signedness. 9978 return IntRange(value.getActiveBits(), true); 9979 } 9980 9981 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 9982 unsigned MaxWidth) { 9983 if (result.isInt()) 9984 return GetValueRange(C, result.getInt(), MaxWidth); 9985 9986 if (result.isVector()) { 9987 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 9988 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 9989 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 9990 R = IntRange::join(R, El); 9991 } 9992 return R; 9993 } 9994 9995 if (result.isComplexInt()) { 9996 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 9997 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 9998 return IntRange::join(R, I); 9999 } 10000 10001 // This can happen with lossless casts to intptr_t of "based" lvalues. 10002 // Assume it might use arbitrary bits. 10003 // FIXME: The only reason we need to pass the type in here is to get 10004 // the sign right on this one case. It would be nice if APValue 10005 // preserved this. 10006 assert(result.isLValue() || result.isAddrLabelDiff()); 10007 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10008 } 10009 10010 static QualType GetExprType(const Expr *E) { 10011 QualType Ty = E->getType(); 10012 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10013 Ty = AtomicRHS->getValueType(); 10014 return Ty; 10015 } 10016 10017 /// Pseudo-evaluate the given integer expression, estimating the 10018 /// range of values it might take. 10019 /// 10020 /// \param MaxWidth - the width to which the value will be truncated 10021 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10022 bool InConstantContext) { 10023 E = E->IgnoreParens(); 10024 10025 // Try a full evaluation first. 10026 Expr::EvalResult result; 10027 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10028 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10029 10030 // I think we only want to look through implicit casts here; if the 10031 // user has an explicit widening cast, we should treat the value as 10032 // being of the new, wider type. 10033 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10034 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10035 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext); 10036 10037 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10038 10039 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10040 CE->getCastKind() == CK_BooleanToSignedIntegral; 10041 10042 // Assume that non-integer casts can span the full range of the type. 10043 if (!isIntegerCast) 10044 return OutputTypeRange; 10045 10046 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10047 std::min(MaxWidth, OutputTypeRange.Width), 10048 InConstantContext); 10049 10050 // Bail out if the subexpr's range is as wide as the cast type. 10051 if (SubRange.Width >= OutputTypeRange.Width) 10052 return OutputTypeRange; 10053 10054 // Otherwise, we take the smaller width, and we're non-negative if 10055 // either the output type or the subexpr is. 10056 return IntRange(SubRange.Width, 10057 SubRange.NonNegative || OutputTypeRange.NonNegative); 10058 } 10059 10060 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10061 // If we can fold the condition, just take that operand. 10062 bool CondResult; 10063 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10064 return GetExprRange(C, 10065 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10066 MaxWidth, InConstantContext); 10067 10068 // Otherwise, conservatively merge. 10069 IntRange L = 10070 GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext); 10071 IntRange R = 10072 GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext); 10073 return IntRange::join(L, R); 10074 } 10075 10076 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10077 switch (BO->getOpcode()) { 10078 case BO_Cmp: 10079 llvm_unreachable("builtin <=> should have class type"); 10080 10081 // Boolean-valued operations are single-bit and positive. 10082 case BO_LAnd: 10083 case BO_LOr: 10084 case BO_LT: 10085 case BO_GT: 10086 case BO_LE: 10087 case BO_GE: 10088 case BO_EQ: 10089 case BO_NE: 10090 return IntRange::forBoolType(); 10091 10092 // The type of the assignments is the type of the LHS, so the RHS 10093 // is not necessarily the same type. 10094 case BO_MulAssign: 10095 case BO_DivAssign: 10096 case BO_RemAssign: 10097 case BO_AddAssign: 10098 case BO_SubAssign: 10099 case BO_XorAssign: 10100 case BO_OrAssign: 10101 // TODO: bitfields? 10102 return IntRange::forValueOfType(C, GetExprType(E)); 10103 10104 // Simple assignments just pass through the RHS, which will have 10105 // been coerced to the LHS type. 10106 case BO_Assign: 10107 // TODO: bitfields? 10108 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10109 10110 // Operations with opaque sources are black-listed. 10111 case BO_PtrMemD: 10112 case BO_PtrMemI: 10113 return IntRange::forValueOfType(C, GetExprType(E)); 10114 10115 // Bitwise-and uses the *infinum* of the two source ranges. 10116 case BO_And: 10117 case BO_AndAssign: 10118 return IntRange::meet( 10119 GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext), 10120 GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext)); 10121 10122 // Left shift gets black-listed based on a judgement call. 10123 case BO_Shl: 10124 // ...except that we want to treat '1 << (blah)' as logically 10125 // positive. It's an important idiom. 10126 if (IntegerLiteral *I 10127 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10128 if (I->getValue() == 1) { 10129 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10130 return IntRange(R.Width, /*NonNegative*/ true); 10131 } 10132 } 10133 LLVM_FALLTHROUGH; 10134 10135 case BO_ShlAssign: 10136 return IntRange::forValueOfType(C, GetExprType(E)); 10137 10138 // Right shift by a constant can narrow its left argument. 10139 case BO_Shr: 10140 case BO_ShrAssign: { 10141 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10142 10143 // If the shift amount is a positive constant, drop the width by 10144 // that much. 10145 llvm::APSInt shift; 10146 if (BO->getRHS()->isIntegerConstantExpr(shift, C) && 10147 shift.isNonNegative()) { 10148 unsigned zext = shift.getZExtValue(); 10149 if (zext >= L.Width) 10150 L.Width = (L.NonNegative ? 0 : 1); 10151 else 10152 L.Width -= zext; 10153 } 10154 10155 return L; 10156 } 10157 10158 // Comma acts as its right operand. 10159 case BO_Comma: 10160 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10161 10162 // Black-list pointer subtractions. 10163 case BO_Sub: 10164 if (BO->getLHS()->getType()->isPointerType()) 10165 return IntRange::forValueOfType(C, GetExprType(E)); 10166 break; 10167 10168 // The width of a division result is mostly determined by the size 10169 // of the LHS. 10170 case BO_Div: { 10171 // Don't 'pre-truncate' the operands. 10172 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10173 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10174 10175 // If the divisor is constant, use that. 10176 llvm::APSInt divisor; 10177 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { 10178 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) 10179 if (log2 >= L.Width) 10180 L.Width = (L.NonNegative ? 0 : 1); 10181 else 10182 L.Width = std::min(L.Width - log2, MaxWidth); 10183 return L; 10184 } 10185 10186 // Otherwise, just use the LHS's width. 10187 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10188 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10189 } 10190 10191 // The result of a remainder can't be larger than the result of 10192 // either side. 10193 case BO_Rem: { 10194 // Don't 'pre-truncate' the operands. 10195 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10196 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10197 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10198 10199 IntRange meet = IntRange::meet(L, R); 10200 meet.Width = std::min(meet.Width, MaxWidth); 10201 return meet; 10202 } 10203 10204 // The default behavior is okay for these. 10205 case BO_Mul: 10206 case BO_Add: 10207 case BO_Xor: 10208 case BO_Or: 10209 break; 10210 } 10211 10212 // The default case is to treat the operation as if it were closed 10213 // on the narrowest type that encompasses both operands. 10214 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10215 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10216 return IntRange::join(L, R); 10217 } 10218 10219 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10220 switch (UO->getOpcode()) { 10221 // Boolean-valued operations are white-listed. 10222 case UO_LNot: 10223 return IntRange::forBoolType(); 10224 10225 // Operations with opaque sources are black-listed. 10226 case UO_Deref: 10227 case UO_AddrOf: // should be impossible 10228 return IntRange::forValueOfType(C, GetExprType(E)); 10229 10230 default: 10231 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext); 10232 } 10233 } 10234 10235 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10236 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext); 10237 10238 if (const auto *BitField = E->getSourceBitField()) 10239 return IntRange(BitField->getBitWidthValue(C), 10240 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10241 10242 return IntRange::forValueOfType(C, GetExprType(E)); 10243 } 10244 10245 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10246 bool InConstantContext) { 10247 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext); 10248 } 10249 10250 /// Checks whether the given value, which currently has the given 10251 /// source semantics, has the same value when coerced through the 10252 /// target semantics. 10253 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10254 const llvm::fltSemantics &Src, 10255 const llvm::fltSemantics &Tgt) { 10256 llvm::APFloat truncated = value; 10257 10258 bool ignored; 10259 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10260 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10261 10262 return truncated.bitwiseIsEqual(value); 10263 } 10264 10265 /// Checks whether the given value, which currently has the given 10266 /// source semantics, has the same value when coerced through the 10267 /// target semantics. 10268 /// 10269 /// The value might be a vector of floats (or a complex number). 10270 static bool IsSameFloatAfterCast(const APValue &value, 10271 const llvm::fltSemantics &Src, 10272 const llvm::fltSemantics &Tgt) { 10273 if (value.isFloat()) 10274 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10275 10276 if (value.isVector()) { 10277 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10278 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10279 return false; 10280 return true; 10281 } 10282 10283 assert(value.isComplexFloat()); 10284 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10285 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10286 } 10287 10288 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10289 bool IsListInit = false); 10290 10291 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10292 // Suppress cases where we are comparing against an enum constant. 10293 if (const DeclRefExpr *DR = 10294 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10295 if (isa<EnumConstantDecl>(DR->getDecl())) 10296 return true; 10297 10298 // Suppress cases where the value is expanded from a macro, unless that macro 10299 // is how a language represents a boolean literal. This is the case in both C 10300 // and Objective-C. 10301 SourceLocation BeginLoc = E->getBeginLoc(); 10302 if (BeginLoc.isMacroID()) { 10303 StringRef MacroName = Lexer::getImmediateMacroName( 10304 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10305 return MacroName != "YES" && MacroName != "NO" && 10306 MacroName != "true" && MacroName != "false"; 10307 } 10308 10309 return false; 10310 } 10311 10312 static bool isKnownToHaveUnsignedValue(Expr *E) { 10313 return E->getType()->isIntegerType() && 10314 (!E->getType()->isSignedIntegerType() || 10315 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10316 } 10317 10318 namespace { 10319 /// The promoted range of values of a type. In general this has the 10320 /// following structure: 10321 /// 10322 /// |-----------| . . . |-----------| 10323 /// ^ ^ ^ ^ 10324 /// Min HoleMin HoleMax Max 10325 /// 10326 /// ... where there is only a hole if a signed type is promoted to unsigned 10327 /// (in which case Min and Max are the smallest and largest representable 10328 /// values). 10329 struct PromotedRange { 10330 // Min, or HoleMax if there is a hole. 10331 llvm::APSInt PromotedMin; 10332 // Max, or HoleMin if there is a hole. 10333 llvm::APSInt PromotedMax; 10334 10335 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10336 if (R.Width == 0) 10337 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10338 else if (R.Width >= BitWidth && !Unsigned) { 10339 // Promotion made the type *narrower*. This happens when promoting 10340 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10341 // Treat all values of 'signed int' as being in range for now. 10342 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10343 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10344 } else { 10345 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10346 .extOrTrunc(BitWidth); 10347 PromotedMin.setIsUnsigned(Unsigned); 10348 10349 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10350 .extOrTrunc(BitWidth); 10351 PromotedMax.setIsUnsigned(Unsigned); 10352 } 10353 } 10354 10355 // Determine whether this range is contiguous (has no hole). 10356 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10357 10358 // Where a constant value is within the range. 10359 enum ComparisonResult { 10360 LT = 0x1, 10361 LE = 0x2, 10362 GT = 0x4, 10363 GE = 0x8, 10364 EQ = 0x10, 10365 NE = 0x20, 10366 InRangeFlag = 0x40, 10367 10368 Less = LE | LT | NE, 10369 Min = LE | InRangeFlag, 10370 InRange = InRangeFlag, 10371 Max = GE | InRangeFlag, 10372 Greater = GE | GT | NE, 10373 10374 OnlyValue = LE | GE | EQ | InRangeFlag, 10375 InHole = NE 10376 }; 10377 10378 ComparisonResult compare(const llvm::APSInt &Value) const { 10379 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10380 Value.isUnsigned() == PromotedMin.isUnsigned()); 10381 if (!isContiguous()) { 10382 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 10383 if (Value.isMinValue()) return Min; 10384 if (Value.isMaxValue()) return Max; 10385 if (Value >= PromotedMin) return InRange; 10386 if (Value <= PromotedMax) return InRange; 10387 return InHole; 10388 } 10389 10390 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 10391 case -1: return Less; 10392 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 10393 case 1: 10394 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 10395 case -1: return InRange; 10396 case 0: return Max; 10397 case 1: return Greater; 10398 } 10399 } 10400 10401 llvm_unreachable("impossible compare result"); 10402 } 10403 10404 static llvm::Optional<StringRef> 10405 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 10406 if (Op == BO_Cmp) { 10407 ComparisonResult LTFlag = LT, GTFlag = GT; 10408 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 10409 10410 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 10411 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 10412 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 10413 return llvm::None; 10414 } 10415 10416 ComparisonResult TrueFlag, FalseFlag; 10417 if (Op == BO_EQ) { 10418 TrueFlag = EQ; 10419 FalseFlag = NE; 10420 } else if (Op == BO_NE) { 10421 TrueFlag = NE; 10422 FalseFlag = EQ; 10423 } else { 10424 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 10425 TrueFlag = LT; 10426 FalseFlag = GE; 10427 } else { 10428 TrueFlag = GT; 10429 FalseFlag = LE; 10430 } 10431 if (Op == BO_GE || Op == BO_LE) 10432 std::swap(TrueFlag, FalseFlag); 10433 } 10434 if (R & TrueFlag) 10435 return StringRef("true"); 10436 if (R & FalseFlag) 10437 return StringRef("false"); 10438 return llvm::None; 10439 } 10440 }; 10441 } 10442 10443 static bool HasEnumType(Expr *E) { 10444 // Strip off implicit integral promotions. 10445 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10446 if (ICE->getCastKind() != CK_IntegralCast && 10447 ICE->getCastKind() != CK_NoOp) 10448 break; 10449 E = ICE->getSubExpr(); 10450 } 10451 10452 return E->getType()->isEnumeralType(); 10453 } 10454 10455 static int classifyConstantValue(Expr *Constant) { 10456 // The values of this enumeration are used in the diagnostics 10457 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 10458 enum ConstantValueKind { 10459 Miscellaneous = 0, 10460 LiteralTrue, 10461 LiteralFalse 10462 }; 10463 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 10464 return BL->getValue() ? ConstantValueKind::LiteralTrue 10465 : ConstantValueKind::LiteralFalse; 10466 return ConstantValueKind::Miscellaneous; 10467 } 10468 10469 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 10470 Expr *Constant, Expr *Other, 10471 const llvm::APSInt &Value, 10472 bool RhsConstant) { 10473 if (S.inTemplateInstantiation()) 10474 return false; 10475 10476 Expr *OriginalOther = Other; 10477 10478 Constant = Constant->IgnoreParenImpCasts(); 10479 Other = Other->IgnoreParenImpCasts(); 10480 10481 // Suppress warnings on tautological comparisons between values of the same 10482 // enumeration type. There are only two ways we could warn on this: 10483 // - If the constant is outside the range of representable values of 10484 // the enumeration. In such a case, we should warn about the cast 10485 // to enumeration type, not about the comparison. 10486 // - If the constant is the maximum / minimum in-range value. For an 10487 // enumeratin type, such comparisons can be meaningful and useful. 10488 if (Constant->getType()->isEnumeralType() && 10489 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 10490 return false; 10491 10492 // TODO: Investigate using GetExprRange() to get tighter bounds 10493 // on the bit ranges. 10494 QualType OtherT = Other->getType(); 10495 if (const auto *AT = OtherT->getAs<AtomicType>()) 10496 OtherT = AT->getValueType(); 10497 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); 10498 10499 // Special case for ObjC BOOL on targets where its a typedef for a signed char 10500 // (Namely, macOS). 10501 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 10502 S.NSAPIObj->isObjCBOOLType(OtherT) && 10503 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 10504 10505 // Whether we're treating Other as being a bool because of the form of 10506 // expression despite it having another type (typically 'int' in C). 10507 bool OtherIsBooleanDespiteType = 10508 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 10509 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 10510 OtherRange = IntRange::forBoolType(); 10511 10512 // Determine the promoted range of the other type and see if a comparison of 10513 // the constant against that range is tautological. 10514 PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), 10515 Value.isUnsigned()); 10516 auto Cmp = OtherPromotedRange.compare(Value); 10517 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 10518 if (!Result) 10519 return false; 10520 10521 // Suppress the diagnostic for an in-range comparison if the constant comes 10522 // from a macro or enumerator. We don't want to diagnose 10523 // 10524 // some_long_value <= INT_MAX 10525 // 10526 // when sizeof(int) == sizeof(long). 10527 bool InRange = Cmp & PromotedRange::InRangeFlag; 10528 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 10529 return false; 10530 10531 // If this is a comparison to an enum constant, include that 10532 // constant in the diagnostic. 10533 const EnumConstantDecl *ED = nullptr; 10534 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 10535 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 10536 10537 // Should be enough for uint128 (39 decimal digits) 10538 SmallString<64> PrettySourceValue; 10539 llvm::raw_svector_ostream OS(PrettySourceValue); 10540 if (ED) { 10541 OS << '\'' << *ED << "' (" << Value << ")"; 10542 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 10543 Constant->IgnoreParenImpCasts())) { 10544 OS << (BL->getValue() ? "YES" : "NO"); 10545 } else { 10546 OS << Value; 10547 } 10548 10549 if (IsObjCSignedCharBool) { 10550 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10551 S.PDiag(diag::warn_tautological_compare_objc_bool) 10552 << OS.str() << *Result); 10553 return true; 10554 } 10555 10556 // FIXME: We use a somewhat different formatting for the in-range cases and 10557 // cases involving boolean values for historical reasons. We should pick a 10558 // consistent way of presenting these diagnostics. 10559 if (!InRange || Other->isKnownToHaveBooleanValue()) { 10560 10561 S.DiagRuntimeBehavior( 10562 E->getOperatorLoc(), E, 10563 S.PDiag(!InRange ? diag::warn_out_of_range_compare 10564 : diag::warn_tautological_bool_compare) 10565 << OS.str() << classifyConstantValue(Constant) << OtherT 10566 << OtherIsBooleanDespiteType << *Result 10567 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 10568 } else { 10569 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 10570 ? (HasEnumType(OriginalOther) 10571 ? diag::warn_unsigned_enum_always_true_comparison 10572 : diag::warn_unsigned_always_true_comparison) 10573 : diag::warn_tautological_constant_compare; 10574 10575 S.Diag(E->getOperatorLoc(), Diag) 10576 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 10577 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 10578 } 10579 10580 return true; 10581 } 10582 10583 /// Analyze the operands of the given comparison. Implements the 10584 /// fallback case from AnalyzeComparison. 10585 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 10586 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10587 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10588 } 10589 10590 /// Implements -Wsign-compare. 10591 /// 10592 /// \param E the binary operator to check for warnings 10593 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 10594 // The type the comparison is being performed in. 10595 QualType T = E->getLHS()->getType(); 10596 10597 // Only analyze comparison operators where both sides have been converted to 10598 // the same type. 10599 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 10600 return AnalyzeImpConvsInComparison(S, E); 10601 10602 // Don't analyze value-dependent comparisons directly. 10603 if (E->isValueDependent()) 10604 return AnalyzeImpConvsInComparison(S, E); 10605 10606 Expr *LHS = E->getLHS(); 10607 Expr *RHS = E->getRHS(); 10608 10609 if (T->isIntegralType(S.Context)) { 10610 llvm::APSInt RHSValue; 10611 llvm::APSInt LHSValue; 10612 10613 bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); 10614 bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); 10615 10616 // We don't care about expressions whose result is a constant. 10617 if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) 10618 return AnalyzeImpConvsInComparison(S, E); 10619 10620 // We only care about expressions where just one side is literal 10621 if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { 10622 // Is the constant on the RHS or LHS? 10623 const bool RhsConstant = IsRHSIntegralLiteral; 10624 Expr *Const = RhsConstant ? RHS : LHS; 10625 Expr *Other = RhsConstant ? LHS : RHS; 10626 const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; 10627 10628 // Check whether an integer constant comparison results in a value 10629 // of 'true' or 'false'. 10630 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 10631 return AnalyzeImpConvsInComparison(S, E); 10632 } 10633 } 10634 10635 if (!T->hasUnsignedIntegerRepresentation()) { 10636 // We don't do anything special if this isn't an unsigned integral 10637 // comparison: we're only interested in integral comparisons, and 10638 // signed comparisons only happen in cases we don't care to warn about. 10639 return AnalyzeImpConvsInComparison(S, E); 10640 } 10641 10642 LHS = LHS->IgnoreParenImpCasts(); 10643 RHS = RHS->IgnoreParenImpCasts(); 10644 10645 if (!S.getLangOpts().CPlusPlus) { 10646 // Avoid warning about comparison of integers with different signs when 10647 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 10648 // the type of `E`. 10649 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 10650 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10651 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 10652 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10653 } 10654 10655 // Check to see if one of the (unmodified) operands is of different 10656 // signedness. 10657 Expr *signedOperand, *unsignedOperand; 10658 if (LHS->getType()->hasSignedIntegerRepresentation()) { 10659 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 10660 "unsigned comparison between two signed integer expressions?"); 10661 signedOperand = LHS; 10662 unsignedOperand = RHS; 10663 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 10664 signedOperand = RHS; 10665 unsignedOperand = LHS; 10666 } else { 10667 return AnalyzeImpConvsInComparison(S, E); 10668 } 10669 10670 // Otherwise, calculate the effective range of the signed operand. 10671 IntRange signedRange = 10672 GetExprRange(S.Context, signedOperand, S.isConstantEvaluated()); 10673 10674 // Go ahead and analyze implicit conversions in the operands. Note 10675 // that we skip the implicit conversions on both sides. 10676 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 10677 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 10678 10679 // If the signed range is non-negative, -Wsign-compare won't fire. 10680 if (signedRange.NonNegative) 10681 return; 10682 10683 // For (in)equality comparisons, if the unsigned operand is a 10684 // constant which cannot collide with a overflowed signed operand, 10685 // then reinterpreting the signed operand as unsigned will not 10686 // change the result of the comparison. 10687 if (E->isEqualityOp()) { 10688 unsigned comparisonWidth = S.Context.getIntWidth(T); 10689 IntRange unsignedRange = 10690 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated()); 10691 10692 // We should never be unable to prove that the unsigned operand is 10693 // non-negative. 10694 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 10695 10696 if (unsignedRange.Width < comparisonWidth) 10697 return; 10698 } 10699 10700 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10701 S.PDiag(diag::warn_mixed_sign_comparison) 10702 << LHS->getType() << RHS->getType() 10703 << LHS->getSourceRange() << RHS->getSourceRange()); 10704 } 10705 10706 /// Analyzes an attempt to assign the given value to a bitfield. 10707 /// 10708 /// Returns true if there was something fishy about the attempt. 10709 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 10710 SourceLocation InitLoc) { 10711 assert(Bitfield->isBitField()); 10712 if (Bitfield->isInvalidDecl()) 10713 return false; 10714 10715 // White-list bool bitfields. 10716 QualType BitfieldType = Bitfield->getType(); 10717 if (BitfieldType->isBooleanType()) 10718 return false; 10719 10720 if (BitfieldType->isEnumeralType()) { 10721 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 10722 // If the underlying enum type was not explicitly specified as an unsigned 10723 // type and the enum contain only positive values, MSVC++ will cause an 10724 // inconsistency by storing this as a signed type. 10725 if (S.getLangOpts().CPlusPlus11 && 10726 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 10727 BitfieldEnumDecl->getNumPositiveBits() > 0 && 10728 BitfieldEnumDecl->getNumNegativeBits() == 0) { 10729 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 10730 << BitfieldEnumDecl->getNameAsString(); 10731 } 10732 } 10733 10734 if (Bitfield->getType()->isBooleanType()) 10735 return false; 10736 10737 // Ignore value- or type-dependent expressions. 10738 if (Bitfield->getBitWidth()->isValueDependent() || 10739 Bitfield->getBitWidth()->isTypeDependent() || 10740 Init->isValueDependent() || 10741 Init->isTypeDependent()) 10742 return false; 10743 10744 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 10745 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 10746 10747 Expr::EvalResult Result; 10748 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 10749 Expr::SE_AllowSideEffects)) { 10750 // The RHS is not constant. If the RHS has an enum type, make sure the 10751 // bitfield is wide enough to hold all the values of the enum without 10752 // truncation. 10753 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 10754 EnumDecl *ED = EnumTy->getDecl(); 10755 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 10756 10757 // Enum types are implicitly signed on Windows, so check if there are any 10758 // negative enumerators to see if the enum was intended to be signed or 10759 // not. 10760 bool SignedEnum = ED->getNumNegativeBits() > 0; 10761 10762 // Check for surprising sign changes when assigning enum values to a 10763 // bitfield of different signedness. If the bitfield is signed and we 10764 // have exactly the right number of bits to store this unsigned enum, 10765 // suggest changing the enum to an unsigned type. This typically happens 10766 // on Windows where unfixed enums always use an underlying type of 'int'. 10767 unsigned DiagID = 0; 10768 if (SignedEnum && !SignedBitfield) { 10769 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 10770 } else if (SignedBitfield && !SignedEnum && 10771 ED->getNumPositiveBits() == FieldWidth) { 10772 DiagID = diag::warn_signed_bitfield_enum_conversion; 10773 } 10774 10775 if (DiagID) { 10776 S.Diag(InitLoc, DiagID) << Bitfield << ED; 10777 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 10778 SourceRange TypeRange = 10779 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 10780 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 10781 << SignedEnum << TypeRange; 10782 } 10783 10784 // Compute the required bitwidth. If the enum has negative values, we need 10785 // one more bit than the normal number of positive bits to represent the 10786 // sign bit. 10787 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 10788 ED->getNumNegativeBits()) 10789 : ED->getNumPositiveBits(); 10790 10791 // Check the bitwidth. 10792 if (BitsNeeded > FieldWidth) { 10793 Expr *WidthExpr = Bitfield->getBitWidth(); 10794 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 10795 << Bitfield << ED; 10796 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 10797 << BitsNeeded << ED << WidthExpr->getSourceRange(); 10798 } 10799 } 10800 10801 return false; 10802 } 10803 10804 llvm::APSInt Value = Result.Val.getInt(); 10805 10806 unsigned OriginalWidth = Value.getBitWidth(); 10807 10808 if (!Value.isSigned() || Value.isNegative()) 10809 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 10810 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 10811 OriginalWidth = Value.getMinSignedBits(); 10812 10813 if (OriginalWidth <= FieldWidth) 10814 return false; 10815 10816 // Compute the value which the bitfield will contain. 10817 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 10818 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 10819 10820 // Check whether the stored value is equal to the original value. 10821 TruncatedValue = TruncatedValue.extend(OriginalWidth); 10822 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 10823 return false; 10824 10825 // Special-case bitfields of width 1: booleans are naturally 0/1, and 10826 // therefore don't strictly fit into a signed bitfield of width 1. 10827 if (FieldWidth == 1 && Value == 1) 10828 return false; 10829 10830 std::string PrettyValue = Value.toString(10); 10831 std::string PrettyTrunc = TruncatedValue.toString(10); 10832 10833 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 10834 << PrettyValue << PrettyTrunc << OriginalInit->getType() 10835 << Init->getSourceRange(); 10836 10837 return true; 10838 } 10839 10840 /// Analyze the given simple or compound assignment for warning-worthy 10841 /// operations. 10842 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 10843 // Just recurse on the LHS. 10844 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10845 10846 // We want to recurse on the RHS as normal unless we're assigning to 10847 // a bitfield. 10848 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 10849 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 10850 E->getOperatorLoc())) { 10851 // Recurse, ignoring any implicit conversions on the RHS. 10852 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 10853 E->getOperatorLoc()); 10854 } 10855 } 10856 10857 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10858 10859 // Diagnose implicitly sequentially-consistent atomic assignment. 10860 if (E->getLHS()->getType()->isAtomicType()) 10861 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 10862 } 10863 10864 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10865 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 10866 SourceLocation CContext, unsigned diag, 10867 bool pruneControlFlow = false) { 10868 if (pruneControlFlow) { 10869 S.DiagRuntimeBehavior(E->getExprLoc(), E, 10870 S.PDiag(diag) 10871 << SourceType << T << E->getSourceRange() 10872 << SourceRange(CContext)); 10873 return; 10874 } 10875 S.Diag(E->getExprLoc(), diag) 10876 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 10877 } 10878 10879 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10880 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 10881 SourceLocation CContext, 10882 unsigned diag, bool pruneControlFlow = false) { 10883 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 10884 } 10885 10886 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 10887 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 10888 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 10889 } 10890 10891 static void adornObjCBoolConversionDiagWithTernaryFixit( 10892 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 10893 Expr *Ignored = SourceExpr->IgnoreImplicit(); 10894 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 10895 Ignored = OVE->getSourceExpr(); 10896 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 10897 isa<BinaryOperator>(Ignored) || 10898 isa<CXXOperatorCallExpr>(Ignored); 10899 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 10900 if (NeedsParens) 10901 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 10902 << FixItHint::CreateInsertion(EndLoc, ")"); 10903 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 10904 } 10905 10906 /// Diagnose an implicit cast from a floating point value to an integer value. 10907 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 10908 SourceLocation CContext) { 10909 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 10910 const bool PruneWarnings = S.inTemplateInstantiation(); 10911 10912 Expr *InnerE = E->IgnoreParenImpCasts(); 10913 // We also want to warn on, e.g., "int i = -1.234" 10914 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 10915 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 10916 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 10917 10918 const bool IsLiteral = 10919 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 10920 10921 llvm::APFloat Value(0.0); 10922 bool IsConstant = 10923 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 10924 if (!IsConstant) { 10925 if (isObjCSignedCharBool(S, T)) { 10926 return adornObjCBoolConversionDiagWithTernaryFixit( 10927 S, E, 10928 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 10929 << E->getType()); 10930 } 10931 10932 return DiagnoseImpCast(S, E, T, CContext, 10933 diag::warn_impcast_float_integer, PruneWarnings); 10934 } 10935 10936 bool isExact = false; 10937 10938 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 10939 T->hasUnsignedIntegerRepresentation()); 10940 llvm::APFloat::opStatus Result = Value.convertToInteger( 10941 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 10942 10943 // FIXME: Force the precision of the source value down so we don't print 10944 // digits which are usually useless (we don't really care here if we 10945 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 10946 // would automatically print the shortest representation, but it's a bit 10947 // tricky to implement. 10948 SmallString<16> PrettySourceValue; 10949 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 10950 precision = (precision * 59 + 195) / 196; 10951 Value.toString(PrettySourceValue, precision); 10952 10953 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 10954 return adornObjCBoolConversionDiagWithTernaryFixit( 10955 S, E, 10956 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 10957 << PrettySourceValue); 10958 } 10959 10960 if (Result == llvm::APFloat::opOK && isExact) { 10961 if (IsLiteral) return; 10962 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 10963 PruneWarnings); 10964 } 10965 10966 // Conversion of a floating-point value to a non-bool integer where the 10967 // integral part cannot be represented by the integer type is undefined. 10968 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 10969 return DiagnoseImpCast( 10970 S, E, T, CContext, 10971 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 10972 : diag::warn_impcast_float_to_integer_out_of_range, 10973 PruneWarnings); 10974 10975 unsigned DiagID = 0; 10976 if (IsLiteral) { 10977 // Warn on floating point literal to integer. 10978 DiagID = diag::warn_impcast_literal_float_to_integer; 10979 } else if (IntegerValue == 0) { 10980 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 10981 return DiagnoseImpCast(S, E, T, CContext, 10982 diag::warn_impcast_float_integer, PruneWarnings); 10983 } 10984 // Warn on non-zero to zero conversion. 10985 DiagID = diag::warn_impcast_float_to_integer_zero; 10986 } else { 10987 if (IntegerValue.isUnsigned()) { 10988 if (!IntegerValue.isMaxValue()) { 10989 return DiagnoseImpCast(S, E, T, CContext, 10990 diag::warn_impcast_float_integer, PruneWarnings); 10991 } 10992 } else { // IntegerValue.isSigned() 10993 if (!IntegerValue.isMaxSignedValue() && 10994 !IntegerValue.isMinSignedValue()) { 10995 return DiagnoseImpCast(S, E, T, CContext, 10996 diag::warn_impcast_float_integer, PruneWarnings); 10997 } 10998 } 10999 // Warn on evaluatable floating point expression to integer conversion. 11000 DiagID = diag::warn_impcast_float_to_integer; 11001 } 11002 11003 SmallString<16> PrettyTargetValue; 11004 if (IsBool) 11005 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11006 else 11007 IntegerValue.toString(PrettyTargetValue); 11008 11009 if (PruneWarnings) { 11010 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11011 S.PDiag(DiagID) 11012 << E->getType() << T.getUnqualifiedType() 11013 << PrettySourceValue << PrettyTargetValue 11014 << E->getSourceRange() << SourceRange(CContext)); 11015 } else { 11016 S.Diag(E->getExprLoc(), DiagID) 11017 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11018 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11019 } 11020 } 11021 11022 /// Analyze the given compound assignment for the possible losing of 11023 /// floating-point precision. 11024 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11025 assert(isa<CompoundAssignOperator>(E) && 11026 "Must be compound assignment operation"); 11027 // Recurse on the LHS and RHS in here 11028 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11029 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11030 11031 if (E->getLHS()->getType()->isAtomicType()) 11032 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11033 11034 // Now check the outermost expression 11035 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11036 const auto *RBT = cast<CompoundAssignOperator>(E) 11037 ->getComputationResultType() 11038 ->getAs<BuiltinType>(); 11039 11040 // The below checks assume source is floating point. 11041 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11042 11043 // If source is floating point but target is an integer. 11044 if (ResultBT->isInteger()) 11045 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11046 E->getExprLoc(), diag::warn_impcast_float_integer); 11047 11048 if (!ResultBT->isFloatingPoint()) 11049 return; 11050 11051 // If both source and target are floating points, warn about losing precision. 11052 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11053 QualType(ResultBT, 0), QualType(RBT, 0)); 11054 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11055 // warn about dropping FP rank. 11056 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11057 diag::warn_impcast_float_result_precision); 11058 } 11059 11060 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11061 IntRange Range) { 11062 if (!Range.Width) return "0"; 11063 11064 llvm::APSInt ValueInRange = Value; 11065 ValueInRange.setIsSigned(!Range.NonNegative); 11066 ValueInRange = ValueInRange.trunc(Range.Width); 11067 return ValueInRange.toString(10); 11068 } 11069 11070 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11071 if (!isa<ImplicitCastExpr>(Ex)) 11072 return false; 11073 11074 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11075 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11076 const Type *Source = 11077 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11078 if (Target->isDependentType()) 11079 return false; 11080 11081 const BuiltinType *FloatCandidateBT = 11082 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11083 const Type *BoolCandidateType = ToBool ? Target : Source; 11084 11085 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11086 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11087 } 11088 11089 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11090 SourceLocation CC) { 11091 unsigned NumArgs = TheCall->getNumArgs(); 11092 for (unsigned i = 0; i < NumArgs; ++i) { 11093 Expr *CurrA = TheCall->getArg(i); 11094 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11095 continue; 11096 11097 bool IsSwapped = ((i > 0) && 11098 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11099 IsSwapped |= ((i < (NumArgs - 1)) && 11100 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11101 if (IsSwapped) { 11102 // Warn on this floating-point to bool conversion. 11103 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11104 CurrA->getType(), CC, 11105 diag::warn_impcast_floating_point_to_bool); 11106 } 11107 } 11108 } 11109 11110 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11111 SourceLocation CC) { 11112 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11113 E->getExprLoc())) 11114 return; 11115 11116 // Don't warn on functions which have return type nullptr_t. 11117 if (isa<CallExpr>(E)) 11118 return; 11119 11120 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11121 const Expr::NullPointerConstantKind NullKind = 11122 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11123 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11124 return; 11125 11126 // Return if target type is a safe conversion. 11127 if (T->isAnyPointerType() || T->isBlockPointerType() || 11128 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11129 return; 11130 11131 SourceLocation Loc = E->getSourceRange().getBegin(); 11132 11133 // Venture through the macro stacks to get to the source of macro arguments. 11134 // The new location is a better location than the complete location that was 11135 // passed in. 11136 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11137 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11138 11139 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11140 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11141 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11142 Loc, S.SourceMgr, S.getLangOpts()); 11143 if (MacroName == "NULL") 11144 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11145 } 11146 11147 // Only warn if the null and context location are in the same macro expansion. 11148 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11149 return; 11150 11151 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11152 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11153 << FixItHint::CreateReplacement(Loc, 11154 S.getFixItZeroLiteralForType(T, Loc)); 11155 } 11156 11157 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11158 ObjCArrayLiteral *ArrayLiteral); 11159 11160 static void 11161 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11162 ObjCDictionaryLiteral *DictionaryLiteral); 11163 11164 /// Check a single element within a collection literal against the 11165 /// target element type. 11166 static void checkObjCCollectionLiteralElement(Sema &S, 11167 QualType TargetElementType, 11168 Expr *Element, 11169 unsigned ElementKind) { 11170 // Skip a bitcast to 'id' or qualified 'id'. 11171 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11172 if (ICE->getCastKind() == CK_BitCast && 11173 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11174 Element = ICE->getSubExpr(); 11175 } 11176 11177 QualType ElementType = Element->getType(); 11178 ExprResult ElementResult(Element); 11179 if (ElementType->getAs<ObjCObjectPointerType>() && 11180 S.CheckSingleAssignmentConstraints(TargetElementType, 11181 ElementResult, 11182 false, false) 11183 != Sema::Compatible) { 11184 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11185 << ElementType << ElementKind << TargetElementType 11186 << Element->getSourceRange(); 11187 } 11188 11189 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11190 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11191 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11192 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11193 } 11194 11195 /// Check an Objective-C array literal being converted to the given 11196 /// target type. 11197 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11198 ObjCArrayLiteral *ArrayLiteral) { 11199 if (!S.NSArrayDecl) 11200 return; 11201 11202 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11203 if (!TargetObjCPtr) 11204 return; 11205 11206 if (TargetObjCPtr->isUnspecialized() || 11207 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11208 != S.NSArrayDecl->getCanonicalDecl()) 11209 return; 11210 11211 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11212 if (TypeArgs.size() != 1) 11213 return; 11214 11215 QualType TargetElementType = TypeArgs[0]; 11216 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11217 checkObjCCollectionLiteralElement(S, TargetElementType, 11218 ArrayLiteral->getElement(I), 11219 0); 11220 } 11221 } 11222 11223 /// Check an Objective-C dictionary literal being converted to the given 11224 /// target type. 11225 static void 11226 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11227 ObjCDictionaryLiteral *DictionaryLiteral) { 11228 if (!S.NSDictionaryDecl) 11229 return; 11230 11231 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11232 if (!TargetObjCPtr) 11233 return; 11234 11235 if (TargetObjCPtr->isUnspecialized() || 11236 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11237 != S.NSDictionaryDecl->getCanonicalDecl()) 11238 return; 11239 11240 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11241 if (TypeArgs.size() != 2) 11242 return; 11243 11244 QualType TargetKeyType = TypeArgs[0]; 11245 QualType TargetObjectType = TypeArgs[1]; 11246 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11247 auto Element = DictionaryLiteral->getKeyValueElement(I); 11248 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11249 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11250 } 11251 } 11252 11253 // Helper function to filter out cases for constant width constant conversion. 11254 // Don't warn on char array initialization or for non-decimal values. 11255 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11256 SourceLocation CC) { 11257 // If initializing from a constant, and the constant starts with '0', 11258 // then it is a binary, octal, or hexadecimal. Allow these constants 11259 // to fill all the bits, even if there is a sign change. 11260 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11261 const char FirstLiteralCharacter = 11262 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11263 if (FirstLiteralCharacter == '0') 11264 return false; 11265 } 11266 11267 // If the CC location points to a '{', and the type is char, then assume 11268 // assume it is an array initialization. 11269 if (CC.isValid() && T->isCharType()) { 11270 const char FirstContextCharacter = 11271 S.getSourceManager().getCharacterData(CC)[0]; 11272 if (FirstContextCharacter == '{') 11273 return false; 11274 } 11275 11276 return true; 11277 } 11278 11279 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11280 const auto *IL = dyn_cast<IntegerLiteral>(E); 11281 if (!IL) { 11282 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11283 if (UO->getOpcode() == UO_Minus) 11284 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11285 } 11286 } 11287 11288 return IL; 11289 } 11290 11291 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11292 E = E->IgnoreParenImpCasts(); 11293 SourceLocation ExprLoc = E->getExprLoc(); 11294 11295 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11296 BinaryOperator::Opcode Opc = BO->getOpcode(); 11297 Expr::EvalResult Result; 11298 // Do not diagnose unsigned shifts. 11299 if (Opc == BO_Shl) { 11300 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11301 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11302 if (LHS && LHS->getValue() == 0) 11303 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11304 else if (!E->isValueDependent() && LHS && RHS && 11305 RHS->getValue().isNonNegative() && 11306 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11307 S.Diag(ExprLoc, diag::warn_left_shift_always) 11308 << (Result.Val.getInt() != 0); 11309 else if (E->getType()->isSignedIntegerType()) 11310 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11311 } 11312 } 11313 11314 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11315 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11316 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11317 if (!LHS || !RHS) 11318 return; 11319 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11320 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11321 // Do not diagnose common idioms. 11322 return; 11323 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11324 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11325 } 11326 } 11327 11328 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11329 SourceLocation CC, 11330 bool *ICContext = nullptr, 11331 bool IsListInit = false) { 11332 if (E->isTypeDependent() || E->isValueDependent()) return; 11333 11334 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11335 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11336 if (Source == Target) return; 11337 if (Target->isDependentType()) return; 11338 11339 // If the conversion context location is invalid don't complain. We also 11340 // don't want to emit a warning if the issue occurs from the expansion of 11341 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11342 // delay this check as long as possible. Once we detect we are in that 11343 // scenario, we just return. 11344 if (CC.isInvalid()) 11345 return; 11346 11347 if (Source->isAtomicType()) 11348 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 11349 11350 // Diagnose implicit casts to bool. 11351 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 11352 if (isa<StringLiteral>(E)) 11353 // Warn on string literal to bool. Checks for string literals in logical 11354 // and expressions, for instance, assert(0 && "error here"), are 11355 // prevented by a check in AnalyzeImplicitConversions(). 11356 return DiagnoseImpCast(S, E, T, CC, 11357 diag::warn_impcast_string_literal_to_bool); 11358 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 11359 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 11360 // This covers the literal expressions that evaluate to Objective-C 11361 // objects. 11362 return DiagnoseImpCast(S, E, T, CC, 11363 diag::warn_impcast_objective_c_literal_to_bool); 11364 } 11365 if (Source->isPointerType() || Source->canDecayToPointerType()) { 11366 // Warn on pointer to bool conversion that is always true. 11367 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 11368 SourceRange(CC)); 11369 } 11370 } 11371 11372 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 11373 // is a typedef for signed char (macOS), then that constant value has to be 1 11374 // or 0. 11375 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 11376 Expr::EvalResult Result; 11377 if (E->EvaluateAsInt(Result, S.getASTContext(), 11378 Expr::SE_AllowSideEffects)) { 11379 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 11380 adornObjCBoolConversionDiagWithTernaryFixit( 11381 S, E, 11382 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 11383 << Result.Val.getInt().toString(10)); 11384 } 11385 return; 11386 } 11387 } 11388 11389 // Check implicit casts from Objective-C collection literals to specialized 11390 // collection types, e.g., NSArray<NSString *> *. 11391 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 11392 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 11393 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 11394 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 11395 11396 // Strip vector types. 11397 if (isa<VectorType>(Source)) { 11398 if (!isa<VectorType>(Target)) { 11399 if (S.SourceMgr.isInSystemMacro(CC)) 11400 return; 11401 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 11402 } 11403 11404 // If the vector cast is cast between two vectors of the same size, it is 11405 // a bitcast, not a conversion. 11406 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 11407 return; 11408 11409 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 11410 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 11411 } 11412 if (auto VecTy = dyn_cast<VectorType>(Target)) 11413 Target = VecTy->getElementType().getTypePtr(); 11414 11415 // Strip complex types. 11416 if (isa<ComplexType>(Source)) { 11417 if (!isa<ComplexType>(Target)) { 11418 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 11419 return; 11420 11421 return DiagnoseImpCast(S, E, T, CC, 11422 S.getLangOpts().CPlusPlus 11423 ? diag::err_impcast_complex_scalar 11424 : diag::warn_impcast_complex_scalar); 11425 } 11426 11427 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 11428 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 11429 } 11430 11431 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 11432 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 11433 11434 // If the source is floating point... 11435 if (SourceBT && SourceBT->isFloatingPoint()) { 11436 // ...and the target is floating point... 11437 if (TargetBT && TargetBT->isFloatingPoint()) { 11438 // ...then warn if we're dropping FP rank. 11439 11440 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11441 QualType(SourceBT, 0), QualType(TargetBT, 0)); 11442 if (Order > 0) { 11443 // Don't warn about float constants that are precisely 11444 // representable in the target type. 11445 Expr::EvalResult result; 11446 if (E->EvaluateAsRValue(result, S.Context)) { 11447 // Value might be a float, a float vector, or a float complex. 11448 if (IsSameFloatAfterCast(result.Val, 11449 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 11450 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 11451 return; 11452 } 11453 11454 if (S.SourceMgr.isInSystemMacro(CC)) 11455 return; 11456 11457 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 11458 } 11459 // ... or possibly if we're increasing rank, too 11460 else if (Order < 0) { 11461 if (S.SourceMgr.isInSystemMacro(CC)) 11462 return; 11463 11464 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 11465 } 11466 return; 11467 } 11468 11469 // If the target is integral, always warn. 11470 if (TargetBT && TargetBT->isInteger()) { 11471 if (S.SourceMgr.isInSystemMacro(CC)) 11472 return; 11473 11474 DiagnoseFloatingImpCast(S, E, T, CC); 11475 } 11476 11477 // Detect the case where a call result is converted from floating-point to 11478 // to bool, and the final argument to the call is converted from bool, to 11479 // discover this typo: 11480 // 11481 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 11482 // 11483 // FIXME: This is an incredibly special case; is there some more general 11484 // way to detect this class of misplaced-parentheses bug? 11485 if (Target->isBooleanType() && isa<CallExpr>(E)) { 11486 // Check last argument of function call to see if it is an 11487 // implicit cast from a type matching the type the result 11488 // is being cast to. 11489 CallExpr *CEx = cast<CallExpr>(E); 11490 if (unsigned NumArgs = CEx->getNumArgs()) { 11491 Expr *LastA = CEx->getArg(NumArgs - 1); 11492 Expr *InnerE = LastA->IgnoreParenImpCasts(); 11493 if (isa<ImplicitCastExpr>(LastA) && 11494 InnerE->getType()->isBooleanType()) { 11495 // Warn on this floating-point to bool conversion 11496 DiagnoseImpCast(S, E, T, CC, 11497 diag::warn_impcast_floating_point_to_bool); 11498 } 11499 } 11500 } 11501 return; 11502 } 11503 11504 // Valid casts involving fixed point types should be accounted for here. 11505 if (Source->isFixedPointType()) { 11506 if (Target->isUnsaturatedFixedPointType()) { 11507 Expr::EvalResult Result; 11508 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 11509 S.isConstantEvaluated())) { 11510 APFixedPoint Value = Result.Val.getFixedPoint(); 11511 APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 11512 APFixedPoint MinVal = S.Context.getFixedPointMin(T); 11513 if (Value > MaxVal || Value < MinVal) { 11514 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11515 S.PDiag(diag::warn_impcast_fixed_point_range) 11516 << Value.toString() << T 11517 << E->getSourceRange() 11518 << clang::SourceRange(CC)); 11519 return; 11520 } 11521 } 11522 } else if (Target->isIntegerType()) { 11523 Expr::EvalResult Result; 11524 if (!S.isConstantEvaluated() && 11525 E->EvaluateAsFixedPoint(Result, S.Context, 11526 Expr::SE_AllowSideEffects)) { 11527 APFixedPoint FXResult = Result.Val.getFixedPoint(); 11528 11529 bool Overflowed; 11530 llvm::APSInt IntResult = FXResult.convertToInt( 11531 S.Context.getIntWidth(T), 11532 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 11533 11534 if (Overflowed) { 11535 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11536 S.PDiag(diag::warn_impcast_fixed_point_range) 11537 << FXResult.toString() << T 11538 << E->getSourceRange() 11539 << clang::SourceRange(CC)); 11540 return; 11541 } 11542 } 11543 } 11544 } else if (Target->isUnsaturatedFixedPointType()) { 11545 if (Source->isIntegerType()) { 11546 Expr::EvalResult Result; 11547 if (!S.isConstantEvaluated() && 11548 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11549 llvm::APSInt Value = Result.Val.getInt(); 11550 11551 bool Overflowed; 11552 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 11553 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 11554 11555 if (Overflowed) { 11556 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11557 S.PDiag(diag::warn_impcast_fixed_point_range) 11558 << Value.toString(/*Radix=*/10) << T 11559 << E->getSourceRange() 11560 << clang::SourceRange(CC)); 11561 return; 11562 } 11563 } 11564 } 11565 } 11566 11567 // If we are casting an integer type to a floating point type without 11568 // initialization-list syntax, we might lose accuracy if the floating 11569 // point type has a narrower significand than the integer type. 11570 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 11571 TargetBT->isFloatingType() && !IsListInit) { 11572 // Determine the number of precision bits in the source integer type. 11573 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11574 unsigned int SourcePrecision = SourceRange.Width; 11575 11576 // Determine the number of precision bits in the 11577 // target floating point type. 11578 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 11579 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11580 11581 if (SourcePrecision > 0 && TargetPrecision > 0 && 11582 SourcePrecision > TargetPrecision) { 11583 11584 llvm::APSInt SourceInt; 11585 if (E->isIntegerConstantExpr(SourceInt, S.Context)) { 11586 // If the source integer is a constant, convert it to the target 11587 // floating point type. Issue a warning if the value changes 11588 // during the whole conversion. 11589 llvm::APFloat TargetFloatValue( 11590 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11591 llvm::APFloat::opStatus ConversionStatus = 11592 TargetFloatValue.convertFromAPInt( 11593 SourceInt, SourceBT->isSignedInteger(), 11594 llvm::APFloat::rmNearestTiesToEven); 11595 11596 if (ConversionStatus != llvm::APFloat::opOK) { 11597 std::string PrettySourceValue = SourceInt.toString(10); 11598 SmallString<32> PrettyTargetValue; 11599 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 11600 11601 S.DiagRuntimeBehavior( 11602 E->getExprLoc(), E, 11603 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 11604 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11605 << E->getSourceRange() << clang::SourceRange(CC)); 11606 } 11607 } else { 11608 // Otherwise, the implicit conversion may lose precision. 11609 DiagnoseImpCast(S, E, T, CC, 11610 diag::warn_impcast_integer_float_precision); 11611 } 11612 } 11613 } 11614 11615 DiagnoseNullConversion(S, E, T, CC); 11616 11617 S.DiscardMisalignedMemberAddress(Target, E); 11618 11619 if (Target->isBooleanType()) 11620 DiagnoseIntInBoolContext(S, E); 11621 11622 if (!Source->isIntegerType() || !Target->isIntegerType()) 11623 return; 11624 11625 // TODO: remove this early return once the false positives for constant->bool 11626 // in templates, macros, etc, are reduced or removed. 11627 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 11628 return; 11629 11630 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 11631 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 11632 return adornObjCBoolConversionDiagWithTernaryFixit( 11633 S, E, 11634 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 11635 << E->getType()); 11636 } 11637 11638 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11639 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 11640 11641 if (SourceRange.Width > TargetRange.Width) { 11642 // If the source is a constant, use a default-on diagnostic. 11643 // TODO: this should happen for bitfield stores, too. 11644 Expr::EvalResult Result; 11645 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 11646 S.isConstantEvaluated())) { 11647 llvm::APSInt Value(32); 11648 Value = Result.Val.getInt(); 11649 11650 if (S.SourceMgr.isInSystemMacro(CC)) 11651 return; 11652 11653 std::string PrettySourceValue = Value.toString(10); 11654 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11655 11656 S.DiagRuntimeBehavior( 11657 E->getExprLoc(), E, 11658 S.PDiag(diag::warn_impcast_integer_precision_constant) 11659 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11660 << E->getSourceRange() << clang::SourceRange(CC)); 11661 return; 11662 } 11663 11664 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 11665 if (S.SourceMgr.isInSystemMacro(CC)) 11666 return; 11667 11668 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 11669 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 11670 /* pruneControlFlow */ true); 11671 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 11672 } 11673 11674 if (TargetRange.Width > SourceRange.Width) { 11675 if (auto *UO = dyn_cast<UnaryOperator>(E)) 11676 if (UO->getOpcode() == UO_Minus) 11677 if (Source->isUnsignedIntegerType()) { 11678 if (Target->isUnsignedIntegerType()) 11679 return DiagnoseImpCast(S, E, T, CC, 11680 diag::warn_impcast_high_order_zero_bits); 11681 if (Target->isSignedIntegerType()) 11682 return DiagnoseImpCast(S, E, T, CC, 11683 diag::warn_impcast_nonnegative_result); 11684 } 11685 } 11686 11687 if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && 11688 SourceRange.NonNegative && Source->isSignedIntegerType()) { 11689 // Warn when doing a signed to signed conversion, warn if the positive 11690 // source value is exactly the width of the target type, which will 11691 // cause a negative value to be stored. 11692 11693 Expr::EvalResult Result; 11694 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 11695 !S.SourceMgr.isInSystemMacro(CC)) { 11696 llvm::APSInt Value = Result.Val.getInt(); 11697 if (isSameWidthConstantConversion(S, E, T, CC)) { 11698 std::string PrettySourceValue = Value.toString(10); 11699 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11700 11701 S.DiagRuntimeBehavior( 11702 E->getExprLoc(), E, 11703 S.PDiag(diag::warn_impcast_integer_precision_constant) 11704 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11705 << E->getSourceRange() << clang::SourceRange(CC)); 11706 return; 11707 } 11708 } 11709 11710 // Fall through for non-constants to give a sign conversion warning. 11711 } 11712 11713 if ((TargetRange.NonNegative && !SourceRange.NonNegative) || 11714 (!TargetRange.NonNegative && SourceRange.NonNegative && 11715 SourceRange.Width == TargetRange.Width)) { 11716 if (S.SourceMgr.isInSystemMacro(CC)) 11717 return; 11718 11719 unsigned DiagID = diag::warn_impcast_integer_sign; 11720 11721 // Traditionally, gcc has warned about this under -Wsign-compare. 11722 // We also want to warn about it in -Wconversion. 11723 // So if -Wconversion is off, use a completely identical diagnostic 11724 // in the sign-compare group. 11725 // The conditional-checking code will 11726 if (ICContext) { 11727 DiagID = diag::warn_impcast_integer_sign_conditional; 11728 *ICContext = true; 11729 } 11730 11731 return DiagnoseImpCast(S, E, T, CC, DiagID); 11732 } 11733 11734 // Diagnose conversions between different enumeration types. 11735 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 11736 // type, to give us better diagnostics. 11737 QualType SourceType = E->getType(); 11738 if (!S.getLangOpts().CPlusPlus) { 11739 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 11740 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 11741 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 11742 SourceType = S.Context.getTypeDeclType(Enum); 11743 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 11744 } 11745 } 11746 11747 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 11748 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 11749 if (SourceEnum->getDecl()->hasNameForLinkage() && 11750 TargetEnum->getDecl()->hasNameForLinkage() && 11751 SourceEnum != TargetEnum) { 11752 if (S.SourceMgr.isInSystemMacro(CC)) 11753 return; 11754 11755 return DiagnoseImpCast(S, E, SourceType, T, CC, 11756 diag::warn_impcast_different_enum_types); 11757 } 11758 } 11759 11760 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11761 SourceLocation CC, QualType T); 11762 11763 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 11764 SourceLocation CC, bool &ICContext) { 11765 E = E->IgnoreParenImpCasts(); 11766 11767 if (isa<ConditionalOperator>(E)) 11768 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T); 11769 11770 AnalyzeImplicitConversions(S, E, CC); 11771 if (E->getType() != T) 11772 return CheckImplicitConversion(S, E, T, CC, &ICContext); 11773 } 11774 11775 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11776 SourceLocation CC, QualType T) { 11777 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 11778 11779 bool Suspicious = false; 11780 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); 11781 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 11782 11783 if (T->isBooleanType()) 11784 DiagnoseIntInBoolContext(S, E); 11785 11786 // If -Wconversion would have warned about either of the candidates 11787 // for a signedness conversion to the context type... 11788 if (!Suspicious) return; 11789 11790 // ...but it's currently ignored... 11791 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 11792 return; 11793 11794 // ...then check whether it would have warned about either of the 11795 // candidates for a signedness conversion to the condition type. 11796 if (E->getType() == T) return; 11797 11798 Suspicious = false; 11799 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), 11800 E->getType(), CC, &Suspicious); 11801 if (!Suspicious) 11802 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 11803 E->getType(), CC, &Suspicious); 11804 } 11805 11806 /// Check conversion of given expression to boolean. 11807 /// Input argument E is a logical expression. 11808 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 11809 if (S.getLangOpts().Bool) 11810 return; 11811 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 11812 return; 11813 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 11814 } 11815 11816 namespace { 11817 struct AnalyzeImplicitConversionsWorkItem { 11818 Expr *E; 11819 SourceLocation CC; 11820 bool IsListInit; 11821 }; 11822 } 11823 11824 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 11825 /// that should be visited are added to WorkList. 11826 static void AnalyzeImplicitConversions( 11827 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 11828 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 11829 Expr *OrigE = Item.E; 11830 SourceLocation CC = Item.CC; 11831 11832 QualType T = OrigE->getType(); 11833 Expr *E = OrigE->IgnoreParenImpCasts(); 11834 11835 // Propagate whether we are in a C++ list initialization expression. 11836 // If so, we do not issue warnings for implicit int-float conversion 11837 // precision loss, because C++11 narrowing already handles it. 11838 bool IsListInit = Item.IsListInit || 11839 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 11840 11841 if (E->isTypeDependent() || E->isValueDependent()) 11842 return; 11843 11844 Expr *SourceExpr = E; 11845 // Examine, but don't traverse into the source expression of an 11846 // OpaqueValueExpr, since it may have multiple parents and we don't want to 11847 // emit duplicate diagnostics. Its fine to examine the form or attempt to 11848 // evaluate it in the context of checking the specific conversion to T though. 11849 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 11850 if (auto *Src = OVE->getSourceExpr()) 11851 SourceExpr = Src; 11852 11853 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 11854 if (UO->getOpcode() == UO_Not && 11855 UO->getSubExpr()->isKnownToHaveBooleanValue()) 11856 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 11857 << OrigE->getSourceRange() << T->isBooleanType() 11858 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 11859 11860 // For conditional operators, we analyze the arguments as if they 11861 // were being fed directly into the output. 11862 if (auto *CO = dyn_cast<ConditionalOperator>(SourceExpr)) { 11863 CheckConditionalOperator(S, CO, CC, T); 11864 return; 11865 } 11866 11867 // Check implicit argument conversions for function calls. 11868 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 11869 CheckImplicitArgumentConversions(S, Call, CC); 11870 11871 // Go ahead and check any implicit conversions we might have skipped. 11872 // The non-canonical typecheck is just an optimization; 11873 // CheckImplicitConversion will filter out dead implicit conversions. 11874 if (SourceExpr->getType() != T) 11875 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 11876 11877 // Now continue drilling into this expression. 11878 11879 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 11880 // The bound subexpressions in a PseudoObjectExpr are not reachable 11881 // as transitive children. 11882 // FIXME: Use a more uniform representation for this. 11883 for (auto *SE : POE->semantics()) 11884 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 11885 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 11886 } 11887 11888 // Skip past explicit casts. 11889 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 11890 E = CE->getSubExpr()->IgnoreParenImpCasts(); 11891 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 11892 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11893 WorkList.push_back({E, CC, IsListInit}); 11894 return; 11895 } 11896 11897 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11898 // Do a somewhat different check with comparison operators. 11899 if (BO->isComparisonOp()) 11900 return AnalyzeComparison(S, BO); 11901 11902 // And with simple assignments. 11903 if (BO->getOpcode() == BO_Assign) 11904 return AnalyzeAssignment(S, BO); 11905 // And with compound assignments. 11906 if (BO->isAssignmentOp()) 11907 return AnalyzeCompoundAssignment(S, BO); 11908 } 11909 11910 // These break the otherwise-useful invariant below. Fortunately, 11911 // we don't really need to recurse into them, because any internal 11912 // expressions should have been analyzed already when they were 11913 // built into statements. 11914 if (isa<StmtExpr>(E)) return; 11915 11916 // Don't descend into unevaluated contexts. 11917 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 11918 11919 // Now just recurse over the expression's children. 11920 CC = E->getExprLoc(); 11921 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 11922 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 11923 for (Stmt *SubStmt : E->children()) { 11924 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 11925 if (!ChildExpr) 11926 continue; 11927 11928 if (IsLogicalAndOperator && 11929 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 11930 // Ignore checking string literals that are in logical and operators. 11931 // This is a common pattern for asserts. 11932 continue; 11933 WorkList.push_back({ChildExpr, CC, IsListInit}); 11934 } 11935 11936 if (BO && BO->isLogicalOp()) { 11937 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 11938 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 11939 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 11940 11941 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 11942 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 11943 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 11944 } 11945 11946 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 11947 if (U->getOpcode() == UO_LNot) { 11948 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 11949 } else if (U->getOpcode() != UO_AddrOf) { 11950 if (U->getSubExpr()->getType()->isAtomicType()) 11951 S.Diag(U->getSubExpr()->getBeginLoc(), 11952 diag::warn_atomic_implicit_seq_cst); 11953 } 11954 } 11955 } 11956 11957 /// AnalyzeImplicitConversions - Find and report any interesting 11958 /// implicit conversions in the given expression. There are a couple 11959 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 11960 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 11961 bool IsListInit/*= false*/) { 11962 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 11963 WorkList.push_back({OrigE, CC, IsListInit}); 11964 while (!WorkList.empty()) 11965 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 11966 } 11967 11968 /// Diagnose integer type and any valid implicit conversion to it. 11969 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 11970 // Taking into account implicit conversions, 11971 // allow any integer. 11972 if (!E->getType()->isIntegerType()) { 11973 S.Diag(E->getBeginLoc(), 11974 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 11975 return true; 11976 } 11977 // Potentially emit standard warnings for implicit conversions if enabled 11978 // using -Wconversion. 11979 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 11980 return false; 11981 } 11982 11983 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 11984 // Returns true when emitting a warning about taking the address of a reference. 11985 static bool CheckForReference(Sema &SemaRef, const Expr *E, 11986 const PartialDiagnostic &PD) { 11987 E = E->IgnoreParenImpCasts(); 11988 11989 const FunctionDecl *FD = nullptr; 11990 11991 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 11992 if (!DRE->getDecl()->getType()->isReferenceType()) 11993 return false; 11994 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 11995 if (!M->getMemberDecl()->getType()->isReferenceType()) 11996 return false; 11997 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 11998 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 11999 return false; 12000 FD = Call->getDirectCallee(); 12001 } else { 12002 return false; 12003 } 12004 12005 SemaRef.Diag(E->getExprLoc(), PD); 12006 12007 // If possible, point to location of function. 12008 if (FD) { 12009 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12010 } 12011 12012 return true; 12013 } 12014 12015 // Returns true if the SourceLocation is expanded from any macro body. 12016 // Returns false if the SourceLocation is invalid, is from not in a macro 12017 // expansion, or is from expanded from a top-level macro argument. 12018 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12019 if (Loc.isInvalid()) 12020 return false; 12021 12022 while (Loc.isMacroID()) { 12023 if (SM.isMacroBodyExpansion(Loc)) 12024 return true; 12025 Loc = SM.getImmediateMacroCallerLoc(Loc); 12026 } 12027 12028 return false; 12029 } 12030 12031 /// Diagnose pointers that are always non-null. 12032 /// \param E the expression containing the pointer 12033 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12034 /// compared to a null pointer 12035 /// \param IsEqual True when the comparison is equal to a null pointer 12036 /// \param Range Extra SourceRange to highlight in the diagnostic 12037 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12038 Expr::NullPointerConstantKind NullKind, 12039 bool IsEqual, SourceRange Range) { 12040 if (!E) 12041 return; 12042 12043 // Don't warn inside macros. 12044 if (E->getExprLoc().isMacroID()) { 12045 const SourceManager &SM = getSourceManager(); 12046 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12047 IsInAnyMacroBody(SM, Range.getBegin())) 12048 return; 12049 } 12050 E = E->IgnoreImpCasts(); 12051 12052 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12053 12054 if (isa<CXXThisExpr>(E)) { 12055 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12056 : diag::warn_this_bool_conversion; 12057 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12058 return; 12059 } 12060 12061 bool IsAddressOf = false; 12062 12063 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12064 if (UO->getOpcode() != UO_AddrOf) 12065 return; 12066 IsAddressOf = true; 12067 E = UO->getSubExpr(); 12068 } 12069 12070 if (IsAddressOf) { 12071 unsigned DiagID = IsCompare 12072 ? diag::warn_address_of_reference_null_compare 12073 : diag::warn_address_of_reference_bool_conversion; 12074 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12075 << IsEqual; 12076 if (CheckForReference(*this, E, PD)) { 12077 return; 12078 } 12079 } 12080 12081 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12082 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12083 std::string Str; 12084 llvm::raw_string_ostream S(Str); 12085 E->printPretty(S, nullptr, getPrintingPolicy()); 12086 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12087 : diag::warn_cast_nonnull_to_bool; 12088 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12089 << E->getSourceRange() << Range << IsEqual; 12090 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12091 }; 12092 12093 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12094 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12095 if (auto *Callee = Call->getDirectCallee()) { 12096 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12097 ComplainAboutNonnullParamOrCall(A); 12098 return; 12099 } 12100 } 12101 } 12102 12103 // Expect to find a single Decl. Skip anything more complicated. 12104 ValueDecl *D = nullptr; 12105 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12106 D = R->getDecl(); 12107 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12108 D = M->getMemberDecl(); 12109 } 12110 12111 // Weak Decls can be null. 12112 if (!D || D->isWeak()) 12113 return; 12114 12115 // Check for parameter decl with nonnull attribute 12116 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12117 if (getCurFunction() && 12118 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12119 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12120 ComplainAboutNonnullParamOrCall(A); 12121 return; 12122 } 12123 12124 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12125 // Skip function template not specialized yet. 12126 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12127 return; 12128 auto ParamIter = llvm::find(FD->parameters(), PV); 12129 assert(ParamIter != FD->param_end()); 12130 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12131 12132 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12133 if (!NonNull->args_size()) { 12134 ComplainAboutNonnullParamOrCall(NonNull); 12135 return; 12136 } 12137 12138 for (const ParamIdx &ArgNo : NonNull->args()) { 12139 if (ArgNo.getASTIndex() == ParamNo) { 12140 ComplainAboutNonnullParamOrCall(NonNull); 12141 return; 12142 } 12143 } 12144 } 12145 } 12146 } 12147 } 12148 12149 QualType T = D->getType(); 12150 const bool IsArray = T->isArrayType(); 12151 const bool IsFunction = T->isFunctionType(); 12152 12153 // Address of function is used to silence the function warning. 12154 if (IsAddressOf && IsFunction) { 12155 return; 12156 } 12157 12158 // Found nothing. 12159 if (!IsAddressOf && !IsFunction && !IsArray) 12160 return; 12161 12162 // Pretty print the expression for the diagnostic. 12163 std::string Str; 12164 llvm::raw_string_ostream S(Str); 12165 E->printPretty(S, nullptr, getPrintingPolicy()); 12166 12167 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12168 : diag::warn_impcast_pointer_to_bool; 12169 enum { 12170 AddressOf, 12171 FunctionPointer, 12172 ArrayPointer 12173 } DiagType; 12174 if (IsAddressOf) 12175 DiagType = AddressOf; 12176 else if (IsFunction) 12177 DiagType = FunctionPointer; 12178 else if (IsArray) 12179 DiagType = ArrayPointer; 12180 else 12181 llvm_unreachable("Could not determine diagnostic."); 12182 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12183 << Range << IsEqual; 12184 12185 if (!IsFunction) 12186 return; 12187 12188 // Suggest '&' to silence the function warning. 12189 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12190 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12191 12192 // Check to see if '()' fixit should be emitted. 12193 QualType ReturnType; 12194 UnresolvedSet<4> NonTemplateOverloads; 12195 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12196 if (ReturnType.isNull()) 12197 return; 12198 12199 if (IsCompare) { 12200 // There are two cases here. If there is null constant, the only suggest 12201 // for a pointer return type. If the null is 0, then suggest if the return 12202 // type is a pointer or an integer type. 12203 if (!ReturnType->isPointerType()) { 12204 if (NullKind == Expr::NPCK_ZeroExpression || 12205 NullKind == Expr::NPCK_ZeroLiteral) { 12206 if (!ReturnType->isIntegerType()) 12207 return; 12208 } else { 12209 return; 12210 } 12211 } 12212 } else { // !IsCompare 12213 // For function to bool, only suggest if the function pointer has bool 12214 // return type. 12215 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12216 return; 12217 } 12218 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12219 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12220 } 12221 12222 /// Diagnoses "dangerous" implicit conversions within the given 12223 /// expression (which is a full expression). Implements -Wconversion 12224 /// and -Wsign-compare. 12225 /// 12226 /// \param CC the "context" location of the implicit conversion, i.e. 12227 /// the most location of the syntactic entity requiring the implicit 12228 /// conversion 12229 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12230 // Don't diagnose in unevaluated contexts. 12231 if (isUnevaluatedContext()) 12232 return; 12233 12234 // Don't diagnose for value- or type-dependent expressions. 12235 if (E->isTypeDependent() || E->isValueDependent()) 12236 return; 12237 12238 // Check for array bounds violations in cases where the check isn't triggered 12239 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12240 // ArraySubscriptExpr is on the RHS of a variable initialization. 12241 CheckArrayAccess(E); 12242 12243 // This is not the right CC for (e.g.) a variable initialization. 12244 AnalyzeImplicitConversions(*this, E, CC); 12245 } 12246 12247 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12248 /// Input argument E is a logical expression. 12249 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12250 ::CheckBoolLikeConversion(*this, E, CC); 12251 } 12252 12253 /// Diagnose when expression is an integer constant expression and its evaluation 12254 /// results in integer overflow 12255 void Sema::CheckForIntOverflow (Expr *E) { 12256 // Use a work list to deal with nested struct initializers. 12257 SmallVector<Expr *, 2> Exprs(1, E); 12258 12259 do { 12260 Expr *OriginalE = Exprs.pop_back_val(); 12261 Expr *E = OriginalE->IgnoreParenCasts(); 12262 12263 if (isa<BinaryOperator>(E)) { 12264 E->EvaluateForOverflow(Context); 12265 continue; 12266 } 12267 12268 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12269 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12270 else if (isa<ObjCBoxedExpr>(OriginalE)) 12271 E->EvaluateForOverflow(Context); 12272 else if (auto Call = dyn_cast<CallExpr>(E)) 12273 Exprs.append(Call->arg_begin(), Call->arg_end()); 12274 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12275 Exprs.append(Message->arg_begin(), Message->arg_end()); 12276 } while (!Exprs.empty()); 12277 } 12278 12279 namespace { 12280 12281 /// Visitor for expressions which looks for unsequenced operations on the 12282 /// same object. 12283 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 12284 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 12285 12286 /// A tree of sequenced regions within an expression. Two regions are 12287 /// unsequenced if one is an ancestor or a descendent of the other. When we 12288 /// finish processing an expression with sequencing, such as a comma 12289 /// expression, we fold its tree nodes into its parent, since they are 12290 /// unsequenced with respect to nodes we will visit later. 12291 class SequenceTree { 12292 struct Value { 12293 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12294 unsigned Parent : 31; 12295 unsigned Merged : 1; 12296 }; 12297 SmallVector<Value, 8> Values; 12298 12299 public: 12300 /// A region within an expression which may be sequenced with respect 12301 /// to some other region. 12302 class Seq { 12303 friend class SequenceTree; 12304 12305 unsigned Index; 12306 12307 explicit Seq(unsigned N) : Index(N) {} 12308 12309 public: 12310 Seq() : Index(0) {} 12311 }; 12312 12313 SequenceTree() { Values.push_back(Value(0)); } 12314 Seq root() const { return Seq(0); } 12315 12316 /// Create a new sequence of operations, which is an unsequenced 12317 /// subset of \p Parent. This sequence of operations is sequenced with 12318 /// respect to other children of \p Parent. 12319 Seq allocate(Seq Parent) { 12320 Values.push_back(Value(Parent.Index)); 12321 return Seq(Values.size() - 1); 12322 } 12323 12324 /// Merge a sequence of operations into its parent. 12325 void merge(Seq S) { 12326 Values[S.Index].Merged = true; 12327 } 12328 12329 /// Determine whether two operations are unsequenced. This operation 12330 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12331 /// should have been merged into its parent as appropriate. 12332 bool isUnsequenced(Seq Cur, Seq Old) { 12333 unsigned C = representative(Cur.Index); 12334 unsigned Target = representative(Old.Index); 12335 while (C >= Target) { 12336 if (C == Target) 12337 return true; 12338 C = Values[C].Parent; 12339 } 12340 return false; 12341 } 12342 12343 private: 12344 /// Pick a representative for a sequence. 12345 unsigned representative(unsigned K) { 12346 if (Values[K].Merged) 12347 // Perform path compression as we go. 12348 return Values[K].Parent = representative(Values[K].Parent); 12349 return K; 12350 } 12351 }; 12352 12353 /// An object for which we can track unsequenced uses. 12354 using Object = const NamedDecl *; 12355 12356 /// Different flavors of object usage which we track. We only track the 12357 /// least-sequenced usage of each kind. 12358 enum UsageKind { 12359 /// A read of an object. Multiple unsequenced reads are OK. 12360 UK_Use, 12361 12362 /// A modification of an object which is sequenced before the value 12363 /// computation of the expression, such as ++n in C++. 12364 UK_ModAsValue, 12365 12366 /// A modification of an object which is not sequenced before the value 12367 /// computation of the expression, such as n++. 12368 UK_ModAsSideEffect, 12369 12370 UK_Count = UK_ModAsSideEffect + 1 12371 }; 12372 12373 /// Bundle together a sequencing region and the expression corresponding 12374 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 12375 struct Usage { 12376 const Expr *UsageExpr; 12377 SequenceTree::Seq Seq; 12378 12379 Usage() : UsageExpr(nullptr), Seq() {} 12380 }; 12381 12382 struct UsageInfo { 12383 Usage Uses[UK_Count]; 12384 12385 /// Have we issued a diagnostic for this object already? 12386 bool Diagnosed; 12387 12388 UsageInfo() : Uses(), Diagnosed(false) {} 12389 }; 12390 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 12391 12392 Sema &SemaRef; 12393 12394 /// Sequenced regions within the expression. 12395 SequenceTree Tree; 12396 12397 /// Declaration modifications and references which we have seen. 12398 UsageInfoMap UsageMap; 12399 12400 /// The region we are currently within. 12401 SequenceTree::Seq Region; 12402 12403 /// Filled in with declarations which were modified as a side-effect 12404 /// (that is, post-increment operations). 12405 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 12406 12407 /// Expressions to check later. We defer checking these to reduce 12408 /// stack usage. 12409 SmallVectorImpl<const Expr *> &WorkList; 12410 12411 /// RAII object wrapping the visitation of a sequenced subexpression of an 12412 /// expression. At the end of this process, the side-effects of the evaluation 12413 /// become sequenced with respect to the value computation of the result, so 12414 /// we downgrade any UK_ModAsSideEffect within the evaluation to 12415 /// UK_ModAsValue. 12416 struct SequencedSubexpression { 12417 SequencedSubexpression(SequenceChecker &Self) 12418 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 12419 Self.ModAsSideEffect = &ModAsSideEffect; 12420 } 12421 12422 ~SequencedSubexpression() { 12423 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 12424 // Add a new usage with usage kind UK_ModAsValue, and then restore 12425 // the previous usage with UK_ModAsSideEffect (thus clearing it if 12426 // the previous one was empty). 12427 UsageInfo &UI = Self.UsageMap[M.first]; 12428 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 12429 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 12430 SideEffectUsage = M.second; 12431 } 12432 Self.ModAsSideEffect = OldModAsSideEffect; 12433 } 12434 12435 SequenceChecker &Self; 12436 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 12437 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 12438 }; 12439 12440 /// RAII object wrapping the visitation of a subexpression which we might 12441 /// choose to evaluate as a constant. If any subexpression is evaluated and 12442 /// found to be non-constant, this allows us to suppress the evaluation of 12443 /// the outer expression. 12444 class EvaluationTracker { 12445 public: 12446 EvaluationTracker(SequenceChecker &Self) 12447 : Self(Self), Prev(Self.EvalTracker) { 12448 Self.EvalTracker = this; 12449 } 12450 12451 ~EvaluationTracker() { 12452 Self.EvalTracker = Prev; 12453 if (Prev) 12454 Prev->EvalOK &= EvalOK; 12455 } 12456 12457 bool evaluate(const Expr *E, bool &Result) { 12458 if (!EvalOK || E->isValueDependent()) 12459 return false; 12460 EvalOK = E->EvaluateAsBooleanCondition( 12461 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 12462 return EvalOK; 12463 } 12464 12465 private: 12466 SequenceChecker &Self; 12467 EvaluationTracker *Prev; 12468 bool EvalOK = true; 12469 } *EvalTracker = nullptr; 12470 12471 /// Find the object which is produced by the specified expression, 12472 /// if any. 12473 Object getObject(const Expr *E, bool Mod) const { 12474 E = E->IgnoreParenCasts(); 12475 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12476 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 12477 return getObject(UO->getSubExpr(), Mod); 12478 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12479 if (BO->getOpcode() == BO_Comma) 12480 return getObject(BO->getRHS(), Mod); 12481 if (Mod && BO->isAssignmentOp()) 12482 return getObject(BO->getLHS(), Mod); 12483 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 12484 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 12485 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 12486 return ME->getMemberDecl(); 12487 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12488 // FIXME: If this is a reference, map through to its value. 12489 return DRE->getDecl(); 12490 return nullptr; 12491 } 12492 12493 /// Note that an object \p O was modified or used by an expression 12494 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 12495 /// the object \p O as obtained via the \p UsageMap. 12496 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 12497 // Get the old usage for the given object and usage kind. 12498 Usage &U = UI.Uses[UK]; 12499 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 12500 // If we have a modification as side effect and are in a sequenced 12501 // subexpression, save the old Usage so that we can restore it later 12502 // in SequencedSubexpression::~SequencedSubexpression. 12503 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 12504 ModAsSideEffect->push_back(std::make_pair(O, U)); 12505 // Then record the new usage with the current sequencing region. 12506 U.UsageExpr = UsageExpr; 12507 U.Seq = Region; 12508 } 12509 } 12510 12511 /// Check whether a modification or use of an object \p O in an expression 12512 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 12513 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 12514 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 12515 /// usage and false we are checking for a mod-use unsequenced usage. 12516 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 12517 UsageKind OtherKind, bool IsModMod) { 12518 if (UI.Diagnosed) 12519 return; 12520 12521 const Usage &U = UI.Uses[OtherKind]; 12522 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 12523 return; 12524 12525 const Expr *Mod = U.UsageExpr; 12526 const Expr *ModOrUse = UsageExpr; 12527 if (OtherKind == UK_Use) 12528 std::swap(Mod, ModOrUse); 12529 12530 SemaRef.DiagRuntimeBehavior( 12531 Mod->getExprLoc(), {Mod, ModOrUse}, 12532 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 12533 : diag::warn_unsequenced_mod_use) 12534 << O << SourceRange(ModOrUse->getExprLoc())); 12535 UI.Diagnosed = true; 12536 } 12537 12538 // A note on note{Pre, Post}{Use, Mod}: 12539 // 12540 // (It helps to follow the algorithm with an expression such as 12541 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 12542 // operations before C++17 and both are well-defined in C++17). 12543 // 12544 // When visiting a node which uses/modify an object we first call notePreUse 12545 // or notePreMod before visiting its sub-expression(s). At this point the 12546 // children of the current node have not yet been visited and so the eventual 12547 // uses/modifications resulting from the children of the current node have not 12548 // been recorded yet. 12549 // 12550 // We then visit the children of the current node. After that notePostUse or 12551 // notePostMod is called. These will 1) detect an unsequenced modification 12552 // as side effect (as in "k++ + k") and 2) add a new usage with the 12553 // appropriate usage kind. 12554 // 12555 // We also have to be careful that some operation sequences modification as 12556 // side effect as well (for example: || or ,). To account for this we wrap 12557 // the visitation of such a sub-expression (for example: the LHS of || or ,) 12558 // with SequencedSubexpression. SequencedSubexpression is an RAII object 12559 // which record usages which are modifications as side effect, and then 12560 // downgrade them (or more accurately restore the previous usage which was a 12561 // modification as side effect) when exiting the scope of the sequenced 12562 // subexpression. 12563 12564 void notePreUse(Object O, const Expr *UseExpr) { 12565 UsageInfo &UI = UsageMap[O]; 12566 // Uses conflict with other modifications. 12567 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 12568 } 12569 12570 void notePostUse(Object O, const Expr *UseExpr) { 12571 UsageInfo &UI = UsageMap[O]; 12572 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 12573 /*IsModMod=*/false); 12574 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 12575 } 12576 12577 void notePreMod(Object O, const Expr *ModExpr) { 12578 UsageInfo &UI = UsageMap[O]; 12579 // Modifications conflict with other modifications and with uses. 12580 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 12581 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 12582 } 12583 12584 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 12585 UsageInfo &UI = UsageMap[O]; 12586 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 12587 /*IsModMod=*/true); 12588 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 12589 } 12590 12591 public: 12592 SequenceChecker(Sema &S, const Expr *E, 12593 SmallVectorImpl<const Expr *> &WorkList) 12594 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 12595 Visit(E); 12596 // Silence a -Wunused-private-field since WorkList is now unused. 12597 // TODO: Evaluate if it can be used, and if not remove it. 12598 (void)this->WorkList; 12599 } 12600 12601 void VisitStmt(const Stmt *S) { 12602 // Skip all statements which aren't expressions for now. 12603 } 12604 12605 void VisitExpr(const Expr *E) { 12606 // By default, just recurse to evaluated subexpressions. 12607 Base::VisitStmt(E); 12608 } 12609 12610 void VisitCastExpr(const CastExpr *E) { 12611 Object O = Object(); 12612 if (E->getCastKind() == CK_LValueToRValue) 12613 O = getObject(E->getSubExpr(), false); 12614 12615 if (O) 12616 notePreUse(O, E); 12617 VisitExpr(E); 12618 if (O) 12619 notePostUse(O, E); 12620 } 12621 12622 void VisitSequencedExpressions(const Expr *SequencedBefore, 12623 const Expr *SequencedAfter) { 12624 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 12625 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 12626 SequenceTree::Seq OldRegion = Region; 12627 12628 { 12629 SequencedSubexpression SeqBefore(*this); 12630 Region = BeforeRegion; 12631 Visit(SequencedBefore); 12632 } 12633 12634 Region = AfterRegion; 12635 Visit(SequencedAfter); 12636 12637 Region = OldRegion; 12638 12639 Tree.merge(BeforeRegion); 12640 Tree.merge(AfterRegion); 12641 } 12642 12643 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 12644 // C++17 [expr.sub]p1: 12645 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 12646 // expression E1 is sequenced before the expression E2. 12647 if (SemaRef.getLangOpts().CPlusPlus17) 12648 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 12649 else { 12650 Visit(ASE->getLHS()); 12651 Visit(ASE->getRHS()); 12652 } 12653 } 12654 12655 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12656 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12657 void VisitBinPtrMem(const BinaryOperator *BO) { 12658 // C++17 [expr.mptr.oper]p4: 12659 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 12660 // the expression E1 is sequenced before the expression E2. 12661 if (SemaRef.getLangOpts().CPlusPlus17) 12662 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12663 else { 12664 Visit(BO->getLHS()); 12665 Visit(BO->getRHS()); 12666 } 12667 } 12668 12669 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12670 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12671 void VisitBinShlShr(const BinaryOperator *BO) { 12672 // C++17 [expr.shift]p4: 12673 // The expression E1 is sequenced before the expression E2. 12674 if (SemaRef.getLangOpts().CPlusPlus17) 12675 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12676 else { 12677 Visit(BO->getLHS()); 12678 Visit(BO->getRHS()); 12679 } 12680 } 12681 12682 void VisitBinComma(const BinaryOperator *BO) { 12683 // C++11 [expr.comma]p1: 12684 // Every value computation and side effect associated with the left 12685 // expression is sequenced before every value computation and side 12686 // effect associated with the right expression. 12687 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12688 } 12689 12690 void VisitBinAssign(const BinaryOperator *BO) { 12691 SequenceTree::Seq RHSRegion; 12692 SequenceTree::Seq LHSRegion; 12693 if (SemaRef.getLangOpts().CPlusPlus17) { 12694 RHSRegion = Tree.allocate(Region); 12695 LHSRegion = Tree.allocate(Region); 12696 } else { 12697 RHSRegion = Region; 12698 LHSRegion = Region; 12699 } 12700 SequenceTree::Seq OldRegion = Region; 12701 12702 // C++11 [expr.ass]p1: 12703 // [...] the assignment is sequenced after the value computation 12704 // of the right and left operands, [...] 12705 // 12706 // so check it before inspecting the operands and update the 12707 // map afterwards. 12708 Object O = getObject(BO->getLHS(), /*Mod=*/true); 12709 if (O) 12710 notePreMod(O, BO); 12711 12712 if (SemaRef.getLangOpts().CPlusPlus17) { 12713 // C++17 [expr.ass]p1: 12714 // [...] The right operand is sequenced before the left operand. [...] 12715 { 12716 SequencedSubexpression SeqBefore(*this); 12717 Region = RHSRegion; 12718 Visit(BO->getRHS()); 12719 } 12720 12721 Region = LHSRegion; 12722 Visit(BO->getLHS()); 12723 12724 if (O && isa<CompoundAssignOperator>(BO)) 12725 notePostUse(O, BO); 12726 12727 } else { 12728 // C++11 does not specify any sequencing between the LHS and RHS. 12729 Region = LHSRegion; 12730 Visit(BO->getLHS()); 12731 12732 if (O && isa<CompoundAssignOperator>(BO)) 12733 notePostUse(O, BO); 12734 12735 Region = RHSRegion; 12736 Visit(BO->getRHS()); 12737 } 12738 12739 // C++11 [expr.ass]p1: 12740 // the assignment is sequenced [...] before the value computation of the 12741 // assignment expression. 12742 // C11 6.5.16/3 has no such rule. 12743 Region = OldRegion; 12744 if (O) 12745 notePostMod(O, BO, 12746 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12747 : UK_ModAsSideEffect); 12748 if (SemaRef.getLangOpts().CPlusPlus17) { 12749 Tree.merge(RHSRegion); 12750 Tree.merge(LHSRegion); 12751 } 12752 } 12753 12754 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 12755 VisitBinAssign(CAO); 12756 } 12757 12758 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12759 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12760 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 12761 Object O = getObject(UO->getSubExpr(), true); 12762 if (!O) 12763 return VisitExpr(UO); 12764 12765 notePreMod(O, UO); 12766 Visit(UO->getSubExpr()); 12767 // C++11 [expr.pre.incr]p1: 12768 // the expression ++x is equivalent to x+=1 12769 notePostMod(O, UO, 12770 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12771 : UK_ModAsSideEffect); 12772 } 12773 12774 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12775 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12776 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 12777 Object O = getObject(UO->getSubExpr(), true); 12778 if (!O) 12779 return VisitExpr(UO); 12780 12781 notePreMod(O, UO); 12782 Visit(UO->getSubExpr()); 12783 notePostMod(O, UO, UK_ModAsSideEffect); 12784 } 12785 12786 void VisitBinLOr(const BinaryOperator *BO) { 12787 // C++11 [expr.log.or]p2: 12788 // If the second expression is evaluated, every value computation and 12789 // side effect associated with the first expression is sequenced before 12790 // every value computation and side effect associated with the 12791 // second expression. 12792 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 12793 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 12794 SequenceTree::Seq OldRegion = Region; 12795 12796 EvaluationTracker Eval(*this); 12797 { 12798 SequencedSubexpression Sequenced(*this); 12799 Region = LHSRegion; 12800 Visit(BO->getLHS()); 12801 } 12802 12803 // C++11 [expr.log.or]p1: 12804 // [...] the second operand is not evaluated if the first operand 12805 // evaluates to true. 12806 bool EvalResult = false; 12807 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 12808 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 12809 if (ShouldVisitRHS) { 12810 Region = RHSRegion; 12811 Visit(BO->getRHS()); 12812 } 12813 12814 Region = OldRegion; 12815 Tree.merge(LHSRegion); 12816 Tree.merge(RHSRegion); 12817 } 12818 12819 void VisitBinLAnd(const BinaryOperator *BO) { 12820 // C++11 [expr.log.and]p2: 12821 // If the second expression is evaluated, every value computation and 12822 // side effect associated with the first expression is sequenced before 12823 // every value computation and side effect associated with the 12824 // second expression. 12825 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 12826 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 12827 SequenceTree::Seq OldRegion = Region; 12828 12829 EvaluationTracker Eval(*this); 12830 { 12831 SequencedSubexpression Sequenced(*this); 12832 Region = LHSRegion; 12833 Visit(BO->getLHS()); 12834 } 12835 12836 // C++11 [expr.log.and]p1: 12837 // [...] the second operand is not evaluated if the first operand is false. 12838 bool EvalResult = false; 12839 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 12840 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 12841 if (ShouldVisitRHS) { 12842 Region = RHSRegion; 12843 Visit(BO->getRHS()); 12844 } 12845 12846 Region = OldRegion; 12847 Tree.merge(LHSRegion); 12848 Tree.merge(RHSRegion); 12849 } 12850 12851 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 12852 // C++11 [expr.cond]p1: 12853 // [...] Every value computation and side effect associated with the first 12854 // expression is sequenced before every value computation and side effect 12855 // associated with the second or third expression. 12856 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 12857 12858 // No sequencing is specified between the true and false expression. 12859 // However since exactly one of both is going to be evaluated we can 12860 // consider them to be sequenced. This is needed to avoid warning on 12861 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 12862 // both the true and false expressions because we can't evaluate x. 12863 // This will still allow us to detect an expression like (pre C++17) 12864 // "(x ? y += 1 : y += 2) = y". 12865 // 12866 // We don't wrap the visitation of the true and false expression with 12867 // SequencedSubexpression because we don't want to downgrade modifications 12868 // as side effect in the true and false expressions after the visition 12869 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 12870 // not warn between the two "y++", but we should warn between the "y++" 12871 // and the "y". 12872 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 12873 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 12874 SequenceTree::Seq OldRegion = Region; 12875 12876 EvaluationTracker Eval(*this); 12877 { 12878 SequencedSubexpression Sequenced(*this); 12879 Region = ConditionRegion; 12880 Visit(CO->getCond()); 12881 } 12882 12883 // C++11 [expr.cond]p1: 12884 // [...] The first expression is contextually converted to bool (Clause 4). 12885 // It is evaluated and if it is true, the result of the conditional 12886 // expression is the value of the second expression, otherwise that of the 12887 // third expression. Only one of the second and third expressions is 12888 // evaluated. [...] 12889 bool EvalResult = false; 12890 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 12891 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 12892 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 12893 if (ShouldVisitTrueExpr) { 12894 Region = TrueRegion; 12895 Visit(CO->getTrueExpr()); 12896 } 12897 if (ShouldVisitFalseExpr) { 12898 Region = FalseRegion; 12899 Visit(CO->getFalseExpr()); 12900 } 12901 12902 Region = OldRegion; 12903 Tree.merge(ConditionRegion); 12904 Tree.merge(TrueRegion); 12905 Tree.merge(FalseRegion); 12906 } 12907 12908 void VisitCallExpr(const CallExpr *CE) { 12909 // C++11 [intro.execution]p15: 12910 // When calling a function [...], every value computation and side effect 12911 // associated with any argument expression, or with the postfix expression 12912 // designating the called function, is sequenced before execution of every 12913 // expression or statement in the body of the function [and thus before 12914 // the value computation of its result]. 12915 SequencedSubexpression Sequenced(*this); 12916 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), 12917 [&] { Base::VisitCallExpr(CE); }); 12918 12919 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 12920 } 12921 12922 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 12923 // This is a call, so all subexpressions are sequenced before the result. 12924 SequencedSubexpression Sequenced(*this); 12925 12926 if (!CCE->isListInitialization()) 12927 return VisitExpr(CCE); 12928 12929 // In C++11, list initializations are sequenced. 12930 SmallVector<SequenceTree::Seq, 32> Elts; 12931 SequenceTree::Seq Parent = Region; 12932 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 12933 E = CCE->arg_end(); 12934 I != E; ++I) { 12935 Region = Tree.allocate(Parent); 12936 Elts.push_back(Region); 12937 Visit(*I); 12938 } 12939 12940 // Forget that the initializers are sequenced. 12941 Region = Parent; 12942 for (unsigned I = 0; I < Elts.size(); ++I) 12943 Tree.merge(Elts[I]); 12944 } 12945 12946 void VisitInitListExpr(const InitListExpr *ILE) { 12947 if (!SemaRef.getLangOpts().CPlusPlus11) 12948 return VisitExpr(ILE); 12949 12950 // In C++11, list initializations are sequenced. 12951 SmallVector<SequenceTree::Seq, 32> Elts; 12952 SequenceTree::Seq Parent = Region; 12953 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 12954 const Expr *E = ILE->getInit(I); 12955 if (!E) 12956 continue; 12957 Region = Tree.allocate(Parent); 12958 Elts.push_back(Region); 12959 Visit(E); 12960 } 12961 12962 // Forget that the initializers are sequenced. 12963 Region = Parent; 12964 for (unsigned I = 0; I < Elts.size(); ++I) 12965 Tree.merge(Elts[I]); 12966 } 12967 }; 12968 12969 } // namespace 12970 12971 void Sema::CheckUnsequencedOperations(const Expr *E) { 12972 SmallVector<const Expr *, 8> WorkList; 12973 WorkList.push_back(E); 12974 while (!WorkList.empty()) { 12975 const Expr *Item = WorkList.pop_back_val(); 12976 SequenceChecker(*this, Item, WorkList); 12977 } 12978 } 12979 12980 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 12981 bool IsConstexpr) { 12982 llvm::SaveAndRestore<bool> ConstantContext( 12983 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 12984 CheckImplicitConversions(E, CheckLoc); 12985 if (!E->isInstantiationDependent()) 12986 CheckUnsequencedOperations(E); 12987 if (!IsConstexpr && !E->isValueDependent()) 12988 CheckForIntOverflow(E); 12989 DiagnoseMisalignedMembers(); 12990 } 12991 12992 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 12993 FieldDecl *BitField, 12994 Expr *Init) { 12995 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 12996 } 12997 12998 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 12999 SourceLocation Loc) { 13000 if (!PType->isVariablyModifiedType()) 13001 return; 13002 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 13003 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 13004 return; 13005 } 13006 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 13007 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 13008 return; 13009 } 13010 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 13011 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 13012 return; 13013 } 13014 13015 const ArrayType *AT = S.Context.getAsArrayType(PType); 13016 if (!AT) 13017 return; 13018 13019 if (AT->getSizeModifier() != ArrayType::Star) { 13020 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 13021 return; 13022 } 13023 13024 S.Diag(Loc, diag::err_array_star_in_function_definition); 13025 } 13026 13027 /// CheckParmsForFunctionDef - Check that the parameters of the given 13028 /// function are appropriate for the definition of a function. This 13029 /// takes care of any checks that cannot be performed on the 13030 /// declaration itself, e.g., that the types of each of the function 13031 /// parameters are complete. 13032 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 13033 bool CheckParameterNames) { 13034 bool HasInvalidParm = false; 13035 for (ParmVarDecl *Param : Parameters) { 13036 // C99 6.7.5.3p4: the parameters in a parameter type list in a 13037 // function declarator that is part of a function definition of 13038 // that function shall not have incomplete type. 13039 // 13040 // This is also C++ [dcl.fct]p6. 13041 if (!Param->isInvalidDecl() && 13042 RequireCompleteType(Param->getLocation(), Param->getType(), 13043 diag::err_typecheck_decl_incomplete_type)) { 13044 Param->setInvalidDecl(); 13045 HasInvalidParm = true; 13046 } 13047 13048 // C99 6.9.1p5: If the declarator includes a parameter type list, the 13049 // declaration of each parameter shall include an identifier. 13050 if (CheckParameterNames && Param->getIdentifier() == nullptr && 13051 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 13052 // Diagnose this as an extension in C17 and earlier. 13053 if (!getLangOpts().C2x) 13054 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 13055 } 13056 13057 // C99 6.7.5.3p12: 13058 // If the function declarator is not part of a definition of that 13059 // function, parameters may have incomplete type and may use the [*] 13060 // notation in their sequences of declarator specifiers to specify 13061 // variable length array types. 13062 QualType PType = Param->getOriginalType(); 13063 // FIXME: This diagnostic should point the '[*]' if source-location 13064 // information is added for it. 13065 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 13066 13067 // If the parameter is a c++ class type and it has to be destructed in the 13068 // callee function, declare the destructor so that it can be called by the 13069 // callee function. Do not perform any direct access check on the dtor here. 13070 if (!Param->isInvalidDecl()) { 13071 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 13072 if (!ClassDecl->isInvalidDecl() && 13073 !ClassDecl->hasIrrelevantDestructor() && 13074 !ClassDecl->isDependentContext() && 13075 ClassDecl->isParamDestroyedInCallee()) { 13076 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13077 MarkFunctionReferenced(Param->getLocation(), Destructor); 13078 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 13079 } 13080 } 13081 } 13082 13083 // Parameters with the pass_object_size attribute only need to be marked 13084 // constant at function definitions. Because we lack information about 13085 // whether we're on a declaration or definition when we're instantiating the 13086 // attribute, we need to check for constness here. 13087 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 13088 if (!Param->getType().isConstQualified()) 13089 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 13090 << Attr->getSpelling() << 1; 13091 13092 // Check for parameter names shadowing fields from the class. 13093 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13094 // The owning context for the parameter should be the function, but we 13095 // want to see if this function's declaration context is a record. 13096 DeclContext *DC = Param->getDeclContext(); 13097 if (DC && DC->isFunctionOrMethod()) { 13098 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13099 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13100 RD, /*DeclIsField*/ false); 13101 } 13102 } 13103 } 13104 13105 return HasInvalidParm; 13106 } 13107 13108 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr 13109 /// or MemberExpr. 13110 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign, 13111 ASTContext &Context) { 13112 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 13113 return Context.getDeclAlign(DRE->getDecl()); 13114 13115 if (const auto *ME = dyn_cast<MemberExpr>(E)) 13116 return Context.getDeclAlign(ME->getMemberDecl()); 13117 13118 return TypeAlign; 13119 } 13120 13121 /// CheckCastAlign - Implements -Wcast-align, which warns when a 13122 /// pointer cast increases the alignment requirements. 13123 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 13124 // This is actually a lot of work to potentially be doing on every 13125 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 13126 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 13127 return; 13128 13129 // Ignore dependent types. 13130 if (T->isDependentType() || Op->getType()->isDependentType()) 13131 return; 13132 13133 // Require that the destination be a pointer type. 13134 const PointerType *DestPtr = T->getAs<PointerType>(); 13135 if (!DestPtr) return; 13136 13137 // If the destination has alignment 1, we're done. 13138 QualType DestPointee = DestPtr->getPointeeType(); 13139 if (DestPointee->isIncompleteType()) return; 13140 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 13141 if (DestAlign.isOne()) return; 13142 13143 // Require that the source be a pointer type. 13144 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 13145 if (!SrcPtr) return; 13146 QualType SrcPointee = SrcPtr->getPointeeType(); 13147 13148 // Whitelist casts from cv void*. We already implicitly 13149 // whitelisted casts to cv void*, since they have alignment 1. 13150 // Also whitelist casts involving incomplete types, which implicitly 13151 // includes 'void'. 13152 if (SrcPointee->isIncompleteType()) return; 13153 13154 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); 13155 13156 if (auto *CE = dyn_cast<CastExpr>(Op)) { 13157 if (CE->getCastKind() == CK_ArrayToPointerDecay) 13158 SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context); 13159 } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) { 13160 if (UO->getOpcode() == UO_AddrOf) 13161 SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context); 13162 } 13163 13164 if (SrcAlign >= DestAlign) return; 13165 13166 Diag(TRange.getBegin(), diag::warn_cast_align) 13167 << Op->getType() << T 13168 << static_cast<unsigned>(SrcAlign.getQuantity()) 13169 << static_cast<unsigned>(DestAlign.getQuantity()) 13170 << TRange << Op->getSourceRange(); 13171 } 13172 13173 /// Check whether this array fits the idiom of a size-one tail padded 13174 /// array member of a struct. 13175 /// 13176 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 13177 /// commonly used to emulate flexible arrays in C89 code. 13178 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 13179 const NamedDecl *ND) { 13180 if (Size != 1 || !ND) return false; 13181 13182 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 13183 if (!FD) return false; 13184 13185 // Don't consider sizes resulting from macro expansions or template argument 13186 // substitution to form C89 tail-padded arrays. 13187 13188 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 13189 while (TInfo) { 13190 TypeLoc TL = TInfo->getTypeLoc(); 13191 // Look through typedefs. 13192 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 13193 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 13194 TInfo = TDL->getTypeSourceInfo(); 13195 continue; 13196 } 13197 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 13198 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 13199 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 13200 return false; 13201 } 13202 break; 13203 } 13204 13205 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 13206 if (!RD) return false; 13207 if (RD->isUnion()) return false; 13208 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 13209 if (!CRD->isStandardLayout()) return false; 13210 } 13211 13212 // See if this is the last field decl in the record. 13213 const Decl *D = FD; 13214 while ((D = D->getNextDeclInContext())) 13215 if (isa<FieldDecl>(D)) 13216 return false; 13217 return true; 13218 } 13219 13220 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 13221 const ArraySubscriptExpr *ASE, 13222 bool AllowOnePastEnd, bool IndexNegated) { 13223 // Already diagnosed by the constant evaluator. 13224 if (isConstantEvaluated()) 13225 return; 13226 13227 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 13228 if (IndexExpr->isValueDependent()) 13229 return; 13230 13231 const Type *EffectiveType = 13232 BaseExpr->getType()->getPointeeOrArrayElementType(); 13233 BaseExpr = BaseExpr->IgnoreParenCasts(); 13234 const ConstantArrayType *ArrayTy = 13235 Context.getAsConstantArrayType(BaseExpr->getType()); 13236 13237 if (!ArrayTy) 13238 return; 13239 13240 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 13241 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 13242 return; 13243 13244 Expr::EvalResult Result; 13245 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 13246 return; 13247 13248 llvm::APSInt index = Result.Val.getInt(); 13249 if (IndexNegated) 13250 index = -index; 13251 13252 const NamedDecl *ND = nullptr; 13253 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13254 ND = DRE->getDecl(); 13255 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13256 ND = ME->getMemberDecl(); 13257 13258 if (index.isUnsigned() || !index.isNegative()) { 13259 // It is possible that the type of the base expression after 13260 // IgnoreParenCasts is incomplete, even though the type of the base 13261 // expression before IgnoreParenCasts is complete (see PR39746 for an 13262 // example). In this case we have no information about whether the array 13263 // access exceeds the array bounds. However we can still diagnose an array 13264 // access which precedes the array bounds. 13265 if (BaseType->isIncompleteType()) 13266 return; 13267 13268 llvm::APInt size = ArrayTy->getSize(); 13269 if (!size.isStrictlyPositive()) 13270 return; 13271 13272 if (BaseType != EffectiveType) { 13273 // Make sure we're comparing apples to apples when comparing index to size 13274 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 13275 uint64_t array_typesize = Context.getTypeSize(BaseType); 13276 // Handle ptrarith_typesize being zero, such as when casting to void* 13277 if (!ptrarith_typesize) ptrarith_typesize = 1; 13278 if (ptrarith_typesize != array_typesize) { 13279 // There's a cast to a different size type involved 13280 uint64_t ratio = array_typesize / ptrarith_typesize; 13281 // TODO: Be smarter about handling cases where array_typesize is not a 13282 // multiple of ptrarith_typesize 13283 if (ptrarith_typesize * ratio == array_typesize) 13284 size *= llvm::APInt(size.getBitWidth(), ratio); 13285 } 13286 } 13287 13288 if (size.getBitWidth() > index.getBitWidth()) 13289 index = index.zext(size.getBitWidth()); 13290 else if (size.getBitWidth() < index.getBitWidth()) 13291 size = size.zext(index.getBitWidth()); 13292 13293 // For array subscripting the index must be less than size, but for pointer 13294 // arithmetic also allow the index (offset) to be equal to size since 13295 // computing the next address after the end of the array is legal and 13296 // commonly done e.g. in C++ iterators and range-based for loops. 13297 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 13298 return; 13299 13300 // Also don't warn for arrays of size 1 which are members of some 13301 // structure. These are often used to approximate flexible arrays in C89 13302 // code. 13303 if (IsTailPaddedMemberArray(*this, size, ND)) 13304 return; 13305 13306 // Suppress the warning if the subscript expression (as identified by the 13307 // ']' location) and the index expression are both from macro expansions 13308 // within a system header. 13309 if (ASE) { 13310 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 13311 ASE->getRBracketLoc()); 13312 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 13313 SourceLocation IndexLoc = 13314 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 13315 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 13316 return; 13317 } 13318 } 13319 13320 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 13321 if (ASE) 13322 DiagID = diag::warn_array_index_exceeds_bounds; 13323 13324 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13325 PDiag(DiagID) << index.toString(10, true) 13326 << size.toString(10, true) 13327 << (unsigned)size.getLimitedValue(~0U) 13328 << IndexExpr->getSourceRange()); 13329 } else { 13330 unsigned DiagID = diag::warn_array_index_precedes_bounds; 13331 if (!ASE) { 13332 DiagID = diag::warn_ptr_arith_precedes_bounds; 13333 if (index.isNegative()) index = -index; 13334 } 13335 13336 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13337 PDiag(DiagID) << index.toString(10, true) 13338 << IndexExpr->getSourceRange()); 13339 } 13340 13341 if (!ND) { 13342 // Try harder to find a NamedDecl to point at in the note. 13343 while (const ArraySubscriptExpr *ASE = 13344 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 13345 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 13346 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13347 ND = DRE->getDecl(); 13348 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13349 ND = ME->getMemberDecl(); 13350 } 13351 13352 if (ND) 13353 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 13354 PDiag(diag::note_array_declared_here) 13355 << ND->getDeclName()); 13356 } 13357 13358 void Sema::CheckArrayAccess(const Expr *expr) { 13359 int AllowOnePastEnd = 0; 13360 while (expr) { 13361 expr = expr->IgnoreParenImpCasts(); 13362 switch (expr->getStmtClass()) { 13363 case Stmt::ArraySubscriptExprClass: { 13364 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 13365 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 13366 AllowOnePastEnd > 0); 13367 expr = ASE->getBase(); 13368 break; 13369 } 13370 case Stmt::MemberExprClass: { 13371 expr = cast<MemberExpr>(expr)->getBase(); 13372 break; 13373 } 13374 case Stmt::OMPArraySectionExprClass: { 13375 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 13376 if (ASE->getLowerBound()) 13377 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 13378 /*ASE=*/nullptr, AllowOnePastEnd > 0); 13379 return; 13380 } 13381 case Stmt::UnaryOperatorClass: { 13382 // Only unwrap the * and & unary operators 13383 const UnaryOperator *UO = cast<UnaryOperator>(expr); 13384 expr = UO->getSubExpr(); 13385 switch (UO->getOpcode()) { 13386 case UO_AddrOf: 13387 AllowOnePastEnd++; 13388 break; 13389 case UO_Deref: 13390 AllowOnePastEnd--; 13391 break; 13392 default: 13393 return; 13394 } 13395 break; 13396 } 13397 case Stmt::ConditionalOperatorClass: { 13398 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 13399 if (const Expr *lhs = cond->getLHS()) 13400 CheckArrayAccess(lhs); 13401 if (const Expr *rhs = cond->getRHS()) 13402 CheckArrayAccess(rhs); 13403 return; 13404 } 13405 case Stmt::CXXOperatorCallExprClass: { 13406 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 13407 for (const auto *Arg : OCE->arguments()) 13408 CheckArrayAccess(Arg); 13409 return; 13410 } 13411 default: 13412 return; 13413 } 13414 } 13415 } 13416 13417 //===--- CHECK: Objective-C retain cycles ----------------------------------// 13418 13419 namespace { 13420 13421 struct RetainCycleOwner { 13422 VarDecl *Variable = nullptr; 13423 SourceRange Range; 13424 SourceLocation Loc; 13425 bool Indirect = false; 13426 13427 RetainCycleOwner() = default; 13428 13429 void setLocsFrom(Expr *e) { 13430 Loc = e->getExprLoc(); 13431 Range = e->getSourceRange(); 13432 } 13433 }; 13434 13435 } // namespace 13436 13437 /// Consider whether capturing the given variable can possibly lead to 13438 /// a retain cycle. 13439 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 13440 // In ARC, it's captured strongly iff the variable has __strong 13441 // lifetime. In MRR, it's captured strongly if the variable is 13442 // __block and has an appropriate type. 13443 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 13444 return false; 13445 13446 owner.Variable = var; 13447 if (ref) 13448 owner.setLocsFrom(ref); 13449 return true; 13450 } 13451 13452 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 13453 while (true) { 13454 e = e->IgnoreParens(); 13455 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 13456 switch (cast->getCastKind()) { 13457 case CK_BitCast: 13458 case CK_LValueBitCast: 13459 case CK_LValueToRValue: 13460 case CK_ARCReclaimReturnedObject: 13461 e = cast->getSubExpr(); 13462 continue; 13463 13464 default: 13465 return false; 13466 } 13467 } 13468 13469 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 13470 ObjCIvarDecl *ivar = ref->getDecl(); 13471 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 13472 return false; 13473 13474 // Try to find a retain cycle in the base. 13475 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 13476 return false; 13477 13478 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 13479 owner.Indirect = true; 13480 return true; 13481 } 13482 13483 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 13484 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 13485 if (!var) return false; 13486 return considerVariable(var, ref, owner); 13487 } 13488 13489 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 13490 if (member->isArrow()) return false; 13491 13492 // Don't count this as an indirect ownership. 13493 e = member->getBase(); 13494 continue; 13495 } 13496 13497 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 13498 // Only pay attention to pseudo-objects on property references. 13499 ObjCPropertyRefExpr *pre 13500 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 13501 ->IgnoreParens()); 13502 if (!pre) return false; 13503 if (pre->isImplicitProperty()) return false; 13504 ObjCPropertyDecl *property = pre->getExplicitProperty(); 13505 if (!property->isRetaining() && 13506 !(property->getPropertyIvarDecl() && 13507 property->getPropertyIvarDecl()->getType() 13508 .getObjCLifetime() == Qualifiers::OCL_Strong)) 13509 return false; 13510 13511 owner.Indirect = true; 13512 if (pre->isSuperReceiver()) { 13513 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 13514 if (!owner.Variable) 13515 return false; 13516 owner.Loc = pre->getLocation(); 13517 owner.Range = pre->getSourceRange(); 13518 return true; 13519 } 13520 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 13521 ->getSourceExpr()); 13522 continue; 13523 } 13524 13525 // Array ivars? 13526 13527 return false; 13528 } 13529 } 13530 13531 namespace { 13532 13533 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 13534 ASTContext &Context; 13535 VarDecl *Variable; 13536 Expr *Capturer = nullptr; 13537 bool VarWillBeReased = false; 13538 13539 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 13540 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 13541 Context(Context), Variable(variable) {} 13542 13543 void VisitDeclRefExpr(DeclRefExpr *ref) { 13544 if (ref->getDecl() == Variable && !Capturer) 13545 Capturer = ref; 13546 } 13547 13548 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 13549 if (Capturer) return; 13550 Visit(ref->getBase()); 13551 if (Capturer && ref->isFreeIvar()) 13552 Capturer = ref; 13553 } 13554 13555 void VisitBlockExpr(BlockExpr *block) { 13556 // Look inside nested blocks 13557 if (block->getBlockDecl()->capturesVariable(Variable)) 13558 Visit(block->getBlockDecl()->getBody()); 13559 } 13560 13561 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 13562 if (Capturer) return; 13563 if (OVE->getSourceExpr()) 13564 Visit(OVE->getSourceExpr()); 13565 } 13566 13567 void VisitBinaryOperator(BinaryOperator *BinOp) { 13568 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 13569 return; 13570 Expr *LHS = BinOp->getLHS(); 13571 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 13572 if (DRE->getDecl() != Variable) 13573 return; 13574 if (Expr *RHS = BinOp->getRHS()) { 13575 RHS = RHS->IgnoreParenCasts(); 13576 llvm::APSInt Value; 13577 VarWillBeReased = 13578 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); 13579 } 13580 } 13581 } 13582 }; 13583 13584 } // namespace 13585 13586 /// Check whether the given argument is a block which captures a 13587 /// variable. 13588 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 13589 assert(owner.Variable && owner.Loc.isValid()); 13590 13591 e = e->IgnoreParenCasts(); 13592 13593 // Look through [^{...} copy] and Block_copy(^{...}). 13594 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 13595 Selector Cmd = ME->getSelector(); 13596 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 13597 e = ME->getInstanceReceiver(); 13598 if (!e) 13599 return nullptr; 13600 e = e->IgnoreParenCasts(); 13601 } 13602 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 13603 if (CE->getNumArgs() == 1) { 13604 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 13605 if (Fn) { 13606 const IdentifierInfo *FnI = Fn->getIdentifier(); 13607 if (FnI && FnI->isStr("_Block_copy")) { 13608 e = CE->getArg(0)->IgnoreParenCasts(); 13609 } 13610 } 13611 } 13612 } 13613 13614 BlockExpr *block = dyn_cast<BlockExpr>(e); 13615 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 13616 return nullptr; 13617 13618 FindCaptureVisitor visitor(S.Context, owner.Variable); 13619 visitor.Visit(block->getBlockDecl()->getBody()); 13620 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 13621 } 13622 13623 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 13624 RetainCycleOwner &owner) { 13625 assert(capturer); 13626 assert(owner.Variable && owner.Loc.isValid()); 13627 13628 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 13629 << owner.Variable << capturer->getSourceRange(); 13630 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 13631 << owner.Indirect << owner.Range; 13632 } 13633 13634 /// Check for a keyword selector that starts with the word 'add' or 13635 /// 'set'. 13636 static bool isSetterLikeSelector(Selector sel) { 13637 if (sel.isUnarySelector()) return false; 13638 13639 StringRef str = sel.getNameForSlot(0); 13640 while (!str.empty() && str.front() == '_') str = str.substr(1); 13641 if (str.startswith("set")) 13642 str = str.substr(3); 13643 else if (str.startswith("add")) { 13644 // Specially whitelist 'addOperationWithBlock:'. 13645 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 13646 return false; 13647 str = str.substr(3); 13648 } 13649 else 13650 return false; 13651 13652 if (str.empty()) return true; 13653 return !isLowercase(str.front()); 13654 } 13655 13656 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 13657 ObjCMessageExpr *Message) { 13658 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 13659 Message->getReceiverInterface(), 13660 NSAPI::ClassId_NSMutableArray); 13661 if (!IsMutableArray) { 13662 return None; 13663 } 13664 13665 Selector Sel = Message->getSelector(); 13666 13667 Optional<NSAPI::NSArrayMethodKind> MKOpt = 13668 S.NSAPIObj->getNSArrayMethodKind(Sel); 13669 if (!MKOpt) { 13670 return None; 13671 } 13672 13673 NSAPI::NSArrayMethodKind MK = *MKOpt; 13674 13675 switch (MK) { 13676 case NSAPI::NSMutableArr_addObject: 13677 case NSAPI::NSMutableArr_insertObjectAtIndex: 13678 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 13679 return 0; 13680 case NSAPI::NSMutableArr_replaceObjectAtIndex: 13681 return 1; 13682 13683 default: 13684 return None; 13685 } 13686 13687 return None; 13688 } 13689 13690 static 13691 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 13692 ObjCMessageExpr *Message) { 13693 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 13694 Message->getReceiverInterface(), 13695 NSAPI::ClassId_NSMutableDictionary); 13696 if (!IsMutableDictionary) { 13697 return None; 13698 } 13699 13700 Selector Sel = Message->getSelector(); 13701 13702 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 13703 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 13704 if (!MKOpt) { 13705 return None; 13706 } 13707 13708 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 13709 13710 switch (MK) { 13711 case NSAPI::NSMutableDict_setObjectForKey: 13712 case NSAPI::NSMutableDict_setValueForKey: 13713 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 13714 return 0; 13715 13716 default: 13717 return None; 13718 } 13719 13720 return None; 13721 } 13722 13723 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 13724 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 13725 Message->getReceiverInterface(), 13726 NSAPI::ClassId_NSMutableSet); 13727 13728 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 13729 Message->getReceiverInterface(), 13730 NSAPI::ClassId_NSMutableOrderedSet); 13731 if (!IsMutableSet && !IsMutableOrderedSet) { 13732 return None; 13733 } 13734 13735 Selector Sel = Message->getSelector(); 13736 13737 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 13738 if (!MKOpt) { 13739 return None; 13740 } 13741 13742 NSAPI::NSSetMethodKind MK = *MKOpt; 13743 13744 switch (MK) { 13745 case NSAPI::NSMutableSet_addObject: 13746 case NSAPI::NSOrderedSet_setObjectAtIndex: 13747 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 13748 case NSAPI::NSOrderedSet_insertObjectAtIndex: 13749 return 0; 13750 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 13751 return 1; 13752 } 13753 13754 return None; 13755 } 13756 13757 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 13758 if (!Message->isInstanceMessage()) { 13759 return; 13760 } 13761 13762 Optional<int> ArgOpt; 13763 13764 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 13765 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 13766 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 13767 return; 13768 } 13769 13770 int ArgIndex = *ArgOpt; 13771 13772 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 13773 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 13774 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 13775 } 13776 13777 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 13778 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13779 if (ArgRE->isObjCSelfExpr()) { 13780 Diag(Message->getSourceRange().getBegin(), 13781 diag::warn_objc_circular_container) 13782 << ArgRE->getDecl() << StringRef("'super'"); 13783 } 13784 } 13785 } else { 13786 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 13787 13788 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 13789 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 13790 } 13791 13792 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 13793 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13794 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 13795 ValueDecl *Decl = ReceiverRE->getDecl(); 13796 Diag(Message->getSourceRange().getBegin(), 13797 diag::warn_objc_circular_container) 13798 << Decl << Decl; 13799 if (!ArgRE->isObjCSelfExpr()) { 13800 Diag(Decl->getLocation(), 13801 diag::note_objc_circular_container_declared_here) 13802 << Decl; 13803 } 13804 } 13805 } 13806 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 13807 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 13808 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 13809 ObjCIvarDecl *Decl = IvarRE->getDecl(); 13810 Diag(Message->getSourceRange().getBegin(), 13811 diag::warn_objc_circular_container) 13812 << Decl << Decl; 13813 Diag(Decl->getLocation(), 13814 diag::note_objc_circular_container_declared_here) 13815 << Decl; 13816 } 13817 } 13818 } 13819 } 13820 } 13821 13822 /// Check a message send to see if it's likely to cause a retain cycle. 13823 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 13824 // Only check instance methods whose selector looks like a setter. 13825 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 13826 return; 13827 13828 // Try to find a variable that the receiver is strongly owned by. 13829 RetainCycleOwner owner; 13830 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 13831 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 13832 return; 13833 } else { 13834 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 13835 owner.Variable = getCurMethodDecl()->getSelfDecl(); 13836 owner.Loc = msg->getSuperLoc(); 13837 owner.Range = msg->getSuperLoc(); 13838 } 13839 13840 // Check whether the receiver is captured by any of the arguments. 13841 const ObjCMethodDecl *MD = msg->getMethodDecl(); 13842 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 13843 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 13844 // noescape blocks should not be retained by the method. 13845 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 13846 continue; 13847 return diagnoseRetainCycle(*this, capturer, owner); 13848 } 13849 } 13850 } 13851 13852 /// Check a property assign to see if it's likely to cause a retain cycle. 13853 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 13854 RetainCycleOwner owner; 13855 if (!findRetainCycleOwner(*this, receiver, owner)) 13856 return; 13857 13858 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 13859 diagnoseRetainCycle(*this, capturer, owner); 13860 } 13861 13862 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 13863 RetainCycleOwner Owner; 13864 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 13865 return; 13866 13867 // Because we don't have an expression for the variable, we have to set the 13868 // location explicitly here. 13869 Owner.Loc = Var->getLocation(); 13870 Owner.Range = Var->getSourceRange(); 13871 13872 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 13873 diagnoseRetainCycle(*this, Capturer, Owner); 13874 } 13875 13876 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 13877 Expr *RHS, bool isProperty) { 13878 // Check if RHS is an Objective-C object literal, which also can get 13879 // immediately zapped in a weak reference. Note that we explicitly 13880 // allow ObjCStringLiterals, since those are designed to never really die. 13881 RHS = RHS->IgnoreParenImpCasts(); 13882 13883 // This enum needs to match with the 'select' in 13884 // warn_objc_arc_literal_assign (off-by-1). 13885 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 13886 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 13887 return false; 13888 13889 S.Diag(Loc, diag::warn_arc_literal_assign) 13890 << (unsigned) Kind 13891 << (isProperty ? 0 : 1) 13892 << RHS->getSourceRange(); 13893 13894 return true; 13895 } 13896 13897 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 13898 Qualifiers::ObjCLifetime LT, 13899 Expr *RHS, bool isProperty) { 13900 // Strip off any implicit cast added to get to the one ARC-specific. 13901 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13902 if (cast->getCastKind() == CK_ARCConsumeObject) { 13903 S.Diag(Loc, diag::warn_arc_retained_assign) 13904 << (LT == Qualifiers::OCL_ExplicitNone) 13905 << (isProperty ? 0 : 1) 13906 << RHS->getSourceRange(); 13907 return true; 13908 } 13909 RHS = cast->getSubExpr(); 13910 } 13911 13912 if (LT == Qualifiers::OCL_Weak && 13913 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 13914 return true; 13915 13916 return false; 13917 } 13918 13919 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 13920 QualType LHS, Expr *RHS) { 13921 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 13922 13923 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 13924 return false; 13925 13926 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 13927 return true; 13928 13929 return false; 13930 } 13931 13932 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 13933 Expr *LHS, Expr *RHS) { 13934 QualType LHSType; 13935 // PropertyRef on LHS type need be directly obtained from 13936 // its declaration as it has a PseudoType. 13937 ObjCPropertyRefExpr *PRE 13938 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 13939 if (PRE && !PRE->isImplicitProperty()) { 13940 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13941 if (PD) 13942 LHSType = PD->getType(); 13943 } 13944 13945 if (LHSType.isNull()) 13946 LHSType = LHS->getType(); 13947 13948 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 13949 13950 if (LT == Qualifiers::OCL_Weak) { 13951 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 13952 getCurFunction()->markSafeWeakUse(LHS); 13953 } 13954 13955 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 13956 return; 13957 13958 // FIXME. Check for other life times. 13959 if (LT != Qualifiers::OCL_None) 13960 return; 13961 13962 if (PRE) { 13963 if (PRE->isImplicitProperty()) 13964 return; 13965 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13966 if (!PD) 13967 return; 13968 13969 unsigned Attributes = PD->getPropertyAttributes(); 13970 if (Attributes & ObjCPropertyAttribute::kind_assign) { 13971 // when 'assign' attribute was not explicitly specified 13972 // by user, ignore it and rely on property type itself 13973 // for lifetime info. 13974 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 13975 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 13976 LHSType->isObjCRetainableType()) 13977 return; 13978 13979 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13980 if (cast->getCastKind() == CK_ARCConsumeObject) { 13981 Diag(Loc, diag::warn_arc_retained_property_assign) 13982 << RHS->getSourceRange(); 13983 return; 13984 } 13985 RHS = cast->getSubExpr(); 13986 } 13987 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 13988 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 13989 return; 13990 } 13991 } 13992 } 13993 13994 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 13995 13996 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 13997 SourceLocation StmtLoc, 13998 const NullStmt *Body) { 13999 // Do not warn if the body is a macro that expands to nothing, e.g: 14000 // 14001 // #define CALL(x) 14002 // if (condition) 14003 // CALL(0); 14004 if (Body->hasLeadingEmptyMacro()) 14005 return false; 14006 14007 // Get line numbers of statement and body. 14008 bool StmtLineInvalid; 14009 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 14010 &StmtLineInvalid); 14011 if (StmtLineInvalid) 14012 return false; 14013 14014 bool BodyLineInvalid; 14015 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 14016 &BodyLineInvalid); 14017 if (BodyLineInvalid) 14018 return false; 14019 14020 // Warn if null statement and body are on the same line. 14021 if (StmtLine != BodyLine) 14022 return false; 14023 14024 return true; 14025 } 14026 14027 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 14028 const Stmt *Body, 14029 unsigned DiagID) { 14030 // Since this is a syntactic check, don't emit diagnostic for template 14031 // instantiations, this just adds noise. 14032 if (CurrentInstantiationScope) 14033 return; 14034 14035 // The body should be a null statement. 14036 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14037 if (!NBody) 14038 return; 14039 14040 // Do the usual checks. 14041 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14042 return; 14043 14044 Diag(NBody->getSemiLoc(), DiagID); 14045 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14046 } 14047 14048 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 14049 const Stmt *PossibleBody) { 14050 assert(!CurrentInstantiationScope); // Ensured by caller 14051 14052 SourceLocation StmtLoc; 14053 const Stmt *Body; 14054 unsigned DiagID; 14055 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 14056 StmtLoc = FS->getRParenLoc(); 14057 Body = FS->getBody(); 14058 DiagID = diag::warn_empty_for_body; 14059 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 14060 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 14061 Body = WS->getBody(); 14062 DiagID = diag::warn_empty_while_body; 14063 } else 14064 return; // Neither `for' nor `while'. 14065 14066 // The body should be a null statement. 14067 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14068 if (!NBody) 14069 return; 14070 14071 // Skip expensive checks if diagnostic is disabled. 14072 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 14073 return; 14074 14075 // Do the usual checks. 14076 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14077 return; 14078 14079 // `for(...);' and `while(...);' are popular idioms, so in order to keep 14080 // noise level low, emit diagnostics only if for/while is followed by a 14081 // CompoundStmt, e.g.: 14082 // for (int i = 0; i < n; i++); 14083 // { 14084 // a(i); 14085 // } 14086 // or if for/while is followed by a statement with more indentation 14087 // than for/while itself: 14088 // for (int i = 0; i < n; i++); 14089 // a(i); 14090 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 14091 if (!ProbableTypo) { 14092 bool BodyColInvalid; 14093 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 14094 PossibleBody->getBeginLoc(), &BodyColInvalid); 14095 if (BodyColInvalid) 14096 return; 14097 14098 bool StmtColInvalid; 14099 unsigned StmtCol = 14100 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 14101 if (StmtColInvalid) 14102 return; 14103 14104 if (BodyCol > StmtCol) 14105 ProbableTypo = true; 14106 } 14107 14108 if (ProbableTypo) { 14109 Diag(NBody->getSemiLoc(), DiagID); 14110 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14111 } 14112 } 14113 14114 //===--- CHECK: Warn on self move with std::move. -------------------------===// 14115 14116 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 14117 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 14118 SourceLocation OpLoc) { 14119 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 14120 return; 14121 14122 if (inTemplateInstantiation()) 14123 return; 14124 14125 // Strip parens and casts away. 14126 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 14127 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 14128 14129 // Check for a call expression 14130 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 14131 if (!CE || CE->getNumArgs() != 1) 14132 return; 14133 14134 // Check for a call to std::move 14135 if (!CE->isCallToStdMove()) 14136 return; 14137 14138 // Get argument from std::move 14139 RHSExpr = CE->getArg(0); 14140 14141 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 14142 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 14143 14144 // Two DeclRefExpr's, check that the decls are the same. 14145 if (LHSDeclRef && RHSDeclRef) { 14146 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14147 return; 14148 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14149 RHSDeclRef->getDecl()->getCanonicalDecl()) 14150 return; 14151 14152 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14153 << LHSExpr->getSourceRange() 14154 << RHSExpr->getSourceRange(); 14155 return; 14156 } 14157 14158 // Member variables require a different approach to check for self moves. 14159 // MemberExpr's are the same if every nested MemberExpr refers to the same 14160 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 14161 // the base Expr's are CXXThisExpr's. 14162 const Expr *LHSBase = LHSExpr; 14163 const Expr *RHSBase = RHSExpr; 14164 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 14165 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 14166 if (!LHSME || !RHSME) 14167 return; 14168 14169 while (LHSME && RHSME) { 14170 if (LHSME->getMemberDecl()->getCanonicalDecl() != 14171 RHSME->getMemberDecl()->getCanonicalDecl()) 14172 return; 14173 14174 LHSBase = LHSME->getBase(); 14175 RHSBase = RHSME->getBase(); 14176 LHSME = dyn_cast<MemberExpr>(LHSBase); 14177 RHSME = dyn_cast<MemberExpr>(RHSBase); 14178 } 14179 14180 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 14181 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 14182 if (LHSDeclRef && RHSDeclRef) { 14183 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14184 return; 14185 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14186 RHSDeclRef->getDecl()->getCanonicalDecl()) 14187 return; 14188 14189 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14190 << LHSExpr->getSourceRange() 14191 << RHSExpr->getSourceRange(); 14192 return; 14193 } 14194 14195 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 14196 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14197 << LHSExpr->getSourceRange() 14198 << RHSExpr->getSourceRange(); 14199 } 14200 14201 //===--- Layout compatibility ----------------------------------------------// 14202 14203 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 14204 14205 /// Check if two enumeration types are layout-compatible. 14206 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 14207 // C++11 [dcl.enum] p8: 14208 // Two enumeration types are layout-compatible if they have the same 14209 // underlying type. 14210 return ED1->isComplete() && ED2->isComplete() && 14211 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 14212 } 14213 14214 /// Check if two fields are layout-compatible. 14215 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 14216 FieldDecl *Field2) { 14217 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 14218 return false; 14219 14220 if (Field1->isBitField() != Field2->isBitField()) 14221 return false; 14222 14223 if (Field1->isBitField()) { 14224 // Make sure that the bit-fields are the same length. 14225 unsigned Bits1 = Field1->getBitWidthValue(C); 14226 unsigned Bits2 = Field2->getBitWidthValue(C); 14227 14228 if (Bits1 != Bits2) 14229 return false; 14230 } 14231 14232 return true; 14233 } 14234 14235 /// Check if two standard-layout structs are layout-compatible. 14236 /// (C++11 [class.mem] p17) 14237 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 14238 RecordDecl *RD2) { 14239 // If both records are C++ classes, check that base classes match. 14240 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 14241 // If one of records is a CXXRecordDecl we are in C++ mode, 14242 // thus the other one is a CXXRecordDecl, too. 14243 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 14244 // Check number of base classes. 14245 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 14246 return false; 14247 14248 // Check the base classes. 14249 for (CXXRecordDecl::base_class_const_iterator 14250 Base1 = D1CXX->bases_begin(), 14251 BaseEnd1 = D1CXX->bases_end(), 14252 Base2 = D2CXX->bases_begin(); 14253 Base1 != BaseEnd1; 14254 ++Base1, ++Base2) { 14255 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 14256 return false; 14257 } 14258 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 14259 // If only RD2 is a C++ class, it should have zero base classes. 14260 if (D2CXX->getNumBases() > 0) 14261 return false; 14262 } 14263 14264 // Check the fields. 14265 RecordDecl::field_iterator Field2 = RD2->field_begin(), 14266 Field2End = RD2->field_end(), 14267 Field1 = RD1->field_begin(), 14268 Field1End = RD1->field_end(); 14269 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 14270 if (!isLayoutCompatible(C, *Field1, *Field2)) 14271 return false; 14272 } 14273 if (Field1 != Field1End || Field2 != Field2End) 14274 return false; 14275 14276 return true; 14277 } 14278 14279 /// Check if two standard-layout unions are layout-compatible. 14280 /// (C++11 [class.mem] p18) 14281 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 14282 RecordDecl *RD2) { 14283 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 14284 for (auto *Field2 : RD2->fields()) 14285 UnmatchedFields.insert(Field2); 14286 14287 for (auto *Field1 : RD1->fields()) { 14288 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 14289 I = UnmatchedFields.begin(), 14290 E = UnmatchedFields.end(); 14291 14292 for ( ; I != E; ++I) { 14293 if (isLayoutCompatible(C, Field1, *I)) { 14294 bool Result = UnmatchedFields.erase(*I); 14295 (void) Result; 14296 assert(Result); 14297 break; 14298 } 14299 } 14300 if (I == E) 14301 return false; 14302 } 14303 14304 return UnmatchedFields.empty(); 14305 } 14306 14307 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 14308 RecordDecl *RD2) { 14309 if (RD1->isUnion() != RD2->isUnion()) 14310 return false; 14311 14312 if (RD1->isUnion()) 14313 return isLayoutCompatibleUnion(C, RD1, RD2); 14314 else 14315 return isLayoutCompatibleStruct(C, RD1, RD2); 14316 } 14317 14318 /// Check if two types are layout-compatible in C++11 sense. 14319 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 14320 if (T1.isNull() || T2.isNull()) 14321 return false; 14322 14323 // C++11 [basic.types] p11: 14324 // If two types T1 and T2 are the same type, then T1 and T2 are 14325 // layout-compatible types. 14326 if (C.hasSameType(T1, T2)) 14327 return true; 14328 14329 T1 = T1.getCanonicalType().getUnqualifiedType(); 14330 T2 = T2.getCanonicalType().getUnqualifiedType(); 14331 14332 const Type::TypeClass TC1 = T1->getTypeClass(); 14333 const Type::TypeClass TC2 = T2->getTypeClass(); 14334 14335 if (TC1 != TC2) 14336 return false; 14337 14338 if (TC1 == Type::Enum) { 14339 return isLayoutCompatible(C, 14340 cast<EnumType>(T1)->getDecl(), 14341 cast<EnumType>(T2)->getDecl()); 14342 } else if (TC1 == Type::Record) { 14343 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 14344 return false; 14345 14346 return isLayoutCompatible(C, 14347 cast<RecordType>(T1)->getDecl(), 14348 cast<RecordType>(T2)->getDecl()); 14349 } 14350 14351 return false; 14352 } 14353 14354 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 14355 14356 /// Given a type tag expression find the type tag itself. 14357 /// 14358 /// \param TypeExpr Type tag expression, as it appears in user's code. 14359 /// 14360 /// \param VD Declaration of an identifier that appears in a type tag. 14361 /// 14362 /// \param MagicValue Type tag magic value. 14363 /// 14364 /// \param isConstantEvaluated wether the evalaution should be performed in 14365 14366 /// constant context. 14367 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 14368 const ValueDecl **VD, uint64_t *MagicValue, 14369 bool isConstantEvaluated) { 14370 while(true) { 14371 if (!TypeExpr) 14372 return false; 14373 14374 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 14375 14376 switch (TypeExpr->getStmtClass()) { 14377 case Stmt::UnaryOperatorClass: { 14378 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 14379 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 14380 TypeExpr = UO->getSubExpr(); 14381 continue; 14382 } 14383 return false; 14384 } 14385 14386 case Stmt::DeclRefExprClass: { 14387 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 14388 *VD = DRE->getDecl(); 14389 return true; 14390 } 14391 14392 case Stmt::IntegerLiteralClass: { 14393 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 14394 llvm::APInt MagicValueAPInt = IL->getValue(); 14395 if (MagicValueAPInt.getActiveBits() <= 64) { 14396 *MagicValue = MagicValueAPInt.getZExtValue(); 14397 return true; 14398 } else 14399 return false; 14400 } 14401 14402 case Stmt::BinaryConditionalOperatorClass: 14403 case Stmt::ConditionalOperatorClass: { 14404 const AbstractConditionalOperator *ACO = 14405 cast<AbstractConditionalOperator>(TypeExpr); 14406 bool Result; 14407 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 14408 isConstantEvaluated)) { 14409 if (Result) 14410 TypeExpr = ACO->getTrueExpr(); 14411 else 14412 TypeExpr = ACO->getFalseExpr(); 14413 continue; 14414 } 14415 return false; 14416 } 14417 14418 case Stmt::BinaryOperatorClass: { 14419 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 14420 if (BO->getOpcode() == BO_Comma) { 14421 TypeExpr = BO->getRHS(); 14422 continue; 14423 } 14424 return false; 14425 } 14426 14427 default: 14428 return false; 14429 } 14430 } 14431 } 14432 14433 /// Retrieve the C type corresponding to type tag TypeExpr. 14434 /// 14435 /// \param TypeExpr Expression that specifies a type tag. 14436 /// 14437 /// \param MagicValues Registered magic values. 14438 /// 14439 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 14440 /// kind. 14441 /// 14442 /// \param TypeInfo Information about the corresponding C type. 14443 /// 14444 /// \param isConstantEvaluated wether the evalaution should be performed in 14445 /// constant context. 14446 /// 14447 /// \returns true if the corresponding C type was found. 14448 static bool GetMatchingCType( 14449 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 14450 const ASTContext &Ctx, 14451 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 14452 *MagicValues, 14453 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 14454 bool isConstantEvaluated) { 14455 FoundWrongKind = false; 14456 14457 // Variable declaration that has type_tag_for_datatype attribute. 14458 const ValueDecl *VD = nullptr; 14459 14460 uint64_t MagicValue; 14461 14462 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 14463 return false; 14464 14465 if (VD) { 14466 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 14467 if (I->getArgumentKind() != ArgumentKind) { 14468 FoundWrongKind = true; 14469 return false; 14470 } 14471 TypeInfo.Type = I->getMatchingCType(); 14472 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 14473 TypeInfo.MustBeNull = I->getMustBeNull(); 14474 return true; 14475 } 14476 return false; 14477 } 14478 14479 if (!MagicValues) 14480 return false; 14481 14482 llvm::DenseMap<Sema::TypeTagMagicValue, 14483 Sema::TypeTagData>::const_iterator I = 14484 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 14485 if (I == MagicValues->end()) 14486 return false; 14487 14488 TypeInfo = I->second; 14489 return true; 14490 } 14491 14492 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 14493 uint64_t MagicValue, QualType Type, 14494 bool LayoutCompatible, 14495 bool MustBeNull) { 14496 if (!TypeTagForDatatypeMagicValues) 14497 TypeTagForDatatypeMagicValues.reset( 14498 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 14499 14500 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 14501 (*TypeTagForDatatypeMagicValues)[Magic] = 14502 TypeTagData(Type, LayoutCompatible, MustBeNull); 14503 } 14504 14505 static bool IsSameCharType(QualType T1, QualType T2) { 14506 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 14507 if (!BT1) 14508 return false; 14509 14510 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 14511 if (!BT2) 14512 return false; 14513 14514 BuiltinType::Kind T1Kind = BT1->getKind(); 14515 BuiltinType::Kind T2Kind = BT2->getKind(); 14516 14517 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 14518 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 14519 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 14520 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 14521 } 14522 14523 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 14524 const ArrayRef<const Expr *> ExprArgs, 14525 SourceLocation CallSiteLoc) { 14526 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 14527 bool IsPointerAttr = Attr->getIsPointer(); 14528 14529 // Retrieve the argument representing the 'type_tag'. 14530 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 14531 if (TypeTagIdxAST >= ExprArgs.size()) { 14532 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 14533 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 14534 return; 14535 } 14536 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 14537 bool FoundWrongKind; 14538 TypeTagData TypeInfo; 14539 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 14540 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 14541 TypeInfo, isConstantEvaluated())) { 14542 if (FoundWrongKind) 14543 Diag(TypeTagExpr->getExprLoc(), 14544 diag::warn_type_tag_for_datatype_wrong_kind) 14545 << TypeTagExpr->getSourceRange(); 14546 return; 14547 } 14548 14549 // Retrieve the argument representing the 'arg_idx'. 14550 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 14551 if (ArgumentIdxAST >= ExprArgs.size()) { 14552 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 14553 << 1 << Attr->getArgumentIdx().getSourceIndex(); 14554 return; 14555 } 14556 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 14557 if (IsPointerAttr) { 14558 // Skip implicit cast of pointer to `void *' (as a function argument). 14559 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 14560 if (ICE->getType()->isVoidPointerType() && 14561 ICE->getCastKind() == CK_BitCast) 14562 ArgumentExpr = ICE->getSubExpr(); 14563 } 14564 QualType ArgumentType = ArgumentExpr->getType(); 14565 14566 // Passing a `void*' pointer shouldn't trigger a warning. 14567 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 14568 return; 14569 14570 if (TypeInfo.MustBeNull) { 14571 // Type tag with matching void type requires a null pointer. 14572 if (!ArgumentExpr->isNullPointerConstant(Context, 14573 Expr::NPC_ValueDependentIsNotNull)) { 14574 Diag(ArgumentExpr->getExprLoc(), 14575 diag::warn_type_safety_null_pointer_required) 14576 << ArgumentKind->getName() 14577 << ArgumentExpr->getSourceRange() 14578 << TypeTagExpr->getSourceRange(); 14579 } 14580 return; 14581 } 14582 14583 QualType RequiredType = TypeInfo.Type; 14584 if (IsPointerAttr) 14585 RequiredType = Context.getPointerType(RequiredType); 14586 14587 bool mismatch = false; 14588 if (!TypeInfo.LayoutCompatible) { 14589 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 14590 14591 // C++11 [basic.fundamental] p1: 14592 // Plain char, signed char, and unsigned char are three distinct types. 14593 // 14594 // But we treat plain `char' as equivalent to `signed char' or `unsigned 14595 // char' depending on the current char signedness mode. 14596 if (mismatch) 14597 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 14598 RequiredType->getPointeeType())) || 14599 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 14600 mismatch = false; 14601 } else 14602 if (IsPointerAttr) 14603 mismatch = !isLayoutCompatible(Context, 14604 ArgumentType->getPointeeType(), 14605 RequiredType->getPointeeType()); 14606 else 14607 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 14608 14609 if (mismatch) 14610 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 14611 << ArgumentType << ArgumentKind 14612 << TypeInfo.LayoutCompatible << RequiredType 14613 << ArgumentExpr->getSourceRange() 14614 << TypeTagExpr->getSourceRange(); 14615 } 14616 14617 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 14618 CharUnits Alignment) { 14619 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 14620 } 14621 14622 void Sema::DiagnoseMisalignedMembers() { 14623 for (MisalignedMember &m : MisalignedMembers) { 14624 const NamedDecl *ND = m.RD; 14625 if (ND->getName().empty()) { 14626 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 14627 ND = TD; 14628 } 14629 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 14630 << m.MD << ND << m.E->getSourceRange(); 14631 } 14632 MisalignedMembers.clear(); 14633 } 14634 14635 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 14636 E = E->IgnoreParens(); 14637 if (!T->isPointerType() && !T->isIntegerType()) 14638 return; 14639 if (isa<UnaryOperator>(E) && 14640 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 14641 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 14642 if (isa<MemberExpr>(Op)) { 14643 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 14644 if (MA != MisalignedMembers.end() && 14645 (T->isIntegerType() || 14646 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 14647 Context.getTypeAlignInChars( 14648 T->getPointeeType()) <= MA->Alignment)))) 14649 MisalignedMembers.erase(MA); 14650 } 14651 } 14652 } 14653 14654 void Sema::RefersToMemberWithReducedAlignment( 14655 Expr *E, 14656 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 14657 Action) { 14658 const auto *ME = dyn_cast<MemberExpr>(E); 14659 if (!ME) 14660 return; 14661 14662 // No need to check expressions with an __unaligned-qualified type. 14663 if (E->getType().getQualifiers().hasUnaligned()) 14664 return; 14665 14666 // For a chain of MemberExpr like "a.b.c.d" this list 14667 // will keep FieldDecl's like [d, c, b]. 14668 SmallVector<FieldDecl *, 4> ReverseMemberChain; 14669 const MemberExpr *TopME = nullptr; 14670 bool AnyIsPacked = false; 14671 do { 14672 QualType BaseType = ME->getBase()->getType(); 14673 if (BaseType->isDependentType()) 14674 return; 14675 if (ME->isArrow()) 14676 BaseType = BaseType->getPointeeType(); 14677 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 14678 if (RD->isInvalidDecl()) 14679 return; 14680 14681 ValueDecl *MD = ME->getMemberDecl(); 14682 auto *FD = dyn_cast<FieldDecl>(MD); 14683 // We do not care about non-data members. 14684 if (!FD || FD->isInvalidDecl()) 14685 return; 14686 14687 AnyIsPacked = 14688 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 14689 ReverseMemberChain.push_back(FD); 14690 14691 TopME = ME; 14692 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 14693 } while (ME); 14694 assert(TopME && "We did not compute a topmost MemberExpr!"); 14695 14696 // Not the scope of this diagnostic. 14697 if (!AnyIsPacked) 14698 return; 14699 14700 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 14701 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 14702 // TODO: The innermost base of the member expression may be too complicated. 14703 // For now, just disregard these cases. This is left for future 14704 // improvement. 14705 if (!DRE && !isa<CXXThisExpr>(TopBase)) 14706 return; 14707 14708 // Alignment expected by the whole expression. 14709 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 14710 14711 // No need to do anything else with this case. 14712 if (ExpectedAlignment.isOne()) 14713 return; 14714 14715 // Synthesize offset of the whole access. 14716 CharUnits Offset; 14717 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 14718 I++) { 14719 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 14720 } 14721 14722 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 14723 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 14724 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 14725 14726 // The base expression of the innermost MemberExpr may give 14727 // stronger guarantees than the class containing the member. 14728 if (DRE && !TopME->isArrow()) { 14729 const ValueDecl *VD = DRE->getDecl(); 14730 if (!VD->getType()->isReferenceType()) 14731 CompleteObjectAlignment = 14732 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 14733 } 14734 14735 // Check if the synthesized offset fulfills the alignment. 14736 if (Offset % ExpectedAlignment != 0 || 14737 // It may fulfill the offset it but the effective alignment may still be 14738 // lower than the expected expression alignment. 14739 CompleteObjectAlignment < ExpectedAlignment) { 14740 // If this happens, we want to determine a sensible culprit of this. 14741 // Intuitively, watching the chain of member expressions from right to 14742 // left, we start with the required alignment (as required by the field 14743 // type) but some packed attribute in that chain has reduced the alignment. 14744 // It may happen that another packed structure increases it again. But if 14745 // we are here such increase has not been enough. So pointing the first 14746 // FieldDecl that either is packed or else its RecordDecl is, 14747 // seems reasonable. 14748 FieldDecl *FD = nullptr; 14749 CharUnits Alignment; 14750 for (FieldDecl *FDI : ReverseMemberChain) { 14751 if (FDI->hasAttr<PackedAttr>() || 14752 FDI->getParent()->hasAttr<PackedAttr>()) { 14753 FD = FDI; 14754 Alignment = std::min( 14755 Context.getTypeAlignInChars(FD->getType()), 14756 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 14757 break; 14758 } 14759 } 14760 assert(FD && "We did not find a packed FieldDecl!"); 14761 Action(E, FD->getParent(), FD, Alignment); 14762 } 14763 } 14764 14765 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 14766 using namespace std::placeholders; 14767 14768 RefersToMemberWithReducedAlignment( 14769 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 14770 _2, _3, _4)); 14771 } 14772