1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 /// Checks that a call expression's argument count is the desired number.
113 /// This is useful when doing custom type-checking.  Returns true on error.
114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115   unsigned argCount = call->getNumArgs();
116   if (argCount == desiredArgCount) return false;
117 
118   if (argCount < desiredArgCount)
119     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120            << 0 /*function call*/ << desiredArgCount << argCount
121            << call->getSourceRange();
122 
123   // Highlight all the excess arguments.
124   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125                     call->getArg(argCount - 1)->getEndLoc());
126 
127   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128     << 0 /*function call*/ << desiredArgCount << argCount
129     << call->getArg(1)->getSourceRange();
130 }
131 
132 /// Check that the first argument to __builtin_annotation is an integer
133 /// and the second argument is a non-wide string literal.
134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135   if (checkArgCount(S, TheCall, 2))
136     return true;
137 
138   // First argument should be an integer.
139   Expr *ValArg = TheCall->getArg(0);
140   QualType Ty = ValArg->getType();
141   if (!Ty->isIntegerType()) {
142     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143         << ValArg->getSourceRange();
144     return true;
145   }
146 
147   // Second argument should be a constant string.
148   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150   if (!Literal || !Literal->isAscii()) {
151     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152         << StrArg->getSourceRange();
153     return true;
154   }
155 
156   TheCall->setType(Ty);
157   return false;
158 }
159 
160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161   // We need at least one argument.
162   if (TheCall->getNumArgs() < 1) {
163     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164         << 0 << 1 << TheCall->getNumArgs()
165         << TheCall->getCallee()->getSourceRange();
166     return true;
167   }
168 
169   // All arguments should be wide string literals.
170   for (Expr *Arg : TheCall->arguments()) {
171     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172     if (!Literal || !Literal->isWide()) {
173       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174           << Arg->getSourceRange();
175       return true;
176     }
177   }
178 
179   return false;
180 }
181 
182 /// Check that the argument to __builtin_addressof is a glvalue, and set the
183 /// result type to the corresponding pointer type.
184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185   if (checkArgCount(S, TheCall, 1))
186     return true;
187 
188   ExprResult Arg(TheCall->getArg(0));
189   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190   if (ResultType.isNull())
191     return true;
192 
193   TheCall->setArg(0, Arg.get());
194   TheCall->setType(ResultType);
195   return false;
196 }
197 
198 /// Check the number of arguments and set the result type to
199 /// the argument type.
200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
201   if (checkArgCount(S, TheCall, 1))
202     return true;
203 
204   TheCall->setType(TheCall->getArg(0)->getType());
205   return false;
206 }
207 
208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
210 /// type (but not a function pointer) and that the alignment is a power-of-two.
211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
212   if (checkArgCount(S, TheCall, 2))
213     return true;
214 
215   clang::Expr *Source = TheCall->getArg(0);
216   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
217 
218   auto IsValidIntegerType = [](QualType Ty) {
219     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
220   };
221   QualType SrcTy = Source->getType();
222   // We should also be able to use it with arrays (but not functions!).
223   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
224     SrcTy = S.Context.getDecayedType(SrcTy);
225   }
226   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
227       SrcTy->isFunctionPointerType()) {
228     // FIXME: this is not quite the right error message since we don't allow
229     // floating point types, or member pointers.
230     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
231         << SrcTy;
232     return true;
233   }
234 
235   clang::Expr *AlignOp = TheCall->getArg(1);
236   if (!IsValidIntegerType(AlignOp->getType())) {
237     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
238         << AlignOp->getType();
239     return true;
240   }
241   Expr::EvalResult AlignResult;
242   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
243   // We can't check validity of alignment if it is value dependent.
244   if (!AlignOp->isValueDependent() &&
245       AlignOp->EvaluateAsInt(AlignResult, S.Context,
246                              Expr::SE_AllowSideEffects)) {
247     llvm::APSInt AlignValue = AlignResult.Val.getInt();
248     llvm::APSInt MaxValue(
249         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
250     if (AlignValue < 1) {
251       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
252       return true;
253     }
254     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
255       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
256           << toString(MaxValue, 10);
257       return true;
258     }
259     if (!AlignValue.isPowerOf2()) {
260       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
261       return true;
262     }
263     if (AlignValue == 1) {
264       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
265           << IsBooleanAlignBuiltin;
266     }
267   }
268 
269   ExprResult SrcArg = S.PerformCopyInitialization(
270       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
271       SourceLocation(), Source);
272   if (SrcArg.isInvalid())
273     return true;
274   TheCall->setArg(0, SrcArg.get());
275   ExprResult AlignArg =
276       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
277                                       S.Context, AlignOp->getType(), false),
278                                   SourceLocation(), AlignOp);
279   if (AlignArg.isInvalid())
280     return true;
281   TheCall->setArg(1, AlignArg.get());
282   // For align_up/align_down, the return type is the same as the (potentially
283   // decayed) argument type including qualifiers. For is_aligned(), the result
284   // is always bool.
285   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
286   return false;
287 }
288 
289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
290                                 unsigned BuiltinID) {
291   if (checkArgCount(S, TheCall, 3))
292     return true;
293 
294   // First two arguments should be integers.
295   for (unsigned I = 0; I < 2; ++I) {
296     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
297     if (Arg.isInvalid()) return true;
298     TheCall->setArg(I, Arg.get());
299 
300     QualType Ty = Arg.get()->getType();
301     if (!Ty->isIntegerType()) {
302       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
303           << Ty << Arg.get()->getSourceRange();
304       return true;
305     }
306   }
307 
308   // Third argument should be a pointer to a non-const integer.
309   // IRGen correctly handles volatile, restrict, and address spaces, and
310   // the other qualifiers aren't possible.
311   {
312     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
313     if (Arg.isInvalid()) return true;
314     TheCall->setArg(2, Arg.get());
315 
316     QualType Ty = Arg.get()->getType();
317     const auto *PtrTy = Ty->getAs<PointerType>();
318     if (!PtrTy ||
319         !PtrTy->getPointeeType()->isIntegerType() ||
320         PtrTy->getPointeeType().isConstQualified()) {
321       S.Diag(Arg.get()->getBeginLoc(),
322              diag::err_overflow_builtin_must_be_ptr_int)
323         << Ty << Arg.get()->getSourceRange();
324       return true;
325     }
326   }
327 
328   // Disallow signed ExtIntType args larger than 128 bits to mul function until
329   // we improve backend support.
330   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
331     for (unsigned I = 0; I < 3; ++I) {
332       const auto Arg = TheCall->getArg(I);
333       // Third argument will be a pointer.
334       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
335       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
336           S.getASTContext().getIntWidth(Ty) > 128)
337         return S.Diag(Arg->getBeginLoc(),
338                       diag::err_overflow_builtin_ext_int_max_size)
339                << 128;
340     }
341   }
342 
343   return false;
344 }
345 
346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
347   if (checkArgCount(S, BuiltinCall, 2))
348     return true;
349 
350   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
351   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
352   Expr *Call = BuiltinCall->getArg(0);
353   Expr *Chain = BuiltinCall->getArg(1);
354 
355   if (Call->getStmtClass() != Stmt::CallExprClass) {
356     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
357         << Call->getSourceRange();
358     return true;
359   }
360 
361   auto CE = cast<CallExpr>(Call);
362   if (CE->getCallee()->getType()->isBlockPointerType()) {
363     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
364         << Call->getSourceRange();
365     return true;
366   }
367 
368   const Decl *TargetDecl = CE->getCalleeDecl();
369   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
370     if (FD->getBuiltinID()) {
371       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
372           << Call->getSourceRange();
373       return true;
374     }
375 
376   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
377     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
378         << Call->getSourceRange();
379     return true;
380   }
381 
382   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
383   if (ChainResult.isInvalid())
384     return true;
385   if (!ChainResult.get()->getType()->isPointerType()) {
386     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
387         << Chain->getSourceRange();
388     return true;
389   }
390 
391   QualType ReturnTy = CE->getCallReturnType(S.Context);
392   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
393   QualType BuiltinTy = S.Context.getFunctionType(
394       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
395   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
396 
397   Builtin =
398       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
399 
400   BuiltinCall->setType(CE->getType());
401   BuiltinCall->setValueKind(CE->getValueKind());
402   BuiltinCall->setObjectKind(CE->getObjectKind());
403   BuiltinCall->setCallee(Builtin);
404   BuiltinCall->setArg(1, ChainResult.get());
405 
406   return false;
407 }
408 
409 namespace {
410 
411 class ScanfDiagnosticFormatHandler
412     : public analyze_format_string::FormatStringHandler {
413   // Accepts the argument index (relative to the first destination index) of the
414   // argument whose size we want.
415   using ComputeSizeFunction =
416       llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
417 
418   // Accepts the argument index (relative to the first destination index), the
419   // destination size, and the source size).
420   using DiagnoseFunction =
421       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
422 
423   ComputeSizeFunction ComputeSizeArgument;
424   DiagnoseFunction Diagnose;
425 
426 public:
427   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
428                                DiagnoseFunction Diagnose)
429       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
430 
431   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
432                             const char *StartSpecifier,
433                             unsigned specifierLen) override {
434     if (!FS.consumesDataArgument())
435       return true;
436 
437     unsigned NulByte = 0;
438     switch ((FS.getConversionSpecifier().getKind())) {
439     default:
440       return true;
441     case analyze_format_string::ConversionSpecifier::sArg:
442     case analyze_format_string::ConversionSpecifier::ScanListArg:
443       NulByte = 1;
444       break;
445     case analyze_format_string::ConversionSpecifier::cArg:
446       break;
447     }
448 
449     auto OptionalFW = FS.getFieldWidth();
450     if (OptionalFW.getHowSpecified() !=
451         analyze_format_string::OptionalAmount::HowSpecified::Constant)
452       return true;
453 
454     unsigned SourceSize = OptionalFW.getConstantAmount() + NulByte;
455 
456     auto DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
457     if (!DestSizeAPS)
458       return true;
459 
460     unsigned DestSize = DestSizeAPS->getZExtValue();
461 
462     if (DestSize < SourceSize)
463       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
464 
465     return true;
466   }
467 };
468 
469 class EstimateSizeFormatHandler
470     : public analyze_format_string::FormatStringHandler {
471   size_t Size;
472 
473 public:
474   EstimateSizeFormatHandler(StringRef Format)
475       : Size(std::min(Format.find(0), Format.size()) +
476              1 /* null byte always written by sprintf */) {}
477 
478   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
479                              const char *, unsigned SpecifierLen) override {
480 
481     const size_t FieldWidth = computeFieldWidth(FS);
482     const size_t Precision = computePrecision(FS);
483 
484     // The actual format.
485     switch (FS.getConversionSpecifier().getKind()) {
486     // Just a char.
487     case analyze_format_string::ConversionSpecifier::cArg:
488     case analyze_format_string::ConversionSpecifier::CArg:
489       Size += std::max(FieldWidth, (size_t)1);
490       break;
491     // Just an integer.
492     case analyze_format_string::ConversionSpecifier::dArg:
493     case analyze_format_string::ConversionSpecifier::DArg:
494     case analyze_format_string::ConversionSpecifier::iArg:
495     case analyze_format_string::ConversionSpecifier::oArg:
496     case analyze_format_string::ConversionSpecifier::OArg:
497     case analyze_format_string::ConversionSpecifier::uArg:
498     case analyze_format_string::ConversionSpecifier::UArg:
499     case analyze_format_string::ConversionSpecifier::xArg:
500     case analyze_format_string::ConversionSpecifier::XArg:
501       Size += std::max(FieldWidth, Precision);
502       break;
503 
504     // %g style conversion switches between %f or %e style dynamically.
505     // %f always takes less space, so default to it.
506     case analyze_format_string::ConversionSpecifier::gArg:
507     case analyze_format_string::ConversionSpecifier::GArg:
508 
509     // Floating point number in the form '[+]ddd.ddd'.
510     case analyze_format_string::ConversionSpecifier::fArg:
511     case analyze_format_string::ConversionSpecifier::FArg:
512       Size += std::max(FieldWidth, 1 /* integer part */ +
513                                        (Precision ? 1 + Precision
514                                                   : 0) /* period + decimal */);
515       break;
516 
517     // Floating point number in the form '[-]d.ddde[+-]dd'.
518     case analyze_format_string::ConversionSpecifier::eArg:
519     case analyze_format_string::ConversionSpecifier::EArg:
520       Size +=
521           std::max(FieldWidth,
522                    1 /* integer part */ +
523                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
524                        1 /* e or E letter */ + 2 /* exponent */);
525       break;
526 
527     // Floating point number in the form '[-]0xh.hhhhp±dd'.
528     case analyze_format_string::ConversionSpecifier::aArg:
529     case analyze_format_string::ConversionSpecifier::AArg:
530       Size +=
531           std::max(FieldWidth,
532                    2 /* 0x */ + 1 /* integer part */ +
533                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
534                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
535       break;
536 
537     // Just a string.
538     case analyze_format_string::ConversionSpecifier::sArg:
539     case analyze_format_string::ConversionSpecifier::SArg:
540       Size += FieldWidth;
541       break;
542 
543     // Just a pointer in the form '0xddd'.
544     case analyze_format_string::ConversionSpecifier::pArg:
545       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
546       break;
547 
548     // A plain percent.
549     case analyze_format_string::ConversionSpecifier::PercentArg:
550       Size += 1;
551       break;
552 
553     default:
554       break;
555     }
556 
557     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
558 
559     if (FS.hasAlternativeForm()) {
560       switch (FS.getConversionSpecifier().getKind()) {
561       default:
562         break;
563       // Force a leading '0'.
564       case analyze_format_string::ConversionSpecifier::oArg:
565         Size += 1;
566         break;
567       // Force a leading '0x'.
568       case analyze_format_string::ConversionSpecifier::xArg:
569       case analyze_format_string::ConversionSpecifier::XArg:
570         Size += 2;
571         break;
572       // Force a period '.' before decimal, even if precision is 0.
573       case analyze_format_string::ConversionSpecifier::aArg:
574       case analyze_format_string::ConversionSpecifier::AArg:
575       case analyze_format_string::ConversionSpecifier::eArg:
576       case analyze_format_string::ConversionSpecifier::EArg:
577       case analyze_format_string::ConversionSpecifier::fArg:
578       case analyze_format_string::ConversionSpecifier::FArg:
579       case analyze_format_string::ConversionSpecifier::gArg:
580       case analyze_format_string::ConversionSpecifier::GArg:
581         Size += (Precision ? 0 : 1);
582         break;
583       }
584     }
585     assert(SpecifierLen <= Size && "no underflow");
586     Size -= SpecifierLen;
587     return true;
588   }
589 
590   size_t getSizeLowerBound() const { return Size; }
591 
592 private:
593   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
594     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
595     size_t FieldWidth = 0;
596     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
597       FieldWidth = FW.getConstantAmount();
598     return FieldWidth;
599   }
600 
601   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
602     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
603     size_t Precision = 0;
604 
605     // See man 3 printf for default precision value based on the specifier.
606     switch (FW.getHowSpecified()) {
607     case analyze_format_string::OptionalAmount::NotSpecified:
608       switch (FS.getConversionSpecifier().getKind()) {
609       default:
610         break;
611       case analyze_format_string::ConversionSpecifier::dArg: // %d
612       case analyze_format_string::ConversionSpecifier::DArg: // %D
613       case analyze_format_string::ConversionSpecifier::iArg: // %i
614         Precision = 1;
615         break;
616       case analyze_format_string::ConversionSpecifier::oArg: // %d
617       case analyze_format_string::ConversionSpecifier::OArg: // %D
618       case analyze_format_string::ConversionSpecifier::uArg: // %d
619       case analyze_format_string::ConversionSpecifier::UArg: // %D
620       case analyze_format_string::ConversionSpecifier::xArg: // %d
621       case analyze_format_string::ConversionSpecifier::XArg: // %D
622         Precision = 1;
623         break;
624       case analyze_format_string::ConversionSpecifier::fArg: // %f
625       case analyze_format_string::ConversionSpecifier::FArg: // %F
626       case analyze_format_string::ConversionSpecifier::eArg: // %e
627       case analyze_format_string::ConversionSpecifier::EArg: // %E
628       case analyze_format_string::ConversionSpecifier::gArg: // %g
629       case analyze_format_string::ConversionSpecifier::GArg: // %G
630         Precision = 6;
631         break;
632       case analyze_format_string::ConversionSpecifier::pArg: // %d
633         Precision = 1;
634         break;
635       }
636       break;
637     case analyze_format_string::OptionalAmount::Constant:
638       Precision = FW.getConstantAmount();
639       break;
640     default:
641       break;
642     }
643     return Precision;
644   }
645 };
646 
647 } // namespace
648 
649 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
650                                                CallExpr *TheCall) {
651   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
652       isConstantEvaluated())
653     return;
654 
655   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
656   if (!BuiltinID)
657     return;
658 
659   const TargetInfo &TI = getASTContext().getTargetInfo();
660   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
661 
662   auto ComputeExplicitObjectSizeArgument =
663       [&](unsigned Index) -> Optional<llvm::APSInt> {
664     Expr::EvalResult Result;
665     Expr *SizeArg = TheCall->getArg(Index);
666     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
667       return llvm::None;
668     return Result.Val.getInt();
669   };
670 
671   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
672     // If the parameter has a pass_object_size attribute, then we should use its
673     // (potentially) more strict checking mode. Otherwise, conservatively assume
674     // type 0.
675     int BOSType = 0;
676     // This check can fail for variadic functions.
677     if (Index < FD->getNumParams()) {
678       if (const auto *POS =
679               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
680         BOSType = POS->getType();
681     }
682 
683     const Expr *ObjArg = TheCall->getArg(Index);
684     uint64_t Result;
685     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
686       return llvm::None;
687 
688     // Get the object size in the target's size_t width.
689     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
690   };
691 
692   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
693     Expr *ObjArg = TheCall->getArg(Index);
694     uint64_t Result;
695     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
696       return llvm::None;
697     // Add 1 for null byte.
698     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
699   };
700 
701   Optional<llvm::APSInt> SourceSize;
702   Optional<llvm::APSInt> DestinationSize;
703   unsigned DiagID = 0;
704   bool IsChkVariant = false;
705 
706   auto GetFunctionName = [&]() {
707     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
708     // Skim off the details of whichever builtin was called to produce a better
709     // diagnostic, as it's unlikely that the user wrote the __builtin
710     // explicitly.
711     if (IsChkVariant) {
712       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
713       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
714     } else if (FunctionName.startswith("__builtin_")) {
715       FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
716     }
717     return FunctionName;
718   };
719 
720   switch (BuiltinID) {
721   default:
722     return;
723   case Builtin::BI__builtin_strcpy:
724   case Builtin::BIstrcpy: {
725     DiagID = diag::warn_fortify_strlen_overflow;
726     SourceSize = ComputeStrLenArgument(1);
727     DestinationSize = ComputeSizeArgument(0);
728     break;
729   }
730 
731   case Builtin::BI__builtin___strcpy_chk: {
732     DiagID = diag::warn_fortify_strlen_overflow;
733     SourceSize = ComputeStrLenArgument(1);
734     DestinationSize = ComputeExplicitObjectSizeArgument(2);
735     IsChkVariant = true;
736     break;
737   }
738 
739   case Builtin::BIscanf:
740   case Builtin::BIfscanf:
741   case Builtin::BIsscanf: {
742     unsigned FormatIndex = 1;
743     unsigned DataIndex = 2;
744     if (BuiltinID == Builtin::BIscanf) {
745       FormatIndex = 0;
746       DataIndex = 1;
747     }
748 
749     const auto *FormatExpr =
750         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
751 
752     const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
753     if (!Format)
754       return;
755 
756     if (!Format->isAscii() && !Format->isUTF8())
757       return;
758 
759     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
760                         unsigned SourceSize) {
761       DiagID = diag::warn_fortify_scanf_overflow;
762       unsigned Index = ArgIndex + DataIndex;
763       StringRef FunctionName = GetFunctionName();
764       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
765                           PDiag(DiagID) << FunctionName << (Index + 1)
766                                         << DestSize << SourceSize);
767     };
768 
769     StringRef FormatStrRef = Format->getString();
770     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
771       return ComputeSizeArgument(Index + DataIndex);
772     };
773     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
774     const char *FormatBytes = FormatStrRef.data();
775     const ConstantArrayType *T =
776         Context.getAsConstantArrayType(Format->getType());
777     assert(T && "String literal not of constant array type!");
778     size_t TypeSize = T->getSize().getZExtValue();
779 
780     // In case there's a null byte somewhere.
781     size_t StrLen =
782         std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
783 
784     analyze_format_string::ParseScanfString(H, FormatBytes,
785                                             FormatBytes + StrLen, getLangOpts(),
786                                             Context.getTargetInfo());
787 
788     // Unlike the other cases, in this one we have already issued the diagnostic
789     // here, so no need to continue (because unlike the other cases, here the
790     // diagnostic refers to the argument number).
791     return;
792   }
793 
794   case Builtin::BIsprintf:
795   case Builtin::BI__builtin___sprintf_chk: {
796     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
797     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
798 
799     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
800 
801       if (!Format->isAscii() && !Format->isUTF8())
802         return;
803 
804       StringRef FormatStrRef = Format->getString();
805       EstimateSizeFormatHandler H(FormatStrRef);
806       const char *FormatBytes = FormatStrRef.data();
807       const ConstantArrayType *T =
808           Context.getAsConstantArrayType(Format->getType());
809       assert(T && "String literal not of constant array type!");
810       size_t TypeSize = T->getSize().getZExtValue();
811 
812       // In case there's a null byte somewhere.
813       size_t StrLen =
814           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
815       if (!analyze_format_string::ParsePrintfString(
816               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
817               Context.getTargetInfo(), false)) {
818         DiagID = diag::warn_fortify_source_format_overflow;
819         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
820                          .extOrTrunc(SizeTypeWidth);
821         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
822           DestinationSize = ComputeExplicitObjectSizeArgument(2);
823           IsChkVariant = true;
824         } else {
825           DestinationSize = ComputeSizeArgument(0);
826         }
827         break;
828       }
829     }
830     return;
831   }
832   case Builtin::BI__builtin___memcpy_chk:
833   case Builtin::BI__builtin___memmove_chk:
834   case Builtin::BI__builtin___memset_chk:
835   case Builtin::BI__builtin___strlcat_chk:
836   case Builtin::BI__builtin___strlcpy_chk:
837   case Builtin::BI__builtin___strncat_chk:
838   case Builtin::BI__builtin___strncpy_chk:
839   case Builtin::BI__builtin___stpncpy_chk:
840   case Builtin::BI__builtin___memccpy_chk:
841   case Builtin::BI__builtin___mempcpy_chk: {
842     DiagID = diag::warn_builtin_chk_overflow;
843     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
844     DestinationSize =
845         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
846     IsChkVariant = true;
847     break;
848   }
849 
850   case Builtin::BI__builtin___snprintf_chk:
851   case Builtin::BI__builtin___vsnprintf_chk: {
852     DiagID = diag::warn_builtin_chk_overflow;
853     SourceSize = ComputeExplicitObjectSizeArgument(1);
854     DestinationSize = ComputeExplicitObjectSizeArgument(3);
855     IsChkVariant = true;
856     break;
857   }
858 
859   case Builtin::BIstrncat:
860   case Builtin::BI__builtin_strncat:
861   case Builtin::BIstrncpy:
862   case Builtin::BI__builtin_strncpy:
863   case Builtin::BIstpncpy:
864   case Builtin::BI__builtin_stpncpy: {
865     // Whether these functions overflow depends on the runtime strlen of the
866     // string, not just the buffer size, so emitting the "always overflow"
867     // diagnostic isn't quite right. We should still diagnose passing a buffer
868     // size larger than the destination buffer though; this is a runtime abort
869     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
870     DiagID = diag::warn_fortify_source_size_mismatch;
871     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
872     DestinationSize = ComputeSizeArgument(0);
873     break;
874   }
875 
876   case Builtin::BImemcpy:
877   case Builtin::BI__builtin_memcpy:
878   case Builtin::BImemmove:
879   case Builtin::BI__builtin_memmove:
880   case Builtin::BImemset:
881   case Builtin::BI__builtin_memset:
882   case Builtin::BImempcpy:
883   case Builtin::BI__builtin_mempcpy: {
884     DiagID = diag::warn_fortify_source_overflow;
885     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
886     DestinationSize = ComputeSizeArgument(0);
887     break;
888   }
889   case Builtin::BIsnprintf:
890   case Builtin::BI__builtin_snprintf:
891   case Builtin::BIvsnprintf:
892   case Builtin::BI__builtin_vsnprintf: {
893     DiagID = diag::warn_fortify_source_size_mismatch;
894     SourceSize = ComputeExplicitObjectSizeArgument(1);
895     DestinationSize = ComputeSizeArgument(0);
896     break;
897   }
898   }
899 
900   if (!SourceSize || !DestinationSize ||
901       SourceSize.getValue().ule(DestinationSize.getValue()))
902     return;
903 
904   StringRef FunctionName = GetFunctionName();
905 
906   SmallString<16> DestinationStr;
907   SmallString<16> SourceStr;
908   DestinationSize->toString(DestinationStr, /*Radix=*/10);
909   SourceSize->toString(SourceStr, /*Radix=*/10);
910   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
911                       PDiag(DiagID)
912                           << FunctionName << DestinationStr << SourceStr);
913 }
914 
915 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
916                                      Scope::ScopeFlags NeededScopeFlags,
917                                      unsigned DiagID) {
918   // Scopes aren't available during instantiation. Fortunately, builtin
919   // functions cannot be template args so they cannot be formed through template
920   // instantiation. Therefore checking once during the parse is sufficient.
921   if (SemaRef.inTemplateInstantiation())
922     return false;
923 
924   Scope *S = SemaRef.getCurScope();
925   while (S && !S->isSEHExceptScope())
926     S = S->getParent();
927   if (!S || !(S->getFlags() & NeededScopeFlags)) {
928     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
929     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
930         << DRE->getDecl()->getIdentifier();
931     return true;
932   }
933 
934   return false;
935 }
936 
937 static inline bool isBlockPointer(Expr *Arg) {
938   return Arg->getType()->isBlockPointerType();
939 }
940 
941 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
942 /// void*, which is a requirement of device side enqueue.
943 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
944   const BlockPointerType *BPT =
945       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
946   ArrayRef<QualType> Params =
947       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
948   unsigned ArgCounter = 0;
949   bool IllegalParams = false;
950   // Iterate through the block parameters until either one is found that is not
951   // a local void*, or the block is valid.
952   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
953        I != E; ++I, ++ArgCounter) {
954     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
955         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
956             LangAS::opencl_local) {
957       // Get the location of the error. If a block literal has been passed
958       // (BlockExpr) then we can point straight to the offending argument,
959       // else we just point to the variable reference.
960       SourceLocation ErrorLoc;
961       if (isa<BlockExpr>(BlockArg)) {
962         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
963         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
964       } else if (isa<DeclRefExpr>(BlockArg)) {
965         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
966       }
967       S.Diag(ErrorLoc,
968              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
969       IllegalParams = true;
970     }
971   }
972 
973   return IllegalParams;
974 }
975 
976 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
977   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
978     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
979         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
980     return true;
981   }
982   return false;
983 }
984 
985 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
986   if (checkArgCount(S, TheCall, 2))
987     return true;
988 
989   if (checkOpenCLSubgroupExt(S, TheCall))
990     return true;
991 
992   // First argument is an ndrange_t type.
993   Expr *NDRangeArg = TheCall->getArg(0);
994   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
995     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996         << TheCall->getDirectCallee() << "'ndrange_t'";
997     return true;
998   }
999 
1000   Expr *BlockArg = TheCall->getArg(1);
1001   if (!isBlockPointer(BlockArg)) {
1002     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1003         << TheCall->getDirectCallee() << "block";
1004     return true;
1005   }
1006   return checkOpenCLBlockArgs(S, BlockArg);
1007 }
1008 
1009 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1010 /// get_kernel_work_group_size
1011 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
1012 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1013   if (checkArgCount(S, TheCall, 1))
1014     return true;
1015 
1016   Expr *BlockArg = TheCall->getArg(0);
1017   if (!isBlockPointer(BlockArg)) {
1018     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019         << TheCall->getDirectCallee() << "block";
1020     return true;
1021   }
1022   return checkOpenCLBlockArgs(S, BlockArg);
1023 }
1024 
1025 /// Diagnose integer type and any valid implicit conversion to it.
1026 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1027                                       const QualType &IntType);
1028 
1029 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1030                                             unsigned Start, unsigned End) {
1031   bool IllegalParams = false;
1032   for (unsigned I = Start; I <= End; ++I)
1033     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1034                                               S.Context.getSizeType());
1035   return IllegalParams;
1036 }
1037 
1038 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1039 /// 'local void*' parameter of passed block.
1040 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1041                                            Expr *BlockArg,
1042                                            unsigned NumNonVarArgs) {
1043   const BlockPointerType *BPT =
1044       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1045   unsigned NumBlockParams =
1046       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1047   unsigned TotalNumArgs = TheCall->getNumArgs();
1048 
1049   // For each argument passed to the block, a corresponding uint needs to
1050   // be passed to describe the size of the local memory.
1051   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1052     S.Diag(TheCall->getBeginLoc(),
1053            diag::err_opencl_enqueue_kernel_local_size_args);
1054     return true;
1055   }
1056 
1057   // Check that the sizes of the local memory are specified by integers.
1058   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1059                                          TotalNumArgs - 1);
1060 }
1061 
1062 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1063 /// overload formats specified in Table 6.13.17.1.
1064 /// int enqueue_kernel(queue_t queue,
1065 ///                    kernel_enqueue_flags_t flags,
1066 ///                    const ndrange_t ndrange,
1067 ///                    void (^block)(void))
1068 /// int enqueue_kernel(queue_t queue,
1069 ///                    kernel_enqueue_flags_t flags,
1070 ///                    const ndrange_t ndrange,
1071 ///                    uint num_events_in_wait_list,
1072 ///                    clk_event_t *event_wait_list,
1073 ///                    clk_event_t *event_ret,
1074 ///                    void (^block)(void))
1075 /// int enqueue_kernel(queue_t queue,
1076 ///                    kernel_enqueue_flags_t flags,
1077 ///                    const ndrange_t ndrange,
1078 ///                    void (^block)(local void*, ...),
1079 ///                    uint size0, ...)
1080 /// int enqueue_kernel(queue_t queue,
1081 ///                    kernel_enqueue_flags_t flags,
1082 ///                    const ndrange_t ndrange,
1083 ///                    uint num_events_in_wait_list,
1084 ///                    clk_event_t *event_wait_list,
1085 ///                    clk_event_t *event_ret,
1086 ///                    void (^block)(local void*, ...),
1087 ///                    uint size0, ...)
1088 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1089   unsigned NumArgs = TheCall->getNumArgs();
1090 
1091   if (NumArgs < 4) {
1092     S.Diag(TheCall->getBeginLoc(),
1093            diag::err_typecheck_call_too_few_args_at_least)
1094         << 0 << 4 << NumArgs;
1095     return true;
1096   }
1097 
1098   Expr *Arg0 = TheCall->getArg(0);
1099   Expr *Arg1 = TheCall->getArg(1);
1100   Expr *Arg2 = TheCall->getArg(2);
1101   Expr *Arg3 = TheCall->getArg(3);
1102 
1103   // First argument always needs to be a queue_t type.
1104   if (!Arg0->getType()->isQueueT()) {
1105     S.Diag(TheCall->getArg(0)->getBeginLoc(),
1106            diag::err_opencl_builtin_expected_type)
1107         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1108     return true;
1109   }
1110 
1111   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1112   if (!Arg1->getType()->isIntegerType()) {
1113     S.Diag(TheCall->getArg(1)->getBeginLoc(),
1114            diag::err_opencl_builtin_expected_type)
1115         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1116     return true;
1117   }
1118 
1119   // Third argument is always an ndrange_t type.
1120   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1121     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1122            diag::err_opencl_builtin_expected_type)
1123         << TheCall->getDirectCallee() << "'ndrange_t'";
1124     return true;
1125   }
1126 
1127   // With four arguments, there is only one form that the function could be
1128   // called in: no events and no variable arguments.
1129   if (NumArgs == 4) {
1130     // check that the last argument is the right block type.
1131     if (!isBlockPointer(Arg3)) {
1132       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1133           << TheCall->getDirectCallee() << "block";
1134       return true;
1135     }
1136     // we have a block type, check the prototype
1137     const BlockPointerType *BPT =
1138         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1139     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1140       S.Diag(Arg3->getBeginLoc(),
1141              diag::err_opencl_enqueue_kernel_blocks_no_args);
1142       return true;
1143     }
1144     return false;
1145   }
1146   // we can have block + varargs.
1147   if (isBlockPointer(Arg3))
1148     return (checkOpenCLBlockArgs(S, Arg3) ||
1149             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1150   // last two cases with either exactly 7 args or 7 args and varargs.
1151   if (NumArgs >= 7) {
1152     // check common block argument.
1153     Expr *Arg6 = TheCall->getArg(6);
1154     if (!isBlockPointer(Arg6)) {
1155       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1156           << TheCall->getDirectCallee() << "block";
1157       return true;
1158     }
1159     if (checkOpenCLBlockArgs(S, Arg6))
1160       return true;
1161 
1162     // Forth argument has to be any integer type.
1163     if (!Arg3->getType()->isIntegerType()) {
1164       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1165              diag::err_opencl_builtin_expected_type)
1166           << TheCall->getDirectCallee() << "integer";
1167       return true;
1168     }
1169     // check remaining common arguments.
1170     Expr *Arg4 = TheCall->getArg(4);
1171     Expr *Arg5 = TheCall->getArg(5);
1172 
1173     // Fifth argument is always passed as a pointer to clk_event_t.
1174     if (!Arg4->isNullPointerConstant(S.Context,
1175                                      Expr::NPC_ValueDependentIsNotNull) &&
1176         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1177       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1178              diag::err_opencl_builtin_expected_type)
1179           << TheCall->getDirectCallee()
1180           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1181       return true;
1182     }
1183 
1184     // Sixth argument is always passed as a pointer to clk_event_t.
1185     if (!Arg5->isNullPointerConstant(S.Context,
1186                                      Expr::NPC_ValueDependentIsNotNull) &&
1187         !(Arg5->getType()->isPointerType() &&
1188           Arg5->getType()->getPointeeType()->isClkEventT())) {
1189       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1190              diag::err_opencl_builtin_expected_type)
1191           << TheCall->getDirectCallee()
1192           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1193       return true;
1194     }
1195 
1196     if (NumArgs == 7)
1197       return false;
1198 
1199     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1200   }
1201 
1202   // None of the specific case has been detected, give generic error
1203   S.Diag(TheCall->getBeginLoc(),
1204          diag::err_opencl_enqueue_kernel_incorrect_args);
1205   return true;
1206 }
1207 
1208 /// Returns OpenCL access qual.
1209 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1210     return D->getAttr<OpenCLAccessAttr>();
1211 }
1212 
1213 /// Returns true if pipe element type is different from the pointer.
1214 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1215   const Expr *Arg0 = Call->getArg(0);
1216   // First argument type should always be pipe.
1217   if (!Arg0->getType()->isPipeType()) {
1218     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1219         << Call->getDirectCallee() << Arg0->getSourceRange();
1220     return true;
1221   }
1222   OpenCLAccessAttr *AccessQual =
1223       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1224   // Validates the access qualifier is compatible with the call.
1225   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1226   // read_only and write_only, and assumed to be read_only if no qualifier is
1227   // specified.
1228   switch (Call->getDirectCallee()->getBuiltinID()) {
1229   case Builtin::BIread_pipe:
1230   case Builtin::BIreserve_read_pipe:
1231   case Builtin::BIcommit_read_pipe:
1232   case Builtin::BIwork_group_reserve_read_pipe:
1233   case Builtin::BIsub_group_reserve_read_pipe:
1234   case Builtin::BIwork_group_commit_read_pipe:
1235   case Builtin::BIsub_group_commit_read_pipe:
1236     if (!(!AccessQual || AccessQual->isReadOnly())) {
1237       S.Diag(Arg0->getBeginLoc(),
1238              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1239           << "read_only" << Arg0->getSourceRange();
1240       return true;
1241     }
1242     break;
1243   case Builtin::BIwrite_pipe:
1244   case Builtin::BIreserve_write_pipe:
1245   case Builtin::BIcommit_write_pipe:
1246   case Builtin::BIwork_group_reserve_write_pipe:
1247   case Builtin::BIsub_group_reserve_write_pipe:
1248   case Builtin::BIwork_group_commit_write_pipe:
1249   case Builtin::BIsub_group_commit_write_pipe:
1250     if (!(AccessQual && AccessQual->isWriteOnly())) {
1251       S.Diag(Arg0->getBeginLoc(),
1252              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1253           << "write_only" << Arg0->getSourceRange();
1254       return true;
1255     }
1256     break;
1257   default:
1258     break;
1259   }
1260   return false;
1261 }
1262 
1263 /// Returns true if pipe element type is different from the pointer.
1264 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1265   const Expr *Arg0 = Call->getArg(0);
1266   const Expr *ArgIdx = Call->getArg(Idx);
1267   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1268   const QualType EltTy = PipeTy->getElementType();
1269   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1270   // The Idx argument should be a pointer and the type of the pointer and
1271   // the type of pipe element should also be the same.
1272   if (!ArgTy ||
1273       !S.Context.hasSameType(
1274           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1275     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1276         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1277         << ArgIdx->getType() << ArgIdx->getSourceRange();
1278     return true;
1279   }
1280   return false;
1281 }
1282 
1283 // Performs semantic analysis for the read/write_pipe call.
1284 // \param S Reference to the semantic analyzer.
1285 // \param Call A pointer to the builtin call.
1286 // \return True if a semantic error has been found, false otherwise.
1287 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1288   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1289   // functions have two forms.
1290   switch (Call->getNumArgs()) {
1291   case 2:
1292     if (checkOpenCLPipeArg(S, Call))
1293       return true;
1294     // The call with 2 arguments should be
1295     // read/write_pipe(pipe T, T*).
1296     // Check packet type T.
1297     if (checkOpenCLPipePacketType(S, Call, 1))
1298       return true;
1299     break;
1300 
1301   case 4: {
1302     if (checkOpenCLPipeArg(S, Call))
1303       return true;
1304     // The call with 4 arguments should be
1305     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1306     // Check reserve_id_t.
1307     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1308       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1309           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1310           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1311       return true;
1312     }
1313 
1314     // Check the index.
1315     const Expr *Arg2 = Call->getArg(2);
1316     if (!Arg2->getType()->isIntegerType() &&
1317         !Arg2->getType()->isUnsignedIntegerType()) {
1318       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1319           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1320           << Arg2->getType() << Arg2->getSourceRange();
1321       return true;
1322     }
1323 
1324     // Check packet type T.
1325     if (checkOpenCLPipePacketType(S, Call, 3))
1326       return true;
1327   } break;
1328   default:
1329     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1330         << Call->getDirectCallee() << Call->getSourceRange();
1331     return true;
1332   }
1333 
1334   return false;
1335 }
1336 
1337 // Performs a semantic analysis on the {work_group_/sub_group_
1338 //        /_}reserve_{read/write}_pipe
1339 // \param S Reference to the semantic analyzer.
1340 // \param Call The call to the builtin function to be analyzed.
1341 // \return True if a semantic error was found, false otherwise.
1342 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1343   if (checkArgCount(S, Call, 2))
1344     return true;
1345 
1346   if (checkOpenCLPipeArg(S, Call))
1347     return true;
1348 
1349   // Check the reserve size.
1350   if (!Call->getArg(1)->getType()->isIntegerType() &&
1351       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1352     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1353         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1354         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1355     return true;
1356   }
1357 
1358   // Since return type of reserve_read/write_pipe built-in function is
1359   // reserve_id_t, which is not defined in the builtin def file , we used int
1360   // as return type and need to override the return type of these functions.
1361   Call->setType(S.Context.OCLReserveIDTy);
1362 
1363   return false;
1364 }
1365 
1366 // Performs a semantic analysis on {work_group_/sub_group_
1367 //        /_}commit_{read/write}_pipe
1368 // \param S Reference to the semantic analyzer.
1369 // \param Call The call to the builtin function to be analyzed.
1370 // \return True if a semantic error was found, false otherwise.
1371 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1372   if (checkArgCount(S, Call, 2))
1373     return true;
1374 
1375   if (checkOpenCLPipeArg(S, Call))
1376     return true;
1377 
1378   // Check reserve_id_t.
1379   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1380     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1381         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1382         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1383     return true;
1384   }
1385 
1386   return false;
1387 }
1388 
1389 // Performs a semantic analysis on the call to built-in Pipe
1390 //        Query Functions.
1391 // \param S Reference to the semantic analyzer.
1392 // \param Call The call to the builtin function to be analyzed.
1393 // \return True if a semantic error was found, false otherwise.
1394 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1395   if (checkArgCount(S, Call, 1))
1396     return true;
1397 
1398   if (!Call->getArg(0)->getType()->isPipeType()) {
1399     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1400         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1401     return true;
1402   }
1403 
1404   return false;
1405 }
1406 
1407 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1408 // Performs semantic analysis for the to_global/local/private call.
1409 // \param S Reference to the semantic analyzer.
1410 // \param BuiltinID ID of the builtin function.
1411 // \param Call A pointer to the builtin call.
1412 // \return True if a semantic error has been found, false otherwise.
1413 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1414                                     CallExpr *Call) {
1415   if (checkArgCount(S, Call, 1))
1416     return true;
1417 
1418   auto RT = Call->getArg(0)->getType();
1419   if (!RT->isPointerType() || RT->getPointeeType()
1420       .getAddressSpace() == LangAS::opencl_constant) {
1421     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1422         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1423     return true;
1424   }
1425 
1426   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1427     S.Diag(Call->getArg(0)->getBeginLoc(),
1428            diag::warn_opencl_generic_address_space_arg)
1429         << Call->getDirectCallee()->getNameInfo().getAsString()
1430         << Call->getArg(0)->getSourceRange();
1431   }
1432 
1433   RT = RT->getPointeeType();
1434   auto Qual = RT.getQualifiers();
1435   switch (BuiltinID) {
1436   case Builtin::BIto_global:
1437     Qual.setAddressSpace(LangAS::opencl_global);
1438     break;
1439   case Builtin::BIto_local:
1440     Qual.setAddressSpace(LangAS::opencl_local);
1441     break;
1442   case Builtin::BIto_private:
1443     Qual.setAddressSpace(LangAS::opencl_private);
1444     break;
1445   default:
1446     llvm_unreachable("Invalid builtin function");
1447   }
1448   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1449       RT.getUnqualifiedType(), Qual)));
1450 
1451   return false;
1452 }
1453 
1454 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1455   if (checkArgCount(S, TheCall, 1))
1456     return ExprError();
1457 
1458   // Compute __builtin_launder's parameter type from the argument.
1459   // The parameter type is:
1460   //  * The type of the argument if it's not an array or function type,
1461   //  Otherwise,
1462   //  * The decayed argument type.
1463   QualType ParamTy = [&]() {
1464     QualType ArgTy = TheCall->getArg(0)->getType();
1465     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1466       return S.Context.getPointerType(Ty->getElementType());
1467     if (ArgTy->isFunctionType()) {
1468       return S.Context.getPointerType(ArgTy);
1469     }
1470     return ArgTy;
1471   }();
1472 
1473   TheCall->setType(ParamTy);
1474 
1475   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1476     if (!ParamTy->isPointerType())
1477       return 0;
1478     if (ParamTy->isFunctionPointerType())
1479       return 1;
1480     if (ParamTy->isVoidPointerType())
1481       return 2;
1482     return llvm::Optional<unsigned>{};
1483   }();
1484   if (DiagSelect.hasValue()) {
1485     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1486         << DiagSelect.getValue() << TheCall->getSourceRange();
1487     return ExprError();
1488   }
1489 
1490   // We either have an incomplete class type, or we have a class template
1491   // whose instantiation has not been forced. Example:
1492   //
1493   //   template <class T> struct Foo { T value; };
1494   //   Foo<int> *p = nullptr;
1495   //   auto *d = __builtin_launder(p);
1496   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1497                             diag::err_incomplete_type))
1498     return ExprError();
1499 
1500   assert(ParamTy->getPointeeType()->isObjectType() &&
1501          "Unhandled non-object pointer case");
1502 
1503   InitializedEntity Entity =
1504       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1505   ExprResult Arg =
1506       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1507   if (Arg.isInvalid())
1508     return ExprError();
1509   TheCall->setArg(0, Arg.get());
1510 
1511   return TheCall;
1512 }
1513 
1514 // Emit an error and return true if the current architecture is not in the list
1515 // of supported architectures.
1516 static bool
1517 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1518                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1519   llvm::Triple::ArchType CurArch =
1520       S.getASTContext().getTargetInfo().getTriple().getArch();
1521   if (llvm::is_contained(SupportedArchs, CurArch))
1522     return false;
1523   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1524       << TheCall->getSourceRange();
1525   return true;
1526 }
1527 
1528 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1529                                  SourceLocation CallSiteLoc);
1530 
1531 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1532                                       CallExpr *TheCall) {
1533   switch (TI.getTriple().getArch()) {
1534   default:
1535     // Some builtins don't require additional checking, so just consider these
1536     // acceptable.
1537     return false;
1538   case llvm::Triple::arm:
1539   case llvm::Triple::armeb:
1540   case llvm::Triple::thumb:
1541   case llvm::Triple::thumbeb:
1542     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1543   case llvm::Triple::aarch64:
1544   case llvm::Triple::aarch64_32:
1545   case llvm::Triple::aarch64_be:
1546     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1547   case llvm::Triple::bpfeb:
1548   case llvm::Triple::bpfel:
1549     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1550   case llvm::Triple::hexagon:
1551     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1552   case llvm::Triple::mips:
1553   case llvm::Triple::mipsel:
1554   case llvm::Triple::mips64:
1555   case llvm::Triple::mips64el:
1556     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1557   case llvm::Triple::systemz:
1558     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1559   case llvm::Triple::x86:
1560   case llvm::Triple::x86_64:
1561     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1562   case llvm::Triple::ppc:
1563   case llvm::Triple::ppcle:
1564   case llvm::Triple::ppc64:
1565   case llvm::Triple::ppc64le:
1566     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1567   case llvm::Triple::amdgcn:
1568     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1569   case llvm::Triple::riscv32:
1570   case llvm::Triple::riscv64:
1571     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1572   }
1573 }
1574 
1575 ExprResult
1576 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1577                                CallExpr *TheCall) {
1578   ExprResult TheCallResult(TheCall);
1579 
1580   // Find out if any arguments are required to be integer constant expressions.
1581   unsigned ICEArguments = 0;
1582   ASTContext::GetBuiltinTypeError Error;
1583   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1584   if (Error != ASTContext::GE_None)
1585     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1586 
1587   // If any arguments are required to be ICE's, check and diagnose.
1588   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1589     // Skip arguments not required to be ICE's.
1590     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1591 
1592     llvm::APSInt Result;
1593     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1594       return true;
1595     ICEArguments &= ~(1 << ArgNo);
1596   }
1597 
1598   switch (BuiltinID) {
1599   case Builtin::BI__builtin___CFStringMakeConstantString:
1600     assert(TheCall->getNumArgs() == 1 &&
1601            "Wrong # arguments to builtin CFStringMakeConstantString");
1602     if (CheckObjCString(TheCall->getArg(0)))
1603       return ExprError();
1604     break;
1605   case Builtin::BI__builtin_ms_va_start:
1606   case Builtin::BI__builtin_stdarg_start:
1607   case Builtin::BI__builtin_va_start:
1608     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1609       return ExprError();
1610     break;
1611   case Builtin::BI__va_start: {
1612     switch (Context.getTargetInfo().getTriple().getArch()) {
1613     case llvm::Triple::aarch64:
1614     case llvm::Triple::arm:
1615     case llvm::Triple::thumb:
1616       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1617         return ExprError();
1618       break;
1619     default:
1620       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1621         return ExprError();
1622       break;
1623     }
1624     break;
1625   }
1626 
1627   // The acquire, release, and no fence variants are ARM and AArch64 only.
1628   case Builtin::BI_interlockedbittestandset_acq:
1629   case Builtin::BI_interlockedbittestandset_rel:
1630   case Builtin::BI_interlockedbittestandset_nf:
1631   case Builtin::BI_interlockedbittestandreset_acq:
1632   case Builtin::BI_interlockedbittestandreset_rel:
1633   case Builtin::BI_interlockedbittestandreset_nf:
1634     if (CheckBuiltinTargetSupport(
1635             *this, BuiltinID, TheCall,
1636             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1637       return ExprError();
1638     break;
1639 
1640   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1641   case Builtin::BI_bittest64:
1642   case Builtin::BI_bittestandcomplement64:
1643   case Builtin::BI_bittestandreset64:
1644   case Builtin::BI_bittestandset64:
1645   case Builtin::BI_interlockedbittestandreset64:
1646   case Builtin::BI_interlockedbittestandset64:
1647     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1648                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1649                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1650       return ExprError();
1651     break;
1652 
1653   case Builtin::BI__builtin_isgreater:
1654   case Builtin::BI__builtin_isgreaterequal:
1655   case Builtin::BI__builtin_isless:
1656   case Builtin::BI__builtin_islessequal:
1657   case Builtin::BI__builtin_islessgreater:
1658   case Builtin::BI__builtin_isunordered:
1659     if (SemaBuiltinUnorderedCompare(TheCall))
1660       return ExprError();
1661     break;
1662   case Builtin::BI__builtin_fpclassify:
1663     if (SemaBuiltinFPClassification(TheCall, 6))
1664       return ExprError();
1665     break;
1666   case Builtin::BI__builtin_isfinite:
1667   case Builtin::BI__builtin_isinf:
1668   case Builtin::BI__builtin_isinf_sign:
1669   case Builtin::BI__builtin_isnan:
1670   case Builtin::BI__builtin_isnormal:
1671   case Builtin::BI__builtin_signbit:
1672   case Builtin::BI__builtin_signbitf:
1673   case Builtin::BI__builtin_signbitl:
1674     if (SemaBuiltinFPClassification(TheCall, 1))
1675       return ExprError();
1676     break;
1677   case Builtin::BI__builtin_shufflevector:
1678     return SemaBuiltinShuffleVector(TheCall);
1679     // TheCall will be freed by the smart pointer here, but that's fine, since
1680     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1681   case Builtin::BI__builtin_prefetch:
1682     if (SemaBuiltinPrefetch(TheCall))
1683       return ExprError();
1684     break;
1685   case Builtin::BI__builtin_alloca_with_align:
1686     if (SemaBuiltinAllocaWithAlign(TheCall))
1687       return ExprError();
1688     LLVM_FALLTHROUGH;
1689   case Builtin::BI__builtin_alloca:
1690     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1691         << TheCall->getDirectCallee();
1692     break;
1693   case Builtin::BI__arithmetic_fence:
1694     if (SemaBuiltinArithmeticFence(TheCall))
1695       return ExprError();
1696     break;
1697   case Builtin::BI__assume:
1698   case Builtin::BI__builtin_assume:
1699     if (SemaBuiltinAssume(TheCall))
1700       return ExprError();
1701     break;
1702   case Builtin::BI__builtin_assume_aligned:
1703     if (SemaBuiltinAssumeAligned(TheCall))
1704       return ExprError();
1705     break;
1706   case Builtin::BI__builtin_dynamic_object_size:
1707   case Builtin::BI__builtin_object_size:
1708     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1709       return ExprError();
1710     break;
1711   case Builtin::BI__builtin_longjmp:
1712     if (SemaBuiltinLongjmp(TheCall))
1713       return ExprError();
1714     break;
1715   case Builtin::BI__builtin_setjmp:
1716     if (SemaBuiltinSetjmp(TheCall))
1717       return ExprError();
1718     break;
1719   case Builtin::BI__builtin_classify_type:
1720     if (checkArgCount(*this, TheCall, 1)) return true;
1721     TheCall->setType(Context.IntTy);
1722     break;
1723   case Builtin::BI__builtin_complex:
1724     if (SemaBuiltinComplex(TheCall))
1725       return ExprError();
1726     break;
1727   case Builtin::BI__builtin_constant_p: {
1728     if (checkArgCount(*this, TheCall, 1)) return true;
1729     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1730     if (Arg.isInvalid()) return true;
1731     TheCall->setArg(0, Arg.get());
1732     TheCall->setType(Context.IntTy);
1733     break;
1734   }
1735   case Builtin::BI__builtin_launder:
1736     return SemaBuiltinLaunder(*this, TheCall);
1737   case Builtin::BI__sync_fetch_and_add:
1738   case Builtin::BI__sync_fetch_and_add_1:
1739   case Builtin::BI__sync_fetch_and_add_2:
1740   case Builtin::BI__sync_fetch_and_add_4:
1741   case Builtin::BI__sync_fetch_and_add_8:
1742   case Builtin::BI__sync_fetch_and_add_16:
1743   case Builtin::BI__sync_fetch_and_sub:
1744   case Builtin::BI__sync_fetch_and_sub_1:
1745   case Builtin::BI__sync_fetch_and_sub_2:
1746   case Builtin::BI__sync_fetch_and_sub_4:
1747   case Builtin::BI__sync_fetch_and_sub_8:
1748   case Builtin::BI__sync_fetch_and_sub_16:
1749   case Builtin::BI__sync_fetch_and_or:
1750   case Builtin::BI__sync_fetch_and_or_1:
1751   case Builtin::BI__sync_fetch_and_or_2:
1752   case Builtin::BI__sync_fetch_and_or_4:
1753   case Builtin::BI__sync_fetch_and_or_8:
1754   case Builtin::BI__sync_fetch_and_or_16:
1755   case Builtin::BI__sync_fetch_and_and:
1756   case Builtin::BI__sync_fetch_and_and_1:
1757   case Builtin::BI__sync_fetch_and_and_2:
1758   case Builtin::BI__sync_fetch_and_and_4:
1759   case Builtin::BI__sync_fetch_and_and_8:
1760   case Builtin::BI__sync_fetch_and_and_16:
1761   case Builtin::BI__sync_fetch_and_xor:
1762   case Builtin::BI__sync_fetch_and_xor_1:
1763   case Builtin::BI__sync_fetch_and_xor_2:
1764   case Builtin::BI__sync_fetch_and_xor_4:
1765   case Builtin::BI__sync_fetch_and_xor_8:
1766   case Builtin::BI__sync_fetch_and_xor_16:
1767   case Builtin::BI__sync_fetch_and_nand:
1768   case Builtin::BI__sync_fetch_and_nand_1:
1769   case Builtin::BI__sync_fetch_and_nand_2:
1770   case Builtin::BI__sync_fetch_and_nand_4:
1771   case Builtin::BI__sync_fetch_and_nand_8:
1772   case Builtin::BI__sync_fetch_and_nand_16:
1773   case Builtin::BI__sync_add_and_fetch:
1774   case Builtin::BI__sync_add_and_fetch_1:
1775   case Builtin::BI__sync_add_and_fetch_2:
1776   case Builtin::BI__sync_add_and_fetch_4:
1777   case Builtin::BI__sync_add_and_fetch_8:
1778   case Builtin::BI__sync_add_and_fetch_16:
1779   case Builtin::BI__sync_sub_and_fetch:
1780   case Builtin::BI__sync_sub_and_fetch_1:
1781   case Builtin::BI__sync_sub_and_fetch_2:
1782   case Builtin::BI__sync_sub_and_fetch_4:
1783   case Builtin::BI__sync_sub_and_fetch_8:
1784   case Builtin::BI__sync_sub_and_fetch_16:
1785   case Builtin::BI__sync_and_and_fetch:
1786   case Builtin::BI__sync_and_and_fetch_1:
1787   case Builtin::BI__sync_and_and_fetch_2:
1788   case Builtin::BI__sync_and_and_fetch_4:
1789   case Builtin::BI__sync_and_and_fetch_8:
1790   case Builtin::BI__sync_and_and_fetch_16:
1791   case Builtin::BI__sync_or_and_fetch:
1792   case Builtin::BI__sync_or_and_fetch_1:
1793   case Builtin::BI__sync_or_and_fetch_2:
1794   case Builtin::BI__sync_or_and_fetch_4:
1795   case Builtin::BI__sync_or_and_fetch_8:
1796   case Builtin::BI__sync_or_and_fetch_16:
1797   case Builtin::BI__sync_xor_and_fetch:
1798   case Builtin::BI__sync_xor_and_fetch_1:
1799   case Builtin::BI__sync_xor_and_fetch_2:
1800   case Builtin::BI__sync_xor_and_fetch_4:
1801   case Builtin::BI__sync_xor_and_fetch_8:
1802   case Builtin::BI__sync_xor_and_fetch_16:
1803   case Builtin::BI__sync_nand_and_fetch:
1804   case Builtin::BI__sync_nand_and_fetch_1:
1805   case Builtin::BI__sync_nand_and_fetch_2:
1806   case Builtin::BI__sync_nand_and_fetch_4:
1807   case Builtin::BI__sync_nand_and_fetch_8:
1808   case Builtin::BI__sync_nand_and_fetch_16:
1809   case Builtin::BI__sync_val_compare_and_swap:
1810   case Builtin::BI__sync_val_compare_and_swap_1:
1811   case Builtin::BI__sync_val_compare_and_swap_2:
1812   case Builtin::BI__sync_val_compare_and_swap_4:
1813   case Builtin::BI__sync_val_compare_and_swap_8:
1814   case Builtin::BI__sync_val_compare_and_swap_16:
1815   case Builtin::BI__sync_bool_compare_and_swap:
1816   case Builtin::BI__sync_bool_compare_and_swap_1:
1817   case Builtin::BI__sync_bool_compare_and_swap_2:
1818   case Builtin::BI__sync_bool_compare_and_swap_4:
1819   case Builtin::BI__sync_bool_compare_and_swap_8:
1820   case Builtin::BI__sync_bool_compare_and_swap_16:
1821   case Builtin::BI__sync_lock_test_and_set:
1822   case Builtin::BI__sync_lock_test_and_set_1:
1823   case Builtin::BI__sync_lock_test_and_set_2:
1824   case Builtin::BI__sync_lock_test_and_set_4:
1825   case Builtin::BI__sync_lock_test_and_set_8:
1826   case Builtin::BI__sync_lock_test_and_set_16:
1827   case Builtin::BI__sync_lock_release:
1828   case Builtin::BI__sync_lock_release_1:
1829   case Builtin::BI__sync_lock_release_2:
1830   case Builtin::BI__sync_lock_release_4:
1831   case Builtin::BI__sync_lock_release_8:
1832   case Builtin::BI__sync_lock_release_16:
1833   case Builtin::BI__sync_swap:
1834   case Builtin::BI__sync_swap_1:
1835   case Builtin::BI__sync_swap_2:
1836   case Builtin::BI__sync_swap_4:
1837   case Builtin::BI__sync_swap_8:
1838   case Builtin::BI__sync_swap_16:
1839     return SemaBuiltinAtomicOverloaded(TheCallResult);
1840   case Builtin::BI__sync_synchronize:
1841     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1842         << TheCall->getCallee()->getSourceRange();
1843     break;
1844   case Builtin::BI__builtin_nontemporal_load:
1845   case Builtin::BI__builtin_nontemporal_store:
1846     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1847   case Builtin::BI__builtin_memcpy_inline: {
1848     clang::Expr *SizeOp = TheCall->getArg(2);
1849     // We warn about copying to or from `nullptr` pointers when `size` is
1850     // greater than 0. When `size` is value dependent we cannot evaluate its
1851     // value so we bail out.
1852     if (SizeOp->isValueDependent())
1853       break;
1854     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
1855       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1856       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1857     }
1858     break;
1859   }
1860 #define BUILTIN(ID, TYPE, ATTRS)
1861 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1862   case Builtin::BI##ID: \
1863     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1864 #include "clang/Basic/Builtins.def"
1865   case Builtin::BI__annotation:
1866     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1867       return ExprError();
1868     break;
1869   case Builtin::BI__builtin_annotation:
1870     if (SemaBuiltinAnnotation(*this, TheCall))
1871       return ExprError();
1872     break;
1873   case Builtin::BI__builtin_addressof:
1874     if (SemaBuiltinAddressof(*this, TheCall))
1875       return ExprError();
1876     break;
1877   case Builtin::BI__builtin_is_aligned:
1878   case Builtin::BI__builtin_align_up:
1879   case Builtin::BI__builtin_align_down:
1880     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1881       return ExprError();
1882     break;
1883   case Builtin::BI__builtin_add_overflow:
1884   case Builtin::BI__builtin_sub_overflow:
1885   case Builtin::BI__builtin_mul_overflow:
1886     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1887       return ExprError();
1888     break;
1889   case Builtin::BI__builtin_operator_new:
1890   case Builtin::BI__builtin_operator_delete: {
1891     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1892     ExprResult Res =
1893         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1894     if (Res.isInvalid())
1895       CorrectDelayedTyposInExpr(TheCallResult.get());
1896     return Res;
1897   }
1898   case Builtin::BI__builtin_dump_struct: {
1899     // We first want to ensure we are called with 2 arguments
1900     if (checkArgCount(*this, TheCall, 2))
1901       return ExprError();
1902     // Ensure that the first argument is of type 'struct XX *'
1903     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1904     const QualType PtrArgType = PtrArg->getType();
1905     if (!PtrArgType->isPointerType() ||
1906         !PtrArgType->getPointeeType()->isRecordType()) {
1907       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1908           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1909           << "structure pointer";
1910       return ExprError();
1911     }
1912 
1913     // Ensure that the second argument is of type 'FunctionType'
1914     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1915     const QualType FnPtrArgType = FnPtrArg->getType();
1916     if (!FnPtrArgType->isPointerType()) {
1917       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1918           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1919           << FnPtrArgType << "'int (*)(const char *, ...)'";
1920       return ExprError();
1921     }
1922 
1923     const auto *FuncType =
1924         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1925 
1926     if (!FuncType) {
1927       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1928           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1929           << FnPtrArgType << "'int (*)(const char *, ...)'";
1930       return ExprError();
1931     }
1932 
1933     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1934       if (!FT->getNumParams()) {
1935         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1936             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1937             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1938         return ExprError();
1939       }
1940       QualType PT = FT->getParamType(0);
1941       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1942           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1943           !PT->getPointeeType().isConstQualified()) {
1944         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1945             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1946             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1947         return ExprError();
1948       }
1949     }
1950 
1951     TheCall->setType(Context.IntTy);
1952     break;
1953   }
1954   case Builtin::BI__builtin_expect_with_probability: {
1955     // We first want to ensure we are called with 3 arguments
1956     if (checkArgCount(*this, TheCall, 3))
1957       return ExprError();
1958     // then check probability is constant float in range [0.0, 1.0]
1959     const Expr *ProbArg = TheCall->getArg(2);
1960     SmallVector<PartialDiagnosticAt, 8> Notes;
1961     Expr::EvalResult Eval;
1962     Eval.Diag = &Notes;
1963     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1964         !Eval.Val.isFloat()) {
1965       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1966           << ProbArg->getSourceRange();
1967       for (const PartialDiagnosticAt &PDiag : Notes)
1968         Diag(PDiag.first, PDiag.second);
1969       return ExprError();
1970     }
1971     llvm::APFloat Probability = Eval.Val.getFloat();
1972     bool LoseInfo = false;
1973     Probability.convert(llvm::APFloat::IEEEdouble(),
1974                         llvm::RoundingMode::Dynamic, &LoseInfo);
1975     if (!(Probability >= llvm::APFloat(0.0) &&
1976           Probability <= llvm::APFloat(1.0))) {
1977       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1978           << ProbArg->getSourceRange();
1979       return ExprError();
1980     }
1981     break;
1982   }
1983   case Builtin::BI__builtin_preserve_access_index:
1984     if (SemaBuiltinPreserveAI(*this, TheCall))
1985       return ExprError();
1986     break;
1987   case Builtin::BI__builtin_call_with_static_chain:
1988     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1989       return ExprError();
1990     break;
1991   case Builtin::BI__exception_code:
1992   case Builtin::BI_exception_code:
1993     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1994                                  diag::err_seh___except_block))
1995       return ExprError();
1996     break;
1997   case Builtin::BI__exception_info:
1998   case Builtin::BI_exception_info:
1999     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2000                                  diag::err_seh___except_filter))
2001       return ExprError();
2002     break;
2003   case Builtin::BI__GetExceptionInfo:
2004     if (checkArgCount(*this, TheCall, 1))
2005       return ExprError();
2006 
2007     if (CheckCXXThrowOperand(
2008             TheCall->getBeginLoc(),
2009             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2010             TheCall))
2011       return ExprError();
2012 
2013     TheCall->setType(Context.VoidPtrTy);
2014     break;
2015   // OpenCL v2.0, s6.13.16 - Pipe functions
2016   case Builtin::BIread_pipe:
2017   case Builtin::BIwrite_pipe:
2018     // Since those two functions are declared with var args, we need a semantic
2019     // check for the argument.
2020     if (SemaBuiltinRWPipe(*this, TheCall))
2021       return ExprError();
2022     break;
2023   case Builtin::BIreserve_read_pipe:
2024   case Builtin::BIreserve_write_pipe:
2025   case Builtin::BIwork_group_reserve_read_pipe:
2026   case Builtin::BIwork_group_reserve_write_pipe:
2027     if (SemaBuiltinReserveRWPipe(*this, TheCall))
2028       return ExprError();
2029     break;
2030   case Builtin::BIsub_group_reserve_read_pipe:
2031   case Builtin::BIsub_group_reserve_write_pipe:
2032     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2033         SemaBuiltinReserveRWPipe(*this, TheCall))
2034       return ExprError();
2035     break;
2036   case Builtin::BIcommit_read_pipe:
2037   case Builtin::BIcommit_write_pipe:
2038   case Builtin::BIwork_group_commit_read_pipe:
2039   case Builtin::BIwork_group_commit_write_pipe:
2040     if (SemaBuiltinCommitRWPipe(*this, TheCall))
2041       return ExprError();
2042     break;
2043   case Builtin::BIsub_group_commit_read_pipe:
2044   case Builtin::BIsub_group_commit_write_pipe:
2045     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2046         SemaBuiltinCommitRWPipe(*this, TheCall))
2047       return ExprError();
2048     break;
2049   case Builtin::BIget_pipe_num_packets:
2050   case Builtin::BIget_pipe_max_packets:
2051     if (SemaBuiltinPipePackets(*this, TheCall))
2052       return ExprError();
2053     break;
2054   case Builtin::BIto_global:
2055   case Builtin::BIto_local:
2056   case Builtin::BIto_private:
2057     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2058       return ExprError();
2059     break;
2060   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2061   case Builtin::BIenqueue_kernel:
2062     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2063       return ExprError();
2064     break;
2065   case Builtin::BIget_kernel_work_group_size:
2066   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2067     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2068       return ExprError();
2069     break;
2070   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2071   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2072     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2073       return ExprError();
2074     break;
2075   case Builtin::BI__builtin_os_log_format:
2076     Cleanup.setExprNeedsCleanups(true);
2077     LLVM_FALLTHROUGH;
2078   case Builtin::BI__builtin_os_log_format_buffer_size:
2079     if (SemaBuiltinOSLogFormat(TheCall))
2080       return ExprError();
2081     break;
2082   case Builtin::BI__builtin_frame_address:
2083   case Builtin::BI__builtin_return_address: {
2084     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2085       return ExprError();
2086 
2087     // -Wframe-address warning if non-zero passed to builtin
2088     // return/frame address.
2089     Expr::EvalResult Result;
2090     if (!TheCall->getArg(0)->isValueDependent() &&
2091         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2092         Result.Val.getInt() != 0)
2093       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2094           << ((BuiltinID == Builtin::BI__builtin_return_address)
2095                   ? "__builtin_return_address"
2096                   : "__builtin_frame_address")
2097           << TheCall->getSourceRange();
2098     break;
2099   }
2100 
2101   case Builtin::BI__builtin_elementwise_abs:
2102     if (SemaBuiltinElementwiseMathOneArg(TheCall))
2103       return ExprError();
2104     break;
2105   case Builtin::BI__builtin_elementwise_min:
2106   case Builtin::BI__builtin_elementwise_max:
2107     if (SemaBuiltinElementwiseMath(TheCall))
2108       return ExprError();
2109     break;
2110   case Builtin::BI__builtin_reduce_max:
2111   case Builtin::BI__builtin_reduce_min:
2112     if (SemaBuiltinReduceMath(TheCall))
2113       return ExprError();
2114     break;
2115   case Builtin::BI__builtin_matrix_transpose:
2116     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2117 
2118   case Builtin::BI__builtin_matrix_column_major_load:
2119     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2120 
2121   case Builtin::BI__builtin_matrix_column_major_store:
2122     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2123 
2124   case Builtin::BI__builtin_get_device_side_mangled_name: {
2125     auto Check = [](CallExpr *TheCall) {
2126       if (TheCall->getNumArgs() != 1)
2127         return false;
2128       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2129       if (!DRE)
2130         return false;
2131       auto *D = DRE->getDecl();
2132       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2133         return false;
2134       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2135              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2136     };
2137     if (!Check(TheCall)) {
2138       Diag(TheCall->getBeginLoc(),
2139            diag::err_hip_invalid_args_builtin_mangled_name);
2140       return ExprError();
2141     }
2142   }
2143   }
2144 
2145   // Since the target specific builtins for each arch overlap, only check those
2146   // of the arch we are compiling for.
2147   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2148     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2149       assert(Context.getAuxTargetInfo() &&
2150              "Aux Target Builtin, but not an aux target?");
2151 
2152       if (CheckTSBuiltinFunctionCall(
2153               *Context.getAuxTargetInfo(),
2154               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2155         return ExprError();
2156     } else {
2157       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2158                                      TheCall))
2159         return ExprError();
2160     }
2161   }
2162 
2163   return TheCallResult;
2164 }
2165 
2166 // Get the valid immediate range for the specified NEON type code.
2167 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2168   NeonTypeFlags Type(t);
2169   int IsQuad = ForceQuad ? true : Type.isQuad();
2170   switch (Type.getEltType()) {
2171   case NeonTypeFlags::Int8:
2172   case NeonTypeFlags::Poly8:
2173     return shift ? 7 : (8 << IsQuad) - 1;
2174   case NeonTypeFlags::Int16:
2175   case NeonTypeFlags::Poly16:
2176     return shift ? 15 : (4 << IsQuad) - 1;
2177   case NeonTypeFlags::Int32:
2178     return shift ? 31 : (2 << IsQuad) - 1;
2179   case NeonTypeFlags::Int64:
2180   case NeonTypeFlags::Poly64:
2181     return shift ? 63 : (1 << IsQuad) - 1;
2182   case NeonTypeFlags::Poly128:
2183     return shift ? 127 : (1 << IsQuad) - 1;
2184   case NeonTypeFlags::Float16:
2185     assert(!shift && "cannot shift float types!");
2186     return (4 << IsQuad) - 1;
2187   case NeonTypeFlags::Float32:
2188     assert(!shift && "cannot shift float types!");
2189     return (2 << IsQuad) - 1;
2190   case NeonTypeFlags::Float64:
2191     assert(!shift && "cannot shift float types!");
2192     return (1 << IsQuad) - 1;
2193   case NeonTypeFlags::BFloat16:
2194     assert(!shift && "cannot shift float types!");
2195     return (4 << IsQuad) - 1;
2196   }
2197   llvm_unreachable("Invalid NeonTypeFlag!");
2198 }
2199 
2200 /// getNeonEltType - Return the QualType corresponding to the elements of
2201 /// the vector type specified by the NeonTypeFlags.  This is used to check
2202 /// the pointer arguments for Neon load/store intrinsics.
2203 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2204                                bool IsPolyUnsigned, bool IsInt64Long) {
2205   switch (Flags.getEltType()) {
2206   case NeonTypeFlags::Int8:
2207     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2208   case NeonTypeFlags::Int16:
2209     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2210   case NeonTypeFlags::Int32:
2211     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2212   case NeonTypeFlags::Int64:
2213     if (IsInt64Long)
2214       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2215     else
2216       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2217                                 : Context.LongLongTy;
2218   case NeonTypeFlags::Poly8:
2219     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2220   case NeonTypeFlags::Poly16:
2221     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2222   case NeonTypeFlags::Poly64:
2223     if (IsInt64Long)
2224       return Context.UnsignedLongTy;
2225     else
2226       return Context.UnsignedLongLongTy;
2227   case NeonTypeFlags::Poly128:
2228     break;
2229   case NeonTypeFlags::Float16:
2230     return Context.HalfTy;
2231   case NeonTypeFlags::Float32:
2232     return Context.FloatTy;
2233   case NeonTypeFlags::Float64:
2234     return Context.DoubleTy;
2235   case NeonTypeFlags::BFloat16:
2236     return Context.BFloat16Ty;
2237   }
2238   llvm_unreachable("Invalid NeonTypeFlag!");
2239 }
2240 
2241 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2242   // Range check SVE intrinsics that take immediate values.
2243   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2244 
2245   switch (BuiltinID) {
2246   default:
2247     return false;
2248 #define GET_SVE_IMMEDIATE_CHECK
2249 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2250 #undef GET_SVE_IMMEDIATE_CHECK
2251   }
2252 
2253   // Perform all the immediate checks for this builtin call.
2254   bool HasError = false;
2255   for (auto &I : ImmChecks) {
2256     int ArgNum, CheckTy, ElementSizeInBits;
2257     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2258 
2259     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2260 
2261     // Function that checks whether the operand (ArgNum) is an immediate
2262     // that is one of the predefined values.
2263     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2264                                    int ErrDiag) -> bool {
2265       // We can't check the value of a dependent argument.
2266       Expr *Arg = TheCall->getArg(ArgNum);
2267       if (Arg->isTypeDependent() || Arg->isValueDependent())
2268         return false;
2269 
2270       // Check constant-ness first.
2271       llvm::APSInt Imm;
2272       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2273         return true;
2274 
2275       if (!CheckImm(Imm.getSExtValue()))
2276         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2277       return false;
2278     };
2279 
2280     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2281     case SVETypeFlags::ImmCheck0_31:
2282       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2283         HasError = true;
2284       break;
2285     case SVETypeFlags::ImmCheck0_13:
2286       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2287         HasError = true;
2288       break;
2289     case SVETypeFlags::ImmCheck1_16:
2290       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2291         HasError = true;
2292       break;
2293     case SVETypeFlags::ImmCheck0_7:
2294       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2295         HasError = true;
2296       break;
2297     case SVETypeFlags::ImmCheckExtract:
2298       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2299                                       (2048 / ElementSizeInBits) - 1))
2300         HasError = true;
2301       break;
2302     case SVETypeFlags::ImmCheckShiftRight:
2303       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2304         HasError = true;
2305       break;
2306     case SVETypeFlags::ImmCheckShiftRightNarrow:
2307       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2308                                       ElementSizeInBits / 2))
2309         HasError = true;
2310       break;
2311     case SVETypeFlags::ImmCheckShiftLeft:
2312       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2313                                       ElementSizeInBits - 1))
2314         HasError = true;
2315       break;
2316     case SVETypeFlags::ImmCheckLaneIndex:
2317       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2318                                       (128 / (1 * ElementSizeInBits)) - 1))
2319         HasError = true;
2320       break;
2321     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2322       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2323                                       (128 / (2 * ElementSizeInBits)) - 1))
2324         HasError = true;
2325       break;
2326     case SVETypeFlags::ImmCheckLaneIndexDot:
2327       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2328                                       (128 / (4 * ElementSizeInBits)) - 1))
2329         HasError = true;
2330       break;
2331     case SVETypeFlags::ImmCheckComplexRot90_270:
2332       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2333                               diag::err_rotation_argument_to_cadd))
2334         HasError = true;
2335       break;
2336     case SVETypeFlags::ImmCheckComplexRotAll90:
2337       if (CheckImmediateInSet(
2338               [](int64_t V) {
2339                 return V == 0 || V == 90 || V == 180 || V == 270;
2340               },
2341               diag::err_rotation_argument_to_cmla))
2342         HasError = true;
2343       break;
2344     case SVETypeFlags::ImmCheck0_1:
2345       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2346         HasError = true;
2347       break;
2348     case SVETypeFlags::ImmCheck0_2:
2349       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2350         HasError = true;
2351       break;
2352     case SVETypeFlags::ImmCheck0_3:
2353       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2354         HasError = true;
2355       break;
2356     }
2357   }
2358 
2359   return HasError;
2360 }
2361 
2362 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2363                                         unsigned BuiltinID, CallExpr *TheCall) {
2364   llvm::APSInt Result;
2365   uint64_t mask = 0;
2366   unsigned TV = 0;
2367   int PtrArgNum = -1;
2368   bool HasConstPtr = false;
2369   switch (BuiltinID) {
2370 #define GET_NEON_OVERLOAD_CHECK
2371 #include "clang/Basic/arm_neon.inc"
2372 #include "clang/Basic/arm_fp16.inc"
2373 #undef GET_NEON_OVERLOAD_CHECK
2374   }
2375 
2376   // For NEON intrinsics which are overloaded on vector element type, validate
2377   // the immediate which specifies which variant to emit.
2378   unsigned ImmArg = TheCall->getNumArgs()-1;
2379   if (mask) {
2380     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2381       return true;
2382 
2383     TV = Result.getLimitedValue(64);
2384     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2385       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2386              << TheCall->getArg(ImmArg)->getSourceRange();
2387   }
2388 
2389   if (PtrArgNum >= 0) {
2390     // Check that pointer arguments have the specified type.
2391     Expr *Arg = TheCall->getArg(PtrArgNum);
2392     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2393       Arg = ICE->getSubExpr();
2394     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2395     QualType RHSTy = RHS.get()->getType();
2396 
2397     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2398     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2399                           Arch == llvm::Triple::aarch64_32 ||
2400                           Arch == llvm::Triple::aarch64_be;
2401     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2402     QualType EltTy =
2403         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2404     if (HasConstPtr)
2405       EltTy = EltTy.withConst();
2406     QualType LHSTy = Context.getPointerType(EltTy);
2407     AssignConvertType ConvTy;
2408     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2409     if (RHS.isInvalid())
2410       return true;
2411     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2412                                  RHS.get(), AA_Assigning))
2413       return true;
2414   }
2415 
2416   // For NEON intrinsics which take an immediate value as part of the
2417   // instruction, range check them here.
2418   unsigned i = 0, l = 0, u = 0;
2419   switch (BuiltinID) {
2420   default:
2421     return false;
2422   #define GET_NEON_IMMEDIATE_CHECK
2423   #include "clang/Basic/arm_neon.inc"
2424   #include "clang/Basic/arm_fp16.inc"
2425   #undef GET_NEON_IMMEDIATE_CHECK
2426   }
2427 
2428   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2429 }
2430 
2431 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2432   switch (BuiltinID) {
2433   default:
2434     return false;
2435   #include "clang/Basic/arm_mve_builtin_sema.inc"
2436   }
2437 }
2438 
2439 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2440                                        CallExpr *TheCall) {
2441   bool Err = false;
2442   switch (BuiltinID) {
2443   default:
2444     return false;
2445 #include "clang/Basic/arm_cde_builtin_sema.inc"
2446   }
2447 
2448   if (Err)
2449     return true;
2450 
2451   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2452 }
2453 
2454 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2455                                         const Expr *CoprocArg, bool WantCDE) {
2456   if (isConstantEvaluated())
2457     return false;
2458 
2459   // We can't check the value of a dependent argument.
2460   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2461     return false;
2462 
2463   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2464   int64_t CoprocNo = CoprocNoAP.getExtValue();
2465   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2466 
2467   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2468   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2469 
2470   if (IsCDECoproc != WantCDE)
2471     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2472            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2473 
2474   return false;
2475 }
2476 
2477 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2478                                         unsigned MaxWidth) {
2479   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2480           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2481           BuiltinID == ARM::BI__builtin_arm_strex ||
2482           BuiltinID == ARM::BI__builtin_arm_stlex ||
2483           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2484           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2485           BuiltinID == AArch64::BI__builtin_arm_strex ||
2486           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2487          "unexpected ARM builtin");
2488   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2489                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2490                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2491                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2492 
2493   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2494 
2495   // Ensure that we have the proper number of arguments.
2496   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2497     return true;
2498 
2499   // Inspect the pointer argument of the atomic builtin.  This should always be
2500   // a pointer type, whose element is an integral scalar or pointer type.
2501   // Because it is a pointer type, we don't have to worry about any implicit
2502   // casts here.
2503   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2504   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2505   if (PointerArgRes.isInvalid())
2506     return true;
2507   PointerArg = PointerArgRes.get();
2508 
2509   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2510   if (!pointerType) {
2511     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2512         << PointerArg->getType() << PointerArg->getSourceRange();
2513     return true;
2514   }
2515 
2516   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2517   // task is to insert the appropriate casts into the AST. First work out just
2518   // what the appropriate type is.
2519   QualType ValType = pointerType->getPointeeType();
2520   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2521   if (IsLdrex)
2522     AddrType.addConst();
2523 
2524   // Issue a warning if the cast is dodgy.
2525   CastKind CastNeeded = CK_NoOp;
2526   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2527     CastNeeded = CK_BitCast;
2528     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2529         << PointerArg->getType() << Context.getPointerType(AddrType)
2530         << AA_Passing << PointerArg->getSourceRange();
2531   }
2532 
2533   // Finally, do the cast and replace the argument with the corrected version.
2534   AddrType = Context.getPointerType(AddrType);
2535   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2536   if (PointerArgRes.isInvalid())
2537     return true;
2538   PointerArg = PointerArgRes.get();
2539 
2540   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2541 
2542   // In general, we allow ints, floats and pointers to be loaded and stored.
2543   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2544       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2545     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2546         << PointerArg->getType() << PointerArg->getSourceRange();
2547     return true;
2548   }
2549 
2550   // But ARM doesn't have instructions to deal with 128-bit versions.
2551   if (Context.getTypeSize(ValType) > MaxWidth) {
2552     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2553     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2554         << PointerArg->getType() << PointerArg->getSourceRange();
2555     return true;
2556   }
2557 
2558   switch (ValType.getObjCLifetime()) {
2559   case Qualifiers::OCL_None:
2560   case Qualifiers::OCL_ExplicitNone:
2561     // okay
2562     break;
2563 
2564   case Qualifiers::OCL_Weak:
2565   case Qualifiers::OCL_Strong:
2566   case Qualifiers::OCL_Autoreleasing:
2567     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2568         << ValType << PointerArg->getSourceRange();
2569     return true;
2570   }
2571 
2572   if (IsLdrex) {
2573     TheCall->setType(ValType);
2574     return false;
2575   }
2576 
2577   // Initialize the argument to be stored.
2578   ExprResult ValArg = TheCall->getArg(0);
2579   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2580       Context, ValType, /*consume*/ false);
2581   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2582   if (ValArg.isInvalid())
2583     return true;
2584   TheCall->setArg(0, ValArg.get());
2585 
2586   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2587   // but the custom checker bypasses all default analysis.
2588   TheCall->setType(Context.IntTy);
2589   return false;
2590 }
2591 
2592 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2593                                        CallExpr *TheCall) {
2594   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2595       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2596       BuiltinID == ARM::BI__builtin_arm_strex ||
2597       BuiltinID == ARM::BI__builtin_arm_stlex) {
2598     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2599   }
2600 
2601   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2602     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2603       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2604   }
2605 
2606   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2607       BuiltinID == ARM::BI__builtin_arm_wsr64)
2608     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2609 
2610   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2611       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2612       BuiltinID == ARM::BI__builtin_arm_wsr ||
2613       BuiltinID == ARM::BI__builtin_arm_wsrp)
2614     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2615 
2616   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2617     return true;
2618   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2619     return true;
2620   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2621     return true;
2622 
2623   // For intrinsics which take an immediate value as part of the instruction,
2624   // range check them here.
2625   // FIXME: VFP Intrinsics should error if VFP not present.
2626   switch (BuiltinID) {
2627   default: return false;
2628   case ARM::BI__builtin_arm_ssat:
2629     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2630   case ARM::BI__builtin_arm_usat:
2631     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2632   case ARM::BI__builtin_arm_ssat16:
2633     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2634   case ARM::BI__builtin_arm_usat16:
2635     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2636   case ARM::BI__builtin_arm_vcvtr_f:
2637   case ARM::BI__builtin_arm_vcvtr_d:
2638     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2639   case ARM::BI__builtin_arm_dmb:
2640   case ARM::BI__builtin_arm_dsb:
2641   case ARM::BI__builtin_arm_isb:
2642   case ARM::BI__builtin_arm_dbg:
2643     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2644   case ARM::BI__builtin_arm_cdp:
2645   case ARM::BI__builtin_arm_cdp2:
2646   case ARM::BI__builtin_arm_mcr:
2647   case ARM::BI__builtin_arm_mcr2:
2648   case ARM::BI__builtin_arm_mrc:
2649   case ARM::BI__builtin_arm_mrc2:
2650   case ARM::BI__builtin_arm_mcrr:
2651   case ARM::BI__builtin_arm_mcrr2:
2652   case ARM::BI__builtin_arm_mrrc:
2653   case ARM::BI__builtin_arm_mrrc2:
2654   case ARM::BI__builtin_arm_ldc:
2655   case ARM::BI__builtin_arm_ldcl:
2656   case ARM::BI__builtin_arm_ldc2:
2657   case ARM::BI__builtin_arm_ldc2l:
2658   case ARM::BI__builtin_arm_stc:
2659   case ARM::BI__builtin_arm_stcl:
2660   case ARM::BI__builtin_arm_stc2:
2661   case ARM::BI__builtin_arm_stc2l:
2662     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2663            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2664                                         /*WantCDE*/ false);
2665   }
2666 }
2667 
2668 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2669                                            unsigned BuiltinID,
2670                                            CallExpr *TheCall) {
2671   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2672       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2673       BuiltinID == AArch64::BI__builtin_arm_strex ||
2674       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2675     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2676   }
2677 
2678   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2679     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2680       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2681       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2682       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2683   }
2684 
2685   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2686       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2687     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2688 
2689   // Memory Tagging Extensions (MTE) Intrinsics
2690   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2691       BuiltinID == AArch64::BI__builtin_arm_addg ||
2692       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2693       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2694       BuiltinID == AArch64::BI__builtin_arm_stg ||
2695       BuiltinID == AArch64::BI__builtin_arm_subp) {
2696     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2697   }
2698 
2699   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2700       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2701       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2702       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2703     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2704 
2705   // Only check the valid encoding range. Any constant in this range would be
2706   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2707   // an exception for incorrect registers. This matches MSVC behavior.
2708   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2709       BuiltinID == AArch64::BI_WriteStatusReg)
2710     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2711 
2712   if (BuiltinID == AArch64::BI__getReg)
2713     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2714 
2715   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2716     return true;
2717 
2718   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2719     return true;
2720 
2721   // For intrinsics which take an immediate value as part of the instruction,
2722   // range check them here.
2723   unsigned i = 0, l = 0, u = 0;
2724   switch (BuiltinID) {
2725   default: return false;
2726   case AArch64::BI__builtin_arm_dmb:
2727   case AArch64::BI__builtin_arm_dsb:
2728   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2729   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2730   }
2731 
2732   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2733 }
2734 
2735 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2736   if (Arg->getType()->getAsPlaceholderType())
2737     return false;
2738 
2739   // The first argument needs to be a record field access.
2740   // If it is an array element access, we delay decision
2741   // to BPF backend to check whether the access is a
2742   // field access or not.
2743   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2744           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2745           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2746 }
2747 
2748 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2749                             QualType VectorTy, QualType EltTy) {
2750   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2751   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2752     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2753         << Call->getSourceRange() << VectorEltTy << EltTy;
2754     return false;
2755   }
2756   return true;
2757 }
2758 
2759 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2760   QualType ArgType = Arg->getType();
2761   if (ArgType->getAsPlaceholderType())
2762     return false;
2763 
2764   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2765   // format:
2766   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2767   //   2. <type> var;
2768   //      __builtin_preserve_type_info(var, flag);
2769   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2770       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2771     return false;
2772 
2773   // Typedef type.
2774   if (ArgType->getAs<TypedefType>())
2775     return true;
2776 
2777   // Record type or Enum type.
2778   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2779   if (const auto *RT = Ty->getAs<RecordType>()) {
2780     if (!RT->getDecl()->getDeclName().isEmpty())
2781       return true;
2782   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2783     if (!ET->getDecl()->getDeclName().isEmpty())
2784       return true;
2785   }
2786 
2787   return false;
2788 }
2789 
2790 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2791   QualType ArgType = Arg->getType();
2792   if (ArgType->getAsPlaceholderType())
2793     return false;
2794 
2795   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2796   // format:
2797   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2798   //                                 flag);
2799   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2800   if (!UO)
2801     return false;
2802 
2803   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2804   if (!CE)
2805     return false;
2806   if (CE->getCastKind() != CK_IntegralToPointer &&
2807       CE->getCastKind() != CK_NullToPointer)
2808     return false;
2809 
2810   // The integer must be from an EnumConstantDecl.
2811   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2812   if (!DR)
2813     return false;
2814 
2815   const EnumConstantDecl *Enumerator =
2816       dyn_cast<EnumConstantDecl>(DR->getDecl());
2817   if (!Enumerator)
2818     return false;
2819 
2820   // The type must be EnumType.
2821   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2822   const auto *ET = Ty->getAs<EnumType>();
2823   if (!ET)
2824     return false;
2825 
2826   // The enum value must be supported.
2827   return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
2828 }
2829 
2830 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2831                                        CallExpr *TheCall) {
2832   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2833           BuiltinID == BPF::BI__builtin_btf_type_id ||
2834           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2835           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2836          "unexpected BPF builtin");
2837 
2838   if (checkArgCount(*this, TheCall, 2))
2839     return true;
2840 
2841   // The second argument needs to be a constant int
2842   Expr *Arg = TheCall->getArg(1);
2843   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2844   diag::kind kind;
2845   if (!Value) {
2846     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2847       kind = diag::err_preserve_field_info_not_const;
2848     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2849       kind = diag::err_btf_type_id_not_const;
2850     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2851       kind = diag::err_preserve_type_info_not_const;
2852     else
2853       kind = diag::err_preserve_enum_value_not_const;
2854     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2855     return true;
2856   }
2857 
2858   // The first argument
2859   Arg = TheCall->getArg(0);
2860   bool InvalidArg = false;
2861   bool ReturnUnsignedInt = true;
2862   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2863     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2864       InvalidArg = true;
2865       kind = diag::err_preserve_field_info_not_field;
2866     }
2867   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2868     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2869       InvalidArg = true;
2870       kind = diag::err_preserve_type_info_invalid;
2871     }
2872   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2873     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2874       InvalidArg = true;
2875       kind = diag::err_preserve_enum_value_invalid;
2876     }
2877     ReturnUnsignedInt = false;
2878   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2879     ReturnUnsignedInt = false;
2880   }
2881 
2882   if (InvalidArg) {
2883     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2884     return true;
2885   }
2886 
2887   if (ReturnUnsignedInt)
2888     TheCall->setType(Context.UnsignedIntTy);
2889   else
2890     TheCall->setType(Context.UnsignedLongTy);
2891   return false;
2892 }
2893 
2894 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2895   struct ArgInfo {
2896     uint8_t OpNum;
2897     bool IsSigned;
2898     uint8_t BitWidth;
2899     uint8_t Align;
2900   };
2901   struct BuiltinInfo {
2902     unsigned BuiltinID;
2903     ArgInfo Infos[2];
2904   };
2905 
2906   static BuiltinInfo Infos[] = {
2907     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2908     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2909     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2910     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2911     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2912     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2913     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2914     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2915     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2916     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2917     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2918 
2919     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2921     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2922     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2923     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2924     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2925     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2926     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2927     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2928     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2929     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2930 
2931     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2932     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2933     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2934     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2936     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2937     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2938     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2939     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2940     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2941     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2942     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2943     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2944     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2945     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2946     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2947     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2948     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2949     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2950     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2951     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2952     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2953     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2954     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2955     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2956     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2957     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2958     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2959     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2960     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2961     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2962     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2963     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2964     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2965     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2966     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2967     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2968     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2969     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2970     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2971     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2972     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2973     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2974     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2975     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2976     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2977     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2978     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2979     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2980     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2981     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2982     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2983                                                       {{ 1, false, 6,  0 }} },
2984     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2985     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2986     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2987     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2988     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2989     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2990     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2991                                                       {{ 1, false, 5,  0 }} },
2992     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2993     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2994     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2995     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2996     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2997     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2998                                                        { 2, false, 5,  0 }} },
2999     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3000                                                        { 2, false, 6,  0 }} },
3001     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3002                                                        { 3, false, 5,  0 }} },
3003     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3004                                                        { 3, false, 6,  0 }} },
3005     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3006     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3007     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3008     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3009     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3010     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3011     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3012     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3013     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3014     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3015     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3016     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3017     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3018     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3019     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3020     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3021                                                       {{ 2, false, 4,  0 },
3022                                                        { 3, false, 5,  0 }} },
3023     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3024                                                       {{ 2, false, 4,  0 },
3025                                                        { 3, false, 5,  0 }} },
3026     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3027                                                       {{ 2, false, 4,  0 },
3028                                                        { 3, false, 5,  0 }} },
3029     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3030                                                       {{ 2, false, 4,  0 },
3031                                                        { 3, false, 5,  0 }} },
3032     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3033     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3034     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3035     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3036     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3037     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3038     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3039     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3040     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3041     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3042     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3043                                                        { 2, false, 5,  0 }} },
3044     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3045                                                        { 2, false, 6,  0 }} },
3046     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3047     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3048     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3049     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3050     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3051     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3052     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3053     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3054     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3055                                                       {{ 1, false, 4,  0 }} },
3056     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3057     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3058                                                       {{ 1, false, 4,  0 }} },
3059     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3060     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3061     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3062     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3063     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3064     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3065     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3066     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3067     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3068     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3069     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3070     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3071     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3072     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3073     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3074     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3075     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3076     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3077     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3078     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3079                                                       {{ 3, false, 1,  0 }} },
3080     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3081     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3082     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3083     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3084                                                       {{ 3, false, 1,  0 }} },
3085     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3086     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3087     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3088     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3089                                                       {{ 3, false, 1,  0 }} },
3090   };
3091 
3092   // Use a dynamically initialized static to sort the table exactly once on
3093   // first run.
3094   static const bool SortOnce =
3095       (llvm::sort(Infos,
3096                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3097                    return LHS.BuiltinID < RHS.BuiltinID;
3098                  }),
3099        true);
3100   (void)SortOnce;
3101 
3102   const BuiltinInfo *F = llvm::partition_point(
3103       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3104   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3105     return false;
3106 
3107   bool Error = false;
3108 
3109   for (const ArgInfo &A : F->Infos) {
3110     // Ignore empty ArgInfo elements.
3111     if (A.BitWidth == 0)
3112       continue;
3113 
3114     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3115     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3116     if (!A.Align) {
3117       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3118     } else {
3119       unsigned M = 1 << A.Align;
3120       Min *= M;
3121       Max *= M;
3122       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3123       Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3124     }
3125   }
3126   return Error;
3127 }
3128 
3129 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3130                                            CallExpr *TheCall) {
3131   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3132 }
3133 
3134 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3135                                         unsigned BuiltinID, CallExpr *TheCall) {
3136   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3137          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3138 }
3139 
3140 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3141                                CallExpr *TheCall) {
3142 
3143   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3144       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3145     if (!TI.hasFeature("dsp"))
3146       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3147   }
3148 
3149   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3150       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3151     if (!TI.hasFeature("dspr2"))
3152       return Diag(TheCall->getBeginLoc(),
3153                   diag::err_mips_builtin_requires_dspr2);
3154   }
3155 
3156   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3157       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3158     if (!TI.hasFeature("msa"))
3159       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3160   }
3161 
3162   return false;
3163 }
3164 
3165 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3166 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3167 // ordering for DSP is unspecified. MSA is ordered by the data format used
3168 // by the underlying instruction i.e., df/m, df/n and then by size.
3169 //
3170 // FIXME: The size tests here should instead be tablegen'd along with the
3171 //        definitions from include/clang/Basic/BuiltinsMips.def.
3172 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3173 //        be too.
3174 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3175   unsigned i = 0, l = 0, u = 0, m = 0;
3176   switch (BuiltinID) {
3177   default: return false;
3178   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3179   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3180   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3181   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3182   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3183   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3184   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3185   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3186   // df/m field.
3187   // These intrinsics take an unsigned 3 bit immediate.
3188   case Mips::BI__builtin_msa_bclri_b:
3189   case Mips::BI__builtin_msa_bnegi_b:
3190   case Mips::BI__builtin_msa_bseti_b:
3191   case Mips::BI__builtin_msa_sat_s_b:
3192   case Mips::BI__builtin_msa_sat_u_b:
3193   case Mips::BI__builtin_msa_slli_b:
3194   case Mips::BI__builtin_msa_srai_b:
3195   case Mips::BI__builtin_msa_srari_b:
3196   case Mips::BI__builtin_msa_srli_b:
3197   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3198   case Mips::BI__builtin_msa_binsli_b:
3199   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3200   // These intrinsics take an unsigned 4 bit immediate.
3201   case Mips::BI__builtin_msa_bclri_h:
3202   case Mips::BI__builtin_msa_bnegi_h:
3203   case Mips::BI__builtin_msa_bseti_h:
3204   case Mips::BI__builtin_msa_sat_s_h:
3205   case Mips::BI__builtin_msa_sat_u_h:
3206   case Mips::BI__builtin_msa_slli_h:
3207   case Mips::BI__builtin_msa_srai_h:
3208   case Mips::BI__builtin_msa_srari_h:
3209   case Mips::BI__builtin_msa_srli_h:
3210   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3211   case Mips::BI__builtin_msa_binsli_h:
3212   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3213   // These intrinsics take an unsigned 5 bit immediate.
3214   // The first block of intrinsics actually have an unsigned 5 bit field,
3215   // not a df/n field.
3216   case Mips::BI__builtin_msa_cfcmsa:
3217   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3218   case Mips::BI__builtin_msa_clei_u_b:
3219   case Mips::BI__builtin_msa_clei_u_h:
3220   case Mips::BI__builtin_msa_clei_u_w:
3221   case Mips::BI__builtin_msa_clei_u_d:
3222   case Mips::BI__builtin_msa_clti_u_b:
3223   case Mips::BI__builtin_msa_clti_u_h:
3224   case Mips::BI__builtin_msa_clti_u_w:
3225   case Mips::BI__builtin_msa_clti_u_d:
3226   case Mips::BI__builtin_msa_maxi_u_b:
3227   case Mips::BI__builtin_msa_maxi_u_h:
3228   case Mips::BI__builtin_msa_maxi_u_w:
3229   case Mips::BI__builtin_msa_maxi_u_d:
3230   case Mips::BI__builtin_msa_mini_u_b:
3231   case Mips::BI__builtin_msa_mini_u_h:
3232   case Mips::BI__builtin_msa_mini_u_w:
3233   case Mips::BI__builtin_msa_mini_u_d:
3234   case Mips::BI__builtin_msa_addvi_b:
3235   case Mips::BI__builtin_msa_addvi_h:
3236   case Mips::BI__builtin_msa_addvi_w:
3237   case Mips::BI__builtin_msa_addvi_d:
3238   case Mips::BI__builtin_msa_bclri_w:
3239   case Mips::BI__builtin_msa_bnegi_w:
3240   case Mips::BI__builtin_msa_bseti_w:
3241   case Mips::BI__builtin_msa_sat_s_w:
3242   case Mips::BI__builtin_msa_sat_u_w:
3243   case Mips::BI__builtin_msa_slli_w:
3244   case Mips::BI__builtin_msa_srai_w:
3245   case Mips::BI__builtin_msa_srari_w:
3246   case Mips::BI__builtin_msa_srli_w:
3247   case Mips::BI__builtin_msa_srlri_w:
3248   case Mips::BI__builtin_msa_subvi_b:
3249   case Mips::BI__builtin_msa_subvi_h:
3250   case Mips::BI__builtin_msa_subvi_w:
3251   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3252   case Mips::BI__builtin_msa_binsli_w:
3253   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3254   // These intrinsics take an unsigned 6 bit immediate.
3255   case Mips::BI__builtin_msa_bclri_d:
3256   case Mips::BI__builtin_msa_bnegi_d:
3257   case Mips::BI__builtin_msa_bseti_d:
3258   case Mips::BI__builtin_msa_sat_s_d:
3259   case Mips::BI__builtin_msa_sat_u_d:
3260   case Mips::BI__builtin_msa_slli_d:
3261   case Mips::BI__builtin_msa_srai_d:
3262   case Mips::BI__builtin_msa_srari_d:
3263   case Mips::BI__builtin_msa_srli_d:
3264   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3265   case Mips::BI__builtin_msa_binsli_d:
3266   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3267   // These intrinsics take a signed 5 bit immediate.
3268   case Mips::BI__builtin_msa_ceqi_b:
3269   case Mips::BI__builtin_msa_ceqi_h:
3270   case Mips::BI__builtin_msa_ceqi_w:
3271   case Mips::BI__builtin_msa_ceqi_d:
3272   case Mips::BI__builtin_msa_clti_s_b:
3273   case Mips::BI__builtin_msa_clti_s_h:
3274   case Mips::BI__builtin_msa_clti_s_w:
3275   case Mips::BI__builtin_msa_clti_s_d:
3276   case Mips::BI__builtin_msa_clei_s_b:
3277   case Mips::BI__builtin_msa_clei_s_h:
3278   case Mips::BI__builtin_msa_clei_s_w:
3279   case Mips::BI__builtin_msa_clei_s_d:
3280   case Mips::BI__builtin_msa_maxi_s_b:
3281   case Mips::BI__builtin_msa_maxi_s_h:
3282   case Mips::BI__builtin_msa_maxi_s_w:
3283   case Mips::BI__builtin_msa_maxi_s_d:
3284   case Mips::BI__builtin_msa_mini_s_b:
3285   case Mips::BI__builtin_msa_mini_s_h:
3286   case Mips::BI__builtin_msa_mini_s_w:
3287   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3288   // These intrinsics take an unsigned 8 bit immediate.
3289   case Mips::BI__builtin_msa_andi_b:
3290   case Mips::BI__builtin_msa_nori_b:
3291   case Mips::BI__builtin_msa_ori_b:
3292   case Mips::BI__builtin_msa_shf_b:
3293   case Mips::BI__builtin_msa_shf_h:
3294   case Mips::BI__builtin_msa_shf_w:
3295   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3296   case Mips::BI__builtin_msa_bseli_b:
3297   case Mips::BI__builtin_msa_bmnzi_b:
3298   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3299   // df/n format
3300   // These intrinsics take an unsigned 4 bit immediate.
3301   case Mips::BI__builtin_msa_copy_s_b:
3302   case Mips::BI__builtin_msa_copy_u_b:
3303   case Mips::BI__builtin_msa_insve_b:
3304   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3305   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3306   // These intrinsics take an unsigned 3 bit immediate.
3307   case Mips::BI__builtin_msa_copy_s_h:
3308   case Mips::BI__builtin_msa_copy_u_h:
3309   case Mips::BI__builtin_msa_insve_h:
3310   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3311   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3312   // These intrinsics take an unsigned 2 bit immediate.
3313   case Mips::BI__builtin_msa_copy_s_w:
3314   case Mips::BI__builtin_msa_copy_u_w:
3315   case Mips::BI__builtin_msa_insve_w:
3316   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3317   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3318   // These intrinsics take an unsigned 1 bit immediate.
3319   case Mips::BI__builtin_msa_copy_s_d:
3320   case Mips::BI__builtin_msa_copy_u_d:
3321   case Mips::BI__builtin_msa_insve_d:
3322   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3323   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3324   // Memory offsets and immediate loads.
3325   // These intrinsics take a signed 10 bit immediate.
3326   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3327   case Mips::BI__builtin_msa_ldi_h:
3328   case Mips::BI__builtin_msa_ldi_w:
3329   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3330   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3331   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3332   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3333   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3334   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3335   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3336   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3337   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3338   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3339   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3340   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3341   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3342   }
3343 
3344   if (!m)
3345     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3346 
3347   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3348          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3349 }
3350 
3351 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3352 /// advancing the pointer over the consumed characters. The decoded type is
3353 /// returned. If the decoded type represents a constant integer with a
3354 /// constraint on its value then Mask is set to that value. The type descriptors
3355 /// used in Str are specific to PPC MMA builtins and are documented in the file
3356 /// defining the PPC builtins.
3357 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3358                                         unsigned &Mask) {
3359   bool RequireICE = false;
3360   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3361   switch (*Str++) {
3362   case 'V':
3363     return Context.getVectorType(Context.UnsignedCharTy, 16,
3364                                  VectorType::VectorKind::AltiVecVector);
3365   case 'i': {
3366     char *End;
3367     unsigned size = strtoul(Str, &End, 10);
3368     assert(End != Str && "Missing constant parameter constraint");
3369     Str = End;
3370     Mask = size;
3371     return Context.IntTy;
3372   }
3373   case 'W': {
3374     char *End;
3375     unsigned size = strtoul(Str, &End, 10);
3376     assert(End != Str && "Missing PowerPC MMA type size");
3377     Str = End;
3378     QualType Type;
3379     switch (size) {
3380   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3381     case size: Type = Context.Id##Ty; break;
3382   #include "clang/Basic/PPCTypes.def"
3383     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3384     }
3385     bool CheckVectorArgs = false;
3386     while (!CheckVectorArgs) {
3387       switch (*Str++) {
3388       case '*':
3389         Type = Context.getPointerType(Type);
3390         break;
3391       case 'C':
3392         Type = Type.withConst();
3393         break;
3394       default:
3395         CheckVectorArgs = true;
3396         --Str;
3397         break;
3398       }
3399     }
3400     return Type;
3401   }
3402   default:
3403     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3404   }
3405 }
3406 
3407 static bool isPPC_64Builtin(unsigned BuiltinID) {
3408   // These builtins only work on PPC 64bit targets.
3409   switch (BuiltinID) {
3410   case PPC::BI__builtin_divde:
3411   case PPC::BI__builtin_divdeu:
3412   case PPC::BI__builtin_bpermd:
3413   case PPC::BI__builtin_ppc_ldarx:
3414   case PPC::BI__builtin_ppc_stdcx:
3415   case PPC::BI__builtin_ppc_tdw:
3416   case PPC::BI__builtin_ppc_trapd:
3417   case PPC::BI__builtin_ppc_cmpeqb:
3418   case PPC::BI__builtin_ppc_setb:
3419   case PPC::BI__builtin_ppc_mulhd:
3420   case PPC::BI__builtin_ppc_mulhdu:
3421   case PPC::BI__builtin_ppc_maddhd:
3422   case PPC::BI__builtin_ppc_maddhdu:
3423   case PPC::BI__builtin_ppc_maddld:
3424   case PPC::BI__builtin_ppc_load8r:
3425   case PPC::BI__builtin_ppc_store8r:
3426   case PPC::BI__builtin_ppc_insert_exp:
3427   case PPC::BI__builtin_ppc_extract_sig:
3428   case PPC::BI__builtin_ppc_addex:
3429   case PPC::BI__builtin_darn:
3430   case PPC::BI__builtin_darn_raw:
3431   case PPC::BI__builtin_ppc_compare_and_swaplp:
3432   case PPC::BI__builtin_ppc_fetch_and_addlp:
3433   case PPC::BI__builtin_ppc_fetch_and_andlp:
3434   case PPC::BI__builtin_ppc_fetch_and_orlp:
3435   case PPC::BI__builtin_ppc_fetch_and_swaplp:
3436     return true;
3437   }
3438   return false;
3439 }
3440 
3441 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3442                              StringRef FeatureToCheck, unsigned DiagID,
3443                              StringRef DiagArg = "") {
3444   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3445     return false;
3446 
3447   if (DiagArg.empty())
3448     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3449   else
3450     S.Diag(TheCall->getBeginLoc(), DiagID)
3451         << DiagArg << TheCall->getSourceRange();
3452 
3453   return true;
3454 }
3455 
3456 /// Returns true if the argument consists of one contiguous run of 1s with any
3457 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3458 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3459 /// since all 1s are not contiguous.
3460 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3461   llvm::APSInt Result;
3462   // We can't check the value of a dependent argument.
3463   Expr *Arg = TheCall->getArg(ArgNum);
3464   if (Arg->isTypeDependent() || Arg->isValueDependent())
3465     return false;
3466 
3467   // Check constant-ness first.
3468   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3469     return true;
3470 
3471   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3472   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3473     return false;
3474 
3475   return Diag(TheCall->getBeginLoc(),
3476               diag::err_argument_not_contiguous_bit_field)
3477          << ArgNum << Arg->getSourceRange();
3478 }
3479 
3480 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3481                                        CallExpr *TheCall) {
3482   unsigned i = 0, l = 0, u = 0;
3483   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3484   llvm::APSInt Result;
3485 
3486   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3487     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3488            << TheCall->getSourceRange();
3489 
3490   switch (BuiltinID) {
3491   default: return false;
3492   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3493   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3494     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3495            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3496   case PPC::BI__builtin_altivec_dss:
3497     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3498   case PPC::BI__builtin_tbegin:
3499   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3500   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3501   case PPC::BI__builtin_tabortwc:
3502   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3503   case PPC::BI__builtin_tabortwci:
3504   case PPC::BI__builtin_tabortdci:
3505     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3506            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3507   // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
3508   // __builtin_(un)pack_longdouble are available only if long double uses IBM
3509   // extended double representation.
3510   case PPC::BI__builtin_unpack_longdouble:
3511     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
3512       return true;
3513     LLVM_FALLTHROUGH;
3514   case PPC::BI__builtin_pack_longdouble:
3515     if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
3516       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
3517              << "ibmlongdouble";
3518     return false;
3519   case PPC::BI__builtin_altivec_dst:
3520   case PPC::BI__builtin_altivec_dstt:
3521   case PPC::BI__builtin_altivec_dstst:
3522   case PPC::BI__builtin_altivec_dststt:
3523     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3524   case PPC::BI__builtin_vsx_xxpermdi:
3525   case PPC::BI__builtin_vsx_xxsldwi:
3526     return SemaBuiltinVSX(TheCall);
3527   case PPC::BI__builtin_divwe:
3528   case PPC::BI__builtin_divweu:
3529   case PPC::BI__builtin_divde:
3530   case PPC::BI__builtin_divdeu:
3531     return SemaFeatureCheck(*this, TheCall, "extdiv",
3532                             diag::err_ppc_builtin_only_on_arch, "7");
3533   case PPC::BI__builtin_bpermd:
3534     return SemaFeatureCheck(*this, TheCall, "bpermd",
3535                             diag::err_ppc_builtin_only_on_arch, "7");
3536   case PPC::BI__builtin_unpack_vector_int128:
3537     return SemaFeatureCheck(*this, TheCall, "vsx",
3538                             diag::err_ppc_builtin_only_on_arch, "7") ||
3539            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3540   case PPC::BI__builtin_pack_vector_int128:
3541     return SemaFeatureCheck(*this, TheCall, "vsx",
3542                             diag::err_ppc_builtin_only_on_arch, "7");
3543   case PPC::BI__builtin_altivec_vgnb:
3544      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3545   case PPC::BI__builtin_altivec_vec_replace_elt:
3546   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3547     QualType VecTy = TheCall->getArg(0)->getType();
3548     QualType EltTy = TheCall->getArg(1)->getType();
3549     unsigned Width = Context.getIntWidth(EltTy);
3550     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3551            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3552   }
3553   case PPC::BI__builtin_vsx_xxeval:
3554      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3555   case PPC::BI__builtin_altivec_vsldbi:
3556      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3557   case PPC::BI__builtin_altivec_vsrdbi:
3558      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3559   case PPC::BI__builtin_vsx_xxpermx:
3560      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3561   case PPC::BI__builtin_ppc_tw:
3562   case PPC::BI__builtin_ppc_tdw:
3563     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3564   case PPC::BI__builtin_ppc_cmpeqb:
3565   case PPC::BI__builtin_ppc_setb:
3566   case PPC::BI__builtin_ppc_maddhd:
3567   case PPC::BI__builtin_ppc_maddhdu:
3568   case PPC::BI__builtin_ppc_maddld:
3569     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3570                             diag::err_ppc_builtin_only_on_arch, "9");
3571   case PPC::BI__builtin_ppc_cmprb:
3572     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3573                             diag::err_ppc_builtin_only_on_arch, "9") ||
3574            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3575   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3576   // be a constant that represents a contiguous bit field.
3577   case PPC::BI__builtin_ppc_rlwnm:
3578     return SemaValueIsRunOfOnes(TheCall, 2);
3579   case PPC::BI__builtin_ppc_rlwimi:
3580   case PPC::BI__builtin_ppc_rldimi:
3581     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3582            SemaValueIsRunOfOnes(TheCall, 3);
3583   case PPC::BI__builtin_ppc_extract_exp:
3584   case PPC::BI__builtin_ppc_extract_sig:
3585   case PPC::BI__builtin_ppc_insert_exp:
3586     return SemaFeatureCheck(*this, TheCall, "power9-vector",
3587                             diag::err_ppc_builtin_only_on_arch, "9");
3588   case PPC::BI__builtin_ppc_addex: {
3589     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3590                          diag::err_ppc_builtin_only_on_arch, "9") ||
3591         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3592       return true;
3593     // Output warning for reserved values 1 to 3.
3594     int ArgValue =
3595         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3596     if (ArgValue != 0)
3597       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3598           << ArgValue;
3599     return false;
3600   }
3601   case PPC::BI__builtin_ppc_mtfsb0:
3602   case PPC::BI__builtin_ppc_mtfsb1:
3603     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3604   case PPC::BI__builtin_ppc_mtfsf:
3605     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3606   case PPC::BI__builtin_ppc_mtfsfi:
3607     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3608            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3609   case PPC::BI__builtin_ppc_alignx:
3610     return SemaBuiltinConstantArgPower2(TheCall, 0);
3611   case PPC::BI__builtin_ppc_rdlam:
3612     return SemaValueIsRunOfOnes(TheCall, 2);
3613   case PPC::BI__builtin_ppc_icbt:
3614   case PPC::BI__builtin_ppc_sthcx:
3615   case PPC::BI__builtin_ppc_stbcx:
3616   case PPC::BI__builtin_ppc_lharx:
3617   case PPC::BI__builtin_ppc_lbarx:
3618     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3619                             diag::err_ppc_builtin_only_on_arch, "8");
3620   case PPC::BI__builtin_vsx_ldrmb:
3621   case PPC::BI__builtin_vsx_strmb:
3622     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3623                             diag::err_ppc_builtin_only_on_arch, "8") ||
3624            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3625   case PPC::BI__builtin_altivec_vcntmbb:
3626   case PPC::BI__builtin_altivec_vcntmbh:
3627   case PPC::BI__builtin_altivec_vcntmbw:
3628   case PPC::BI__builtin_altivec_vcntmbd:
3629     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3630   case PPC::BI__builtin_darn:
3631   case PPC::BI__builtin_darn_raw:
3632   case PPC::BI__builtin_darn_32:
3633     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3634                             diag::err_ppc_builtin_only_on_arch, "9");
3635   case PPC::BI__builtin_vsx_xxgenpcvbm:
3636   case PPC::BI__builtin_vsx_xxgenpcvhm:
3637   case PPC::BI__builtin_vsx_xxgenpcvwm:
3638   case PPC::BI__builtin_vsx_xxgenpcvdm:
3639     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3640   case PPC::BI__builtin_ppc_compare_exp_uo:
3641   case PPC::BI__builtin_ppc_compare_exp_lt:
3642   case PPC::BI__builtin_ppc_compare_exp_gt:
3643   case PPC::BI__builtin_ppc_compare_exp_eq:
3644     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3645                             diag::err_ppc_builtin_only_on_arch, "9") ||
3646            SemaFeatureCheck(*this, TheCall, "vsx",
3647                             diag::err_ppc_builtin_requires_vsx);
3648   case PPC::BI__builtin_ppc_test_data_class: {
3649     // Check if the first argument of the __builtin_ppc_test_data_class call is
3650     // valid. The argument must be either a 'float' or a 'double'.
3651     QualType ArgType = TheCall->getArg(0)->getType();
3652     if (ArgType != QualType(Context.FloatTy) &&
3653         ArgType != QualType(Context.DoubleTy))
3654       return Diag(TheCall->getBeginLoc(),
3655                   diag::err_ppc_invalid_test_data_class_type);
3656     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3657                             diag::err_ppc_builtin_only_on_arch, "9") ||
3658            SemaFeatureCheck(*this, TheCall, "vsx",
3659                             diag::err_ppc_builtin_requires_vsx) ||
3660            SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
3661   }
3662   case PPC::BI__builtin_ppc_load8r:
3663   case PPC::BI__builtin_ppc_store8r:
3664     return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
3665                             diag::err_ppc_builtin_only_on_arch, "7");
3666 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc)                                 \
3667   case PPC::BI__builtin_##Name:                                                \
3668     return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
3669 #include "clang/Basic/BuiltinsPPC.def"
3670   }
3671   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3672 }
3673 
3674 // Check if the given type is a non-pointer PPC MMA type. This function is used
3675 // in Sema to prevent invalid uses of restricted PPC MMA types.
3676 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3677   if (Type->isPointerType() || Type->isArrayType())
3678     return false;
3679 
3680   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3681 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3682   if (false
3683 #include "clang/Basic/PPCTypes.def"
3684      ) {
3685     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3686     return true;
3687   }
3688   return false;
3689 }
3690 
3691 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3692                                           CallExpr *TheCall) {
3693   // position of memory order and scope arguments in the builtin
3694   unsigned OrderIndex, ScopeIndex;
3695   switch (BuiltinID) {
3696   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3697   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3698   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3699   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3700     OrderIndex = 2;
3701     ScopeIndex = 3;
3702     break;
3703   case AMDGPU::BI__builtin_amdgcn_fence:
3704     OrderIndex = 0;
3705     ScopeIndex = 1;
3706     break;
3707   default:
3708     return false;
3709   }
3710 
3711   ExprResult Arg = TheCall->getArg(OrderIndex);
3712   auto ArgExpr = Arg.get();
3713   Expr::EvalResult ArgResult;
3714 
3715   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3716     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3717            << ArgExpr->getType();
3718   auto Ord = ArgResult.Val.getInt().getZExtValue();
3719 
3720   // Check validity of memory ordering as per C11 / C++11's memody model.
3721   // Only fence needs check. Atomic dec/inc allow all memory orders.
3722   if (!llvm::isValidAtomicOrderingCABI(Ord))
3723     return Diag(ArgExpr->getBeginLoc(),
3724                 diag::warn_atomic_op_has_invalid_memory_order)
3725            << ArgExpr->getSourceRange();
3726   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3727   case llvm::AtomicOrderingCABI::relaxed:
3728   case llvm::AtomicOrderingCABI::consume:
3729     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3730       return Diag(ArgExpr->getBeginLoc(),
3731                   diag::warn_atomic_op_has_invalid_memory_order)
3732              << ArgExpr->getSourceRange();
3733     break;
3734   case llvm::AtomicOrderingCABI::acquire:
3735   case llvm::AtomicOrderingCABI::release:
3736   case llvm::AtomicOrderingCABI::acq_rel:
3737   case llvm::AtomicOrderingCABI::seq_cst:
3738     break;
3739   }
3740 
3741   Arg = TheCall->getArg(ScopeIndex);
3742   ArgExpr = Arg.get();
3743   Expr::EvalResult ArgResult1;
3744   // Check that sync scope is a constant literal
3745   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3746     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3747            << ArgExpr->getType();
3748 
3749   return false;
3750 }
3751 
3752 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3753   llvm::APSInt Result;
3754 
3755   // We can't check the value of a dependent argument.
3756   Expr *Arg = TheCall->getArg(ArgNum);
3757   if (Arg->isTypeDependent() || Arg->isValueDependent())
3758     return false;
3759 
3760   // Check constant-ness first.
3761   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3762     return true;
3763 
3764   int64_t Val = Result.getSExtValue();
3765   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3766     return false;
3767 
3768   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3769          << Arg->getSourceRange();
3770 }
3771 
3772 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3773                                          unsigned BuiltinID,
3774                                          CallExpr *TheCall) {
3775   // CodeGenFunction can also detect this, but this gives a better error
3776   // message.
3777   bool FeatureMissing = false;
3778   SmallVector<StringRef> ReqFeatures;
3779   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3780   Features.split(ReqFeatures, ',');
3781 
3782   // Check if each required feature is included
3783   for (StringRef F : ReqFeatures) {
3784     if (TI.hasFeature(F))
3785       continue;
3786 
3787     // If the feature is 64bit, alter the string so it will print better in
3788     // the diagnostic.
3789     if (F == "64bit")
3790       F = "RV64";
3791 
3792     // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3793     F.consume_front("experimental-");
3794     std::string FeatureStr = F.str();
3795     FeatureStr[0] = std::toupper(FeatureStr[0]);
3796 
3797     // Error message
3798     FeatureMissing = true;
3799     Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
3800         << TheCall->getSourceRange() << StringRef(FeatureStr);
3801   }
3802 
3803   if (FeatureMissing)
3804     return true;
3805 
3806   switch (BuiltinID) {
3807   case RISCVVector::BI__builtin_rvv_vsetvli:
3808     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
3809            CheckRISCVLMUL(TheCall, 2);
3810   case RISCVVector::BI__builtin_rvv_vsetvlimax:
3811     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
3812            CheckRISCVLMUL(TheCall, 1);
3813   }
3814 
3815   return false;
3816 }
3817 
3818 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3819                                            CallExpr *TheCall) {
3820   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3821     Expr *Arg = TheCall->getArg(0);
3822     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3823       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3824         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3825                << Arg->getSourceRange();
3826   }
3827 
3828   // For intrinsics which take an immediate value as part of the instruction,
3829   // range check them here.
3830   unsigned i = 0, l = 0, u = 0;
3831   switch (BuiltinID) {
3832   default: return false;
3833   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3834   case SystemZ::BI__builtin_s390_verimb:
3835   case SystemZ::BI__builtin_s390_verimh:
3836   case SystemZ::BI__builtin_s390_verimf:
3837   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3838   case SystemZ::BI__builtin_s390_vfaeb:
3839   case SystemZ::BI__builtin_s390_vfaeh:
3840   case SystemZ::BI__builtin_s390_vfaef:
3841   case SystemZ::BI__builtin_s390_vfaebs:
3842   case SystemZ::BI__builtin_s390_vfaehs:
3843   case SystemZ::BI__builtin_s390_vfaefs:
3844   case SystemZ::BI__builtin_s390_vfaezb:
3845   case SystemZ::BI__builtin_s390_vfaezh:
3846   case SystemZ::BI__builtin_s390_vfaezf:
3847   case SystemZ::BI__builtin_s390_vfaezbs:
3848   case SystemZ::BI__builtin_s390_vfaezhs:
3849   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3850   case SystemZ::BI__builtin_s390_vfisb:
3851   case SystemZ::BI__builtin_s390_vfidb:
3852     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3853            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3854   case SystemZ::BI__builtin_s390_vftcisb:
3855   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3856   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3857   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3858   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3859   case SystemZ::BI__builtin_s390_vstrcb:
3860   case SystemZ::BI__builtin_s390_vstrch:
3861   case SystemZ::BI__builtin_s390_vstrcf:
3862   case SystemZ::BI__builtin_s390_vstrczb:
3863   case SystemZ::BI__builtin_s390_vstrczh:
3864   case SystemZ::BI__builtin_s390_vstrczf:
3865   case SystemZ::BI__builtin_s390_vstrcbs:
3866   case SystemZ::BI__builtin_s390_vstrchs:
3867   case SystemZ::BI__builtin_s390_vstrcfs:
3868   case SystemZ::BI__builtin_s390_vstrczbs:
3869   case SystemZ::BI__builtin_s390_vstrczhs:
3870   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3871   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3872   case SystemZ::BI__builtin_s390_vfminsb:
3873   case SystemZ::BI__builtin_s390_vfmaxsb:
3874   case SystemZ::BI__builtin_s390_vfmindb:
3875   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3876   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3877   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3878   case SystemZ::BI__builtin_s390_vclfnhs:
3879   case SystemZ::BI__builtin_s390_vclfnls:
3880   case SystemZ::BI__builtin_s390_vcfn:
3881   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
3882   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
3883   }
3884   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3885 }
3886 
3887 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3888 /// This checks that the target supports __builtin_cpu_supports and
3889 /// that the string argument is constant and valid.
3890 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3891                                    CallExpr *TheCall) {
3892   Expr *Arg = TheCall->getArg(0);
3893 
3894   // Check if the argument is a string literal.
3895   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3896     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3897            << Arg->getSourceRange();
3898 
3899   // Check the contents of the string.
3900   StringRef Feature =
3901       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3902   if (!TI.validateCpuSupports(Feature))
3903     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3904            << Arg->getSourceRange();
3905   return false;
3906 }
3907 
3908 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3909 /// This checks that the target supports __builtin_cpu_is and
3910 /// that the string argument is constant and valid.
3911 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3912   Expr *Arg = TheCall->getArg(0);
3913 
3914   // Check if the argument is a string literal.
3915   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3916     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3917            << Arg->getSourceRange();
3918 
3919   // Check the contents of the string.
3920   StringRef Feature =
3921       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3922   if (!TI.validateCpuIs(Feature))
3923     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3924            << Arg->getSourceRange();
3925   return false;
3926 }
3927 
3928 // Check if the rounding mode is legal.
3929 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3930   // Indicates if this instruction has rounding control or just SAE.
3931   bool HasRC = false;
3932 
3933   unsigned ArgNum = 0;
3934   switch (BuiltinID) {
3935   default:
3936     return false;
3937   case X86::BI__builtin_ia32_vcvttsd2si32:
3938   case X86::BI__builtin_ia32_vcvttsd2si64:
3939   case X86::BI__builtin_ia32_vcvttsd2usi32:
3940   case X86::BI__builtin_ia32_vcvttsd2usi64:
3941   case X86::BI__builtin_ia32_vcvttss2si32:
3942   case X86::BI__builtin_ia32_vcvttss2si64:
3943   case X86::BI__builtin_ia32_vcvttss2usi32:
3944   case X86::BI__builtin_ia32_vcvttss2usi64:
3945   case X86::BI__builtin_ia32_vcvttsh2si32:
3946   case X86::BI__builtin_ia32_vcvttsh2si64:
3947   case X86::BI__builtin_ia32_vcvttsh2usi32:
3948   case X86::BI__builtin_ia32_vcvttsh2usi64:
3949     ArgNum = 1;
3950     break;
3951   case X86::BI__builtin_ia32_maxpd512:
3952   case X86::BI__builtin_ia32_maxps512:
3953   case X86::BI__builtin_ia32_minpd512:
3954   case X86::BI__builtin_ia32_minps512:
3955   case X86::BI__builtin_ia32_maxph512:
3956   case X86::BI__builtin_ia32_minph512:
3957     ArgNum = 2;
3958     break;
3959   case X86::BI__builtin_ia32_vcvtph2pd512_mask:
3960   case X86::BI__builtin_ia32_vcvtph2psx512_mask:
3961   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3962   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3963   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3964   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3965   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3966   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3967   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3968   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3969   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3970   case X86::BI__builtin_ia32_vcvttph2w512_mask:
3971   case X86::BI__builtin_ia32_vcvttph2uw512_mask:
3972   case X86::BI__builtin_ia32_vcvttph2dq512_mask:
3973   case X86::BI__builtin_ia32_vcvttph2udq512_mask:
3974   case X86::BI__builtin_ia32_vcvttph2qq512_mask:
3975   case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
3976   case X86::BI__builtin_ia32_exp2pd_mask:
3977   case X86::BI__builtin_ia32_exp2ps_mask:
3978   case X86::BI__builtin_ia32_getexppd512_mask:
3979   case X86::BI__builtin_ia32_getexpps512_mask:
3980   case X86::BI__builtin_ia32_getexpph512_mask:
3981   case X86::BI__builtin_ia32_rcp28pd_mask:
3982   case X86::BI__builtin_ia32_rcp28ps_mask:
3983   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3984   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3985   case X86::BI__builtin_ia32_vcomisd:
3986   case X86::BI__builtin_ia32_vcomiss:
3987   case X86::BI__builtin_ia32_vcomish:
3988   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3989     ArgNum = 3;
3990     break;
3991   case X86::BI__builtin_ia32_cmppd512_mask:
3992   case X86::BI__builtin_ia32_cmpps512_mask:
3993   case X86::BI__builtin_ia32_cmpsd_mask:
3994   case X86::BI__builtin_ia32_cmpss_mask:
3995   case X86::BI__builtin_ia32_cmpsh_mask:
3996   case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
3997   case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
3998   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3999   case X86::BI__builtin_ia32_getexpsd128_round_mask:
4000   case X86::BI__builtin_ia32_getexpss128_round_mask:
4001   case X86::BI__builtin_ia32_getexpsh128_round_mask:
4002   case X86::BI__builtin_ia32_getmantpd512_mask:
4003   case X86::BI__builtin_ia32_getmantps512_mask:
4004   case X86::BI__builtin_ia32_getmantph512_mask:
4005   case X86::BI__builtin_ia32_maxsd_round_mask:
4006   case X86::BI__builtin_ia32_maxss_round_mask:
4007   case X86::BI__builtin_ia32_maxsh_round_mask:
4008   case X86::BI__builtin_ia32_minsd_round_mask:
4009   case X86::BI__builtin_ia32_minss_round_mask:
4010   case X86::BI__builtin_ia32_minsh_round_mask:
4011   case X86::BI__builtin_ia32_rcp28sd_round_mask:
4012   case X86::BI__builtin_ia32_rcp28ss_round_mask:
4013   case X86::BI__builtin_ia32_reducepd512_mask:
4014   case X86::BI__builtin_ia32_reduceps512_mask:
4015   case X86::BI__builtin_ia32_reduceph512_mask:
4016   case X86::BI__builtin_ia32_rndscalepd_mask:
4017   case X86::BI__builtin_ia32_rndscaleps_mask:
4018   case X86::BI__builtin_ia32_rndscaleph_mask:
4019   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4020   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4021     ArgNum = 4;
4022     break;
4023   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4024   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4025   case X86::BI__builtin_ia32_fixupimmps512_mask:
4026   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4027   case X86::BI__builtin_ia32_fixupimmsd_mask:
4028   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4029   case X86::BI__builtin_ia32_fixupimmss_mask:
4030   case X86::BI__builtin_ia32_fixupimmss_maskz:
4031   case X86::BI__builtin_ia32_getmantsd_round_mask:
4032   case X86::BI__builtin_ia32_getmantss_round_mask:
4033   case X86::BI__builtin_ia32_getmantsh_round_mask:
4034   case X86::BI__builtin_ia32_rangepd512_mask:
4035   case X86::BI__builtin_ia32_rangeps512_mask:
4036   case X86::BI__builtin_ia32_rangesd128_round_mask:
4037   case X86::BI__builtin_ia32_rangess128_round_mask:
4038   case X86::BI__builtin_ia32_reducesd_mask:
4039   case X86::BI__builtin_ia32_reducess_mask:
4040   case X86::BI__builtin_ia32_reducesh_mask:
4041   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4042   case X86::BI__builtin_ia32_rndscaless_round_mask:
4043   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4044     ArgNum = 5;
4045     break;
4046   case X86::BI__builtin_ia32_vcvtsd2si64:
4047   case X86::BI__builtin_ia32_vcvtsd2si32:
4048   case X86::BI__builtin_ia32_vcvtsd2usi32:
4049   case X86::BI__builtin_ia32_vcvtsd2usi64:
4050   case X86::BI__builtin_ia32_vcvtss2si32:
4051   case X86::BI__builtin_ia32_vcvtss2si64:
4052   case X86::BI__builtin_ia32_vcvtss2usi32:
4053   case X86::BI__builtin_ia32_vcvtss2usi64:
4054   case X86::BI__builtin_ia32_vcvtsh2si32:
4055   case X86::BI__builtin_ia32_vcvtsh2si64:
4056   case X86::BI__builtin_ia32_vcvtsh2usi32:
4057   case X86::BI__builtin_ia32_vcvtsh2usi64:
4058   case X86::BI__builtin_ia32_sqrtpd512:
4059   case X86::BI__builtin_ia32_sqrtps512:
4060   case X86::BI__builtin_ia32_sqrtph512:
4061     ArgNum = 1;
4062     HasRC = true;
4063     break;
4064   case X86::BI__builtin_ia32_addph512:
4065   case X86::BI__builtin_ia32_divph512:
4066   case X86::BI__builtin_ia32_mulph512:
4067   case X86::BI__builtin_ia32_subph512:
4068   case X86::BI__builtin_ia32_addpd512:
4069   case X86::BI__builtin_ia32_addps512:
4070   case X86::BI__builtin_ia32_divpd512:
4071   case X86::BI__builtin_ia32_divps512:
4072   case X86::BI__builtin_ia32_mulpd512:
4073   case X86::BI__builtin_ia32_mulps512:
4074   case X86::BI__builtin_ia32_subpd512:
4075   case X86::BI__builtin_ia32_subps512:
4076   case X86::BI__builtin_ia32_cvtsi2sd64:
4077   case X86::BI__builtin_ia32_cvtsi2ss32:
4078   case X86::BI__builtin_ia32_cvtsi2ss64:
4079   case X86::BI__builtin_ia32_cvtusi2sd64:
4080   case X86::BI__builtin_ia32_cvtusi2ss32:
4081   case X86::BI__builtin_ia32_cvtusi2ss64:
4082   case X86::BI__builtin_ia32_vcvtusi2sh:
4083   case X86::BI__builtin_ia32_vcvtusi642sh:
4084   case X86::BI__builtin_ia32_vcvtsi2sh:
4085   case X86::BI__builtin_ia32_vcvtsi642sh:
4086     ArgNum = 2;
4087     HasRC = true;
4088     break;
4089   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4090   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4091   case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4092   case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4093   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4094   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4095   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4096   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4097   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4098   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4099   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4100   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4101   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4102   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4103   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4104   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4105   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4106   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4107   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4108   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4109   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4110   case X86::BI__builtin_ia32_vcvtph2w512_mask:
4111   case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4112   case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4113   case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4114   case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4115   case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4116   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4117   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4118     ArgNum = 3;
4119     HasRC = true;
4120     break;
4121   case X86::BI__builtin_ia32_addsh_round_mask:
4122   case X86::BI__builtin_ia32_addss_round_mask:
4123   case X86::BI__builtin_ia32_addsd_round_mask:
4124   case X86::BI__builtin_ia32_divsh_round_mask:
4125   case X86::BI__builtin_ia32_divss_round_mask:
4126   case X86::BI__builtin_ia32_divsd_round_mask:
4127   case X86::BI__builtin_ia32_mulsh_round_mask:
4128   case X86::BI__builtin_ia32_mulss_round_mask:
4129   case X86::BI__builtin_ia32_mulsd_round_mask:
4130   case X86::BI__builtin_ia32_subsh_round_mask:
4131   case X86::BI__builtin_ia32_subss_round_mask:
4132   case X86::BI__builtin_ia32_subsd_round_mask:
4133   case X86::BI__builtin_ia32_scalefph512_mask:
4134   case X86::BI__builtin_ia32_scalefpd512_mask:
4135   case X86::BI__builtin_ia32_scalefps512_mask:
4136   case X86::BI__builtin_ia32_scalefsd_round_mask:
4137   case X86::BI__builtin_ia32_scalefss_round_mask:
4138   case X86::BI__builtin_ia32_scalefsh_round_mask:
4139   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4140   case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4141   case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4142   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4143   case X86::BI__builtin_ia32_sqrtss_round_mask:
4144   case X86::BI__builtin_ia32_sqrtsh_round_mask:
4145   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4146   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4147   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4148   case X86::BI__builtin_ia32_vfmaddss3_mask:
4149   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4150   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4151   case X86::BI__builtin_ia32_vfmaddsh3_mask:
4152   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4153   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4154   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4155   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4156   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4157   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4158   case X86::BI__builtin_ia32_vfmaddps512_mask:
4159   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4160   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4161   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4162   case X86::BI__builtin_ia32_vfmaddph512_mask:
4163   case X86::BI__builtin_ia32_vfmaddph512_maskz:
4164   case X86::BI__builtin_ia32_vfmaddph512_mask3:
4165   case X86::BI__builtin_ia32_vfmsubph512_mask3:
4166   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4167   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4168   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4169   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4170   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4171   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4172   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4173   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4174   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4175   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4176   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4177   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4178   case X86::BI__builtin_ia32_vfmaddcsh_mask:
4179   case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4180   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4181   case X86::BI__builtin_ia32_vfmaddcph512_mask:
4182   case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4183   case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4184   case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4185   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4186   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4187   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4188   case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4189   case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4190   case X86::BI__builtin_ia32_vfmulcsh_mask:
4191   case X86::BI__builtin_ia32_vfmulcph512_mask:
4192   case X86::BI__builtin_ia32_vfcmulcsh_mask:
4193   case X86::BI__builtin_ia32_vfcmulcph512_mask:
4194     ArgNum = 4;
4195     HasRC = true;
4196     break;
4197   }
4198 
4199   llvm::APSInt Result;
4200 
4201   // We can't check the value of a dependent argument.
4202   Expr *Arg = TheCall->getArg(ArgNum);
4203   if (Arg->isTypeDependent() || Arg->isValueDependent())
4204     return false;
4205 
4206   // Check constant-ness first.
4207   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4208     return true;
4209 
4210   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4211   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4212   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4213   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4214   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4215       Result == 8/*ROUND_NO_EXC*/ ||
4216       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4217       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4218     return false;
4219 
4220   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4221          << Arg->getSourceRange();
4222 }
4223 
4224 // Check if the gather/scatter scale is legal.
4225 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4226                                              CallExpr *TheCall) {
4227   unsigned ArgNum = 0;
4228   switch (BuiltinID) {
4229   default:
4230     return false;
4231   case X86::BI__builtin_ia32_gatherpfdpd:
4232   case X86::BI__builtin_ia32_gatherpfdps:
4233   case X86::BI__builtin_ia32_gatherpfqpd:
4234   case X86::BI__builtin_ia32_gatherpfqps:
4235   case X86::BI__builtin_ia32_scatterpfdpd:
4236   case X86::BI__builtin_ia32_scatterpfdps:
4237   case X86::BI__builtin_ia32_scatterpfqpd:
4238   case X86::BI__builtin_ia32_scatterpfqps:
4239     ArgNum = 3;
4240     break;
4241   case X86::BI__builtin_ia32_gatherd_pd:
4242   case X86::BI__builtin_ia32_gatherd_pd256:
4243   case X86::BI__builtin_ia32_gatherq_pd:
4244   case X86::BI__builtin_ia32_gatherq_pd256:
4245   case X86::BI__builtin_ia32_gatherd_ps:
4246   case X86::BI__builtin_ia32_gatherd_ps256:
4247   case X86::BI__builtin_ia32_gatherq_ps:
4248   case X86::BI__builtin_ia32_gatherq_ps256:
4249   case X86::BI__builtin_ia32_gatherd_q:
4250   case X86::BI__builtin_ia32_gatherd_q256:
4251   case X86::BI__builtin_ia32_gatherq_q:
4252   case X86::BI__builtin_ia32_gatherq_q256:
4253   case X86::BI__builtin_ia32_gatherd_d:
4254   case X86::BI__builtin_ia32_gatherd_d256:
4255   case X86::BI__builtin_ia32_gatherq_d:
4256   case X86::BI__builtin_ia32_gatherq_d256:
4257   case X86::BI__builtin_ia32_gather3div2df:
4258   case X86::BI__builtin_ia32_gather3div2di:
4259   case X86::BI__builtin_ia32_gather3div4df:
4260   case X86::BI__builtin_ia32_gather3div4di:
4261   case X86::BI__builtin_ia32_gather3div4sf:
4262   case X86::BI__builtin_ia32_gather3div4si:
4263   case X86::BI__builtin_ia32_gather3div8sf:
4264   case X86::BI__builtin_ia32_gather3div8si:
4265   case X86::BI__builtin_ia32_gather3siv2df:
4266   case X86::BI__builtin_ia32_gather3siv2di:
4267   case X86::BI__builtin_ia32_gather3siv4df:
4268   case X86::BI__builtin_ia32_gather3siv4di:
4269   case X86::BI__builtin_ia32_gather3siv4sf:
4270   case X86::BI__builtin_ia32_gather3siv4si:
4271   case X86::BI__builtin_ia32_gather3siv8sf:
4272   case X86::BI__builtin_ia32_gather3siv8si:
4273   case X86::BI__builtin_ia32_gathersiv8df:
4274   case X86::BI__builtin_ia32_gathersiv16sf:
4275   case X86::BI__builtin_ia32_gatherdiv8df:
4276   case X86::BI__builtin_ia32_gatherdiv16sf:
4277   case X86::BI__builtin_ia32_gathersiv8di:
4278   case X86::BI__builtin_ia32_gathersiv16si:
4279   case X86::BI__builtin_ia32_gatherdiv8di:
4280   case X86::BI__builtin_ia32_gatherdiv16si:
4281   case X86::BI__builtin_ia32_scatterdiv2df:
4282   case X86::BI__builtin_ia32_scatterdiv2di:
4283   case X86::BI__builtin_ia32_scatterdiv4df:
4284   case X86::BI__builtin_ia32_scatterdiv4di:
4285   case X86::BI__builtin_ia32_scatterdiv4sf:
4286   case X86::BI__builtin_ia32_scatterdiv4si:
4287   case X86::BI__builtin_ia32_scatterdiv8sf:
4288   case X86::BI__builtin_ia32_scatterdiv8si:
4289   case X86::BI__builtin_ia32_scattersiv2df:
4290   case X86::BI__builtin_ia32_scattersiv2di:
4291   case X86::BI__builtin_ia32_scattersiv4df:
4292   case X86::BI__builtin_ia32_scattersiv4di:
4293   case X86::BI__builtin_ia32_scattersiv4sf:
4294   case X86::BI__builtin_ia32_scattersiv4si:
4295   case X86::BI__builtin_ia32_scattersiv8sf:
4296   case X86::BI__builtin_ia32_scattersiv8si:
4297   case X86::BI__builtin_ia32_scattersiv8df:
4298   case X86::BI__builtin_ia32_scattersiv16sf:
4299   case X86::BI__builtin_ia32_scatterdiv8df:
4300   case X86::BI__builtin_ia32_scatterdiv16sf:
4301   case X86::BI__builtin_ia32_scattersiv8di:
4302   case X86::BI__builtin_ia32_scattersiv16si:
4303   case X86::BI__builtin_ia32_scatterdiv8di:
4304   case X86::BI__builtin_ia32_scatterdiv16si:
4305     ArgNum = 4;
4306     break;
4307   }
4308 
4309   llvm::APSInt Result;
4310 
4311   // We can't check the value of a dependent argument.
4312   Expr *Arg = TheCall->getArg(ArgNum);
4313   if (Arg->isTypeDependent() || Arg->isValueDependent())
4314     return false;
4315 
4316   // Check constant-ness first.
4317   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4318     return true;
4319 
4320   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4321     return false;
4322 
4323   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4324          << Arg->getSourceRange();
4325 }
4326 
4327 enum { TileRegLow = 0, TileRegHigh = 7 };
4328 
4329 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4330                                              ArrayRef<int> ArgNums) {
4331   for (int ArgNum : ArgNums) {
4332     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4333       return true;
4334   }
4335   return false;
4336 }
4337 
4338 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4339                                         ArrayRef<int> ArgNums) {
4340   // Because the max number of tile register is TileRegHigh + 1, so here we use
4341   // each bit to represent the usage of them in bitset.
4342   std::bitset<TileRegHigh + 1> ArgValues;
4343   for (int ArgNum : ArgNums) {
4344     Expr *Arg = TheCall->getArg(ArgNum);
4345     if (Arg->isTypeDependent() || Arg->isValueDependent())
4346       continue;
4347 
4348     llvm::APSInt Result;
4349     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4350       return true;
4351     int ArgExtValue = Result.getExtValue();
4352     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4353            "Incorrect tile register num.");
4354     if (ArgValues.test(ArgExtValue))
4355       return Diag(TheCall->getBeginLoc(),
4356                   diag::err_x86_builtin_tile_arg_duplicate)
4357              << TheCall->getArg(ArgNum)->getSourceRange();
4358     ArgValues.set(ArgExtValue);
4359   }
4360   return false;
4361 }
4362 
4363 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4364                                                 ArrayRef<int> ArgNums) {
4365   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4366          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4367 }
4368 
4369 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4370   switch (BuiltinID) {
4371   default:
4372     return false;
4373   case X86::BI__builtin_ia32_tileloadd64:
4374   case X86::BI__builtin_ia32_tileloaddt164:
4375   case X86::BI__builtin_ia32_tilestored64:
4376   case X86::BI__builtin_ia32_tilezero:
4377     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4378   case X86::BI__builtin_ia32_tdpbssd:
4379   case X86::BI__builtin_ia32_tdpbsud:
4380   case X86::BI__builtin_ia32_tdpbusd:
4381   case X86::BI__builtin_ia32_tdpbuud:
4382   case X86::BI__builtin_ia32_tdpbf16ps:
4383     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4384   }
4385 }
4386 static bool isX86_32Builtin(unsigned BuiltinID) {
4387   // These builtins only work on x86-32 targets.
4388   switch (BuiltinID) {
4389   case X86::BI__builtin_ia32_readeflags_u32:
4390   case X86::BI__builtin_ia32_writeeflags_u32:
4391     return true;
4392   }
4393 
4394   return false;
4395 }
4396 
4397 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4398                                        CallExpr *TheCall) {
4399   if (BuiltinID == X86::BI__builtin_cpu_supports)
4400     return SemaBuiltinCpuSupports(*this, TI, TheCall);
4401 
4402   if (BuiltinID == X86::BI__builtin_cpu_is)
4403     return SemaBuiltinCpuIs(*this, TI, TheCall);
4404 
4405   // Check for 32-bit only builtins on a 64-bit target.
4406   const llvm::Triple &TT = TI.getTriple();
4407   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4408     return Diag(TheCall->getCallee()->getBeginLoc(),
4409                 diag::err_32_bit_builtin_64_bit_tgt);
4410 
4411   // If the intrinsic has rounding or SAE make sure its valid.
4412   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4413     return true;
4414 
4415   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4416   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4417     return true;
4418 
4419   // If the intrinsic has a tile arguments, make sure they are valid.
4420   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4421     return true;
4422 
4423   // For intrinsics which take an immediate value as part of the instruction,
4424   // range check them here.
4425   int i = 0, l = 0, u = 0;
4426   switch (BuiltinID) {
4427   default:
4428     return false;
4429   case X86::BI__builtin_ia32_vec_ext_v2si:
4430   case X86::BI__builtin_ia32_vec_ext_v2di:
4431   case X86::BI__builtin_ia32_vextractf128_pd256:
4432   case X86::BI__builtin_ia32_vextractf128_ps256:
4433   case X86::BI__builtin_ia32_vextractf128_si256:
4434   case X86::BI__builtin_ia32_extract128i256:
4435   case X86::BI__builtin_ia32_extractf64x4_mask:
4436   case X86::BI__builtin_ia32_extracti64x4_mask:
4437   case X86::BI__builtin_ia32_extractf32x8_mask:
4438   case X86::BI__builtin_ia32_extracti32x8_mask:
4439   case X86::BI__builtin_ia32_extractf64x2_256_mask:
4440   case X86::BI__builtin_ia32_extracti64x2_256_mask:
4441   case X86::BI__builtin_ia32_extractf32x4_256_mask:
4442   case X86::BI__builtin_ia32_extracti32x4_256_mask:
4443     i = 1; l = 0; u = 1;
4444     break;
4445   case X86::BI__builtin_ia32_vec_set_v2di:
4446   case X86::BI__builtin_ia32_vinsertf128_pd256:
4447   case X86::BI__builtin_ia32_vinsertf128_ps256:
4448   case X86::BI__builtin_ia32_vinsertf128_si256:
4449   case X86::BI__builtin_ia32_insert128i256:
4450   case X86::BI__builtin_ia32_insertf32x8:
4451   case X86::BI__builtin_ia32_inserti32x8:
4452   case X86::BI__builtin_ia32_insertf64x4:
4453   case X86::BI__builtin_ia32_inserti64x4:
4454   case X86::BI__builtin_ia32_insertf64x2_256:
4455   case X86::BI__builtin_ia32_inserti64x2_256:
4456   case X86::BI__builtin_ia32_insertf32x4_256:
4457   case X86::BI__builtin_ia32_inserti32x4_256:
4458     i = 2; l = 0; u = 1;
4459     break;
4460   case X86::BI__builtin_ia32_vpermilpd:
4461   case X86::BI__builtin_ia32_vec_ext_v4hi:
4462   case X86::BI__builtin_ia32_vec_ext_v4si:
4463   case X86::BI__builtin_ia32_vec_ext_v4sf:
4464   case X86::BI__builtin_ia32_vec_ext_v4di:
4465   case X86::BI__builtin_ia32_extractf32x4_mask:
4466   case X86::BI__builtin_ia32_extracti32x4_mask:
4467   case X86::BI__builtin_ia32_extractf64x2_512_mask:
4468   case X86::BI__builtin_ia32_extracti64x2_512_mask:
4469     i = 1; l = 0; u = 3;
4470     break;
4471   case X86::BI_mm_prefetch:
4472   case X86::BI__builtin_ia32_vec_ext_v8hi:
4473   case X86::BI__builtin_ia32_vec_ext_v8si:
4474     i = 1; l = 0; u = 7;
4475     break;
4476   case X86::BI__builtin_ia32_sha1rnds4:
4477   case X86::BI__builtin_ia32_blendpd:
4478   case X86::BI__builtin_ia32_shufpd:
4479   case X86::BI__builtin_ia32_vec_set_v4hi:
4480   case X86::BI__builtin_ia32_vec_set_v4si:
4481   case X86::BI__builtin_ia32_vec_set_v4di:
4482   case X86::BI__builtin_ia32_shuf_f32x4_256:
4483   case X86::BI__builtin_ia32_shuf_f64x2_256:
4484   case X86::BI__builtin_ia32_shuf_i32x4_256:
4485   case X86::BI__builtin_ia32_shuf_i64x2_256:
4486   case X86::BI__builtin_ia32_insertf64x2_512:
4487   case X86::BI__builtin_ia32_inserti64x2_512:
4488   case X86::BI__builtin_ia32_insertf32x4:
4489   case X86::BI__builtin_ia32_inserti32x4:
4490     i = 2; l = 0; u = 3;
4491     break;
4492   case X86::BI__builtin_ia32_vpermil2pd:
4493   case X86::BI__builtin_ia32_vpermil2pd256:
4494   case X86::BI__builtin_ia32_vpermil2ps:
4495   case X86::BI__builtin_ia32_vpermil2ps256:
4496     i = 3; l = 0; u = 3;
4497     break;
4498   case X86::BI__builtin_ia32_cmpb128_mask:
4499   case X86::BI__builtin_ia32_cmpw128_mask:
4500   case X86::BI__builtin_ia32_cmpd128_mask:
4501   case X86::BI__builtin_ia32_cmpq128_mask:
4502   case X86::BI__builtin_ia32_cmpb256_mask:
4503   case X86::BI__builtin_ia32_cmpw256_mask:
4504   case X86::BI__builtin_ia32_cmpd256_mask:
4505   case X86::BI__builtin_ia32_cmpq256_mask:
4506   case X86::BI__builtin_ia32_cmpb512_mask:
4507   case X86::BI__builtin_ia32_cmpw512_mask:
4508   case X86::BI__builtin_ia32_cmpd512_mask:
4509   case X86::BI__builtin_ia32_cmpq512_mask:
4510   case X86::BI__builtin_ia32_ucmpb128_mask:
4511   case X86::BI__builtin_ia32_ucmpw128_mask:
4512   case X86::BI__builtin_ia32_ucmpd128_mask:
4513   case X86::BI__builtin_ia32_ucmpq128_mask:
4514   case X86::BI__builtin_ia32_ucmpb256_mask:
4515   case X86::BI__builtin_ia32_ucmpw256_mask:
4516   case X86::BI__builtin_ia32_ucmpd256_mask:
4517   case X86::BI__builtin_ia32_ucmpq256_mask:
4518   case X86::BI__builtin_ia32_ucmpb512_mask:
4519   case X86::BI__builtin_ia32_ucmpw512_mask:
4520   case X86::BI__builtin_ia32_ucmpd512_mask:
4521   case X86::BI__builtin_ia32_ucmpq512_mask:
4522   case X86::BI__builtin_ia32_vpcomub:
4523   case X86::BI__builtin_ia32_vpcomuw:
4524   case X86::BI__builtin_ia32_vpcomud:
4525   case X86::BI__builtin_ia32_vpcomuq:
4526   case X86::BI__builtin_ia32_vpcomb:
4527   case X86::BI__builtin_ia32_vpcomw:
4528   case X86::BI__builtin_ia32_vpcomd:
4529   case X86::BI__builtin_ia32_vpcomq:
4530   case X86::BI__builtin_ia32_vec_set_v8hi:
4531   case X86::BI__builtin_ia32_vec_set_v8si:
4532     i = 2; l = 0; u = 7;
4533     break;
4534   case X86::BI__builtin_ia32_vpermilpd256:
4535   case X86::BI__builtin_ia32_roundps:
4536   case X86::BI__builtin_ia32_roundpd:
4537   case X86::BI__builtin_ia32_roundps256:
4538   case X86::BI__builtin_ia32_roundpd256:
4539   case X86::BI__builtin_ia32_getmantpd128_mask:
4540   case X86::BI__builtin_ia32_getmantpd256_mask:
4541   case X86::BI__builtin_ia32_getmantps128_mask:
4542   case X86::BI__builtin_ia32_getmantps256_mask:
4543   case X86::BI__builtin_ia32_getmantpd512_mask:
4544   case X86::BI__builtin_ia32_getmantps512_mask:
4545   case X86::BI__builtin_ia32_getmantph128_mask:
4546   case X86::BI__builtin_ia32_getmantph256_mask:
4547   case X86::BI__builtin_ia32_getmantph512_mask:
4548   case X86::BI__builtin_ia32_vec_ext_v16qi:
4549   case X86::BI__builtin_ia32_vec_ext_v16hi:
4550     i = 1; l = 0; u = 15;
4551     break;
4552   case X86::BI__builtin_ia32_pblendd128:
4553   case X86::BI__builtin_ia32_blendps:
4554   case X86::BI__builtin_ia32_blendpd256:
4555   case X86::BI__builtin_ia32_shufpd256:
4556   case X86::BI__builtin_ia32_roundss:
4557   case X86::BI__builtin_ia32_roundsd:
4558   case X86::BI__builtin_ia32_rangepd128_mask:
4559   case X86::BI__builtin_ia32_rangepd256_mask:
4560   case X86::BI__builtin_ia32_rangepd512_mask:
4561   case X86::BI__builtin_ia32_rangeps128_mask:
4562   case X86::BI__builtin_ia32_rangeps256_mask:
4563   case X86::BI__builtin_ia32_rangeps512_mask:
4564   case X86::BI__builtin_ia32_getmantsd_round_mask:
4565   case X86::BI__builtin_ia32_getmantss_round_mask:
4566   case X86::BI__builtin_ia32_getmantsh_round_mask:
4567   case X86::BI__builtin_ia32_vec_set_v16qi:
4568   case X86::BI__builtin_ia32_vec_set_v16hi:
4569     i = 2; l = 0; u = 15;
4570     break;
4571   case X86::BI__builtin_ia32_vec_ext_v32qi:
4572     i = 1; l = 0; u = 31;
4573     break;
4574   case X86::BI__builtin_ia32_cmpps:
4575   case X86::BI__builtin_ia32_cmpss:
4576   case X86::BI__builtin_ia32_cmppd:
4577   case X86::BI__builtin_ia32_cmpsd:
4578   case X86::BI__builtin_ia32_cmpps256:
4579   case X86::BI__builtin_ia32_cmppd256:
4580   case X86::BI__builtin_ia32_cmpps128_mask:
4581   case X86::BI__builtin_ia32_cmppd128_mask:
4582   case X86::BI__builtin_ia32_cmpps256_mask:
4583   case X86::BI__builtin_ia32_cmppd256_mask:
4584   case X86::BI__builtin_ia32_cmpps512_mask:
4585   case X86::BI__builtin_ia32_cmppd512_mask:
4586   case X86::BI__builtin_ia32_cmpsd_mask:
4587   case X86::BI__builtin_ia32_cmpss_mask:
4588   case X86::BI__builtin_ia32_vec_set_v32qi:
4589     i = 2; l = 0; u = 31;
4590     break;
4591   case X86::BI__builtin_ia32_permdf256:
4592   case X86::BI__builtin_ia32_permdi256:
4593   case X86::BI__builtin_ia32_permdf512:
4594   case X86::BI__builtin_ia32_permdi512:
4595   case X86::BI__builtin_ia32_vpermilps:
4596   case X86::BI__builtin_ia32_vpermilps256:
4597   case X86::BI__builtin_ia32_vpermilpd512:
4598   case X86::BI__builtin_ia32_vpermilps512:
4599   case X86::BI__builtin_ia32_pshufd:
4600   case X86::BI__builtin_ia32_pshufd256:
4601   case X86::BI__builtin_ia32_pshufd512:
4602   case X86::BI__builtin_ia32_pshufhw:
4603   case X86::BI__builtin_ia32_pshufhw256:
4604   case X86::BI__builtin_ia32_pshufhw512:
4605   case X86::BI__builtin_ia32_pshuflw:
4606   case X86::BI__builtin_ia32_pshuflw256:
4607   case X86::BI__builtin_ia32_pshuflw512:
4608   case X86::BI__builtin_ia32_vcvtps2ph:
4609   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4610   case X86::BI__builtin_ia32_vcvtps2ph256:
4611   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4612   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4613   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4614   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4615   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4616   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4617   case X86::BI__builtin_ia32_rndscaleps_mask:
4618   case X86::BI__builtin_ia32_rndscalepd_mask:
4619   case X86::BI__builtin_ia32_rndscaleph_mask:
4620   case X86::BI__builtin_ia32_reducepd128_mask:
4621   case X86::BI__builtin_ia32_reducepd256_mask:
4622   case X86::BI__builtin_ia32_reducepd512_mask:
4623   case X86::BI__builtin_ia32_reduceps128_mask:
4624   case X86::BI__builtin_ia32_reduceps256_mask:
4625   case X86::BI__builtin_ia32_reduceps512_mask:
4626   case X86::BI__builtin_ia32_reduceph128_mask:
4627   case X86::BI__builtin_ia32_reduceph256_mask:
4628   case X86::BI__builtin_ia32_reduceph512_mask:
4629   case X86::BI__builtin_ia32_prold512:
4630   case X86::BI__builtin_ia32_prolq512:
4631   case X86::BI__builtin_ia32_prold128:
4632   case X86::BI__builtin_ia32_prold256:
4633   case X86::BI__builtin_ia32_prolq128:
4634   case X86::BI__builtin_ia32_prolq256:
4635   case X86::BI__builtin_ia32_prord512:
4636   case X86::BI__builtin_ia32_prorq512:
4637   case X86::BI__builtin_ia32_prord128:
4638   case X86::BI__builtin_ia32_prord256:
4639   case X86::BI__builtin_ia32_prorq128:
4640   case X86::BI__builtin_ia32_prorq256:
4641   case X86::BI__builtin_ia32_fpclasspd128_mask:
4642   case X86::BI__builtin_ia32_fpclasspd256_mask:
4643   case X86::BI__builtin_ia32_fpclassps128_mask:
4644   case X86::BI__builtin_ia32_fpclassps256_mask:
4645   case X86::BI__builtin_ia32_fpclassps512_mask:
4646   case X86::BI__builtin_ia32_fpclasspd512_mask:
4647   case X86::BI__builtin_ia32_fpclassph128_mask:
4648   case X86::BI__builtin_ia32_fpclassph256_mask:
4649   case X86::BI__builtin_ia32_fpclassph512_mask:
4650   case X86::BI__builtin_ia32_fpclasssd_mask:
4651   case X86::BI__builtin_ia32_fpclassss_mask:
4652   case X86::BI__builtin_ia32_fpclasssh_mask:
4653   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4654   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4655   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4656   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4657   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4658   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4659   case X86::BI__builtin_ia32_kshiftliqi:
4660   case X86::BI__builtin_ia32_kshiftlihi:
4661   case X86::BI__builtin_ia32_kshiftlisi:
4662   case X86::BI__builtin_ia32_kshiftlidi:
4663   case X86::BI__builtin_ia32_kshiftriqi:
4664   case X86::BI__builtin_ia32_kshiftrihi:
4665   case X86::BI__builtin_ia32_kshiftrisi:
4666   case X86::BI__builtin_ia32_kshiftridi:
4667     i = 1; l = 0; u = 255;
4668     break;
4669   case X86::BI__builtin_ia32_vperm2f128_pd256:
4670   case X86::BI__builtin_ia32_vperm2f128_ps256:
4671   case X86::BI__builtin_ia32_vperm2f128_si256:
4672   case X86::BI__builtin_ia32_permti256:
4673   case X86::BI__builtin_ia32_pblendw128:
4674   case X86::BI__builtin_ia32_pblendw256:
4675   case X86::BI__builtin_ia32_blendps256:
4676   case X86::BI__builtin_ia32_pblendd256:
4677   case X86::BI__builtin_ia32_palignr128:
4678   case X86::BI__builtin_ia32_palignr256:
4679   case X86::BI__builtin_ia32_palignr512:
4680   case X86::BI__builtin_ia32_alignq512:
4681   case X86::BI__builtin_ia32_alignd512:
4682   case X86::BI__builtin_ia32_alignd128:
4683   case X86::BI__builtin_ia32_alignd256:
4684   case X86::BI__builtin_ia32_alignq128:
4685   case X86::BI__builtin_ia32_alignq256:
4686   case X86::BI__builtin_ia32_vcomisd:
4687   case X86::BI__builtin_ia32_vcomiss:
4688   case X86::BI__builtin_ia32_shuf_f32x4:
4689   case X86::BI__builtin_ia32_shuf_f64x2:
4690   case X86::BI__builtin_ia32_shuf_i32x4:
4691   case X86::BI__builtin_ia32_shuf_i64x2:
4692   case X86::BI__builtin_ia32_shufpd512:
4693   case X86::BI__builtin_ia32_shufps:
4694   case X86::BI__builtin_ia32_shufps256:
4695   case X86::BI__builtin_ia32_shufps512:
4696   case X86::BI__builtin_ia32_dbpsadbw128:
4697   case X86::BI__builtin_ia32_dbpsadbw256:
4698   case X86::BI__builtin_ia32_dbpsadbw512:
4699   case X86::BI__builtin_ia32_vpshldd128:
4700   case X86::BI__builtin_ia32_vpshldd256:
4701   case X86::BI__builtin_ia32_vpshldd512:
4702   case X86::BI__builtin_ia32_vpshldq128:
4703   case X86::BI__builtin_ia32_vpshldq256:
4704   case X86::BI__builtin_ia32_vpshldq512:
4705   case X86::BI__builtin_ia32_vpshldw128:
4706   case X86::BI__builtin_ia32_vpshldw256:
4707   case X86::BI__builtin_ia32_vpshldw512:
4708   case X86::BI__builtin_ia32_vpshrdd128:
4709   case X86::BI__builtin_ia32_vpshrdd256:
4710   case X86::BI__builtin_ia32_vpshrdd512:
4711   case X86::BI__builtin_ia32_vpshrdq128:
4712   case X86::BI__builtin_ia32_vpshrdq256:
4713   case X86::BI__builtin_ia32_vpshrdq512:
4714   case X86::BI__builtin_ia32_vpshrdw128:
4715   case X86::BI__builtin_ia32_vpshrdw256:
4716   case X86::BI__builtin_ia32_vpshrdw512:
4717     i = 2; l = 0; u = 255;
4718     break;
4719   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4720   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4721   case X86::BI__builtin_ia32_fixupimmps512_mask:
4722   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4723   case X86::BI__builtin_ia32_fixupimmsd_mask:
4724   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4725   case X86::BI__builtin_ia32_fixupimmss_mask:
4726   case X86::BI__builtin_ia32_fixupimmss_maskz:
4727   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4728   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4729   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4730   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4731   case X86::BI__builtin_ia32_fixupimmps128_mask:
4732   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4733   case X86::BI__builtin_ia32_fixupimmps256_mask:
4734   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4735   case X86::BI__builtin_ia32_pternlogd512_mask:
4736   case X86::BI__builtin_ia32_pternlogd512_maskz:
4737   case X86::BI__builtin_ia32_pternlogq512_mask:
4738   case X86::BI__builtin_ia32_pternlogq512_maskz:
4739   case X86::BI__builtin_ia32_pternlogd128_mask:
4740   case X86::BI__builtin_ia32_pternlogd128_maskz:
4741   case X86::BI__builtin_ia32_pternlogd256_mask:
4742   case X86::BI__builtin_ia32_pternlogd256_maskz:
4743   case X86::BI__builtin_ia32_pternlogq128_mask:
4744   case X86::BI__builtin_ia32_pternlogq128_maskz:
4745   case X86::BI__builtin_ia32_pternlogq256_mask:
4746   case X86::BI__builtin_ia32_pternlogq256_maskz:
4747     i = 3; l = 0; u = 255;
4748     break;
4749   case X86::BI__builtin_ia32_gatherpfdpd:
4750   case X86::BI__builtin_ia32_gatherpfdps:
4751   case X86::BI__builtin_ia32_gatherpfqpd:
4752   case X86::BI__builtin_ia32_gatherpfqps:
4753   case X86::BI__builtin_ia32_scatterpfdpd:
4754   case X86::BI__builtin_ia32_scatterpfdps:
4755   case X86::BI__builtin_ia32_scatterpfqpd:
4756   case X86::BI__builtin_ia32_scatterpfqps:
4757     i = 4; l = 2; u = 3;
4758     break;
4759   case X86::BI__builtin_ia32_reducesd_mask:
4760   case X86::BI__builtin_ia32_reducess_mask:
4761   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4762   case X86::BI__builtin_ia32_rndscaless_round_mask:
4763   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4764   case X86::BI__builtin_ia32_reducesh_mask:
4765     i = 4; l = 0; u = 255;
4766     break;
4767   }
4768 
4769   // Note that we don't force a hard error on the range check here, allowing
4770   // template-generated or macro-generated dead code to potentially have out-of-
4771   // range values. These need to code generate, but don't need to necessarily
4772   // make any sense. We use a warning that defaults to an error.
4773   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4774 }
4775 
4776 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4777 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4778 /// Returns true when the format fits the function and the FormatStringInfo has
4779 /// been populated.
4780 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4781                                FormatStringInfo *FSI) {
4782   FSI->HasVAListArg = Format->getFirstArg() == 0;
4783   FSI->FormatIdx = Format->getFormatIdx() - 1;
4784   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4785 
4786   // The way the format attribute works in GCC, the implicit this argument
4787   // of member functions is counted. However, it doesn't appear in our own
4788   // lists, so decrement format_idx in that case.
4789   if (IsCXXMember) {
4790     if(FSI->FormatIdx == 0)
4791       return false;
4792     --FSI->FormatIdx;
4793     if (FSI->FirstDataArg != 0)
4794       --FSI->FirstDataArg;
4795   }
4796   return true;
4797 }
4798 
4799 /// Checks if a the given expression evaluates to null.
4800 ///
4801 /// Returns true if the value evaluates to null.
4802 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4803   // If the expression has non-null type, it doesn't evaluate to null.
4804   if (auto nullability
4805         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4806     if (*nullability == NullabilityKind::NonNull)
4807       return false;
4808   }
4809 
4810   // As a special case, transparent unions initialized with zero are
4811   // considered null for the purposes of the nonnull attribute.
4812   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4813     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4814       if (const CompoundLiteralExpr *CLE =
4815           dyn_cast<CompoundLiteralExpr>(Expr))
4816         if (const InitListExpr *ILE =
4817             dyn_cast<InitListExpr>(CLE->getInitializer()))
4818           Expr = ILE->getInit(0);
4819   }
4820 
4821   bool Result;
4822   return (!Expr->isValueDependent() &&
4823           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4824           !Result);
4825 }
4826 
4827 static void CheckNonNullArgument(Sema &S,
4828                                  const Expr *ArgExpr,
4829                                  SourceLocation CallSiteLoc) {
4830   if (CheckNonNullExpr(S, ArgExpr))
4831     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4832                           S.PDiag(diag::warn_null_arg)
4833                               << ArgExpr->getSourceRange());
4834 }
4835 
4836 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4837   FormatStringInfo FSI;
4838   if ((GetFormatStringType(Format) == FST_NSString) &&
4839       getFormatStringInfo(Format, false, &FSI)) {
4840     Idx = FSI.FormatIdx;
4841     return true;
4842   }
4843   return false;
4844 }
4845 
4846 /// Diagnose use of %s directive in an NSString which is being passed
4847 /// as formatting string to formatting method.
4848 static void
4849 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4850                                         const NamedDecl *FDecl,
4851                                         Expr **Args,
4852                                         unsigned NumArgs) {
4853   unsigned Idx = 0;
4854   bool Format = false;
4855   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4856   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4857     Idx = 2;
4858     Format = true;
4859   }
4860   else
4861     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4862       if (S.GetFormatNSStringIdx(I, Idx)) {
4863         Format = true;
4864         break;
4865       }
4866     }
4867   if (!Format || NumArgs <= Idx)
4868     return;
4869   const Expr *FormatExpr = Args[Idx];
4870   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4871     FormatExpr = CSCE->getSubExpr();
4872   const StringLiteral *FormatString;
4873   if (const ObjCStringLiteral *OSL =
4874       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4875     FormatString = OSL->getString();
4876   else
4877     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4878   if (!FormatString)
4879     return;
4880   if (S.FormatStringHasSArg(FormatString)) {
4881     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4882       << "%s" << 1 << 1;
4883     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4884       << FDecl->getDeclName();
4885   }
4886 }
4887 
4888 /// Determine whether the given type has a non-null nullability annotation.
4889 static bool isNonNullType(ASTContext &ctx, QualType type) {
4890   if (auto nullability = type->getNullability(ctx))
4891     return *nullability == NullabilityKind::NonNull;
4892 
4893   return false;
4894 }
4895 
4896 static void CheckNonNullArguments(Sema &S,
4897                                   const NamedDecl *FDecl,
4898                                   const FunctionProtoType *Proto,
4899                                   ArrayRef<const Expr *> Args,
4900                                   SourceLocation CallSiteLoc) {
4901   assert((FDecl || Proto) && "Need a function declaration or prototype");
4902 
4903   // Already checked by by constant evaluator.
4904   if (S.isConstantEvaluated())
4905     return;
4906   // Check the attributes attached to the method/function itself.
4907   llvm::SmallBitVector NonNullArgs;
4908   if (FDecl) {
4909     // Handle the nonnull attribute on the function/method declaration itself.
4910     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4911       if (!NonNull->args_size()) {
4912         // Easy case: all pointer arguments are nonnull.
4913         for (const auto *Arg : Args)
4914           if (S.isValidPointerAttrType(Arg->getType()))
4915             CheckNonNullArgument(S, Arg, CallSiteLoc);
4916         return;
4917       }
4918 
4919       for (const ParamIdx &Idx : NonNull->args()) {
4920         unsigned IdxAST = Idx.getASTIndex();
4921         if (IdxAST >= Args.size())
4922           continue;
4923         if (NonNullArgs.empty())
4924           NonNullArgs.resize(Args.size());
4925         NonNullArgs.set(IdxAST);
4926       }
4927     }
4928   }
4929 
4930   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4931     // Handle the nonnull attribute on the parameters of the
4932     // function/method.
4933     ArrayRef<ParmVarDecl*> parms;
4934     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4935       parms = FD->parameters();
4936     else
4937       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4938 
4939     unsigned ParamIndex = 0;
4940     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4941          I != E; ++I, ++ParamIndex) {
4942       const ParmVarDecl *PVD = *I;
4943       if (PVD->hasAttr<NonNullAttr>() ||
4944           isNonNullType(S.Context, PVD->getType())) {
4945         if (NonNullArgs.empty())
4946           NonNullArgs.resize(Args.size());
4947 
4948         NonNullArgs.set(ParamIndex);
4949       }
4950     }
4951   } else {
4952     // If we have a non-function, non-method declaration but no
4953     // function prototype, try to dig out the function prototype.
4954     if (!Proto) {
4955       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4956         QualType type = VD->getType().getNonReferenceType();
4957         if (auto pointerType = type->getAs<PointerType>())
4958           type = pointerType->getPointeeType();
4959         else if (auto blockType = type->getAs<BlockPointerType>())
4960           type = blockType->getPointeeType();
4961         // FIXME: data member pointers?
4962 
4963         // Dig out the function prototype, if there is one.
4964         Proto = type->getAs<FunctionProtoType>();
4965       }
4966     }
4967 
4968     // Fill in non-null argument information from the nullability
4969     // information on the parameter types (if we have them).
4970     if (Proto) {
4971       unsigned Index = 0;
4972       for (auto paramType : Proto->getParamTypes()) {
4973         if (isNonNullType(S.Context, paramType)) {
4974           if (NonNullArgs.empty())
4975             NonNullArgs.resize(Args.size());
4976 
4977           NonNullArgs.set(Index);
4978         }
4979 
4980         ++Index;
4981       }
4982     }
4983   }
4984 
4985   // Check for non-null arguments.
4986   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4987        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4988     if (NonNullArgs[ArgIndex])
4989       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4990   }
4991 }
4992 
4993 /// Warn if a pointer or reference argument passed to a function points to an
4994 /// object that is less aligned than the parameter. This can happen when
4995 /// creating a typedef with a lower alignment than the original type and then
4996 /// calling functions defined in terms of the original type.
4997 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
4998                              StringRef ParamName, QualType ArgTy,
4999                              QualType ParamTy) {
5000 
5001   // If a function accepts a pointer or reference type
5002   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5003     return;
5004 
5005   // If the parameter is a pointer type, get the pointee type for the
5006   // argument too. If the parameter is a reference type, don't try to get
5007   // the pointee type for the argument.
5008   if (ParamTy->isPointerType())
5009     ArgTy = ArgTy->getPointeeType();
5010 
5011   // Remove reference or pointer
5012   ParamTy = ParamTy->getPointeeType();
5013 
5014   // Find expected alignment, and the actual alignment of the passed object.
5015   // getTypeAlignInChars requires complete types
5016   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5017       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5018       ArgTy->isUndeducedType())
5019     return;
5020 
5021   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5022   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5023 
5024   // If the argument is less aligned than the parameter, there is a
5025   // potential alignment issue.
5026   if (ArgAlign < ParamAlign)
5027     Diag(Loc, diag::warn_param_mismatched_alignment)
5028         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5029         << ParamName << (FDecl != nullptr) << FDecl;
5030 }
5031 
5032 /// Handles the checks for format strings, non-POD arguments to vararg
5033 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5034 /// attributes.
5035 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5036                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
5037                      bool IsMemberFunction, SourceLocation Loc,
5038                      SourceRange Range, VariadicCallType CallType) {
5039   // FIXME: We should check as much as we can in the template definition.
5040   if (CurContext->isDependentContext())
5041     return;
5042 
5043   // Printf and scanf checking.
5044   llvm::SmallBitVector CheckedVarArgs;
5045   if (FDecl) {
5046     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5047       // Only create vector if there are format attributes.
5048       CheckedVarArgs.resize(Args.size());
5049 
5050       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5051                            CheckedVarArgs);
5052     }
5053   }
5054 
5055   // Refuse POD arguments that weren't caught by the format string
5056   // checks above.
5057   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5058   if (CallType != VariadicDoesNotApply &&
5059       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5060     unsigned NumParams = Proto ? Proto->getNumParams()
5061                        : FDecl && isa<FunctionDecl>(FDecl)
5062                            ? cast<FunctionDecl>(FDecl)->getNumParams()
5063                        : FDecl && isa<ObjCMethodDecl>(FDecl)
5064                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
5065                        : 0;
5066 
5067     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5068       // Args[ArgIdx] can be null in malformed code.
5069       if (const Expr *Arg = Args[ArgIdx]) {
5070         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5071           checkVariadicArgument(Arg, CallType);
5072       }
5073     }
5074   }
5075 
5076   if (FDecl || Proto) {
5077     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5078 
5079     // Type safety checking.
5080     if (FDecl) {
5081       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5082         CheckArgumentWithTypeTag(I, Args, Loc);
5083     }
5084   }
5085 
5086   // Check that passed arguments match the alignment of original arguments.
5087   // Try to get the missing prototype from the declaration.
5088   if (!Proto && FDecl) {
5089     const auto *FT = FDecl->getFunctionType();
5090     if (isa_and_nonnull<FunctionProtoType>(FT))
5091       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5092   }
5093   if (Proto) {
5094     // For variadic functions, we may have more args than parameters.
5095     // For some K&R functions, we may have less args than parameters.
5096     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5097     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5098       // Args[ArgIdx] can be null in malformed code.
5099       if (const Expr *Arg = Args[ArgIdx]) {
5100         if (Arg->containsErrors())
5101           continue;
5102 
5103         QualType ParamTy = Proto->getParamType(ArgIdx);
5104         QualType ArgTy = Arg->getType();
5105         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5106                           ArgTy, ParamTy);
5107       }
5108     }
5109   }
5110 
5111   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5112     auto *AA = FDecl->getAttr<AllocAlignAttr>();
5113     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5114     if (!Arg->isValueDependent()) {
5115       Expr::EvalResult Align;
5116       if (Arg->EvaluateAsInt(Align, Context)) {
5117         const llvm::APSInt &I = Align.Val.getInt();
5118         if (!I.isPowerOf2())
5119           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5120               << Arg->getSourceRange();
5121 
5122         if (I > Sema::MaximumAlignment)
5123           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5124               << Arg->getSourceRange() << Sema::MaximumAlignment;
5125       }
5126     }
5127   }
5128 
5129   if (FD)
5130     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5131 }
5132 
5133 /// CheckConstructorCall - Check a constructor call for correctness and safety
5134 /// properties not enforced by the C type system.
5135 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5136                                 ArrayRef<const Expr *> Args,
5137                                 const FunctionProtoType *Proto,
5138                                 SourceLocation Loc) {
5139   VariadicCallType CallType =
5140       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5141 
5142   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5143   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5144                     Context.getPointerType(Ctor->getThisObjectType()));
5145 
5146   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5147             Loc, SourceRange(), CallType);
5148 }
5149 
5150 /// CheckFunctionCall - Check a direct function call for various correctness
5151 /// and safety properties not strictly enforced by the C type system.
5152 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5153                              const FunctionProtoType *Proto) {
5154   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5155                               isa<CXXMethodDecl>(FDecl);
5156   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5157                           IsMemberOperatorCall;
5158   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5159                                                   TheCall->getCallee());
5160   Expr** Args = TheCall->getArgs();
5161   unsigned NumArgs = TheCall->getNumArgs();
5162 
5163   Expr *ImplicitThis = nullptr;
5164   if (IsMemberOperatorCall) {
5165     // If this is a call to a member operator, hide the first argument
5166     // from checkCall.
5167     // FIXME: Our choice of AST representation here is less than ideal.
5168     ImplicitThis = Args[0];
5169     ++Args;
5170     --NumArgs;
5171   } else if (IsMemberFunction)
5172     ImplicitThis =
5173         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5174 
5175   if (ImplicitThis) {
5176     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5177     // used.
5178     QualType ThisType = ImplicitThis->getType();
5179     if (!ThisType->isPointerType()) {
5180       assert(!ThisType->isReferenceType());
5181       ThisType = Context.getPointerType(ThisType);
5182     }
5183 
5184     QualType ThisTypeFromDecl =
5185         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5186 
5187     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5188                       ThisTypeFromDecl);
5189   }
5190 
5191   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5192             IsMemberFunction, TheCall->getRParenLoc(),
5193             TheCall->getCallee()->getSourceRange(), CallType);
5194 
5195   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5196   // None of the checks below are needed for functions that don't have
5197   // simple names (e.g., C++ conversion functions).
5198   if (!FnInfo)
5199     return false;
5200 
5201   CheckTCBEnforcement(TheCall, FDecl);
5202 
5203   CheckAbsoluteValueFunction(TheCall, FDecl);
5204   CheckMaxUnsignedZero(TheCall, FDecl);
5205 
5206   if (getLangOpts().ObjC)
5207     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5208 
5209   unsigned CMId = FDecl->getMemoryFunctionKind();
5210 
5211   // Handle memory setting and copying functions.
5212   switch (CMId) {
5213   case 0:
5214     return false;
5215   case Builtin::BIstrlcpy: // fallthrough
5216   case Builtin::BIstrlcat:
5217     CheckStrlcpycatArguments(TheCall, FnInfo);
5218     break;
5219   case Builtin::BIstrncat:
5220     CheckStrncatArguments(TheCall, FnInfo);
5221     break;
5222   case Builtin::BIfree:
5223     CheckFreeArguments(TheCall);
5224     break;
5225   default:
5226     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5227   }
5228 
5229   return false;
5230 }
5231 
5232 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5233                                ArrayRef<const Expr *> Args) {
5234   VariadicCallType CallType =
5235       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5236 
5237   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5238             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5239             CallType);
5240 
5241   return false;
5242 }
5243 
5244 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5245                             const FunctionProtoType *Proto) {
5246   QualType Ty;
5247   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5248     Ty = V->getType().getNonReferenceType();
5249   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5250     Ty = F->getType().getNonReferenceType();
5251   else
5252     return false;
5253 
5254   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5255       !Ty->isFunctionProtoType())
5256     return false;
5257 
5258   VariadicCallType CallType;
5259   if (!Proto || !Proto->isVariadic()) {
5260     CallType = VariadicDoesNotApply;
5261   } else if (Ty->isBlockPointerType()) {
5262     CallType = VariadicBlock;
5263   } else { // Ty->isFunctionPointerType()
5264     CallType = VariadicFunction;
5265   }
5266 
5267   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5268             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5269             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5270             TheCall->getCallee()->getSourceRange(), CallType);
5271 
5272   return false;
5273 }
5274 
5275 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5276 /// such as function pointers returned from functions.
5277 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5278   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5279                                                   TheCall->getCallee());
5280   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5281             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5282             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5283             TheCall->getCallee()->getSourceRange(), CallType);
5284 
5285   return false;
5286 }
5287 
5288 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5289   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5290     return false;
5291 
5292   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5293   switch (Op) {
5294   case AtomicExpr::AO__c11_atomic_init:
5295   case AtomicExpr::AO__opencl_atomic_init:
5296     llvm_unreachable("There is no ordering argument for an init");
5297 
5298   case AtomicExpr::AO__c11_atomic_load:
5299   case AtomicExpr::AO__opencl_atomic_load:
5300   case AtomicExpr::AO__atomic_load_n:
5301   case AtomicExpr::AO__atomic_load:
5302     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5303            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5304 
5305   case AtomicExpr::AO__c11_atomic_store:
5306   case AtomicExpr::AO__opencl_atomic_store:
5307   case AtomicExpr::AO__atomic_store:
5308   case AtomicExpr::AO__atomic_store_n:
5309     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5310            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5311            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5312 
5313   default:
5314     return true;
5315   }
5316 }
5317 
5318 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5319                                          AtomicExpr::AtomicOp Op) {
5320   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5321   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5322   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5323   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5324                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5325                          Op);
5326 }
5327 
5328 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5329                                  SourceLocation RParenLoc, MultiExprArg Args,
5330                                  AtomicExpr::AtomicOp Op,
5331                                  AtomicArgumentOrder ArgOrder) {
5332   // All the non-OpenCL operations take one of the following forms.
5333   // The OpenCL operations take the __c11 forms with one extra argument for
5334   // synchronization scope.
5335   enum {
5336     // C    __c11_atomic_init(A *, C)
5337     Init,
5338 
5339     // C    __c11_atomic_load(A *, int)
5340     Load,
5341 
5342     // void __atomic_load(A *, CP, int)
5343     LoadCopy,
5344 
5345     // void __atomic_store(A *, CP, int)
5346     Copy,
5347 
5348     // C    __c11_atomic_add(A *, M, int)
5349     Arithmetic,
5350 
5351     // C    __atomic_exchange_n(A *, CP, int)
5352     Xchg,
5353 
5354     // void __atomic_exchange(A *, C *, CP, int)
5355     GNUXchg,
5356 
5357     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5358     C11CmpXchg,
5359 
5360     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5361     GNUCmpXchg
5362   } Form = Init;
5363 
5364   const unsigned NumForm = GNUCmpXchg + 1;
5365   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5366   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5367   // where:
5368   //   C is an appropriate type,
5369   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5370   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5371   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5372   //   the int parameters are for orderings.
5373 
5374   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5375       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5376       "need to update code for modified forms");
5377   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5378                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5379                         AtomicExpr::AO__atomic_load,
5380                 "need to update code for modified C11 atomics");
5381   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5382                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5383   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5384                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5385                IsOpenCL;
5386   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5387              Op == AtomicExpr::AO__atomic_store_n ||
5388              Op == AtomicExpr::AO__atomic_exchange_n ||
5389              Op == AtomicExpr::AO__atomic_compare_exchange_n;
5390   bool IsAddSub = false;
5391 
5392   switch (Op) {
5393   case AtomicExpr::AO__c11_atomic_init:
5394   case AtomicExpr::AO__opencl_atomic_init:
5395     Form = Init;
5396     break;
5397 
5398   case AtomicExpr::AO__c11_atomic_load:
5399   case AtomicExpr::AO__opencl_atomic_load:
5400   case AtomicExpr::AO__atomic_load_n:
5401     Form = Load;
5402     break;
5403 
5404   case AtomicExpr::AO__atomic_load:
5405     Form = LoadCopy;
5406     break;
5407 
5408   case AtomicExpr::AO__c11_atomic_store:
5409   case AtomicExpr::AO__opencl_atomic_store:
5410   case AtomicExpr::AO__atomic_store:
5411   case AtomicExpr::AO__atomic_store_n:
5412     Form = Copy;
5413     break;
5414 
5415   case AtomicExpr::AO__c11_atomic_fetch_add:
5416   case AtomicExpr::AO__c11_atomic_fetch_sub:
5417   case AtomicExpr::AO__opencl_atomic_fetch_add:
5418   case AtomicExpr::AO__opencl_atomic_fetch_sub:
5419   case AtomicExpr::AO__atomic_fetch_add:
5420   case AtomicExpr::AO__atomic_fetch_sub:
5421   case AtomicExpr::AO__atomic_add_fetch:
5422   case AtomicExpr::AO__atomic_sub_fetch:
5423     IsAddSub = true;
5424     Form = Arithmetic;
5425     break;
5426   case AtomicExpr::AO__c11_atomic_fetch_and:
5427   case AtomicExpr::AO__c11_atomic_fetch_or:
5428   case AtomicExpr::AO__c11_atomic_fetch_xor:
5429   case AtomicExpr::AO__c11_atomic_fetch_nand:
5430   case AtomicExpr::AO__opencl_atomic_fetch_and:
5431   case AtomicExpr::AO__opencl_atomic_fetch_or:
5432   case AtomicExpr::AO__opencl_atomic_fetch_xor:
5433   case AtomicExpr::AO__atomic_fetch_and:
5434   case AtomicExpr::AO__atomic_fetch_or:
5435   case AtomicExpr::AO__atomic_fetch_xor:
5436   case AtomicExpr::AO__atomic_fetch_nand:
5437   case AtomicExpr::AO__atomic_and_fetch:
5438   case AtomicExpr::AO__atomic_or_fetch:
5439   case AtomicExpr::AO__atomic_xor_fetch:
5440   case AtomicExpr::AO__atomic_nand_fetch:
5441     Form = Arithmetic;
5442     break;
5443   case AtomicExpr::AO__c11_atomic_fetch_min:
5444   case AtomicExpr::AO__c11_atomic_fetch_max:
5445   case AtomicExpr::AO__opencl_atomic_fetch_min:
5446   case AtomicExpr::AO__opencl_atomic_fetch_max:
5447   case AtomicExpr::AO__atomic_min_fetch:
5448   case AtomicExpr::AO__atomic_max_fetch:
5449   case AtomicExpr::AO__atomic_fetch_min:
5450   case AtomicExpr::AO__atomic_fetch_max:
5451     Form = Arithmetic;
5452     break;
5453 
5454   case AtomicExpr::AO__c11_atomic_exchange:
5455   case AtomicExpr::AO__opencl_atomic_exchange:
5456   case AtomicExpr::AO__atomic_exchange_n:
5457     Form = Xchg;
5458     break;
5459 
5460   case AtomicExpr::AO__atomic_exchange:
5461     Form = GNUXchg;
5462     break;
5463 
5464   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5465   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5466   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5467   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5468     Form = C11CmpXchg;
5469     break;
5470 
5471   case AtomicExpr::AO__atomic_compare_exchange:
5472   case AtomicExpr::AO__atomic_compare_exchange_n:
5473     Form = GNUCmpXchg;
5474     break;
5475   }
5476 
5477   unsigned AdjustedNumArgs = NumArgs[Form];
5478   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
5479     ++AdjustedNumArgs;
5480   // Check we have the right number of arguments.
5481   if (Args.size() < AdjustedNumArgs) {
5482     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5483         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5484         << ExprRange;
5485     return ExprError();
5486   } else if (Args.size() > AdjustedNumArgs) {
5487     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5488          diag::err_typecheck_call_too_many_args)
5489         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5490         << ExprRange;
5491     return ExprError();
5492   }
5493 
5494   // Inspect the first argument of the atomic operation.
5495   Expr *Ptr = Args[0];
5496   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5497   if (ConvertedPtr.isInvalid())
5498     return ExprError();
5499 
5500   Ptr = ConvertedPtr.get();
5501   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5502   if (!pointerType) {
5503     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5504         << Ptr->getType() << Ptr->getSourceRange();
5505     return ExprError();
5506   }
5507 
5508   // For a __c11 builtin, this should be a pointer to an _Atomic type.
5509   QualType AtomTy = pointerType->getPointeeType(); // 'A'
5510   QualType ValType = AtomTy; // 'C'
5511   if (IsC11) {
5512     if (!AtomTy->isAtomicType()) {
5513       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5514           << Ptr->getType() << Ptr->getSourceRange();
5515       return ExprError();
5516     }
5517     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5518         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5519       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5520           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5521           << Ptr->getSourceRange();
5522       return ExprError();
5523     }
5524     ValType = AtomTy->castAs<AtomicType>()->getValueType();
5525   } else if (Form != Load && Form != LoadCopy) {
5526     if (ValType.isConstQualified()) {
5527       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5528           << Ptr->getType() << Ptr->getSourceRange();
5529       return ExprError();
5530     }
5531   }
5532 
5533   // For an arithmetic operation, the implied arithmetic must be well-formed.
5534   if (Form == Arithmetic) {
5535     // gcc does not enforce these rules for GNU atomics, but we do so for
5536     // sanity.
5537     auto IsAllowedValueType = [&](QualType ValType) {
5538       if (ValType->isIntegerType())
5539         return true;
5540       if (ValType->isPointerType())
5541         return true;
5542       if (!ValType->isFloatingType())
5543         return false;
5544       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5545       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5546           &Context.getTargetInfo().getLongDoubleFormat() ==
5547               &llvm::APFloat::x87DoubleExtended())
5548         return false;
5549       return true;
5550     };
5551     if (IsAddSub && !IsAllowedValueType(ValType)) {
5552       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5553           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5554       return ExprError();
5555     }
5556     if (!IsAddSub && !ValType->isIntegerType()) {
5557       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5558           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5559       return ExprError();
5560     }
5561     if (IsC11 && ValType->isPointerType() &&
5562         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5563                             diag::err_incomplete_type)) {
5564       return ExprError();
5565     }
5566   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5567     // For __atomic_*_n operations, the value type must be a scalar integral or
5568     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5569     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5570         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5571     return ExprError();
5572   }
5573 
5574   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5575       !AtomTy->isScalarType()) {
5576     // For GNU atomics, require a trivially-copyable type. This is not part of
5577     // the GNU atomics specification, but we enforce it for sanity.
5578     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5579         << Ptr->getType() << Ptr->getSourceRange();
5580     return ExprError();
5581   }
5582 
5583   switch (ValType.getObjCLifetime()) {
5584   case Qualifiers::OCL_None:
5585   case Qualifiers::OCL_ExplicitNone:
5586     // okay
5587     break;
5588 
5589   case Qualifiers::OCL_Weak:
5590   case Qualifiers::OCL_Strong:
5591   case Qualifiers::OCL_Autoreleasing:
5592     // FIXME: Can this happen? By this point, ValType should be known
5593     // to be trivially copyable.
5594     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5595         << ValType << Ptr->getSourceRange();
5596     return ExprError();
5597   }
5598 
5599   // All atomic operations have an overload which takes a pointer to a volatile
5600   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
5601   // into the result or the other operands. Similarly atomic_load takes a
5602   // pointer to a const 'A'.
5603   ValType.removeLocalVolatile();
5604   ValType.removeLocalConst();
5605   QualType ResultType = ValType;
5606   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5607       Form == Init)
5608     ResultType = Context.VoidTy;
5609   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5610     ResultType = Context.BoolTy;
5611 
5612   // The type of a parameter passed 'by value'. In the GNU atomics, such
5613   // arguments are actually passed as pointers.
5614   QualType ByValType = ValType; // 'CP'
5615   bool IsPassedByAddress = false;
5616   if (!IsC11 && !IsN) {
5617     ByValType = Ptr->getType();
5618     IsPassedByAddress = true;
5619   }
5620 
5621   SmallVector<Expr *, 5> APIOrderedArgs;
5622   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5623     APIOrderedArgs.push_back(Args[0]);
5624     switch (Form) {
5625     case Init:
5626     case Load:
5627       APIOrderedArgs.push_back(Args[1]); // Val1/Order
5628       break;
5629     case LoadCopy:
5630     case Copy:
5631     case Arithmetic:
5632     case Xchg:
5633       APIOrderedArgs.push_back(Args[2]); // Val1
5634       APIOrderedArgs.push_back(Args[1]); // Order
5635       break;
5636     case GNUXchg:
5637       APIOrderedArgs.push_back(Args[2]); // Val1
5638       APIOrderedArgs.push_back(Args[3]); // Val2
5639       APIOrderedArgs.push_back(Args[1]); // Order
5640       break;
5641     case C11CmpXchg:
5642       APIOrderedArgs.push_back(Args[2]); // Val1
5643       APIOrderedArgs.push_back(Args[4]); // Val2
5644       APIOrderedArgs.push_back(Args[1]); // Order
5645       APIOrderedArgs.push_back(Args[3]); // OrderFail
5646       break;
5647     case GNUCmpXchg:
5648       APIOrderedArgs.push_back(Args[2]); // Val1
5649       APIOrderedArgs.push_back(Args[4]); // Val2
5650       APIOrderedArgs.push_back(Args[5]); // Weak
5651       APIOrderedArgs.push_back(Args[1]); // Order
5652       APIOrderedArgs.push_back(Args[3]); // OrderFail
5653       break;
5654     }
5655   } else
5656     APIOrderedArgs.append(Args.begin(), Args.end());
5657 
5658   // The first argument's non-CV pointer type is used to deduce the type of
5659   // subsequent arguments, except for:
5660   //  - weak flag (always converted to bool)
5661   //  - memory order (always converted to int)
5662   //  - scope  (always converted to int)
5663   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5664     QualType Ty;
5665     if (i < NumVals[Form] + 1) {
5666       switch (i) {
5667       case 0:
5668         // The first argument is always a pointer. It has a fixed type.
5669         // It is always dereferenced, a nullptr is undefined.
5670         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5671         // Nothing else to do: we already know all we want about this pointer.
5672         continue;
5673       case 1:
5674         // The second argument is the non-atomic operand. For arithmetic, this
5675         // is always passed by value, and for a compare_exchange it is always
5676         // passed by address. For the rest, GNU uses by-address and C11 uses
5677         // by-value.
5678         assert(Form != Load);
5679         if (Form == Arithmetic && ValType->isPointerType())
5680           Ty = Context.getPointerDiffType();
5681         else if (Form == Init || Form == Arithmetic)
5682           Ty = ValType;
5683         else if (Form == Copy || Form == Xchg) {
5684           if (IsPassedByAddress) {
5685             // The value pointer is always dereferenced, a nullptr is undefined.
5686             CheckNonNullArgument(*this, APIOrderedArgs[i],
5687                                  ExprRange.getBegin());
5688           }
5689           Ty = ByValType;
5690         } else {
5691           Expr *ValArg = APIOrderedArgs[i];
5692           // The value pointer is always dereferenced, a nullptr is undefined.
5693           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5694           LangAS AS = LangAS::Default;
5695           // Keep address space of non-atomic pointer type.
5696           if (const PointerType *PtrTy =
5697                   ValArg->getType()->getAs<PointerType>()) {
5698             AS = PtrTy->getPointeeType().getAddressSpace();
5699           }
5700           Ty = Context.getPointerType(
5701               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5702         }
5703         break;
5704       case 2:
5705         // The third argument to compare_exchange / GNU exchange is the desired
5706         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5707         if (IsPassedByAddress)
5708           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5709         Ty = ByValType;
5710         break;
5711       case 3:
5712         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5713         Ty = Context.BoolTy;
5714         break;
5715       }
5716     } else {
5717       // The order(s) and scope are always converted to int.
5718       Ty = Context.IntTy;
5719     }
5720 
5721     InitializedEntity Entity =
5722         InitializedEntity::InitializeParameter(Context, Ty, false);
5723     ExprResult Arg = APIOrderedArgs[i];
5724     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5725     if (Arg.isInvalid())
5726       return true;
5727     APIOrderedArgs[i] = Arg.get();
5728   }
5729 
5730   // Permute the arguments into a 'consistent' order.
5731   SmallVector<Expr*, 5> SubExprs;
5732   SubExprs.push_back(Ptr);
5733   switch (Form) {
5734   case Init:
5735     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5736     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5737     break;
5738   case Load:
5739     SubExprs.push_back(APIOrderedArgs[1]); // Order
5740     break;
5741   case LoadCopy:
5742   case Copy:
5743   case Arithmetic:
5744   case Xchg:
5745     SubExprs.push_back(APIOrderedArgs[2]); // Order
5746     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5747     break;
5748   case GNUXchg:
5749     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5750     SubExprs.push_back(APIOrderedArgs[3]); // Order
5751     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5752     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5753     break;
5754   case C11CmpXchg:
5755     SubExprs.push_back(APIOrderedArgs[3]); // Order
5756     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5757     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5758     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5759     break;
5760   case GNUCmpXchg:
5761     SubExprs.push_back(APIOrderedArgs[4]); // Order
5762     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5763     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5764     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5765     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5766     break;
5767   }
5768 
5769   if (SubExprs.size() >= 2 && Form != Init) {
5770     if (Optional<llvm::APSInt> Result =
5771             SubExprs[1]->getIntegerConstantExpr(Context))
5772       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5773         Diag(SubExprs[1]->getBeginLoc(),
5774              diag::warn_atomic_op_has_invalid_memory_order)
5775             << SubExprs[1]->getSourceRange();
5776   }
5777 
5778   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5779     auto *Scope = Args[Args.size() - 1];
5780     if (Optional<llvm::APSInt> Result =
5781             Scope->getIntegerConstantExpr(Context)) {
5782       if (!ScopeModel->isValid(Result->getZExtValue()))
5783         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5784             << Scope->getSourceRange();
5785     }
5786     SubExprs.push_back(Scope);
5787   }
5788 
5789   AtomicExpr *AE = new (Context)
5790       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5791 
5792   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5793        Op == AtomicExpr::AO__c11_atomic_store ||
5794        Op == AtomicExpr::AO__opencl_atomic_load ||
5795        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5796       Context.AtomicUsesUnsupportedLibcall(AE))
5797     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5798         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5799              Op == AtomicExpr::AO__opencl_atomic_load)
5800                 ? 0
5801                 : 1);
5802 
5803   if (ValType->isExtIntType()) {
5804     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5805     return ExprError();
5806   }
5807 
5808   return AE;
5809 }
5810 
5811 /// checkBuiltinArgument - Given a call to a builtin function, perform
5812 /// normal type-checking on the given argument, updating the call in
5813 /// place.  This is useful when a builtin function requires custom
5814 /// type-checking for some of its arguments but not necessarily all of
5815 /// them.
5816 ///
5817 /// Returns true on error.
5818 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5819   FunctionDecl *Fn = E->getDirectCallee();
5820   assert(Fn && "builtin call without direct callee!");
5821 
5822   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5823   InitializedEntity Entity =
5824     InitializedEntity::InitializeParameter(S.Context, Param);
5825 
5826   ExprResult Arg = E->getArg(0);
5827   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5828   if (Arg.isInvalid())
5829     return true;
5830 
5831   E->setArg(ArgIndex, Arg.get());
5832   return false;
5833 }
5834 
5835 /// We have a call to a function like __sync_fetch_and_add, which is an
5836 /// overloaded function based on the pointer type of its first argument.
5837 /// The main BuildCallExpr routines have already promoted the types of
5838 /// arguments because all of these calls are prototyped as void(...).
5839 ///
5840 /// This function goes through and does final semantic checking for these
5841 /// builtins, as well as generating any warnings.
5842 ExprResult
5843 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5844   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5845   Expr *Callee = TheCall->getCallee();
5846   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5847   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5848 
5849   // Ensure that we have at least one argument to do type inference from.
5850   if (TheCall->getNumArgs() < 1) {
5851     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5852         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5853     return ExprError();
5854   }
5855 
5856   // Inspect the first argument of the atomic builtin.  This should always be
5857   // a pointer type, whose element is an integral scalar or pointer type.
5858   // Because it is a pointer type, we don't have to worry about any implicit
5859   // casts here.
5860   // FIXME: We don't allow floating point scalars as input.
5861   Expr *FirstArg = TheCall->getArg(0);
5862   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5863   if (FirstArgResult.isInvalid())
5864     return ExprError();
5865   FirstArg = FirstArgResult.get();
5866   TheCall->setArg(0, FirstArg);
5867 
5868   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5869   if (!pointerType) {
5870     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5871         << FirstArg->getType() << FirstArg->getSourceRange();
5872     return ExprError();
5873   }
5874 
5875   QualType ValType = pointerType->getPointeeType();
5876   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5877       !ValType->isBlockPointerType()) {
5878     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5879         << FirstArg->getType() << FirstArg->getSourceRange();
5880     return ExprError();
5881   }
5882 
5883   if (ValType.isConstQualified()) {
5884     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5885         << FirstArg->getType() << FirstArg->getSourceRange();
5886     return ExprError();
5887   }
5888 
5889   switch (ValType.getObjCLifetime()) {
5890   case Qualifiers::OCL_None:
5891   case Qualifiers::OCL_ExplicitNone:
5892     // okay
5893     break;
5894 
5895   case Qualifiers::OCL_Weak:
5896   case Qualifiers::OCL_Strong:
5897   case Qualifiers::OCL_Autoreleasing:
5898     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5899         << ValType << FirstArg->getSourceRange();
5900     return ExprError();
5901   }
5902 
5903   // Strip any qualifiers off ValType.
5904   ValType = ValType.getUnqualifiedType();
5905 
5906   // The majority of builtins return a value, but a few have special return
5907   // types, so allow them to override appropriately below.
5908   QualType ResultType = ValType;
5909 
5910   // We need to figure out which concrete builtin this maps onto.  For example,
5911   // __sync_fetch_and_add with a 2 byte object turns into
5912   // __sync_fetch_and_add_2.
5913 #define BUILTIN_ROW(x) \
5914   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5915     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5916 
5917   static const unsigned BuiltinIndices[][5] = {
5918     BUILTIN_ROW(__sync_fetch_and_add),
5919     BUILTIN_ROW(__sync_fetch_and_sub),
5920     BUILTIN_ROW(__sync_fetch_and_or),
5921     BUILTIN_ROW(__sync_fetch_and_and),
5922     BUILTIN_ROW(__sync_fetch_and_xor),
5923     BUILTIN_ROW(__sync_fetch_and_nand),
5924 
5925     BUILTIN_ROW(__sync_add_and_fetch),
5926     BUILTIN_ROW(__sync_sub_and_fetch),
5927     BUILTIN_ROW(__sync_and_and_fetch),
5928     BUILTIN_ROW(__sync_or_and_fetch),
5929     BUILTIN_ROW(__sync_xor_and_fetch),
5930     BUILTIN_ROW(__sync_nand_and_fetch),
5931 
5932     BUILTIN_ROW(__sync_val_compare_and_swap),
5933     BUILTIN_ROW(__sync_bool_compare_and_swap),
5934     BUILTIN_ROW(__sync_lock_test_and_set),
5935     BUILTIN_ROW(__sync_lock_release),
5936     BUILTIN_ROW(__sync_swap)
5937   };
5938 #undef BUILTIN_ROW
5939 
5940   // Determine the index of the size.
5941   unsigned SizeIndex;
5942   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5943   case 1: SizeIndex = 0; break;
5944   case 2: SizeIndex = 1; break;
5945   case 4: SizeIndex = 2; break;
5946   case 8: SizeIndex = 3; break;
5947   case 16: SizeIndex = 4; break;
5948   default:
5949     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5950         << FirstArg->getType() << FirstArg->getSourceRange();
5951     return ExprError();
5952   }
5953 
5954   // Each of these builtins has one pointer argument, followed by some number of
5955   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5956   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5957   // as the number of fixed args.
5958   unsigned BuiltinID = FDecl->getBuiltinID();
5959   unsigned BuiltinIndex, NumFixed = 1;
5960   bool WarnAboutSemanticsChange = false;
5961   switch (BuiltinID) {
5962   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5963   case Builtin::BI__sync_fetch_and_add:
5964   case Builtin::BI__sync_fetch_and_add_1:
5965   case Builtin::BI__sync_fetch_and_add_2:
5966   case Builtin::BI__sync_fetch_and_add_4:
5967   case Builtin::BI__sync_fetch_and_add_8:
5968   case Builtin::BI__sync_fetch_and_add_16:
5969     BuiltinIndex = 0;
5970     break;
5971 
5972   case Builtin::BI__sync_fetch_and_sub:
5973   case Builtin::BI__sync_fetch_and_sub_1:
5974   case Builtin::BI__sync_fetch_and_sub_2:
5975   case Builtin::BI__sync_fetch_and_sub_4:
5976   case Builtin::BI__sync_fetch_and_sub_8:
5977   case Builtin::BI__sync_fetch_and_sub_16:
5978     BuiltinIndex = 1;
5979     break;
5980 
5981   case Builtin::BI__sync_fetch_and_or:
5982   case Builtin::BI__sync_fetch_and_or_1:
5983   case Builtin::BI__sync_fetch_and_or_2:
5984   case Builtin::BI__sync_fetch_and_or_4:
5985   case Builtin::BI__sync_fetch_and_or_8:
5986   case Builtin::BI__sync_fetch_and_or_16:
5987     BuiltinIndex = 2;
5988     break;
5989 
5990   case Builtin::BI__sync_fetch_and_and:
5991   case Builtin::BI__sync_fetch_and_and_1:
5992   case Builtin::BI__sync_fetch_and_and_2:
5993   case Builtin::BI__sync_fetch_and_and_4:
5994   case Builtin::BI__sync_fetch_and_and_8:
5995   case Builtin::BI__sync_fetch_and_and_16:
5996     BuiltinIndex = 3;
5997     break;
5998 
5999   case Builtin::BI__sync_fetch_and_xor:
6000   case Builtin::BI__sync_fetch_and_xor_1:
6001   case Builtin::BI__sync_fetch_and_xor_2:
6002   case Builtin::BI__sync_fetch_and_xor_4:
6003   case Builtin::BI__sync_fetch_and_xor_8:
6004   case Builtin::BI__sync_fetch_and_xor_16:
6005     BuiltinIndex = 4;
6006     break;
6007 
6008   case Builtin::BI__sync_fetch_and_nand:
6009   case Builtin::BI__sync_fetch_and_nand_1:
6010   case Builtin::BI__sync_fetch_and_nand_2:
6011   case Builtin::BI__sync_fetch_and_nand_4:
6012   case Builtin::BI__sync_fetch_and_nand_8:
6013   case Builtin::BI__sync_fetch_and_nand_16:
6014     BuiltinIndex = 5;
6015     WarnAboutSemanticsChange = true;
6016     break;
6017 
6018   case Builtin::BI__sync_add_and_fetch:
6019   case Builtin::BI__sync_add_and_fetch_1:
6020   case Builtin::BI__sync_add_and_fetch_2:
6021   case Builtin::BI__sync_add_and_fetch_4:
6022   case Builtin::BI__sync_add_and_fetch_8:
6023   case Builtin::BI__sync_add_and_fetch_16:
6024     BuiltinIndex = 6;
6025     break;
6026 
6027   case Builtin::BI__sync_sub_and_fetch:
6028   case Builtin::BI__sync_sub_and_fetch_1:
6029   case Builtin::BI__sync_sub_and_fetch_2:
6030   case Builtin::BI__sync_sub_and_fetch_4:
6031   case Builtin::BI__sync_sub_and_fetch_8:
6032   case Builtin::BI__sync_sub_and_fetch_16:
6033     BuiltinIndex = 7;
6034     break;
6035 
6036   case Builtin::BI__sync_and_and_fetch:
6037   case Builtin::BI__sync_and_and_fetch_1:
6038   case Builtin::BI__sync_and_and_fetch_2:
6039   case Builtin::BI__sync_and_and_fetch_4:
6040   case Builtin::BI__sync_and_and_fetch_8:
6041   case Builtin::BI__sync_and_and_fetch_16:
6042     BuiltinIndex = 8;
6043     break;
6044 
6045   case Builtin::BI__sync_or_and_fetch:
6046   case Builtin::BI__sync_or_and_fetch_1:
6047   case Builtin::BI__sync_or_and_fetch_2:
6048   case Builtin::BI__sync_or_and_fetch_4:
6049   case Builtin::BI__sync_or_and_fetch_8:
6050   case Builtin::BI__sync_or_and_fetch_16:
6051     BuiltinIndex = 9;
6052     break;
6053 
6054   case Builtin::BI__sync_xor_and_fetch:
6055   case Builtin::BI__sync_xor_and_fetch_1:
6056   case Builtin::BI__sync_xor_and_fetch_2:
6057   case Builtin::BI__sync_xor_and_fetch_4:
6058   case Builtin::BI__sync_xor_and_fetch_8:
6059   case Builtin::BI__sync_xor_and_fetch_16:
6060     BuiltinIndex = 10;
6061     break;
6062 
6063   case Builtin::BI__sync_nand_and_fetch:
6064   case Builtin::BI__sync_nand_and_fetch_1:
6065   case Builtin::BI__sync_nand_and_fetch_2:
6066   case Builtin::BI__sync_nand_and_fetch_4:
6067   case Builtin::BI__sync_nand_and_fetch_8:
6068   case Builtin::BI__sync_nand_and_fetch_16:
6069     BuiltinIndex = 11;
6070     WarnAboutSemanticsChange = true;
6071     break;
6072 
6073   case Builtin::BI__sync_val_compare_and_swap:
6074   case Builtin::BI__sync_val_compare_and_swap_1:
6075   case Builtin::BI__sync_val_compare_and_swap_2:
6076   case Builtin::BI__sync_val_compare_and_swap_4:
6077   case Builtin::BI__sync_val_compare_and_swap_8:
6078   case Builtin::BI__sync_val_compare_and_swap_16:
6079     BuiltinIndex = 12;
6080     NumFixed = 2;
6081     break;
6082 
6083   case Builtin::BI__sync_bool_compare_and_swap:
6084   case Builtin::BI__sync_bool_compare_and_swap_1:
6085   case Builtin::BI__sync_bool_compare_and_swap_2:
6086   case Builtin::BI__sync_bool_compare_and_swap_4:
6087   case Builtin::BI__sync_bool_compare_and_swap_8:
6088   case Builtin::BI__sync_bool_compare_and_swap_16:
6089     BuiltinIndex = 13;
6090     NumFixed = 2;
6091     ResultType = Context.BoolTy;
6092     break;
6093 
6094   case Builtin::BI__sync_lock_test_and_set:
6095   case Builtin::BI__sync_lock_test_and_set_1:
6096   case Builtin::BI__sync_lock_test_and_set_2:
6097   case Builtin::BI__sync_lock_test_and_set_4:
6098   case Builtin::BI__sync_lock_test_and_set_8:
6099   case Builtin::BI__sync_lock_test_and_set_16:
6100     BuiltinIndex = 14;
6101     break;
6102 
6103   case Builtin::BI__sync_lock_release:
6104   case Builtin::BI__sync_lock_release_1:
6105   case Builtin::BI__sync_lock_release_2:
6106   case Builtin::BI__sync_lock_release_4:
6107   case Builtin::BI__sync_lock_release_8:
6108   case Builtin::BI__sync_lock_release_16:
6109     BuiltinIndex = 15;
6110     NumFixed = 0;
6111     ResultType = Context.VoidTy;
6112     break;
6113 
6114   case Builtin::BI__sync_swap:
6115   case Builtin::BI__sync_swap_1:
6116   case Builtin::BI__sync_swap_2:
6117   case Builtin::BI__sync_swap_4:
6118   case Builtin::BI__sync_swap_8:
6119   case Builtin::BI__sync_swap_16:
6120     BuiltinIndex = 16;
6121     break;
6122   }
6123 
6124   // Now that we know how many fixed arguments we expect, first check that we
6125   // have at least that many.
6126   if (TheCall->getNumArgs() < 1+NumFixed) {
6127     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6128         << 0 << 1 + NumFixed << TheCall->getNumArgs()
6129         << Callee->getSourceRange();
6130     return ExprError();
6131   }
6132 
6133   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6134       << Callee->getSourceRange();
6135 
6136   if (WarnAboutSemanticsChange) {
6137     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6138         << Callee->getSourceRange();
6139   }
6140 
6141   // Get the decl for the concrete builtin from this, we can tell what the
6142   // concrete integer type we should convert to is.
6143   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6144   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6145   FunctionDecl *NewBuiltinDecl;
6146   if (NewBuiltinID == BuiltinID)
6147     NewBuiltinDecl = FDecl;
6148   else {
6149     // Perform builtin lookup to avoid redeclaring it.
6150     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6151     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6152     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6153     assert(Res.getFoundDecl());
6154     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6155     if (!NewBuiltinDecl)
6156       return ExprError();
6157   }
6158 
6159   // The first argument --- the pointer --- has a fixed type; we
6160   // deduce the types of the rest of the arguments accordingly.  Walk
6161   // the remaining arguments, converting them to the deduced value type.
6162   for (unsigned i = 0; i != NumFixed; ++i) {
6163     ExprResult Arg = TheCall->getArg(i+1);
6164 
6165     // GCC does an implicit conversion to the pointer or integer ValType.  This
6166     // can fail in some cases (1i -> int**), check for this error case now.
6167     // Initialize the argument.
6168     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6169                                                    ValType, /*consume*/ false);
6170     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6171     if (Arg.isInvalid())
6172       return ExprError();
6173 
6174     // Okay, we have something that *can* be converted to the right type.  Check
6175     // to see if there is a potentially weird extension going on here.  This can
6176     // happen when you do an atomic operation on something like an char* and
6177     // pass in 42.  The 42 gets converted to char.  This is even more strange
6178     // for things like 45.123 -> char, etc.
6179     // FIXME: Do this check.
6180     TheCall->setArg(i+1, Arg.get());
6181   }
6182 
6183   // Create a new DeclRefExpr to refer to the new decl.
6184   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6185       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6186       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6187       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6188 
6189   // Set the callee in the CallExpr.
6190   // FIXME: This loses syntactic information.
6191   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6192   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6193                                               CK_BuiltinFnToFnPtr);
6194   TheCall->setCallee(PromotedCall.get());
6195 
6196   // Change the result type of the call to match the original value type. This
6197   // is arbitrary, but the codegen for these builtins ins design to handle it
6198   // gracefully.
6199   TheCall->setType(ResultType);
6200 
6201   // Prohibit use of _ExtInt with atomic builtins.
6202   // The arguments would have already been converted to the first argument's
6203   // type, so only need to check the first argument.
6204   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
6205   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
6206     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6207     return ExprError();
6208   }
6209 
6210   return TheCallResult;
6211 }
6212 
6213 /// SemaBuiltinNontemporalOverloaded - We have a call to
6214 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6215 /// overloaded function based on the pointer type of its last argument.
6216 ///
6217 /// This function goes through and does final semantic checking for these
6218 /// builtins.
6219 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6220   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6221   DeclRefExpr *DRE =
6222       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6223   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6224   unsigned BuiltinID = FDecl->getBuiltinID();
6225   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6226           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6227          "Unexpected nontemporal load/store builtin!");
6228   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6229   unsigned numArgs = isStore ? 2 : 1;
6230 
6231   // Ensure that we have the proper number of arguments.
6232   if (checkArgCount(*this, TheCall, numArgs))
6233     return ExprError();
6234 
6235   // Inspect the last argument of the nontemporal builtin.  This should always
6236   // be a pointer type, from which we imply the type of the memory access.
6237   // Because it is a pointer type, we don't have to worry about any implicit
6238   // casts here.
6239   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6240   ExprResult PointerArgResult =
6241       DefaultFunctionArrayLvalueConversion(PointerArg);
6242 
6243   if (PointerArgResult.isInvalid())
6244     return ExprError();
6245   PointerArg = PointerArgResult.get();
6246   TheCall->setArg(numArgs - 1, PointerArg);
6247 
6248   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6249   if (!pointerType) {
6250     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6251         << PointerArg->getType() << PointerArg->getSourceRange();
6252     return ExprError();
6253   }
6254 
6255   QualType ValType = pointerType->getPointeeType();
6256 
6257   // Strip any qualifiers off ValType.
6258   ValType = ValType.getUnqualifiedType();
6259   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6260       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6261       !ValType->isVectorType()) {
6262     Diag(DRE->getBeginLoc(),
6263          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6264         << PointerArg->getType() << PointerArg->getSourceRange();
6265     return ExprError();
6266   }
6267 
6268   if (!isStore) {
6269     TheCall->setType(ValType);
6270     return TheCallResult;
6271   }
6272 
6273   ExprResult ValArg = TheCall->getArg(0);
6274   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6275       Context, ValType, /*consume*/ false);
6276   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6277   if (ValArg.isInvalid())
6278     return ExprError();
6279 
6280   TheCall->setArg(0, ValArg.get());
6281   TheCall->setType(Context.VoidTy);
6282   return TheCallResult;
6283 }
6284 
6285 /// CheckObjCString - Checks that the argument to the builtin
6286 /// CFString constructor is correct
6287 /// Note: It might also make sense to do the UTF-16 conversion here (would
6288 /// simplify the backend).
6289 bool Sema::CheckObjCString(Expr *Arg) {
6290   Arg = Arg->IgnoreParenCasts();
6291   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6292 
6293   if (!Literal || !Literal->isAscii()) {
6294     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6295         << Arg->getSourceRange();
6296     return true;
6297   }
6298 
6299   if (Literal->containsNonAsciiOrNull()) {
6300     StringRef String = Literal->getString();
6301     unsigned NumBytes = String.size();
6302     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6303     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6304     llvm::UTF16 *ToPtr = &ToBuf[0];
6305 
6306     llvm::ConversionResult Result =
6307         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6308                                  ToPtr + NumBytes, llvm::strictConversion);
6309     // Check for conversion failure.
6310     if (Result != llvm::conversionOK)
6311       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6312           << Arg->getSourceRange();
6313   }
6314   return false;
6315 }
6316 
6317 /// CheckObjCString - Checks that the format string argument to the os_log()
6318 /// and os_trace() functions is correct, and converts it to const char *.
6319 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6320   Arg = Arg->IgnoreParenCasts();
6321   auto *Literal = dyn_cast<StringLiteral>(Arg);
6322   if (!Literal) {
6323     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6324       Literal = ObjcLiteral->getString();
6325     }
6326   }
6327 
6328   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6329     return ExprError(
6330         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6331         << Arg->getSourceRange());
6332   }
6333 
6334   ExprResult Result(Literal);
6335   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6336   InitializedEntity Entity =
6337       InitializedEntity::InitializeParameter(Context, ResultTy, false);
6338   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6339   return Result;
6340 }
6341 
6342 /// Check that the user is calling the appropriate va_start builtin for the
6343 /// target and calling convention.
6344 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6345   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6346   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6347   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6348                     TT.getArch() == llvm::Triple::aarch64_32);
6349   bool IsWindows = TT.isOSWindows();
6350   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6351   if (IsX64 || IsAArch64) {
6352     CallingConv CC = CC_C;
6353     if (const FunctionDecl *FD = S.getCurFunctionDecl())
6354       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6355     if (IsMSVAStart) {
6356       // Don't allow this in System V ABI functions.
6357       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6358         return S.Diag(Fn->getBeginLoc(),
6359                       diag::err_ms_va_start_used_in_sysv_function);
6360     } else {
6361       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6362       // On x64 Windows, don't allow this in System V ABI functions.
6363       // (Yes, that means there's no corresponding way to support variadic
6364       // System V ABI functions on Windows.)
6365       if ((IsWindows && CC == CC_X86_64SysV) ||
6366           (!IsWindows && CC == CC_Win64))
6367         return S.Diag(Fn->getBeginLoc(),
6368                       diag::err_va_start_used_in_wrong_abi_function)
6369                << !IsWindows;
6370     }
6371     return false;
6372   }
6373 
6374   if (IsMSVAStart)
6375     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6376   return false;
6377 }
6378 
6379 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6380                                              ParmVarDecl **LastParam = nullptr) {
6381   // Determine whether the current function, block, or obj-c method is variadic
6382   // and get its parameter list.
6383   bool IsVariadic = false;
6384   ArrayRef<ParmVarDecl *> Params;
6385   DeclContext *Caller = S.CurContext;
6386   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6387     IsVariadic = Block->isVariadic();
6388     Params = Block->parameters();
6389   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6390     IsVariadic = FD->isVariadic();
6391     Params = FD->parameters();
6392   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6393     IsVariadic = MD->isVariadic();
6394     // FIXME: This isn't correct for methods (results in bogus warning).
6395     Params = MD->parameters();
6396   } else if (isa<CapturedDecl>(Caller)) {
6397     // We don't support va_start in a CapturedDecl.
6398     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6399     return true;
6400   } else {
6401     // This must be some other declcontext that parses exprs.
6402     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6403     return true;
6404   }
6405 
6406   if (!IsVariadic) {
6407     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6408     return true;
6409   }
6410 
6411   if (LastParam)
6412     *LastParam = Params.empty() ? nullptr : Params.back();
6413 
6414   return false;
6415 }
6416 
6417 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6418 /// for validity.  Emit an error and return true on failure; return false
6419 /// on success.
6420 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6421   Expr *Fn = TheCall->getCallee();
6422 
6423   if (checkVAStartABI(*this, BuiltinID, Fn))
6424     return true;
6425 
6426   if (checkArgCount(*this, TheCall, 2))
6427     return true;
6428 
6429   // Type-check the first argument normally.
6430   if (checkBuiltinArgument(*this, TheCall, 0))
6431     return true;
6432 
6433   // Check that the current function is variadic, and get its last parameter.
6434   ParmVarDecl *LastParam;
6435   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6436     return true;
6437 
6438   // Verify that the second argument to the builtin is the last argument of the
6439   // current function or method.
6440   bool SecondArgIsLastNamedArgument = false;
6441   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6442 
6443   // These are valid if SecondArgIsLastNamedArgument is false after the next
6444   // block.
6445   QualType Type;
6446   SourceLocation ParamLoc;
6447   bool IsCRegister = false;
6448 
6449   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6450     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6451       SecondArgIsLastNamedArgument = PV == LastParam;
6452 
6453       Type = PV->getType();
6454       ParamLoc = PV->getLocation();
6455       IsCRegister =
6456           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6457     }
6458   }
6459 
6460   if (!SecondArgIsLastNamedArgument)
6461     Diag(TheCall->getArg(1)->getBeginLoc(),
6462          diag::warn_second_arg_of_va_start_not_last_named_param);
6463   else if (IsCRegister || Type->isReferenceType() ||
6464            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6465              // Promotable integers are UB, but enumerations need a bit of
6466              // extra checking to see what their promotable type actually is.
6467              if (!Type->isPromotableIntegerType())
6468                return false;
6469              if (!Type->isEnumeralType())
6470                return true;
6471              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6472              return !(ED &&
6473                       Context.typesAreCompatible(ED->getPromotionType(), Type));
6474            }()) {
6475     unsigned Reason = 0;
6476     if (Type->isReferenceType())  Reason = 1;
6477     else if (IsCRegister)         Reason = 2;
6478     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6479     Diag(ParamLoc, diag::note_parameter_type) << Type;
6480   }
6481 
6482   TheCall->setType(Context.VoidTy);
6483   return false;
6484 }
6485 
6486 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6487   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
6488     const LangOptions &LO = getLangOpts();
6489 
6490     if (LO.CPlusPlus)
6491       return Arg->getType()
6492                  .getCanonicalType()
6493                  .getTypePtr()
6494                  ->getPointeeType()
6495                  .withoutLocalFastQualifiers() == Context.CharTy;
6496 
6497     // In C, allow aliasing through `char *`, this is required for AArch64 at
6498     // least.
6499     return true;
6500   };
6501 
6502   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6503   //                 const char *named_addr);
6504 
6505   Expr *Func = Call->getCallee();
6506 
6507   if (Call->getNumArgs() < 3)
6508     return Diag(Call->getEndLoc(),
6509                 diag::err_typecheck_call_too_few_args_at_least)
6510            << 0 /*function call*/ << 3 << Call->getNumArgs();
6511 
6512   // Type-check the first argument normally.
6513   if (checkBuiltinArgument(*this, Call, 0))
6514     return true;
6515 
6516   // Check that the current function is variadic.
6517   if (checkVAStartIsInVariadicFunction(*this, Func))
6518     return true;
6519 
6520   // __va_start on Windows does not validate the parameter qualifiers
6521 
6522   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6523   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6524 
6525   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6526   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6527 
6528   const QualType &ConstCharPtrTy =
6529       Context.getPointerType(Context.CharTy.withConst());
6530   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
6531     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6532         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6533         << 0                                      /* qualifier difference */
6534         << 3                                      /* parameter mismatch */
6535         << 2 << Arg1->getType() << ConstCharPtrTy;
6536 
6537   const QualType SizeTy = Context.getSizeType();
6538   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6539     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6540         << Arg2->getType() << SizeTy << 1 /* different class */
6541         << 0                              /* qualifier difference */
6542         << 3                              /* parameter mismatch */
6543         << 3 << Arg2->getType() << SizeTy;
6544 
6545   return false;
6546 }
6547 
6548 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6549 /// friends.  This is declared to take (...), so we have to check everything.
6550 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6551   if (checkArgCount(*this, TheCall, 2))
6552     return true;
6553 
6554   ExprResult OrigArg0 = TheCall->getArg(0);
6555   ExprResult OrigArg1 = TheCall->getArg(1);
6556 
6557   // Do standard promotions between the two arguments, returning their common
6558   // type.
6559   QualType Res = UsualArithmeticConversions(
6560       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6561   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6562     return true;
6563 
6564   // Make sure any conversions are pushed back into the call; this is
6565   // type safe since unordered compare builtins are declared as "_Bool
6566   // foo(...)".
6567   TheCall->setArg(0, OrigArg0.get());
6568   TheCall->setArg(1, OrigArg1.get());
6569 
6570   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6571     return false;
6572 
6573   // If the common type isn't a real floating type, then the arguments were
6574   // invalid for this operation.
6575   if (Res.isNull() || !Res->isRealFloatingType())
6576     return Diag(OrigArg0.get()->getBeginLoc(),
6577                 diag::err_typecheck_call_invalid_ordered_compare)
6578            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6579            << SourceRange(OrigArg0.get()->getBeginLoc(),
6580                           OrigArg1.get()->getEndLoc());
6581 
6582   return false;
6583 }
6584 
6585 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6586 /// __builtin_isnan and friends.  This is declared to take (...), so we have
6587 /// to check everything. We expect the last argument to be a floating point
6588 /// value.
6589 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6590   if (checkArgCount(*this, TheCall, NumArgs))
6591     return true;
6592 
6593   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6594   // on all preceding parameters just being int.  Try all of those.
6595   for (unsigned i = 0; i < NumArgs - 1; ++i) {
6596     Expr *Arg = TheCall->getArg(i);
6597 
6598     if (Arg->isTypeDependent())
6599       return false;
6600 
6601     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6602 
6603     if (Res.isInvalid())
6604       return true;
6605     TheCall->setArg(i, Res.get());
6606   }
6607 
6608   Expr *OrigArg = TheCall->getArg(NumArgs-1);
6609 
6610   if (OrigArg->isTypeDependent())
6611     return false;
6612 
6613   // Usual Unary Conversions will convert half to float, which we want for
6614   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6615   // type how it is, but do normal L->Rvalue conversions.
6616   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6617     OrigArg = UsualUnaryConversions(OrigArg).get();
6618   else
6619     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6620   TheCall->setArg(NumArgs - 1, OrigArg);
6621 
6622   // This operation requires a non-_Complex floating-point number.
6623   if (!OrigArg->getType()->isRealFloatingType())
6624     return Diag(OrigArg->getBeginLoc(),
6625                 diag::err_typecheck_call_invalid_unary_fp)
6626            << OrigArg->getType() << OrigArg->getSourceRange();
6627 
6628   return false;
6629 }
6630 
6631 /// Perform semantic analysis for a call to __builtin_complex.
6632 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6633   if (checkArgCount(*this, TheCall, 2))
6634     return true;
6635 
6636   bool Dependent = false;
6637   for (unsigned I = 0; I != 2; ++I) {
6638     Expr *Arg = TheCall->getArg(I);
6639     QualType T = Arg->getType();
6640     if (T->isDependentType()) {
6641       Dependent = true;
6642       continue;
6643     }
6644 
6645     // Despite supporting _Complex int, GCC requires a real floating point type
6646     // for the operands of __builtin_complex.
6647     if (!T->isRealFloatingType()) {
6648       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6649              << Arg->getType() << Arg->getSourceRange();
6650     }
6651 
6652     ExprResult Converted = DefaultLvalueConversion(Arg);
6653     if (Converted.isInvalid())
6654       return true;
6655     TheCall->setArg(I, Converted.get());
6656   }
6657 
6658   if (Dependent) {
6659     TheCall->setType(Context.DependentTy);
6660     return false;
6661   }
6662 
6663   Expr *Real = TheCall->getArg(0);
6664   Expr *Imag = TheCall->getArg(1);
6665   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6666     return Diag(Real->getBeginLoc(),
6667                 diag::err_typecheck_call_different_arg_types)
6668            << Real->getType() << Imag->getType()
6669            << Real->getSourceRange() << Imag->getSourceRange();
6670   }
6671 
6672   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6673   // don't allow this builtin to form those types either.
6674   // FIXME: Should we allow these types?
6675   if (Real->getType()->isFloat16Type())
6676     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6677            << "_Float16";
6678   if (Real->getType()->isHalfType())
6679     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6680            << "half";
6681 
6682   TheCall->setType(Context.getComplexType(Real->getType()));
6683   return false;
6684 }
6685 
6686 // Customized Sema Checking for VSX builtins that have the following signature:
6687 // vector [...] builtinName(vector [...], vector [...], const int);
6688 // Which takes the same type of vectors (any legal vector type) for the first
6689 // two arguments and takes compile time constant for the third argument.
6690 // Example builtins are :
6691 // vector double vec_xxpermdi(vector double, vector double, int);
6692 // vector short vec_xxsldwi(vector short, vector short, int);
6693 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6694   unsigned ExpectedNumArgs = 3;
6695   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6696     return true;
6697 
6698   // Check the third argument is a compile time constant
6699   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6700     return Diag(TheCall->getBeginLoc(),
6701                 diag::err_vsx_builtin_nonconstant_argument)
6702            << 3 /* argument index */ << TheCall->getDirectCallee()
6703            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6704                           TheCall->getArg(2)->getEndLoc());
6705 
6706   QualType Arg1Ty = TheCall->getArg(0)->getType();
6707   QualType Arg2Ty = TheCall->getArg(1)->getType();
6708 
6709   // Check the type of argument 1 and argument 2 are vectors.
6710   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6711   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6712       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6713     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6714            << TheCall->getDirectCallee()
6715            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6716                           TheCall->getArg(1)->getEndLoc());
6717   }
6718 
6719   // Check the first two arguments are the same type.
6720   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6721     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6722            << TheCall->getDirectCallee()
6723            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6724                           TheCall->getArg(1)->getEndLoc());
6725   }
6726 
6727   // When default clang type checking is turned off and the customized type
6728   // checking is used, the returning type of the function must be explicitly
6729   // set. Otherwise it is _Bool by default.
6730   TheCall->setType(Arg1Ty);
6731 
6732   return false;
6733 }
6734 
6735 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6736 // This is declared to take (...), so we have to check everything.
6737 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6738   if (TheCall->getNumArgs() < 2)
6739     return ExprError(Diag(TheCall->getEndLoc(),
6740                           diag::err_typecheck_call_too_few_args_at_least)
6741                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6742                      << TheCall->getSourceRange());
6743 
6744   // Determine which of the following types of shufflevector we're checking:
6745   // 1) unary, vector mask: (lhs, mask)
6746   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6747   QualType resType = TheCall->getArg(0)->getType();
6748   unsigned numElements = 0;
6749 
6750   if (!TheCall->getArg(0)->isTypeDependent() &&
6751       !TheCall->getArg(1)->isTypeDependent()) {
6752     QualType LHSType = TheCall->getArg(0)->getType();
6753     QualType RHSType = TheCall->getArg(1)->getType();
6754 
6755     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6756       return ExprError(
6757           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6758           << TheCall->getDirectCallee()
6759           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6760                          TheCall->getArg(1)->getEndLoc()));
6761 
6762     numElements = LHSType->castAs<VectorType>()->getNumElements();
6763     unsigned numResElements = TheCall->getNumArgs() - 2;
6764 
6765     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6766     // with mask.  If so, verify that RHS is an integer vector type with the
6767     // same number of elts as lhs.
6768     if (TheCall->getNumArgs() == 2) {
6769       if (!RHSType->hasIntegerRepresentation() ||
6770           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6771         return ExprError(Diag(TheCall->getBeginLoc(),
6772                               diag::err_vec_builtin_incompatible_vector)
6773                          << TheCall->getDirectCallee()
6774                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6775                                         TheCall->getArg(1)->getEndLoc()));
6776     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6777       return ExprError(Diag(TheCall->getBeginLoc(),
6778                             diag::err_vec_builtin_incompatible_vector)
6779                        << TheCall->getDirectCallee()
6780                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6781                                       TheCall->getArg(1)->getEndLoc()));
6782     } else if (numElements != numResElements) {
6783       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6784       resType = Context.getVectorType(eltType, numResElements,
6785                                       VectorType::GenericVector);
6786     }
6787   }
6788 
6789   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6790     if (TheCall->getArg(i)->isTypeDependent() ||
6791         TheCall->getArg(i)->isValueDependent())
6792       continue;
6793 
6794     Optional<llvm::APSInt> Result;
6795     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6796       return ExprError(Diag(TheCall->getBeginLoc(),
6797                             diag::err_shufflevector_nonconstant_argument)
6798                        << TheCall->getArg(i)->getSourceRange());
6799 
6800     // Allow -1 which will be translated to undef in the IR.
6801     if (Result->isSigned() && Result->isAllOnes())
6802       continue;
6803 
6804     if (Result->getActiveBits() > 64 ||
6805         Result->getZExtValue() >= numElements * 2)
6806       return ExprError(Diag(TheCall->getBeginLoc(),
6807                             diag::err_shufflevector_argument_too_large)
6808                        << TheCall->getArg(i)->getSourceRange());
6809   }
6810 
6811   SmallVector<Expr*, 32> exprs;
6812 
6813   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6814     exprs.push_back(TheCall->getArg(i));
6815     TheCall->setArg(i, nullptr);
6816   }
6817 
6818   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6819                                          TheCall->getCallee()->getBeginLoc(),
6820                                          TheCall->getRParenLoc());
6821 }
6822 
6823 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6824 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6825                                        SourceLocation BuiltinLoc,
6826                                        SourceLocation RParenLoc) {
6827   ExprValueKind VK = VK_PRValue;
6828   ExprObjectKind OK = OK_Ordinary;
6829   QualType DstTy = TInfo->getType();
6830   QualType SrcTy = E->getType();
6831 
6832   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6833     return ExprError(Diag(BuiltinLoc,
6834                           diag::err_convertvector_non_vector)
6835                      << E->getSourceRange());
6836   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6837     return ExprError(Diag(BuiltinLoc,
6838                           diag::err_convertvector_non_vector_type));
6839 
6840   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6841     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6842     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6843     if (SrcElts != DstElts)
6844       return ExprError(Diag(BuiltinLoc,
6845                             diag::err_convertvector_incompatible_vector)
6846                        << E->getSourceRange());
6847   }
6848 
6849   return new (Context)
6850       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6851 }
6852 
6853 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6854 // This is declared to take (const void*, ...) and can take two
6855 // optional constant int args.
6856 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6857   unsigned NumArgs = TheCall->getNumArgs();
6858 
6859   if (NumArgs > 3)
6860     return Diag(TheCall->getEndLoc(),
6861                 diag::err_typecheck_call_too_many_args_at_most)
6862            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6863 
6864   // Argument 0 is checked for us and the remaining arguments must be
6865   // constant integers.
6866   for (unsigned i = 1; i != NumArgs; ++i)
6867     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6868       return true;
6869 
6870   return false;
6871 }
6872 
6873 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
6874 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
6875   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
6876     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
6877            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6878   if (checkArgCount(*this, TheCall, 1))
6879     return true;
6880   Expr *Arg = TheCall->getArg(0);
6881   if (Arg->isInstantiationDependent())
6882     return false;
6883 
6884   QualType ArgTy = Arg->getType();
6885   if (!ArgTy->hasFloatingRepresentation())
6886     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
6887            << ArgTy;
6888   if (Arg->isLValue()) {
6889     ExprResult FirstArg = DefaultLvalueConversion(Arg);
6890     TheCall->setArg(0, FirstArg.get());
6891   }
6892   TheCall->setType(TheCall->getArg(0)->getType());
6893   return false;
6894 }
6895 
6896 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6897 // __assume does not evaluate its arguments, and should warn if its argument
6898 // has side effects.
6899 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6900   Expr *Arg = TheCall->getArg(0);
6901   if (Arg->isInstantiationDependent()) return false;
6902 
6903   if (Arg->HasSideEffects(Context))
6904     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6905         << Arg->getSourceRange()
6906         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6907 
6908   return false;
6909 }
6910 
6911 /// Handle __builtin_alloca_with_align. This is declared
6912 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6913 /// than 8.
6914 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6915   // The alignment must be a constant integer.
6916   Expr *Arg = TheCall->getArg(1);
6917 
6918   // We can't check the value of a dependent argument.
6919   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6920     if (const auto *UE =
6921             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6922       if (UE->getKind() == UETT_AlignOf ||
6923           UE->getKind() == UETT_PreferredAlignOf)
6924         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6925             << Arg->getSourceRange();
6926 
6927     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6928 
6929     if (!Result.isPowerOf2())
6930       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6931              << Arg->getSourceRange();
6932 
6933     if (Result < Context.getCharWidth())
6934       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6935              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6936 
6937     if (Result > std::numeric_limits<int32_t>::max())
6938       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6939              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6940   }
6941 
6942   return false;
6943 }
6944 
6945 /// Handle __builtin_assume_aligned. This is declared
6946 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6947 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6948   unsigned NumArgs = TheCall->getNumArgs();
6949 
6950   if (NumArgs > 3)
6951     return Diag(TheCall->getEndLoc(),
6952                 diag::err_typecheck_call_too_many_args_at_most)
6953            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6954 
6955   // The alignment must be a constant integer.
6956   Expr *Arg = TheCall->getArg(1);
6957 
6958   // We can't check the value of a dependent argument.
6959   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6960     llvm::APSInt Result;
6961     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6962       return true;
6963 
6964     if (!Result.isPowerOf2())
6965       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6966              << Arg->getSourceRange();
6967 
6968     if (Result > Sema::MaximumAlignment)
6969       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6970           << Arg->getSourceRange() << Sema::MaximumAlignment;
6971   }
6972 
6973   if (NumArgs > 2) {
6974     ExprResult Arg(TheCall->getArg(2));
6975     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6976       Context.getSizeType(), false);
6977     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6978     if (Arg.isInvalid()) return true;
6979     TheCall->setArg(2, Arg.get());
6980   }
6981 
6982   return false;
6983 }
6984 
6985 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6986   unsigned BuiltinID =
6987       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6988   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6989 
6990   unsigned NumArgs = TheCall->getNumArgs();
6991   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6992   if (NumArgs < NumRequiredArgs) {
6993     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6994            << 0 /* function call */ << NumRequiredArgs << NumArgs
6995            << TheCall->getSourceRange();
6996   }
6997   if (NumArgs >= NumRequiredArgs + 0x100) {
6998     return Diag(TheCall->getEndLoc(),
6999                 diag::err_typecheck_call_too_many_args_at_most)
7000            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7001            << TheCall->getSourceRange();
7002   }
7003   unsigned i = 0;
7004 
7005   // For formatting call, check buffer arg.
7006   if (!IsSizeCall) {
7007     ExprResult Arg(TheCall->getArg(i));
7008     InitializedEntity Entity = InitializedEntity::InitializeParameter(
7009         Context, Context.VoidPtrTy, false);
7010     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7011     if (Arg.isInvalid())
7012       return true;
7013     TheCall->setArg(i, Arg.get());
7014     i++;
7015   }
7016 
7017   // Check string literal arg.
7018   unsigned FormatIdx = i;
7019   {
7020     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7021     if (Arg.isInvalid())
7022       return true;
7023     TheCall->setArg(i, Arg.get());
7024     i++;
7025   }
7026 
7027   // Make sure variadic args are scalar.
7028   unsigned FirstDataArg = i;
7029   while (i < NumArgs) {
7030     ExprResult Arg = DefaultVariadicArgumentPromotion(
7031         TheCall->getArg(i), VariadicFunction, nullptr);
7032     if (Arg.isInvalid())
7033       return true;
7034     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7035     if (ArgSize.getQuantity() >= 0x100) {
7036       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7037              << i << (int)ArgSize.getQuantity() << 0xff
7038              << TheCall->getSourceRange();
7039     }
7040     TheCall->setArg(i, Arg.get());
7041     i++;
7042   }
7043 
7044   // Check formatting specifiers. NOTE: We're only doing this for the non-size
7045   // call to avoid duplicate diagnostics.
7046   if (!IsSizeCall) {
7047     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7048     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7049     bool Success = CheckFormatArguments(
7050         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
7051         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7052         CheckedVarArgs);
7053     if (!Success)
7054       return true;
7055   }
7056 
7057   if (IsSizeCall) {
7058     TheCall->setType(Context.getSizeType());
7059   } else {
7060     TheCall->setType(Context.VoidPtrTy);
7061   }
7062   return false;
7063 }
7064 
7065 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7066 /// TheCall is a constant expression.
7067 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7068                                   llvm::APSInt &Result) {
7069   Expr *Arg = TheCall->getArg(ArgNum);
7070   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7071   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7072 
7073   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7074 
7075   Optional<llvm::APSInt> R;
7076   if (!(R = Arg->getIntegerConstantExpr(Context)))
7077     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7078            << FDecl->getDeclName() << Arg->getSourceRange();
7079   Result = *R;
7080   return false;
7081 }
7082 
7083 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7084 /// TheCall is a constant expression in the range [Low, High].
7085 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7086                                        int Low, int High, bool RangeIsError) {
7087   if (isConstantEvaluated())
7088     return false;
7089   llvm::APSInt Result;
7090 
7091   // We can't check the value of a dependent argument.
7092   Expr *Arg = TheCall->getArg(ArgNum);
7093   if (Arg->isTypeDependent() || Arg->isValueDependent())
7094     return false;
7095 
7096   // Check constant-ness first.
7097   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7098     return true;
7099 
7100   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7101     if (RangeIsError)
7102       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7103              << toString(Result, 10) << Low << High << Arg->getSourceRange();
7104     else
7105       // Defer the warning until we know if the code will be emitted so that
7106       // dead code can ignore this.
7107       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7108                           PDiag(diag::warn_argument_invalid_range)
7109                               << toString(Result, 10) << Low << High
7110                               << Arg->getSourceRange());
7111   }
7112 
7113   return false;
7114 }
7115 
7116 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7117 /// TheCall is a constant expression is a multiple of Num..
7118 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7119                                           unsigned Num) {
7120   llvm::APSInt Result;
7121 
7122   // We can't check the value of a dependent argument.
7123   Expr *Arg = TheCall->getArg(ArgNum);
7124   if (Arg->isTypeDependent() || Arg->isValueDependent())
7125     return false;
7126 
7127   // Check constant-ness first.
7128   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7129     return true;
7130 
7131   if (Result.getSExtValue() % Num != 0)
7132     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7133            << Num << Arg->getSourceRange();
7134 
7135   return false;
7136 }
7137 
7138 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7139 /// constant expression representing a power of 2.
7140 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7141   llvm::APSInt Result;
7142 
7143   // We can't check the value of a dependent argument.
7144   Expr *Arg = TheCall->getArg(ArgNum);
7145   if (Arg->isTypeDependent() || Arg->isValueDependent())
7146     return false;
7147 
7148   // Check constant-ness first.
7149   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7150     return true;
7151 
7152   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7153   // and only if x is a power of 2.
7154   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7155     return false;
7156 
7157   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7158          << Arg->getSourceRange();
7159 }
7160 
7161 static bool IsShiftedByte(llvm::APSInt Value) {
7162   if (Value.isNegative())
7163     return false;
7164 
7165   // Check if it's a shifted byte, by shifting it down
7166   while (true) {
7167     // If the value fits in the bottom byte, the check passes.
7168     if (Value < 0x100)
7169       return true;
7170 
7171     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7172     // fails.
7173     if ((Value & 0xFF) != 0)
7174       return false;
7175 
7176     // If the bottom 8 bits are all 0, but something above that is nonzero,
7177     // then shifting the value right by 8 bits won't affect whether it's a
7178     // shifted byte or not. So do that, and go round again.
7179     Value >>= 8;
7180   }
7181 }
7182 
7183 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7184 /// a constant expression representing an arbitrary byte value shifted left by
7185 /// a multiple of 8 bits.
7186 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7187                                              unsigned ArgBits) {
7188   llvm::APSInt Result;
7189 
7190   // We can't check the value of a dependent argument.
7191   Expr *Arg = TheCall->getArg(ArgNum);
7192   if (Arg->isTypeDependent() || Arg->isValueDependent())
7193     return false;
7194 
7195   // Check constant-ness first.
7196   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7197     return true;
7198 
7199   // Truncate to the given size.
7200   Result = Result.getLoBits(ArgBits);
7201   Result.setIsUnsigned(true);
7202 
7203   if (IsShiftedByte(Result))
7204     return false;
7205 
7206   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7207          << Arg->getSourceRange();
7208 }
7209 
7210 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7211 /// TheCall is a constant expression representing either a shifted byte value,
7212 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7213 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7214 /// Arm MVE intrinsics.
7215 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7216                                                    int ArgNum,
7217                                                    unsigned ArgBits) {
7218   llvm::APSInt Result;
7219 
7220   // We can't check the value of a dependent argument.
7221   Expr *Arg = TheCall->getArg(ArgNum);
7222   if (Arg->isTypeDependent() || Arg->isValueDependent())
7223     return false;
7224 
7225   // Check constant-ness first.
7226   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7227     return true;
7228 
7229   // Truncate to the given size.
7230   Result = Result.getLoBits(ArgBits);
7231   Result.setIsUnsigned(true);
7232 
7233   // Check to see if it's in either of the required forms.
7234   if (IsShiftedByte(Result) ||
7235       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7236     return false;
7237 
7238   return Diag(TheCall->getBeginLoc(),
7239               diag::err_argument_not_shifted_byte_or_xxff)
7240          << Arg->getSourceRange();
7241 }
7242 
7243 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7244 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7245   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7246     if (checkArgCount(*this, TheCall, 2))
7247       return true;
7248     Expr *Arg0 = TheCall->getArg(0);
7249     Expr *Arg1 = TheCall->getArg(1);
7250 
7251     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7252     if (FirstArg.isInvalid())
7253       return true;
7254     QualType FirstArgType = FirstArg.get()->getType();
7255     if (!FirstArgType->isAnyPointerType())
7256       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7257                << "first" << FirstArgType << Arg0->getSourceRange();
7258     TheCall->setArg(0, FirstArg.get());
7259 
7260     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7261     if (SecArg.isInvalid())
7262       return true;
7263     QualType SecArgType = SecArg.get()->getType();
7264     if (!SecArgType->isIntegerType())
7265       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7266                << "second" << SecArgType << Arg1->getSourceRange();
7267 
7268     // Derive the return type from the pointer argument.
7269     TheCall->setType(FirstArgType);
7270     return false;
7271   }
7272 
7273   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7274     if (checkArgCount(*this, TheCall, 2))
7275       return true;
7276 
7277     Expr *Arg0 = TheCall->getArg(0);
7278     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7279     if (FirstArg.isInvalid())
7280       return true;
7281     QualType FirstArgType = FirstArg.get()->getType();
7282     if (!FirstArgType->isAnyPointerType())
7283       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7284                << "first" << FirstArgType << Arg0->getSourceRange();
7285     TheCall->setArg(0, FirstArg.get());
7286 
7287     // Derive the return type from the pointer argument.
7288     TheCall->setType(FirstArgType);
7289 
7290     // Second arg must be an constant in range [0,15]
7291     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7292   }
7293 
7294   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7295     if (checkArgCount(*this, TheCall, 2))
7296       return true;
7297     Expr *Arg0 = TheCall->getArg(0);
7298     Expr *Arg1 = TheCall->getArg(1);
7299 
7300     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7301     if (FirstArg.isInvalid())
7302       return true;
7303     QualType FirstArgType = FirstArg.get()->getType();
7304     if (!FirstArgType->isAnyPointerType())
7305       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7306                << "first" << FirstArgType << Arg0->getSourceRange();
7307 
7308     QualType SecArgType = Arg1->getType();
7309     if (!SecArgType->isIntegerType())
7310       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7311                << "second" << SecArgType << Arg1->getSourceRange();
7312     TheCall->setType(Context.IntTy);
7313     return false;
7314   }
7315 
7316   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7317       BuiltinID == AArch64::BI__builtin_arm_stg) {
7318     if (checkArgCount(*this, TheCall, 1))
7319       return true;
7320     Expr *Arg0 = TheCall->getArg(0);
7321     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7322     if (FirstArg.isInvalid())
7323       return true;
7324 
7325     QualType FirstArgType = FirstArg.get()->getType();
7326     if (!FirstArgType->isAnyPointerType())
7327       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7328                << "first" << FirstArgType << Arg0->getSourceRange();
7329     TheCall->setArg(0, FirstArg.get());
7330 
7331     // Derive the return type from the pointer argument.
7332     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7333       TheCall->setType(FirstArgType);
7334     return false;
7335   }
7336 
7337   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7338     Expr *ArgA = TheCall->getArg(0);
7339     Expr *ArgB = TheCall->getArg(1);
7340 
7341     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7342     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7343 
7344     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7345       return true;
7346 
7347     QualType ArgTypeA = ArgExprA.get()->getType();
7348     QualType ArgTypeB = ArgExprB.get()->getType();
7349 
7350     auto isNull = [&] (Expr *E) -> bool {
7351       return E->isNullPointerConstant(
7352                         Context, Expr::NPC_ValueDependentIsNotNull); };
7353 
7354     // argument should be either a pointer or null
7355     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7356       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7357         << "first" << ArgTypeA << ArgA->getSourceRange();
7358 
7359     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7360       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7361         << "second" << ArgTypeB << ArgB->getSourceRange();
7362 
7363     // Ensure Pointee types are compatible
7364     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7365         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7366       QualType pointeeA = ArgTypeA->getPointeeType();
7367       QualType pointeeB = ArgTypeB->getPointeeType();
7368       if (!Context.typesAreCompatible(
7369              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7370              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7371         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7372           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
7373           << ArgB->getSourceRange();
7374       }
7375     }
7376 
7377     // at least one argument should be pointer type
7378     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7379       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7380         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7381 
7382     if (isNull(ArgA)) // adopt type of the other pointer
7383       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7384 
7385     if (isNull(ArgB))
7386       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7387 
7388     TheCall->setArg(0, ArgExprA.get());
7389     TheCall->setArg(1, ArgExprB.get());
7390     TheCall->setType(Context.LongLongTy);
7391     return false;
7392   }
7393   assert(false && "Unhandled ARM MTE intrinsic");
7394   return true;
7395 }
7396 
7397 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7398 /// TheCall is an ARM/AArch64 special register string literal.
7399 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7400                                     int ArgNum, unsigned ExpectedFieldNum,
7401                                     bool AllowName) {
7402   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7403                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7404                       BuiltinID == ARM::BI__builtin_arm_rsr ||
7405                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7406                       BuiltinID == ARM::BI__builtin_arm_wsr ||
7407                       BuiltinID == ARM::BI__builtin_arm_wsrp;
7408   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7409                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7410                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
7411                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7412                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
7413                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
7414   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
7415 
7416   // We can't check the value of a dependent argument.
7417   Expr *Arg = TheCall->getArg(ArgNum);
7418   if (Arg->isTypeDependent() || Arg->isValueDependent())
7419     return false;
7420 
7421   // Check if the argument is a string literal.
7422   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7423     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7424            << Arg->getSourceRange();
7425 
7426   // Check the type of special register given.
7427   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7428   SmallVector<StringRef, 6> Fields;
7429   Reg.split(Fields, ":");
7430 
7431   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7432     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7433            << Arg->getSourceRange();
7434 
7435   // If the string is the name of a register then we cannot check that it is
7436   // valid here but if the string is of one the forms described in ACLE then we
7437   // can check that the supplied fields are integers and within the valid
7438   // ranges.
7439   if (Fields.size() > 1) {
7440     bool FiveFields = Fields.size() == 5;
7441 
7442     bool ValidString = true;
7443     if (IsARMBuiltin) {
7444       ValidString &= Fields[0].startswith_insensitive("cp") ||
7445                      Fields[0].startswith_insensitive("p");
7446       if (ValidString)
7447         Fields[0] = Fields[0].drop_front(
7448             Fields[0].startswith_insensitive("cp") ? 2 : 1);
7449 
7450       ValidString &= Fields[2].startswith_insensitive("c");
7451       if (ValidString)
7452         Fields[2] = Fields[2].drop_front(1);
7453 
7454       if (FiveFields) {
7455         ValidString &= Fields[3].startswith_insensitive("c");
7456         if (ValidString)
7457           Fields[3] = Fields[3].drop_front(1);
7458       }
7459     }
7460 
7461     SmallVector<int, 5> Ranges;
7462     if (FiveFields)
7463       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7464     else
7465       Ranges.append({15, 7, 15});
7466 
7467     for (unsigned i=0; i<Fields.size(); ++i) {
7468       int IntField;
7469       ValidString &= !Fields[i].getAsInteger(10, IntField);
7470       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7471     }
7472 
7473     if (!ValidString)
7474       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7475              << Arg->getSourceRange();
7476   } else if (IsAArch64Builtin && Fields.size() == 1) {
7477     // If the register name is one of those that appear in the condition below
7478     // and the special register builtin being used is one of the write builtins,
7479     // then we require that the argument provided for writing to the register
7480     // is an integer constant expression. This is because it will be lowered to
7481     // an MSR (immediate) instruction, so we need to know the immediate at
7482     // compile time.
7483     if (TheCall->getNumArgs() != 2)
7484       return false;
7485 
7486     std::string RegLower = Reg.lower();
7487     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7488         RegLower != "pan" && RegLower != "uao")
7489       return false;
7490 
7491     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7492   }
7493 
7494   return false;
7495 }
7496 
7497 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7498 /// Emit an error and return true on failure; return false on success.
7499 /// TypeStr is a string containing the type descriptor of the value returned by
7500 /// the builtin and the descriptors of the expected type of the arguments.
7501 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
7502                                  const char *TypeStr) {
7503 
7504   assert((TypeStr[0] != '\0') &&
7505          "Invalid types in PPC MMA builtin declaration");
7506 
7507   switch (BuiltinID) {
7508   default:
7509     // This function is called in CheckPPCBuiltinFunctionCall where the
7510     // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
7511     // we are isolating the pair vector memop builtins that can be used with mma
7512     // off so the default case is every builtin that requires mma and paired
7513     // vector memops.
7514     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7515                          diag::err_ppc_builtin_only_on_arch, "10") ||
7516         SemaFeatureCheck(*this, TheCall, "mma",
7517                          diag::err_ppc_builtin_only_on_arch, "10"))
7518       return true;
7519     break;
7520   case PPC::BI__builtin_vsx_lxvp:
7521   case PPC::BI__builtin_vsx_stxvp:
7522   case PPC::BI__builtin_vsx_assemble_pair:
7523   case PPC::BI__builtin_vsx_disassemble_pair:
7524     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7525                          diag::err_ppc_builtin_only_on_arch, "10"))
7526       return true;
7527     break;
7528   }
7529 
7530   unsigned Mask = 0;
7531   unsigned ArgNum = 0;
7532 
7533   // The first type in TypeStr is the type of the value returned by the
7534   // builtin. So we first read that type and change the type of TheCall.
7535   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7536   TheCall->setType(type);
7537 
7538   while (*TypeStr != '\0') {
7539     Mask = 0;
7540     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7541     if (ArgNum >= TheCall->getNumArgs()) {
7542       ArgNum++;
7543       break;
7544     }
7545 
7546     Expr *Arg = TheCall->getArg(ArgNum);
7547     QualType PassedType = Arg->getType();
7548     QualType StrippedRVType = PassedType.getCanonicalType();
7549 
7550     // Strip Restrict/Volatile qualifiers.
7551     if (StrippedRVType.isRestrictQualified() ||
7552         StrippedRVType.isVolatileQualified())
7553       StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
7554 
7555     // The only case where the argument type and expected type are allowed to
7556     // mismatch is if the argument type is a non-void pointer and expected type
7557     // is a void pointer.
7558     if (StrippedRVType != ExpectedType)
7559       if (!(ExpectedType->isVoidPointerType() &&
7560             StrippedRVType->isPointerType()))
7561         return Diag(Arg->getBeginLoc(),
7562                     diag::err_typecheck_convert_incompatible)
7563                << PassedType << ExpectedType << 1 << 0 << 0;
7564 
7565     // If the value of the Mask is not 0, we have a constraint in the size of
7566     // the integer argument so here we ensure the argument is a constant that
7567     // is in the valid range.
7568     if (Mask != 0 &&
7569         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7570       return true;
7571 
7572     ArgNum++;
7573   }
7574 
7575   // In case we exited early from the previous loop, there are other types to
7576   // read from TypeStr. So we need to read them all to ensure we have the right
7577   // number of arguments in TheCall and if it is not the case, to display a
7578   // better error message.
7579   while (*TypeStr != '\0') {
7580     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7581     ArgNum++;
7582   }
7583   if (checkArgCount(*this, TheCall, ArgNum))
7584     return true;
7585 
7586   return false;
7587 }
7588 
7589 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7590 /// This checks that the target supports __builtin_longjmp and
7591 /// that val is a constant 1.
7592 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7593   if (!Context.getTargetInfo().hasSjLjLowering())
7594     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7595            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7596 
7597   Expr *Arg = TheCall->getArg(1);
7598   llvm::APSInt Result;
7599 
7600   // TODO: This is less than ideal. Overload this to take a value.
7601   if (SemaBuiltinConstantArg(TheCall, 1, Result))
7602     return true;
7603 
7604   if (Result != 1)
7605     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7606            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7607 
7608   return false;
7609 }
7610 
7611 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7612 /// This checks that the target supports __builtin_setjmp.
7613 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7614   if (!Context.getTargetInfo().hasSjLjLowering())
7615     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7616            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7617   return false;
7618 }
7619 
7620 namespace {
7621 
7622 class UncoveredArgHandler {
7623   enum { Unknown = -1, AllCovered = -2 };
7624 
7625   signed FirstUncoveredArg = Unknown;
7626   SmallVector<const Expr *, 4> DiagnosticExprs;
7627 
7628 public:
7629   UncoveredArgHandler() = default;
7630 
7631   bool hasUncoveredArg() const {
7632     return (FirstUncoveredArg >= 0);
7633   }
7634 
7635   unsigned getUncoveredArg() const {
7636     assert(hasUncoveredArg() && "no uncovered argument");
7637     return FirstUncoveredArg;
7638   }
7639 
7640   void setAllCovered() {
7641     // A string has been found with all arguments covered, so clear out
7642     // the diagnostics.
7643     DiagnosticExprs.clear();
7644     FirstUncoveredArg = AllCovered;
7645   }
7646 
7647   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7648     assert(NewFirstUncoveredArg >= 0 && "Outside range");
7649 
7650     // Don't update if a previous string covers all arguments.
7651     if (FirstUncoveredArg == AllCovered)
7652       return;
7653 
7654     // UncoveredArgHandler tracks the highest uncovered argument index
7655     // and with it all the strings that match this index.
7656     if (NewFirstUncoveredArg == FirstUncoveredArg)
7657       DiagnosticExprs.push_back(StrExpr);
7658     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7659       DiagnosticExprs.clear();
7660       DiagnosticExprs.push_back(StrExpr);
7661       FirstUncoveredArg = NewFirstUncoveredArg;
7662     }
7663   }
7664 
7665   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7666 };
7667 
7668 enum StringLiteralCheckType {
7669   SLCT_NotALiteral,
7670   SLCT_UncheckedLiteral,
7671   SLCT_CheckedLiteral
7672 };
7673 
7674 } // namespace
7675 
7676 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7677                                      BinaryOperatorKind BinOpKind,
7678                                      bool AddendIsRight) {
7679   unsigned BitWidth = Offset.getBitWidth();
7680   unsigned AddendBitWidth = Addend.getBitWidth();
7681   // There might be negative interim results.
7682   if (Addend.isUnsigned()) {
7683     Addend = Addend.zext(++AddendBitWidth);
7684     Addend.setIsSigned(true);
7685   }
7686   // Adjust the bit width of the APSInts.
7687   if (AddendBitWidth > BitWidth) {
7688     Offset = Offset.sext(AddendBitWidth);
7689     BitWidth = AddendBitWidth;
7690   } else if (BitWidth > AddendBitWidth) {
7691     Addend = Addend.sext(BitWidth);
7692   }
7693 
7694   bool Ov = false;
7695   llvm::APSInt ResOffset = Offset;
7696   if (BinOpKind == BO_Add)
7697     ResOffset = Offset.sadd_ov(Addend, Ov);
7698   else {
7699     assert(AddendIsRight && BinOpKind == BO_Sub &&
7700            "operator must be add or sub with addend on the right");
7701     ResOffset = Offset.ssub_ov(Addend, Ov);
7702   }
7703 
7704   // We add an offset to a pointer here so we should support an offset as big as
7705   // possible.
7706   if (Ov) {
7707     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
7708            "index (intermediate) result too big");
7709     Offset = Offset.sext(2 * BitWidth);
7710     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7711     return;
7712   }
7713 
7714   Offset = ResOffset;
7715 }
7716 
7717 namespace {
7718 
7719 // This is a wrapper class around StringLiteral to support offsetted string
7720 // literals as format strings. It takes the offset into account when returning
7721 // the string and its length or the source locations to display notes correctly.
7722 class FormatStringLiteral {
7723   const StringLiteral *FExpr;
7724   int64_t Offset;
7725 
7726  public:
7727   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7728       : FExpr(fexpr), Offset(Offset) {}
7729 
7730   StringRef getString() const {
7731     return FExpr->getString().drop_front(Offset);
7732   }
7733 
7734   unsigned getByteLength() const {
7735     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7736   }
7737 
7738   unsigned getLength() const { return FExpr->getLength() - Offset; }
7739   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7740 
7741   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7742 
7743   QualType getType() const { return FExpr->getType(); }
7744 
7745   bool isAscii() const { return FExpr->isAscii(); }
7746   bool isWide() const { return FExpr->isWide(); }
7747   bool isUTF8() const { return FExpr->isUTF8(); }
7748   bool isUTF16() const { return FExpr->isUTF16(); }
7749   bool isUTF32() const { return FExpr->isUTF32(); }
7750   bool isPascal() const { return FExpr->isPascal(); }
7751 
7752   SourceLocation getLocationOfByte(
7753       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7754       const TargetInfo &Target, unsigned *StartToken = nullptr,
7755       unsigned *StartTokenByteOffset = nullptr) const {
7756     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7757                                     StartToken, StartTokenByteOffset);
7758   }
7759 
7760   SourceLocation getBeginLoc() const LLVM_READONLY {
7761     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7762   }
7763 
7764   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7765 };
7766 
7767 }  // namespace
7768 
7769 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7770                               const Expr *OrigFormatExpr,
7771                               ArrayRef<const Expr *> Args,
7772                               bool HasVAListArg, unsigned format_idx,
7773                               unsigned firstDataArg,
7774                               Sema::FormatStringType Type,
7775                               bool inFunctionCall,
7776                               Sema::VariadicCallType CallType,
7777                               llvm::SmallBitVector &CheckedVarArgs,
7778                               UncoveredArgHandler &UncoveredArg,
7779                               bool IgnoreStringsWithoutSpecifiers);
7780 
7781 // Determine if an expression is a string literal or constant string.
7782 // If this function returns false on the arguments to a function expecting a
7783 // format string, we will usually need to emit a warning.
7784 // True string literals are then checked by CheckFormatString.
7785 static StringLiteralCheckType
7786 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7787                       bool HasVAListArg, unsigned format_idx,
7788                       unsigned firstDataArg, Sema::FormatStringType Type,
7789                       Sema::VariadicCallType CallType, bool InFunctionCall,
7790                       llvm::SmallBitVector &CheckedVarArgs,
7791                       UncoveredArgHandler &UncoveredArg,
7792                       llvm::APSInt Offset,
7793                       bool IgnoreStringsWithoutSpecifiers = false) {
7794   if (S.isConstantEvaluated())
7795     return SLCT_NotALiteral;
7796  tryAgain:
7797   assert(Offset.isSigned() && "invalid offset");
7798 
7799   if (E->isTypeDependent() || E->isValueDependent())
7800     return SLCT_NotALiteral;
7801 
7802   E = E->IgnoreParenCasts();
7803 
7804   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7805     // Technically -Wformat-nonliteral does not warn about this case.
7806     // The behavior of printf and friends in this case is implementation
7807     // dependent.  Ideally if the format string cannot be null then
7808     // it should have a 'nonnull' attribute in the function prototype.
7809     return SLCT_UncheckedLiteral;
7810 
7811   switch (E->getStmtClass()) {
7812   case Stmt::BinaryConditionalOperatorClass:
7813   case Stmt::ConditionalOperatorClass: {
7814     // The expression is a literal if both sub-expressions were, and it was
7815     // completely checked only if both sub-expressions were checked.
7816     const AbstractConditionalOperator *C =
7817         cast<AbstractConditionalOperator>(E);
7818 
7819     // Determine whether it is necessary to check both sub-expressions, for
7820     // example, because the condition expression is a constant that can be
7821     // evaluated at compile time.
7822     bool CheckLeft = true, CheckRight = true;
7823 
7824     bool Cond;
7825     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7826                                                  S.isConstantEvaluated())) {
7827       if (Cond)
7828         CheckRight = false;
7829       else
7830         CheckLeft = false;
7831     }
7832 
7833     // We need to maintain the offsets for the right and the left hand side
7834     // separately to check if every possible indexed expression is a valid
7835     // string literal. They might have different offsets for different string
7836     // literals in the end.
7837     StringLiteralCheckType Left;
7838     if (!CheckLeft)
7839       Left = SLCT_UncheckedLiteral;
7840     else {
7841       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7842                                    HasVAListArg, format_idx, firstDataArg,
7843                                    Type, CallType, InFunctionCall,
7844                                    CheckedVarArgs, UncoveredArg, Offset,
7845                                    IgnoreStringsWithoutSpecifiers);
7846       if (Left == SLCT_NotALiteral || !CheckRight) {
7847         return Left;
7848       }
7849     }
7850 
7851     StringLiteralCheckType Right = checkFormatStringExpr(
7852         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7853         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7854         IgnoreStringsWithoutSpecifiers);
7855 
7856     return (CheckLeft && Left < Right) ? Left : Right;
7857   }
7858 
7859   case Stmt::ImplicitCastExprClass:
7860     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7861     goto tryAgain;
7862 
7863   case Stmt::OpaqueValueExprClass:
7864     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7865       E = src;
7866       goto tryAgain;
7867     }
7868     return SLCT_NotALiteral;
7869 
7870   case Stmt::PredefinedExprClass:
7871     // While __func__, etc., are technically not string literals, they
7872     // cannot contain format specifiers and thus are not a security
7873     // liability.
7874     return SLCT_UncheckedLiteral;
7875 
7876   case Stmt::DeclRefExprClass: {
7877     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7878 
7879     // As an exception, do not flag errors for variables binding to
7880     // const string literals.
7881     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7882       bool isConstant = false;
7883       QualType T = DR->getType();
7884 
7885       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7886         isConstant = AT->getElementType().isConstant(S.Context);
7887       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7888         isConstant = T.isConstant(S.Context) &&
7889                      PT->getPointeeType().isConstant(S.Context);
7890       } else if (T->isObjCObjectPointerType()) {
7891         // In ObjC, there is usually no "const ObjectPointer" type,
7892         // so don't check if the pointee type is constant.
7893         isConstant = T.isConstant(S.Context);
7894       }
7895 
7896       if (isConstant) {
7897         if (const Expr *Init = VD->getAnyInitializer()) {
7898           // Look through initializers like const char c[] = { "foo" }
7899           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7900             if (InitList->isStringLiteralInit())
7901               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7902           }
7903           return checkFormatStringExpr(S, Init, Args,
7904                                        HasVAListArg, format_idx,
7905                                        firstDataArg, Type, CallType,
7906                                        /*InFunctionCall*/ false, CheckedVarArgs,
7907                                        UncoveredArg, Offset);
7908         }
7909       }
7910 
7911       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7912       // special check to see if the format string is a function parameter
7913       // of the function calling the printf function.  If the function
7914       // has an attribute indicating it is a printf-like function, then we
7915       // should suppress warnings concerning non-literals being used in a call
7916       // to a vprintf function.  For example:
7917       //
7918       // void
7919       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7920       //      va_list ap;
7921       //      va_start(ap, fmt);
7922       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7923       //      ...
7924       // }
7925       if (HasVAListArg) {
7926         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7927           if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) {
7928             int PVIndex = PV->getFunctionScopeIndex() + 1;
7929             for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
7930               // adjust for implicit parameter
7931               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
7932                 if (MD->isInstance())
7933                   ++PVIndex;
7934               // We also check if the formats are compatible.
7935               // We can't pass a 'scanf' string to a 'printf' function.
7936               if (PVIndex == PVFormat->getFormatIdx() &&
7937                   Type == S.GetFormatStringType(PVFormat))
7938                 return SLCT_UncheckedLiteral;
7939             }
7940           }
7941         }
7942       }
7943     }
7944 
7945     return SLCT_NotALiteral;
7946   }
7947 
7948   case Stmt::CallExprClass:
7949   case Stmt::CXXMemberCallExprClass: {
7950     const CallExpr *CE = cast<CallExpr>(E);
7951     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7952       bool IsFirst = true;
7953       StringLiteralCheckType CommonResult;
7954       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7955         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7956         StringLiteralCheckType Result = checkFormatStringExpr(
7957             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7958             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7959             IgnoreStringsWithoutSpecifiers);
7960         if (IsFirst) {
7961           CommonResult = Result;
7962           IsFirst = false;
7963         }
7964       }
7965       if (!IsFirst)
7966         return CommonResult;
7967 
7968       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7969         unsigned BuiltinID = FD->getBuiltinID();
7970         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7971             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7972           const Expr *Arg = CE->getArg(0);
7973           return checkFormatStringExpr(S, Arg, Args,
7974                                        HasVAListArg, format_idx,
7975                                        firstDataArg, Type, CallType,
7976                                        InFunctionCall, CheckedVarArgs,
7977                                        UncoveredArg, Offset,
7978                                        IgnoreStringsWithoutSpecifiers);
7979         }
7980       }
7981     }
7982 
7983     return SLCT_NotALiteral;
7984   }
7985   case Stmt::ObjCMessageExprClass: {
7986     const auto *ME = cast<ObjCMessageExpr>(E);
7987     if (const auto *MD = ME->getMethodDecl()) {
7988       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7989         // As a special case heuristic, if we're using the method -[NSBundle
7990         // localizedStringForKey:value:table:], ignore any key strings that lack
7991         // format specifiers. The idea is that if the key doesn't have any
7992         // format specifiers then its probably just a key to map to the
7993         // localized strings. If it does have format specifiers though, then its
7994         // likely that the text of the key is the format string in the
7995         // programmer's language, and should be checked.
7996         const ObjCInterfaceDecl *IFace;
7997         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7998             IFace->getIdentifier()->isStr("NSBundle") &&
7999             MD->getSelector().isKeywordSelector(
8000                 {"localizedStringForKey", "value", "table"})) {
8001           IgnoreStringsWithoutSpecifiers = true;
8002         }
8003 
8004         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8005         return checkFormatStringExpr(
8006             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8007             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8008             IgnoreStringsWithoutSpecifiers);
8009       }
8010     }
8011 
8012     return SLCT_NotALiteral;
8013   }
8014   case Stmt::ObjCStringLiteralClass:
8015   case Stmt::StringLiteralClass: {
8016     const StringLiteral *StrE = nullptr;
8017 
8018     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8019       StrE = ObjCFExpr->getString();
8020     else
8021       StrE = cast<StringLiteral>(E);
8022 
8023     if (StrE) {
8024       if (Offset.isNegative() || Offset > StrE->getLength()) {
8025         // TODO: It would be better to have an explicit warning for out of
8026         // bounds literals.
8027         return SLCT_NotALiteral;
8028       }
8029       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8030       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
8031                         firstDataArg, Type, InFunctionCall, CallType,
8032                         CheckedVarArgs, UncoveredArg,
8033                         IgnoreStringsWithoutSpecifiers);
8034       return SLCT_CheckedLiteral;
8035     }
8036 
8037     return SLCT_NotALiteral;
8038   }
8039   case Stmt::BinaryOperatorClass: {
8040     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8041 
8042     // A string literal + an int offset is still a string literal.
8043     if (BinOp->isAdditiveOp()) {
8044       Expr::EvalResult LResult, RResult;
8045 
8046       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8047           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8048       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8049           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8050 
8051       if (LIsInt != RIsInt) {
8052         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8053 
8054         if (LIsInt) {
8055           if (BinOpKind == BO_Add) {
8056             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8057             E = BinOp->getRHS();
8058             goto tryAgain;
8059           }
8060         } else {
8061           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8062           E = BinOp->getLHS();
8063           goto tryAgain;
8064         }
8065       }
8066     }
8067 
8068     return SLCT_NotALiteral;
8069   }
8070   case Stmt::UnaryOperatorClass: {
8071     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8072     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8073     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8074       Expr::EvalResult IndexResult;
8075       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8076                                        Expr::SE_NoSideEffects,
8077                                        S.isConstantEvaluated())) {
8078         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8079                    /*RHS is int*/ true);
8080         E = ASE->getBase();
8081         goto tryAgain;
8082       }
8083     }
8084 
8085     return SLCT_NotALiteral;
8086   }
8087 
8088   default:
8089     return SLCT_NotALiteral;
8090   }
8091 }
8092 
8093 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8094   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8095       .Case("scanf", FST_Scanf)
8096       .Cases("printf", "printf0", FST_Printf)
8097       .Cases("NSString", "CFString", FST_NSString)
8098       .Case("strftime", FST_Strftime)
8099       .Case("strfmon", FST_Strfmon)
8100       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8101       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8102       .Case("os_trace", FST_OSLog)
8103       .Case("os_log", FST_OSLog)
8104       .Default(FST_Unknown);
8105 }
8106 
8107 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8108 /// functions) for correct use of format strings.
8109 /// Returns true if a format string has been fully checked.
8110 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8111                                 ArrayRef<const Expr *> Args,
8112                                 bool IsCXXMember,
8113                                 VariadicCallType CallType,
8114                                 SourceLocation Loc, SourceRange Range,
8115                                 llvm::SmallBitVector &CheckedVarArgs) {
8116   FormatStringInfo FSI;
8117   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
8118     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
8119                                 FSI.FirstDataArg, GetFormatStringType(Format),
8120                                 CallType, Loc, Range, CheckedVarArgs);
8121   return false;
8122 }
8123 
8124 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8125                                 bool HasVAListArg, unsigned format_idx,
8126                                 unsigned firstDataArg, FormatStringType Type,
8127                                 VariadicCallType CallType,
8128                                 SourceLocation Loc, SourceRange Range,
8129                                 llvm::SmallBitVector &CheckedVarArgs) {
8130   // CHECK: printf/scanf-like function is called with no format string.
8131   if (format_idx >= Args.size()) {
8132     Diag(Loc, diag::warn_missing_format_string) << Range;
8133     return false;
8134   }
8135 
8136   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8137 
8138   // CHECK: format string is not a string literal.
8139   //
8140   // Dynamically generated format strings are difficult to
8141   // automatically vet at compile time.  Requiring that format strings
8142   // are string literals: (1) permits the checking of format strings by
8143   // the compiler and thereby (2) can practically remove the source of
8144   // many format string exploits.
8145 
8146   // Format string can be either ObjC string (e.g. @"%d") or
8147   // C string (e.g. "%d")
8148   // ObjC string uses the same format specifiers as C string, so we can use
8149   // the same format string checking logic for both ObjC and C strings.
8150   UncoveredArgHandler UncoveredArg;
8151   StringLiteralCheckType CT =
8152       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8153                             format_idx, firstDataArg, Type, CallType,
8154                             /*IsFunctionCall*/ true, CheckedVarArgs,
8155                             UncoveredArg,
8156                             /*no string offset*/ llvm::APSInt(64, false) = 0);
8157 
8158   // Generate a diagnostic where an uncovered argument is detected.
8159   if (UncoveredArg.hasUncoveredArg()) {
8160     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8161     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8162     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8163   }
8164 
8165   if (CT != SLCT_NotALiteral)
8166     // Literal format string found, check done!
8167     return CT == SLCT_CheckedLiteral;
8168 
8169   // Strftime is particular as it always uses a single 'time' argument,
8170   // so it is safe to pass a non-literal string.
8171   if (Type == FST_Strftime)
8172     return false;
8173 
8174   // Do not emit diag when the string param is a macro expansion and the
8175   // format is either NSString or CFString. This is a hack to prevent
8176   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8177   // which are usually used in place of NS and CF string literals.
8178   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8179   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8180     return false;
8181 
8182   // If there are no arguments specified, warn with -Wformat-security, otherwise
8183   // warn only with -Wformat-nonliteral.
8184   if (Args.size() == firstDataArg) {
8185     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8186       << OrigFormatExpr->getSourceRange();
8187     switch (Type) {
8188     default:
8189       break;
8190     case FST_Kprintf:
8191     case FST_FreeBSDKPrintf:
8192     case FST_Printf:
8193       Diag(FormatLoc, diag::note_format_security_fixit)
8194         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8195       break;
8196     case FST_NSString:
8197       Diag(FormatLoc, diag::note_format_security_fixit)
8198         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8199       break;
8200     }
8201   } else {
8202     Diag(FormatLoc, diag::warn_format_nonliteral)
8203       << OrigFormatExpr->getSourceRange();
8204   }
8205   return false;
8206 }
8207 
8208 namespace {
8209 
8210 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8211 protected:
8212   Sema &S;
8213   const FormatStringLiteral *FExpr;
8214   const Expr *OrigFormatExpr;
8215   const Sema::FormatStringType FSType;
8216   const unsigned FirstDataArg;
8217   const unsigned NumDataArgs;
8218   const char *Beg; // Start of format string.
8219   const bool HasVAListArg;
8220   ArrayRef<const Expr *> Args;
8221   unsigned FormatIdx;
8222   llvm::SmallBitVector CoveredArgs;
8223   bool usesPositionalArgs = false;
8224   bool atFirstArg = true;
8225   bool inFunctionCall;
8226   Sema::VariadicCallType CallType;
8227   llvm::SmallBitVector &CheckedVarArgs;
8228   UncoveredArgHandler &UncoveredArg;
8229 
8230 public:
8231   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8232                      const Expr *origFormatExpr,
8233                      const Sema::FormatStringType type, unsigned firstDataArg,
8234                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
8235                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8236                      bool inFunctionCall, Sema::VariadicCallType callType,
8237                      llvm::SmallBitVector &CheckedVarArgs,
8238                      UncoveredArgHandler &UncoveredArg)
8239       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8240         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8241         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8242         inFunctionCall(inFunctionCall), CallType(callType),
8243         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8244     CoveredArgs.resize(numDataArgs);
8245     CoveredArgs.reset();
8246   }
8247 
8248   void DoneProcessing();
8249 
8250   void HandleIncompleteSpecifier(const char *startSpecifier,
8251                                  unsigned specifierLen) override;
8252 
8253   void HandleInvalidLengthModifier(
8254                            const analyze_format_string::FormatSpecifier &FS,
8255                            const analyze_format_string::ConversionSpecifier &CS,
8256                            const char *startSpecifier, unsigned specifierLen,
8257                            unsigned DiagID);
8258 
8259   void HandleNonStandardLengthModifier(
8260                     const analyze_format_string::FormatSpecifier &FS,
8261                     const char *startSpecifier, unsigned specifierLen);
8262 
8263   void HandleNonStandardConversionSpecifier(
8264                     const analyze_format_string::ConversionSpecifier &CS,
8265                     const char *startSpecifier, unsigned specifierLen);
8266 
8267   void HandlePosition(const char *startPos, unsigned posLen) override;
8268 
8269   void HandleInvalidPosition(const char *startSpecifier,
8270                              unsigned specifierLen,
8271                              analyze_format_string::PositionContext p) override;
8272 
8273   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8274 
8275   void HandleNullChar(const char *nullCharacter) override;
8276 
8277   template <typename Range>
8278   static void
8279   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8280                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8281                        bool IsStringLocation, Range StringRange,
8282                        ArrayRef<FixItHint> Fixit = None);
8283 
8284 protected:
8285   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8286                                         const char *startSpec,
8287                                         unsigned specifierLen,
8288                                         const char *csStart, unsigned csLen);
8289 
8290   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8291                                          const char *startSpec,
8292                                          unsigned specifierLen);
8293 
8294   SourceRange getFormatStringRange();
8295   CharSourceRange getSpecifierRange(const char *startSpecifier,
8296                                     unsigned specifierLen);
8297   SourceLocation getLocationOfByte(const char *x);
8298 
8299   const Expr *getDataArg(unsigned i) const;
8300 
8301   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8302                     const analyze_format_string::ConversionSpecifier &CS,
8303                     const char *startSpecifier, unsigned specifierLen,
8304                     unsigned argIndex);
8305 
8306   template <typename Range>
8307   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8308                             bool IsStringLocation, Range StringRange,
8309                             ArrayRef<FixItHint> Fixit = None);
8310 };
8311 
8312 } // namespace
8313 
8314 SourceRange CheckFormatHandler::getFormatStringRange() {
8315   return OrigFormatExpr->getSourceRange();
8316 }
8317 
8318 CharSourceRange CheckFormatHandler::
8319 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8320   SourceLocation Start = getLocationOfByte(startSpecifier);
8321   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
8322 
8323   // Advance the end SourceLocation by one due to half-open ranges.
8324   End = End.getLocWithOffset(1);
8325 
8326   return CharSourceRange::getCharRange(Start, End);
8327 }
8328 
8329 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8330   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8331                                   S.getLangOpts(), S.Context.getTargetInfo());
8332 }
8333 
8334 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8335                                                    unsigned specifierLen){
8336   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8337                        getLocationOfByte(startSpecifier),
8338                        /*IsStringLocation*/true,
8339                        getSpecifierRange(startSpecifier, specifierLen));
8340 }
8341 
8342 void CheckFormatHandler::HandleInvalidLengthModifier(
8343     const analyze_format_string::FormatSpecifier &FS,
8344     const analyze_format_string::ConversionSpecifier &CS,
8345     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8346   using namespace analyze_format_string;
8347 
8348   const LengthModifier &LM = FS.getLengthModifier();
8349   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8350 
8351   // See if we know how to fix this length modifier.
8352   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8353   if (FixedLM) {
8354     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8355                          getLocationOfByte(LM.getStart()),
8356                          /*IsStringLocation*/true,
8357                          getSpecifierRange(startSpecifier, specifierLen));
8358 
8359     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8360       << FixedLM->toString()
8361       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8362 
8363   } else {
8364     FixItHint Hint;
8365     if (DiagID == diag::warn_format_nonsensical_length)
8366       Hint = FixItHint::CreateRemoval(LMRange);
8367 
8368     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8369                          getLocationOfByte(LM.getStart()),
8370                          /*IsStringLocation*/true,
8371                          getSpecifierRange(startSpecifier, specifierLen),
8372                          Hint);
8373   }
8374 }
8375 
8376 void CheckFormatHandler::HandleNonStandardLengthModifier(
8377     const analyze_format_string::FormatSpecifier &FS,
8378     const char *startSpecifier, unsigned specifierLen) {
8379   using namespace analyze_format_string;
8380 
8381   const LengthModifier &LM = FS.getLengthModifier();
8382   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8383 
8384   // See if we know how to fix this length modifier.
8385   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8386   if (FixedLM) {
8387     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8388                            << LM.toString() << 0,
8389                          getLocationOfByte(LM.getStart()),
8390                          /*IsStringLocation*/true,
8391                          getSpecifierRange(startSpecifier, specifierLen));
8392 
8393     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8394       << FixedLM->toString()
8395       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8396 
8397   } else {
8398     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8399                            << LM.toString() << 0,
8400                          getLocationOfByte(LM.getStart()),
8401                          /*IsStringLocation*/true,
8402                          getSpecifierRange(startSpecifier, specifierLen));
8403   }
8404 }
8405 
8406 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8407     const analyze_format_string::ConversionSpecifier &CS,
8408     const char *startSpecifier, unsigned specifierLen) {
8409   using namespace analyze_format_string;
8410 
8411   // See if we know how to fix this conversion specifier.
8412   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8413   if (FixedCS) {
8414     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8415                           << CS.toString() << /*conversion specifier*/1,
8416                          getLocationOfByte(CS.getStart()),
8417                          /*IsStringLocation*/true,
8418                          getSpecifierRange(startSpecifier, specifierLen));
8419 
8420     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8421     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8422       << FixedCS->toString()
8423       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8424   } else {
8425     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8426                           << CS.toString() << /*conversion specifier*/1,
8427                          getLocationOfByte(CS.getStart()),
8428                          /*IsStringLocation*/true,
8429                          getSpecifierRange(startSpecifier, specifierLen));
8430   }
8431 }
8432 
8433 void CheckFormatHandler::HandlePosition(const char *startPos,
8434                                         unsigned posLen) {
8435   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8436                                getLocationOfByte(startPos),
8437                                /*IsStringLocation*/true,
8438                                getSpecifierRange(startPos, posLen));
8439 }
8440 
8441 void
8442 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8443                                      analyze_format_string::PositionContext p) {
8444   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8445                          << (unsigned) p,
8446                        getLocationOfByte(startPos), /*IsStringLocation*/true,
8447                        getSpecifierRange(startPos, posLen));
8448 }
8449 
8450 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8451                                             unsigned posLen) {
8452   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8453                                getLocationOfByte(startPos),
8454                                /*IsStringLocation*/true,
8455                                getSpecifierRange(startPos, posLen));
8456 }
8457 
8458 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8459   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8460     // The presence of a null character is likely an error.
8461     EmitFormatDiagnostic(
8462       S.PDiag(diag::warn_printf_format_string_contains_null_char),
8463       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8464       getFormatStringRange());
8465   }
8466 }
8467 
8468 // Note that this may return NULL if there was an error parsing or building
8469 // one of the argument expressions.
8470 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8471   return Args[FirstDataArg + i];
8472 }
8473 
8474 void CheckFormatHandler::DoneProcessing() {
8475   // Does the number of data arguments exceed the number of
8476   // format conversions in the format string?
8477   if (!HasVAListArg) {
8478       // Find any arguments that weren't covered.
8479     CoveredArgs.flip();
8480     signed notCoveredArg = CoveredArgs.find_first();
8481     if (notCoveredArg >= 0) {
8482       assert((unsigned)notCoveredArg < NumDataArgs);
8483       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8484     } else {
8485       UncoveredArg.setAllCovered();
8486     }
8487   }
8488 }
8489 
8490 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8491                                    const Expr *ArgExpr) {
8492   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
8493          "Invalid state");
8494 
8495   if (!ArgExpr)
8496     return;
8497 
8498   SourceLocation Loc = ArgExpr->getBeginLoc();
8499 
8500   if (S.getSourceManager().isInSystemMacro(Loc))
8501     return;
8502 
8503   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8504   for (auto E : DiagnosticExprs)
8505     PDiag << E->getSourceRange();
8506 
8507   CheckFormatHandler::EmitFormatDiagnostic(
8508                                   S, IsFunctionCall, DiagnosticExprs[0],
8509                                   PDiag, Loc, /*IsStringLocation*/false,
8510                                   DiagnosticExprs[0]->getSourceRange());
8511 }
8512 
8513 bool
8514 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8515                                                      SourceLocation Loc,
8516                                                      const char *startSpec,
8517                                                      unsigned specifierLen,
8518                                                      const char *csStart,
8519                                                      unsigned csLen) {
8520   bool keepGoing = true;
8521   if (argIndex < NumDataArgs) {
8522     // Consider the argument coverered, even though the specifier doesn't
8523     // make sense.
8524     CoveredArgs.set(argIndex);
8525   }
8526   else {
8527     // If argIndex exceeds the number of data arguments we
8528     // don't issue a warning because that is just a cascade of warnings (and
8529     // they may have intended '%%' anyway). We don't want to continue processing
8530     // the format string after this point, however, as we will like just get
8531     // gibberish when trying to match arguments.
8532     keepGoing = false;
8533   }
8534 
8535   StringRef Specifier(csStart, csLen);
8536 
8537   // If the specifier in non-printable, it could be the first byte of a UTF-8
8538   // sequence. In that case, print the UTF-8 code point. If not, print the byte
8539   // hex value.
8540   std::string CodePointStr;
8541   if (!llvm::sys::locale::isPrint(*csStart)) {
8542     llvm::UTF32 CodePoint;
8543     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8544     const llvm::UTF8 *E =
8545         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8546     llvm::ConversionResult Result =
8547         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8548 
8549     if (Result != llvm::conversionOK) {
8550       unsigned char FirstChar = *csStart;
8551       CodePoint = (llvm::UTF32)FirstChar;
8552     }
8553 
8554     llvm::raw_string_ostream OS(CodePointStr);
8555     if (CodePoint < 256)
8556       OS << "\\x" << llvm::format("%02x", CodePoint);
8557     else if (CodePoint <= 0xFFFF)
8558       OS << "\\u" << llvm::format("%04x", CodePoint);
8559     else
8560       OS << "\\U" << llvm::format("%08x", CodePoint);
8561     OS.flush();
8562     Specifier = CodePointStr;
8563   }
8564 
8565   EmitFormatDiagnostic(
8566       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8567       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8568 
8569   return keepGoing;
8570 }
8571 
8572 void
8573 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8574                                                       const char *startSpec,
8575                                                       unsigned specifierLen) {
8576   EmitFormatDiagnostic(
8577     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8578     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8579 }
8580 
8581 bool
8582 CheckFormatHandler::CheckNumArgs(
8583   const analyze_format_string::FormatSpecifier &FS,
8584   const analyze_format_string::ConversionSpecifier &CS,
8585   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8586 
8587   if (argIndex >= NumDataArgs) {
8588     PartialDiagnostic PDiag = FS.usesPositionalArg()
8589       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8590            << (argIndex+1) << NumDataArgs)
8591       : S.PDiag(diag::warn_printf_insufficient_data_args);
8592     EmitFormatDiagnostic(
8593       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8594       getSpecifierRange(startSpecifier, specifierLen));
8595 
8596     // Since more arguments than conversion tokens are given, by extension
8597     // all arguments are covered, so mark this as so.
8598     UncoveredArg.setAllCovered();
8599     return false;
8600   }
8601   return true;
8602 }
8603 
8604 template<typename Range>
8605 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8606                                               SourceLocation Loc,
8607                                               bool IsStringLocation,
8608                                               Range StringRange,
8609                                               ArrayRef<FixItHint> FixIt) {
8610   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8611                        Loc, IsStringLocation, StringRange, FixIt);
8612 }
8613 
8614 /// If the format string is not within the function call, emit a note
8615 /// so that the function call and string are in diagnostic messages.
8616 ///
8617 /// \param InFunctionCall if true, the format string is within the function
8618 /// call and only one diagnostic message will be produced.  Otherwise, an
8619 /// extra note will be emitted pointing to location of the format string.
8620 ///
8621 /// \param ArgumentExpr the expression that is passed as the format string
8622 /// argument in the function call.  Used for getting locations when two
8623 /// diagnostics are emitted.
8624 ///
8625 /// \param PDiag the callee should already have provided any strings for the
8626 /// diagnostic message.  This function only adds locations and fixits
8627 /// to diagnostics.
8628 ///
8629 /// \param Loc primary location for diagnostic.  If two diagnostics are
8630 /// required, one will be at Loc and a new SourceLocation will be created for
8631 /// the other one.
8632 ///
8633 /// \param IsStringLocation if true, Loc points to the format string should be
8634 /// used for the note.  Otherwise, Loc points to the argument list and will
8635 /// be used with PDiag.
8636 ///
8637 /// \param StringRange some or all of the string to highlight.  This is
8638 /// templated so it can accept either a CharSourceRange or a SourceRange.
8639 ///
8640 /// \param FixIt optional fix it hint for the format string.
8641 template <typename Range>
8642 void CheckFormatHandler::EmitFormatDiagnostic(
8643     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8644     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8645     Range StringRange, ArrayRef<FixItHint> FixIt) {
8646   if (InFunctionCall) {
8647     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8648     D << StringRange;
8649     D << FixIt;
8650   } else {
8651     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8652       << ArgumentExpr->getSourceRange();
8653 
8654     const Sema::SemaDiagnosticBuilder &Note =
8655       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8656              diag::note_format_string_defined);
8657 
8658     Note << StringRange;
8659     Note << FixIt;
8660   }
8661 }
8662 
8663 //===--- CHECK: Printf format string checking ------------------------------===//
8664 
8665 namespace {
8666 
8667 class CheckPrintfHandler : public CheckFormatHandler {
8668 public:
8669   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8670                      const Expr *origFormatExpr,
8671                      const Sema::FormatStringType type, unsigned firstDataArg,
8672                      unsigned numDataArgs, bool isObjC, const char *beg,
8673                      bool hasVAListArg, ArrayRef<const Expr *> Args,
8674                      unsigned formatIdx, bool inFunctionCall,
8675                      Sema::VariadicCallType CallType,
8676                      llvm::SmallBitVector &CheckedVarArgs,
8677                      UncoveredArgHandler &UncoveredArg)
8678       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8679                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8680                            inFunctionCall, CallType, CheckedVarArgs,
8681                            UncoveredArg) {}
8682 
8683   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8684 
8685   /// Returns true if '%@' specifiers are allowed in the format string.
8686   bool allowsObjCArg() const {
8687     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8688            FSType == Sema::FST_OSTrace;
8689   }
8690 
8691   bool HandleInvalidPrintfConversionSpecifier(
8692                                       const analyze_printf::PrintfSpecifier &FS,
8693                                       const char *startSpecifier,
8694                                       unsigned specifierLen) override;
8695 
8696   void handleInvalidMaskType(StringRef MaskType) override;
8697 
8698   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8699                              const char *startSpecifier,
8700                              unsigned specifierLen) override;
8701   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8702                        const char *StartSpecifier,
8703                        unsigned SpecifierLen,
8704                        const Expr *E);
8705 
8706   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8707                     const char *startSpecifier, unsigned specifierLen);
8708   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8709                            const analyze_printf::OptionalAmount &Amt,
8710                            unsigned type,
8711                            const char *startSpecifier, unsigned specifierLen);
8712   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8713                   const analyze_printf::OptionalFlag &flag,
8714                   const char *startSpecifier, unsigned specifierLen);
8715   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8716                          const analyze_printf::OptionalFlag &ignoredFlag,
8717                          const analyze_printf::OptionalFlag &flag,
8718                          const char *startSpecifier, unsigned specifierLen);
8719   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8720                            const Expr *E);
8721 
8722   void HandleEmptyObjCModifierFlag(const char *startFlag,
8723                                    unsigned flagLen) override;
8724 
8725   void HandleInvalidObjCModifierFlag(const char *startFlag,
8726                                             unsigned flagLen) override;
8727 
8728   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8729                                            const char *flagsEnd,
8730                                            const char *conversionPosition)
8731                                              override;
8732 };
8733 
8734 } // namespace
8735 
8736 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8737                                       const analyze_printf::PrintfSpecifier &FS,
8738                                       const char *startSpecifier,
8739                                       unsigned specifierLen) {
8740   const analyze_printf::PrintfConversionSpecifier &CS =
8741     FS.getConversionSpecifier();
8742 
8743   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8744                                           getLocationOfByte(CS.getStart()),
8745                                           startSpecifier, specifierLen,
8746                                           CS.getStart(), CS.getLength());
8747 }
8748 
8749 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8750   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8751 }
8752 
8753 bool CheckPrintfHandler::HandleAmount(
8754                                const analyze_format_string::OptionalAmount &Amt,
8755                                unsigned k, const char *startSpecifier,
8756                                unsigned specifierLen) {
8757   if (Amt.hasDataArgument()) {
8758     if (!HasVAListArg) {
8759       unsigned argIndex = Amt.getArgIndex();
8760       if (argIndex >= NumDataArgs) {
8761         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8762                                << k,
8763                              getLocationOfByte(Amt.getStart()),
8764                              /*IsStringLocation*/true,
8765                              getSpecifierRange(startSpecifier, specifierLen));
8766         // Don't do any more checking.  We will just emit
8767         // spurious errors.
8768         return false;
8769       }
8770 
8771       // Type check the data argument.  It should be an 'int'.
8772       // Although not in conformance with C99, we also allow the argument to be
8773       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8774       // doesn't emit a warning for that case.
8775       CoveredArgs.set(argIndex);
8776       const Expr *Arg = getDataArg(argIndex);
8777       if (!Arg)
8778         return false;
8779 
8780       QualType T = Arg->getType();
8781 
8782       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8783       assert(AT.isValid());
8784 
8785       if (!AT.matchesType(S.Context, T)) {
8786         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8787                                << k << AT.getRepresentativeTypeName(S.Context)
8788                                << T << Arg->getSourceRange(),
8789                              getLocationOfByte(Amt.getStart()),
8790                              /*IsStringLocation*/true,
8791                              getSpecifierRange(startSpecifier, specifierLen));
8792         // Don't do any more checking.  We will just emit
8793         // spurious errors.
8794         return false;
8795       }
8796     }
8797   }
8798   return true;
8799 }
8800 
8801 void CheckPrintfHandler::HandleInvalidAmount(
8802                                       const analyze_printf::PrintfSpecifier &FS,
8803                                       const analyze_printf::OptionalAmount &Amt,
8804                                       unsigned type,
8805                                       const char *startSpecifier,
8806                                       unsigned specifierLen) {
8807   const analyze_printf::PrintfConversionSpecifier &CS =
8808     FS.getConversionSpecifier();
8809 
8810   FixItHint fixit =
8811     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8812       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8813                                  Amt.getConstantLength()))
8814       : FixItHint();
8815 
8816   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8817                          << type << CS.toString(),
8818                        getLocationOfByte(Amt.getStart()),
8819                        /*IsStringLocation*/true,
8820                        getSpecifierRange(startSpecifier, specifierLen),
8821                        fixit);
8822 }
8823 
8824 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8825                                     const analyze_printf::OptionalFlag &flag,
8826                                     const char *startSpecifier,
8827                                     unsigned specifierLen) {
8828   // Warn about pointless flag with a fixit removal.
8829   const analyze_printf::PrintfConversionSpecifier &CS =
8830     FS.getConversionSpecifier();
8831   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8832                          << flag.toString() << CS.toString(),
8833                        getLocationOfByte(flag.getPosition()),
8834                        /*IsStringLocation*/true,
8835                        getSpecifierRange(startSpecifier, specifierLen),
8836                        FixItHint::CreateRemoval(
8837                          getSpecifierRange(flag.getPosition(), 1)));
8838 }
8839 
8840 void CheckPrintfHandler::HandleIgnoredFlag(
8841                                 const analyze_printf::PrintfSpecifier &FS,
8842                                 const analyze_printf::OptionalFlag &ignoredFlag,
8843                                 const analyze_printf::OptionalFlag &flag,
8844                                 const char *startSpecifier,
8845                                 unsigned specifierLen) {
8846   // Warn about ignored flag with a fixit removal.
8847   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8848                          << ignoredFlag.toString() << flag.toString(),
8849                        getLocationOfByte(ignoredFlag.getPosition()),
8850                        /*IsStringLocation*/true,
8851                        getSpecifierRange(startSpecifier, specifierLen),
8852                        FixItHint::CreateRemoval(
8853                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8854 }
8855 
8856 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8857                                                      unsigned flagLen) {
8858   // Warn about an empty flag.
8859   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8860                        getLocationOfByte(startFlag),
8861                        /*IsStringLocation*/true,
8862                        getSpecifierRange(startFlag, flagLen));
8863 }
8864 
8865 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8866                                                        unsigned flagLen) {
8867   // Warn about an invalid flag.
8868   auto Range = getSpecifierRange(startFlag, flagLen);
8869   StringRef flag(startFlag, flagLen);
8870   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8871                       getLocationOfByte(startFlag),
8872                       /*IsStringLocation*/true,
8873                       Range, FixItHint::CreateRemoval(Range));
8874 }
8875 
8876 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8877     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8878     // Warn about using '[...]' without a '@' conversion.
8879     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8880     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8881     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8882                          getLocationOfByte(conversionPosition),
8883                          /*IsStringLocation*/true,
8884                          Range, FixItHint::CreateRemoval(Range));
8885 }
8886 
8887 // Determines if the specified is a C++ class or struct containing
8888 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8889 // "c_str()").
8890 template<typename MemberKind>
8891 static llvm::SmallPtrSet<MemberKind*, 1>
8892 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8893   const RecordType *RT = Ty->getAs<RecordType>();
8894   llvm::SmallPtrSet<MemberKind*, 1> Results;
8895 
8896   if (!RT)
8897     return Results;
8898   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8899   if (!RD || !RD->getDefinition())
8900     return Results;
8901 
8902   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8903                  Sema::LookupMemberName);
8904   R.suppressDiagnostics();
8905 
8906   // We just need to include all members of the right kind turned up by the
8907   // filter, at this point.
8908   if (S.LookupQualifiedName(R, RT->getDecl()))
8909     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8910       NamedDecl *decl = (*I)->getUnderlyingDecl();
8911       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8912         Results.insert(FK);
8913     }
8914   return Results;
8915 }
8916 
8917 /// Check if we could call '.c_str()' on an object.
8918 ///
8919 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8920 /// allow the call, or if it would be ambiguous).
8921 bool Sema::hasCStrMethod(const Expr *E) {
8922   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8923 
8924   MethodSet Results =
8925       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8926   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8927        MI != ME; ++MI)
8928     if ((*MI)->getMinRequiredArguments() == 0)
8929       return true;
8930   return false;
8931 }
8932 
8933 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8934 // better diagnostic if so. AT is assumed to be valid.
8935 // Returns true when a c_str() conversion method is found.
8936 bool CheckPrintfHandler::checkForCStrMembers(
8937     const analyze_printf::ArgType &AT, const Expr *E) {
8938   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8939 
8940   MethodSet Results =
8941       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8942 
8943   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8944        MI != ME; ++MI) {
8945     const CXXMethodDecl *Method = *MI;
8946     if (Method->getMinRequiredArguments() == 0 &&
8947         AT.matchesType(S.Context, Method->getReturnType())) {
8948       // FIXME: Suggest parens if the expression needs them.
8949       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8950       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8951           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8952       return true;
8953     }
8954   }
8955 
8956   return false;
8957 }
8958 
8959 bool
8960 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8961                                             &FS,
8962                                           const char *startSpecifier,
8963                                           unsigned specifierLen) {
8964   using namespace analyze_format_string;
8965   using namespace analyze_printf;
8966 
8967   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8968 
8969   if (FS.consumesDataArgument()) {
8970     if (atFirstArg) {
8971         atFirstArg = false;
8972         usesPositionalArgs = FS.usesPositionalArg();
8973     }
8974     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8975       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8976                                         startSpecifier, specifierLen);
8977       return false;
8978     }
8979   }
8980 
8981   // First check if the field width, precision, and conversion specifier
8982   // have matching data arguments.
8983   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8984                     startSpecifier, specifierLen)) {
8985     return false;
8986   }
8987 
8988   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8989                     startSpecifier, specifierLen)) {
8990     return false;
8991   }
8992 
8993   if (!CS.consumesDataArgument()) {
8994     // FIXME: Technically specifying a precision or field width here
8995     // makes no sense.  Worth issuing a warning at some point.
8996     return true;
8997   }
8998 
8999   // Consume the argument.
9000   unsigned argIndex = FS.getArgIndex();
9001   if (argIndex < NumDataArgs) {
9002     // The check to see if the argIndex is valid will come later.
9003     // We set the bit here because we may exit early from this
9004     // function if we encounter some other error.
9005     CoveredArgs.set(argIndex);
9006   }
9007 
9008   // FreeBSD kernel extensions.
9009   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9010       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9011     // We need at least two arguments.
9012     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9013       return false;
9014 
9015     // Claim the second argument.
9016     CoveredArgs.set(argIndex + 1);
9017 
9018     // Type check the first argument (int for %b, pointer for %D)
9019     const Expr *Ex = getDataArg(argIndex);
9020     const analyze_printf::ArgType &AT =
9021       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9022         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9023     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9024       EmitFormatDiagnostic(
9025           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9026               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9027               << false << Ex->getSourceRange(),
9028           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9029           getSpecifierRange(startSpecifier, specifierLen));
9030 
9031     // Type check the second argument (char * for both %b and %D)
9032     Ex = getDataArg(argIndex + 1);
9033     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9034     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9035       EmitFormatDiagnostic(
9036           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9037               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9038               << false << Ex->getSourceRange(),
9039           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9040           getSpecifierRange(startSpecifier, specifierLen));
9041 
9042      return true;
9043   }
9044 
9045   // Check for using an Objective-C specific conversion specifier
9046   // in a non-ObjC literal.
9047   if (!allowsObjCArg() && CS.isObjCArg()) {
9048     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9049                                                   specifierLen);
9050   }
9051 
9052   // %P can only be used with os_log.
9053   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9054     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9055                                                   specifierLen);
9056   }
9057 
9058   // %n is not allowed with os_log.
9059   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9060     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9061                          getLocationOfByte(CS.getStart()),
9062                          /*IsStringLocation*/ false,
9063                          getSpecifierRange(startSpecifier, specifierLen));
9064 
9065     return true;
9066   }
9067 
9068   // Only scalars are allowed for os_trace.
9069   if (FSType == Sema::FST_OSTrace &&
9070       (CS.getKind() == ConversionSpecifier::PArg ||
9071        CS.getKind() == ConversionSpecifier::sArg ||
9072        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9073     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9074                                                   specifierLen);
9075   }
9076 
9077   // Check for use of public/private annotation outside of os_log().
9078   if (FSType != Sema::FST_OSLog) {
9079     if (FS.isPublic().isSet()) {
9080       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9081                                << "public",
9082                            getLocationOfByte(FS.isPublic().getPosition()),
9083                            /*IsStringLocation*/ false,
9084                            getSpecifierRange(startSpecifier, specifierLen));
9085     }
9086     if (FS.isPrivate().isSet()) {
9087       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9088                                << "private",
9089                            getLocationOfByte(FS.isPrivate().getPosition()),
9090                            /*IsStringLocation*/ false,
9091                            getSpecifierRange(startSpecifier, specifierLen));
9092     }
9093   }
9094 
9095   // Check for invalid use of field width
9096   if (!FS.hasValidFieldWidth()) {
9097     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9098         startSpecifier, specifierLen);
9099   }
9100 
9101   // Check for invalid use of precision
9102   if (!FS.hasValidPrecision()) {
9103     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9104         startSpecifier, specifierLen);
9105   }
9106 
9107   // Precision is mandatory for %P specifier.
9108   if (CS.getKind() == ConversionSpecifier::PArg &&
9109       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9110     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9111                          getLocationOfByte(startSpecifier),
9112                          /*IsStringLocation*/ false,
9113                          getSpecifierRange(startSpecifier, specifierLen));
9114   }
9115 
9116   // Check each flag does not conflict with any other component.
9117   if (!FS.hasValidThousandsGroupingPrefix())
9118     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9119   if (!FS.hasValidLeadingZeros())
9120     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9121   if (!FS.hasValidPlusPrefix())
9122     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9123   if (!FS.hasValidSpacePrefix())
9124     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9125   if (!FS.hasValidAlternativeForm())
9126     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9127   if (!FS.hasValidLeftJustified())
9128     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9129 
9130   // Check that flags are not ignored by another flag
9131   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9132     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9133         startSpecifier, specifierLen);
9134   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9135     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9136             startSpecifier, specifierLen);
9137 
9138   // Check the length modifier is valid with the given conversion specifier.
9139   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9140                                  S.getLangOpts()))
9141     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9142                                 diag::warn_format_nonsensical_length);
9143   else if (!FS.hasStandardLengthModifier())
9144     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9145   else if (!FS.hasStandardLengthConversionCombination())
9146     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9147                                 diag::warn_format_non_standard_conversion_spec);
9148 
9149   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9150     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9151 
9152   // The remaining checks depend on the data arguments.
9153   if (HasVAListArg)
9154     return true;
9155 
9156   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9157     return false;
9158 
9159   const Expr *Arg = getDataArg(argIndex);
9160   if (!Arg)
9161     return true;
9162 
9163   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9164 }
9165 
9166 static bool requiresParensToAddCast(const Expr *E) {
9167   // FIXME: We should have a general way to reason about operator
9168   // precedence and whether parens are actually needed here.
9169   // Take care of a few common cases where they aren't.
9170   const Expr *Inside = E->IgnoreImpCasts();
9171   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9172     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9173 
9174   switch (Inside->getStmtClass()) {
9175   case Stmt::ArraySubscriptExprClass:
9176   case Stmt::CallExprClass:
9177   case Stmt::CharacterLiteralClass:
9178   case Stmt::CXXBoolLiteralExprClass:
9179   case Stmt::DeclRefExprClass:
9180   case Stmt::FloatingLiteralClass:
9181   case Stmt::IntegerLiteralClass:
9182   case Stmt::MemberExprClass:
9183   case Stmt::ObjCArrayLiteralClass:
9184   case Stmt::ObjCBoolLiteralExprClass:
9185   case Stmt::ObjCBoxedExprClass:
9186   case Stmt::ObjCDictionaryLiteralClass:
9187   case Stmt::ObjCEncodeExprClass:
9188   case Stmt::ObjCIvarRefExprClass:
9189   case Stmt::ObjCMessageExprClass:
9190   case Stmt::ObjCPropertyRefExprClass:
9191   case Stmt::ObjCStringLiteralClass:
9192   case Stmt::ObjCSubscriptRefExprClass:
9193   case Stmt::ParenExprClass:
9194   case Stmt::StringLiteralClass:
9195   case Stmt::UnaryOperatorClass:
9196     return false;
9197   default:
9198     return true;
9199   }
9200 }
9201 
9202 static std::pair<QualType, StringRef>
9203 shouldNotPrintDirectly(const ASTContext &Context,
9204                        QualType IntendedTy,
9205                        const Expr *E) {
9206   // Use a 'while' to peel off layers of typedefs.
9207   QualType TyTy = IntendedTy;
9208   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9209     StringRef Name = UserTy->getDecl()->getName();
9210     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9211       .Case("CFIndex", Context.getNSIntegerType())
9212       .Case("NSInteger", Context.getNSIntegerType())
9213       .Case("NSUInteger", Context.getNSUIntegerType())
9214       .Case("SInt32", Context.IntTy)
9215       .Case("UInt32", Context.UnsignedIntTy)
9216       .Default(QualType());
9217 
9218     if (!CastTy.isNull())
9219       return std::make_pair(CastTy, Name);
9220 
9221     TyTy = UserTy->desugar();
9222   }
9223 
9224   // Strip parens if necessary.
9225   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9226     return shouldNotPrintDirectly(Context,
9227                                   PE->getSubExpr()->getType(),
9228                                   PE->getSubExpr());
9229 
9230   // If this is a conditional expression, then its result type is constructed
9231   // via usual arithmetic conversions and thus there might be no necessary
9232   // typedef sugar there.  Recurse to operands to check for NSInteger &
9233   // Co. usage condition.
9234   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9235     QualType TrueTy, FalseTy;
9236     StringRef TrueName, FalseName;
9237 
9238     std::tie(TrueTy, TrueName) =
9239       shouldNotPrintDirectly(Context,
9240                              CO->getTrueExpr()->getType(),
9241                              CO->getTrueExpr());
9242     std::tie(FalseTy, FalseName) =
9243       shouldNotPrintDirectly(Context,
9244                              CO->getFalseExpr()->getType(),
9245                              CO->getFalseExpr());
9246 
9247     if (TrueTy == FalseTy)
9248       return std::make_pair(TrueTy, TrueName);
9249     else if (TrueTy.isNull())
9250       return std::make_pair(FalseTy, FalseName);
9251     else if (FalseTy.isNull())
9252       return std::make_pair(TrueTy, TrueName);
9253   }
9254 
9255   return std::make_pair(QualType(), StringRef());
9256 }
9257 
9258 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9259 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9260 /// type do not count.
9261 static bool
9262 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9263   QualType From = ICE->getSubExpr()->getType();
9264   QualType To = ICE->getType();
9265   // It's an integer promotion if the destination type is the promoted
9266   // source type.
9267   if (ICE->getCastKind() == CK_IntegralCast &&
9268       From->isPromotableIntegerType() &&
9269       S.Context.getPromotedIntegerType(From) == To)
9270     return true;
9271   // Look through vector types, since we do default argument promotion for
9272   // those in OpenCL.
9273   if (const auto *VecTy = From->getAs<ExtVectorType>())
9274     From = VecTy->getElementType();
9275   if (const auto *VecTy = To->getAs<ExtVectorType>())
9276     To = VecTy->getElementType();
9277   // It's a floating promotion if the source type is a lower rank.
9278   return ICE->getCastKind() == CK_FloatingCast &&
9279          S.Context.getFloatingTypeOrder(From, To) < 0;
9280 }
9281 
9282 bool
9283 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9284                                     const char *StartSpecifier,
9285                                     unsigned SpecifierLen,
9286                                     const Expr *E) {
9287   using namespace analyze_format_string;
9288   using namespace analyze_printf;
9289 
9290   // Now type check the data expression that matches the
9291   // format specifier.
9292   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9293   if (!AT.isValid())
9294     return true;
9295 
9296   QualType ExprTy = E->getType();
9297   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9298     ExprTy = TET->getUnderlyingExpr()->getType();
9299   }
9300 
9301   // Diagnose attempts to print a boolean value as a character. Unlike other
9302   // -Wformat diagnostics, this is fine from a type perspective, but it still
9303   // doesn't make sense.
9304   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9305       E->isKnownToHaveBooleanValue()) {
9306     const CharSourceRange &CSR =
9307         getSpecifierRange(StartSpecifier, SpecifierLen);
9308     SmallString<4> FSString;
9309     llvm::raw_svector_ostream os(FSString);
9310     FS.toString(os);
9311     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9312                              << FSString,
9313                          E->getExprLoc(), false, CSR);
9314     return true;
9315   }
9316 
9317   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9318   if (Match == analyze_printf::ArgType::Match)
9319     return true;
9320 
9321   // Look through argument promotions for our error message's reported type.
9322   // This includes the integral and floating promotions, but excludes array
9323   // and function pointer decay (seeing that an argument intended to be a
9324   // string has type 'char [6]' is probably more confusing than 'char *') and
9325   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9326   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9327     if (isArithmeticArgumentPromotion(S, ICE)) {
9328       E = ICE->getSubExpr();
9329       ExprTy = E->getType();
9330 
9331       // Check if we didn't match because of an implicit cast from a 'char'
9332       // or 'short' to an 'int'.  This is done because printf is a varargs
9333       // function.
9334       if (ICE->getType() == S.Context.IntTy ||
9335           ICE->getType() == S.Context.UnsignedIntTy) {
9336         // All further checking is done on the subexpression
9337         const analyze_printf::ArgType::MatchKind ImplicitMatch =
9338             AT.matchesType(S.Context, ExprTy);
9339         if (ImplicitMatch == analyze_printf::ArgType::Match)
9340           return true;
9341         if (ImplicitMatch == ArgType::NoMatchPedantic ||
9342             ImplicitMatch == ArgType::NoMatchTypeConfusion)
9343           Match = ImplicitMatch;
9344       }
9345     }
9346   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9347     // Special case for 'a', which has type 'int' in C.
9348     // Note, however, that we do /not/ want to treat multibyte constants like
9349     // 'MooV' as characters! This form is deprecated but still exists. In
9350     // addition, don't treat expressions as of type 'char' if one byte length
9351     // modifier is provided.
9352     if (ExprTy == S.Context.IntTy &&
9353         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9354       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9355         ExprTy = S.Context.CharTy;
9356   }
9357 
9358   // Look through enums to their underlying type.
9359   bool IsEnum = false;
9360   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9361     ExprTy = EnumTy->getDecl()->getIntegerType();
9362     IsEnum = true;
9363   }
9364 
9365   // %C in an Objective-C context prints a unichar, not a wchar_t.
9366   // If the argument is an integer of some kind, believe the %C and suggest
9367   // a cast instead of changing the conversion specifier.
9368   QualType IntendedTy = ExprTy;
9369   if (isObjCContext() &&
9370       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9371     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9372         !ExprTy->isCharType()) {
9373       // 'unichar' is defined as a typedef of unsigned short, but we should
9374       // prefer using the typedef if it is visible.
9375       IntendedTy = S.Context.UnsignedShortTy;
9376 
9377       // While we are here, check if the value is an IntegerLiteral that happens
9378       // to be within the valid range.
9379       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9380         const llvm::APInt &V = IL->getValue();
9381         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9382           return true;
9383       }
9384 
9385       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9386                           Sema::LookupOrdinaryName);
9387       if (S.LookupName(Result, S.getCurScope())) {
9388         NamedDecl *ND = Result.getFoundDecl();
9389         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9390           if (TD->getUnderlyingType() == IntendedTy)
9391             IntendedTy = S.Context.getTypedefType(TD);
9392       }
9393     }
9394   }
9395 
9396   // Special-case some of Darwin's platform-independence types by suggesting
9397   // casts to primitive types that are known to be large enough.
9398   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9399   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9400     QualType CastTy;
9401     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9402     if (!CastTy.isNull()) {
9403       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9404       // (long in ASTContext). Only complain to pedants.
9405       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9406           (AT.isSizeT() || AT.isPtrdiffT()) &&
9407           AT.matchesType(S.Context, CastTy))
9408         Match = ArgType::NoMatchPedantic;
9409       IntendedTy = CastTy;
9410       ShouldNotPrintDirectly = true;
9411     }
9412   }
9413 
9414   // We may be able to offer a FixItHint if it is a supported type.
9415   PrintfSpecifier fixedFS = FS;
9416   bool Success =
9417       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9418 
9419   if (Success) {
9420     // Get the fix string from the fixed format specifier
9421     SmallString<16> buf;
9422     llvm::raw_svector_ostream os(buf);
9423     fixedFS.toString(os);
9424 
9425     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9426 
9427     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9428       unsigned Diag;
9429       switch (Match) {
9430       case ArgType::Match: llvm_unreachable("expected non-matching");
9431       case ArgType::NoMatchPedantic:
9432         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9433         break;
9434       case ArgType::NoMatchTypeConfusion:
9435         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9436         break;
9437       case ArgType::NoMatch:
9438         Diag = diag::warn_format_conversion_argument_type_mismatch;
9439         break;
9440       }
9441 
9442       // In this case, the specifier is wrong and should be changed to match
9443       // the argument.
9444       EmitFormatDiagnostic(S.PDiag(Diag)
9445                                << AT.getRepresentativeTypeName(S.Context)
9446                                << IntendedTy << IsEnum << E->getSourceRange(),
9447                            E->getBeginLoc(),
9448                            /*IsStringLocation*/ false, SpecRange,
9449                            FixItHint::CreateReplacement(SpecRange, os.str()));
9450     } else {
9451       // The canonical type for formatting this value is different from the
9452       // actual type of the expression. (This occurs, for example, with Darwin's
9453       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9454       // should be printed as 'long' for 64-bit compatibility.)
9455       // Rather than emitting a normal format/argument mismatch, we want to
9456       // add a cast to the recommended type (and correct the format string
9457       // if necessary).
9458       SmallString<16> CastBuf;
9459       llvm::raw_svector_ostream CastFix(CastBuf);
9460       CastFix << "(";
9461       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9462       CastFix << ")";
9463 
9464       SmallVector<FixItHint,4> Hints;
9465       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9466         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9467 
9468       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9469         // If there's already a cast present, just replace it.
9470         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9471         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9472 
9473       } else if (!requiresParensToAddCast(E)) {
9474         // If the expression has high enough precedence,
9475         // just write the C-style cast.
9476         Hints.push_back(
9477             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9478       } else {
9479         // Otherwise, add parens around the expression as well as the cast.
9480         CastFix << "(";
9481         Hints.push_back(
9482             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9483 
9484         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9485         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9486       }
9487 
9488       if (ShouldNotPrintDirectly) {
9489         // The expression has a type that should not be printed directly.
9490         // We extract the name from the typedef because we don't want to show
9491         // the underlying type in the diagnostic.
9492         StringRef Name;
9493         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9494           Name = TypedefTy->getDecl()->getName();
9495         else
9496           Name = CastTyName;
9497         unsigned Diag = Match == ArgType::NoMatchPedantic
9498                             ? diag::warn_format_argument_needs_cast_pedantic
9499                             : diag::warn_format_argument_needs_cast;
9500         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9501                                            << E->getSourceRange(),
9502                              E->getBeginLoc(), /*IsStringLocation=*/false,
9503                              SpecRange, Hints);
9504       } else {
9505         // In this case, the expression could be printed using a different
9506         // specifier, but we've decided that the specifier is probably correct
9507         // and we should cast instead. Just use the normal warning message.
9508         EmitFormatDiagnostic(
9509             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9510                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9511                 << E->getSourceRange(),
9512             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9513       }
9514     }
9515   } else {
9516     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9517                                                    SpecifierLen);
9518     // Since the warning for passing non-POD types to variadic functions
9519     // was deferred until now, we emit a warning for non-POD
9520     // arguments here.
9521     switch (S.isValidVarArgType(ExprTy)) {
9522     case Sema::VAK_Valid:
9523     case Sema::VAK_ValidInCXX11: {
9524       unsigned Diag;
9525       switch (Match) {
9526       case ArgType::Match: llvm_unreachable("expected non-matching");
9527       case ArgType::NoMatchPedantic:
9528         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9529         break;
9530       case ArgType::NoMatchTypeConfusion:
9531         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9532         break;
9533       case ArgType::NoMatch:
9534         Diag = diag::warn_format_conversion_argument_type_mismatch;
9535         break;
9536       }
9537 
9538       EmitFormatDiagnostic(
9539           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9540                         << IsEnum << CSR << E->getSourceRange(),
9541           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9542       break;
9543     }
9544     case Sema::VAK_Undefined:
9545     case Sema::VAK_MSVCUndefined:
9546       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9547                                << S.getLangOpts().CPlusPlus11 << ExprTy
9548                                << CallType
9549                                << AT.getRepresentativeTypeName(S.Context) << CSR
9550                                << E->getSourceRange(),
9551                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9552       checkForCStrMembers(AT, E);
9553       break;
9554 
9555     case Sema::VAK_Invalid:
9556       if (ExprTy->isObjCObjectType())
9557         EmitFormatDiagnostic(
9558             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9559                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9560                 << AT.getRepresentativeTypeName(S.Context) << CSR
9561                 << E->getSourceRange(),
9562             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9563       else
9564         // FIXME: If this is an initializer list, suggest removing the braces
9565         // or inserting a cast to the target type.
9566         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9567             << isa<InitListExpr>(E) << ExprTy << CallType
9568             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9569       break;
9570     }
9571 
9572     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
9573            "format string specifier index out of range");
9574     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9575   }
9576 
9577   return true;
9578 }
9579 
9580 //===--- CHECK: Scanf format string checking ------------------------------===//
9581 
9582 namespace {
9583 
9584 class CheckScanfHandler : public CheckFormatHandler {
9585 public:
9586   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9587                     const Expr *origFormatExpr, Sema::FormatStringType type,
9588                     unsigned firstDataArg, unsigned numDataArgs,
9589                     const char *beg, bool hasVAListArg,
9590                     ArrayRef<const Expr *> Args, unsigned formatIdx,
9591                     bool inFunctionCall, Sema::VariadicCallType CallType,
9592                     llvm::SmallBitVector &CheckedVarArgs,
9593                     UncoveredArgHandler &UncoveredArg)
9594       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9595                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
9596                            inFunctionCall, CallType, CheckedVarArgs,
9597                            UncoveredArg) {}
9598 
9599   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9600                             const char *startSpecifier,
9601                             unsigned specifierLen) override;
9602 
9603   bool HandleInvalidScanfConversionSpecifier(
9604           const analyze_scanf::ScanfSpecifier &FS,
9605           const char *startSpecifier,
9606           unsigned specifierLen) override;
9607 
9608   void HandleIncompleteScanList(const char *start, const char *end) override;
9609 };
9610 
9611 } // namespace
9612 
9613 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9614                                                  const char *end) {
9615   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9616                        getLocationOfByte(end), /*IsStringLocation*/true,
9617                        getSpecifierRange(start, end - start));
9618 }
9619 
9620 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9621                                         const analyze_scanf::ScanfSpecifier &FS,
9622                                         const char *startSpecifier,
9623                                         unsigned specifierLen) {
9624   const analyze_scanf::ScanfConversionSpecifier &CS =
9625     FS.getConversionSpecifier();
9626 
9627   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9628                                           getLocationOfByte(CS.getStart()),
9629                                           startSpecifier, specifierLen,
9630                                           CS.getStart(), CS.getLength());
9631 }
9632 
9633 bool CheckScanfHandler::HandleScanfSpecifier(
9634                                        const analyze_scanf::ScanfSpecifier &FS,
9635                                        const char *startSpecifier,
9636                                        unsigned specifierLen) {
9637   using namespace analyze_scanf;
9638   using namespace analyze_format_string;
9639 
9640   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9641 
9642   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
9643   // be used to decide if we are using positional arguments consistently.
9644   if (FS.consumesDataArgument()) {
9645     if (atFirstArg) {
9646       atFirstArg = false;
9647       usesPositionalArgs = FS.usesPositionalArg();
9648     }
9649     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9650       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9651                                         startSpecifier, specifierLen);
9652       return false;
9653     }
9654   }
9655 
9656   // Check if the field with is non-zero.
9657   const OptionalAmount &Amt = FS.getFieldWidth();
9658   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9659     if (Amt.getConstantAmount() == 0) {
9660       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9661                                                    Amt.getConstantLength());
9662       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9663                            getLocationOfByte(Amt.getStart()),
9664                            /*IsStringLocation*/true, R,
9665                            FixItHint::CreateRemoval(R));
9666     }
9667   }
9668 
9669   if (!FS.consumesDataArgument()) {
9670     // FIXME: Technically specifying a precision or field width here
9671     // makes no sense.  Worth issuing a warning at some point.
9672     return true;
9673   }
9674 
9675   // Consume the argument.
9676   unsigned argIndex = FS.getArgIndex();
9677   if (argIndex < NumDataArgs) {
9678       // The check to see if the argIndex is valid will come later.
9679       // We set the bit here because we may exit early from this
9680       // function if we encounter some other error.
9681     CoveredArgs.set(argIndex);
9682   }
9683 
9684   // Check the length modifier is valid with the given conversion specifier.
9685   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9686                                  S.getLangOpts()))
9687     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9688                                 diag::warn_format_nonsensical_length);
9689   else if (!FS.hasStandardLengthModifier())
9690     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9691   else if (!FS.hasStandardLengthConversionCombination())
9692     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9693                                 diag::warn_format_non_standard_conversion_spec);
9694 
9695   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9696     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9697 
9698   // The remaining checks depend on the data arguments.
9699   if (HasVAListArg)
9700     return true;
9701 
9702   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9703     return false;
9704 
9705   // Check that the argument type matches the format specifier.
9706   const Expr *Ex = getDataArg(argIndex);
9707   if (!Ex)
9708     return true;
9709 
9710   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9711 
9712   if (!AT.isValid()) {
9713     return true;
9714   }
9715 
9716   analyze_format_string::ArgType::MatchKind Match =
9717       AT.matchesType(S.Context, Ex->getType());
9718   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9719   if (Match == analyze_format_string::ArgType::Match)
9720     return true;
9721 
9722   ScanfSpecifier fixedFS = FS;
9723   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9724                                  S.getLangOpts(), S.Context);
9725 
9726   unsigned Diag =
9727       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9728                : diag::warn_format_conversion_argument_type_mismatch;
9729 
9730   if (Success) {
9731     // Get the fix string from the fixed format specifier.
9732     SmallString<128> buf;
9733     llvm::raw_svector_ostream os(buf);
9734     fixedFS.toString(os);
9735 
9736     EmitFormatDiagnostic(
9737         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9738                       << Ex->getType() << false << Ex->getSourceRange(),
9739         Ex->getBeginLoc(),
9740         /*IsStringLocation*/ false,
9741         getSpecifierRange(startSpecifier, specifierLen),
9742         FixItHint::CreateReplacement(
9743             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9744   } else {
9745     EmitFormatDiagnostic(S.PDiag(Diag)
9746                              << AT.getRepresentativeTypeName(S.Context)
9747                              << Ex->getType() << false << Ex->getSourceRange(),
9748                          Ex->getBeginLoc(),
9749                          /*IsStringLocation*/ false,
9750                          getSpecifierRange(startSpecifier, specifierLen));
9751   }
9752 
9753   return true;
9754 }
9755 
9756 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9757                               const Expr *OrigFormatExpr,
9758                               ArrayRef<const Expr *> Args,
9759                               bool HasVAListArg, unsigned format_idx,
9760                               unsigned firstDataArg,
9761                               Sema::FormatStringType Type,
9762                               bool inFunctionCall,
9763                               Sema::VariadicCallType CallType,
9764                               llvm::SmallBitVector &CheckedVarArgs,
9765                               UncoveredArgHandler &UncoveredArg,
9766                               bool IgnoreStringsWithoutSpecifiers) {
9767   // CHECK: is the format string a wide literal?
9768   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9769     CheckFormatHandler::EmitFormatDiagnostic(
9770         S, inFunctionCall, Args[format_idx],
9771         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9772         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9773     return;
9774   }
9775 
9776   // Str - The format string.  NOTE: this is NOT null-terminated!
9777   StringRef StrRef = FExpr->getString();
9778   const char *Str = StrRef.data();
9779   // Account for cases where the string literal is truncated in a declaration.
9780   const ConstantArrayType *T =
9781     S.Context.getAsConstantArrayType(FExpr->getType());
9782   assert(T && "String literal not of constant array type!");
9783   size_t TypeSize = T->getSize().getZExtValue();
9784   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9785   const unsigned numDataArgs = Args.size() - firstDataArg;
9786 
9787   if (IgnoreStringsWithoutSpecifiers &&
9788       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9789           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9790     return;
9791 
9792   // Emit a warning if the string literal is truncated and does not contain an
9793   // embedded null character.
9794   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
9795     CheckFormatHandler::EmitFormatDiagnostic(
9796         S, inFunctionCall, Args[format_idx],
9797         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9798         FExpr->getBeginLoc(),
9799         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9800     return;
9801   }
9802 
9803   // CHECK: empty format string?
9804   if (StrLen == 0 && numDataArgs > 0) {
9805     CheckFormatHandler::EmitFormatDiagnostic(
9806         S, inFunctionCall, Args[format_idx],
9807         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9808         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9809     return;
9810   }
9811 
9812   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9813       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9814       Type == Sema::FST_OSTrace) {
9815     CheckPrintfHandler H(
9816         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9817         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9818         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9819         CheckedVarArgs, UncoveredArg);
9820 
9821     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9822                                                   S.getLangOpts(),
9823                                                   S.Context.getTargetInfo(),
9824                                             Type == Sema::FST_FreeBSDKPrintf))
9825       H.DoneProcessing();
9826   } else if (Type == Sema::FST_Scanf) {
9827     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9828                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9829                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9830 
9831     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9832                                                  S.getLangOpts(),
9833                                                  S.Context.getTargetInfo()))
9834       H.DoneProcessing();
9835   } // TODO: handle other formats
9836 }
9837 
9838 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9839   // Str - The format string.  NOTE: this is NOT null-terminated!
9840   StringRef StrRef = FExpr->getString();
9841   const char *Str = StrRef.data();
9842   // Account for cases where the string literal is truncated in a declaration.
9843   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9844   assert(T && "String literal not of constant array type!");
9845   size_t TypeSize = T->getSize().getZExtValue();
9846   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9847   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9848                                                          getLangOpts(),
9849                                                          Context.getTargetInfo());
9850 }
9851 
9852 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9853 
9854 // Returns the related absolute value function that is larger, of 0 if one
9855 // does not exist.
9856 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9857   switch (AbsFunction) {
9858   default:
9859     return 0;
9860 
9861   case Builtin::BI__builtin_abs:
9862     return Builtin::BI__builtin_labs;
9863   case Builtin::BI__builtin_labs:
9864     return Builtin::BI__builtin_llabs;
9865   case Builtin::BI__builtin_llabs:
9866     return 0;
9867 
9868   case Builtin::BI__builtin_fabsf:
9869     return Builtin::BI__builtin_fabs;
9870   case Builtin::BI__builtin_fabs:
9871     return Builtin::BI__builtin_fabsl;
9872   case Builtin::BI__builtin_fabsl:
9873     return 0;
9874 
9875   case Builtin::BI__builtin_cabsf:
9876     return Builtin::BI__builtin_cabs;
9877   case Builtin::BI__builtin_cabs:
9878     return Builtin::BI__builtin_cabsl;
9879   case Builtin::BI__builtin_cabsl:
9880     return 0;
9881 
9882   case Builtin::BIabs:
9883     return Builtin::BIlabs;
9884   case Builtin::BIlabs:
9885     return Builtin::BIllabs;
9886   case Builtin::BIllabs:
9887     return 0;
9888 
9889   case Builtin::BIfabsf:
9890     return Builtin::BIfabs;
9891   case Builtin::BIfabs:
9892     return Builtin::BIfabsl;
9893   case Builtin::BIfabsl:
9894     return 0;
9895 
9896   case Builtin::BIcabsf:
9897    return Builtin::BIcabs;
9898   case Builtin::BIcabs:
9899     return Builtin::BIcabsl;
9900   case Builtin::BIcabsl:
9901     return 0;
9902   }
9903 }
9904 
9905 // Returns the argument type of the absolute value function.
9906 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9907                                              unsigned AbsType) {
9908   if (AbsType == 0)
9909     return QualType();
9910 
9911   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9912   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9913   if (Error != ASTContext::GE_None)
9914     return QualType();
9915 
9916   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9917   if (!FT)
9918     return QualType();
9919 
9920   if (FT->getNumParams() != 1)
9921     return QualType();
9922 
9923   return FT->getParamType(0);
9924 }
9925 
9926 // Returns the best absolute value function, or zero, based on type and
9927 // current absolute value function.
9928 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9929                                    unsigned AbsFunctionKind) {
9930   unsigned BestKind = 0;
9931   uint64_t ArgSize = Context.getTypeSize(ArgType);
9932   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9933        Kind = getLargerAbsoluteValueFunction(Kind)) {
9934     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9935     if (Context.getTypeSize(ParamType) >= ArgSize) {
9936       if (BestKind == 0)
9937         BestKind = Kind;
9938       else if (Context.hasSameType(ParamType, ArgType)) {
9939         BestKind = Kind;
9940         break;
9941       }
9942     }
9943   }
9944   return BestKind;
9945 }
9946 
9947 enum AbsoluteValueKind {
9948   AVK_Integer,
9949   AVK_Floating,
9950   AVK_Complex
9951 };
9952 
9953 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9954   if (T->isIntegralOrEnumerationType())
9955     return AVK_Integer;
9956   if (T->isRealFloatingType())
9957     return AVK_Floating;
9958   if (T->isAnyComplexType())
9959     return AVK_Complex;
9960 
9961   llvm_unreachable("Type not integer, floating, or complex");
9962 }
9963 
9964 // Changes the absolute value function to a different type.  Preserves whether
9965 // the function is a builtin.
9966 static unsigned changeAbsFunction(unsigned AbsKind,
9967                                   AbsoluteValueKind ValueKind) {
9968   switch (ValueKind) {
9969   case AVK_Integer:
9970     switch (AbsKind) {
9971     default:
9972       return 0;
9973     case Builtin::BI__builtin_fabsf:
9974     case Builtin::BI__builtin_fabs:
9975     case Builtin::BI__builtin_fabsl:
9976     case Builtin::BI__builtin_cabsf:
9977     case Builtin::BI__builtin_cabs:
9978     case Builtin::BI__builtin_cabsl:
9979       return Builtin::BI__builtin_abs;
9980     case Builtin::BIfabsf:
9981     case Builtin::BIfabs:
9982     case Builtin::BIfabsl:
9983     case Builtin::BIcabsf:
9984     case Builtin::BIcabs:
9985     case Builtin::BIcabsl:
9986       return Builtin::BIabs;
9987     }
9988   case AVK_Floating:
9989     switch (AbsKind) {
9990     default:
9991       return 0;
9992     case Builtin::BI__builtin_abs:
9993     case Builtin::BI__builtin_labs:
9994     case Builtin::BI__builtin_llabs:
9995     case Builtin::BI__builtin_cabsf:
9996     case Builtin::BI__builtin_cabs:
9997     case Builtin::BI__builtin_cabsl:
9998       return Builtin::BI__builtin_fabsf;
9999     case Builtin::BIabs:
10000     case Builtin::BIlabs:
10001     case Builtin::BIllabs:
10002     case Builtin::BIcabsf:
10003     case Builtin::BIcabs:
10004     case Builtin::BIcabsl:
10005       return Builtin::BIfabsf;
10006     }
10007   case AVK_Complex:
10008     switch (AbsKind) {
10009     default:
10010       return 0;
10011     case Builtin::BI__builtin_abs:
10012     case Builtin::BI__builtin_labs:
10013     case Builtin::BI__builtin_llabs:
10014     case Builtin::BI__builtin_fabsf:
10015     case Builtin::BI__builtin_fabs:
10016     case Builtin::BI__builtin_fabsl:
10017       return Builtin::BI__builtin_cabsf;
10018     case Builtin::BIabs:
10019     case Builtin::BIlabs:
10020     case Builtin::BIllabs:
10021     case Builtin::BIfabsf:
10022     case Builtin::BIfabs:
10023     case Builtin::BIfabsl:
10024       return Builtin::BIcabsf;
10025     }
10026   }
10027   llvm_unreachable("Unable to convert function");
10028 }
10029 
10030 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10031   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10032   if (!FnInfo)
10033     return 0;
10034 
10035   switch (FDecl->getBuiltinID()) {
10036   default:
10037     return 0;
10038   case Builtin::BI__builtin_abs:
10039   case Builtin::BI__builtin_fabs:
10040   case Builtin::BI__builtin_fabsf:
10041   case Builtin::BI__builtin_fabsl:
10042   case Builtin::BI__builtin_labs:
10043   case Builtin::BI__builtin_llabs:
10044   case Builtin::BI__builtin_cabs:
10045   case Builtin::BI__builtin_cabsf:
10046   case Builtin::BI__builtin_cabsl:
10047   case Builtin::BIabs:
10048   case Builtin::BIlabs:
10049   case Builtin::BIllabs:
10050   case Builtin::BIfabs:
10051   case Builtin::BIfabsf:
10052   case Builtin::BIfabsl:
10053   case Builtin::BIcabs:
10054   case Builtin::BIcabsf:
10055   case Builtin::BIcabsl:
10056     return FDecl->getBuiltinID();
10057   }
10058   llvm_unreachable("Unknown Builtin type");
10059 }
10060 
10061 // If the replacement is valid, emit a note with replacement function.
10062 // Additionally, suggest including the proper header if not already included.
10063 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10064                             unsigned AbsKind, QualType ArgType) {
10065   bool EmitHeaderHint = true;
10066   const char *HeaderName = nullptr;
10067   const char *FunctionName = nullptr;
10068   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10069     FunctionName = "std::abs";
10070     if (ArgType->isIntegralOrEnumerationType()) {
10071       HeaderName = "cstdlib";
10072     } else if (ArgType->isRealFloatingType()) {
10073       HeaderName = "cmath";
10074     } else {
10075       llvm_unreachable("Invalid Type");
10076     }
10077 
10078     // Lookup all std::abs
10079     if (NamespaceDecl *Std = S.getStdNamespace()) {
10080       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10081       R.suppressDiagnostics();
10082       S.LookupQualifiedName(R, Std);
10083 
10084       for (const auto *I : R) {
10085         const FunctionDecl *FDecl = nullptr;
10086         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10087           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10088         } else {
10089           FDecl = dyn_cast<FunctionDecl>(I);
10090         }
10091         if (!FDecl)
10092           continue;
10093 
10094         // Found std::abs(), check that they are the right ones.
10095         if (FDecl->getNumParams() != 1)
10096           continue;
10097 
10098         // Check that the parameter type can handle the argument.
10099         QualType ParamType = FDecl->getParamDecl(0)->getType();
10100         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10101             S.Context.getTypeSize(ArgType) <=
10102                 S.Context.getTypeSize(ParamType)) {
10103           // Found a function, don't need the header hint.
10104           EmitHeaderHint = false;
10105           break;
10106         }
10107       }
10108     }
10109   } else {
10110     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10111     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10112 
10113     if (HeaderName) {
10114       DeclarationName DN(&S.Context.Idents.get(FunctionName));
10115       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10116       R.suppressDiagnostics();
10117       S.LookupName(R, S.getCurScope());
10118 
10119       if (R.isSingleResult()) {
10120         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10121         if (FD && FD->getBuiltinID() == AbsKind) {
10122           EmitHeaderHint = false;
10123         } else {
10124           return;
10125         }
10126       } else if (!R.empty()) {
10127         return;
10128       }
10129     }
10130   }
10131 
10132   S.Diag(Loc, diag::note_replace_abs_function)
10133       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10134 
10135   if (!HeaderName)
10136     return;
10137 
10138   if (!EmitHeaderHint)
10139     return;
10140 
10141   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10142                                                     << FunctionName;
10143 }
10144 
10145 template <std::size_t StrLen>
10146 static bool IsStdFunction(const FunctionDecl *FDecl,
10147                           const char (&Str)[StrLen]) {
10148   if (!FDecl)
10149     return false;
10150   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10151     return false;
10152   if (!FDecl->isInStdNamespace())
10153     return false;
10154 
10155   return true;
10156 }
10157 
10158 // Warn when using the wrong abs() function.
10159 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10160                                       const FunctionDecl *FDecl) {
10161   if (Call->getNumArgs() != 1)
10162     return;
10163 
10164   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10165   bool IsStdAbs = IsStdFunction(FDecl, "abs");
10166   if (AbsKind == 0 && !IsStdAbs)
10167     return;
10168 
10169   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10170   QualType ParamType = Call->getArg(0)->getType();
10171 
10172   // Unsigned types cannot be negative.  Suggest removing the absolute value
10173   // function call.
10174   if (ArgType->isUnsignedIntegerType()) {
10175     const char *FunctionName =
10176         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10177     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10178     Diag(Call->getExprLoc(), diag::note_remove_abs)
10179         << FunctionName
10180         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10181     return;
10182   }
10183 
10184   // Taking the absolute value of a pointer is very suspicious, they probably
10185   // wanted to index into an array, dereference a pointer, call a function, etc.
10186   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10187     unsigned DiagType = 0;
10188     if (ArgType->isFunctionType())
10189       DiagType = 1;
10190     else if (ArgType->isArrayType())
10191       DiagType = 2;
10192 
10193     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10194     return;
10195   }
10196 
10197   // std::abs has overloads which prevent most of the absolute value problems
10198   // from occurring.
10199   if (IsStdAbs)
10200     return;
10201 
10202   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10203   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10204 
10205   // The argument and parameter are the same kind.  Check if they are the right
10206   // size.
10207   if (ArgValueKind == ParamValueKind) {
10208     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10209       return;
10210 
10211     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10212     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10213         << FDecl << ArgType << ParamType;
10214 
10215     if (NewAbsKind == 0)
10216       return;
10217 
10218     emitReplacement(*this, Call->getExprLoc(),
10219                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10220     return;
10221   }
10222 
10223   // ArgValueKind != ParamValueKind
10224   // The wrong type of absolute value function was used.  Attempt to find the
10225   // proper one.
10226   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10227   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10228   if (NewAbsKind == 0)
10229     return;
10230 
10231   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10232       << FDecl << ParamValueKind << ArgValueKind;
10233 
10234   emitReplacement(*this, Call->getExprLoc(),
10235                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10236 }
10237 
10238 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10239 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10240                                 const FunctionDecl *FDecl) {
10241   if (!Call || !FDecl) return;
10242 
10243   // Ignore template specializations and macros.
10244   if (inTemplateInstantiation()) return;
10245   if (Call->getExprLoc().isMacroID()) return;
10246 
10247   // Only care about the one template argument, two function parameter std::max
10248   if (Call->getNumArgs() != 2) return;
10249   if (!IsStdFunction(FDecl, "max")) return;
10250   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10251   if (!ArgList) return;
10252   if (ArgList->size() != 1) return;
10253 
10254   // Check that template type argument is unsigned integer.
10255   const auto& TA = ArgList->get(0);
10256   if (TA.getKind() != TemplateArgument::Type) return;
10257   QualType ArgType = TA.getAsType();
10258   if (!ArgType->isUnsignedIntegerType()) return;
10259 
10260   // See if either argument is a literal zero.
10261   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10262     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10263     if (!MTE) return false;
10264     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10265     if (!Num) return false;
10266     if (Num->getValue() != 0) return false;
10267     return true;
10268   };
10269 
10270   const Expr *FirstArg = Call->getArg(0);
10271   const Expr *SecondArg = Call->getArg(1);
10272   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10273   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10274 
10275   // Only warn when exactly one argument is zero.
10276   if (IsFirstArgZero == IsSecondArgZero) return;
10277 
10278   SourceRange FirstRange = FirstArg->getSourceRange();
10279   SourceRange SecondRange = SecondArg->getSourceRange();
10280 
10281   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10282 
10283   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10284       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10285 
10286   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10287   SourceRange RemovalRange;
10288   if (IsFirstArgZero) {
10289     RemovalRange = SourceRange(FirstRange.getBegin(),
10290                                SecondRange.getBegin().getLocWithOffset(-1));
10291   } else {
10292     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10293                                SecondRange.getEnd());
10294   }
10295 
10296   Diag(Call->getExprLoc(), diag::note_remove_max_call)
10297         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10298         << FixItHint::CreateRemoval(RemovalRange);
10299 }
10300 
10301 //===--- CHECK: Standard memory functions ---------------------------------===//
10302 
10303 /// Takes the expression passed to the size_t parameter of functions
10304 /// such as memcmp, strncat, etc and warns if it's a comparison.
10305 ///
10306 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10307 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10308                                            IdentifierInfo *FnName,
10309                                            SourceLocation FnLoc,
10310                                            SourceLocation RParenLoc) {
10311   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10312   if (!Size)
10313     return false;
10314 
10315   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10316   if (!Size->isComparisonOp() && !Size->isLogicalOp())
10317     return false;
10318 
10319   SourceRange SizeRange = Size->getSourceRange();
10320   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10321       << SizeRange << FnName;
10322   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10323       << FnName
10324       << FixItHint::CreateInsertion(
10325              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10326       << FixItHint::CreateRemoval(RParenLoc);
10327   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10328       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10329       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10330                                     ")");
10331 
10332   return true;
10333 }
10334 
10335 /// Determine whether the given type is or contains a dynamic class type
10336 /// (e.g., whether it has a vtable).
10337 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10338                                                      bool &IsContained) {
10339   // Look through array types while ignoring qualifiers.
10340   const Type *Ty = T->getBaseElementTypeUnsafe();
10341   IsContained = false;
10342 
10343   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10344   RD = RD ? RD->getDefinition() : nullptr;
10345   if (!RD || RD->isInvalidDecl())
10346     return nullptr;
10347 
10348   if (RD->isDynamicClass())
10349     return RD;
10350 
10351   // Check all the fields.  If any bases were dynamic, the class is dynamic.
10352   // It's impossible for a class to transitively contain itself by value, so
10353   // infinite recursion is impossible.
10354   for (auto *FD : RD->fields()) {
10355     bool SubContained;
10356     if (const CXXRecordDecl *ContainedRD =
10357             getContainedDynamicClass(FD->getType(), SubContained)) {
10358       IsContained = true;
10359       return ContainedRD;
10360     }
10361   }
10362 
10363   return nullptr;
10364 }
10365 
10366 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10367   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10368     if (Unary->getKind() == UETT_SizeOf)
10369       return Unary;
10370   return nullptr;
10371 }
10372 
10373 /// If E is a sizeof expression, returns its argument expression,
10374 /// otherwise returns NULL.
10375 static const Expr *getSizeOfExprArg(const Expr *E) {
10376   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10377     if (!SizeOf->isArgumentType())
10378       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10379   return nullptr;
10380 }
10381 
10382 /// If E is a sizeof expression, returns its argument type.
10383 static QualType getSizeOfArgType(const Expr *E) {
10384   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10385     return SizeOf->getTypeOfArgument();
10386   return QualType();
10387 }
10388 
10389 namespace {
10390 
10391 struct SearchNonTrivialToInitializeField
10392     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10393   using Super =
10394       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10395 
10396   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10397 
10398   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10399                      SourceLocation SL) {
10400     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10401       asDerived().visitArray(PDIK, AT, SL);
10402       return;
10403     }
10404 
10405     Super::visitWithKind(PDIK, FT, SL);
10406   }
10407 
10408   void visitARCStrong(QualType FT, SourceLocation SL) {
10409     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10410   }
10411   void visitARCWeak(QualType FT, SourceLocation SL) {
10412     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10413   }
10414   void visitStruct(QualType FT, SourceLocation SL) {
10415     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10416       visit(FD->getType(), FD->getLocation());
10417   }
10418   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10419                   const ArrayType *AT, SourceLocation SL) {
10420     visit(getContext().getBaseElementType(AT), SL);
10421   }
10422   void visitTrivial(QualType FT, SourceLocation SL) {}
10423 
10424   static void diag(QualType RT, const Expr *E, Sema &S) {
10425     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10426   }
10427 
10428   ASTContext &getContext() { return S.getASTContext(); }
10429 
10430   const Expr *E;
10431   Sema &S;
10432 };
10433 
10434 struct SearchNonTrivialToCopyField
10435     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10436   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10437 
10438   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10439 
10440   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10441                      SourceLocation SL) {
10442     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10443       asDerived().visitArray(PCK, AT, SL);
10444       return;
10445     }
10446 
10447     Super::visitWithKind(PCK, FT, SL);
10448   }
10449 
10450   void visitARCStrong(QualType FT, SourceLocation SL) {
10451     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10452   }
10453   void visitARCWeak(QualType FT, SourceLocation SL) {
10454     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10455   }
10456   void visitStruct(QualType FT, SourceLocation SL) {
10457     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10458       visit(FD->getType(), FD->getLocation());
10459   }
10460   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10461                   SourceLocation SL) {
10462     visit(getContext().getBaseElementType(AT), SL);
10463   }
10464   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10465                 SourceLocation SL) {}
10466   void visitTrivial(QualType FT, SourceLocation SL) {}
10467   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10468 
10469   static void diag(QualType RT, const Expr *E, Sema &S) {
10470     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10471   }
10472 
10473   ASTContext &getContext() { return S.getASTContext(); }
10474 
10475   const Expr *E;
10476   Sema &S;
10477 };
10478 
10479 }
10480 
10481 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10482 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10483   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10484 
10485   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10486     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10487       return false;
10488 
10489     return doesExprLikelyComputeSize(BO->getLHS()) ||
10490            doesExprLikelyComputeSize(BO->getRHS());
10491   }
10492 
10493   return getAsSizeOfExpr(SizeofExpr) != nullptr;
10494 }
10495 
10496 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10497 ///
10498 /// \code
10499 ///   #define MACRO 0
10500 ///   foo(MACRO);
10501 ///   foo(0);
10502 /// \endcode
10503 ///
10504 /// This should return true for the first call to foo, but not for the second
10505 /// (regardless of whether foo is a macro or function).
10506 static bool isArgumentExpandedFromMacro(SourceManager &SM,
10507                                         SourceLocation CallLoc,
10508                                         SourceLocation ArgLoc) {
10509   if (!CallLoc.isMacroID())
10510     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10511 
10512   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10513          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10514 }
10515 
10516 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10517 /// last two arguments transposed.
10518 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10519   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10520     return;
10521 
10522   const Expr *SizeArg =
10523     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10524 
10525   auto isLiteralZero = [](const Expr *E) {
10526     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10527   };
10528 
10529   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10530   SourceLocation CallLoc = Call->getRParenLoc();
10531   SourceManager &SM = S.getSourceManager();
10532   if (isLiteralZero(SizeArg) &&
10533       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10534 
10535     SourceLocation DiagLoc = SizeArg->getExprLoc();
10536 
10537     // Some platforms #define bzero to __builtin_memset. See if this is the
10538     // case, and if so, emit a better diagnostic.
10539     if (BId == Builtin::BIbzero ||
10540         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10541                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
10542       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10543       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10544     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10545       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10546       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10547     }
10548     return;
10549   }
10550 
10551   // If the second argument to a memset is a sizeof expression and the third
10552   // isn't, this is also likely an error. This should catch
10553   // 'memset(buf, sizeof(buf), 0xff)'.
10554   if (BId == Builtin::BImemset &&
10555       doesExprLikelyComputeSize(Call->getArg(1)) &&
10556       !doesExprLikelyComputeSize(Call->getArg(2))) {
10557     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10558     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10559     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10560     return;
10561   }
10562 }
10563 
10564 /// Check for dangerous or invalid arguments to memset().
10565 ///
10566 /// This issues warnings on known problematic, dangerous or unspecified
10567 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10568 /// function calls.
10569 ///
10570 /// \param Call The call expression to diagnose.
10571 void Sema::CheckMemaccessArguments(const CallExpr *Call,
10572                                    unsigned BId,
10573                                    IdentifierInfo *FnName) {
10574   assert(BId != 0);
10575 
10576   // It is possible to have a non-standard definition of memset.  Validate
10577   // we have enough arguments, and if not, abort further checking.
10578   unsigned ExpectedNumArgs =
10579       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10580   if (Call->getNumArgs() < ExpectedNumArgs)
10581     return;
10582 
10583   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10584                       BId == Builtin::BIstrndup ? 1 : 2);
10585   unsigned LenArg =
10586       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10587   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10588 
10589   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10590                                      Call->getBeginLoc(), Call->getRParenLoc()))
10591     return;
10592 
10593   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10594   CheckMemaccessSize(*this, BId, Call);
10595 
10596   // We have special checking when the length is a sizeof expression.
10597   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10598   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10599   llvm::FoldingSetNodeID SizeOfArgID;
10600 
10601   // Although widely used, 'bzero' is not a standard function. Be more strict
10602   // with the argument types before allowing diagnostics and only allow the
10603   // form bzero(ptr, sizeof(...)).
10604   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10605   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10606     return;
10607 
10608   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10609     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10610     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10611 
10612     QualType DestTy = Dest->getType();
10613     QualType PointeeTy;
10614     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10615       PointeeTy = DestPtrTy->getPointeeType();
10616 
10617       // Never warn about void type pointers. This can be used to suppress
10618       // false positives.
10619       if (PointeeTy->isVoidType())
10620         continue;
10621 
10622       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10623       // actually comparing the expressions for equality. Because computing the
10624       // expression IDs can be expensive, we only do this if the diagnostic is
10625       // enabled.
10626       if (SizeOfArg &&
10627           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10628                            SizeOfArg->getExprLoc())) {
10629         // We only compute IDs for expressions if the warning is enabled, and
10630         // cache the sizeof arg's ID.
10631         if (SizeOfArgID == llvm::FoldingSetNodeID())
10632           SizeOfArg->Profile(SizeOfArgID, Context, true);
10633         llvm::FoldingSetNodeID DestID;
10634         Dest->Profile(DestID, Context, true);
10635         if (DestID == SizeOfArgID) {
10636           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10637           //       over sizeof(src) as well.
10638           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10639           StringRef ReadableName = FnName->getName();
10640 
10641           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10642             if (UnaryOp->getOpcode() == UO_AddrOf)
10643               ActionIdx = 1; // If its an address-of operator, just remove it.
10644           if (!PointeeTy->isIncompleteType() &&
10645               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10646             ActionIdx = 2; // If the pointee's size is sizeof(char),
10647                            // suggest an explicit length.
10648 
10649           // If the function is defined as a builtin macro, do not show macro
10650           // expansion.
10651           SourceLocation SL = SizeOfArg->getExprLoc();
10652           SourceRange DSR = Dest->getSourceRange();
10653           SourceRange SSR = SizeOfArg->getSourceRange();
10654           SourceManager &SM = getSourceManager();
10655 
10656           if (SM.isMacroArgExpansion(SL)) {
10657             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10658             SL = SM.getSpellingLoc(SL);
10659             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10660                              SM.getSpellingLoc(DSR.getEnd()));
10661             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10662                              SM.getSpellingLoc(SSR.getEnd()));
10663           }
10664 
10665           DiagRuntimeBehavior(SL, SizeOfArg,
10666                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10667                                 << ReadableName
10668                                 << PointeeTy
10669                                 << DestTy
10670                                 << DSR
10671                                 << SSR);
10672           DiagRuntimeBehavior(SL, SizeOfArg,
10673                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10674                                 << ActionIdx
10675                                 << SSR);
10676 
10677           break;
10678         }
10679       }
10680 
10681       // Also check for cases where the sizeof argument is the exact same
10682       // type as the memory argument, and where it points to a user-defined
10683       // record type.
10684       if (SizeOfArgTy != QualType()) {
10685         if (PointeeTy->isRecordType() &&
10686             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10687           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10688                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
10689                                 << FnName << SizeOfArgTy << ArgIdx
10690                                 << PointeeTy << Dest->getSourceRange()
10691                                 << LenExpr->getSourceRange());
10692           break;
10693         }
10694       }
10695     } else if (DestTy->isArrayType()) {
10696       PointeeTy = DestTy;
10697     }
10698 
10699     if (PointeeTy == QualType())
10700       continue;
10701 
10702     // Always complain about dynamic classes.
10703     bool IsContained;
10704     if (const CXXRecordDecl *ContainedRD =
10705             getContainedDynamicClass(PointeeTy, IsContained)) {
10706 
10707       unsigned OperationType = 0;
10708       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10709       // "overwritten" if we're warning about the destination for any call
10710       // but memcmp; otherwise a verb appropriate to the call.
10711       if (ArgIdx != 0 || IsCmp) {
10712         if (BId == Builtin::BImemcpy)
10713           OperationType = 1;
10714         else if(BId == Builtin::BImemmove)
10715           OperationType = 2;
10716         else if (IsCmp)
10717           OperationType = 3;
10718       }
10719 
10720       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10721                           PDiag(diag::warn_dyn_class_memaccess)
10722                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10723                               << IsContained << ContainedRD << OperationType
10724                               << Call->getCallee()->getSourceRange());
10725     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10726              BId != Builtin::BImemset)
10727       DiagRuntimeBehavior(
10728         Dest->getExprLoc(), Dest,
10729         PDiag(diag::warn_arc_object_memaccess)
10730           << ArgIdx << FnName << PointeeTy
10731           << Call->getCallee()->getSourceRange());
10732     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10733       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10734           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10735         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10736                             PDiag(diag::warn_cstruct_memaccess)
10737                                 << ArgIdx << FnName << PointeeTy << 0);
10738         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10739       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10740                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10741         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10742                             PDiag(diag::warn_cstruct_memaccess)
10743                                 << ArgIdx << FnName << PointeeTy << 1);
10744         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10745       } else {
10746         continue;
10747       }
10748     } else
10749       continue;
10750 
10751     DiagRuntimeBehavior(
10752       Dest->getExprLoc(), Dest,
10753       PDiag(diag::note_bad_memaccess_silence)
10754         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10755     break;
10756   }
10757 }
10758 
10759 // A little helper routine: ignore addition and subtraction of integer literals.
10760 // This intentionally does not ignore all integer constant expressions because
10761 // we don't want to remove sizeof().
10762 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10763   Ex = Ex->IgnoreParenCasts();
10764 
10765   while (true) {
10766     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10767     if (!BO || !BO->isAdditiveOp())
10768       break;
10769 
10770     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10771     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10772 
10773     if (isa<IntegerLiteral>(RHS))
10774       Ex = LHS;
10775     else if (isa<IntegerLiteral>(LHS))
10776       Ex = RHS;
10777     else
10778       break;
10779   }
10780 
10781   return Ex;
10782 }
10783 
10784 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10785                                                       ASTContext &Context) {
10786   // Only handle constant-sized or VLAs, but not flexible members.
10787   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10788     // Only issue the FIXIT for arrays of size > 1.
10789     if (CAT->getSize().getSExtValue() <= 1)
10790       return false;
10791   } else if (!Ty->isVariableArrayType()) {
10792     return false;
10793   }
10794   return true;
10795 }
10796 
10797 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10798 // be the size of the source, instead of the destination.
10799 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10800                                     IdentifierInfo *FnName) {
10801 
10802   // Don't crash if the user has the wrong number of arguments
10803   unsigned NumArgs = Call->getNumArgs();
10804   if ((NumArgs != 3) && (NumArgs != 4))
10805     return;
10806 
10807   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10808   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10809   const Expr *CompareWithSrc = nullptr;
10810 
10811   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10812                                      Call->getBeginLoc(), Call->getRParenLoc()))
10813     return;
10814 
10815   // Look for 'strlcpy(dst, x, sizeof(x))'
10816   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10817     CompareWithSrc = Ex;
10818   else {
10819     // Look for 'strlcpy(dst, x, strlen(x))'
10820     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10821       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10822           SizeCall->getNumArgs() == 1)
10823         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10824     }
10825   }
10826 
10827   if (!CompareWithSrc)
10828     return;
10829 
10830   // Determine if the argument to sizeof/strlen is equal to the source
10831   // argument.  In principle there's all kinds of things you could do
10832   // here, for instance creating an == expression and evaluating it with
10833   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10834   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10835   if (!SrcArgDRE)
10836     return;
10837 
10838   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10839   if (!CompareWithSrcDRE ||
10840       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10841     return;
10842 
10843   const Expr *OriginalSizeArg = Call->getArg(2);
10844   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10845       << OriginalSizeArg->getSourceRange() << FnName;
10846 
10847   // Output a FIXIT hint if the destination is an array (rather than a
10848   // pointer to an array).  This could be enhanced to handle some
10849   // pointers if we know the actual size, like if DstArg is 'array+2'
10850   // we could say 'sizeof(array)-2'.
10851   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10852   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10853     return;
10854 
10855   SmallString<128> sizeString;
10856   llvm::raw_svector_ostream OS(sizeString);
10857   OS << "sizeof(";
10858   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10859   OS << ")";
10860 
10861   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10862       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10863                                       OS.str());
10864 }
10865 
10866 /// Check if two expressions refer to the same declaration.
10867 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10868   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10869     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10870       return D1->getDecl() == D2->getDecl();
10871   return false;
10872 }
10873 
10874 static const Expr *getStrlenExprArg(const Expr *E) {
10875   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10876     const FunctionDecl *FD = CE->getDirectCallee();
10877     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10878       return nullptr;
10879     return CE->getArg(0)->IgnoreParenCasts();
10880   }
10881   return nullptr;
10882 }
10883 
10884 // Warn on anti-patterns as the 'size' argument to strncat.
10885 // The correct size argument should look like following:
10886 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10887 void Sema::CheckStrncatArguments(const CallExpr *CE,
10888                                  IdentifierInfo *FnName) {
10889   // Don't crash if the user has the wrong number of arguments.
10890   if (CE->getNumArgs() < 3)
10891     return;
10892   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10893   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10894   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10895 
10896   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10897                                      CE->getRParenLoc()))
10898     return;
10899 
10900   // Identify common expressions, which are wrongly used as the size argument
10901   // to strncat and may lead to buffer overflows.
10902   unsigned PatternType = 0;
10903   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10904     // - sizeof(dst)
10905     if (referToTheSameDecl(SizeOfArg, DstArg))
10906       PatternType = 1;
10907     // - sizeof(src)
10908     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10909       PatternType = 2;
10910   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10911     if (BE->getOpcode() == BO_Sub) {
10912       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10913       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10914       // - sizeof(dst) - strlen(dst)
10915       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10916           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10917         PatternType = 1;
10918       // - sizeof(src) - (anything)
10919       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10920         PatternType = 2;
10921     }
10922   }
10923 
10924   if (PatternType == 0)
10925     return;
10926 
10927   // Generate the diagnostic.
10928   SourceLocation SL = LenArg->getBeginLoc();
10929   SourceRange SR = LenArg->getSourceRange();
10930   SourceManager &SM = getSourceManager();
10931 
10932   // If the function is defined as a builtin macro, do not show macro expansion.
10933   if (SM.isMacroArgExpansion(SL)) {
10934     SL = SM.getSpellingLoc(SL);
10935     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10936                      SM.getSpellingLoc(SR.getEnd()));
10937   }
10938 
10939   // Check if the destination is an array (rather than a pointer to an array).
10940   QualType DstTy = DstArg->getType();
10941   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10942                                                                     Context);
10943   if (!isKnownSizeArray) {
10944     if (PatternType == 1)
10945       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10946     else
10947       Diag(SL, diag::warn_strncat_src_size) << SR;
10948     return;
10949   }
10950 
10951   if (PatternType == 1)
10952     Diag(SL, diag::warn_strncat_large_size) << SR;
10953   else
10954     Diag(SL, diag::warn_strncat_src_size) << SR;
10955 
10956   SmallString<128> sizeString;
10957   llvm::raw_svector_ostream OS(sizeString);
10958   OS << "sizeof(";
10959   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10960   OS << ") - ";
10961   OS << "strlen(";
10962   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10963   OS << ") - 1";
10964 
10965   Diag(SL, diag::note_strncat_wrong_size)
10966     << FixItHint::CreateReplacement(SR, OS.str());
10967 }
10968 
10969 namespace {
10970 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10971                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10972   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
10973     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10974         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
10975     return;
10976   }
10977 }
10978 
10979 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10980                                  const UnaryOperator *UnaryExpr) {
10981   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
10982     const Decl *D = Lvalue->getDecl();
10983     if (isa<DeclaratorDecl>(D))
10984       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
10985         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
10986   }
10987 
10988   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10989     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10990                                       Lvalue->getMemberDecl());
10991 }
10992 
10993 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
10994                             const UnaryOperator *UnaryExpr) {
10995   const auto *Lambda = dyn_cast<LambdaExpr>(
10996       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
10997   if (!Lambda)
10998     return;
10999 
11000   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11001       << CalleeName << 2 /*object: lambda expression*/;
11002 }
11003 
11004 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11005                                   const DeclRefExpr *Lvalue) {
11006   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11007   if (Var == nullptr)
11008     return;
11009 
11010   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11011       << CalleeName << 0 /*object: */ << Var;
11012 }
11013 
11014 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11015                             const CastExpr *Cast) {
11016   SmallString<128> SizeString;
11017   llvm::raw_svector_ostream OS(SizeString);
11018 
11019   clang::CastKind Kind = Cast->getCastKind();
11020   if (Kind == clang::CK_BitCast &&
11021       !Cast->getSubExpr()->getType()->isFunctionPointerType())
11022     return;
11023   if (Kind == clang::CK_IntegralToPointer &&
11024       !isa<IntegerLiteral>(
11025           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11026     return;
11027 
11028   switch (Cast->getCastKind()) {
11029   case clang::CK_BitCast:
11030   case clang::CK_IntegralToPointer:
11031   case clang::CK_FunctionToPointerDecay:
11032     OS << '\'';
11033     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11034     OS << '\'';
11035     break;
11036   default:
11037     return;
11038   }
11039 
11040   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11041       << CalleeName << 0 /*object: */ << OS.str();
11042 }
11043 } // namespace
11044 
11045 /// Alerts the user that they are attempting to free a non-malloc'd object.
11046 void Sema::CheckFreeArguments(const CallExpr *E) {
11047   const std::string CalleeName =
11048       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11049 
11050   { // Prefer something that doesn't involve a cast to make things simpler.
11051     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11052     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11053       switch (UnaryExpr->getOpcode()) {
11054       case UnaryOperator::Opcode::UO_AddrOf:
11055         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11056       case UnaryOperator::Opcode::UO_Plus:
11057         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11058       default:
11059         break;
11060       }
11061 
11062     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11063       if (Lvalue->getType()->isArrayType())
11064         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11065 
11066     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11067       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11068           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11069       return;
11070     }
11071 
11072     if (isa<BlockExpr>(Arg)) {
11073       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11074           << CalleeName << 1 /*object: block*/;
11075       return;
11076     }
11077   }
11078   // Maybe the cast was important, check after the other cases.
11079   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11080     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11081 }
11082 
11083 void
11084 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11085                          SourceLocation ReturnLoc,
11086                          bool isObjCMethod,
11087                          const AttrVec *Attrs,
11088                          const FunctionDecl *FD) {
11089   // Check if the return value is null but should not be.
11090   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11091        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11092       CheckNonNullExpr(*this, RetValExp))
11093     Diag(ReturnLoc, diag::warn_null_ret)
11094       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11095 
11096   // C++11 [basic.stc.dynamic.allocation]p4:
11097   //   If an allocation function declared with a non-throwing
11098   //   exception-specification fails to allocate storage, it shall return
11099   //   a null pointer. Any other allocation function that fails to allocate
11100   //   storage shall indicate failure only by throwing an exception [...]
11101   if (FD) {
11102     OverloadedOperatorKind Op = FD->getOverloadedOperator();
11103     if (Op == OO_New || Op == OO_Array_New) {
11104       const FunctionProtoType *Proto
11105         = FD->getType()->castAs<FunctionProtoType>();
11106       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11107           CheckNonNullExpr(*this, RetValExp))
11108         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11109           << FD << getLangOpts().CPlusPlus11;
11110     }
11111   }
11112 
11113   // PPC MMA non-pointer types are not allowed as return type. Checking the type
11114   // here prevent the user from using a PPC MMA type as trailing return type.
11115   if (Context.getTargetInfo().getTriple().isPPC64())
11116     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11117 }
11118 
11119 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
11120 
11121 /// Check for comparisons of floating point operands using != and ==.
11122 /// Issue a warning if these are no self-comparisons, as they are not likely
11123 /// to do what the programmer intended.
11124 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
11125   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11126   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11127 
11128   // Special case: check for x == x (which is OK).
11129   // Do not emit warnings for such cases.
11130   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11131     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11132       if (DRL->getDecl() == DRR->getDecl())
11133         return;
11134 
11135   // Special case: check for comparisons against literals that can be exactly
11136   //  represented by APFloat.  In such cases, do not emit a warning.  This
11137   //  is a heuristic: often comparison against such literals are used to
11138   //  detect if a value in a variable has not changed.  This clearly can
11139   //  lead to false negatives.
11140   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11141     if (FLL->isExact())
11142       return;
11143   } else
11144     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11145       if (FLR->isExact())
11146         return;
11147 
11148   // Check for comparisons with builtin types.
11149   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11150     if (CL->getBuiltinCallee())
11151       return;
11152 
11153   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11154     if (CR->getBuiltinCallee())
11155       return;
11156 
11157   // Emit the diagnostic.
11158   Diag(Loc, diag::warn_floatingpoint_eq)
11159     << LHS->getSourceRange() << RHS->getSourceRange();
11160 }
11161 
11162 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11163 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11164 
11165 namespace {
11166 
11167 /// Structure recording the 'active' range of an integer-valued
11168 /// expression.
11169 struct IntRange {
11170   /// The number of bits active in the int. Note that this includes exactly one
11171   /// sign bit if !NonNegative.
11172   unsigned Width;
11173 
11174   /// True if the int is known not to have negative values. If so, all leading
11175   /// bits before Width are known zero, otherwise they are known to be the
11176   /// same as the MSB within Width.
11177   bool NonNegative;
11178 
11179   IntRange(unsigned Width, bool NonNegative)
11180       : Width(Width), NonNegative(NonNegative) {}
11181 
11182   /// Number of bits excluding the sign bit.
11183   unsigned valueBits() const {
11184     return NonNegative ? Width : Width - 1;
11185   }
11186 
11187   /// Returns the range of the bool type.
11188   static IntRange forBoolType() {
11189     return IntRange(1, true);
11190   }
11191 
11192   /// Returns the range of an opaque value of the given integral type.
11193   static IntRange forValueOfType(ASTContext &C, QualType T) {
11194     return forValueOfCanonicalType(C,
11195                           T->getCanonicalTypeInternal().getTypePtr());
11196   }
11197 
11198   /// Returns the range of an opaque value of a canonical integral type.
11199   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11200     assert(T->isCanonicalUnqualified());
11201 
11202     if (const VectorType *VT = dyn_cast<VectorType>(T))
11203       T = VT->getElementType().getTypePtr();
11204     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11205       T = CT->getElementType().getTypePtr();
11206     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11207       T = AT->getValueType().getTypePtr();
11208 
11209     if (!C.getLangOpts().CPlusPlus) {
11210       // For enum types in C code, use the underlying datatype.
11211       if (const EnumType *ET = dyn_cast<EnumType>(T))
11212         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11213     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11214       // For enum types in C++, use the known bit width of the enumerators.
11215       EnumDecl *Enum = ET->getDecl();
11216       // In C++11, enums can have a fixed underlying type. Use this type to
11217       // compute the range.
11218       if (Enum->isFixed()) {
11219         return IntRange(C.getIntWidth(QualType(T, 0)),
11220                         !ET->isSignedIntegerOrEnumerationType());
11221       }
11222 
11223       unsigned NumPositive = Enum->getNumPositiveBits();
11224       unsigned NumNegative = Enum->getNumNegativeBits();
11225 
11226       if (NumNegative == 0)
11227         return IntRange(NumPositive, true/*NonNegative*/);
11228       else
11229         return IntRange(std::max(NumPositive + 1, NumNegative),
11230                         false/*NonNegative*/);
11231     }
11232 
11233     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11234       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11235 
11236     const BuiltinType *BT = cast<BuiltinType>(T);
11237     assert(BT->isInteger());
11238 
11239     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11240   }
11241 
11242   /// Returns the "target" range of a canonical integral type, i.e.
11243   /// the range of values expressible in the type.
11244   ///
11245   /// This matches forValueOfCanonicalType except that enums have the
11246   /// full range of their type, not the range of their enumerators.
11247   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11248     assert(T->isCanonicalUnqualified());
11249 
11250     if (const VectorType *VT = dyn_cast<VectorType>(T))
11251       T = VT->getElementType().getTypePtr();
11252     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11253       T = CT->getElementType().getTypePtr();
11254     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11255       T = AT->getValueType().getTypePtr();
11256     if (const EnumType *ET = dyn_cast<EnumType>(T))
11257       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11258 
11259     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11260       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11261 
11262     const BuiltinType *BT = cast<BuiltinType>(T);
11263     assert(BT->isInteger());
11264 
11265     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11266   }
11267 
11268   /// Returns the supremum of two ranges: i.e. their conservative merge.
11269   static IntRange join(IntRange L, IntRange R) {
11270     bool Unsigned = L.NonNegative && R.NonNegative;
11271     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11272                     L.NonNegative && R.NonNegative);
11273   }
11274 
11275   /// Return the range of a bitwise-AND of the two ranges.
11276   static IntRange bit_and(IntRange L, IntRange R) {
11277     unsigned Bits = std::max(L.Width, R.Width);
11278     bool NonNegative = false;
11279     if (L.NonNegative) {
11280       Bits = std::min(Bits, L.Width);
11281       NonNegative = true;
11282     }
11283     if (R.NonNegative) {
11284       Bits = std::min(Bits, R.Width);
11285       NonNegative = true;
11286     }
11287     return IntRange(Bits, NonNegative);
11288   }
11289 
11290   /// Return the range of a sum of the two ranges.
11291   static IntRange sum(IntRange L, IntRange R) {
11292     bool Unsigned = L.NonNegative && R.NonNegative;
11293     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11294                     Unsigned);
11295   }
11296 
11297   /// Return the range of a difference of the two ranges.
11298   static IntRange difference(IntRange L, IntRange R) {
11299     // We need a 1-bit-wider range if:
11300     //   1) LHS can be negative: least value can be reduced.
11301     //   2) RHS can be negative: greatest value can be increased.
11302     bool CanWiden = !L.NonNegative || !R.NonNegative;
11303     bool Unsigned = L.NonNegative && R.Width == 0;
11304     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11305                         !Unsigned,
11306                     Unsigned);
11307   }
11308 
11309   /// Return the range of a product of the two ranges.
11310   static IntRange product(IntRange L, IntRange R) {
11311     // If both LHS and RHS can be negative, we can form
11312     //   -2^L * -2^R = 2^(L + R)
11313     // which requires L + R + 1 value bits to represent.
11314     bool CanWiden = !L.NonNegative && !R.NonNegative;
11315     bool Unsigned = L.NonNegative && R.NonNegative;
11316     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11317                     Unsigned);
11318   }
11319 
11320   /// Return the range of a remainder operation between the two ranges.
11321   static IntRange rem(IntRange L, IntRange R) {
11322     // The result of a remainder can't be larger than the result of
11323     // either side. The sign of the result is the sign of the LHS.
11324     bool Unsigned = L.NonNegative;
11325     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11326                     Unsigned);
11327   }
11328 };
11329 
11330 } // namespace
11331 
11332 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11333                               unsigned MaxWidth) {
11334   if (value.isSigned() && value.isNegative())
11335     return IntRange(value.getMinSignedBits(), false);
11336 
11337   if (value.getBitWidth() > MaxWidth)
11338     value = value.trunc(MaxWidth);
11339 
11340   // isNonNegative() just checks the sign bit without considering
11341   // signedness.
11342   return IntRange(value.getActiveBits(), true);
11343 }
11344 
11345 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11346                               unsigned MaxWidth) {
11347   if (result.isInt())
11348     return GetValueRange(C, result.getInt(), MaxWidth);
11349 
11350   if (result.isVector()) {
11351     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11352     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11353       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11354       R = IntRange::join(R, El);
11355     }
11356     return R;
11357   }
11358 
11359   if (result.isComplexInt()) {
11360     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11361     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11362     return IntRange::join(R, I);
11363   }
11364 
11365   // This can happen with lossless casts to intptr_t of "based" lvalues.
11366   // Assume it might use arbitrary bits.
11367   // FIXME: The only reason we need to pass the type in here is to get
11368   // the sign right on this one case.  It would be nice if APValue
11369   // preserved this.
11370   assert(result.isLValue() || result.isAddrLabelDiff());
11371   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11372 }
11373 
11374 static QualType GetExprType(const Expr *E) {
11375   QualType Ty = E->getType();
11376   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11377     Ty = AtomicRHS->getValueType();
11378   return Ty;
11379 }
11380 
11381 /// Pseudo-evaluate the given integer expression, estimating the
11382 /// range of values it might take.
11383 ///
11384 /// \param MaxWidth The width to which the value will be truncated.
11385 /// \param Approximate If \c true, return a likely range for the result: in
11386 ///        particular, assume that arithmetic on narrower types doesn't leave
11387 ///        those types. If \c false, return a range including all possible
11388 ///        result values.
11389 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11390                              bool InConstantContext, bool Approximate) {
11391   E = E->IgnoreParens();
11392 
11393   // Try a full evaluation first.
11394   Expr::EvalResult result;
11395   if (E->EvaluateAsRValue(result, C, InConstantContext))
11396     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11397 
11398   // I think we only want to look through implicit casts here; if the
11399   // user has an explicit widening cast, we should treat the value as
11400   // being of the new, wider type.
11401   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11402     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11403       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11404                           Approximate);
11405 
11406     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11407 
11408     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11409                          CE->getCastKind() == CK_BooleanToSignedIntegral;
11410 
11411     // Assume that non-integer casts can span the full range of the type.
11412     if (!isIntegerCast)
11413       return OutputTypeRange;
11414 
11415     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11416                                      std::min(MaxWidth, OutputTypeRange.Width),
11417                                      InConstantContext, Approximate);
11418 
11419     // Bail out if the subexpr's range is as wide as the cast type.
11420     if (SubRange.Width >= OutputTypeRange.Width)
11421       return OutputTypeRange;
11422 
11423     // Otherwise, we take the smaller width, and we're non-negative if
11424     // either the output type or the subexpr is.
11425     return IntRange(SubRange.Width,
11426                     SubRange.NonNegative || OutputTypeRange.NonNegative);
11427   }
11428 
11429   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11430     // If we can fold the condition, just take that operand.
11431     bool CondResult;
11432     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11433       return GetExprRange(C,
11434                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11435                           MaxWidth, InConstantContext, Approximate);
11436 
11437     // Otherwise, conservatively merge.
11438     // GetExprRange requires an integer expression, but a throw expression
11439     // results in a void type.
11440     Expr *E = CO->getTrueExpr();
11441     IntRange L = E->getType()->isVoidType()
11442                      ? IntRange{0, true}
11443                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11444     E = CO->getFalseExpr();
11445     IntRange R = E->getType()->isVoidType()
11446                      ? IntRange{0, true}
11447                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11448     return IntRange::join(L, R);
11449   }
11450 
11451   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11452     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11453 
11454     switch (BO->getOpcode()) {
11455     case BO_Cmp:
11456       llvm_unreachable("builtin <=> should have class type");
11457 
11458     // Boolean-valued operations are single-bit and positive.
11459     case BO_LAnd:
11460     case BO_LOr:
11461     case BO_LT:
11462     case BO_GT:
11463     case BO_LE:
11464     case BO_GE:
11465     case BO_EQ:
11466     case BO_NE:
11467       return IntRange::forBoolType();
11468 
11469     // The type of the assignments is the type of the LHS, so the RHS
11470     // is not necessarily the same type.
11471     case BO_MulAssign:
11472     case BO_DivAssign:
11473     case BO_RemAssign:
11474     case BO_AddAssign:
11475     case BO_SubAssign:
11476     case BO_XorAssign:
11477     case BO_OrAssign:
11478       // TODO: bitfields?
11479       return IntRange::forValueOfType(C, GetExprType(E));
11480 
11481     // Simple assignments just pass through the RHS, which will have
11482     // been coerced to the LHS type.
11483     case BO_Assign:
11484       // TODO: bitfields?
11485       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11486                           Approximate);
11487 
11488     // Operations with opaque sources are black-listed.
11489     case BO_PtrMemD:
11490     case BO_PtrMemI:
11491       return IntRange::forValueOfType(C, GetExprType(E));
11492 
11493     // Bitwise-and uses the *infinum* of the two source ranges.
11494     case BO_And:
11495     case BO_AndAssign:
11496       Combine = IntRange::bit_and;
11497       break;
11498 
11499     // Left shift gets black-listed based on a judgement call.
11500     case BO_Shl:
11501       // ...except that we want to treat '1 << (blah)' as logically
11502       // positive.  It's an important idiom.
11503       if (IntegerLiteral *I
11504             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11505         if (I->getValue() == 1) {
11506           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11507           return IntRange(R.Width, /*NonNegative*/ true);
11508         }
11509       }
11510       LLVM_FALLTHROUGH;
11511 
11512     case BO_ShlAssign:
11513       return IntRange::forValueOfType(C, GetExprType(E));
11514 
11515     // Right shift by a constant can narrow its left argument.
11516     case BO_Shr:
11517     case BO_ShrAssign: {
11518       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11519                                 Approximate);
11520 
11521       // If the shift amount is a positive constant, drop the width by
11522       // that much.
11523       if (Optional<llvm::APSInt> shift =
11524               BO->getRHS()->getIntegerConstantExpr(C)) {
11525         if (shift->isNonNegative()) {
11526           unsigned zext = shift->getZExtValue();
11527           if (zext >= L.Width)
11528             L.Width = (L.NonNegative ? 0 : 1);
11529           else
11530             L.Width -= zext;
11531         }
11532       }
11533 
11534       return L;
11535     }
11536 
11537     // Comma acts as its right operand.
11538     case BO_Comma:
11539       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11540                           Approximate);
11541 
11542     case BO_Add:
11543       if (!Approximate)
11544         Combine = IntRange::sum;
11545       break;
11546 
11547     case BO_Sub:
11548       if (BO->getLHS()->getType()->isPointerType())
11549         return IntRange::forValueOfType(C, GetExprType(E));
11550       if (!Approximate)
11551         Combine = IntRange::difference;
11552       break;
11553 
11554     case BO_Mul:
11555       if (!Approximate)
11556         Combine = IntRange::product;
11557       break;
11558 
11559     // The width of a division result is mostly determined by the size
11560     // of the LHS.
11561     case BO_Div: {
11562       // Don't 'pre-truncate' the operands.
11563       unsigned opWidth = C.getIntWidth(GetExprType(E));
11564       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11565                                 Approximate);
11566 
11567       // If the divisor is constant, use that.
11568       if (Optional<llvm::APSInt> divisor =
11569               BO->getRHS()->getIntegerConstantExpr(C)) {
11570         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11571         if (log2 >= L.Width)
11572           L.Width = (L.NonNegative ? 0 : 1);
11573         else
11574           L.Width = std::min(L.Width - log2, MaxWidth);
11575         return L;
11576       }
11577 
11578       // Otherwise, just use the LHS's width.
11579       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11580       // could be -1.
11581       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11582                                 Approximate);
11583       return IntRange(L.Width, L.NonNegative && R.NonNegative);
11584     }
11585 
11586     case BO_Rem:
11587       Combine = IntRange::rem;
11588       break;
11589 
11590     // The default behavior is okay for these.
11591     case BO_Xor:
11592     case BO_Or:
11593       break;
11594     }
11595 
11596     // Combine the two ranges, but limit the result to the type in which we
11597     // performed the computation.
11598     QualType T = GetExprType(E);
11599     unsigned opWidth = C.getIntWidth(T);
11600     IntRange L =
11601         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11602     IntRange R =
11603         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11604     IntRange C = Combine(L, R);
11605     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11606     C.Width = std::min(C.Width, MaxWidth);
11607     return C;
11608   }
11609 
11610   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11611     switch (UO->getOpcode()) {
11612     // Boolean-valued operations are white-listed.
11613     case UO_LNot:
11614       return IntRange::forBoolType();
11615 
11616     // Operations with opaque sources are black-listed.
11617     case UO_Deref:
11618     case UO_AddrOf: // should be impossible
11619       return IntRange::forValueOfType(C, GetExprType(E));
11620 
11621     default:
11622       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11623                           Approximate);
11624     }
11625   }
11626 
11627   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11628     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11629                         Approximate);
11630 
11631   if (const auto *BitField = E->getSourceBitField())
11632     return IntRange(BitField->getBitWidthValue(C),
11633                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
11634 
11635   return IntRange::forValueOfType(C, GetExprType(E));
11636 }
11637 
11638 static IntRange GetExprRange(ASTContext &C, const Expr *E,
11639                              bool InConstantContext, bool Approximate) {
11640   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11641                       Approximate);
11642 }
11643 
11644 /// Checks whether the given value, which currently has the given
11645 /// source semantics, has the same value when coerced through the
11646 /// target semantics.
11647 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11648                                  const llvm::fltSemantics &Src,
11649                                  const llvm::fltSemantics &Tgt) {
11650   llvm::APFloat truncated = value;
11651 
11652   bool ignored;
11653   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11654   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11655 
11656   return truncated.bitwiseIsEqual(value);
11657 }
11658 
11659 /// Checks whether the given value, which currently has the given
11660 /// source semantics, has the same value when coerced through the
11661 /// target semantics.
11662 ///
11663 /// The value might be a vector of floats (or a complex number).
11664 static bool IsSameFloatAfterCast(const APValue &value,
11665                                  const llvm::fltSemantics &Src,
11666                                  const llvm::fltSemantics &Tgt) {
11667   if (value.isFloat())
11668     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11669 
11670   if (value.isVector()) {
11671     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11672       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11673         return false;
11674     return true;
11675   }
11676 
11677   assert(value.isComplexFloat());
11678   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11679           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11680 }
11681 
11682 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11683                                        bool IsListInit = false);
11684 
11685 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11686   // Suppress cases where we are comparing against an enum constant.
11687   if (const DeclRefExpr *DR =
11688       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11689     if (isa<EnumConstantDecl>(DR->getDecl()))
11690       return true;
11691 
11692   // Suppress cases where the value is expanded from a macro, unless that macro
11693   // is how a language represents a boolean literal. This is the case in both C
11694   // and Objective-C.
11695   SourceLocation BeginLoc = E->getBeginLoc();
11696   if (BeginLoc.isMacroID()) {
11697     StringRef MacroName = Lexer::getImmediateMacroName(
11698         BeginLoc, S.getSourceManager(), S.getLangOpts());
11699     return MacroName != "YES" && MacroName != "NO" &&
11700            MacroName != "true" && MacroName != "false";
11701   }
11702 
11703   return false;
11704 }
11705 
11706 static bool isKnownToHaveUnsignedValue(Expr *E) {
11707   return E->getType()->isIntegerType() &&
11708          (!E->getType()->isSignedIntegerType() ||
11709           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11710 }
11711 
11712 namespace {
11713 /// The promoted range of values of a type. In general this has the
11714 /// following structure:
11715 ///
11716 ///     |-----------| . . . |-----------|
11717 ///     ^           ^       ^           ^
11718 ///    Min       HoleMin  HoleMax      Max
11719 ///
11720 /// ... where there is only a hole if a signed type is promoted to unsigned
11721 /// (in which case Min and Max are the smallest and largest representable
11722 /// values).
11723 struct PromotedRange {
11724   // Min, or HoleMax if there is a hole.
11725   llvm::APSInt PromotedMin;
11726   // Max, or HoleMin if there is a hole.
11727   llvm::APSInt PromotedMax;
11728 
11729   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11730     if (R.Width == 0)
11731       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11732     else if (R.Width >= BitWidth && !Unsigned) {
11733       // Promotion made the type *narrower*. This happens when promoting
11734       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11735       // Treat all values of 'signed int' as being in range for now.
11736       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11737       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11738     } else {
11739       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11740                         .extOrTrunc(BitWidth);
11741       PromotedMin.setIsUnsigned(Unsigned);
11742 
11743       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11744                         .extOrTrunc(BitWidth);
11745       PromotedMax.setIsUnsigned(Unsigned);
11746     }
11747   }
11748 
11749   // Determine whether this range is contiguous (has no hole).
11750   bool isContiguous() const { return PromotedMin <= PromotedMax; }
11751 
11752   // Where a constant value is within the range.
11753   enum ComparisonResult {
11754     LT = 0x1,
11755     LE = 0x2,
11756     GT = 0x4,
11757     GE = 0x8,
11758     EQ = 0x10,
11759     NE = 0x20,
11760     InRangeFlag = 0x40,
11761 
11762     Less = LE | LT | NE,
11763     Min = LE | InRangeFlag,
11764     InRange = InRangeFlag,
11765     Max = GE | InRangeFlag,
11766     Greater = GE | GT | NE,
11767 
11768     OnlyValue = LE | GE | EQ | InRangeFlag,
11769     InHole = NE
11770   };
11771 
11772   ComparisonResult compare(const llvm::APSInt &Value) const {
11773     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11774            Value.isUnsigned() == PromotedMin.isUnsigned());
11775     if (!isContiguous()) {
11776       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11777       if (Value.isMinValue()) return Min;
11778       if (Value.isMaxValue()) return Max;
11779       if (Value >= PromotedMin) return InRange;
11780       if (Value <= PromotedMax) return InRange;
11781       return InHole;
11782     }
11783 
11784     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11785     case -1: return Less;
11786     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11787     case 1:
11788       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11789       case -1: return InRange;
11790       case 0: return Max;
11791       case 1: return Greater;
11792       }
11793     }
11794 
11795     llvm_unreachable("impossible compare result");
11796   }
11797 
11798   static llvm::Optional<StringRef>
11799   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11800     if (Op == BO_Cmp) {
11801       ComparisonResult LTFlag = LT, GTFlag = GT;
11802       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11803 
11804       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11805       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11806       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11807       return llvm::None;
11808     }
11809 
11810     ComparisonResult TrueFlag, FalseFlag;
11811     if (Op == BO_EQ) {
11812       TrueFlag = EQ;
11813       FalseFlag = NE;
11814     } else if (Op == BO_NE) {
11815       TrueFlag = NE;
11816       FalseFlag = EQ;
11817     } else {
11818       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11819         TrueFlag = LT;
11820         FalseFlag = GE;
11821       } else {
11822         TrueFlag = GT;
11823         FalseFlag = LE;
11824       }
11825       if (Op == BO_GE || Op == BO_LE)
11826         std::swap(TrueFlag, FalseFlag);
11827     }
11828     if (R & TrueFlag)
11829       return StringRef("true");
11830     if (R & FalseFlag)
11831       return StringRef("false");
11832     return llvm::None;
11833   }
11834 };
11835 }
11836 
11837 static bool HasEnumType(Expr *E) {
11838   // Strip off implicit integral promotions.
11839   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11840     if (ICE->getCastKind() != CK_IntegralCast &&
11841         ICE->getCastKind() != CK_NoOp)
11842       break;
11843     E = ICE->getSubExpr();
11844   }
11845 
11846   return E->getType()->isEnumeralType();
11847 }
11848 
11849 static int classifyConstantValue(Expr *Constant) {
11850   // The values of this enumeration are used in the diagnostics
11851   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11852   enum ConstantValueKind {
11853     Miscellaneous = 0,
11854     LiteralTrue,
11855     LiteralFalse
11856   };
11857   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11858     return BL->getValue() ? ConstantValueKind::LiteralTrue
11859                           : ConstantValueKind::LiteralFalse;
11860   return ConstantValueKind::Miscellaneous;
11861 }
11862 
11863 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11864                                         Expr *Constant, Expr *Other,
11865                                         const llvm::APSInt &Value,
11866                                         bool RhsConstant) {
11867   if (S.inTemplateInstantiation())
11868     return false;
11869 
11870   Expr *OriginalOther = Other;
11871 
11872   Constant = Constant->IgnoreParenImpCasts();
11873   Other = Other->IgnoreParenImpCasts();
11874 
11875   // Suppress warnings on tautological comparisons between values of the same
11876   // enumeration type. There are only two ways we could warn on this:
11877   //  - If the constant is outside the range of representable values of
11878   //    the enumeration. In such a case, we should warn about the cast
11879   //    to enumeration type, not about the comparison.
11880   //  - If the constant is the maximum / minimum in-range value. For an
11881   //    enumeratin type, such comparisons can be meaningful and useful.
11882   if (Constant->getType()->isEnumeralType() &&
11883       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11884     return false;
11885 
11886   IntRange OtherValueRange = GetExprRange(
11887       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11888 
11889   QualType OtherT = Other->getType();
11890   if (const auto *AT = OtherT->getAs<AtomicType>())
11891     OtherT = AT->getValueType();
11892   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11893 
11894   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11895   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11896   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11897                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11898                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11899 
11900   // Whether we're treating Other as being a bool because of the form of
11901   // expression despite it having another type (typically 'int' in C).
11902   bool OtherIsBooleanDespiteType =
11903       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11904   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11905     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11906 
11907   // Check if all values in the range of possible values of this expression
11908   // lead to the same comparison outcome.
11909   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11910                                         Value.isUnsigned());
11911   auto Cmp = OtherPromotedValueRange.compare(Value);
11912   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11913   if (!Result)
11914     return false;
11915 
11916   // Also consider the range determined by the type alone. This allows us to
11917   // classify the warning under the proper diagnostic group.
11918   bool TautologicalTypeCompare = false;
11919   {
11920     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11921                                          Value.isUnsigned());
11922     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11923     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11924                                                        RhsConstant)) {
11925       TautologicalTypeCompare = true;
11926       Cmp = TypeCmp;
11927       Result = TypeResult;
11928     }
11929   }
11930 
11931   // Don't warn if the non-constant operand actually always evaluates to the
11932   // same value.
11933   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11934     return false;
11935 
11936   // Suppress the diagnostic for an in-range comparison if the constant comes
11937   // from a macro or enumerator. We don't want to diagnose
11938   //
11939   //   some_long_value <= INT_MAX
11940   //
11941   // when sizeof(int) == sizeof(long).
11942   bool InRange = Cmp & PromotedRange::InRangeFlag;
11943   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11944     return false;
11945 
11946   // A comparison of an unsigned bit-field against 0 is really a type problem,
11947   // even though at the type level the bit-field might promote to 'signed int'.
11948   if (Other->refersToBitField() && InRange && Value == 0 &&
11949       Other->getType()->isUnsignedIntegerOrEnumerationType())
11950     TautologicalTypeCompare = true;
11951 
11952   // If this is a comparison to an enum constant, include that
11953   // constant in the diagnostic.
11954   const EnumConstantDecl *ED = nullptr;
11955   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11956     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11957 
11958   // Should be enough for uint128 (39 decimal digits)
11959   SmallString<64> PrettySourceValue;
11960   llvm::raw_svector_ostream OS(PrettySourceValue);
11961   if (ED) {
11962     OS << '\'' << *ED << "' (" << Value << ")";
11963   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11964                Constant->IgnoreParenImpCasts())) {
11965     OS << (BL->getValue() ? "YES" : "NO");
11966   } else {
11967     OS << Value;
11968   }
11969 
11970   if (!TautologicalTypeCompare) {
11971     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11972         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11973         << E->getOpcodeStr() << OS.str() << *Result
11974         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11975     return true;
11976   }
11977 
11978   if (IsObjCSignedCharBool) {
11979     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11980                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11981                               << OS.str() << *Result);
11982     return true;
11983   }
11984 
11985   // FIXME: We use a somewhat different formatting for the in-range cases and
11986   // cases involving boolean values for historical reasons. We should pick a
11987   // consistent way of presenting these diagnostics.
11988   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11989 
11990     S.DiagRuntimeBehavior(
11991         E->getOperatorLoc(), E,
11992         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11993                          : diag::warn_tautological_bool_compare)
11994             << OS.str() << classifyConstantValue(Constant) << OtherT
11995             << OtherIsBooleanDespiteType << *Result
11996             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11997   } else {
11998     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
11999     unsigned Diag =
12000         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12001             ? (HasEnumType(OriginalOther)
12002                    ? diag::warn_unsigned_enum_always_true_comparison
12003                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12004                               : diag::warn_unsigned_always_true_comparison)
12005             : diag::warn_tautological_constant_compare;
12006 
12007     S.Diag(E->getOperatorLoc(), Diag)
12008         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12009         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12010   }
12011 
12012   return true;
12013 }
12014 
12015 /// Analyze the operands of the given comparison.  Implements the
12016 /// fallback case from AnalyzeComparison.
12017 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12018   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12019   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12020 }
12021 
12022 /// Implements -Wsign-compare.
12023 ///
12024 /// \param E the binary operator to check for warnings
12025 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12026   // The type the comparison is being performed in.
12027   QualType T = E->getLHS()->getType();
12028 
12029   // Only analyze comparison operators where both sides have been converted to
12030   // the same type.
12031   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12032     return AnalyzeImpConvsInComparison(S, E);
12033 
12034   // Don't analyze value-dependent comparisons directly.
12035   if (E->isValueDependent())
12036     return AnalyzeImpConvsInComparison(S, E);
12037 
12038   Expr *LHS = E->getLHS();
12039   Expr *RHS = E->getRHS();
12040 
12041   if (T->isIntegralType(S.Context)) {
12042     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12043     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12044 
12045     // We don't care about expressions whose result is a constant.
12046     if (RHSValue && LHSValue)
12047       return AnalyzeImpConvsInComparison(S, E);
12048 
12049     // We only care about expressions where just one side is literal
12050     if ((bool)RHSValue ^ (bool)LHSValue) {
12051       // Is the constant on the RHS or LHS?
12052       const bool RhsConstant = (bool)RHSValue;
12053       Expr *Const = RhsConstant ? RHS : LHS;
12054       Expr *Other = RhsConstant ? LHS : RHS;
12055       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12056 
12057       // Check whether an integer constant comparison results in a value
12058       // of 'true' or 'false'.
12059       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12060         return AnalyzeImpConvsInComparison(S, E);
12061     }
12062   }
12063 
12064   if (!T->hasUnsignedIntegerRepresentation()) {
12065     // We don't do anything special if this isn't an unsigned integral
12066     // comparison:  we're only interested in integral comparisons, and
12067     // signed comparisons only happen in cases we don't care to warn about.
12068     return AnalyzeImpConvsInComparison(S, E);
12069   }
12070 
12071   LHS = LHS->IgnoreParenImpCasts();
12072   RHS = RHS->IgnoreParenImpCasts();
12073 
12074   if (!S.getLangOpts().CPlusPlus) {
12075     // Avoid warning about comparison of integers with different signs when
12076     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12077     // the type of `E`.
12078     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12079       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12080     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12081       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12082   }
12083 
12084   // Check to see if one of the (unmodified) operands is of different
12085   // signedness.
12086   Expr *signedOperand, *unsignedOperand;
12087   if (LHS->getType()->hasSignedIntegerRepresentation()) {
12088     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12089            "unsigned comparison between two signed integer expressions?");
12090     signedOperand = LHS;
12091     unsignedOperand = RHS;
12092   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12093     signedOperand = RHS;
12094     unsignedOperand = LHS;
12095   } else {
12096     return AnalyzeImpConvsInComparison(S, E);
12097   }
12098 
12099   // Otherwise, calculate the effective range of the signed operand.
12100   IntRange signedRange = GetExprRange(
12101       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12102 
12103   // Go ahead and analyze implicit conversions in the operands.  Note
12104   // that we skip the implicit conversions on both sides.
12105   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12106   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12107 
12108   // If the signed range is non-negative, -Wsign-compare won't fire.
12109   if (signedRange.NonNegative)
12110     return;
12111 
12112   // For (in)equality comparisons, if the unsigned operand is a
12113   // constant which cannot collide with a overflowed signed operand,
12114   // then reinterpreting the signed operand as unsigned will not
12115   // change the result of the comparison.
12116   if (E->isEqualityOp()) {
12117     unsigned comparisonWidth = S.Context.getIntWidth(T);
12118     IntRange unsignedRange =
12119         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12120                      /*Approximate*/ true);
12121 
12122     // We should never be unable to prove that the unsigned operand is
12123     // non-negative.
12124     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12125 
12126     if (unsignedRange.Width < comparisonWidth)
12127       return;
12128   }
12129 
12130   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12131                         S.PDiag(diag::warn_mixed_sign_comparison)
12132                             << LHS->getType() << RHS->getType()
12133                             << LHS->getSourceRange() << RHS->getSourceRange());
12134 }
12135 
12136 /// Analyzes an attempt to assign the given value to a bitfield.
12137 ///
12138 /// Returns true if there was something fishy about the attempt.
12139 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12140                                       SourceLocation InitLoc) {
12141   assert(Bitfield->isBitField());
12142   if (Bitfield->isInvalidDecl())
12143     return false;
12144 
12145   // White-list bool bitfields.
12146   QualType BitfieldType = Bitfield->getType();
12147   if (BitfieldType->isBooleanType())
12148      return false;
12149 
12150   if (BitfieldType->isEnumeralType()) {
12151     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12152     // If the underlying enum type was not explicitly specified as an unsigned
12153     // type and the enum contain only positive values, MSVC++ will cause an
12154     // inconsistency by storing this as a signed type.
12155     if (S.getLangOpts().CPlusPlus11 &&
12156         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12157         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12158         BitfieldEnumDecl->getNumNegativeBits() == 0) {
12159       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12160           << BitfieldEnumDecl;
12161     }
12162   }
12163 
12164   if (Bitfield->getType()->isBooleanType())
12165     return false;
12166 
12167   // Ignore value- or type-dependent expressions.
12168   if (Bitfield->getBitWidth()->isValueDependent() ||
12169       Bitfield->getBitWidth()->isTypeDependent() ||
12170       Init->isValueDependent() ||
12171       Init->isTypeDependent())
12172     return false;
12173 
12174   Expr *OriginalInit = Init->IgnoreParenImpCasts();
12175   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12176 
12177   Expr::EvalResult Result;
12178   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12179                                    Expr::SE_AllowSideEffects)) {
12180     // The RHS is not constant.  If the RHS has an enum type, make sure the
12181     // bitfield is wide enough to hold all the values of the enum without
12182     // truncation.
12183     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12184       EnumDecl *ED = EnumTy->getDecl();
12185       bool SignedBitfield = BitfieldType->isSignedIntegerType();
12186 
12187       // Enum types are implicitly signed on Windows, so check if there are any
12188       // negative enumerators to see if the enum was intended to be signed or
12189       // not.
12190       bool SignedEnum = ED->getNumNegativeBits() > 0;
12191 
12192       // Check for surprising sign changes when assigning enum values to a
12193       // bitfield of different signedness.  If the bitfield is signed and we
12194       // have exactly the right number of bits to store this unsigned enum,
12195       // suggest changing the enum to an unsigned type. This typically happens
12196       // on Windows where unfixed enums always use an underlying type of 'int'.
12197       unsigned DiagID = 0;
12198       if (SignedEnum && !SignedBitfield) {
12199         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12200       } else if (SignedBitfield && !SignedEnum &&
12201                  ED->getNumPositiveBits() == FieldWidth) {
12202         DiagID = diag::warn_signed_bitfield_enum_conversion;
12203       }
12204 
12205       if (DiagID) {
12206         S.Diag(InitLoc, DiagID) << Bitfield << ED;
12207         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12208         SourceRange TypeRange =
12209             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12210         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12211             << SignedEnum << TypeRange;
12212       }
12213 
12214       // Compute the required bitwidth. If the enum has negative values, we need
12215       // one more bit than the normal number of positive bits to represent the
12216       // sign bit.
12217       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12218                                                   ED->getNumNegativeBits())
12219                                        : ED->getNumPositiveBits();
12220 
12221       // Check the bitwidth.
12222       if (BitsNeeded > FieldWidth) {
12223         Expr *WidthExpr = Bitfield->getBitWidth();
12224         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12225             << Bitfield << ED;
12226         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12227             << BitsNeeded << ED << WidthExpr->getSourceRange();
12228       }
12229     }
12230 
12231     return false;
12232   }
12233 
12234   llvm::APSInt Value = Result.Val.getInt();
12235 
12236   unsigned OriginalWidth = Value.getBitWidth();
12237 
12238   if (!Value.isSigned() || Value.isNegative())
12239     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12240       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12241         OriginalWidth = Value.getMinSignedBits();
12242 
12243   if (OriginalWidth <= FieldWidth)
12244     return false;
12245 
12246   // Compute the value which the bitfield will contain.
12247   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12248   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12249 
12250   // Check whether the stored value is equal to the original value.
12251   TruncatedValue = TruncatedValue.extend(OriginalWidth);
12252   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12253     return false;
12254 
12255   // Special-case bitfields of width 1: booleans are naturally 0/1, and
12256   // therefore don't strictly fit into a signed bitfield of width 1.
12257   if (FieldWidth == 1 && Value == 1)
12258     return false;
12259 
12260   std::string PrettyValue = toString(Value, 10);
12261   std::string PrettyTrunc = toString(TruncatedValue, 10);
12262 
12263   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12264     << PrettyValue << PrettyTrunc << OriginalInit->getType()
12265     << Init->getSourceRange();
12266 
12267   return true;
12268 }
12269 
12270 /// Analyze the given simple or compound assignment for warning-worthy
12271 /// operations.
12272 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12273   // Just recurse on the LHS.
12274   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12275 
12276   // We want to recurse on the RHS as normal unless we're assigning to
12277   // a bitfield.
12278   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12279     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12280                                   E->getOperatorLoc())) {
12281       // Recurse, ignoring any implicit conversions on the RHS.
12282       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12283                                         E->getOperatorLoc());
12284     }
12285   }
12286 
12287   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12288 
12289   // Diagnose implicitly sequentially-consistent atomic assignment.
12290   if (E->getLHS()->getType()->isAtomicType())
12291     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12292 }
12293 
12294 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12295 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12296                             SourceLocation CContext, unsigned diag,
12297                             bool pruneControlFlow = false) {
12298   if (pruneControlFlow) {
12299     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12300                           S.PDiag(diag)
12301                               << SourceType << T << E->getSourceRange()
12302                               << SourceRange(CContext));
12303     return;
12304   }
12305   S.Diag(E->getExprLoc(), diag)
12306     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12307 }
12308 
12309 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12310 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12311                             SourceLocation CContext,
12312                             unsigned diag, bool pruneControlFlow = false) {
12313   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12314 }
12315 
12316 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12317   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12318       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12319 }
12320 
12321 static void adornObjCBoolConversionDiagWithTernaryFixit(
12322     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12323   Expr *Ignored = SourceExpr->IgnoreImplicit();
12324   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12325     Ignored = OVE->getSourceExpr();
12326   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12327                      isa<BinaryOperator>(Ignored) ||
12328                      isa<CXXOperatorCallExpr>(Ignored);
12329   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12330   if (NeedsParens)
12331     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12332             << FixItHint::CreateInsertion(EndLoc, ")");
12333   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12334 }
12335 
12336 /// Diagnose an implicit cast from a floating point value to an integer value.
12337 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12338                                     SourceLocation CContext) {
12339   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12340   const bool PruneWarnings = S.inTemplateInstantiation();
12341 
12342   Expr *InnerE = E->IgnoreParenImpCasts();
12343   // We also want to warn on, e.g., "int i = -1.234"
12344   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12345     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12346       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12347 
12348   const bool IsLiteral =
12349       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12350 
12351   llvm::APFloat Value(0.0);
12352   bool IsConstant =
12353     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12354   if (!IsConstant) {
12355     if (isObjCSignedCharBool(S, T)) {
12356       return adornObjCBoolConversionDiagWithTernaryFixit(
12357           S, E,
12358           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12359               << E->getType());
12360     }
12361 
12362     return DiagnoseImpCast(S, E, T, CContext,
12363                            diag::warn_impcast_float_integer, PruneWarnings);
12364   }
12365 
12366   bool isExact = false;
12367 
12368   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12369                             T->hasUnsignedIntegerRepresentation());
12370   llvm::APFloat::opStatus Result = Value.convertToInteger(
12371       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12372 
12373   // FIXME: Force the precision of the source value down so we don't print
12374   // digits which are usually useless (we don't really care here if we
12375   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
12376   // would automatically print the shortest representation, but it's a bit
12377   // tricky to implement.
12378   SmallString<16> PrettySourceValue;
12379   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12380   precision = (precision * 59 + 195) / 196;
12381   Value.toString(PrettySourceValue, precision);
12382 
12383   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12384     return adornObjCBoolConversionDiagWithTernaryFixit(
12385         S, E,
12386         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12387             << PrettySourceValue);
12388   }
12389 
12390   if (Result == llvm::APFloat::opOK && isExact) {
12391     if (IsLiteral) return;
12392     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12393                            PruneWarnings);
12394   }
12395 
12396   // Conversion of a floating-point value to a non-bool integer where the
12397   // integral part cannot be represented by the integer type is undefined.
12398   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12399     return DiagnoseImpCast(
12400         S, E, T, CContext,
12401         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12402                   : diag::warn_impcast_float_to_integer_out_of_range,
12403         PruneWarnings);
12404 
12405   unsigned DiagID = 0;
12406   if (IsLiteral) {
12407     // Warn on floating point literal to integer.
12408     DiagID = diag::warn_impcast_literal_float_to_integer;
12409   } else if (IntegerValue == 0) {
12410     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
12411       return DiagnoseImpCast(S, E, T, CContext,
12412                              diag::warn_impcast_float_integer, PruneWarnings);
12413     }
12414     // Warn on non-zero to zero conversion.
12415     DiagID = diag::warn_impcast_float_to_integer_zero;
12416   } else {
12417     if (IntegerValue.isUnsigned()) {
12418       if (!IntegerValue.isMaxValue()) {
12419         return DiagnoseImpCast(S, E, T, CContext,
12420                                diag::warn_impcast_float_integer, PruneWarnings);
12421       }
12422     } else {  // IntegerValue.isSigned()
12423       if (!IntegerValue.isMaxSignedValue() &&
12424           !IntegerValue.isMinSignedValue()) {
12425         return DiagnoseImpCast(S, E, T, CContext,
12426                                diag::warn_impcast_float_integer, PruneWarnings);
12427       }
12428     }
12429     // Warn on evaluatable floating point expression to integer conversion.
12430     DiagID = diag::warn_impcast_float_to_integer;
12431   }
12432 
12433   SmallString<16> PrettyTargetValue;
12434   if (IsBool)
12435     PrettyTargetValue = Value.isZero() ? "false" : "true";
12436   else
12437     IntegerValue.toString(PrettyTargetValue);
12438 
12439   if (PruneWarnings) {
12440     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12441                           S.PDiag(DiagID)
12442                               << E->getType() << T.getUnqualifiedType()
12443                               << PrettySourceValue << PrettyTargetValue
12444                               << E->getSourceRange() << SourceRange(CContext));
12445   } else {
12446     S.Diag(E->getExprLoc(), DiagID)
12447         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12448         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12449   }
12450 }
12451 
12452 /// Analyze the given compound assignment for the possible losing of
12453 /// floating-point precision.
12454 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12455   assert(isa<CompoundAssignOperator>(E) &&
12456          "Must be compound assignment operation");
12457   // Recurse on the LHS and RHS in here
12458   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12459   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12460 
12461   if (E->getLHS()->getType()->isAtomicType())
12462     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12463 
12464   // Now check the outermost expression
12465   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12466   const auto *RBT = cast<CompoundAssignOperator>(E)
12467                         ->getComputationResultType()
12468                         ->getAs<BuiltinType>();
12469 
12470   // The below checks assume source is floating point.
12471   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12472 
12473   // If source is floating point but target is an integer.
12474   if (ResultBT->isInteger())
12475     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12476                            E->getExprLoc(), diag::warn_impcast_float_integer);
12477 
12478   if (!ResultBT->isFloatingPoint())
12479     return;
12480 
12481   // If both source and target are floating points, warn about losing precision.
12482   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12483       QualType(ResultBT, 0), QualType(RBT, 0));
12484   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12485     // warn about dropping FP rank.
12486     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12487                     diag::warn_impcast_float_result_precision);
12488 }
12489 
12490 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12491                                       IntRange Range) {
12492   if (!Range.Width) return "0";
12493 
12494   llvm::APSInt ValueInRange = Value;
12495   ValueInRange.setIsSigned(!Range.NonNegative);
12496   ValueInRange = ValueInRange.trunc(Range.Width);
12497   return toString(ValueInRange, 10);
12498 }
12499 
12500 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12501   if (!isa<ImplicitCastExpr>(Ex))
12502     return false;
12503 
12504   Expr *InnerE = Ex->IgnoreParenImpCasts();
12505   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12506   const Type *Source =
12507     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12508   if (Target->isDependentType())
12509     return false;
12510 
12511   const BuiltinType *FloatCandidateBT =
12512     dyn_cast<BuiltinType>(ToBool ? Source : Target);
12513   const Type *BoolCandidateType = ToBool ? Target : Source;
12514 
12515   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12516           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12517 }
12518 
12519 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12520                                              SourceLocation CC) {
12521   unsigned NumArgs = TheCall->getNumArgs();
12522   for (unsigned i = 0; i < NumArgs; ++i) {
12523     Expr *CurrA = TheCall->getArg(i);
12524     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12525       continue;
12526 
12527     bool IsSwapped = ((i > 0) &&
12528         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12529     IsSwapped |= ((i < (NumArgs - 1)) &&
12530         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12531     if (IsSwapped) {
12532       // Warn on this floating-point to bool conversion.
12533       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12534                       CurrA->getType(), CC,
12535                       diag::warn_impcast_floating_point_to_bool);
12536     }
12537   }
12538 }
12539 
12540 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12541                                    SourceLocation CC) {
12542   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12543                         E->getExprLoc()))
12544     return;
12545 
12546   // Don't warn on functions which have return type nullptr_t.
12547   if (isa<CallExpr>(E))
12548     return;
12549 
12550   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12551   const Expr::NullPointerConstantKind NullKind =
12552       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12553   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12554     return;
12555 
12556   // Return if target type is a safe conversion.
12557   if (T->isAnyPointerType() || T->isBlockPointerType() ||
12558       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12559     return;
12560 
12561   SourceLocation Loc = E->getSourceRange().getBegin();
12562 
12563   // Venture through the macro stacks to get to the source of macro arguments.
12564   // The new location is a better location than the complete location that was
12565   // passed in.
12566   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12567   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12568 
12569   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
12570   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12571     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12572         Loc, S.SourceMgr, S.getLangOpts());
12573     if (MacroName == "NULL")
12574       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12575   }
12576 
12577   // Only warn if the null and context location are in the same macro expansion.
12578   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12579     return;
12580 
12581   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12582       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12583       << FixItHint::CreateReplacement(Loc,
12584                                       S.getFixItZeroLiteralForType(T, Loc));
12585 }
12586 
12587 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12588                                   ObjCArrayLiteral *ArrayLiteral);
12589 
12590 static void
12591 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12592                            ObjCDictionaryLiteral *DictionaryLiteral);
12593 
12594 /// Check a single element within a collection literal against the
12595 /// target element type.
12596 static void checkObjCCollectionLiteralElement(Sema &S,
12597                                               QualType TargetElementType,
12598                                               Expr *Element,
12599                                               unsigned ElementKind) {
12600   // Skip a bitcast to 'id' or qualified 'id'.
12601   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12602     if (ICE->getCastKind() == CK_BitCast &&
12603         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12604       Element = ICE->getSubExpr();
12605   }
12606 
12607   QualType ElementType = Element->getType();
12608   ExprResult ElementResult(Element);
12609   if (ElementType->getAs<ObjCObjectPointerType>() &&
12610       S.CheckSingleAssignmentConstraints(TargetElementType,
12611                                          ElementResult,
12612                                          false, false)
12613         != Sema::Compatible) {
12614     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12615         << ElementType << ElementKind << TargetElementType
12616         << Element->getSourceRange();
12617   }
12618 
12619   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12620     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12621   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12622     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12623 }
12624 
12625 /// Check an Objective-C array literal being converted to the given
12626 /// target type.
12627 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12628                                   ObjCArrayLiteral *ArrayLiteral) {
12629   if (!S.NSArrayDecl)
12630     return;
12631 
12632   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12633   if (!TargetObjCPtr)
12634     return;
12635 
12636   if (TargetObjCPtr->isUnspecialized() ||
12637       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12638         != S.NSArrayDecl->getCanonicalDecl())
12639     return;
12640 
12641   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12642   if (TypeArgs.size() != 1)
12643     return;
12644 
12645   QualType TargetElementType = TypeArgs[0];
12646   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12647     checkObjCCollectionLiteralElement(S, TargetElementType,
12648                                       ArrayLiteral->getElement(I),
12649                                       0);
12650   }
12651 }
12652 
12653 /// Check an Objective-C dictionary literal being converted to the given
12654 /// target type.
12655 static void
12656 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12657                            ObjCDictionaryLiteral *DictionaryLiteral) {
12658   if (!S.NSDictionaryDecl)
12659     return;
12660 
12661   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12662   if (!TargetObjCPtr)
12663     return;
12664 
12665   if (TargetObjCPtr->isUnspecialized() ||
12666       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12667         != S.NSDictionaryDecl->getCanonicalDecl())
12668     return;
12669 
12670   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12671   if (TypeArgs.size() != 2)
12672     return;
12673 
12674   QualType TargetKeyType = TypeArgs[0];
12675   QualType TargetObjectType = TypeArgs[1];
12676   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12677     auto Element = DictionaryLiteral->getKeyValueElement(I);
12678     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12679     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12680   }
12681 }
12682 
12683 // Helper function to filter out cases for constant width constant conversion.
12684 // Don't warn on char array initialization or for non-decimal values.
12685 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12686                                           SourceLocation CC) {
12687   // If initializing from a constant, and the constant starts with '0',
12688   // then it is a binary, octal, or hexadecimal.  Allow these constants
12689   // to fill all the bits, even if there is a sign change.
12690   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12691     const char FirstLiteralCharacter =
12692         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12693     if (FirstLiteralCharacter == '0')
12694       return false;
12695   }
12696 
12697   // If the CC location points to a '{', and the type is char, then assume
12698   // assume it is an array initialization.
12699   if (CC.isValid() && T->isCharType()) {
12700     const char FirstContextCharacter =
12701         S.getSourceManager().getCharacterData(CC)[0];
12702     if (FirstContextCharacter == '{')
12703       return false;
12704   }
12705 
12706   return true;
12707 }
12708 
12709 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12710   const auto *IL = dyn_cast<IntegerLiteral>(E);
12711   if (!IL) {
12712     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12713       if (UO->getOpcode() == UO_Minus)
12714         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12715     }
12716   }
12717 
12718   return IL;
12719 }
12720 
12721 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12722   E = E->IgnoreParenImpCasts();
12723   SourceLocation ExprLoc = E->getExprLoc();
12724 
12725   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12726     BinaryOperator::Opcode Opc = BO->getOpcode();
12727     Expr::EvalResult Result;
12728     // Do not diagnose unsigned shifts.
12729     if (Opc == BO_Shl) {
12730       const auto *LHS = getIntegerLiteral(BO->getLHS());
12731       const auto *RHS = getIntegerLiteral(BO->getRHS());
12732       if (LHS && LHS->getValue() == 0)
12733         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12734       else if (!E->isValueDependent() && LHS && RHS &&
12735                RHS->getValue().isNonNegative() &&
12736                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12737         S.Diag(ExprLoc, diag::warn_left_shift_always)
12738             << (Result.Val.getInt() != 0);
12739       else if (E->getType()->isSignedIntegerType())
12740         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12741     }
12742   }
12743 
12744   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12745     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12746     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12747     if (!LHS || !RHS)
12748       return;
12749     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12750         (RHS->getValue() == 0 || RHS->getValue() == 1))
12751       // Do not diagnose common idioms.
12752       return;
12753     if (LHS->getValue() != 0 && RHS->getValue() != 0)
12754       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12755   }
12756 }
12757 
12758 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12759                                     SourceLocation CC,
12760                                     bool *ICContext = nullptr,
12761                                     bool IsListInit = false) {
12762   if (E->isTypeDependent() || E->isValueDependent()) return;
12763 
12764   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
12765   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
12766   if (Source == Target) return;
12767   if (Target->isDependentType()) return;
12768 
12769   // If the conversion context location is invalid don't complain. We also
12770   // don't want to emit a warning if the issue occurs from the expansion of
12771   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12772   // delay this check as long as possible. Once we detect we are in that
12773   // scenario, we just return.
12774   if (CC.isInvalid())
12775     return;
12776 
12777   if (Source->isAtomicType())
12778     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12779 
12780   // Diagnose implicit casts to bool.
12781   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12782     if (isa<StringLiteral>(E))
12783       // Warn on string literal to bool.  Checks for string literals in logical
12784       // and expressions, for instance, assert(0 && "error here"), are
12785       // prevented by a check in AnalyzeImplicitConversions().
12786       return DiagnoseImpCast(S, E, T, CC,
12787                              diag::warn_impcast_string_literal_to_bool);
12788     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12789         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12790       // This covers the literal expressions that evaluate to Objective-C
12791       // objects.
12792       return DiagnoseImpCast(S, E, T, CC,
12793                              diag::warn_impcast_objective_c_literal_to_bool);
12794     }
12795     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12796       // Warn on pointer to bool conversion that is always true.
12797       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12798                                      SourceRange(CC));
12799     }
12800   }
12801 
12802   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12803   // is a typedef for signed char (macOS), then that constant value has to be 1
12804   // or 0.
12805   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12806     Expr::EvalResult Result;
12807     if (E->EvaluateAsInt(Result, S.getASTContext(),
12808                          Expr::SE_AllowSideEffects)) {
12809       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12810         adornObjCBoolConversionDiagWithTernaryFixit(
12811             S, E,
12812             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12813                 << toString(Result.Val.getInt(), 10));
12814       }
12815       return;
12816     }
12817   }
12818 
12819   // Check implicit casts from Objective-C collection literals to specialized
12820   // collection types, e.g., NSArray<NSString *> *.
12821   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12822     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12823   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12824     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12825 
12826   // Strip vector types.
12827   if (isa<VectorType>(Source)) {
12828     if (Target->isVLSTBuiltinType() &&
12829         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
12830                                          QualType(Source, 0)) ||
12831          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
12832                                             QualType(Source, 0))))
12833       return;
12834 
12835     if (!isa<VectorType>(Target)) {
12836       if (S.SourceMgr.isInSystemMacro(CC))
12837         return;
12838       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12839     }
12840 
12841     // If the vector cast is cast between two vectors of the same size, it is
12842     // a bitcast, not a conversion.
12843     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12844       return;
12845 
12846     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12847     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12848   }
12849   if (auto VecTy = dyn_cast<VectorType>(Target))
12850     Target = VecTy->getElementType().getTypePtr();
12851 
12852   // Strip complex types.
12853   if (isa<ComplexType>(Source)) {
12854     if (!isa<ComplexType>(Target)) {
12855       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12856         return;
12857 
12858       return DiagnoseImpCast(S, E, T, CC,
12859                              S.getLangOpts().CPlusPlus
12860                                  ? diag::err_impcast_complex_scalar
12861                                  : diag::warn_impcast_complex_scalar);
12862     }
12863 
12864     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12865     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12866   }
12867 
12868   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12869   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12870 
12871   // If the source is floating point...
12872   if (SourceBT && SourceBT->isFloatingPoint()) {
12873     // ...and the target is floating point...
12874     if (TargetBT && TargetBT->isFloatingPoint()) {
12875       // ...then warn if we're dropping FP rank.
12876 
12877       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12878           QualType(SourceBT, 0), QualType(TargetBT, 0));
12879       if (Order > 0) {
12880         // Don't warn about float constants that are precisely
12881         // representable in the target type.
12882         Expr::EvalResult result;
12883         if (E->EvaluateAsRValue(result, S.Context)) {
12884           // Value might be a float, a float vector, or a float complex.
12885           if (IsSameFloatAfterCast(result.Val,
12886                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12887                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12888             return;
12889         }
12890 
12891         if (S.SourceMgr.isInSystemMacro(CC))
12892           return;
12893 
12894         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12895       }
12896       // ... or possibly if we're increasing rank, too
12897       else if (Order < 0) {
12898         if (S.SourceMgr.isInSystemMacro(CC))
12899           return;
12900 
12901         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12902       }
12903       return;
12904     }
12905 
12906     // If the target is integral, always warn.
12907     if (TargetBT && TargetBT->isInteger()) {
12908       if (S.SourceMgr.isInSystemMacro(CC))
12909         return;
12910 
12911       DiagnoseFloatingImpCast(S, E, T, CC);
12912     }
12913 
12914     // Detect the case where a call result is converted from floating-point to
12915     // to bool, and the final argument to the call is converted from bool, to
12916     // discover this typo:
12917     //
12918     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12919     //
12920     // FIXME: This is an incredibly special case; is there some more general
12921     // way to detect this class of misplaced-parentheses bug?
12922     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12923       // Check last argument of function call to see if it is an
12924       // implicit cast from a type matching the type the result
12925       // is being cast to.
12926       CallExpr *CEx = cast<CallExpr>(E);
12927       if (unsigned NumArgs = CEx->getNumArgs()) {
12928         Expr *LastA = CEx->getArg(NumArgs - 1);
12929         Expr *InnerE = LastA->IgnoreParenImpCasts();
12930         if (isa<ImplicitCastExpr>(LastA) &&
12931             InnerE->getType()->isBooleanType()) {
12932           // Warn on this floating-point to bool conversion
12933           DiagnoseImpCast(S, E, T, CC,
12934                           diag::warn_impcast_floating_point_to_bool);
12935         }
12936       }
12937     }
12938     return;
12939   }
12940 
12941   // Valid casts involving fixed point types should be accounted for here.
12942   if (Source->isFixedPointType()) {
12943     if (Target->isUnsaturatedFixedPointType()) {
12944       Expr::EvalResult Result;
12945       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12946                                   S.isConstantEvaluated())) {
12947         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12948         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12949         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12950         if (Value > MaxVal || Value < MinVal) {
12951           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12952                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12953                                     << Value.toString() << T
12954                                     << E->getSourceRange()
12955                                     << clang::SourceRange(CC));
12956           return;
12957         }
12958       }
12959     } else if (Target->isIntegerType()) {
12960       Expr::EvalResult Result;
12961       if (!S.isConstantEvaluated() &&
12962           E->EvaluateAsFixedPoint(Result, S.Context,
12963                                   Expr::SE_AllowSideEffects)) {
12964         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12965 
12966         bool Overflowed;
12967         llvm::APSInt IntResult = FXResult.convertToInt(
12968             S.Context.getIntWidth(T),
12969             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12970 
12971         if (Overflowed) {
12972           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12973                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12974                                     << FXResult.toString() << T
12975                                     << E->getSourceRange()
12976                                     << clang::SourceRange(CC));
12977           return;
12978         }
12979       }
12980     }
12981   } else if (Target->isUnsaturatedFixedPointType()) {
12982     if (Source->isIntegerType()) {
12983       Expr::EvalResult Result;
12984       if (!S.isConstantEvaluated() &&
12985           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12986         llvm::APSInt Value = Result.Val.getInt();
12987 
12988         bool Overflowed;
12989         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12990             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12991 
12992         if (Overflowed) {
12993           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12994                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12995                                     << toString(Value, /*Radix=*/10) << T
12996                                     << E->getSourceRange()
12997                                     << clang::SourceRange(CC));
12998           return;
12999         }
13000       }
13001     }
13002   }
13003 
13004   // If we are casting an integer type to a floating point type without
13005   // initialization-list syntax, we might lose accuracy if the floating
13006   // point type has a narrower significand than the integer type.
13007   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13008       TargetBT->isFloatingType() && !IsListInit) {
13009     // Determine the number of precision bits in the source integer type.
13010     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13011                                         /*Approximate*/ true);
13012     unsigned int SourcePrecision = SourceRange.Width;
13013 
13014     // Determine the number of precision bits in the
13015     // target floating point type.
13016     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13017         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13018 
13019     if (SourcePrecision > 0 && TargetPrecision > 0 &&
13020         SourcePrecision > TargetPrecision) {
13021 
13022       if (Optional<llvm::APSInt> SourceInt =
13023               E->getIntegerConstantExpr(S.Context)) {
13024         // If the source integer is a constant, convert it to the target
13025         // floating point type. Issue a warning if the value changes
13026         // during the whole conversion.
13027         llvm::APFloat TargetFloatValue(
13028             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13029         llvm::APFloat::opStatus ConversionStatus =
13030             TargetFloatValue.convertFromAPInt(
13031                 *SourceInt, SourceBT->isSignedInteger(),
13032                 llvm::APFloat::rmNearestTiesToEven);
13033 
13034         if (ConversionStatus != llvm::APFloat::opOK) {
13035           SmallString<32> PrettySourceValue;
13036           SourceInt->toString(PrettySourceValue, 10);
13037           SmallString<32> PrettyTargetValue;
13038           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13039 
13040           S.DiagRuntimeBehavior(
13041               E->getExprLoc(), E,
13042               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13043                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
13044                   << E->getSourceRange() << clang::SourceRange(CC));
13045         }
13046       } else {
13047         // Otherwise, the implicit conversion may lose precision.
13048         DiagnoseImpCast(S, E, T, CC,
13049                         diag::warn_impcast_integer_float_precision);
13050       }
13051     }
13052   }
13053 
13054   DiagnoseNullConversion(S, E, T, CC);
13055 
13056   S.DiscardMisalignedMemberAddress(Target, E);
13057 
13058   if (Target->isBooleanType())
13059     DiagnoseIntInBoolContext(S, E);
13060 
13061   if (!Source->isIntegerType() || !Target->isIntegerType())
13062     return;
13063 
13064   // TODO: remove this early return once the false positives for constant->bool
13065   // in templates, macros, etc, are reduced or removed.
13066   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13067     return;
13068 
13069   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13070       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13071     return adornObjCBoolConversionDiagWithTernaryFixit(
13072         S, E,
13073         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13074             << E->getType());
13075   }
13076 
13077   IntRange SourceTypeRange =
13078       IntRange::forTargetOfCanonicalType(S.Context, Source);
13079   IntRange LikelySourceRange =
13080       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13081   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13082 
13083   if (LikelySourceRange.Width > TargetRange.Width) {
13084     // If the source is a constant, use a default-on diagnostic.
13085     // TODO: this should happen for bitfield stores, too.
13086     Expr::EvalResult Result;
13087     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13088                          S.isConstantEvaluated())) {
13089       llvm::APSInt Value(32);
13090       Value = Result.Val.getInt();
13091 
13092       if (S.SourceMgr.isInSystemMacro(CC))
13093         return;
13094 
13095       std::string PrettySourceValue = toString(Value, 10);
13096       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13097 
13098       S.DiagRuntimeBehavior(
13099           E->getExprLoc(), E,
13100           S.PDiag(diag::warn_impcast_integer_precision_constant)
13101               << PrettySourceValue << PrettyTargetValue << E->getType() << T
13102               << E->getSourceRange() << SourceRange(CC));
13103       return;
13104     }
13105 
13106     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13107     if (S.SourceMgr.isInSystemMacro(CC))
13108       return;
13109 
13110     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13111       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13112                              /* pruneControlFlow */ true);
13113     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13114   }
13115 
13116   if (TargetRange.Width > SourceTypeRange.Width) {
13117     if (auto *UO = dyn_cast<UnaryOperator>(E))
13118       if (UO->getOpcode() == UO_Minus)
13119         if (Source->isUnsignedIntegerType()) {
13120           if (Target->isUnsignedIntegerType())
13121             return DiagnoseImpCast(S, E, T, CC,
13122                                    diag::warn_impcast_high_order_zero_bits);
13123           if (Target->isSignedIntegerType())
13124             return DiagnoseImpCast(S, E, T, CC,
13125                                    diag::warn_impcast_nonnegative_result);
13126         }
13127   }
13128 
13129   if (TargetRange.Width == LikelySourceRange.Width &&
13130       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13131       Source->isSignedIntegerType()) {
13132     // Warn when doing a signed to signed conversion, warn if the positive
13133     // source value is exactly the width of the target type, which will
13134     // cause a negative value to be stored.
13135 
13136     Expr::EvalResult Result;
13137     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13138         !S.SourceMgr.isInSystemMacro(CC)) {
13139       llvm::APSInt Value = Result.Val.getInt();
13140       if (isSameWidthConstantConversion(S, E, T, CC)) {
13141         std::string PrettySourceValue = toString(Value, 10);
13142         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13143 
13144         S.DiagRuntimeBehavior(
13145             E->getExprLoc(), E,
13146             S.PDiag(diag::warn_impcast_integer_precision_constant)
13147                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13148                 << E->getSourceRange() << SourceRange(CC));
13149         return;
13150       }
13151     }
13152 
13153     // Fall through for non-constants to give a sign conversion warning.
13154   }
13155 
13156   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13157       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13158        LikelySourceRange.Width == TargetRange.Width)) {
13159     if (S.SourceMgr.isInSystemMacro(CC))
13160       return;
13161 
13162     unsigned DiagID = diag::warn_impcast_integer_sign;
13163 
13164     // Traditionally, gcc has warned about this under -Wsign-compare.
13165     // We also want to warn about it in -Wconversion.
13166     // So if -Wconversion is off, use a completely identical diagnostic
13167     // in the sign-compare group.
13168     // The conditional-checking code will
13169     if (ICContext) {
13170       DiagID = diag::warn_impcast_integer_sign_conditional;
13171       *ICContext = true;
13172     }
13173 
13174     return DiagnoseImpCast(S, E, T, CC, DiagID);
13175   }
13176 
13177   // Diagnose conversions between different enumeration types.
13178   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13179   // type, to give us better diagnostics.
13180   QualType SourceType = E->getType();
13181   if (!S.getLangOpts().CPlusPlus) {
13182     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13183       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13184         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13185         SourceType = S.Context.getTypeDeclType(Enum);
13186         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13187       }
13188   }
13189 
13190   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13191     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13192       if (SourceEnum->getDecl()->hasNameForLinkage() &&
13193           TargetEnum->getDecl()->hasNameForLinkage() &&
13194           SourceEnum != TargetEnum) {
13195         if (S.SourceMgr.isInSystemMacro(CC))
13196           return;
13197 
13198         return DiagnoseImpCast(S, E, SourceType, T, CC,
13199                                diag::warn_impcast_different_enum_types);
13200       }
13201 }
13202 
13203 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13204                                      SourceLocation CC, QualType T);
13205 
13206 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13207                                     SourceLocation CC, bool &ICContext) {
13208   E = E->IgnoreParenImpCasts();
13209 
13210   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13211     return CheckConditionalOperator(S, CO, CC, T);
13212 
13213   AnalyzeImplicitConversions(S, E, CC);
13214   if (E->getType() != T)
13215     return CheckImplicitConversion(S, E, T, CC, &ICContext);
13216 }
13217 
13218 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13219                                      SourceLocation CC, QualType T) {
13220   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13221 
13222   Expr *TrueExpr = E->getTrueExpr();
13223   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13224     TrueExpr = BCO->getCommon();
13225 
13226   bool Suspicious = false;
13227   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13228   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13229 
13230   if (T->isBooleanType())
13231     DiagnoseIntInBoolContext(S, E);
13232 
13233   // If -Wconversion would have warned about either of the candidates
13234   // for a signedness conversion to the context type...
13235   if (!Suspicious) return;
13236 
13237   // ...but it's currently ignored...
13238   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13239     return;
13240 
13241   // ...then check whether it would have warned about either of the
13242   // candidates for a signedness conversion to the condition type.
13243   if (E->getType() == T) return;
13244 
13245   Suspicious = false;
13246   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13247                           E->getType(), CC, &Suspicious);
13248   if (!Suspicious)
13249     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13250                             E->getType(), CC, &Suspicious);
13251 }
13252 
13253 /// Check conversion of given expression to boolean.
13254 /// Input argument E is a logical expression.
13255 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13256   if (S.getLangOpts().Bool)
13257     return;
13258   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13259     return;
13260   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13261 }
13262 
13263 namespace {
13264 struct AnalyzeImplicitConversionsWorkItem {
13265   Expr *E;
13266   SourceLocation CC;
13267   bool IsListInit;
13268 };
13269 }
13270 
13271 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13272 /// that should be visited are added to WorkList.
13273 static void AnalyzeImplicitConversions(
13274     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13275     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13276   Expr *OrigE = Item.E;
13277   SourceLocation CC = Item.CC;
13278 
13279   QualType T = OrigE->getType();
13280   Expr *E = OrigE->IgnoreParenImpCasts();
13281 
13282   // Propagate whether we are in a C++ list initialization expression.
13283   // If so, we do not issue warnings for implicit int-float conversion
13284   // precision loss, because C++11 narrowing already handles it.
13285   bool IsListInit = Item.IsListInit ||
13286                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13287 
13288   if (E->isTypeDependent() || E->isValueDependent())
13289     return;
13290 
13291   Expr *SourceExpr = E;
13292   // Examine, but don't traverse into the source expression of an
13293   // OpaqueValueExpr, since it may have multiple parents and we don't want to
13294   // emit duplicate diagnostics. Its fine to examine the form or attempt to
13295   // evaluate it in the context of checking the specific conversion to T though.
13296   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13297     if (auto *Src = OVE->getSourceExpr())
13298       SourceExpr = Src;
13299 
13300   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13301     if (UO->getOpcode() == UO_Not &&
13302         UO->getSubExpr()->isKnownToHaveBooleanValue())
13303       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13304           << OrigE->getSourceRange() << T->isBooleanType()
13305           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13306 
13307   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
13308     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
13309         BO->getLHS()->isKnownToHaveBooleanValue() &&
13310         BO->getRHS()->isKnownToHaveBooleanValue() &&
13311         BO->getLHS()->HasSideEffects(S.Context) &&
13312         BO->getRHS()->HasSideEffects(S.Context)) {
13313       S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
13314           << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
13315           << FixItHint::CreateReplacement(
13316                  BO->getOperatorLoc(),
13317                  (BO->getOpcode() == BO_And ? "&&" : "||"));
13318       S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
13319     }
13320 
13321   // For conditional operators, we analyze the arguments as if they
13322   // were being fed directly into the output.
13323   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13324     CheckConditionalOperator(S, CO, CC, T);
13325     return;
13326   }
13327 
13328   // Check implicit argument conversions for function calls.
13329   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13330     CheckImplicitArgumentConversions(S, Call, CC);
13331 
13332   // Go ahead and check any implicit conversions we might have skipped.
13333   // The non-canonical typecheck is just an optimization;
13334   // CheckImplicitConversion will filter out dead implicit conversions.
13335   if (SourceExpr->getType() != T)
13336     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13337 
13338   // Now continue drilling into this expression.
13339 
13340   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13341     // The bound subexpressions in a PseudoObjectExpr are not reachable
13342     // as transitive children.
13343     // FIXME: Use a more uniform representation for this.
13344     for (auto *SE : POE->semantics())
13345       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13346         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13347   }
13348 
13349   // Skip past explicit casts.
13350   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13351     E = CE->getSubExpr()->IgnoreParenImpCasts();
13352     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13353       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13354     WorkList.push_back({E, CC, IsListInit});
13355     return;
13356   }
13357 
13358   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13359     // Do a somewhat different check with comparison operators.
13360     if (BO->isComparisonOp())
13361       return AnalyzeComparison(S, BO);
13362 
13363     // And with simple assignments.
13364     if (BO->getOpcode() == BO_Assign)
13365       return AnalyzeAssignment(S, BO);
13366     // And with compound assignments.
13367     if (BO->isAssignmentOp())
13368       return AnalyzeCompoundAssignment(S, BO);
13369   }
13370 
13371   // These break the otherwise-useful invariant below.  Fortunately,
13372   // we don't really need to recurse into them, because any internal
13373   // expressions should have been analyzed already when they were
13374   // built into statements.
13375   if (isa<StmtExpr>(E)) return;
13376 
13377   // Don't descend into unevaluated contexts.
13378   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13379 
13380   // Now just recurse over the expression's children.
13381   CC = E->getExprLoc();
13382   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13383   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13384   for (Stmt *SubStmt : E->children()) {
13385     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13386     if (!ChildExpr)
13387       continue;
13388 
13389     if (IsLogicalAndOperator &&
13390         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13391       // Ignore checking string literals that are in logical and operators.
13392       // This is a common pattern for asserts.
13393       continue;
13394     WorkList.push_back({ChildExpr, CC, IsListInit});
13395   }
13396 
13397   if (BO && BO->isLogicalOp()) {
13398     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13399     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13400       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13401 
13402     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13403     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13404       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13405   }
13406 
13407   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13408     if (U->getOpcode() == UO_LNot) {
13409       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13410     } else if (U->getOpcode() != UO_AddrOf) {
13411       if (U->getSubExpr()->getType()->isAtomicType())
13412         S.Diag(U->getSubExpr()->getBeginLoc(),
13413                diag::warn_atomic_implicit_seq_cst);
13414     }
13415   }
13416 }
13417 
13418 /// AnalyzeImplicitConversions - Find and report any interesting
13419 /// implicit conversions in the given expression.  There are a couple
13420 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
13421 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13422                                        bool IsListInit/*= false*/) {
13423   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13424   WorkList.push_back({OrigE, CC, IsListInit});
13425   while (!WorkList.empty())
13426     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13427 }
13428 
13429 /// Diagnose integer type and any valid implicit conversion to it.
13430 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13431   // Taking into account implicit conversions,
13432   // allow any integer.
13433   if (!E->getType()->isIntegerType()) {
13434     S.Diag(E->getBeginLoc(),
13435            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13436     return true;
13437   }
13438   // Potentially emit standard warnings for implicit conversions if enabled
13439   // using -Wconversion.
13440   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13441   return false;
13442 }
13443 
13444 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13445 // Returns true when emitting a warning about taking the address of a reference.
13446 static bool CheckForReference(Sema &SemaRef, const Expr *E,
13447                               const PartialDiagnostic &PD) {
13448   E = E->IgnoreParenImpCasts();
13449 
13450   const FunctionDecl *FD = nullptr;
13451 
13452   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13453     if (!DRE->getDecl()->getType()->isReferenceType())
13454       return false;
13455   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13456     if (!M->getMemberDecl()->getType()->isReferenceType())
13457       return false;
13458   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13459     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13460       return false;
13461     FD = Call->getDirectCallee();
13462   } else {
13463     return false;
13464   }
13465 
13466   SemaRef.Diag(E->getExprLoc(), PD);
13467 
13468   // If possible, point to location of function.
13469   if (FD) {
13470     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13471   }
13472 
13473   return true;
13474 }
13475 
13476 // Returns true if the SourceLocation is expanded from any macro body.
13477 // Returns false if the SourceLocation is invalid, is from not in a macro
13478 // expansion, or is from expanded from a top-level macro argument.
13479 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13480   if (Loc.isInvalid())
13481     return false;
13482 
13483   while (Loc.isMacroID()) {
13484     if (SM.isMacroBodyExpansion(Loc))
13485       return true;
13486     Loc = SM.getImmediateMacroCallerLoc(Loc);
13487   }
13488 
13489   return false;
13490 }
13491 
13492 /// Diagnose pointers that are always non-null.
13493 /// \param E the expression containing the pointer
13494 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13495 /// compared to a null pointer
13496 /// \param IsEqual True when the comparison is equal to a null pointer
13497 /// \param Range Extra SourceRange to highlight in the diagnostic
13498 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13499                                         Expr::NullPointerConstantKind NullKind,
13500                                         bool IsEqual, SourceRange Range) {
13501   if (!E)
13502     return;
13503 
13504   // Don't warn inside macros.
13505   if (E->getExprLoc().isMacroID()) {
13506     const SourceManager &SM = getSourceManager();
13507     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13508         IsInAnyMacroBody(SM, Range.getBegin()))
13509       return;
13510   }
13511   E = E->IgnoreImpCasts();
13512 
13513   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13514 
13515   if (isa<CXXThisExpr>(E)) {
13516     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13517                                 : diag::warn_this_bool_conversion;
13518     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13519     return;
13520   }
13521 
13522   bool IsAddressOf = false;
13523 
13524   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13525     if (UO->getOpcode() != UO_AddrOf)
13526       return;
13527     IsAddressOf = true;
13528     E = UO->getSubExpr();
13529   }
13530 
13531   if (IsAddressOf) {
13532     unsigned DiagID = IsCompare
13533                           ? diag::warn_address_of_reference_null_compare
13534                           : diag::warn_address_of_reference_bool_conversion;
13535     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13536                                          << IsEqual;
13537     if (CheckForReference(*this, E, PD)) {
13538       return;
13539     }
13540   }
13541 
13542   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13543     bool IsParam = isa<NonNullAttr>(NonnullAttr);
13544     std::string Str;
13545     llvm::raw_string_ostream S(Str);
13546     E->printPretty(S, nullptr, getPrintingPolicy());
13547     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13548                                 : diag::warn_cast_nonnull_to_bool;
13549     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13550       << E->getSourceRange() << Range << IsEqual;
13551     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13552   };
13553 
13554   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13555   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13556     if (auto *Callee = Call->getDirectCallee()) {
13557       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13558         ComplainAboutNonnullParamOrCall(A);
13559         return;
13560       }
13561     }
13562   }
13563 
13564   // Expect to find a single Decl.  Skip anything more complicated.
13565   ValueDecl *D = nullptr;
13566   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13567     D = R->getDecl();
13568   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13569     D = M->getMemberDecl();
13570   }
13571 
13572   // Weak Decls can be null.
13573   if (!D || D->isWeak())
13574     return;
13575 
13576   // Check for parameter decl with nonnull attribute
13577   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13578     if (getCurFunction() &&
13579         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13580       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13581         ComplainAboutNonnullParamOrCall(A);
13582         return;
13583       }
13584 
13585       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13586         // Skip function template not specialized yet.
13587         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13588           return;
13589         auto ParamIter = llvm::find(FD->parameters(), PV);
13590         assert(ParamIter != FD->param_end());
13591         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13592 
13593         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13594           if (!NonNull->args_size()) {
13595               ComplainAboutNonnullParamOrCall(NonNull);
13596               return;
13597           }
13598 
13599           for (const ParamIdx &ArgNo : NonNull->args()) {
13600             if (ArgNo.getASTIndex() == ParamNo) {
13601               ComplainAboutNonnullParamOrCall(NonNull);
13602               return;
13603             }
13604           }
13605         }
13606       }
13607     }
13608   }
13609 
13610   QualType T = D->getType();
13611   const bool IsArray = T->isArrayType();
13612   const bool IsFunction = T->isFunctionType();
13613 
13614   // Address of function is used to silence the function warning.
13615   if (IsAddressOf && IsFunction) {
13616     return;
13617   }
13618 
13619   // Found nothing.
13620   if (!IsAddressOf && !IsFunction && !IsArray)
13621     return;
13622 
13623   // Pretty print the expression for the diagnostic.
13624   std::string Str;
13625   llvm::raw_string_ostream S(Str);
13626   E->printPretty(S, nullptr, getPrintingPolicy());
13627 
13628   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13629                               : diag::warn_impcast_pointer_to_bool;
13630   enum {
13631     AddressOf,
13632     FunctionPointer,
13633     ArrayPointer
13634   } DiagType;
13635   if (IsAddressOf)
13636     DiagType = AddressOf;
13637   else if (IsFunction)
13638     DiagType = FunctionPointer;
13639   else if (IsArray)
13640     DiagType = ArrayPointer;
13641   else
13642     llvm_unreachable("Could not determine diagnostic.");
13643   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13644                                 << Range << IsEqual;
13645 
13646   if (!IsFunction)
13647     return;
13648 
13649   // Suggest '&' to silence the function warning.
13650   Diag(E->getExprLoc(), diag::note_function_warning_silence)
13651       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13652 
13653   // Check to see if '()' fixit should be emitted.
13654   QualType ReturnType;
13655   UnresolvedSet<4> NonTemplateOverloads;
13656   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13657   if (ReturnType.isNull())
13658     return;
13659 
13660   if (IsCompare) {
13661     // There are two cases here.  If there is null constant, the only suggest
13662     // for a pointer return type.  If the null is 0, then suggest if the return
13663     // type is a pointer or an integer type.
13664     if (!ReturnType->isPointerType()) {
13665       if (NullKind == Expr::NPCK_ZeroExpression ||
13666           NullKind == Expr::NPCK_ZeroLiteral) {
13667         if (!ReturnType->isIntegerType())
13668           return;
13669       } else {
13670         return;
13671       }
13672     }
13673   } else { // !IsCompare
13674     // For function to bool, only suggest if the function pointer has bool
13675     // return type.
13676     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13677       return;
13678   }
13679   Diag(E->getExprLoc(), diag::note_function_to_function_call)
13680       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13681 }
13682 
13683 /// Diagnoses "dangerous" implicit conversions within the given
13684 /// expression (which is a full expression).  Implements -Wconversion
13685 /// and -Wsign-compare.
13686 ///
13687 /// \param CC the "context" location of the implicit conversion, i.e.
13688 ///   the most location of the syntactic entity requiring the implicit
13689 ///   conversion
13690 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13691   // Don't diagnose in unevaluated contexts.
13692   if (isUnevaluatedContext())
13693     return;
13694 
13695   // Don't diagnose for value- or type-dependent expressions.
13696   if (E->isTypeDependent() || E->isValueDependent())
13697     return;
13698 
13699   // Check for array bounds violations in cases where the check isn't triggered
13700   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13701   // ArraySubscriptExpr is on the RHS of a variable initialization.
13702   CheckArrayAccess(E);
13703 
13704   // This is not the right CC for (e.g.) a variable initialization.
13705   AnalyzeImplicitConversions(*this, E, CC);
13706 }
13707 
13708 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13709 /// Input argument E is a logical expression.
13710 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13711   ::CheckBoolLikeConversion(*this, E, CC);
13712 }
13713 
13714 /// Diagnose when expression is an integer constant expression and its evaluation
13715 /// results in integer overflow
13716 void Sema::CheckForIntOverflow (Expr *E) {
13717   // Use a work list to deal with nested struct initializers.
13718   SmallVector<Expr *, 2> Exprs(1, E);
13719 
13720   do {
13721     Expr *OriginalE = Exprs.pop_back_val();
13722     Expr *E = OriginalE->IgnoreParenCasts();
13723 
13724     if (isa<BinaryOperator>(E)) {
13725       E->EvaluateForOverflow(Context);
13726       continue;
13727     }
13728 
13729     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13730       Exprs.append(InitList->inits().begin(), InitList->inits().end());
13731     else if (isa<ObjCBoxedExpr>(OriginalE))
13732       E->EvaluateForOverflow(Context);
13733     else if (auto Call = dyn_cast<CallExpr>(E))
13734       Exprs.append(Call->arg_begin(), Call->arg_end());
13735     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13736       Exprs.append(Message->arg_begin(), Message->arg_end());
13737   } while (!Exprs.empty());
13738 }
13739 
13740 namespace {
13741 
13742 /// Visitor for expressions which looks for unsequenced operations on the
13743 /// same object.
13744 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13745   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13746 
13747   /// A tree of sequenced regions within an expression. Two regions are
13748   /// unsequenced if one is an ancestor or a descendent of the other. When we
13749   /// finish processing an expression with sequencing, such as a comma
13750   /// expression, we fold its tree nodes into its parent, since they are
13751   /// unsequenced with respect to nodes we will visit later.
13752   class SequenceTree {
13753     struct Value {
13754       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13755       unsigned Parent : 31;
13756       unsigned Merged : 1;
13757     };
13758     SmallVector<Value, 8> Values;
13759 
13760   public:
13761     /// A region within an expression which may be sequenced with respect
13762     /// to some other region.
13763     class Seq {
13764       friend class SequenceTree;
13765 
13766       unsigned Index;
13767 
13768       explicit Seq(unsigned N) : Index(N) {}
13769 
13770     public:
13771       Seq() : Index(0) {}
13772     };
13773 
13774     SequenceTree() { Values.push_back(Value(0)); }
13775     Seq root() const { return Seq(0); }
13776 
13777     /// Create a new sequence of operations, which is an unsequenced
13778     /// subset of \p Parent. This sequence of operations is sequenced with
13779     /// respect to other children of \p Parent.
13780     Seq allocate(Seq Parent) {
13781       Values.push_back(Value(Parent.Index));
13782       return Seq(Values.size() - 1);
13783     }
13784 
13785     /// Merge a sequence of operations into its parent.
13786     void merge(Seq S) {
13787       Values[S.Index].Merged = true;
13788     }
13789 
13790     /// Determine whether two operations are unsequenced. This operation
13791     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13792     /// should have been merged into its parent as appropriate.
13793     bool isUnsequenced(Seq Cur, Seq Old) {
13794       unsigned C = representative(Cur.Index);
13795       unsigned Target = representative(Old.Index);
13796       while (C >= Target) {
13797         if (C == Target)
13798           return true;
13799         C = Values[C].Parent;
13800       }
13801       return false;
13802     }
13803 
13804   private:
13805     /// Pick a representative for a sequence.
13806     unsigned representative(unsigned K) {
13807       if (Values[K].Merged)
13808         // Perform path compression as we go.
13809         return Values[K].Parent = representative(Values[K].Parent);
13810       return K;
13811     }
13812   };
13813 
13814   /// An object for which we can track unsequenced uses.
13815   using Object = const NamedDecl *;
13816 
13817   /// Different flavors of object usage which we track. We only track the
13818   /// least-sequenced usage of each kind.
13819   enum UsageKind {
13820     /// A read of an object. Multiple unsequenced reads are OK.
13821     UK_Use,
13822 
13823     /// A modification of an object which is sequenced before the value
13824     /// computation of the expression, such as ++n in C++.
13825     UK_ModAsValue,
13826 
13827     /// A modification of an object which is not sequenced before the value
13828     /// computation of the expression, such as n++.
13829     UK_ModAsSideEffect,
13830 
13831     UK_Count = UK_ModAsSideEffect + 1
13832   };
13833 
13834   /// Bundle together a sequencing region and the expression corresponding
13835   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13836   struct Usage {
13837     const Expr *UsageExpr;
13838     SequenceTree::Seq Seq;
13839 
13840     Usage() : UsageExpr(nullptr), Seq() {}
13841   };
13842 
13843   struct UsageInfo {
13844     Usage Uses[UK_Count];
13845 
13846     /// Have we issued a diagnostic for this object already?
13847     bool Diagnosed;
13848 
13849     UsageInfo() : Uses(), Diagnosed(false) {}
13850   };
13851   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13852 
13853   Sema &SemaRef;
13854 
13855   /// Sequenced regions within the expression.
13856   SequenceTree Tree;
13857 
13858   /// Declaration modifications and references which we have seen.
13859   UsageInfoMap UsageMap;
13860 
13861   /// The region we are currently within.
13862   SequenceTree::Seq Region;
13863 
13864   /// Filled in with declarations which were modified as a side-effect
13865   /// (that is, post-increment operations).
13866   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13867 
13868   /// Expressions to check later. We defer checking these to reduce
13869   /// stack usage.
13870   SmallVectorImpl<const Expr *> &WorkList;
13871 
13872   /// RAII object wrapping the visitation of a sequenced subexpression of an
13873   /// expression. At the end of this process, the side-effects of the evaluation
13874   /// become sequenced with respect to the value computation of the result, so
13875   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13876   /// UK_ModAsValue.
13877   struct SequencedSubexpression {
13878     SequencedSubexpression(SequenceChecker &Self)
13879       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13880       Self.ModAsSideEffect = &ModAsSideEffect;
13881     }
13882 
13883     ~SequencedSubexpression() {
13884       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13885         // Add a new usage with usage kind UK_ModAsValue, and then restore
13886         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13887         // the previous one was empty).
13888         UsageInfo &UI = Self.UsageMap[M.first];
13889         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13890         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13891         SideEffectUsage = M.second;
13892       }
13893       Self.ModAsSideEffect = OldModAsSideEffect;
13894     }
13895 
13896     SequenceChecker &Self;
13897     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13898     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13899   };
13900 
13901   /// RAII object wrapping the visitation of a subexpression which we might
13902   /// choose to evaluate as a constant. If any subexpression is evaluated and
13903   /// found to be non-constant, this allows us to suppress the evaluation of
13904   /// the outer expression.
13905   class EvaluationTracker {
13906   public:
13907     EvaluationTracker(SequenceChecker &Self)
13908         : Self(Self), Prev(Self.EvalTracker) {
13909       Self.EvalTracker = this;
13910     }
13911 
13912     ~EvaluationTracker() {
13913       Self.EvalTracker = Prev;
13914       if (Prev)
13915         Prev->EvalOK &= EvalOK;
13916     }
13917 
13918     bool evaluate(const Expr *E, bool &Result) {
13919       if (!EvalOK || E->isValueDependent())
13920         return false;
13921       EvalOK = E->EvaluateAsBooleanCondition(
13922           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13923       return EvalOK;
13924     }
13925 
13926   private:
13927     SequenceChecker &Self;
13928     EvaluationTracker *Prev;
13929     bool EvalOK = true;
13930   } *EvalTracker = nullptr;
13931 
13932   /// Find the object which is produced by the specified expression,
13933   /// if any.
13934   Object getObject(const Expr *E, bool Mod) const {
13935     E = E->IgnoreParenCasts();
13936     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13937       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13938         return getObject(UO->getSubExpr(), Mod);
13939     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13940       if (BO->getOpcode() == BO_Comma)
13941         return getObject(BO->getRHS(), Mod);
13942       if (Mod && BO->isAssignmentOp())
13943         return getObject(BO->getLHS(), Mod);
13944     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13945       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13946       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13947         return ME->getMemberDecl();
13948     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13949       // FIXME: If this is a reference, map through to its value.
13950       return DRE->getDecl();
13951     return nullptr;
13952   }
13953 
13954   /// Note that an object \p O was modified or used by an expression
13955   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13956   /// the object \p O as obtained via the \p UsageMap.
13957   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13958     // Get the old usage for the given object and usage kind.
13959     Usage &U = UI.Uses[UK];
13960     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13961       // If we have a modification as side effect and are in a sequenced
13962       // subexpression, save the old Usage so that we can restore it later
13963       // in SequencedSubexpression::~SequencedSubexpression.
13964       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13965         ModAsSideEffect->push_back(std::make_pair(O, U));
13966       // Then record the new usage with the current sequencing region.
13967       U.UsageExpr = UsageExpr;
13968       U.Seq = Region;
13969     }
13970   }
13971 
13972   /// Check whether a modification or use of an object \p O in an expression
13973   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13974   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13975   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13976   /// usage and false we are checking for a mod-use unsequenced usage.
13977   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13978                   UsageKind OtherKind, bool IsModMod) {
13979     if (UI.Diagnosed)
13980       return;
13981 
13982     const Usage &U = UI.Uses[OtherKind];
13983     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13984       return;
13985 
13986     const Expr *Mod = U.UsageExpr;
13987     const Expr *ModOrUse = UsageExpr;
13988     if (OtherKind == UK_Use)
13989       std::swap(Mod, ModOrUse);
13990 
13991     SemaRef.DiagRuntimeBehavior(
13992         Mod->getExprLoc(), {Mod, ModOrUse},
13993         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13994                                : diag::warn_unsequenced_mod_use)
13995             << O << SourceRange(ModOrUse->getExprLoc()));
13996     UI.Diagnosed = true;
13997   }
13998 
13999   // A note on note{Pre, Post}{Use, Mod}:
14000   //
14001   // (It helps to follow the algorithm with an expression such as
14002   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14003   //  operations before C++17 and both are well-defined in C++17).
14004   //
14005   // When visiting a node which uses/modify an object we first call notePreUse
14006   // or notePreMod before visiting its sub-expression(s). At this point the
14007   // children of the current node have not yet been visited and so the eventual
14008   // uses/modifications resulting from the children of the current node have not
14009   // been recorded yet.
14010   //
14011   // We then visit the children of the current node. After that notePostUse or
14012   // notePostMod is called. These will 1) detect an unsequenced modification
14013   // as side effect (as in "k++ + k") and 2) add a new usage with the
14014   // appropriate usage kind.
14015   //
14016   // We also have to be careful that some operation sequences modification as
14017   // side effect as well (for example: || or ,). To account for this we wrap
14018   // the visitation of such a sub-expression (for example: the LHS of || or ,)
14019   // with SequencedSubexpression. SequencedSubexpression is an RAII object
14020   // which record usages which are modifications as side effect, and then
14021   // downgrade them (or more accurately restore the previous usage which was a
14022   // modification as side effect) when exiting the scope of the sequenced
14023   // subexpression.
14024 
14025   void notePreUse(Object O, const Expr *UseExpr) {
14026     UsageInfo &UI = UsageMap[O];
14027     // Uses conflict with other modifications.
14028     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14029   }
14030 
14031   void notePostUse(Object O, const Expr *UseExpr) {
14032     UsageInfo &UI = UsageMap[O];
14033     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14034                /*IsModMod=*/false);
14035     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14036   }
14037 
14038   void notePreMod(Object O, const Expr *ModExpr) {
14039     UsageInfo &UI = UsageMap[O];
14040     // Modifications conflict with other modifications and with uses.
14041     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14042     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14043   }
14044 
14045   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14046     UsageInfo &UI = UsageMap[O];
14047     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14048                /*IsModMod=*/true);
14049     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14050   }
14051 
14052 public:
14053   SequenceChecker(Sema &S, const Expr *E,
14054                   SmallVectorImpl<const Expr *> &WorkList)
14055       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14056     Visit(E);
14057     // Silence a -Wunused-private-field since WorkList is now unused.
14058     // TODO: Evaluate if it can be used, and if not remove it.
14059     (void)this->WorkList;
14060   }
14061 
14062   void VisitStmt(const Stmt *S) {
14063     // Skip all statements which aren't expressions for now.
14064   }
14065 
14066   void VisitExpr(const Expr *E) {
14067     // By default, just recurse to evaluated subexpressions.
14068     Base::VisitStmt(E);
14069   }
14070 
14071   void VisitCastExpr(const CastExpr *E) {
14072     Object O = Object();
14073     if (E->getCastKind() == CK_LValueToRValue)
14074       O = getObject(E->getSubExpr(), false);
14075 
14076     if (O)
14077       notePreUse(O, E);
14078     VisitExpr(E);
14079     if (O)
14080       notePostUse(O, E);
14081   }
14082 
14083   void VisitSequencedExpressions(const Expr *SequencedBefore,
14084                                  const Expr *SequencedAfter) {
14085     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14086     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14087     SequenceTree::Seq OldRegion = Region;
14088 
14089     {
14090       SequencedSubexpression SeqBefore(*this);
14091       Region = BeforeRegion;
14092       Visit(SequencedBefore);
14093     }
14094 
14095     Region = AfterRegion;
14096     Visit(SequencedAfter);
14097 
14098     Region = OldRegion;
14099 
14100     Tree.merge(BeforeRegion);
14101     Tree.merge(AfterRegion);
14102   }
14103 
14104   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14105     // C++17 [expr.sub]p1:
14106     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14107     //   expression E1 is sequenced before the expression E2.
14108     if (SemaRef.getLangOpts().CPlusPlus17)
14109       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14110     else {
14111       Visit(ASE->getLHS());
14112       Visit(ASE->getRHS());
14113     }
14114   }
14115 
14116   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14117   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14118   void VisitBinPtrMem(const BinaryOperator *BO) {
14119     // C++17 [expr.mptr.oper]p4:
14120     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14121     //  the expression E1 is sequenced before the expression E2.
14122     if (SemaRef.getLangOpts().CPlusPlus17)
14123       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14124     else {
14125       Visit(BO->getLHS());
14126       Visit(BO->getRHS());
14127     }
14128   }
14129 
14130   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14131   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14132   void VisitBinShlShr(const BinaryOperator *BO) {
14133     // C++17 [expr.shift]p4:
14134     //  The expression E1 is sequenced before the expression E2.
14135     if (SemaRef.getLangOpts().CPlusPlus17)
14136       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14137     else {
14138       Visit(BO->getLHS());
14139       Visit(BO->getRHS());
14140     }
14141   }
14142 
14143   void VisitBinComma(const BinaryOperator *BO) {
14144     // C++11 [expr.comma]p1:
14145     //   Every value computation and side effect associated with the left
14146     //   expression is sequenced before every value computation and side
14147     //   effect associated with the right expression.
14148     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14149   }
14150 
14151   void VisitBinAssign(const BinaryOperator *BO) {
14152     SequenceTree::Seq RHSRegion;
14153     SequenceTree::Seq LHSRegion;
14154     if (SemaRef.getLangOpts().CPlusPlus17) {
14155       RHSRegion = Tree.allocate(Region);
14156       LHSRegion = Tree.allocate(Region);
14157     } else {
14158       RHSRegion = Region;
14159       LHSRegion = Region;
14160     }
14161     SequenceTree::Seq OldRegion = Region;
14162 
14163     // C++11 [expr.ass]p1:
14164     //  [...] the assignment is sequenced after the value computation
14165     //  of the right and left operands, [...]
14166     //
14167     // so check it before inspecting the operands and update the
14168     // map afterwards.
14169     Object O = getObject(BO->getLHS(), /*Mod=*/true);
14170     if (O)
14171       notePreMod(O, BO);
14172 
14173     if (SemaRef.getLangOpts().CPlusPlus17) {
14174       // C++17 [expr.ass]p1:
14175       //  [...] The right operand is sequenced before the left operand. [...]
14176       {
14177         SequencedSubexpression SeqBefore(*this);
14178         Region = RHSRegion;
14179         Visit(BO->getRHS());
14180       }
14181 
14182       Region = LHSRegion;
14183       Visit(BO->getLHS());
14184 
14185       if (O && isa<CompoundAssignOperator>(BO))
14186         notePostUse(O, BO);
14187 
14188     } else {
14189       // C++11 does not specify any sequencing between the LHS and RHS.
14190       Region = LHSRegion;
14191       Visit(BO->getLHS());
14192 
14193       if (O && isa<CompoundAssignOperator>(BO))
14194         notePostUse(O, BO);
14195 
14196       Region = RHSRegion;
14197       Visit(BO->getRHS());
14198     }
14199 
14200     // C++11 [expr.ass]p1:
14201     //  the assignment is sequenced [...] before the value computation of the
14202     //  assignment expression.
14203     // C11 6.5.16/3 has no such rule.
14204     Region = OldRegion;
14205     if (O)
14206       notePostMod(O, BO,
14207                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14208                                                   : UK_ModAsSideEffect);
14209     if (SemaRef.getLangOpts().CPlusPlus17) {
14210       Tree.merge(RHSRegion);
14211       Tree.merge(LHSRegion);
14212     }
14213   }
14214 
14215   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14216     VisitBinAssign(CAO);
14217   }
14218 
14219   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14220   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14221   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14222     Object O = getObject(UO->getSubExpr(), true);
14223     if (!O)
14224       return VisitExpr(UO);
14225 
14226     notePreMod(O, UO);
14227     Visit(UO->getSubExpr());
14228     // C++11 [expr.pre.incr]p1:
14229     //   the expression ++x is equivalent to x+=1
14230     notePostMod(O, UO,
14231                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14232                                                 : UK_ModAsSideEffect);
14233   }
14234 
14235   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14236   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14237   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14238     Object O = getObject(UO->getSubExpr(), true);
14239     if (!O)
14240       return VisitExpr(UO);
14241 
14242     notePreMod(O, UO);
14243     Visit(UO->getSubExpr());
14244     notePostMod(O, UO, UK_ModAsSideEffect);
14245   }
14246 
14247   void VisitBinLOr(const BinaryOperator *BO) {
14248     // C++11 [expr.log.or]p2:
14249     //  If the second expression is evaluated, every value computation and
14250     //  side effect associated with the first expression is sequenced before
14251     //  every value computation and side effect associated with the
14252     //  second expression.
14253     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14254     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14255     SequenceTree::Seq OldRegion = Region;
14256 
14257     EvaluationTracker Eval(*this);
14258     {
14259       SequencedSubexpression Sequenced(*this);
14260       Region = LHSRegion;
14261       Visit(BO->getLHS());
14262     }
14263 
14264     // C++11 [expr.log.or]p1:
14265     //  [...] the second operand is not evaluated if the first operand
14266     //  evaluates to true.
14267     bool EvalResult = false;
14268     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14269     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14270     if (ShouldVisitRHS) {
14271       Region = RHSRegion;
14272       Visit(BO->getRHS());
14273     }
14274 
14275     Region = OldRegion;
14276     Tree.merge(LHSRegion);
14277     Tree.merge(RHSRegion);
14278   }
14279 
14280   void VisitBinLAnd(const BinaryOperator *BO) {
14281     // C++11 [expr.log.and]p2:
14282     //  If the second expression is evaluated, every value computation and
14283     //  side effect associated with the first expression is sequenced before
14284     //  every value computation and side effect associated with the
14285     //  second expression.
14286     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14287     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14288     SequenceTree::Seq OldRegion = Region;
14289 
14290     EvaluationTracker Eval(*this);
14291     {
14292       SequencedSubexpression Sequenced(*this);
14293       Region = LHSRegion;
14294       Visit(BO->getLHS());
14295     }
14296 
14297     // C++11 [expr.log.and]p1:
14298     //  [...] the second operand is not evaluated if the first operand is false.
14299     bool EvalResult = false;
14300     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14301     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14302     if (ShouldVisitRHS) {
14303       Region = RHSRegion;
14304       Visit(BO->getRHS());
14305     }
14306 
14307     Region = OldRegion;
14308     Tree.merge(LHSRegion);
14309     Tree.merge(RHSRegion);
14310   }
14311 
14312   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14313     // C++11 [expr.cond]p1:
14314     //  [...] Every value computation and side effect associated with the first
14315     //  expression is sequenced before every value computation and side effect
14316     //  associated with the second or third expression.
14317     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14318 
14319     // No sequencing is specified between the true and false expression.
14320     // However since exactly one of both is going to be evaluated we can
14321     // consider them to be sequenced. This is needed to avoid warning on
14322     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14323     // both the true and false expressions because we can't evaluate x.
14324     // This will still allow us to detect an expression like (pre C++17)
14325     // "(x ? y += 1 : y += 2) = y".
14326     //
14327     // We don't wrap the visitation of the true and false expression with
14328     // SequencedSubexpression because we don't want to downgrade modifications
14329     // as side effect in the true and false expressions after the visition
14330     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14331     // not warn between the two "y++", but we should warn between the "y++"
14332     // and the "y".
14333     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14334     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14335     SequenceTree::Seq OldRegion = Region;
14336 
14337     EvaluationTracker Eval(*this);
14338     {
14339       SequencedSubexpression Sequenced(*this);
14340       Region = ConditionRegion;
14341       Visit(CO->getCond());
14342     }
14343 
14344     // C++11 [expr.cond]p1:
14345     // [...] The first expression is contextually converted to bool (Clause 4).
14346     // It is evaluated and if it is true, the result of the conditional
14347     // expression is the value of the second expression, otherwise that of the
14348     // third expression. Only one of the second and third expressions is
14349     // evaluated. [...]
14350     bool EvalResult = false;
14351     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14352     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14353     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14354     if (ShouldVisitTrueExpr) {
14355       Region = TrueRegion;
14356       Visit(CO->getTrueExpr());
14357     }
14358     if (ShouldVisitFalseExpr) {
14359       Region = FalseRegion;
14360       Visit(CO->getFalseExpr());
14361     }
14362 
14363     Region = OldRegion;
14364     Tree.merge(ConditionRegion);
14365     Tree.merge(TrueRegion);
14366     Tree.merge(FalseRegion);
14367   }
14368 
14369   void VisitCallExpr(const CallExpr *CE) {
14370     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14371 
14372     if (CE->isUnevaluatedBuiltinCall(Context))
14373       return;
14374 
14375     // C++11 [intro.execution]p15:
14376     //   When calling a function [...], every value computation and side effect
14377     //   associated with any argument expression, or with the postfix expression
14378     //   designating the called function, is sequenced before execution of every
14379     //   expression or statement in the body of the function [and thus before
14380     //   the value computation of its result].
14381     SequencedSubexpression Sequenced(*this);
14382     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14383       // C++17 [expr.call]p5
14384       //   The postfix-expression is sequenced before each expression in the
14385       //   expression-list and any default argument. [...]
14386       SequenceTree::Seq CalleeRegion;
14387       SequenceTree::Seq OtherRegion;
14388       if (SemaRef.getLangOpts().CPlusPlus17) {
14389         CalleeRegion = Tree.allocate(Region);
14390         OtherRegion = Tree.allocate(Region);
14391       } else {
14392         CalleeRegion = Region;
14393         OtherRegion = Region;
14394       }
14395       SequenceTree::Seq OldRegion = Region;
14396 
14397       // Visit the callee expression first.
14398       Region = CalleeRegion;
14399       if (SemaRef.getLangOpts().CPlusPlus17) {
14400         SequencedSubexpression Sequenced(*this);
14401         Visit(CE->getCallee());
14402       } else {
14403         Visit(CE->getCallee());
14404       }
14405 
14406       // Then visit the argument expressions.
14407       Region = OtherRegion;
14408       for (const Expr *Argument : CE->arguments())
14409         Visit(Argument);
14410 
14411       Region = OldRegion;
14412       if (SemaRef.getLangOpts().CPlusPlus17) {
14413         Tree.merge(CalleeRegion);
14414         Tree.merge(OtherRegion);
14415       }
14416     });
14417   }
14418 
14419   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14420     // C++17 [over.match.oper]p2:
14421     //   [...] the operator notation is first transformed to the equivalent
14422     //   function-call notation as summarized in Table 12 (where @ denotes one
14423     //   of the operators covered in the specified subclause). However, the
14424     //   operands are sequenced in the order prescribed for the built-in
14425     //   operator (Clause 8).
14426     //
14427     // From the above only overloaded binary operators and overloaded call
14428     // operators have sequencing rules in C++17 that we need to handle
14429     // separately.
14430     if (!SemaRef.getLangOpts().CPlusPlus17 ||
14431         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14432       return VisitCallExpr(CXXOCE);
14433 
14434     enum {
14435       NoSequencing,
14436       LHSBeforeRHS,
14437       RHSBeforeLHS,
14438       LHSBeforeRest
14439     } SequencingKind;
14440     switch (CXXOCE->getOperator()) {
14441     case OO_Equal:
14442     case OO_PlusEqual:
14443     case OO_MinusEqual:
14444     case OO_StarEqual:
14445     case OO_SlashEqual:
14446     case OO_PercentEqual:
14447     case OO_CaretEqual:
14448     case OO_AmpEqual:
14449     case OO_PipeEqual:
14450     case OO_LessLessEqual:
14451     case OO_GreaterGreaterEqual:
14452       SequencingKind = RHSBeforeLHS;
14453       break;
14454 
14455     case OO_LessLess:
14456     case OO_GreaterGreater:
14457     case OO_AmpAmp:
14458     case OO_PipePipe:
14459     case OO_Comma:
14460     case OO_ArrowStar:
14461     case OO_Subscript:
14462       SequencingKind = LHSBeforeRHS;
14463       break;
14464 
14465     case OO_Call:
14466       SequencingKind = LHSBeforeRest;
14467       break;
14468 
14469     default:
14470       SequencingKind = NoSequencing;
14471       break;
14472     }
14473 
14474     if (SequencingKind == NoSequencing)
14475       return VisitCallExpr(CXXOCE);
14476 
14477     // This is a call, so all subexpressions are sequenced before the result.
14478     SequencedSubexpression Sequenced(*this);
14479 
14480     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14481       assert(SemaRef.getLangOpts().CPlusPlus17 &&
14482              "Should only get there with C++17 and above!");
14483       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
14484              "Should only get there with an overloaded binary operator"
14485              " or an overloaded call operator!");
14486 
14487       if (SequencingKind == LHSBeforeRest) {
14488         assert(CXXOCE->getOperator() == OO_Call &&
14489                "We should only have an overloaded call operator here!");
14490 
14491         // This is very similar to VisitCallExpr, except that we only have the
14492         // C++17 case. The postfix-expression is the first argument of the
14493         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14494         // are in the following arguments.
14495         //
14496         // Note that we intentionally do not visit the callee expression since
14497         // it is just a decayed reference to a function.
14498         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14499         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14500         SequenceTree::Seq OldRegion = Region;
14501 
14502         assert(CXXOCE->getNumArgs() >= 1 &&
14503                "An overloaded call operator must have at least one argument"
14504                " for the postfix-expression!");
14505         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14506         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14507                                           CXXOCE->getNumArgs() - 1);
14508 
14509         // Visit the postfix-expression first.
14510         {
14511           Region = PostfixExprRegion;
14512           SequencedSubexpression Sequenced(*this);
14513           Visit(PostfixExpr);
14514         }
14515 
14516         // Then visit the argument expressions.
14517         Region = ArgsRegion;
14518         for (const Expr *Arg : Args)
14519           Visit(Arg);
14520 
14521         Region = OldRegion;
14522         Tree.merge(PostfixExprRegion);
14523         Tree.merge(ArgsRegion);
14524       } else {
14525         assert(CXXOCE->getNumArgs() == 2 &&
14526                "Should only have two arguments here!");
14527         assert((SequencingKind == LHSBeforeRHS ||
14528                 SequencingKind == RHSBeforeLHS) &&
14529                "Unexpected sequencing kind!");
14530 
14531         // We do not visit the callee expression since it is just a decayed
14532         // reference to a function.
14533         const Expr *E1 = CXXOCE->getArg(0);
14534         const Expr *E2 = CXXOCE->getArg(1);
14535         if (SequencingKind == RHSBeforeLHS)
14536           std::swap(E1, E2);
14537 
14538         return VisitSequencedExpressions(E1, E2);
14539       }
14540     });
14541   }
14542 
14543   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14544     // This is a call, so all subexpressions are sequenced before the result.
14545     SequencedSubexpression Sequenced(*this);
14546 
14547     if (!CCE->isListInitialization())
14548       return VisitExpr(CCE);
14549 
14550     // In C++11, list initializations are sequenced.
14551     SmallVector<SequenceTree::Seq, 32> Elts;
14552     SequenceTree::Seq Parent = Region;
14553     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14554                                               E = CCE->arg_end();
14555          I != E; ++I) {
14556       Region = Tree.allocate(Parent);
14557       Elts.push_back(Region);
14558       Visit(*I);
14559     }
14560 
14561     // Forget that the initializers are sequenced.
14562     Region = Parent;
14563     for (unsigned I = 0; I < Elts.size(); ++I)
14564       Tree.merge(Elts[I]);
14565   }
14566 
14567   void VisitInitListExpr(const InitListExpr *ILE) {
14568     if (!SemaRef.getLangOpts().CPlusPlus11)
14569       return VisitExpr(ILE);
14570 
14571     // In C++11, list initializations are sequenced.
14572     SmallVector<SequenceTree::Seq, 32> Elts;
14573     SequenceTree::Seq Parent = Region;
14574     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14575       const Expr *E = ILE->getInit(I);
14576       if (!E)
14577         continue;
14578       Region = Tree.allocate(Parent);
14579       Elts.push_back(Region);
14580       Visit(E);
14581     }
14582 
14583     // Forget that the initializers are sequenced.
14584     Region = Parent;
14585     for (unsigned I = 0; I < Elts.size(); ++I)
14586       Tree.merge(Elts[I]);
14587   }
14588 };
14589 
14590 } // namespace
14591 
14592 void Sema::CheckUnsequencedOperations(const Expr *E) {
14593   SmallVector<const Expr *, 8> WorkList;
14594   WorkList.push_back(E);
14595   while (!WorkList.empty()) {
14596     const Expr *Item = WorkList.pop_back_val();
14597     SequenceChecker(*this, Item, WorkList);
14598   }
14599 }
14600 
14601 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14602                               bool IsConstexpr) {
14603   llvm::SaveAndRestore<bool> ConstantContext(
14604       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14605   CheckImplicitConversions(E, CheckLoc);
14606   if (!E->isInstantiationDependent())
14607     CheckUnsequencedOperations(E);
14608   if (!IsConstexpr && !E->isValueDependent())
14609     CheckForIntOverflow(E);
14610   DiagnoseMisalignedMembers();
14611 }
14612 
14613 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14614                                        FieldDecl *BitField,
14615                                        Expr *Init) {
14616   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14617 }
14618 
14619 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14620                                          SourceLocation Loc) {
14621   if (!PType->isVariablyModifiedType())
14622     return;
14623   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14624     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14625     return;
14626   }
14627   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14628     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14629     return;
14630   }
14631   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14632     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14633     return;
14634   }
14635 
14636   const ArrayType *AT = S.Context.getAsArrayType(PType);
14637   if (!AT)
14638     return;
14639 
14640   if (AT->getSizeModifier() != ArrayType::Star) {
14641     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14642     return;
14643   }
14644 
14645   S.Diag(Loc, diag::err_array_star_in_function_definition);
14646 }
14647 
14648 /// CheckParmsForFunctionDef - Check that the parameters of the given
14649 /// function are appropriate for the definition of a function. This
14650 /// takes care of any checks that cannot be performed on the
14651 /// declaration itself, e.g., that the types of each of the function
14652 /// parameters are complete.
14653 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14654                                     bool CheckParameterNames) {
14655   bool HasInvalidParm = false;
14656   for (ParmVarDecl *Param : Parameters) {
14657     // C99 6.7.5.3p4: the parameters in a parameter type list in a
14658     // function declarator that is part of a function definition of
14659     // that function shall not have incomplete type.
14660     //
14661     // This is also C++ [dcl.fct]p6.
14662     if (!Param->isInvalidDecl() &&
14663         RequireCompleteType(Param->getLocation(), Param->getType(),
14664                             diag::err_typecheck_decl_incomplete_type)) {
14665       Param->setInvalidDecl();
14666       HasInvalidParm = true;
14667     }
14668 
14669     // C99 6.9.1p5: If the declarator includes a parameter type list, the
14670     // declaration of each parameter shall include an identifier.
14671     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14672         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14673       // Diagnose this as an extension in C17 and earlier.
14674       if (!getLangOpts().C2x)
14675         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14676     }
14677 
14678     // C99 6.7.5.3p12:
14679     //   If the function declarator is not part of a definition of that
14680     //   function, parameters may have incomplete type and may use the [*]
14681     //   notation in their sequences of declarator specifiers to specify
14682     //   variable length array types.
14683     QualType PType = Param->getOriginalType();
14684     // FIXME: This diagnostic should point the '[*]' if source-location
14685     // information is added for it.
14686     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14687 
14688     // If the parameter is a c++ class type and it has to be destructed in the
14689     // callee function, declare the destructor so that it can be called by the
14690     // callee function. Do not perform any direct access check on the dtor here.
14691     if (!Param->isInvalidDecl()) {
14692       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14693         if (!ClassDecl->isInvalidDecl() &&
14694             !ClassDecl->hasIrrelevantDestructor() &&
14695             !ClassDecl->isDependentContext() &&
14696             ClassDecl->isParamDestroyedInCallee()) {
14697           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14698           MarkFunctionReferenced(Param->getLocation(), Destructor);
14699           DiagnoseUseOfDecl(Destructor, Param->getLocation());
14700         }
14701       }
14702     }
14703 
14704     // Parameters with the pass_object_size attribute only need to be marked
14705     // constant at function definitions. Because we lack information about
14706     // whether we're on a declaration or definition when we're instantiating the
14707     // attribute, we need to check for constness here.
14708     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14709       if (!Param->getType().isConstQualified())
14710         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14711             << Attr->getSpelling() << 1;
14712 
14713     // Check for parameter names shadowing fields from the class.
14714     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14715       // The owning context for the parameter should be the function, but we
14716       // want to see if this function's declaration context is a record.
14717       DeclContext *DC = Param->getDeclContext();
14718       if (DC && DC->isFunctionOrMethod()) {
14719         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14720           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14721                                      RD, /*DeclIsField*/ false);
14722       }
14723     }
14724   }
14725 
14726   return HasInvalidParm;
14727 }
14728 
14729 Optional<std::pair<CharUnits, CharUnits>>
14730 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14731 
14732 /// Compute the alignment and offset of the base class object given the
14733 /// derived-to-base cast expression and the alignment and offset of the derived
14734 /// class object.
14735 static std::pair<CharUnits, CharUnits>
14736 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14737                                    CharUnits BaseAlignment, CharUnits Offset,
14738                                    ASTContext &Ctx) {
14739   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14740        ++PathI) {
14741     const CXXBaseSpecifier *Base = *PathI;
14742     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14743     if (Base->isVirtual()) {
14744       // The complete object may have a lower alignment than the non-virtual
14745       // alignment of the base, in which case the base may be misaligned. Choose
14746       // the smaller of the non-virtual alignment and BaseAlignment, which is a
14747       // conservative lower bound of the complete object alignment.
14748       CharUnits NonVirtualAlignment =
14749           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14750       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14751       Offset = CharUnits::Zero();
14752     } else {
14753       const ASTRecordLayout &RL =
14754           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14755       Offset += RL.getBaseClassOffset(BaseDecl);
14756     }
14757     DerivedType = Base->getType();
14758   }
14759 
14760   return std::make_pair(BaseAlignment, Offset);
14761 }
14762 
14763 /// Compute the alignment and offset of a binary additive operator.
14764 static Optional<std::pair<CharUnits, CharUnits>>
14765 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
14766                                      bool IsSub, ASTContext &Ctx) {
14767   QualType PointeeType = PtrE->getType()->getPointeeType();
14768 
14769   if (!PointeeType->isConstantSizeType())
14770     return llvm::None;
14771 
14772   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
14773 
14774   if (!P)
14775     return llvm::None;
14776 
14777   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
14778   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
14779     CharUnits Offset = EltSize * IdxRes->getExtValue();
14780     if (IsSub)
14781       Offset = -Offset;
14782     return std::make_pair(P->first, P->second + Offset);
14783   }
14784 
14785   // If the integer expression isn't a constant expression, compute the lower
14786   // bound of the alignment using the alignment and offset of the pointer
14787   // expression and the element size.
14788   return std::make_pair(
14789       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
14790       CharUnits::Zero());
14791 }
14792 
14793 /// This helper function takes an lvalue expression and returns the alignment of
14794 /// a VarDecl and a constant offset from the VarDecl.
14795 Optional<std::pair<CharUnits, CharUnits>>
14796 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14797   E = E->IgnoreParens();
14798   switch (E->getStmtClass()) {
14799   default:
14800     break;
14801   case Stmt::CStyleCastExprClass:
14802   case Stmt::CXXStaticCastExprClass:
14803   case Stmt::ImplicitCastExprClass: {
14804     auto *CE = cast<CastExpr>(E);
14805     const Expr *From = CE->getSubExpr();
14806     switch (CE->getCastKind()) {
14807     default:
14808       break;
14809     case CK_NoOp:
14810       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14811     case CK_UncheckedDerivedToBase:
14812     case CK_DerivedToBase: {
14813       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14814       if (!P)
14815         break;
14816       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14817                                                 P->second, Ctx);
14818     }
14819     }
14820     break;
14821   }
14822   case Stmt::ArraySubscriptExprClass: {
14823     auto *ASE = cast<ArraySubscriptExpr>(E);
14824     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14825                                                 false, Ctx);
14826   }
14827   case Stmt::DeclRefExprClass: {
14828     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14829       // FIXME: If VD is captured by copy or is an escaping __block variable,
14830       // use the alignment of VD's type.
14831       if (!VD->getType()->isReferenceType())
14832         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14833       if (VD->hasInit())
14834         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14835     }
14836     break;
14837   }
14838   case Stmt::MemberExprClass: {
14839     auto *ME = cast<MemberExpr>(E);
14840     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14841     if (!FD || FD->getType()->isReferenceType() ||
14842         FD->getParent()->isInvalidDecl())
14843       break;
14844     Optional<std::pair<CharUnits, CharUnits>> P;
14845     if (ME->isArrow())
14846       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14847     else
14848       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14849     if (!P)
14850       break;
14851     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14852     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14853     return std::make_pair(P->first,
14854                           P->second + CharUnits::fromQuantity(Offset));
14855   }
14856   case Stmt::UnaryOperatorClass: {
14857     auto *UO = cast<UnaryOperator>(E);
14858     switch (UO->getOpcode()) {
14859     default:
14860       break;
14861     case UO_Deref:
14862       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14863     }
14864     break;
14865   }
14866   case Stmt::BinaryOperatorClass: {
14867     auto *BO = cast<BinaryOperator>(E);
14868     auto Opcode = BO->getOpcode();
14869     switch (Opcode) {
14870     default:
14871       break;
14872     case BO_Comma:
14873       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14874     }
14875     break;
14876   }
14877   }
14878   return llvm::None;
14879 }
14880 
14881 /// This helper function takes a pointer expression and returns the alignment of
14882 /// a VarDecl and a constant offset from the VarDecl.
14883 Optional<std::pair<CharUnits, CharUnits>>
14884 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14885   E = E->IgnoreParens();
14886   switch (E->getStmtClass()) {
14887   default:
14888     break;
14889   case Stmt::CStyleCastExprClass:
14890   case Stmt::CXXStaticCastExprClass:
14891   case Stmt::ImplicitCastExprClass: {
14892     auto *CE = cast<CastExpr>(E);
14893     const Expr *From = CE->getSubExpr();
14894     switch (CE->getCastKind()) {
14895     default:
14896       break;
14897     case CK_NoOp:
14898       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14899     case CK_ArrayToPointerDecay:
14900       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14901     case CK_UncheckedDerivedToBase:
14902     case CK_DerivedToBase: {
14903       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14904       if (!P)
14905         break;
14906       return getDerivedToBaseAlignmentAndOffset(
14907           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14908     }
14909     }
14910     break;
14911   }
14912   case Stmt::CXXThisExprClass: {
14913     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14914     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14915     return std::make_pair(Alignment, CharUnits::Zero());
14916   }
14917   case Stmt::UnaryOperatorClass: {
14918     auto *UO = cast<UnaryOperator>(E);
14919     if (UO->getOpcode() == UO_AddrOf)
14920       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14921     break;
14922   }
14923   case Stmt::BinaryOperatorClass: {
14924     auto *BO = cast<BinaryOperator>(E);
14925     auto Opcode = BO->getOpcode();
14926     switch (Opcode) {
14927     default:
14928       break;
14929     case BO_Add:
14930     case BO_Sub: {
14931       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14932       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14933         std::swap(LHS, RHS);
14934       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14935                                                   Ctx);
14936     }
14937     case BO_Comma:
14938       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14939     }
14940     break;
14941   }
14942   }
14943   return llvm::None;
14944 }
14945 
14946 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14947   // See if we can compute the alignment of a VarDecl and an offset from it.
14948   Optional<std::pair<CharUnits, CharUnits>> P =
14949       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14950 
14951   if (P)
14952     return P->first.alignmentAtOffset(P->second);
14953 
14954   // If that failed, return the type's alignment.
14955   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14956 }
14957 
14958 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14959 /// pointer cast increases the alignment requirements.
14960 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14961   // This is actually a lot of work to potentially be doing on every
14962   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14963   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14964     return;
14965 
14966   // Ignore dependent types.
14967   if (T->isDependentType() || Op->getType()->isDependentType())
14968     return;
14969 
14970   // Require that the destination be a pointer type.
14971   const PointerType *DestPtr = T->getAs<PointerType>();
14972   if (!DestPtr) return;
14973 
14974   // If the destination has alignment 1, we're done.
14975   QualType DestPointee = DestPtr->getPointeeType();
14976   if (DestPointee->isIncompleteType()) return;
14977   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14978   if (DestAlign.isOne()) return;
14979 
14980   // Require that the source be a pointer type.
14981   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14982   if (!SrcPtr) return;
14983   QualType SrcPointee = SrcPtr->getPointeeType();
14984 
14985   // Explicitly allow casts from cv void*.  We already implicitly
14986   // allowed casts to cv void*, since they have alignment 1.
14987   // Also allow casts involving incomplete types, which implicitly
14988   // includes 'void'.
14989   if (SrcPointee->isIncompleteType()) return;
14990 
14991   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14992 
14993   if (SrcAlign >= DestAlign) return;
14994 
14995   Diag(TRange.getBegin(), diag::warn_cast_align)
14996     << Op->getType() << T
14997     << static_cast<unsigned>(SrcAlign.getQuantity())
14998     << static_cast<unsigned>(DestAlign.getQuantity())
14999     << TRange << Op->getSourceRange();
15000 }
15001 
15002 /// Check whether this array fits the idiom of a size-one tail padded
15003 /// array member of a struct.
15004 ///
15005 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
15006 /// commonly used to emulate flexible arrays in C89 code.
15007 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15008                                     const NamedDecl *ND) {
15009   if (Size != 1 || !ND) return false;
15010 
15011   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15012   if (!FD) return false;
15013 
15014   // Don't consider sizes resulting from macro expansions or template argument
15015   // substitution to form C89 tail-padded arrays.
15016 
15017   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15018   while (TInfo) {
15019     TypeLoc TL = TInfo->getTypeLoc();
15020     // Look through typedefs.
15021     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15022       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15023       TInfo = TDL->getTypeSourceInfo();
15024       continue;
15025     }
15026     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15027       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15028       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15029         return false;
15030     }
15031     break;
15032   }
15033 
15034   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15035   if (!RD) return false;
15036   if (RD->isUnion()) return false;
15037   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15038     if (!CRD->isStandardLayout()) return false;
15039   }
15040 
15041   // See if this is the last field decl in the record.
15042   const Decl *D = FD;
15043   while ((D = D->getNextDeclInContext()))
15044     if (isa<FieldDecl>(D))
15045       return false;
15046   return true;
15047 }
15048 
15049 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15050                             const ArraySubscriptExpr *ASE,
15051                             bool AllowOnePastEnd, bool IndexNegated) {
15052   // Already diagnosed by the constant evaluator.
15053   if (isConstantEvaluated())
15054     return;
15055 
15056   IndexExpr = IndexExpr->IgnoreParenImpCasts();
15057   if (IndexExpr->isValueDependent())
15058     return;
15059 
15060   const Type *EffectiveType =
15061       BaseExpr->getType()->getPointeeOrArrayElementType();
15062   BaseExpr = BaseExpr->IgnoreParenCasts();
15063   const ConstantArrayType *ArrayTy =
15064       Context.getAsConstantArrayType(BaseExpr->getType());
15065 
15066   const Type *BaseType =
15067       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15068   bool IsUnboundedArray = (BaseType == nullptr);
15069   if (EffectiveType->isDependentType() ||
15070       (!IsUnboundedArray && BaseType->isDependentType()))
15071     return;
15072 
15073   Expr::EvalResult Result;
15074   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15075     return;
15076 
15077   llvm::APSInt index = Result.Val.getInt();
15078   if (IndexNegated) {
15079     index.setIsUnsigned(false);
15080     index = -index;
15081   }
15082 
15083   const NamedDecl *ND = nullptr;
15084   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15085     ND = DRE->getDecl();
15086   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15087     ND = ME->getMemberDecl();
15088 
15089   if (IsUnboundedArray) {
15090     if (index.isUnsigned() || !index.isNegative()) {
15091       const auto &ASTC = getASTContext();
15092       unsigned AddrBits =
15093           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15094               EffectiveType->getCanonicalTypeInternal()));
15095       if (index.getBitWidth() < AddrBits)
15096         index = index.zext(AddrBits);
15097       Optional<CharUnits> ElemCharUnits =
15098           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15099       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15100       // pointer) bounds-checking isn't meaningful.
15101       if (!ElemCharUnits)
15102         return;
15103       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15104       // If index has more active bits than address space, we already know
15105       // we have a bounds violation to warn about.  Otherwise, compute
15106       // address of (index + 1)th element, and warn about bounds violation
15107       // only if that address exceeds address space.
15108       if (index.getActiveBits() <= AddrBits) {
15109         bool Overflow;
15110         llvm::APInt Product(index);
15111         Product += 1;
15112         Product = Product.umul_ov(ElemBytes, Overflow);
15113         if (!Overflow && Product.getActiveBits() <= AddrBits)
15114           return;
15115       }
15116 
15117       // Need to compute max possible elements in address space, since that
15118       // is included in diag message.
15119       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15120       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15121       MaxElems += 1;
15122       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15123       MaxElems = MaxElems.udiv(ElemBytes);
15124 
15125       unsigned DiagID =
15126           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15127               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15128 
15129       // Diag message shows element size in bits and in "bytes" (platform-
15130       // dependent CharUnits)
15131       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15132                           PDiag(DiagID)
15133                               << toString(index, 10, true) << AddrBits
15134                               << (unsigned)ASTC.toBits(*ElemCharUnits)
15135                               << toString(ElemBytes, 10, false)
15136                               << toString(MaxElems, 10, false)
15137                               << (unsigned)MaxElems.getLimitedValue(~0U)
15138                               << IndexExpr->getSourceRange());
15139 
15140       if (!ND) {
15141         // Try harder to find a NamedDecl to point at in the note.
15142         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15143           BaseExpr = ASE->getBase()->IgnoreParenCasts();
15144         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15145           ND = DRE->getDecl();
15146         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15147           ND = ME->getMemberDecl();
15148       }
15149 
15150       if (ND)
15151         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15152                             PDiag(diag::note_array_declared_here) << ND);
15153     }
15154     return;
15155   }
15156 
15157   if (index.isUnsigned() || !index.isNegative()) {
15158     // It is possible that the type of the base expression after
15159     // IgnoreParenCasts is incomplete, even though the type of the base
15160     // expression before IgnoreParenCasts is complete (see PR39746 for an
15161     // example). In this case we have no information about whether the array
15162     // access exceeds the array bounds. However we can still diagnose an array
15163     // access which precedes the array bounds.
15164     if (BaseType->isIncompleteType())
15165       return;
15166 
15167     llvm::APInt size = ArrayTy->getSize();
15168     if (!size.isStrictlyPositive())
15169       return;
15170 
15171     if (BaseType != EffectiveType) {
15172       // Make sure we're comparing apples to apples when comparing index to size
15173       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15174       uint64_t array_typesize = Context.getTypeSize(BaseType);
15175       // Handle ptrarith_typesize being zero, such as when casting to void*
15176       if (!ptrarith_typesize) ptrarith_typesize = 1;
15177       if (ptrarith_typesize != array_typesize) {
15178         // There's a cast to a different size type involved
15179         uint64_t ratio = array_typesize / ptrarith_typesize;
15180         // TODO: Be smarter about handling cases where array_typesize is not a
15181         // multiple of ptrarith_typesize
15182         if (ptrarith_typesize * ratio == array_typesize)
15183           size *= llvm::APInt(size.getBitWidth(), ratio);
15184       }
15185     }
15186 
15187     if (size.getBitWidth() > index.getBitWidth())
15188       index = index.zext(size.getBitWidth());
15189     else if (size.getBitWidth() < index.getBitWidth())
15190       size = size.zext(index.getBitWidth());
15191 
15192     // For array subscripting the index must be less than size, but for pointer
15193     // arithmetic also allow the index (offset) to be equal to size since
15194     // computing the next address after the end of the array is legal and
15195     // commonly done e.g. in C++ iterators and range-based for loops.
15196     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15197       return;
15198 
15199     // Also don't warn for arrays of size 1 which are members of some
15200     // structure. These are often used to approximate flexible arrays in C89
15201     // code.
15202     if (IsTailPaddedMemberArray(*this, size, ND))
15203       return;
15204 
15205     // Suppress the warning if the subscript expression (as identified by the
15206     // ']' location) and the index expression are both from macro expansions
15207     // within a system header.
15208     if (ASE) {
15209       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15210           ASE->getRBracketLoc());
15211       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15212         SourceLocation IndexLoc =
15213             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15214         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15215           return;
15216       }
15217     }
15218 
15219     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15220                           : diag::warn_ptr_arith_exceeds_bounds;
15221 
15222     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15223                         PDiag(DiagID) << toString(index, 10, true)
15224                                       << toString(size, 10, true)
15225                                       << (unsigned)size.getLimitedValue(~0U)
15226                                       << IndexExpr->getSourceRange());
15227   } else {
15228     unsigned DiagID = diag::warn_array_index_precedes_bounds;
15229     if (!ASE) {
15230       DiagID = diag::warn_ptr_arith_precedes_bounds;
15231       if (index.isNegative()) index = -index;
15232     }
15233 
15234     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15235                         PDiag(DiagID) << toString(index, 10, true)
15236                                       << IndexExpr->getSourceRange());
15237   }
15238 
15239   if (!ND) {
15240     // Try harder to find a NamedDecl to point at in the note.
15241     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15242       BaseExpr = ASE->getBase()->IgnoreParenCasts();
15243     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15244       ND = DRE->getDecl();
15245     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15246       ND = ME->getMemberDecl();
15247   }
15248 
15249   if (ND)
15250     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15251                         PDiag(diag::note_array_declared_here) << ND);
15252 }
15253 
15254 void Sema::CheckArrayAccess(const Expr *expr) {
15255   int AllowOnePastEnd = 0;
15256   while (expr) {
15257     expr = expr->IgnoreParenImpCasts();
15258     switch (expr->getStmtClass()) {
15259       case Stmt::ArraySubscriptExprClass: {
15260         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15261         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15262                          AllowOnePastEnd > 0);
15263         expr = ASE->getBase();
15264         break;
15265       }
15266       case Stmt::MemberExprClass: {
15267         expr = cast<MemberExpr>(expr)->getBase();
15268         break;
15269       }
15270       case Stmt::OMPArraySectionExprClass: {
15271         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15272         if (ASE->getLowerBound())
15273           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15274                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
15275         return;
15276       }
15277       case Stmt::UnaryOperatorClass: {
15278         // Only unwrap the * and & unary operators
15279         const UnaryOperator *UO = cast<UnaryOperator>(expr);
15280         expr = UO->getSubExpr();
15281         switch (UO->getOpcode()) {
15282           case UO_AddrOf:
15283             AllowOnePastEnd++;
15284             break;
15285           case UO_Deref:
15286             AllowOnePastEnd--;
15287             break;
15288           default:
15289             return;
15290         }
15291         break;
15292       }
15293       case Stmt::ConditionalOperatorClass: {
15294         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15295         if (const Expr *lhs = cond->getLHS())
15296           CheckArrayAccess(lhs);
15297         if (const Expr *rhs = cond->getRHS())
15298           CheckArrayAccess(rhs);
15299         return;
15300       }
15301       case Stmt::CXXOperatorCallExprClass: {
15302         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15303         for (const auto *Arg : OCE->arguments())
15304           CheckArrayAccess(Arg);
15305         return;
15306       }
15307       default:
15308         return;
15309     }
15310   }
15311 }
15312 
15313 //===--- CHECK: Objective-C retain cycles ----------------------------------//
15314 
15315 namespace {
15316 
15317 struct RetainCycleOwner {
15318   VarDecl *Variable = nullptr;
15319   SourceRange Range;
15320   SourceLocation Loc;
15321   bool Indirect = false;
15322 
15323   RetainCycleOwner() = default;
15324 
15325   void setLocsFrom(Expr *e) {
15326     Loc = e->getExprLoc();
15327     Range = e->getSourceRange();
15328   }
15329 };
15330 
15331 } // namespace
15332 
15333 /// Consider whether capturing the given variable can possibly lead to
15334 /// a retain cycle.
15335 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15336   // In ARC, it's captured strongly iff the variable has __strong
15337   // lifetime.  In MRR, it's captured strongly if the variable is
15338   // __block and has an appropriate type.
15339   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15340     return false;
15341 
15342   owner.Variable = var;
15343   if (ref)
15344     owner.setLocsFrom(ref);
15345   return true;
15346 }
15347 
15348 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15349   while (true) {
15350     e = e->IgnoreParens();
15351     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15352       switch (cast->getCastKind()) {
15353       case CK_BitCast:
15354       case CK_LValueBitCast:
15355       case CK_LValueToRValue:
15356       case CK_ARCReclaimReturnedObject:
15357         e = cast->getSubExpr();
15358         continue;
15359 
15360       default:
15361         return false;
15362       }
15363     }
15364 
15365     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15366       ObjCIvarDecl *ivar = ref->getDecl();
15367       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15368         return false;
15369 
15370       // Try to find a retain cycle in the base.
15371       if (!findRetainCycleOwner(S, ref->getBase(), owner))
15372         return false;
15373 
15374       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15375       owner.Indirect = true;
15376       return true;
15377     }
15378 
15379     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15380       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15381       if (!var) return false;
15382       return considerVariable(var, ref, owner);
15383     }
15384 
15385     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15386       if (member->isArrow()) return false;
15387 
15388       // Don't count this as an indirect ownership.
15389       e = member->getBase();
15390       continue;
15391     }
15392 
15393     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15394       // Only pay attention to pseudo-objects on property references.
15395       ObjCPropertyRefExpr *pre
15396         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15397                                               ->IgnoreParens());
15398       if (!pre) return false;
15399       if (pre->isImplicitProperty()) return false;
15400       ObjCPropertyDecl *property = pre->getExplicitProperty();
15401       if (!property->isRetaining() &&
15402           !(property->getPropertyIvarDecl() &&
15403             property->getPropertyIvarDecl()->getType()
15404               .getObjCLifetime() == Qualifiers::OCL_Strong))
15405           return false;
15406 
15407       owner.Indirect = true;
15408       if (pre->isSuperReceiver()) {
15409         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15410         if (!owner.Variable)
15411           return false;
15412         owner.Loc = pre->getLocation();
15413         owner.Range = pre->getSourceRange();
15414         return true;
15415       }
15416       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15417                               ->getSourceExpr());
15418       continue;
15419     }
15420 
15421     // Array ivars?
15422 
15423     return false;
15424   }
15425 }
15426 
15427 namespace {
15428 
15429   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15430     ASTContext &Context;
15431     VarDecl *Variable;
15432     Expr *Capturer = nullptr;
15433     bool VarWillBeReased = false;
15434 
15435     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15436         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15437           Context(Context), Variable(variable) {}
15438 
15439     void VisitDeclRefExpr(DeclRefExpr *ref) {
15440       if (ref->getDecl() == Variable && !Capturer)
15441         Capturer = ref;
15442     }
15443 
15444     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15445       if (Capturer) return;
15446       Visit(ref->getBase());
15447       if (Capturer && ref->isFreeIvar())
15448         Capturer = ref;
15449     }
15450 
15451     void VisitBlockExpr(BlockExpr *block) {
15452       // Look inside nested blocks
15453       if (block->getBlockDecl()->capturesVariable(Variable))
15454         Visit(block->getBlockDecl()->getBody());
15455     }
15456 
15457     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15458       if (Capturer) return;
15459       if (OVE->getSourceExpr())
15460         Visit(OVE->getSourceExpr());
15461     }
15462 
15463     void VisitBinaryOperator(BinaryOperator *BinOp) {
15464       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15465         return;
15466       Expr *LHS = BinOp->getLHS();
15467       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15468         if (DRE->getDecl() != Variable)
15469           return;
15470         if (Expr *RHS = BinOp->getRHS()) {
15471           RHS = RHS->IgnoreParenCasts();
15472           Optional<llvm::APSInt> Value;
15473           VarWillBeReased =
15474               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15475                *Value == 0);
15476         }
15477       }
15478     }
15479   };
15480 
15481 } // namespace
15482 
15483 /// Check whether the given argument is a block which captures a
15484 /// variable.
15485 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15486   assert(owner.Variable && owner.Loc.isValid());
15487 
15488   e = e->IgnoreParenCasts();
15489 
15490   // Look through [^{...} copy] and Block_copy(^{...}).
15491   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15492     Selector Cmd = ME->getSelector();
15493     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15494       e = ME->getInstanceReceiver();
15495       if (!e)
15496         return nullptr;
15497       e = e->IgnoreParenCasts();
15498     }
15499   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15500     if (CE->getNumArgs() == 1) {
15501       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15502       if (Fn) {
15503         const IdentifierInfo *FnI = Fn->getIdentifier();
15504         if (FnI && FnI->isStr("_Block_copy")) {
15505           e = CE->getArg(0)->IgnoreParenCasts();
15506         }
15507       }
15508     }
15509   }
15510 
15511   BlockExpr *block = dyn_cast<BlockExpr>(e);
15512   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15513     return nullptr;
15514 
15515   FindCaptureVisitor visitor(S.Context, owner.Variable);
15516   visitor.Visit(block->getBlockDecl()->getBody());
15517   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15518 }
15519 
15520 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15521                                 RetainCycleOwner &owner) {
15522   assert(capturer);
15523   assert(owner.Variable && owner.Loc.isValid());
15524 
15525   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15526     << owner.Variable << capturer->getSourceRange();
15527   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15528     << owner.Indirect << owner.Range;
15529 }
15530 
15531 /// Check for a keyword selector that starts with the word 'add' or
15532 /// 'set'.
15533 static bool isSetterLikeSelector(Selector sel) {
15534   if (sel.isUnarySelector()) return false;
15535 
15536   StringRef str = sel.getNameForSlot(0);
15537   while (!str.empty() && str.front() == '_') str = str.substr(1);
15538   if (str.startswith("set"))
15539     str = str.substr(3);
15540   else if (str.startswith("add")) {
15541     // Specially allow 'addOperationWithBlock:'.
15542     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15543       return false;
15544     str = str.substr(3);
15545   }
15546   else
15547     return false;
15548 
15549   if (str.empty()) return true;
15550   return !isLowercase(str.front());
15551 }
15552 
15553 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15554                                                     ObjCMessageExpr *Message) {
15555   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15556                                                 Message->getReceiverInterface(),
15557                                                 NSAPI::ClassId_NSMutableArray);
15558   if (!IsMutableArray) {
15559     return None;
15560   }
15561 
15562   Selector Sel = Message->getSelector();
15563 
15564   Optional<NSAPI::NSArrayMethodKind> MKOpt =
15565     S.NSAPIObj->getNSArrayMethodKind(Sel);
15566   if (!MKOpt) {
15567     return None;
15568   }
15569 
15570   NSAPI::NSArrayMethodKind MK = *MKOpt;
15571 
15572   switch (MK) {
15573     case NSAPI::NSMutableArr_addObject:
15574     case NSAPI::NSMutableArr_insertObjectAtIndex:
15575     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15576       return 0;
15577     case NSAPI::NSMutableArr_replaceObjectAtIndex:
15578       return 1;
15579 
15580     default:
15581       return None;
15582   }
15583 
15584   return None;
15585 }
15586 
15587 static
15588 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15589                                                   ObjCMessageExpr *Message) {
15590   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15591                                             Message->getReceiverInterface(),
15592                                             NSAPI::ClassId_NSMutableDictionary);
15593   if (!IsMutableDictionary) {
15594     return None;
15595   }
15596 
15597   Selector Sel = Message->getSelector();
15598 
15599   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15600     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15601   if (!MKOpt) {
15602     return None;
15603   }
15604 
15605   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15606 
15607   switch (MK) {
15608     case NSAPI::NSMutableDict_setObjectForKey:
15609     case NSAPI::NSMutableDict_setValueForKey:
15610     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15611       return 0;
15612 
15613     default:
15614       return None;
15615   }
15616 
15617   return None;
15618 }
15619 
15620 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15621   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15622                                                 Message->getReceiverInterface(),
15623                                                 NSAPI::ClassId_NSMutableSet);
15624 
15625   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15626                                             Message->getReceiverInterface(),
15627                                             NSAPI::ClassId_NSMutableOrderedSet);
15628   if (!IsMutableSet && !IsMutableOrderedSet) {
15629     return None;
15630   }
15631 
15632   Selector Sel = Message->getSelector();
15633 
15634   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15635   if (!MKOpt) {
15636     return None;
15637   }
15638 
15639   NSAPI::NSSetMethodKind MK = *MKOpt;
15640 
15641   switch (MK) {
15642     case NSAPI::NSMutableSet_addObject:
15643     case NSAPI::NSOrderedSet_setObjectAtIndex:
15644     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15645     case NSAPI::NSOrderedSet_insertObjectAtIndex:
15646       return 0;
15647     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15648       return 1;
15649   }
15650 
15651   return None;
15652 }
15653 
15654 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15655   if (!Message->isInstanceMessage()) {
15656     return;
15657   }
15658 
15659   Optional<int> ArgOpt;
15660 
15661   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15662       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15663       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15664     return;
15665   }
15666 
15667   int ArgIndex = *ArgOpt;
15668 
15669   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15670   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15671     Arg = OE->getSourceExpr()->IgnoreImpCasts();
15672   }
15673 
15674   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15675     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15676       if (ArgRE->isObjCSelfExpr()) {
15677         Diag(Message->getSourceRange().getBegin(),
15678              diag::warn_objc_circular_container)
15679           << ArgRE->getDecl() << StringRef("'super'");
15680       }
15681     }
15682   } else {
15683     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15684 
15685     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15686       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15687     }
15688 
15689     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15690       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15691         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15692           ValueDecl *Decl = ReceiverRE->getDecl();
15693           Diag(Message->getSourceRange().getBegin(),
15694                diag::warn_objc_circular_container)
15695             << Decl << Decl;
15696           if (!ArgRE->isObjCSelfExpr()) {
15697             Diag(Decl->getLocation(),
15698                  diag::note_objc_circular_container_declared_here)
15699               << Decl;
15700           }
15701         }
15702       }
15703     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15704       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15705         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15706           ObjCIvarDecl *Decl = IvarRE->getDecl();
15707           Diag(Message->getSourceRange().getBegin(),
15708                diag::warn_objc_circular_container)
15709             << Decl << Decl;
15710           Diag(Decl->getLocation(),
15711                diag::note_objc_circular_container_declared_here)
15712             << Decl;
15713         }
15714       }
15715     }
15716   }
15717 }
15718 
15719 /// Check a message send to see if it's likely to cause a retain cycle.
15720 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15721   // Only check instance methods whose selector looks like a setter.
15722   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15723     return;
15724 
15725   // Try to find a variable that the receiver is strongly owned by.
15726   RetainCycleOwner owner;
15727   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15728     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15729       return;
15730   } else {
15731     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
15732     owner.Variable = getCurMethodDecl()->getSelfDecl();
15733     owner.Loc = msg->getSuperLoc();
15734     owner.Range = msg->getSuperLoc();
15735   }
15736 
15737   // Check whether the receiver is captured by any of the arguments.
15738   const ObjCMethodDecl *MD = msg->getMethodDecl();
15739   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15740     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15741       // noescape blocks should not be retained by the method.
15742       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15743         continue;
15744       return diagnoseRetainCycle(*this, capturer, owner);
15745     }
15746   }
15747 }
15748 
15749 /// Check a property assign to see if it's likely to cause a retain cycle.
15750 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15751   RetainCycleOwner owner;
15752   if (!findRetainCycleOwner(*this, receiver, owner))
15753     return;
15754 
15755   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15756     diagnoseRetainCycle(*this, capturer, owner);
15757 }
15758 
15759 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15760   RetainCycleOwner Owner;
15761   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15762     return;
15763 
15764   // Because we don't have an expression for the variable, we have to set the
15765   // location explicitly here.
15766   Owner.Loc = Var->getLocation();
15767   Owner.Range = Var->getSourceRange();
15768 
15769   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
15770     diagnoseRetainCycle(*this, Capturer, Owner);
15771 }
15772 
15773 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
15774                                      Expr *RHS, bool isProperty) {
15775   // Check if RHS is an Objective-C object literal, which also can get
15776   // immediately zapped in a weak reference.  Note that we explicitly
15777   // allow ObjCStringLiterals, since those are designed to never really die.
15778   RHS = RHS->IgnoreParenImpCasts();
15779 
15780   // This enum needs to match with the 'select' in
15781   // warn_objc_arc_literal_assign (off-by-1).
15782   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
15783   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
15784     return false;
15785 
15786   S.Diag(Loc, diag::warn_arc_literal_assign)
15787     << (unsigned) Kind
15788     << (isProperty ? 0 : 1)
15789     << RHS->getSourceRange();
15790 
15791   return true;
15792 }
15793 
15794 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
15795                                     Qualifiers::ObjCLifetime LT,
15796                                     Expr *RHS, bool isProperty) {
15797   // Strip off any implicit cast added to get to the one ARC-specific.
15798   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15799     if (cast->getCastKind() == CK_ARCConsumeObject) {
15800       S.Diag(Loc, diag::warn_arc_retained_assign)
15801         << (LT == Qualifiers::OCL_ExplicitNone)
15802         << (isProperty ? 0 : 1)
15803         << RHS->getSourceRange();
15804       return true;
15805     }
15806     RHS = cast->getSubExpr();
15807   }
15808 
15809   if (LT == Qualifiers::OCL_Weak &&
15810       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
15811     return true;
15812 
15813   return false;
15814 }
15815 
15816 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
15817                               QualType LHS, Expr *RHS) {
15818   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
15819 
15820   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
15821     return false;
15822 
15823   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
15824     return true;
15825 
15826   return false;
15827 }
15828 
15829 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
15830                               Expr *LHS, Expr *RHS) {
15831   QualType LHSType;
15832   // PropertyRef on LHS type need be directly obtained from
15833   // its declaration as it has a PseudoType.
15834   ObjCPropertyRefExpr *PRE
15835     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
15836   if (PRE && !PRE->isImplicitProperty()) {
15837     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15838     if (PD)
15839       LHSType = PD->getType();
15840   }
15841 
15842   if (LHSType.isNull())
15843     LHSType = LHS->getType();
15844 
15845   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
15846 
15847   if (LT == Qualifiers::OCL_Weak) {
15848     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
15849       getCurFunction()->markSafeWeakUse(LHS);
15850   }
15851 
15852   if (checkUnsafeAssigns(Loc, LHSType, RHS))
15853     return;
15854 
15855   // FIXME. Check for other life times.
15856   if (LT != Qualifiers::OCL_None)
15857     return;
15858 
15859   if (PRE) {
15860     if (PRE->isImplicitProperty())
15861       return;
15862     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15863     if (!PD)
15864       return;
15865 
15866     unsigned Attributes = PD->getPropertyAttributes();
15867     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15868       // when 'assign' attribute was not explicitly specified
15869       // by user, ignore it and rely on property type itself
15870       // for lifetime info.
15871       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15872       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15873           LHSType->isObjCRetainableType())
15874         return;
15875 
15876       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15877         if (cast->getCastKind() == CK_ARCConsumeObject) {
15878           Diag(Loc, diag::warn_arc_retained_property_assign)
15879           << RHS->getSourceRange();
15880           return;
15881         }
15882         RHS = cast->getSubExpr();
15883       }
15884     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15885       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15886         return;
15887     }
15888   }
15889 }
15890 
15891 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15892 
15893 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15894                                         SourceLocation StmtLoc,
15895                                         const NullStmt *Body) {
15896   // Do not warn if the body is a macro that expands to nothing, e.g:
15897   //
15898   // #define CALL(x)
15899   // if (condition)
15900   //   CALL(0);
15901   if (Body->hasLeadingEmptyMacro())
15902     return false;
15903 
15904   // Get line numbers of statement and body.
15905   bool StmtLineInvalid;
15906   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15907                                                       &StmtLineInvalid);
15908   if (StmtLineInvalid)
15909     return false;
15910 
15911   bool BodyLineInvalid;
15912   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15913                                                       &BodyLineInvalid);
15914   if (BodyLineInvalid)
15915     return false;
15916 
15917   // Warn if null statement and body are on the same line.
15918   if (StmtLine != BodyLine)
15919     return false;
15920 
15921   return true;
15922 }
15923 
15924 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15925                                  const Stmt *Body,
15926                                  unsigned DiagID) {
15927   // Since this is a syntactic check, don't emit diagnostic for template
15928   // instantiations, this just adds noise.
15929   if (CurrentInstantiationScope)
15930     return;
15931 
15932   // The body should be a null statement.
15933   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15934   if (!NBody)
15935     return;
15936 
15937   // Do the usual checks.
15938   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15939     return;
15940 
15941   Diag(NBody->getSemiLoc(), DiagID);
15942   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15943 }
15944 
15945 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15946                                  const Stmt *PossibleBody) {
15947   assert(!CurrentInstantiationScope); // Ensured by caller
15948 
15949   SourceLocation StmtLoc;
15950   const Stmt *Body;
15951   unsigned DiagID;
15952   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15953     StmtLoc = FS->getRParenLoc();
15954     Body = FS->getBody();
15955     DiagID = diag::warn_empty_for_body;
15956   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15957     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15958     Body = WS->getBody();
15959     DiagID = diag::warn_empty_while_body;
15960   } else
15961     return; // Neither `for' nor `while'.
15962 
15963   // The body should be a null statement.
15964   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15965   if (!NBody)
15966     return;
15967 
15968   // Skip expensive checks if diagnostic is disabled.
15969   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15970     return;
15971 
15972   // Do the usual checks.
15973   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15974     return;
15975 
15976   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15977   // noise level low, emit diagnostics only if for/while is followed by a
15978   // CompoundStmt, e.g.:
15979   //    for (int i = 0; i < n; i++);
15980   //    {
15981   //      a(i);
15982   //    }
15983   // or if for/while is followed by a statement with more indentation
15984   // than for/while itself:
15985   //    for (int i = 0; i < n; i++);
15986   //      a(i);
15987   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15988   if (!ProbableTypo) {
15989     bool BodyColInvalid;
15990     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15991         PossibleBody->getBeginLoc(), &BodyColInvalid);
15992     if (BodyColInvalid)
15993       return;
15994 
15995     bool StmtColInvalid;
15996     unsigned StmtCol =
15997         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15998     if (StmtColInvalid)
15999       return;
16000 
16001     if (BodyCol > StmtCol)
16002       ProbableTypo = true;
16003   }
16004 
16005   if (ProbableTypo) {
16006     Diag(NBody->getSemiLoc(), DiagID);
16007     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16008   }
16009 }
16010 
16011 //===--- CHECK: Warn on self move with std::move. -------------------------===//
16012 
16013 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
16014 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16015                              SourceLocation OpLoc) {
16016   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16017     return;
16018 
16019   if (inTemplateInstantiation())
16020     return;
16021 
16022   // Strip parens and casts away.
16023   LHSExpr = LHSExpr->IgnoreParenImpCasts();
16024   RHSExpr = RHSExpr->IgnoreParenImpCasts();
16025 
16026   // Check for a call expression
16027   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16028   if (!CE || CE->getNumArgs() != 1)
16029     return;
16030 
16031   // Check for a call to std::move
16032   if (!CE->isCallToStdMove())
16033     return;
16034 
16035   // Get argument from std::move
16036   RHSExpr = CE->getArg(0);
16037 
16038   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16039   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16040 
16041   // Two DeclRefExpr's, check that the decls are the same.
16042   if (LHSDeclRef && RHSDeclRef) {
16043     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16044       return;
16045     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16046         RHSDeclRef->getDecl()->getCanonicalDecl())
16047       return;
16048 
16049     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16050                                         << LHSExpr->getSourceRange()
16051                                         << RHSExpr->getSourceRange();
16052     return;
16053   }
16054 
16055   // Member variables require a different approach to check for self moves.
16056   // MemberExpr's are the same if every nested MemberExpr refers to the same
16057   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16058   // the base Expr's are CXXThisExpr's.
16059   const Expr *LHSBase = LHSExpr;
16060   const Expr *RHSBase = RHSExpr;
16061   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16062   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16063   if (!LHSME || !RHSME)
16064     return;
16065 
16066   while (LHSME && RHSME) {
16067     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16068         RHSME->getMemberDecl()->getCanonicalDecl())
16069       return;
16070 
16071     LHSBase = LHSME->getBase();
16072     RHSBase = RHSME->getBase();
16073     LHSME = dyn_cast<MemberExpr>(LHSBase);
16074     RHSME = dyn_cast<MemberExpr>(RHSBase);
16075   }
16076 
16077   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16078   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16079   if (LHSDeclRef && RHSDeclRef) {
16080     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16081       return;
16082     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16083         RHSDeclRef->getDecl()->getCanonicalDecl())
16084       return;
16085 
16086     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16087                                         << LHSExpr->getSourceRange()
16088                                         << RHSExpr->getSourceRange();
16089     return;
16090   }
16091 
16092   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16093     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16094                                         << LHSExpr->getSourceRange()
16095                                         << RHSExpr->getSourceRange();
16096 }
16097 
16098 //===--- Layout compatibility ----------------------------------------------//
16099 
16100 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16101 
16102 /// Check if two enumeration types are layout-compatible.
16103 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16104   // C++11 [dcl.enum] p8:
16105   // Two enumeration types are layout-compatible if they have the same
16106   // underlying type.
16107   return ED1->isComplete() && ED2->isComplete() &&
16108          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16109 }
16110 
16111 /// Check if two fields are layout-compatible.
16112 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16113                                FieldDecl *Field2) {
16114   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16115     return false;
16116 
16117   if (Field1->isBitField() != Field2->isBitField())
16118     return false;
16119 
16120   if (Field1->isBitField()) {
16121     // Make sure that the bit-fields are the same length.
16122     unsigned Bits1 = Field1->getBitWidthValue(C);
16123     unsigned Bits2 = Field2->getBitWidthValue(C);
16124 
16125     if (Bits1 != Bits2)
16126       return false;
16127   }
16128 
16129   return true;
16130 }
16131 
16132 /// Check if two standard-layout structs are layout-compatible.
16133 /// (C++11 [class.mem] p17)
16134 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16135                                      RecordDecl *RD2) {
16136   // If both records are C++ classes, check that base classes match.
16137   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16138     // If one of records is a CXXRecordDecl we are in C++ mode,
16139     // thus the other one is a CXXRecordDecl, too.
16140     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16141     // Check number of base classes.
16142     if (D1CXX->getNumBases() != D2CXX->getNumBases())
16143       return false;
16144 
16145     // Check the base classes.
16146     for (CXXRecordDecl::base_class_const_iterator
16147                Base1 = D1CXX->bases_begin(),
16148            BaseEnd1 = D1CXX->bases_end(),
16149               Base2 = D2CXX->bases_begin();
16150          Base1 != BaseEnd1;
16151          ++Base1, ++Base2) {
16152       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16153         return false;
16154     }
16155   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16156     // If only RD2 is a C++ class, it should have zero base classes.
16157     if (D2CXX->getNumBases() > 0)
16158       return false;
16159   }
16160 
16161   // Check the fields.
16162   RecordDecl::field_iterator Field2 = RD2->field_begin(),
16163                              Field2End = RD2->field_end(),
16164                              Field1 = RD1->field_begin(),
16165                              Field1End = RD1->field_end();
16166   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16167     if (!isLayoutCompatible(C, *Field1, *Field2))
16168       return false;
16169   }
16170   if (Field1 != Field1End || Field2 != Field2End)
16171     return false;
16172 
16173   return true;
16174 }
16175 
16176 /// Check if two standard-layout unions are layout-compatible.
16177 /// (C++11 [class.mem] p18)
16178 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16179                                     RecordDecl *RD2) {
16180   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16181   for (auto *Field2 : RD2->fields())
16182     UnmatchedFields.insert(Field2);
16183 
16184   for (auto *Field1 : RD1->fields()) {
16185     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16186         I = UnmatchedFields.begin(),
16187         E = UnmatchedFields.end();
16188 
16189     for ( ; I != E; ++I) {
16190       if (isLayoutCompatible(C, Field1, *I)) {
16191         bool Result = UnmatchedFields.erase(*I);
16192         (void) Result;
16193         assert(Result);
16194         break;
16195       }
16196     }
16197     if (I == E)
16198       return false;
16199   }
16200 
16201   return UnmatchedFields.empty();
16202 }
16203 
16204 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16205                                RecordDecl *RD2) {
16206   if (RD1->isUnion() != RD2->isUnion())
16207     return false;
16208 
16209   if (RD1->isUnion())
16210     return isLayoutCompatibleUnion(C, RD1, RD2);
16211   else
16212     return isLayoutCompatibleStruct(C, RD1, RD2);
16213 }
16214 
16215 /// Check if two types are layout-compatible in C++11 sense.
16216 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16217   if (T1.isNull() || T2.isNull())
16218     return false;
16219 
16220   // C++11 [basic.types] p11:
16221   // If two types T1 and T2 are the same type, then T1 and T2 are
16222   // layout-compatible types.
16223   if (C.hasSameType(T1, T2))
16224     return true;
16225 
16226   T1 = T1.getCanonicalType().getUnqualifiedType();
16227   T2 = T2.getCanonicalType().getUnqualifiedType();
16228 
16229   const Type::TypeClass TC1 = T1->getTypeClass();
16230   const Type::TypeClass TC2 = T2->getTypeClass();
16231 
16232   if (TC1 != TC2)
16233     return false;
16234 
16235   if (TC1 == Type::Enum) {
16236     return isLayoutCompatible(C,
16237                               cast<EnumType>(T1)->getDecl(),
16238                               cast<EnumType>(T2)->getDecl());
16239   } else if (TC1 == Type::Record) {
16240     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16241       return false;
16242 
16243     return isLayoutCompatible(C,
16244                               cast<RecordType>(T1)->getDecl(),
16245                               cast<RecordType>(T2)->getDecl());
16246   }
16247 
16248   return false;
16249 }
16250 
16251 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16252 
16253 /// Given a type tag expression find the type tag itself.
16254 ///
16255 /// \param TypeExpr Type tag expression, as it appears in user's code.
16256 ///
16257 /// \param VD Declaration of an identifier that appears in a type tag.
16258 ///
16259 /// \param MagicValue Type tag magic value.
16260 ///
16261 /// \param isConstantEvaluated whether the evalaution should be performed in
16262 
16263 /// constant context.
16264 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16265                             const ValueDecl **VD, uint64_t *MagicValue,
16266                             bool isConstantEvaluated) {
16267   while(true) {
16268     if (!TypeExpr)
16269       return false;
16270 
16271     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16272 
16273     switch (TypeExpr->getStmtClass()) {
16274     case Stmt::UnaryOperatorClass: {
16275       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16276       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16277         TypeExpr = UO->getSubExpr();
16278         continue;
16279       }
16280       return false;
16281     }
16282 
16283     case Stmt::DeclRefExprClass: {
16284       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16285       *VD = DRE->getDecl();
16286       return true;
16287     }
16288 
16289     case Stmt::IntegerLiteralClass: {
16290       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16291       llvm::APInt MagicValueAPInt = IL->getValue();
16292       if (MagicValueAPInt.getActiveBits() <= 64) {
16293         *MagicValue = MagicValueAPInt.getZExtValue();
16294         return true;
16295       } else
16296         return false;
16297     }
16298 
16299     case Stmt::BinaryConditionalOperatorClass:
16300     case Stmt::ConditionalOperatorClass: {
16301       const AbstractConditionalOperator *ACO =
16302           cast<AbstractConditionalOperator>(TypeExpr);
16303       bool Result;
16304       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16305                                                      isConstantEvaluated)) {
16306         if (Result)
16307           TypeExpr = ACO->getTrueExpr();
16308         else
16309           TypeExpr = ACO->getFalseExpr();
16310         continue;
16311       }
16312       return false;
16313     }
16314 
16315     case Stmt::BinaryOperatorClass: {
16316       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16317       if (BO->getOpcode() == BO_Comma) {
16318         TypeExpr = BO->getRHS();
16319         continue;
16320       }
16321       return false;
16322     }
16323 
16324     default:
16325       return false;
16326     }
16327   }
16328 }
16329 
16330 /// Retrieve the C type corresponding to type tag TypeExpr.
16331 ///
16332 /// \param TypeExpr Expression that specifies a type tag.
16333 ///
16334 /// \param MagicValues Registered magic values.
16335 ///
16336 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16337 ///        kind.
16338 ///
16339 /// \param TypeInfo Information about the corresponding C type.
16340 ///
16341 /// \param isConstantEvaluated whether the evalaution should be performed in
16342 /// constant context.
16343 ///
16344 /// \returns true if the corresponding C type was found.
16345 static bool GetMatchingCType(
16346     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16347     const ASTContext &Ctx,
16348     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16349         *MagicValues,
16350     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16351     bool isConstantEvaluated) {
16352   FoundWrongKind = false;
16353 
16354   // Variable declaration that has type_tag_for_datatype attribute.
16355   const ValueDecl *VD = nullptr;
16356 
16357   uint64_t MagicValue;
16358 
16359   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16360     return false;
16361 
16362   if (VD) {
16363     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16364       if (I->getArgumentKind() != ArgumentKind) {
16365         FoundWrongKind = true;
16366         return false;
16367       }
16368       TypeInfo.Type = I->getMatchingCType();
16369       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16370       TypeInfo.MustBeNull = I->getMustBeNull();
16371       return true;
16372     }
16373     return false;
16374   }
16375 
16376   if (!MagicValues)
16377     return false;
16378 
16379   llvm::DenseMap<Sema::TypeTagMagicValue,
16380                  Sema::TypeTagData>::const_iterator I =
16381       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16382   if (I == MagicValues->end())
16383     return false;
16384 
16385   TypeInfo = I->second;
16386   return true;
16387 }
16388 
16389 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16390                                       uint64_t MagicValue, QualType Type,
16391                                       bool LayoutCompatible,
16392                                       bool MustBeNull) {
16393   if (!TypeTagForDatatypeMagicValues)
16394     TypeTagForDatatypeMagicValues.reset(
16395         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16396 
16397   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16398   (*TypeTagForDatatypeMagicValues)[Magic] =
16399       TypeTagData(Type, LayoutCompatible, MustBeNull);
16400 }
16401 
16402 static bool IsSameCharType(QualType T1, QualType T2) {
16403   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16404   if (!BT1)
16405     return false;
16406 
16407   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16408   if (!BT2)
16409     return false;
16410 
16411   BuiltinType::Kind T1Kind = BT1->getKind();
16412   BuiltinType::Kind T2Kind = BT2->getKind();
16413 
16414   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
16415          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
16416          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16417          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16418 }
16419 
16420 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16421                                     const ArrayRef<const Expr *> ExprArgs,
16422                                     SourceLocation CallSiteLoc) {
16423   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16424   bool IsPointerAttr = Attr->getIsPointer();
16425 
16426   // Retrieve the argument representing the 'type_tag'.
16427   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16428   if (TypeTagIdxAST >= ExprArgs.size()) {
16429     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16430         << 0 << Attr->getTypeTagIdx().getSourceIndex();
16431     return;
16432   }
16433   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16434   bool FoundWrongKind;
16435   TypeTagData TypeInfo;
16436   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16437                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16438                         TypeInfo, isConstantEvaluated())) {
16439     if (FoundWrongKind)
16440       Diag(TypeTagExpr->getExprLoc(),
16441            diag::warn_type_tag_for_datatype_wrong_kind)
16442         << TypeTagExpr->getSourceRange();
16443     return;
16444   }
16445 
16446   // Retrieve the argument representing the 'arg_idx'.
16447   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16448   if (ArgumentIdxAST >= ExprArgs.size()) {
16449     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16450         << 1 << Attr->getArgumentIdx().getSourceIndex();
16451     return;
16452   }
16453   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16454   if (IsPointerAttr) {
16455     // Skip implicit cast of pointer to `void *' (as a function argument).
16456     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16457       if (ICE->getType()->isVoidPointerType() &&
16458           ICE->getCastKind() == CK_BitCast)
16459         ArgumentExpr = ICE->getSubExpr();
16460   }
16461   QualType ArgumentType = ArgumentExpr->getType();
16462 
16463   // Passing a `void*' pointer shouldn't trigger a warning.
16464   if (IsPointerAttr && ArgumentType->isVoidPointerType())
16465     return;
16466 
16467   if (TypeInfo.MustBeNull) {
16468     // Type tag with matching void type requires a null pointer.
16469     if (!ArgumentExpr->isNullPointerConstant(Context,
16470                                              Expr::NPC_ValueDependentIsNotNull)) {
16471       Diag(ArgumentExpr->getExprLoc(),
16472            diag::warn_type_safety_null_pointer_required)
16473           << ArgumentKind->getName()
16474           << ArgumentExpr->getSourceRange()
16475           << TypeTagExpr->getSourceRange();
16476     }
16477     return;
16478   }
16479 
16480   QualType RequiredType = TypeInfo.Type;
16481   if (IsPointerAttr)
16482     RequiredType = Context.getPointerType(RequiredType);
16483 
16484   bool mismatch = false;
16485   if (!TypeInfo.LayoutCompatible) {
16486     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16487 
16488     // C++11 [basic.fundamental] p1:
16489     // Plain char, signed char, and unsigned char are three distinct types.
16490     //
16491     // But we treat plain `char' as equivalent to `signed char' or `unsigned
16492     // char' depending on the current char signedness mode.
16493     if (mismatch)
16494       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16495                                            RequiredType->getPointeeType())) ||
16496           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16497         mismatch = false;
16498   } else
16499     if (IsPointerAttr)
16500       mismatch = !isLayoutCompatible(Context,
16501                                      ArgumentType->getPointeeType(),
16502                                      RequiredType->getPointeeType());
16503     else
16504       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16505 
16506   if (mismatch)
16507     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16508         << ArgumentType << ArgumentKind
16509         << TypeInfo.LayoutCompatible << RequiredType
16510         << ArgumentExpr->getSourceRange()
16511         << TypeTagExpr->getSourceRange();
16512 }
16513 
16514 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16515                                          CharUnits Alignment) {
16516   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16517 }
16518 
16519 void Sema::DiagnoseMisalignedMembers() {
16520   for (MisalignedMember &m : MisalignedMembers) {
16521     const NamedDecl *ND = m.RD;
16522     if (ND->getName().empty()) {
16523       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16524         ND = TD;
16525     }
16526     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16527         << m.MD << ND << m.E->getSourceRange();
16528   }
16529   MisalignedMembers.clear();
16530 }
16531 
16532 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16533   E = E->IgnoreParens();
16534   if (!T->isPointerType() && !T->isIntegerType())
16535     return;
16536   if (isa<UnaryOperator>(E) &&
16537       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16538     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16539     if (isa<MemberExpr>(Op)) {
16540       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16541       if (MA != MisalignedMembers.end() &&
16542           (T->isIntegerType() ||
16543            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16544                                    Context.getTypeAlignInChars(
16545                                        T->getPointeeType()) <= MA->Alignment))))
16546         MisalignedMembers.erase(MA);
16547     }
16548   }
16549 }
16550 
16551 void Sema::RefersToMemberWithReducedAlignment(
16552     Expr *E,
16553     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16554         Action) {
16555   const auto *ME = dyn_cast<MemberExpr>(E);
16556   if (!ME)
16557     return;
16558 
16559   // No need to check expressions with an __unaligned-qualified type.
16560   if (E->getType().getQualifiers().hasUnaligned())
16561     return;
16562 
16563   // For a chain of MemberExpr like "a.b.c.d" this list
16564   // will keep FieldDecl's like [d, c, b].
16565   SmallVector<FieldDecl *, 4> ReverseMemberChain;
16566   const MemberExpr *TopME = nullptr;
16567   bool AnyIsPacked = false;
16568   do {
16569     QualType BaseType = ME->getBase()->getType();
16570     if (BaseType->isDependentType())
16571       return;
16572     if (ME->isArrow())
16573       BaseType = BaseType->getPointeeType();
16574     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16575     if (RD->isInvalidDecl())
16576       return;
16577 
16578     ValueDecl *MD = ME->getMemberDecl();
16579     auto *FD = dyn_cast<FieldDecl>(MD);
16580     // We do not care about non-data members.
16581     if (!FD || FD->isInvalidDecl())
16582       return;
16583 
16584     AnyIsPacked =
16585         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16586     ReverseMemberChain.push_back(FD);
16587 
16588     TopME = ME;
16589     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16590   } while (ME);
16591   assert(TopME && "We did not compute a topmost MemberExpr!");
16592 
16593   // Not the scope of this diagnostic.
16594   if (!AnyIsPacked)
16595     return;
16596 
16597   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16598   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16599   // TODO: The innermost base of the member expression may be too complicated.
16600   // For now, just disregard these cases. This is left for future
16601   // improvement.
16602   if (!DRE && !isa<CXXThisExpr>(TopBase))
16603       return;
16604 
16605   // Alignment expected by the whole expression.
16606   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16607 
16608   // No need to do anything else with this case.
16609   if (ExpectedAlignment.isOne())
16610     return;
16611 
16612   // Synthesize offset of the whole access.
16613   CharUnits Offset;
16614   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
16615        I++) {
16616     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
16617   }
16618 
16619   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16620   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16621       ReverseMemberChain.back()->getParent()->getTypeForDecl());
16622 
16623   // The base expression of the innermost MemberExpr may give
16624   // stronger guarantees than the class containing the member.
16625   if (DRE && !TopME->isArrow()) {
16626     const ValueDecl *VD = DRE->getDecl();
16627     if (!VD->getType()->isReferenceType())
16628       CompleteObjectAlignment =
16629           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16630   }
16631 
16632   // Check if the synthesized offset fulfills the alignment.
16633   if (Offset % ExpectedAlignment != 0 ||
16634       // It may fulfill the offset it but the effective alignment may still be
16635       // lower than the expected expression alignment.
16636       CompleteObjectAlignment < ExpectedAlignment) {
16637     // If this happens, we want to determine a sensible culprit of this.
16638     // Intuitively, watching the chain of member expressions from right to
16639     // left, we start with the required alignment (as required by the field
16640     // type) but some packed attribute in that chain has reduced the alignment.
16641     // It may happen that another packed structure increases it again. But if
16642     // we are here such increase has not been enough. So pointing the first
16643     // FieldDecl that either is packed or else its RecordDecl is,
16644     // seems reasonable.
16645     FieldDecl *FD = nullptr;
16646     CharUnits Alignment;
16647     for (FieldDecl *FDI : ReverseMemberChain) {
16648       if (FDI->hasAttr<PackedAttr>() ||
16649           FDI->getParent()->hasAttr<PackedAttr>()) {
16650         FD = FDI;
16651         Alignment = std::min(
16652             Context.getTypeAlignInChars(FD->getType()),
16653             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16654         break;
16655       }
16656     }
16657     assert(FD && "We did not find a packed FieldDecl!");
16658     Action(E, FD->getParent(), FD, Alignment);
16659   }
16660 }
16661 
16662 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16663   using namespace std::placeholders;
16664 
16665   RefersToMemberWithReducedAlignment(
16666       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16667                      _2, _3, _4));
16668 }
16669 
16670 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
16671 // not a valid type, emit an error message and return true. Otherwise return
16672 // false.
16673 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
16674                                         QualType Ty) {
16675   if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
16676     S.Diag(Loc, diag::err_builtin_invalid_arg_type)
16677         << 1 << /* vector, integer or float ty*/ 0 << Ty;
16678     return true;
16679   }
16680   return false;
16681 }
16682 
16683 bool Sema::SemaBuiltinElementwiseMathOneArg(CallExpr *TheCall) {
16684   if (checkArgCount(*this, TheCall, 1))
16685     return true;
16686 
16687   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16688   SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc();
16689   if (A.isInvalid())
16690     return true;
16691 
16692   TheCall->setArg(0, A.get());
16693   QualType TyA = A.get()->getType();
16694   if (checkMathBuiltinElementType(*this, ArgLoc, TyA))
16695     return true;
16696 
16697   QualType EltTy = TyA;
16698   if (auto *VecTy = EltTy->getAs<VectorType>())
16699     EltTy = VecTy->getElementType();
16700   if (EltTy->isUnsignedIntegerType())
16701     return Diag(ArgLoc, diag::err_builtin_invalid_arg_type)
16702            << 1 << /*signed integer or float ty*/ 3 << TyA;
16703 
16704   TheCall->setType(TyA);
16705   return false;
16706 }
16707 
16708 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
16709   if (checkArgCount(*this, TheCall, 2))
16710     return true;
16711 
16712   ExprResult A = TheCall->getArg(0);
16713   ExprResult B = TheCall->getArg(1);
16714   // Do standard promotions between the two arguments, returning their common
16715   // type.
16716   QualType Res =
16717       UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
16718   if (A.isInvalid() || B.isInvalid())
16719     return true;
16720 
16721   QualType TyA = A.get()->getType();
16722   QualType TyB = B.get()->getType();
16723 
16724   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
16725     return Diag(A.get()->getBeginLoc(),
16726                 diag::err_typecheck_call_different_arg_types)
16727            << TyA << TyB;
16728 
16729   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16730     return true;
16731 
16732   TheCall->setArg(0, A.get());
16733   TheCall->setArg(1, B.get());
16734   TheCall->setType(Res);
16735   return false;
16736 }
16737 
16738 bool Sema::SemaBuiltinReduceMath(CallExpr *TheCall) {
16739   if (checkArgCount(*this, TheCall, 1))
16740     return true;
16741 
16742   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16743   if (A.isInvalid())
16744     return true;
16745 
16746   TheCall->setArg(0, A.get());
16747   const VectorType *TyA = A.get()->getType()->getAs<VectorType>();
16748   if (!TyA) {
16749     SourceLocation ArgLoc = TheCall->getArg(0)->getBeginLoc();
16750     return Diag(ArgLoc, diag::err_builtin_invalid_arg_type)
16751            << 1 << /* vector ty*/ 4 << A.get()->getType();
16752   }
16753 
16754   TheCall->setType(TyA->getElementType());
16755   return false;
16756 }
16757 
16758 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16759                                             ExprResult CallResult) {
16760   if (checkArgCount(*this, TheCall, 1))
16761     return ExprError();
16762 
16763   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16764   if (MatrixArg.isInvalid())
16765     return MatrixArg;
16766   Expr *Matrix = MatrixArg.get();
16767 
16768   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16769   if (!MType) {
16770     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16771         << 1 << /* matrix ty*/ 1 << Matrix->getType();
16772     return ExprError();
16773   }
16774 
16775   // Create returned matrix type by swapping rows and columns of the argument
16776   // matrix type.
16777   QualType ResultType = Context.getConstantMatrixType(
16778       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16779 
16780   // Change the return type to the type of the returned matrix.
16781   TheCall->setType(ResultType);
16782 
16783   // Update call argument to use the possibly converted matrix argument.
16784   TheCall->setArg(0, Matrix);
16785   return CallResult;
16786 }
16787 
16788 // Get and verify the matrix dimensions.
16789 static llvm::Optional<unsigned>
16790 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
16791   SourceLocation ErrorPos;
16792   Optional<llvm::APSInt> Value =
16793       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
16794   if (!Value) {
16795     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
16796         << Name;
16797     return {};
16798   }
16799   uint64_t Dim = Value->getZExtValue();
16800   if (!ConstantMatrixType::isDimensionValid(Dim)) {
16801     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
16802         << Name << ConstantMatrixType::getMaxElementsPerDimension();
16803     return {};
16804   }
16805   return Dim;
16806 }
16807 
16808 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
16809                                                   ExprResult CallResult) {
16810   if (!getLangOpts().MatrixTypes) {
16811     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
16812     return ExprError();
16813   }
16814 
16815   if (checkArgCount(*this, TheCall, 4))
16816     return ExprError();
16817 
16818   unsigned PtrArgIdx = 0;
16819   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16820   Expr *RowsExpr = TheCall->getArg(1);
16821   Expr *ColumnsExpr = TheCall->getArg(2);
16822   Expr *StrideExpr = TheCall->getArg(3);
16823 
16824   bool ArgError = false;
16825 
16826   // Check pointer argument.
16827   {
16828     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16829     if (PtrConv.isInvalid())
16830       return PtrConv;
16831     PtrExpr = PtrConv.get();
16832     TheCall->setArg(0, PtrExpr);
16833     if (PtrExpr->isTypeDependent()) {
16834       TheCall->setType(Context.DependentTy);
16835       return TheCall;
16836     }
16837   }
16838 
16839   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16840   QualType ElementTy;
16841   if (!PtrTy) {
16842     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16843         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
16844     ArgError = true;
16845   } else {
16846     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
16847 
16848     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
16849       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16850           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
16851           << PtrExpr->getType();
16852       ArgError = true;
16853     }
16854   }
16855 
16856   // Apply default Lvalue conversions and convert the expression to size_t.
16857   auto ApplyArgumentConversions = [this](Expr *E) {
16858     ExprResult Conv = DefaultLvalueConversion(E);
16859     if (Conv.isInvalid())
16860       return Conv;
16861 
16862     return tryConvertExprToType(Conv.get(), Context.getSizeType());
16863   };
16864 
16865   // Apply conversion to row and column expressions.
16866   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
16867   if (!RowsConv.isInvalid()) {
16868     RowsExpr = RowsConv.get();
16869     TheCall->setArg(1, RowsExpr);
16870   } else
16871     RowsExpr = nullptr;
16872 
16873   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
16874   if (!ColumnsConv.isInvalid()) {
16875     ColumnsExpr = ColumnsConv.get();
16876     TheCall->setArg(2, ColumnsExpr);
16877   } else
16878     ColumnsExpr = nullptr;
16879 
16880   // If any any part of the result matrix type is still pending, just use
16881   // Context.DependentTy, until all parts are resolved.
16882   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
16883       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
16884     TheCall->setType(Context.DependentTy);
16885     return CallResult;
16886   }
16887 
16888   // Check row and column dimensions.
16889   llvm::Optional<unsigned> MaybeRows;
16890   if (RowsExpr)
16891     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
16892 
16893   llvm::Optional<unsigned> MaybeColumns;
16894   if (ColumnsExpr)
16895     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
16896 
16897   // Check stride argument.
16898   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
16899   if (StrideConv.isInvalid())
16900     return ExprError();
16901   StrideExpr = StrideConv.get();
16902   TheCall->setArg(3, StrideExpr);
16903 
16904   if (MaybeRows) {
16905     if (Optional<llvm::APSInt> Value =
16906             StrideExpr->getIntegerConstantExpr(Context)) {
16907       uint64_t Stride = Value->getZExtValue();
16908       if (Stride < *MaybeRows) {
16909         Diag(StrideExpr->getBeginLoc(),
16910              diag::err_builtin_matrix_stride_too_small);
16911         ArgError = true;
16912       }
16913     }
16914   }
16915 
16916   if (ArgError || !MaybeRows || !MaybeColumns)
16917     return ExprError();
16918 
16919   TheCall->setType(
16920       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
16921   return CallResult;
16922 }
16923 
16924 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
16925                                                    ExprResult CallResult) {
16926   if (checkArgCount(*this, TheCall, 3))
16927     return ExprError();
16928 
16929   unsigned PtrArgIdx = 1;
16930   Expr *MatrixExpr = TheCall->getArg(0);
16931   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16932   Expr *StrideExpr = TheCall->getArg(2);
16933 
16934   bool ArgError = false;
16935 
16936   {
16937     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
16938     if (MatrixConv.isInvalid())
16939       return MatrixConv;
16940     MatrixExpr = MatrixConv.get();
16941     TheCall->setArg(0, MatrixExpr);
16942   }
16943   if (MatrixExpr->isTypeDependent()) {
16944     TheCall->setType(Context.DependentTy);
16945     return TheCall;
16946   }
16947 
16948   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
16949   if (!MatrixTy) {
16950     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16951         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
16952     ArgError = true;
16953   }
16954 
16955   {
16956     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16957     if (PtrConv.isInvalid())
16958       return PtrConv;
16959     PtrExpr = PtrConv.get();
16960     TheCall->setArg(1, PtrExpr);
16961     if (PtrExpr->isTypeDependent()) {
16962       TheCall->setType(Context.DependentTy);
16963       return TheCall;
16964     }
16965   }
16966 
16967   // Check pointer argument.
16968   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16969   if (!PtrTy) {
16970     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16971         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
16972     ArgError = true;
16973   } else {
16974     QualType ElementTy = PtrTy->getPointeeType();
16975     if (ElementTy.isConstQualified()) {
16976       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16977       ArgError = true;
16978     }
16979     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16980     if (MatrixTy &&
16981         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16982       Diag(PtrExpr->getBeginLoc(),
16983            diag::err_builtin_matrix_pointer_arg_mismatch)
16984           << ElementTy << MatrixTy->getElementType();
16985       ArgError = true;
16986     }
16987   }
16988 
16989   // Apply default Lvalue conversions and convert the stride expression to
16990   // size_t.
16991   {
16992     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16993     if (StrideConv.isInvalid())
16994       return StrideConv;
16995 
16996     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16997     if (StrideConv.isInvalid())
16998       return StrideConv;
16999     StrideExpr = StrideConv.get();
17000     TheCall->setArg(2, StrideExpr);
17001   }
17002 
17003   // Check stride argument.
17004   if (MatrixTy) {
17005     if (Optional<llvm::APSInt> Value =
17006             StrideExpr->getIntegerConstantExpr(Context)) {
17007       uint64_t Stride = Value->getZExtValue();
17008       if (Stride < MatrixTy->getNumRows()) {
17009         Diag(StrideExpr->getBeginLoc(),
17010              diag::err_builtin_matrix_stride_too_small);
17011         ArgError = true;
17012       }
17013     }
17014   }
17015 
17016   if (ArgError)
17017     return ExprError();
17018 
17019   return CallResult;
17020 }
17021 
17022 /// \brief Enforce the bounds of a TCB
17023 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
17024 /// directly calls other functions in the same TCB as marked by the enforce_tcb
17025 /// and enforce_tcb_leaf attributes.
17026 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
17027                                const FunctionDecl *Callee) {
17028   const FunctionDecl *Caller = getCurFunctionDecl();
17029 
17030   // Calls to builtins are not enforced.
17031   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
17032       Callee->getBuiltinID() != 0)
17033     return;
17034 
17035   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17036   // all TCBs the callee is a part of.
17037   llvm::StringSet<> CalleeTCBs;
17038   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
17039            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17040   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
17041            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17042 
17043   // Go through the TCBs the caller is a part of and emit warnings if Caller
17044   // is in a TCB that the Callee is not.
17045   for_each(
17046       Caller->specific_attrs<EnforceTCBAttr>(),
17047       [&](const auto *A) {
17048         StringRef CallerTCB = A->getTCBName();
17049         if (CalleeTCBs.count(CallerTCB) == 0) {
17050           this->Diag(TheCall->getExprLoc(),
17051                      diag::warn_tcb_enforcement_violation) << Callee
17052                                                            << CallerTCB;
17053         }
17054       });
17055 }
17056