1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSwitch.h"
79 #include "llvm/ADT/Triple.h"
80 #include "llvm/Support/AtomicOrdering.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/ConvertUTF.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/Locale.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/SaveAndRestore.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <bitset>
92 #include <cassert>
93 #include <cstddef>
94 #include <cstdint>
95 #include <functional>
96 #include <limits>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 using namespace sema;
103 
104 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
105                                                     unsigned ByteNo) const {
106   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
107                                Context.getTargetInfo());
108 }
109 
110 /// Checks that a call expression's argument count is the desired number.
111 /// This is useful when doing custom type-checking.  Returns true on error.
112 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
113   unsigned argCount = call->getNumArgs();
114   if (argCount == desiredArgCount) return false;
115 
116   if (argCount < desiredArgCount)
117     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
118            << 0 /*function call*/ << desiredArgCount << argCount
119            << call->getSourceRange();
120 
121   // Highlight all the excess arguments.
122   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
123                     call->getArg(argCount - 1)->getEndLoc());
124 
125   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
126     << 0 /*function call*/ << desiredArgCount << argCount
127     << call->getArg(1)->getSourceRange();
128 }
129 
130 /// Check that the first argument to __builtin_annotation is an integer
131 /// and the second argument is a non-wide string literal.
132 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
133   if (checkArgCount(S, TheCall, 2))
134     return true;
135 
136   // First argument should be an integer.
137   Expr *ValArg = TheCall->getArg(0);
138   QualType Ty = ValArg->getType();
139   if (!Ty->isIntegerType()) {
140     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
141         << ValArg->getSourceRange();
142     return true;
143   }
144 
145   // Second argument should be a constant string.
146   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
147   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
148   if (!Literal || !Literal->isAscii()) {
149     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
150         << StrArg->getSourceRange();
151     return true;
152   }
153 
154   TheCall->setType(Ty);
155   return false;
156 }
157 
158 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
159   // We need at least one argument.
160   if (TheCall->getNumArgs() < 1) {
161     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
162         << 0 << 1 << TheCall->getNumArgs()
163         << TheCall->getCallee()->getSourceRange();
164     return true;
165   }
166 
167   // All arguments should be wide string literals.
168   for (Expr *Arg : TheCall->arguments()) {
169     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
170     if (!Literal || !Literal->isWide()) {
171       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
172           << Arg->getSourceRange();
173       return true;
174     }
175   }
176 
177   return false;
178 }
179 
180 /// Check that the argument to __builtin_addressof is a glvalue, and set the
181 /// result type to the corresponding pointer type.
182 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
183   if (checkArgCount(S, TheCall, 1))
184     return true;
185 
186   ExprResult Arg(TheCall->getArg(0));
187   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
188   if (ResultType.isNull())
189     return true;
190 
191   TheCall->setArg(0, Arg.get());
192   TheCall->setType(ResultType);
193   return false;
194 }
195 
196 /// Check the number of arguments and set the result type to
197 /// the argument type.
198 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
199   if (checkArgCount(S, TheCall, 1))
200     return true;
201 
202   TheCall->setType(TheCall->getArg(0)->getType());
203   return false;
204 }
205 
206 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
207 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
208 /// type (but not a function pointer) and that the alignment is a power-of-two.
209 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
210   if (checkArgCount(S, TheCall, 2))
211     return true;
212 
213   clang::Expr *Source = TheCall->getArg(0);
214   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
215 
216   auto IsValidIntegerType = [](QualType Ty) {
217     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
218   };
219   QualType SrcTy = Source->getType();
220   // We should also be able to use it with arrays (but not functions!).
221   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
222     SrcTy = S.Context.getDecayedType(SrcTy);
223   }
224   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
225       SrcTy->isFunctionPointerType()) {
226     // FIXME: this is not quite the right error message since we don't allow
227     // floating point types, or member pointers.
228     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
229         << SrcTy;
230     return true;
231   }
232 
233   clang::Expr *AlignOp = TheCall->getArg(1);
234   if (!IsValidIntegerType(AlignOp->getType())) {
235     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
236         << AlignOp->getType();
237     return true;
238   }
239   Expr::EvalResult AlignResult;
240   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
241   // We can't check validity of alignment if it is value dependent.
242   if (!AlignOp->isValueDependent() &&
243       AlignOp->EvaluateAsInt(AlignResult, S.Context,
244                              Expr::SE_AllowSideEffects)) {
245     llvm::APSInt AlignValue = AlignResult.Val.getInt();
246     llvm::APSInt MaxValue(
247         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
248     if (AlignValue < 1) {
249       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
250       return true;
251     }
252     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
253       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
254           << MaxValue.toString(10);
255       return true;
256     }
257     if (!AlignValue.isPowerOf2()) {
258       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
259       return true;
260     }
261     if (AlignValue == 1) {
262       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
263           << IsBooleanAlignBuiltin;
264     }
265   }
266 
267   ExprResult SrcArg = S.PerformCopyInitialization(
268       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
269       SourceLocation(), Source);
270   if (SrcArg.isInvalid())
271     return true;
272   TheCall->setArg(0, SrcArg.get());
273   ExprResult AlignArg =
274       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
275                                       S.Context, AlignOp->getType(), false),
276                                   SourceLocation(), AlignOp);
277   if (AlignArg.isInvalid())
278     return true;
279   TheCall->setArg(1, AlignArg.get());
280   // For align_up/align_down, the return type is the same as the (potentially
281   // decayed) argument type including qualifiers. For is_aligned(), the result
282   // is always bool.
283   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
284   return false;
285 }
286 
287 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
288                                 unsigned BuiltinID) {
289   if (checkArgCount(S, TheCall, 3))
290     return true;
291 
292   // First two arguments should be integers.
293   for (unsigned I = 0; I < 2; ++I) {
294     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
295     if (Arg.isInvalid()) return true;
296     TheCall->setArg(I, Arg.get());
297 
298     QualType Ty = Arg.get()->getType();
299     if (!Ty->isIntegerType()) {
300       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
301           << Ty << Arg.get()->getSourceRange();
302       return true;
303     }
304   }
305 
306   // Third argument should be a pointer to a non-const integer.
307   // IRGen correctly handles volatile, restrict, and address spaces, and
308   // the other qualifiers aren't possible.
309   {
310     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
311     if (Arg.isInvalid()) return true;
312     TheCall->setArg(2, Arg.get());
313 
314     QualType Ty = Arg.get()->getType();
315     const auto *PtrTy = Ty->getAs<PointerType>();
316     if (!PtrTy ||
317         !PtrTy->getPointeeType()->isIntegerType() ||
318         PtrTy->getPointeeType().isConstQualified()) {
319       S.Diag(Arg.get()->getBeginLoc(),
320              diag::err_overflow_builtin_must_be_ptr_int)
321         << Ty << Arg.get()->getSourceRange();
322       return true;
323     }
324   }
325 
326   // Disallow signed ExtIntType args larger than 128 bits to mul function until
327   // we improve backend support.
328   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
329     for (unsigned I = 0; I < 3; ++I) {
330       const auto Arg = TheCall->getArg(I);
331       // Third argument will be a pointer.
332       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
333       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
334           S.getASTContext().getIntWidth(Ty) > 128)
335         return S.Diag(Arg->getBeginLoc(),
336                       diag::err_overflow_builtin_ext_int_max_size)
337                << 128;
338     }
339   }
340 
341   return false;
342 }
343 
344 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
345   if (checkArgCount(S, BuiltinCall, 2))
346     return true;
347 
348   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
349   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
350   Expr *Call = BuiltinCall->getArg(0);
351   Expr *Chain = BuiltinCall->getArg(1);
352 
353   if (Call->getStmtClass() != Stmt::CallExprClass) {
354     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
355         << Call->getSourceRange();
356     return true;
357   }
358 
359   auto CE = cast<CallExpr>(Call);
360   if (CE->getCallee()->getType()->isBlockPointerType()) {
361     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
362         << Call->getSourceRange();
363     return true;
364   }
365 
366   const Decl *TargetDecl = CE->getCalleeDecl();
367   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
368     if (FD->getBuiltinID()) {
369       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
370           << Call->getSourceRange();
371       return true;
372     }
373 
374   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
375     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
376         << Call->getSourceRange();
377     return true;
378   }
379 
380   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
381   if (ChainResult.isInvalid())
382     return true;
383   if (!ChainResult.get()->getType()->isPointerType()) {
384     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
385         << Chain->getSourceRange();
386     return true;
387   }
388 
389   QualType ReturnTy = CE->getCallReturnType(S.Context);
390   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
391   QualType BuiltinTy = S.Context.getFunctionType(
392       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
393   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
394 
395   Builtin =
396       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
397 
398   BuiltinCall->setType(CE->getType());
399   BuiltinCall->setValueKind(CE->getValueKind());
400   BuiltinCall->setObjectKind(CE->getObjectKind());
401   BuiltinCall->setCallee(Builtin);
402   BuiltinCall->setArg(1, ChainResult.get());
403 
404   return false;
405 }
406 
407 namespace {
408 
409 class EstimateSizeFormatHandler
410     : public analyze_format_string::FormatStringHandler {
411   size_t Size;
412 
413 public:
414   EstimateSizeFormatHandler(StringRef Format)
415       : Size(std::min(Format.find(0), Format.size()) +
416              1 /* null byte always written by sprintf */) {}
417 
418   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
419                              const char *, unsigned SpecifierLen) override {
420 
421     const size_t FieldWidth = computeFieldWidth(FS);
422     const size_t Precision = computePrecision(FS);
423 
424     // The actual format.
425     switch (FS.getConversionSpecifier().getKind()) {
426     // Just a char.
427     case analyze_format_string::ConversionSpecifier::cArg:
428     case analyze_format_string::ConversionSpecifier::CArg:
429       Size += std::max(FieldWidth, (size_t)1);
430       break;
431     // Just an integer.
432     case analyze_format_string::ConversionSpecifier::dArg:
433     case analyze_format_string::ConversionSpecifier::DArg:
434     case analyze_format_string::ConversionSpecifier::iArg:
435     case analyze_format_string::ConversionSpecifier::oArg:
436     case analyze_format_string::ConversionSpecifier::OArg:
437     case analyze_format_string::ConversionSpecifier::uArg:
438     case analyze_format_string::ConversionSpecifier::UArg:
439     case analyze_format_string::ConversionSpecifier::xArg:
440     case analyze_format_string::ConversionSpecifier::XArg:
441       Size += std::max(FieldWidth, Precision);
442       break;
443 
444     // %g style conversion switches between %f or %e style dynamically.
445     // %f always takes less space, so default to it.
446     case analyze_format_string::ConversionSpecifier::gArg:
447     case analyze_format_string::ConversionSpecifier::GArg:
448 
449     // Floating point number in the form '[+]ddd.ddd'.
450     case analyze_format_string::ConversionSpecifier::fArg:
451     case analyze_format_string::ConversionSpecifier::FArg:
452       Size += std::max(FieldWidth, 1 /* integer part */ +
453                                        (Precision ? 1 + Precision
454                                                   : 0) /* period + decimal */);
455       break;
456 
457     // Floating point number in the form '[-]d.ddde[+-]dd'.
458     case analyze_format_string::ConversionSpecifier::eArg:
459     case analyze_format_string::ConversionSpecifier::EArg:
460       Size +=
461           std::max(FieldWidth,
462                    1 /* integer part */ +
463                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
464                        1 /* e or E letter */ + 2 /* exponent */);
465       break;
466 
467     // Floating point number in the form '[-]0xh.hhhhp±dd'.
468     case analyze_format_string::ConversionSpecifier::aArg:
469     case analyze_format_string::ConversionSpecifier::AArg:
470       Size +=
471           std::max(FieldWidth,
472                    2 /* 0x */ + 1 /* integer part */ +
473                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
474                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
475       break;
476 
477     // Just a string.
478     case analyze_format_string::ConversionSpecifier::sArg:
479     case analyze_format_string::ConversionSpecifier::SArg:
480       Size += FieldWidth;
481       break;
482 
483     // Just a pointer in the form '0xddd'.
484     case analyze_format_string::ConversionSpecifier::pArg:
485       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
486       break;
487 
488     // A plain percent.
489     case analyze_format_string::ConversionSpecifier::PercentArg:
490       Size += 1;
491       break;
492 
493     default:
494       break;
495     }
496 
497     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
498 
499     if (FS.hasAlternativeForm()) {
500       switch (FS.getConversionSpecifier().getKind()) {
501       default:
502         break;
503       // Force a leading '0'.
504       case analyze_format_string::ConversionSpecifier::oArg:
505         Size += 1;
506         break;
507       // Force a leading '0x'.
508       case analyze_format_string::ConversionSpecifier::xArg:
509       case analyze_format_string::ConversionSpecifier::XArg:
510         Size += 2;
511         break;
512       // Force a period '.' before decimal, even if precision is 0.
513       case analyze_format_string::ConversionSpecifier::aArg:
514       case analyze_format_string::ConversionSpecifier::AArg:
515       case analyze_format_string::ConversionSpecifier::eArg:
516       case analyze_format_string::ConversionSpecifier::EArg:
517       case analyze_format_string::ConversionSpecifier::fArg:
518       case analyze_format_string::ConversionSpecifier::FArg:
519       case analyze_format_string::ConversionSpecifier::gArg:
520       case analyze_format_string::ConversionSpecifier::GArg:
521         Size += (Precision ? 0 : 1);
522         break;
523       }
524     }
525     assert(SpecifierLen <= Size && "no underflow");
526     Size -= SpecifierLen;
527     return true;
528   }
529 
530   size_t getSizeLowerBound() const { return Size; }
531 
532 private:
533   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
534     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
535     size_t FieldWidth = 0;
536     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
537       FieldWidth = FW.getConstantAmount();
538     return FieldWidth;
539   }
540 
541   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
542     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
543     size_t Precision = 0;
544 
545     // See man 3 printf for default precision value based on the specifier.
546     switch (FW.getHowSpecified()) {
547     case analyze_format_string::OptionalAmount::NotSpecified:
548       switch (FS.getConversionSpecifier().getKind()) {
549       default:
550         break;
551       case analyze_format_string::ConversionSpecifier::dArg: // %d
552       case analyze_format_string::ConversionSpecifier::DArg: // %D
553       case analyze_format_string::ConversionSpecifier::iArg: // %i
554         Precision = 1;
555         break;
556       case analyze_format_string::ConversionSpecifier::oArg: // %d
557       case analyze_format_string::ConversionSpecifier::OArg: // %D
558       case analyze_format_string::ConversionSpecifier::uArg: // %d
559       case analyze_format_string::ConversionSpecifier::UArg: // %D
560       case analyze_format_string::ConversionSpecifier::xArg: // %d
561       case analyze_format_string::ConversionSpecifier::XArg: // %D
562         Precision = 1;
563         break;
564       case analyze_format_string::ConversionSpecifier::fArg: // %f
565       case analyze_format_string::ConversionSpecifier::FArg: // %F
566       case analyze_format_string::ConversionSpecifier::eArg: // %e
567       case analyze_format_string::ConversionSpecifier::EArg: // %E
568       case analyze_format_string::ConversionSpecifier::gArg: // %g
569       case analyze_format_string::ConversionSpecifier::GArg: // %G
570         Precision = 6;
571         break;
572       case analyze_format_string::ConversionSpecifier::pArg: // %d
573         Precision = 1;
574         break;
575       }
576       break;
577     case analyze_format_string::OptionalAmount::Constant:
578       Precision = FW.getConstantAmount();
579       break;
580     default:
581       break;
582     }
583     return Precision;
584   }
585 };
586 
587 } // namespace
588 
589 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
590 /// __builtin_*_chk function, then use the object size argument specified in the
591 /// source. Otherwise, infer the object size using __builtin_object_size.
592 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
593                                                CallExpr *TheCall) {
594   // FIXME: There are some more useful checks we could be doing here:
595   //  - Evaluate strlen of strcpy arguments, use as object size.
596 
597   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
598       isConstantEvaluated())
599     return;
600 
601   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
602   if (!BuiltinID)
603     return;
604 
605   const TargetInfo &TI = getASTContext().getTargetInfo();
606   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
607 
608   unsigned DiagID = 0;
609   bool IsChkVariant = false;
610   Optional<llvm::APSInt> UsedSize;
611   unsigned SizeIndex, ObjectIndex;
612   switch (BuiltinID) {
613   default:
614     return;
615   case Builtin::BIsprintf:
616   case Builtin::BI__builtin___sprintf_chk: {
617     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
618     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
619 
620     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
621 
622       if (!Format->isAscii() && !Format->isUTF8())
623         return;
624 
625       StringRef FormatStrRef = Format->getString();
626       EstimateSizeFormatHandler H(FormatStrRef);
627       const char *FormatBytes = FormatStrRef.data();
628       const ConstantArrayType *T =
629           Context.getAsConstantArrayType(Format->getType());
630       assert(T && "String literal not of constant array type!");
631       size_t TypeSize = T->getSize().getZExtValue();
632 
633       // In case there's a null byte somewhere.
634       size_t StrLen =
635           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
636       if (!analyze_format_string::ParsePrintfString(
637               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
638               Context.getTargetInfo(), false)) {
639         DiagID = diag::warn_fortify_source_format_overflow;
640         UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
641                        .extOrTrunc(SizeTypeWidth);
642         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
643           IsChkVariant = true;
644           ObjectIndex = 2;
645         } else {
646           IsChkVariant = false;
647           ObjectIndex = 0;
648         }
649         break;
650       }
651     }
652     return;
653   }
654   case Builtin::BI__builtin___memcpy_chk:
655   case Builtin::BI__builtin___memmove_chk:
656   case Builtin::BI__builtin___memset_chk:
657   case Builtin::BI__builtin___strlcat_chk:
658   case Builtin::BI__builtin___strlcpy_chk:
659   case Builtin::BI__builtin___strncat_chk:
660   case Builtin::BI__builtin___strncpy_chk:
661   case Builtin::BI__builtin___stpncpy_chk:
662   case Builtin::BI__builtin___memccpy_chk:
663   case Builtin::BI__builtin___mempcpy_chk: {
664     DiagID = diag::warn_builtin_chk_overflow;
665     IsChkVariant = true;
666     SizeIndex = TheCall->getNumArgs() - 2;
667     ObjectIndex = TheCall->getNumArgs() - 1;
668     break;
669   }
670 
671   case Builtin::BI__builtin___snprintf_chk:
672   case Builtin::BI__builtin___vsnprintf_chk: {
673     DiagID = diag::warn_builtin_chk_overflow;
674     IsChkVariant = true;
675     SizeIndex = 1;
676     ObjectIndex = 3;
677     break;
678   }
679 
680   case Builtin::BIstrncat:
681   case Builtin::BI__builtin_strncat:
682   case Builtin::BIstrncpy:
683   case Builtin::BI__builtin_strncpy:
684   case Builtin::BIstpncpy:
685   case Builtin::BI__builtin_stpncpy: {
686     // Whether these functions overflow depends on the runtime strlen of the
687     // string, not just the buffer size, so emitting the "always overflow"
688     // diagnostic isn't quite right. We should still diagnose passing a buffer
689     // size larger than the destination buffer though; this is a runtime abort
690     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
691     DiagID = diag::warn_fortify_source_size_mismatch;
692     SizeIndex = TheCall->getNumArgs() - 1;
693     ObjectIndex = 0;
694     break;
695   }
696 
697   case Builtin::BImemcpy:
698   case Builtin::BI__builtin_memcpy:
699   case Builtin::BImemmove:
700   case Builtin::BI__builtin_memmove:
701   case Builtin::BImemset:
702   case Builtin::BI__builtin_memset:
703   case Builtin::BImempcpy:
704   case Builtin::BI__builtin_mempcpy: {
705     DiagID = diag::warn_fortify_source_overflow;
706     SizeIndex = TheCall->getNumArgs() - 1;
707     ObjectIndex = 0;
708     break;
709   }
710   case Builtin::BIsnprintf:
711   case Builtin::BI__builtin_snprintf:
712   case Builtin::BIvsnprintf:
713   case Builtin::BI__builtin_vsnprintf: {
714     DiagID = diag::warn_fortify_source_size_mismatch;
715     SizeIndex = 1;
716     ObjectIndex = 0;
717     break;
718   }
719   }
720 
721   llvm::APSInt ObjectSize;
722   // For __builtin___*_chk, the object size is explicitly provided by the caller
723   // (usually using __builtin_object_size). Use that value to check this call.
724   if (IsChkVariant) {
725     Expr::EvalResult Result;
726     Expr *SizeArg = TheCall->getArg(ObjectIndex);
727     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
728       return;
729     ObjectSize = Result.Val.getInt();
730 
731   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
732   } else {
733     // If the parameter has a pass_object_size attribute, then we should use its
734     // (potentially) more strict checking mode. Otherwise, conservatively assume
735     // type 0.
736     int BOSType = 0;
737     if (const auto *POS =
738             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
739       BOSType = POS->getType();
740 
741     Expr *ObjArg = TheCall->getArg(ObjectIndex);
742     uint64_t Result;
743     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
744       return;
745     // Get the object size in the target's size_t width.
746     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
747   }
748 
749   // Evaluate the number of bytes of the object that this call will use.
750   if (!UsedSize) {
751     Expr::EvalResult Result;
752     Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
753     if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
754       return;
755     UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
756   }
757 
758   if (UsedSize.getValue().ule(ObjectSize))
759     return;
760 
761   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
762   // Skim off the details of whichever builtin was called to produce a better
763   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
764   if (IsChkVariant) {
765     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
766     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
767   } else if (FunctionName.startswith("__builtin_")) {
768     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
769   }
770 
771   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
772                       PDiag(DiagID)
773                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
774                           << UsedSize.getValue().toString(/*Radix=*/10));
775 }
776 
777 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
778                                      Scope::ScopeFlags NeededScopeFlags,
779                                      unsigned DiagID) {
780   // Scopes aren't available during instantiation. Fortunately, builtin
781   // functions cannot be template args so they cannot be formed through template
782   // instantiation. Therefore checking once during the parse is sufficient.
783   if (SemaRef.inTemplateInstantiation())
784     return false;
785 
786   Scope *S = SemaRef.getCurScope();
787   while (S && !S->isSEHExceptScope())
788     S = S->getParent();
789   if (!S || !(S->getFlags() & NeededScopeFlags)) {
790     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
791     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
792         << DRE->getDecl()->getIdentifier();
793     return true;
794   }
795 
796   return false;
797 }
798 
799 static inline bool isBlockPointer(Expr *Arg) {
800   return Arg->getType()->isBlockPointerType();
801 }
802 
803 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
804 /// void*, which is a requirement of device side enqueue.
805 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
806   const BlockPointerType *BPT =
807       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
808   ArrayRef<QualType> Params =
809       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
810   unsigned ArgCounter = 0;
811   bool IllegalParams = false;
812   // Iterate through the block parameters until either one is found that is not
813   // a local void*, or the block is valid.
814   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
815        I != E; ++I, ++ArgCounter) {
816     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
817         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
818             LangAS::opencl_local) {
819       // Get the location of the error. If a block literal has been passed
820       // (BlockExpr) then we can point straight to the offending argument,
821       // else we just point to the variable reference.
822       SourceLocation ErrorLoc;
823       if (isa<BlockExpr>(BlockArg)) {
824         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
825         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
826       } else if (isa<DeclRefExpr>(BlockArg)) {
827         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
828       }
829       S.Diag(ErrorLoc,
830              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
831       IllegalParams = true;
832     }
833   }
834 
835   return IllegalParams;
836 }
837 
838 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
839   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
840     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
841         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
842     return true;
843   }
844   return false;
845 }
846 
847 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
848   if (checkArgCount(S, TheCall, 2))
849     return true;
850 
851   if (checkOpenCLSubgroupExt(S, TheCall))
852     return true;
853 
854   // First argument is an ndrange_t type.
855   Expr *NDRangeArg = TheCall->getArg(0);
856   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
857     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
858         << TheCall->getDirectCallee() << "'ndrange_t'";
859     return true;
860   }
861 
862   Expr *BlockArg = TheCall->getArg(1);
863   if (!isBlockPointer(BlockArg)) {
864     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
865         << TheCall->getDirectCallee() << "block";
866     return true;
867   }
868   return checkOpenCLBlockArgs(S, BlockArg);
869 }
870 
871 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
872 /// get_kernel_work_group_size
873 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
874 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
875   if (checkArgCount(S, TheCall, 1))
876     return true;
877 
878   Expr *BlockArg = TheCall->getArg(0);
879   if (!isBlockPointer(BlockArg)) {
880     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
881         << TheCall->getDirectCallee() << "block";
882     return true;
883   }
884   return checkOpenCLBlockArgs(S, BlockArg);
885 }
886 
887 /// Diagnose integer type and any valid implicit conversion to it.
888 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
889                                       const QualType &IntType);
890 
891 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
892                                             unsigned Start, unsigned End) {
893   bool IllegalParams = false;
894   for (unsigned I = Start; I <= End; ++I)
895     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
896                                               S.Context.getSizeType());
897   return IllegalParams;
898 }
899 
900 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
901 /// 'local void*' parameter of passed block.
902 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
903                                            Expr *BlockArg,
904                                            unsigned NumNonVarArgs) {
905   const BlockPointerType *BPT =
906       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
907   unsigned NumBlockParams =
908       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
909   unsigned TotalNumArgs = TheCall->getNumArgs();
910 
911   // For each argument passed to the block, a corresponding uint needs to
912   // be passed to describe the size of the local memory.
913   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
914     S.Diag(TheCall->getBeginLoc(),
915            diag::err_opencl_enqueue_kernel_local_size_args);
916     return true;
917   }
918 
919   // Check that the sizes of the local memory are specified by integers.
920   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
921                                          TotalNumArgs - 1);
922 }
923 
924 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
925 /// overload formats specified in Table 6.13.17.1.
926 /// int enqueue_kernel(queue_t queue,
927 ///                    kernel_enqueue_flags_t flags,
928 ///                    const ndrange_t ndrange,
929 ///                    void (^block)(void))
930 /// int enqueue_kernel(queue_t queue,
931 ///                    kernel_enqueue_flags_t flags,
932 ///                    const ndrange_t ndrange,
933 ///                    uint num_events_in_wait_list,
934 ///                    clk_event_t *event_wait_list,
935 ///                    clk_event_t *event_ret,
936 ///                    void (^block)(void))
937 /// int enqueue_kernel(queue_t queue,
938 ///                    kernel_enqueue_flags_t flags,
939 ///                    const ndrange_t ndrange,
940 ///                    void (^block)(local void*, ...),
941 ///                    uint size0, ...)
942 /// int enqueue_kernel(queue_t queue,
943 ///                    kernel_enqueue_flags_t flags,
944 ///                    const ndrange_t ndrange,
945 ///                    uint num_events_in_wait_list,
946 ///                    clk_event_t *event_wait_list,
947 ///                    clk_event_t *event_ret,
948 ///                    void (^block)(local void*, ...),
949 ///                    uint size0, ...)
950 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
951   unsigned NumArgs = TheCall->getNumArgs();
952 
953   if (NumArgs < 4) {
954     S.Diag(TheCall->getBeginLoc(),
955            diag::err_typecheck_call_too_few_args_at_least)
956         << 0 << 4 << NumArgs;
957     return true;
958   }
959 
960   Expr *Arg0 = TheCall->getArg(0);
961   Expr *Arg1 = TheCall->getArg(1);
962   Expr *Arg2 = TheCall->getArg(2);
963   Expr *Arg3 = TheCall->getArg(3);
964 
965   // First argument always needs to be a queue_t type.
966   if (!Arg0->getType()->isQueueT()) {
967     S.Diag(TheCall->getArg(0)->getBeginLoc(),
968            diag::err_opencl_builtin_expected_type)
969         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
970     return true;
971   }
972 
973   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
974   if (!Arg1->getType()->isIntegerType()) {
975     S.Diag(TheCall->getArg(1)->getBeginLoc(),
976            diag::err_opencl_builtin_expected_type)
977         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
978     return true;
979   }
980 
981   // Third argument is always an ndrange_t type.
982   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
983     S.Diag(TheCall->getArg(2)->getBeginLoc(),
984            diag::err_opencl_builtin_expected_type)
985         << TheCall->getDirectCallee() << "'ndrange_t'";
986     return true;
987   }
988 
989   // With four arguments, there is only one form that the function could be
990   // called in: no events and no variable arguments.
991   if (NumArgs == 4) {
992     // check that the last argument is the right block type.
993     if (!isBlockPointer(Arg3)) {
994       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
995           << TheCall->getDirectCallee() << "block";
996       return true;
997     }
998     // we have a block type, check the prototype
999     const BlockPointerType *BPT =
1000         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1001     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1002       S.Diag(Arg3->getBeginLoc(),
1003              diag::err_opencl_enqueue_kernel_blocks_no_args);
1004       return true;
1005     }
1006     return false;
1007   }
1008   // we can have block + varargs.
1009   if (isBlockPointer(Arg3))
1010     return (checkOpenCLBlockArgs(S, Arg3) ||
1011             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1012   // last two cases with either exactly 7 args or 7 args and varargs.
1013   if (NumArgs >= 7) {
1014     // check common block argument.
1015     Expr *Arg6 = TheCall->getArg(6);
1016     if (!isBlockPointer(Arg6)) {
1017       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1018           << TheCall->getDirectCallee() << "block";
1019       return true;
1020     }
1021     if (checkOpenCLBlockArgs(S, Arg6))
1022       return true;
1023 
1024     // Forth argument has to be any integer type.
1025     if (!Arg3->getType()->isIntegerType()) {
1026       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1027              diag::err_opencl_builtin_expected_type)
1028           << TheCall->getDirectCallee() << "integer";
1029       return true;
1030     }
1031     // check remaining common arguments.
1032     Expr *Arg4 = TheCall->getArg(4);
1033     Expr *Arg5 = TheCall->getArg(5);
1034 
1035     // Fifth argument is always passed as a pointer to clk_event_t.
1036     if (!Arg4->isNullPointerConstant(S.Context,
1037                                      Expr::NPC_ValueDependentIsNotNull) &&
1038         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1039       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1040              diag::err_opencl_builtin_expected_type)
1041           << TheCall->getDirectCallee()
1042           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1043       return true;
1044     }
1045 
1046     // Sixth argument is always passed as a pointer to clk_event_t.
1047     if (!Arg5->isNullPointerConstant(S.Context,
1048                                      Expr::NPC_ValueDependentIsNotNull) &&
1049         !(Arg5->getType()->isPointerType() &&
1050           Arg5->getType()->getPointeeType()->isClkEventT())) {
1051       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1052              diag::err_opencl_builtin_expected_type)
1053           << TheCall->getDirectCallee()
1054           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1055       return true;
1056     }
1057 
1058     if (NumArgs == 7)
1059       return false;
1060 
1061     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1062   }
1063 
1064   // None of the specific case has been detected, give generic error
1065   S.Diag(TheCall->getBeginLoc(),
1066          diag::err_opencl_enqueue_kernel_incorrect_args);
1067   return true;
1068 }
1069 
1070 /// Returns OpenCL access qual.
1071 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1072     return D->getAttr<OpenCLAccessAttr>();
1073 }
1074 
1075 /// Returns true if pipe element type is different from the pointer.
1076 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1077   const Expr *Arg0 = Call->getArg(0);
1078   // First argument type should always be pipe.
1079   if (!Arg0->getType()->isPipeType()) {
1080     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1081         << Call->getDirectCallee() << Arg0->getSourceRange();
1082     return true;
1083   }
1084   OpenCLAccessAttr *AccessQual =
1085       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1086   // Validates the access qualifier is compatible with the call.
1087   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1088   // read_only and write_only, and assumed to be read_only if no qualifier is
1089   // specified.
1090   switch (Call->getDirectCallee()->getBuiltinID()) {
1091   case Builtin::BIread_pipe:
1092   case Builtin::BIreserve_read_pipe:
1093   case Builtin::BIcommit_read_pipe:
1094   case Builtin::BIwork_group_reserve_read_pipe:
1095   case Builtin::BIsub_group_reserve_read_pipe:
1096   case Builtin::BIwork_group_commit_read_pipe:
1097   case Builtin::BIsub_group_commit_read_pipe:
1098     if (!(!AccessQual || AccessQual->isReadOnly())) {
1099       S.Diag(Arg0->getBeginLoc(),
1100              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1101           << "read_only" << Arg0->getSourceRange();
1102       return true;
1103     }
1104     break;
1105   case Builtin::BIwrite_pipe:
1106   case Builtin::BIreserve_write_pipe:
1107   case Builtin::BIcommit_write_pipe:
1108   case Builtin::BIwork_group_reserve_write_pipe:
1109   case Builtin::BIsub_group_reserve_write_pipe:
1110   case Builtin::BIwork_group_commit_write_pipe:
1111   case Builtin::BIsub_group_commit_write_pipe:
1112     if (!(AccessQual && AccessQual->isWriteOnly())) {
1113       S.Diag(Arg0->getBeginLoc(),
1114              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1115           << "write_only" << Arg0->getSourceRange();
1116       return true;
1117     }
1118     break;
1119   default:
1120     break;
1121   }
1122   return false;
1123 }
1124 
1125 /// Returns true if pipe element type is different from the pointer.
1126 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1127   const Expr *Arg0 = Call->getArg(0);
1128   const Expr *ArgIdx = Call->getArg(Idx);
1129   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1130   const QualType EltTy = PipeTy->getElementType();
1131   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1132   // The Idx argument should be a pointer and the type of the pointer and
1133   // the type of pipe element should also be the same.
1134   if (!ArgTy ||
1135       !S.Context.hasSameType(
1136           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1137     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1138         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1139         << ArgIdx->getType() << ArgIdx->getSourceRange();
1140     return true;
1141   }
1142   return false;
1143 }
1144 
1145 // Performs semantic analysis for the read/write_pipe call.
1146 // \param S Reference to the semantic analyzer.
1147 // \param Call A pointer to the builtin call.
1148 // \return True if a semantic error has been found, false otherwise.
1149 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1150   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1151   // functions have two forms.
1152   switch (Call->getNumArgs()) {
1153   case 2:
1154     if (checkOpenCLPipeArg(S, Call))
1155       return true;
1156     // The call with 2 arguments should be
1157     // read/write_pipe(pipe T, T*).
1158     // Check packet type T.
1159     if (checkOpenCLPipePacketType(S, Call, 1))
1160       return true;
1161     break;
1162 
1163   case 4: {
1164     if (checkOpenCLPipeArg(S, Call))
1165       return true;
1166     // The call with 4 arguments should be
1167     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1168     // Check reserve_id_t.
1169     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1170       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1171           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1172           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1173       return true;
1174     }
1175 
1176     // Check the index.
1177     const Expr *Arg2 = Call->getArg(2);
1178     if (!Arg2->getType()->isIntegerType() &&
1179         !Arg2->getType()->isUnsignedIntegerType()) {
1180       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1181           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1182           << Arg2->getType() << Arg2->getSourceRange();
1183       return true;
1184     }
1185 
1186     // Check packet type T.
1187     if (checkOpenCLPipePacketType(S, Call, 3))
1188       return true;
1189   } break;
1190   default:
1191     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1192         << Call->getDirectCallee() << Call->getSourceRange();
1193     return true;
1194   }
1195 
1196   return false;
1197 }
1198 
1199 // Performs a semantic analysis on the {work_group_/sub_group_
1200 //        /_}reserve_{read/write}_pipe
1201 // \param S Reference to the semantic analyzer.
1202 // \param Call The call to the builtin function to be analyzed.
1203 // \return True if a semantic error was found, false otherwise.
1204 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1205   if (checkArgCount(S, Call, 2))
1206     return true;
1207 
1208   if (checkOpenCLPipeArg(S, Call))
1209     return true;
1210 
1211   // Check the reserve size.
1212   if (!Call->getArg(1)->getType()->isIntegerType() &&
1213       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1214     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1215         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1216         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1217     return true;
1218   }
1219 
1220   // Since return type of reserve_read/write_pipe built-in function is
1221   // reserve_id_t, which is not defined in the builtin def file , we used int
1222   // as return type and need to override the return type of these functions.
1223   Call->setType(S.Context.OCLReserveIDTy);
1224 
1225   return false;
1226 }
1227 
1228 // Performs a semantic analysis on {work_group_/sub_group_
1229 //        /_}commit_{read/write}_pipe
1230 // \param S Reference to the semantic analyzer.
1231 // \param Call The call to the builtin function to be analyzed.
1232 // \return True if a semantic error was found, false otherwise.
1233 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1234   if (checkArgCount(S, Call, 2))
1235     return true;
1236 
1237   if (checkOpenCLPipeArg(S, Call))
1238     return true;
1239 
1240   // Check reserve_id_t.
1241   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1242     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1243         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1244         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1245     return true;
1246   }
1247 
1248   return false;
1249 }
1250 
1251 // Performs a semantic analysis on the call to built-in Pipe
1252 //        Query Functions.
1253 // \param S Reference to the semantic analyzer.
1254 // \param Call The call to the builtin function to be analyzed.
1255 // \return True if a semantic error was found, false otherwise.
1256 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1257   if (checkArgCount(S, Call, 1))
1258     return true;
1259 
1260   if (!Call->getArg(0)->getType()->isPipeType()) {
1261     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1262         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1263     return true;
1264   }
1265 
1266   return false;
1267 }
1268 
1269 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1270 // Performs semantic analysis for the to_global/local/private call.
1271 // \param S Reference to the semantic analyzer.
1272 // \param BuiltinID ID of the builtin function.
1273 // \param Call A pointer to the builtin call.
1274 // \return True if a semantic error has been found, false otherwise.
1275 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1276                                     CallExpr *Call) {
1277   if (checkArgCount(S, Call, 1))
1278     return true;
1279 
1280   auto RT = Call->getArg(0)->getType();
1281   if (!RT->isPointerType() || RT->getPointeeType()
1282       .getAddressSpace() == LangAS::opencl_constant) {
1283     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1284         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1285     return true;
1286   }
1287 
1288   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1289     S.Diag(Call->getArg(0)->getBeginLoc(),
1290            diag::warn_opencl_generic_address_space_arg)
1291         << Call->getDirectCallee()->getNameInfo().getAsString()
1292         << Call->getArg(0)->getSourceRange();
1293   }
1294 
1295   RT = RT->getPointeeType();
1296   auto Qual = RT.getQualifiers();
1297   switch (BuiltinID) {
1298   case Builtin::BIto_global:
1299     Qual.setAddressSpace(LangAS::opencl_global);
1300     break;
1301   case Builtin::BIto_local:
1302     Qual.setAddressSpace(LangAS::opencl_local);
1303     break;
1304   case Builtin::BIto_private:
1305     Qual.setAddressSpace(LangAS::opencl_private);
1306     break;
1307   default:
1308     llvm_unreachable("Invalid builtin function");
1309   }
1310   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1311       RT.getUnqualifiedType(), Qual)));
1312 
1313   return false;
1314 }
1315 
1316 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1317   if (checkArgCount(S, TheCall, 1))
1318     return ExprError();
1319 
1320   // Compute __builtin_launder's parameter type from the argument.
1321   // The parameter type is:
1322   //  * The type of the argument if it's not an array or function type,
1323   //  Otherwise,
1324   //  * The decayed argument type.
1325   QualType ParamTy = [&]() {
1326     QualType ArgTy = TheCall->getArg(0)->getType();
1327     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1328       return S.Context.getPointerType(Ty->getElementType());
1329     if (ArgTy->isFunctionType()) {
1330       return S.Context.getPointerType(ArgTy);
1331     }
1332     return ArgTy;
1333   }();
1334 
1335   TheCall->setType(ParamTy);
1336 
1337   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1338     if (!ParamTy->isPointerType())
1339       return 0;
1340     if (ParamTy->isFunctionPointerType())
1341       return 1;
1342     if (ParamTy->isVoidPointerType())
1343       return 2;
1344     return llvm::Optional<unsigned>{};
1345   }();
1346   if (DiagSelect.hasValue()) {
1347     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1348         << DiagSelect.getValue() << TheCall->getSourceRange();
1349     return ExprError();
1350   }
1351 
1352   // We either have an incomplete class type, or we have a class template
1353   // whose instantiation has not been forced. Example:
1354   //
1355   //   template <class T> struct Foo { T value; };
1356   //   Foo<int> *p = nullptr;
1357   //   auto *d = __builtin_launder(p);
1358   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1359                             diag::err_incomplete_type))
1360     return ExprError();
1361 
1362   assert(ParamTy->getPointeeType()->isObjectType() &&
1363          "Unhandled non-object pointer case");
1364 
1365   InitializedEntity Entity =
1366       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1367   ExprResult Arg =
1368       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1369   if (Arg.isInvalid())
1370     return ExprError();
1371   TheCall->setArg(0, Arg.get());
1372 
1373   return TheCall;
1374 }
1375 
1376 // Emit an error and return true if the current architecture is not in the list
1377 // of supported architectures.
1378 static bool
1379 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1380                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1381   llvm::Triple::ArchType CurArch =
1382       S.getASTContext().getTargetInfo().getTriple().getArch();
1383   if (llvm::is_contained(SupportedArchs, CurArch))
1384     return false;
1385   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1386       << TheCall->getSourceRange();
1387   return true;
1388 }
1389 
1390 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1391                                  SourceLocation CallSiteLoc);
1392 
1393 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1394                                       CallExpr *TheCall) {
1395   switch (TI.getTriple().getArch()) {
1396   default:
1397     // Some builtins don't require additional checking, so just consider these
1398     // acceptable.
1399     return false;
1400   case llvm::Triple::arm:
1401   case llvm::Triple::armeb:
1402   case llvm::Triple::thumb:
1403   case llvm::Triple::thumbeb:
1404     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1405   case llvm::Triple::aarch64:
1406   case llvm::Triple::aarch64_32:
1407   case llvm::Triple::aarch64_be:
1408     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1409   case llvm::Triple::bpfeb:
1410   case llvm::Triple::bpfel:
1411     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1412   case llvm::Triple::hexagon:
1413     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1414   case llvm::Triple::mips:
1415   case llvm::Triple::mipsel:
1416   case llvm::Triple::mips64:
1417   case llvm::Triple::mips64el:
1418     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1419   case llvm::Triple::systemz:
1420     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1421   case llvm::Triple::x86:
1422   case llvm::Triple::x86_64:
1423     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1424   case llvm::Triple::ppc:
1425   case llvm::Triple::ppc64:
1426   case llvm::Triple::ppc64le:
1427     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1428   case llvm::Triple::amdgcn:
1429     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1430   }
1431 }
1432 
1433 ExprResult
1434 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1435                                CallExpr *TheCall) {
1436   ExprResult TheCallResult(TheCall);
1437 
1438   // Find out if any arguments are required to be integer constant expressions.
1439   unsigned ICEArguments = 0;
1440   ASTContext::GetBuiltinTypeError Error;
1441   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1442   if (Error != ASTContext::GE_None)
1443     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1444 
1445   // If any arguments are required to be ICE's, check and diagnose.
1446   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1447     // Skip arguments not required to be ICE's.
1448     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1449 
1450     llvm::APSInt Result;
1451     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1452       return true;
1453     ICEArguments &= ~(1 << ArgNo);
1454   }
1455 
1456   switch (BuiltinID) {
1457   case Builtin::BI__builtin___CFStringMakeConstantString:
1458     assert(TheCall->getNumArgs() == 1 &&
1459            "Wrong # arguments to builtin CFStringMakeConstantString");
1460     if (CheckObjCString(TheCall->getArg(0)))
1461       return ExprError();
1462     break;
1463   case Builtin::BI__builtin_ms_va_start:
1464   case Builtin::BI__builtin_stdarg_start:
1465   case Builtin::BI__builtin_va_start:
1466     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1467       return ExprError();
1468     break;
1469   case Builtin::BI__va_start: {
1470     switch (Context.getTargetInfo().getTriple().getArch()) {
1471     case llvm::Triple::aarch64:
1472     case llvm::Triple::arm:
1473     case llvm::Triple::thumb:
1474       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1475         return ExprError();
1476       break;
1477     default:
1478       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1479         return ExprError();
1480       break;
1481     }
1482     break;
1483   }
1484 
1485   // The acquire, release, and no fence variants are ARM and AArch64 only.
1486   case Builtin::BI_interlockedbittestandset_acq:
1487   case Builtin::BI_interlockedbittestandset_rel:
1488   case Builtin::BI_interlockedbittestandset_nf:
1489   case Builtin::BI_interlockedbittestandreset_acq:
1490   case Builtin::BI_interlockedbittestandreset_rel:
1491   case Builtin::BI_interlockedbittestandreset_nf:
1492     if (CheckBuiltinTargetSupport(
1493             *this, BuiltinID, TheCall,
1494             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1495       return ExprError();
1496     break;
1497 
1498   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1499   case Builtin::BI_bittest64:
1500   case Builtin::BI_bittestandcomplement64:
1501   case Builtin::BI_bittestandreset64:
1502   case Builtin::BI_bittestandset64:
1503   case Builtin::BI_interlockedbittestandreset64:
1504   case Builtin::BI_interlockedbittestandset64:
1505     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1506                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1507                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1508       return ExprError();
1509     break;
1510 
1511   case Builtin::BI__builtin_isgreater:
1512   case Builtin::BI__builtin_isgreaterequal:
1513   case Builtin::BI__builtin_isless:
1514   case Builtin::BI__builtin_islessequal:
1515   case Builtin::BI__builtin_islessgreater:
1516   case Builtin::BI__builtin_isunordered:
1517     if (SemaBuiltinUnorderedCompare(TheCall))
1518       return ExprError();
1519     break;
1520   case Builtin::BI__builtin_fpclassify:
1521     if (SemaBuiltinFPClassification(TheCall, 6))
1522       return ExprError();
1523     break;
1524   case Builtin::BI__builtin_isfinite:
1525   case Builtin::BI__builtin_isinf:
1526   case Builtin::BI__builtin_isinf_sign:
1527   case Builtin::BI__builtin_isnan:
1528   case Builtin::BI__builtin_isnormal:
1529   case Builtin::BI__builtin_signbit:
1530   case Builtin::BI__builtin_signbitf:
1531   case Builtin::BI__builtin_signbitl:
1532     if (SemaBuiltinFPClassification(TheCall, 1))
1533       return ExprError();
1534     break;
1535   case Builtin::BI__builtin_shufflevector:
1536     return SemaBuiltinShuffleVector(TheCall);
1537     // TheCall will be freed by the smart pointer here, but that's fine, since
1538     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1539   case Builtin::BI__builtin_prefetch:
1540     if (SemaBuiltinPrefetch(TheCall))
1541       return ExprError();
1542     break;
1543   case Builtin::BI__builtin_alloca_with_align:
1544     if (SemaBuiltinAllocaWithAlign(TheCall))
1545       return ExprError();
1546     LLVM_FALLTHROUGH;
1547   case Builtin::BI__builtin_alloca:
1548     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1549         << TheCall->getDirectCallee();
1550     break;
1551   case Builtin::BI__assume:
1552   case Builtin::BI__builtin_assume:
1553     if (SemaBuiltinAssume(TheCall))
1554       return ExprError();
1555     break;
1556   case Builtin::BI__builtin_assume_aligned:
1557     if (SemaBuiltinAssumeAligned(TheCall))
1558       return ExprError();
1559     break;
1560   case Builtin::BI__builtin_dynamic_object_size:
1561   case Builtin::BI__builtin_object_size:
1562     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1563       return ExprError();
1564     break;
1565   case Builtin::BI__builtin_longjmp:
1566     if (SemaBuiltinLongjmp(TheCall))
1567       return ExprError();
1568     break;
1569   case Builtin::BI__builtin_setjmp:
1570     if (SemaBuiltinSetjmp(TheCall))
1571       return ExprError();
1572     break;
1573   case Builtin::BI_setjmp:
1574   case Builtin::BI_setjmpex:
1575     if (checkArgCount(*this, TheCall, 1))
1576       return true;
1577     break;
1578   case Builtin::BI__builtin_classify_type:
1579     if (checkArgCount(*this, TheCall, 1)) return true;
1580     TheCall->setType(Context.IntTy);
1581     break;
1582   case Builtin::BI__builtin_complex:
1583     if (SemaBuiltinComplex(TheCall))
1584       return ExprError();
1585     break;
1586   case Builtin::BI__builtin_constant_p: {
1587     if (checkArgCount(*this, TheCall, 1)) return true;
1588     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1589     if (Arg.isInvalid()) return true;
1590     TheCall->setArg(0, Arg.get());
1591     TheCall->setType(Context.IntTy);
1592     break;
1593   }
1594   case Builtin::BI__builtin_launder:
1595     return SemaBuiltinLaunder(*this, TheCall);
1596   case Builtin::BI__sync_fetch_and_add:
1597   case Builtin::BI__sync_fetch_and_add_1:
1598   case Builtin::BI__sync_fetch_and_add_2:
1599   case Builtin::BI__sync_fetch_and_add_4:
1600   case Builtin::BI__sync_fetch_and_add_8:
1601   case Builtin::BI__sync_fetch_and_add_16:
1602   case Builtin::BI__sync_fetch_and_sub:
1603   case Builtin::BI__sync_fetch_and_sub_1:
1604   case Builtin::BI__sync_fetch_and_sub_2:
1605   case Builtin::BI__sync_fetch_and_sub_4:
1606   case Builtin::BI__sync_fetch_and_sub_8:
1607   case Builtin::BI__sync_fetch_and_sub_16:
1608   case Builtin::BI__sync_fetch_and_or:
1609   case Builtin::BI__sync_fetch_and_or_1:
1610   case Builtin::BI__sync_fetch_and_or_2:
1611   case Builtin::BI__sync_fetch_and_or_4:
1612   case Builtin::BI__sync_fetch_and_or_8:
1613   case Builtin::BI__sync_fetch_and_or_16:
1614   case Builtin::BI__sync_fetch_and_and:
1615   case Builtin::BI__sync_fetch_and_and_1:
1616   case Builtin::BI__sync_fetch_and_and_2:
1617   case Builtin::BI__sync_fetch_and_and_4:
1618   case Builtin::BI__sync_fetch_and_and_8:
1619   case Builtin::BI__sync_fetch_and_and_16:
1620   case Builtin::BI__sync_fetch_and_xor:
1621   case Builtin::BI__sync_fetch_and_xor_1:
1622   case Builtin::BI__sync_fetch_and_xor_2:
1623   case Builtin::BI__sync_fetch_and_xor_4:
1624   case Builtin::BI__sync_fetch_and_xor_8:
1625   case Builtin::BI__sync_fetch_and_xor_16:
1626   case Builtin::BI__sync_fetch_and_nand:
1627   case Builtin::BI__sync_fetch_and_nand_1:
1628   case Builtin::BI__sync_fetch_and_nand_2:
1629   case Builtin::BI__sync_fetch_and_nand_4:
1630   case Builtin::BI__sync_fetch_and_nand_8:
1631   case Builtin::BI__sync_fetch_and_nand_16:
1632   case Builtin::BI__sync_add_and_fetch:
1633   case Builtin::BI__sync_add_and_fetch_1:
1634   case Builtin::BI__sync_add_and_fetch_2:
1635   case Builtin::BI__sync_add_and_fetch_4:
1636   case Builtin::BI__sync_add_and_fetch_8:
1637   case Builtin::BI__sync_add_and_fetch_16:
1638   case Builtin::BI__sync_sub_and_fetch:
1639   case Builtin::BI__sync_sub_and_fetch_1:
1640   case Builtin::BI__sync_sub_and_fetch_2:
1641   case Builtin::BI__sync_sub_and_fetch_4:
1642   case Builtin::BI__sync_sub_and_fetch_8:
1643   case Builtin::BI__sync_sub_and_fetch_16:
1644   case Builtin::BI__sync_and_and_fetch:
1645   case Builtin::BI__sync_and_and_fetch_1:
1646   case Builtin::BI__sync_and_and_fetch_2:
1647   case Builtin::BI__sync_and_and_fetch_4:
1648   case Builtin::BI__sync_and_and_fetch_8:
1649   case Builtin::BI__sync_and_and_fetch_16:
1650   case Builtin::BI__sync_or_and_fetch:
1651   case Builtin::BI__sync_or_and_fetch_1:
1652   case Builtin::BI__sync_or_and_fetch_2:
1653   case Builtin::BI__sync_or_and_fetch_4:
1654   case Builtin::BI__sync_or_and_fetch_8:
1655   case Builtin::BI__sync_or_and_fetch_16:
1656   case Builtin::BI__sync_xor_and_fetch:
1657   case Builtin::BI__sync_xor_and_fetch_1:
1658   case Builtin::BI__sync_xor_and_fetch_2:
1659   case Builtin::BI__sync_xor_and_fetch_4:
1660   case Builtin::BI__sync_xor_and_fetch_8:
1661   case Builtin::BI__sync_xor_and_fetch_16:
1662   case Builtin::BI__sync_nand_and_fetch:
1663   case Builtin::BI__sync_nand_and_fetch_1:
1664   case Builtin::BI__sync_nand_and_fetch_2:
1665   case Builtin::BI__sync_nand_and_fetch_4:
1666   case Builtin::BI__sync_nand_and_fetch_8:
1667   case Builtin::BI__sync_nand_and_fetch_16:
1668   case Builtin::BI__sync_val_compare_and_swap:
1669   case Builtin::BI__sync_val_compare_and_swap_1:
1670   case Builtin::BI__sync_val_compare_and_swap_2:
1671   case Builtin::BI__sync_val_compare_and_swap_4:
1672   case Builtin::BI__sync_val_compare_and_swap_8:
1673   case Builtin::BI__sync_val_compare_and_swap_16:
1674   case Builtin::BI__sync_bool_compare_and_swap:
1675   case Builtin::BI__sync_bool_compare_and_swap_1:
1676   case Builtin::BI__sync_bool_compare_and_swap_2:
1677   case Builtin::BI__sync_bool_compare_and_swap_4:
1678   case Builtin::BI__sync_bool_compare_and_swap_8:
1679   case Builtin::BI__sync_bool_compare_and_swap_16:
1680   case Builtin::BI__sync_lock_test_and_set:
1681   case Builtin::BI__sync_lock_test_and_set_1:
1682   case Builtin::BI__sync_lock_test_and_set_2:
1683   case Builtin::BI__sync_lock_test_and_set_4:
1684   case Builtin::BI__sync_lock_test_and_set_8:
1685   case Builtin::BI__sync_lock_test_and_set_16:
1686   case Builtin::BI__sync_lock_release:
1687   case Builtin::BI__sync_lock_release_1:
1688   case Builtin::BI__sync_lock_release_2:
1689   case Builtin::BI__sync_lock_release_4:
1690   case Builtin::BI__sync_lock_release_8:
1691   case Builtin::BI__sync_lock_release_16:
1692   case Builtin::BI__sync_swap:
1693   case Builtin::BI__sync_swap_1:
1694   case Builtin::BI__sync_swap_2:
1695   case Builtin::BI__sync_swap_4:
1696   case Builtin::BI__sync_swap_8:
1697   case Builtin::BI__sync_swap_16:
1698     return SemaBuiltinAtomicOverloaded(TheCallResult);
1699   case Builtin::BI__sync_synchronize:
1700     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1701         << TheCall->getCallee()->getSourceRange();
1702     break;
1703   case Builtin::BI__builtin_nontemporal_load:
1704   case Builtin::BI__builtin_nontemporal_store:
1705     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1706   case Builtin::BI__builtin_memcpy_inline: {
1707     clang::Expr *SizeOp = TheCall->getArg(2);
1708     // We warn about copying to or from `nullptr` pointers when `size` is
1709     // greater than 0. When `size` is value dependent we cannot evaluate its
1710     // value so we bail out.
1711     if (SizeOp->isValueDependent())
1712       break;
1713     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1714       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1715       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1716     }
1717     break;
1718   }
1719 #define BUILTIN(ID, TYPE, ATTRS)
1720 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1721   case Builtin::BI##ID: \
1722     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1723 #include "clang/Basic/Builtins.def"
1724   case Builtin::BI__annotation:
1725     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1726       return ExprError();
1727     break;
1728   case Builtin::BI__builtin_annotation:
1729     if (SemaBuiltinAnnotation(*this, TheCall))
1730       return ExprError();
1731     break;
1732   case Builtin::BI__builtin_addressof:
1733     if (SemaBuiltinAddressof(*this, TheCall))
1734       return ExprError();
1735     break;
1736   case Builtin::BI__builtin_is_aligned:
1737   case Builtin::BI__builtin_align_up:
1738   case Builtin::BI__builtin_align_down:
1739     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1740       return ExprError();
1741     break;
1742   case Builtin::BI__builtin_add_overflow:
1743   case Builtin::BI__builtin_sub_overflow:
1744   case Builtin::BI__builtin_mul_overflow:
1745     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1746       return ExprError();
1747     break;
1748   case Builtin::BI__builtin_operator_new:
1749   case Builtin::BI__builtin_operator_delete: {
1750     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1751     ExprResult Res =
1752         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1753     if (Res.isInvalid())
1754       CorrectDelayedTyposInExpr(TheCallResult.get());
1755     return Res;
1756   }
1757   case Builtin::BI__builtin_dump_struct: {
1758     // We first want to ensure we are called with 2 arguments
1759     if (checkArgCount(*this, TheCall, 2))
1760       return ExprError();
1761     // Ensure that the first argument is of type 'struct XX *'
1762     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1763     const QualType PtrArgType = PtrArg->getType();
1764     if (!PtrArgType->isPointerType() ||
1765         !PtrArgType->getPointeeType()->isRecordType()) {
1766       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1767           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1768           << "structure pointer";
1769       return ExprError();
1770     }
1771 
1772     // Ensure that the second argument is of type 'FunctionType'
1773     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1774     const QualType FnPtrArgType = FnPtrArg->getType();
1775     if (!FnPtrArgType->isPointerType()) {
1776       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1777           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1778           << FnPtrArgType << "'int (*)(const char *, ...)'";
1779       return ExprError();
1780     }
1781 
1782     const auto *FuncType =
1783         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1784 
1785     if (!FuncType) {
1786       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1787           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1788           << FnPtrArgType << "'int (*)(const char *, ...)'";
1789       return ExprError();
1790     }
1791 
1792     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1793       if (!FT->getNumParams()) {
1794         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1795             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1796             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1797         return ExprError();
1798       }
1799       QualType PT = FT->getParamType(0);
1800       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1801           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1802           !PT->getPointeeType().isConstQualified()) {
1803         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1804             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1805             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1806         return ExprError();
1807       }
1808     }
1809 
1810     TheCall->setType(Context.IntTy);
1811     break;
1812   }
1813   case Builtin::BI__builtin_expect_with_probability: {
1814     // We first want to ensure we are called with 3 arguments
1815     if (checkArgCount(*this, TheCall, 3))
1816       return ExprError();
1817     // then check probability is constant float in range [0.0, 1.0]
1818     const Expr *ProbArg = TheCall->getArg(2);
1819     SmallVector<PartialDiagnosticAt, 8> Notes;
1820     Expr::EvalResult Eval;
1821     Eval.Diag = &Notes;
1822     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen,
1823                                           Context)) ||
1824         !Eval.Val.isFloat()) {
1825       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1826           << ProbArg->getSourceRange();
1827       for (const PartialDiagnosticAt &PDiag : Notes)
1828         Diag(PDiag.first, PDiag.second);
1829       return ExprError();
1830     }
1831     llvm::APFloat Probability = Eval.Val.getFloat();
1832     bool LoseInfo = false;
1833     Probability.convert(llvm::APFloat::IEEEdouble(),
1834                         llvm::RoundingMode::Dynamic, &LoseInfo);
1835     if (!(Probability >= llvm::APFloat(0.0) &&
1836           Probability <= llvm::APFloat(1.0))) {
1837       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1838           << ProbArg->getSourceRange();
1839       return ExprError();
1840     }
1841     break;
1842   }
1843   case Builtin::BI__builtin_preserve_access_index:
1844     if (SemaBuiltinPreserveAI(*this, TheCall))
1845       return ExprError();
1846     break;
1847   case Builtin::BI__builtin_call_with_static_chain:
1848     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1849       return ExprError();
1850     break;
1851   case Builtin::BI__exception_code:
1852   case Builtin::BI_exception_code:
1853     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1854                                  diag::err_seh___except_block))
1855       return ExprError();
1856     break;
1857   case Builtin::BI__exception_info:
1858   case Builtin::BI_exception_info:
1859     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1860                                  diag::err_seh___except_filter))
1861       return ExprError();
1862     break;
1863   case Builtin::BI__GetExceptionInfo:
1864     if (checkArgCount(*this, TheCall, 1))
1865       return ExprError();
1866 
1867     if (CheckCXXThrowOperand(
1868             TheCall->getBeginLoc(),
1869             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1870             TheCall))
1871       return ExprError();
1872 
1873     TheCall->setType(Context.VoidPtrTy);
1874     break;
1875   // OpenCL v2.0, s6.13.16 - Pipe functions
1876   case Builtin::BIread_pipe:
1877   case Builtin::BIwrite_pipe:
1878     // Since those two functions are declared with var args, we need a semantic
1879     // check for the argument.
1880     if (SemaBuiltinRWPipe(*this, TheCall))
1881       return ExprError();
1882     break;
1883   case Builtin::BIreserve_read_pipe:
1884   case Builtin::BIreserve_write_pipe:
1885   case Builtin::BIwork_group_reserve_read_pipe:
1886   case Builtin::BIwork_group_reserve_write_pipe:
1887     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1888       return ExprError();
1889     break;
1890   case Builtin::BIsub_group_reserve_read_pipe:
1891   case Builtin::BIsub_group_reserve_write_pipe:
1892     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1893         SemaBuiltinReserveRWPipe(*this, TheCall))
1894       return ExprError();
1895     break;
1896   case Builtin::BIcommit_read_pipe:
1897   case Builtin::BIcommit_write_pipe:
1898   case Builtin::BIwork_group_commit_read_pipe:
1899   case Builtin::BIwork_group_commit_write_pipe:
1900     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1901       return ExprError();
1902     break;
1903   case Builtin::BIsub_group_commit_read_pipe:
1904   case Builtin::BIsub_group_commit_write_pipe:
1905     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1906         SemaBuiltinCommitRWPipe(*this, TheCall))
1907       return ExprError();
1908     break;
1909   case Builtin::BIget_pipe_num_packets:
1910   case Builtin::BIget_pipe_max_packets:
1911     if (SemaBuiltinPipePackets(*this, TheCall))
1912       return ExprError();
1913     break;
1914   case Builtin::BIto_global:
1915   case Builtin::BIto_local:
1916   case Builtin::BIto_private:
1917     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1918       return ExprError();
1919     break;
1920   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1921   case Builtin::BIenqueue_kernel:
1922     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1923       return ExprError();
1924     break;
1925   case Builtin::BIget_kernel_work_group_size:
1926   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1927     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1928       return ExprError();
1929     break;
1930   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1931   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1932     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1933       return ExprError();
1934     break;
1935   case Builtin::BI__builtin_os_log_format:
1936     Cleanup.setExprNeedsCleanups(true);
1937     LLVM_FALLTHROUGH;
1938   case Builtin::BI__builtin_os_log_format_buffer_size:
1939     if (SemaBuiltinOSLogFormat(TheCall))
1940       return ExprError();
1941     break;
1942   case Builtin::BI__builtin_frame_address:
1943   case Builtin::BI__builtin_return_address: {
1944     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1945       return ExprError();
1946 
1947     // -Wframe-address warning if non-zero passed to builtin
1948     // return/frame address.
1949     Expr::EvalResult Result;
1950     if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1951         Result.Val.getInt() != 0)
1952       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1953           << ((BuiltinID == Builtin::BI__builtin_return_address)
1954                   ? "__builtin_return_address"
1955                   : "__builtin_frame_address")
1956           << TheCall->getSourceRange();
1957     break;
1958   }
1959 
1960   case Builtin::BI__builtin_matrix_transpose:
1961     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1962 
1963   case Builtin::BI__builtin_matrix_column_major_load:
1964     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1965 
1966   case Builtin::BI__builtin_matrix_column_major_store:
1967     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1968   }
1969 
1970   // Since the target specific builtins for each arch overlap, only check those
1971   // of the arch we are compiling for.
1972   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1973     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1974       assert(Context.getAuxTargetInfo() &&
1975              "Aux Target Builtin, but not an aux target?");
1976 
1977       if (CheckTSBuiltinFunctionCall(
1978               *Context.getAuxTargetInfo(),
1979               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1980         return ExprError();
1981     } else {
1982       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1983                                      TheCall))
1984         return ExprError();
1985     }
1986   }
1987 
1988   return TheCallResult;
1989 }
1990 
1991 // Get the valid immediate range for the specified NEON type code.
1992 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1993   NeonTypeFlags Type(t);
1994   int IsQuad = ForceQuad ? true : Type.isQuad();
1995   switch (Type.getEltType()) {
1996   case NeonTypeFlags::Int8:
1997   case NeonTypeFlags::Poly8:
1998     return shift ? 7 : (8 << IsQuad) - 1;
1999   case NeonTypeFlags::Int16:
2000   case NeonTypeFlags::Poly16:
2001     return shift ? 15 : (4 << IsQuad) - 1;
2002   case NeonTypeFlags::Int32:
2003     return shift ? 31 : (2 << IsQuad) - 1;
2004   case NeonTypeFlags::Int64:
2005   case NeonTypeFlags::Poly64:
2006     return shift ? 63 : (1 << IsQuad) - 1;
2007   case NeonTypeFlags::Poly128:
2008     return shift ? 127 : (1 << IsQuad) - 1;
2009   case NeonTypeFlags::Float16:
2010     assert(!shift && "cannot shift float types!");
2011     return (4 << IsQuad) - 1;
2012   case NeonTypeFlags::Float32:
2013     assert(!shift && "cannot shift float types!");
2014     return (2 << IsQuad) - 1;
2015   case NeonTypeFlags::Float64:
2016     assert(!shift && "cannot shift float types!");
2017     return (1 << IsQuad) - 1;
2018   case NeonTypeFlags::BFloat16:
2019     assert(!shift && "cannot shift float types!");
2020     return (4 << IsQuad) - 1;
2021   }
2022   llvm_unreachable("Invalid NeonTypeFlag!");
2023 }
2024 
2025 /// getNeonEltType - Return the QualType corresponding to the elements of
2026 /// the vector type specified by the NeonTypeFlags.  This is used to check
2027 /// the pointer arguments for Neon load/store intrinsics.
2028 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2029                                bool IsPolyUnsigned, bool IsInt64Long) {
2030   switch (Flags.getEltType()) {
2031   case NeonTypeFlags::Int8:
2032     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2033   case NeonTypeFlags::Int16:
2034     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2035   case NeonTypeFlags::Int32:
2036     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2037   case NeonTypeFlags::Int64:
2038     if (IsInt64Long)
2039       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2040     else
2041       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2042                                 : Context.LongLongTy;
2043   case NeonTypeFlags::Poly8:
2044     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2045   case NeonTypeFlags::Poly16:
2046     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2047   case NeonTypeFlags::Poly64:
2048     if (IsInt64Long)
2049       return Context.UnsignedLongTy;
2050     else
2051       return Context.UnsignedLongLongTy;
2052   case NeonTypeFlags::Poly128:
2053     break;
2054   case NeonTypeFlags::Float16:
2055     return Context.HalfTy;
2056   case NeonTypeFlags::Float32:
2057     return Context.FloatTy;
2058   case NeonTypeFlags::Float64:
2059     return Context.DoubleTy;
2060   case NeonTypeFlags::BFloat16:
2061     return Context.BFloat16Ty;
2062   }
2063   llvm_unreachable("Invalid NeonTypeFlag!");
2064 }
2065 
2066 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2067   // Range check SVE intrinsics that take immediate values.
2068   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2069 
2070   switch (BuiltinID) {
2071   default:
2072     return false;
2073 #define GET_SVE_IMMEDIATE_CHECK
2074 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2075 #undef GET_SVE_IMMEDIATE_CHECK
2076   }
2077 
2078   // Perform all the immediate checks for this builtin call.
2079   bool HasError = false;
2080   for (auto &I : ImmChecks) {
2081     int ArgNum, CheckTy, ElementSizeInBits;
2082     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2083 
2084     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2085 
2086     // Function that checks whether the operand (ArgNum) is an immediate
2087     // that is one of the predefined values.
2088     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2089                                    int ErrDiag) -> bool {
2090       // We can't check the value of a dependent argument.
2091       Expr *Arg = TheCall->getArg(ArgNum);
2092       if (Arg->isTypeDependent() || Arg->isValueDependent())
2093         return false;
2094 
2095       // Check constant-ness first.
2096       llvm::APSInt Imm;
2097       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2098         return true;
2099 
2100       if (!CheckImm(Imm.getSExtValue()))
2101         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2102       return false;
2103     };
2104 
2105     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2106     case SVETypeFlags::ImmCheck0_31:
2107       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2108         HasError = true;
2109       break;
2110     case SVETypeFlags::ImmCheck0_13:
2111       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2112         HasError = true;
2113       break;
2114     case SVETypeFlags::ImmCheck1_16:
2115       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2116         HasError = true;
2117       break;
2118     case SVETypeFlags::ImmCheck0_7:
2119       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2120         HasError = true;
2121       break;
2122     case SVETypeFlags::ImmCheckExtract:
2123       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2124                                       (2048 / ElementSizeInBits) - 1))
2125         HasError = true;
2126       break;
2127     case SVETypeFlags::ImmCheckShiftRight:
2128       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2129         HasError = true;
2130       break;
2131     case SVETypeFlags::ImmCheckShiftRightNarrow:
2132       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2133                                       ElementSizeInBits / 2))
2134         HasError = true;
2135       break;
2136     case SVETypeFlags::ImmCheckShiftLeft:
2137       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2138                                       ElementSizeInBits - 1))
2139         HasError = true;
2140       break;
2141     case SVETypeFlags::ImmCheckLaneIndex:
2142       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2143                                       (128 / (1 * ElementSizeInBits)) - 1))
2144         HasError = true;
2145       break;
2146     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2147       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2148                                       (128 / (2 * ElementSizeInBits)) - 1))
2149         HasError = true;
2150       break;
2151     case SVETypeFlags::ImmCheckLaneIndexDot:
2152       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2153                                       (128 / (4 * ElementSizeInBits)) - 1))
2154         HasError = true;
2155       break;
2156     case SVETypeFlags::ImmCheckComplexRot90_270:
2157       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2158                               diag::err_rotation_argument_to_cadd))
2159         HasError = true;
2160       break;
2161     case SVETypeFlags::ImmCheckComplexRotAll90:
2162       if (CheckImmediateInSet(
2163               [](int64_t V) {
2164                 return V == 0 || V == 90 || V == 180 || V == 270;
2165               },
2166               diag::err_rotation_argument_to_cmla))
2167         HasError = true;
2168       break;
2169     case SVETypeFlags::ImmCheck0_1:
2170       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2171         HasError = true;
2172       break;
2173     case SVETypeFlags::ImmCheck0_2:
2174       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2175         HasError = true;
2176       break;
2177     case SVETypeFlags::ImmCheck0_3:
2178       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2179         HasError = true;
2180       break;
2181     }
2182   }
2183 
2184   return HasError;
2185 }
2186 
2187 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2188                                         unsigned BuiltinID, CallExpr *TheCall) {
2189   llvm::APSInt Result;
2190   uint64_t mask = 0;
2191   unsigned TV = 0;
2192   int PtrArgNum = -1;
2193   bool HasConstPtr = false;
2194   switch (BuiltinID) {
2195 #define GET_NEON_OVERLOAD_CHECK
2196 #include "clang/Basic/arm_neon.inc"
2197 #include "clang/Basic/arm_fp16.inc"
2198 #undef GET_NEON_OVERLOAD_CHECK
2199   }
2200 
2201   // For NEON intrinsics which are overloaded on vector element type, validate
2202   // the immediate which specifies which variant to emit.
2203   unsigned ImmArg = TheCall->getNumArgs()-1;
2204   if (mask) {
2205     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2206       return true;
2207 
2208     TV = Result.getLimitedValue(64);
2209     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2210       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2211              << TheCall->getArg(ImmArg)->getSourceRange();
2212   }
2213 
2214   if (PtrArgNum >= 0) {
2215     // Check that pointer arguments have the specified type.
2216     Expr *Arg = TheCall->getArg(PtrArgNum);
2217     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2218       Arg = ICE->getSubExpr();
2219     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2220     QualType RHSTy = RHS.get()->getType();
2221 
2222     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2223     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2224                           Arch == llvm::Triple::aarch64_32 ||
2225                           Arch == llvm::Triple::aarch64_be;
2226     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2227     QualType EltTy =
2228         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2229     if (HasConstPtr)
2230       EltTy = EltTy.withConst();
2231     QualType LHSTy = Context.getPointerType(EltTy);
2232     AssignConvertType ConvTy;
2233     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2234     if (RHS.isInvalid())
2235       return true;
2236     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2237                                  RHS.get(), AA_Assigning))
2238       return true;
2239   }
2240 
2241   // For NEON intrinsics which take an immediate value as part of the
2242   // instruction, range check them here.
2243   unsigned i = 0, l = 0, u = 0;
2244   switch (BuiltinID) {
2245   default:
2246     return false;
2247   #define GET_NEON_IMMEDIATE_CHECK
2248   #include "clang/Basic/arm_neon.inc"
2249   #include "clang/Basic/arm_fp16.inc"
2250   #undef GET_NEON_IMMEDIATE_CHECK
2251   }
2252 
2253   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2254 }
2255 
2256 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2257   switch (BuiltinID) {
2258   default:
2259     return false;
2260   #include "clang/Basic/arm_mve_builtin_sema.inc"
2261   }
2262 }
2263 
2264 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2265                                        CallExpr *TheCall) {
2266   bool Err = false;
2267   switch (BuiltinID) {
2268   default:
2269     return false;
2270 #include "clang/Basic/arm_cde_builtin_sema.inc"
2271   }
2272 
2273   if (Err)
2274     return true;
2275 
2276   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2277 }
2278 
2279 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2280                                         const Expr *CoprocArg, bool WantCDE) {
2281   if (isConstantEvaluated())
2282     return false;
2283 
2284   // We can't check the value of a dependent argument.
2285   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2286     return false;
2287 
2288   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2289   int64_t CoprocNo = CoprocNoAP.getExtValue();
2290   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2291 
2292   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2293   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2294 
2295   if (IsCDECoproc != WantCDE)
2296     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2297            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2298 
2299   return false;
2300 }
2301 
2302 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2303                                         unsigned MaxWidth) {
2304   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2305           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2306           BuiltinID == ARM::BI__builtin_arm_strex ||
2307           BuiltinID == ARM::BI__builtin_arm_stlex ||
2308           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2309           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2310           BuiltinID == AArch64::BI__builtin_arm_strex ||
2311           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2312          "unexpected ARM builtin");
2313   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2314                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2315                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2316                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2317 
2318   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2319 
2320   // Ensure that we have the proper number of arguments.
2321   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2322     return true;
2323 
2324   // Inspect the pointer argument of the atomic builtin.  This should always be
2325   // a pointer type, whose element is an integral scalar or pointer type.
2326   // Because it is a pointer type, we don't have to worry about any implicit
2327   // casts here.
2328   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2329   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2330   if (PointerArgRes.isInvalid())
2331     return true;
2332   PointerArg = PointerArgRes.get();
2333 
2334   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2335   if (!pointerType) {
2336     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2337         << PointerArg->getType() << PointerArg->getSourceRange();
2338     return true;
2339   }
2340 
2341   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2342   // task is to insert the appropriate casts into the AST. First work out just
2343   // what the appropriate type is.
2344   QualType ValType = pointerType->getPointeeType();
2345   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2346   if (IsLdrex)
2347     AddrType.addConst();
2348 
2349   // Issue a warning if the cast is dodgy.
2350   CastKind CastNeeded = CK_NoOp;
2351   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2352     CastNeeded = CK_BitCast;
2353     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2354         << PointerArg->getType() << Context.getPointerType(AddrType)
2355         << AA_Passing << PointerArg->getSourceRange();
2356   }
2357 
2358   // Finally, do the cast and replace the argument with the corrected version.
2359   AddrType = Context.getPointerType(AddrType);
2360   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2361   if (PointerArgRes.isInvalid())
2362     return true;
2363   PointerArg = PointerArgRes.get();
2364 
2365   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2366 
2367   // In general, we allow ints, floats and pointers to be loaded and stored.
2368   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2369       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2370     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2371         << PointerArg->getType() << PointerArg->getSourceRange();
2372     return true;
2373   }
2374 
2375   // But ARM doesn't have instructions to deal with 128-bit versions.
2376   if (Context.getTypeSize(ValType) > MaxWidth) {
2377     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2378     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2379         << PointerArg->getType() << PointerArg->getSourceRange();
2380     return true;
2381   }
2382 
2383   switch (ValType.getObjCLifetime()) {
2384   case Qualifiers::OCL_None:
2385   case Qualifiers::OCL_ExplicitNone:
2386     // okay
2387     break;
2388 
2389   case Qualifiers::OCL_Weak:
2390   case Qualifiers::OCL_Strong:
2391   case Qualifiers::OCL_Autoreleasing:
2392     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2393         << ValType << PointerArg->getSourceRange();
2394     return true;
2395   }
2396 
2397   if (IsLdrex) {
2398     TheCall->setType(ValType);
2399     return false;
2400   }
2401 
2402   // Initialize the argument to be stored.
2403   ExprResult ValArg = TheCall->getArg(0);
2404   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2405       Context, ValType, /*consume*/ false);
2406   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2407   if (ValArg.isInvalid())
2408     return true;
2409   TheCall->setArg(0, ValArg.get());
2410 
2411   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2412   // but the custom checker bypasses all default analysis.
2413   TheCall->setType(Context.IntTy);
2414   return false;
2415 }
2416 
2417 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2418                                        CallExpr *TheCall) {
2419   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2420       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2421       BuiltinID == ARM::BI__builtin_arm_strex ||
2422       BuiltinID == ARM::BI__builtin_arm_stlex) {
2423     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2424   }
2425 
2426   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2427     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2428       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2429   }
2430 
2431   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2432       BuiltinID == ARM::BI__builtin_arm_wsr64)
2433     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2434 
2435   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2436       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2437       BuiltinID == ARM::BI__builtin_arm_wsr ||
2438       BuiltinID == ARM::BI__builtin_arm_wsrp)
2439     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2440 
2441   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2442     return true;
2443   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2444     return true;
2445   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2446     return true;
2447 
2448   // For intrinsics which take an immediate value as part of the instruction,
2449   // range check them here.
2450   // FIXME: VFP Intrinsics should error if VFP not present.
2451   switch (BuiltinID) {
2452   default: return false;
2453   case ARM::BI__builtin_arm_ssat:
2454     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2455   case ARM::BI__builtin_arm_usat:
2456     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2457   case ARM::BI__builtin_arm_ssat16:
2458     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2459   case ARM::BI__builtin_arm_usat16:
2460     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2461   case ARM::BI__builtin_arm_vcvtr_f:
2462   case ARM::BI__builtin_arm_vcvtr_d:
2463     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2464   case ARM::BI__builtin_arm_dmb:
2465   case ARM::BI__builtin_arm_dsb:
2466   case ARM::BI__builtin_arm_isb:
2467   case ARM::BI__builtin_arm_dbg:
2468     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2469   case ARM::BI__builtin_arm_cdp:
2470   case ARM::BI__builtin_arm_cdp2:
2471   case ARM::BI__builtin_arm_mcr:
2472   case ARM::BI__builtin_arm_mcr2:
2473   case ARM::BI__builtin_arm_mrc:
2474   case ARM::BI__builtin_arm_mrc2:
2475   case ARM::BI__builtin_arm_mcrr:
2476   case ARM::BI__builtin_arm_mcrr2:
2477   case ARM::BI__builtin_arm_mrrc:
2478   case ARM::BI__builtin_arm_mrrc2:
2479   case ARM::BI__builtin_arm_ldc:
2480   case ARM::BI__builtin_arm_ldcl:
2481   case ARM::BI__builtin_arm_ldc2:
2482   case ARM::BI__builtin_arm_ldc2l:
2483   case ARM::BI__builtin_arm_stc:
2484   case ARM::BI__builtin_arm_stcl:
2485   case ARM::BI__builtin_arm_stc2:
2486   case ARM::BI__builtin_arm_stc2l:
2487     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2488            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2489                                         /*WantCDE*/ false);
2490   }
2491 }
2492 
2493 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2494                                            unsigned BuiltinID,
2495                                            CallExpr *TheCall) {
2496   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2497       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2498       BuiltinID == AArch64::BI__builtin_arm_strex ||
2499       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2500     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2501   }
2502 
2503   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2504     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2505       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2506       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2507       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2508   }
2509 
2510   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2511       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2512     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2513 
2514   // Memory Tagging Extensions (MTE) Intrinsics
2515   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2516       BuiltinID == AArch64::BI__builtin_arm_addg ||
2517       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2518       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2519       BuiltinID == AArch64::BI__builtin_arm_stg ||
2520       BuiltinID == AArch64::BI__builtin_arm_subp) {
2521     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2522   }
2523 
2524   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2525       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2526       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2527       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2528     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2529 
2530   // Only check the valid encoding range. Any constant in this range would be
2531   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2532   // an exception for incorrect registers. This matches MSVC behavior.
2533   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2534       BuiltinID == AArch64::BI_WriteStatusReg)
2535     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2536 
2537   if (BuiltinID == AArch64::BI__getReg)
2538     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2539 
2540   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2541     return true;
2542 
2543   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2544     return true;
2545 
2546   // For intrinsics which take an immediate value as part of the instruction,
2547   // range check them here.
2548   unsigned i = 0, l = 0, u = 0;
2549   switch (BuiltinID) {
2550   default: return false;
2551   case AArch64::BI__builtin_arm_dmb:
2552   case AArch64::BI__builtin_arm_dsb:
2553   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2554   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2555   }
2556 
2557   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2558 }
2559 
2560 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2561   if (Arg->getType()->getAsPlaceholderType())
2562     return false;
2563 
2564   // The first argument needs to be a record field access.
2565   // If it is an array element access, we delay decision
2566   // to BPF backend to check whether the access is a
2567   // field access or not.
2568   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2569           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2570           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2571 }
2572 
2573 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2574   QualType ArgType = Arg->getType();
2575   if (ArgType->getAsPlaceholderType())
2576     return false;
2577 
2578   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2579   // format:
2580   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2581   //   2. <type> var;
2582   //      __builtin_preserve_type_info(var, flag);
2583   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2584       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2585     return false;
2586 
2587   // Typedef type.
2588   if (ArgType->getAs<TypedefType>())
2589     return true;
2590 
2591   // Record type or Enum type.
2592   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2593   if (const auto *RT = Ty->getAs<RecordType>()) {
2594     if (!RT->getDecl()->getDeclName().isEmpty())
2595       return true;
2596   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2597     if (!ET->getDecl()->getDeclName().isEmpty())
2598       return true;
2599   }
2600 
2601   return false;
2602 }
2603 
2604 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2605   QualType ArgType = Arg->getType();
2606   if (ArgType->getAsPlaceholderType())
2607     return false;
2608 
2609   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2610   // format:
2611   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2612   //                                 flag);
2613   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2614   if (!UO)
2615     return false;
2616 
2617   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2618   if (!CE || CE->getCastKind() != CK_IntegralToPointer)
2619     return false;
2620 
2621   // The integer must be from an EnumConstantDecl.
2622   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2623   if (!DR)
2624     return false;
2625 
2626   const EnumConstantDecl *Enumerator =
2627       dyn_cast<EnumConstantDecl>(DR->getDecl());
2628   if (!Enumerator)
2629     return false;
2630 
2631   // The type must be EnumType.
2632   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2633   const auto *ET = Ty->getAs<EnumType>();
2634   if (!ET)
2635     return false;
2636 
2637   // The enum value must be supported.
2638   for (auto *EDI : ET->getDecl()->enumerators()) {
2639     if (EDI == Enumerator)
2640       return true;
2641   }
2642 
2643   return false;
2644 }
2645 
2646 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2647                                        CallExpr *TheCall) {
2648   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2649           BuiltinID == BPF::BI__builtin_btf_type_id ||
2650           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2651           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2652          "unexpected BPF builtin");
2653 
2654   if (checkArgCount(*this, TheCall, 2))
2655     return true;
2656 
2657   // The second argument needs to be a constant int
2658   Expr *Arg = TheCall->getArg(1);
2659   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2660   diag::kind kind;
2661   if (!Value) {
2662     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2663       kind = diag::err_preserve_field_info_not_const;
2664     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2665       kind = diag::err_btf_type_id_not_const;
2666     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2667       kind = diag::err_preserve_type_info_not_const;
2668     else
2669       kind = diag::err_preserve_enum_value_not_const;
2670     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2671     return true;
2672   }
2673 
2674   // The first argument
2675   Arg = TheCall->getArg(0);
2676   bool InvalidArg = false;
2677   bool ReturnUnsignedInt = true;
2678   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2679     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2680       InvalidArg = true;
2681       kind = diag::err_preserve_field_info_not_field;
2682     }
2683   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2684     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2685       InvalidArg = true;
2686       kind = diag::err_preserve_type_info_invalid;
2687     }
2688   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2689     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2690       InvalidArg = true;
2691       kind = diag::err_preserve_enum_value_invalid;
2692     }
2693     ReturnUnsignedInt = false;
2694   }
2695 
2696   if (InvalidArg) {
2697     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2698     return true;
2699   }
2700 
2701   if (ReturnUnsignedInt)
2702     TheCall->setType(Context.UnsignedIntTy);
2703   else
2704     TheCall->setType(Context.UnsignedLongTy);
2705   return false;
2706 }
2707 
2708 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2709   struct ArgInfo {
2710     uint8_t OpNum;
2711     bool IsSigned;
2712     uint8_t BitWidth;
2713     uint8_t Align;
2714   };
2715   struct BuiltinInfo {
2716     unsigned BuiltinID;
2717     ArgInfo Infos[2];
2718   };
2719 
2720   static BuiltinInfo Infos[] = {
2721     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2722     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2723     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2724     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2725     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2726     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2727     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2728     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2729     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2730     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2731     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2732 
2733     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2734     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2735     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2736     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2737     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2738     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2739     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2740     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2741     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2742     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2743     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2744 
2745     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2746     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2747     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2748     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2749     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2750     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2751     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2752     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2753     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2754     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2755     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2756     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2757     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2758     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2759     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2760     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2761     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2762     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2763     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2764     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2765     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2766     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2767     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2768     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2769     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2770     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2771     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2772     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2774     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2775     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2776     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2777     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2778     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2782     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2785     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2788     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2797                                                       {{ 1, false, 6,  0 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2805                                                       {{ 1, false, 5,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2812                                                        { 2, false, 5,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2814                                                        { 2, false, 6,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2816                                                        { 3, false, 5,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2818                                                        { 3, false, 6,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2835                                                       {{ 2, false, 4,  0 },
2836                                                        { 3, false, 5,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2838                                                       {{ 2, false, 4,  0 },
2839                                                        { 3, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2841                                                       {{ 2, false, 4,  0 },
2842                                                        { 3, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2844                                                       {{ 2, false, 4,  0 },
2845                                                        { 3, false, 5,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2848     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2849     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2851     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2852     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2857                                                        { 2, false, 5,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2859                                                        { 2, false, 6,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2867     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2869                                                       {{ 1, false, 4,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2871     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2872                                                       {{ 1, false, 4,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2882     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2890     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2893                                                       {{ 3, false, 1,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2898                                                       {{ 3, false, 1,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2900     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2903                                                       {{ 3, false, 1,  0 }} },
2904   };
2905 
2906   // Use a dynamically initialized static to sort the table exactly once on
2907   // first run.
2908   static const bool SortOnce =
2909       (llvm::sort(Infos,
2910                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2911                    return LHS.BuiltinID < RHS.BuiltinID;
2912                  }),
2913        true);
2914   (void)SortOnce;
2915 
2916   const BuiltinInfo *F = llvm::partition_point(
2917       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2918   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2919     return false;
2920 
2921   bool Error = false;
2922 
2923   for (const ArgInfo &A : F->Infos) {
2924     // Ignore empty ArgInfo elements.
2925     if (A.BitWidth == 0)
2926       continue;
2927 
2928     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2929     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2930     if (!A.Align) {
2931       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2932     } else {
2933       unsigned M = 1 << A.Align;
2934       Min *= M;
2935       Max *= M;
2936       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2937                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2938     }
2939   }
2940   return Error;
2941 }
2942 
2943 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2944                                            CallExpr *TheCall) {
2945   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2946 }
2947 
2948 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2949                                         unsigned BuiltinID, CallExpr *TheCall) {
2950   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2951          CheckMipsBuiltinArgument(BuiltinID, TheCall);
2952 }
2953 
2954 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2955                                CallExpr *TheCall) {
2956 
2957   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2958       BuiltinID <= Mips::BI__builtin_mips_lwx) {
2959     if (!TI.hasFeature("dsp"))
2960       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2961   }
2962 
2963   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2964       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2965     if (!TI.hasFeature("dspr2"))
2966       return Diag(TheCall->getBeginLoc(),
2967                   diag::err_mips_builtin_requires_dspr2);
2968   }
2969 
2970   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2971       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2972     if (!TI.hasFeature("msa"))
2973       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2974   }
2975 
2976   return false;
2977 }
2978 
2979 // CheckMipsBuiltinArgument - Checks the constant value passed to the
2980 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2981 // ordering for DSP is unspecified. MSA is ordered by the data format used
2982 // by the underlying instruction i.e., df/m, df/n and then by size.
2983 //
2984 // FIXME: The size tests here should instead be tablegen'd along with the
2985 //        definitions from include/clang/Basic/BuiltinsMips.def.
2986 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
2987 //        be too.
2988 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2989   unsigned i = 0, l = 0, u = 0, m = 0;
2990   switch (BuiltinID) {
2991   default: return false;
2992   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
2993   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
2994   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
2995   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
2996   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
2997   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
2998   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
2999   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3000   // df/m field.
3001   // These intrinsics take an unsigned 3 bit immediate.
3002   case Mips::BI__builtin_msa_bclri_b:
3003   case Mips::BI__builtin_msa_bnegi_b:
3004   case Mips::BI__builtin_msa_bseti_b:
3005   case Mips::BI__builtin_msa_sat_s_b:
3006   case Mips::BI__builtin_msa_sat_u_b:
3007   case Mips::BI__builtin_msa_slli_b:
3008   case Mips::BI__builtin_msa_srai_b:
3009   case Mips::BI__builtin_msa_srari_b:
3010   case Mips::BI__builtin_msa_srli_b:
3011   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3012   case Mips::BI__builtin_msa_binsli_b:
3013   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3014   // These intrinsics take an unsigned 4 bit immediate.
3015   case Mips::BI__builtin_msa_bclri_h:
3016   case Mips::BI__builtin_msa_bnegi_h:
3017   case Mips::BI__builtin_msa_bseti_h:
3018   case Mips::BI__builtin_msa_sat_s_h:
3019   case Mips::BI__builtin_msa_sat_u_h:
3020   case Mips::BI__builtin_msa_slli_h:
3021   case Mips::BI__builtin_msa_srai_h:
3022   case Mips::BI__builtin_msa_srari_h:
3023   case Mips::BI__builtin_msa_srli_h:
3024   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3025   case Mips::BI__builtin_msa_binsli_h:
3026   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3027   // These intrinsics take an unsigned 5 bit immediate.
3028   // The first block of intrinsics actually have an unsigned 5 bit field,
3029   // not a df/n field.
3030   case Mips::BI__builtin_msa_cfcmsa:
3031   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3032   case Mips::BI__builtin_msa_clei_u_b:
3033   case Mips::BI__builtin_msa_clei_u_h:
3034   case Mips::BI__builtin_msa_clei_u_w:
3035   case Mips::BI__builtin_msa_clei_u_d:
3036   case Mips::BI__builtin_msa_clti_u_b:
3037   case Mips::BI__builtin_msa_clti_u_h:
3038   case Mips::BI__builtin_msa_clti_u_w:
3039   case Mips::BI__builtin_msa_clti_u_d:
3040   case Mips::BI__builtin_msa_maxi_u_b:
3041   case Mips::BI__builtin_msa_maxi_u_h:
3042   case Mips::BI__builtin_msa_maxi_u_w:
3043   case Mips::BI__builtin_msa_maxi_u_d:
3044   case Mips::BI__builtin_msa_mini_u_b:
3045   case Mips::BI__builtin_msa_mini_u_h:
3046   case Mips::BI__builtin_msa_mini_u_w:
3047   case Mips::BI__builtin_msa_mini_u_d:
3048   case Mips::BI__builtin_msa_addvi_b:
3049   case Mips::BI__builtin_msa_addvi_h:
3050   case Mips::BI__builtin_msa_addvi_w:
3051   case Mips::BI__builtin_msa_addvi_d:
3052   case Mips::BI__builtin_msa_bclri_w:
3053   case Mips::BI__builtin_msa_bnegi_w:
3054   case Mips::BI__builtin_msa_bseti_w:
3055   case Mips::BI__builtin_msa_sat_s_w:
3056   case Mips::BI__builtin_msa_sat_u_w:
3057   case Mips::BI__builtin_msa_slli_w:
3058   case Mips::BI__builtin_msa_srai_w:
3059   case Mips::BI__builtin_msa_srari_w:
3060   case Mips::BI__builtin_msa_srli_w:
3061   case Mips::BI__builtin_msa_srlri_w:
3062   case Mips::BI__builtin_msa_subvi_b:
3063   case Mips::BI__builtin_msa_subvi_h:
3064   case Mips::BI__builtin_msa_subvi_w:
3065   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3066   case Mips::BI__builtin_msa_binsli_w:
3067   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3068   // These intrinsics take an unsigned 6 bit immediate.
3069   case Mips::BI__builtin_msa_bclri_d:
3070   case Mips::BI__builtin_msa_bnegi_d:
3071   case Mips::BI__builtin_msa_bseti_d:
3072   case Mips::BI__builtin_msa_sat_s_d:
3073   case Mips::BI__builtin_msa_sat_u_d:
3074   case Mips::BI__builtin_msa_slli_d:
3075   case Mips::BI__builtin_msa_srai_d:
3076   case Mips::BI__builtin_msa_srari_d:
3077   case Mips::BI__builtin_msa_srli_d:
3078   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3079   case Mips::BI__builtin_msa_binsli_d:
3080   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3081   // These intrinsics take a signed 5 bit immediate.
3082   case Mips::BI__builtin_msa_ceqi_b:
3083   case Mips::BI__builtin_msa_ceqi_h:
3084   case Mips::BI__builtin_msa_ceqi_w:
3085   case Mips::BI__builtin_msa_ceqi_d:
3086   case Mips::BI__builtin_msa_clti_s_b:
3087   case Mips::BI__builtin_msa_clti_s_h:
3088   case Mips::BI__builtin_msa_clti_s_w:
3089   case Mips::BI__builtin_msa_clti_s_d:
3090   case Mips::BI__builtin_msa_clei_s_b:
3091   case Mips::BI__builtin_msa_clei_s_h:
3092   case Mips::BI__builtin_msa_clei_s_w:
3093   case Mips::BI__builtin_msa_clei_s_d:
3094   case Mips::BI__builtin_msa_maxi_s_b:
3095   case Mips::BI__builtin_msa_maxi_s_h:
3096   case Mips::BI__builtin_msa_maxi_s_w:
3097   case Mips::BI__builtin_msa_maxi_s_d:
3098   case Mips::BI__builtin_msa_mini_s_b:
3099   case Mips::BI__builtin_msa_mini_s_h:
3100   case Mips::BI__builtin_msa_mini_s_w:
3101   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3102   // These intrinsics take an unsigned 8 bit immediate.
3103   case Mips::BI__builtin_msa_andi_b:
3104   case Mips::BI__builtin_msa_nori_b:
3105   case Mips::BI__builtin_msa_ori_b:
3106   case Mips::BI__builtin_msa_shf_b:
3107   case Mips::BI__builtin_msa_shf_h:
3108   case Mips::BI__builtin_msa_shf_w:
3109   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3110   case Mips::BI__builtin_msa_bseli_b:
3111   case Mips::BI__builtin_msa_bmnzi_b:
3112   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3113   // df/n format
3114   // These intrinsics take an unsigned 4 bit immediate.
3115   case Mips::BI__builtin_msa_copy_s_b:
3116   case Mips::BI__builtin_msa_copy_u_b:
3117   case Mips::BI__builtin_msa_insve_b:
3118   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3119   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3120   // These intrinsics take an unsigned 3 bit immediate.
3121   case Mips::BI__builtin_msa_copy_s_h:
3122   case Mips::BI__builtin_msa_copy_u_h:
3123   case Mips::BI__builtin_msa_insve_h:
3124   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3125   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3126   // These intrinsics take an unsigned 2 bit immediate.
3127   case Mips::BI__builtin_msa_copy_s_w:
3128   case Mips::BI__builtin_msa_copy_u_w:
3129   case Mips::BI__builtin_msa_insve_w:
3130   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3131   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3132   // These intrinsics take an unsigned 1 bit immediate.
3133   case Mips::BI__builtin_msa_copy_s_d:
3134   case Mips::BI__builtin_msa_copy_u_d:
3135   case Mips::BI__builtin_msa_insve_d:
3136   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3137   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3138   // Memory offsets and immediate loads.
3139   // These intrinsics take a signed 10 bit immediate.
3140   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3141   case Mips::BI__builtin_msa_ldi_h:
3142   case Mips::BI__builtin_msa_ldi_w:
3143   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3144   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3145   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3146   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3147   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3148   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3149   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3150   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3151   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3152   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3153   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3154   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3155   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3156   }
3157 
3158   if (!m)
3159     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3160 
3161   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3162          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3163 }
3164 
3165 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3166                                        CallExpr *TheCall) {
3167   unsigned i = 0, l = 0, u = 0;
3168   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3169                       BuiltinID == PPC::BI__builtin_divdeu ||
3170                       BuiltinID == PPC::BI__builtin_bpermd;
3171   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3172   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3173                        BuiltinID == PPC::BI__builtin_divweu ||
3174                        BuiltinID == PPC::BI__builtin_divde ||
3175                        BuiltinID == PPC::BI__builtin_divdeu;
3176 
3177   if (Is64BitBltin && !IsTarget64Bit)
3178     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3179            << TheCall->getSourceRange();
3180 
3181   if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3182       (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3183     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3184            << TheCall->getSourceRange();
3185 
3186   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3187     if (!TI.hasFeature("vsx"))
3188       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3189              << TheCall->getSourceRange();
3190     return false;
3191   };
3192 
3193   switch (BuiltinID) {
3194   default: return false;
3195   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3196   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3197     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3198            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3199   case PPC::BI__builtin_altivec_dss:
3200     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3201   case PPC::BI__builtin_tbegin:
3202   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3203   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3204   case PPC::BI__builtin_tabortwc:
3205   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3206   case PPC::BI__builtin_tabortwci:
3207   case PPC::BI__builtin_tabortdci:
3208     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3209            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3210   case PPC::BI__builtin_altivec_dst:
3211   case PPC::BI__builtin_altivec_dstt:
3212   case PPC::BI__builtin_altivec_dstst:
3213   case PPC::BI__builtin_altivec_dststt:
3214     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3215   case PPC::BI__builtin_vsx_xxpermdi:
3216   case PPC::BI__builtin_vsx_xxsldwi:
3217     return SemaBuiltinVSX(TheCall);
3218   case PPC::BI__builtin_unpack_vector_int128:
3219     return SemaVSXCheck(TheCall) ||
3220            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3221   case PPC::BI__builtin_pack_vector_int128:
3222     return SemaVSXCheck(TheCall);
3223   case PPC::BI__builtin_altivec_vgnb:
3224      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3225   case PPC::BI__builtin_vsx_xxeval:
3226      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3227   case PPC::BI__builtin_altivec_vsldbi:
3228      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3229   case PPC::BI__builtin_altivec_vsrdbi:
3230      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3231   case PPC::BI__builtin_vsx_xxpermx:
3232      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3233   }
3234   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3235 }
3236 
3237 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3238                                           CallExpr *TheCall) {
3239   // position of memory order and scope arguments in the builtin
3240   unsigned OrderIndex, ScopeIndex;
3241   switch (BuiltinID) {
3242   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3243   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3244   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3245   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3246     OrderIndex = 2;
3247     ScopeIndex = 3;
3248     break;
3249   case AMDGPU::BI__builtin_amdgcn_fence:
3250     OrderIndex = 0;
3251     ScopeIndex = 1;
3252     break;
3253   default:
3254     return false;
3255   }
3256 
3257   ExprResult Arg = TheCall->getArg(OrderIndex);
3258   auto ArgExpr = Arg.get();
3259   Expr::EvalResult ArgResult;
3260 
3261   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3262     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3263            << ArgExpr->getType();
3264   int ord = ArgResult.Val.getInt().getZExtValue();
3265 
3266   // Check valididty of memory ordering as per C11 / C++11's memody model.
3267   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3268   case llvm::AtomicOrderingCABI::acquire:
3269   case llvm::AtomicOrderingCABI::release:
3270   case llvm::AtomicOrderingCABI::acq_rel:
3271   case llvm::AtomicOrderingCABI::seq_cst:
3272     break;
3273   default: {
3274     return Diag(ArgExpr->getBeginLoc(),
3275                 diag::warn_atomic_op_has_invalid_memory_order)
3276            << ArgExpr->getSourceRange();
3277   }
3278   }
3279 
3280   Arg = TheCall->getArg(ScopeIndex);
3281   ArgExpr = Arg.get();
3282   Expr::EvalResult ArgResult1;
3283   // Check that sync scope is a constant literal
3284   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Expr::EvaluateForCodeGen,
3285                                        Context))
3286     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3287            << ArgExpr->getType();
3288 
3289   return false;
3290 }
3291 
3292 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3293                                            CallExpr *TheCall) {
3294   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3295     Expr *Arg = TheCall->getArg(0);
3296     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3297       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3298         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3299                << Arg->getSourceRange();
3300   }
3301 
3302   // For intrinsics which take an immediate value as part of the instruction,
3303   // range check them here.
3304   unsigned i = 0, l = 0, u = 0;
3305   switch (BuiltinID) {
3306   default: return false;
3307   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3308   case SystemZ::BI__builtin_s390_verimb:
3309   case SystemZ::BI__builtin_s390_verimh:
3310   case SystemZ::BI__builtin_s390_verimf:
3311   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3312   case SystemZ::BI__builtin_s390_vfaeb:
3313   case SystemZ::BI__builtin_s390_vfaeh:
3314   case SystemZ::BI__builtin_s390_vfaef:
3315   case SystemZ::BI__builtin_s390_vfaebs:
3316   case SystemZ::BI__builtin_s390_vfaehs:
3317   case SystemZ::BI__builtin_s390_vfaefs:
3318   case SystemZ::BI__builtin_s390_vfaezb:
3319   case SystemZ::BI__builtin_s390_vfaezh:
3320   case SystemZ::BI__builtin_s390_vfaezf:
3321   case SystemZ::BI__builtin_s390_vfaezbs:
3322   case SystemZ::BI__builtin_s390_vfaezhs:
3323   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3324   case SystemZ::BI__builtin_s390_vfisb:
3325   case SystemZ::BI__builtin_s390_vfidb:
3326     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3327            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3328   case SystemZ::BI__builtin_s390_vftcisb:
3329   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3330   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3331   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3332   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3333   case SystemZ::BI__builtin_s390_vstrcb:
3334   case SystemZ::BI__builtin_s390_vstrch:
3335   case SystemZ::BI__builtin_s390_vstrcf:
3336   case SystemZ::BI__builtin_s390_vstrczb:
3337   case SystemZ::BI__builtin_s390_vstrczh:
3338   case SystemZ::BI__builtin_s390_vstrczf:
3339   case SystemZ::BI__builtin_s390_vstrcbs:
3340   case SystemZ::BI__builtin_s390_vstrchs:
3341   case SystemZ::BI__builtin_s390_vstrcfs:
3342   case SystemZ::BI__builtin_s390_vstrczbs:
3343   case SystemZ::BI__builtin_s390_vstrczhs:
3344   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3345   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3346   case SystemZ::BI__builtin_s390_vfminsb:
3347   case SystemZ::BI__builtin_s390_vfmaxsb:
3348   case SystemZ::BI__builtin_s390_vfmindb:
3349   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3350   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3351   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3352   }
3353   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3354 }
3355 
3356 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3357 /// This checks that the target supports __builtin_cpu_supports and
3358 /// that the string argument is constant and valid.
3359 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3360                                    CallExpr *TheCall) {
3361   Expr *Arg = TheCall->getArg(0);
3362 
3363   // Check if the argument is a string literal.
3364   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3365     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3366            << Arg->getSourceRange();
3367 
3368   // Check the contents of the string.
3369   StringRef Feature =
3370       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3371   if (!TI.validateCpuSupports(Feature))
3372     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3373            << Arg->getSourceRange();
3374   return false;
3375 }
3376 
3377 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3378 /// This checks that the target supports __builtin_cpu_is and
3379 /// that the string argument is constant and valid.
3380 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3381   Expr *Arg = TheCall->getArg(0);
3382 
3383   // Check if the argument is a string literal.
3384   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3385     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3386            << Arg->getSourceRange();
3387 
3388   // Check the contents of the string.
3389   StringRef Feature =
3390       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3391   if (!TI.validateCpuIs(Feature))
3392     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3393            << Arg->getSourceRange();
3394   return false;
3395 }
3396 
3397 // Check if the rounding mode is legal.
3398 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3399   // Indicates if this instruction has rounding control or just SAE.
3400   bool HasRC = false;
3401 
3402   unsigned ArgNum = 0;
3403   switch (BuiltinID) {
3404   default:
3405     return false;
3406   case X86::BI__builtin_ia32_vcvttsd2si32:
3407   case X86::BI__builtin_ia32_vcvttsd2si64:
3408   case X86::BI__builtin_ia32_vcvttsd2usi32:
3409   case X86::BI__builtin_ia32_vcvttsd2usi64:
3410   case X86::BI__builtin_ia32_vcvttss2si32:
3411   case X86::BI__builtin_ia32_vcvttss2si64:
3412   case X86::BI__builtin_ia32_vcvttss2usi32:
3413   case X86::BI__builtin_ia32_vcvttss2usi64:
3414     ArgNum = 1;
3415     break;
3416   case X86::BI__builtin_ia32_maxpd512:
3417   case X86::BI__builtin_ia32_maxps512:
3418   case X86::BI__builtin_ia32_minpd512:
3419   case X86::BI__builtin_ia32_minps512:
3420     ArgNum = 2;
3421     break;
3422   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3423   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3424   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3425   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3426   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3427   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3428   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3429   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3430   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3431   case X86::BI__builtin_ia32_exp2pd_mask:
3432   case X86::BI__builtin_ia32_exp2ps_mask:
3433   case X86::BI__builtin_ia32_getexppd512_mask:
3434   case X86::BI__builtin_ia32_getexpps512_mask:
3435   case X86::BI__builtin_ia32_rcp28pd_mask:
3436   case X86::BI__builtin_ia32_rcp28ps_mask:
3437   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3438   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3439   case X86::BI__builtin_ia32_vcomisd:
3440   case X86::BI__builtin_ia32_vcomiss:
3441   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3442     ArgNum = 3;
3443     break;
3444   case X86::BI__builtin_ia32_cmppd512_mask:
3445   case X86::BI__builtin_ia32_cmpps512_mask:
3446   case X86::BI__builtin_ia32_cmpsd_mask:
3447   case X86::BI__builtin_ia32_cmpss_mask:
3448   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3449   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3450   case X86::BI__builtin_ia32_getexpss128_round_mask:
3451   case X86::BI__builtin_ia32_getmantpd512_mask:
3452   case X86::BI__builtin_ia32_getmantps512_mask:
3453   case X86::BI__builtin_ia32_maxsd_round_mask:
3454   case X86::BI__builtin_ia32_maxss_round_mask:
3455   case X86::BI__builtin_ia32_minsd_round_mask:
3456   case X86::BI__builtin_ia32_minss_round_mask:
3457   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3458   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3459   case X86::BI__builtin_ia32_reducepd512_mask:
3460   case X86::BI__builtin_ia32_reduceps512_mask:
3461   case X86::BI__builtin_ia32_rndscalepd_mask:
3462   case X86::BI__builtin_ia32_rndscaleps_mask:
3463   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3464   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3465     ArgNum = 4;
3466     break;
3467   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3468   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3469   case X86::BI__builtin_ia32_fixupimmps512_mask:
3470   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3471   case X86::BI__builtin_ia32_fixupimmsd_mask:
3472   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3473   case X86::BI__builtin_ia32_fixupimmss_mask:
3474   case X86::BI__builtin_ia32_fixupimmss_maskz:
3475   case X86::BI__builtin_ia32_getmantsd_round_mask:
3476   case X86::BI__builtin_ia32_getmantss_round_mask:
3477   case X86::BI__builtin_ia32_rangepd512_mask:
3478   case X86::BI__builtin_ia32_rangeps512_mask:
3479   case X86::BI__builtin_ia32_rangesd128_round_mask:
3480   case X86::BI__builtin_ia32_rangess128_round_mask:
3481   case X86::BI__builtin_ia32_reducesd_mask:
3482   case X86::BI__builtin_ia32_reducess_mask:
3483   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3484   case X86::BI__builtin_ia32_rndscaless_round_mask:
3485     ArgNum = 5;
3486     break;
3487   case X86::BI__builtin_ia32_vcvtsd2si64:
3488   case X86::BI__builtin_ia32_vcvtsd2si32:
3489   case X86::BI__builtin_ia32_vcvtsd2usi32:
3490   case X86::BI__builtin_ia32_vcvtsd2usi64:
3491   case X86::BI__builtin_ia32_vcvtss2si32:
3492   case X86::BI__builtin_ia32_vcvtss2si64:
3493   case X86::BI__builtin_ia32_vcvtss2usi32:
3494   case X86::BI__builtin_ia32_vcvtss2usi64:
3495   case X86::BI__builtin_ia32_sqrtpd512:
3496   case X86::BI__builtin_ia32_sqrtps512:
3497     ArgNum = 1;
3498     HasRC = true;
3499     break;
3500   case X86::BI__builtin_ia32_addpd512:
3501   case X86::BI__builtin_ia32_addps512:
3502   case X86::BI__builtin_ia32_divpd512:
3503   case X86::BI__builtin_ia32_divps512:
3504   case X86::BI__builtin_ia32_mulpd512:
3505   case X86::BI__builtin_ia32_mulps512:
3506   case X86::BI__builtin_ia32_subpd512:
3507   case X86::BI__builtin_ia32_subps512:
3508   case X86::BI__builtin_ia32_cvtsi2sd64:
3509   case X86::BI__builtin_ia32_cvtsi2ss32:
3510   case X86::BI__builtin_ia32_cvtsi2ss64:
3511   case X86::BI__builtin_ia32_cvtusi2sd64:
3512   case X86::BI__builtin_ia32_cvtusi2ss32:
3513   case X86::BI__builtin_ia32_cvtusi2ss64:
3514     ArgNum = 2;
3515     HasRC = true;
3516     break;
3517   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3518   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3519   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3520   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3521   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3522   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3523   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3524   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3525   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3526   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3527   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3528   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3529   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3530   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3531   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3532     ArgNum = 3;
3533     HasRC = true;
3534     break;
3535   case X86::BI__builtin_ia32_addss_round_mask:
3536   case X86::BI__builtin_ia32_addsd_round_mask:
3537   case X86::BI__builtin_ia32_divss_round_mask:
3538   case X86::BI__builtin_ia32_divsd_round_mask:
3539   case X86::BI__builtin_ia32_mulss_round_mask:
3540   case X86::BI__builtin_ia32_mulsd_round_mask:
3541   case X86::BI__builtin_ia32_subss_round_mask:
3542   case X86::BI__builtin_ia32_subsd_round_mask:
3543   case X86::BI__builtin_ia32_scalefpd512_mask:
3544   case X86::BI__builtin_ia32_scalefps512_mask:
3545   case X86::BI__builtin_ia32_scalefsd_round_mask:
3546   case X86::BI__builtin_ia32_scalefss_round_mask:
3547   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3548   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3549   case X86::BI__builtin_ia32_sqrtss_round_mask:
3550   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3551   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3552   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3553   case X86::BI__builtin_ia32_vfmaddss3_mask:
3554   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3555   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3556   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3557   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3558   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3559   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3560   case X86::BI__builtin_ia32_vfmaddps512_mask:
3561   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3562   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3563   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3564   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3565   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3566   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3567   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3568   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3569   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3570   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3571   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3572     ArgNum = 4;
3573     HasRC = true;
3574     break;
3575   }
3576 
3577   llvm::APSInt Result;
3578 
3579   // We can't check the value of a dependent argument.
3580   Expr *Arg = TheCall->getArg(ArgNum);
3581   if (Arg->isTypeDependent() || Arg->isValueDependent())
3582     return false;
3583 
3584   // Check constant-ness first.
3585   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3586     return true;
3587 
3588   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3589   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3590   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3591   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3592   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3593       Result == 8/*ROUND_NO_EXC*/ ||
3594       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3595       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3596     return false;
3597 
3598   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3599          << Arg->getSourceRange();
3600 }
3601 
3602 // Check if the gather/scatter scale is legal.
3603 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3604                                              CallExpr *TheCall) {
3605   unsigned ArgNum = 0;
3606   switch (BuiltinID) {
3607   default:
3608     return false;
3609   case X86::BI__builtin_ia32_gatherpfdpd:
3610   case X86::BI__builtin_ia32_gatherpfdps:
3611   case X86::BI__builtin_ia32_gatherpfqpd:
3612   case X86::BI__builtin_ia32_gatherpfqps:
3613   case X86::BI__builtin_ia32_scatterpfdpd:
3614   case X86::BI__builtin_ia32_scatterpfdps:
3615   case X86::BI__builtin_ia32_scatterpfqpd:
3616   case X86::BI__builtin_ia32_scatterpfqps:
3617     ArgNum = 3;
3618     break;
3619   case X86::BI__builtin_ia32_gatherd_pd:
3620   case X86::BI__builtin_ia32_gatherd_pd256:
3621   case X86::BI__builtin_ia32_gatherq_pd:
3622   case X86::BI__builtin_ia32_gatherq_pd256:
3623   case X86::BI__builtin_ia32_gatherd_ps:
3624   case X86::BI__builtin_ia32_gatherd_ps256:
3625   case X86::BI__builtin_ia32_gatherq_ps:
3626   case X86::BI__builtin_ia32_gatherq_ps256:
3627   case X86::BI__builtin_ia32_gatherd_q:
3628   case X86::BI__builtin_ia32_gatherd_q256:
3629   case X86::BI__builtin_ia32_gatherq_q:
3630   case X86::BI__builtin_ia32_gatherq_q256:
3631   case X86::BI__builtin_ia32_gatherd_d:
3632   case X86::BI__builtin_ia32_gatherd_d256:
3633   case X86::BI__builtin_ia32_gatherq_d:
3634   case X86::BI__builtin_ia32_gatherq_d256:
3635   case X86::BI__builtin_ia32_gather3div2df:
3636   case X86::BI__builtin_ia32_gather3div2di:
3637   case X86::BI__builtin_ia32_gather3div4df:
3638   case X86::BI__builtin_ia32_gather3div4di:
3639   case X86::BI__builtin_ia32_gather3div4sf:
3640   case X86::BI__builtin_ia32_gather3div4si:
3641   case X86::BI__builtin_ia32_gather3div8sf:
3642   case X86::BI__builtin_ia32_gather3div8si:
3643   case X86::BI__builtin_ia32_gather3siv2df:
3644   case X86::BI__builtin_ia32_gather3siv2di:
3645   case X86::BI__builtin_ia32_gather3siv4df:
3646   case X86::BI__builtin_ia32_gather3siv4di:
3647   case X86::BI__builtin_ia32_gather3siv4sf:
3648   case X86::BI__builtin_ia32_gather3siv4si:
3649   case X86::BI__builtin_ia32_gather3siv8sf:
3650   case X86::BI__builtin_ia32_gather3siv8si:
3651   case X86::BI__builtin_ia32_gathersiv8df:
3652   case X86::BI__builtin_ia32_gathersiv16sf:
3653   case X86::BI__builtin_ia32_gatherdiv8df:
3654   case X86::BI__builtin_ia32_gatherdiv16sf:
3655   case X86::BI__builtin_ia32_gathersiv8di:
3656   case X86::BI__builtin_ia32_gathersiv16si:
3657   case X86::BI__builtin_ia32_gatherdiv8di:
3658   case X86::BI__builtin_ia32_gatherdiv16si:
3659   case X86::BI__builtin_ia32_scatterdiv2df:
3660   case X86::BI__builtin_ia32_scatterdiv2di:
3661   case X86::BI__builtin_ia32_scatterdiv4df:
3662   case X86::BI__builtin_ia32_scatterdiv4di:
3663   case X86::BI__builtin_ia32_scatterdiv4sf:
3664   case X86::BI__builtin_ia32_scatterdiv4si:
3665   case X86::BI__builtin_ia32_scatterdiv8sf:
3666   case X86::BI__builtin_ia32_scatterdiv8si:
3667   case X86::BI__builtin_ia32_scattersiv2df:
3668   case X86::BI__builtin_ia32_scattersiv2di:
3669   case X86::BI__builtin_ia32_scattersiv4df:
3670   case X86::BI__builtin_ia32_scattersiv4di:
3671   case X86::BI__builtin_ia32_scattersiv4sf:
3672   case X86::BI__builtin_ia32_scattersiv4si:
3673   case X86::BI__builtin_ia32_scattersiv8sf:
3674   case X86::BI__builtin_ia32_scattersiv8si:
3675   case X86::BI__builtin_ia32_scattersiv8df:
3676   case X86::BI__builtin_ia32_scattersiv16sf:
3677   case X86::BI__builtin_ia32_scatterdiv8df:
3678   case X86::BI__builtin_ia32_scatterdiv16sf:
3679   case X86::BI__builtin_ia32_scattersiv8di:
3680   case X86::BI__builtin_ia32_scattersiv16si:
3681   case X86::BI__builtin_ia32_scatterdiv8di:
3682   case X86::BI__builtin_ia32_scatterdiv16si:
3683     ArgNum = 4;
3684     break;
3685   }
3686 
3687   llvm::APSInt Result;
3688 
3689   // We can't check the value of a dependent argument.
3690   Expr *Arg = TheCall->getArg(ArgNum);
3691   if (Arg->isTypeDependent() || Arg->isValueDependent())
3692     return false;
3693 
3694   // Check constant-ness first.
3695   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3696     return true;
3697 
3698   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3699     return false;
3700 
3701   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3702          << Arg->getSourceRange();
3703 }
3704 
3705 enum { TileRegLow = 0, TileRegHigh = 7 };
3706 
3707 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3708                                              ArrayRef<int> ArgNums) {
3709   for (int ArgNum : ArgNums) {
3710     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3711       return true;
3712   }
3713   return false;
3714 }
3715 
3716 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3717                                         ArrayRef<int> ArgNums) {
3718   // Because the max number of tile register is TileRegHigh + 1, so here we use
3719   // each bit to represent the usage of them in bitset.
3720   std::bitset<TileRegHigh + 1> ArgValues;
3721   for (int ArgNum : ArgNums) {
3722     Expr *Arg = TheCall->getArg(ArgNum);
3723     if (Arg->isTypeDependent() || Arg->isValueDependent())
3724       continue;
3725 
3726     llvm::APSInt Result;
3727     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3728       return true;
3729     int ArgExtValue = Result.getExtValue();
3730     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
3731            "Incorrect tile register num.");
3732     if (ArgValues.test(ArgExtValue))
3733       return Diag(TheCall->getBeginLoc(),
3734                   diag::err_x86_builtin_tile_arg_duplicate)
3735              << TheCall->getArg(ArgNum)->getSourceRange();
3736     ArgValues.set(ArgExtValue);
3737   }
3738   return false;
3739 }
3740 
3741 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3742                                                 ArrayRef<int> ArgNums) {
3743   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3744          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3745 }
3746 
3747 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3748   switch (BuiltinID) {
3749   default:
3750     return false;
3751   case X86::BI__builtin_ia32_tileloadd64:
3752   case X86::BI__builtin_ia32_tileloaddt164:
3753   case X86::BI__builtin_ia32_tilestored64:
3754   case X86::BI__builtin_ia32_tilezero:
3755     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3756   case X86::BI__builtin_ia32_tdpbssd:
3757   case X86::BI__builtin_ia32_tdpbsud:
3758   case X86::BI__builtin_ia32_tdpbusd:
3759   case X86::BI__builtin_ia32_tdpbuud:
3760   case X86::BI__builtin_ia32_tdpbf16ps:
3761     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3762   }
3763 }
3764 static bool isX86_32Builtin(unsigned BuiltinID) {
3765   // These builtins only work on x86-32 targets.
3766   switch (BuiltinID) {
3767   case X86::BI__builtin_ia32_readeflags_u32:
3768   case X86::BI__builtin_ia32_writeeflags_u32:
3769     return true;
3770   }
3771 
3772   return false;
3773 }
3774 
3775 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3776                                        CallExpr *TheCall) {
3777   if (BuiltinID == X86::BI__builtin_cpu_supports)
3778     return SemaBuiltinCpuSupports(*this, TI, TheCall);
3779 
3780   if (BuiltinID == X86::BI__builtin_cpu_is)
3781     return SemaBuiltinCpuIs(*this, TI, TheCall);
3782 
3783   // Check for 32-bit only builtins on a 64-bit target.
3784   const llvm::Triple &TT = TI.getTriple();
3785   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3786     return Diag(TheCall->getCallee()->getBeginLoc(),
3787                 diag::err_32_bit_builtin_64_bit_tgt);
3788 
3789   // If the intrinsic has rounding or SAE make sure its valid.
3790   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3791     return true;
3792 
3793   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3794   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3795     return true;
3796 
3797   // If the intrinsic has a tile arguments, make sure they are valid.
3798   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3799     return true;
3800 
3801   // For intrinsics which take an immediate value as part of the instruction,
3802   // range check them here.
3803   int i = 0, l = 0, u = 0;
3804   switch (BuiltinID) {
3805   default:
3806     return false;
3807   case X86::BI__builtin_ia32_vec_ext_v2si:
3808   case X86::BI__builtin_ia32_vec_ext_v2di:
3809   case X86::BI__builtin_ia32_vextractf128_pd256:
3810   case X86::BI__builtin_ia32_vextractf128_ps256:
3811   case X86::BI__builtin_ia32_vextractf128_si256:
3812   case X86::BI__builtin_ia32_extract128i256:
3813   case X86::BI__builtin_ia32_extractf64x4_mask:
3814   case X86::BI__builtin_ia32_extracti64x4_mask:
3815   case X86::BI__builtin_ia32_extractf32x8_mask:
3816   case X86::BI__builtin_ia32_extracti32x8_mask:
3817   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3818   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3819   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3820   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3821     i = 1; l = 0; u = 1;
3822     break;
3823   case X86::BI__builtin_ia32_vec_set_v2di:
3824   case X86::BI__builtin_ia32_vinsertf128_pd256:
3825   case X86::BI__builtin_ia32_vinsertf128_ps256:
3826   case X86::BI__builtin_ia32_vinsertf128_si256:
3827   case X86::BI__builtin_ia32_insert128i256:
3828   case X86::BI__builtin_ia32_insertf32x8:
3829   case X86::BI__builtin_ia32_inserti32x8:
3830   case X86::BI__builtin_ia32_insertf64x4:
3831   case X86::BI__builtin_ia32_inserti64x4:
3832   case X86::BI__builtin_ia32_insertf64x2_256:
3833   case X86::BI__builtin_ia32_inserti64x2_256:
3834   case X86::BI__builtin_ia32_insertf32x4_256:
3835   case X86::BI__builtin_ia32_inserti32x4_256:
3836     i = 2; l = 0; u = 1;
3837     break;
3838   case X86::BI__builtin_ia32_vpermilpd:
3839   case X86::BI__builtin_ia32_vec_ext_v4hi:
3840   case X86::BI__builtin_ia32_vec_ext_v4si:
3841   case X86::BI__builtin_ia32_vec_ext_v4sf:
3842   case X86::BI__builtin_ia32_vec_ext_v4di:
3843   case X86::BI__builtin_ia32_extractf32x4_mask:
3844   case X86::BI__builtin_ia32_extracti32x4_mask:
3845   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3846   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3847     i = 1; l = 0; u = 3;
3848     break;
3849   case X86::BI_mm_prefetch:
3850   case X86::BI__builtin_ia32_vec_ext_v8hi:
3851   case X86::BI__builtin_ia32_vec_ext_v8si:
3852     i = 1; l = 0; u = 7;
3853     break;
3854   case X86::BI__builtin_ia32_sha1rnds4:
3855   case X86::BI__builtin_ia32_blendpd:
3856   case X86::BI__builtin_ia32_shufpd:
3857   case X86::BI__builtin_ia32_vec_set_v4hi:
3858   case X86::BI__builtin_ia32_vec_set_v4si:
3859   case X86::BI__builtin_ia32_vec_set_v4di:
3860   case X86::BI__builtin_ia32_shuf_f32x4_256:
3861   case X86::BI__builtin_ia32_shuf_f64x2_256:
3862   case X86::BI__builtin_ia32_shuf_i32x4_256:
3863   case X86::BI__builtin_ia32_shuf_i64x2_256:
3864   case X86::BI__builtin_ia32_insertf64x2_512:
3865   case X86::BI__builtin_ia32_inserti64x2_512:
3866   case X86::BI__builtin_ia32_insertf32x4:
3867   case X86::BI__builtin_ia32_inserti32x4:
3868     i = 2; l = 0; u = 3;
3869     break;
3870   case X86::BI__builtin_ia32_vpermil2pd:
3871   case X86::BI__builtin_ia32_vpermil2pd256:
3872   case X86::BI__builtin_ia32_vpermil2ps:
3873   case X86::BI__builtin_ia32_vpermil2ps256:
3874     i = 3; l = 0; u = 3;
3875     break;
3876   case X86::BI__builtin_ia32_cmpb128_mask:
3877   case X86::BI__builtin_ia32_cmpw128_mask:
3878   case X86::BI__builtin_ia32_cmpd128_mask:
3879   case X86::BI__builtin_ia32_cmpq128_mask:
3880   case X86::BI__builtin_ia32_cmpb256_mask:
3881   case X86::BI__builtin_ia32_cmpw256_mask:
3882   case X86::BI__builtin_ia32_cmpd256_mask:
3883   case X86::BI__builtin_ia32_cmpq256_mask:
3884   case X86::BI__builtin_ia32_cmpb512_mask:
3885   case X86::BI__builtin_ia32_cmpw512_mask:
3886   case X86::BI__builtin_ia32_cmpd512_mask:
3887   case X86::BI__builtin_ia32_cmpq512_mask:
3888   case X86::BI__builtin_ia32_ucmpb128_mask:
3889   case X86::BI__builtin_ia32_ucmpw128_mask:
3890   case X86::BI__builtin_ia32_ucmpd128_mask:
3891   case X86::BI__builtin_ia32_ucmpq128_mask:
3892   case X86::BI__builtin_ia32_ucmpb256_mask:
3893   case X86::BI__builtin_ia32_ucmpw256_mask:
3894   case X86::BI__builtin_ia32_ucmpd256_mask:
3895   case X86::BI__builtin_ia32_ucmpq256_mask:
3896   case X86::BI__builtin_ia32_ucmpb512_mask:
3897   case X86::BI__builtin_ia32_ucmpw512_mask:
3898   case X86::BI__builtin_ia32_ucmpd512_mask:
3899   case X86::BI__builtin_ia32_ucmpq512_mask:
3900   case X86::BI__builtin_ia32_vpcomub:
3901   case X86::BI__builtin_ia32_vpcomuw:
3902   case X86::BI__builtin_ia32_vpcomud:
3903   case X86::BI__builtin_ia32_vpcomuq:
3904   case X86::BI__builtin_ia32_vpcomb:
3905   case X86::BI__builtin_ia32_vpcomw:
3906   case X86::BI__builtin_ia32_vpcomd:
3907   case X86::BI__builtin_ia32_vpcomq:
3908   case X86::BI__builtin_ia32_vec_set_v8hi:
3909   case X86::BI__builtin_ia32_vec_set_v8si:
3910     i = 2; l = 0; u = 7;
3911     break;
3912   case X86::BI__builtin_ia32_vpermilpd256:
3913   case X86::BI__builtin_ia32_roundps:
3914   case X86::BI__builtin_ia32_roundpd:
3915   case X86::BI__builtin_ia32_roundps256:
3916   case X86::BI__builtin_ia32_roundpd256:
3917   case X86::BI__builtin_ia32_getmantpd128_mask:
3918   case X86::BI__builtin_ia32_getmantpd256_mask:
3919   case X86::BI__builtin_ia32_getmantps128_mask:
3920   case X86::BI__builtin_ia32_getmantps256_mask:
3921   case X86::BI__builtin_ia32_getmantpd512_mask:
3922   case X86::BI__builtin_ia32_getmantps512_mask:
3923   case X86::BI__builtin_ia32_vec_ext_v16qi:
3924   case X86::BI__builtin_ia32_vec_ext_v16hi:
3925     i = 1; l = 0; u = 15;
3926     break;
3927   case X86::BI__builtin_ia32_pblendd128:
3928   case X86::BI__builtin_ia32_blendps:
3929   case X86::BI__builtin_ia32_blendpd256:
3930   case X86::BI__builtin_ia32_shufpd256:
3931   case X86::BI__builtin_ia32_roundss:
3932   case X86::BI__builtin_ia32_roundsd:
3933   case X86::BI__builtin_ia32_rangepd128_mask:
3934   case X86::BI__builtin_ia32_rangepd256_mask:
3935   case X86::BI__builtin_ia32_rangepd512_mask:
3936   case X86::BI__builtin_ia32_rangeps128_mask:
3937   case X86::BI__builtin_ia32_rangeps256_mask:
3938   case X86::BI__builtin_ia32_rangeps512_mask:
3939   case X86::BI__builtin_ia32_getmantsd_round_mask:
3940   case X86::BI__builtin_ia32_getmantss_round_mask:
3941   case X86::BI__builtin_ia32_vec_set_v16qi:
3942   case X86::BI__builtin_ia32_vec_set_v16hi:
3943     i = 2; l = 0; u = 15;
3944     break;
3945   case X86::BI__builtin_ia32_vec_ext_v32qi:
3946     i = 1; l = 0; u = 31;
3947     break;
3948   case X86::BI__builtin_ia32_cmpps:
3949   case X86::BI__builtin_ia32_cmpss:
3950   case X86::BI__builtin_ia32_cmppd:
3951   case X86::BI__builtin_ia32_cmpsd:
3952   case X86::BI__builtin_ia32_cmpps256:
3953   case X86::BI__builtin_ia32_cmppd256:
3954   case X86::BI__builtin_ia32_cmpps128_mask:
3955   case X86::BI__builtin_ia32_cmppd128_mask:
3956   case X86::BI__builtin_ia32_cmpps256_mask:
3957   case X86::BI__builtin_ia32_cmppd256_mask:
3958   case X86::BI__builtin_ia32_cmpps512_mask:
3959   case X86::BI__builtin_ia32_cmppd512_mask:
3960   case X86::BI__builtin_ia32_cmpsd_mask:
3961   case X86::BI__builtin_ia32_cmpss_mask:
3962   case X86::BI__builtin_ia32_vec_set_v32qi:
3963     i = 2; l = 0; u = 31;
3964     break;
3965   case X86::BI__builtin_ia32_permdf256:
3966   case X86::BI__builtin_ia32_permdi256:
3967   case X86::BI__builtin_ia32_permdf512:
3968   case X86::BI__builtin_ia32_permdi512:
3969   case X86::BI__builtin_ia32_vpermilps:
3970   case X86::BI__builtin_ia32_vpermilps256:
3971   case X86::BI__builtin_ia32_vpermilpd512:
3972   case X86::BI__builtin_ia32_vpermilps512:
3973   case X86::BI__builtin_ia32_pshufd:
3974   case X86::BI__builtin_ia32_pshufd256:
3975   case X86::BI__builtin_ia32_pshufd512:
3976   case X86::BI__builtin_ia32_pshufhw:
3977   case X86::BI__builtin_ia32_pshufhw256:
3978   case X86::BI__builtin_ia32_pshufhw512:
3979   case X86::BI__builtin_ia32_pshuflw:
3980   case X86::BI__builtin_ia32_pshuflw256:
3981   case X86::BI__builtin_ia32_pshuflw512:
3982   case X86::BI__builtin_ia32_vcvtps2ph:
3983   case X86::BI__builtin_ia32_vcvtps2ph_mask:
3984   case X86::BI__builtin_ia32_vcvtps2ph256:
3985   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
3986   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
3987   case X86::BI__builtin_ia32_rndscaleps_128_mask:
3988   case X86::BI__builtin_ia32_rndscalepd_128_mask:
3989   case X86::BI__builtin_ia32_rndscaleps_256_mask:
3990   case X86::BI__builtin_ia32_rndscalepd_256_mask:
3991   case X86::BI__builtin_ia32_rndscaleps_mask:
3992   case X86::BI__builtin_ia32_rndscalepd_mask:
3993   case X86::BI__builtin_ia32_reducepd128_mask:
3994   case X86::BI__builtin_ia32_reducepd256_mask:
3995   case X86::BI__builtin_ia32_reducepd512_mask:
3996   case X86::BI__builtin_ia32_reduceps128_mask:
3997   case X86::BI__builtin_ia32_reduceps256_mask:
3998   case X86::BI__builtin_ia32_reduceps512_mask:
3999   case X86::BI__builtin_ia32_prold512:
4000   case X86::BI__builtin_ia32_prolq512:
4001   case X86::BI__builtin_ia32_prold128:
4002   case X86::BI__builtin_ia32_prold256:
4003   case X86::BI__builtin_ia32_prolq128:
4004   case X86::BI__builtin_ia32_prolq256:
4005   case X86::BI__builtin_ia32_prord512:
4006   case X86::BI__builtin_ia32_prorq512:
4007   case X86::BI__builtin_ia32_prord128:
4008   case X86::BI__builtin_ia32_prord256:
4009   case X86::BI__builtin_ia32_prorq128:
4010   case X86::BI__builtin_ia32_prorq256:
4011   case X86::BI__builtin_ia32_fpclasspd128_mask:
4012   case X86::BI__builtin_ia32_fpclasspd256_mask:
4013   case X86::BI__builtin_ia32_fpclassps128_mask:
4014   case X86::BI__builtin_ia32_fpclassps256_mask:
4015   case X86::BI__builtin_ia32_fpclassps512_mask:
4016   case X86::BI__builtin_ia32_fpclasspd512_mask:
4017   case X86::BI__builtin_ia32_fpclasssd_mask:
4018   case X86::BI__builtin_ia32_fpclassss_mask:
4019   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4020   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4021   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4022   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4023   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4024   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4025   case X86::BI__builtin_ia32_kshiftliqi:
4026   case X86::BI__builtin_ia32_kshiftlihi:
4027   case X86::BI__builtin_ia32_kshiftlisi:
4028   case X86::BI__builtin_ia32_kshiftlidi:
4029   case X86::BI__builtin_ia32_kshiftriqi:
4030   case X86::BI__builtin_ia32_kshiftrihi:
4031   case X86::BI__builtin_ia32_kshiftrisi:
4032   case X86::BI__builtin_ia32_kshiftridi:
4033     i = 1; l = 0; u = 255;
4034     break;
4035   case X86::BI__builtin_ia32_vperm2f128_pd256:
4036   case X86::BI__builtin_ia32_vperm2f128_ps256:
4037   case X86::BI__builtin_ia32_vperm2f128_si256:
4038   case X86::BI__builtin_ia32_permti256:
4039   case X86::BI__builtin_ia32_pblendw128:
4040   case X86::BI__builtin_ia32_pblendw256:
4041   case X86::BI__builtin_ia32_blendps256:
4042   case X86::BI__builtin_ia32_pblendd256:
4043   case X86::BI__builtin_ia32_palignr128:
4044   case X86::BI__builtin_ia32_palignr256:
4045   case X86::BI__builtin_ia32_palignr512:
4046   case X86::BI__builtin_ia32_alignq512:
4047   case X86::BI__builtin_ia32_alignd512:
4048   case X86::BI__builtin_ia32_alignd128:
4049   case X86::BI__builtin_ia32_alignd256:
4050   case X86::BI__builtin_ia32_alignq128:
4051   case X86::BI__builtin_ia32_alignq256:
4052   case X86::BI__builtin_ia32_vcomisd:
4053   case X86::BI__builtin_ia32_vcomiss:
4054   case X86::BI__builtin_ia32_shuf_f32x4:
4055   case X86::BI__builtin_ia32_shuf_f64x2:
4056   case X86::BI__builtin_ia32_shuf_i32x4:
4057   case X86::BI__builtin_ia32_shuf_i64x2:
4058   case X86::BI__builtin_ia32_shufpd512:
4059   case X86::BI__builtin_ia32_shufps:
4060   case X86::BI__builtin_ia32_shufps256:
4061   case X86::BI__builtin_ia32_shufps512:
4062   case X86::BI__builtin_ia32_dbpsadbw128:
4063   case X86::BI__builtin_ia32_dbpsadbw256:
4064   case X86::BI__builtin_ia32_dbpsadbw512:
4065   case X86::BI__builtin_ia32_vpshldd128:
4066   case X86::BI__builtin_ia32_vpshldd256:
4067   case X86::BI__builtin_ia32_vpshldd512:
4068   case X86::BI__builtin_ia32_vpshldq128:
4069   case X86::BI__builtin_ia32_vpshldq256:
4070   case X86::BI__builtin_ia32_vpshldq512:
4071   case X86::BI__builtin_ia32_vpshldw128:
4072   case X86::BI__builtin_ia32_vpshldw256:
4073   case X86::BI__builtin_ia32_vpshldw512:
4074   case X86::BI__builtin_ia32_vpshrdd128:
4075   case X86::BI__builtin_ia32_vpshrdd256:
4076   case X86::BI__builtin_ia32_vpshrdd512:
4077   case X86::BI__builtin_ia32_vpshrdq128:
4078   case X86::BI__builtin_ia32_vpshrdq256:
4079   case X86::BI__builtin_ia32_vpshrdq512:
4080   case X86::BI__builtin_ia32_vpshrdw128:
4081   case X86::BI__builtin_ia32_vpshrdw256:
4082   case X86::BI__builtin_ia32_vpshrdw512:
4083     i = 2; l = 0; u = 255;
4084     break;
4085   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4086   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4087   case X86::BI__builtin_ia32_fixupimmps512_mask:
4088   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4089   case X86::BI__builtin_ia32_fixupimmsd_mask:
4090   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4091   case X86::BI__builtin_ia32_fixupimmss_mask:
4092   case X86::BI__builtin_ia32_fixupimmss_maskz:
4093   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4094   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4095   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4096   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4097   case X86::BI__builtin_ia32_fixupimmps128_mask:
4098   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4099   case X86::BI__builtin_ia32_fixupimmps256_mask:
4100   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4101   case X86::BI__builtin_ia32_pternlogd512_mask:
4102   case X86::BI__builtin_ia32_pternlogd512_maskz:
4103   case X86::BI__builtin_ia32_pternlogq512_mask:
4104   case X86::BI__builtin_ia32_pternlogq512_maskz:
4105   case X86::BI__builtin_ia32_pternlogd128_mask:
4106   case X86::BI__builtin_ia32_pternlogd128_maskz:
4107   case X86::BI__builtin_ia32_pternlogd256_mask:
4108   case X86::BI__builtin_ia32_pternlogd256_maskz:
4109   case X86::BI__builtin_ia32_pternlogq128_mask:
4110   case X86::BI__builtin_ia32_pternlogq128_maskz:
4111   case X86::BI__builtin_ia32_pternlogq256_mask:
4112   case X86::BI__builtin_ia32_pternlogq256_maskz:
4113     i = 3; l = 0; u = 255;
4114     break;
4115   case X86::BI__builtin_ia32_gatherpfdpd:
4116   case X86::BI__builtin_ia32_gatherpfdps:
4117   case X86::BI__builtin_ia32_gatherpfqpd:
4118   case X86::BI__builtin_ia32_gatherpfqps:
4119   case X86::BI__builtin_ia32_scatterpfdpd:
4120   case X86::BI__builtin_ia32_scatterpfdps:
4121   case X86::BI__builtin_ia32_scatterpfqpd:
4122   case X86::BI__builtin_ia32_scatterpfqps:
4123     i = 4; l = 2; u = 3;
4124     break;
4125   case X86::BI__builtin_ia32_reducesd_mask:
4126   case X86::BI__builtin_ia32_reducess_mask:
4127   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4128   case X86::BI__builtin_ia32_rndscaless_round_mask:
4129     i = 4; l = 0; u = 255;
4130     break;
4131   }
4132 
4133   // Note that we don't force a hard error on the range check here, allowing
4134   // template-generated or macro-generated dead code to potentially have out-of-
4135   // range values. These need to code generate, but don't need to necessarily
4136   // make any sense. We use a warning that defaults to an error.
4137   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4138 }
4139 
4140 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4141 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4142 /// Returns true when the format fits the function and the FormatStringInfo has
4143 /// been populated.
4144 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4145                                FormatStringInfo *FSI) {
4146   FSI->HasVAListArg = Format->getFirstArg() == 0;
4147   FSI->FormatIdx = Format->getFormatIdx() - 1;
4148   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4149 
4150   // The way the format attribute works in GCC, the implicit this argument
4151   // of member functions is counted. However, it doesn't appear in our own
4152   // lists, so decrement format_idx in that case.
4153   if (IsCXXMember) {
4154     if(FSI->FormatIdx == 0)
4155       return false;
4156     --FSI->FormatIdx;
4157     if (FSI->FirstDataArg != 0)
4158       --FSI->FirstDataArg;
4159   }
4160   return true;
4161 }
4162 
4163 /// Checks if a the given expression evaluates to null.
4164 ///
4165 /// Returns true if the value evaluates to null.
4166 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4167   // If the expression has non-null type, it doesn't evaluate to null.
4168   if (auto nullability
4169         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4170     if (*nullability == NullabilityKind::NonNull)
4171       return false;
4172   }
4173 
4174   // As a special case, transparent unions initialized with zero are
4175   // considered null for the purposes of the nonnull attribute.
4176   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4177     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4178       if (const CompoundLiteralExpr *CLE =
4179           dyn_cast<CompoundLiteralExpr>(Expr))
4180         if (const InitListExpr *ILE =
4181             dyn_cast<InitListExpr>(CLE->getInitializer()))
4182           Expr = ILE->getInit(0);
4183   }
4184 
4185   bool Result;
4186   return (!Expr->isValueDependent() &&
4187           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4188           !Result);
4189 }
4190 
4191 static void CheckNonNullArgument(Sema &S,
4192                                  const Expr *ArgExpr,
4193                                  SourceLocation CallSiteLoc) {
4194   if (CheckNonNullExpr(S, ArgExpr))
4195     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4196                           S.PDiag(diag::warn_null_arg)
4197                               << ArgExpr->getSourceRange());
4198 }
4199 
4200 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4201   FormatStringInfo FSI;
4202   if ((GetFormatStringType(Format) == FST_NSString) &&
4203       getFormatStringInfo(Format, false, &FSI)) {
4204     Idx = FSI.FormatIdx;
4205     return true;
4206   }
4207   return false;
4208 }
4209 
4210 /// Diagnose use of %s directive in an NSString which is being passed
4211 /// as formatting string to formatting method.
4212 static void
4213 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4214                                         const NamedDecl *FDecl,
4215                                         Expr **Args,
4216                                         unsigned NumArgs) {
4217   unsigned Idx = 0;
4218   bool Format = false;
4219   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4220   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4221     Idx = 2;
4222     Format = true;
4223   }
4224   else
4225     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4226       if (S.GetFormatNSStringIdx(I, Idx)) {
4227         Format = true;
4228         break;
4229       }
4230     }
4231   if (!Format || NumArgs <= Idx)
4232     return;
4233   const Expr *FormatExpr = Args[Idx];
4234   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4235     FormatExpr = CSCE->getSubExpr();
4236   const StringLiteral *FormatString;
4237   if (const ObjCStringLiteral *OSL =
4238       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4239     FormatString = OSL->getString();
4240   else
4241     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4242   if (!FormatString)
4243     return;
4244   if (S.FormatStringHasSArg(FormatString)) {
4245     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4246       << "%s" << 1 << 1;
4247     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4248       << FDecl->getDeclName();
4249   }
4250 }
4251 
4252 /// Determine whether the given type has a non-null nullability annotation.
4253 static bool isNonNullType(ASTContext &ctx, QualType type) {
4254   if (auto nullability = type->getNullability(ctx))
4255     return *nullability == NullabilityKind::NonNull;
4256 
4257   return false;
4258 }
4259 
4260 static void CheckNonNullArguments(Sema &S,
4261                                   const NamedDecl *FDecl,
4262                                   const FunctionProtoType *Proto,
4263                                   ArrayRef<const Expr *> Args,
4264                                   SourceLocation CallSiteLoc) {
4265   assert((FDecl || Proto) && "Need a function declaration or prototype");
4266 
4267   // Already checked by by constant evaluator.
4268   if (S.isConstantEvaluated())
4269     return;
4270   // Check the attributes attached to the method/function itself.
4271   llvm::SmallBitVector NonNullArgs;
4272   if (FDecl) {
4273     // Handle the nonnull attribute on the function/method declaration itself.
4274     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4275       if (!NonNull->args_size()) {
4276         // Easy case: all pointer arguments are nonnull.
4277         for (const auto *Arg : Args)
4278           if (S.isValidPointerAttrType(Arg->getType()))
4279             CheckNonNullArgument(S, Arg, CallSiteLoc);
4280         return;
4281       }
4282 
4283       for (const ParamIdx &Idx : NonNull->args()) {
4284         unsigned IdxAST = Idx.getASTIndex();
4285         if (IdxAST >= Args.size())
4286           continue;
4287         if (NonNullArgs.empty())
4288           NonNullArgs.resize(Args.size());
4289         NonNullArgs.set(IdxAST);
4290       }
4291     }
4292   }
4293 
4294   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4295     // Handle the nonnull attribute on the parameters of the
4296     // function/method.
4297     ArrayRef<ParmVarDecl*> parms;
4298     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4299       parms = FD->parameters();
4300     else
4301       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4302 
4303     unsigned ParamIndex = 0;
4304     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4305          I != E; ++I, ++ParamIndex) {
4306       const ParmVarDecl *PVD = *I;
4307       if (PVD->hasAttr<NonNullAttr>() ||
4308           isNonNullType(S.Context, PVD->getType())) {
4309         if (NonNullArgs.empty())
4310           NonNullArgs.resize(Args.size());
4311 
4312         NonNullArgs.set(ParamIndex);
4313       }
4314     }
4315   } else {
4316     // If we have a non-function, non-method declaration but no
4317     // function prototype, try to dig out the function prototype.
4318     if (!Proto) {
4319       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4320         QualType type = VD->getType().getNonReferenceType();
4321         if (auto pointerType = type->getAs<PointerType>())
4322           type = pointerType->getPointeeType();
4323         else if (auto blockType = type->getAs<BlockPointerType>())
4324           type = blockType->getPointeeType();
4325         // FIXME: data member pointers?
4326 
4327         // Dig out the function prototype, if there is one.
4328         Proto = type->getAs<FunctionProtoType>();
4329       }
4330     }
4331 
4332     // Fill in non-null argument information from the nullability
4333     // information on the parameter types (if we have them).
4334     if (Proto) {
4335       unsigned Index = 0;
4336       for (auto paramType : Proto->getParamTypes()) {
4337         if (isNonNullType(S.Context, paramType)) {
4338           if (NonNullArgs.empty())
4339             NonNullArgs.resize(Args.size());
4340 
4341           NonNullArgs.set(Index);
4342         }
4343 
4344         ++Index;
4345       }
4346     }
4347   }
4348 
4349   // Check for non-null arguments.
4350   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4351        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4352     if (NonNullArgs[ArgIndex])
4353       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4354   }
4355 }
4356 
4357 /// Handles the checks for format strings, non-POD arguments to vararg
4358 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4359 /// attributes.
4360 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4361                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4362                      bool IsMemberFunction, SourceLocation Loc,
4363                      SourceRange Range, VariadicCallType CallType) {
4364   // FIXME: We should check as much as we can in the template definition.
4365   if (CurContext->isDependentContext())
4366     return;
4367 
4368   // Printf and scanf checking.
4369   llvm::SmallBitVector CheckedVarArgs;
4370   if (FDecl) {
4371     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4372       // Only create vector if there are format attributes.
4373       CheckedVarArgs.resize(Args.size());
4374 
4375       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4376                            CheckedVarArgs);
4377     }
4378   }
4379 
4380   // Refuse POD arguments that weren't caught by the format string
4381   // checks above.
4382   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4383   if (CallType != VariadicDoesNotApply &&
4384       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4385     unsigned NumParams = Proto ? Proto->getNumParams()
4386                        : FDecl && isa<FunctionDecl>(FDecl)
4387                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4388                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4389                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4390                        : 0;
4391 
4392     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4393       // Args[ArgIdx] can be null in malformed code.
4394       if (const Expr *Arg = Args[ArgIdx]) {
4395         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4396           checkVariadicArgument(Arg, CallType);
4397       }
4398     }
4399   }
4400 
4401   if (FDecl || Proto) {
4402     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4403 
4404     // Type safety checking.
4405     if (FDecl) {
4406       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4407         CheckArgumentWithTypeTag(I, Args, Loc);
4408     }
4409   }
4410 
4411   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4412     auto *AA = FDecl->getAttr<AllocAlignAttr>();
4413     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4414     if (!Arg->isValueDependent()) {
4415       Expr::EvalResult Align;
4416       if (Arg->EvaluateAsInt(Align, Context)) {
4417         const llvm::APSInt &I = Align.Val.getInt();
4418         if (!I.isPowerOf2())
4419           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4420               << Arg->getSourceRange();
4421 
4422         if (I > Sema::MaximumAlignment)
4423           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4424               << Arg->getSourceRange() << Sema::MaximumAlignment;
4425       }
4426     }
4427   }
4428 
4429   if (FD)
4430     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4431 }
4432 
4433 /// CheckConstructorCall - Check a constructor call for correctness and safety
4434 /// properties not enforced by the C type system.
4435 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4436                                 ArrayRef<const Expr *> Args,
4437                                 const FunctionProtoType *Proto,
4438                                 SourceLocation Loc) {
4439   VariadicCallType CallType =
4440     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4441   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4442             Loc, SourceRange(), CallType);
4443 }
4444 
4445 /// CheckFunctionCall - Check a direct function call for various correctness
4446 /// and safety properties not strictly enforced by the C type system.
4447 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4448                              const FunctionProtoType *Proto) {
4449   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4450                               isa<CXXMethodDecl>(FDecl);
4451   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4452                           IsMemberOperatorCall;
4453   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4454                                                   TheCall->getCallee());
4455   Expr** Args = TheCall->getArgs();
4456   unsigned NumArgs = TheCall->getNumArgs();
4457 
4458   Expr *ImplicitThis = nullptr;
4459   if (IsMemberOperatorCall) {
4460     // If this is a call to a member operator, hide the first argument
4461     // from checkCall.
4462     // FIXME: Our choice of AST representation here is less than ideal.
4463     ImplicitThis = Args[0];
4464     ++Args;
4465     --NumArgs;
4466   } else if (IsMemberFunction)
4467     ImplicitThis =
4468         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4469 
4470   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4471             IsMemberFunction, TheCall->getRParenLoc(),
4472             TheCall->getCallee()->getSourceRange(), CallType);
4473 
4474   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4475   // None of the checks below are needed for functions that don't have
4476   // simple names (e.g., C++ conversion functions).
4477   if (!FnInfo)
4478     return false;
4479 
4480   CheckAbsoluteValueFunction(TheCall, FDecl);
4481   CheckMaxUnsignedZero(TheCall, FDecl);
4482 
4483   if (getLangOpts().ObjC)
4484     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4485 
4486   unsigned CMId = FDecl->getMemoryFunctionKind();
4487   if (CMId == 0)
4488     return false;
4489 
4490   // Handle memory setting and copying functions.
4491   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
4492     CheckStrlcpycatArguments(TheCall, FnInfo);
4493   else if (CMId == Builtin::BIstrncat)
4494     CheckStrncatArguments(TheCall, FnInfo);
4495   else
4496     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4497 
4498   return false;
4499 }
4500 
4501 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4502                                ArrayRef<const Expr *> Args) {
4503   VariadicCallType CallType =
4504       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4505 
4506   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4507             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4508             CallType);
4509 
4510   return false;
4511 }
4512 
4513 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4514                             const FunctionProtoType *Proto) {
4515   QualType Ty;
4516   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4517     Ty = V->getType().getNonReferenceType();
4518   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4519     Ty = F->getType().getNonReferenceType();
4520   else
4521     return false;
4522 
4523   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4524       !Ty->isFunctionProtoType())
4525     return false;
4526 
4527   VariadicCallType CallType;
4528   if (!Proto || !Proto->isVariadic()) {
4529     CallType = VariadicDoesNotApply;
4530   } else if (Ty->isBlockPointerType()) {
4531     CallType = VariadicBlock;
4532   } else { // Ty->isFunctionPointerType()
4533     CallType = VariadicFunction;
4534   }
4535 
4536   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4537             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4538             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4539             TheCall->getCallee()->getSourceRange(), CallType);
4540 
4541   return false;
4542 }
4543 
4544 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4545 /// such as function pointers returned from functions.
4546 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4547   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4548                                                   TheCall->getCallee());
4549   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4550             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4551             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4552             TheCall->getCallee()->getSourceRange(), CallType);
4553 
4554   return false;
4555 }
4556 
4557 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4558   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4559     return false;
4560 
4561   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4562   switch (Op) {
4563   case AtomicExpr::AO__c11_atomic_init:
4564   case AtomicExpr::AO__opencl_atomic_init:
4565     llvm_unreachable("There is no ordering argument for an init");
4566 
4567   case AtomicExpr::AO__c11_atomic_load:
4568   case AtomicExpr::AO__opencl_atomic_load:
4569   case AtomicExpr::AO__atomic_load_n:
4570   case AtomicExpr::AO__atomic_load:
4571     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4572            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4573 
4574   case AtomicExpr::AO__c11_atomic_store:
4575   case AtomicExpr::AO__opencl_atomic_store:
4576   case AtomicExpr::AO__atomic_store:
4577   case AtomicExpr::AO__atomic_store_n:
4578     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4579            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4580            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4581 
4582   default:
4583     return true;
4584   }
4585 }
4586 
4587 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4588                                          AtomicExpr::AtomicOp Op) {
4589   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4590   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4591   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4592   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4593                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4594                          Op);
4595 }
4596 
4597 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4598                                  SourceLocation RParenLoc, MultiExprArg Args,
4599                                  AtomicExpr::AtomicOp Op,
4600                                  AtomicArgumentOrder ArgOrder) {
4601   // All the non-OpenCL operations take one of the following forms.
4602   // The OpenCL operations take the __c11 forms with one extra argument for
4603   // synchronization scope.
4604   enum {
4605     // C    __c11_atomic_init(A *, C)
4606     Init,
4607 
4608     // C    __c11_atomic_load(A *, int)
4609     Load,
4610 
4611     // void __atomic_load(A *, CP, int)
4612     LoadCopy,
4613 
4614     // void __atomic_store(A *, CP, int)
4615     Copy,
4616 
4617     // C    __c11_atomic_add(A *, M, int)
4618     Arithmetic,
4619 
4620     // C    __atomic_exchange_n(A *, CP, int)
4621     Xchg,
4622 
4623     // void __atomic_exchange(A *, C *, CP, int)
4624     GNUXchg,
4625 
4626     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4627     C11CmpXchg,
4628 
4629     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4630     GNUCmpXchg
4631   } Form = Init;
4632 
4633   const unsigned NumForm = GNUCmpXchg + 1;
4634   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4635   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4636   // where:
4637   //   C is an appropriate type,
4638   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4639   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4640   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4641   //   the int parameters are for orderings.
4642 
4643   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4644       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4645       "need to update code for modified forms");
4646   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4647                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4648                         AtomicExpr::AO__atomic_load,
4649                 "need to update code for modified C11 atomics");
4650   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4651                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4652   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4653                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4654                IsOpenCL;
4655   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4656              Op == AtomicExpr::AO__atomic_store_n ||
4657              Op == AtomicExpr::AO__atomic_exchange_n ||
4658              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4659   bool IsAddSub = false;
4660 
4661   switch (Op) {
4662   case AtomicExpr::AO__c11_atomic_init:
4663   case AtomicExpr::AO__opencl_atomic_init:
4664     Form = Init;
4665     break;
4666 
4667   case AtomicExpr::AO__c11_atomic_load:
4668   case AtomicExpr::AO__opencl_atomic_load:
4669   case AtomicExpr::AO__atomic_load_n:
4670     Form = Load;
4671     break;
4672 
4673   case AtomicExpr::AO__atomic_load:
4674     Form = LoadCopy;
4675     break;
4676 
4677   case AtomicExpr::AO__c11_atomic_store:
4678   case AtomicExpr::AO__opencl_atomic_store:
4679   case AtomicExpr::AO__atomic_store:
4680   case AtomicExpr::AO__atomic_store_n:
4681     Form = Copy;
4682     break;
4683 
4684   case AtomicExpr::AO__c11_atomic_fetch_add:
4685   case AtomicExpr::AO__c11_atomic_fetch_sub:
4686   case AtomicExpr::AO__opencl_atomic_fetch_add:
4687   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4688   case AtomicExpr::AO__atomic_fetch_add:
4689   case AtomicExpr::AO__atomic_fetch_sub:
4690   case AtomicExpr::AO__atomic_add_fetch:
4691   case AtomicExpr::AO__atomic_sub_fetch:
4692     IsAddSub = true;
4693     LLVM_FALLTHROUGH;
4694   case AtomicExpr::AO__c11_atomic_fetch_and:
4695   case AtomicExpr::AO__c11_atomic_fetch_or:
4696   case AtomicExpr::AO__c11_atomic_fetch_xor:
4697   case AtomicExpr::AO__opencl_atomic_fetch_and:
4698   case AtomicExpr::AO__opencl_atomic_fetch_or:
4699   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4700   case AtomicExpr::AO__atomic_fetch_and:
4701   case AtomicExpr::AO__atomic_fetch_or:
4702   case AtomicExpr::AO__atomic_fetch_xor:
4703   case AtomicExpr::AO__atomic_fetch_nand:
4704   case AtomicExpr::AO__atomic_and_fetch:
4705   case AtomicExpr::AO__atomic_or_fetch:
4706   case AtomicExpr::AO__atomic_xor_fetch:
4707   case AtomicExpr::AO__atomic_nand_fetch:
4708   case AtomicExpr::AO__c11_atomic_fetch_min:
4709   case AtomicExpr::AO__c11_atomic_fetch_max:
4710   case AtomicExpr::AO__opencl_atomic_fetch_min:
4711   case AtomicExpr::AO__opencl_atomic_fetch_max:
4712   case AtomicExpr::AO__atomic_min_fetch:
4713   case AtomicExpr::AO__atomic_max_fetch:
4714   case AtomicExpr::AO__atomic_fetch_min:
4715   case AtomicExpr::AO__atomic_fetch_max:
4716     Form = Arithmetic;
4717     break;
4718 
4719   case AtomicExpr::AO__c11_atomic_exchange:
4720   case AtomicExpr::AO__opencl_atomic_exchange:
4721   case AtomicExpr::AO__atomic_exchange_n:
4722     Form = Xchg;
4723     break;
4724 
4725   case AtomicExpr::AO__atomic_exchange:
4726     Form = GNUXchg;
4727     break;
4728 
4729   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4730   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4731   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4732   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4733     Form = C11CmpXchg;
4734     break;
4735 
4736   case AtomicExpr::AO__atomic_compare_exchange:
4737   case AtomicExpr::AO__atomic_compare_exchange_n:
4738     Form = GNUCmpXchg;
4739     break;
4740   }
4741 
4742   unsigned AdjustedNumArgs = NumArgs[Form];
4743   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4744     ++AdjustedNumArgs;
4745   // Check we have the right number of arguments.
4746   if (Args.size() < AdjustedNumArgs) {
4747     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4748         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4749         << ExprRange;
4750     return ExprError();
4751   } else if (Args.size() > AdjustedNumArgs) {
4752     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4753          diag::err_typecheck_call_too_many_args)
4754         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4755         << ExprRange;
4756     return ExprError();
4757   }
4758 
4759   // Inspect the first argument of the atomic operation.
4760   Expr *Ptr = Args[0];
4761   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4762   if (ConvertedPtr.isInvalid())
4763     return ExprError();
4764 
4765   Ptr = ConvertedPtr.get();
4766   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4767   if (!pointerType) {
4768     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4769         << Ptr->getType() << Ptr->getSourceRange();
4770     return ExprError();
4771   }
4772 
4773   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4774   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4775   QualType ValType = AtomTy; // 'C'
4776   if (IsC11) {
4777     if (!AtomTy->isAtomicType()) {
4778       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4779           << Ptr->getType() << Ptr->getSourceRange();
4780       return ExprError();
4781     }
4782     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4783         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4784       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4785           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4786           << Ptr->getSourceRange();
4787       return ExprError();
4788     }
4789     ValType = AtomTy->castAs<AtomicType>()->getValueType();
4790   } else if (Form != Load && Form != LoadCopy) {
4791     if (ValType.isConstQualified()) {
4792       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4793           << Ptr->getType() << Ptr->getSourceRange();
4794       return ExprError();
4795     }
4796   }
4797 
4798   // For an arithmetic operation, the implied arithmetic must be well-formed.
4799   if (Form == Arithmetic) {
4800     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4801     if (IsAddSub && !ValType->isIntegerType()
4802         && !ValType->isPointerType()) {
4803       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4804           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4805       return ExprError();
4806     }
4807     if (!IsAddSub && !ValType->isIntegerType()) {
4808       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4809           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4810       return ExprError();
4811     }
4812     if (IsC11 && ValType->isPointerType() &&
4813         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4814                             diag::err_incomplete_type)) {
4815       return ExprError();
4816     }
4817   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4818     // For __atomic_*_n operations, the value type must be a scalar integral or
4819     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4820     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4821         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4822     return ExprError();
4823   }
4824 
4825   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4826       !AtomTy->isScalarType()) {
4827     // For GNU atomics, require a trivially-copyable type. This is not part of
4828     // the GNU atomics specification, but we enforce it for sanity.
4829     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4830         << Ptr->getType() << Ptr->getSourceRange();
4831     return ExprError();
4832   }
4833 
4834   switch (ValType.getObjCLifetime()) {
4835   case Qualifiers::OCL_None:
4836   case Qualifiers::OCL_ExplicitNone:
4837     // okay
4838     break;
4839 
4840   case Qualifiers::OCL_Weak:
4841   case Qualifiers::OCL_Strong:
4842   case Qualifiers::OCL_Autoreleasing:
4843     // FIXME: Can this happen? By this point, ValType should be known
4844     // to be trivially copyable.
4845     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4846         << ValType << Ptr->getSourceRange();
4847     return ExprError();
4848   }
4849 
4850   // All atomic operations have an overload which takes a pointer to a volatile
4851   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4852   // into the result or the other operands. Similarly atomic_load takes a
4853   // pointer to a const 'A'.
4854   ValType.removeLocalVolatile();
4855   ValType.removeLocalConst();
4856   QualType ResultType = ValType;
4857   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4858       Form == Init)
4859     ResultType = Context.VoidTy;
4860   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4861     ResultType = Context.BoolTy;
4862 
4863   // The type of a parameter passed 'by value'. In the GNU atomics, such
4864   // arguments are actually passed as pointers.
4865   QualType ByValType = ValType; // 'CP'
4866   bool IsPassedByAddress = false;
4867   if (!IsC11 && !IsN) {
4868     ByValType = Ptr->getType();
4869     IsPassedByAddress = true;
4870   }
4871 
4872   SmallVector<Expr *, 5> APIOrderedArgs;
4873   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4874     APIOrderedArgs.push_back(Args[0]);
4875     switch (Form) {
4876     case Init:
4877     case Load:
4878       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4879       break;
4880     case LoadCopy:
4881     case Copy:
4882     case Arithmetic:
4883     case Xchg:
4884       APIOrderedArgs.push_back(Args[2]); // Val1
4885       APIOrderedArgs.push_back(Args[1]); // Order
4886       break;
4887     case GNUXchg:
4888       APIOrderedArgs.push_back(Args[2]); // Val1
4889       APIOrderedArgs.push_back(Args[3]); // Val2
4890       APIOrderedArgs.push_back(Args[1]); // Order
4891       break;
4892     case C11CmpXchg:
4893       APIOrderedArgs.push_back(Args[2]); // Val1
4894       APIOrderedArgs.push_back(Args[4]); // Val2
4895       APIOrderedArgs.push_back(Args[1]); // Order
4896       APIOrderedArgs.push_back(Args[3]); // OrderFail
4897       break;
4898     case GNUCmpXchg:
4899       APIOrderedArgs.push_back(Args[2]); // Val1
4900       APIOrderedArgs.push_back(Args[4]); // Val2
4901       APIOrderedArgs.push_back(Args[5]); // Weak
4902       APIOrderedArgs.push_back(Args[1]); // Order
4903       APIOrderedArgs.push_back(Args[3]); // OrderFail
4904       break;
4905     }
4906   } else
4907     APIOrderedArgs.append(Args.begin(), Args.end());
4908 
4909   // The first argument's non-CV pointer type is used to deduce the type of
4910   // subsequent arguments, except for:
4911   //  - weak flag (always converted to bool)
4912   //  - memory order (always converted to int)
4913   //  - scope  (always converted to int)
4914   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
4915     QualType Ty;
4916     if (i < NumVals[Form] + 1) {
4917       switch (i) {
4918       case 0:
4919         // The first argument is always a pointer. It has a fixed type.
4920         // It is always dereferenced, a nullptr is undefined.
4921         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4922         // Nothing else to do: we already know all we want about this pointer.
4923         continue;
4924       case 1:
4925         // The second argument is the non-atomic operand. For arithmetic, this
4926         // is always passed by value, and for a compare_exchange it is always
4927         // passed by address. For the rest, GNU uses by-address and C11 uses
4928         // by-value.
4929         assert(Form != Load);
4930         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
4931           Ty = ValType;
4932         else if (Form == Copy || Form == Xchg) {
4933           if (IsPassedByAddress) {
4934             // The value pointer is always dereferenced, a nullptr is undefined.
4935             CheckNonNullArgument(*this, APIOrderedArgs[i],
4936                                  ExprRange.getBegin());
4937           }
4938           Ty = ByValType;
4939         } else if (Form == Arithmetic)
4940           Ty = Context.getPointerDiffType();
4941         else {
4942           Expr *ValArg = APIOrderedArgs[i];
4943           // The value pointer is always dereferenced, a nullptr is undefined.
4944           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
4945           LangAS AS = LangAS::Default;
4946           // Keep address space of non-atomic pointer type.
4947           if (const PointerType *PtrTy =
4948                   ValArg->getType()->getAs<PointerType>()) {
4949             AS = PtrTy->getPointeeType().getAddressSpace();
4950           }
4951           Ty = Context.getPointerType(
4952               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
4953         }
4954         break;
4955       case 2:
4956         // The third argument to compare_exchange / GNU exchange is the desired
4957         // value, either by-value (for the C11 and *_n variant) or as a pointer.
4958         if (IsPassedByAddress)
4959           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4960         Ty = ByValType;
4961         break;
4962       case 3:
4963         // The fourth argument to GNU compare_exchange is a 'weak' flag.
4964         Ty = Context.BoolTy;
4965         break;
4966       }
4967     } else {
4968       // The order(s) and scope are always converted to int.
4969       Ty = Context.IntTy;
4970     }
4971 
4972     InitializedEntity Entity =
4973         InitializedEntity::InitializeParameter(Context, Ty, false);
4974     ExprResult Arg = APIOrderedArgs[i];
4975     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4976     if (Arg.isInvalid())
4977       return true;
4978     APIOrderedArgs[i] = Arg.get();
4979   }
4980 
4981   // Permute the arguments into a 'consistent' order.
4982   SmallVector<Expr*, 5> SubExprs;
4983   SubExprs.push_back(Ptr);
4984   switch (Form) {
4985   case Init:
4986     // Note, AtomicExpr::getVal1() has a special case for this atomic.
4987     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4988     break;
4989   case Load:
4990     SubExprs.push_back(APIOrderedArgs[1]); // Order
4991     break;
4992   case LoadCopy:
4993   case Copy:
4994   case Arithmetic:
4995   case Xchg:
4996     SubExprs.push_back(APIOrderedArgs[2]); // Order
4997     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4998     break;
4999   case GNUXchg:
5000     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5001     SubExprs.push_back(APIOrderedArgs[3]); // Order
5002     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5003     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5004     break;
5005   case C11CmpXchg:
5006     SubExprs.push_back(APIOrderedArgs[3]); // Order
5007     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5008     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5009     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5010     break;
5011   case GNUCmpXchg:
5012     SubExprs.push_back(APIOrderedArgs[4]); // Order
5013     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5014     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5015     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5016     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5017     break;
5018   }
5019 
5020   if (SubExprs.size() >= 2 && Form != Init) {
5021     if (Optional<llvm::APSInt> Result =
5022             SubExprs[1]->getIntegerConstantExpr(Context))
5023       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5024         Diag(SubExprs[1]->getBeginLoc(),
5025              diag::warn_atomic_op_has_invalid_memory_order)
5026             << SubExprs[1]->getSourceRange();
5027   }
5028 
5029   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5030     auto *Scope = Args[Args.size() - 1];
5031     if (Optional<llvm::APSInt> Result =
5032             Scope->getIntegerConstantExpr(Context)) {
5033       if (!ScopeModel->isValid(Result->getZExtValue()))
5034         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5035             << Scope->getSourceRange();
5036     }
5037     SubExprs.push_back(Scope);
5038   }
5039 
5040   AtomicExpr *AE = new (Context)
5041       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5042 
5043   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5044        Op == AtomicExpr::AO__c11_atomic_store ||
5045        Op == AtomicExpr::AO__opencl_atomic_load ||
5046        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5047       Context.AtomicUsesUnsupportedLibcall(AE))
5048     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5049         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5050              Op == AtomicExpr::AO__opencl_atomic_load)
5051                 ? 0
5052                 : 1);
5053 
5054   if (ValType->isExtIntType()) {
5055     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5056     return ExprError();
5057   }
5058 
5059   return AE;
5060 }
5061 
5062 /// checkBuiltinArgument - Given a call to a builtin function, perform
5063 /// normal type-checking on the given argument, updating the call in
5064 /// place.  This is useful when a builtin function requires custom
5065 /// type-checking for some of its arguments but not necessarily all of
5066 /// them.
5067 ///
5068 /// Returns true on error.
5069 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5070   FunctionDecl *Fn = E->getDirectCallee();
5071   assert(Fn && "builtin call without direct callee!");
5072 
5073   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5074   InitializedEntity Entity =
5075     InitializedEntity::InitializeParameter(S.Context, Param);
5076 
5077   ExprResult Arg = E->getArg(0);
5078   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5079   if (Arg.isInvalid())
5080     return true;
5081 
5082   E->setArg(ArgIndex, Arg.get());
5083   return false;
5084 }
5085 
5086 /// We have a call to a function like __sync_fetch_and_add, which is an
5087 /// overloaded function based on the pointer type of its first argument.
5088 /// The main BuildCallExpr routines have already promoted the types of
5089 /// arguments because all of these calls are prototyped as void(...).
5090 ///
5091 /// This function goes through and does final semantic checking for these
5092 /// builtins, as well as generating any warnings.
5093 ExprResult
5094 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5095   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5096   Expr *Callee = TheCall->getCallee();
5097   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5098   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5099 
5100   // Ensure that we have at least one argument to do type inference from.
5101   if (TheCall->getNumArgs() < 1) {
5102     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5103         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5104     return ExprError();
5105   }
5106 
5107   // Inspect the first argument of the atomic builtin.  This should always be
5108   // a pointer type, whose element is an integral scalar or pointer type.
5109   // Because it is a pointer type, we don't have to worry about any implicit
5110   // casts here.
5111   // FIXME: We don't allow floating point scalars as input.
5112   Expr *FirstArg = TheCall->getArg(0);
5113   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5114   if (FirstArgResult.isInvalid())
5115     return ExprError();
5116   FirstArg = FirstArgResult.get();
5117   TheCall->setArg(0, FirstArg);
5118 
5119   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5120   if (!pointerType) {
5121     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5122         << FirstArg->getType() << FirstArg->getSourceRange();
5123     return ExprError();
5124   }
5125 
5126   QualType ValType = pointerType->getPointeeType();
5127   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5128       !ValType->isBlockPointerType()) {
5129     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5130         << FirstArg->getType() << FirstArg->getSourceRange();
5131     return ExprError();
5132   }
5133 
5134   if (ValType.isConstQualified()) {
5135     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5136         << FirstArg->getType() << FirstArg->getSourceRange();
5137     return ExprError();
5138   }
5139 
5140   switch (ValType.getObjCLifetime()) {
5141   case Qualifiers::OCL_None:
5142   case Qualifiers::OCL_ExplicitNone:
5143     // okay
5144     break;
5145 
5146   case Qualifiers::OCL_Weak:
5147   case Qualifiers::OCL_Strong:
5148   case Qualifiers::OCL_Autoreleasing:
5149     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5150         << ValType << FirstArg->getSourceRange();
5151     return ExprError();
5152   }
5153 
5154   // Strip any qualifiers off ValType.
5155   ValType = ValType.getUnqualifiedType();
5156 
5157   // The majority of builtins return a value, but a few have special return
5158   // types, so allow them to override appropriately below.
5159   QualType ResultType = ValType;
5160 
5161   // We need to figure out which concrete builtin this maps onto.  For example,
5162   // __sync_fetch_and_add with a 2 byte object turns into
5163   // __sync_fetch_and_add_2.
5164 #define BUILTIN_ROW(x) \
5165   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5166     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5167 
5168   static const unsigned BuiltinIndices[][5] = {
5169     BUILTIN_ROW(__sync_fetch_and_add),
5170     BUILTIN_ROW(__sync_fetch_and_sub),
5171     BUILTIN_ROW(__sync_fetch_and_or),
5172     BUILTIN_ROW(__sync_fetch_and_and),
5173     BUILTIN_ROW(__sync_fetch_and_xor),
5174     BUILTIN_ROW(__sync_fetch_and_nand),
5175 
5176     BUILTIN_ROW(__sync_add_and_fetch),
5177     BUILTIN_ROW(__sync_sub_and_fetch),
5178     BUILTIN_ROW(__sync_and_and_fetch),
5179     BUILTIN_ROW(__sync_or_and_fetch),
5180     BUILTIN_ROW(__sync_xor_and_fetch),
5181     BUILTIN_ROW(__sync_nand_and_fetch),
5182 
5183     BUILTIN_ROW(__sync_val_compare_and_swap),
5184     BUILTIN_ROW(__sync_bool_compare_and_swap),
5185     BUILTIN_ROW(__sync_lock_test_and_set),
5186     BUILTIN_ROW(__sync_lock_release),
5187     BUILTIN_ROW(__sync_swap)
5188   };
5189 #undef BUILTIN_ROW
5190 
5191   // Determine the index of the size.
5192   unsigned SizeIndex;
5193   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5194   case 1: SizeIndex = 0; break;
5195   case 2: SizeIndex = 1; break;
5196   case 4: SizeIndex = 2; break;
5197   case 8: SizeIndex = 3; break;
5198   case 16: SizeIndex = 4; break;
5199   default:
5200     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5201         << FirstArg->getType() << FirstArg->getSourceRange();
5202     return ExprError();
5203   }
5204 
5205   // Each of these builtins has one pointer argument, followed by some number of
5206   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5207   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5208   // as the number of fixed args.
5209   unsigned BuiltinID = FDecl->getBuiltinID();
5210   unsigned BuiltinIndex, NumFixed = 1;
5211   bool WarnAboutSemanticsChange = false;
5212   switch (BuiltinID) {
5213   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5214   case Builtin::BI__sync_fetch_and_add:
5215   case Builtin::BI__sync_fetch_and_add_1:
5216   case Builtin::BI__sync_fetch_and_add_2:
5217   case Builtin::BI__sync_fetch_and_add_4:
5218   case Builtin::BI__sync_fetch_and_add_8:
5219   case Builtin::BI__sync_fetch_and_add_16:
5220     BuiltinIndex = 0;
5221     break;
5222 
5223   case Builtin::BI__sync_fetch_and_sub:
5224   case Builtin::BI__sync_fetch_and_sub_1:
5225   case Builtin::BI__sync_fetch_and_sub_2:
5226   case Builtin::BI__sync_fetch_and_sub_4:
5227   case Builtin::BI__sync_fetch_and_sub_8:
5228   case Builtin::BI__sync_fetch_and_sub_16:
5229     BuiltinIndex = 1;
5230     break;
5231 
5232   case Builtin::BI__sync_fetch_and_or:
5233   case Builtin::BI__sync_fetch_and_or_1:
5234   case Builtin::BI__sync_fetch_and_or_2:
5235   case Builtin::BI__sync_fetch_and_or_4:
5236   case Builtin::BI__sync_fetch_and_or_8:
5237   case Builtin::BI__sync_fetch_and_or_16:
5238     BuiltinIndex = 2;
5239     break;
5240 
5241   case Builtin::BI__sync_fetch_and_and:
5242   case Builtin::BI__sync_fetch_and_and_1:
5243   case Builtin::BI__sync_fetch_and_and_2:
5244   case Builtin::BI__sync_fetch_and_and_4:
5245   case Builtin::BI__sync_fetch_and_and_8:
5246   case Builtin::BI__sync_fetch_and_and_16:
5247     BuiltinIndex = 3;
5248     break;
5249 
5250   case Builtin::BI__sync_fetch_and_xor:
5251   case Builtin::BI__sync_fetch_and_xor_1:
5252   case Builtin::BI__sync_fetch_and_xor_2:
5253   case Builtin::BI__sync_fetch_and_xor_4:
5254   case Builtin::BI__sync_fetch_and_xor_8:
5255   case Builtin::BI__sync_fetch_and_xor_16:
5256     BuiltinIndex = 4;
5257     break;
5258 
5259   case Builtin::BI__sync_fetch_and_nand:
5260   case Builtin::BI__sync_fetch_and_nand_1:
5261   case Builtin::BI__sync_fetch_and_nand_2:
5262   case Builtin::BI__sync_fetch_and_nand_4:
5263   case Builtin::BI__sync_fetch_and_nand_8:
5264   case Builtin::BI__sync_fetch_and_nand_16:
5265     BuiltinIndex = 5;
5266     WarnAboutSemanticsChange = true;
5267     break;
5268 
5269   case Builtin::BI__sync_add_and_fetch:
5270   case Builtin::BI__sync_add_and_fetch_1:
5271   case Builtin::BI__sync_add_and_fetch_2:
5272   case Builtin::BI__sync_add_and_fetch_4:
5273   case Builtin::BI__sync_add_and_fetch_8:
5274   case Builtin::BI__sync_add_and_fetch_16:
5275     BuiltinIndex = 6;
5276     break;
5277 
5278   case Builtin::BI__sync_sub_and_fetch:
5279   case Builtin::BI__sync_sub_and_fetch_1:
5280   case Builtin::BI__sync_sub_and_fetch_2:
5281   case Builtin::BI__sync_sub_and_fetch_4:
5282   case Builtin::BI__sync_sub_and_fetch_8:
5283   case Builtin::BI__sync_sub_and_fetch_16:
5284     BuiltinIndex = 7;
5285     break;
5286 
5287   case Builtin::BI__sync_and_and_fetch:
5288   case Builtin::BI__sync_and_and_fetch_1:
5289   case Builtin::BI__sync_and_and_fetch_2:
5290   case Builtin::BI__sync_and_and_fetch_4:
5291   case Builtin::BI__sync_and_and_fetch_8:
5292   case Builtin::BI__sync_and_and_fetch_16:
5293     BuiltinIndex = 8;
5294     break;
5295 
5296   case Builtin::BI__sync_or_and_fetch:
5297   case Builtin::BI__sync_or_and_fetch_1:
5298   case Builtin::BI__sync_or_and_fetch_2:
5299   case Builtin::BI__sync_or_and_fetch_4:
5300   case Builtin::BI__sync_or_and_fetch_8:
5301   case Builtin::BI__sync_or_and_fetch_16:
5302     BuiltinIndex = 9;
5303     break;
5304 
5305   case Builtin::BI__sync_xor_and_fetch:
5306   case Builtin::BI__sync_xor_and_fetch_1:
5307   case Builtin::BI__sync_xor_and_fetch_2:
5308   case Builtin::BI__sync_xor_and_fetch_4:
5309   case Builtin::BI__sync_xor_and_fetch_8:
5310   case Builtin::BI__sync_xor_and_fetch_16:
5311     BuiltinIndex = 10;
5312     break;
5313 
5314   case Builtin::BI__sync_nand_and_fetch:
5315   case Builtin::BI__sync_nand_and_fetch_1:
5316   case Builtin::BI__sync_nand_and_fetch_2:
5317   case Builtin::BI__sync_nand_and_fetch_4:
5318   case Builtin::BI__sync_nand_and_fetch_8:
5319   case Builtin::BI__sync_nand_and_fetch_16:
5320     BuiltinIndex = 11;
5321     WarnAboutSemanticsChange = true;
5322     break;
5323 
5324   case Builtin::BI__sync_val_compare_and_swap:
5325   case Builtin::BI__sync_val_compare_and_swap_1:
5326   case Builtin::BI__sync_val_compare_and_swap_2:
5327   case Builtin::BI__sync_val_compare_and_swap_4:
5328   case Builtin::BI__sync_val_compare_and_swap_8:
5329   case Builtin::BI__sync_val_compare_and_swap_16:
5330     BuiltinIndex = 12;
5331     NumFixed = 2;
5332     break;
5333 
5334   case Builtin::BI__sync_bool_compare_and_swap:
5335   case Builtin::BI__sync_bool_compare_and_swap_1:
5336   case Builtin::BI__sync_bool_compare_and_swap_2:
5337   case Builtin::BI__sync_bool_compare_and_swap_4:
5338   case Builtin::BI__sync_bool_compare_and_swap_8:
5339   case Builtin::BI__sync_bool_compare_and_swap_16:
5340     BuiltinIndex = 13;
5341     NumFixed = 2;
5342     ResultType = Context.BoolTy;
5343     break;
5344 
5345   case Builtin::BI__sync_lock_test_and_set:
5346   case Builtin::BI__sync_lock_test_and_set_1:
5347   case Builtin::BI__sync_lock_test_and_set_2:
5348   case Builtin::BI__sync_lock_test_and_set_4:
5349   case Builtin::BI__sync_lock_test_and_set_8:
5350   case Builtin::BI__sync_lock_test_and_set_16:
5351     BuiltinIndex = 14;
5352     break;
5353 
5354   case Builtin::BI__sync_lock_release:
5355   case Builtin::BI__sync_lock_release_1:
5356   case Builtin::BI__sync_lock_release_2:
5357   case Builtin::BI__sync_lock_release_4:
5358   case Builtin::BI__sync_lock_release_8:
5359   case Builtin::BI__sync_lock_release_16:
5360     BuiltinIndex = 15;
5361     NumFixed = 0;
5362     ResultType = Context.VoidTy;
5363     break;
5364 
5365   case Builtin::BI__sync_swap:
5366   case Builtin::BI__sync_swap_1:
5367   case Builtin::BI__sync_swap_2:
5368   case Builtin::BI__sync_swap_4:
5369   case Builtin::BI__sync_swap_8:
5370   case Builtin::BI__sync_swap_16:
5371     BuiltinIndex = 16;
5372     break;
5373   }
5374 
5375   // Now that we know how many fixed arguments we expect, first check that we
5376   // have at least that many.
5377   if (TheCall->getNumArgs() < 1+NumFixed) {
5378     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5379         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5380         << Callee->getSourceRange();
5381     return ExprError();
5382   }
5383 
5384   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5385       << Callee->getSourceRange();
5386 
5387   if (WarnAboutSemanticsChange) {
5388     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5389         << Callee->getSourceRange();
5390   }
5391 
5392   // Get the decl for the concrete builtin from this, we can tell what the
5393   // concrete integer type we should convert to is.
5394   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5395   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5396   FunctionDecl *NewBuiltinDecl;
5397   if (NewBuiltinID == BuiltinID)
5398     NewBuiltinDecl = FDecl;
5399   else {
5400     // Perform builtin lookup to avoid redeclaring it.
5401     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5402     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5403     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5404     assert(Res.getFoundDecl());
5405     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5406     if (!NewBuiltinDecl)
5407       return ExprError();
5408   }
5409 
5410   // The first argument --- the pointer --- has a fixed type; we
5411   // deduce the types of the rest of the arguments accordingly.  Walk
5412   // the remaining arguments, converting them to the deduced value type.
5413   for (unsigned i = 0; i != NumFixed; ++i) {
5414     ExprResult Arg = TheCall->getArg(i+1);
5415 
5416     // GCC does an implicit conversion to the pointer or integer ValType.  This
5417     // can fail in some cases (1i -> int**), check for this error case now.
5418     // Initialize the argument.
5419     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5420                                                    ValType, /*consume*/ false);
5421     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5422     if (Arg.isInvalid())
5423       return ExprError();
5424 
5425     // Okay, we have something that *can* be converted to the right type.  Check
5426     // to see if there is a potentially weird extension going on here.  This can
5427     // happen when you do an atomic operation on something like an char* and
5428     // pass in 42.  The 42 gets converted to char.  This is even more strange
5429     // for things like 45.123 -> char, etc.
5430     // FIXME: Do this check.
5431     TheCall->setArg(i+1, Arg.get());
5432   }
5433 
5434   // Create a new DeclRefExpr to refer to the new decl.
5435   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5436       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5437       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5438       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5439 
5440   // Set the callee in the CallExpr.
5441   // FIXME: This loses syntactic information.
5442   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5443   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5444                                               CK_BuiltinFnToFnPtr);
5445   TheCall->setCallee(PromotedCall.get());
5446 
5447   // Change the result type of the call to match the original value type. This
5448   // is arbitrary, but the codegen for these builtins ins design to handle it
5449   // gracefully.
5450   TheCall->setType(ResultType);
5451 
5452   // Prohibit use of _ExtInt with atomic builtins.
5453   // The arguments would have already been converted to the first argument's
5454   // type, so only need to check the first argument.
5455   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5456   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5457     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5458     return ExprError();
5459   }
5460 
5461   return TheCallResult;
5462 }
5463 
5464 /// SemaBuiltinNontemporalOverloaded - We have a call to
5465 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5466 /// overloaded function based on the pointer type of its last argument.
5467 ///
5468 /// This function goes through and does final semantic checking for these
5469 /// builtins.
5470 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5471   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5472   DeclRefExpr *DRE =
5473       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5474   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5475   unsigned BuiltinID = FDecl->getBuiltinID();
5476   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5477           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5478          "Unexpected nontemporal load/store builtin!");
5479   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5480   unsigned numArgs = isStore ? 2 : 1;
5481 
5482   // Ensure that we have the proper number of arguments.
5483   if (checkArgCount(*this, TheCall, numArgs))
5484     return ExprError();
5485 
5486   // Inspect the last argument of the nontemporal builtin.  This should always
5487   // be a pointer type, from which we imply the type of the memory access.
5488   // Because it is a pointer type, we don't have to worry about any implicit
5489   // casts here.
5490   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5491   ExprResult PointerArgResult =
5492       DefaultFunctionArrayLvalueConversion(PointerArg);
5493 
5494   if (PointerArgResult.isInvalid())
5495     return ExprError();
5496   PointerArg = PointerArgResult.get();
5497   TheCall->setArg(numArgs - 1, PointerArg);
5498 
5499   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5500   if (!pointerType) {
5501     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5502         << PointerArg->getType() << PointerArg->getSourceRange();
5503     return ExprError();
5504   }
5505 
5506   QualType ValType = pointerType->getPointeeType();
5507 
5508   // Strip any qualifiers off ValType.
5509   ValType = ValType.getUnqualifiedType();
5510   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5511       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5512       !ValType->isVectorType()) {
5513     Diag(DRE->getBeginLoc(),
5514          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5515         << PointerArg->getType() << PointerArg->getSourceRange();
5516     return ExprError();
5517   }
5518 
5519   if (!isStore) {
5520     TheCall->setType(ValType);
5521     return TheCallResult;
5522   }
5523 
5524   ExprResult ValArg = TheCall->getArg(0);
5525   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5526       Context, ValType, /*consume*/ false);
5527   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5528   if (ValArg.isInvalid())
5529     return ExprError();
5530 
5531   TheCall->setArg(0, ValArg.get());
5532   TheCall->setType(Context.VoidTy);
5533   return TheCallResult;
5534 }
5535 
5536 /// CheckObjCString - Checks that the argument to the builtin
5537 /// CFString constructor is correct
5538 /// Note: It might also make sense to do the UTF-16 conversion here (would
5539 /// simplify the backend).
5540 bool Sema::CheckObjCString(Expr *Arg) {
5541   Arg = Arg->IgnoreParenCasts();
5542   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5543 
5544   if (!Literal || !Literal->isAscii()) {
5545     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5546         << Arg->getSourceRange();
5547     return true;
5548   }
5549 
5550   if (Literal->containsNonAsciiOrNull()) {
5551     StringRef String = Literal->getString();
5552     unsigned NumBytes = String.size();
5553     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5554     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5555     llvm::UTF16 *ToPtr = &ToBuf[0];
5556 
5557     llvm::ConversionResult Result =
5558         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5559                                  ToPtr + NumBytes, llvm::strictConversion);
5560     // Check for conversion failure.
5561     if (Result != llvm::conversionOK)
5562       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5563           << Arg->getSourceRange();
5564   }
5565   return false;
5566 }
5567 
5568 /// CheckObjCString - Checks that the format string argument to the os_log()
5569 /// and os_trace() functions is correct, and converts it to const char *.
5570 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5571   Arg = Arg->IgnoreParenCasts();
5572   auto *Literal = dyn_cast<StringLiteral>(Arg);
5573   if (!Literal) {
5574     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5575       Literal = ObjcLiteral->getString();
5576     }
5577   }
5578 
5579   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5580     return ExprError(
5581         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5582         << Arg->getSourceRange());
5583   }
5584 
5585   ExprResult Result(Literal);
5586   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5587   InitializedEntity Entity =
5588       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5589   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5590   return Result;
5591 }
5592 
5593 /// Check that the user is calling the appropriate va_start builtin for the
5594 /// target and calling convention.
5595 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5596   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5597   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5598   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5599                     TT.getArch() == llvm::Triple::aarch64_32);
5600   bool IsWindows = TT.isOSWindows();
5601   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5602   if (IsX64 || IsAArch64) {
5603     CallingConv CC = CC_C;
5604     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5605       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5606     if (IsMSVAStart) {
5607       // Don't allow this in System V ABI functions.
5608       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5609         return S.Diag(Fn->getBeginLoc(),
5610                       diag::err_ms_va_start_used_in_sysv_function);
5611     } else {
5612       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5613       // On x64 Windows, don't allow this in System V ABI functions.
5614       // (Yes, that means there's no corresponding way to support variadic
5615       // System V ABI functions on Windows.)
5616       if ((IsWindows && CC == CC_X86_64SysV) ||
5617           (!IsWindows && CC == CC_Win64))
5618         return S.Diag(Fn->getBeginLoc(),
5619                       diag::err_va_start_used_in_wrong_abi_function)
5620                << !IsWindows;
5621     }
5622     return false;
5623   }
5624 
5625   if (IsMSVAStart)
5626     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5627   return false;
5628 }
5629 
5630 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5631                                              ParmVarDecl **LastParam = nullptr) {
5632   // Determine whether the current function, block, or obj-c method is variadic
5633   // and get its parameter list.
5634   bool IsVariadic = false;
5635   ArrayRef<ParmVarDecl *> Params;
5636   DeclContext *Caller = S.CurContext;
5637   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5638     IsVariadic = Block->isVariadic();
5639     Params = Block->parameters();
5640   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5641     IsVariadic = FD->isVariadic();
5642     Params = FD->parameters();
5643   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5644     IsVariadic = MD->isVariadic();
5645     // FIXME: This isn't correct for methods (results in bogus warning).
5646     Params = MD->parameters();
5647   } else if (isa<CapturedDecl>(Caller)) {
5648     // We don't support va_start in a CapturedDecl.
5649     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5650     return true;
5651   } else {
5652     // This must be some other declcontext that parses exprs.
5653     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5654     return true;
5655   }
5656 
5657   if (!IsVariadic) {
5658     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5659     return true;
5660   }
5661 
5662   if (LastParam)
5663     *LastParam = Params.empty() ? nullptr : Params.back();
5664 
5665   return false;
5666 }
5667 
5668 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5669 /// for validity.  Emit an error and return true on failure; return false
5670 /// on success.
5671 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5672   Expr *Fn = TheCall->getCallee();
5673 
5674   if (checkVAStartABI(*this, BuiltinID, Fn))
5675     return true;
5676 
5677   if (checkArgCount(*this, TheCall, 2))
5678     return true;
5679 
5680   // Type-check the first argument normally.
5681   if (checkBuiltinArgument(*this, TheCall, 0))
5682     return true;
5683 
5684   // Check that the current function is variadic, and get its last parameter.
5685   ParmVarDecl *LastParam;
5686   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5687     return true;
5688 
5689   // Verify that the second argument to the builtin is the last argument of the
5690   // current function or method.
5691   bool SecondArgIsLastNamedArgument = false;
5692   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5693 
5694   // These are valid if SecondArgIsLastNamedArgument is false after the next
5695   // block.
5696   QualType Type;
5697   SourceLocation ParamLoc;
5698   bool IsCRegister = false;
5699 
5700   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5701     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5702       SecondArgIsLastNamedArgument = PV == LastParam;
5703 
5704       Type = PV->getType();
5705       ParamLoc = PV->getLocation();
5706       IsCRegister =
5707           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5708     }
5709   }
5710 
5711   if (!SecondArgIsLastNamedArgument)
5712     Diag(TheCall->getArg(1)->getBeginLoc(),
5713          diag::warn_second_arg_of_va_start_not_last_named_param);
5714   else if (IsCRegister || Type->isReferenceType() ||
5715            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5716              // Promotable integers are UB, but enumerations need a bit of
5717              // extra checking to see what their promotable type actually is.
5718              if (!Type->isPromotableIntegerType())
5719                return false;
5720              if (!Type->isEnumeralType())
5721                return true;
5722              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5723              return !(ED &&
5724                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5725            }()) {
5726     unsigned Reason = 0;
5727     if (Type->isReferenceType())  Reason = 1;
5728     else if (IsCRegister)         Reason = 2;
5729     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5730     Diag(ParamLoc, diag::note_parameter_type) << Type;
5731   }
5732 
5733   TheCall->setType(Context.VoidTy);
5734   return false;
5735 }
5736 
5737 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5738   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5739   //                 const char *named_addr);
5740 
5741   Expr *Func = Call->getCallee();
5742 
5743   if (Call->getNumArgs() < 3)
5744     return Diag(Call->getEndLoc(),
5745                 diag::err_typecheck_call_too_few_args_at_least)
5746            << 0 /*function call*/ << 3 << Call->getNumArgs();
5747 
5748   // Type-check the first argument normally.
5749   if (checkBuiltinArgument(*this, Call, 0))
5750     return true;
5751 
5752   // Check that the current function is variadic.
5753   if (checkVAStartIsInVariadicFunction(*this, Func))
5754     return true;
5755 
5756   // __va_start on Windows does not validate the parameter qualifiers
5757 
5758   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5759   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5760 
5761   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5762   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5763 
5764   const QualType &ConstCharPtrTy =
5765       Context.getPointerType(Context.CharTy.withConst());
5766   if (!Arg1Ty->isPointerType() ||
5767       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5768     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5769         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5770         << 0                                      /* qualifier difference */
5771         << 3                                      /* parameter mismatch */
5772         << 2 << Arg1->getType() << ConstCharPtrTy;
5773 
5774   const QualType SizeTy = Context.getSizeType();
5775   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5776     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5777         << Arg2->getType() << SizeTy << 1 /* different class */
5778         << 0                              /* qualifier difference */
5779         << 3                              /* parameter mismatch */
5780         << 3 << Arg2->getType() << SizeTy;
5781 
5782   return false;
5783 }
5784 
5785 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5786 /// friends.  This is declared to take (...), so we have to check everything.
5787 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5788   if (checkArgCount(*this, TheCall, 2))
5789     return true;
5790 
5791   ExprResult OrigArg0 = TheCall->getArg(0);
5792   ExprResult OrigArg1 = TheCall->getArg(1);
5793 
5794   // Do standard promotions between the two arguments, returning their common
5795   // type.
5796   QualType Res = UsualArithmeticConversions(
5797       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5798   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5799     return true;
5800 
5801   // Make sure any conversions are pushed back into the call; this is
5802   // type safe since unordered compare builtins are declared as "_Bool
5803   // foo(...)".
5804   TheCall->setArg(0, OrigArg0.get());
5805   TheCall->setArg(1, OrigArg1.get());
5806 
5807   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5808     return false;
5809 
5810   // If the common type isn't a real floating type, then the arguments were
5811   // invalid for this operation.
5812   if (Res.isNull() || !Res->isRealFloatingType())
5813     return Diag(OrigArg0.get()->getBeginLoc(),
5814                 diag::err_typecheck_call_invalid_ordered_compare)
5815            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5816            << SourceRange(OrigArg0.get()->getBeginLoc(),
5817                           OrigArg1.get()->getEndLoc());
5818 
5819   return false;
5820 }
5821 
5822 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5823 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5824 /// to check everything. We expect the last argument to be a floating point
5825 /// value.
5826 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5827   if (checkArgCount(*this, TheCall, NumArgs))
5828     return true;
5829 
5830   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5831   // on all preceding parameters just being int.  Try all of those.
5832   for (unsigned i = 0; i < NumArgs - 1; ++i) {
5833     Expr *Arg = TheCall->getArg(i);
5834 
5835     if (Arg->isTypeDependent())
5836       return false;
5837 
5838     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5839 
5840     if (Res.isInvalid())
5841       return true;
5842     TheCall->setArg(i, Res.get());
5843   }
5844 
5845   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5846 
5847   if (OrigArg->isTypeDependent())
5848     return false;
5849 
5850   // Usual Unary Conversions will convert half to float, which we want for
5851   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5852   // type how it is, but do normal L->Rvalue conversions.
5853   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5854     OrigArg = UsualUnaryConversions(OrigArg).get();
5855   else
5856     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5857   TheCall->setArg(NumArgs - 1, OrigArg);
5858 
5859   // This operation requires a non-_Complex floating-point number.
5860   if (!OrigArg->getType()->isRealFloatingType())
5861     return Diag(OrigArg->getBeginLoc(),
5862                 diag::err_typecheck_call_invalid_unary_fp)
5863            << OrigArg->getType() << OrigArg->getSourceRange();
5864 
5865   return false;
5866 }
5867 
5868 /// Perform semantic analysis for a call to __builtin_complex.
5869 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5870   if (checkArgCount(*this, TheCall, 2))
5871     return true;
5872 
5873   bool Dependent = false;
5874   for (unsigned I = 0; I != 2; ++I) {
5875     Expr *Arg = TheCall->getArg(I);
5876     QualType T = Arg->getType();
5877     if (T->isDependentType()) {
5878       Dependent = true;
5879       continue;
5880     }
5881 
5882     // Despite supporting _Complex int, GCC requires a real floating point type
5883     // for the operands of __builtin_complex.
5884     if (!T->isRealFloatingType()) {
5885       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5886              << Arg->getType() << Arg->getSourceRange();
5887     }
5888 
5889     ExprResult Converted = DefaultLvalueConversion(Arg);
5890     if (Converted.isInvalid())
5891       return true;
5892     TheCall->setArg(I, Converted.get());
5893   }
5894 
5895   if (Dependent) {
5896     TheCall->setType(Context.DependentTy);
5897     return false;
5898   }
5899 
5900   Expr *Real = TheCall->getArg(0);
5901   Expr *Imag = TheCall->getArg(1);
5902   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
5903     return Diag(Real->getBeginLoc(),
5904                 diag::err_typecheck_call_different_arg_types)
5905            << Real->getType() << Imag->getType()
5906            << Real->getSourceRange() << Imag->getSourceRange();
5907   }
5908 
5909   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
5910   // don't allow this builtin to form those types either.
5911   // FIXME: Should we allow these types?
5912   if (Real->getType()->isFloat16Type())
5913     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5914            << "_Float16";
5915   if (Real->getType()->isHalfType())
5916     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5917            << "half";
5918 
5919   TheCall->setType(Context.getComplexType(Real->getType()));
5920   return false;
5921 }
5922 
5923 // Customized Sema Checking for VSX builtins that have the following signature:
5924 // vector [...] builtinName(vector [...], vector [...], const int);
5925 // Which takes the same type of vectors (any legal vector type) for the first
5926 // two arguments and takes compile time constant for the third argument.
5927 // Example builtins are :
5928 // vector double vec_xxpermdi(vector double, vector double, int);
5929 // vector short vec_xxsldwi(vector short, vector short, int);
5930 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
5931   unsigned ExpectedNumArgs = 3;
5932   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
5933     return true;
5934 
5935   // Check the third argument is a compile time constant
5936   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
5937     return Diag(TheCall->getBeginLoc(),
5938                 diag::err_vsx_builtin_nonconstant_argument)
5939            << 3 /* argument index */ << TheCall->getDirectCallee()
5940            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5941                           TheCall->getArg(2)->getEndLoc());
5942 
5943   QualType Arg1Ty = TheCall->getArg(0)->getType();
5944   QualType Arg2Ty = TheCall->getArg(1)->getType();
5945 
5946   // Check the type of argument 1 and argument 2 are vectors.
5947   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
5948   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
5949       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
5950     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
5951            << TheCall->getDirectCallee()
5952            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5953                           TheCall->getArg(1)->getEndLoc());
5954   }
5955 
5956   // Check the first two arguments are the same type.
5957   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
5958     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
5959            << TheCall->getDirectCallee()
5960            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5961                           TheCall->getArg(1)->getEndLoc());
5962   }
5963 
5964   // When default clang type checking is turned off and the customized type
5965   // checking is used, the returning type of the function must be explicitly
5966   // set. Otherwise it is _Bool by default.
5967   TheCall->setType(Arg1Ty);
5968 
5969   return false;
5970 }
5971 
5972 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
5973 // This is declared to take (...), so we have to check everything.
5974 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
5975   if (TheCall->getNumArgs() < 2)
5976     return ExprError(Diag(TheCall->getEndLoc(),
5977                           diag::err_typecheck_call_too_few_args_at_least)
5978                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5979                      << TheCall->getSourceRange());
5980 
5981   // Determine which of the following types of shufflevector we're checking:
5982   // 1) unary, vector mask: (lhs, mask)
5983   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5984   QualType resType = TheCall->getArg(0)->getType();
5985   unsigned numElements = 0;
5986 
5987   if (!TheCall->getArg(0)->isTypeDependent() &&
5988       !TheCall->getArg(1)->isTypeDependent()) {
5989     QualType LHSType = TheCall->getArg(0)->getType();
5990     QualType RHSType = TheCall->getArg(1)->getType();
5991 
5992     if (!LHSType->isVectorType() || !RHSType->isVectorType())
5993       return ExprError(
5994           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5995           << TheCall->getDirectCallee()
5996           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5997                          TheCall->getArg(1)->getEndLoc()));
5998 
5999     numElements = LHSType->castAs<VectorType>()->getNumElements();
6000     unsigned numResElements = TheCall->getNumArgs() - 2;
6001 
6002     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6003     // with mask.  If so, verify that RHS is an integer vector type with the
6004     // same number of elts as lhs.
6005     if (TheCall->getNumArgs() == 2) {
6006       if (!RHSType->hasIntegerRepresentation() ||
6007           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6008         return ExprError(Diag(TheCall->getBeginLoc(),
6009                               diag::err_vec_builtin_incompatible_vector)
6010                          << TheCall->getDirectCallee()
6011                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6012                                         TheCall->getArg(1)->getEndLoc()));
6013     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6014       return ExprError(Diag(TheCall->getBeginLoc(),
6015                             diag::err_vec_builtin_incompatible_vector)
6016                        << TheCall->getDirectCallee()
6017                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6018                                       TheCall->getArg(1)->getEndLoc()));
6019     } else if (numElements != numResElements) {
6020       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6021       resType = Context.getVectorType(eltType, numResElements,
6022                                       VectorType::GenericVector);
6023     }
6024   }
6025 
6026   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6027     if (TheCall->getArg(i)->isTypeDependent() ||
6028         TheCall->getArg(i)->isValueDependent())
6029       continue;
6030 
6031     Optional<llvm::APSInt> Result;
6032     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6033       return ExprError(Diag(TheCall->getBeginLoc(),
6034                             diag::err_shufflevector_nonconstant_argument)
6035                        << TheCall->getArg(i)->getSourceRange());
6036 
6037     // Allow -1 which will be translated to undef in the IR.
6038     if (Result->isSigned() && Result->isAllOnesValue())
6039       continue;
6040 
6041     if (Result->getActiveBits() > 64 ||
6042         Result->getZExtValue() >= numElements * 2)
6043       return ExprError(Diag(TheCall->getBeginLoc(),
6044                             diag::err_shufflevector_argument_too_large)
6045                        << TheCall->getArg(i)->getSourceRange());
6046   }
6047 
6048   SmallVector<Expr*, 32> exprs;
6049 
6050   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6051     exprs.push_back(TheCall->getArg(i));
6052     TheCall->setArg(i, nullptr);
6053   }
6054 
6055   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6056                                          TheCall->getCallee()->getBeginLoc(),
6057                                          TheCall->getRParenLoc());
6058 }
6059 
6060 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6061 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6062                                        SourceLocation BuiltinLoc,
6063                                        SourceLocation RParenLoc) {
6064   ExprValueKind VK = VK_RValue;
6065   ExprObjectKind OK = OK_Ordinary;
6066   QualType DstTy = TInfo->getType();
6067   QualType SrcTy = E->getType();
6068 
6069   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6070     return ExprError(Diag(BuiltinLoc,
6071                           diag::err_convertvector_non_vector)
6072                      << E->getSourceRange());
6073   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6074     return ExprError(Diag(BuiltinLoc,
6075                           diag::err_convertvector_non_vector_type));
6076 
6077   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6078     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6079     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6080     if (SrcElts != DstElts)
6081       return ExprError(Diag(BuiltinLoc,
6082                             diag::err_convertvector_incompatible_vector)
6083                        << E->getSourceRange());
6084   }
6085 
6086   return new (Context)
6087       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6088 }
6089 
6090 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6091 // This is declared to take (const void*, ...) and can take two
6092 // optional constant int args.
6093 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6094   unsigned NumArgs = TheCall->getNumArgs();
6095 
6096   if (NumArgs > 3)
6097     return Diag(TheCall->getEndLoc(),
6098                 diag::err_typecheck_call_too_many_args_at_most)
6099            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6100 
6101   // Argument 0 is checked for us and the remaining arguments must be
6102   // constant integers.
6103   for (unsigned i = 1; i != NumArgs; ++i)
6104     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6105       return true;
6106 
6107   return false;
6108 }
6109 
6110 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6111 // __assume does not evaluate its arguments, and should warn if its argument
6112 // has side effects.
6113 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6114   Expr *Arg = TheCall->getArg(0);
6115   if (Arg->isInstantiationDependent()) return false;
6116 
6117   if (Arg->HasSideEffects(Context))
6118     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6119         << Arg->getSourceRange()
6120         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6121 
6122   return false;
6123 }
6124 
6125 /// Handle __builtin_alloca_with_align. This is declared
6126 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6127 /// than 8.
6128 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6129   // The alignment must be a constant integer.
6130   Expr *Arg = TheCall->getArg(1);
6131 
6132   // We can't check the value of a dependent argument.
6133   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6134     if (const auto *UE =
6135             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6136       if (UE->getKind() == UETT_AlignOf ||
6137           UE->getKind() == UETT_PreferredAlignOf)
6138         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6139             << Arg->getSourceRange();
6140 
6141     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6142 
6143     if (!Result.isPowerOf2())
6144       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6145              << Arg->getSourceRange();
6146 
6147     if (Result < Context.getCharWidth())
6148       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6149              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6150 
6151     if (Result > std::numeric_limits<int32_t>::max())
6152       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6153              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6154   }
6155 
6156   return false;
6157 }
6158 
6159 /// Handle __builtin_assume_aligned. This is declared
6160 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6161 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6162   unsigned NumArgs = TheCall->getNumArgs();
6163 
6164   if (NumArgs > 3)
6165     return Diag(TheCall->getEndLoc(),
6166                 diag::err_typecheck_call_too_many_args_at_most)
6167            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6168 
6169   // The alignment must be a constant integer.
6170   Expr *Arg = TheCall->getArg(1);
6171 
6172   // We can't check the value of a dependent argument.
6173   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6174     llvm::APSInt Result;
6175     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6176       return true;
6177 
6178     if (!Result.isPowerOf2())
6179       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6180              << Arg->getSourceRange();
6181 
6182     if (Result > Sema::MaximumAlignment)
6183       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6184           << Arg->getSourceRange() << Sema::MaximumAlignment;
6185   }
6186 
6187   if (NumArgs > 2) {
6188     ExprResult Arg(TheCall->getArg(2));
6189     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6190       Context.getSizeType(), false);
6191     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6192     if (Arg.isInvalid()) return true;
6193     TheCall->setArg(2, Arg.get());
6194   }
6195 
6196   return false;
6197 }
6198 
6199 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6200   unsigned BuiltinID =
6201       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6202   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6203 
6204   unsigned NumArgs = TheCall->getNumArgs();
6205   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6206   if (NumArgs < NumRequiredArgs) {
6207     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6208            << 0 /* function call */ << NumRequiredArgs << NumArgs
6209            << TheCall->getSourceRange();
6210   }
6211   if (NumArgs >= NumRequiredArgs + 0x100) {
6212     return Diag(TheCall->getEndLoc(),
6213                 diag::err_typecheck_call_too_many_args_at_most)
6214            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6215            << TheCall->getSourceRange();
6216   }
6217   unsigned i = 0;
6218 
6219   // For formatting call, check buffer arg.
6220   if (!IsSizeCall) {
6221     ExprResult Arg(TheCall->getArg(i));
6222     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6223         Context, Context.VoidPtrTy, false);
6224     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6225     if (Arg.isInvalid())
6226       return true;
6227     TheCall->setArg(i, Arg.get());
6228     i++;
6229   }
6230 
6231   // Check string literal arg.
6232   unsigned FormatIdx = i;
6233   {
6234     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6235     if (Arg.isInvalid())
6236       return true;
6237     TheCall->setArg(i, Arg.get());
6238     i++;
6239   }
6240 
6241   // Make sure variadic args are scalar.
6242   unsigned FirstDataArg = i;
6243   while (i < NumArgs) {
6244     ExprResult Arg = DefaultVariadicArgumentPromotion(
6245         TheCall->getArg(i), VariadicFunction, nullptr);
6246     if (Arg.isInvalid())
6247       return true;
6248     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6249     if (ArgSize.getQuantity() >= 0x100) {
6250       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6251              << i << (int)ArgSize.getQuantity() << 0xff
6252              << TheCall->getSourceRange();
6253     }
6254     TheCall->setArg(i, Arg.get());
6255     i++;
6256   }
6257 
6258   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6259   // call to avoid duplicate diagnostics.
6260   if (!IsSizeCall) {
6261     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6262     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6263     bool Success = CheckFormatArguments(
6264         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6265         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6266         CheckedVarArgs);
6267     if (!Success)
6268       return true;
6269   }
6270 
6271   if (IsSizeCall) {
6272     TheCall->setType(Context.getSizeType());
6273   } else {
6274     TheCall->setType(Context.VoidPtrTy);
6275   }
6276   return false;
6277 }
6278 
6279 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6280 /// TheCall is a constant expression.
6281 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6282                                   llvm::APSInt &Result) {
6283   Expr *Arg = TheCall->getArg(ArgNum);
6284   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6285   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6286 
6287   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6288 
6289   Optional<llvm::APSInt> R;
6290   if (!(R = Arg->getIntegerConstantExpr(Context)))
6291     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6292            << FDecl->getDeclName() << Arg->getSourceRange();
6293   Result = *R;
6294   return false;
6295 }
6296 
6297 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6298 /// TheCall is a constant expression in the range [Low, High].
6299 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6300                                        int Low, int High, bool RangeIsError) {
6301   if (isConstantEvaluated())
6302     return false;
6303   llvm::APSInt Result;
6304 
6305   // We can't check the value of a dependent argument.
6306   Expr *Arg = TheCall->getArg(ArgNum);
6307   if (Arg->isTypeDependent() || Arg->isValueDependent())
6308     return false;
6309 
6310   // Check constant-ness first.
6311   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6312     return true;
6313 
6314   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6315     if (RangeIsError)
6316       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6317              << Result.toString(10) << Low << High << Arg->getSourceRange();
6318     else
6319       // Defer the warning until we know if the code will be emitted so that
6320       // dead code can ignore this.
6321       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6322                           PDiag(diag::warn_argument_invalid_range)
6323                               << Result.toString(10) << Low << High
6324                               << Arg->getSourceRange());
6325   }
6326 
6327   return false;
6328 }
6329 
6330 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6331 /// TheCall is a constant expression is a multiple of Num..
6332 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6333                                           unsigned Num) {
6334   llvm::APSInt Result;
6335 
6336   // We can't check the value of a dependent argument.
6337   Expr *Arg = TheCall->getArg(ArgNum);
6338   if (Arg->isTypeDependent() || Arg->isValueDependent())
6339     return false;
6340 
6341   // Check constant-ness first.
6342   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6343     return true;
6344 
6345   if (Result.getSExtValue() % Num != 0)
6346     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6347            << Num << Arg->getSourceRange();
6348 
6349   return false;
6350 }
6351 
6352 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6353 /// constant expression representing a power of 2.
6354 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6355   llvm::APSInt Result;
6356 
6357   // We can't check the value of a dependent argument.
6358   Expr *Arg = TheCall->getArg(ArgNum);
6359   if (Arg->isTypeDependent() || Arg->isValueDependent())
6360     return false;
6361 
6362   // Check constant-ness first.
6363   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6364     return true;
6365 
6366   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6367   // and only if x is a power of 2.
6368   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6369     return false;
6370 
6371   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6372          << Arg->getSourceRange();
6373 }
6374 
6375 static bool IsShiftedByte(llvm::APSInt Value) {
6376   if (Value.isNegative())
6377     return false;
6378 
6379   // Check if it's a shifted byte, by shifting it down
6380   while (true) {
6381     // If the value fits in the bottom byte, the check passes.
6382     if (Value < 0x100)
6383       return true;
6384 
6385     // Otherwise, if the value has _any_ bits in the bottom byte, the check
6386     // fails.
6387     if ((Value & 0xFF) != 0)
6388       return false;
6389 
6390     // If the bottom 8 bits are all 0, but something above that is nonzero,
6391     // then shifting the value right by 8 bits won't affect whether it's a
6392     // shifted byte or not. So do that, and go round again.
6393     Value >>= 8;
6394   }
6395 }
6396 
6397 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6398 /// a constant expression representing an arbitrary byte value shifted left by
6399 /// a multiple of 8 bits.
6400 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6401                                              unsigned ArgBits) {
6402   llvm::APSInt Result;
6403 
6404   // We can't check the value of a dependent argument.
6405   Expr *Arg = TheCall->getArg(ArgNum);
6406   if (Arg->isTypeDependent() || Arg->isValueDependent())
6407     return false;
6408 
6409   // Check constant-ness first.
6410   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6411     return true;
6412 
6413   // Truncate to the given size.
6414   Result = Result.getLoBits(ArgBits);
6415   Result.setIsUnsigned(true);
6416 
6417   if (IsShiftedByte(Result))
6418     return false;
6419 
6420   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6421          << Arg->getSourceRange();
6422 }
6423 
6424 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6425 /// TheCall is a constant expression representing either a shifted byte value,
6426 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6427 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6428 /// Arm MVE intrinsics.
6429 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6430                                                    int ArgNum,
6431                                                    unsigned ArgBits) {
6432   llvm::APSInt Result;
6433 
6434   // We can't check the value of a dependent argument.
6435   Expr *Arg = TheCall->getArg(ArgNum);
6436   if (Arg->isTypeDependent() || Arg->isValueDependent())
6437     return false;
6438 
6439   // Check constant-ness first.
6440   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6441     return true;
6442 
6443   // Truncate to the given size.
6444   Result = Result.getLoBits(ArgBits);
6445   Result.setIsUnsigned(true);
6446 
6447   // Check to see if it's in either of the required forms.
6448   if (IsShiftedByte(Result) ||
6449       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6450     return false;
6451 
6452   return Diag(TheCall->getBeginLoc(),
6453               diag::err_argument_not_shifted_byte_or_xxff)
6454          << Arg->getSourceRange();
6455 }
6456 
6457 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6458 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6459   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6460     if (checkArgCount(*this, TheCall, 2))
6461       return true;
6462     Expr *Arg0 = TheCall->getArg(0);
6463     Expr *Arg1 = TheCall->getArg(1);
6464 
6465     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6466     if (FirstArg.isInvalid())
6467       return true;
6468     QualType FirstArgType = FirstArg.get()->getType();
6469     if (!FirstArgType->isAnyPointerType())
6470       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6471                << "first" << FirstArgType << Arg0->getSourceRange();
6472     TheCall->setArg(0, FirstArg.get());
6473 
6474     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6475     if (SecArg.isInvalid())
6476       return true;
6477     QualType SecArgType = SecArg.get()->getType();
6478     if (!SecArgType->isIntegerType())
6479       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6480                << "second" << SecArgType << Arg1->getSourceRange();
6481 
6482     // Derive the return type from the pointer argument.
6483     TheCall->setType(FirstArgType);
6484     return false;
6485   }
6486 
6487   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6488     if (checkArgCount(*this, TheCall, 2))
6489       return true;
6490 
6491     Expr *Arg0 = TheCall->getArg(0);
6492     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6493     if (FirstArg.isInvalid())
6494       return true;
6495     QualType FirstArgType = FirstArg.get()->getType();
6496     if (!FirstArgType->isAnyPointerType())
6497       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6498                << "first" << FirstArgType << Arg0->getSourceRange();
6499     TheCall->setArg(0, FirstArg.get());
6500 
6501     // Derive the return type from the pointer argument.
6502     TheCall->setType(FirstArgType);
6503 
6504     // Second arg must be an constant in range [0,15]
6505     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6506   }
6507 
6508   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6509     if (checkArgCount(*this, TheCall, 2))
6510       return true;
6511     Expr *Arg0 = TheCall->getArg(0);
6512     Expr *Arg1 = TheCall->getArg(1);
6513 
6514     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6515     if (FirstArg.isInvalid())
6516       return true;
6517     QualType FirstArgType = FirstArg.get()->getType();
6518     if (!FirstArgType->isAnyPointerType())
6519       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6520                << "first" << FirstArgType << Arg0->getSourceRange();
6521 
6522     QualType SecArgType = Arg1->getType();
6523     if (!SecArgType->isIntegerType())
6524       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6525                << "second" << SecArgType << Arg1->getSourceRange();
6526     TheCall->setType(Context.IntTy);
6527     return false;
6528   }
6529 
6530   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6531       BuiltinID == AArch64::BI__builtin_arm_stg) {
6532     if (checkArgCount(*this, TheCall, 1))
6533       return true;
6534     Expr *Arg0 = TheCall->getArg(0);
6535     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6536     if (FirstArg.isInvalid())
6537       return true;
6538 
6539     QualType FirstArgType = FirstArg.get()->getType();
6540     if (!FirstArgType->isAnyPointerType())
6541       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6542                << "first" << FirstArgType << Arg0->getSourceRange();
6543     TheCall->setArg(0, FirstArg.get());
6544 
6545     // Derive the return type from the pointer argument.
6546     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6547       TheCall->setType(FirstArgType);
6548     return false;
6549   }
6550 
6551   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6552     Expr *ArgA = TheCall->getArg(0);
6553     Expr *ArgB = TheCall->getArg(1);
6554 
6555     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6556     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6557 
6558     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6559       return true;
6560 
6561     QualType ArgTypeA = ArgExprA.get()->getType();
6562     QualType ArgTypeB = ArgExprB.get()->getType();
6563 
6564     auto isNull = [&] (Expr *E) -> bool {
6565       return E->isNullPointerConstant(
6566                         Context, Expr::NPC_ValueDependentIsNotNull); };
6567 
6568     // argument should be either a pointer or null
6569     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6570       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6571         << "first" << ArgTypeA << ArgA->getSourceRange();
6572 
6573     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6574       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6575         << "second" << ArgTypeB << ArgB->getSourceRange();
6576 
6577     // Ensure Pointee types are compatible
6578     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6579         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6580       QualType pointeeA = ArgTypeA->getPointeeType();
6581       QualType pointeeB = ArgTypeB->getPointeeType();
6582       if (!Context.typesAreCompatible(
6583              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6584              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6585         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6586           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6587           << ArgB->getSourceRange();
6588       }
6589     }
6590 
6591     // at least one argument should be pointer type
6592     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6593       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6594         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6595 
6596     if (isNull(ArgA)) // adopt type of the other pointer
6597       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6598 
6599     if (isNull(ArgB))
6600       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6601 
6602     TheCall->setArg(0, ArgExprA.get());
6603     TheCall->setArg(1, ArgExprB.get());
6604     TheCall->setType(Context.LongLongTy);
6605     return false;
6606   }
6607   assert(false && "Unhandled ARM MTE intrinsic");
6608   return true;
6609 }
6610 
6611 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6612 /// TheCall is an ARM/AArch64 special register string literal.
6613 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6614                                     int ArgNum, unsigned ExpectedFieldNum,
6615                                     bool AllowName) {
6616   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6617                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6618                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6619                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6620                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6621                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6622   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6623                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6624                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6625                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6626                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6627                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6628   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6629 
6630   // We can't check the value of a dependent argument.
6631   Expr *Arg = TheCall->getArg(ArgNum);
6632   if (Arg->isTypeDependent() || Arg->isValueDependent())
6633     return false;
6634 
6635   // Check if the argument is a string literal.
6636   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6637     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6638            << Arg->getSourceRange();
6639 
6640   // Check the type of special register given.
6641   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6642   SmallVector<StringRef, 6> Fields;
6643   Reg.split(Fields, ":");
6644 
6645   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6646     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6647            << Arg->getSourceRange();
6648 
6649   // If the string is the name of a register then we cannot check that it is
6650   // valid here but if the string is of one the forms described in ACLE then we
6651   // can check that the supplied fields are integers and within the valid
6652   // ranges.
6653   if (Fields.size() > 1) {
6654     bool FiveFields = Fields.size() == 5;
6655 
6656     bool ValidString = true;
6657     if (IsARMBuiltin) {
6658       ValidString &= Fields[0].startswith_lower("cp") ||
6659                      Fields[0].startswith_lower("p");
6660       if (ValidString)
6661         Fields[0] =
6662           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6663 
6664       ValidString &= Fields[2].startswith_lower("c");
6665       if (ValidString)
6666         Fields[2] = Fields[2].drop_front(1);
6667 
6668       if (FiveFields) {
6669         ValidString &= Fields[3].startswith_lower("c");
6670         if (ValidString)
6671           Fields[3] = Fields[3].drop_front(1);
6672       }
6673     }
6674 
6675     SmallVector<int, 5> Ranges;
6676     if (FiveFields)
6677       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6678     else
6679       Ranges.append({15, 7, 15});
6680 
6681     for (unsigned i=0; i<Fields.size(); ++i) {
6682       int IntField;
6683       ValidString &= !Fields[i].getAsInteger(10, IntField);
6684       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6685     }
6686 
6687     if (!ValidString)
6688       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6689              << Arg->getSourceRange();
6690   } else if (IsAArch64Builtin && Fields.size() == 1) {
6691     // If the register name is one of those that appear in the condition below
6692     // and the special register builtin being used is one of the write builtins,
6693     // then we require that the argument provided for writing to the register
6694     // is an integer constant expression. This is because it will be lowered to
6695     // an MSR (immediate) instruction, so we need to know the immediate at
6696     // compile time.
6697     if (TheCall->getNumArgs() != 2)
6698       return false;
6699 
6700     std::string RegLower = Reg.lower();
6701     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6702         RegLower != "pan" && RegLower != "uao")
6703       return false;
6704 
6705     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6706   }
6707 
6708   return false;
6709 }
6710 
6711 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6712 /// This checks that the target supports __builtin_longjmp and
6713 /// that val is a constant 1.
6714 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6715   if (!Context.getTargetInfo().hasSjLjLowering())
6716     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6717            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6718 
6719   Expr *Arg = TheCall->getArg(1);
6720   llvm::APSInt Result;
6721 
6722   // TODO: This is less than ideal. Overload this to take a value.
6723   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6724     return true;
6725 
6726   if (Result != 1)
6727     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6728            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6729 
6730   return false;
6731 }
6732 
6733 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6734 /// This checks that the target supports __builtin_setjmp.
6735 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6736   if (!Context.getTargetInfo().hasSjLjLowering())
6737     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6738            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6739   return false;
6740 }
6741 
6742 namespace {
6743 
6744 class UncoveredArgHandler {
6745   enum { Unknown = -1, AllCovered = -2 };
6746 
6747   signed FirstUncoveredArg = Unknown;
6748   SmallVector<const Expr *, 4> DiagnosticExprs;
6749 
6750 public:
6751   UncoveredArgHandler() = default;
6752 
6753   bool hasUncoveredArg() const {
6754     return (FirstUncoveredArg >= 0);
6755   }
6756 
6757   unsigned getUncoveredArg() const {
6758     assert(hasUncoveredArg() && "no uncovered argument");
6759     return FirstUncoveredArg;
6760   }
6761 
6762   void setAllCovered() {
6763     // A string has been found with all arguments covered, so clear out
6764     // the diagnostics.
6765     DiagnosticExprs.clear();
6766     FirstUncoveredArg = AllCovered;
6767   }
6768 
6769   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6770     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6771 
6772     // Don't update if a previous string covers all arguments.
6773     if (FirstUncoveredArg == AllCovered)
6774       return;
6775 
6776     // UncoveredArgHandler tracks the highest uncovered argument index
6777     // and with it all the strings that match this index.
6778     if (NewFirstUncoveredArg == FirstUncoveredArg)
6779       DiagnosticExprs.push_back(StrExpr);
6780     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6781       DiagnosticExprs.clear();
6782       DiagnosticExprs.push_back(StrExpr);
6783       FirstUncoveredArg = NewFirstUncoveredArg;
6784     }
6785   }
6786 
6787   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6788 };
6789 
6790 enum StringLiteralCheckType {
6791   SLCT_NotALiteral,
6792   SLCT_UncheckedLiteral,
6793   SLCT_CheckedLiteral
6794 };
6795 
6796 } // namespace
6797 
6798 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6799                                      BinaryOperatorKind BinOpKind,
6800                                      bool AddendIsRight) {
6801   unsigned BitWidth = Offset.getBitWidth();
6802   unsigned AddendBitWidth = Addend.getBitWidth();
6803   // There might be negative interim results.
6804   if (Addend.isUnsigned()) {
6805     Addend = Addend.zext(++AddendBitWidth);
6806     Addend.setIsSigned(true);
6807   }
6808   // Adjust the bit width of the APSInts.
6809   if (AddendBitWidth > BitWidth) {
6810     Offset = Offset.sext(AddendBitWidth);
6811     BitWidth = AddendBitWidth;
6812   } else if (BitWidth > AddendBitWidth) {
6813     Addend = Addend.sext(BitWidth);
6814   }
6815 
6816   bool Ov = false;
6817   llvm::APSInt ResOffset = Offset;
6818   if (BinOpKind == BO_Add)
6819     ResOffset = Offset.sadd_ov(Addend, Ov);
6820   else {
6821     assert(AddendIsRight && BinOpKind == BO_Sub &&
6822            "operator must be add or sub with addend on the right");
6823     ResOffset = Offset.ssub_ov(Addend, Ov);
6824   }
6825 
6826   // We add an offset to a pointer here so we should support an offset as big as
6827   // possible.
6828   if (Ov) {
6829     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6830            "index (intermediate) result too big");
6831     Offset = Offset.sext(2 * BitWidth);
6832     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6833     return;
6834   }
6835 
6836   Offset = ResOffset;
6837 }
6838 
6839 namespace {
6840 
6841 // This is a wrapper class around StringLiteral to support offsetted string
6842 // literals as format strings. It takes the offset into account when returning
6843 // the string and its length or the source locations to display notes correctly.
6844 class FormatStringLiteral {
6845   const StringLiteral *FExpr;
6846   int64_t Offset;
6847 
6848  public:
6849   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
6850       : FExpr(fexpr), Offset(Offset) {}
6851 
6852   StringRef getString() const {
6853     return FExpr->getString().drop_front(Offset);
6854   }
6855 
6856   unsigned getByteLength() const {
6857     return FExpr->getByteLength() - getCharByteWidth() * Offset;
6858   }
6859 
6860   unsigned getLength() const { return FExpr->getLength() - Offset; }
6861   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
6862 
6863   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
6864 
6865   QualType getType() const { return FExpr->getType(); }
6866 
6867   bool isAscii() const { return FExpr->isAscii(); }
6868   bool isWide() const { return FExpr->isWide(); }
6869   bool isUTF8() const { return FExpr->isUTF8(); }
6870   bool isUTF16() const { return FExpr->isUTF16(); }
6871   bool isUTF32() const { return FExpr->isUTF32(); }
6872   bool isPascal() const { return FExpr->isPascal(); }
6873 
6874   SourceLocation getLocationOfByte(
6875       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
6876       const TargetInfo &Target, unsigned *StartToken = nullptr,
6877       unsigned *StartTokenByteOffset = nullptr) const {
6878     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
6879                                     StartToken, StartTokenByteOffset);
6880   }
6881 
6882   SourceLocation getBeginLoc() const LLVM_READONLY {
6883     return FExpr->getBeginLoc().getLocWithOffset(Offset);
6884   }
6885 
6886   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
6887 };
6888 
6889 }  // namespace
6890 
6891 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6892                               const Expr *OrigFormatExpr,
6893                               ArrayRef<const Expr *> Args,
6894                               bool HasVAListArg, unsigned format_idx,
6895                               unsigned firstDataArg,
6896                               Sema::FormatStringType Type,
6897                               bool inFunctionCall,
6898                               Sema::VariadicCallType CallType,
6899                               llvm::SmallBitVector &CheckedVarArgs,
6900                               UncoveredArgHandler &UncoveredArg,
6901                               bool IgnoreStringsWithoutSpecifiers);
6902 
6903 // Determine if an expression is a string literal or constant string.
6904 // If this function returns false on the arguments to a function expecting a
6905 // format string, we will usually need to emit a warning.
6906 // True string literals are then checked by CheckFormatString.
6907 static StringLiteralCheckType
6908 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
6909                       bool HasVAListArg, unsigned format_idx,
6910                       unsigned firstDataArg, Sema::FormatStringType Type,
6911                       Sema::VariadicCallType CallType, bool InFunctionCall,
6912                       llvm::SmallBitVector &CheckedVarArgs,
6913                       UncoveredArgHandler &UncoveredArg,
6914                       llvm::APSInt Offset,
6915                       bool IgnoreStringsWithoutSpecifiers = false) {
6916   if (S.isConstantEvaluated())
6917     return SLCT_NotALiteral;
6918  tryAgain:
6919   assert(Offset.isSigned() && "invalid offset");
6920 
6921   if (E->isTypeDependent() || E->isValueDependent())
6922     return SLCT_NotALiteral;
6923 
6924   E = E->IgnoreParenCasts();
6925 
6926   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6927     // Technically -Wformat-nonliteral does not warn about this case.
6928     // The behavior of printf and friends in this case is implementation
6929     // dependent.  Ideally if the format string cannot be null then
6930     // it should have a 'nonnull' attribute in the function prototype.
6931     return SLCT_UncheckedLiteral;
6932 
6933   switch (E->getStmtClass()) {
6934   case Stmt::BinaryConditionalOperatorClass:
6935   case Stmt::ConditionalOperatorClass: {
6936     // The expression is a literal if both sub-expressions were, and it was
6937     // completely checked only if both sub-expressions were checked.
6938     const AbstractConditionalOperator *C =
6939         cast<AbstractConditionalOperator>(E);
6940 
6941     // Determine whether it is necessary to check both sub-expressions, for
6942     // example, because the condition expression is a constant that can be
6943     // evaluated at compile time.
6944     bool CheckLeft = true, CheckRight = true;
6945 
6946     bool Cond;
6947     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
6948                                                  S.isConstantEvaluated())) {
6949       if (Cond)
6950         CheckRight = false;
6951       else
6952         CheckLeft = false;
6953     }
6954 
6955     // We need to maintain the offsets for the right and the left hand side
6956     // separately to check if every possible indexed expression is a valid
6957     // string literal. They might have different offsets for different string
6958     // literals in the end.
6959     StringLiteralCheckType Left;
6960     if (!CheckLeft)
6961       Left = SLCT_UncheckedLiteral;
6962     else {
6963       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
6964                                    HasVAListArg, format_idx, firstDataArg,
6965                                    Type, CallType, InFunctionCall,
6966                                    CheckedVarArgs, UncoveredArg, Offset,
6967                                    IgnoreStringsWithoutSpecifiers);
6968       if (Left == SLCT_NotALiteral || !CheckRight) {
6969         return Left;
6970       }
6971     }
6972 
6973     StringLiteralCheckType Right = checkFormatStringExpr(
6974         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
6975         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6976         IgnoreStringsWithoutSpecifiers);
6977 
6978     return (CheckLeft && Left < Right) ? Left : Right;
6979   }
6980 
6981   case Stmt::ImplicitCastExprClass:
6982     E = cast<ImplicitCastExpr>(E)->getSubExpr();
6983     goto tryAgain;
6984 
6985   case Stmt::OpaqueValueExprClass:
6986     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
6987       E = src;
6988       goto tryAgain;
6989     }
6990     return SLCT_NotALiteral;
6991 
6992   case Stmt::PredefinedExprClass:
6993     // While __func__, etc., are technically not string literals, they
6994     // cannot contain format specifiers and thus are not a security
6995     // liability.
6996     return SLCT_UncheckedLiteral;
6997 
6998   case Stmt::DeclRefExprClass: {
6999     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7000 
7001     // As an exception, do not flag errors for variables binding to
7002     // const string literals.
7003     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7004       bool isConstant = false;
7005       QualType T = DR->getType();
7006 
7007       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7008         isConstant = AT->getElementType().isConstant(S.Context);
7009       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7010         isConstant = T.isConstant(S.Context) &&
7011                      PT->getPointeeType().isConstant(S.Context);
7012       } else if (T->isObjCObjectPointerType()) {
7013         // In ObjC, there is usually no "const ObjectPointer" type,
7014         // so don't check if the pointee type is constant.
7015         isConstant = T.isConstant(S.Context);
7016       }
7017 
7018       if (isConstant) {
7019         if (const Expr *Init = VD->getAnyInitializer()) {
7020           // Look through initializers like const char c[] = { "foo" }
7021           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7022             if (InitList->isStringLiteralInit())
7023               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7024           }
7025           return checkFormatStringExpr(S, Init, Args,
7026                                        HasVAListArg, format_idx,
7027                                        firstDataArg, Type, CallType,
7028                                        /*InFunctionCall*/ false, CheckedVarArgs,
7029                                        UncoveredArg, Offset);
7030         }
7031       }
7032 
7033       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7034       // special check to see if the format string is a function parameter
7035       // of the function calling the printf function.  If the function
7036       // has an attribute indicating it is a printf-like function, then we
7037       // should suppress warnings concerning non-literals being used in a call
7038       // to a vprintf function.  For example:
7039       //
7040       // void
7041       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7042       //      va_list ap;
7043       //      va_start(ap, fmt);
7044       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7045       //      ...
7046       // }
7047       if (HasVAListArg) {
7048         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7049           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7050             int PVIndex = PV->getFunctionScopeIndex() + 1;
7051             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7052               // adjust for implicit parameter
7053               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7054                 if (MD->isInstance())
7055                   ++PVIndex;
7056               // We also check if the formats are compatible.
7057               // We can't pass a 'scanf' string to a 'printf' function.
7058               if (PVIndex == PVFormat->getFormatIdx() &&
7059                   Type == S.GetFormatStringType(PVFormat))
7060                 return SLCT_UncheckedLiteral;
7061             }
7062           }
7063         }
7064       }
7065     }
7066 
7067     return SLCT_NotALiteral;
7068   }
7069 
7070   case Stmt::CallExprClass:
7071   case Stmt::CXXMemberCallExprClass: {
7072     const CallExpr *CE = cast<CallExpr>(E);
7073     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7074       bool IsFirst = true;
7075       StringLiteralCheckType CommonResult;
7076       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7077         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7078         StringLiteralCheckType Result = checkFormatStringExpr(
7079             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7080             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7081             IgnoreStringsWithoutSpecifiers);
7082         if (IsFirst) {
7083           CommonResult = Result;
7084           IsFirst = false;
7085         }
7086       }
7087       if (!IsFirst)
7088         return CommonResult;
7089 
7090       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7091         unsigned BuiltinID = FD->getBuiltinID();
7092         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7093             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7094           const Expr *Arg = CE->getArg(0);
7095           return checkFormatStringExpr(S, Arg, Args,
7096                                        HasVAListArg, format_idx,
7097                                        firstDataArg, Type, CallType,
7098                                        InFunctionCall, CheckedVarArgs,
7099                                        UncoveredArg, Offset,
7100                                        IgnoreStringsWithoutSpecifiers);
7101         }
7102       }
7103     }
7104 
7105     return SLCT_NotALiteral;
7106   }
7107   case Stmt::ObjCMessageExprClass: {
7108     const auto *ME = cast<ObjCMessageExpr>(E);
7109     if (const auto *MD = ME->getMethodDecl()) {
7110       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7111         // As a special case heuristic, if we're using the method -[NSBundle
7112         // localizedStringForKey:value:table:], ignore any key strings that lack
7113         // format specifiers. The idea is that if the key doesn't have any
7114         // format specifiers then its probably just a key to map to the
7115         // localized strings. If it does have format specifiers though, then its
7116         // likely that the text of the key is the format string in the
7117         // programmer's language, and should be checked.
7118         const ObjCInterfaceDecl *IFace;
7119         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7120             IFace->getIdentifier()->isStr("NSBundle") &&
7121             MD->getSelector().isKeywordSelector(
7122                 {"localizedStringForKey", "value", "table"})) {
7123           IgnoreStringsWithoutSpecifiers = true;
7124         }
7125 
7126         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7127         return checkFormatStringExpr(
7128             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7129             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7130             IgnoreStringsWithoutSpecifiers);
7131       }
7132     }
7133 
7134     return SLCT_NotALiteral;
7135   }
7136   case Stmt::ObjCStringLiteralClass:
7137   case Stmt::StringLiteralClass: {
7138     const StringLiteral *StrE = nullptr;
7139 
7140     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7141       StrE = ObjCFExpr->getString();
7142     else
7143       StrE = cast<StringLiteral>(E);
7144 
7145     if (StrE) {
7146       if (Offset.isNegative() || Offset > StrE->getLength()) {
7147         // TODO: It would be better to have an explicit warning for out of
7148         // bounds literals.
7149         return SLCT_NotALiteral;
7150       }
7151       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7152       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7153                         firstDataArg, Type, InFunctionCall, CallType,
7154                         CheckedVarArgs, UncoveredArg,
7155                         IgnoreStringsWithoutSpecifiers);
7156       return SLCT_CheckedLiteral;
7157     }
7158 
7159     return SLCT_NotALiteral;
7160   }
7161   case Stmt::BinaryOperatorClass: {
7162     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7163 
7164     // A string literal + an int offset is still a string literal.
7165     if (BinOp->isAdditiveOp()) {
7166       Expr::EvalResult LResult, RResult;
7167 
7168       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7169           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7170       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7171           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7172 
7173       if (LIsInt != RIsInt) {
7174         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7175 
7176         if (LIsInt) {
7177           if (BinOpKind == BO_Add) {
7178             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7179             E = BinOp->getRHS();
7180             goto tryAgain;
7181           }
7182         } else {
7183           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7184           E = BinOp->getLHS();
7185           goto tryAgain;
7186         }
7187       }
7188     }
7189 
7190     return SLCT_NotALiteral;
7191   }
7192   case Stmt::UnaryOperatorClass: {
7193     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7194     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7195     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7196       Expr::EvalResult IndexResult;
7197       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7198                                        Expr::SE_NoSideEffects,
7199                                        S.isConstantEvaluated())) {
7200         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7201                    /*RHS is int*/ true);
7202         E = ASE->getBase();
7203         goto tryAgain;
7204       }
7205     }
7206 
7207     return SLCT_NotALiteral;
7208   }
7209 
7210   default:
7211     return SLCT_NotALiteral;
7212   }
7213 }
7214 
7215 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7216   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7217       .Case("scanf", FST_Scanf)
7218       .Cases("printf", "printf0", FST_Printf)
7219       .Cases("NSString", "CFString", FST_NSString)
7220       .Case("strftime", FST_Strftime)
7221       .Case("strfmon", FST_Strfmon)
7222       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7223       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7224       .Case("os_trace", FST_OSLog)
7225       .Case("os_log", FST_OSLog)
7226       .Default(FST_Unknown);
7227 }
7228 
7229 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7230 /// functions) for correct use of format strings.
7231 /// Returns true if a format string has been fully checked.
7232 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7233                                 ArrayRef<const Expr *> Args,
7234                                 bool IsCXXMember,
7235                                 VariadicCallType CallType,
7236                                 SourceLocation Loc, SourceRange Range,
7237                                 llvm::SmallBitVector &CheckedVarArgs) {
7238   FormatStringInfo FSI;
7239   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7240     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7241                                 FSI.FirstDataArg, GetFormatStringType(Format),
7242                                 CallType, Loc, Range, CheckedVarArgs);
7243   return false;
7244 }
7245 
7246 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7247                                 bool HasVAListArg, unsigned format_idx,
7248                                 unsigned firstDataArg, FormatStringType Type,
7249                                 VariadicCallType CallType,
7250                                 SourceLocation Loc, SourceRange Range,
7251                                 llvm::SmallBitVector &CheckedVarArgs) {
7252   // CHECK: printf/scanf-like function is called with no format string.
7253   if (format_idx >= Args.size()) {
7254     Diag(Loc, diag::warn_missing_format_string) << Range;
7255     return false;
7256   }
7257 
7258   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7259 
7260   // CHECK: format string is not a string literal.
7261   //
7262   // Dynamically generated format strings are difficult to
7263   // automatically vet at compile time.  Requiring that format strings
7264   // are string literals: (1) permits the checking of format strings by
7265   // the compiler and thereby (2) can practically remove the source of
7266   // many format string exploits.
7267 
7268   // Format string can be either ObjC string (e.g. @"%d") or
7269   // C string (e.g. "%d")
7270   // ObjC string uses the same format specifiers as C string, so we can use
7271   // the same format string checking logic for both ObjC and C strings.
7272   UncoveredArgHandler UncoveredArg;
7273   StringLiteralCheckType CT =
7274       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7275                             format_idx, firstDataArg, Type, CallType,
7276                             /*IsFunctionCall*/ true, CheckedVarArgs,
7277                             UncoveredArg,
7278                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7279 
7280   // Generate a diagnostic where an uncovered argument is detected.
7281   if (UncoveredArg.hasUncoveredArg()) {
7282     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7283     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7284     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7285   }
7286 
7287   if (CT != SLCT_NotALiteral)
7288     // Literal format string found, check done!
7289     return CT == SLCT_CheckedLiteral;
7290 
7291   // Strftime is particular as it always uses a single 'time' argument,
7292   // so it is safe to pass a non-literal string.
7293   if (Type == FST_Strftime)
7294     return false;
7295 
7296   // Do not emit diag when the string param is a macro expansion and the
7297   // format is either NSString or CFString. This is a hack to prevent
7298   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7299   // which are usually used in place of NS and CF string literals.
7300   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7301   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7302     return false;
7303 
7304   // If there are no arguments specified, warn with -Wformat-security, otherwise
7305   // warn only with -Wformat-nonliteral.
7306   if (Args.size() == firstDataArg) {
7307     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7308       << OrigFormatExpr->getSourceRange();
7309     switch (Type) {
7310     default:
7311       break;
7312     case FST_Kprintf:
7313     case FST_FreeBSDKPrintf:
7314     case FST_Printf:
7315       Diag(FormatLoc, diag::note_format_security_fixit)
7316         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7317       break;
7318     case FST_NSString:
7319       Diag(FormatLoc, diag::note_format_security_fixit)
7320         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7321       break;
7322     }
7323   } else {
7324     Diag(FormatLoc, diag::warn_format_nonliteral)
7325       << OrigFormatExpr->getSourceRange();
7326   }
7327   return false;
7328 }
7329 
7330 namespace {
7331 
7332 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7333 protected:
7334   Sema &S;
7335   const FormatStringLiteral *FExpr;
7336   const Expr *OrigFormatExpr;
7337   const Sema::FormatStringType FSType;
7338   const unsigned FirstDataArg;
7339   const unsigned NumDataArgs;
7340   const char *Beg; // Start of format string.
7341   const bool HasVAListArg;
7342   ArrayRef<const Expr *> Args;
7343   unsigned FormatIdx;
7344   llvm::SmallBitVector CoveredArgs;
7345   bool usesPositionalArgs = false;
7346   bool atFirstArg = true;
7347   bool inFunctionCall;
7348   Sema::VariadicCallType CallType;
7349   llvm::SmallBitVector &CheckedVarArgs;
7350   UncoveredArgHandler &UncoveredArg;
7351 
7352 public:
7353   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7354                      const Expr *origFormatExpr,
7355                      const Sema::FormatStringType type, unsigned firstDataArg,
7356                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
7357                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7358                      bool inFunctionCall, Sema::VariadicCallType callType,
7359                      llvm::SmallBitVector &CheckedVarArgs,
7360                      UncoveredArgHandler &UncoveredArg)
7361       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7362         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7363         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7364         inFunctionCall(inFunctionCall), CallType(callType),
7365         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7366     CoveredArgs.resize(numDataArgs);
7367     CoveredArgs.reset();
7368   }
7369 
7370   void DoneProcessing();
7371 
7372   void HandleIncompleteSpecifier(const char *startSpecifier,
7373                                  unsigned specifierLen) override;
7374 
7375   void HandleInvalidLengthModifier(
7376                            const analyze_format_string::FormatSpecifier &FS,
7377                            const analyze_format_string::ConversionSpecifier &CS,
7378                            const char *startSpecifier, unsigned specifierLen,
7379                            unsigned DiagID);
7380 
7381   void HandleNonStandardLengthModifier(
7382                     const analyze_format_string::FormatSpecifier &FS,
7383                     const char *startSpecifier, unsigned specifierLen);
7384 
7385   void HandleNonStandardConversionSpecifier(
7386                     const analyze_format_string::ConversionSpecifier &CS,
7387                     const char *startSpecifier, unsigned specifierLen);
7388 
7389   void HandlePosition(const char *startPos, unsigned posLen) override;
7390 
7391   void HandleInvalidPosition(const char *startSpecifier,
7392                              unsigned specifierLen,
7393                              analyze_format_string::PositionContext p) override;
7394 
7395   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7396 
7397   void HandleNullChar(const char *nullCharacter) override;
7398 
7399   template <typename Range>
7400   static void
7401   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7402                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7403                        bool IsStringLocation, Range StringRange,
7404                        ArrayRef<FixItHint> Fixit = None);
7405 
7406 protected:
7407   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7408                                         const char *startSpec,
7409                                         unsigned specifierLen,
7410                                         const char *csStart, unsigned csLen);
7411 
7412   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7413                                          const char *startSpec,
7414                                          unsigned specifierLen);
7415 
7416   SourceRange getFormatStringRange();
7417   CharSourceRange getSpecifierRange(const char *startSpecifier,
7418                                     unsigned specifierLen);
7419   SourceLocation getLocationOfByte(const char *x);
7420 
7421   const Expr *getDataArg(unsigned i) const;
7422 
7423   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7424                     const analyze_format_string::ConversionSpecifier &CS,
7425                     const char *startSpecifier, unsigned specifierLen,
7426                     unsigned argIndex);
7427 
7428   template <typename Range>
7429   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7430                             bool IsStringLocation, Range StringRange,
7431                             ArrayRef<FixItHint> Fixit = None);
7432 };
7433 
7434 } // namespace
7435 
7436 SourceRange CheckFormatHandler::getFormatStringRange() {
7437   return OrigFormatExpr->getSourceRange();
7438 }
7439 
7440 CharSourceRange CheckFormatHandler::
7441 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7442   SourceLocation Start = getLocationOfByte(startSpecifier);
7443   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7444 
7445   // Advance the end SourceLocation by one due to half-open ranges.
7446   End = End.getLocWithOffset(1);
7447 
7448   return CharSourceRange::getCharRange(Start, End);
7449 }
7450 
7451 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7452   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7453                                   S.getLangOpts(), S.Context.getTargetInfo());
7454 }
7455 
7456 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7457                                                    unsigned specifierLen){
7458   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7459                        getLocationOfByte(startSpecifier),
7460                        /*IsStringLocation*/true,
7461                        getSpecifierRange(startSpecifier, specifierLen));
7462 }
7463 
7464 void CheckFormatHandler::HandleInvalidLengthModifier(
7465     const analyze_format_string::FormatSpecifier &FS,
7466     const analyze_format_string::ConversionSpecifier &CS,
7467     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7468   using namespace analyze_format_string;
7469 
7470   const LengthModifier &LM = FS.getLengthModifier();
7471   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7472 
7473   // See if we know how to fix this length modifier.
7474   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7475   if (FixedLM) {
7476     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7477                          getLocationOfByte(LM.getStart()),
7478                          /*IsStringLocation*/true,
7479                          getSpecifierRange(startSpecifier, specifierLen));
7480 
7481     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7482       << FixedLM->toString()
7483       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7484 
7485   } else {
7486     FixItHint Hint;
7487     if (DiagID == diag::warn_format_nonsensical_length)
7488       Hint = FixItHint::CreateRemoval(LMRange);
7489 
7490     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7491                          getLocationOfByte(LM.getStart()),
7492                          /*IsStringLocation*/true,
7493                          getSpecifierRange(startSpecifier, specifierLen),
7494                          Hint);
7495   }
7496 }
7497 
7498 void CheckFormatHandler::HandleNonStandardLengthModifier(
7499     const analyze_format_string::FormatSpecifier &FS,
7500     const char *startSpecifier, unsigned specifierLen) {
7501   using namespace analyze_format_string;
7502 
7503   const LengthModifier &LM = FS.getLengthModifier();
7504   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7505 
7506   // See if we know how to fix this length modifier.
7507   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7508   if (FixedLM) {
7509     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7510                            << LM.toString() << 0,
7511                          getLocationOfByte(LM.getStart()),
7512                          /*IsStringLocation*/true,
7513                          getSpecifierRange(startSpecifier, specifierLen));
7514 
7515     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7516       << FixedLM->toString()
7517       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7518 
7519   } else {
7520     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7521                            << LM.toString() << 0,
7522                          getLocationOfByte(LM.getStart()),
7523                          /*IsStringLocation*/true,
7524                          getSpecifierRange(startSpecifier, specifierLen));
7525   }
7526 }
7527 
7528 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7529     const analyze_format_string::ConversionSpecifier &CS,
7530     const char *startSpecifier, unsigned specifierLen) {
7531   using namespace analyze_format_string;
7532 
7533   // See if we know how to fix this conversion specifier.
7534   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7535   if (FixedCS) {
7536     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7537                           << CS.toString() << /*conversion specifier*/1,
7538                          getLocationOfByte(CS.getStart()),
7539                          /*IsStringLocation*/true,
7540                          getSpecifierRange(startSpecifier, specifierLen));
7541 
7542     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7543     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7544       << FixedCS->toString()
7545       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7546   } else {
7547     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7548                           << CS.toString() << /*conversion specifier*/1,
7549                          getLocationOfByte(CS.getStart()),
7550                          /*IsStringLocation*/true,
7551                          getSpecifierRange(startSpecifier, specifierLen));
7552   }
7553 }
7554 
7555 void CheckFormatHandler::HandlePosition(const char *startPos,
7556                                         unsigned posLen) {
7557   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7558                                getLocationOfByte(startPos),
7559                                /*IsStringLocation*/true,
7560                                getSpecifierRange(startPos, posLen));
7561 }
7562 
7563 void
7564 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7565                                      analyze_format_string::PositionContext p) {
7566   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7567                          << (unsigned) p,
7568                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7569                        getSpecifierRange(startPos, posLen));
7570 }
7571 
7572 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7573                                             unsigned posLen) {
7574   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7575                                getLocationOfByte(startPos),
7576                                /*IsStringLocation*/true,
7577                                getSpecifierRange(startPos, posLen));
7578 }
7579 
7580 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7581   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7582     // The presence of a null character is likely an error.
7583     EmitFormatDiagnostic(
7584       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7585       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7586       getFormatStringRange());
7587   }
7588 }
7589 
7590 // Note that this may return NULL if there was an error parsing or building
7591 // one of the argument expressions.
7592 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7593   return Args[FirstDataArg + i];
7594 }
7595 
7596 void CheckFormatHandler::DoneProcessing() {
7597   // Does the number of data arguments exceed the number of
7598   // format conversions in the format string?
7599   if (!HasVAListArg) {
7600       // Find any arguments that weren't covered.
7601     CoveredArgs.flip();
7602     signed notCoveredArg = CoveredArgs.find_first();
7603     if (notCoveredArg >= 0) {
7604       assert((unsigned)notCoveredArg < NumDataArgs);
7605       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7606     } else {
7607       UncoveredArg.setAllCovered();
7608     }
7609   }
7610 }
7611 
7612 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7613                                    const Expr *ArgExpr) {
7614   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7615          "Invalid state");
7616 
7617   if (!ArgExpr)
7618     return;
7619 
7620   SourceLocation Loc = ArgExpr->getBeginLoc();
7621 
7622   if (S.getSourceManager().isInSystemMacro(Loc))
7623     return;
7624 
7625   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7626   for (auto E : DiagnosticExprs)
7627     PDiag << E->getSourceRange();
7628 
7629   CheckFormatHandler::EmitFormatDiagnostic(
7630                                   S, IsFunctionCall, DiagnosticExprs[0],
7631                                   PDiag, Loc, /*IsStringLocation*/false,
7632                                   DiagnosticExprs[0]->getSourceRange());
7633 }
7634 
7635 bool
7636 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7637                                                      SourceLocation Loc,
7638                                                      const char *startSpec,
7639                                                      unsigned specifierLen,
7640                                                      const char *csStart,
7641                                                      unsigned csLen) {
7642   bool keepGoing = true;
7643   if (argIndex < NumDataArgs) {
7644     // Consider the argument coverered, even though the specifier doesn't
7645     // make sense.
7646     CoveredArgs.set(argIndex);
7647   }
7648   else {
7649     // If argIndex exceeds the number of data arguments we
7650     // don't issue a warning because that is just a cascade of warnings (and
7651     // they may have intended '%%' anyway). We don't want to continue processing
7652     // the format string after this point, however, as we will like just get
7653     // gibberish when trying to match arguments.
7654     keepGoing = false;
7655   }
7656 
7657   StringRef Specifier(csStart, csLen);
7658 
7659   // If the specifier in non-printable, it could be the first byte of a UTF-8
7660   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7661   // hex value.
7662   std::string CodePointStr;
7663   if (!llvm::sys::locale::isPrint(*csStart)) {
7664     llvm::UTF32 CodePoint;
7665     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7666     const llvm::UTF8 *E =
7667         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7668     llvm::ConversionResult Result =
7669         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7670 
7671     if (Result != llvm::conversionOK) {
7672       unsigned char FirstChar = *csStart;
7673       CodePoint = (llvm::UTF32)FirstChar;
7674     }
7675 
7676     llvm::raw_string_ostream OS(CodePointStr);
7677     if (CodePoint < 256)
7678       OS << "\\x" << llvm::format("%02x", CodePoint);
7679     else if (CodePoint <= 0xFFFF)
7680       OS << "\\u" << llvm::format("%04x", CodePoint);
7681     else
7682       OS << "\\U" << llvm::format("%08x", CodePoint);
7683     OS.flush();
7684     Specifier = CodePointStr;
7685   }
7686 
7687   EmitFormatDiagnostic(
7688       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7689       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7690 
7691   return keepGoing;
7692 }
7693 
7694 void
7695 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7696                                                       const char *startSpec,
7697                                                       unsigned specifierLen) {
7698   EmitFormatDiagnostic(
7699     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7700     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7701 }
7702 
7703 bool
7704 CheckFormatHandler::CheckNumArgs(
7705   const analyze_format_string::FormatSpecifier &FS,
7706   const analyze_format_string::ConversionSpecifier &CS,
7707   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7708 
7709   if (argIndex >= NumDataArgs) {
7710     PartialDiagnostic PDiag = FS.usesPositionalArg()
7711       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7712            << (argIndex+1) << NumDataArgs)
7713       : S.PDiag(diag::warn_printf_insufficient_data_args);
7714     EmitFormatDiagnostic(
7715       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7716       getSpecifierRange(startSpecifier, specifierLen));
7717 
7718     // Since more arguments than conversion tokens are given, by extension
7719     // all arguments are covered, so mark this as so.
7720     UncoveredArg.setAllCovered();
7721     return false;
7722   }
7723   return true;
7724 }
7725 
7726 template<typename Range>
7727 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7728                                               SourceLocation Loc,
7729                                               bool IsStringLocation,
7730                                               Range StringRange,
7731                                               ArrayRef<FixItHint> FixIt) {
7732   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7733                        Loc, IsStringLocation, StringRange, FixIt);
7734 }
7735 
7736 /// If the format string is not within the function call, emit a note
7737 /// so that the function call and string are in diagnostic messages.
7738 ///
7739 /// \param InFunctionCall if true, the format string is within the function
7740 /// call and only one diagnostic message will be produced.  Otherwise, an
7741 /// extra note will be emitted pointing to location of the format string.
7742 ///
7743 /// \param ArgumentExpr the expression that is passed as the format string
7744 /// argument in the function call.  Used for getting locations when two
7745 /// diagnostics are emitted.
7746 ///
7747 /// \param PDiag the callee should already have provided any strings for the
7748 /// diagnostic message.  This function only adds locations and fixits
7749 /// to diagnostics.
7750 ///
7751 /// \param Loc primary location for diagnostic.  If two diagnostics are
7752 /// required, one will be at Loc and a new SourceLocation will be created for
7753 /// the other one.
7754 ///
7755 /// \param IsStringLocation if true, Loc points to the format string should be
7756 /// used for the note.  Otherwise, Loc points to the argument list and will
7757 /// be used with PDiag.
7758 ///
7759 /// \param StringRange some or all of the string to highlight.  This is
7760 /// templated so it can accept either a CharSourceRange or a SourceRange.
7761 ///
7762 /// \param FixIt optional fix it hint for the format string.
7763 template <typename Range>
7764 void CheckFormatHandler::EmitFormatDiagnostic(
7765     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7766     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7767     Range StringRange, ArrayRef<FixItHint> FixIt) {
7768   if (InFunctionCall) {
7769     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7770     D << StringRange;
7771     D << FixIt;
7772   } else {
7773     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7774       << ArgumentExpr->getSourceRange();
7775 
7776     const Sema::SemaDiagnosticBuilder &Note =
7777       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7778              diag::note_format_string_defined);
7779 
7780     Note << StringRange;
7781     Note << FixIt;
7782   }
7783 }
7784 
7785 //===--- CHECK: Printf format string checking ------------------------------===//
7786 
7787 namespace {
7788 
7789 class CheckPrintfHandler : public CheckFormatHandler {
7790 public:
7791   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7792                      const Expr *origFormatExpr,
7793                      const Sema::FormatStringType type, unsigned firstDataArg,
7794                      unsigned numDataArgs, bool isObjC, const char *beg,
7795                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7796                      unsigned formatIdx, bool inFunctionCall,
7797                      Sema::VariadicCallType CallType,
7798                      llvm::SmallBitVector &CheckedVarArgs,
7799                      UncoveredArgHandler &UncoveredArg)
7800       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7801                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7802                            inFunctionCall, CallType, CheckedVarArgs,
7803                            UncoveredArg) {}
7804 
7805   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7806 
7807   /// Returns true if '%@' specifiers are allowed in the format string.
7808   bool allowsObjCArg() const {
7809     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7810            FSType == Sema::FST_OSTrace;
7811   }
7812 
7813   bool HandleInvalidPrintfConversionSpecifier(
7814                                       const analyze_printf::PrintfSpecifier &FS,
7815                                       const char *startSpecifier,
7816                                       unsigned specifierLen) override;
7817 
7818   void handleInvalidMaskType(StringRef MaskType) override;
7819 
7820   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7821                              const char *startSpecifier,
7822                              unsigned specifierLen) override;
7823   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7824                        const char *StartSpecifier,
7825                        unsigned SpecifierLen,
7826                        const Expr *E);
7827 
7828   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7829                     const char *startSpecifier, unsigned specifierLen);
7830   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7831                            const analyze_printf::OptionalAmount &Amt,
7832                            unsigned type,
7833                            const char *startSpecifier, unsigned specifierLen);
7834   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7835                   const analyze_printf::OptionalFlag &flag,
7836                   const char *startSpecifier, unsigned specifierLen);
7837   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7838                          const analyze_printf::OptionalFlag &ignoredFlag,
7839                          const analyze_printf::OptionalFlag &flag,
7840                          const char *startSpecifier, unsigned specifierLen);
7841   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7842                            const Expr *E);
7843 
7844   void HandleEmptyObjCModifierFlag(const char *startFlag,
7845                                    unsigned flagLen) override;
7846 
7847   void HandleInvalidObjCModifierFlag(const char *startFlag,
7848                                             unsigned flagLen) override;
7849 
7850   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
7851                                            const char *flagsEnd,
7852                                            const char *conversionPosition)
7853                                              override;
7854 };
7855 
7856 } // namespace
7857 
7858 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
7859                                       const analyze_printf::PrintfSpecifier &FS,
7860                                       const char *startSpecifier,
7861                                       unsigned specifierLen) {
7862   const analyze_printf::PrintfConversionSpecifier &CS =
7863     FS.getConversionSpecifier();
7864 
7865   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7866                                           getLocationOfByte(CS.getStart()),
7867                                           startSpecifier, specifierLen,
7868                                           CS.getStart(), CS.getLength());
7869 }
7870 
7871 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
7872   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
7873 }
7874 
7875 bool CheckPrintfHandler::HandleAmount(
7876                                const analyze_format_string::OptionalAmount &Amt,
7877                                unsigned k, const char *startSpecifier,
7878                                unsigned specifierLen) {
7879   if (Amt.hasDataArgument()) {
7880     if (!HasVAListArg) {
7881       unsigned argIndex = Amt.getArgIndex();
7882       if (argIndex >= NumDataArgs) {
7883         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
7884                                << k,
7885                              getLocationOfByte(Amt.getStart()),
7886                              /*IsStringLocation*/true,
7887                              getSpecifierRange(startSpecifier, specifierLen));
7888         // Don't do any more checking.  We will just emit
7889         // spurious errors.
7890         return false;
7891       }
7892 
7893       // Type check the data argument.  It should be an 'int'.
7894       // Although not in conformance with C99, we also allow the argument to be
7895       // an 'unsigned int' as that is a reasonably safe case.  GCC also
7896       // doesn't emit a warning for that case.
7897       CoveredArgs.set(argIndex);
7898       const Expr *Arg = getDataArg(argIndex);
7899       if (!Arg)
7900         return false;
7901 
7902       QualType T = Arg->getType();
7903 
7904       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
7905       assert(AT.isValid());
7906 
7907       if (!AT.matchesType(S.Context, T)) {
7908         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
7909                                << k << AT.getRepresentativeTypeName(S.Context)
7910                                << T << Arg->getSourceRange(),
7911                              getLocationOfByte(Amt.getStart()),
7912                              /*IsStringLocation*/true,
7913                              getSpecifierRange(startSpecifier, specifierLen));
7914         // Don't do any more checking.  We will just emit
7915         // spurious errors.
7916         return false;
7917       }
7918     }
7919   }
7920   return true;
7921 }
7922 
7923 void CheckPrintfHandler::HandleInvalidAmount(
7924                                       const analyze_printf::PrintfSpecifier &FS,
7925                                       const analyze_printf::OptionalAmount &Amt,
7926                                       unsigned type,
7927                                       const char *startSpecifier,
7928                                       unsigned specifierLen) {
7929   const analyze_printf::PrintfConversionSpecifier &CS =
7930     FS.getConversionSpecifier();
7931 
7932   FixItHint fixit =
7933     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
7934       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
7935                                  Amt.getConstantLength()))
7936       : FixItHint();
7937 
7938   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
7939                          << type << CS.toString(),
7940                        getLocationOfByte(Amt.getStart()),
7941                        /*IsStringLocation*/true,
7942                        getSpecifierRange(startSpecifier, specifierLen),
7943                        fixit);
7944 }
7945 
7946 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7947                                     const analyze_printf::OptionalFlag &flag,
7948                                     const char *startSpecifier,
7949                                     unsigned specifierLen) {
7950   // Warn about pointless flag with a fixit removal.
7951   const analyze_printf::PrintfConversionSpecifier &CS =
7952     FS.getConversionSpecifier();
7953   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
7954                          << flag.toString() << CS.toString(),
7955                        getLocationOfByte(flag.getPosition()),
7956                        /*IsStringLocation*/true,
7957                        getSpecifierRange(startSpecifier, specifierLen),
7958                        FixItHint::CreateRemoval(
7959                          getSpecifierRange(flag.getPosition(), 1)));
7960 }
7961 
7962 void CheckPrintfHandler::HandleIgnoredFlag(
7963                                 const analyze_printf::PrintfSpecifier &FS,
7964                                 const analyze_printf::OptionalFlag &ignoredFlag,
7965                                 const analyze_printf::OptionalFlag &flag,
7966                                 const char *startSpecifier,
7967                                 unsigned specifierLen) {
7968   // Warn about ignored flag with a fixit removal.
7969   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7970                          << ignoredFlag.toString() << flag.toString(),
7971                        getLocationOfByte(ignoredFlag.getPosition()),
7972                        /*IsStringLocation*/true,
7973                        getSpecifierRange(startSpecifier, specifierLen),
7974                        FixItHint::CreateRemoval(
7975                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
7976 }
7977 
7978 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7979                                                      unsigned flagLen) {
7980   // Warn about an empty flag.
7981   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7982                        getLocationOfByte(startFlag),
7983                        /*IsStringLocation*/true,
7984                        getSpecifierRange(startFlag, flagLen));
7985 }
7986 
7987 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7988                                                        unsigned flagLen) {
7989   // Warn about an invalid flag.
7990   auto Range = getSpecifierRange(startFlag, flagLen);
7991   StringRef flag(startFlag, flagLen);
7992   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7993                       getLocationOfByte(startFlag),
7994                       /*IsStringLocation*/true,
7995                       Range, FixItHint::CreateRemoval(Range));
7996 }
7997 
7998 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
7999     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8000     // Warn about using '[...]' without a '@' conversion.
8001     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8002     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8003     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8004                          getLocationOfByte(conversionPosition),
8005                          /*IsStringLocation*/true,
8006                          Range, FixItHint::CreateRemoval(Range));
8007 }
8008 
8009 // Determines if the specified is a C++ class or struct containing
8010 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8011 // "c_str()").
8012 template<typename MemberKind>
8013 static llvm::SmallPtrSet<MemberKind*, 1>
8014 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8015   const RecordType *RT = Ty->getAs<RecordType>();
8016   llvm::SmallPtrSet<MemberKind*, 1> Results;
8017 
8018   if (!RT)
8019     return Results;
8020   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8021   if (!RD || !RD->getDefinition())
8022     return Results;
8023 
8024   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8025                  Sema::LookupMemberName);
8026   R.suppressDiagnostics();
8027 
8028   // We just need to include all members of the right kind turned up by the
8029   // filter, at this point.
8030   if (S.LookupQualifiedName(R, RT->getDecl()))
8031     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8032       NamedDecl *decl = (*I)->getUnderlyingDecl();
8033       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8034         Results.insert(FK);
8035     }
8036   return Results;
8037 }
8038 
8039 /// Check if we could call '.c_str()' on an object.
8040 ///
8041 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8042 /// allow the call, or if it would be ambiguous).
8043 bool Sema::hasCStrMethod(const Expr *E) {
8044   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8045 
8046   MethodSet Results =
8047       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8048   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8049        MI != ME; ++MI)
8050     if ((*MI)->getMinRequiredArguments() == 0)
8051       return true;
8052   return false;
8053 }
8054 
8055 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8056 // better diagnostic if so. AT is assumed to be valid.
8057 // Returns true when a c_str() conversion method is found.
8058 bool CheckPrintfHandler::checkForCStrMembers(
8059     const analyze_printf::ArgType &AT, const Expr *E) {
8060   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8061 
8062   MethodSet Results =
8063       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8064 
8065   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8066        MI != ME; ++MI) {
8067     const CXXMethodDecl *Method = *MI;
8068     if (Method->getMinRequiredArguments() == 0 &&
8069         AT.matchesType(S.Context, Method->getReturnType())) {
8070       // FIXME: Suggest parens if the expression needs them.
8071       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8072       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8073           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8074       return true;
8075     }
8076   }
8077 
8078   return false;
8079 }
8080 
8081 bool
8082 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8083                                             &FS,
8084                                           const char *startSpecifier,
8085                                           unsigned specifierLen) {
8086   using namespace analyze_format_string;
8087   using namespace analyze_printf;
8088 
8089   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8090 
8091   if (FS.consumesDataArgument()) {
8092     if (atFirstArg) {
8093         atFirstArg = false;
8094         usesPositionalArgs = FS.usesPositionalArg();
8095     }
8096     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8097       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8098                                         startSpecifier, specifierLen);
8099       return false;
8100     }
8101   }
8102 
8103   // First check if the field width, precision, and conversion specifier
8104   // have matching data arguments.
8105   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8106                     startSpecifier, specifierLen)) {
8107     return false;
8108   }
8109 
8110   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8111                     startSpecifier, specifierLen)) {
8112     return false;
8113   }
8114 
8115   if (!CS.consumesDataArgument()) {
8116     // FIXME: Technically specifying a precision or field width here
8117     // makes no sense.  Worth issuing a warning at some point.
8118     return true;
8119   }
8120 
8121   // Consume the argument.
8122   unsigned argIndex = FS.getArgIndex();
8123   if (argIndex < NumDataArgs) {
8124     // The check to see if the argIndex is valid will come later.
8125     // We set the bit here because we may exit early from this
8126     // function if we encounter some other error.
8127     CoveredArgs.set(argIndex);
8128   }
8129 
8130   // FreeBSD kernel extensions.
8131   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8132       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8133     // We need at least two arguments.
8134     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8135       return false;
8136 
8137     // Claim the second argument.
8138     CoveredArgs.set(argIndex + 1);
8139 
8140     // Type check the first argument (int for %b, pointer for %D)
8141     const Expr *Ex = getDataArg(argIndex);
8142     const analyze_printf::ArgType &AT =
8143       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8144         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8145     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8146       EmitFormatDiagnostic(
8147           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8148               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8149               << false << Ex->getSourceRange(),
8150           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8151           getSpecifierRange(startSpecifier, specifierLen));
8152 
8153     // Type check the second argument (char * for both %b and %D)
8154     Ex = getDataArg(argIndex + 1);
8155     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8156     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8157       EmitFormatDiagnostic(
8158           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8159               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8160               << false << Ex->getSourceRange(),
8161           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8162           getSpecifierRange(startSpecifier, specifierLen));
8163 
8164      return true;
8165   }
8166 
8167   // Check for using an Objective-C specific conversion specifier
8168   // in a non-ObjC literal.
8169   if (!allowsObjCArg() && CS.isObjCArg()) {
8170     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8171                                                   specifierLen);
8172   }
8173 
8174   // %P can only be used with os_log.
8175   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8176     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8177                                                   specifierLen);
8178   }
8179 
8180   // %n is not allowed with os_log.
8181   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8182     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8183                          getLocationOfByte(CS.getStart()),
8184                          /*IsStringLocation*/ false,
8185                          getSpecifierRange(startSpecifier, specifierLen));
8186 
8187     return true;
8188   }
8189 
8190   // Only scalars are allowed for os_trace.
8191   if (FSType == Sema::FST_OSTrace &&
8192       (CS.getKind() == ConversionSpecifier::PArg ||
8193        CS.getKind() == ConversionSpecifier::sArg ||
8194        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8195     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8196                                                   specifierLen);
8197   }
8198 
8199   // Check for use of public/private annotation outside of os_log().
8200   if (FSType != Sema::FST_OSLog) {
8201     if (FS.isPublic().isSet()) {
8202       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8203                                << "public",
8204                            getLocationOfByte(FS.isPublic().getPosition()),
8205                            /*IsStringLocation*/ false,
8206                            getSpecifierRange(startSpecifier, specifierLen));
8207     }
8208     if (FS.isPrivate().isSet()) {
8209       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8210                                << "private",
8211                            getLocationOfByte(FS.isPrivate().getPosition()),
8212                            /*IsStringLocation*/ false,
8213                            getSpecifierRange(startSpecifier, specifierLen));
8214     }
8215   }
8216 
8217   // Check for invalid use of field width
8218   if (!FS.hasValidFieldWidth()) {
8219     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8220         startSpecifier, specifierLen);
8221   }
8222 
8223   // Check for invalid use of precision
8224   if (!FS.hasValidPrecision()) {
8225     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8226         startSpecifier, specifierLen);
8227   }
8228 
8229   // Precision is mandatory for %P specifier.
8230   if (CS.getKind() == ConversionSpecifier::PArg &&
8231       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8232     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8233                          getLocationOfByte(startSpecifier),
8234                          /*IsStringLocation*/ false,
8235                          getSpecifierRange(startSpecifier, specifierLen));
8236   }
8237 
8238   // Check each flag does not conflict with any other component.
8239   if (!FS.hasValidThousandsGroupingPrefix())
8240     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8241   if (!FS.hasValidLeadingZeros())
8242     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8243   if (!FS.hasValidPlusPrefix())
8244     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8245   if (!FS.hasValidSpacePrefix())
8246     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8247   if (!FS.hasValidAlternativeForm())
8248     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8249   if (!FS.hasValidLeftJustified())
8250     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8251 
8252   // Check that flags are not ignored by another flag
8253   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8254     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8255         startSpecifier, specifierLen);
8256   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8257     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8258             startSpecifier, specifierLen);
8259 
8260   // Check the length modifier is valid with the given conversion specifier.
8261   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8262                                  S.getLangOpts()))
8263     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8264                                 diag::warn_format_nonsensical_length);
8265   else if (!FS.hasStandardLengthModifier())
8266     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8267   else if (!FS.hasStandardLengthConversionCombination())
8268     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8269                                 diag::warn_format_non_standard_conversion_spec);
8270 
8271   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8272     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8273 
8274   // The remaining checks depend on the data arguments.
8275   if (HasVAListArg)
8276     return true;
8277 
8278   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8279     return false;
8280 
8281   const Expr *Arg = getDataArg(argIndex);
8282   if (!Arg)
8283     return true;
8284 
8285   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8286 }
8287 
8288 static bool requiresParensToAddCast(const Expr *E) {
8289   // FIXME: We should have a general way to reason about operator
8290   // precedence and whether parens are actually needed here.
8291   // Take care of a few common cases where they aren't.
8292   const Expr *Inside = E->IgnoreImpCasts();
8293   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8294     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8295 
8296   switch (Inside->getStmtClass()) {
8297   case Stmt::ArraySubscriptExprClass:
8298   case Stmt::CallExprClass:
8299   case Stmt::CharacterLiteralClass:
8300   case Stmt::CXXBoolLiteralExprClass:
8301   case Stmt::DeclRefExprClass:
8302   case Stmt::FloatingLiteralClass:
8303   case Stmt::IntegerLiteralClass:
8304   case Stmt::MemberExprClass:
8305   case Stmt::ObjCArrayLiteralClass:
8306   case Stmt::ObjCBoolLiteralExprClass:
8307   case Stmt::ObjCBoxedExprClass:
8308   case Stmt::ObjCDictionaryLiteralClass:
8309   case Stmt::ObjCEncodeExprClass:
8310   case Stmt::ObjCIvarRefExprClass:
8311   case Stmt::ObjCMessageExprClass:
8312   case Stmt::ObjCPropertyRefExprClass:
8313   case Stmt::ObjCStringLiteralClass:
8314   case Stmt::ObjCSubscriptRefExprClass:
8315   case Stmt::ParenExprClass:
8316   case Stmt::StringLiteralClass:
8317   case Stmt::UnaryOperatorClass:
8318     return false;
8319   default:
8320     return true;
8321   }
8322 }
8323 
8324 static std::pair<QualType, StringRef>
8325 shouldNotPrintDirectly(const ASTContext &Context,
8326                        QualType IntendedTy,
8327                        const Expr *E) {
8328   // Use a 'while' to peel off layers of typedefs.
8329   QualType TyTy = IntendedTy;
8330   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8331     StringRef Name = UserTy->getDecl()->getName();
8332     QualType CastTy = llvm::StringSwitch<QualType>(Name)
8333       .Case("CFIndex", Context.getNSIntegerType())
8334       .Case("NSInteger", Context.getNSIntegerType())
8335       .Case("NSUInteger", Context.getNSUIntegerType())
8336       .Case("SInt32", Context.IntTy)
8337       .Case("UInt32", Context.UnsignedIntTy)
8338       .Default(QualType());
8339 
8340     if (!CastTy.isNull())
8341       return std::make_pair(CastTy, Name);
8342 
8343     TyTy = UserTy->desugar();
8344   }
8345 
8346   // Strip parens if necessary.
8347   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8348     return shouldNotPrintDirectly(Context,
8349                                   PE->getSubExpr()->getType(),
8350                                   PE->getSubExpr());
8351 
8352   // If this is a conditional expression, then its result type is constructed
8353   // via usual arithmetic conversions and thus there might be no necessary
8354   // typedef sugar there.  Recurse to operands to check for NSInteger &
8355   // Co. usage condition.
8356   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8357     QualType TrueTy, FalseTy;
8358     StringRef TrueName, FalseName;
8359 
8360     std::tie(TrueTy, TrueName) =
8361       shouldNotPrintDirectly(Context,
8362                              CO->getTrueExpr()->getType(),
8363                              CO->getTrueExpr());
8364     std::tie(FalseTy, FalseName) =
8365       shouldNotPrintDirectly(Context,
8366                              CO->getFalseExpr()->getType(),
8367                              CO->getFalseExpr());
8368 
8369     if (TrueTy == FalseTy)
8370       return std::make_pair(TrueTy, TrueName);
8371     else if (TrueTy.isNull())
8372       return std::make_pair(FalseTy, FalseName);
8373     else if (FalseTy.isNull())
8374       return std::make_pair(TrueTy, TrueName);
8375   }
8376 
8377   return std::make_pair(QualType(), StringRef());
8378 }
8379 
8380 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8381 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8382 /// type do not count.
8383 static bool
8384 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8385   QualType From = ICE->getSubExpr()->getType();
8386   QualType To = ICE->getType();
8387   // It's an integer promotion if the destination type is the promoted
8388   // source type.
8389   if (ICE->getCastKind() == CK_IntegralCast &&
8390       From->isPromotableIntegerType() &&
8391       S.Context.getPromotedIntegerType(From) == To)
8392     return true;
8393   // Look through vector types, since we do default argument promotion for
8394   // those in OpenCL.
8395   if (const auto *VecTy = From->getAs<ExtVectorType>())
8396     From = VecTy->getElementType();
8397   if (const auto *VecTy = To->getAs<ExtVectorType>())
8398     To = VecTy->getElementType();
8399   // It's a floating promotion if the source type is a lower rank.
8400   return ICE->getCastKind() == CK_FloatingCast &&
8401          S.Context.getFloatingTypeOrder(From, To) < 0;
8402 }
8403 
8404 bool
8405 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8406                                     const char *StartSpecifier,
8407                                     unsigned SpecifierLen,
8408                                     const Expr *E) {
8409   using namespace analyze_format_string;
8410   using namespace analyze_printf;
8411 
8412   // Now type check the data expression that matches the
8413   // format specifier.
8414   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8415   if (!AT.isValid())
8416     return true;
8417 
8418   QualType ExprTy = E->getType();
8419   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8420     ExprTy = TET->getUnderlyingExpr()->getType();
8421   }
8422 
8423   // Diagnose attempts to print a boolean value as a character. Unlike other
8424   // -Wformat diagnostics, this is fine from a type perspective, but it still
8425   // doesn't make sense.
8426   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8427       E->isKnownToHaveBooleanValue()) {
8428     const CharSourceRange &CSR =
8429         getSpecifierRange(StartSpecifier, SpecifierLen);
8430     SmallString<4> FSString;
8431     llvm::raw_svector_ostream os(FSString);
8432     FS.toString(os);
8433     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8434                              << FSString,
8435                          E->getExprLoc(), false, CSR);
8436     return true;
8437   }
8438 
8439   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8440   if (Match == analyze_printf::ArgType::Match)
8441     return true;
8442 
8443   // Look through argument promotions for our error message's reported type.
8444   // This includes the integral and floating promotions, but excludes array
8445   // and function pointer decay (seeing that an argument intended to be a
8446   // string has type 'char [6]' is probably more confusing than 'char *') and
8447   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8448   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8449     if (isArithmeticArgumentPromotion(S, ICE)) {
8450       E = ICE->getSubExpr();
8451       ExprTy = E->getType();
8452 
8453       // Check if we didn't match because of an implicit cast from a 'char'
8454       // or 'short' to an 'int'.  This is done because printf is a varargs
8455       // function.
8456       if (ICE->getType() == S.Context.IntTy ||
8457           ICE->getType() == S.Context.UnsignedIntTy) {
8458         // All further checking is done on the subexpression
8459         const analyze_printf::ArgType::MatchKind ImplicitMatch =
8460             AT.matchesType(S.Context, ExprTy);
8461         if (ImplicitMatch == analyze_printf::ArgType::Match)
8462           return true;
8463         if (ImplicitMatch == ArgType::NoMatchPedantic ||
8464             ImplicitMatch == ArgType::NoMatchTypeConfusion)
8465           Match = ImplicitMatch;
8466       }
8467     }
8468   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8469     // Special case for 'a', which has type 'int' in C.
8470     // Note, however, that we do /not/ want to treat multibyte constants like
8471     // 'MooV' as characters! This form is deprecated but still exists.
8472     if (ExprTy == S.Context.IntTy)
8473       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8474         ExprTy = S.Context.CharTy;
8475   }
8476 
8477   // Look through enums to their underlying type.
8478   bool IsEnum = false;
8479   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8480     ExprTy = EnumTy->getDecl()->getIntegerType();
8481     IsEnum = true;
8482   }
8483 
8484   // %C in an Objective-C context prints a unichar, not a wchar_t.
8485   // If the argument is an integer of some kind, believe the %C and suggest
8486   // a cast instead of changing the conversion specifier.
8487   QualType IntendedTy = ExprTy;
8488   if (isObjCContext() &&
8489       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8490     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8491         !ExprTy->isCharType()) {
8492       // 'unichar' is defined as a typedef of unsigned short, but we should
8493       // prefer using the typedef if it is visible.
8494       IntendedTy = S.Context.UnsignedShortTy;
8495 
8496       // While we are here, check if the value is an IntegerLiteral that happens
8497       // to be within the valid range.
8498       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8499         const llvm::APInt &V = IL->getValue();
8500         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8501           return true;
8502       }
8503 
8504       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8505                           Sema::LookupOrdinaryName);
8506       if (S.LookupName(Result, S.getCurScope())) {
8507         NamedDecl *ND = Result.getFoundDecl();
8508         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8509           if (TD->getUnderlyingType() == IntendedTy)
8510             IntendedTy = S.Context.getTypedefType(TD);
8511       }
8512     }
8513   }
8514 
8515   // Special-case some of Darwin's platform-independence types by suggesting
8516   // casts to primitive types that are known to be large enough.
8517   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8518   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8519     QualType CastTy;
8520     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8521     if (!CastTy.isNull()) {
8522       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8523       // (long in ASTContext). Only complain to pedants.
8524       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8525           (AT.isSizeT() || AT.isPtrdiffT()) &&
8526           AT.matchesType(S.Context, CastTy))
8527         Match = ArgType::NoMatchPedantic;
8528       IntendedTy = CastTy;
8529       ShouldNotPrintDirectly = true;
8530     }
8531   }
8532 
8533   // We may be able to offer a FixItHint if it is a supported type.
8534   PrintfSpecifier fixedFS = FS;
8535   bool Success =
8536       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8537 
8538   if (Success) {
8539     // Get the fix string from the fixed format specifier
8540     SmallString<16> buf;
8541     llvm::raw_svector_ostream os(buf);
8542     fixedFS.toString(os);
8543 
8544     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8545 
8546     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8547       unsigned Diag;
8548       switch (Match) {
8549       case ArgType::Match: llvm_unreachable("expected non-matching");
8550       case ArgType::NoMatchPedantic:
8551         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8552         break;
8553       case ArgType::NoMatchTypeConfusion:
8554         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8555         break;
8556       case ArgType::NoMatch:
8557         Diag = diag::warn_format_conversion_argument_type_mismatch;
8558         break;
8559       }
8560 
8561       // In this case, the specifier is wrong and should be changed to match
8562       // the argument.
8563       EmitFormatDiagnostic(S.PDiag(Diag)
8564                                << AT.getRepresentativeTypeName(S.Context)
8565                                << IntendedTy << IsEnum << E->getSourceRange(),
8566                            E->getBeginLoc(),
8567                            /*IsStringLocation*/ false, SpecRange,
8568                            FixItHint::CreateReplacement(SpecRange, os.str()));
8569     } else {
8570       // The canonical type for formatting this value is different from the
8571       // actual type of the expression. (This occurs, for example, with Darwin's
8572       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8573       // should be printed as 'long' for 64-bit compatibility.)
8574       // Rather than emitting a normal format/argument mismatch, we want to
8575       // add a cast to the recommended type (and correct the format string
8576       // if necessary).
8577       SmallString<16> CastBuf;
8578       llvm::raw_svector_ostream CastFix(CastBuf);
8579       CastFix << "(";
8580       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8581       CastFix << ")";
8582 
8583       SmallVector<FixItHint,4> Hints;
8584       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8585         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8586 
8587       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8588         // If there's already a cast present, just replace it.
8589         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8590         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8591 
8592       } else if (!requiresParensToAddCast(E)) {
8593         // If the expression has high enough precedence,
8594         // just write the C-style cast.
8595         Hints.push_back(
8596             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8597       } else {
8598         // Otherwise, add parens around the expression as well as the cast.
8599         CastFix << "(";
8600         Hints.push_back(
8601             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8602 
8603         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8604         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8605       }
8606 
8607       if (ShouldNotPrintDirectly) {
8608         // The expression has a type that should not be printed directly.
8609         // We extract the name from the typedef because we don't want to show
8610         // the underlying type in the diagnostic.
8611         StringRef Name;
8612         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8613           Name = TypedefTy->getDecl()->getName();
8614         else
8615           Name = CastTyName;
8616         unsigned Diag = Match == ArgType::NoMatchPedantic
8617                             ? diag::warn_format_argument_needs_cast_pedantic
8618                             : diag::warn_format_argument_needs_cast;
8619         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8620                                            << E->getSourceRange(),
8621                              E->getBeginLoc(), /*IsStringLocation=*/false,
8622                              SpecRange, Hints);
8623       } else {
8624         // In this case, the expression could be printed using a different
8625         // specifier, but we've decided that the specifier is probably correct
8626         // and we should cast instead. Just use the normal warning message.
8627         EmitFormatDiagnostic(
8628             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8629                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8630                 << E->getSourceRange(),
8631             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8632       }
8633     }
8634   } else {
8635     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8636                                                    SpecifierLen);
8637     // Since the warning for passing non-POD types to variadic functions
8638     // was deferred until now, we emit a warning for non-POD
8639     // arguments here.
8640     switch (S.isValidVarArgType(ExprTy)) {
8641     case Sema::VAK_Valid:
8642     case Sema::VAK_ValidInCXX11: {
8643       unsigned Diag;
8644       switch (Match) {
8645       case ArgType::Match: llvm_unreachable("expected non-matching");
8646       case ArgType::NoMatchPedantic:
8647         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8648         break;
8649       case ArgType::NoMatchTypeConfusion:
8650         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8651         break;
8652       case ArgType::NoMatch:
8653         Diag = diag::warn_format_conversion_argument_type_mismatch;
8654         break;
8655       }
8656 
8657       EmitFormatDiagnostic(
8658           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8659                         << IsEnum << CSR << E->getSourceRange(),
8660           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8661       break;
8662     }
8663     case Sema::VAK_Undefined:
8664     case Sema::VAK_MSVCUndefined:
8665       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8666                                << S.getLangOpts().CPlusPlus11 << ExprTy
8667                                << CallType
8668                                << AT.getRepresentativeTypeName(S.Context) << CSR
8669                                << E->getSourceRange(),
8670                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8671       checkForCStrMembers(AT, E);
8672       break;
8673 
8674     case Sema::VAK_Invalid:
8675       if (ExprTy->isObjCObjectType())
8676         EmitFormatDiagnostic(
8677             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8678                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8679                 << AT.getRepresentativeTypeName(S.Context) << CSR
8680                 << E->getSourceRange(),
8681             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8682       else
8683         // FIXME: If this is an initializer list, suggest removing the braces
8684         // or inserting a cast to the target type.
8685         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8686             << isa<InitListExpr>(E) << ExprTy << CallType
8687             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8688       break;
8689     }
8690 
8691     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8692            "format string specifier index out of range");
8693     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8694   }
8695 
8696   return true;
8697 }
8698 
8699 //===--- CHECK: Scanf format string checking ------------------------------===//
8700 
8701 namespace {
8702 
8703 class CheckScanfHandler : public CheckFormatHandler {
8704 public:
8705   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8706                     const Expr *origFormatExpr, Sema::FormatStringType type,
8707                     unsigned firstDataArg, unsigned numDataArgs,
8708                     const char *beg, bool hasVAListArg,
8709                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8710                     bool inFunctionCall, Sema::VariadicCallType CallType,
8711                     llvm::SmallBitVector &CheckedVarArgs,
8712                     UncoveredArgHandler &UncoveredArg)
8713       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8714                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8715                            inFunctionCall, CallType, CheckedVarArgs,
8716                            UncoveredArg) {}
8717 
8718   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8719                             const char *startSpecifier,
8720                             unsigned specifierLen) override;
8721 
8722   bool HandleInvalidScanfConversionSpecifier(
8723           const analyze_scanf::ScanfSpecifier &FS,
8724           const char *startSpecifier,
8725           unsigned specifierLen) override;
8726 
8727   void HandleIncompleteScanList(const char *start, const char *end) override;
8728 };
8729 
8730 } // namespace
8731 
8732 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8733                                                  const char *end) {
8734   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8735                        getLocationOfByte(end), /*IsStringLocation*/true,
8736                        getSpecifierRange(start, end - start));
8737 }
8738 
8739 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8740                                         const analyze_scanf::ScanfSpecifier &FS,
8741                                         const char *startSpecifier,
8742                                         unsigned specifierLen) {
8743   const analyze_scanf::ScanfConversionSpecifier &CS =
8744     FS.getConversionSpecifier();
8745 
8746   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8747                                           getLocationOfByte(CS.getStart()),
8748                                           startSpecifier, specifierLen,
8749                                           CS.getStart(), CS.getLength());
8750 }
8751 
8752 bool CheckScanfHandler::HandleScanfSpecifier(
8753                                        const analyze_scanf::ScanfSpecifier &FS,
8754                                        const char *startSpecifier,
8755                                        unsigned specifierLen) {
8756   using namespace analyze_scanf;
8757   using namespace analyze_format_string;
8758 
8759   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8760 
8761   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8762   // be used to decide if we are using positional arguments consistently.
8763   if (FS.consumesDataArgument()) {
8764     if (atFirstArg) {
8765       atFirstArg = false;
8766       usesPositionalArgs = FS.usesPositionalArg();
8767     }
8768     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8769       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8770                                         startSpecifier, specifierLen);
8771       return false;
8772     }
8773   }
8774 
8775   // Check if the field with is non-zero.
8776   const OptionalAmount &Amt = FS.getFieldWidth();
8777   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8778     if (Amt.getConstantAmount() == 0) {
8779       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8780                                                    Amt.getConstantLength());
8781       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8782                            getLocationOfByte(Amt.getStart()),
8783                            /*IsStringLocation*/true, R,
8784                            FixItHint::CreateRemoval(R));
8785     }
8786   }
8787 
8788   if (!FS.consumesDataArgument()) {
8789     // FIXME: Technically specifying a precision or field width here
8790     // makes no sense.  Worth issuing a warning at some point.
8791     return true;
8792   }
8793 
8794   // Consume the argument.
8795   unsigned argIndex = FS.getArgIndex();
8796   if (argIndex < NumDataArgs) {
8797       // The check to see if the argIndex is valid will come later.
8798       // We set the bit here because we may exit early from this
8799       // function if we encounter some other error.
8800     CoveredArgs.set(argIndex);
8801   }
8802 
8803   // Check the length modifier is valid with the given conversion specifier.
8804   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8805                                  S.getLangOpts()))
8806     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8807                                 diag::warn_format_nonsensical_length);
8808   else if (!FS.hasStandardLengthModifier())
8809     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8810   else if (!FS.hasStandardLengthConversionCombination())
8811     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8812                                 diag::warn_format_non_standard_conversion_spec);
8813 
8814   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8815     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8816 
8817   // The remaining checks depend on the data arguments.
8818   if (HasVAListArg)
8819     return true;
8820 
8821   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8822     return false;
8823 
8824   // Check that the argument type matches the format specifier.
8825   const Expr *Ex = getDataArg(argIndex);
8826   if (!Ex)
8827     return true;
8828 
8829   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8830 
8831   if (!AT.isValid()) {
8832     return true;
8833   }
8834 
8835   analyze_format_string::ArgType::MatchKind Match =
8836       AT.matchesType(S.Context, Ex->getType());
8837   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8838   if (Match == analyze_format_string::ArgType::Match)
8839     return true;
8840 
8841   ScanfSpecifier fixedFS = FS;
8842   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8843                                  S.getLangOpts(), S.Context);
8844 
8845   unsigned Diag =
8846       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8847                : diag::warn_format_conversion_argument_type_mismatch;
8848 
8849   if (Success) {
8850     // Get the fix string from the fixed format specifier.
8851     SmallString<128> buf;
8852     llvm::raw_svector_ostream os(buf);
8853     fixedFS.toString(os);
8854 
8855     EmitFormatDiagnostic(
8856         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8857                       << Ex->getType() << false << Ex->getSourceRange(),
8858         Ex->getBeginLoc(),
8859         /*IsStringLocation*/ false,
8860         getSpecifierRange(startSpecifier, specifierLen),
8861         FixItHint::CreateReplacement(
8862             getSpecifierRange(startSpecifier, specifierLen), os.str()));
8863   } else {
8864     EmitFormatDiagnostic(S.PDiag(Diag)
8865                              << AT.getRepresentativeTypeName(S.Context)
8866                              << Ex->getType() << false << Ex->getSourceRange(),
8867                          Ex->getBeginLoc(),
8868                          /*IsStringLocation*/ false,
8869                          getSpecifierRange(startSpecifier, specifierLen));
8870   }
8871 
8872   return true;
8873 }
8874 
8875 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8876                               const Expr *OrigFormatExpr,
8877                               ArrayRef<const Expr *> Args,
8878                               bool HasVAListArg, unsigned format_idx,
8879                               unsigned firstDataArg,
8880                               Sema::FormatStringType Type,
8881                               bool inFunctionCall,
8882                               Sema::VariadicCallType CallType,
8883                               llvm::SmallBitVector &CheckedVarArgs,
8884                               UncoveredArgHandler &UncoveredArg,
8885                               bool IgnoreStringsWithoutSpecifiers) {
8886   // CHECK: is the format string a wide literal?
8887   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8888     CheckFormatHandler::EmitFormatDiagnostic(
8889         S, inFunctionCall, Args[format_idx],
8890         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8891         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8892     return;
8893   }
8894 
8895   // Str - The format string.  NOTE: this is NOT null-terminated!
8896   StringRef StrRef = FExpr->getString();
8897   const char *Str = StrRef.data();
8898   // Account for cases where the string literal is truncated in a declaration.
8899   const ConstantArrayType *T =
8900     S.Context.getAsConstantArrayType(FExpr->getType());
8901   assert(T && "String literal not of constant array type!");
8902   size_t TypeSize = T->getSize().getZExtValue();
8903   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8904   const unsigned numDataArgs = Args.size() - firstDataArg;
8905 
8906   if (IgnoreStringsWithoutSpecifiers &&
8907       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
8908           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8909     return;
8910 
8911   // Emit a warning if the string literal is truncated and does not contain an
8912   // embedded null character.
8913   if (TypeSize <= StrRef.size() &&
8914       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
8915     CheckFormatHandler::EmitFormatDiagnostic(
8916         S, inFunctionCall, Args[format_idx],
8917         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8918         FExpr->getBeginLoc(),
8919         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8920     return;
8921   }
8922 
8923   // CHECK: empty format string?
8924   if (StrLen == 0 && numDataArgs > 0) {
8925     CheckFormatHandler::EmitFormatDiagnostic(
8926         S, inFunctionCall, Args[format_idx],
8927         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8928         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8929     return;
8930   }
8931 
8932   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8933       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8934       Type == Sema::FST_OSTrace) {
8935     CheckPrintfHandler H(
8936         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8937         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
8938         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
8939         CheckedVarArgs, UncoveredArg);
8940 
8941     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
8942                                                   S.getLangOpts(),
8943                                                   S.Context.getTargetInfo(),
8944                                             Type == Sema::FST_FreeBSDKPrintf))
8945       H.DoneProcessing();
8946   } else if (Type == Sema::FST_Scanf) {
8947     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8948                         numDataArgs, Str, HasVAListArg, Args, format_idx,
8949                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
8950 
8951     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
8952                                                  S.getLangOpts(),
8953                                                  S.Context.getTargetInfo()))
8954       H.DoneProcessing();
8955   } // TODO: handle other formats
8956 }
8957 
8958 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8959   // Str - The format string.  NOTE: this is NOT null-terminated!
8960   StringRef StrRef = FExpr->getString();
8961   const char *Str = StrRef.data();
8962   // Account for cases where the string literal is truncated in a declaration.
8963   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8964   assert(T && "String literal not of constant array type!");
8965   size_t TypeSize = T->getSize().getZExtValue();
8966   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8967   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8968                                                          getLangOpts(),
8969                                                          Context.getTargetInfo());
8970 }
8971 
8972 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8973 
8974 // Returns the related absolute value function that is larger, of 0 if one
8975 // does not exist.
8976 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8977   switch (AbsFunction) {
8978   default:
8979     return 0;
8980 
8981   case Builtin::BI__builtin_abs:
8982     return Builtin::BI__builtin_labs;
8983   case Builtin::BI__builtin_labs:
8984     return Builtin::BI__builtin_llabs;
8985   case Builtin::BI__builtin_llabs:
8986     return 0;
8987 
8988   case Builtin::BI__builtin_fabsf:
8989     return Builtin::BI__builtin_fabs;
8990   case Builtin::BI__builtin_fabs:
8991     return Builtin::BI__builtin_fabsl;
8992   case Builtin::BI__builtin_fabsl:
8993     return 0;
8994 
8995   case Builtin::BI__builtin_cabsf:
8996     return Builtin::BI__builtin_cabs;
8997   case Builtin::BI__builtin_cabs:
8998     return Builtin::BI__builtin_cabsl;
8999   case Builtin::BI__builtin_cabsl:
9000     return 0;
9001 
9002   case Builtin::BIabs:
9003     return Builtin::BIlabs;
9004   case Builtin::BIlabs:
9005     return Builtin::BIllabs;
9006   case Builtin::BIllabs:
9007     return 0;
9008 
9009   case Builtin::BIfabsf:
9010     return Builtin::BIfabs;
9011   case Builtin::BIfabs:
9012     return Builtin::BIfabsl;
9013   case Builtin::BIfabsl:
9014     return 0;
9015 
9016   case Builtin::BIcabsf:
9017    return Builtin::BIcabs;
9018   case Builtin::BIcabs:
9019     return Builtin::BIcabsl;
9020   case Builtin::BIcabsl:
9021     return 0;
9022   }
9023 }
9024 
9025 // Returns the argument type of the absolute value function.
9026 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9027                                              unsigned AbsType) {
9028   if (AbsType == 0)
9029     return QualType();
9030 
9031   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9032   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9033   if (Error != ASTContext::GE_None)
9034     return QualType();
9035 
9036   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9037   if (!FT)
9038     return QualType();
9039 
9040   if (FT->getNumParams() != 1)
9041     return QualType();
9042 
9043   return FT->getParamType(0);
9044 }
9045 
9046 // Returns the best absolute value function, or zero, based on type and
9047 // current absolute value function.
9048 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9049                                    unsigned AbsFunctionKind) {
9050   unsigned BestKind = 0;
9051   uint64_t ArgSize = Context.getTypeSize(ArgType);
9052   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9053        Kind = getLargerAbsoluteValueFunction(Kind)) {
9054     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9055     if (Context.getTypeSize(ParamType) >= ArgSize) {
9056       if (BestKind == 0)
9057         BestKind = Kind;
9058       else if (Context.hasSameType(ParamType, ArgType)) {
9059         BestKind = Kind;
9060         break;
9061       }
9062     }
9063   }
9064   return BestKind;
9065 }
9066 
9067 enum AbsoluteValueKind {
9068   AVK_Integer,
9069   AVK_Floating,
9070   AVK_Complex
9071 };
9072 
9073 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9074   if (T->isIntegralOrEnumerationType())
9075     return AVK_Integer;
9076   if (T->isRealFloatingType())
9077     return AVK_Floating;
9078   if (T->isAnyComplexType())
9079     return AVK_Complex;
9080 
9081   llvm_unreachable("Type not integer, floating, or complex");
9082 }
9083 
9084 // Changes the absolute value function to a different type.  Preserves whether
9085 // the function is a builtin.
9086 static unsigned changeAbsFunction(unsigned AbsKind,
9087                                   AbsoluteValueKind ValueKind) {
9088   switch (ValueKind) {
9089   case AVK_Integer:
9090     switch (AbsKind) {
9091     default:
9092       return 0;
9093     case Builtin::BI__builtin_fabsf:
9094     case Builtin::BI__builtin_fabs:
9095     case Builtin::BI__builtin_fabsl:
9096     case Builtin::BI__builtin_cabsf:
9097     case Builtin::BI__builtin_cabs:
9098     case Builtin::BI__builtin_cabsl:
9099       return Builtin::BI__builtin_abs;
9100     case Builtin::BIfabsf:
9101     case Builtin::BIfabs:
9102     case Builtin::BIfabsl:
9103     case Builtin::BIcabsf:
9104     case Builtin::BIcabs:
9105     case Builtin::BIcabsl:
9106       return Builtin::BIabs;
9107     }
9108   case AVK_Floating:
9109     switch (AbsKind) {
9110     default:
9111       return 0;
9112     case Builtin::BI__builtin_abs:
9113     case Builtin::BI__builtin_labs:
9114     case Builtin::BI__builtin_llabs:
9115     case Builtin::BI__builtin_cabsf:
9116     case Builtin::BI__builtin_cabs:
9117     case Builtin::BI__builtin_cabsl:
9118       return Builtin::BI__builtin_fabsf;
9119     case Builtin::BIabs:
9120     case Builtin::BIlabs:
9121     case Builtin::BIllabs:
9122     case Builtin::BIcabsf:
9123     case Builtin::BIcabs:
9124     case Builtin::BIcabsl:
9125       return Builtin::BIfabsf;
9126     }
9127   case AVK_Complex:
9128     switch (AbsKind) {
9129     default:
9130       return 0;
9131     case Builtin::BI__builtin_abs:
9132     case Builtin::BI__builtin_labs:
9133     case Builtin::BI__builtin_llabs:
9134     case Builtin::BI__builtin_fabsf:
9135     case Builtin::BI__builtin_fabs:
9136     case Builtin::BI__builtin_fabsl:
9137       return Builtin::BI__builtin_cabsf;
9138     case Builtin::BIabs:
9139     case Builtin::BIlabs:
9140     case Builtin::BIllabs:
9141     case Builtin::BIfabsf:
9142     case Builtin::BIfabs:
9143     case Builtin::BIfabsl:
9144       return Builtin::BIcabsf;
9145     }
9146   }
9147   llvm_unreachable("Unable to convert function");
9148 }
9149 
9150 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9151   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9152   if (!FnInfo)
9153     return 0;
9154 
9155   switch (FDecl->getBuiltinID()) {
9156   default:
9157     return 0;
9158   case Builtin::BI__builtin_abs:
9159   case Builtin::BI__builtin_fabs:
9160   case Builtin::BI__builtin_fabsf:
9161   case Builtin::BI__builtin_fabsl:
9162   case Builtin::BI__builtin_labs:
9163   case Builtin::BI__builtin_llabs:
9164   case Builtin::BI__builtin_cabs:
9165   case Builtin::BI__builtin_cabsf:
9166   case Builtin::BI__builtin_cabsl:
9167   case Builtin::BIabs:
9168   case Builtin::BIlabs:
9169   case Builtin::BIllabs:
9170   case Builtin::BIfabs:
9171   case Builtin::BIfabsf:
9172   case Builtin::BIfabsl:
9173   case Builtin::BIcabs:
9174   case Builtin::BIcabsf:
9175   case Builtin::BIcabsl:
9176     return FDecl->getBuiltinID();
9177   }
9178   llvm_unreachable("Unknown Builtin type");
9179 }
9180 
9181 // If the replacement is valid, emit a note with replacement function.
9182 // Additionally, suggest including the proper header if not already included.
9183 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9184                             unsigned AbsKind, QualType ArgType) {
9185   bool EmitHeaderHint = true;
9186   const char *HeaderName = nullptr;
9187   const char *FunctionName = nullptr;
9188   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9189     FunctionName = "std::abs";
9190     if (ArgType->isIntegralOrEnumerationType()) {
9191       HeaderName = "cstdlib";
9192     } else if (ArgType->isRealFloatingType()) {
9193       HeaderName = "cmath";
9194     } else {
9195       llvm_unreachable("Invalid Type");
9196     }
9197 
9198     // Lookup all std::abs
9199     if (NamespaceDecl *Std = S.getStdNamespace()) {
9200       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9201       R.suppressDiagnostics();
9202       S.LookupQualifiedName(R, Std);
9203 
9204       for (const auto *I : R) {
9205         const FunctionDecl *FDecl = nullptr;
9206         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9207           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9208         } else {
9209           FDecl = dyn_cast<FunctionDecl>(I);
9210         }
9211         if (!FDecl)
9212           continue;
9213 
9214         // Found std::abs(), check that they are the right ones.
9215         if (FDecl->getNumParams() != 1)
9216           continue;
9217 
9218         // Check that the parameter type can handle the argument.
9219         QualType ParamType = FDecl->getParamDecl(0)->getType();
9220         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9221             S.Context.getTypeSize(ArgType) <=
9222                 S.Context.getTypeSize(ParamType)) {
9223           // Found a function, don't need the header hint.
9224           EmitHeaderHint = false;
9225           break;
9226         }
9227       }
9228     }
9229   } else {
9230     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9231     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9232 
9233     if (HeaderName) {
9234       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9235       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9236       R.suppressDiagnostics();
9237       S.LookupName(R, S.getCurScope());
9238 
9239       if (R.isSingleResult()) {
9240         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9241         if (FD && FD->getBuiltinID() == AbsKind) {
9242           EmitHeaderHint = false;
9243         } else {
9244           return;
9245         }
9246       } else if (!R.empty()) {
9247         return;
9248       }
9249     }
9250   }
9251 
9252   S.Diag(Loc, diag::note_replace_abs_function)
9253       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9254 
9255   if (!HeaderName)
9256     return;
9257 
9258   if (!EmitHeaderHint)
9259     return;
9260 
9261   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9262                                                     << FunctionName;
9263 }
9264 
9265 template <std::size_t StrLen>
9266 static bool IsStdFunction(const FunctionDecl *FDecl,
9267                           const char (&Str)[StrLen]) {
9268   if (!FDecl)
9269     return false;
9270   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9271     return false;
9272   if (!FDecl->isInStdNamespace())
9273     return false;
9274 
9275   return true;
9276 }
9277 
9278 // Warn when using the wrong abs() function.
9279 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9280                                       const FunctionDecl *FDecl) {
9281   if (Call->getNumArgs() != 1)
9282     return;
9283 
9284   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9285   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9286   if (AbsKind == 0 && !IsStdAbs)
9287     return;
9288 
9289   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9290   QualType ParamType = Call->getArg(0)->getType();
9291 
9292   // Unsigned types cannot be negative.  Suggest removing the absolute value
9293   // function call.
9294   if (ArgType->isUnsignedIntegerType()) {
9295     const char *FunctionName =
9296         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9297     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9298     Diag(Call->getExprLoc(), diag::note_remove_abs)
9299         << FunctionName
9300         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9301     return;
9302   }
9303 
9304   // Taking the absolute value of a pointer is very suspicious, they probably
9305   // wanted to index into an array, dereference a pointer, call a function, etc.
9306   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9307     unsigned DiagType = 0;
9308     if (ArgType->isFunctionType())
9309       DiagType = 1;
9310     else if (ArgType->isArrayType())
9311       DiagType = 2;
9312 
9313     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9314     return;
9315   }
9316 
9317   // std::abs has overloads which prevent most of the absolute value problems
9318   // from occurring.
9319   if (IsStdAbs)
9320     return;
9321 
9322   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9323   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9324 
9325   // The argument and parameter are the same kind.  Check if they are the right
9326   // size.
9327   if (ArgValueKind == ParamValueKind) {
9328     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9329       return;
9330 
9331     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9332     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9333         << FDecl << ArgType << ParamType;
9334 
9335     if (NewAbsKind == 0)
9336       return;
9337 
9338     emitReplacement(*this, Call->getExprLoc(),
9339                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9340     return;
9341   }
9342 
9343   // ArgValueKind != ParamValueKind
9344   // The wrong type of absolute value function was used.  Attempt to find the
9345   // proper one.
9346   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9347   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9348   if (NewAbsKind == 0)
9349     return;
9350 
9351   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9352       << FDecl << ParamValueKind << ArgValueKind;
9353 
9354   emitReplacement(*this, Call->getExprLoc(),
9355                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9356 }
9357 
9358 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9359 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9360                                 const FunctionDecl *FDecl) {
9361   if (!Call || !FDecl) return;
9362 
9363   // Ignore template specializations and macros.
9364   if (inTemplateInstantiation()) return;
9365   if (Call->getExprLoc().isMacroID()) return;
9366 
9367   // Only care about the one template argument, two function parameter std::max
9368   if (Call->getNumArgs() != 2) return;
9369   if (!IsStdFunction(FDecl, "max")) return;
9370   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9371   if (!ArgList) return;
9372   if (ArgList->size() != 1) return;
9373 
9374   // Check that template type argument is unsigned integer.
9375   const auto& TA = ArgList->get(0);
9376   if (TA.getKind() != TemplateArgument::Type) return;
9377   QualType ArgType = TA.getAsType();
9378   if (!ArgType->isUnsignedIntegerType()) return;
9379 
9380   // See if either argument is a literal zero.
9381   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9382     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9383     if (!MTE) return false;
9384     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9385     if (!Num) return false;
9386     if (Num->getValue() != 0) return false;
9387     return true;
9388   };
9389 
9390   const Expr *FirstArg = Call->getArg(0);
9391   const Expr *SecondArg = Call->getArg(1);
9392   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9393   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9394 
9395   // Only warn when exactly one argument is zero.
9396   if (IsFirstArgZero == IsSecondArgZero) return;
9397 
9398   SourceRange FirstRange = FirstArg->getSourceRange();
9399   SourceRange SecondRange = SecondArg->getSourceRange();
9400 
9401   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9402 
9403   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9404       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9405 
9406   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9407   SourceRange RemovalRange;
9408   if (IsFirstArgZero) {
9409     RemovalRange = SourceRange(FirstRange.getBegin(),
9410                                SecondRange.getBegin().getLocWithOffset(-1));
9411   } else {
9412     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9413                                SecondRange.getEnd());
9414   }
9415 
9416   Diag(Call->getExprLoc(), diag::note_remove_max_call)
9417         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9418         << FixItHint::CreateRemoval(RemovalRange);
9419 }
9420 
9421 //===--- CHECK: Standard memory functions ---------------------------------===//
9422 
9423 /// Takes the expression passed to the size_t parameter of functions
9424 /// such as memcmp, strncat, etc and warns if it's a comparison.
9425 ///
9426 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9427 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9428                                            IdentifierInfo *FnName,
9429                                            SourceLocation FnLoc,
9430                                            SourceLocation RParenLoc) {
9431   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9432   if (!Size)
9433     return false;
9434 
9435   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9436   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9437     return false;
9438 
9439   SourceRange SizeRange = Size->getSourceRange();
9440   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9441       << SizeRange << FnName;
9442   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9443       << FnName
9444       << FixItHint::CreateInsertion(
9445              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9446       << FixItHint::CreateRemoval(RParenLoc);
9447   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9448       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9449       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9450                                     ")");
9451 
9452   return true;
9453 }
9454 
9455 /// Determine whether the given type is or contains a dynamic class type
9456 /// (e.g., whether it has a vtable).
9457 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9458                                                      bool &IsContained) {
9459   // Look through array types while ignoring qualifiers.
9460   const Type *Ty = T->getBaseElementTypeUnsafe();
9461   IsContained = false;
9462 
9463   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9464   RD = RD ? RD->getDefinition() : nullptr;
9465   if (!RD || RD->isInvalidDecl())
9466     return nullptr;
9467 
9468   if (RD->isDynamicClass())
9469     return RD;
9470 
9471   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9472   // It's impossible for a class to transitively contain itself by value, so
9473   // infinite recursion is impossible.
9474   for (auto *FD : RD->fields()) {
9475     bool SubContained;
9476     if (const CXXRecordDecl *ContainedRD =
9477             getContainedDynamicClass(FD->getType(), SubContained)) {
9478       IsContained = true;
9479       return ContainedRD;
9480     }
9481   }
9482 
9483   return nullptr;
9484 }
9485 
9486 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9487   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9488     if (Unary->getKind() == UETT_SizeOf)
9489       return Unary;
9490   return nullptr;
9491 }
9492 
9493 /// If E is a sizeof expression, returns its argument expression,
9494 /// otherwise returns NULL.
9495 static const Expr *getSizeOfExprArg(const Expr *E) {
9496   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9497     if (!SizeOf->isArgumentType())
9498       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9499   return nullptr;
9500 }
9501 
9502 /// If E is a sizeof expression, returns its argument type.
9503 static QualType getSizeOfArgType(const Expr *E) {
9504   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9505     return SizeOf->getTypeOfArgument();
9506   return QualType();
9507 }
9508 
9509 namespace {
9510 
9511 struct SearchNonTrivialToInitializeField
9512     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9513   using Super =
9514       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9515 
9516   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9517 
9518   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9519                      SourceLocation SL) {
9520     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9521       asDerived().visitArray(PDIK, AT, SL);
9522       return;
9523     }
9524 
9525     Super::visitWithKind(PDIK, FT, SL);
9526   }
9527 
9528   void visitARCStrong(QualType FT, SourceLocation SL) {
9529     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9530   }
9531   void visitARCWeak(QualType FT, SourceLocation SL) {
9532     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9533   }
9534   void visitStruct(QualType FT, SourceLocation SL) {
9535     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9536       visit(FD->getType(), FD->getLocation());
9537   }
9538   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9539                   const ArrayType *AT, SourceLocation SL) {
9540     visit(getContext().getBaseElementType(AT), SL);
9541   }
9542   void visitTrivial(QualType FT, SourceLocation SL) {}
9543 
9544   static void diag(QualType RT, const Expr *E, Sema &S) {
9545     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9546   }
9547 
9548   ASTContext &getContext() { return S.getASTContext(); }
9549 
9550   const Expr *E;
9551   Sema &S;
9552 };
9553 
9554 struct SearchNonTrivialToCopyField
9555     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9556   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9557 
9558   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9559 
9560   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9561                      SourceLocation SL) {
9562     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9563       asDerived().visitArray(PCK, AT, SL);
9564       return;
9565     }
9566 
9567     Super::visitWithKind(PCK, FT, SL);
9568   }
9569 
9570   void visitARCStrong(QualType FT, SourceLocation SL) {
9571     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9572   }
9573   void visitARCWeak(QualType FT, SourceLocation SL) {
9574     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9575   }
9576   void visitStruct(QualType FT, SourceLocation SL) {
9577     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9578       visit(FD->getType(), FD->getLocation());
9579   }
9580   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9581                   SourceLocation SL) {
9582     visit(getContext().getBaseElementType(AT), SL);
9583   }
9584   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9585                 SourceLocation SL) {}
9586   void visitTrivial(QualType FT, SourceLocation SL) {}
9587   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9588 
9589   static void diag(QualType RT, const Expr *E, Sema &S) {
9590     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9591   }
9592 
9593   ASTContext &getContext() { return S.getASTContext(); }
9594 
9595   const Expr *E;
9596   Sema &S;
9597 };
9598 
9599 }
9600 
9601 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9602 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9603   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9604 
9605   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9606     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9607       return false;
9608 
9609     return doesExprLikelyComputeSize(BO->getLHS()) ||
9610            doesExprLikelyComputeSize(BO->getRHS());
9611   }
9612 
9613   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9614 }
9615 
9616 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9617 ///
9618 /// \code
9619 ///   #define MACRO 0
9620 ///   foo(MACRO);
9621 ///   foo(0);
9622 /// \endcode
9623 ///
9624 /// This should return true for the first call to foo, but not for the second
9625 /// (regardless of whether foo is a macro or function).
9626 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9627                                         SourceLocation CallLoc,
9628                                         SourceLocation ArgLoc) {
9629   if (!CallLoc.isMacroID())
9630     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9631 
9632   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9633          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9634 }
9635 
9636 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9637 /// last two arguments transposed.
9638 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9639   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9640     return;
9641 
9642   const Expr *SizeArg =
9643     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9644 
9645   auto isLiteralZero = [](const Expr *E) {
9646     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9647   };
9648 
9649   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9650   SourceLocation CallLoc = Call->getRParenLoc();
9651   SourceManager &SM = S.getSourceManager();
9652   if (isLiteralZero(SizeArg) &&
9653       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9654 
9655     SourceLocation DiagLoc = SizeArg->getExprLoc();
9656 
9657     // Some platforms #define bzero to __builtin_memset. See if this is the
9658     // case, and if so, emit a better diagnostic.
9659     if (BId == Builtin::BIbzero ||
9660         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9661                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9662       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9663       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9664     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9665       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9666       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9667     }
9668     return;
9669   }
9670 
9671   // If the second argument to a memset is a sizeof expression and the third
9672   // isn't, this is also likely an error. This should catch
9673   // 'memset(buf, sizeof(buf), 0xff)'.
9674   if (BId == Builtin::BImemset &&
9675       doesExprLikelyComputeSize(Call->getArg(1)) &&
9676       !doesExprLikelyComputeSize(Call->getArg(2))) {
9677     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9678     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9679     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9680     return;
9681   }
9682 }
9683 
9684 /// Check for dangerous or invalid arguments to memset().
9685 ///
9686 /// This issues warnings on known problematic, dangerous or unspecified
9687 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9688 /// function calls.
9689 ///
9690 /// \param Call The call expression to diagnose.
9691 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9692                                    unsigned BId,
9693                                    IdentifierInfo *FnName) {
9694   assert(BId != 0);
9695 
9696   // It is possible to have a non-standard definition of memset.  Validate
9697   // we have enough arguments, and if not, abort further checking.
9698   unsigned ExpectedNumArgs =
9699       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9700   if (Call->getNumArgs() < ExpectedNumArgs)
9701     return;
9702 
9703   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9704                       BId == Builtin::BIstrndup ? 1 : 2);
9705   unsigned LenArg =
9706       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9707   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9708 
9709   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9710                                      Call->getBeginLoc(), Call->getRParenLoc()))
9711     return;
9712 
9713   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9714   CheckMemaccessSize(*this, BId, Call);
9715 
9716   // We have special checking when the length is a sizeof expression.
9717   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9718   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9719   llvm::FoldingSetNodeID SizeOfArgID;
9720 
9721   // Although widely used, 'bzero' is not a standard function. Be more strict
9722   // with the argument types before allowing diagnostics and only allow the
9723   // form bzero(ptr, sizeof(...)).
9724   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9725   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9726     return;
9727 
9728   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9729     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9730     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9731 
9732     QualType DestTy = Dest->getType();
9733     QualType PointeeTy;
9734     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9735       PointeeTy = DestPtrTy->getPointeeType();
9736 
9737       // Never warn about void type pointers. This can be used to suppress
9738       // false positives.
9739       if (PointeeTy->isVoidType())
9740         continue;
9741 
9742       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9743       // actually comparing the expressions for equality. Because computing the
9744       // expression IDs can be expensive, we only do this if the diagnostic is
9745       // enabled.
9746       if (SizeOfArg &&
9747           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9748                            SizeOfArg->getExprLoc())) {
9749         // We only compute IDs for expressions if the warning is enabled, and
9750         // cache the sizeof arg's ID.
9751         if (SizeOfArgID == llvm::FoldingSetNodeID())
9752           SizeOfArg->Profile(SizeOfArgID, Context, true);
9753         llvm::FoldingSetNodeID DestID;
9754         Dest->Profile(DestID, Context, true);
9755         if (DestID == SizeOfArgID) {
9756           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9757           //       over sizeof(src) as well.
9758           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9759           StringRef ReadableName = FnName->getName();
9760 
9761           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9762             if (UnaryOp->getOpcode() == UO_AddrOf)
9763               ActionIdx = 1; // If its an address-of operator, just remove it.
9764           if (!PointeeTy->isIncompleteType() &&
9765               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9766             ActionIdx = 2; // If the pointee's size is sizeof(char),
9767                            // suggest an explicit length.
9768 
9769           // If the function is defined as a builtin macro, do not show macro
9770           // expansion.
9771           SourceLocation SL = SizeOfArg->getExprLoc();
9772           SourceRange DSR = Dest->getSourceRange();
9773           SourceRange SSR = SizeOfArg->getSourceRange();
9774           SourceManager &SM = getSourceManager();
9775 
9776           if (SM.isMacroArgExpansion(SL)) {
9777             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9778             SL = SM.getSpellingLoc(SL);
9779             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9780                              SM.getSpellingLoc(DSR.getEnd()));
9781             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9782                              SM.getSpellingLoc(SSR.getEnd()));
9783           }
9784 
9785           DiagRuntimeBehavior(SL, SizeOfArg,
9786                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9787                                 << ReadableName
9788                                 << PointeeTy
9789                                 << DestTy
9790                                 << DSR
9791                                 << SSR);
9792           DiagRuntimeBehavior(SL, SizeOfArg,
9793                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9794                                 << ActionIdx
9795                                 << SSR);
9796 
9797           break;
9798         }
9799       }
9800 
9801       // Also check for cases where the sizeof argument is the exact same
9802       // type as the memory argument, and where it points to a user-defined
9803       // record type.
9804       if (SizeOfArgTy != QualType()) {
9805         if (PointeeTy->isRecordType() &&
9806             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9807           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9808                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9809                                 << FnName << SizeOfArgTy << ArgIdx
9810                                 << PointeeTy << Dest->getSourceRange()
9811                                 << LenExpr->getSourceRange());
9812           break;
9813         }
9814       }
9815     } else if (DestTy->isArrayType()) {
9816       PointeeTy = DestTy;
9817     }
9818 
9819     if (PointeeTy == QualType())
9820       continue;
9821 
9822     // Always complain about dynamic classes.
9823     bool IsContained;
9824     if (const CXXRecordDecl *ContainedRD =
9825             getContainedDynamicClass(PointeeTy, IsContained)) {
9826 
9827       unsigned OperationType = 0;
9828       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9829       // "overwritten" if we're warning about the destination for any call
9830       // but memcmp; otherwise a verb appropriate to the call.
9831       if (ArgIdx != 0 || IsCmp) {
9832         if (BId == Builtin::BImemcpy)
9833           OperationType = 1;
9834         else if(BId == Builtin::BImemmove)
9835           OperationType = 2;
9836         else if (IsCmp)
9837           OperationType = 3;
9838       }
9839 
9840       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9841                           PDiag(diag::warn_dyn_class_memaccess)
9842                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9843                               << IsContained << ContainedRD << OperationType
9844                               << Call->getCallee()->getSourceRange());
9845     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9846              BId != Builtin::BImemset)
9847       DiagRuntimeBehavior(
9848         Dest->getExprLoc(), Dest,
9849         PDiag(diag::warn_arc_object_memaccess)
9850           << ArgIdx << FnName << PointeeTy
9851           << Call->getCallee()->getSourceRange());
9852     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9853       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9854           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9855         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9856                             PDiag(diag::warn_cstruct_memaccess)
9857                                 << ArgIdx << FnName << PointeeTy << 0);
9858         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9859       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9860                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9861         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9862                             PDiag(diag::warn_cstruct_memaccess)
9863                                 << ArgIdx << FnName << PointeeTy << 1);
9864         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9865       } else {
9866         continue;
9867       }
9868     } else
9869       continue;
9870 
9871     DiagRuntimeBehavior(
9872       Dest->getExprLoc(), Dest,
9873       PDiag(diag::note_bad_memaccess_silence)
9874         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9875     break;
9876   }
9877 }
9878 
9879 // A little helper routine: ignore addition and subtraction of integer literals.
9880 // This intentionally does not ignore all integer constant expressions because
9881 // we don't want to remove sizeof().
9882 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9883   Ex = Ex->IgnoreParenCasts();
9884 
9885   while (true) {
9886     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9887     if (!BO || !BO->isAdditiveOp())
9888       break;
9889 
9890     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9891     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9892 
9893     if (isa<IntegerLiteral>(RHS))
9894       Ex = LHS;
9895     else if (isa<IntegerLiteral>(LHS))
9896       Ex = RHS;
9897     else
9898       break;
9899   }
9900 
9901   return Ex;
9902 }
9903 
9904 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9905                                                       ASTContext &Context) {
9906   // Only handle constant-sized or VLAs, but not flexible members.
9907   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9908     // Only issue the FIXIT for arrays of size > 1.
9909     if (CAT->getSize().getSExtValue() <= 1)
9910       return false;
9911   } else if (!Ty->isVariableArrayType()) {
9912     return false;
9913   }
9914   return true;
9915 }
9916 
9917 // Warn if the user has made the 'size' argument to strlcpy or strlcat
9918 // be the size of the source, instead of the destination.
9919 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9920                                     IdentifierInfo *FnName) {
9921 
9922   // Don't crash if the user has the wrong number of arguments
9923   unsigned NumArgs = Call->getNumArgs();
9924   if ((NumArgs != 3) && (NumArgs != 4))
9925     return;
9926 
9927   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9928   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9929   const Expr *CompareWithSrc = nullptr;
9930 
9931   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9932                                      Call->getBeginLoc(), Call->getRParenLoc()))
9933     return;
9934 
9935   // Look for 'strlcpy(dst, x, sizeof(x))'
9936   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9937     CompareWithSrc = Ex;
9938   else {
9939     // Look for 'strlcpy(dst, x, strlen(x))'
9940     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9941       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9942           SizeCall->getNumArgs() == 1)
9943         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9944     }
9945   }
9946 
9947   if (!CompareWithSrc)
9948     return;
9949 
9950   // Determine if the argument to sizeof/strlen is equal to the source
9951   // argument.  In principle there's all kinds of things you could do
9952   // here, for instance creating an == expression and evaluating it with
9953   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9954   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9955   if (!SrcArgDRE)
9956     return;
9957 
9958   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9959   if (!CompareWithSrcDRE ||
9960       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9961     return;
9962 
9963   const Expr *OriginalSizeArg = Call->getArg(2);
9964   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9965       << OriginalSizeArg->getSourceRange() << FnName;
9966 
9967   // Output a FIXIT hint if the destination is an array (rather than a
9968   // pointer to an array).  This could be enhanced to handle some
9969   // pointers if we know the actual size, like if DstArg is 'array+2'
9970   // we could say 'sizeof(array)-2'.
9971   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9972   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9973     return;
9974 
9975   SmallString<128> sizeString;
9976   llvm::raw_svector_ostream OS(sizeString);
9977   OS << "sizeof(";
9978   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9979   OS << ")";
9980 
9981   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9982       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9983                                       OS.str());
9984 }
9985 
9986 /// Check if two expressions refer to the same declaration.
9987 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9988   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9989     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9990       return D1->getDecl() == D2->getDecl();
9991   return false;
9992 }
9993 
9994 static const Expr *getStrlenExprArg(const Expr *E) {
9995   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9996     const FunctionDecl *FD = CE->getDirectCallee();
9997     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
9998       return nullptr;
9999     return CE->getArg(0)->IgnoreParenCasts();
10000   }
10001   return nullptr;
10002 }
10003 
10004 // Warn on anti-patterns as the 'size' argument to strncat.
10005 // The correct size argument should look like following:
10006 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10007 void Sema::CheckStrncatArguments(const CallExpr *CE,
10008                                  IdentifierInfo *FnName) {
10009   // Don't crash if the user has the wrong number of arguments.
10010   if (CE->getNumArgs() < 3)
10011     return;
10012   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10013   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10014   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10015 
10016   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10017                                      CE->getRParenLoc()))
10018     return;
10019 
10020   // Identify common expressions, which are wrongly used as the size argument
10021   // to strncat and may lead to buffer overflows.
10022   unsigned PatternType = 0;
10023   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10024     // - sizeof(dst)
10025     if (referToTheSameDecl(SizeOfArg, DstArg))
10026       PatternType = 1;
10027     // - sizeof(src)
10028     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10029       PatternType = 2;
10030   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10031     if (BE->getOpcode() == BO_Sub) {
10032       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10033       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10034       // - sizeof(dst) - strlen(dst)
10035       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10036           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10037         PatternType = 1;
10038       // - sizeof(src) - (anything)
10039       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10040         PatternType = 2;
10041     }
10042   }
10043 
10044   if (PatternType == 0)
10045     return;
10046 
10047   // Generate the diagnostic.
10048   SourceLocation SL = LenArg->getBeginLoc();
10049   SourceRange SR = LenArg->getSourceRange();
10050   SourceManager &SM = getSourceManager();
10051 
10052   // If the function is defined as a builtin macro, do not show macro expansion.
10053   if (SM.isMacroArgExpansion(SL)) {
10054     SL = SM.getSpellingLoc(SL);
10055     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10056                      SM.getSpellingLoc(SR.getEnd()));
10057   }
10058 
10059   // Check if the destination is an array (rather than a pointer to an array).
10060   QualType DstTy = DstArg->getType();
10061   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10062                                                                     Context);
10063   if (!isKnownSizeArray) {
10064     if (PatternType == 1)
10065       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10066     else
10067       Diag(SL, diag::warn_strncat_src_size) << SR;
10068     return;
10069   }
10070 
10071   if (PatternType == 1)
10072     Diag(SL, diag::warn_strncat_large_size) << SR;
10073   else
10074     Diag(SL, diag::warn_strncat_src_size) << SR;
10075 
10076   SmallString<128> sizeString;
10077   llvm::raw_svector_ostream OS(sizeString);
10078   OS << "sizeof(";
10079   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10080   OS << ") - ";
10081   OS << "strlen(";
10082   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10083   OS << ") - 1";
10084 
10085   Diag(SL, diag::note_strncat_wrong_size)
10086     << FixItHint::CreateReplacement(SR, OS.str());
10087 }
10088 
10089 void
10090 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10091                          SourceLocation ReturnLoc,
10092                          bool isObjCMethod,
10093                          const AttrVec *Attrs,
10094                          const FunctionDecl *FD) {
10095   // Check if the return value is null but should not be.
10096   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10097        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10098       CheckNonNullExpr(*this, RetValExp))
10099     Diag(ReturnLoc, diag::warn_null_ret)
10100       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10101 
10102   // C++11 [basic.stc.dynamic.allocation]p4:
10103   //   If an allocation function declared with a non-throwing
10104   //   exception-specification fails to allocate storage, it shall return
10105   //   a null pointer. Any other allocation function that fails to allocate
10106   //   storage shall indicate failure only by throwing an exception [...]
10107   if (FD) {
10108     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10109     if (Op == OO_New || Op == OO_Array_New) {
10110       const FunctionProtoType *Proto
10111         = FD->getType()->castAs<FunctionProtoType>();
10112       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10113           CheckNonNullExpr(*this, RetValExp))
10114         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10115           << FD << getLangOpts().CPlusPlus11;
10116     }
10117   }
10118 }
10119 
10120 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10121 
10122 /// Check for comparisons of floating point operands using != and ==.
10123 /// Issue a warning if these are no self-comparisons, as they are not likely
10124 /// to do what the programmer intended.
10125 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10126   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10127   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10128 
10129   // Special case: check for x == x (which is OK).
10130   // Do not emit warnings for such cases.
10131   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10132     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10133       if (DRL->getDecl() == DRR->getDecl())
10134         return;
10135 
10136   // Special case: check for comparisons against literals that can be exactly
10137   //  represented by APFloat.  In such cases, do not emit a warning.  This
10138   //  is a heuristic: often comparison against such literals are used to
10139   //  detect if a value in a variable has not changed.  This clearly can
10140   //  lead to false negatives.
10141   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10142     if (FLL->isExact())
10143       return;
10144   } else
10145     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10146       if (FLR->isExact())
10147         return;
10148 
10149   // Check for comparisons with builtin types.
10150   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10151     if (CL->getBuiltinCallee())
10152       return;
10153 
10154   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10155     if (CR->getBuiltinCallee())
10156       return;
10157 
10158   // Emit the diagnostic.
10159   Diag(Loc, diag::warn_floatingpoint_eq)
10160     << LHS->getSourceRange() << RHS->getSourceRange();
10161 }
10162 
10163 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10164 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10165 
10166 namespace {
10167 
10168 /// Structure recording the 'active' range of an integer-valued
10169 /// expression.
10170 struct IntRange {
10171   /// The number of bits active in the int. Note that this includes exactly one
10172   /// sign bit if !NonNegative.
10173   unsigned Width;
10174 
10175   /// True if the int is known not to have negative values. If so, all leading
10176   /// bits before Width are known zero, otherwise they are known to be the
10177   /// same as the MSB within Width.
10178   bool NonNegative;
10179 
10180   IntRange(unsigned Width, bool NonNegative)
10181       : Width(Width), NonNegative(NonNegative) {}
10182 
10183   /// Number of bits excluding the sign bit.
10184   unsigned valueBits() const {
10185     return NonNegative ? Width : Width - 1;
10186   }
10187 
10188   /// Returns the range of the bool type.
10189   static IntRange forBoolType() {
10190     return IntRange(1, true);
10191   }
10192 
10193   /// Returns the range of an opaque value of the given integral type.
10194   static IntRange forValueOfType(ASTContext &C, QualType T) {
10195     return forValueOfCanonicalType(C,
10196                           T->getCanonicalTypeInternal().getTypePtr());
10197   }
10198 
10199   /// Returns the range of an opaque value of a canonical integral type.
10200   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10201     assert(T->isCanonicalUnqualified());
10202 
10203     if (const VectorType *VT = dyn_cast<VectorType>(T))
10204       T = VT->getElementType().getTypePtr();
10205     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10206       T = CT->getElementType().getTypePtr();
10207     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10208       T = AT->getValueType().getTypePtr();
10209 
10210     if (!C.getLangOpts().CPlusPlus) {
10211       // For enum types in C code, use the underlying datatype.
10212       if (const EnumType *ET = dyn_cast<EnumType>(T))
10213         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10214     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10215       // For enum types in C++, use the known bit width of the enumerators.
10216       EnumDecl *Enum = ET->getDecl();
10217       // In C++11, enums can have a fixed underlying type. Use this type to
10218       // compute the range.
10219       if (Enum->isFixed()) {
10220         return IntRange(C.getIntWidth(QualType(T, 0)),
10221                         !ET->isSignedIntegerOrEnumerationType());
10222       }
10223 
10224       unsigned NumPositive = Enum->getNumPositiveBits();
10225       unsigned NumNegative = Enum->getNumNegativeBits();
10226 
10227       if (NumNegative == 0)
10228         return IntRange(NumPositive, true/*NonNegative*/);
10229       else
10230         return IntRange(std::max(NumPositive + 1, NumNegative),
10231                         false/*NonNegative*/);
10232     }
10233 
10234     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10235       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10236 
10237     const BuiltinType *BT = cast<BuiltinType>(T);
10238     assert(BT->isInteger());
10239 
10240     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10241   }
10242 
10243   /// Returns the "target" range of a canonical integral type, i.e.
10244   /// the range of values expressible in the type.
10245   ///
10246   /// This matches forValueOfCanonicalType except that enums have the
10247   /// full range of their type, not the range of their enumerators.
10248   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10249     assert(T->isCanonicalUnqualified());
10250 
10251     if (const VectorType *VT = dyn_cast<VectorType>(T))
10252       T = VT->getElementType().getTypePtr();
10253     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10254       T = CT->getElementType().getTypePtr();
10255     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10256       T = AT->getValueType().getTypePtr();
10257     if (const EnumType *ET = dyn_cast<EnumType>(T))
10258       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10259 
10260     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10261       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10262 
10263     const BuiltinType *BT = cast<BuiltinType>(T);
10264     assert(BT->isInteger());
10265 
10266     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10267   }
10268 
10269   /// Returns the supremum of two ranges: i.e. their conservative merge.
10270   static IntRange join(IntRange L, IntRange R) {
10271     bool Unsigned = L.NonNegative && R.NonNegative;
10272     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10273                     L.NonNegative && R.NonNegative);
10274   }
10275 
10276   /// Return the range of a bitwise-AND of the two ranges.
10277   static IntRange bit_and(IntRange L, IntRange R) {
10278     unsigned Bits = std::max(L.Width, R.Width);
10279     bool NonNegative = false;
10280     if (L.NonNegative) {
10281       Bits = std::min(Bits, L.Width);
10282       NonNegative = true;
10283     }
10284     if (R.NonNegative) {
10285       Bits = std::min(Bits, R.Width);
10286       NonNegative = true;
10287     }
10288     return IntRange(Bits, NonNegative);
10289   }
10290 
10291   /// Return the range of a sum of the two ranges.
10292   static IntRange sum(IntRange L, IntRange R) {
10293     bool Unsigned = L.NonNegative && R.NonNegative;
10294     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10295                     Unsigned);
10296   }
10297 
10298   /// Return the range of a difference of the two ranges.
10299   static IntRange difference(IntRange L, IntRange R) {
10300     // We need a 1-bit-wider range if:
10301     //   1) LHS can be negative: least value can be reduced.
10302     //   2) RHS can be negative: greatest value can be increased.
10303     bool CanWiden = !L.NonNegative || !R.NonNegative;
10304     bool Unsigned = L.NonNegative && R.Width == 0;
10305     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10306                         !Unsigned,
10307                     Unsigned);
10308   }
10309 
10310   /// Return the range of a product of the two ranges.
10311   static IntRange product(IntRange L, IntRange R) {
10312     // If both LHS and RHS can be negative, we can form
10313     //   -2^L * -2^R = 2^(L + R)
10314     // which requires L + R + 1 value bits to represent.
10315     bool CanWiden = !L.NonNegative && !R.NonNegative;
10316     bool Unsigned = L.NonNegative && R.NonNegative;
10317     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10318                     Unsigned);
10319   }
10320 
10321   /// Return the range of a remainder operation between the two ranges.
10322   static IntRange rem(IntRange L, IntRange R) {
10323     // The result of a remainder can't be larger than the result of
10324     // either side. The sign of the result is the sign of the LHS.
10325     bool Unsigned = L.NonNegative;
10326     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10327                     Unsigned);
10328   }
10329 };
10330 
10331 } // namespace
10332 
10333 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10334                               unsigned MaxWidth) {
10335   if (value.isSigned() && value.isNegative())
10336     return IntRange(value.getMinSignedBits(), false);
10337 
10338   if (value.getBitWidth() > MaxWidth)
10339     value = value.trunc(MaxWidth);
10340 
10341   // isNonNegative() just checks the sign bit without considering
10342   // signedness.
10343   return IntRange(value.getActiveBits(), true);
10344 }
10345 
10346 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10347                               unsigned MaxWidth) {
10348   if (result.isInt())
10349     return GetValueRange(C, result.getInt(), MaxWidth);
10350 
10351   if (result.isVector()) {
10352     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10353     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10354       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10355       R = IntRange::join(R, El);
10356     }
10357     return R;
10358   }
10359 
10360   if (result.isComplexInt()) {
10361     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10362     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10363     return IntRange::join(R, I);
10364   }
10365 
10366   // This can happen with lossless casts to intptr_t of "based" lvalues.
10367   // Assume it might use arbitrary bits.
10368   // FIXME: The only reason we need to pass the type in here is to get
10369   // the sign right on this one case.  It would be nice if APValue
10370   // preserved this.
10371   assert(result.isLValue() || result.isAddrLabelDiff());
10372   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10373 }
10374 
10375 static QualType GetExprType(const Expr *E) {
10376   QualType Ty = E->getType();
10377   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10378     Ty = AtomicRHS->getValueType();
10379   return Ty;
10380 }
10381 
10382 /// Pseudo-evaluate the given integer expression, estimating the
10383 /// range of values it might take.
10384 ///
10385 /// \param MaxWidth The width to which the value will be truncated.
10386 /// \param Approximate If \c true, return a likely range for the result: in
10387 ///        particular, assume that aritmetic on narrower types doesn't leave
10388 ///        those types. If \c false, return a range including all possible
10389 ///        result values.
10390 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10391                              bool InConstantContext, bool Approximate) {
10392   E = E->IgnoreParens();
10393 
10394   // Try a full evaluation first.
10395   Expr::EvalResult result;
10396   if (E->EvaluateAsRValue(result, C, InConstantContext))
10397     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10398 
10399   // I think we only want to look through implicit casts here; if the
10400   // user has an explicit widening cast, we should treat the value as
10401   // being of the new, wider type.
10402   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10403     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10404       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10405                           Approximate);
10406 
10407     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10408 
10409     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10410                          CE->getCastKind() == CK_BooleanToSignedIntegral;
10411 
10412     // Assume that non-integer casts can span the full range of the type.
10413     if (!isIntegerCast)
10414       return OutputTypeRange;
10415 
10416     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10417                                      std::min(MaxWidth, OutputTypeRange.Width),
10418                                      InConstantContext, Approximate);
10419 
10420     // Bail out if the subexpr's range is as wide as the cast type.
10421     if (SubRange.Width >= OutputTypeRange.Width)
10422       return OutputTypeRange;
10423 
10424     // Otherwise, we take the smaller width, and we're non-negative if
10425     // either the output type or the subexpr is.
10426     return IntRange(SubRange.Width,
10427                     SubRange.NonNegative || OutputTypeRange.NonNegative);
10428   }
10429 
10430   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10431     // If we can fold the condition, just take that operand.
10432     bool CondResult;
10433     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10434       return GetExprRange(C,
10435                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10436                           MaxWidth, InConstantContext, Approximate);
10437 
10438     // Otherwise, conservatively merge.
10439     // GetExprRange requires an integer expression, but a throw expression
10440     // results in a void type.
10441     Expr *E = CO->getTrueExpr();
10442     IntRange L = E->getType()->isVoidType()
10443                      ? IntRange{0, true}
10444                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10445     E = CO->getFalseExpr();
10446     IntRange R = E->getType()->isVoidType()
10447                      ? IntRange{0, true}
10448                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10449     return IntRange::join(L, R);
10450   }
10451 
10452   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10453     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10454 
10455     switch (BO->getOpcode()) {
10456     case BO_Cmp:
10457       llvm_unreachable("builtin <=> should have class type");
10458 
10459     // Boolean-valued operations are single-bit and positive.
10460     case BO_LAnd:
10461     case BO_LOr:
10462     case BO_LT:
10463     case BO_GT:
10464     case BO_LE:
10465     case BO_GE:
10466     case BO_EQ:
10467     case BO_NE:
10468       return IntRange::forBoolType();
10469 
10470     // The type of the assignments is the type of the LHS, so the RHS
10471     // is not necessarily the same type.
10472     case BO_MulAssign:
10473     case BO_DivAssign:
10474     case BO_RemAssign:
10475     case BO_AddAssign:
10476     case BO_SubAssign:
10477     case BO_XorAssign:
10478     case BO_OrAssign:
10479       // TODO: bitfields?
10480       return IntRange::forValueOfType(C, GetExprType(E));
10481 
10482     // Simple assignments just pass through the RHS, which will have
10483     // been coerced to the LHS type.
10484     case BO_Assign:
10485       // TODO: bitfields?
10486       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10487                           Approximate);
10488 
10489     // Operations with opaque sources are black-listed.
10490     case BO_PtrMemD:
10491     case BO_PtrMemI:
10492       return IntRange::forValueOfType(C, GetExprType(E));
10493 
10494     // Bitwise-and uses the *infinum* of the two source ranges.
10495     case BO_And:
10496     case BO_AndAssign:
10497       Combine = IntRange::bit_and;
10498       break;
10499 
10500     // Left shift gets black-listed based on a judgement call.
10501     case BO_Shl:
10502       // ...except that we want to treat '1 << (blah)' as logically
10503       // positive.  It's an important idiom.
10504       if (IntegerLiteral *I
10505             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10506         if (I->getValue() == 1) {
10507           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10508           return IntRange(R.Width, /*NonNegative*/ true);
10509         }
10510       }
10511       LLVM_FALLTHROUGH;
10512 
10513     case BO_ShlAssign:
10514       return IntRange::forValueOfType(C, GetExprType(E));
10515 
10516     // Right shift by a constant can narrow its left argument.
10517     case BO_Shr:
10518     case BO_ShrAssign: {
10519       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10520                                 Approximate);
10521 
10522       // If the shift amount is a positive constant, drop the width by
10523       // that much.
10524       if (Optional<llvm::APSInt> shift =
10525               BO->getRHS()->getIntegerConstantExpr(C)) {
10526         if (shift->isNonNegative()) {
10527           unsigned zext = shift->getZExtValue();
10528           if (zext >= L.Width)
10529             L.Width = (L.NonNegative ? 0 : 1);
10530           else
10531             L.Width -= zext;
10532         }
10533       }
10534 
10535       return L;
10536     }
10537 
10538     // Comma acts as its right operand.
10539     case BO_Comma:
10540       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10541                           Approximate);
10542 
10543     case BO_Add:
10544       if (!Approximate)
10545         Combine = IntRange::sum;
10546       break;
10547 
10548     case BO_Sub:
10549       if (BO->getLHS()->getType()->isPointerType())
10550         return IntRange::forValueOfType(C, GetExprType(E));
10551       if (!Approximate)
10552         Combine = IntRange::difference;
10553       break;
10554 
10555     case BO_Mul:
10556       if (!Approximate)
10557         Combine = IntRange::product;
10558       break;
10559 
10560     // The width of a division result is mostly determined by the size
10561     // of the LHS.
10562     case BO_Div: {
10563       // Don't 'pre-truncate' the operands.
10564       unsigned opWidth = C.getIntWidth(GetExprType(E));
10565       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10566                                 Approximate);
10567 
10568       // If the divisor is constant, use that.
10569       if (Optional<llvm::APSInt> divisor =
10570               BO->getRHS()->getIntegerConstantExpr(C)) {
10571         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10572         if (log2 >= L.Width)
10573           L.Width = (L.NonNegative ? 0 : 1);
10574         else
10575           L.Width = std::min(L.Width - log2, MaxWidth);
10576         return L;
10577       }
10578 
10579       // Otherwise, just use the LHS's width.
10580       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10581       // could be -1.
10582       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10583                                 Approximate);
10584       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10585     }
10586 
10587     case BO_Rem:
10588       Combine = IntRange::rem;
10589       break;
10590 
10591     // The default behavior is okay for these.
10592     case BO_Xor:
10593     case BO_Or:
10594       break;
10595     }
10596 
10597     // Combine the two ranges, but limit the result to the type in which we
10598     // performed the computation.
10599     QualType T = GetExprType(E);
10600     unsigned opWidth = C.getIntWidth(T);
10601     IntRange L =
10602         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10603     IntRange R =
10604         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10605     IntRange C = Combine(L, R);
10606     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10607     C.Width = std::min(C.Width, MaxWidth);
10608     return C;
10609   }
10610 
10611   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10612     switch (UO->getOpcode()) {
10613     // Boolean-valued operations are white-listed.
10614     case UO_LNot:
10615       return IntRange::forBoolType();
10616 
10617     // Operations with opaque sources are black-listed.
10618     case UO_Deref:
10619     case UO_AddrOf: // should be impossible
10620       return IntRange::forValueOfType(C, GetExprType(E));
10621 
10622     default:
10623       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10624                           Approximate);
10625     }
10626   }
10627 
10628   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10629     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10630                         Approximate);
10631 
10632   if (const auto *BitField = E->getSourceBitField())
10633     return IntRange(BitField->getBitWidthValue(C),
10634                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10635 
10636   return IntRange::forValueOfType(C, GetExprType(E));
10637 }
10638 
10639 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10640                              bool InConstantContext, bool Approximate) {
10641   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10642                       Approximate);
10643 }
10644 
10645 /// Checks whether the given value, which currently has the given
10646 /// source semantics, has the same value when coerced through the
10647 /// target semantics.
10648 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10649                                  const llvm::fltSemantics &Src,
10650                                  const llvm::fltSemantics &Tgt) {
10651   llvm::APFloat truncated = value;
10652 
10653   bool ignored;
10654   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10655   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10656 
10657   return truncated.bitwiseIsEqual(value);
10658 }
10659 
10660 /// Checks whether the given value, which currently has the given
10661 /// source semantics, has the same value when coerced through the
10662 /// target semantics.
10663 ///
10664 /// The value might be a vector of floats (or a complex number).
10665 static bool IsSameFloatAfterCast(const APValue &value,
10666                                  const llvm::fltSemantics &Src,
10667                                  const llvm::fltSemantics &Tgt) {
10668   if (value.isFloat())
10669     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10670 
10671   if (value.isVector()) {
10672     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10673       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10674         return false;
10675     return true;
10676   }
10677 
10678   assert(value.isComplexFloat());
10679   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10680           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10681 }
10682 
10683 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10684                                        bool IsListInit = false);
10685 
10686 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10687   // Suppress cases where we are comparing against an enum constant.
10688   if (const DeclRefExpr *DR =
10689       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10690     if (isa<EnumConstantDecl>(DR->getDecl()))
10691       return true;
10692 
10693   // Suppress cases where the value is expanded from a macro, unless that macro
10694   // is how a language represents a boolean literal. This is the case in both C
10695   // and Objective-C.
10696   SourceLocation BeginLoc = E->getBeginLoc();
10697   if (BeginLoc.isMacroID()) {
10698     StringRef MacroName = Lexer::getImmediateMacroName(
10699         BeginLoc, S.getSourceManager(), S.getLangOpts());
10700     return MacroName != "YES" && MacroName != "NO" &&
10701            MacroName != "true" && MacroName != "false";
10702   }
10703 
10704   return false;
10705 }
10706 
10707 static bool isKnownToHaveUnsignedValue(Expr *E) {
10708   return E->getType()->isIntegerType() &&
10709          (!E->getType()->isSignedIntegerType() ||
10710           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10711 }
10712 
10713 namespace {
10714 /// The promoted range of values of a type. In general this has the
10715 /// following structure:
10716 ///
10717 ///     |-----------| . . . |-----------|
10718 ///     ^           ^       ^           ^
10719 ///    Min       HoleMin  HoleMax      Max
10720 ///
10721 /// ... where there is only a hole if a signed type is promoted to unsigned
10722 /// (in which case Min and Max are the smallest and largest representable
10723 /// values).
10724 struct PromotedRange {
10725   // Min, or HoleMax if there is a hole.
10726   llvm::APSInt PromotedMin;
10727   // Max, or HoleMin if there is a hole.
10728   llvm::APSInt PromotedMax;
10729 
10730   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10731     if (R.Width == 0)
10732       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10733     else if (R.Width >= BitWidth && !Unsigned) {
10734       // Promotion made the type *narrower*. This happens when promoting
10735       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10736       // Treat all values of 'signed int' as being in range for now.
10737       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10738       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10739     } else {
10740       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10741                         .extOrTrunc(BitWidth);
10742       PromotedMin.setIsUnsigned(Unsigned);
10743 
10744       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10745                         .extOrTrunc(BitWidth);
10746       PromotedMax.setIsUnsigned(Unsigned);
10747     }
10748   }
10749 
10750   // Determine whether this range is contiguous (has no hole).
10751   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10752 
10753   // Where a constant value is within the range.
10754   enum ComparisonResult {
10755     LT = 0x1,
10756     LE = 0x2,
10757     GT = 0x4,
10758     GE = 0x8,
10759     EQ = 0x10,
10760     NE = 0x20,
10761     InRangeFlag = 0x40,
10762 
10763     Less = LE | LT | NE,
10764     Min = LE | InRangeFlag,
10765     InRange = InRangeFlag,
10766     Max = GE | InRangeFlag,
10767     Greater = GE | GT | NE,
10768 
10769     OnlyValue = LE | GE | EQ | InRangeFlag,
10770     InHole = NE
10771   };
10772 
10773   ComparisonResult compare(const llvm::APSInt &Value) const {
10774     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10775            Value.isUnsigned() == PromotedMin.isUnsigned());
10776     if (!isContiguous()) {
10777       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10778       if (Value.isMinValue()) return Min;
10779       if (Value.isMaxValue()) return Max;
10780       if (Value >= PromotedMin) return InRange;
10781       if (Value <= PromotedMax) return InRange;
10782       return InHole;
10783     }
10784 
10785     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10786     case -1: return Less;
10787     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10788     case 1:
10789       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10790       case -1: return InRange;
10791       case 0: return Max;
10792       case 1: return Greater;
10793       }
10794     }
10795 
10796     llvm_unreachable("impossible compare result");
10797   }
10798 
10799   static llvm::Optional<StringRef>
10800   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10801     if (Op == BO_Cmp) {
10802       ComparisonResult LTFlag = LT, GTFlag = GT;
10803       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10804 
10805       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10806       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10807       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10808       return llvm::None;
10809     }
10810 
10811     ComparisonResult TrueFlag, FalseFlag;
10812     if (Op == BO_EQ) {
10813       TrueFlag = EQ;
10814       FalseFlag = NE;
10815     } else if (Op == BO_NE) {
10816       TrueFlag = NE;
10817       FalseFlag = EQ;
10818     } else {
10819       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10820         TrueFlag = LT;
10821         FalseFlag = GE;
10822       } else {
10823         TrueFlag = GT;
10824         FalseFlag = LE;
10825       }
10826       if (Op == BO_GE || Op == BO_LE)
10827         std::swap(TrueFlag, FalseFlag);
10828     }
10829     if (R & TrueFlag)
10830       return StringRef("true");
10831     if (R & FalseFlag)
10832       return StringRef("false");
10833     return llvm::None;
10834   }
10835 };
10836 }
10837 
10838 static bool HasEnumType(Expr *E) {
10839   // Strip off implicit integral promotions.
10840   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10841     if (ICE->getCastKind() != CK_IntegralCast &&
10842         ICE->getCastKind() != CK_NoOp)
10843       break;
10844     E = ICE->getSubExpr();
10845   }
10846 
10847   return E->getType()->isEnumeralType();
10848 }
10849 
10850 static int classifyConstantValue(Expr *Constant) {
10851   // The values of this enumeration are used in the diagnostics
10852   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10853   enum ConstantValueKind {
10854     Miscellaneous = 0,
10855     LiteralTrue,
10856     LiteralFalse
10857   };
10858   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10859     return BL->getValue() ? ConstantValueKind::LiteralTrue
10860                           : ConstantValueKind::LiteralFalse;
10861   return ConstantValueKind::Miscellaneous;
10862 }
10863 
10864 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10865                                         Expr *Constant, Expr *Other,
10866                                         const llvm::APSInt &Value,
10867                                         bool RhsConstant) {
10868   if (S.inTemplateInstantiation())
10869     return false;
10870 
10871   Expr *OriginalOther = Other;
10872 
10873   Constant = Constant->IgnoreParenImpCasts();
10874   Other = Other->IgnoreParenImpCasts();
10875 
10876   // Suppress warnings on tautological comparisons between values of the same
10877   // enumeration type. There are only two ways we could warn on this:
10878   //  - If the constant is outside the range of representable values of
10879   //    the enumeration. In such a case, we should warn about the cast
10880   //    to enumeration type, not about the comparison.
10881   //  - If the constant is the maximum / minimum in-range value. For an
10882   //    enumeratin type, such comparisons can be meaningful and useful.
10883   if (Constant->getType()->isEnumeralType() &&
10884       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10885     return false;
10886 
10887   IntRange OtherValueRange = GetExprRange(
10888       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
10889 
10890   QualType OtherT = Other->getType();
10891   if (const auto *AT = OtherT->getAs<AtomicType>())
10892     OtherT = AT->getValueType();
10893   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
10894 
10895   // Special case for ObjC BOOL on targets where its a typedef for a signed char
10896   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
10897   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
10898                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
10899                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
10900 
10901   // Whether we're treating Other as being a bool because of the form of
10902   // expression despite it having another type (typically 'int' in C).
10903   bool OtherIsBooleanDespiteType =
10904       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10905   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
10906     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
10907 
10908   // Check if all values in the range of possible values of this expression
10909   // lead to the same comparison outcome.
10910   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
10911                                         Value.isUnsigned());
10912   auto Cmp = OtherPromotedValueRange.compare(Value);
10913   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10914   if (!Result)
10915     return false;
10916 
10917   // Also consider the range determined by the type alone. This allows us to
10918   // classify the warning under the proper diagnostic group.
10919   bool TautologicalTypeCompare = false;
10920   {
10921     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
10922                                          Value.isUnsigned());
10923     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
10924     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
10925                                                        RhsConstant)) {
10926       TautologicalTypeCompare = true;
10927       Cmp = TypeCmp;
10928       Result = TypeResult;
10929     }
10930   }
10931 
10932   // Don't warn if the non-constant operand actually always evaluates to the
10933   // same value.
10934   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
10935     return false;
10936 
10937   // Suppress the diagnostic for an in-range comparison if the constant comes
10938   // from a macro or enumerator. We don't want to diagnose
10939   //
10940   //   some_long_value <= INT_MAX
10941   //
10942   // when sizeof(int) == sizeof(long).
10943   bool InRange = Cmp & PromotedRange::InRangeFlag;
10944   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10945     return false;
10946 
10947   // A comparison of an unsigned bit-field against 0 is really a type problem,
10948   // even though at the type level the bit-field might promote to 'signed int'.
10949   if (Other->refersToBitField() && InRange && Value == 0 &&
10950       Other->getType()->isUnsignedIntegerOrEnumerationType())
10951     TautologicalTypeCompare = true;
10952 
10953   // If this is a comparison to an enum constant, include that
10954   // constant in the diagnostic.
10955   const EnumConstantDecl *ED = nullptr;
10956   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10957     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10958 
10959   // Should be enough for uint128 (39 decimal digits)
10960   SmallString<64> PrettySourceValue;
10961   llvm::raw_svector_ostream OS(PrettySourceValue);
10962   if (ED) {
10963     OS << '\'' << *ED << "' (" << Value << ")";
10964   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10965                Constant->IgnoreParenImpCasts())) {
10966     OS << (BL->getValue() ? "YES" : "NO");
10967   } else {
10968     OS << Value;
10969   }
10970 
10971   if (!TautologicalTypeCompare) {
10972     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
10973         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
10974         << E->getOpcodeStr() << OS.str() << *Result
10975         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10976     return true;
10977   }
10978 
10979   if (IsObjCSignedCharBool) {
10980     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10981                           S.PDiag(diag::warn_tautological_compare_objc_bool)
10982                               << OS.str() << *Result);
10983     return true;
10984   }
10985 
10986   // FIXME: We use a somewhat different formatting for the in-range cases and
10987   // cases involving boolean values for historical reasons. We should pick a
10988   // consistent way of presenting these diagnostics.
10989   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10990 
10991     S.DiagRuntimeBehavior(
10992         E->getOperatorLoc(), E,
10993         S.PDiag(!InRange ? diag::warn_out_of_range_compare
10994                          : diag::warn_tautological_bool_compare)
10995             << OS.str() << classifyConstantValue(Constant) << OtherT
10996             << OtherIsBooleanDespiteType << *Result
10997             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10998   } else {
10999     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11000                         ? (HasEnumType(OriginalOther)
11001                                ? diag::warn_unsigned_enum_always_true_comparison
11002                                : diag::warn_unsigned_always_true_comparison)
11003                         : diag::warn_tautological_constant_compare;
11004 
11005     S.Diag(E->getOperatorLoc(), Diag)
11006         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11007         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11008   }
11009 
11010   return true;
11011 }
11012 
11013 /// Analyze the operands of the given comparison.  Implements the
11014 /// fallback case from AnalyzeComparison.
11015 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11016   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11017   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11018 }
11019 
11020 /// Implements -Wsign-compare.
11021 ///
11022 /// \param E the binary operator to check for warnings
11023 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11024   // The type the comparison is being performed in.
11025   QualType T = E->getLHS()->getType();
11026 
11027   // Only analyze comparison operators where both sides have been converted to
11028   // the same type.
11029   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11030     return AnalyzeImpConvsInComparison(S, E);
11031 
11032   // Don't analyze value-dependent comparisons directly.
11033   if (E->isValueDependent())
11034     return AnalyzeImpConvsInComparison(S, E);
11035 
11036   Expr *LHS = E->getLHS();
11037   Expr *RHS = E->getRHS();
11038 
11039   if (T->isIntegralType(S.Context)) {
11040     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11041     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11042 
11043     // We don't care about expressions whose result is a constant.
11044     if (RHSValue && LHSValue)
11045       return AnalyzeImpConvsInComparison(S, E);
11046 
11047     // We only care about expressions where just one side is literal
11048     if ((bool)RHSValue ^ (bool)LHSValue) {
11049       // Is the constant on the RHS or LHS?
11050       const bool RhsConstant = (bool)RHSValue;
11051       Expr *Const = RhsConstant ? RHS : LHS;
11052       Expr *Other = RhsConstant ? LHS : RHS;
11053       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11054 
11055       // Check whether an integer constant comparison results in a value
11056       // of 'true' or 'false'.
11057       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11058         return AnalyzeImpConvsInComparison(S, E);
11059     }
11060   }
11061 
11062   if (!T->hasUnsignedIntegerRepresentation()) {
11063     // We don't do anything special if this isn't an unsigned integral
11064     // comparison:  we're only interested in integral comparisons, and
11065     // signed comparisons only happen in cases we don't care to warn about.
11066     return AnalyzeImpConvsInComparison(S, E);
11067   }
11068 
11069   LHS = LHS->IgnoreParenImpCasts();
11070   RHS = RHS->IgnoreParenImpCasts();
11071 
11072   if (!S.getLangOpts().CPlusPlus) {
11073     // Avoid warning about comparison of integers with different signs when
11074     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11075     // the type of `E`.
11076     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11077       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11078     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11079       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11080   }
11081 
11082   // Check to see if one of the (unmodified) operands is of different
11083   // signedness.
11084   Expr *signedOperand, *unsignedOperand;
11085   if (LHS->getType()->hasSignedIntegerRepresentation()) {
11086     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11087            "unsigned comparison between two signed integer expressions?");
11088     signedOperand = LHS;
11089     unsignedOperand = RHS;
11090   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11091     signedOperand = RHS;
11092     unsignedOperand = LHS;
11093   } else {
11094     return AnalyzeImpConvsInComparison(S, E);
11095   }
11096 
11097   // Otherwise, calculate the effective range of the signed operand.
11098   IntRange signedRange = GetExprRange(
11099       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11100 
11101   // Go ahead and analyze implicit conversions in the operands.  Note
11102   // that we skip the implicit conversions on both sides.
11103   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11104   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11105 
11106   // If the signed range is non-negative, -Wsign-compare won't fire.
11107   if (signedRange.NonNegative)
11108     return;
11109 
11110   // For (in)equality comparisons, if the unsigned operand is a
11111   // constant which cannot collide with a overflowed signed operand,
11112   // then reinterpreting the signed operand as unsigned will not
11113   // change the result of the comparison.
11114   if (E->isEqualityOp()) {
11115     unsigned comparisonWidth = S.Context.getIntWidth(T);
11116     IntRange unsignedRange =
11117         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11118                      /*Approximate*/ true);
11119 
11120     // We should never be unable to prove that the unsigned operand is
11121     // non-negative.
11122     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11123 
11124     if (unsignedRange.Width < comparisonWidth)
11125       return;
11126   }
11127 
11128   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11129                         S.PDiag(diag::warn_mixed_sign_comparison)
11130                             << LHS->getType() << RHS->getType()
11131                             << LHS->getSourceRange() << RHS->getSourceRange());
11132 }
11133 
11134 /// Analyzes an attempt to assign the given value to a bitfield.
11135 ///
11136 /// Returns true if there was something fishy about the attempt.
11137 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11138                                       SourceLocation InitLoc) {
11139   assert(Bitfield->isBitField());
11140   if (Bitfield->isInvalidDecl())
11141     return false;
11142 
11143   // White-list bool bitfields.
11144   QualType BitfieldType = Bitfield->getType();
11145   if (BitfieldType->isBooleanType())
11146      return false;
11147 
11148   if (BitfieldType->isEnumeralType()) {
11149     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11150     // If the underlying enum type was not explicitly specified as an unsigned
11151     // type and the enum contain only positive values, MSVC++ will cause an
11152     // inconsistency by storing this as a signed type.
11153     if (S.getLangOpts().CPlusPlus11 &&
11154         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11155         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11156         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11157       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11158           << BitfieldEnumDecl;
11159     }
11160   }
11161 
11162   if (Bitfield->getType()->isBooleanType())
11163     return false;
11164 
11165   // Ignore value- or type-dependent expressions.
11166   if (Bitfield->getBitWidth()->isValueDependent() ||
11167       Bitfield->getBitWidth()->isTypeDependent() ||
11168       Init->isValueDependent() ||
11169       Init->isTypeDependent())
11170     return false;
11171 
11172   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11173   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11174 
11175   Expr::EvalResult Result;
11176   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11177                                    Expr::SE_AllowSideEffects)) {
11178     // The RHS is not constant.  If the RHS has an enum type, make sure the
11179     // bitfield is wide enough to hold all the values of the enum without
11180     // truncation.
11181     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11182       EnumDecl *ED = EnumTy->getDecl();
11183       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11184 
11185       // Enum types are implicitly signed on Windows, so check if there are any
11186       // negative enumerators to see if the enum was intended to be signed or
11187       // not.
11188       bool SignedEnum = ED->getNumNegativeBits() > 0;
11189 
11190       // Check for surprising sign changes when assigning enum values to a
11191       // bitfield of different signedness.  If the bitfield is signed and we
11192       // have exactly the right number of bits to store this unsigned enum,
11193       // suggest changing the enum to an unsigned type. This typically happens
11194       // on Windows where unfixed enums always use an underlying type of 'int'.
11195       unsigned DiagID = 0;
11196       if (SignedEnum && !SignedBitfield) {
11197         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11198       } else if (SignedBitfield && !SignedEnum &&
11199                  ED->getNumPositiveBits() == FieldWidth) {
11200         DiagID = diag::warn_signed_bitfield_enum_conversion;
11201       }
11202 
11203       if (DiagID) {
11204         S.Diag(InitLoc, DiagID) << Bitfield << ED;
11205         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11206         SourceRange TypeRange =
11207             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11208         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11209             << SignedEnum << TypeRange;
11210       }
11211 
11212       // Compute the required bitwidth. If the enum has negative values, we need
11213       // one more bit than the normal number of positive bits to represent the
11214       // sign bit.
11215       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11216                                                   ED->getNumNegativeBits())
11217                                        : ED->getNumPositiveBits();
11218 
11219       // Check the bitwidth.
11220       if (BitsNeeded > FieldWidth) {
11221         Expr *WidthExpr = Bitfield->getBitWidth();
11222         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11223             << Bitfield << ED;
11224         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11225             << BitsNeeded << ED << WidthExpr->getSourceRange();
11226       }
11227     }
11228 
11229     return false;
11230   }
11231 
11232   llvm::APSInt Value = Result.Val.getInt();
11233 
11234   unsigned OriginalWidth = Value.getBitWidth();
11235 
11236   if (!Value.isSigned() || Value.isNegative())
11237     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11238       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11239         OriginalWidth = Value.getMinSignedBits();
11240 
11241   if (OriginalWidth <= FieldWidth)
11242     return false;
11243 
11244   // Compute the value which the bitfield will contain.
11245   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11246   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11247 
11248   // Check whether the stored value is equal to the original value.
11249   TruncatedValue = TruncatedValue.extend(OriginalWidth);
11250   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11251     return false;
11252 
11253   // Special-case bitfields of width 1: booleans are naturally 0/1, and
11254   // therefore don't strictly fit into a signed bitfield of width 1.
11255   if (FieldWidth == 1 && Value == 1)
11256     return false;
11257 
11258   std::string PrettyValue = Value.toString(10);
11259   std::string PrettyTrunc = TruncatedValue.toString(10);
11260 
11261   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11262     << PrettyValue << PrettyTrunc << OriginalInit->getType()
11263     << Init->getSourceRange();
11264 
11265   return true;
11266 }
11267 
11268 /// Analyze the given simple or compound assignment for warning-worthy
11269 /// operations.
11270 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11271   // Just recurse on the LHS.
11272   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11273 
11274   // We want to recurse on the RHS as normal unless we're assigning to
11275   // a bitfield.
11276   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11277     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11278                                   E->getOperatorLoc())) {
11279       // Recurse, ignoring any implicit conversions on the RHS.
11280       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11281                                         E->getOperatorLoc());
11282     }
11283   }
11284 
11285   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11286 
11287   // Diagnose implicitly sequentially-consistent atomic assignment.
11288   if (E->getLHS()->getType()->isAtomicType())
11289     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11290 }
11291 
11292 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11293 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11294                             SourceLocation CContext, unsigned diag,
11295                             bool pruneControlFlow = false) {
11296   if (pruneControlFlow) {
11297     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11298                           S.PDiag(diag)
11299                               << SourceType << T << E->getSourceRange()
11300                               << SourceRange(CContext));
11301     return;
11302   }
11303   S.Diag(E->getExprLoc(), diag)
11304     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11305 }
11306 
11307 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11308 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11309                             SourceLocation CContext,
11310                             unsigned diag, bool pruneControlFlow = false) {
11311   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11312 }
11313 
11314 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11315   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11316       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11317 }
11318 
11319 static void adornObjCBoolConversionDiagWithTernaryFixit(
11320     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11321   Expr *Ignored = SourceExpr->IgnoreImplicit();
11322   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11323     Ignored = OVE->getSourceExpr();
11324   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11325                      isa<BinaryOperator>(Ignored) ||
11326                      isa<CXXOperatorCallExpr>(Ignored);
11327   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11328   if (NeedsParens)
11329     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11330             << FixItHint::CreateInsertion(EndLoc, ")");
11331   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11332 }
11333 
11334 /// Diagnose an implicit cast from a floating point value to an integer value.
11335 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11336                                     SourceLocation CContext) {
11337   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11338   const bool PruneWarnings = S.inTemplateInstantiation();
11339 
11340   Expr *InnerE = E->IgnoreParenImpCasts();
11341   // We also want to warn on, e.g., "int i = -1.234"
11342   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11343     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11344       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11345 
11346   const bool IsLiteral =
11347       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11348 
11349   llvm::APFloat Value(0.0);
11350   bool IsConstant =
11351     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11352   if (!IsConstant) {
11353     if (isObjCSignedCharBool(S, T)) {
11354       return adornObjCBoolConversionDiagWithTernaryFixit(
11355           S, E,
11356           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11357               << E->getType());
11358     }
11359 
11360     return DiagnoseImpCast(S, E, T, CContext,
11361                            diag::warn_impcast_float_integer, PruneWarnings);
11362   }
11363 
11364   bool isExact = false;
11365 
11366   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11367                             T->hasUnsignedIntegerRepresentation());
11368   llvm::APFloat::opStatus Result = Value.convertToInteger(
11369       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11370 
11371   // FIXME: Force the precision of the source value down so we don't print
11372   // digits which are usually useless (we don't really care here if we
11373   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11374   // would automatically print the shortest representation, but it's a bit
11375   // tricky to implement.
11376   SmallString<16> PrettySourceValue;
11377   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11378   precision = (precision * 59 + 195) / 196;
11379   Value.toString(PrettySourceValue, precision);
11380 
11381   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11382     return adornObjCBoolConversionDiagWithTernaryFixit(
11383         S, E,
11384         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11385             << PrettySourceValue);
11386   }
11387 
11388   if (Result == llvm::APFloat::opOK && isExact) {
11389     if (IsLiteral) return;
11390     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11391                            PruneWarnings);
11392   }
11393 
11394   // Conversion of a floating-point value to a non-bool integer where the
11395   // integral part cannot be represented by the integer type is undefined.
11396   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11397     return DiagnoseImpCast(
11398         S, E, T, CContext,
11399         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11400                   : diag::warn_impcast_float_to_integer_out_of_range,
11401         PruneWarnings);
11402 
11403   unsigned DiagID = 0;
11404   if (IsLiteral) {
11405     // Warn on floating point literal to integer.
11406     DiagID = diag::warn_impcast_literal_float_to_integer;
11407   } else if (IntegerValue == 0) {
11408     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11409       return DiagnoseImpCast(S, E, T, CContext,
11410                              diag::warn_impcast_float_integer, PruneWarnings);
11411     }
11412     // Warn on non-zero to zero conversion.
11413     DiagID = diag::warn_impcast_float_to_integer_zero;
11414   } else {
11415     if (IntegerValue.isUnsigned()) {
11416       if (!IntegerValue.isMaxValue()) {
11417         return DiagnoseImpCast(S, E, T, CContext,
11418                                diag::warn_impcast_float_integer, PruneWarnings);
11419       }
11420     } else {  // IntegerValue.isSigned()
11421       if (!IntegerValue.isMaxSignedValue() &&
11422           !IntegerValue.isMinSignedValue()) {
11423         return DiagnoseImpCast(S, E, T, CContext,
11424                                diag::warn_impcast_float_integer, PruneWarnings);
11425       }
11426     }
11427     // Warn on evaluatable floating point expression to integer conversion.
11428     DiagID = diag::warn_impcast_float_to_integer;
11429   }
11430 
11431   SmallString<16> PrettyTargetValue;
11432   if (IsBool)
11433     PrettyTargetValue = Value.isZero() ? "false" : "true";
11434   else
11435     IntegerValue.toString(PrettyTargetValue);
11436 
11437   if (PruneWarnings) {
11438     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11439                           S.PDiag(DiagID)
11440                               << E->getType() << T.getUnqualifiedType()
11441                               << PrettySourceValue << PrettyTargetValue
11442                               << E->getSourceRange() << SourceRange(CContext));
11443   } else {
11444     S.Diag(E->getExprLoc(), DiagID)
11445         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11446         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11447   }
11448 }
11449 
11450 /// Analyze the given compound assignment for the possible losing of
11451 /// floating-point precision.
11452 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11453   assert(isa<CompoundAssignOperator>(E) &&
11454          "Must be compound assignment operation");
11455   // Recurse on the LHS and RHS in here
11456   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11457   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11458 
11459   if (E->getLHS()->getType()->isAtomicType())
11460     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11461 
11462   // Now check the outermost expression
11463   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11464   const auto *RBT = cast<CompoundAssignOperator>(E)
11465                         ->getComputationResultType()
11466                         ->getAs<BuiltinType>();
11467 
11468   // The below checks assume source is floating point.
11469   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11470 
11471   // If source is floating point but target is an integer.
11472   if (ResultBT->isInteger())
11473     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11474                            E->getExprLoc(), diag::warn_impcast_float_integer);
11475 
11476   if (!ResultBT->isFloatingPoint())
11477     return;
11478 
11479   // If both source and target are floating points, warn about losing precision.
11480   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11481       QualType(ResultBT, 0), QualType(RBT, 0));
11482   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11483     // warn about dropping FP rank.
11484     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11485                     diag::warn_impcast_float_result_precision);
11486 }
11487 
11488 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11489                                       IntRange Range) {
11490   if (!Range.Width) return "0";
11491 
11492   llvm::APSInt ValueInRange = Value;
11493   ValueInRange.setIsSigned(!Range.NonNegative);
11494   ValueInRange = ValueInRange.trunc(Range.Width);
11495   return ValueInRange.toString(10);
11496 }
11497 
11498 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11499   if (!isa<ImplicitCastExpr>(Ex))
11500     return false;
11501 
11502   Expr *InnerE = Ex->IgnoreParenImpCasts();
11503   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11504   const Type *Source =
11505     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11506   if (Target->isDependentType())
11507     return false;
11508 
11509   const BuiltinType *FloatCandidateBT =
11510     dyn_cast<BuiltinType>(ToBool ? Source : Target);
11511   const Type *BoolCandidateType = ToBool ? Target : Source;
11512 
11513   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11514           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11515 }
11516 
11517 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11518                                              SourceLocation CC) {
11519   unsigned NumArgs = TheCall->getNumArgs();
11520   for (unsigned i = 0; i < NumArgs; ++i) {
11521     Expr *CurrA = TheCall->getArg(i);
11522     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11523       continue;
11524 
11525     bool IsSwapped = ((i > 0) &&
11526         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11527     IsSwapped |= ((i < (NumArgs - 1)) &&
11528         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11529     if (IsSwapped) {
11530       // Warn on this floating-point to bool conversion.
11531       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11532                       CurrA->getType(), CC,
11533                       diag::warn_impcast_floating_point_to_bool);
11534     }
11535   }
11536 }
11537 
11538 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11539                                    SourceLocation CC) {
11540   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11541                         E->getExprLoc()))
11542     return;
11543 
11544   // Don't warn on functions which have return type nullptr_t.
11545   if (isa<CallExpr>(E))
11546     return;
11547 
11548   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11549   const Expr::NullPointerConstantKind NullKind =
11550       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11551   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11552     return;
11553 
11554   // Return if target type is a safe conversion.
11555   if (T->isAnyPointerType() || T->isBlockPointerType() ||
11556       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11557     return;
11558 
11559   SourceLocation Loc = E->getSourceRange().getBegin();
11560 
11561   // Venture through the macro stacks to get to the source of macro arguments.
11562   // The new location is a better location than the complete location that was
11563   // passed in.
11564   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11565   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11566 
11567   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11568   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11569     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11570         Loc, S.SourceMgr, S.getLangOpts());
11571     if (MacroName == "NULL")
11572       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11573   }
11574 
11575   // Only warn if the null and context location are in the same macro expansion.
11576   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11577     return;
11578 
11579   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11580       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11581       << FixItHint::CreateReplacement(Loc,
11582                                       S.getFixItZeroLiteralForType(T, Loc));
11583 }
11584 
11585 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11586                                   ObjCArrayLiteral *ArrayLiteral);
11587 
11588 static void
11589 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11590                            ObjCDictionaryLiteral *DictionaryLiteral);
11591 
11592 /// Check a single element within a collection literal against the
11593 /// target element type.
11594 static void checkObjCCollectionLiteralElement(Sema &S,
11595                                               QualType TargetElementType,
11596                                               Expr *Element,
11597                                               unsigned ElementKind) {
11598   // Skip a bitcast to 'id' or qualified 'id'.
11599   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11600     if (ICE->getCastKind() == CK_BitCast &&
11601         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11602       Element = ICE->getSubExpr();
11603   }
11604 
11605   QualType ElementType = Element->getType();
11606   ExprResult ElementResult(Element);
11607   if (ElementType->getAs<ObjCObjectPointerType>() &&
11608       S.CheckSingleAssignmentConstraints(TargetElementType,
11609                                          ElementResult,
11610                                          false, false)
11611         != Sema::Compatible) {
11612     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11613         << ElementType << ElementKind << TargetElementType
11614         << Element->getSourceRange();
11615   }
11616 
11617   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11618     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11619   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11620     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11621 }
11622 
11623 /// Check an Objective-C array literal being converted to the given
11624 /// target type.
11625 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11626                                   ObjCArrayLiteral *ArrayLiteral) {
11627   if (!S.NSArrayDecl)
11628     return;
11629 
11630   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11631   if (!TargetObjCPtr)
11632     return;
11633 
11634   if (TargetObjCPtr->isUnspecialized() ||
11635       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11636         != S.NSArrayDecl->getCanonicalDecl())
11637     return;
11638 
11639   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11640   if (TypeArgs.size() != 1)
11641     return;
11642 
11643   QualType TargetElementType = TypeArgs[0];
11644   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11645     checkObjCCollectionLiteralElement(S, TargetElementType,
11646                                       ArrayLiteral->getElement(I),
11647                                       0);
11648   }
11649 }
11650 
11651 /// Check an Objective-C dictionary literal being converted to the given
11652 /// target type.
11653 static void
11654 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11655                            ObjCDictionaryLiteral *DictionaryLiteral) {
11656   if (!S.NSDictionaryDecl)
11657     return;
11658 
11659   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11660   if (!TargetObjCPtr)
11661     return;
11662 
11663   if (TargetObjCPtr->isUnspecialized() ||
11664       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11665         != S.NSDictionaryDecl->getCanonicalDecl())
11666     return;
11667 
11668   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11669   if (TypeArgs.size() != 2)
11670     return;
11671 
11672   QualType TargetKeyType = TypeArgs[0];
11673   QualType TargetObjectType = TypeArgs[1];
11674   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11675     auto Element = DictionaryLiteral->getKeyValueElement(I);
11676     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11677     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11678   }
11679 }
11680 
11681 // Helper function to filter out cases for constant width constant conversion.
11682 // Don't warn on char array initialization or for non-decimal values.
11683 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11684                                           SourceLocation CC) {
11685   // If initializing from a constant, and the constant starts with '0',
11686   // then it is a binary, octal, or hexadecimal.  Allow these constants
11687   // to fill all the bits, even if there is a sign change.
11688   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11689     const char FirstLiteralCharacter =
11690         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11691     if (FirstLiteralCharacter == '0')
11692       return false;
11693   }
11694 
11695   // If the CC location points to a '{', and the type is char, then assume
11696   // assume it is an array initialization.
11697   if (CC.isValid() && T->isCharType()) {
11698     const char FirstContextCharacter =
11699         S.getSourceManager().getCharacterData(CC)[0];
11700     if (FirstContextCharacter == '{')
11701       return false;
11702   }
11703 
11704   return true;
11705 }
11706 
11707 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11708   const auto *IL = dyn_cast<IntegerLiteral>(E);
11709   if (!IL) {
11710     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11711       if (UO->getOpcode() == UO_Minus)
11712         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11713     }
11714   }
11715 
11716   return IL;
11717 }
11718 
11719 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11720   E = E->IgnoreParenImpCasts();
11721   SourceLocation ExprLoc = E->getExprLoc();
11722 
11723   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11724     BinaryOperator::Opcode Opc = BO->getOpcode();
11725     Expr::EvalResult Result;
11726     // Do not diagnose unsigned shifts.
11727     if (Opc == BO_Shl) {
11728       const auto *LHS = getIntegerLiteral(BO->getLHS());
11729       const auto *RHS = getIntegerLiteral(BO->getRHS());
11730       if (LHS && LHS->getValue() == 0)
11731         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11732       else if (!E->isValueDependent() && LHS && RHS &&
11733                RHS->getValue().isNonNegative() &&
11734                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11735         S.Diag(ExprLoc, diag::warn_left_shift_always)
11736             << (Result.Val.getInt() != 0);
11737       else if (E->getType()->isSignedIntegerType())
11738         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11739     }
11740   }
11741 
11742   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11743     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11744     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11745     if (!LHS || !RHS)
11746       return;
11747     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11748         (RHS->getValue() == 0 || RHS->getValue() == 1))
11749       // Do not diagnose common idioms.
11750       return;
11751     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11752       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11753   }
11754 }
11755 
11756 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11757                                     SourceLocation CC,
11758                                     bool *ICContext = nullptr,
11759                                     bool IsListInit = false) {
11760   if (E->isTypeDependent() || E->isValueDependent()) return;
11761 
11762   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11763   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11764   if (Source == Target) return;
11765   if (Target->isDependentType()) return;
11766 
11767   // If the conversion context location is invalid don't complain. We also
11768   // don't want to emit a warning if the issue occurs from the expansion of
11769   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11770   // delay this check as long as possible. Once we detect we are in that
11771   // scenario, we just return.
11772   if (CC.isInvalid())
11773     return;
11774 
11775   if (Source->isAtomicType())
11776     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11777 
11778   // Diagnose implicit casts to bool.
11779   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11780     if (isa<StringLiteral>(E))
11781       // Warn on string literal to bool.  Checks for string literals in logical
11782       // and expressions, for instance, assert(0 && "error here"), are
11783       // prevented by a check in AnalyzeImplicitConversions().
11784       return DiagnoseImpCast(S, E, T, CC,
11785                              diag::warn_impcast_string_literal_to_bool);
11786     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11787         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11788       // This covers the literal expressions that evaluate to Objective-C
11789       // objects.
11790       return DiagnoseImpCast(S, E, T, CC,
11791                              diag::warn_impcast_objective_c_literal_to_bool);
11792     }
11793     if (Source->isPointerType() || Source->canDecayToPointerType()) {
11794       // Warn on pointer to bool conversion that is always true.
11795       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11796                                      SourceRange(CC));
11797     }
11798   }
11799 
11800   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
11801   // is a typedef for signed char (macOS), then that constant value has to be 1
11802   // or 0.
11803   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
11804     Expr::EvalResult Result;
11805     if (E->EvaluateAsInt(Result, S.getASTContext(),
11806                          Expr::SE_AllowSideEffects)) {
11807       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
11808         adornObjCBoolConversionDiagWithTernaryFixit(
11809             S, E,
11810             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
11811                 << Result.Val.getInt().toString(10));
11812       }
11813       return;
11814     }
11815   }
11816 
11817   // Check implicit casts from Objective-C collection literals to specialized
11818   // collection types, e.g., NSArray<NSString *> *.
11819   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11820     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
11821   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11822     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
11823 
11824   // Strip vector types.
11825   if (isa<VectorType>(Source)) {
11826     if (!isa<VectorType>(Target)) {
11827       if (S.SourceMgr.isInSystemMacro(CC))
11828         return;
11829       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
11830     }
11831 
11832     // If the vector cast is cast between two vectors of the same size, it is
11833     // a bitcast, not a conversion.
11834     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
11835       return;
11836 
11837     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11838     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11839   }
11840   if (auto VecTy = dyn_cast<VectorType>(Target))
11841     Target = VecTy->getElementType().getTypePtr();
11842 
11843   // Strip complex types.
11844   if (isa<ComplexType>(Source)) {
11845     if (!isa<ComplexType>(Target)) {
11846       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11847         return;
11848 
11849       return DiagnoseImpCast(S, E, T, CC,
11850                              S.getLangOpts().CPlusPlus
11851                                  ? diag::err_impcast_complex_scalar
11852                                  : diag::warn_impcast_complex_scalar);
11853     }
11854 
11855     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11856     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11857   }
11858 
11859   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11860   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11861 
11862   // If the source is floating point...
11863   if (SourceBT && SourceBT->isFloatingPoint()) {
11864     // ...and the target is floating point...
11865     if (TargetBT && TargetBT->isFloatingPoint()) {
11866       // ...then warn if we're dropping FP rank.
11867 
11868       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11869           QualType(SourceBT, 0), QualType(TargetBT, 0));
11870       if (Order > 0) {
11871         // Don't warn about float constants that are precisely
11872         // representable in the target type.
11873         Expr::EvalResult result;
11874         if (E->EvaluateAsRValue(result, S.Context)) {
11875           // Value might be a float, a float vector, or a float complex.
11876           if (IsSameFloatAfterCast(result.Val,
11877                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11878                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11879             return;
11880         }
11881 
11882         if (S.SourceMgr.isInSystemMacro(CC))
11883           return;
11884 
11885         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
11886       }
11887       // ... or possibly if we're increasing rank, too
11888       else if (Order < 0) {
11889         if (S.SourceMgr.isInSystemMacro(CC))
11890           return;
11891 
11892         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
11893       }
11894       return;
11895     }
11896 
11897     // If the target is integral, always warn.
11898     if (TargetBT && TargetBT->isInteger()) {
11899       if (S.SourceMgr.isInSystemMacro(CC))
11900         return;
11901 
11902       DiagnoseFloatingImpCast(S, E, T, CC);
11903     }
11904 
11905     // Detect the case where a call result is converted from floating-point to
11906     // to bool, and the final argument to the call is converted from bool, to
11907     // discover this typo:
11908     //
11909     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11910     //
11911     // FIXME: This is an incredibly special case; is there some more general
11912     // way to detect this class of misplaced-parentheses bug?
11913     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11914       // Check last argument of function call to see if it is an
11915       // implicit cast from a type matching the type the result
11916       // is being cast to.
11917       CallExpr *CEx = cast<CallExpr>(E);
11918       if (unsigned NumArgs = CEx->getNumArgs()) {
11919         Expr *LastA = CEx->getArg(NumArgs - 1);
11920         Expr *InnerE = LastA->IgnoreParenImpCasts();
11921         if (isa<ImplicitCastExpr>(LastA) &&
11922             InnerE->getType()->isBooleanType()) {
11923           // Warn on this floating-point to bool conversion
11924           DiagnoseImpCast(S, E, T, CC,
11925                           diag::warn_impcast_floating_point_to_bool);
11926         }
11927       }
11928     }
11929     return;
11930   }
11931 
11932   // Valid casts involving fixed point types should be accounted for here.
11933   if (Source->isFixedPointType()) {
11934     if (Target->isUnsaturatedFixedPointType()) {
11935       Expr::EvalResult Result;
11936       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
11937                                   S.isConstantEvaluated())) {
11938         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
11939         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
11940         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
11941         if (Value > MaxVal || Value < MinVal) {
11942           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11943                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11944                                     << Value.toString() << T
11945                                     << E->getSourceRange()
11946                                     << clang::SourceRange(CC));
11947           return;
11948         }
11949       }
11950     } else if (Target->isIntegerType()) {
11951       Expr::EvalResult Result;
11952       if (!S.isConstantEvaluated() &&
11953           E->EvaluateAsFixedPoint(Result, S.Context,
11954                                   Expr::SE_AllowSideEffects)) {
11955         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
11956 
11957         bool Overflowed;
11958         llvm::APSInt IntResult = FXResult.convertToInt(
11959             S.Context.getIntWidth(T),
11960             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
11961 
11962         if (Overflowed) {
11963           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11964                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11965                                     << FXResult.toString() << T
11966                                     << E->getSourceRange()
11967                                     << clang::SourceRange(CC));
11968           return;
11969         }
11970       }
11971     }
11972   } else if (Target->isUnsaturatedFixedPointType()) {
11973     if (Source->isIntegerType()) {
11974       Expr::EvalResult Result;
11975       if (!S.isConstantEvaluated() &&
11976           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11977         llvm::APSInt Value = Result.Val.getInt();
11978 
11979         bool Overflowed;
11980         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
11981             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
11982 
11983         if (Overflowed) {
11984           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11985                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11986                                     << Value.toString(/*Radix=*/10) << T
11987                                     << E->getSourceRange()
11988                                     << clang::SourceRange(CC));
11989           return;
11990         }
11991       }
11992     }
11993   }
11994 
11995   // If we are casting an integer type to a floating point type without
11996   // initialization-list syntax, we might lose accuracy if the floating
11997   // point type has a narrower significand than the integer type.
11998   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11999       TargetBT->isFloatingType() && !IsListInit) {
12000     // Determine the number of precision bits in the source integer type.
12001     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12002                                         /*Approximate*/ true);
12003     unsigned int SourcePrecision = SourceRange.Width;
12004 
12005     // Determine the number of precision bits in the
12006     // target floating point type.
12007     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12008         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12009 
12010     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12011         SourcePrecision > TargetPrecision) {
12012 
12013       if (Optional<llvm::APSInt> SourceInt =
12014               E->getIntegerConstantExpr(S.Context)) {
12015         // If the source integer is a constant, convert it to the target
12016         // floating point type. Issue a warning if the value changes
12017         // during the whole conversion.
12018         llvm::APFloat TargetFloatValue(
12019             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12020         llvm::APFloat::opStatus ConversionStatus =
12021             TargetFloatValue.convertFromAPInt(
12022                 *SourceInt, SourceBT->isSignedInteger(),
12023                 llvm::APFloat::rmNearestTiesToEven);
12024 
12025         if (ConversionStatus != llvm::APFloat::opOK) {
12026           std::string PrettySourceValue = SourceInt->toString(10);
12027           SmallString<32> PrettyTargetValue;
12028           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12029 
12030           S.DiagRuntimeBehavior(
12031               E->getExprLoc(), E,
12032               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12033                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12034                   << E->getSourceRange() << clang::SourceRange(CC));
12035         }
12036       } else {
12037         // Otherwise, the implicit conversion may lose precision.
12038         DiagnoseImpCast(S, E, T, CC,
12039                         diag::warn_impcast_integer_float_precision);
12040       }
12041     }
12042   }
12043 
12044   DiagnoseNullConversion(S, E, T, CC);
12045 
12046   S.DiscardMisalignedMemberAddress(Target, E);
12047 
12048   if (Target->isBooleanType())
12049     DiagnoseIntInBoolContext(S, E);
12050 
12051   if (!Source->isIntegerType() || !Target->isIntegerType())
12052     return;
12053 
12054   // TODO: remove this early return once the false positives for constant->bool
12055   // in templates, macros, etc, are reduced or removed.
12056   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12057     return;
12058 
12059   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12060       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12061     return adornObjCBoolConversionDiagWithTernaryFixit(
12062         S, E,
12063         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12064             << E->getType());
12065   }
12066 
12067   IntRange SourceTypeRange =
12068       IntRange::forTargetOfCanonicalType(S.Context, Source);
12069   IntRange LikelySourceRange =
12070       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12071   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12072 
12073   if (LikelySourceRange.Width > TargetRange.Width) {
12074     // If the source is a constant, use a default-on diagnostic.
12075     // TODO: this should happen for bitfield stores, too.
12076     Expr::EvalResult Result;
12077     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12078                          S.isConstantEvaluated())) {
12079       llvm::APSInt Value(32);
12080       Value = Result.Val.getInt();
12081 
12082       if (S.SourceMgr.isInSystemMacro(CC))
12083         return;
12084 
12085       std::string PrettySourceValue = Value.toString(10);
12086       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12087 
12088       S.DiagRuntimeBehavior(
12089           E->getExprLoc(), E,
12090           S.PDiag(diag::warn_impcast_integer_precision_constant)
12091               << PrettySourceValue << PrettyTargetValue << E->getType() << T
12092               << E->getSourceRange() << SourceRange(CC));
12093       return;
12094     }
12095 
12096     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12097     if (S.SourceMgr.isInSystemMacro(CC))
12098       return;
12099 
12100     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12101       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12102                              /* pruneControlFlow */ true);
12103     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12104   }
12105 
12106   if (TargetRange.Width > SourceTypeRange.Width) {
12107     if (auto *UO = dyn_cast<UnaryOperator>(E))
12108       if (UO->getOpcode() == UO_Minus)
12109         if (Source->isUnsignedIntegerType()) {
12110           if (Target->isUnsignedIntegerType())
12111             return DiagnoseImpCast(S, E, T, CC,
12112                                    diag::warn_impcast_high_order_zero_bits);
12113           if (Target->isSignedIntegerType())
12114             return DiagnoseImpCast(S, E, T, CC,
12115                                    diag::warn_impcast_nonnegative_result);
12116         }
12117   }
12118 
12119   if (TargetRange.Width == LikelySourceRange.Width &&
12120       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12121       Source->isSignedIntegerType()) {
12122     // Warn when doing a signed to signed conversion, warn if the positive
12123     // source value is exactly the width of the target type, which will
12124     // cause a negative value to be stored.
12125 
12126     Expr::EvalResult Result;
12127     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12128         !S.SourceMgr.isInSystemMacro(CC)) {
12129       llvm::APSInt Value = Result.Val.getInt();
12130       if (isSameWidthConstantConversion(S, E, T, CC)) {
12131         std::string PrettySourceValue = Value.toString(10);
12132         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12133 
12134         S.DiagRuntimeBehavior(
12135             E->getExprLoc(), E,
12136             S.PDiag(diag::warn_impcast_integer_precision_constant)
12137                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12138                 << E->getSourceRange() << SourceRange(CC));
12139         return;
12140       }
12141     }
12142 
12143     // Fall through for non-constants to give a sign conversion warning.
12144   }
12145 
12146   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12147       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12148        LikelySourceRange.Width == TargetRange.Width)) {
12149     if (S.SourceMgr.isInSystemMacro(CC))
12150       return;
12151 
12152     unsigned DiagID = diag::warn_impcast_integer_sign;
12153 
12154     // Traditionally, gcc has warned about this under -Wsign-compare.
12155     // We also want to warn about it in -Wconversion.
12156     // So if -Wconversion is off, use a completely identical diagnostic
12157     // in the sign-compare group.
12158     // The conditional-checking code will
12159     if (ICContext) {
12160       DiagID = diag::warn_impcast_integer_sign_conditional;
12161       *ICContext = true;
12162     }
12163 
12164     return DiagnoseImpCast(S, E, T, CC, DiagID);
12165   }
12166 
12167   // Diagnose conversions between different enumeration types.
12168   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12169   // type, to give us better diagnostics.
12170   QualType SourceType = E->getType();
12171   if (!S.getLangOpts().CPlusPlus) {
12172     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12173       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12174         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12175         SourceType = S.Context.getTypeDeclType(Enum);
12176         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12177       }
12178   }
12179 
12180   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12181     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12182       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12183           TargetEnum->getDecl()->hasNameForLinkage() &&
12184           SourceEnum != TargetEnum) {
12185         if (S.SourceMgr.isInSystemMacro(CC))
12186           return;
12187 
12188         return DiagnoseImpCast(S, E, SourceType, T, CC,
12189                                diag::warn_impcast_different_enum_types);
12190       }
12191 }
12192 
12193 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12194                                      SourceLocation CC, QualType T);
12195 
12196 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12197                                     SourceLocation CC, bool &ICContext) {
12198   E = E->IgnoreParenImpCasts();
12199 
12200   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12201     return CheckConditionalOperator(S, CO, CC, T);
12202 
12203   AnalyzeImplicitConversions(S, E, CC);
12204   if (E->getType() != T)
12205     return CheckImplicitConversion(S, E, T, CC, &ICContext);
12206 }
12207 
12208 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12209                                      SourceLocation CC, QualType T) {
12210   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12211 
12212   Expr *TrueExpr = E->getTrueExpr();
12213   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12214     TrueExpr = BCO->getCommon();
12215 
12216   bool Suspicious = false;
12217   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12218   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12219 
12220   if (T->isBooleanType())
12221     DiagnoseIntInBoolContext(S, E);
12222 
12223   // If -Wconversion would have warned about either of the candidates
12224   // for a signedness conversion to the context type...
12225   if (!Suspicious) return;
12226 
12227   // ...but it's currently ignored...
12228   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12229     return;
12230 
12231   // ...then check whether it would have warned about either of the
12232   // candidates for a signedness conversion to the condition type.
12233   if (E->getType() == T) return;
12234 
12235   Suspicious = false;
12236   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12237                           E->getType(), CC, &Suspicious);
12238   if (!Suspicious)
12239     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12240                             E->getType(), CC, &Suspicious);
12241 }
12242 
12243 /// Check conversion of given expression to boolean.
12244 /// Input argument E is a logical expression.
12245 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12246   if (S.getLangOpts().Bool)
12247     return;
12248   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12249     return;
12250   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12251 }
12252 
12253 namespace {
12254 struct AnalyzeImplicitConversionsWorkItem {
12255   Expr *E;
12256   SourceLocation CC;
12257   bool IsListInit;
12258 };
12259 }
12260 
12261 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12262 /// that should be visited are added to WorkList.
12263 static void AnalyzeImplicitConversions(
12264     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12265     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12266   Expr *OrigE = Item.E;
12267   SourceLocation CC = Item.CC;
12268 
12269   QualType T = OrigE->getType();
12270   Expr *E = OrigE->IgnoreParenImpCasts();
12271 
12272   // Propagate whether we are in a C++ list initialization expression.
12273   // If so, we do not issue warnings for implicit int-float conversion
12274   // precision loss, because C++11 narrowing already handles it.
12275   bool IsListInit = Item.IsListInit ||
12276                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12277 
12278   if (E->isTypeDependent() || E->isValueDependent())
12279     return;
12280 
12281   Expr *SourceExpr = E;
12282   // Examine, but don't traverse into the source expression of an
12283   // OpaqueValueExpr, since it may have multiple parents and we don't want to
12284   // emit duplicate diagnostics. Its fine to examine the form or attempt to
12285   // evaluate it in the context of checking the specific conversion to T though.
12286   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12287     if (auto *Src = OVE->getSourceExpr())
12288       SourceExpr = Src;
12289 
12290   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12291     if (UO->getOpcode() == UO_Not &&
12292         UO->getSubExpr()->isKnownToHaveBooleanValue())
12293       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12294           << OrigE->getSourceRange() << T->isBooleanType()
12295           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12296 
12297   // For conditional operators, we analyze the arguments as if they
12298   // were being fed directly into the output.
12299   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12300     CheckConditionalOperator(S, CO, CC, T);
12301     return;
12302   }
12303 
12304   // Check implicit argument conversions for function calls.
12305   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12306     CheckImplicitArgumentConversions(S, Call, CC);
12307 
12308   // Go ahead and check any implicit conversions we might have skipped.
12309   // The non-canonical typecheck is just an optimization;
12310   // CheckImplicitConversion will filter out dead implicit conversions.
12311   if (SourceExpr->getType() != T)
12312     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12313 
12314   // Now continue drilling into this expression.
12315 
12316   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12317     // The bound subexpressions in a PseudoObjectExpr are not reachable
12318     // as transitive children.
12319     // FIXME: Use a more uniform representation for this.
12320     for (auto *SE : POE->semantics())
12321       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12322         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12323   }
12324 
12325   // Skip past explicit casts.
12326   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12327     E = CE->getSubExpr()->IgnoreParenImpCasts();
12328     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12329       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12330     WorkList.push_back({E, CC, IsListInit});
12331     return;
12332   }
12333 
12334   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12335     // Do a somewhat different check with comparison operators.
12336     if (BO->isComparisonOp())
12337       return AnalyzeComparison(S, BO);
12338 
12339     // And with simple assignments.
12340     if (BO->getOpcode() == BO_Assign)
12341       return AnalyzeAssignment(S, BO);
12342     // And with compound assignments.
12343     if (BO->isAssignmentOp())
12344       return AnalyzeCompoundAssignment(S, BO);
12345   }
12346 
12347   // These break the otherwise-useful invariant below.  Fortunately,
12348   // we don't really need to recurse into them, because any internal
12349   // expressions should have been analyzed already when they were
12350   // built into statements.
12351   if (isa<StmtExpr>(E)) return;
12352 
12353   // Don't descend into unevaluated contexts.
12354   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12355 
12356   // Now just recurse over the expression's children.
12357   CC = E->getExprLoc();
12358   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12359   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12360   for (Stmt *SubStmt : E->children()) {
12361     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12362     if (!ChildExpr)
12363       continue;
12364 
12365     if (IsLogicalAndOperator &&
12366         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12367       // Ignore checking string literals that are in logical and operators.
12368       // This is a common pattern for asserts.
12369       continue;
12370     WorkList.push_back({ChildExpr, CC, IsListInit});
12371   }
12372 
12373   if (BO && BO->isLogicalOp()) {
12374     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12375     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12376       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12377 
12378     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12379     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12380       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12381   }
12382 
12383   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12384     if (U->getOpcode() == UO_LNot) {
12385       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12386     } else if (U->getOpcode() != UO_AddrOf) {
12387       if (U->getSubExpr()->getType()->isAtomicType())
12388         S.Diag(U->getSubExpr()->getBeginLoc(),
12389                diag::warn_atomic_implicit_seq_cst);
12390     }
12391   }
12392 }
12393 
12394 /// AnalyzeImplicitConversions - Find and report any interesting
12395 /// implicit conversions in the given expression.  There are a couple
12396 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
12397 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12398                                        bool IsListInit/*= false*/) {
12399   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12400   WorkList.push_back({OrigE, CC, IsListInit});
12401   while (!WorkList.empty())
12402     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12403 }
12404 
12405 /// Diagnose integer type and any valid implicit conversion to it.
12406 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12407   // Taking into account implicit conversions,
12408   // allow any integer.
12409   if (!E->getType()->isIntegerType()) {
12410     S.Diag(E->getBeginLoc(),
12411            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12412     return true;
12413   }
12414   // Potentially emit standard warnings for implicit conversions if enabled
12415   // using -Wconversion.
12416   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12417   return false;
12418 }
12419 
12420 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12421 // Returns true when emitting a warning about taking the address of a reference.
12422 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12423                               const PartialDiagnostic &PD) {
12424   E = E->IgnoreParenImpCasts();
12425 
12426   const FunctionDecl *FD = nullptr;
12427 
12428   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12429     if (!DRE->getDecl()->getType()->isReferenceType())
12430       return false;
12431   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12432     if (!M->getMemberDecl()->getType()->isReferenceType())
12433       return false;
12434   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12435     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12436       return false;
12437     FD = Call->getDirectCallee();
12438   } else {
12439     return false;
12440   }
12441 
12442   SemaRef.Diag(E->getExprLoc(), PD);
12443 
12444   // If possible, point to location of function.
12445   if (FD) {
12446     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12447   }
12448 
12449   return true;
12450 }
12451 
12452 // Returns true if the SourceLocation is expanded from any macro body.
12453 // Returns false if the SourceLocation is invalid, is from not in a macro
12454 // expansion, or is from expanded from a top-level macro argument.
12455 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12456   if (Loc.isInvalid())
12457     return false;
12458 
12459   while (Loc.isMacroID()) {
12460     if (SM.isMacroBodyExpansion(Loc))
12461       return true;
12462     Loc = SM.getImmediateMacroCallerLoc(Loc);
12463   }
12464 
12465   return false;
12466 }
12467 
12468 /// Diagnose pointers that are always non-null.
12469 /// \param E the expression containing the pointer
12470 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12471 /// compared to a null pointer
12472 /// \param IsEqual True when the comparison is equal to a null pointer
12473 /// \param Range Extra SourceRange to highlight in the diagnostic
12474 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12475                                         Expr::NullPointerConstantKind NullKind,
12476                                         bool IsEqual, SourceRange Range) {
12477   if (!E)
12478     return;
12479 
12480   // Don't warn inside macros.
12481   if (E->getExprLoc().isMacroID()) {
12482     const SourceManager &SM = getSourceManager();
12483     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12484         IsInAnyMacroBody(SM, Range.getBegin()))
12485       return;
12486   }
12487   E = E->IgnoreImpCasts();
12488 
12489   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12490 
12491   if (isa<CXXThisExpr>(E)) {
12492     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12493                                 : diag::warn_this_bool_conversion;
12494     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12495     return;
12496   }
12497 
12498   bool IsAddressOf = false;
12499 
12500   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12501     if (UO->getOpcode() != UO_AddrOf)
12502       return;
12503     IsAddressOf = true;
12504     E = UO->getSubExpr();
12505   }
12506 
12507   if (IsAddressOf) {
12508     unsigned DiagID = IsCompare
12509                           ? diag::warn_address_of_reference_null_compare
12510                           : diag::warn_address_of_reference_bool_conversion;
12511     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12512                                          << IsEqual;
12513     if (CheckForReference(*this, E, PD)) {
12514       return;
12515     }
12516   }
12517 
12518   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12519     bool IsParam = isa<NonNullAttr>(NonnullAttr);
12520     std::string Str;
12521     llvm::raw_string_ostream S(Str);
12522     E->printPretty(S, nullptr, getPrintingPolicy());
12523     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12524                                 : diag::warn_cast_nonnull_to_bool;
12525     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12526       << E->getSourceRange() << Range << IsEqual;
12527     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12528   };
12529 
12530   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12531   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12532     if (auto *Callee = Call->getDirectCallee()) {
12533       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12534         ComplainAboutNonnullParamOrCall(A);
12535         return;
12536       }
12537     }
12538   }
12539 
12540   // Expect to find a single Decl.  Skip anything more complicated.
12541   ValueDecl *D = nullptr;
12542   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12543     D = R->getDecl();
12544   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12545     D = M->getMemberDecl();
12546   }
12547 
12548   // Weak Decls can be null.
12549   if (!D || D->isWeak())
12550     return;
12551 
12552   // Check for parameter decl with nonnull attribute
12553   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12554     if (getCurFunction() &&
12555         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12556       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12557         ComplainAboutNonnullParamOrCall(A);
12558         return;
12559       }
12560 
12561       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12562         // Skip function template not specialized yet.
12563         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12564           return;
12565         auto ParamIter = llvm::find(FD->parameters(), PV);
12566         assert(ParamIter != FD->param_end());
12567         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12568 
12569         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12570           if (!NonNull->args_size()) {
12571               ComplainAboutNonnullParamOrCall(NonNull);
12572               return;
12573           }
12574 
12575           for (const ParamIdx &ArgNo : NonNull->args()) {
12576             if (ArgNo.getASTIndex() == ParamNo) {
12577               ComplainAboutNonnullParamOrCall(NonNull);
12578               return;
12579             }
12580           }
12581         }
12582       }
12583     }
12584   }
12585 
12586   QualType T = D->getType();
12587   const bool IsArray = T->isArrayType();
12588   const bool IsFunction = T->isFunctionType();
12589 
12590   // Address of function is used to silence the function warning.
12591   if (IsAddressOf && IsFunction) {
12592     return;
12593   }
12594 
12595   // Found nothing.
12596   if (!IsAddressOf && !IsFunction && !IsArray)
12597     return;
12598 
12599   // Pretty print the expression for the diagnostic.
12600   std::string Str;
12601   llvm::raw_string_ostream S(Str);
12602   E->printPretty(S, nullptr, getPrintingPolicy());
12603 
12604   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12605                               : diag::warn_impcast_pointer_to_bool;
12606   enum {
12607     AddressOf,
12608     FunctionPointer,
12609     ArrayPointer
12610   } DiagType;
12611   if (IsAddressOf)
12612     DiagType = AddressOf;
12613   else if (IsFunction)
12614     DiagType = FunctionPointer;
12615   else if (IsArray)
12616     DiagType = ArrayPointer;
12617   else
12618     llvm_unreachable("Could not determine diagnostic.");
12619   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12620                                 << Range << IsEqual;
12621 
12622   if (!IsFunction)
12623     return;
12624 
12625   // Suggest '&' to silence the function warning.
12626   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12627       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12628 
12629   // Check to see if '()' fixit should be emitted.
12630   QualType ReturnType;
12631   UnresolvedSet<4> NonTemplateOverloads;
12632   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12633   if (ReturnType.isNull())
12634     return;
12635 
12636   if (IsCompare) {
12637     // There are two cases here.  If there is null constant, the only suggest
12638     // for a pointer return type.  If the null is 0, then suggest if the return
12639     // type is a pointer or an integer type.
12640     if (!ReturnType->isPointerType()) {
12641       if (NullKind == Expr::NPCK_ZeroExpression ||
12642           NullKind == Expr::NPCK_ZeroLiteral) {
12643         if (!ReturnType->isIntegerType())
12644           return;
12645       } else {
12646         return;
12647       }
12648     }
12649   } else { // !IsCompare
12650     // For function to bool, only suggest if the function pointer has bool
12651     // return type.
12652     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12653       return;
12654   }
12655   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12656       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12657 }
12658 
12659 /// Diagnoses "dangerous" implicit conversions within the given
12660 /// expression (which is a full expression).  Implements -Wconversion
12661 /// and -Wsign-compare.
12662 ///
12663 /// \param CC the "context" location of the implicit conversion, i.e.
12664 ///   the most location of the syntactic entity requiring the implicit
12665 ///   conversion
12666 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12667   // Don't diagnose in unevaluated contexts.
12668   if (isUnevaluatedContext())
12669     return;
12670 
12671   // Don't diagnose for value- or type-dependent expressions.
12672   if (E->isTypeDependent() || E->isValueDependent())
12673     return;
12674 
12675   // Check for array bounds violations in cases where the check isn't triggered
12676   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12677   // ArraySubscriptExpr is on the RHS of a variable initialization.
12678   CheckArrayAccess(E);
12679 
12680   // This is not the right CC for (e.g.) a variable initialization.
12681   AnalyzeImplicitConversions(*this, E, CC);
12682 }
12683 
12684 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12685 /// Input argument E is a logical expression.
12686 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12687   ::CheckBoolLikeConversion(*this, E, CC);
12688 }
12689 
12690 /// Diagnose when expression is an integer constant expression and its evaluation
12691 /// results in integer overflow
12692 void Sema::CheckForIntOverflow (Expr *E) {
12693   // Use a work list to deal with nested struct initializers.
12694   SmallVector<Expr *, 2> Exprs(1, E);
12695 
12696   do {
12697     Expr *OriginalE = Exprs.pop_back_val();
12698     Expr *E = OriginalE->IgnoreParenCasts();
12699 
12700     if (isa<BinaryOperator>(E)) {
12701       E->EvaluateForOverflow(Context);
12702       continue;
12703     }
12704 
12705     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12706       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12707     else if (isa<ObjCBoxedExpr>(OriginalE))
12708       E->EvaluateForOverflow(Context);
12709     else if (auto Call = dyn_cast<CallExpr>(E))
12710       Exprs.append(Call->arg_begin(), Call->arg_end());
12711     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12712       Exprs.append(Message->arg_begin(), Message->arg_end());
12713   } while (!Exprs.empty());
12714 }
12715 
12716 namespace {
12717 
12718 /// Visitor for expressions which looks for unsequenced operations on the
12719 /// same object.
12720 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12721   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12722 
12723   /// A tree of sequenced regions within an expression. Two regions are
12724   /// unsequenced if one is an ancestor or a descendent of the other. When we
12725   /// finish processing an expression with sequencing, such as a comma
12726   /// expression, we fold its tree nodes into its parent, since they are
12727   /// unsequenced with respect to nodes we will visit later.
12728   class SequenceTree {
12729     struct Value {
12730       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12731       unsigned Parent : 31;
12732       unsigned Merged : 1;
12733     };
12734     SmallVector<Value, 8> Values;
12735 
12736   public:
12737     /// A region within an expression which may be sequenced with respect
12738     /// to some other region.
12739     class Seq {
12740       friend class SequenceTree;
12741 
12742       unsigned Index;
12743 
12744       explicit Seq(unsigned N) : Index(N) {}
12745 
12746     public:
12747       Seq() : Index(0) {}
12748     };
12749 
12750     SequenceTree() { Values.push_back(Value(0)); }
12751     Seq root() const { return Seq(0); }
12752 
12753     /// Create a new sequence of operations, which is an unsequenced
12754     /// subset of \p Parent. This sequence of operations is sequenced with
12755     /// respect to other children of \p Parent.
12756     Seq allocate(Seq Parent) {
12757       Values.push_back(Value(Parent.Index));
12758       return Seq(Values.size() - 1);
12759     }
12760 
12761     /// Merge a sequence of operations into its parent.
12762     void merge(Seq S) {
12763       Values[S.Index].Merged = true;
12764     }
12765 
12766     /// Determine whether two operations are unsequenced. This operation
12767     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12768     /// should have been merged into its parent as appropriate.
12769     bool isUnsequenced(Seq Cur, Seq Old) {
12770       unsigned C = representative(Cur.Index);
12771       unsigned Target = representative(Old.Index);
12772       while (C >= Target) {
12773         if (C == Target)
12774           return true;
12775         C = Values[C].Parent;
12776       }
12777       return false;
12778     }
12779 
12780   private:
12781     /// Pick a representative for a sequence.
12782     unsigned representative(unsigned K) {
12783       if (Values[K].Merged)
12784         // Perform path compression as we go.
12785         return Values[K].Parent = representative(Values[K].Parent);
12786       return K;
12787     }
12788   };
12789 
12790   /// An object for which we can track unsequenced uses.
12791   using Object = const NamedDecl *;
12792 
12793   /// Different flavors of object usage which we track. We only track the
12794   /// least-sequenced usage of each kind.
12795   enum UsageKind {
12796     /// A read of an object. Multiple unsequenced reads are OK.
12797     UK_Use,
12798 
12799     /// A modification of an object which is sequenced before the value
12800     /// computation of the expression, such as ++n in C++.
12801     UK_ModAsValue,
12802 
12803     /// A modification of an object which is not sequenced before the value
12804     /// computation of the expression, such as n++.
12805     UK_ModAsSideEffect,
12806 
12807     UK_Count = UK_ModAsSideEffect + 1
12808   };
12809 
12810   /// Bundle together a sequencing region and the expression corresponding
12811   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
12812   struct Usage {
12813     const Expr *UsageExpr;
12814     SequenceTree::Seq Seq;
12815 
12816     Usage() : UsageExpr(nullptr), Seq() {}
12817   };
12818 
12819   struct UsageInfo {
12820     Usage Uses[UK_Count];
12821 
12822     /// Have we issued a diagnostic for this object already?
12823     bool Diagnosed;
12824 
12825     UsageInfo() : Uses(), Diagnosed(false) {}
12826   };
12827   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12828 
12829   Sema &SemaRef;
12830 
12831   /// Sequenced regions within the expression.
12832   SequenceTree Tree;
12833 
12834   /// Declaration modifications and references which we have seen.
12835   UsageInfoMap UsageMap;
12836 
12837   /// The region we are currently within.
12838   SequenceTree::Seq Region;
12839 
12840   /// Filled in with declarations which were modified as a side-effect
12841   /// (that is, post-increment operations).
12842   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12843 
12844   /// Expressions to check later. We defer checking these to reduce
12845   /// stack usage.
12846   SmallVectorImpl<const Expr *> &WorkList;
12847 
12848   /// RAII object wrapping the visitation of a sequenced subexpression of an
12849   /// expression. At the end of this process, the side-effects of the evaluation
12850   /// become sequenced with respect to the value computation of the result, so
12851   /// we downgrade any UK_ModAsSideEffect within the evaluation to
12852   /// UK_ModAsValue.
12853   struct SequencedSubexpression {
12854     SequencedSubexpression(SequenceChecker &Self)
12855       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12856       Self.ModAsSideEffect = &ModAsSideEffect;
12857     }
12858 
12859     ~SequencedSubexpression() {
12860       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
12861         // Add a new usage with usage kind UK_ModAsValue, and then restore
12862         // the previous usage with UK_ModAsSideEffect (thus clearing it if
12863         // the previous one was empty).
12864         UsageInfo &UI = Self.UsageMap[M.first];
12865         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
12866         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
12867         SideEffectUsage = M.second;
12868       }
12869       Self.ModAsSideEffect = OldModAsSideEffect;
12870     }
12871 
12872     SequenceChecker &Self;
12873     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12874     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12875   };
12876 
12877   /// RAII object wrapping the visitation of a subexpression which we might
12878   /// choose to evaluate as a constant. If any subexpression is evaluated and
12879   /// found to be non-constant, this allows us to suppress the evaluation of
12880   /// the outer expression.
12881   class EvaluationTracker {
12882   public:
12883     EvaluationTracker(SequenceChecker &Self)
12884         : Self(Self), Prev(Self.EvalTracker) {
12885       Self.EvalTracker = this;
12886     }
12887 
12888     ~EvaluationTracker() {
12889       Self.EvalTracker = Prev;
12890       if (Prev)
12891         Prev->EvalOK &= EvalOK;
12892     }
12893 
12894     bool evaluate(const Expr *E, bool &Result) {
12895       if (!EvalOK || E->isValueDependent())
12896         return false;
12897       EvalOK = E->EvaluateAsBooleanCondition(
12898           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
12899       return EvalOK;
12900     }
12901 
12902   private:
12903     SequenceChecker &Self;
12904     EvaluationTracker *Prev;
12905     bool EvalOK = true;
12906   } *EvalTracker = nullptr;
12907 
12908   /// Find the object which is produced by the specified expression,
12909   /// if any.
12910   Object getObject(const Expr *E, bool Mod) const {
12911     E = E->IgnoreParenCasts();
12912     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12913       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12914         return getObject(UO->getSubExpr(), Mod);
12915     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12916       if (BO->getOpcode() == BO_Comma)
12917         return getObject(BO->getRHS(), Mod);
12918       if (Mod && BO->isAssignmentOp())
12919         return getObject(BO->getLHS(), Mod);
12920     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12921       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12922       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12923         return ME->getMemberDecl();
12924     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12925       // FIXME: If this is a reference, map through to its value.
12926       return DRE->getDecl();
12927     return nullptr;
12928   }
12929 
12930   /// Note that an object \p O was modified or used by an expression
12931   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
12932   /// the object \p O as obtained via the \p UsageMap.
12933   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
12934     // Get the old usage for the given object and usage kind.
12935     Usage &U = UI.Uses[UK];
12936     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
12937       // If we have a modification as side effect and are in a sequenced
12938       // subexpression, save the old Usage so that we can restore it later
12939       // in SequencedSubexpression::~SequencedSubexpression.
12940       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12941         ModAsSideEffect->push_back(std::make_pair(O, U));
12942       // Then record the new usage with the current sequencing region.
12943       U.UsageExpr = UsageExpr;
12944       U.Seq = Region;
12945     }
12946   }
12947 
12948   /// Check whether a modification or use of an object \p O in an expression
12949   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12950   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12951   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12952   /// usage and false we are checking for a mod-use unsequenced usage.
12953   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12954                   UsageKind OtherKind, bool IsModMod) {
12955     if (UI.Diagnosed)
12956       return;
12957 
12958     const Usage &U = UI.Uses[OtherKind];
12959     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12960       return;
12961 
12962     const Expr *Mod = U.UsageExpr;
12963     const Expr *ModOrUse = UsageExpr;
12964     if (OtherKind == UK_Use)
12965       std::swap(Mod, ModOrUse);
12966 
12967     SemaRef.DiagRuntimeBehavior(
12968         Mod->getExprLoc(), {Mod, ModOrUse},
12969         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12970                                : diag::warn_unsequenced_mod_use)
12971             << O << SourceRange(ModOrUse->getExprLoc()));
12972     UI.Diagnosed = true;
12973   }
12974 
12975   // A note on note{Pre, Post}{Use, Mod}:
12976   //
12977   // (It helps to follow the algorithm with an expression such as
12978   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12979   //  operations before C++17 and both are well-defined in C++17).
12980   //
12981   // When visiting a node which uses/modify an object we first call notePreUse
12982   // or notePreMod before visiting its sub-expression(s). At this point the
12983   // children of the current node have not yet been visited and so the eventual
12984   // uses/modifications resulting from the children of the current node have not
12985   // been recorded yet.
12986   //
12987   // We then visit the children of the current node. After that notePostUse or
12988   // notePostMod is called. These will 1) detect an unsequenced modification
12989   // as side effect (as in "k++ + k") and 2) add a new usage with the
12990   // appropriate usage kind.
12991   //
12992   // We also have to be careful that some operation sequences modification as
12993   // side effect as well (for example: || or ,). To account for this we wrap
12994   // the visitation of such a sub-expression (for example: the LHS of || or ,)
12995   // with SequencedSubexpression. SequencedSubexpression is an RAII object
12996   // which record usages which are modifications as side effect, and then
12997   // downgrade them (or more accurately restore the previous usage which was a
12998   // modification as side effect) when exiting the scope of the sequenced
12999   // subexpression.
13000 
13001   void notePreUse(Object O, const Expr *UseExpr) {
13002     UsageInfo &UI = UsageMap[O];
13003     // Uses conflict with other modifications.
13004     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13005   }
13006 
13007   void notePostUse(Object O, const Expr *UseExpr) {
13008     UsageInfo &UI = UsageMap[O];
13009     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13010                /*IsModMod=*/false);
13011     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13012   }
13013 
13014   void notePreMod(Object O, const Expr *ModExpr) {
13015     UsageInfo &UI = UsageMap[O];
13016     // Modifications conflict with other modifications and with uses.
13017     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13018     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13019   }
13020 
13021   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13022     UsageInfo &UI = UsageMap[O];
13023     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13024                /*IsModMod=*/true);
13025     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13026   }
13027 
13028 public:
13029   SequenceChecker(Sema &S, const Expr *E,
13030                   SmallVectorImpl<const Expr *> &WorkList)
13031       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13032     Visit(E);
13033     // Silence a -Wunused-private-field since WorkList is now unused.
13034     // TODO: Evaluate if it can be used, and if not remove it.
13035     (void)this->WorkList;
13036   }
13037 
13038   void VisitStmt(const Stmt *S) {
13039     // Skip all statements which aren't expressions for now.
13040   }
13041 
13042   void VisitExpr(const Expr *E) {
13043     // By default, just recurse to evaluated subexpressions.
13044     Base::VisitStmt(E);
13045   }
13046 
13047   void VisitCastExpr(const CastExpr *E) {
13048     Object O = Object();
13049     if (E->getCastKind() == CK_LValueToRValue)
13050       O = getObject(E->getSubExpr(), false);
13051 
13052     if (O)
13053       notePreUse(O, E);
13054     VisitExpr(E);
13055     if (O)
13056       notePostUse(O, E);
13057   }
13058 
13059   void VisitSequencedExpressions(const Expr *SequencedBefore,
13060                                  const Expr *SequencedAfter) {
13061     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13062     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13063     SequenceTree::Seq OldRegion = Region;
13064 
13065     {
13066       SequencedSubexpression SeqBefore(*this);
13067       Region = BeforeRegion;
13068       Visit(SequencedBefore);
13069     }
13070 
13071     Region = AfterRegion;
13072     Visit(SequencedAfter);
13073 
13074     Region = OldRegion;
13075 
13076     Tree.merge(BeforeRegion);
13077     Tree.merge(AfterRegion);
13078   }
13079 
13080   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13081     // C++17 [expr.sub]p1:
13082     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13083     //   expression E1 is sequenced before the expression E2.
13084     if (SemaRef.getLangOpts().CPlusPlus17)
13085       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13086     else {
13087       Visit(ASE->getLHS());
13088       Visit(ASE->getRHS());
13089     }
13090   }
13091 
13092   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13093   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13094   void VisitBinPtrMem(const BinaryOperator *BO) {
13095     // C++17 [expr.mptr.oper]p4:
13096     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13097     //  the expression E1 is sequenced before the expression E2.
13098     if (SemaRef.getLangOpts().CPlusPlus17)
13099       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13100     else {
13101       Visit(BO->getLHS());
13102       Visit(BO->getRHS());
13103     }
13104   }
13105 
13106   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13107   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13108   void VisitBinShlShr(const BinaryOperator *BO) {
13109     // C++17 [expr.shift]p4:
13110     //  The expression E1 is sequenced before the expression E2.
13111     if (SemaRef.getLangOpts().CPlusPlus17)
13112       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13113     else {
13114       Visit(BO->getLHS());
13115       Visit(BO->getRHS());
13116     }
13117   }
13118 
13119   void VisitBinComma(const BinaryOperator *BO) {
13120     // C++11 [expr.comma]p1:
13121     //   Every value computation and side effect associated with the left
13122     //   expression is sequenced before every value computation and side
13123     //   effect associated with the right expression.
13124     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13125   }
13126 
13127   void VisitBinAssign(const BinaryOperator *BO) {
13128     SequenceTree::Seq RHSRegion;
13129     SequenceTree::Seq LHSRegion;
13130     if (SemaRef.getLangOpts().CPlusPlus17) {
13131       RHSRegion = Tree.allocate(Region);
13132       LHSRegion = Tree.allocate(Region);
13133     } else {
13134       RHSRegion = Region;
13135       LHSRegion = Region;
13136     }
13137     SequenceTree::Seq OldRegion = Region;
13138 
13139     // C++11 [expr.ass]p1:
13140     //  [...] the assignment is sequenced after the value computation
13141     //  of the right and left operands, [...]
13142     //
13143     // so check it before inspecting the operands and update the
13144     // map afterwards.
13145     Object O = getObject(BO->getLHS(), /*Mod=*/true);
13146     if (O)
13147       notePreMod(O, BO);
13148 
13149     if (SemaRef.getLangOpts().CPlusPlus17) {
13150       // C++17 [expr.ass]p1:
13151       //  [...] The right operand is sequenced before the left operand. [...]
13152       {
13153         SequencedSubexpression SeqBefore(*this);
13154         Region = RHSRegion;
13155         Visit(BO->getRHS());
13156       }
13157 
13158       Region = LHSRegion;
13159       Visit(BO->getLHS());
13160 
13161       if (O && isa<CompoundAssignOperator>(BO))
13162         notePostUse(O, BO);
13163 
13164     } else {
13165       // C++11 does not specify any sequencing between the LHS and RHS.
13166       Region = LHSRegion;
13167       Visit(BO->getLHS());
13168 
13169       if (O && isa<CompoundAssignOperator>(BO))
13170         notePostUse(O, BO);
13171 
13172       Region = RHSRegion;
13173       Visit(BO->getRHS());
13174     }
13175 
13176     // C++11 [expr.ass]p1:
13177     //  the assignment is sequenced [...] before the value computation of the
13178     //  assignment expression.
13179     // C11 6.5.16/3 has no such rule.
13180     Region = OldRegion;
13181     if (O)
13182       notePostMod(O, BO,
13183                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13184                                                   : UK_ModAsSideEffect);
13185     if (SemaRef.getLangOpts().CPlusPlus17) {
13186       Tree.merge(RHSRegion);
13187       Tree.merge(LHSRegion);
13188     }
13189   }
13190 
13191   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13192     VisitBinAssign(CAO);
13193   }
13194 
13195   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13196   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13197   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13198     Object O = getObject(UO->getSubExpr(), true);
13199     if (!O)
13200       return VisitExpr(UO);
13201 
13202     notePreMod(O, UO);
13203     Visit(UO->getSubExpr());
13204     // C++11 [expr.pre.incr]p1:
13205     //   the expression ++x is equivalent to x+=1
13206     notePostMod(O, UO,
13207                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13208                                                 : UK_ModAsSideEffect);
13209   }
13210 
13211   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13212   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13213   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13214     Object O = getObject(UO->getSubExpr(), true);
13215     if (!O)
13216       return VisitExpr(UO);
13217 
13218     notePreMod(O, UO);
13219     Visit(UO->getSubExpr());
13220     notePostMod(O, UO, UK_ModAsSideEffect);
13221   }
13222 
13223   void VisitBinLOr(const BinaryOperator *BO) {
13224     // C++11 [expr.log.or]p2:
13225     //  If the second expression is evaluated, every value computation and
13226     //  side effect associated with the first expression is sequenced before
13227     //  every value computation and side effect associated with the
13228     //  second expression.
13229     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13230     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13231     SequenceTree::Seq OldRegion = Region;
13232 
13233     EvaluationTracker Eval(*this);
13234     {
13235       SequencedSubexpression Sequenced(*this);
13236       Region = LHSRegion;
13237       Visit(BO->getLHS());
13238     }
13239 
13240     // C++11 [expr.log.or]p1:
13241     //  [...] the second operand is not evaluated if the first operand
13242     //  evaluates to true.
13243     bool EvalResult = false;
13244     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13245     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13246     if (ShouldVisitRHS) {
13247       Region = RHSRegion;
13248       Visit(BO->getRHS());
13249     }
13250 
13251     Region = OldRegion;
13252     Tree.merge(LHSRegion);
13253     Tree.merge(RHSRegion);
13254   }
13255 
13256   void VisitBinLAnd(const BinaryOperator *BO) {
13257     // C++11 [expr.log.and]p2:
13258     //  If the second expression is evaluated, every value computation and
13259     //  side effect associated with the first expression is sequenced before
13260     //  every value computation and side effect associated with the
13261     //  second expression.
13262     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13263     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13264     SequenceTree::Seq OldRegion = Region;
13265 
13266     EvaluationTracker Eval(*this);
13267     {
13268       SequencedSubexpression Sequenced(*this);
13269       Region = LHSRegion;
13270       Visit(BO->getLHS());
13271     }
13272 
13273     // C++11 [expr.log.and]p1:
13274     //  [...] the second operand is not evaluated if the first operand is false.
13275     bool EvalResult = false;
13276     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13277     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13278     if (ShouldVisitRHS) {
13279       Region = RHSRegion;
13280       Visit(BO->getRHS());
13281     }
13282 
13283     Region = OldRegion;
13284     Tree.merge(LHSRegion);
13285     Tree.merge(RHSRegion);
13286   }
13287 
13288   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13289     // C++11 [expr.cond]p1:
13290     //  [...] Every value computation and side effect associated with the first
13291     //  expression is sequenced before every value computation and side effect
13292     //  associated with the second or third expression.
13293     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13294 
13295     // No sequencing is specified between the true and false expression.
13296     // However since exactly one of both is going to be evaluated we can
13297     // consider them to be sequenced. This is needed to avoid warning on
13298     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13299     // both the true and false expressions because we can't evaluate x.
13300     // This will still allow us to detect an expression like (pre C++17)
13301     // "(x ? y += 1 : y += 2) = y".
13302     //
13303     // We don't wrap the visitation of the true and false expression with
13304     // SequencedSubexpression because we don't want to downgrade modifications
13305     // as side effect in the true and false expressions after the visition
13306     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13307     // not warn between the two "y++", but we should warn between the "y++"
13308     // and the "y".
13309     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13310     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13311     SequenceTree::Seq OldRegion = Region;
13312 
13313     EvaluationTracker Eval(*this);
13314     {
13315       SequencedSubexpression Sequenced(*this);
13316       Region = ConditionRegion;
13317       Visit(CO->getCond());
13318     }
13319 
13320     // C++11 [expr.cond]p1:
13321     // [...] The first expression is contextually converted to bool (Clause 4).
13322     // It is evaluated and if it is true, the result of the conditional
13323     // expression is the value of the second expression, otherwise that of the
13324     // third expression. Only one of the second and third expressions is
13325     // evaluated. [...]
13326     bool EvalResult = false;
13327     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13328     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13329     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13330     if (ShouldVisitTrueExpr) {
13331       Region = TrueRegion;
13332       Visit(CO->getTrueExpr());
13333     }
13334     if (ShouldVisitFalseExpr) {
13335       Region = FalseRegion;
13336       Visit(CO->getFalseExpr());
13337     }
13338 
13339     Region = OldRegion;
13340     Tree.merge(ConditionRegion);
13341     Tree.merge(TrueRegion);
13342     Tree.merge(FalseRegion);
13343   }
13344 
13345   void VisitCallExpr(const CallExpr *CE) {
13346     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13347 
13348     if (CE->isUnevaluatedBuiltinCall(Context))
13349       return;
13350 
13351     // C++11 [intro.execution]p15:
13352     //   When calling a function [...], every value computation and side effect
13353     //   associated with any argument expression, or with the postfix expression
13354     //   designating the called function, is sequenced before execution of every
13355     //   expression or statement in the body of the function [and thus before
13356     //   the value computation of its result].
13357     SequencedSubexpression Sequenced(*this);
13358     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13359       // C++17 [expr.call]p5
13360       //   The postfix-expression is sequenced before each expression in the
13361       //   expression-list and any default argument. [...]
13362       SequenceTree::Seq CalleeRegion;
13363       SequenceTree::Seq OtherRegion;
13364       if (SemaRef.getLangOpts().CPlusPlus17) {
13365         CalleeRegion = Tree.allocate(Region);
13366         OtherRegion = Tree.allocate(Region);
13367       } else {
13368         CalleeRegion = Region;
13369         OtherRegion = Region;
13370       }
13371       SequenceTree::Seq OldRegion = Region;
13372 
13373       // Visit the callee expression first.
13374       Region = CalleeRegion;
13375       if (SemaRef.getLangOpts().CPlusPlus17) {
13376         SequencedSubexpression Sequenced(*this);
13377         Visit(CE->getCallee());
13378       } else {
13379         Visit(CE->getCallee());
13380       }
13381 
13382       // Then visit the argument expressions.
13383       Region = OtherRegion;
13384       for (const Expr *Argument : CE->arguments())
13385         Visit(Argument);
13386 
13387       Region = OldRegion;
13388       if (SemaRef.getLangOpts().CPlusPlus17) {
13389         Tree.merge(CalleeRegion);
13390         Tree.merge(OtherRegion);
13391       }
13392     });
13393   }
13394 
13395   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13396     // C++17 [over.match.oper]p2:
13397     //   [...] the operator notation is first transformed to the equivalent
13398     //   function-call notation as summarized in Table 12 (where @ denotes one
13399     //   of the operators covered in the specified subclause). However, the
13400     //   operands are sequenced in the order prescribed for the built-in
13401     //   operator (Clause 8).
13402     //
13403     // From the above only overloaded binary operators and overloaded call
13404     // operators have sequencing rules in C++17 that we need to handle
13405     // separately.
13406     if (!SemaRef.getLangOpts().CPlusPlus17 ||
13407         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13408       return VisitCallExpr(CXXOCE);
13409 
13410     enum {
13411       NoSequencing,
13412       LHSBeforeRHS,
13413       RHSBeforeLHS,
13414       LHSBeforeRest
13415     } SequencingKind;
13416     switch (CXXOCE->getOperator()) {
13417     case OO_Equal:
13418     case OO_PlusEqual:
13419     case OO_MinusEqual:
13420     case OO_StarEqual:
13421     case OO_SlashEqual:
13422     case OO_PercentEqual:
13423     case OO_CaretEqual:
13424     case OO_AmpEqual:
13425     case OO_PipeEqual:
13426     case OO_LessLessEqual:
13427     case OO_GreaterGreaterEqual:
13428       SequencingKind = RHSBeforeLHS;
13429       break;
13430 
13431     case OO_LessLess:
13432     case OO_GreaterGreater:
13433     case OO_AmpAmp:
13434     case OO_PipePipe:
13435     case OO_Comma:
13436     case OO_ArrowStar:
13437     case OO_Subscript:
13438       SequencingKind = LHSBeforeRHS;
13439       break;
13440 
13441     case OO_Call:
13442       SequencingKind = LHSBeforeRest;
13443       break;
13444 
13445     default:
13446       SequencingKind = NoSequencing;
13447       break;
13448     }
13449 
13450     if (SequencingKind == NoSequencing)
13451       return VisitCallExpr(CXXOCE);
13452 
13453     // This is a call, so all subexpressions are sequenced before the result.
13454     SequencedSubexpression Sequenced(*this);
13455 
13456     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13457       assert(SemaRef.getLangOpts().CPlusPlus17 &&
13458              "Should only get there with C++17 and above!");
13459       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
13460              "Should only get there with an overloaded binary operator"
13461              " or an overloaded call operator!");
13462 
13463       if (SequencingKind == LHSBeforeRest) {
13464         assert(CXXOCE->getOperator() == OO_Call &&
13465                "We should only have an overloaded call operator here!");
13466 
13467         // This is very similar to VisitCallExpr, except that we only have the
13468         // C++17 case. The postfix-expression is the first argument of the
13469         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13470         // are in the following arguments.
13471         //
13472         // Note that we intentionally do not visit the callee expression since
13473         // it is just a decayed reference to a function.
13474         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13475         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13476         SequenceTree::Seq OldRegion = Region;
13477 
13478         assert(CXXOCE->getNumArgs() >= 1 &&
13479                "An overloaded call operator must have at least one argument"
13480                " for the postfix-expression!");
13481         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13482         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13483                                           CXXOCE->getNumArgs() - 1);
13484 
13485         // Visit the postfix-expression first.
13486         {
13487           Region = PostfixExprRegion;
13488           SequencedSubexpression Sequenced(*this);
13489           Visit(PostfixExpr);
13490         }
13491 
13492         // Then visit the argument expressions.
13493         Region = ArgsRegion;
13494         for (const Expr *Arg : Args)
13495           Visit(Arg);
13496 
13497         Region = OldRegion;
13498         Tree.merge(PostfixExprRegion);
13499         Tree.merge(ArgsRegion);
13500       } else {
13501         assert(CXXOCE->getNumArgs() == 2 &&
13502                "Should only have two arguments here!");
13503         assert((SequencingKind == LHSBeforeRHS ||
13504                 SequencingKind == RHSBeforeLHS) &&
13505                "Unexpected sequencing kind!");
13506 
13507         // We do not visit the callee expression since it is just a decayed
13508         // reference to a function.
13509         const Expr *E1 = CXXOCE->getArg(0);
13510         const Expr *E2 = CXXOCE->getArg(1);
13511         if (SequencingKind == RHSBeforeLHS)
13512           std::swap(E1, E2);
13513 
13514         return VisitSequencedExpressions(E1, E2);
13515       }
13516     });
13517   }
13518 
13519   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13520     // This is a call, so all subexpressions are sequenced before the result.
13521     SequencedSubexpression Sequenced(*this);
13522 
13523     if (!CCE->isListInitialization())
13524       return VisitExpr(CCE);
13525 
13526     // In C++11, list initializations are sequenced.
13527     SmallVector<SequenceTree::Seq, 32> Elts;
13528     SequenceTree::Seq Parent = Region;
13529     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13530                                               E = CCE->arg_end();
13531          I != E; ++I) {
13532       Region = Tree.allocate(Parent);
13533       Elts.push_back(Region);
13534       Visit(*I);
13535     }
13536 
13537     // Forget that the initializers are sequenced.
13538     Region = Parent;
13539     for (unsigned I = 0; I < Elts.size(); ++I)
13540       Tree.merge(Elts[I]);
13541   }
13542 
13543   void VisitInitListExpr(const InitListExpr *ILE) {
13544     if (!SemaRef.getLangOpts().CPlusPlus11)
13545       return VisitExpr(ILE);
13546 
13547     // In C++11, list initializations are sequenced.
13548     SmallVector<SequenceTree::Seq, 32> Elts;
13549     SequenceTree::Seq Parent = Region;
13550     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13551       const Expr *E = ILE->getInit(I);
13552       if (!E)
13553         continue;
13554       Region = Tree.allocate(Parent);
13555       Elts.push_back(Region);
13556       Visit(E);
13557     }
13558 
13559     // Forget that the initializers are sequenced.
13560     Region = Parent;
13561     for (unsigned I = 0; I < Elts.size(); ++I)
13562       Tree.merge(Elts[I]);
13563   }
13564 };
13565 
13566 } // namespace
13567 
13568 void Sema::CheckUnsequencedOperations(const Expr *E) {
13569   SmallVector<const Expr *, 8> WorkList;
13570   WorkList.push_back(E);
13571   while (!WorkList.empty()) {
13572     const Expr *Item = WorkList.pop_back_val();
13573     SequenceChecker(*this, Item, WorkList);
13574   }
13575 }
13576 
13577 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13578                               bool IsConstexpr) {
13579   llvm::SaveAndRestore<bool> ConstantContext(
13580       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13581   CheckImplicitConversions(E, CheckLoc);
13582   if (!E->isInstantiationDependent())
13583     CheckUnsequencedOperations(E);
13584   if (!IsConstexpr && !E->isValueDependent())
13585     CheckForIntOverflow(E);
13586   DiagnoseMisalignedMembers();
13587 }
13588 
13589 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13590                                        FieldDecl *BitField,
13591                                        Expr *Init) {
13592   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13593 }
13594 
13595 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13596                                          SourceLocation Loc) {
13597   if (!PType->isVariablyModifiedType())
13598     return;
13599   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13600     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13601     return;
13602   }
13603   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13604     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13605     return;
13606   }
13607   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13608     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13609     return;
13610   }
13611 
13612   const ArrayType *AT = S.Context.getAsArrayType(PType);
13613   if (!AT)
13614     return;
13615 
13616   if (AT->getSizeModifier() != ArrayType::Star) {
13617     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13618     return;
13619   }
13620 
13621   S.Diag(Loc, diag::err_array_star_in_function_definition);
13622 }
13623 
13624 /// CheckParmsForFunctionDef - Check that the parameters of the given
13625 /// function are appropriate for the definition of a function. This
13626 /// takes care of any checks that cannot be performed on the
13627 /// declaration itself, e.g., that the types of each of the function
13628 /// parameters are complete.
13629 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13630                                     bool CheckParameterNames) {
13631   bool HasInvalidParm = false;
13632   for (ParmVarDecl *Param : Parameters) {
13633     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13634     // function declarator that is part of a function definition of
13635     // that function shall not have incomplete type.
13636     //
13637     // This is also C++ [dcl.fct]p6.
13638     if (!Param->isInvalidDecl() &&
13639         RequireCompleteType(Param->getLocation(), Param->getType(),
13640                             diag::err_typecheck_decl_incomplete_type)) {
13641       Param->setInvalidDecl();
13642       HasInvalidParm = true;
13643     }
13644 
13645     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13646     // declaration of each parameter shall include an identifier.
13647     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13648         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13649       // Diagnose this as an extension in C17 and earlier.
13650       if (!getLangOpts().C2x)
13651         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13652     }
13653 
13654     // C99 6.7.5.3p12:
13655     //   If the function declarator is not part of a definition of that
13656     //   function, parameters may have incomplete type and may use the [*]
13657     //   notation in their sequences of declarator specifiers to specify
13658     //   variable length array types.
13659     QualType PType = Param->getOriginalType();
13660     // FIXME: This diagnostic should point the '[*]' if source-location
13661     // information is added for it.
13662     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13663 
13664     // If the parameter is a c++ class type and it has to be destructed in the
13665     // callee function, declare the destructor so that it can be called by the
13666     // callee function. Do not perform any direct access check on the dtor here.
13667     if (!Param->isInvalidDecl()) {
13668       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13669         if (!ClassDecl->isInvalidDecl() &&
13670             !ClassDecl->hasIrrelevantDestructor() &&
13671             !ClassDecl->isDependentContext() &&
13672             ClassDecl->isParamDestroyedInCallee()) {
13673           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13674           MarkFunctionReferenced(Param->getLocation(), Destructor);
13675           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13676         }
13677       }
13678     }
13679 
13680     // Parameters with the pass_object_size attribute only need to be marked
13681     // constant at function definitions. Because we lack information about
13682     // whether we're on a declaration or definition when we're instantiating the
13683     // attribute, we need to check for constness here.
13684     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13685       if (!Param->getType().isConstQualified())
13686         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13687             << Attr->getSpelling() << 1;
13688 
13689     // Check for parameter names shadowing fields from the class.
13690     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13691       // The owning context for the parameter should be the function, but we
13692       // want to see if this function's declaration context is a record.
13693       DeclContext *DC = Param->getDeclContext();
13694       if (DC && DC->isFunctionOrMethod()) {
13695         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13696           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13697                                      RD, /*DeclIsField*/ false);
13698       }
13699     }
13700   }
13701 
13702   return HasInvalidParm;
13703 }
13704 
13705 Optional<std::pair<CharUnits, CharUnits>>
13706 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13707 
13708 /// Compute the alignment and offset of the base class object given the
13709 /// derived-to-base cast expression and the alignment and offset of the derived
13710 /// class object.
13711 static std::pair<CharUnits, CharUnits>
13712 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13713                                    CharUnits BaseAlignment, CharUnits Offset,
13714                                    ASTContext &Ctx) {
13715   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13716        ++PathI) {
13717     const CXXBaseSpecifier *Base = *PathI;
13718     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13719     if (Base->isVirtual()) {
13720       // The complete object may have a lower alignment than the non-virtual
13721       // alignment of the base, in which case the base may be misaligned. Choose
13722       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13723       // conservative lower bound of the complete object alignment.
13724       CharUnits NonVirtualAlignment =
13725           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13726       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13727       Offset = CharUnits::Zero();
13728     } else {
13729       const ASTRecordLayout &RL =
13730           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13731       Offset += RL.getBaseClassOffset(BaseDecl);
13732     }
13733     DerivedType = Base->getType();
13734   }
13735 
13736   return std::make_pair(BaseAlignment, Offset);
13737 }
13738 
13739 /// Compute the alignment and offset of a binary additive operator.
13740 static Optional<std::pair<CharUnits, CharUnits>>
13741 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13742                                      bool IsSub, ASTContext &Ctx) {
13743   QualType PointeeType = PtrE->getType()->getPointeeType();
13744 
13745   if (!PointeeType->isConstantSizeType())
13746     return llvm::None;
13747 
13748   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13749 
13750   if (!P)
13751     return llvm::None;
13752 
13753   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13754   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13755     CharUnits Offset = EltSize * IdxRes->getExtValue();
13756     if (IsSub)
13757       Offset = -Offset;
13758     return std::make_pair(P->first, P->second + Offset);
13759   }
13760 
13761   // If the integer expression isn't a constant expression, compute the lower
13762   // bound of the alignment using the alignment and offset of the pointer
13763   // expression and the element size.
13764   return std::make_pair(
13765       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13766       CharUnits::Zero());
13767 }
13768 
13769 /// This helper function takes an lvalue expression and returns the alignment of
13770 /// a VarDecl and a constant offset from the VarDecl.
13771 Optional<std::pair<CharUnits, CharUnits>>
13772 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
13773   E = E->IgnoreParens();
13774   switch (E->getStmtClass()) {
13775   default:
13776     break;
13777   case Stmt::CStyleCastExprClass:
13778   case Stmt::CXXStaticCastExprClass:
13779   case Stmt::ImplicitCastExprClass: {
13780     auto *CE = cast<CastExpr>(E);
13781     const Expr *From = CE->getSubExpr();
13782     switch (CE->getCastKind()) {
13783     default:
13784       break;
13785     case CK_NoOp:
13786       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13787     case CK_UncheckedDerivedToBase:
13788     case CK_DerivedToBase: {
13789       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13790       if (!P)
13791         break;
13792       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
13793                                                 P->second, Ctx);
13794     }
13795     }
13796     break;
13797   }
13798   case Stmt::ArraySubscriptExprClass: {
13799     auto *ASE = cast<ArraySubscriptExpr>(E);
13800     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
13801                                                 false, Ctx);
13802   }
13803   case Stmt::DeclRefExprClass: {
13804     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
13805       // FIXME: If VD is captured by copy or is an escaping __block variable,
13806       // use the alignment of VD's type.
13807       if (!VD->getType()->isReferenceType())
13808         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
13809       if (VD->hasInit())
13810         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
13811     }
13812     break;
13813   }
13814   case Stmt::MemberExprClass: {
13815     auto *ME = cast<MemberExpr>(E);
13816     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
13817     if (!FD || FD->getType()->isReferenceType())
13818       break;
13819     Optional<std::pair<CharUnits, CharUnits>> P;
13820     if (ME->isArrow())
13821       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
13822     else
13823       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
13824     if (!P)
13825       break;
13826     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
13827     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
13828     return std::make_pair(P->first,
13829                           P->second + CharUnits::fromQuantity(Offset));
13830   }
13831   case Stmt::UnaryOperatorClass: {
13832     auto *UO = cast<UnaryOperator>(E);
13833     switch (UO->getOpcode()) {
13834     default:
13835       break;
13836     case UO_Deref:
13837       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
13838     }
13839     break;
13840   }
13841   case Stmt::BinaryOperatorClass: {
13842     auto *BO = cast<BinaryOperator>(E);
13843     auto Opcode = BO->getOpcode();
13844     switch (Opcode) {
13845     default:
13846       break;
13847     case BO_Comma:
13848       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
13849     }
13850     break;
13851   }
13852   }
13853   return llvm::None;
13854 }
13855 
13856 /// This helper function takes a pointer expression and returns the alignment of
13857 /// a VarDecl and a constant offset from the VarDecl.
13858 Optional<std::pair<CharUnits, CharUnits>>
13859 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
13860   E = E->IgnoreParens();
13861   switch (E->getStmtClass()) {
13862   default:
13863     break;
13864   case Stmt::CStyleCastExprClass:
13865   case Stmt::CXXStaticCastExprClass:
13866   case Stmt::ImplicitCastExprClass: {
13867     auto *CE = cast<CastExpr>(E);
13868     const Expr *From = CE->getSubExpr();
13869     switch (CE->getCastKind()) {
13870     default:
13871       break;
13872     case CK_NoOp:
13873       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13874     case CK_ArrayToPointerDecay:
13875       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13876     case CK_UncheckedDerivedToBase:
13877     case CK_DerivedToBase: {
13878       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13879       if (!P)
13880         break;
13881       return getDerivedToBaseAlignmentAndOffset(
13882           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
13883     }
13884     }
13885     break;
13886   }
13887   case Stmt::CXXThisExprClass: {
13888     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
13889     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
13890     return std::make_pair(Alignment, CharUnits::Zero());
13891   }
13892   case Stmt::UnaryOperatorClass: {
13893     auto *UO = cast<UnaryOperator>(E);
13894     if (UO->getOpcode() == UO_AddrOf)
13895       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
13896     break;
13897   }
13898   case Stmt::BinaryOperatorClass: {
13899     auto *BO = cast<BinaryOperator>(E);
13900     auto Opcode = BO->getOpcode();
13901     switch (Opcode) {
13902     default:
13903       break;
13904     case BO_Add:
13905     case BO_Sub: {
13906       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
13907       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
13908         std::swap(LHS, RHS);
13909       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
13910                                                   Ctx);
13911     }
13912     case BO_Comma:
13913       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
13914     }
13915     break;
13916   }
13917   }
13918   return llvm::None;
13919 }
13920 
13921 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
13922   // See if we can compute the alignment of a VarDecl and an offset from it.
13923   Optional<std::pair<CharUnits, CharUnits>> P =
13924       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
13925 
13926   if (P)
13927     return P->first.alignmentAtOffset(P->second);
13928 
13929   // If that failed, return the type's alignment.
13930   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
13931 }
13932 
13933 /// CheckCastAlign - Implements -Wcast-align, which warns when a
13934 /// pointer cast increases the alignment requirements.
13935 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13936   // This is actually a lot of work to potentially be doing on every
13937   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13938   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13939     return;
13940 
13941   // Ignore dependent types.
13942   if (T->isDependentType() || Op->getType()->isDependentType())
13943     return;
13944 
13945   // Require that the destination be a pointer type.
13946   const PointerType *DestPtr = T->getAs<PointerType>();
13947   if (!DestPtr) return;
13948 
13949   // If the destination has alignment 1, we're done.
13950   QualType DestPointee = DestPtr->getPointeeType();
13951   if (DestPointee->isIncompleteType()) return;
13952   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13953   if (DestAlign.isOne()) return;
13954 
13955   // Require that the source be a pointer type.
13956   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13957   if (!SrcPtr) return;
13958   QualType SrcPointee = SrcPtr->getPointeeType();
13959 
13960   // Explicitly allow casts from cv void*.  We already implicitly
13961   // allowed casts to cv void*, since they have alignment 1.
13962   // Also allow casts involving incomplete types, which implicitly
13963   // includes 'void'.
13964   if (SrcPointee->isIncompleteType()) return;
13965 
13966   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
13967 
13968   if (SrcAlign >= DestAlign) return;
13969 
13970   Diag(TRange.getBegin(), diag::warn_cast_align)
13971     << Op->getType() << T
13972     << static_cast<unsigned>(SrcAlign.getQuantity())
13973     << static_cast<unsigned>(DestAlign.getQuantity())
13974     << TRange << Op->getSourceRange();
13975 }
13976 
13977 /// Check whether this array fits the idiom of a size-one tail padded
13978 /// array member of a struct.
13979 ///
13980 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
13981 /// commonly used to emulate flexible arrays in C89 code.
13982 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
13983                                     const NamedDecl *ND) {
13984   if (Size != 1 || !ND) return false;
13985 
13986   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
13987   if (!FD) return false;
13988 
13989   // Don't consider sizes resulting from macro expansions or template argument
13990   // substitution to form C89 tail-padded arrays.
13991 
13992   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
13993   while (TInfo) {
13994     TypeLoc TL = TInfo->getTypeLoc();
13995     // Look through typedefs.
13996     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
13997       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
13998       TInfo = TDL->getTypeSourceInfo();
13999       continue;
14000     }
14001     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14002       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14003       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14004         return false;
14005     }
14006     break;
14007   }
14008 
14009   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14010   if (!RD) return false;
14011   if (RD->isUnion()) return false;
14012   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14013     if (!CRD->isStandardLayout()) return false;
14014   }
14015 
14016   // See if this is the last field decl in the record.
14017   const Decl *D = FD;
14018   while ((D = D->getNextDeclInContext()))
14019     if (isa<FieldDecl>(D))
14020       return false;
14021   return true;
14022 }
14023 
14024 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14025                             const ArraySubscriptExpr *ASE,
14026                             bool AllowOnePastEnd, bool IndexNegated) {
14027   // Already diagnosed by the constant evaluator.
14028   if (isConstantEvaluated())
14029     return;
14030 
14031   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14032   if (IndexExpr->isValueDependent())
14033     return;
14034 
14035   const Type *EffectiveType =
14036       BaseExpr->getType()->getPointeeOrArrayElementType();
14037   BaseExpr = BaseExpr->IgnoreParenCasts();
14038   const ConstantArrayType *ArrayTy =
14039       Context.getAsConstantArrayType(BaseExpr->getType());
14040 
14041   if (!ArrayTy)
14042     return;
14043 
14044   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14045   if (EffectiveType->isDependentType() || BaseType->isDependentType())
14046     return;
14047 
14048   Expr::EvalResult Result;
14049   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14050     return;
14051 
14052   llvm::APSInt index = Result.Val.getInt();
14053   if (IndexNegated)
14054     index = -index;
14055 
14056   const NamedDecl *ND = nullptr;
14057   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14058     ND = DRE->getDecl();
14059   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14060     ND = ME->getMemberDecl();
14061 
14062   if (index.isUnsigned() || !index.isNegative()) {
14063     // It is possible that the type of the base expression after
14064     // IgnoreParenCasts is incomplete, even though the type of the base
14065     // expression before IgnoreParenCasts is complete (see PR39746 for an
14066     // example). In this case we have no information about whether the array
14067     // access exceeds the array bounds. However we can still diagnose an array
14068     // access which precedes the array bounds.
14069     if (BaseType->isIncompleteType())
14070       return;
14071 
14072     llvm::APInt size = ArrayTy->getSize();
14073     if (!size.isStrictlyPositive())
14074       return;
14075 
14076     if (BaseType != EffectiveType) {
14077       // Make sure we're comparing apples to apples when comparing index to size
14078       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14079       uint64_t array_typesize = Context.getTypeSize(BaseType);
14080       // Handle ptrarith_typesize being zero, such as when casting to void*
14081       if (!ptrarith_typesize) ptrarith_typesize = 1;
14082       if (ptrarith_typesize != array_typesize) {
14083         // There's a cast to a different size type involved
14084         uint64_t ratio = array_typesize / ptrarith_typesize;
14085         // TODO: Be smarter about handling cases where array_typesize is not a
14086         // multiple of ptrarith_typesize
14087         if (ptrarith_typesize * ratio == array_typesize)
14088           size *= llvm::APInt(size.getBitWidth(), ratio);
14089       }
14090     }
14091 
14092     if (size.getBitWidth() > index.getBitWidth())
14093       index = index.zext(size.getBitWidth());
14094     else if (size.getBitWidth() < index.getBitWidth())
14095       size = size.zext(index.getBitWidth());
14096 
14097     // For array subscripting the index must be less than size, but for pointer
14098     // arithmetic also allow the index (offset) to be equal to size since
14099     // computing the next address after the end of the array is legal and
14100     // commonly done e.g. in C++ iterators and range-based for loops.
14101     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14102       return;
14103 
14104     // Also don't warn for arrays of size 1 which are members of some
14105     // structure. These are often used to approximate flexible arrays in C89
14106     // code.
14107     if (IsTailPaddedMemberArray(*this, size, ND))
14108       return;
14109 
14110     // Suppress the warning if the subscript expression (as identified by the
14111     // ']' location) and the index expression are both from macro expansions
14112     // within a system header.
14113     if (ASE) {
14114       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14115           ASE->getRBracketLoc());
14116       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14117         SourceLocation IndexLoc =
14118             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14119         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14120           return;
14121       }
14122     }
14123 
14124     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14125     if (ASE)
14126       DiagID = diag::warn_array_index_exceeds_bounds;
14127 
14128     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14129                         PDiag(DiagID) << index.toString(10, true)
14130                                       << size.toString(10, true)
14131                                       << (unsigned)size.getLimitedValue(~0U)
14132                                       << IndexExpr->getSourceRange());
14133   } else {
14134     unsigned DiagID = diag::warn_array_index_precedes_bounds;
14135     if (!ASE) {
14136       DiagID = diag::warn_ptr_arith_precedes_bounds;
14137       if (index.isNegative()) index = -index;
14138     }
14139 
14140     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14141                         PDiag(DiagID) << index.toString(10, true)
14142                                       << IndexExpr->getSourceRange());
14143   }
14144 
14145   if (!ND) {
14146     // Try harder to find a NamedDecl to point at in the note.
14147     while (const ArraySubscriptExpr *ASE =
14148            dyn_cast<ArraySubscriptExpr>(BaseExpr))
14149       BaseExpr = ASE->getBase()->IgnoreParenCasts();
14150     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14151       ND = DRE->getDecl();
14152     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14153       ND = ME->getMemberDecl();
14154   }
14155 
14156   if (ND)
14157     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14158                         PDiag(diag::note_array_declared_here) << ND);
14159 }
14160 
14161 void Sema::CheckArrayAccess(const Expr *expr) {
14162   int AllowOnePastEnd = 0;
14163   while (expr) {
14164     expr = expr->IgnoreParenImpCasts();
14165     switch (expr->getStmtClass()) {
14166       case Stmt::ArraySubscriptExprClass: {
14167         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14168         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14169                          AllowOnePastEnd > 0);
14170         expr = ASE->getBase();
14171         break;
14172       }
14173       case Stmt::MemberExprClass: {
14174         expr = cast<MemberExpr>(expr)->getBase();
14175         break;
14176       }
14177       case Stmt::OMPArraySectionExprClass: {
14178         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14179         if (ASE->getLowerBound())
14180           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14181                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
14182         return;
14183       }
14184       case Stmt::UnaryOperatorClass: {
14185         // Only unwrap the * and & unary operators
14186         const UnaryOperator *UO = cast<UnaryOperator>(expr);
14187         expr = UO->getSubExpr();
14188         switch (UO->getOpcode()) {
14189           case UO_AddrOf:
14190             AllowOnePastEnd++;
14191             break;
14192           case UO_Deref:
14193             AllowOnePastEnd--;
14194             break;
14195           default:
14196             return;
14197         }
14198         break;
14199       }
14200       case Stmt::ConditionalOperatorClass: {
14201         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14202         if (const Expr *lhs = cond->getLHS())
14203           CheckArrayAccess(lhs);
14204         if (const Expr *rhs = cond->getRHS())
14205           CheckArrayAccess(rhs);
14206         return;
14207       }
14208       case Stmt::CXXOperatorCallExprClass: {
14209         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14210         for (const auto *Arg : OCE->arguments())
14211           CheckArrayAccess(Arg);
14212         return;
14213       }
14214       default:
14215         return;
14216     }
14217   }
14218 }
14219 
14220 //===--- CHECK: Objective-C retain cycles ----------------------------------//
14221 
14222 namespace {
14223 
14224 struct RetainCycleOwner {
14225   VarDecl *Variable = nullptr;
14226   SourceRange Range;
14227   SourceLocation Loc;
14228   bool Indirect = false;
14229 
14230   RetainCycleOwner() = default;
14231 
14232   void setLocsFrom(Expr *e) {
14233     Loc = e->getExprLoc();
14234     Range = e->getSourceRange();
14235   }
14236 };
14237 
14238 } // namespace
14239 
14240 /// Consider whether capturing the given variable can possibly lead to
14241 /// a retain cycle.
14242 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14243   // In ARC, it's captured strongly iff the variable has __strong
14244   // lifetime.  In MRR, it's captured strongly if the variable is
14245   // __block and has an appropriate type.
14246   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14247     return false;
14248 
14249   owner.Variable = var;
14250   if (ref)
14251     owner.setLocsFrom(ref);
14252   return true;
14253 }
14254 
14255 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14256   while (true) {
14257     e = e->IgnoreParens();
14258     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14259       switch (cast->getCastKind()) {
14260       case CK_BitCast:
14261       case CK_LValueBitCast:
14262       case CK_LValueToRValue:
14263       case CK_ARCReclaimReturnedObject:
14264         e = cast->getSubExpr();
14265         continue;
14266 
14267       default:
14268         return false;
14269       }
14270     }
14271 
14272     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14273       ObjCIvarDecl *ivar = ref->getDecl();
14274       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14275         return false;
14276 
14277       // Try to find a retain cycle in the base.
14278       if (!findRetainCycleOwner(S, ref->getBase(), owner))
14279         return false;
14280 
14281       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14282       owner.Indirect = true;
14283       return true;
14284     }
14285 
14286     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14287       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14288       if (!var) return false;
14289       return considerVariable(var, ref, owner);
14290     }
14291 
14292     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14293       if (member->isArrow()) return false;
14294 
14295       // Don't count this as an indirect ownership.
14296       e = member->getBase();
14297       continue;
14298     }
14299 
14300     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14301       // Only pay attention to pseudo-objects on property references.
14302       ObjCPropertyRefExpr *pre
14303         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14304                                               ->IgnoreParens());
14305       if (!pre) return false;
14306       if (pre->isImplicitProperty()) return false;
14307       ObjCPropertyDecl *property = pre->getExplicitProperty();
14308       if (!property->isRetaining() &&
14309           !(property->getPropertyIvarDecl() &&
14310             property->getPropertyIvarDecl()->getType()
14311               .getObjCLifetime() == Qualifiers::OCL_Strong))
14312           return false;
14313 
14314       owner.Indirect = true;
14315       if (pre->isSuperReceiver()) {
14316         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14317         if (!owner.Variable)
14318           return false;
14319         owner.Loc = pre->getLocation();
14320         owner.Range = pre->getSourceRange();
14321         return true;
14322       }
14323       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14324                               ->getSourceExpr());
14325       continue;
14326     }
14327 
14328     // Array ivars?
14329 
14330     return false;
14331   }
14332 }
14333 
14334 namespace {
14335 
14336   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14337     ASTContext &Context;
14338     VarDecl *Variable;
14339     Expr *Capturer = nullptr;
14340     bool VarWillBeReased = false;
14341 
14342     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14343         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14344           Context(Context), Variable(variable) {}
14345 
14346     void VisitDeclRefExpr(DeclRefExpr *ref) {
14347       if (ref->getDecl() == Variable && !Capturer)
14348         Capturer = ref;
14349     }
14350 
14351     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14352       if (Capturer) return;
14353       Visit(ref->getBase());
14354       if (Capturer && ref->isFreeIvar())
14355         Capturer = ref;
14356     }
14357 
14358     void VisitBlockExpr(BlockExpr *block) {
14359       // Look inside nested blocks
14360       if (block->getBlockDecl()->capturesVariable(Variable))
14361         Visit(block->getBlockDecl()->getBody());
14362     }
14363 
14364     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14365       if (Capturer) return;
14366       if (OVE->getSourceExpr())
14367         Visit(OVE->getSourceExpr());
14368     }
14369 
14370     void VisitBinaryOperator(BinaryOperator *BinOp) {
14371       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14372         return;
14373       Expr *LHS = BinOp->getLHS();
14374       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14375         if (DRE->getDecl() != Variable)
14376           return;
14377         if (Expr *RHS = BinOp->getRHS()) {
14378           RHS = RHS->IgnoreParenCasts();
14379           Optional<llvm::APSInt> Value;
14380           VarWillBeReased =
14381               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14382                *Value == 0);
14383         }
14384       }
14385     }
14386   };
14387 
14388 } // namespace
14389 
14390 /// Check whether the given argument is a block which captures a
14391 /// variable.
14392 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14393   assert(owner.Variable && owner.Loc.isValid());
14394 
14395   e = e->IgnoreParenCasts();
14396 
14397   // Look through [^{...} copy] and Block_copy(^{...}).
14398   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14399     Selector Cmd = ME->getSelector();
14400     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14401       e = ME->getInstanceReceiver();
14402       if (!e)
14403         return nullptr;
14404       e = e->IgnoreParenCasts();
14405     }
14406   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14407     if (CE->getNumArgs() == 1) {
14408       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14409       if (Fn) {
14410         const IdentifierInfo *FnI = Fn->getIdentifier();
14411         if (FnI && FnI->isStr("_Block_copy")) {
14412           e = CE->getArg(0)->IgnoreParenCasts();
14413         }
14414       }
14415     }
14416   }
14417 
14418   BlockExpr *block = dyn_cast<BlockExpr>(e);
14419   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14420     return nullptr;
14421 
14422   FindCaptureVisitor visitor(S.Context, owner.Variable);
14423   visitor.Visit(block->getBlockDecl()->getBody());
14424   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14425 }
14426 
14427 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14428                                 RetainCycleOwner &owner) {
14429   assert(capturer);
14430   assert(owner.Variable && owner.Loc.isValid());
14431 
14432   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14433     << owner.Variable << capturer->getSourceRange();
14434   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14435     << owner.Indirect << owner.Range;
14436 }
14437 
14438 /// Check for a keyword selector that starts with the word 'add' or
14439 /// 'set'.
14440 static bool isSetterLikeSelector(Selector sel) {
14441   if (sel.isUnarySelector()) return false;
14442 
14443   StringRef str = sel.getNameForSlot(0);
14444   while (!str.empty() && str.front() == '_') str = str.substr(1);
14445   if (str.startswith("set"))
14446     str = str.substr(3);
14447   else if (str.startswith("add")) {
14448     // Specially allow 'addOperationWithBlock:'.
14449     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14450       return false;
14451     str = str.substr(3);
14452   }
14453   else
14454     return false;
14455 
14456   if (str.empty()) return true;
14457   return !isLowercase(str.front());
14458 }
14459 
14460 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14461                                                     ObjCMessageExpr *Message) {
14462   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14463                                                 Message->getReceiverInterface(),
14464                                                 NSAPI::ClassId_NSMutableArray);
14465   if (!IsMutableArray) {
14466     return None;
14467   }
14468 
14469   Selector Sel = Message->getSelector();
14470 
14471   Optional<NSAPI::NSArrayMethodKind> MKOpt =
14472     S.NSAPIObj->getNSArrayMethodKind(Sel);
14473   if (!MKOpt) {
14474     return None;
14475   }
14476 
14477   NSAPI::NSArrayMethodKind MK = *MKOpt;
14478 
14479   switch (MK) {
14480     case NSAPI::NSMutableArr_addObject:
14481     case NSAPI::NSMutableArr_insertObjectAtIndex:
14482     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14483       return 0;
14484     case NSAPI::NSMutableArr_replaceObjectAtIndex:
14485       return 1;
14486 
14487     default:
14488       return None;
14489   }
14490 
14491   return None;
14492 }
14493 
14494 static
14495 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14496                                                   ObjCMessageExpr *Message) {
14497   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14498                                             Message->getReceiverInterface(),
14499                                             NSAPI::ClassId_NSMutableDictionary);
14500   if (!IsMutableDictionary) {
14501     return None;
14502   }
14503 
14504   Selector Sel = Message->getSelector();
14505 
14506   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14507     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14508   if (!MKOpt) {
14509     return None;
14510   }
14511 
14512   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14513 
14514   switch (MK) {
14515     case NSAPI::NSMutableDict_setObjectForKey:
14516     case NSAPI::NSMutableDict_setValueForKey:
14517     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14518       return 0;
14519 
14520     default:
14521       return None;
14522   }
14523 
14524   return None;
14525 }
14526 
14527 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14528   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14529                                                 Message->getReceiverInterface(),
14530                                                 NSAPI::ClassId_NSMutableSet);
14531 
14532   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14533                                             Message->getReceiverInterface(),
14534                                             NSAPI::ClassId_NSMutableOrderedSet);
14535   if (!IsMutableSet && !IsMutableOrderedSet) {
14536     return None;
14537   }
14538 
14539   Selector Sel = Message->getSelector();
14540 
14541   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14542   if (!MKOpt) {
14543     return None;
14544   }
14545 
14546   NSAPI::NSSetMethodKind MK = *MKOpt;
14547 
14548   switch (MK) {
14549     case NSAPI::NSMutableSet_addObject:
14550     case NSAPI::NSOrderedSet_setObjectAtIndex:
14551     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14552     case NSAPI::NSOrderedSet_insertObjectAtIndex:
14553       return 0;
14554     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14555       return 1;
14556   }
14557 
14558   return None;
14559 }
14560 
14561 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14562   if (!Message->isInstanceMessage()) {
14563     return;
14564   }
14565 
14566   Optional<int> ArgOpt;
14567 
14568   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14569       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14570       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14571     return;
14572   }
14573 
14574   int ArgIndex = *ArgOpt;
14575 
14576   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14577   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14578     Arg = OE->getSourceExpr()->IgnoreImpCasts();
14579   }
14580 
14581   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14582     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14583       if (ArgRE->isObjCSelfExpr()) {
14584         Diag(Message->getSourceRange().getBegin(),
14585              diag::warn_objc_circular_container)
14586           << ArgRE->getDecl() << StringRef("'super'");
14587       }
14588     }
14589   } else {
14590     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14591 
14592     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14593       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14594     }
14595 
14596     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14597       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14598         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14599           ValueDecl *Decl = ReceiverRE->getDecl();
14600           Diag(Message->getSourceRange().getBegin(),
14601                diag::warn_objc_circular_container)
14602             << Decl << Decl;
14603           if (!ArgRE->isObjCSelfExpr()) {
14604             Diag(Decl->getLocation(),
14605                  diag::note_objc_circular_container_declared_here)
14606               << Decl;
14607           }
14608         }
14609       }
14610     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14611       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14612         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14613           ObjCIvarDecl *Decl = IvarRE->getDecl();
14614           Diag(Message->getSourceRange().getBegin(),
14615                diag::warn_objc_circular_container)
14616             << Decl << Decl;
14617           Diag(Decl->getLocation(),
14618                diag::note_objc_circular_container_declared_here)
14619             << Decl;
14620         }
14621       }
14622     }
14623   }
14624 }
14625 
14626 /// Check a message send to see if it's likely to cause a retain cycle.
14627 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14628   // Only check instance methods whose selector looks like a setter.
14629   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14630     return;
14631 
14632   // Try to find a variable that the receiver is strongly owned by.
14633   RetainCycleOwner owner;
14634   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14635     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14636       return;
14637   } else {
14638     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14639     owner.Variable = getCurMethodDecl()->getSelfDecl();
14640     owner.Loc = msg->getSuperLoc();
14641     owner.Range = msg->getSuperLoc();
14642   }
14643 
14644   // Check whether the receiver is captured by any of the arguments.
14645   const ObjCMethodDecl *MD = msg->getMethodDecl();
14646   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14647     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14648       // noescape blocks should not be retained by the method.
14649       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14650         continue;
14651       return diagnoseRetainCycle(*this, capturer, owner);
14652     }
14653   }
14654 }
14655 
14656 /// Check a property assign to see if it's likely to cause a retain cycle.
14657 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14658   RetainCycleOwner owner;
14659   if (!findRetainCycleOwner(*this, receiver, owner))
14660     return;
14661 
14662   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14663     diagnoseRetainCycle(*this, capturer, owner);
14664 }
14665 
14666 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14667   RetainCycleOwner Owner;
14668   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14669     return;
14670 
14671   // Because we don't have an expression for the variable, we have to set the
14672   // location explicitly here.
14673   Owner.Loc = Var->getLocation();
14674   Owner.Range = Var->getSourceRange();
14675 
14676   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14677     diagnoseRetainCycle(*this, Capturer, Owner);
14678 }
14679 
14680 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14681                                      Expr *RHS, bool isProperty) {
14682   // Check if RHS is an Objective-C object literal, which also can get
14683   // immediately zapped in a weak reference.  Note that we explicitly
14684   // allow ObjCStringLiterals, since those are designed to never really die.
14685   RHS = RHS->IgnoreParenImpCasts();
14686 
14687   // This enum needs to match with the 'select' in
14688   // warn_objc_arc_literal_assign (off-by-1).
14689   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14690   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14691     return false;
14692 
14693   S.Diag(Loc, diag::warn_arc_literal_assign)
14694     << (unsigned) Kind
14695     << (isProperty ? 0 : 1)
14696     << RHS->getSourceRange();
14697 
14698   return true;
14699 }
14700 
14701 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14702                                     Qualifiers::ObjCLifetime LT,
14703                                     Expr *RHS, bool isProperty) {
14704   // Strip off any implicit cast added to get to the one ARC-specific.
14705   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14706     if (cast->getCastKind() == CK_ARCConsumeObject) {
14707       S.Diag(Loc, diag::warn_arc_retained_assign)
14708         << (LT == Qualifiers::OCL_ExplicitNone)
14709         << (isProperty ? 0 : 1)
14710         << RHS->getSourceRange();
14711       return true;
14712     }
14713     RHS = cast->getSubExpr();
14714   }
14715 
14716   if (LT == Qualifiers::OCL_Weak &&
14717       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14718     return true;
14719 
14720   return false;
14721 }
14722 
14723 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14724                               QualType LHS, Expr *RHS) {
14725   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14726 
14727   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14728     return false;
14729 
14730   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14731     return true;
14732 
14733   return false;
14734 }
14735 
14736 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14737                               Expr *LHS, Expr *RHS) {
14738   QualType LHSType;
14739   // PropertyRef on LHS type need be directly obtained from
14740   // its declaration as it has a PseudoType.
14741   ObjCPropertyRefExpr *PRE
14742     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14743   if (PRE && !PRE->isImplicitProperty()) {
14744     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14745     if (PD)
14746       LHSType = PD->getType();
14747   }
14748 
14749   if (LHSType.isNull())
14750     LHSType = LHS->getType();
14751 
14752   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14753 
14754   if (LT == Qualifiers::OCL_Weak) {
14755     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14756       getCurFunction()->markSafeWeakUse(LHS);
14757   }
14758 
14759   if (checkUnsafeAssigns(Loc, LHSType, RHS))
14760     return;
14761 
14762   // FIXME. Check for other life times.
14763   if (LT != Qualifiers::OCL_None)
14764     return;
14765 
14766   if (PRE) {
14767     if (PRE->isImplicitProperty())
14768       return;
14769     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14770     if (!PD)
14771       return;
14772 
14773     unsigned Attributes = PD->getPropertyAttributes();
14774     if (Attributes & ObjCPropertyAttribute::kind_assign) {
14775       // when 'assign' attribute was not explicitly specified
14776       // by user, ignore it and rely on property type itself
14777       // for lifetime info.
14778       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
14779       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
14780           LHSType->isObjCRetainableType())
14781         return;
14782 
14783       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14784         if (cast->getCastKind() == CK_ARCConsumeObject) {
14785           Diag(Loc, diag::warn_arc_retained_property_assign)
14786           << RHS->getSourceRange();
14787           return;
14788         }
14789         RHS = cast->getSubExpr();
14790       }
14791     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
14792       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
14793         return;
14794     }
14795   }
14796 }
14797 
14798 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
14799 
14800 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
14801                                         SourceLocation StmtLoc,
14802                                         const NullStmt *Body) {
14803   // Do not warn if the body is a macro that expands to nothing, e.g:
14804   //
14805   // #define CALL(x)
14806   // if (condition)
14807   //   CALL(0);
14808   if (Body->hasLeadingEmptyMacro())
14809     return false;
14810 
14811   // Get line numbers of statement and body.
14812   bool StmtLineInvalid;
14813   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
14814                                                       &StmtLineInvalid);
14815   if (StmtLineInvalid)
14816     return false;
14817 
14818   bool BodyLineInvalid;
14819   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
14820                                                       &BodyLineInvalid);
14821   if (BodyLineInvalid)
14822     return false;
14823 
14824   // Warn if null statement and body are on the same line.
14825   if (StmtLine != BodyLine)
14826     return false;
14827 
14828   return true;
14829 }
14830 
14831 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
14832                                  const Stmt *Body,
14833                                  unsigned DiagID) {
14834   // Since this is a syntactic check, don't emit diagnostic for template
14835   // instantiations, this just adds noise.
14836   if (CurrentInstantiationScope)
14837     return;
14838 
14839   // The body should be a null statement.
14840   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14841   if (!NBody)
14842     return;
14843 
14844   // Do the usual checks.
14845   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14846     return;
14847 
14848   Diag(NBody->getSemiLoc(), DiagID);
14849   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14850 }
14851 
14852 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
14853                                  const Stmt *PossibleBody) {
14854   assert(!CurrentInstantiationScope); // Ensured by caller
14855 
14856   SourceLocation StmtLoc;
14857   const Stmt *Body;
14858   unsigned DiagID;
14859   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
14860     StmtLoc = FS->getRParenLoc();
14861     Body = FS->getBody();
14862     DiagID = diag::warn_empty_for_body;
14863   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
14864     StmtLoc = WS->getCond()->getSourceRange().getEnd();
14865     Body = WS->getBody();
14866     DiagID = diag::warn_empty_while_body;
14867   } else
14868     return; // Neither `for' nor `while'.
14869 
14870   // The body should be a null statement.
14871   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14872   if (!NBody)
14873     return;
14874 
14875   // Skip expensive checks if diagnostic is disabled.
14876   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
14877     return;
14878 
14879   // Do the usual checks.
14880   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14881     return;
14882 
14883   // `for(...);' and `while(...);' are popular idioms, so in order to keep
14884   // noise level low, emit diagnostics only if for/while is followed by a
14885   // CompoundStmt, e.g.:
14886   //    for (int i = 0; i < n; i++);
14887   //    {
14888   //      a(i);
14889   //    }
14890   // or if for/while is followed by a statement with more indentation
14891   // than for/while itself:
14892   //    for (int i = 0; i < n; i++);
14893   //      a(i);
14894   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
14895   if (!ProbableTypo) {
14896     bool BodyColInvalid;
14897     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
14898         PossibleBody->getBeginLoc(), &BodyColInvalid);
14899     if (BodyColInvalid)
14900       return;
14901 
14902     bool StmtColInvalid;
14903     unsigned StmtCol =
14904         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
14905     if (StmtColInvalid)
14906       return;
14907 
14908     if (BodyCol > StmtCol)
14909       ProbableTypo = true;
14910   }
14911 
14912   if (ProbableTypo) {
14913     Diag(NBody->getSemiLoc(), DiagID);
14914     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14915   }
14916 }
14917 
14918 //===--- CHECK: Warn on self move with std::move. -------------------------===//
14919 
14920 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
14921 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
14922                              SourceLocation OpLoc) {
14923   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
14924     return;
14925 
14926   if (inTemplateInstantiation())
14927     return;
14928 
14929   // Strip parens and casts away.
14930   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14931   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14932 
14933   // Check for a call expression
14934   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
14935   if (!CE || CE->getNumArgs() != 1)
14936     return;
14937 
14938   // Check for a call to std::move
14939   if (!CE->isCallToStdMove())
14940     return;
14941 
14942   // Get argument from std::move
14943   RHSExpr = CE->getArg(0);
14944 
14945   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14946   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14947 
14948   // Two DeclRefExpr's, check that the decls are the same.
14949   if (LHSDeclRef && RHSDeclRef) {
14950     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14951       return;
14952     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14953         RHSDeclRef->getDecl()->getCanonicalDecl())
14954       return;
14955 
14956     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14957                                         << LHSExpr->getSourceRange()
14958                                         << RHSExpr->getSourceRange();
14959     return;
14960   }
14961 
14962   // Member variables require a different approach to check for self moves.
14963   // MemberExpr's are the same if every nested MemberExpr refers to the same
14964   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
14965   // the base Expr's are CXXThisExpr's.
14966   const Expr *LHSBase = LHSExpr;
14967   const Expr *RHSBase = RHSExpr;
14968   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
14969   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
14970   if (!LHSME || !RHSME)
14971     return;
14972 
14973   while (LHSME && RHSME) {
14974     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
14975         RHSME->getMemberDecl()->getCanonicalDecl())
14976       return;
14977 
14978     LHSBase = LHSME->getBase();
14979     RHSBase = RHSME->getBase();
14980     LHSME = dyn_cast<MemberExpr>(LHSBase);
14981     RHSME = dyn_cast<MemberExpr>(RHSBase);
14982   }
14983 
14984   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
14985   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
14986   if (LHSDeclRef && RHSDeclRef) {
14987     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14988       return;
14989     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14990         RHSDeclRef->getDecl()->getCanonicalDecl())
14991       return;
14992 
14993     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14994                                         << LHSExpr->getSourceRange()
14995                                         << RHSExpr->getSourceRange();
14996     return;
14997   }
14998 
14999   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15000     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15001                                         << LHSExpr->getSourceRange()
15002                                         << RHSExpr->getSourceRange();
15003 }
15004 
15005 //===--- Layout compatibility ----------------------------------------------//
15006 
15007 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15008 
15009 /// Check if two enumeration types are layout-compatible.
15010 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15011   // C++11 [dcl.enum] p8:
15012   // Two enumeration types are layout-compatible if they have the same
15013   // underlying type.
15014   return ED1->isComplete() && ED2->isComplete() &&
15015          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15016 }
15017 
15018 /// Check if two fields are layout-compatible.
15019 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15020                                FieldDecl *Field2) {
15021   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15022     return false;
15023 
15024   if (Field1->isBitField() != Field2->isBitField())
15025     return false;
15026 
15027   if (Field1->isBitField()) {
15028     // Make sure that the bit-fields are the same length.
15029     unsigned Bits1 = Field1->getBitWidthValue(C);
15030     unsigned Bits2 = Field2->getBitWidthValue(C);
15031 
15032     if (Bits1 != Bits2)
15033       return false;
15034   }
15035 
15036   return true;
15037 }
15038 
15039 /// Check if two standard-layout structs are layout-compatible.
15040 /// (C++11 [class.mem] p17)
15041 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15042                                      RecordDecl *RD2) {
15043   // If both records are C++ classes, check that base classes match.
15044   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15045     // If one of records is a CXXRecordDecl we are in C++ mode,
15046     // thus the other one is a CXXRecordDecl, too.
15047     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15048     // Check number of base classes.
15049     if (D1CXX->getNumBases() != D2CXX->getNumBases())
15050       return false;
15051 
15052     // Check the base classes.
15053     for (CXXRecordDecl::base_class_const_iterator
15054                Base1 = D1CXX->bases_begin(),
15055            BaseEnd1 = D1CXX->bases_end(),
15056               Base2 = D2CXX->bases_begin();
15057          Base1 != BaseEnd1;
15058          ++Base1, ++Base2) {
15059       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15060         return false;
15061     }
15062   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15063     // If only RD2 is a C++ class, it should have zero base classes.
15064     if (D2CXX->getNumBases() > 0)
15065       return false;
15066   }
15067 
15068   // Check the fields.
15069   RecordDecl::field_iterator Field2 = RD2->field_begin(),
15070                              Field2End = RD2->field_end(),
15071                              Field1 = RD1->field_begin(),
15072                              Field1End = RD1->field_end();
15073   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15074     if (!isLayoutCompatible(C, *Field1, *Field2))
15075       return false;
15076   }
15077   if (Field1 != Field1End || Field2 != Field2End)
15078     return false;
15079 
15080   return true;
15081 }
15082 
15083 /// Check if two standard-layout unions are layout-compatible.
15084 /// (C++11 [class.mem] p18)
15085 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15086                                     RecordDecl *RD2) {
15087   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15088   for (auto *Field2 : RD2->fields())
15089     UnmatchedFields.insert(Field2);
15090 
15091   for (auto *Field1 : RD1->fields()) {
15092     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15093         I = UnmatchedFields.begin(),
15094         E = UnmatchedFields.end();
15095 
15096     for ( ; I != E; ++I) {
15097       if (isLayoutCompatible(C, Field1, *I)) {
15098         bool Result = UnmatchedFields.erase(*I);
15099         (void) Result;
15100         assert(Result);
15101         break;
15102       }
15103     }
15104     if (I == E)
15105       return false;
15106   }
15107 
15108   return UnmatchedFields.empty();
15109 }
15110 
15111 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15112                                RecordDecl *RD2) {
15113   if (RD1->isUnion() != RD2->isUnion())
15114     return false;
15115 
15116   if (RD1->isUnion())
15117     return isLayoutCompatibleUnion(C, RD1, RD2);
15118   else
15119     return isLayoutCompatibleStruct(C, RD1, RD2);
15120 }
15121 
15122 /// Check if two types are layout-compatible in C++11 sense.
15123 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15124   if (T1.isNull() || T2.isNull())
15125     return false;
15126 
15127   // C++11 [basic.types] p11:
15128   // If two types T1 and T2 are the same type, then T1 and T2 are
15129   // layout-compatible types.
15130   if (C.hasSameType(T1, T2))
15131     return true;
15132 
15133   T1 = T1.getCanonicalType().getUnqualifiedType();
15134   T2 = T2.getCanonicalType().getUnqualifiedType();
15135 
15136   const Type::TypeClass TC1 = T1->getTypeClass();
15137   const Type::TypeClass TC2 = T2->getTypeClass();
15138 
15139   if (TC1 != TC2)
15140     return false;
15141 
15142   if (TC1 == Type::Enum) {
15143     return isLayoutCompatible(C,
15144                               cast<EnumType>(T1)->getDecl(),
15145                               cast<EnumType>(T2)->getDecl());
15146   } else if (TC1 == Type::Record) {
15147     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15148       return false;
15149 
15150     return isLayoutCompatible(C,
15151                               cast<RecordType>(T1)->getDecl(),
15152                               cast<RecordType>(T2)->getDecl());
15153   }
15154 
15155   return false;
15156 }
15157 
15158 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15159 
15160 /// Given a type tag expression find the type tag itself.
15161 ///
15162 /// \param TypeExpr Type tag expression, as it appears in user's code.
15163 ///
15164 /// \param VD Declaration of an identifier that appears in a type tag.
15165 ///
15166 /// \param MagicValue Type tag magic value.
15167 ///
15168 /// \param isConstantEvaluated wether the evalaution should be performed in
15169 
15170 /// constant context.
15171 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15172                             const ValueDecl **VD, uint64_t *MagicValue,
15173                             bool isConstantEvaluated) {
15174   while(true) {
15175     if (!TypeExpr)
15176       return false;
15177 
15178     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15179 
15180     switch (TypeExpr->getStmtClass()) {
15181     case Stmt::UnaryOperatorClass: {
15182       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15183       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15184         TypeExpr = UO->getSubExpr();
15185         continue;
15186       }
15187       return false;
15188     }
15189 
15190     case Stmt::DeclRefExprClass: {
15191       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15192       *VD = DRE->getDecl();
15193       return true;
15194     }
15195 
15196     case Stmt::IntegerLiteralClass: {
15197       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15198       llvm::APInt MagicValueAPInt = IL->getValue();
15199       if (MagicValueAPInt.getActiveBits() <= 64) {
15200         *MagicValue = MagicValueAPInt.getZExtValue();
15201         return true;
15202       } else
15203         return false;
15204     }
15205 
15206     case Stmt::BinaryConditionalOperatorClass:
15207     case Stmt::ConditionalOperatorClass: {
15208       const AbstractConditionalOperator *ACO =
15209           cast<AbstractConditionalOperator>(TypeExpr);
15210       bool Result;
15211       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15212                                                      isConstantEvaluated)) {
15213         if (Result)
15214           TypeExpr = ACO->getTrueExpr();
15215         else
15216           TypeExpr = ACO->getFalseExpr();
15217         continue;
15218       }
15219       return false;
15220     }
15221 
15222     case Stmt::BinaryOperatorClass: {
15223       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15224       if (BO->getOpcode() == BO_Comma) {
15225         TypeExpr = BO->getRHS();
15226         continue;
15227       }
15228       return false;
15229     }
15230 
15231     default:
15232       return false;
15233     }
15234   }
15235 }
15236 
15237 /// Retrieve the C type corresponding to type tag TypeExpr.
15238 ///
15239 /// \param TypeExpr Expression that specifies a type tag.
15240 ///
15241 /// \param MagicValues Registered magic values.
15242 ///
15243 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15244 ///        kind.
15245 ///
15246 /// \param TypeInfo Information about the corresponding C type.
15247 ///
15248 /// \param isConstantEvaluated wether the evalaution should be performed in
15249 /// constant context.
15250 ///
15251 /// \returns true if the corresponding C type was found.
15252 static bool GetMatchingCType(
15253     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15254     const ASTContext &Ctx,
15255     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15256         *MagicValues,
15257     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15258     bool isConstantEvaluated) {
15259   FoundWrongKind = false;
15260 
15261   // Variable declaration that has type_tag_for_datatype attribute.
15262   const ValueDecl *VD = nullptr;
15263 
15264   uint64_t MagicValue;
15265 
15266   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15267     return false;
15268 
15269   if (VD) {
15270     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15271       if (I->getArgumentKind() != ArgumentKind) {
15272         FoundWrongKind = true;
15273         return false;
15274       }
15275       TypeInfo.Type = I->getMatchingCType();
15276       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15277       TypeInfo.MustBeNull = I->getMustBeNull();
15278       return true;
15279     }
15280     return false;
15281   }
15282 
15283   if (!MagicValues)
15284     return false;
15285 
15286   llvm::DenseMap<Sema::TypeTagMagicValue,
15287                  Sema::TypeTagData>::const_iterator I =
15288       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15289   if (I == MagicValues->end())
15290     return false;
15291 
15292   TypeInfo = I->second;
15293   return true;
15294 }
15295 
15296 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15297                                       uint64_t MagicValue, QualType Type,
15298                                       bool LayoutCompatible,
15299                                       bool MustBeNull) {
15300   if (!TypeTagForDatatypeMagicValues)
15301     TypeTagForDatatypeMagicValues.reset(
15302         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15303 
15304   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15305   (*TypeTagForDatatypeMagicValues)[Magic] =
15306       TypeTagData(Type, LayoutCompatible, MustBeNull);
15307 }
15308 
15309 static bool IsSameCharType(QualType T1, QualType T2) {
15310   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15311   if (!BT1)
15312     return false;
15313 
15314   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15315   if (!BT2)
15316     return false;
15317 
15318   BuiltinType::Kind T1Kind = BT1->getKind();
15319   BuiltinType::Kind T2Kind = BT2->getKind();
15320 
15321   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
15322          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
15323          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15324          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15325 }
15326 
15327 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15328                                     const ArrayRef<const Expr *> ExprArgs,
15329                                     SourceLocation CallSiteLoc) {
15330   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15331   bool IsPointerAttr = Attr->getIsPointer();
15332 
15333   // Retrieve the argument representing the 'type_tag'.
15334   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15335   if (TypeTagIdxAST >= ExprArgs.size()) {
15336     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15337         << 0 << Attr->getTypeTagIdx().getSourceIndex();
15338     return;
15339   }
15340   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15341   bool FoundWrongKind;
15342   TypeTagData TypeInfo;
15343   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15344                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15345                         TypeInfo, isConstantEvaluated())) {
15346     if (FoundWrongKind)
15347       Diag(TypeTagExpr->getExprLoc(),
15348            diag::warn_type_tag_for_datatype_wrong_kind)
15349         << TypeTagExpr->getSourceRange();
15350     return;
15351   }
15352 
15353   // Retrieve the argument representing the 'arg_idx'.
15354   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15355   if (ArgumentIdxAST >= ExprArgs.size()) {
15356     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15357         << 1 << Attr->getArgumentIdx().getSourceIndex();
15358     return;
15359   }
15360   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15361   if (IsPointerAttr) {
15362     // Skip implicit cast of pointer to `void *' (as a function argument).
15363     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15364       if (ICE->getType()->isVoidPointerType() &&
15365           ICE->getCastKind() == CK_BitCast)
15366         ArgumentExpr = ICE->getSubExpr();
15367   }
15368   QualType ArgumentType = ArgumentExpr->getType();
15369 
15370   // Passing a `void*' pointer shouldn't trigger a warning.
15371   if (IsPointerAttr && ArgumentType->isVoidPointerType())
15372     return;
15373 
15374   if (TypeInfo.MustBeNull) {
15375     // Type tag with matching void type requires a null pointer.
15376     if (!ArgumentExpr->isNullPointerConstant(Context,
15377                                              Expr::NPC_ValueDependentIsNotNull)) {
15378       Diag(ArgumentExpr->getExprLoc(),
15379            diag::warn_type_safety_null_pointer_required)
15380           << ArgumentKind->getName()
15381           << ArgumentExpr->getSourceRange()
15382           << TypeTagExpr->getSourceRange();
15383     }
15384     return;
15385   }
15386 
15387   QualType RequiredType = TypeInfo.Type;
15388   if (IsPointerAttr)
15389     RequiredType = Context.getPointerType(RequiredType);
15390 
15391   bool mismatch = false;
15392   if (!TypeInfo.LayoutCompatible) {
15393     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15394 
15395     // C++11 [basic.fundamental] p1:
15396     // Plain char, signed char, and unsigned char are three distinct types.
15397     //
15398     // But we treat plain `char' as equivalent to `signed char' or `unsigned
15399     // char' depending on the current char signedness mode.
15400     if (mismatch)
15401       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15402                                            RequiredType->getPointeeType())) ||
15403           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15404         mismatch = false;
15405   } else
15406     if (IsPointerAttr)
15407       mismatch = !isLayoutCompatible(Context,
15408                                      ArgumentType->getPointeeType(),
15409                                      RequiredType->getPointeeType());
15410     else
15411       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15412 
15413   if (mismatch)
15414     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15415         << ArgumentType << ArgumentKind
15416         << TypeInfo.LayoutCompatible << RequiredType
15417         << ArgumentExpr->getSourceRange()
15418         << TypeTagExpr->getSourceRange();
15419 }
15420 
15421 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15422                                          CharUnits Alignment) {
15423   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15424 }
15425 
15426 void Sema::DiagnoseMisalignedMembers() {
15427   for (MisalignedMember &m : MisalignedMembers) {
15428     const NamedDecl *ND = m.RD;
15429     if (ND->getName().empty()) {
15430       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15431         ND = TD;
15432     }
15433     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15434         << m.MD << ND << m.E->getSourceRange();
15435   }
15436   MisalignedMembers.clear();
15437 }
15438 
15439 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15440   E = E->IgnoreParens();
15441   if (!T->isPointerType() && !T->isIntegerType())
15442     return;
15443   if (isa<UnaryOperator>(E) &&
15444       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15445     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15446     if (isa<MemberExpr>(Op)) {
15447       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15448       if (MA != MisalignedMembers.end() &&
15449           (T->isIntegerType() ||
15450            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15451                                    Context.getTypeAlignInChars(
15452                                        T->getPointeeType()) <= MA->Alignment))))
15453         MisalignedMembers.erase(MA);
15454     }
15455   }
15456 }
15457 
15458 void Sema::RefersToMemberWithReducedAlignment(
15459     Expr *E,
15460     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15461         Action) {
15462   const auto *ME = dyn_cast<MemberExpr>(E);
15463   if (!ME)
15464     return;
15465 
15466   // No need to check expressions with an __unaligned-qualified type.
15467   if (E->getType().getQualifiers().hasUnaligned())
15468     return;
15469 
15470   // For a chain of MemberExpr like "a.b.c.d" this list
15471   // will keep FieldDecl's like [d, c, b].
15472   SmallVector<FieldDecl *, 4> ReverseMemberChain;
15473   const MemberExpr *TopME = nullptr;
15474   bool AnyIsPacked = false;
15475   do {
15476     QualType BaseType = ME->getBase()->getType();
15477     if (BaseType->isDependentType())
15478       return;
15479     if (ME->isArrow())
15480       BaseType = BaseType->getPointeeType();
15481     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15482     if (RD->isInvalidDecl())
15483       return;
15484 
15485     ValueDecl *MD = ME->getMemberDecl();
15486     auto *FD = dyn_cast<FieldDecl>(MD);
15487     // We do not care about non-data members.
15488     if (!FD || FD->isInvalidDecl())
15489       return;
15490 
15491     AnyIsPacked =
15492         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15493     ReverseMemberChain.push_back(FD);
15494 
15495     TopME = ME;
15496     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15497   } while (ME);
15498   assert(TopME && "We did not compute a topmost MemberExpr!");
15499 
15500   // Not the scope of this diagnostic.
15501   if (!AnyIsPacked)
15502     return;
15503 
15504   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15505   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15506   // TODO: The innermost base of the member expression may be too complicated.
15507   // For now, just disregard these cases. This is left for future
15508   // improvement.
15509   if (!DRE && !isa<CXXThisExpr>(TopBase))
15510       return;
15511 
15512   // Alignment expected by the whole expression.
15513   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15514 
15515   // No need to do anything else with this case.
15516   if (ExpectedAlignment.isOne())
15517     return;
15518 
15519   // Synthesize offset of the whole access.
15520   CharUnits Offset;
15521   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15522        I++) {
15523     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15524   }
15525 
15526   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15527   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15528       ReverseMemberChain.back()->getParent()->getTypeForDecl());
15529 
15530   // The base expression of the innermost MemberExpr may give
15531   // stronger guarantees than the class containing the member.
15532   if (DRE && !TopME->isArrow()) {
15533     const ValueDecl *VD = DRE->getDecl();
15534     if (!VD->getType()->isReferenceType())
15535       CompleteObjectAlignment =
15536           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15537   }
15538 
15539   // Check if the synthesized offset fulfills the alignment.
15540   if (Offset % ExpectedAlignment != 0 ||
15541       // It may fulfill the offset it but the effective alignment may still be
15542       // lower than the expected expression alignment.
15543       CompleteObjectAlignment < ExpectedAlignment) {
15544     // If this happens, we want to determine a sensible culprit of this.
15545     // Intuitively, watching the chain of member expressions from right to
15546     // left, we start with the required alignment (as required by the field
15547     // type) but some packed attribute in that chain has reduced the alignment.
15548     // It may happen that another packed structure increases it again. But if
15549     // we are here such increase has not been enough. So pointing the first
15550     // FieldDecl that either is packed or else its RecordDecl is,
15551     // seems reasonable.
15552     FieldDecl *FD = nullptr;
15553     CharUnits Alignment;
15554     for (FieldDecl *FDI : ReverseMemberChain) {
15555       if (FDI->hasAttr<PackedAttr>() ||
15556           FDI->getParent()->hasAttr<PackedAttr>()) {
15557         FD = FDI;
15558         Alignment = std::min(
15559             Context.getTypeAlignInChars(FD->getType()),
15560             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15561         break;
15562       }
15563     }
15564     assert(FD && "We did not find a packed FieldDecl!");
15565     Action(E, FD->getParent(), FD, Alignment);
15566   }
15567 }
15568 
15569 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15570   using namespace std::placeholders;
15571 
15572   RefersToMemberWithReducedAlignment(
15573       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15574                      _2, _3, _4));
15575 }
15576 
15577 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15578                                             ExprResult CallResult) {
15579   if (checkArgCount(*this, TheCall, 1))
15580     return ExprError();
15581 
15582   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15583   if (MatrixArg.isInvalid())
15584     return MatrixArg;
15585   Expr *Matrix = MatrixArg.get();
15586 
15587   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15588   if (!MType) {
15589     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15590     return ExprError();
15591   }
15592 
15593   // Create returned matrix type by swapping rows and columns of the argument
15594   // matrix type.
15595   QualType ResultType = Context.getConstantMatrixType(
15596       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15597 
15598   // Change the return type to the type of the returned matrix.
15599   TheCall->setType(ResultType);
15600 
15601   // Update call argument to use the possibly converted matrix argument.
15602   TheCall->setArg(0, Matrix);
15603   return CallResult;
15604 }
15605 
15606 // Get and verify the matrix dimensions.
15607 static llvm::Optional<unsigned>
15608 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15609   SourceLocation ErrorPos;
15610   Optional<llvm::APSInt> Value =
15611       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15612   if (!Value) {
15613     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15614         << Name;
15615     return {};
15616   }
15617   uint64_t Dim = Value->getZExtValue();
15618   if (!ConstantMatrixType::isDimensionValid(Dim)) {
15619     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15620         << Name << ConstantMatrixType::getMaxElementsPerDimension();
15621     return {};
15622   }
15623   return Dim;
15624 }
15625 
15626 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15627                                                   ExprResult CallResult) {
15628   if (!getLangOpts().MatrixTypes) {
15629     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15630     return ExprError();
15631   }
15632 
15633   if (checkArgCount(*this, TheCall, 4))
15634     return ExprError();
15635 
15636   unsigned PtrArgIdx = 0;
15637   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15638   Expr *RowsExpr = TheCall->getArg(1);
15639   Expr *ColumnsExpr = TheCall->getArg(2);
15640   Expr *StrideExpr = TheCall->getArg(3);
15641 
15642   bool ArgError = false;
15643 
15644   // Check pointer argument.
15645   {
15646     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15647     if (PtrConv.isInvalid())
15648       return PtrConv;
15649     PtrExpr = PtrConv.get();
15650     TheCall->setArg(0, PtrExpr);
15651     if (PtrExpr->isTypeDependent()) {
15652       TheCall->setType(Context.DependentTy);
15653       return TheCall;
15654     }
15655   }
15656 
15657   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15658   QualType ElementTy;
15659   if (!PtrTy) {
15660     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15661         << PtrArgIdx + 1;
15662     ArgError = true;
15663   } else {
15664     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15665 
15666     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15667       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15668           << PtrArgIdx + 1;
15669       ArgError = true;
15670     }
15671   }
15672 
15673   // Apply default Lvalue conversions and convert the expression to size_t.
15674   auto ApplyArgumentConversions = [this](Expr *E) {
15675     ExprResult Conv = DefaultLvalueConversion(E);
15676     if (Conv.isInvalid())
15677       return Conv;
15678 
15679     return tryConvertExprToType(Conv.get(), Context.getSizeType());
15680   };
15681 
15682   // Apply conversion to row and column expressions.
15683   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15684   if (!RowsConv.isInvalid()) {
15685     RowsExpr = RowsConv.get();
15686     TheCall->setArg(1, RowsExpr);
15687   } else
15688     RowsExpr = nullptr;
15689 
15690   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15691   if (!ColumnsConv.isInvalid()) {
15692     ColumnsExpr = ColumnsConv.get();
15693     TheCall->setArg(2, ColumnsExpr);
15694   } else
15695     ColumnsExpr = nullptr;
15696 
15697   // If any any part of the result matrix type is still pending, just use
15698   // Context.DependentTy, until all parts are resolved.
15699   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15700       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15701     TheCall->setType(Context.DependentTy);
15702     return CallResult;
15703   }
15704 
15705   // Check row and column dimenions.
15706   llvm::Optional<unsigned> MaybeRows;
15707   if (RowsExpr)
15708     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15709 
15710   llvm::Optional<unsigned> MaybeColumns;
15711   if (ColumnsExpr)
15712     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15713 
15714   // Check stride argument.
15715   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15716   if (StrideConv.isInvalid())
15717     return ExprError();
15718   StrideExpr = StrideConv.get();
15719   TheCall->setArg(3, StrideExpr);
15720 
15721   if (MaybeRows) {
15722     if (Optional<llvm::APSInt> Value =
15723             StrideExpr->getIntegerConstantExpr(Context)) {
15724       uint64_t Stride = Value->getZExtValue();
15725       if (Stride < *MaybeRows) {
15726         Diag(StrideExpr->getBeginLoc(),
15727              diag::err_builtin_matrix_stride_too_small);
15728         ArgError = true;
15729       }
15730     }
15731   }
15732 
15733   if (ArgError || !MaybeRows || !MaybeColumns)
15734     return ExprError();
15735 
15736   TheCall->setType(
15737       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15738   return CallResult;
15739 }
15740 
15741 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15742                                                    ExprResult CallResult) {
15743   if (checkArgCount(*this, TheCall, 3))
15744     return ExprError();
15745 
15746   unsigned PtrArgIdx = 1;
15747   Expr *MatrixExpr = TheCall->getArg(0);
15748   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15749   Expr *StrideExpr = TheCall->getArg(2);
15750 
15751   bool ArgError = false;
15752 
15753   {
15754     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15755     if (MatrixConv.isInvalid())
15756       return MatrixConv;
15757     MatrixExpr = MatrixConv.get();
15758     TheCall->setArg(0, MatrixExpr);
15759   }
15760   if (MatrixExpr->isTypeDependent()) {
15761     TheCall->setType(Context.DependentTy);
15762     return TheCall;
15763   }
15764 
15765   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15766   if (!MatrixTy) {
15767     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
15768     ArgError = true;
15769   }
15770 
15771   {
15772     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15773     if (PtrConv.isInvalid())
15774       return PtrConv;
15775     PtrExpr = PtrConv.get();
15776     TheCall->setArg(1, PtrExpr);
15777     if (PtrExpr->isTypeDependent()) {
15778       TheCall->setType(Context.DependentTy);
15779       return TheCall;
15780     }
15781   }
15782 
15783   // Check pointer argument.
15784   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15785   if (!PtrTy) {
15786     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15787         << PtrArgIdx + 1;
15788     ArgError = true;
15789   } else {
15790     QualType ElementTy = PtrTy->getPointeeType();
15791     if (ElementTy.isConstQualified()) {
15792       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
15793       ArgError = true;
15794     }
15795     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
15796     if (MatrixTy &&
15797         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
15798       Diag(PtrExpr->getBeginLoc(),
15799            diag::err_builtin_matrix_pointer_arg_mismatch)
15800           << ElementTy << MatrixTy->getElementType();
15801       ArgError = true;
15802     }
15803   }
15804 
15805   // Apply default Lvalue conversions and convert the stride expression to
15806   // size_t.
15807   {
15808     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
15809     if (StrideConv.isInvalid())
15810       return StrideConv;
15811 
15812     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
15813     if (StrideConv.isInvalid())
15814       return StrideConv;
15815     StrideExpr = StrideConv.get();
15816     TheCall->setArg(2, StrideExpr);
15817   }
15818 
15819   // Check stride argument.
15820   if (MatrixTy) {
15821     if (Optional<llvm::APSInt> Value =
15822             StrideExpr->getIntegerConstantExpr(Context)) {
15823       uint64_t Stride = Value->getZExtValue();
15824       if (Stride < MatrixTy->getNumRows()) {
15825         Diag(StrideExpr->getBeginLoc(),
15826              diag::err_builtin_matrix_stride_too_small);
15827         ArgError = true;
15828       }
15829     }
15830   }
15831 
15832   if (ArgError)
15833     return ExprError();
15834 
15835   return CallResult;
15836 }
15837