1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSwitch.h" 79 #include "llvm/ADT/Triple.h" 80 #include "llvm/Support/AtomicOrdering.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/ConvertUTF.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/Locale.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/SaveAndRestore.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include <algorithm> 91 #include <bitset> 92 #include <cassert> 93 #include <cstddef> 94 #include <cstdint> 95 #include <functional> 96 #include <limits> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 101 using namespace clang; 102 using namespace sema; 103 104 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 105 unsigned ByteNo) const { 106 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 107 Context.getTargetInfo()); 108 } 109 110 /// Checks that a call expression's argument count is the desired number. 111 /// This is useful when doing custom type-checking. Returns true on error. 112 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 113 unsigned argCount = call->getNumArgs(); 114 if (argCount == desiredArgCount) return false; 115 116 if (argCount < desiredArgCount) 117 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 118 << 0 /*function call*/ << desiredArgCount << argCount 119 << call->getSourceRange(); 120 121 // Highlight all the excess arguments. 122 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 123 call->getArg(argCount - 1)->getEndLoc()); 124 125 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 126 << 0 /*function call*/ << desiredArgCount << argCount 127 << call->getArg(1)->getSourceRange(); 128 } 129 130 /// Check that the first argument to __builtin_annotation is an integer 131 /// and the second argument is a non-wide string literal. 132 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 133 if (checkArgCount(S, TheCall, 2)) 134 return true; 135 136 // First argument should be an integer. 137 Expr *ValArg = TheCall->getArg(0); 138 QualType Ty = ValArg->getType(); 139 if (!Ty->isIntegerType()) { 140 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 141 << ValArg->getSourceRange(); 142 return true; 143 } 144 145 // Second argument should be a constant string. 146 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 147 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 148 if (!Literal || !Literal->isAscii()) { 149 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 150 << StrArg->getSourceRange(); 151 return true; 152 } 153 154 TheCall->setType(Ty); 155 return false; 156 } 157 158 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 159 // We need at least one argument. 160 if (TheCall->getNumArgs() < 1) { 161 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 162 << 0 << 1 << TheCall->getNumArgs() 163 << TheCall->getCallee()->getSourceRange(); 164 return true; 165 } 166 167 // All arguments should be wide string literals. 168 for (Expr *Arg : TheCall->arguments()) { 169 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 170 if (!Literal || !Literal->isWide()) { 171 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 172 << Arg->getSourceRange(); 173 return true; 174 } 175 } 176 177 return false; 178 } 179 180 /// Check that the argument to __builtin_addressof is a glvalue, and set the 181 /// result type to the corresponding pointer type. 182 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 183 if (checkArgCount(S, TheCall, 1)) 184 return true; 185 186 ExprResult Arg(TheCall->getArg(0)); 187 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 188 if (ResultType.isNull()) 189 return true; 190 191 TheCall->setArg(0, Arg.get()); 192 TheCall->setType(ResultType); 193 return false; 194 } 195 196 /// Check the number of arguments and set the result type to 197 /// the argument type. 198 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 199 if (checkArgCount(S, TheCall, 1)) 200 return true; 201 202 TheCall->setType(TheCall->getArg(0)->getType()); 203 return false; 204 } 205 206 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 207 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 208 /// type (but not a function pointer) and that the alignment is a power-of-two. 209 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 210 if (checkArgCount(S, TheCall, 2)) 211 return true; 212 213 clang::Expr *Source = TheCall->getArg(0); 214 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 215 216 auto IsValidIntegerType = [](QualType Ty) { 217 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 218 }; 219 QualType SrcTy = Source->getType(); 220 // We should also be able to use it with arrays (but not functions!). 221 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 222 SrcTy = S.Context.getDecayedType(SrcTy); 223 } 224 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 225 SrcTy->isFunctionPointerType()) { 226 // FIXME: this is not quite the right error message since we don't allow 227 // floating point types, or member pointers. 228 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 229 << SrcTy; 230 return true; 231 } 232 233 clang::Expr *AlignOp = TheCall->getArg(1); 234 if (!IsValidIntegerType(AlignOp->getType())) { 235 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 236 << AlignOp->getType(); 237 return true; 238 } 239 Expr::EvalResult AlignResult; 240 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 241 // We can't check validity of alignment if it is value dependent. 242 if (!AlignOp->isValueDependent() && 243 AlignOp->EvaluateAsInt(AlignResult, S.Context, 244 Expr::SE_AllowSideEffects)) { 245 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 246 llvm::APSInt MaxValue( 247 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 248 if (AlignValue < 1) { 249 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 250 return true; 251 } 252 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 253 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 254 << MaxValue.toString(10); 255 return true; 256 } 257 if (!AlignValue.isPowerOf2()) { 258 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 259 return true; 260 } 261 if (AlignValue == 1) { 262 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 263 << IsBooleanAlignBuiltin; 264 } 265 } 266 267 ExprResult SrcArg = S.PerformCopyInitialization( 268 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 269 SourceLocation(), Source); 270 if (SrcArg.isInvalid()) 271 return true; 272 TheCall->setArg(0, SrcArg.get()); 273 ExprResult AlignArg = 274 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 275 S.Context, AlignOp->getType(), false), 276 SourceLocation(), AlignOp); 277 if (AlignArg.isInvalid()) 278 return true; 279 TheCall->setArg(1, AlignArg.get()); 280 // For align_up/align_down, the return type is the same as the (potentially 281 // decayed) argument type including qualifiers. For is_aligned(), the result 282 // is always bool. 283 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 284 return false; 285 } 286 287 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 288 unsigned BuiltinID) { 289 if (checkArgCount(S, TheCall, 3)) 290 return true; 291 292 // First two arguments should be integers. 293 for (unsigned I = 0; I < 2; ++I) { 294 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 295 if (Arg.isInvalid()) return true; 296 TheCall->setArg(I, Arg.get()); 297 298 QualType Ty = Arg.get()->getType(); 299 if (!Ty->isIntegerType()) { 300 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 301 << Ty << Arg.get()->getSourceRange(); 302 return true; 303 } 304 } 305 306 // Third argument should be a pointer to a non-const integer. 307 // IRGen correctly handles volatile, restrict, and address spaces, and 308 // the other qualifiers aren't possible. 309 { 310 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 311 if (Arg.isInvalid()) return true; 312 TheCall->setArg(2, Arg.get()); 313 314 QualType Ty = Arg.get()->getType(); 315 const auto *PtrTy = Ty->getAs<PointerType>(); 316 if (!PtrTy || 317 !PtrTy->getPointeeType()->isIntegerType() || 318 PtrTy->getPointeeType().isConstQualified()) { 319 S.Diag(Arg.get()->getBeginLoc(), 320 diag::err_overflow_builtin_must_be_ptr_int) 321 << Ty << Arg.get()->getSourceRange(); 322 return true; 323 } 324 } 325 326 // Disallow signed ExtIntType args larger than 128 bits to mul function until 327 // we improve backend support. 328 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 329 for (unsigned I = 0; I < 3; ++I) { 330 const auto Arg = TheCall->getArg(I); 331 // Third argument will be a pointer. 332 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 333 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 334 S.getASTContext().getIntWidth(Ty) > 128) 335 return S.Diag(Arg->getBeginLoc(), 336 diag::err_overflow_builtin_ext_int_max_size) 337 << 128; 338 } 339 } 340 341 return false; 342 } 343 344 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 345 if (checkArgCount(S, BuiltinCall, 2)) 346 return true; 347 348 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 349 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 350 Expr *Call = BuiltinCall->getArg(0); 351 Expr *Chain = BuiltinCall->getArg(1); 352 353 if (Call->getStmtClass() != Stmt::CallExprClass) { 354 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 355 << Call->getSourceRange(); 356 return true; 357 } 358 359 auto CE = cast<CallExpr>(Call); 360 if (CE->getCallee()->getType()->isBlockPointerType()) { 361 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 362 << Call->getSourceRange(); 363 return true; 364 } 365 366 const Decl *TargetDecl = CE->getCalleeDecl(); 367 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 368 if (FD->getBuiltinID()) { 369 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 370 << Call->getSourceRange(); 371 return true; 372 } 373 374 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 375 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 376 << Call->getSourceRange(); 377 return true; 378 } 379 380 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 381 if (ChainResult.isInvalid()) 382 return true; 383 if (!ChainResult.get()->getType()->isPointerType()) { 384 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 385 << Chain->getSourceRange(); 386 return true; 387 } 388 389 QualType ReturnTy = CE->getCallReturnType(S.Context); 390 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 391 QualType BuiltinTy = S.Context.getFunctionType( 392 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 393 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 394 395 Builtin = 396 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 397 398 BuiltinCall->setType(CE->getType()); 399 BuiltinCall->setValueKind(CE->getValueKind()); 400 BuiltinCall->setObjectKind(CE->getObjectKind()); 401 BuiltinCall->setCallee(Builtin); 402 BuiltinCall->setArg(1, ChainResult.get()); 403 404 return false; 405 } 406 407 namespace { 408 409 class EstimateSizeFormatHandler 410 : public analyze_format_string::FormatStringHandler { 411 size_t Size; 412 413 public: 414 EstimateSizeFormatHandler(StringRef Format) 415 : Size(std::min(Format.find(0), Format.size()) + 416 1 /* null byte always written by sprintf */) {} 417 418 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 419 const char *, unsigned SpecifierLen) override { 420 421 const size_t FieldWidth = computeFieldWidth(FS); 422 const size_t Precision = computePrecision(FS); 423 424 // The actual format. 425 switch (FS.getConversionSpecifier().getKind()) { 426 // Just a char. 427 case analyze_format_string::ConversionSpecifier::cArg: 428 case analyze_format_string::ConversionSpecifier::CArg: 429 Size += std::max(FieldWidth, (size_t)1); 430 break; 431 // Just an integer. 432 case analyze_format_string::ConversionSpecifier::dArg: 433 case analyze_format_string::ConversionSpecifier::DArg: 434 case analyze_format_string::ConversionSpecifier::iArg: 435 case analyze_format_string::ConversionSpecifier::oArg: 436 case analyze_format_string::ConversionSpecifier::OArg: 437 case analyze_format_string::ConversionSpecifier::uArg: 438 case analyze_format_string::ConversionSpecifier::UArg: 439 case analyze_format_string::ConversionSpecifier::xArg: 440 case analyze_format_string::ConversionSpecifier::XArg: 441 Size += std::max(FieldWidth, Precision); 442 break; 443 444 // %g style conversion switches between %f or %e style dynamically. 445 // %f always takes less space, so default to it. 446 case analyze_format_string::ConversionSpecifier::gArg: 447 case analyze_format_string::ConversionSpecifier::GArg: 448 449 // Floating point number in the form '[+]ddd.ddd'. 450 case analyze_format_string::ConversionSpecifier::fArg: 451 case analyze_format_string::ConversionSpecifier::FArg: 452 Size += std::max(FieldWidth, 1 /* integer part */ + 453 (Precision ? 1 + Precision 454 : 0) /* period + decimal */); 455 break; 456 457 // Floating point number in the form '[-]d.ddde[+-]dd'. 458 case analyze_format_string::ConversionSpecifier::eArg: 459 case analyze_format_string::ConversionSpecifier::EArg: 460 Size += 461 std::max(FieldWidth, 462 1 /* integer part */ + 463 (Precision ? 1 + Precision : 0) /* period + decimal */ + 464 1 /* e or E letter */ + 2 /* exponent */); 465 break; 466 467 // Floating point number in the form '[-]0xh.hhhhp±dd'. 468 case analyze_format_string::ConversionSpecifier::aArg: 469 case analyze_format_string::ConversionSpecifier::AArg: 470 Size += 471 std::max(FieldWidth, 472 2 /* 0x */ + 1 /* integer part */ + 473 (Precision ? 1 + Precision : 0) /* period + decimal */ + 474 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 475 break; 476 477 // Just a string. 478 case analyze_format_string::ConversionSpecifier::sArg: 479 case analyze_format_string::ConversionSpecifier::SArg: 480 Size += FieldWidth; 481 break; 482 483 // Just a pointer in the form '0xddd'. 484 case analyze_format_string::ConversionSpecifier::pArg: 485 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 486 break; 487 488 // A plain percent. 489 case analyze_format_string::ConversionSpecifier::PercentArg: 490 Size += 1; 491 break; 492 493 default: 494 break; 495 } 496 497 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 498 499 if (FS.hasAlternativeForm()) { 500 switch (FS.getConversionSpecifier().getKind()) { 501 default: 502 break; 503 // Force a leading '0'. 504 case analyze_format_string::ConversionSpecifier::oArg: 505 Size += 1; 506 break; 507 // Force a leading '0x'. 508 case analyze_format_string::ConversionSpecifier::xArg: 509 case analyze_format_string::ConversionSpecifier::XArg: 510 Size += 2; 511 break; 512 // Force a period '.' before decimal, even if precision is 0. 513 case analyze_format_string::ConversionSpecifier::aArg: 514 case analyze_format_string::ConversionSpecifier::AArg: 515 case analyze_format_string::ConversionSpecifier::eArg: 516 case analyze_format_string::ConversionSpecifier::EArg: 517 case analyze_format_string::ConversionSpecifier::fArg: 518 case analyze_format_string::ConversionSpecifier::FArg: 519 case analyze_format_string::ConversionSpecifier::gArg: 520 case analyze_format_string::ConversionSpecifier::GArg: 521 Size += (Precision ? 0 : 1); 522 break; 523 } 524 } 525 assert(SpecifierLen <= Size && "no underflow"); 526 Size -= SpecifierLen; 527 return true; 528 } 529 530 size_t getSizeLowerBound() const { return Size; } 531 532 private: 533 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 534 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 535 size_t FieldWidth = 0; 536 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 537 FieldWidth = FW.getConstantAmount(); 538 return FieldWidth; 539 } 540 541 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 542 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 543 size_t Precision = 0; 544 545 // See man 3 printf for default precision value based on the specifier. 546 switch (FW.getHowSpecified()) { 547 case analyze_format_string::OptionalAmount::NotSpecified: 548 switch (FS.getConversionSpecifier().getKind()) { 549 default: 550 break; 551 case analyze_format_string::ConversionSpecifier::dArg: // %d 552 case analyze_format_string::ConversionSpecifier::DArg: // %D 553 case analyze_format_string::ConversionSpecifier::iArg: // %i 554 Precision = 1; 555 break; 556 case analyze_format_string::ConversionSpecifier::oArg: // %d 557 case analyze_format_string::ConversionSpecifier::OArg: // %D 558 case analyze_format_string::ConversionSpecifier::uArg: // %d 559 case analyze_format_string::ConversionSpecifier::UArg: // %D 560 case analyze_format_string::ConversionSpecifier::xArg: // %d 561 case analyze_format_string::ConversionSpecifier::XArg: // %D 562 Precision = 1; 563 break; 564 case analyze_format_string::ConversionSpecifier::fArg: // %f 565 case analyze_format_string::ConversionSpecifier::FArg: // %F 566 case analyze_format_string::ConversionSpecifier::eArg: // %e 567 case analyze_format_string::ConversionSpecifier::EArg: // %E 568 case analyze_format_string::ConversionSpecifier::gArg: // %g 569 case analyze_format_string::ConversionSpecifier::GArg: // %G 570 Precision = 6; 571 break; 572 case analyze_format_string::ConversionSpecifier::pArg: // %d 573 Precision = 1; 574 break; 575 } 576 break; 577 case analyze_format_string::OptionalAmount::Constant: 578 Precision = FW.getConstantAmount(); 579 break; 580 default: 581 break; 582 } 583 return Precision; 584 } 585 }; 586 587 } // namespace 588 589 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 590 /// __builtin_*_chk function, then use the object size argument specified in the 591 /// source. Otherwise, infer the object size using __builtin_object_size. 592 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 593 CallExpr *TheCall) { 594 // FIXME: There are some more useful checks we could be doing here: 595 // - Evaluate strlen of strcpy arguments, use as object size. 596 597 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 598 isConstantEvaluated()) 599 return; 600 601 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 602 if (!BuiltinID) 603 return; 604 605 const TargetInfo &TI = getASTContext().getTargetInfo(); 606 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 607 608 unsigned DiagID = 0; 609 bool IsChkVariant = false; 610 Optional<llvm::APSInt> UsedSize; 611 unsigned SizeIndex, ObjectIndex; 612 switch (BuiltinID) { 613 default: 614 return; 615 case Builtin::BIsprintf: 616 case Builtin::BI__builtin___sprintf_chk: { 617 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 618 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 619 620 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 621 622 if (!Format->isAscii() && !Format->isUTF8()) 623 return; 624 625 StringRef FormatStrRef = Format->getString(); 626 EstimateSizeFormatHandler H(FormatStrRef); 627 const char *FormatBytes = FormatStrRef.data(); 628 const ConstantArrayType *T = 629 Context.getAsConstantArrayType(Format->getType()); 630 assert(T && "String literal not of constant array type!"); 631 size_t TypeSize = T->getSize().getZExtValue(); 632 633 // In case there's a null byte somewhere. 634 size_t StrLen = 635 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 636 if (!analyze_format_string::ParsePrintfString( 637 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 638 Context.getTargetInfo(), false)) { 639 DiagID = diag::warn_fortify_source_format_overflow; 640 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 641 .extOrTrunc(SizeTypeWidth); 642 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 643 IsChkVariant = true; 644 ObjectIndex = 2; 645 } else { 646 IsChkVariant = false; 647 ObjectIndex = 0; 648 } 649 break; 650 } 651 } 652 return; 653 } 654 case Builtin::BI__builtin___memcpy_chk: 655 case Builtin::BI__builtin___memmove_chk: 656 case Builtin::BI__builtin___memset_chk: 657 case Builtin::BI__builtin___strlcat_chk: 658 case Builtin::BI__builtin___strlcpy_chk: 659 case Builtin::BI__builtin___strncat_chk: 660 case Builtin::BI__builtin___strncpy_chk: 661 case Builtin::BI__builtin___stpncpy_chk: 662 case Builtin::BI__builtin___memccpy_chk: 663 case Builtin::BI__builtin___mempcpy_chk: { 664 DiagID = diag::warn_builtin_chk_overflow; 665 IsChkVariant = true; 666 SizeIndex = TheCall->getNumArgs() - 2; 667 ObjectIndex = TheCall->getNumArgs() - 1; 668 break; 669 } 670 671 case Builtin::BI__builtin___snprintf_chk: 672 case Builtin::BI__builtin___vsnprintf_chk: { 673 DiagID = diag::warn_builtin_chk_overflow; 674 IsChkVariant = true; 675 SizeIndex = 1; 676 ObjectIndex = 3; 677 break; 678 } 679 680 case Builtin::BIstrncat: 681 case Builtin::BI__builtin_strncat: 682 case Builtin::BIstrncpy: 683 case Builtin::BI__builtin_strncpy: 684 case Builtin::BIstpncpy: 685 case Builtin::BI__builtin_stpncpy: { 686 // Whether these functions overflow depends on the runtime strlen of the 687 // string, not just the buffer size, so emitting the "always overflow" 688 // diagnostic isn't quite right. We should still diagnose passing a buffer 689 // size larger than the destination buffer though; this is a runtime abort 690 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 691 DiagID = diag::warn_fortify_source_size_mismatch; 692 SizeIndex = TheCall->getNumArgs() - 1; 693 ObjectIndex = 0; 694 break; 695 } 696 697 case Builtin::BImemcpy: 698 case Builtin::BI__builtin_memcpy: 699 case Builtin::BImemmove: 700 case Builtin::BI__builtin_memmove: 701 case Builtin::BImemset: 702 case Builtin::BI__builtin_memset: 703 case Builtin::BImempcpy: 704 case Builtin::BI__builtin_mempcpy: { 705 DiagID = diag::warn_fortify_source_overflow; 706 SizeIndex = TheCall->getNumArgs() - 1; 707 ObjectIndex = 0; 708 break; 709 } 710 case Builtin::BIsnprintf: 711 case Builtin::BI__builtin_snprintf: 712 case Builtin::BIvsnprintf: 713 case Builtin::BI__builtin_vsnprintf: { 714 DiagID = diag::warn_fortify_source_size_mismatch; 715 SizeIndex = 1; 716 ObjectIndex = 0; 717 break; 718 } 719 } 720 721 llvm::APSInt ObjectSize; 722 // For __builtin___*_chk, the object size is explicitly provided by the caller 723 // (usually using __builtin_object_size). Use that value to check this call. 724 if (IsChkVariant) { 725 Expr::EvalResult Result; 726 Expr *SizeArg = TheCall->getArg(ObjectIndex); 727 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 728 return; 729 ObjectSize = Result.Val.getInt(); 730 731 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 732 } else { 733 // If the parameter has a pass_object_size attribute, then we should use its 734 // (potentially) more strict checking mode. Otherwise, conservatively assume 735 // type 0. 736 int BOSType = 0; 737 if (const auto *POS = 738 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 739 BOSType = POS->getType(); 740 741 Expr *ObjArg = TheCall->getArg(ObjectIndex); 742 uint64_t Result; 743 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 744 return; 745 // Get the object size in the target's size_t width. 746 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 747 } 748 749 // Evaluate the number of bytes of the object that this call will use. 750 if (!UsedSize) { 751 Expr::EvalResult Result; 752 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 753 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 754 return; 755 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 756 } 757 758 if (UsedSize.getValue().ule(ObjectSize)) 759 return; 760 761 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 762 // Skim off the details of whichever builtin was called to produce a better 763 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 764 if (IsChkVariant) { 765 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 766 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 767 } else if (FunctionName.startswith("__builtin_")) { 768 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 769 } 770 771 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 772 PDiag(DiagID) 773 << FunctionName << ObjectSize.toString(/*Radix=*/10) 774 << UsedSize.getValue().toString(/*Radix=*/10)); 775 } 776 777 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 778 Scope::ScopeFlags NeededScopeFlags, 779 unsigned DiagID) { 780 // Scopes aren't available during instantiation. Fortunately, builtin 781 // functions cannot be template args so they cannot be formed through template 782 // instantiation. Therefore checking once during the parse is sufficient. 783 if (SemaRef.inTemplateInstantiation()) 784 return false; 785 786 Scope *S = SemaRef.getCurScope(); 787 while (S && !S->isSEHExceptScope()) 788 S = S->getParent(); 789 if (!S || !(S->getFlags() & NeededScopeFlags)) { 790 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 791 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 792 << DRE->getDecl()->getIdentifier(); 793 return true; 794 } 795 796 return false; 797 } 798 799 static inline bool isBlockPointer(Expr *Arg) { 800 return Arg->getType()->isBlockPointerType(); 801 } 802 803 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 804 /// void*, which is a requirement of device side enqueue. 805 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 806 const BlockPointerType *BPT = 807 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 808 ArrayRef<QualType> Params = 809 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 810 unsigned ArgCounter = 0; 811 bool IllegalParams = false; 812 // Iterate through the block parameters until either one is found that is not 813 // a local void*, or the block is valid. 814 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 815 I != E; ++I, ++ArgCounter) { 816 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 817 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 818 LangAS::opencl_local) { 819 // Get the location of the error. If a block literal has been passed 820 // (BlockExpr) then we can point straight to the offending argument, 821 // else we just point to the variable reference. 822 SourceLocation ErrorLoc; 823 if (isa<BlockExpr>(BlockArg)) { 824 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 825 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 826 } else if (isa<DeclRefExpr>(BlockArg)) { 827 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 828 } 829 S.Diag(ErrorLoc, 830 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 831 IllegalParams = true; 832 } 833 } 834 835 return IllegalParams; 836 } 837 838 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 839 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 840 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 841 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 842 return true; 843 } 844 return false; 845 } 846 847 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 848 if (checkArgCount(S, TheCall, 2)) 849 return true; 850 851 if (checkOpenCLSubgroupExt(S, TheCall)) 852 return true; 853 854 // First argument is an ndrange_t type. 855 Expr *NDRangeArg = TheCall->getArg(0); 856 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 857 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 858 << TheCall->getDirectCallee() << "'ndrange_t'"; 859 return true; 860 } 861 862 Expr *BlockArg = TheCall->getArg(1); 863 if (!isBlockPointer(BlockArg)) { 864 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 865 << TheCall->getDirectCallee() << "block"; 866 return true; 867 } 868 return checkOpenCLBlockArgs(S, BlockArg); 869 } 870 871 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 872 /// get_kernel_work_group_size 873 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 874 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 875 if (checkArgCount(S, TheCall, 1)) 876 return true; 877 878 Expr *BlockArg = TheCall->getArg(0); 879 if (!isBlockPointer(BlockArg)) { 880 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 881 << TheCall->getDirectCallee() << "block"; 882 return true; 883 } 884 return checkOpenCLBlockArgs(S, BlockArg); 885 } 886 887 /// Diagnose integer type and any valid implicit conversion to it. 888 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 889 const QualType &IntType); 890 891 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 892 unsigned Start, unsigned End) { 893 bool IllegalParams = false; 894 for (unsigned I = Start; I <= End; ++I) 895 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 896 S.Context.getSizeType()); 897 return IllegalParams; 898 } 899 900 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 901 /// 'local void*' parameter of passed block. 902 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 903 Expr *BlockArg, 904 unsigned NumNonVarArgs) { 905 const BlockPointerType *BPT = 906 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 907 unsigned NumBlockParams = 908 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 909 unsigned TotalNumArgs = TheCall->getNumArgs(); 910 911 // For each argument passed to the block, a corresponding uint needs to 912 // be passed to describe the size of the local memory. 913 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 914 S.Diag(TheCall->getBeginLoc(), 915 diag::err_opencl_enqueue_kernel_local_size_args); 916 return true; 917 } 918 919 // Check that the sizes of the local memory are specified by integers. 920 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 921 TotalNumArgs - 1); 922 } 923 924 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 925 /// overload formats specified in Table 6.13.17.1. 926 /// int enqueue_kernel(queue_t queue, 927 /// kernel_enqueue_flags_t flags, 928 /// const ndrange_t ndrange, 929 /// void (^block)(void)) 930 /// int enqueue_kernel(queue_t queue, 931 /// kernel_enqueue_flags_t flags, 932 /// const ndrange_t ndrange, 933 /// uint num_events_in_wait_list, 934 /// clk_event_t *event_wait_list, 935 /// clk_event_t *event_ret, 936 /// void (^block)(void)) 937 /// int enqueue_kernel(queue_t queue, 938 /// kernel_enqueue_flags_t flags, 939 /// const ndrange_t ndrange, 940 /// void (^block)(local void*, ...), 941 /// uint size0, ...) 942 /// int enqueue_kernel(queue_t queue, 943 /// kernel_enqueue_flags_t flags, 944 /// const ndrange_t ndrange, 945 /// uint num_events_in_wait_list, 946 /// clk_event_t *event_wait_list, 947 /// clk_event_t *event_ret, 948 /// void (^block)(local void*, ...), 949 /// uint size0, ...) 950 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 951 unsigned NumArgs = TheCall->getNumArgs(); 952 953 if (NumArgs < 4) { 954 S.Diag(TheCall->getBeginLoc(), 955 diag::err_typecheck_call_too_few_args_at_least) 956 << 0 << 4 << NumArgs; 957 return true; 958 } 959 960 Expr *Arg0 = TheCall->getArg(0); 961 Expr *Arg1 = TheCall->getArg(1); 962 Expr *Arg2 = TheCall->getArg(2); 963 Expr *Arg3 = TheCall->getArg(3); 964 965 // First argument always needs to be a queue_t type. 966 if (!Arg0->getType()->isQueueT()) { 967 S.Diag(TheCall->getArg(0)->getBeginLoc(), 968 diag::err_opencl_builtin_expected_type) 969 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 970 return true; 971 } 972 973 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 974 if (!Arg1->getType()->isIntegerType()) { 975 S.Diag(TheCall->getArg(1)->getBeginLoc(), 976 diag::err_opencl_builtin_expected_type) 977 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 978 return true; 979 } 980 981 // Third argument is always an ndrange_t type. 982 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 983 S.Diag(TheCall->getArg(2)->getBeginLoc(), 984 diag::err_opencl_builtin_expected_type) 985 << TheCall->getDirectCallee() << "'ndrange_t'"; 986 return true; 987 } 988 989 // With four arguments, there is only one form that the function could be 990 // called in: no events and no variable arguments. 991 if (NumArgs == 4) { 992 // check that the last argument is the right block type. 993 if (!isBlockPointer(Arg3)) { 994 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 995 << TheCall->getDirectCallee() << "block"; 996 return true; 997 } 998 // we have a block type, check the prototype 999 const BlockPointerType *BPT = 1000 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1001 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1002 S.Diag(Arg3->getBeginLoc(), 1003 diag::err_opencl_enqueue_kernel_blocks_no_args); 1004 return true; 1005 } 1006 return false; 1007 } 1008 // we can have block + varargs. 1009 if (isBlockPointer(Arg3)) 1010 return (checkOpenCLBlockArgs(S, Arg3) || 1011 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1012 // last two cases with either exactly 7 args or 7 args and varargs. 1013 if (NumArgs >= 7) { 1014 // check common block argument. 1015 Expr *Arg6 = TheCall->getArg(6); 1016 if (!isBlockPointer(Arg6)) { 1017 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1018 << TheCall->getDirectCallee() << "block"; 1019 return true; 1020 } 1021 if (checkOpenCLBlockArgs(S, Arg6)) 1022 return true; 1023 1024 // Forth argument has to be any integer type. 1025 if (!Arg3->getType()->isIntegerType()) { 1026 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1027 diag::err_opencl_builtin_expected_type) 1028 << TheCall->getDirectCallee() << "integer"; 1029 return true; 1030 } 1031 // check remaining common arguments. 1032 Expr *Arg4 = TheCall->getArg(4); 1033 Expr *Arg5 = TheCall->getArg(5); 1034 1035 // Fifth argument is always passed as a pointer to clk_event_t. 1036 if (!Arg4->isNullPointerConstant(S.Context, 1037 Expr::NPC_ValueDependentIsNotNull) && 1038 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1039 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1040 diag::err_opencl_builtin_expected_type) 1041 << TheCall->getDirectCallee() 1042 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1043 return true; 1044 } 1045 1046 // Sixth argument is always passed as a pointer to clk_event_t. 1047 if (!Arg5->isNullPointerConstant(S.Context, 1048 Expr::NPC_ValueDependentIsNotNull) && 1049 !(Arg5->getType()->isPointerType() && 1050 Arg5->getType()->getPointeeType()->isClkEventT())) { 1051 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1052 diag::err_opencl_builtin_expected_type) 1053 << TheCall->getDirectCallee() 1054 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1055 return true; 1056 } 1057 1058 if (NumArgs == 7) 1059 return false; 1060 1061 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1062 } 1063 1064 // None of the specific case has been detected, give generic error 1065 S.Diag(TheCall->getBeginLoc(), 1066 diag::err_opencl_enqueue_kernel_incorrect_args); 1067 return true; 1068 } 1069 1070 /// Returns OpenCL access qual. 1071 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1072 return D->getAttr<OpenCLAccessAttr>(); 1073 } 1074 1075 /// Returns true if pipe element type is different from the pointer. 1076 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1077 const Expr *Arg0 = Call->getArg(0); 1078 // First argument type should always be pipe. 1079 if (!Arg0->getType()->isPipeType()) { 1080 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1081 << Call->getDirectCallee() << Arg0->getSourceRange(); 1082 return true; 1083 } 1084 OpenCLAccessAttr *AccessQual = 1085 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1086 // Validates the access qualifier is compatible with the call. 1087 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1088 // read_only and write_only, and assumed to be read_only if no qualifier is 1089 // specified. 1090 switch (Call->getDirectCallee()->getBuiltinID()) { 1091 case Builtin::BIread_pipe: 1092 case Builtin::BIreserve_read_pipe: 1093 case Builtin::BIcommit_read_pipe: 1094 case Builtin::BIwork_group_reserve_read_pipe: 1095 case Builtin::BIsub_group_reserve_read_pipe: 1096 case Builtin::BIwork_group_commit_read_pipe: 1097 case Builtin::BIsub_group_commit_read_pipe: 1098 if (!(!AccessQual || AccessQual->isReadOnly())) { 1099 S.Diag(Arg0->getBeginLoc(), 1100 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1101 << "read_only" << Arg0->getSourceRange(); 1102 return true; 1103 } 1104 break; 1105 case Builtin::BIwrite_pipe: 1106 case Builtin::BIreserve_write_pipe: 1107 case Builtin::BIcommit_write_pipe: 1108 case Builtin::BIwork_group_reserve_write_pipe: 1109 case Builtin::BIsub_group_reserve_write_pipe: 1110 case Builtin::BIwork_group_commit_write_pipe: 1111 case Builtin::BIsub_group_commit_write_pipe: 1112 if (!(AccessQual && AccessQual->isWriteOnly())) { 1113 S.Diag(Arg0->getBeginLoc(), 1114 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1115 << "write_only" << Arg0->getSourceRange(); 1116 return true; 1117 } 1118 break; 1119 default: 1120 break; 1121 } 1122 return false; 1123 } 1124 1125 /// Returns true if pipe element type is different from the pointer. 1126 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1127 const Expr *Arg0 = Call->getArg(0); 1128 const Expr *ArgIdx = Call->getArg(Idx); 1129 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1130 const QualType EltTy = PipeTy->getElementType(); 1131 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1132 // The Idx argument should be a pointer and the type of the pointer and 1133 // the type of pipe element should also be the same. 1134 if (!ArgTy || 1135 !S.Context.hasSameType( 1136 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1137 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1138 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1139 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1140 return true; 1141 } 1142 return false; 1143 } 1144 1145 // Performs semantic analysis for the read/write_pipe call. 1146 // \param S Reference to the semantic analyzer. 1147 // \param Call A pointer to the builtin call. 1148 // \return True if a semantic error has been found, false otherwise. 1149 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1150 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1151 // functions have two forms. 1152 switch (Call->getNumArgs()) { 1153 case 2: 1154 if (checkOpenCLPipeArg(S, Call)) 1155 return true; 1156 // The call with 2 arguments should be 1157 // read/write_pipe(pipe T, T*). 1158 // Check packet type T. 1159 if (checkOpenCLPipePacketType(S, Call, 1)) 1160 return true; 1161 break; 1162 1163 case 4: { 1164 if (checkOpenCLPipeArg(S, Call)) 1165 return true; 1166 // The call with 4 arguments should be 1167 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1168 // Check reserve_id_t. 1169 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1170 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1171 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1172 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1173 return true; 1174 } 1175 1176 // Check the index. 1177 const Expr *Arg2 = Call->getArg(2); 1178 if (!Arg2->getType()->isIntegerType() && 1179 !Arg2->getType()->isUnsignedIntegerType()) { 1180 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1181 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1182 << Arg2->getType() << Arg2->getSourceRange(); 1183 return true; 1184 } 1185 1186 // Check packet type T. 1187 if (checkOpenCLPipePacketType(S, Call, 3)) 1188 return true; 1189 } break; 1190 default: 1191 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1192 << Call->getDirectCallee() << Call->getSourceRange(); 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 // Performs a semantic analysis on the {work_group_/sub_group_ 1200 // /_}reserve_{read/write}_pipe 1201 // \param S Reference to the semantic analyzer. 1202 // \param Call The call to the builtin function to be analyzed. 1203 // \return True if a semantic error was found, false otherwise. 1204 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1205 if (checkArgCount(S, Call, 2)) 1206 return true; 1207 1208 if (checkOpenCLPipeArg(S, Call)) 1209 return true; 1210 1211 // Check the reserve size. 1212 if (!Call->getArg(1)->getType()->isIntegerType() && 1213 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1214 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1215 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1216 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1217 return true; 1218 } 1219 1220 // Since return type of reserve_read/write_pipe built-in function is 1221 // reserve_id_t, which is not defined in the builtin def file , we used int 1222 // as return type and need to override the return type of these functions. 1223 Call->setType(S.Context.OCLReserveIDTy); 1224 1225 return false; 1226 } 1227 1228 // Performs a semantic analysis on {work_group_/sub_group_ 1229 // /_}commit_{read/write}_pipe 1230 // \param S Reference to the semantic analyzer. 1231 // \param Call The call to the builtin function to be analyzed. 1232 // \return True if a semantic error was found, false otherwise. 1233 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1234 if (checkArgCount(S, Call, 2)) 1235 return true; 1236 1237 if (checkOpenCLPipeArg(S, Call)) 1238 return true; 1239 1240 // Check reserve_id_t. 1241 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1242 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1243 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1244 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1245 return true; 1246 } 1247 1248 return false; 1249 } 1250 1251 // Performs a semantic analysis on the call to built-in Pipe 1252 // Query Functions. 1253 // \param S Reference to the semantic analyzer. 1254 // \param Call The call to the builtin function to be analyzed. 1255 // \return True if a semantic error was found, false otherwise. 1256 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1257 if (checkArgCount(S, Call, 1)) 1258 return true; 1259 1260 if (!Call->getArg(0)->getType()->isPipeType()) { 1261 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1262 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1263 return true; 1264 } 1265 1266 return false; 1267 } 1268 1269 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1270 // Performs semantic analysis for the to_global/local/private call. 1271 // \param S Reference to the semantic analyzer. 1272 // \param BuiltinID ID of the builtin function. 1273 // \param Call A pointer to the builtin call. 1274 // \return True if a semantic error has been found, false otherwise. 1275 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1276 CallExpr *Call) { 1277 if (checkArgCount(S, Call, 1)) 1278 return true; 1279 1280 auto RT = Call->getArg(0)->getType(); 1281 if (!RT->isPointerType() || RT->getPointeeType() 1282 .getAddressSpace() == LangAS::opencl_constant) { 1283 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1284 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1285 return true; 1286 } 1287 1288 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1289 S.Diag(Call->getArg(0)->getBeginLoc(), 1290 diag::warn_opencl_generic_address_space_arg) 1291 << Call->getDirectCallee()->getNameInfo().getAsString() 1292 << Call->getArg(0)->getSourceRange(); 1293 } 1294 1295 RT = RT->getPointeeType(); 1296 auto Qual = RT.getQualifiers(); 1297 switch (BuiltinID) { 1298 case Builtin::BIto_global: 1299 Qual.setAddressSpace(LangAS::opencl_global); 1300 break; 1301 case Builtin::BIto_local: 1302 Qual.setAddressSpace(LangAS::opencl_local); 1303 break; 1304 case Builtin::BIto_private: 1305 Qual.setAddressSpace(LangAS::opencl_private); 1306 break; 1307 default: 1308 llvm_unreachable("Invalid builtin function"); 1309 } 1310 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1311 RT.getUnqualifiedType(), Qual))); 1312 1313 return false; 1314 } 1315 1316 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1317 if (checkArgCount(S, TheCall, 1)) 1318 return ExprError(); 1319 1320 // Compute __builtin_launder's parameter type from the argument. 1321 // The parameter type is: 1322 // * The type of the argument if it's not an array or function type, 1323 // Otherwise, 1324 // * The decayed argument type. 1325 QualType ParamTy = [&]() { 1326 QualType ArgTy = TheCall->getArg(0)->getType(); 1327 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1328 return S.Context.getPointerType(Ty->getElementType()); 1329 if (ArgTy->isFunctionType()) { 1330 return S.Context.getPointerType(ArgTy); 1331 } 1332 return ArgTy; 1333 }(); 1334 1335 TheCall->setType(ParamTy); 1336 1337 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1338 if (!ParamTy->isPointerType()) 1339 return 0; 1340 if (ParamTy->isFunctionPointerType()) 1341 return 1; 1342 if (ParamTy->isVoidPointerType()) 1343 return 2; 1344 return llvm::Optional<unsigned>{}; 1345 }(); 1346 if (DiagSelect.hasValue()) { 1347 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1348 << DiagSelect.getValue() << TheCall->getSourceRange(); 1349 return ExprError(); 1350 } 1351 1352 // We either have an incomplete class type, or we have a class template 1353 // whose instantiation has not been forced. Example: 1354 // 1355 // template <class T> struct Foo { T value; }; 1356 // Foo<int> *p = nullptr; 1357 // auto *d = __builtin_launder(p); 1358 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1359 diag::err_incomplete_type)) 1360 return ExprError(); 1361 1362 assert(ParamTy->getPointeeType()->isObjectType() && 1363 "Unhandled non-object pointer case"); 1364 1365 InitializedEntity Entity = 1366 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1367 ExprResult Arg = 1368 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1369 if (Arg.isInvalid()) 1370 return ExprError(); 1371 TheCall->setArg(0, Arg.get()); 1372 1373 return TheCall; 1374 } 1375 1376 // Emit an error and return true if the current architecture is not in the list 1377 // of supported architectures. 1378 static bool 1379 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1380 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1381 llvm::Triple::ArchType CurArch = 1382 S.getASTContext().getTargetInfo().getTriple().getArch(); 1383 if (llvm::is_contained(SupportedArchs, CurArch)) 1384 return false; 1385 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1386 << TheCall->getSourceRange(); 1387 return true; 1388 } 1389 1390 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1391 SourceLocation CallSiteLoc); 1392 1393 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1394 CallExpr *TheCall) { 1395 switch (TI.getTriple().getArch()) { 1396 default: 1397 // Some builtins don't require additional checking, so just consider these 1398 // acceptable. 1399 return false; 1400 case llvm::Triple::arm: 1401 case llvm::Triple::armeb: 1402 case llvm::Triple::thumb: 1403 case llvm::Triple::thumbeb: 1404 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1405 case llvm::Triple::aarch64: 1406 case llvm::Triple::aarch64_32: 1407 case llvm::Triple::aarch64_be: 1408 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1409 case llvm::Triple::bpfeb: 1410 case llvm::Triple::bpfel: 1411 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1412 case llvm::Triple::hexagon: 1413 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1414 case llvm::Triple::mips: 1415 case llvm::Triple::mipsel: 1416 case llvm::Triple::mips64: 1417 case llvm::Triple::mips64el: 1418 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1419 case llvm::Triple::systemz: 1420 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1421 case llvm::Triple::x86: 1422 case llvm::Triple::x86_64: 1423 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1424 case llvm::Triple::ppc: 1425 case llvm::Triple::ppc64: 1426 case llvm::Triple::ppc64le: 1427 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1428 case llvm::Triple::amdgcn: 1429 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1430 } 1431 } 1432 1433 ExprResult 1434 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1435 CallExpr *TheCall) { 1436 ExprResult TheCallResult(TheCall); 1437 1438 // Find out if any arguments are required to be integer constant expressions. 1439 unsigned ICEArguments = 0; 1440 ASTContext::GetBuiltinTypeError Error; 1441 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1442 if (Error != ASTContext::GE_None) 1443 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1444 1445 // If any arguments are required to be ICE's, check and diagnose. 1446 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1447 // Skip arguments not required to be ICE's. 1448 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1449 1450 llvm::APSInt Result; 1451 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1452 return true; 1453 ICEArguments &= ~(1 << ArgNo); 1454 } 1455 1456 switch (BuiltinID) { 1457 case Builtin::BI__builtin___CFStringMakeConstantString: 1458 assert(TheCall->getNumArgs() == 1 && 1459 "Wrong # arguments to builtin CFStringMakeConstantString"); 1460 if (CheckObjCString(TheCall->getArg(0))) 1461 return ExprError(); 1462 break; 1463 case Builtin::BI__builtin_ms_va_start: 1464 case Builtin::BI__builtin_stdarg_start: 1465 case Builtin::BI__builtin_va_start: 1466 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1467 return ExprError(); 1468 break; 1469 case Builtin::BI__va_start: { 1470 switch (Context.getTargetInfo().getTriple().getArch()) { 1471 case llvm::Triple::aarch64: 1472 case llvm::Triple::arm: 1473 case llvm::Triple::thumb: 1474 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1475 return ExprError(); 1476 break; 1477 default: 1478 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1479 return ExprError(); 1480 break; 1481 } 1482 break; 1483 } 1484 1485 // The acquire, release, and no fence variants are ARM and AArch64 only. 1486 case Builtin::BI_interlockedbittestandset_acq: 1487 case Builtin::BI_interlockedbittestandset_rel: 1488 case Builtin::BI_interlockedbittestandset_nf: 1489 case Builtin::BI_interlockedbittestandreset_acq: 1490 case Builtin::BI_interlockedbittestandreset_rel: 1491 case Builtin::BI_interlockedbittestandreset_nf: 1492 if (CheckBuiltinTargetSupport( 1493 *this, BuiltinID, TheCall, 1494 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1495 return ExprError(); 1496 break; 1497 1498 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1499 case Builtin::BI_bittest64: 1500 case Builtin::BI_bittestandcomplement64: 1501 case Builtin::BI_bittestandreset64: 1502 case Builtin::BI_bittestandset64: 1503 case Builtin::BI_interlockedbittestandreset64: 1504 case Builtin::BI_interlockedbittestandset64: 1505 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1506 {llvm::Triple::x86_64, llvm::Triple::arm, 1507 llvm::Triple::thumb, llvm::Triple::aarch64})) 1508 return ExprError(); 1509 break; 1510 1511 case Builtin::BI__builtin_isgreater: 1512 case Builtin::BI__builtin_isgreaterequal: 1513 case Builtin::BI__builtin_isless: 1514 case Builtin::BI__builtin_islessequal: 1515 case Builtin::BI__builtin_islessgreater: 1516 case Builtin::BI__builtin_isunordered: 1517 if (SemaBuiltinUnorderedCompare(TheCall)) 1518 return ExprError(); 1519 break; 1520 case Builtin::BI__builtin_fpclassify: 1521 if (SemaBuiltinFPClassification(TheCall, 6)) 1522 return ExprError(); 1523 break; 1524 case Builtin::BI__builtin_isfinite: 1525 case Builtin::BI__builtin_isinf: 1526 case Builtin::BI__builtin_isinf_sign: 1527 case Builtin::BI__builtin_isnan: 1528 case Builtin::BI__builtin_isnormal: 1529 case Builtin::BI__builtin_signbit: 1530 case Builtin::BI__builtin_signbitf: 1531 case Builtin::BI__builtin_signbitl: 1532 if (SemaBuiltinFPClassification(TheCall, 1)) 1533 return ExprError(); 1534 break; 1535 case Builtin::BI__builtin_shufflevector: 1536 return SemaBuiltinShuffleVector(TheCall); 1537 // TheCall will be freed by the smart pointer here, but that's fine, since 1538 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1539 case Builtin::BI__builtin_prefetch: 1540 if (SemaBuiltinPrefetch(TheCall)) 1541 return ExprError(); 1542 break; 1543 case Builtin::BI__builtin_alloca_with_align: 1544 if (SemaBuiltinAllocaWithAlign(TheCall)) 1545 return ExprError(); 1546 LLVM_FALLTHROUGH; 1547 case Builtin::BI__builtin_alloca: 1548 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1549 << TheCall->getDirectCallee(); 1550 break; 1551 case Builtin::BI__assume: 1552 case Builtin::BI__builtin_assume: 1553 if (SemaBuiltinAssume(TheCall)) 1554 return ExprError(); 1555 break; 1556 case Builtin::BI__builtin_assume_aligned: 1557 if (SemaBuiltinAssumeAligned(TheCall)) 1558 return ExprError(); 1559 break; 1560 case Builtin::BI__builtin_dynamic_object_size: 1561 case Builtin::BI__builtin_object_size: 1562 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1563 return ExprError(); 1564 break; 1565 case Builtin::BI__builtin_longjmp: 1566 if (SemaBuiltinLongjmp(TheCall)) 1567 return ExprError(); 1568 break; 1569 case Builtin::BI__builtin_setjmp: 1570 if (SemaBuiltinSetjmp(TheCall)) 1571 return ExprError(); 1572 break; 1573 case Builtin::BI__builtin_classify_type: 1574 if (checkArgCount(*this, TheCall, 1)) return true; 1575 TheCall->setType(Context.IntTy); 1576 break; 1577 case Builtin::BI__builtin_complex: 1578 if (SemaBuiltinComplex(TheCall)) 1579 return ExprError(); 1580 break; 1581 case Builtin::BI__builtin_constant_p: { 1582 if (checkArgCount(*this, TheCall, 1)) return true; 1583 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1584 if (Arg.isInvalid()) return true; 1585 TheCall->setArg(0, Arg.get()); 1586 TheCall->setType(Context.IntTy); 1587 break; 1588 } 1589 case Builtin::BI__builtin_launder: 1590 return SemaBuiltinLaunder(*this, TheCall); 1591 case Builtin::BI__sync_fetch_and_add: 1592 case Builtin::BI__sync_fetch_and_add_1: 1593 case Builtin::BI__sync_fetch_and_add_2: 1594 case Builtin::BI__sync_fetch_and_add_4: 1595 case Builtin::BI__sync_fetch_and_add_8: 1596 case Builtin::BI__sync_fetch_and_add_16: 1597 case Builtin::BI__sync_fetch_and_sub: 1598 case Builtin::BI__sync_fetch_and_sub_1: 1599 case Builtin::BI__sync_fetch_and_sub_2: 1600 case Builtin::BI__sync_fetch_and_sub_4: 1601 case Builtin::BI__sync_fetch_and_sub_8: 1602 case Builtin::BI__sync_fetch_and_sub_16: 1603 case Builtin::BI__sync_fetch_and_or: 1604 case Builtin::BI__sync_fetch_and_or_1: 1605 case Builtin::BI__sync_fetch_and_or_2: 1606 case Builtin::BI__sync_fetch_and_or_4: 1607 case Builtin::BI__sync_fetch_and_or_8: 1608 case Builtin::BI__sync_fetch_and_or_16: 1609 case Builtin::BI__sync_fetch_and_and: 1610 case Builtin::BI__sync_fetch_and_and_1: 1611 case Builtin::BI__sync_fetch_and_and_2: 1612 case Builtin::BI__sync_fetch_and_and_4: 1613 case Builtin::BI__sync_fetch_and_and_8: 1614 case Builtin::BI__sync_fetch_and_and_16: 1615 case Builtin::BI__sync_fetch_and_xor: 1616 case Builtin::BI__sync_fetch_and_xor_1: 1617 case Builtin::BI__sync_fetch_and_xor_2: 1618 case Builtin::BI__sync_fetch_and_xor_4: 1619 case Builtin::BI__sync_fetch_and_xor_8: 1620 case Builtin::BI__sync_fetch_and_xor_16: 1621 case Builtin::BI__sync_fetch_and_nand: 1622 case Builtin::BI__sync_fetch_and_nand_1: 1623 case Builtin::BI__sync_fetch_and_nand_2: 1624 case Builtin::BI__sync_fetch_and_nand_4: 1625 case Builtin::BI__sync_fetch_and_nand_8: 1626 case Builtin::BI__sync_fetch_and_nand_16: 1627 case Builtin::BI__sync_add_and_fetch: 1628 case Builtin::BI__sync_add_and_fetch_1: 1629 case Builtin::BI__sync_add_and_fetch_2: 1630 case Builtin::BI__sync_add_and_fetch_4: 1631 case Builtin::BI__sync_add_and_fetch_8: 1632 case Builtin::BI__sync_add_and_fetch_16: 1633 case Builtin::BI__sync_sub_and_fetch: 1634 case Builtin::BI__sync_sub_and_fetch_1: 1635 case Builtin::BI__sync_sub_and_fetch_2: 1636 case Builtin::BI__sync_sub_and_fetch_4: 1637 case Builtin::BI__sync_sub_and_fetch_8: 1638 case Builtin::BI__sync_sub_and_fetch_16: 1639 case Builtin::BI__sync_and_and_fetch: 1640 case Builtin::BI__sync_and_and_fetch_1: 1641 case Builtin::BI__sync_and_and_fetch_2: 1642 case Builtin::BI__sync_and_and_fetch_4: 1643 case Builtin::BI__sync_and_and_fetch_8: 1644 case Builtin::BI__sync_and_and_fetch_16: 1645 case Builtin::BI__sync_or_and_fetch: 1646 case Builtin::BI__sync_or_and_fetch_1: 1647 case Builtin::BI__sync_or_and_fetch_2: 1648 case Builtin::BI__sync_or_and_fetch_4: 1649 case Builtin::BI__sync_or_and_fetch_8: 1650 case Builtin::BI__sync_or_and_fetch_16: 1651 case Builtin::BI__sync_xor_and_fetch: 1652 case Builtin::BI__sync_xor_and_fetch_1: 1653 case Builtin::BI__sync_xor_and_fetch_2: 1654 case Builtin::BI__sync_xor_and_fetch_4: 1655 case Builtin::BI__sync_xor_and_fetch_8: 1656 case Builtin::BI__sync_xor_and_fetch_16: 1657 case Builtin::BI__sync_nand_and_fetch: 1658 case Builtin::BI__sync_nand_and_fetch_1: 1659 case Builtin::BI__sync_nand_and_fetch_2: 1660 case Builtin::BI__sync_nand_and_fetch_4: 1661 case Builtin::BI__sync_nand_and_fetch_8: 1662 case Builtin::BI__sync_nand_and_fetch_16: 1663 case Builtin::BI__sync_val_compare_and_swap: 1664 case Builtin::BI__sync_val_compare_and_swap_1: 1665 case Builtin::BI__sync_val_compare_and_swap_2: 1666 case Builtin::BI__sync_val_compare_and_swap_4: 1667 case Builtin::BI__sync_val_compare_and_swap_8: 1668 case Builtin::BI__sync_val_compare_and_swap_16: 1669 case Builtin::BI__sync_bool_compare_and_swap: 1670 case Builtin::BI__sync_bool_compare_and_swap_1: 1671 case Builtin::BI__sync_bool_compare_and_swap_2: 1672 case Builtin::BI__sync_bool_compare_and_swap_4: 1673 case Builtin::BI__sync_bool_compare_and_swap_8: 1674 case Builtin::BI__sync_bool_compare_and_swap_16: 1675 case Builtin::BI__sync_lock_test_and_set: 1676 case Builtin::BI__sync_lock_test_and_set_1: 1677 case Builtin::BI__sync_lock_test_and_set_2: 1678 case Builtin::BI__sync_lock_test_and_set_4: 1679 case Builtin::BI__sync_lock_test_and_set_8: 1680 case Builtin::BI__sync_lock_test_and_set_16: 1681 case Builtin::BI__sync_lock_release: 1682 case Builtin::BI__sync_lock_release_1: 1683 case Builtin::BI__sync_lock_release_2: 1684 case Builtin::BI__sync_lock_release_4: 1685 case Builtin::BI__sync_lock_release_8: 1686 case Builtin::BI__sync_lock_release_16: 1687 case Builtin::BI__sync_swap: 1688 case Builtin::BI__sync_swap_1: 1689 case Builtin::BI__sync_swap_2: 1690 case Builtin::BI__sync_swap_4: 1691 case Builtin::BI__sync_swap_8: 1692 case Builtin::BI__sync_swap_16: 1693 return SemaBuiltinAtomicOverloaded(TheCallResult); 1694 case Builtin::BI__sync_synchronize: 1695 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1696 << TheCall->getCallee()->getSourceRange(); 1697 break; 1698 case Builtin::BI__builtin_nontemporal_load: 1699 case Builtin::BI__builtin_nontemporal_store: 1700 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1701 case Builtin::BI__builtin_memcpy_inline: { 1702 clang::Expr *SizeOp = TheCall->getArg(2); 1703 // We warn about copying to or from `nullptr` pointers when `size` is 1704 // greater than 0. When `size` is value dependent we cannot evaluate its 1705 // value so we bail out. 1706 if (SizeOp->isValueDependent()) 1707 break; 1708 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1709 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1710 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1711 } 1712 break; 1713 } 1714 #define BUILTIN(ID, TYPE, ATTRS) 1715 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1716 case Builtin::BI##ID: \ 1717 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1718 #include "clang/Basic/Builtins.def" 1719 case Builtin::BI__annotation: 1720 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1721 return ExprError(); 1722 break; 1723 case Builtin::BI__builtin_annotation: 1724 if (SemaBuiltinAnnotation(*this, TheCall)) 1725 return ExprError(); 1726 break; 1727 case Builtin::BI__builtin_addressof: 1728 if (SemaBuiltinAddressof(*this, TheCall)) 1729 return ExprError(); 1730 break; 1731 case Builtin::BI__builtin_is_aligned: 1732 case Builtin::BI__builtin_align_up: 1733 case Builtin::BI__builtin_align_down: 1734 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1735 return ExprError(); 1736 break; 1737 case Builtin::BI__builtin_add_overflow: 1738 case Builtin::BI__builtin_sub_overflow: 1739 case Builtin::BI__builtin_mul_overflow: 1740 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1741 return ExprError(); 1742 break; 1743 case Builtin::BI__builtin_operator_new: 1744 case Builtin::BI__builtin_operator_delete: { 1745 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1746 ExprResult Res = 1747 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1748 if (Res.isInvalid()) 1749 CorrectDelayedTyposInExpr(TheCallResult.get()); 1750 return Res; 1751 } 1752 case Builtin::BI__builtin_dump_struct: { 1753 // We first want to ensure we are called with 2 arguments 1754 if (checkArgCount(*this, TheCall, 2)) 1755 return ExprError(); 1756 // Ensure that the first argument is of type 'struct XX *' 1757 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1758 const QualType PtrArgType = PtrArg->getType(); 1759 if (!PtrArgType->isPointerType() || 1760 !PtrArgType->getPointeeType()->isRecordType()) { 1761 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1762 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1763 << "structure pointer"; 1764 return ExprError(); 1765 } 1766 1767 // Ensure that the second argument is of type 'FunctionType' 1768 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1769 const QualType FnPtrArgType = FnPtrArg->getType(); 1770 if (!FnPtrArgType->isPointerType()) { 1771 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1772 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1773 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1774 return ExprError(); 1775 } 1776 1777 const auto *FuncType = 1778 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1779 1780 if (!FuncType) { 1781 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1782 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1783 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1784 return ExprError(); 1785 } 1786 1787 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1788 if (!FT->getNumParams()) { 1789 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1790 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1791 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1792 return ExprError(); 1793 } 1794 QualType PT = FT->getParamType(0); 1795 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1796 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1797 !PT->getPointeeType().isConstQualified()) { 1798 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1799 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1800 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1801 return ExprError(); 1802 } 1803 } 1804 1805 TheCall->setType(Context.IntTy); 1806 break; 1807 } 1808 case Builtin::BI__builtin_expect_with_probability: { 1809 // We first want to ensure we are called with 3 arguments 1810 if (checkArgCount(*this, TheCall, 3)) 1811 return ExprError(); 1812 // then check probability is constant float in range [0.0, 1.0] 1813 const Expr *ProbArg = TheCall->getArg(2); 1814 SmallVector<PartialDiagnosticAt, 8> Notes; 1815 Expr::EvalResult Eval; 1816 Eval.Diag = &Notes; 1817 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 1818 !Eval.Val.isFloat()) { 1819 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1820 << ProbArg->getSourceRange(); 1821 for (const PartialDiagnosticAt &PDiag : Notes) 1822 Diag(PDiag.first, PDiag.second); 1823 return ExprError(); 1824 } 1825 llvm::APFloat Probability = Eval.Val.getFloat(); 1826 bool LoseInfo = false; 1827 Probability.convert(llvm::APFloat::IEEEdouble(), 1828 llvm::RoundingMode::Dynamic, &LoseInfo); 1829 if (!(Probability >= llvm::APFloat(0.0) && 1830 Probability <= llvm::APFloat(1.0))) { 1831 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1832 << ProbArg->getSourceRange(); 1833 return ExprError(); 1834 } 1835 break; 1836 } 1837 case Builtin::BI__builtin_preserve_access_index: 1838 if (SemaBuiltinPreserveAI(*this, TheCall)) 1839 return ExprError(); 1840 break; 1841 case Builtin::BI__builtin_call_with_static_chain: 1842 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1843 return ExprError(); 1844 break; 1845 case Builtin::BI__exception_code: 1846 case Builtin::BI_exception_code: 1847 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1848 diag::err_seh___except_block)) 1849 return ExprError(); 1850 break; 1851 case Builtin::BI__exception_info: 1852 case Builtin::BI_exception_info: 1853 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1854 diag::err_seh___except_filter)) 1855 return ExprError(); 1856 break; 1857 case Builtin::BI__GetExceptionInfo: 1858 if (checkArgCount(*this, TheCall, 1)) 1859 return ExprError(); 1860 1861 if (CheckCXXThrowOperand( 1862 TheCall->getBeginLoc(), 1863 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1864 TheCall)) 1865 return ExprError(); 1866 1867 TheCall->setType(Context.VoidPtrTy); 1868 break; 1869 // OpenCL v2.0, s6.13.16 - Pipe functions 1870 case Builtin::BIread_pipe: 1871 case Builtin::BIwrite_pipe: 1872 // Since those two functions are declared with var args, we need a semantic 1873 // check for the argument. 1874 if (SemaBuiltinRWPipe(*this, TheCall)) 1875 return ExprError(); 1876 break; 1877 case Builtin::BIreserve_read_pipe: 1878 case Builtin::BIreserve_write_pipe: 1879 case Builtin::BIwork_group_reserve_read_pipe: 1880 case Builtin::BIwork_group_reserve_write_pipe: 1881 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1882 return ExprError(); 1883 break; 1884 case Builtin::BIsub_group_reserve_read_pipe: 1885 case Builtin::BIsub_group_reserve_write_pipe: 1886 if (checkOpenCLSubgroupExt(*this, TheCall) || 1887 SemaBuiltinReserveRWPipe(*this, TheCall)) 1888 return ExprError(); 1889 break; 1890 case Builtin::BIcommit_read_pipe: 1891 case Builtin::BIcommit_write_pipe: 1892 case Builtin::BIwork_group_commit_read_pipe: 1893 case Builtin::BIwork_group_commit_write_pipe: 1894 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1895 return ExprError(); 1896 break; 1897 case Builtin::BIsub_group_commit_read_pipe: 1898 case Builtin::BIsub_group_commit_write_pipe: 1899 if (checkOpenCLSubgroupExt(*this, TheCall) || 1900 SemaBuiltinCommitRWPipe(*this, TheCall)) 1901 return ExprError(); 1902 break; 1903 case Builtin::BIget_pipe_num_packets: 1904 case Builtin::BIget_pipe_max_packets: 1905 if (SemaBuiltinPipePackets(*this, TheCall)) 1906 return ExprError(); 1907 break; 1908 case Builtin::BIto_global: 1909 case Builtin::BIto_local: 1910 case Builtin::BIto_private: 1911 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1912 return ExprError(); 1913 break; 1914 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1915 case Builtin::BIenqueue_kernel: 1916 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1917 return ExprError(); 1918 break; 1919 case Builtin::BIget_kernel_work_group_size: 1920 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1921 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1922 return ExprError(); 1923 break; 1924 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1925 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1926 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1927 return ExprError(); 1928 break; 1929 case Builtin::BI__builtin_os_log_format: 1930 Cleanup.setExprNeedsCleanups(true); 1931 LLVM_FALLTHROUGH; 1932 case Builtin::BI__builtin_os_log_format_buffer_size: 1933 if (SemaBuiltinOSLogFormat(TheCall)) 1934 return ExprError(); 1935 break; 1936 case Builtin::BI__builtin_frame_address: 1937 case Builtin::BI__builtin_return_address: { 1938 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1939 return ExprError(); 1940 1941 // -Wframe-address warning if non-zero passed to builtin 1942 // return/frame address. 1943 Expr::EvalResult Result; 1944 if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1945 Result.Val.getInt() != 0) 1946 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1947 << ((BuiltinID == Builtin::BI__builtin_return_address) 1948 ? "__builtin_return_address" 1949 : "__builtin_frame_address") 1950 << TheCall->getSourceRange(); 1951 break; 1952 } 1953 1954 case Builtin::BI__builtin_matrix_transpose: 1955 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1956 1957 case Builtin::BI__builtin_matrix_column_major_load: 1958 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1959 1960 case Builtin::BI__builtin_matrix_column_major_store: 1961 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1962 } 1963 1964 // Since the target specific builtins for each arch overlap, only check those 1965 // of the arch we are compiling for. 1966 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1967 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1968 assert(Context.getAuxTargetInfo() && 1969 "Aux Target Builtin, but not an aux target?"); 1970 1971 if (CheckTSBuiltinFunctionCall( 1972 *Context.getAuxTargetInfo(), 1973 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 1974 return ExprError(); 1975 } else { 1976 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 1977 TheCall)) 1978 return ExprError(); 1979 } 1980 } 1981 1982 return TheCallResult; 1983 } 1984 1985 // Get the valid immediate range for the specified NEON type code. 1986 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1987 NeonTypeFlags Type(t); 1988 int IsQuad = ForceQuad ? true : Type.isQuad(); 1989 switch (Type.getEltType()) { 1990 case NeonTypeFlags::Int8: 1991 case NeonTypeFlags::Poly8: 1992 return shift ? 7 : (8 << IsQuad) - 1; 1993 case NeonTypeFlags::Int16: 1994 case NeonTypeFlags::Poly16: 1995 return shift ? 15 : (4 << IsQuad) - 1; 1996 case NeonTypeFlags::Int32: 1997 return shift ? 31 : (2 << IsQuad) - 1; 1998 case NeonTypeFlags::Int64: 1999 case NeonTypeFlags::Poly64: 2000 return shift ? 63 : (1 << IsQuad) - 1; 2001 case NeonTypeFlags::Poly128: 2002 return shift ? 127 : (1 << IsQuad) - 1; 2003 case NeonTypeFlags::Float16: 2004 assert(!shift && "cannot shift float types!"); 2005 return (4 << IsQuad) - 1; 2006 case NeonTypeFlags::Float32: 2007 assert(!shift && "cannot shift float types!"); 2008 return (2 << IsQuad) - 1; 2009 case NeonTypeFlags::Float64: 2010 assert(!shift && "cannot shift float types!"); 2011 return (1 << IsQuad) - 1; 2012 case NeonTypeFlags::BFloat16: 2013 assert(!shift && "cannot shift float types!"); 2014 return (4 << IsQuad) - 1; 2015 } 2016 llvm_unreachable("Invalid NeonTypeFlag!"); 2017 } 2018 2019 /// getNeonEltType - Return the QualType corresponding to the elements of 2020 /// the vector type specified by the NeonTypeFlags. This is used to check 2021 /// the pointer arguments for Neon load/store intrinsics. 2022 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2023 bool IsPolyUnsigned, bool IsInt64Long) { 2024 switch (Flags.getEltType()) { 2025 case NeonTypeFlags::Int8: 2026 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2027 case NeonTypeFlags::Int16: 2028 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2029 case NeonTypeFlags::Int32: 2030 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2031 case NeonTypeFlags::Int64: 2032 if (IsInt64Long) 2033 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2034 else 2035 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2036 : Context.LongLongTy; 2037 case NeonTypeFlags::Poly8: 2038 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2039 case NeonTypeFlags::Poly16: 2040 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2041 case NeonTypeFlags::Poly64: 2042 if (IsInt64Long) 2043 return Context.UnsignedLongTy; 2044 else 2045 return Context.UnsignedLongLongTy; 2046 case NeonTypeFlags::Poly128: 2047 break; 2048 case NeonTypeFlags::Float16: 2049 return Context.HalfTy; 2050 case NeonTypeFlags::Float32: 2051 return Context.FloatTy; 2052 case NeonTypeFlags::Float64: 2053 return Context.DoubleTy; 2054 case NeonTypeFlags::BFloat16: 2055 return Context.BFloat16Ty; 2056 } 2057 llvm_unreachable("Invalid NeonTypeFlag!"); 2058 } 2059 2060 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2061 // Range check SVE intrinsics that take immediate values. 2062 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2063 2064 switch (BuiltinID) { 2065 default: 2066 return false; 2067 #define GET_SVE_IMMEDIATE_CHECK 2068 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2069 #undef GET_SVE_IMMEDIATE_CHECK 2070 } 2071 2072 // Perform all the immediate checks for this builtin call. 2073 bool HasError = false; 2074 for (auto &I : ImmChecks) { 2075 int ArgNum, CheckTy, ElementSizeInBits; 2076 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2077 2078 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2079 2080 // Function that checks whether the operand (ArgNum) is an immediate 2081 // that is one of the predefined values. 2082 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2083 int ErrDiag) -> bool { 2084 // We can't check the value of a dependent argument. 2085 Expr *Arg = TheCall->getArg(ArgNum); 2086 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2087 return false; 2088 2089 // Check constant-ness first. 2090 llvm::APSInt Imm; 2091 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2092 return true; 2093 2094 if (!CheckImm(Imm.getSExtValue())) 2095 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2096 return false; 2097 }; 2098 2099 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2100 case SVETypeFlags::ImmCheck0_31: 2101 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2102 HasError = true; 2103 break; 2104 case SVETypeFlags::ImmCheck0_13: 2105 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2106 HasError = true; 2107 break; 2108 case SVETypeFlags::ImmCheck1_16: 2109 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2110 HasError = true; 2111 break; 2112 case SVETypeFlags::ImmCheck0_7: 2113 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2114 HasError = true; 2115 break; 2116 case SVETypeFlags::ImmCheckExtract: 2117 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2118 (2048 / ElementSizeInBits) - 1)) 2119 HasError = true; 2120 break; 2121 case SVETypeFlags::ImmCheckShiftRight: 2122 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2123 HasError = true; 2124 break; 2125 case SVETypeFlags::ImmCheckShiftRightNarrow: 2126 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2127 ElementSizeInBits / 2)) 2128 HasError = true; 2129 break; 2130 case SVETypeFlags::ImmCheckShiftLeft: 2131 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2132 ElementSizeInBits - 1)) 2133 HasError = true; 2134 break; 2135 case SVETypeFlags::ImmCheckLaneIndex: 2136 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2137 (128 / (1 * ElementSizeInBits)) - 1)) 2138 HasError = true; 2139 break; 2140 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2141 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2142 (128 / (2 * ElementSizeInBits)) - 1)) 2143 HasError = true; 2144 break; 2145 case SVETypeFlags::ImmCheckLaneIndexDot: 2146 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2147 (128 / (4 * ElementSizeInBits)) - 1)) 2148 HasError = true; 2149 break; 2150 case SVETypeFlags::ImmCheckComplexRot90_270: 2151 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2152 diag::err_rotation_argument_to_cadd)) 2153 HasError = true; 2154 break; 2155 case SVETypeFlags::ImmCheckComplexRotAll90: 2156 if (CheckImmediateInSet( 2157 [](int64_t V) { 2158 return V == 0 || V == 90 || V == 180 || V == 270; 2159 }, 2160 diag::err_rotation_argument_to_cmla)) 2161 HasError = true; 2162 break; 2163 case SVETypeFlags::ImmCheck0_1: 2164 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2165 HasError = true; 2166 break; 2167 case SVETypeFlags::ImmCheck0_2: 2168 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2169 HasError = true; 2170 break; 2171 case SVETypeFlags::ImmCheck0_3: 2172 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2173 HasError = true; 2174 break; 2175 } 2176 } 2177 2178 return HasError; 2179 } 2180 2181 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2182 unsigned BuiltinID, CallExpr *TheCall) { 2183 llvm::APSInt Result; 2184 uint64_t mask = 0; 2185 unsigned TV = 0; 2186 int PtrArgNum = -1; 2187 bool HasConstPtr = false; 2188 switch (BuiltinID) { 2189 #define GET_NEON_OVERLOAD_CHECK 2190 #include "clang/Basic/arm_neon.inc" 2191 #include "clang/Basic/arm_fp16.inc" 2192 #undef GET_NEON_OVERLOAD_CHECK 2193 } 2194 2195 // For NEON intrinsics which are overloaded on vector element type, validate 2196 // the immediate which specifies which variant to emit. 2197 unsigned ImmArg = TheCall->getNumArgs()-1; 2198 if (mask) { 2199 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2200 return true; 2201 2202 TV = Result.getLimitedValue(64); 2203 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2204 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2205 << TheCall->getArg(ImmArg)->getSourceRange(); 2206 } 2207 2208 if (PtrArgNum >= 0) { 2209 // Check that pointer arguments have the specified type. 2210 Expr *Arg = TheCall->getArg(PtrArgNum); 2211 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2212 Arg = ICE->getSubExpr(); 2213 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2214 QualType RHSTy = RHS.get()->getType(); 2215 2216 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2217 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2218 Arch == llvm::Triple::aarch64_32 || 2219 Arch == llvm::Triple::aarch64_be; 2220 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2221 QualType EltTy = 2222 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2223 if (HasConstPtr) 2224 EltTy = EltTy.withConst(); 2225 QualType LHSTy = Context.getPointerType(EltTy); 2226 AssignConvertType ConvTy; 2227 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2228 if (RHS.isInvalid()) 2229 return true; 2230 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2231 RHS.get(), AA_Assigning)) 2232 return true; 2233 } 2234 2235 // For NEON intrinsics which take an immediate value as part of the 2236 // instruction, range check them here. 2237 unsigned i = 0, l = 0, u = 0; 2238 switch (BuiltinID) { 2239 default: 2240 return false; 2241 #define GET_NEON_IMMEDIATE_CHECK 2242 #include "clang/Basic/arm_neon.inc" 2243 #include "clang/Basic/arm_fp16.inc" 2244 #undef GET_NEON_IMMEDIATE_CHECK 2245 } 2246 2247 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2248 } 2249 2250 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2251 switch (BuiltinID) { 2252 default: 2253 return false; 2254 #include "clang/Basic/arm_mve_builtin_sema.inc" 2255 } 2256 } 2257 2258 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2259 CallExpr *TheCall) { 2260 bool Err = false; 2261 switch (BuiltinID) { 2262 default: 2263 return false; 2264 #include "clang/Basic/arm_cde_builtin_sema.inc" 2265 } 2266 2267 if (Err) 2268 return true; 2269 2270 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2271 } 2272 2273 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2274 const Expr *CoprocArg, bool WantCDE) { 2275 if (isConstantEvaluated()) 2276 return false; 2277 2278 // We can't check the value of a dependent argument. 2279 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2280 return false; 2281 2282 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2283 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2284 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2285 2286 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2287 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2288 2289 if (IsCDECoproc != WantCDE) 2290 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2291 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2292 2293 return false; 2294 } 2295 2296 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2297 unsigned MaxWidth) { 2298 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2299 BuiltinID == ARM::BI__builtin_arm_ldaex || 2300 BuiltinID == ARM::BI__builtin_arm_strex || 2301 BuiltinID == ARM::BI__builtin_arm_stlex || 2302 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2303 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2304 BuiltinID == AArch64::BI__builtin_arm_strex || 2305 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2306 "unexpected ARM builtin"); 2307 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2308 BuiltinID == ARM::BI__builtin_arm_ldaex || 2309 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2310 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2311 2312 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2313 2314 // Ensure that we have the proper number of arguments. 2315 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2316 return true; 2317 2318 // Inspect the pointer argument of the atomic builtin. This should always be 2319 // a pointer type, whose element is an integral scalar or pointer type. 2320 // Because it is a pointer type, we don't have to worry about any implicit 2321 // casts here. 2322 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2323 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2324 if (PointerArgRes.isInvalid()) 2325 return true; 2326 PointerArg = PointerArgRes.get(); 2327 2328 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2329 if (!pointerType) { 2330 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2331 << PointerArg->getType() << PointerArg->getSourceRange(); 2332 return true; 2333 } 2334 2335 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2336 // task is to insert the appropriate casts into the AST. First work out just 2337 // what the appropriate type is. 2338 QualType ValType = pointerType->getPointeeType(); 2339 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2340 if (IsLdrex) 2341 AddrType.addConst(); 2342 2343 // Issue a warning if the cast is dodgy. 2344 CastKind CastNeeded = CK_NoOp; 2345 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2346 CastNeeded = CK_BitCast; 2347 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2348 << PointerArg->getType() << Context.getPointerType(AddrType) 2349 << AA_Passing << PointerArg->getSourceRange(); 2350 } 2351 2352 // Finally, do the cast and replace the argument with the corrected version. 2353 AddrType = Context.getPointerType(AddrType); 2354 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2355 if (PointerArgRes.isInvalid()) 2356 return true; 2357 PointerArg = PointerArgRes.get(); 2358 2359 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2360 2361 // In general, we allow ints, floats and pointers to be loaded and stored. 2362 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2363 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2364 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2365 << PointerArg->getType() << PointerArg->getSourceRange(); 2366 return true; 2367 } 2368 2369 // But ARM doesn't have instructions to deal with 128-bit versions. 2370 if (Context.getTypeSize(ValType) > MaxWidth) { 2371 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2372 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2373 << PointerArg->getType() << PointerArg->getSourceRange(); 2374 return true; 2375 } 2376 2377 switch (ValType.getObjCLifetime()) { 2378 case Qualifiers::OCL_None: 2379 case Qualifiers::OCL_ExplicitNone: 2380 // okay 2381 break; 2382 2383 case Qualifiers::OCL_Weak: 2384 case Qualifiers::OCL_Strong: 2385 case Qualifiers::OCL_Autoreleasing: 2386 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2387 << ValType << PointerArg->getSourceRange(); 2388 return true; 2389 } 2390 2391 if (IsLdrex) { 2392 TheCall->setType(ValType); 2393 return false; 2394 } 2395 2396 // Initialize the argument to be stored. 2397 ExprResult ValArg = TheCall->getArg(0); 2398 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2399 Context, ValType, /*consume*/ false); 2400 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2401 if (ValArg.isInvalid()) 2402 return true; 2403 TheCall->setArg(0, ValArg.get()); 2404 2405 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2406 // but the custom checker bypasses all default analysis. 2407 TheCall->setType(Context.IntTy); 2408 return false; 2409 } 2410 2411 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2412 CallExpr *TheCall) { 2413 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2414 BuiltinID == ARM::BI__builtin_arm_ldaex || 2415 BuiltinID == ARM::BI__builtin_arm_strex || 2416 BuiltinID == ARM::BI__builtin_arm_stlex) { 2417 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2418 } 2419 2420 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2421 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2422 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2423 } 2424 2425 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2426 BuiltinID == ARM::BI__builtin_arm_wsr64) 2427 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2428 2429 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2430 BuiltinID == ARM::BI__builtin_arm_rsrp || 2431 BuiltinID == ARM::BI__builtin_arm_wsr || 2432 BuiltinID == ARM::BI__builtin_arm_wsrp) 2433 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2434 2435 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2436 return true; 2437 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2438 return true; 2439 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2440 return true; 2441 2442 // For intrinsics which take an immediate value as part of the instruction, 2443 // range check them here. 2444 // FIXME: VFP Intrinsics should error if VFP not present. 2445 switch (BuiltinID) { 2446 default: return false; 2447 case ARM::BI__builtin_arm_ssat: 2448 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2449 case ARM::BI__builtin_arm_usat: 2450 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2451 case ARM::BI__builtin_arm_ssat16: 2452 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2453 case ARM::BI__builtin_arm_usat16: 2454 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2455 case ARM::BI__builtin_arm_vcvtr_f: 2456 case ARM::BI__builtin_arm_vcvtr_d: 2457 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2458 case ARM::BI__builtin_arm_dmb: 2459 case ARM::BI__builtin_arm_dsb: 2460 case ARM::BI__builtin_arm_isb: 2461 case ARM::BI__builtin_arm_dbg: 2462 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2463 case ARM::BI__builtin_arm_cdp: 2464 case ARM::BI__builtin_arm_cdp2: 2465 case ARM::BI__builtin_arm_mcr: 2466 case ARM::BI__builtin_arm_mcr2: 2467 case ARM::BI__builtin_arm_mrc: 2468 case ARM::BI__builtin_arm_mrc2: 2469 case ARM::BI__builtin_arm_mcrr: 2470 case ARM::BI__builtin_arm_mcrr2: 2471 case ARM::BI__builtin_arm_mrrc: 2472 case ARM::BI__builtin_arm_mrrc2: 2473 case ARM::BI__builtin_arm_ldc: 2474 case ARM::BI__builtin_arm_ldcl: 2475 case ARM::BI__builtin_arm_ldc2: 2476 case ARM::BI__builtin_arm_ldc2l: 2477 case ARM::BI__builtin_arm_stc: 2478 case ARM::BI__builtin_arm_stcl: 2479 case ARM::BI__builtin_arm_stc2: 2480 case ARM::BI__builtin_arm_stc2l: 2481 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2482 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2483 /*WantCDE*/ false); 2484 } 2485 } 2486 2487 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2488 unsigned BuiltinID, 2489 CallExpr *TheCall) { 2490 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2491 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2492 BuiltinID == AArch64::BI__builtin_arm_strex || 2493 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2494 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2495 } 2496 2497 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2498 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2499 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2500 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2501 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2502 } 2503 2504 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2505 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2506 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2507 2508 // Memory Tagging Extensions (MTE) Intrinsics 2509 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2510 BuiltinID == AArch64::BI__builtin_arm_addg || 2511 BuiltinID == AArch64::BI__builtin_arm_gmi || 2512 BuiltinID == AArch64::BI__builtin_arm_ldg || 2513 BuiltinID == AArch64::BI__builtin_arm_stg || 2514 BuiltinID == AArch64::BI__builtin_arm_subp) { 2515 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2516 } 2517 2518 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2519 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2520 BuiltinID == AArch64::BI__builtin_arm_wsr || 2521 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2522 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2523 2524 // Only check the valid encoding range. Any constant in this range would be 2525 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2526 // an exception for incorrect registers. This matches MSVC behavior. 2527 if (BuiltinID == AArch64::BI_ReadStatusReg || 2528 BuiltinID == AArch64::BI_WriteStatusReg) 2529 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2530 2531 if (BuiltinID == AArch64::BI__getReg) 2532 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2533 2534 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2535 return true; 2536 2537 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2538 return true; 2539 2540 // For intrinsics which take an immediate value as part of the instruction, 2541 // range check them here. 2542 unsigned i = 0, l = 0, u = 0; 2543 switch (BuiltinID) { 2544 default: return false; 2545 case AArch64::BI__builtin_arm_dmb: 2546 case AArch64::BI__builtin_arm_dsb: 2547 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2548 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2549 } 2550 2551 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2552 } 2553 2554 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2555 if (Arg->getType()->getAsPlaceholderType()) 2556 return false; 2557 2558 // The first argument needs to be a record field access. 2559 // If it is an array element access, we delay decision 2560 // to BPF backend to check whether the access is a 2561 // field access or not. 2562 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2563 dyn_cast<MemberExpr>(Arg->IgnoreParens()) || 2564 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens())); 2565 } 2566 2567 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2568 QualType VectorTy, QualType EltTy) { 2569 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2570 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2571 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2572 << Call->getSourceRange() << VectorEltTy << EltTy; 2573 return false; 2574 } 2575 return true; 2576 } 2577 2578 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2579 QualType ArgType = Arg->getType(); 2580 if (ArgType->getAsPlaceholderType()) 2581 return false; 2582 2583 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2584 // format: 2585 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2586 // 2. <type> var; 2587 // __builtin_preserve_type_info(var, flag); 2588 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) && 2589 !dyn_cast<UnaryOperator>(Arg->IgnoreParens())) 2590 return false; 2591 2592 // Typedef type. 2593 if (ArgType->getAs<TypedefType>()) 2594 return true; 2595 2596 // Record type or Enum type. 2597 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2598 if (const auto *RT = Ty->getAs<RecordType>()) { 2599 if (!RT->getDecl()->getDeclName().isEmpty()) 2600 return true; 2601 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2602 if (!ET->getDecl()->getDeclName().isEmpty()) 2603 return true; 2604 } 2605 2606 return false; 2607 } 2608 2609 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2610 QualType ArgType = Arg->getType(); 2611 if (ArgType->getAsPlaceholderType()) 2612 return false; 2613 2614 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 2615 // format: 2616 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 2617 // flag); 2618 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 2619 if (!UO) 2620 return false; 2621 2622 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 2623 if (!CE || CE->getCastKind() != CK_IntegralToPointer) 2624 return false; 2625 2626 // The integer must be from an EnumConstantDecl. 2627 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 2628 if (!DR) 2629 return false; 2630 2631 const EnumConstantDecl *Enumerator = 2632 dyn_cast<EnumConstantDecl>(DR->getDecl()); 2633 if (!Enumerator) 2634 return false; 2635 2636 // The type must be EnumType. 2637 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2638 const auto *ET = Ty->getAs<EnumType>(); 2639 if (!ET) 2640 return false; 2641 2642 // The enum value must be supported. 2643 for (auto *EDI : ET->getDecl()->enumerators()) { 2644 if (EDI == Enumerator) 2645 return true; 2646 } 2647 2648 return false; 2649 } 2650 2651 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2652 CallExpr *TheCall) { 2653 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2654 BuiltinID == BPF::BI__builtin_btf_type_id || 2655 BuiltinID == BPF::BI__builtin_preserve_type_info || 2656 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 2657 "unexpected BPF builtin"); 2658 2659 if (checkArgCount(*this, TheCall, 2)) 2660 return true; 2661 2662 // The second argument needs to be a constant int 2663 Expr *Arg = TheCall->getArg(1); 2664 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 2665 diag::kind kind; 2666 if (!Value) { 2667 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 2668 kind = diag::err_preserve_field_info_not_const; 2669 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 2670 kind = diag::err_btf_type_id_not_const; 2671 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 2672 kind = diag::err_preserve_type_info_not_const; 2673 else 2674 kind = diag::err_preserve_enum_value_not_const; 2675 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 2676 return true; 2677 } 2678 2679 // The first argument 2680 Arg = TheCall->getArg(0); 2681 bool InvalidArg = false; 2682 bool ReturnUnsignedInt = true; 2683 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 2684 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 2685 InvalidArg = true; 2686 kind = diag::err_preserve_field_info_not_field; 2687 } 2688 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 2689 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 2690 InvalidArg = true; 2691 kind = diag::err_preserve_type_info_invalid; 2692 } 2693 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 2694 if (!isValidBPFPreserveEnumValueArg(Arg)) { 2695 InvalidArg = true; 2696 kind = diag::err_preserve_enum_value_invalid; 2697 } 2698 ReturnUnsignedInt = false; 2699 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2700 ReturnUnsignedInt = false; 2701 } 2702 2703 if (InvalidArg) { 2704 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 2705 return true; 2706 } 2707 2708 if (ReturnUnsignedInt) 2709 TheCall->setType(Context.UnsignedIntTy); 2710 else 2711 TheCall->setType(Context.UnsignedLongTy); 2712 return false; 2713 } 2714 2715 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2716 struct ArgInfo { 2717 uint8_t OpNum; 2718 bool IsSigned; 2719 uint8_t BitWidth; 2720 uint8_t Align; 2721 }; 2722 struct BuiltinInfo { 2723 unsigned BuiltinID; 2724 ArgInfo Infos[2]; 2725 }; 2726 2727 static BuiltinInfo Infos[] = { 2728 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2729 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2730 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2731 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2732 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2733 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2734 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2735 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2736 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2737 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2738 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2739 2740 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2741 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2742 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2743 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2744 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2745 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2746 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2747 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2748 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2749 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2750 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2751 2752 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2753 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2754 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2755 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2756 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2757 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2758 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2759 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2760 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2761 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2762 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2763 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2764 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2765 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2766 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2767 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2768 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2769 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2770 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2772 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2774 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2777 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2798 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2803 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2804 {{ 1, false, 6, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2807 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2808 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2809 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2810 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2811 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2812 {{ 1, false, 5, 0 }} }, 2813 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2814 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2815 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2816 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2817 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2818 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2819 { 2, false, 5, 0 }} }, 2820 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2821 { 2, false, 6, 0 }} }, 2822 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2823 { 3, false, 5, 0 }} }, 2824 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2825 { 3, false, 6, 0 }} }, 2826 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2828 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2830 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2834 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2837 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2838 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2842 {{ 2, false, 4, 0 }, 2843 { 3, false, 5, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2845 {{ 2, false, 4, 0 }, 2846 { 3, false, 5, 0 }} }, 2847 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2848 {{ 2, false, 4, 0 }, 2849 { 3, false, 5, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2851 {{ 2, false, 4, 0 }, 2852 { 3, false, 5, 0 }} }, 2853 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2854 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2855 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2857 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2859 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2864 { 2, false, 5, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2866 { 2, false, 6, 0 }} }, 2867 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2868 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2869 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2871 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2872 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2873 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2874 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2875 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2876 {{ 1, false, 4, 0 }} }, 2877 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2878 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2879 {{ 1, false, 4, 0 }} }, 2880 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2881 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2882 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2883 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2885 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2886 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2890 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2892 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2894 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2896 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2898 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2900 {{ 3, false, 1, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2902 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2903 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2905 {{ 3, false, 1, 0 }} }, 2906 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2907 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2908 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2909 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2910 {{ 3, false, 1, 0 }} }, 2911 }; 2912 2913 // Use a dynamically initialized static to sort the table exactly once on 2914 // first run. 2915 static const bool SortOnce = 2916 (llvm::sort(Infos, 2917 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2918 return LHS.BuiltinID < RHS.BuiltinID; 2919 }), 2920 true); 2921 (void)SortOnce; 2922 2923 const BuiltinInfo *F = llvm::partition_point( 2924 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2925 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2926 return false; 2927 2928 bool Error = false; 2929 2930 for (const ArgInfo &A : F->Infos) { 2931 // Ignore empty ArgInfo elements. 2932 if (A.BitWidth == 0) 2933 continue; 2934 2935 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2936 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2937 if (!A.Align) { 2938 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2939 } else { 2940 unsigned M = 1 << A.Align; 2941 Min *= M; 2942 Max *= M; 2943 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2944 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2945 } 2946 } 2947 return Error; 2948 } 2949 2950 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2951 CallExpr *TheCall) { 2952 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2953 } 2954 2955 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2956 unsigned BuiltinID, CallExpr *TheCall) { 2957 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2958 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2959 } 2960 2961 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2962 CallExpr *TheCall) { 2963 2964 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2965 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2966 if (!TI.hasFeature("dsp")) 2967 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2968 } 2969 2970 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 2971 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 2972 if (!TI.hasFeature("dspr2")) 2973 return Diag(TheCall->getBeginLoc(), 2974 diag::err_mips_builtin_requires_dspr2); 2975 } 2976 2977 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 2978 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 2979 if (!TI.hasFeature("msa")) 2980 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 2981 } 2982 2983 return false; 2984 } 2985 2986 // CheckMipsBuiltinArgument - Checks the constant value passed to the 2987 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2988 // ordering for DSP is unspecified. MSA is ordered by the data format used 2989 // by the underlying instruction i.e., df/m, df/n and then by size. 2990 // 2991 // FIXME: The size tests here should instead be tablegen'd along with the 2992 // definitions from include/clang/Basic/BuiltinsMips.def. 2993 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2994 // be too. 2995 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2996 unsigned i = 0, l = 0, u = 0, m = 0; 2997 switch (BuiltinID) { 2998 default: return false; 2999 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3000 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3001 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3002 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3003 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3004 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3005 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3006 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3007 // df/m field. 3008 // These intrinsics take an unsigned 3 bit immediate. 3009 case Mips::BI__builtin_msa_bclri_b: 3010 case Mips::BI__builtin_msa_bnegi_b: 3011 case Mips::BI__builtin_msa_bseti_b: 3012 case Mips::BI__builtin_msa_sat_s_b: 3013 case Mips::BI__builtin_msa_sat_u_b: 3014 case Mips::BI__builtin_msa_slli_b: 3015 case Mips::BI__builtin_msa_srai_b: 3016 case Mips::BI__builtin_msa_srari_b: 3017 case Mips::BI__builtin_msa_srli_b: 3018 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3019 case Mips::BI__builtin_msa_binsli_b: 3020 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3021 // These intrinsics take an unsigned 4 bit immediate. 3022 case Mips::BI__builtin_msa_bclri_h: 3023 case Mips::BI__builtin_msa_bnegi_h: 3024 case Mips::BI__builtin_msa_bseti_h: 3025 case Mips::BI__builtin_msa_sat_s_h: 3026 case Mips::BI__builtin_msa_sat_u_h: 3027 case Mips::BI__builtin_msa_slli_h: 3028 case Mips::BI__builtin_msa_srai_h: 3029 case Mips::BI__builtin_msa_srari_h: 3030 case Mips::BI__builtin_msa_srli_h: 3031 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3032 case Mips::BI__builtin_msa_binsli_h: 3033 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3034 // These intrinsics take an unsigned 5 bit immediate. 3035 // The first block of intrinsics actually have an unsigned 5 bit field, 3036 // not a df/n field. 3037 case Mips::BI__builtin_msa_cfcmsa: 3038 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3039 case Mips::BI__builtin_msa_clei_u_b: 3040 case Mips::BI__builtin_msa_clei_u_h: 3041 case Mips::BI__builtin_msa_clei_u_w: 3042 case Mips::BI__builtin_msa_clei_u_d: 3043 case Mips::BI__builtin_msa_clti_u_b: 3044 case Mips::BI__builtin_msa_clti_u_h: 3045 case Mips::BI__builtin_msa_clti_u_w: 3046 case Mips::BI__builtin_msa_clti_u_d: 3047 case Mips::BI__builtin_msa_maxi_u_b: 3048 case Mips::BI__builtin_msa_maxi_u_h: 3049 case Mips::BI__builtin_msa_maxi_u_w: 3050 case Mips::BI__builtin_msa_maxi_u_d: 3051 case Mips::BI__builtin_msa_mini_u_b: 3052 case Mips::BI__builtin_msa_mini_u_h: 3053 case Mips::BI__builtin_msa_mini_u_w: 3054 case Mips::BI__builtin_msa_mini_u_d: 3055 case Mips::BI__builtin_msa_addvi_b: 3056 case Mips::BI__builtin_msa_addvi_h: 3057 case Mips::BI__builtin_msa_addvi_w: 3058 case Mips::BI__builtin_msa_addvi_d: 3059 case Mips::BI__builtin_msa_bclri_w: 3060 case Mips::BI__builtin_msa_bnegi_w: 3061 case Mips::BI__builtin_msa_bseti_w: 3062 case Mips::BI__builtin_msa_sat_s_w: 3063 case Mips::BI__builtin_msa_sat_u_w: 3064 case Mips::BI__builtin_msa_slli_w: 3065 case Mips::BI__builtin_msa_srai_w: 3066 case Mips::BI__builtin_msa_srari_w: 3067 case Mips::BI__builtin_msa_srli_w: 3068 case Mips::BI__builtin_msa_srlri_w: 3069 case Mips::BI__builtin_msa_subvi_b: 3070 case Mips::BI__builtin_msa_subvi_h: 3071 case Mips::BI__builtin_msa_subvi_w: 3072 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3073 case Mips::BI__builtin_msa_binsli_w: 3074 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3075 // These intrinsics take an unsigned 6 bit immediate. 3076 case Mips::BI__builtin_msa_bclri_d: 3077 case Mips::BI__builtin_msa_bnegi_d: 3078 case Mips::BI__builtin_msa_bseti_d: 3079 case Mips::BI__builtin_msa_sat_s_d: 3080 case Mips::BI__builtin_msa_sat_u_d: 3081 case Mips::BI__builtin_msa_slli_d: 3082 case Mips::BI__builtin_msa_srai_d: 3083 case Mips::BI__builtin_msa_srari_d: 3084 case Mips::BI__builtin_msa_srli_d: 3085 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3086 case Mips::BI__builtin_msa_binsli_d: 3087 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3088 // These intrinsics take a signed 5 bit immediate. 3089 case Mips::BI__builtin_msa_ceqi_b: 3090 case Mips::BI__builtin_msa_ceqi_h: 3091 case Mips::BI__builtin_msa_ceqi_w: 3092 case Mips::BI__builtin_msa_ceqi_d: 3093 case Mips::BI__builtin_msa_clti_s_b: 3094 case Mips::BI__builtin_msa_clti_s_h: 3095 case Mips::BI__builtin_msa_clti_s_w: 3096 case Mips::BI__builtin_msa_clti_s_d: 3097 case Mips::BI__builtin_msa_clei_s_b: 3098 case Mips::BI__builtin_msa_clei_s_h: 3099 case Mips::BI__builtin_msa_clei_s_w: 3100 case Mips::BI__builtin_msa_clei_s_d: 3101 case Mips::BI__builtin_msa_maxi_s_b: 3102 case Mips::BI__builtin_msa_maxi_s_h: 3103 case Mips::BI__builtin_msa_maxi_s_w: 3104 case Mips::BI__builtin_msa_maxi_s_d: 3105 case Mips::BI__builtin_msa_mini_s_b: 3106 case Mips::BI__builtin_msa_mini_s_h: 3107 case Mips::BI__builtin_msa_mini_s_w: 3108 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3109 // These intrinsics take an unsigned 8 bit immediate. 3110 case Mips::BI__builtin_msa_andi_b: 3111 case Mips::BI__builtin_msa_nori_b: 3112 case Mips::BI__builtin_msa_ori_b: 3113 case Mips::BI__builtin_msa_shf_b: 3114 case Mips::BI__builtin_msa_shf_h: 3115 case Mips::BI__builtin_msa_shf_w: 3116 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3117 case Mips::BI__builtin_msa_bseli_b: 3118 case Mips::BI__builtin_msa_bmnzi_b: 3119 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3120 // df/n format 3121 // These intrinsics take an unsigned 4 bit immediate. 3122 case Mips::BI__builtin_msa_copy_s_b: 3123 case Mips::BI__builtin_msa_copy_u_b: 3124 case Mips::BI__builtin_msa_insve_b: 3125 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3126 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3127 // These intrinsics take an unsigned 3 bit immediate. 3128 case Mips::BI__builtin_msa_copy_s_h: 3129 case Mips::BI__builtin_msa_copy_u_h: 3130 case Mips::BI__builtin_msa_insve_h: 3131 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3132 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3133 // These intrinsics take an unsigned 2 bit immediate. 3134 case Mips::BI__builtin_msa_copy_s_w: 3135 case Mips::BI__builtin_msa_copy_u_w: 3136 case Mips::BI__builtin_msa_insve_w: 3137 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3138 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3139 // These intrinsics take an unsigned 1 bit immediate. 3140 case Mips::BI__builtin_msa_copy_s_d: 3141 case Mips::BI__builtin_msa_copy_u_d: 3142 case Mips::BI__builtin_msa_insve_d: 3143 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3144 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3145 // Memory offsets and immediate loads. 3146 // These intrinsics take a signed 10 bit immediate. 3147 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3148 case Mips::BI__builtin_msa_ldi_h: 3149 case Mips::BI__builtin_msa_ldi_w: 3150 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3151 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3152 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3153 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3154 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3155 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3156 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3157 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3158 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3159 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3160 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3161 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3162 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3163 } 3164 3165 if (!m) 3166 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3167 3168 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3169 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3170 } 3171 3172 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3173 /// advancing the pointer over the consumed characters. The decoded type is 3174 /// returned. If the decoded type represents a constant integer with a 3175 /// constraint on its value then Mask is set to that value. The type descriptors 3176 /// used in Str are specific to PPC MMA builtins and are documented in the file 3177 /// defining the PPC builtins. 3178 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3179 unsigned &Mask) { 3180 bool RequireICE = false; 3181 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3182 switch (*Str++) { 3183 case 'V': 3184 return Context.getVectorType(Context.UnsignedCharTy, 16, 3185 VectorType::VectorKind::AltiVecVector); 3186 case 'i': { 3187 char *End; 3188 unsigned size = strtoul(Str, &End, 10); 3189 assert(End != Str && "Missing constant parameter constraint"); 3190 Str = End; 3191 Mask = size; 3192 return Context.IntTy; 3193 } 3194 case 'W': { 3195 char *End; 3196 unsigned size = strtoul(Str, &End, 10); 3197 assert(End != Str && "Missing PowerPC MMA type size"); 3198 Str = End; 3199 QualType Type; 3200 switch (size) { 3201 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3202 case size: Type = Context.Id##Ty; break; 3203 #include "clang/Basic/PPCTypes.def" 3204 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3205 } 3206 bool CheckVectorArgs = false; 3207 while (!CheckVectorArgs) { 3208 switch (*Str++) { 3209 case '*': 3210 Type = Context.getPointerType(Type); 3211 break; 3212 case 'C': 3213 Type = Type.withConst(); 3214 break; 3215 default: 3216 CheckVectorArgs = true; 3217 --Str; 3218 break; 3219 } 3220 } 3221 return Type; 3222 } 3223 default: 3224 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3225 } 3226 } 3227 3228 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3229 CallExpr *TheCall) { 3230 unsigned i = 0, l = 0, u = 0; 3231 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3232 BuiltinID == PPC::BI__builtin_divdeu || 3233 BuiltinID == PPC::BI__builtin_bpermd; 3234 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3235 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3236 BuiltinID == PPC::BI__builtin_divweu || 3237 BuiltinID == PPC::BI__builtin_divde || 3238 BuiltinID == PPC::BI__builtin_divdeu; 3239 3240 if (Is64BitBltin && !IsTarget64Bit) 3241 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3242 << TheCall->getSourceRange(); 3243 3244 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || 3245 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) 3246 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3247 << TheCall->getSourceRange(); 3248 3249 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3250 if (!TI.hasFeature("vsx")) 3251 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3252 << TheCall->getSourceRange(); 3253 return false; 3254 }; 3255 3256 switch (BuiltinID) { 3257 default: return false; 3258 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3259 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3260 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3261 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3262 case PPC::BI__builtin_altivec_dss: 3263 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3264 case PPC::BI__builtin_tbegin: 3265 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3266 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3267 case PPC::BI__builtin_tabortwc: 3268 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3269 case PPC::BI__builtin_tabortwci: 3270 case PPC::BI__builtin_tabortdci: 3271 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3272 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3273 case PPC::BI__builtin_altivec_dst: 3274 case PPC::BI__builtin_altivec_dstt: 3275 case PPC::BI__builtin_altivec_dstst: 3276 case PPC::BI__builtin_altivec_dststt: 3277 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3278 case PPC::BI__builtin_vsx_xxpermdi: 3279 case PPC::BI__builtin_vsx_xxsldwi: 3280 return SemaBuiltinVSX(TheCall); 3281 case PPC::BI__builtin_unpack_vector_int128: 3282 return SemaVSXCheck(TheCall) || 3283 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3284 case PPC::BI__builtin_pack_vector_int128: 3285 return SemaVSXCheck(TheCall); 3286 case PPC::BI__builtin_altivec_vgnb: 3287 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3288 case PPC::BI__builtin_altivec_vec_replace_elt: 3289 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3290 QualType VecTy = TheCall->getArg(0)->getType(); 3291 QualType EltTy = TheCall->getArg(1)->getType(); 3292 unsigned Width = Context.getIntWidth(EltTy); 3293 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3294 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3295 } 3296 case PPC::BI__builtin_vsx_xxeval: 3297 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3298 case PPC::BI__builtin_altivec_vsldbi: 3299 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3300 case PPC::BI__builtin_altivec_vsrdbi: 3301 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3302 case PPC::BI__builtin_vsx_xxpermx: 3303 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3304 #define CUSTOM_BUILTIN(Name, Types, Acc) \ 3305 case PPC::BI__builtin_##Name: \ 3306 return SemaBuiltinPPCMMACall(TheCall, Types); 3307 #include "clang/Basic/BuiltinsPPC.def" 3308 } 3309 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3310 } 3311 3312 // Check if the given type is a non-pointer PPC MMA type. This function is used 3313 // in Sema to prevent invalid uses of restricted PPC MMA types. 3314 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3315 if (Type->isPointerType() || Type->isArrayType()) 3316 return false; 3317 3318 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3319 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3320 if (false 3321 #include "clang/Basic/PPCTypes.def" 3322 ) { 3323 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3324 return true; 3325 } 3326 return false; 3327 } 3328 3329 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3330 CallExpr *TheCall) { 3331 // position of memory order and scope arguments in the builtin 3332 unsigned OrderIndex, ScopeIndex; 3333 switch (BuiltinID) { 3334 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3335 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3336 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3337 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3338 OrderIndex = 2; 3339 ScopeIndex = 3; 3340 break; 3341 case AMDGPU::BI__builtin_amdgcn_fence: 3342 OrderIndex = 0; 3343 ScopeIndex = 1; 3344 break; 3345 default: 3346 return false; 3347 } 3348 3349 ExprResult Arg = TheCall->getArg(OrderIndex); 3350 auto ArgExpr = Arg.get(); 3351 Expr::EvalResult ArgResult; 3352 3353 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3354 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3355 << ArgExpr->getType(); 3356 int ord = ArgResult.Val.getInt().getZExtValue(); 3357 3358 // Check valididty of memory ordering as per C11 / C++11's memody model. 3359 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 3360 case llvm::AtomicOrderingCABI::acquire: 3361 case llvm::AtomicOrderingCABI::release: 3362 case llvm::AtomicOrderingCABI::acq_rel: 3363 case llvm::AtomicOrderingCABI::seq_cst: 3364 break; 3365 default: { 3366 return Diag(ArgExpr->getBeginLoc(), 3367 diag::warn_atomic_op_has_invalid_memory_order) 3368 << ArgExpr->getSourceRange(); 3369 } 3370 } 3371 3372 Arg = TheCall->getArg(ScopeIndex); 3373 ArgExpr = Arg.get(); 3374 Expr::EvalResult ArgResult1; 3375 // Check that sync scope is a constant literal 3376 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3377 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3378 << ArgExpr->getType(); 3379 3380 return false; 3381 } 3382 3383 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3384 CallExpr *TheCall) { 3385 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3386 Expr *Arg = TheCall->getArg(0); 3387 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 3388 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 3389 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3390 << Arg->getSourceRange(); 3391 } 3392 3393 // For intrinsics which take an immediate value as part of the instruction, 3394 // range check them here. 3395 unsigned i = 0, l = 0, u = 0; 3396 switch (BuiltinID) { 3397 default: return false; 3398 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3399 case SystemZ::BI__builtin_s390_verimb: 3400 case SystemZ::BI__builtin_s390_verimh: 3401 case SystemZ::BI__builtin_s390_verimf: 3402 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3403 case SystemZ::BI__builtin_s390_vfaeb: 3404 case SystemZ::BI__builtin_s390_vfaeh: 3405 case SystemZ::BI__builtin_s390_vfaef: 3406 case SystemZ::BI__builtin_s390_vfaebs: 3407 case SystemZ::BI__builtin_s390_vfaehs: 3408 case SystemZ::BI__builtin_s390_vfaefs: 3409 case SystemZ::BI__builtin_s390_vfaezb: 3410 case SystemZ::BI__builtin_s390_vfaezh: 3411 case SystemZ::BI__builtin_s390_vfaezf: 3412 case SystemZ::BI__builtin_s390_vfaezbs: 3413 case SystemZ::BI__builtin_s390_vfaezhs: 3414 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3415 case SystemZ::BI__builtin_s390_vfisb: 3416 case SystemZ::BI__builtin_s390_vfidb: 3417 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3418 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3419 case SystemZ::BI__builtin_s390_vftcisb: 3420 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3421 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3422 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3423 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3424 case SystemZ::BI__builtin_s390_vstrcb: 3425 case SystemZ::BI__builtin_s390_vstrch: 3426 case SystemZ::BI__builtin_s390_vstrcf: 3427 case SystemZ::BI__builtin_s390_vstrczb: 3428 case SystemZ::BI__builtin_s390_vstrczh: 3429 case SystemZ::BI__builtin_s390_vstrczf: 3430 case SystemZ::BI__builtin_s390_vstrcbs: 3431 case SystemZ::BI__builtin_s390_vstrchs: 3432 case SystemZ::BI__builtin_s390_vstrcfs: 3433 case SystemZ::BI__builtin_s390_vstrczbs: 3434 case SystemZ::BI__builtin_s390_vstrczhs: 3435 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3436 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3437 case SystemZ::BI__builtin_s390_vfminsb: 3438 case SystemZ::BI__builtin_s390_vfmaxsb: 3439 case SystemZ::BI__builtin_s390_vfmindb: 3440 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3441 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3442 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3443 } 3444 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3445 } 3446 3447 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3448 /// This checks that the target supports __builtin_cpu_supports and 3449 /// that the string argument is constant and valid. 3450 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3451 CallExpr *TheCall) { 3452 Expr *Arg = TheCall->getArg(0); 3453 3454 // Check if the argument is a string literal. 3455 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3456 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3457 << Arg->getSourceRange(); 3458 3459 // Check the contents of the string. 3460 StringRef Feature = 3461 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3462 if (!TI.validateCpuSupports(Feature)) 3463 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3464 << Arg->getSourceRange(); 3465 return false; 3466 } 3467 3468 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3469 /// This checks that the target supports __builtin_cpu_is and 3470 /// that the string argument is constant and valid. 3471 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3472 Expr *Arg = TheCall->getArg(0); 3473 3474 // Check if the argument is a string literal. 3475 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3476 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3477 << Arg->getSourceRange(); 3478 3479 // Check the contents of the string. 3480 StringRef Feature = 3481 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3482 if (!TI.validateCpuIs(Feature)) 3483 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3484 << Arg->getSourceRange(); 3485 return false; 3486 } 3487 3488 // Check if the rounding mode is legal. 3489 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3490 // Indicates if this instruction has rounding control or just SAE. 3491 bool HasRC = false; 3492 3493 unsigned ArgNum = 0; 3494 switch (BuiltinID) { 3495 default: 3496 return false; 3497 case X86::BI__builtin_ia32_vcvttsd2si32: 3498 case X86::BI__builtin_ia32_vcvttsd2si64: 3499 case X86::BI__builtin_ia32_vcvttsd2usi32: 3500 case X86::BI__builtin_ia32_vcvttsd2usi64: 3501 case X86::BI__builtin_ia32_vcvttss2si32: 3502 case X86::BI__builtin_ia32_vcvttss2si64: 3503 case X86::BI__builtin_ia32_vcvttss2usi32: 3504 case X86::BI__builtin_ia32_vcvttss2usi64: 3505 ArgNum = 1; 3506 break; 3507 case X86::BI__builtin_ia32_maxpd512: 3508 case X86::BI__builtin_ia32_maxps512: 3509 case X86::BI__builtin_ia32_minpd512: 3510 case X86::BI__builtin_ia32_minps512: 3511 ArgNum = 2; 3512 break; 3513 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3514 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3515 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3516 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3517 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3518 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3519 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3520 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3521 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3522 case X86::BI__builtin_ia32_exp2pd_mask: 3523 case X86::BI__builtin_ia32_exp2ps_mask: 3524 case X86::BI__builtin_ia32_getexppd512_mask: 3525 case X86::BI__builtin_ia32_getexpps512_mask: 3526 case X86::BI__builtin_ia32_rcp28pd_mask: 3527 case X86::BI__builtin_ia32_rcp28ps_mask: 3528 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3529 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3530 case X86::BI__builtin_ia32_vcomisd: 3531 case X86::BI__builtin_ia32_vcomiss: 3532 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3533 ArgNum = 3; 3534 break; 3535 case X86::BI__builtin_ia32_cmppd512_mask: 3536 case X86::BI__builtin_ia32_cmpps512_mask: 3537 case X86::BI__builtin_ia32_cmpsd_mask: 3538 case X86::BI__builtin_ia32_cmpss_mask: 3539 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3540 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3541 case X86::BI__builtin_ia32_getexpss128_round_mask: 3542 case X86::BI__builtin_ia32_getmantpd512_mask: 3543 case X86::BI__builtin_ia32_getmantps512_mask: 3544 case X86::BI__builtin_ia32_maxsd_round_mask: 3545 case X86::BI__builtin_ia32_maxss_round_mask: 3546 case X86::BI__builtin_ia32_minsd_round_mask: 3547 case X86::BI__builtin_ia32_minss_round_mask: 3548 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3549 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3550 case X86::BI__builtin_ia32_reducepd512_mask: 3551 case X86::BI__builtin_ia32_reduceps512_mask: 3552 case X86::BI__builtin_ia32_rndscalepd_mask: 3553 case X86::BI__builtin_ia32_rndscaleps_mask: 3554 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3555 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3556 ArgNum = 4; 3557 break; 3558 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3559 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3560 case X86::BI__builtin_ia32_fixupimmps512_mask: 3561 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3562 case X86::BI__builtin_ia32_fixupimmsd_mask: 3563 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3564 case X86::BI__builtin_ia32_fixupimmss_mask: 3565 case X86::BI__builtin_ia32_fixupimmss_maskz: 3566 case X86::BI__builtin_ia32_getmantsd_round_mask: 3567 case X86::BI__builtin_ia32_getmantss_round_mask: 3568 case X86::BI__builtin_ia32_rangepd512_mask: 3569 case X86::BI__builtin_ia32_rangeps512_mask: 3570 case X86::BI__builtin_ia32_rangesd128_round_mask: 3571 case X86::BI__builtin_ia32_rangess128_round_mask: 3572 case X86::BI__builtin_ia32_reducesd_mask: 3573 case X86::BI__builtin_ia32_reducess_mask: 3574 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3575 case X86::BI__builtin_ia32_rndscaless_round_mask: 3576 ArgNum = 5; 3577 break; 3578 case X86::BI__builtin_ia32_vcvtsd2si64: 3579 case X86::BI__builtin_ia32_vcvtsd2si32: 3580 case X86::BI__builtin_ia32_vcvtsd2usi32: 3581 case X86::BI__builtin_ia32_vcvtsd2usi64: 3582 case X86::BI__builtin_ia32_vcvtss2si32: 3583 case X86::BI__builtin_ia32_vcvtss2si64: 3584 case X86::BI__builtin_ia32_vcvtss2usi32: 3585 case X86::BI__builtin_ia32_vcvtss2usi64: 3586 case X86::BI__builtin_ia32_sqrtpd512: 3587 case X86::BI__builtin_ia32_sqrtps512: 3588 ArgNum = 1; 3589 HasRC = true; 3590 break; 3591 case X86::BI__builtin_ia32_addpd512: 3592 case X86::BI__builtin_ia32_addps512: 3593 case X86::BI__builtin_ia32_divpd512: 3594 case X86::BI__builtin_ia32_divps512: 3595 case X86::BI__builtin_ia32_mulpd512: 3596 case X86::BI__builtin_ia32_mulps512: 3597 case X86::BI__builtin_ia32_subpd512: 3598 case X86::BI__builtin_ia32_subps512: 3599 case X86::BI__builtin_ia32_cvtsi2sd64: 3600 case X86::BI__builtin_ia32_cvtsi2ss32: 3601 case X86::BI__builtin_ia32_cvtsi2ss64: 3602 case X86::BI__builtin_ia32_cvtusi2sd64: 3603 case X86::BI__builtin_ia32_cvtusi2ss32: 3604 case X86::BI__builtin_ia32_cvtusi2ss64: 3605 ArgNum = 2; 3606 HasRC = true; 3607 break; 3608 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3609 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3610 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3611 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3612 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3613 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3614 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3615 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3616 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3617 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3618 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3619 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3620 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3621 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3622 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3623 ArgNum = 3; 3624 HasRC = true; 3625 break; 3626 case X86::BI__builtin_ia32_addss_round_mask: 3627 case X86::BI__builtin_ia32_addsd_round_mask: 3628 case X86::BI__builtin_ia32_divss_round_mask: 3629 case X86::BI__builtin_ia32_divsd_round_mask: 3630 case X86::BI__builtin_ia32_mulss_round_mask: 3631 case X86::BI__builtin_ia32_mulsd_round_mask: 3632 case X86::BI__builtin_ia32_subss_round_mask: 3633 case X86::BI__builtin_ia32_subsd_round_mask: 3634 case X86::BI__builtin_ia32_scalefpd512_mask: 3635 case X86::BI__builtin_ia32_scalefps512_mask: 3636 case X86::BI__builtin_ia32_scalefsd_round_mask: 3637 case X86::BI__builtin_ia32_scalefss_round_mask: 3638 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3639 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3640 case X86::BI__builtin_ia32_sqrtss_round_mask: 3641 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3642 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3643 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3644 case X86::BI__builtin_ia32_vfmaddss3_mask: 3645 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3646 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3647 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3648 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3649 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3650 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3651 case X86::BI__builtin_ia32_vfmaddps512_mask: 3652 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3653 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3654 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3655 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3656 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3657 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3658 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3659 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3660 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3661 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3662 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3663 ArgNum = 4; 3664 HasRC = true; 3665 break; 3666 } 3667 3668 llvm::APSInt Result; 3669 3670 // We can't check the value of a dependent argument. 3671 Expr *Arg = TheCall->getArg(ArgNum); 3672 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3673 return false; 3674 3675 // Check constant-ness first. 3676 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3677 return true; 3678 3679 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3680 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3681 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3682 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3683 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3684 Result == 8/*ROUND_NO_EXC*/ || 3685 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3686 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3687 return false; 3688 3689 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3690 << Arg->getSourceRange(); 3691 } 3692 3693 // Check if the gather/scatter scale is legal. 3694 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3695 CallExpr *TheCall) { 3696 unsigned ArgNum = 0; 3697 switch (BuiltinID) { 3698 default: 3699 return false; 3700 case X86::BI__builtin_ia32_gatherpfdpd: 3701 case X86::BI__builtin_ia32_gatherpfdps: 3702 case X86::BI__builtin_ia32_gatherpfqpd: 3703 case X86::BI__builtin_ia32_gatherpfqps: 3704 case X86::BI__builtin_ia32_scatterpfdpd: 3705 case X86::BI__builtin_ia32_scatterpfdps: 3706 case X86::BI__builtin_ia32_scatterpfqpd: 3707 case X86::BI__builtin_ia32_scatterpfqps: 3708 ArgNum = 3; 3709 break; 3710 case X86::BI__builtin_ia32_gatherd_pd: 3711 case X86::BI__builtin_ia32_gatherd_pd256: 3712 case X86::BI__builtin_ia32_gatherq_pd: 3713 case X86::BI__builtin_ia32_gatherq_pd256: 3714 case X86::BI__builtin_ia32_gatherd_ps: 3715 case X86::BI__builtin_ia32_gatherd_ps256: 3716 case X86::BI__builtin_ia32_gatherq_ps: 3717 case X86::BI__builtin_ia32_gatherq_ps256: 3718 case X86::BI__builtin_ia32_gatherd_q: 3719 case X86::BI__builtin_ia32_gatherd_q256: 3720 case X86::BI__builtin_ia32_gatherq_q: 3721 case X86::BI__builtin_ia32_gatherq_q256: 3722 case X86::BI__builtin_ia32_gatherd_d: 3723 case X86::BI__builtin_ia32_gatherd_d256: 3724 case X86::BI__builtin_ia32_gatherq_d: 3725 case X86::BI__builtin_ia32_gatherq_d256: 3726 case X86::BI__builtin_ia32_gather3div2df: 3727 case X86::BI__builtin_ia32_gather3div2di: 3728 case X86::BI__builtin_ia32_gather3div4df: 3729 case X86::BI__builtin_ia32_gather3div4di: 3730 case X86::BI__builtin_ia32_gather3div4sf: 3731 case X86::BI__builtin_ia32_gather3div4si: 3732 case X86::BI__builtin_ia32_gather3div8sf: 3733 case X86::BI__builtin_ia32_gather3div8si: 3734 case X86::BI__builtin_ia32_gather3siv2df: 3735 case X86::BI__builtin_ia32_gather3siv2di: 3736 case X86::BI__builtin_ia32_gather3siv4df: 3737 case X86::BI__builtin_ia32_gather3siv4di: 3738 case X86::BI__builtin_ia32_gather3siv4sf: 3739 case X86::BI__builtin_ia32_gather3siv4si: 3740 case X86::BI__builtin_ia32_gather3siv8sf: 3741 case X86::BI__builtin_ia32_gather3siv8si: 3742 case X86::BI__builtin_ia32_gathersiv8df: 3743 case X86::BI__builtin_ia32_gathersiv16sf: 3744 case X86::BI__builtin_ia32_gatherdiv8df: 3745 case X86::BI__builtin_ia32_gatherdiv16sf: 3746 case X86::BI__builtin_ia32_gathersiv8di: 3747 case X86::BI__builtin_ia32_gathersiv16si: 3748 case X86::BI__builtin_ia32_gatherdiv8di: 3749 case X86::BI__builtin_ia32_gatherdiv16si: 3750 case X86::BI__builtin_ia32_scatterdiv2df: 3751 case X86::BI__builtin_ia32_scatterdiv2di: 3752 case X86::BI__builtin_ia32_scatterdiv4df: 3753 case X86::BI__builtin_ia32_scatterdiv4di: 3754 case X86::BI__builtin_ia32_scatterdiv4sf: 3755 case X86::BI__builtin_ia32_scatterdiv4si: 3756 case X86::BI__builtin_ia32_scatterdiv8sf: 3757 case X86::BI__builtin_ia32_scatterdiv8si: 3758 case X86::BI__builtin_ia32_scattersiv2df: 3759 case X86::BI__builtin_ia32_scattersiv2di: 3760 case X86::BI__builtin_ia32_scattersiv4df: 3761 case X86::BI__builtin_ia32_scattersiv4di: 3762 case X86::BI__builtin_ia32_scattersiv4sf: 3763 case X86::BI__builtin_ia32_scattersiv4si: 3764 case X86::BI__builtin_ia32_scattersiv8sf: 3765 case X86::BI__builtin_ia32_scattersiv8si: 3766 case X86::BI__builtin_ia32_scattersiv8df: 3767 case X86::BI__builtin_ia32_scattersiv16sf: 3768 case X86::BI__builtin_ia32_scatterdiv8df: 3769 case X86::BI__builtin_ia32_scatterdiv16sf: 3770 case X86::BI__builtin_ia32_scattersiv8di: 3771 case X86::BI__builtin_ia32_scattersiv16si: 3772 case X86::BI__builtin_ia32_scatterdiv8di: 3773 case X86::BI__builtin_ia32_scatterdiv16si: 3774 ArgNum = 4; 3775 break; 3776 } 3777 3778 llvm::APSInt Result; 3779 3780 // We can't check the value of a dependent argument. 3781 Expr *Arg = TheCall->getArg(ArgNum); 3782 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3783 return false; 3784 3785 // Check constant-ness first. 3786 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3787 return true; 3788 3789 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3790 return false; 3791 3792 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3793 << Arg->getSourceRange(); 3794 } 3795 3796 enum { TileRegLow = 0, TileRegHigh = 7 }; 3797 3798 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 3799 ArrayRef<int> ArgNums) { 3800 for (int ArgNum : ArgNums) { 3801 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 3802 return true; 3803 } 3804 return false; 3805 } 3806 3807 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 3808 ArrayRef<int> ArgNums) { 3809 // Because the max number of tile register is TileRegHigh + 1, so here we use 3810 // each bit to represent the usage of them in bitset. 3811 std::bitset<TileRegHigh + 1> ArgValues; 3812 for (int ArgNum : ArgNums) { 3813 Expr *Arg = TheCall->getArg(ArgNum); 3814 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3815 continue; 3816 3817 llvm::APSInt Result; 3818 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3819 return true; 3820 int ArgExtValue = Result.getExtValue(); 3821 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 3822 "Incorrect tile register num."); 3823 if (ArgValues.test(ArgExtValue)) 3824 return Diag(TheCall->getBeginLoc(), 3825 diag::err_x86_builtin_tile_arg_duplicate) 3826 << TheCall->getArg(ArgNum)->getSourceRange(); 3827 ArgValues.set(ArgExtValue); 3828 } 3829 return false; 3830 } 3831 3832 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 3833 ArrayRef<int> ArgNums) { 3834 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 3835 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 3836 } 3837 3838 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 3839 switch (BuiltinID) { 3840 default: 3841 return false; 3842 case X86::BI__builtin_ia32_tileloadd64: 3843 case X86::BI__builtin_ia32_tileloaddt164: 3844 case X86::BI__builtin_ia32_tilestored64: 3845 case X86::BI__builtin_ia32_tilezero: 3846 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 3847 case X86::BI__builtin_ia32_tdpbssd: 3848 case X86::BI__builtin_ia32_tdpbsud: 3849 case X86::BI__builtin_ia32_tdpbusd: 3850 case X86::BI__builtin_ia32_tdpbuud: 3851 case X86::BI__builtin_ia32_tdpbf16ps: 3852 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 3853 } 3854 } 3855 static bool isX86_32Builtin(unsigned BuiltinID) { 3856 // These builtins only work on x86-32 targets. 3857 switch (BuiltinID) { 3858 case X86::BI__builtin_ia32_readeflags_u32: 3859 case X86::BI__builtin_ia32_writeeflags_u32: 3860 return true; 3861 } 3862 3863 return false; 3864 } 3865 3866 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3867 CallExpr *TheCall) { 3868 if (BuiltinID == X86::BI__builtin_cpu_supports) 3869 return SemaBuiltinCpuSupports(*this, TI, TheCall); 3870 3871 if (BuiltinID == X86::BI__builtin_cpu_is) 3872 return SemaBuiltinCpuIs(*this, TI, TheCall); 3873 3874 // Check for 32-bit only builtins on a 64-bit target. 3875 const llvm::Triple &TT = TI.getTriple(); 3876 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3877 return Diag(TheCall->getCallee()->getBeginLoc(), 3878 diag::err_32_bit_builtin_64_bit_tgt); 3879 3880 // If the intrinsic has rounding or SAE make sure its valid. 3881 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3882 return true; 3883 3884 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3885 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3886 return true; 3887 3888 // If the intrinsic has a tile arguments, make sure they are valid. 3889 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 3890 return true; 3891 3892 // For intrinsics which take an immediate value as part of the instruction, 3893 // range check them here. 3894 int i = 0, l = 0, u = 0; 3895 switch (BuiltinID) { 3896 default: 3897 return false; 3898 case X86::BI__builtin_ia32_vec_ext_v2si: 3899 case X86::BI__builtin_ia32_vec_ext_v2di: 3900 case X86::BI__builtin_ia32_vextractf128_pd256: 3901 case X86::BI__builtin_ia32_vextractf128_ps256: 3902 case X86::BI__builtin_ia32_vextractf128_si256: 3903 case X86::BI__builtin_ia32_extract128i256: 3904 case X86::BI__builtin_ia32_extractf64x4_mask: 3905 case X86::BI__builtin_ia32_extracti64x4_mask: 3906 case X86::BI__builtin_ia32_extractf32x8_mask: 3907 case X86::BI__builtin_ia32_extracti32x8_mask: 3908 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3909 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3910 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3911 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3912 i = 1; l = 0; u = 1; 3913 break; 3914 case X86::BI__builtin_ia32_vec_set_v2di: 3915 case X86::BI__builtin_ia32_vinsertf128_pd256: 3916 case X86::BI__builtin_ia32_vinsertf128_ps256: 3917 case X86::BI__builtin_ia32_vinsertf128_si256: 3918 case X86::BI__builtin_ia32_insert128i256: 3919 case X86::BI__builtin_ia32_insertf32x8: 3920 case X86::BI__builtin_ia32_inserti32x8: 3921 case X86::BI__builtin_ia32_insertf64x4: 3922 case X86::BI__builtin_ia32_inserti64x4: 3923 case X86::BI__builtin_ia32_insertf64x2_256: 3924 case X86::BI__builtin_ia32_inserti64x2_256: 3925 case X86::BI__builtin_ia32_insertf32x4_256: 3926 case X86::BI__builtin_ia32_inserti32x4_256: 3927 i = 2; l = 0; u = 1; 3928 break; 3929 case X86::BI__builtin_ia32_vpermilpd: 3930 case X86::BI__builtin_ia32_vec_ext_v4hi: 3931 case X86::BI__builtin_ia32_vec_ext_v4si: 3932 case X86::BI__builtin_ia32_vec_ext_v4sf: 3933 case X86::BI__builtin_ia32_vec_ext_v4di: 3934 case X86::BI__builtin_ia32_extractf32x4_mask: 3935 case X86::BI__builtin_ia32_extracti32x4_mask: 3936 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3937 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3938 i = 1; l = 0; u = 3; 3939 break; 3940 case X86::BI_mm_prefetch: 3941 case X86::BI__builtin_ia32_vec_ext_v8hi: 3942 case X86::BI__builtin_ia32_vec_ext_v8si: 3943 i = 1; l = 0; u = 7; 3944 break; 3945 case X86::BI__builtin_ia32_sha1rnds4: 3946 case X86::BI__builtin_ia32_blendpd: 3947 case X86::BI__builtin_ia32_shufpd: 3948 case X86::BI__builtin_ia32_vec_set_v4hi: 3949 case X86::BI__builtin_ia32_vec_set_v4si: 3950 case X86::BI__builtin_ia32_vec_set_v4di: 3951 case X86::BI__builtin_ia32_shuf_f32x4_256: 3952 case X86::BI__builtin_ia32_shuf_f64x2_256: 3953 case X86::BI__builtin_ia32_shuf_i32x4_256: 3954 case X86::BI__builtin_ia32_shuf_i64x2_256: 3955 case X86::BI__builtin_ia32_insertf64x2_512: 3956 case X86::BI__builtin_ia32_inserti64x2_512: 3957 case X86::BI__builtin_ia32_insertf32x4: 3958 case X86::BI__builtin_ia32_inserti32x4: 3959 i = 2; l = 0; u = 3; 3960 break; 3961 case X86::BI__builtin_ia32_vpermil2pd: 3962 case X86::BI__builtin_ia32_vpermil2pd256: 3963 case X86::BI__builtin_ia32_vpermil2ps: 3964 case X86::BI__builtin_ia32_vpermil2ps256: 3965 i = 3; l = 0; u = 3; 3966 break; 3967 case X86::BI__builtin_ia32_cmpb128_mask: 3968 case X86::BI__builtin_ia32_cmpw128_mask: 3969 case X86::BI__builtin_ia32_cmpd128_mask: 3970 case X86::BI__builtin_ia32_cmpq128_mask: 3971 case X86::BI__builtin_ia32_cmpb256_mask: 3972 case X86::BI__builtin_ia32_cmpw256_mask: 3973 case X86::BI__builtin_ia32_cmpd256_mask: 3974 case X86::BI__builtin_ia32_cmpq256_mask: 3975 case X86::BI__builtin_ia32_cmpb512_mask: 3976 case X86::BI__builtin_ia32_cmpw512_mask: 3977 case X86::BI__builtin_ia32_cmpd512_mask: 3978 case X86::BI__builtin_ia32_cmpq512_mask: 3979 case X86::BI__builtin_ia32_ucmpb128_mask: 3980 case X86::BI__builtin_ia32_ucmpw128_mask: 3981 case X86::BI__builtin_ia32_ucmpd128_mask: 3982 case X86::BI__builtin_ia32_ucmpq128_mask: 3983 case X86::BI__builtin_ia32_ucmpb256_mask: 3984 case X86::BI__builtin_ia32_ucmpw256_mask: 3985 case X86::BI__builtin_ia32_ucmpd256_mask: 3986 case X86::BI__builtin_ia32_ucmpq256_mask: 3987 case X86::BI__builtin_ia32_ucmpb512_mask: 3988 case X86::BI__builtin_ia32_ucmpw512_mask: 3989 case X86::BI__builtin_ia32_ucmpd512_mask: 3990 case X86::BI__builtin_ia32_ucmpq512_mask: 3991 case X86::BI__builtin_ia32_vpcomub: 3992 case X86::BI__builtin_ia32_vpcomuw: 3993 case X86::BI__builtin_ia32_vpcomud: 3994 case X86::BI__builtin_ia32_vpcomuq: 3995 case X86::BI__builtin_ia32_vpcomb: 3996 case X86::BI__builtin_ia32_vpcomw: 3997 case X86::BI__builtin_ia32_vpcomd: 3998 case X86::BI__builtin_ia32_vpcomq: 3999 case X86::BI__builtin_ia32_vec_set_v8hi: 4000 case X86::BI__builtin_ia32_vec_set_v8si: 4001 i = 2; l = 0; u = 7; 4002 break; 4003 case X86::BI__builtin_ia32_vpermilpd256: 4004 case X86::BI__builtin_ia32_roundps: 4005 case X86::BI__builtin_ia32_roundpd: 4006 case X86::BI__builtin_ia32_roundps256: 4007 case X86::BI__builtin_ia32_roundpd256: 4008 case X86::BI__builtin_ia32_getmantpd128_mask: 4009 case X86::BI__builtin_ia32_getmantpd256_mask: 4010 case X86::BI__builtin_ia32_getmantps128_mask: 4011 case X86::BI__builtin_ia32_getmantps256_mask: 4012 case X86::BI__builtin_ia32_getmantpd512_mask: 4013 case X86::BI__builtin_ia32_getmantps512_mask: 4014 case X86::BI__builtin_ia32_vec_ext_v16qi: 4015 case X86::BI__builtin_ia32_vec_ext_v16hi: 4016 i = 1; l = 0; u = 15; 4017 break; 4018 case X86::BI__builtin_ia32_pblendd128: 4019 case X86::BI__builtin_ia32_blendps: 4020 case X86::BI__builtin_ia32_blendpd256: 4021 case X86::BI__builtin_ia32_shufpd256: 4022 case X86::BI__builtin_ia32_roundss: 4023 case X86::BI__builtin_ia32_roundsd: 4024 case X86::BI__builtin_ia32_rangepd128_mask: 4025 case X86::BI__builtin_ia32_rangepd256_mask: 4026 case X86::BI__builtin_ia32_rangepd512_mask: 4027 case X86::BI__builtin_ia32_rangeps128_mask: 4028 case X86::BI__builtin_ia32_rangeps256_mask: 4029 case X86::BI__builtin_ia32_rangeps512_mask: 4030 case X86::BI__builtin_ia32_getmantsd_round_mask: 4031 case X86::BI__builtin_ia32_getmantss_round_mask: 4032 case X86::BI__builtin_ia32_vec_set_v16qi: 4033 case X86::BI__builtin_ia32_vec_set_v16hi: 4034 i = 2; l = 0; u = 15; 4035 break; 4036 case X86::BI__builtin_ia32_vec_ext_v32qi: 4037 i = 1; l = 0; u = 31; 4038 break; 4039 case X86::BI__builtin_ia32_cmpps: 4040 case X86::BI__builtin_ia32_cmpss: 4041 case X86::BI__builtin_ia32_cmppd: 4042 case X86::BI__builtin_ia32_cmpsd: 4043 case X86::BI__builtin_ia32_cmpps256: 4044 case X86::BI__builtin_ia32_cmppd256: 4045 case X86::BI__builtin_ia32_cmpps128_mask: 4046 case X86::BI__builtin_ia32_cmppd128_mask: 4047 case X86::BI__builtin_ia32_cmpps256_mask: 4048 case X86::BI__builtin_ia32_cmppd256_mask: 4049 case X86::BI__builtin_ia32_cmpps512_mask: 4050 case X86::BI__builtin_ia32_cmppd512_mask: 4051 case X86::BI__builtin_ia32_cmpsd_mask: 4052 case X86::BI__builtin_ia32_cmpss_mask: 4053 case X86::BI__builtin_ia32_vec_set_v32qi: 4054 i = 2; l = 0; u = 31; 4055 break; 4056 case X86::BI__builtin_ia32_permdf256: 4057 case X86::BI__builtin_ia32_permdi256: 4058 case X86::BI__builtin_ia32_permdf512: 4059 case X86::BI__builtin_ia32_permdi512: 4060 case X86::BI__builtin_ia32_vpermilps: 4061 case X86::BI__builtin_ia32_vpermilps256: 4062 case X86::BI__builtin_ia32_vpermilpd512: 4063 case X86::BI__builtin_ia32_vpermilps512: 4064 case X86::BI__builtin_ia32_pshufd: 4065 case X86::BI__builtin_ia32_pshufd256: 4066 case X86::BI__builtin_ia32_pshufd512: 4067 case X86::BI__builtin_ia32_pshufhw: 4068 case X86::BI__builtin_ia32_pshufhw256: 4069 case X86::BI__builtin_ia32_pshufhw512: 4070 case X86::BI__builtin_ia32_pshuflw: 4071 case X86::BI__builtin_ia32_pshuflw256: 4072 case X86::BI__builtin_ia32_pshuflw512: 4073 case X86::BI__builtin_ia32_vcvtps2ph: 4074 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4075 case X86::BI__builtin_ia32_vcvtps2ph256: 4076 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4077 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4078 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4079 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4080 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4081 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4082 case X86::BI__builtin_ia32_rndscaleps_mask: 4083 case X86::BI__builtin_ia32_rndscalepd_mask: 4084 case X86::BI__builtin_ia32_reducepd128_mask: 4085 case X86::BI__builtin_ia32_reducepd256_mask: 4086 case X86::BI__builtin_ia32_reducepd512_mask: 4087 case X86::BI__builtin_ia32_reduceps128_mask: 4088 case X86::BI__builtin_ia32_reduceps256_mask: 4089 case X86::BI__builtin_ia32_reduceps512_mask: 4090 case X86::BI__builtin_ia32_prold512: 4091 case X86::BI__builtin_ia32_prolq512: 4092 case X86::BI__builtin_ia32_prold128: 4093 case X86::BI__builtin_ia32_prold256: 4094 case X86::BI__builtin_ia32_prolq128: 4095 case X86::BI__builtin_ia32_prolq256: 4096 case X86::BI__builtin_ia32_prord512: 4097 case X86::BI__builtin_ia32_prorq512: 4098 case X86::BI__builtin_ia32_prord128: 4099 case X86::BI__builtin_ia32_prord256: 4100 case X86::BI__builtin_ia32_prorq128: 4101 case X86::BI__builtin_ia32_prorq256: 4102 case X86::BI__builtin_ia32_fpclasspd128_mask: 4103 case X86::BI__builtin_ia32_fpclasspd256_mask: 4104 case X86::BI__builtin_ia32_fpclassps128_mask: 4105 case X86::BI__builtin_ia32_fpclassps256_mask: 4106 case X86::BI__builtin_ia32_fpclassps512_mask: 4107 case X86::BI__builtin_ia32_fpclasspd512_mask: 4108 case X86::BI__builtin_ia32_fpclasssd_mask: 4109 case X86::BI__builtin_ia32_fpclassss_mask: 4110 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4111 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4112 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4113 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4114 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4115 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4116 case X86::BI__builtin_ia32_kshiftliqi: 4117 case X86::BI__builtin_ia32_kshiftlihi: 4118 case X86::BI__builtin_ia32_kshiftlisi: 4119 case X86::BI__builtin_ia32_kshiftlidi: 4120 case X86::BI__builtin_ia32_kshiftriqi: 4121 case X86::BI__builtin_ia32_kshiftrihi: 4122 case X86::BI__builtin_ia32_kshiftrisi: 4123 case X86::BI__builtin_ia32_kshiftridi: 4124 i = 1; l = 0; u = 255; 4125 break; 4126 case X86::BI__builtin_ia32_vperm2f128_pd256: 4127 case X86::BI__builtin_ia32_vperm2f128_ps256: 4128 case X86::BI__builtin_ia32_vperm2f128_si256: 4129 case X86::BI__builtin_ia32_permti256: 4130 case X86::BI__builtin_ia32_pblendw128: 4131 case X86::BI__builtin_ia32_pblendw256: 4132 case X86::BI__builtin_ia32_blendps256: 4133 case X86::BI__builtin_ia32_pblendd256: 4134 case X86::BI__builtin_ia32_palignr128: 4135 case X86::BI__builtin_ia32_palignr256: 4136 case X86::BI__builtin_ia32_palignr512: 4137 case X86::BI__builtin_ia32_alignq512: 4138 case X86::BI__builtin_ia32_alignd512: 4139 case X86::BI__builtin_ia32_alignd128: 4140 case X86::BI__builtin_ia32_alignd256: 4141 case X86::BI__builtin_ia32_alignq128: 4142 case X86::BI__builtin_ia32_alignq256: 4143 case X86::BI__builtin_ia32_vcomisd: 4144 case X86::BI__builtin_ia32_vcomiss: 4145 case X86::BI__builtin_ia32_shuf_f32x4: 4146 case X86::BI__builtin_ia32_shuf_f64x2: 4147 case X86::BI__builtin_ia32_shuf_i32x4: 4148 case X86::BI__builtin_ia32_shuf_i64x2: 4149 case X86::BI__builtin_ia32_shufpd512: 4150 case X86::BI__builtin_ia32_shufps: 4151 case X86::BI__builtin_ia32_shufps256: 4152 case X86::BI__builtin_ia32_shufps512: 4153 case X86::BI__builtin_ia32_dbpsadbw128: 4154 case X86::BI__builtin_ia32_dbpsadbw256: 4155 case X86::BI__builtin_ia32_dbpsadbw512: 4156 case X86::BI__builtin_ia32_vpshldd128: 4157 case X86::BI__builtin_ia32_vpshldd256: 4158 case X86::BI__builtin_ia32_vpshldd512: 4159 case X86::BI__builtin_ia32_vpshldq128: 4160 case X86::BI__builtin_ia32_vpshldq256: 4161 case X86::BI__builtin_ia32_vpshldq512: 4162 case X86::BI__builtin_ia32_vpshldw128: 4163 case X86::BI__builtin_ia32_vpshldw256: 4164 case X86::BI__builtin_ia32_vpshldw512: 4165 case X86::BI__builtin_ia32_vpshrdd128: 4166 case X86::BI__builtin_ia32_vpshrdd256: 4167 case X86::BI__builtin_ia32_vpshrdd512: 4168 case X86::BI__builtin_ia32_vpshrdq128: 4169 case X86::BI__builtin_ia32_vpshrdq256: 4170 case X86::BI__builtin_ia32_vpshrdq512: 4171 case X86::BI__builtin_ia32_vpshrdw128: 4172 case X86::BI__builtin_ia32_vpshrdw256: 4173 case X86::BI__builtin_ia32_vpshrdw512: 4174 i = 2; l = 0; u = 255; 4175 break; 4176 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4177 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4178 case X86::BI__builtin_ia32_fixupimmps512_mask: 4179 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4180 case X86::BI__builtin_ia32_fixupimmsd_mask: 4181 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4182 case X86::BI__builtin_ia32_fixupimmss_mask: 4183 case X86::BI__builtin_ia32_fixupimmss_maskz: 4184 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4185 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4186 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4187 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4188 case X86::BI__builtin_ia32_fixupimmps128_mask: 4189 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4190 case X86::BI__builtin_ia32_fixupimmps256_mask: 4191 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4192 case X86::BI__builtin_ia32_pternlogd512_mask: 4193 case X86::BI__builtin_ia32_pternlogd512_maskz: 4194 case X86::BI__builtin_ia32_pternlogq512_mask: 4195 case X86::BI__builtin_ia32_pternlogq512_maskz: 4196 case X86::BI__builtin_ia32_pternlogd128_mask: 4197 case X86::BI__builtin_ia32_pternlogd128_maskz: 4198 case X86::BI__builtin_ia32_pternlogd256_mask: 4199 case X86::BI__builtin_ia32_pternlogd256_maskz: 4200 case X86::BI__builtin_ia32_pternlogq128_mask: 4201 case X86::BI__builtin_ia32_pternlogq128_maskz: 4202 case X86::BI__builtin_ia32_pternlogq256_mask: 4203 case X86::BI__builtin_ia32_pternlogq256_maskz: 4204 i = 3; l = 0; u = 255; 4205 break; 4206 case X86::BI__builtin_ia32_gatherpfdpd: 4207 case X86::BI__builtin_ia32_gatherpfdps: 4208 case X86::BI__builtin_ia32_gatherpfqpd: 4209 case X86::BI__builtin_ia32_gatherpfqps: 4210 case X86::BI__builtin_ia32_scatterpfdpd: 4211 case X86::BI__builtin_ia32_scatterpfdps: 4212 case X86::BI__builtin_ia32_scatterpfqpd: 4213 case X86::BI__builtin_ia32_scatterpfqps: 4214 i = 4; l = 2; u = 3; 4215 break; 4216 case X86::BI__builtin_ia32_reducesd_mask: 4217 case X86::BI__builtin_ia32_reducess_mask: 4218 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4219 case X86::BI__builtin_ia32_rndscaless_round_mask: 4220 i = 4; l = 0; u = 255; 4221 break; 4222 } 4223 4224 // Note that we don't force a hard error on the range check here, allowing 4225 // template-generated or macro-generated dead code to potentially have out-of- 4226 // range values. These need to code generate, but don't need to necessarily 4227 // make any sense. We use a warning that defaults to an error. 4228 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4229 } 4230 4231 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4232 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4233 /// Returns true when the format fits the function and the FormatStringInfo has 4234 /// been populated. 4235 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4236 FormatStringInfo *FSI) { 4237 FSI->HasVAListArg = Format->getFirstArg() == 0; 4238 FSI->FormatIdx = Format->getFormatIdx() - 1; 4239 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4240 4241 // The way the format attribute works in GCC, the implicit this argument 4242 // of member functions is counted. However, it doesn't appear in our own 4243 // lists, so decrement format_idx in that case. 4244 if (IsCXXMember) { 4245 if(FSI->FormatIdx == 0) 4246 return false; 4247 --FSI->FormatIdx; 4248 if (FSI->FirstDataArg != 0) 4249 --FSI->FirstDataArg; 4250 } 4251 return true; 4252 } 4253 4254 /// Checks if a the given expression evaluates to null. 4255 /// 4256 /// Returns true if the value evaluates to null. 4257 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4258 // If the expression has non-null type, it doesn't evaluate to null. 4259 if (auto nullability 4260 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4261 if (*nullability == NullabilityKind::NonNull) 4262 return false; 4263 } 4264 4265 // As a special case, transparent unions initialized with zero are 4266 // considered null for the purposes of the nonnull attribute. 4267 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4268 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4269 if (const CompoundLiteralExpr *CLE = 4270 dyn_cast<CompoundLiteralExpr>(Expr)) 4271 if (const InitListExpr *ILE = 4272 dyn_cast<InitListExpr>(CLE->getInitializer())) 4273 Expr = ILE->getInit(0); 4274 } 4275 4276 bool Result; 4277 return (!Expr->isValueDependent() && 4278 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4279 !Result); 4280 } 4281 4282 static void CheckNonNullArgument(Sema &S, 4283 const Expr *ArgExpr, 4284 SourceLocation CallSiteLoc) { 4285 if (CheckNonNullExpr(S, ArgExpr)) 4286 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4287 S.PDiag(diag::warn_null_arg) 4288 << ArgExpr->getSourceRange()); 4289 } 4290 4291 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4292 FormatStringInfo FSI; 4293 if ((GetFormatStringType(Format) == FST_NSString) && 4294 getFormatStringInfo(Format, false, &FSI)) { 4295 Idx = FSI.FormatIdx; 4296 return true; 4297 } 4298 return false; 4299 } 4300 4301 /// Diagnose use of %s directive in an NSString which is being passed 4302 /// as formatting string to formatting method. 4303 static void 4304 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4305 const NamedDecl *FDecl, 4306 Expr **Args, 4307 unsigned NumArgs) { 4308 unsigned Idx = 0; 4309 bool Format = false; 4310 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4311 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4312 Idx = 2; 4313 Format = true; 4314 } 4315 else 4316 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4317 if (S.GetFormatNSStringIdx(I, Idx)) { 4318 Format = true; 4319 break; 4320 } 4321 } 4322 if (!Format || NumArgs <= Idx) 4323 return; 4324 const Expr *FormatExpr = Args[Idx]; 4325 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4326 FormatExpr = CSCE->getSubExpr(); 4327 const StringLiteral *FormatString; 4328 if (const ObjCStringLiteral *OSL = 4329 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4330 FormatString = OSL->getString(); 4331 else 4332 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4333 if (!FormatString) 4334 return; 4335 if (S.FormatStringHasSArg(FormatString)) { 4336 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4337 << "%s" << 1 << 1; 4338 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4339 << FDecl->getDeclName(); 4340 } 4341 } 4342 4343 /// Determine whether the given type has a non-null nullability annotation. 4344 static bool isNonNullType(ASTContext &ctx, QualType type) { 4345 if (auto nullability = type->getNullability(ctx)) 4346 return *nullability == NullabilityKind::NonNull; 4347 4348 return false; 4349 } 4350 4351 static void CheckNonNullArguments(Sema &S, 4352 const NamedDecl *FDecl, 4353 const FunctionProtoType *Proto, 4354 ArrayRef<const Expr *> Args, 4355 SourceLocation CallSiteLoc) { 4356 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4357 4358 // Already checked by by constant evaluator. 4359 if (S.isConstantEvaluated()) 4360 return; 4361 // Check the attributes attached to the method/function itself. 4362 llvm::SmallBitVector NonNullArgs; 4363 if (FDecl) { 4364 // Handle the nonnull attribute on the function/method declaration itself. 4365 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4366 if (!NonNull->args_size()) { 4367 // Easy case: all pointer arguments are nonnull. 4368 for (const auto *Arg : Args) 4369 if (S.isValidPointerAttrType(Arg->getType())) 4370 CheckNonNullArgument(S, Arg, CallSiteLoc); 4371 return; 4372 } 4373 4374 for (const ParamIdx &Idx : NonNull->args()) { 4375 unsigned IdxAST = Idx.getASTIndex(); 4376 if (IdxAST >= Args.size()) 4377 continue; 4378 if (NonNullArgs.empty()) 4379 NonNullArgs.resize(Args.size()); 4380 NonNullArgs.set(IdxAST); 4381 } 4382 } 4383 } 4384 4385 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4386 // Handle the nonnull attribute on the parameters of the 4387 // function/method. 4388 ArrayRef<ParmVarDecl*> parms; 4389 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4390 parms = FD->parameters(); 4391 else 4392 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4393 4394 unsigned ParamIndex = 0; 4395 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4396 I != E; ++I, ++ParamIndex) { 4397 const ParmVarDecl *PVD = *I; 4398 if (PVD->hasAttr<NonNullAttr>() || 4399 isNonNullType(S.Context, PVD->getType())) { 4400 if (NonNullArgs.empty()) 4401 NonNullArgs.resize(Args.size()); 4402 4403 NonNullArgs.set(ParamIndex); 4404 } 4405 } 4406 } else { 4407 // If we have a non-function, non-method declaration but no 4408 // function prototype, try to dig out the function prototype. 4409 if (!Proto) { 4410 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4411 QualType type = VD->getType().getNonReferenceType(); 4412 if (auto pointerType = type->getAs<PointerType>()) 4413 type = pointerType->getPointeeType(); 4414 else if (auto blockType = type->getAs<BlockPointerType>()) 4415 type = blockType->getPointeeType(); 4416 // FIXME: data member pointers? 4417 4418 // Dig out the function prototype, if there is one. 4419 Proto = type->getAs<FunctionProtoType>(); 4420 } 4421 } 4422 4423 // Fill in non-null argument information from the nullability 4424 // information on the parameter types (if we have them). 4425 if (Proto) { 4426 unsigned Index = 0; 4427 for (auto paramType : Proto->getParamTypes()) { 4428 if (isNonNullType(S.Context, paramType)) { 4429 if (NonNullArgs.empty()) 4430 NonNullArgs.resize(Args.size()); 4431 4432 NonNullArgs.set(Index); 4433 } 4434 4435 ++Index; 4436 } 4437 } 4438 } 4439 4440 // Check for non-null arguments. 4441 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4442 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4443 if (NonNullArgs[ArgIndex]) 4444 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4445 } 4446 } 4447 4448 /// Handles the checks for format strings, non-POD arguments to vararg 4449 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4450 /// attributes. 4451 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4452 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4453 bool IsMemberFunction, SourceLocation Loc, 4454 SourceRange Range, VariadicCallType CallType) { 4455 // FIXME: We should check as much as we can in the template definition. 4456 if (CurContext->isDependentContext()) 4457 return; 4458 4459 // Printf and scanf checking. 4460 llvm::SmallBitVector CheckedVarArgs; 4461 if (FDecl) { 4462 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4463 // Only create vector if there are format attributes. 4464 CheckedVarArgs.resize(Args.size()); 4465 4466 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4467 CheckedVarArgs); 4468 } 4469 } 4470 4471 // Refuse POD arguments that weren't caught by the format string 4472 // checks above. 4473 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4474 if (CallType != VariadicDoesNotApply && 4475 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4476 unsigned NumParams = Proto ? Proto->getNumParams() 4477 : FDecl && isa<FunctionDecl>(FDecl) 4478 ? cast<FunctionDecl>(FDecl)->getNumParams() 4479 : FDecl && isa<ObjCMethodDecl>(FDecl) 4480 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4481 : 0; 4482 4483 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4484 // Args[ArgIdx] can be null in malformed code. 4485 if (const Expr *Arg = Args[ArgIdx]) { 4486 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4487 checkVariadicArgument(Arg, CallType); 4488 } 4489 } 4490 } 4491 4492 if (FDecl || Proto) { 4493 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4494 4495 // Type safety checking. 4496 if (FDecl) { 4497 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4498 CheckArgumentWithTypeTag(I, Args, Loc); 4499 } 4500 } 4501 4502 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4503 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4504 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4505 if (!Arg->isValueDependent()) { 4506 Expr::EvalResult Align; 4507 if (Arg->EvaluateAsInt(Align, Context)) { 4508 const llvm::APSInt &I = Align.Val.getInt(); 4509 if (!I.isPowerOf2()) 4510 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4511 << Arg->getSourceRange(); 4512 4513 if (I > Sema::MaximumAlignment) 4514 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4515 << Arg->getSourceRange() << Sema::MaximumAlignment; 4516 } 4517 } 4518 } 4519 4520 if (FD) 4521 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4522 } 4523 4524 /// CheckConstructorCall - Check a constructor call for correctness and safety 4525 /// properties not enforced by the C type system. 4526 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4527 ArrayRef<const Expr *> Args, 4528 const FunctionProtoType *Proto, 4529 SourceLocation Loc) { 4530 VariadicCallType CallType = 4531 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4532 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4533 Loc, SourceRange(), CallType); 4534 } 4535 4536 /// CheckFunctionCall - Check a direct function call for various correctness 4537 /// and safety properties not strictly enforced by the C type system. 4538 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4539 const FunctionProtoType *Proto) { 4540 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4541 isa<CXXMethodDecl>(FDecl); 4542 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4543 IsMemberOperatorCall; 4544 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4545 TheCall->getCallee()); 4546 Expr** Args = TheCall->getArgs(); 4547 unsigned NumArgs = TheCall->getNumArgs(); 4548 4549 Expr *ImplicitThis = nullptr; 4550 if (IsMemberOperatorCall) { 4551 // If this is a call to a member operator, hide the first argument 4552 // from checkCall. 4553 // FIXME: Our choice of AST representation here is less than ideal. 4554 ImplicitThis = Args[0]; 4555 ++Args; 4556 --NumArgs; 4557 } else if (IsMemberFunction) 4558 ImplicitThis = 4559 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4560 4561 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4562 IsMemberFunction, TheCall->getRParenLoc(), 4563 TheCall->getCallee()->getSourceRange(), CallType); 4564 4565 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4566 // None of the checks below are needed for functions that don't have 4567 // simple names (e.g., C++ conversion functions). 4568 if (!FnInfo) 4569 return false; 4570 4571 CheckAbsoluteValueFunction(TheCall, FDecl); 4572 CheckMaxUnsignedZero(TheCall, FDecl); 4573 4574 if (getLangOpts().ObjC) 4575 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4576 4577 unsigned CMId = FDecl->getMemoryFunctionKind(); 4578 4579 // Handle memory setting and copying functions. 4580 switch (CMId) { 4581 case 0: 4582 return false; 4583 case Builtin::BIstrlcpy: // fallthrough 4584 case Builtin::BIstrlcat: 4585 CheckStrlcpycatArguments(TheCall, FnInfo); 4586 break; 4587 case Builtin::BIstrncat: 4588 CheckStrncatArguments(TheCall, FnInfo); 4589 break; 4590 case Builtin::BIfree: 4591 CheckFreeArguments(TheCall); 4592 break; 4593 default: 4594 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4595 } 4596 4597 return false; 4598 } 4599 4600 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4601 ArrayRef<const Expr *> Args) { 4602 VariadicCallType CallType = 4603 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4604 4605 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4606 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4607 CallType); 4608 4609 return false; 4610 } 4611 4612 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4613 const FunctionProtoType *Proto) { 4614 QualType Ty; 4615 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4616 Ty = V->getType().getNonReferenceType(); 4617 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4618 Ty = F->getType().getNonReferenceType(); 4619 else 4620 return false; 4621 4622 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4623 !Ty->isFunctionProtoType()) 4624 return false; 4625 4626 VariadicCallType CallType; 4627 if (!Proto || !Proto->isVariadic()) { 4628 CallType = VariadicDoesNotApply; 4629 } else if (Ty->isBlockPointerType()) { 4630 CallType = VariadicBlock; 4631 } else { // Ty->isFunctionPointerType() 4632 CallType = VariadicFunction; 4633 } 4634 4635 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4636 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4637 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4638 TheCall->getCallee()->getSourceRange(), CallType); 4639 4640 return false; 4641 } 4642 4643 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4644 /// such as function pointers returned from functions. 4645 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4646 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4647 TheCall->getCallee()); 4648 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4649 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4650 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4651 TheCall->getCallee()->getSourceRange(), CallType); 4652 4653 return false; 4654 } 4655 4656 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4657 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4658 return false; 4659 4660 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4661 switch (Op) { 4662 case AtomicExpr::AO__c11_atomic_init: 4663 case AtomicExpr::AO__opencl_atomic_init: 4664 llvm_unreachable("There is no ordering argument for an init"); 4665 4666 case AtomicExpr::AO__c11_atomic_load: 4667 case AtomicExpr::AO__opencl_atomic_load: 4668 case AtomicExpr::AO__atomic_load_n: 4669 case AtomicExpr::AO__atomic_load: 4670 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4671 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4672 4673 case AtomicExpr::AO__c11_atomic_store: 4674 case AtomicExpr::AO__opencl_atomic_store: 4675 case AtomicExpr::AO__atomic_store: 4676 case AtomicExpr::AO__atomic_store_n: 4677 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4678 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4679 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4680 4681 default: 4682 return true; 4683 } 4684 } 4685 4686 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4687 AtomicExpr::AtomicOp Op) { 4688 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4689 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4690 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4691 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4692 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4693 Op); 4694 } 4695 4696 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4697 SourceLocation RParenLoc, MultiExprArg Args, 4698 AtomicExpr::AtomicOp Op, 4699 AtomicArgumentOrder ArgOrder) { 4700 // All the non-OpenCL operations take one of the following forms. 4701 // The OpenCL operations take the __c11 forms with one extra argument for 4702 // synchronization scope. 4703 enum { 4704 // C __c11_atomic_init(A *, C) 4705 Init, 4706 4707 // C __c11_atomic_load(A *, int) 4708 Load, 4709 4710 // void __atomic_load(A *, CP, int) 4711 LoadCopy, 4712 4713 // void __atomic_store(A *, CP, int) 4714 Copy, 4715 4716 // C __c11_atomic_add(A *, M, int) 4717 Arithmetic, 4718 4719 // C __atomic_exchange_n(A *, CP, int) 4720 Xchg, 4721 4722 // void __atomic_exchange(A *, C *, CP, int) 4723 GNUXchg, 4724 4725 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4726 C11CmpXchg, 4727 4728 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4729 GNUCmpXchg 4730 } Form = Init; 4731 4732 const unsigned NumForm = GNUCmpXchg + 1; 4733 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4734 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4735 // where: 4736 // C is an appropriate type, 4737 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4738 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4739 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4740 // the int parameters are for orderings. 4741 4742 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4743 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4744 "need to update code for modified forms"); 4745 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4746 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4747 AtomicExpr::AO__atomic_load, 4748 "need to update code for modified C11 atomics"); 4749 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4750 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4751 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4752 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4753 IsOpenCL; 4754 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4755 Op == AtomicExpr::AO__atomic_store_n || 4756 Op == AtomicExpr::AO__atomic_exchange_n || 4757 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4758 bool IsAddSub = false; 4759 4760 switch (Op) { 4761 case AtomicExpr::AO__c11_atomic_init: 4762 case AtomicExpr::AO__opencl_atomic_init: 4763 Form = Init; 4764 break; 4765 4766 case AtomicExpr::AO__c11_atomic_load: 4767 case AtomicExpr::AO__opencl_atomic_load: 4768 case AtomicExpr::AO__atomic_load_n: 4769 Form = Load; 4770 break; 4771 4772 case AtomicExpr::AO__atomic_load: 4773 Form = LoadCopy; 4774 break; 4775 4776 case AtomicExpr::AO__c11_atomic_store: 4777 case AtomicExpr::AO__opencl_atomic_store: 4778 case AtomicExpr::AO__atomic_store: 4779 case AtomicExpr::AO__atomic_store_n: 4780 Form = Copy; 4781 break; 4782 4783 case AtomicExpr::AO__c11_atomic_fetch_add: 4784 case AtomicExpr::AO__c11_atomic_fetch_sub: 4785 case AtomicExpr::AO__opencl_atomic_fetch_add: 4786 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4787 case AtomicExpr::AO__atomic_fetch_add: 4788 case AtomicExpr::AO__atomic_fetch_sub: 4789 case AtomicExpr::AO__atomic_add_fetch: 4790 case AtomicExpr::AO__atomic_sub_fetch: 4791 IsAddSub = true; 4792 LLVM_FALLTHROUGH; 4793 case AtomicExpr::AO__c11_atomic_fetch_and: 4794 case AtomicExpr::AO__c11_atomic_fetch_or: 4795 case AtomicExpr::AO__c11_atomic_fetch_xor: 4796 case AtomicExpr::AO__opencl_atomic_fetch_and: 4797 case AtomicExpr::AO__opencl_atomic_fetch_or: 4798 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4799 case AtomicExpr::AO__atomic_fetch_and: 4800 case AtomicExpr::AO__atomic_fetch_or: 4801 case AtomicExpr::AO__atomic_fetch_xor: 4802 case AtomicExpr::AO__atomic_fetch_nand: 4803 case AtomicExpr::AO__atomic_and_fetch: 4804 case AtomicExpr::AO__atomic_or_fetch: 4805 case AtomicExpr::AO__atomic_xor_fetch: 4806 case AtomicExpr::AO__atomic_nand_fetch: 4807 case AtomicExpr::AO__c11_atomic_fetch_min: 4808 case AtomicExpr::AO__c11_atomic_fetch_max: 4809 case AtomicExpr::AO__opencl_atomic_fetch_min: 4810 case AtomicExpr::AO__opencl_atomic_fetch_max: 4811 case AtomicExpr::AO__atomic_min_fetch: 4812 case AtomicExpr::AO__atomic_max_fetch: 4813 case AtomicExpr::AO__atomic_fetch_min: 4814 case AtomicExpr::AO__atomic_fetch_max: 4815 Form = Arithmetic; 4816 break; 4817 4818 case AtomicExpr::AO__c11_atomic_exchange: 4819 case AtomicExpr::AO__opencl_atomic_exchange: 4820 case AtomicExpr::AO__atomic_exchange_n: 4821 Form = Xchg; 4822 break; 4823 4824 case AtomicExpr::AO__atomic_exchange: 4825 Form = GNUXchg; 4826 break; 4827 4828 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4829 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4830 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4831 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4832 Form = C11CmpXchg; 4833 break; 4834 4835 case AtomicExpr::AO__atomic_compare_exchange: 4836 case AtomicExpr::AO__atomic_compare_exchange_n: 4837 Form = GNUCmpXchg; 4838 break; 4839 } 4840 4841 unsigned AdjustedNumArgs = NumArgs[Form]; 4842 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4843 ++AdjustedNumArgs; 4844 // Check we have the right number of arguments. 4845 if (Args.size() < AdjustedNumArgs) { 4846 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4847 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4848 << ExprRange; 4849 return ExprError(); 4850 } else if (Args.size() > AdjustedNumArgs) { 4851 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4852 diag::err_typecheck_call_too_many_args) 4853 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4854 << ExprRange; 4855 return ExprError(); 4856 } 4857 4858 // Inspect the first argument of the atomic operation. 4859 Expr *Ptr = Args[0]; 4860 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4861 if (ConvertedPtr.isInvalid()) 4862 return ExprError(); 4863 4864 Ptr = ConvertedPtr.get(); 4865 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4866 if (!pointerType) { 4867 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4868 << Ptr->getType() << Ptr->getSourceRange(); 4869 return ExprError(); 4870 } 4871 4872 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4873 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4874 QualType ValType = AtomTy; // 'C' 4875 if (IsC11) { 4876 if (!AtomTy->isAtomicType()) { 4877 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4878 << Ptr->getType() << Ptr->getSourceRange(); 4879 return ExprError(); 4880 } 4881 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4882 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4883 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4884 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4885 << Ptr->getSourceRange(); 4886 return ExprError(); 4887 } 4888 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4889 } else if (Form != Load && Form != LoadCopy) { 4890 if (ValType.isConstQualified()) { 4891 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4892 << Ptr->getType() << Ptr->getSourceRange(); 4893 return ExprError(); 4894 } 4895 } 4896 4897 // For an arithmetic operation, the implied arithmetic must be well-formed. 4898 if (Form == Arithmetic) { 4899 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4900 if (IsAddSub && !ValType->isIntegerType() 4901 && !ValType->isPointerType()) { 4902 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4903 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4904 return ExprError(); 4905 } 4906 if (!IsAddSub && !ValType->isIntegerType()) { 4907 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 4908 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4909 return ExprError(); 4910 } 4911 if (IsC11 && ValType->isPointerType() && 4912 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4913 diag::err_incomplete_type)) { 4914 return ExprError(); 4915 } 4916 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4917 // For __atomic_*_n operations, the value type must be a scalar integral or 4918 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4919 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4920 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4921 return ExprError(); 4922 } 4923 4924 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4925 !AtomTy->isScalarType()) { 4926 // For GNU atomics, require a trivially-copyable type. This is not part of 4927 // the GNU atomics specification, but we enforce it for sanity. 4928 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4929 << Ptr->getType() << Ptr->getSourceRange(); 4930 return ExprError(); 4931 } 4932 4933 switch (ValType.getObjCLifetime()) { 4934 case Qualifiers::OCL_None: 4935 case Qualifiers::OCL_ExplicitNone: 4936 // okay 4937 break; 4938 4939 case Qualifiers::OCL_Weak: 4940 case Qualifiers::OCL_Strong: 4941 case Qualifiers::OCL_Autoreleasing: 4942 // FIXME: Can this happen? By this point, ValType should be known 4943 // to be trivially copyable. 4944 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4945 << ValType << Ptr->getSourceRange(); 4946 return ExprError(); 4947 } 4948 4949 // All atomic operations have an overload which takes a pointer to a volatile 4950 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4951 // into the result or the other operands. Similarly atomic_load takes a 4952 // pointer to a const 'A'. 4953 ValType.removeLocalVolatile(); 4954 ValType.removeLocalConst(); 4955 QualType ResultType = ValType; 4956 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4957 Form == Init) 4958 ResultType = Context.VoidTy; 4959 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4960 ResultType = Context.BoolTy; 4961 4962 // The type of a parameter passed 'by value'. In the GNU atomics, such 4963 // arguments are actually passed as pointers. 4964 QualType ByValType = ValType; // 'CP' 4965 bool IsPassedByAddress = false; 4966 if (!IsC11 && !IsN) { 4967 ByValType = Ptr->getType(); 4968 IsPassedByAddress = true; 4969 } 4970 4971 SmallVector<Expr *, 5> APIOrderedArgs; 4972 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4973 APIOrderedArgs.push_back(Args[0]); 4974 switch (Form) { 4975 case Init: 4976 case Load: 4977 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4978 break; 4979 case LoadCopy: 4980 case Copy: 4981 case Arithmetic: 4982 case Xchg: 4983 APIOrderedArgs.push_back(Args[2]); // Val1 4984 APIOrderedArgs.push_back(Args[1]); // Order 4985 break; 4986 case GNUXchg: 4987 APIOrderedArgs.push_back(Args[2]); // Val1 4988 APIOrderedArgs.push_back(Args[3]); // Val2 4989 APIOrderedArgs.push_back(Args[1]); // Order 4990 break; 4991 case C11CmpXchg: 4992 APIOrderedArgs.push_back(Args[2]); // Val1 4993 APIOrderedArgs.push_back(Args[4]); // Val2 4994 APIOrderedArgs.push_back(Args[1]); // Order 4995 APIOrderedArgs.push_back(Args[3]); // OrderFail 4996 break; 4997 case GNUCmpXchg: 4998 APIOrderedArgs.push_back(Args[2]); // Val1 4999 APIOrderedArgs.push_back(Args[4]); // Val2 5000 APIOrderedArgs.push_back(Args[5]); // Weak 5001 APIOrderedArgs.push_back(Args[1]); // Order 5002 APIOrderedArgs.push_back(Args[3]); // OrderFail 5003 break; 5004 } 5005 } else 5006 APIOrderedArgs.append(Args.begin(), Args.end()); 5007 5008 // The first argument's non-CV pointer type is used to deduce the type of 5009 // subsequent arguments, except for: 5010 // - weak flag (always converted to bool) 5011 // - memory order (always converted to int) 5012 // - scope (always converted to int) 5013 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5014 QualType Ty; 5015 if (i < NumVals[Form] + 1) { 5016 switch (i) { 5017 case 0: 5018 // The first argument is always a pointer. It has a fixed type. 5019 // It is always dereferenced, a nullptr is undefined. 5020 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5021 // Nothing else to do: we already know all we want about this pointer. 5022 continue; 5023 case 1: 5024 // The second argument is the non-atomic operand. For arithmetic, this 5025 // is always passed by value, and for a compare_exchange it is always 5026 // passed by address. For the rest, GNU uses by-address and C11 uses 5027 // by-value. 5028 assert(Form != Load); 5029 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 5030 Ty = ValType; 5031 else if (Form == Copy || Form == Xchg) { 5032 if (IsPassedByAddress) { 5033 // The value pointer is always dereferenced, a nullptr is undefined. 5034 CheckNonNullArgument(*this, APIOrderedArgs[i], 5035 ExprRange.getBegin()); 5036 } 5037 Ty = ByValType; 5038 } else if (Form == Arithmetic) 5039 Ty = Context.getPointerDiffType(); 5040 else { 5041 Expr *ValArg = APIOrderedArgs[i]; 5042 // The value pointer is always dereferenced, a nullptr is undefined. 5043 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 5044 LangAS AS = LangAS::Default; 5045 // Keep address space of non-atomic pointer type. 5046 if (const PointerType *PtrTy = 5047 ValArg->getType()->getAs<PointerType>()) { 5048 AS = PtrTy->getPointeeType().getAddressSpace(); 5049 } 5050 Ty = Context.getPointerType( 5051 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 5052 } 5053 break; 5054 case 2: 5055 // The third argument to compare_exchange / GNU exchange is the desired 5056 // value, either by-value (for the C11 and *_n variant) or as a pointer. 5057 if (IsPassedByAddress) 5058 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5059 Ty = ByValType; 5060 break; 5061 case 3: 5062 // The fourth argument to GNU compare_exchange is a 'weak' flag. 5063 Ty = Context.BoolTy; 5064 break; 5065 } 5066 } else { 5067 // The order(s) and scope are always converted to int. 5068 Ty = Context.IntTy; 5069 } 5070 5071 InitializedEntity Entity = 5072 InitializedEntity::InitializeParameter(Context, Ty, false); 5073 ExprResult Arg = APIOrderedArgs[i]; 5074 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5075 if (Arg.isInvalid()) 5076 return true; 5077 APIOrderedArgs[i] = Arg.get(); 5078 } 5079 5080 // Permute the arguments into a 'consistent' order. 5081 SmallVector<Expr*, 5> SubExprs; 5082 SubExprs.push_back(Ptr); 5083 switch (Form) { 5084 case Init: 5085 // Note, AtomicExpr::getVal1() has a special case for this atomic. 5086 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5087 break; 5088 case Load: 5089 SubExprs.push_back(APIOrderedArgs[1]); // Order 5090 break; 5091 case LoadCopy: 5092 case Copy: 5093 case Arithmetic: 5094 case Xchg: 5095 SubExprs.push_back(APIOrderedArgs[2]); // Order 5096 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5097 break; 5098 case GNUXchg: 5099 // Note, AtomicExpr::getVal2() has a special case for this atomic. 5100 SubExprs.push_back(APIOrderedArgs[3]); // Order 5101 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5102 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5103 break; 5104 case C11CmpXchg: 5105 SubExprs.push_back(APIOrderedArgs[3]); // Order 5106 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5107 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 5108 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5109 break; 5110 case GNUCmpXchg: 5111 SubExprs.push_back(APIOrderedArgs[4]); // Order 5112 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5113 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 5114 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5115 SubExprs.push_back(APIOrderedArgs[3]); // Weak 5116 break; 5117 } 5118 5119 if (SubExprs.size() >= 2 && Form != Init) { 5120 if (Optional<llvm::APSInt> Result = 5121 SubExprs[1]->getIntegerConstantExpr(Context)) 5122 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 5123 Diag(SubExprs[1]->getBeginLoc(), 5124 diag::warn_atomic_op_has_invalid_memory_order) 5125 << SubExprs[1]->getSourceRange(); 5126 } 5127 5128 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 5129 auto *Scope = Args[Args.size() - 1]; 5130 if (Optional<llvm::APSInt> Result = 5131 Scope->getIntegerConstantExpr(Context)) { 5132 if (!ScopeModel->isValid(Result->getZExtValue())) 5133 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 5134 << Scope->getSourceRange(); 5135 } 5136 SubExprs.push_back(Scope); 5137 } 5138 5139 AtomicExpr *AE = new (Context) 5140 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 5141 5142 if ((Op == AtomicExpr::AO__c11_atomic_load || 5143 Op == AtomicExpr::AO__c11_atomic_store || 5144 Op == AtomicExpr::AO__opencl_atomic_load || 5145 Op == AtomicExpr::AO__opencl_atomic_store ) && 5146 Context.AtomicUsesUnsupportedLibcall(AE)) 5147 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 5148 << ((Op == AtomicExpr::AO__c11_atomic_load || 5149 Op == AtomicExpr::AO__opencl_atomic_load) 5150 ? 0 5151 : 1); 5152 5153 if (ValType->isExtIntType()) { 5154 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 5155 return ExprError(); 5156 } 5157 5158 return AE; 5159 } 5160 5161 /// checkBuiltinArgument - Given a call to a builtin function, perform 5162 /// normal type-checking on the given argument, updating the call in 5163 /// place. This is useful when a builtin function requires custom 5164 /// type-checking for some of its arguments but not necessarily all of 5165 /// them. 5166 /// 5167 /// Returns true on error. 5168 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 5169 FunctionDecl *Fn = E->getDirectCallee(); 5170 assert(Fn && "builtin call without direct callee!"); 5171 5172 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 5173 InitializedEntity Entity = 5174 InitializedEntity::InitializeParameter(S.Context, Param); 5175 5176 ExprResult Arg = E->getArg(0); 5177 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 5178 if (Arg.isInvalid()) 5179 return true; 5180 5181 E->setArg(ArgIndex, Arg.get()); 5182 return false; 5183 } 5184 5185 /// We have a call to a function like __sync_fetch_and_add, which is an 5186 /// overloaded function based on the pointer type of its first argument. 5187 /// The main BuildCallExpr routines have already promoted the types of 5188 /// arguments because all of these calls are prototyped as void(...). 5189 /// 5190 /// This function goes through and does final semantic checking for these 5191 /// builtins, as well as generating any warnings. 5192 ExprResult 5193 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5194 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5195 Expr *Callee = TheCall->getCallee(); 5196 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5197 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5198 5199 // Ensure that we have at least one argument to do type inference from. 5200 if (TheCall->getNumArgs() < 1) { 5201 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5202 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5203 return ExprError(); 5204 } 5205 5206 // Inspect the first argument of the atomic builtin. This should always be 5207 // a pointer type, whose element is an integral scalar or pointer type. 5208 // Because it is a pointer type, we don't have to worry about any implicit 5209 // casts here. 5210 // FIXME: We don't allow floating point scalars as input. 5211 Expr *FirstArg = TheCall->getArg(0); 5212 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5213 if (FirstArgResult.isInvalid()) 5214 return ExprError(); 5215 FirstArg = FirstArgResult.get(); 5216 TheCall->setArg(0, FirstArg); 5217 5218 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5219 if (!pointerType) { 5220 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5221 << FirstArg->getType() << FirstArg->getSourceRange(); 5222 return ExprError(); 5223 } 5224 5225 QualType ValType = pointerType->getPointeeType(); 5226 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5227 !ValType->isBlockPointerType()) { 5228 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5229 << FirstArg->getType() << FirstArg->getSourceRange(); 5230 return ExprError(); 5231 } 5232 5233 if (ValType.isConstQualified()) { 5234 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5235 << FirstArg->getType() << FirstArg->getSourceRange(); 5236 return ExprError(); 5237 } 5238 5239 switch (ValType.getObjCLifetime()) { 5240 case Qualifiers::OCL_None: 5241 case Qualifiers::OCL_ExplicitNone: 5242 // okay 5243 break; 5244 5245 case Qualifiers::OCL_Weak: 5246 case Qualifiers::OCL_Strong: 5247 case Qualifiers::OCL_Autoreleasing: 5248 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5249 << ValType << FirstArg->getSourceRange(); 5250 return ExprError(); 5251 } 5252 5253 // Strip any qualifiers off ValType. 5254 ValType = ValType.getUnqualifiedType(); 5255 5256 // The majority of builtins return a value, but a few have special return 5257 // types, so allow them to override appropriately below. 5258 QualType ResultType = ValType; 5259 5260 // We need to figure out which concrete builtin this maps onto. For example, 5261 // __sync_fetch_and_add with a 2 byte object turns into 5262 // __sync_fetch_and_add_2. 5263 #define BUILTIN_ROW(x) \ 5264 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5265 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5266 5267 static const unsigned BuiltinIndices[][5] = { 5268 BUILTIN_ROW(__sync_fetch_and_add), 5269 BUILTIN_ROW(__sync_fetch_and_sub), 5270 BUILTIN_ROW(__sync_fetch_and_or), 5271 BUILTIN_ROW(__sync_fetch_and_and), 5272 BUILTIN_ROW(__sync_fetch_and_xor), 5273 BUILTIN_ROW(__sync_fetch_and_nand), 5274 5275 BUILTIN_ROW(__sync_add_and_fetch), 5276 BUILTIN_ROW(__sync_sub_and_fetch), 5277 BUILTIN_ROW(__sync_and_and_fetch), 5278 BUILTIN_ROW(__sync_or_and_fetch), 5279 BUILTIN_ROW(__sync_xor_and_fetch), 5280 BUILTIN_ROW(__sync_nand_and_fetch), 5281 5282 BUILTIN_ROW(__sync_val_compare_and_swap), 5283 BUILTIN_ROW(__sync_bool_compare_and_swap), 5284 BUILTIN_ROW(__sync_lock_test_and_set), 5285 BUILTIN_ROW(__sync_lock_release), 5286 BUILTIN_ROW(__sync_swap) 5287 }; 5288 #undef BUILTIN_ROW 5289 5290 // Determine the index of the size. 5291 unsigned SizeIndex; 5292 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5293 case 1: SizeIndex = 0; break; 5294 case 2: SizeIndex = 1; break; 5295 case 4: SizeIndex = 2; break; 5296 case 8: SizeIndex = 3; break; 5297 case 16: SizeIndex = 4; break; 5298 default: 5299 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5300 << FirstArg->getType() << FirstArg->getSourceRange(); 5301 return ExprError(); 5302 } 5303 5304 // Each of these builtins has one pointer argument, followed by some number of 5305 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5306 // that we ignore. Find out which row of BuiltinIndices to read from as well 5307 // as the number of fixed args. 5308 unsigned BuiltinID = FDecl->getBuiltinID(); 5309 unsigned BuiltinIndex, NumFixed = 1; 5310 bool WarnAboutSemanticsChange = false; 5311 switch (BuiltinID) { 5312 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5313 case Builtin::BI__sync_fetch_and_add: 5314 case Builtin::BI__sync_fetch_and_add_1: 5315 case Builtin::BI__sync_fetch_and_add_2: 5316 case Builtin::BI__sync_fetch_and_add_4: 5317 case Builtin::BI__sync_fetch_and_add_8: 5318 case Builtin::BI__sync_fetch_and_add_16: 5319 BuiltinIndex = 0; 5320 break; 5321 5322 case Builtin::BI__sync_fetch_and_sub: 5323 case Builtin::BI__sync_fetch_and_sub_1: 5324 case Builtin::BI__sync_fetch_and_sub_2: 5325 case Builtin::BI__sync_fetch_and_sub_4: 5326 case Builtin::BI__sync_fetch_and_sub_8: 5327 case Builtin::BI__sync_fetch_and_sub_16: 5328 BuiltinIndex = 1; 5329 break; 5330 5331 case Builtin::BI__sync_fetch_and_or: 5332 case Builtin::BI__sync_fetch_and_or_1: 5333 case Builtin::BI__sync_fetch_and_or_2: 5334 case Builtin::BI__sync_fetch_and_or_4: 5335 case Builtin::BI__sync_fetch_and_or_8: 5336 case Builtin::BI__sync_fetch_and_or_16: 5337 BuiltinIndex = 2; 5338 break; 5339 5340 case Builtin::BI__sync_fetch_and_and: 5341 case Builtin::BI__sync_fetch_and_and_1: 5342 case Builtin::BI__sync_fetch_and_and_2: 5343 case Builtin::BI__sync_fetch_and_and_4: 5344 case Builtin::BI__sync_fetch_and_and_8: 5345 case Builtin::BI__sync_fetch_and_and_16: 5346 BuiltinIndex = 3; 5347 break; 5348 5349 case Builtin::BI__sync_fetch_and_xor: 5350 case Builtin::BI__sync_fetch_and_xor_1: 5351 case Builtin::BI__sync_fetch_and_xor_2: 5352 case Builtin::BI__sync_fetch_and_xor_4: 5353 case Builtin::BI__sync_fetch_and_xor_8: 5354 case Builtin::BI__sync_fetch_and_xor_16: 5355 BuiltinIndex = 4; 5356 break; 5357 5358 case Builtin::BI__sync_fetch_and_nand: 5359 case Builtin::BI__sync_fetch_and_nand_1: 5360 case Builtin::BI__sync_fetch_and_nand_2: 5361 case Builtin::BI__sync_fetch_and_nand_4: 5362 case Builtin::BI__sync_fetch_and_nand_8: 5363 case Builtin::BI__sync_fetch_and_nand_16: 5364 BuiltinIndex = 5; 5365 WarnAboutSemanticsChange = true; 5366 break; 5367 5368 case Builtin::BI__sync_add_and_fetch: 5369 case Builtin::BI__sync_add_and_fetch_1: 5370 case Builtin::BI__sync_add_and_fetch_2: 5371 case Builtin::BI__sync_add_and_fetch_4: 5372 case Builtin::BI__sync_add_and_fetch_8: 5373 case Builtin::BI__sync_add_and_fetch_16: 5374 BuiltinIndex = 6; 5375 break; 5376 5377 case Builtin::BI__sync_sub_and_fetch: 5378 case Builtin::BI__sync_sub_and_fetch_1: 5379 case Builtin::BI__sync_sub_and_fetch_2: 5380 case Builtin::BI__sync_sub_and_fetch_4: 5381 case Builtin::BI__sync_sub_and_fetch_8: 5382 case Builtin::BI__sync_sub_and_fetch_16: 5383 BuiltinIndex = 7; 5384 break; 5385 5386 case Builtin::BI__sync_and_and_fetch: 5387 case Builtin::BI__sync_and_and_fetch_1: 5388 case Builtin::BI__sync_and_and_fetch_2: 5389 case Builtin::BI__sync_and_and_fetch_4: 5390 case Builtin::BI__sync_and_and_fetch_8: 5391 case Builtin::BI__sync_and_and_fetch_16: 5392 BuiltinIndex = 8; 5393 break; 5394 5395 case Builtin::BI__sync_or_and_fetch: 5396 case Builtin::BI__sync_or_and_fetch_1: 5397 case Builtin::BI__sync_or_and_fetch_2: 5398 case Builtin::BI__sync_or_and_fetch_4: 5399 case Builtin::BI__sync_or_and_fetch_8: 5400 case Builtin::BI__sync_or_and_fetch_16: 5401 BuiltinIndex = 9; 5402 break; 5403 5404 case Builtin::BI__sync_xor_and_fetch: 5405 case Builtin::BI__sync_xor_and_fetch_1: 5406 case Builtin::BI__sync_xor_and_fetch_2: 5407 case Builtin::BI__sync_xor_and_fetch_4: 5408 case Builtin::BI__sync_xor_and_fetch_8: 5409 case Builtin::BI__sync_xor_and_fetch_16: 5410 BuiltinIndex = 10; 5411 break; 5412 5413 case Builtin::BI__sync_nand_and_fetch: 5414 case Builtin::BI__sync_nand_and_fetch_1: 5415 case Builtin::BI__sync_nand_and_fetch_2: 5416 case Builtin::BI__sync_nand_and_fetch_4: 5417 case Builtin::BI__sync_nand_and_fetch_8: 5418 case Builtin::BI__sync_nand_and_fetch_16: 5419 BuiltinIndex = 11; 5420 WarnAboutSemanticsChange = true; 5421 break; 5422 5423 case Builtin::BI__sync_val_compare_and_swap: 5424 case Builtin::BI__sync_val_compare_and_swap_1: 5425 case Builtin::BI__sync_val_compare_and_swap_2: 5426 case Builtin::BI__sync_val_compare_and_swap_4: 5427 case Builtin::BI__sync_val_compare_and_swap_8: 5428 case Builtin::BI__sync_val_compare_and_swap_16: 5429 BuiltinIndex = 12; 5430 NumFixed = 2; 5431 break; 5432 5433 case Builtin::BI__sync_bool_compare_and_swap: 5434 case Builtin::BI__sync_bool_compare_and_swap_1: 5435 case Builtin::BI__sync_bool_compare_and_swap_2: 5436 case Builtin::BI__sync_bool_compare_and_swap_4: 5437 case Builtin::BI__sync_bool_compare_and_swap_8: 5438 case Builtin::BI__sync_bool_compare_and_swap_16: 5439 BuiltinIndex = 13; 5440 NumFixed = 2; 5441 ResultType = Context.BoolTy; 5442 break; 5443 5444 case Builtin::BI__sync_lock_test_and_set: 5445 case Builtin::BI__sync_lock_test_and_set_1: 5446 case Builtin::BI__sync_lock_test_and_set_2: 5447 case Builtin::BI__sync_lock_test_and_set_4: 5448 case Builtin::BI__sync_lock_test_and_set_8: 5449 case Builtin::BI__sync_lock_test_and_set_16: 5450 BuiltinIndex = 14; 5451 break; 5452 5453 case Builtin::BI__sync_lock_release: 5454 case Builtin::BI__sync_lock_release_1: 5455 case Builtin::BI__sync_lock_release_2: 5456 case Builtin::BI__sync_lock_release_4: 5457 case Builtin::BI__sync_lock_release_8: 5458 case Builtin::BI__sync_lock_release_16: 5459 BuiltinIndex = 15; 5460 NumFixed = 0; 5461 ResultType = Context.VoidTy; 5462 break; 5463 5464 case Builtin::BI__sync_swap: 5465 case Builtin::BI__sync_swap_1: 5466 case Builtin::BI__sync_swap_2: 5467 case Builtin::BI__sync_swap_4: 5468 case Builtin::BI__sync_swap_8: 5469 case Builtin::BI__sync_swap_16: 5470 BuiltinIndex = 16; 5471 break; 5472 } 5473 5474 // Now that we know how many fixed arguments we expect, first check that we 5475 // have at least that many. 5476 if (TheCall->getNumArgs() < 1+NumFixed) { 5477 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5478 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5479 << Callee->getSourceRange(); 5480 return ExprError(); 5481 } 5482 5483 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5484 << Callee->getSourceRange(); 5485 5486 if (WarnAboutSemanticsChange) { 5487 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5488 << Callee->getSourceRange(); 5489 } 5490 5491 // Get the decl for the concrete builtin from this, we can tell what the 5492 // concrete integer type we should convert to is. 5493 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5494 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5495 FunctionDecl *NewBuiltinDecl; 5496 if (NewBuiltinID == BuiltinID) 5497 NewBuiltinDecl = FDecl; 5498 else { 5499 // Perform builtin lookup to avoid redeclaring it. 5500 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5501 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5502 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5503 assert(Res.getFoundDecl()); 5504 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5505 if (!NewBuiltinDecl) 5506 return ExprError(); 5507 } 5508 5509 // The first argument --- the pointer --- has a fixed type; we 5510 // deduce the types of the rest of the arguments accordingly. Walk 5511 // the remaining arguments, converting them to the deduced value type. 5512 for (unsigned i = 0; i != NumFixed; ++i) { 5513 ExprResult Arg = TheCall->getArg(i+1); 5514 5515 // GCC does an implicit conversion to the pointer or integer ValType. This 5516 // can fail in some cases (1i -> int**), check for this error case now. 5517 // Initialize the argument. 5518 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5519 ValType, /*consume*/ false); 5520 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5521 if (Arg.isInvalid()) 5522 return ExprError(); 5523 5524 // Okay, we have something that *can* be converted to the right type. Check 5525 // to see if there is a potentially weird extension going on here. This can 5526 // happen when you do an atomic operation on something like an char* and 5527 // pass in 42. The 42 gets converted to char. This is even more strange 5528 // for things like 45.123 -> char, etc. 5529 // FIXME: Do this check. 5530 TheCall->setArg(i+1, Arg.get()); 5531 } 5532 5533 // Create a new DeclRefExpr to refer to the new decl. 5534 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5535 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5536 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5537 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5538 5539 // Set the callee in the CallExpr. 5540 // FIXME: This loses syntactic information. 5541 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5542 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5543 CK_BuiltinFnToFnPtr); 5544 TheCall->setCallee(PromotedCall.get()); 5545 5546 // Change the result type of the call to match the original value type. This 5547 // is arbitrary, but the codegen for these builtins ins design to handle it 5548 // gracefully. 5549 TheCall->setType(ResultType); 5550 5551 // Prohibit use of _ExtInt with atomic builtins. 5552 // The arguments would have already been converted to the first argument's 5553 // type, so only need to check the first argument. 5554 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 5555 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 5556 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 5557 return ExprError(); 5558 } 5559 5560 return TheCallResult; 5561 } 5562 5563 /// SemaBuiltinNontemporalOverloaded - We have a call to 5564 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5565 /// overloaded function based on the pointer type of its last argument. 5566 /// 5567 /// This function goes through and does final semantic checking for these 5568 /// builtins. 5569 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5570 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5571 DeclRefExpr *DRE = 5572 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5573 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5574 unsigned BuiltinID = FDecl->getBuiltinID(); 5575 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5576 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5577 "Unexpected nontemporal load/store builtin!"); 5578 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5579 unsigned numArgs = isStore ? 2 : 1; 5580 5581 // Ensure that we have the proper number of arguments. 5582 if (checkArgCount(*this, TheCall, numArgs)) 5583 return ExprError(); 5584 5585 // Inspect the last argument of the nontemporal builtin. This should always 5586 // be a pointer type, from which we imply the type of the memory access. 5587 // Because it is a pointer type, we don't have to worry about any implicit 5588 // casts here. 5589 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5590 ExprResult PointerArgResult = 5591 DefaultFunctionArrayLvalueConversion(PointerArg); 5592 5593 if (PointerArgResult.isInvalid()) 5594 return ExprError(); 5595 PointerArg = PointerArgResult.get(); 5596 TheCall->setArg(numArgs - 1, PointerArg); 5597 5598 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5599 if (!pointerType) { 5600 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5601 << PointerArg->getType() << PointerArg->getSourceRange(); 5602 return ExprError(); 5603 } 5604 5605 QualType ValType = pointerType->getPointeeType(); 5606 5607 // Strip any qualifiers off ValType. 5608 ValType = ValType.getUnqualifiedType(); 5609 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5610 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5611 !ValType->isVectorType()) { 5612 Diag(DRE->getBeginLoc(), 5613 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5614 << PointerArg->getType() << PointerArg->getSourceRange(); 5615 return ExprError(); 5616 } 5617 5618 if (!isStore) { 5619 TheCall->setType(ValType); 5620 return TheCallResult; 5621 } 5622 5623 ExprResult ValArg = TheCall->getArg(0); 5624 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5625 Context, ValType, /*consume*/ false); 5626 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5627 if (ValArg.isInvalid()) 5628 return ExprError(); 5629 5630 TheCall->setArg(0, ValArg.get()); 5631 TheCall->setType(Context.VoidTy); 5632 return TheCallResult; 5633 } 5634 5635 /// CheckObjCString - Checks that the argument to the builtin 5636 /// CFString constructor is correct 5637 /// Note: It might also make sense to do the UTF-16 conversion here (would 5638 /// simplify the backend). 5639 bool Sema::CheckObjCString(Expr *Arg) { 5640 Arg = Arg->IgnoreParenCasts(); 5641 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5642 5643 if (!Literal || !Literal->isAscii()) { 5644 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5645 << Arg->getSourceRange(); 5646 return true; 5647 } 5648 5649 if (Literal->containsNonAsciiOrNull()) { 5650 StringRef String = Literal->getString(); 5651 unsigned NumBytes = String.size(); 5652 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5653 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5654 llvm::UTF16 *ToPtr = &ToBuf[0]; 5655 5656 llvm::ConversionResult Result = 5657 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5658 ToPtr + NumBytes, llvm::strictConversion); 5659 // Check for conversion failure. 5660 if (Result != llvm::conversionOK) 5661 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5662 << Arg->getSourceRange(); 5663 } 5664 return false; 5665 } 5666 5667 /// CheckObjCString - Checks that the format string argument to the os_log() 5668 /// and os_trace() functions is correct, and converts it to const char *. 5669 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5670 Arg = Arg->IgnoreParenCasts(); 5671 auto *Literal = dyn_cast<StringLiteral>(Arg); 5672 if (!Literal) { 5673 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5674 Literal = ObjcLiteral->getString(); 5675 } 5676 } 5677 5678 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5679 return ExprError( 5680 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5681 << Arg->getSourceRange()); 5682 } 5683 5684 ExprResult Result(Literal); 5685 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5686 InitializedEntity Entity = 5687 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5688 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5689 return Result; 5690 } 5691 5692 /// Check that the user is calling the appropriate va_start builtin for the 5693 /// target and calling convention. 5694 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5695 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5696 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5697 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5698 TT.getArch() == llvm::Triple::aarch64_32); 5699 bool IsWindows = TT.isOSWindows(); 5700 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5701 if (IsX64 || IsAArch64) { 5702 CallingConv CC = CC_C; 5703 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5704 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5705 if (IsMSVAStart) { 5706 // Don't allow this in System V ABI functions. 5707 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5708 return S.Diag(Fn->getBeginLoc(), 5709 diag::err_ms_va_start_used_in_sysv_function); 5710 } else { 5711 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5712 // On x64 Windows, don't allow this in System V ABI functions. 5713 // (Yes, that means there's no corresponding way to support variadic 5714 // System V ABI functions on Windows.) 5715 if ((IsWindows && CC == CC_X86_64SysV) || 5716 (!IsWindows && CC == CC_Win64)) 5717 return S.Diag(Fn->getBeginLoc(), 5718 diag::err_va_start_used_in_wrong_abi_function) 5719 << !IsWindows; 5720 } 5721 return false; 5722 } 5723 5724 if (IsMSVAStart) 5725 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5726 return false; 5727 } 5728 5729 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5730 ParmVarDecl **LastParam = nullptr) { 5731 // Determine whether the current function, block, or obj-c method is variadic 5732 // and get its parameter list. 5733 bool IsVariadic = false; 5734 ArrayRef<ParmVarDecl *> Params; 5735 DeclContext *Caller = S.CurContext; 5736 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5737 IsVariadic = Block->isVariadic(); 5738 Params = Block->parameters(); 5739 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5740 IsVariadic = FD->isVariadic(); 5741 Params = FD->parameters(); 5742 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5743 IsVariadic = MD->isVariadic(); 5744 // FIXME: This isn't correct for methods (results in bogus warning). 5745 Params = MD->parameters(); 5746 } else if (isa<CapturedDecl>(Caller)) { 5747 // We don't support va_start in a CapturedDecl. 5748 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5749 return true; 5750 } else { 5751 // This must be some other declcontext that parses exprs. 5752 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5753 return true; 5754 } 5755 5756 if (!IsVariadic) { 5757 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5758 return true; 5759 } 5760 5761 if (LastParam) 5762 *LastParam = Params.empty() ? nullptr : Params.back(); 5763 5764 return false; 5765 } 5766 5767 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5768 /// for validity. Emit an error and return true on failure; return false 5769 /// on success. 5770 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5771 Expr *Fn = TheCall->getCallee(); 5772 5773 if (checkVAStartABI(*this, BuiltinID, Fn)) 5774 return true; 5775 5776 if (checkArgCount(*this, TheCall, 2)) 5777 return true; 5778 5779 // Type-check the first argument normally. 5780 if (checkBuiltinArgument(*this, TheCall, 0)) 5781 return true; 5782 5783 // Check that the current function is variadic, and get its last parameter. 5784 ParmVarDecl *LastParam; 5785 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5786 return true; 5787 5788 // Verify that the second argument to the builtin is the last argument of the 5789 // current function or method. 5790 bool SecondArgIsLastNamedArgument = false; 5791 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5792 5793 // These are valid if SecondArgIsLastNamedArgument is false after the next 5794 // block. 5795 QualType Type; 5796 SourceLocation ParamLoc; 5797 bool IsCRegister = false; 5798 5799 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5800 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5801 SecondArgIsLastNamedArgument = PV == LastParam; 5802 5803 Type = PV->getType(); 5804 ParamLoc = PV->getLocation(); 5805 IsCRegister = 5806 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5807 } 5808 } 5809 5810 if (!SecondArgIsLastNamedArgument) 5811 Diag(TheCall->getArg(1)->getBeginLoc(), 5812 diag::warn_second_arg_of_va_start_not_last_named_param); 5813 else if (IsCRegister || Type->isReferenceType() || 5814 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5815 // Promotable integers are UB, but enumerations need a bit of 5816 // extra checking to see what their promotable type actually is. 5817 if (!Type->isPromotableIntegerType()) 5818 return false; 5819 if (!Type->isEnumeralType()) 5820 return true; 5821 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5822 return !(ED && 5823 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5824 }()) { 5825 unsigned Reason = 0; 5826 if (Type->isReferenceType()) Reason = 1; 5827 else if (IsCRegister) Reason = 2; 5828 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5829 Diag(ParamLoc, diag::note_parameter_type) << Type; 5830 } 5831 5832 TheCall->setType(Context.VoidTy); 5833 return false; 5834 } 5835 5836 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5837 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5838 // const char *named_addr); 5839 5840 Expr *Func = Call->getCallee(); 5841 5842 if (Call->getNumArgs() < 3) 5843 return Diag(Call->getEndLoc(), 5844 diag::err_typecheck_call_too_few_args_at_least) 5845 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5846 5847 // Type-check the first argument normally. 5848 if (checkBuiltinArgument(*this, Call, 0)) 5849 return true; 5850 5851 // Check that the current function is variadic. 5852 if (checkVAStartIsInVariadicFunction(*this, Func)) 5853 return true; 5854 5855 // __va_start on Windows does not validate the parameter qualifiers 5856 5857 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5858 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5859 5860 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5861 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5862 5863 const QualType &ConstCharPtrTy = 5864 Context.getPointerType(Context.CharTy.withConst()); 5865 if (!Arg1Ty->isPointerType() || 5866 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5867 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5868 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5869 << 0 /* qualifier difference */ 5870 << 3 /* parameter mismatch */ 5871 << 2 << Arg1->getType() << ConstCharPtrTy; 5872 5873 const QualType SizeTy = Context.getSizeType(); 5874 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5875 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5876 << Arg2->getType() << SizeTy << 1 /* different class */ 5877 << 0 /* qualifier difference */ 5878 << 3 /* parameter mismatch */ 5879 << 3 << Arg2->getType() << SizeTy; 5880 5881 return false; 5882 } 5883 5884 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5885 /// friends. This is declared to take (...), so we have to check everything. 5886 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5887 if (checkArgCount(*this, TheCall, 2)) 5888 return true; 5889 5890 ExprResult OrigArg0 = TheCall->getArg(0); 5891 ExprResult OrigArg1 = TheCall->getArg(1); 5892 5893 // Do standard promotions between the two arguments, returning their common 5894 // type. 5895 QualType Res = UsualArithmeticConversions( 5896 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 5897 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5898 return true; 5899 5900 // Make sure any conversions are pushed back into the call; this is 5901 // type safe since unordered compare builtins are declared as "_Bool 5902 // foo(...)". 5903 TheCall->setArg(0, OrigArg0.get()); 5904 TheCall->setArg(1, OrigArg1.get()); 5905 5906 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5907 return false; 5908 5909 // If the common type isn't a real floating type, then the arguments were 5910 // invalid for this operation. 5911 if (Res.isNull() || !Res->isRealFloatingType()) 5912 return Diag(OrigArg0.get()->getBeginLoc(), 5913 diag::err_typecheck_call_invalid_ordered_compare) 5914 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5915 << SourceRange(OrigArg0.get()->getBeginLoc(), 5916 OrigArg1.get()->getEndLoc()); 5917 5918 return false; 5919 } 5920 5921 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5922 /// __builtin_isnan and friends. This is declared to take (...), so we have 5923 /// to check everything. We expect the last argument to be a floating point 5924 /// value. 5925 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5926 if (checkArgCount(*this, TheCall, NumArgs)) 5927 return true; 5928 5929 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 5930 // on all preceding parameters just being int. Try all of those. 5931 for (unsigned i = 0; i < NumArgs - 1; ++i) { 5932 Expr *Arg = TheCall->getArg(i); 5933 5934 if (Arg->isTypeDependent()) 5935 return false; 5936 5937 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 5938 5939 if (Res.isInvalid()) 5940 return true; 5941 TheCall->setArg(i, Res.get()); 5942 } 5943 5944 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5945 5946 if (OrigArg->isTypeDependent()) 5947 return false; 5948 5949 // Usual Unary Conversions will convert half to float, which we want for 5950 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 5951 // type how it is, but do normal L->Rvalue conversions. 5952 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 5953 OrigArg = UsualUnaryConversions(OrigArg).get(); 5954 else 5955 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 5956 TheCall->setArg(NumArgs - 1, OrigArg); 5957 5958 // This operation requires a non-_Complex floating-point number. 5959 if (!OrigArg->getType()->isRealFloatingType()) 5960 return Diag(OrigArg->getBeginLoc(), 5961 diag::err_typecheck_call_invalid_unary_fp) 5962 << OrigArg->getType() << OrigArg->getSourceRange(); 5963 5964 return false; 5965 } 5966 5967 /// Perform semantic analysis for a call to __builtin_complex. 5968 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 5969 if (checkArgCount(*this, TheCall, 2)) 5970 return true; 5971 5972 bool Dependent = false; 5973 for (unsigned I = 0; I != 2; ++I) { 5974 Expr *Arg = TheCall->getArg(I); 5975 QualType T = Arg->getType(); 5976 if (T->isDependentType()) { 5977 Dependent = true; 5978 continue; 5979 } 5980 5981 // Despite supporting _Complex int, GCC requires a real floating point type 5982 // for the operands of __builtin_complex. 5983 if (!T->isRealFloatingType()) { 5984 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 5985 << Arg->getType() << Arg->getSourceRange(); 5986 } 5987 5988 ExprResult Converted = DefaultLvalueConversion(Arg); 5989 if (Converted.isInvalid()) 5990 return true; 5991 TheCall->setArg(I, Converted.get()); 5992 } 5993 5994 if (Dependent) { 5995 TheCall->setType(Context.DependentTy); 5996 return false; 5997 } 5998 5999 Expr *Real = TheCall->getArg(0); 6000 Expr *Imag = TheCall->getArg(1); 6001 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6002 return Diag(Real->getBeginLoc(), 6003 diag::err_typecheck_call_different_arg_types) 6004 << Real->getType() << Imag->getType() 6005 << Real->getSourceRange() << Imag->getSourceRange(); 6006 } 6007 6008 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6009 // don't allow this builtin to form those types either. 6010 // FIXME: Should we allow these types? 6011 if (Real->getType()->isFloat16Type()) 6012 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6013 << "_Float16"; 6014 if (Real->getType()->isHalfType()) 6015 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6016 << "half"; 6017 6018 TheCall->setType(Context.getComplexType(Real->getType())); 6019 return false; 6020 } 6021 6022 // Customized Sema Checking for VSX builtins that have the following signature: 6023 // vector [...] builtinName(vector [...], vector [...], const int); 6024 // Which takes the same type of vectors (any legal vector type) for the first 6025 // two arguments and takes compile time constant for the third argument. 6026 // Example builtins are : 6027 // vector double vec_xxpermdi(vector double, vector double, int); 6028 // vector short vec_xxsldwi(vector short, vector short, int); 6029 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 6030 unsigned ExpectedNumArgs = 3; 6031 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 6032 return true; 6033 6034 // Check the third argument is a compile time constant 6035 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 6036 return Diag(TheCall->getBeginLoc(), 6037 diag::err_vsx_builtin_nonconstant_argument) 6038 << 3 /* argument index */ << TheCall->getDirectCallee() 6039 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 6040 TheCall->getArg(2)->getEndLoc()); 6041 6042 QualType Arg1Ty = TheCall->getArg(0)->getType(); 6043 QualType Arg2Ty = TheCall->getArg(1)->getType(); 6044 6045 // Check the type of argument 1 and argument 2 are vectors. 6046 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 6047 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 6048 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 6049 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 6050 << TheCall->getDirectCallee() 6051 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6052 TheCall->getArg(1)->getEndLoc()); 6053 } 6054 6055 // Check the first two arguments are the same type. 6056 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 6057 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 6058 << TheCall->getDirectCallee() 6059 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6060 TheCall->getArg(1)->getEndLoc()); 6061 } 6062 6063 // When default clang type checking is turned off and the customized type 6064 // checking is used, the returning type of the function must be explicitly 6065 // set. Otherwise it is _Bool by default. 6066 TheCall->setType(Arg1Ty); 6067 6068 return false; 6069 } 6070 6071 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 6072 // This is declared to take (...), so we have to check everything. 6073 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 6074 if (TheCall->getNumArgs() < 2) 6075 return ExprError(Diag(TheCall->getEndLoc(), 6076 diag::err_typecheck_call_too_few_args_at_least) 6077 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 6078 << TheCall->getSourceRange()); 6079 6080 // Determine which of the following types of shufflevector we're checking: 6081 // 1) unary, vector mask: (lhs, mask) 6082 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 6083 QualType resType = TheCall->getArg(0)->getType(); 6084 unsigned numElements = 0; 6085 6086 if (!TheCall->getArg(0)->isTypeDependent() && 6087 !TheCall->getArg(1)->isTypeDependent()) { 6088 QualType LHSType = TheCall->getArg(0)->getType(); 6089 QualType RHSType = TheCall->getArg(1)->getType(); 6090 6091 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 6092 return ExprError( 6093 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 6094 << TheCall->getDirectCallee() 6095 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6096 TheCall->getArg(1)->getEndLoc())); 6097 6098 numElements = LHSType->castAs<VectorType>()->getNumElements(); 6099 unsigned numResElements = TheCall->getNumArgs() - 2; 6100 6101 // Check to see if we have a call with 2 vector arguments, the unary shuffle 6102 // with mask. If so, verify that RHS is an integer vector type with the 6103 // same number of elts as lhs. 6104 if (TheCall->getNumArgs() == 2) { 6105 if (!RHSType->hasIntegerRepresentation() || 6106 RHSType->castAs<VectorType>()->getNumElements() != numElements) 6107 return ExprError(Diag(TheCall->getBeginLoc(), 6108 diag::err_vec_builtin_incompatible_vector) 6109 << TheCall->getDirectCallee() 6110 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 6111 TheCall->getArg(1)->getEndLoc())); 6112 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 6113 return ExprError(Diag(TheCall->getBeginLoc(), 6114 diag::err_vec_builtin_incompatible_vector) 6115 << TheCall->getDirectCallee() 6116 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6117 TheCall->getArg(1)->getEndLoc())); 6118 } else if (numElements != numResElements) { 6119 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 6120 resType = Context.getVectorType(eltType, numResElements, 6121 VectorType::GenericVector); 6122 } 6123 } 6124 6125 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 6126 if (TheCall->getArg(i)->isTypeDependent() || 6127 TheCall->getArg(i)->isValueDependent()) 6128 continue; 6129 6130 Optional<llvm::APSInt> Result; 6131 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 6132 return ExprError(Diag(TheCall->getBeginLoc(), 6133 diag::err_shufflevector_nonconstant_argument) 6134 << TheCall->getArg(i)->getSourceRange()); 6135 6136 // Allow -1 which will be translated to undef in the IR. 6137 if (Result->isSigned() && Result->isAllOnesValue()) 6138 continue; 6139 6140 if (Result->getActiveBits() > 64 || 6141 Result->getZExtValue() >= numElements * 2) 6142 return ExprError(Diag(TheCall->getBeginLoc(), 6143 diag::err_shufflevector_argument_too_large) 6144 << TheCall->getArg(i)->getSourceRange()); 6145 } 6146 6147 SmallVector<Expr*, 32> exprs; 6148 6149 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 6150 exprs.push_back(TheCall->getArg(i)); 6151 TheCall->setArg(i, nullptr); 6152 } 6153 6154 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 6155 TheCall->getCallee()->getBeginLoc(), 6156 TheCall->getRParenLoc()); 6157 } 6158 6159 /// SemaConvertVectorExpr - Handle __builtin_convertvector 6160 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 6161 SourceLocation BuiltinLoc, 6162 SourceLocation RParenLoc) { 6163 ExprValueKind VK = VK_RValue; 6164 ExprObjectKind OK = OK_Ordinary; 6165 QualType DstTy = TInfo->getType(); 6166 QualType SrcTy = E->getType(); 6167 6168 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 6169 return ExprError(Diag(BuiltinLoc, 6170 diag::err_convertvector_non_vector) 6171 << E->getSourceRange()); 6172 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 6173 return ExprError(Diag(BuiltinLoc, 6174 diag::err_convertvector_non_vector_type)); 6175 6176 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 6177 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 6178 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 6179 if (SrcElts != DstElts) 6180 return ExprError(Diag(BuiltinLoc, 6181 diag::err_convertvector_incompatible_vector) 6182 << E->getSourceRange()); 6183 } 6184 6185 return new (Context) 6186 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 6187 } 6188 6189 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 6190 // This is declared to take (const void*, ...) and can take two 6191 // optional constant int args. 6192 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 6193 unsigned NumArgs = TheCall->getNumArgs(); 6194 6195 if (NumArgs > 3) 6196 return Diag(TheCall->getEndLoc(), 6197 diag::err_typecheck_call_too_many_args_at_most) 6198 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6199 6200 // Argument 0 is checked for us and the remaining arguments must be 6201 // constant integers. 6202 for (unsigned i = 1; i != NumArgs; ++i) 6203 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 6204 return true; 6205 6206 return false; 6207 } 6208 6209 /// SemaBuiltinAssume - Handle __assume (MS Extension). 6210 // __assume does not evaluate its arguments, and should warn if its argument 6211 // has side effects. 6212 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6213 Expr *Arg = TheCall->getArg(0); 6214 if (Arg->isInstantiationDependent()) return false; 6215 6216 if (Arg->HasSideEffects(Context)) 6217 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6218 << Arg->getSourceRange() 6219 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6220 6221 return false; 6222 } 6223 6224 /// Handle __builtin_alloca_with_align. This is declared 6225 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6226 /// than 8. 6227 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6228 // The alignment must be a constant integer. 6229 Expr *Arg = TheCall->getArg(1); 6230 6231 // We can't check the value of a dependent argument. 6232 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6233 if (const auto *UE = 6234 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6235 if (UE->getKind() == UETT_AlignOf || 6236 UE->getKind() == UETT_PreferredAlignOf) 6237 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6238 << Arg->getSourceRange(); 6239 6240 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6241 6242 if (!Result.isPowerOf2()) 6243 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6244 << Arg->getSourceRange(); 6245 6246 if (Result < Context.getCharWidth()) 6247 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6248 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6249 6250 if (Result > std::numeric_limits<int32_t>::max()) 6251 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6252 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6253 } 6254 6255 return false; 6256 } 6257 6258 /// Handle __builtin_assume_aligned. This is declared 6259 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6260 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6261 unsigned NumArgs = TheCall->getNumArgs(); 6262 6263 if (NumArgs > 3) 6264 return Diag(TheCall->getEndLoc(), 6265 diag::err_typecheck_call_too_many_args_at_most) 6266 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6267 6268 // The alignment must be a constant integer. 6269 Expr *Arg = TheCall->getArg(1); 6270 6271 // We can't check the value of a dependent argument. 6272 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6273 llvm::APSInt Result; 6274 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6275 return true; 6276 6277 if (!Result.isPowerOf2()) 6278 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6279 << Arg->getSourceRange(); 6280 6281 if (Result > Sema::MaximumAlignment) 6282 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6283 << Arg->getSourceRange() << Sema::MaximumAlignment; 6284 } 6285 6286 if (NumArgs > 2) { 6287 ExprResult Arg(TheCall->getArg(2)); 6288 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6289 Context.getSizeType(), false); 6290 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6291 if (Arg.isInvalid()) return true; 6292 TheCall->setArg(2, Arg.get()); 6293 } 6294 6295 return false; 6296 } 6297 6298 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6299 unsigned BuiltinID = 6300 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6301 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6302 6303 unsigned NumArgs = TheCall->getNumArgs(); 6304 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6305 if (NumArgs < NumRequiredArgs) { 6306 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6307 << 0 /* function call */ << NumRequiredArgs << NumArgs 6308 << TheCall->getSourceRange(); 6309 } 6310 if (NumArgs >= NumRequiredArgs + 0x100) { 6311 return Diag(TheCall->getEndLoc(), 6312 diag::err_typecheck_call_too_many_args_at_most) 6313 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6314 << TheCall->getSourceRange(); 6315 } 6316 unsigned i = 0; 6317 6318 // For formatting call, check buffer arg. 6319 if (!IsSizeCall) { 6320 ExprResult Arg(TheCall->getArg(i)); 6321 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6322 Context, Context.VoidPtrTy, false); 6323 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6324 if (Arg.isInvalid()) 6325 return true; 6326 TheCall->setArg(i, Arg.get()); 6327 i++; 6328 } 6329 6330 // Check string literal arg. 6331 unsigned FormatIdx = i; 6332 { 6333 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6334 if (Arg.isInvalid()) 6335 return true; 6336 TheCall->setArg(i, Arg.get()); 6337 i++; 6338 } 6339 6340 // Make sure variadic args are scalar. 6341 unsigned FirstDataArg = i; 6342 while (i < NumArgs) { 6343 ExprResult Arg = DefaultVariadicArgumentPromotion( 6344 TheCall->getArg(i), VariadicFunction, nullptr); 6345 if (Arg.isInvalid()) 6346 return true; 6347 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6348 if (ArgSize.getQuantity() >= 0x100) { 6349 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6350 << i << (int)ArgSize.getQuantity() << 0xff 6351 << TheCall->getSourceRange(); 6352 } 6353 TheCall->setArg(i, Arg.get()); 6354 i++; 6355 } 6356 6357 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6358 // call to avoid duplicate diagnostics. 6359 if (!IsSizeCall) { 6360 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6361 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6362 bool Success = CheckFormatArguments( 6363 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6364 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6365 CheckedVarArgs); 6366 if (!Success) 6367 return true; 6368 } 6369 6370 if (IsSizeCall) { 6371 TheCall->setType(Context.getSizeType()); 6372 } else { 6373 TheCall->setType(Context.VoidPtrTy); 6374 } 6375 return false; 6376 } 6377 6378 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6379 /// TheCall is a constant expression. 6380 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6381 llvm::APSInt &Result) { 6382 Expr *Arg = TheCall->getArg(ArgNum); 6383 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6384 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6385 6386 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6387 6388 Optional<llvm::APSInt> R; 6389 if (!(R = Arg->getIntegerConstantExpr(Context))) 6390 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6391 << FDecl->getDeclName() << Arg->getSourceRange(); 6392 Result = *R; 6393 return false; 6394 } 6395 6396 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6397 /// TheCall is a constant expression in the range [Low, High]. 6398 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6399 int Low, int High, bool RangeIsError) { 6400 if (isConstantEvaluated()) 6401 return false; 6402 llvm::APSInt Result; 6403 6404 // We can't check the value of a dependent argument. 6405 Expr *Arg = TheCall->getArg(ArgNum); 6406 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6407 return false; 6408 6409 // Check constant-ness first. 6410 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6411 return true; 6412 6413 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6414 if (RangeIsError) 6415 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6416 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6417 else 6418 // Defer the warning until we know if the code will be emitted so that 6419 // dead code can ignore this. 6420 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6421 PDiag(diag::warn_argument_invalid_range) 6422 << Result.toString(10) << Low << High 6423 << Arg->getSourceRange()); 6424 } 6425 6426 return false; 6427 } 6428 6429 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6430 /// TheCall is a constant expression is a multiple of Num.. 6431 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6432 unsigned Num) { 6433 llvm::APSInt Result; 6434 6435 // We can't check the value of a dependent argument. 6436 Expr *Arg = TheCall->getArg(ArgNum); 6437 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6438 return false; 6439 6440 // Check constant-ness first. 6441 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6442 return true; 6443 6444 if (Result.getSExtValue() % Num != 0) 6445 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6446 << Num << Arg->getSourceRange(); 6447 6448 return false; 6449 } 6450 6451 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6452 /// constant expression representing a power of 2. 6453 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6454 llvm::APSInt Result; 6455 6456 // We can't check the value of a dependent argument. 6457 Expr *Arg = TheCall->getArg(ArgNum); 6458 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6459 return false; 6460 6461 // Check constant-ness first. 6462 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6463 return true; 6464 6465 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6466 // and only if x is a power of 2. 6467 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6468 return false; 6469 6470 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6471 << Arg->getSourceRange(); 6472 } 6473 6474 static bool IsShiftedByte(llvm::APSInt Value) { 6475 if (Value.isNegative()) 6476 return false; 6477 6478 // Check if it's a shifted byte, by shifting it down 6479 while (true) { 6480 // If the value fits in the bottom byte, the check passes. 6481 if (Value < 0x100) 6482 return true; 6483 6484 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6485 // fails. 6486 if ((Value & 0xFF) != 0) 6487 return false; 6488 6489 // If the bottom 8 bits are all 0, but something above that is nonzero, 6490 // then shifting the value right by 8 bits won't affect whether it's a 6491 // shifted byte or not. So do that, and go round again. 6492 Value >>= 8; 6493 } 6494 } 6495 6496 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6497 /// a constant expression representing an arbitrary byte value shifted left by 6498 /// a multiple of 8 bits. 6499 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6500 unsigned ArgBits) { 6501 llvm::APSInt Result; 6502 6503 // We can't check the value of a dependent argument. 6504 Expr *Arg = TheCall->getArg(ArgNum); 6505 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6506 return false; 6507 6508 // Check constant-ness first. 6509 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6510 return true; 6511 6512 // Truncate to the given size. 6513 Result = Result.getLoBits(ArgBits); 6514 Result.setIsUnsigned(true); 6515 6516 if (IsShiftedByte(Result)) 6517 return false; 6518 6519 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6520 << Arg->getSourceRange(); 6521 } 6522 6523 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6524 /// TheCall is a constant expression representing either a shifted byte value, 6525 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6526 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6527 /// Arm MVE intrinsics. 6528 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6529 int ArgNum, 6530 unsigned ArgBits) { 6531 llvm::APSInt Result; 6532 6533 // We can't check the value of a dependent argument. 6534 Expr *Arg = TheCall->getArg(ArgNum); 6535 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6536 return false; 6537 6538 // Check constant-ness first. 6539 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6540 return true; 6541 6542 // Truncate to the given size. 6543 Result = Result.getLoBits(ArgBits); 6544 Result.setIsUnsigned(true); 6545 6546 // Check to see if it's in either of the required forms. 6547 if (IsShiftedByte(Result) || 6548 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6549 return false; 6550 6551 return Diag(TheCall->getBeginLoc(), 6552 diag::err_argument_not_shifted_byte_or_xxff) 6553 << Arg->getSourceRange(); 6554 } 6555 6556 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6557 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6558 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6559 if (checkArgCount(*this, TheCall, 2)) 6560 return true; 6561 Expr *Arg0 = TheCall->getArg(0); 6562 Expr *Arg1 = TheCall->getArg(1); 6563 6564 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6565 if (FirstArg.isInvalid()) 6566 return true; 6567 QualType FirstArgType = FirstArg.get()->getType(); 6568 if (!FirstArgType->isAnyPointerType()) 6569 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6570 << "first" << FirstArgType << Arg0->getSourceRange(); 6571 TheCall->setArg(0, FirstArg.get()); 6572 6573 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6574 if (SecArg.isInvalid()) 6575 return true; 6576 QualType SecArgType = SecArg.get()->getType(); 6577 if (!SecArgType->isIntegerType()) 6578 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6579 << "second" << SecArgType << Arg1->getSourceRange(); 6580 6581 // Derive the return type from the pointer argument. 6582 TheCall->setType(FirstArgType); 6583 return false; 6584 } 6585 6586 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6587 if (checkArgCount(*this, TheCall, 2)) 6588 return true; 6589 6590 Expr *Arg0 = TheCall->getArg(0); 6591 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6592 if (FirstArg.isInvalid()) 6593 return true; 6594 QualType FirstArgType = FirstArg.get()->getType(); 6595 if (!FirstArgType->isAnyPointerType()) 6596 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6597 << "first" << FirstArgType << Arg0->getSourceRange(); 6598 TheCall->setArg(0, FirstArg.get()); 6599 6600 // Derive the return type from the pointer argument. 6601 TheCall->setType(FirstArgType); 6602 6603 // Second arg must be an constant in range [0,15] 6604 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6605 } 6606 6607 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6608 if (checkArgCount(*this, TheCall, 2)) 6609 return true; 6610 Expr *Arg0 = TheCall->getArg(0); 6611 Expr *Arg1 = TheCall->getArg(1); 6612 6613 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6614 if (FirstArg.isInvalid()) 6615 return true; 6616 QualType FirstArgType = FirstArg.get()->getType(); 6617 if (!FirstArgType->isAnyPointerType()) 6618 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6619 << "first" << FirstArgType << Arg0->getSourceRange(); 6620 6621 QualType SecArgType = Arg1->getType(); 6622 if (!SecArgType->isIntegerType()) 6623 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6624 << "second" << SecArgType << Arg1->getSourceRange(); 6625 TheCall->setType(Context.IntTy); 6626 return false; 6627 } 6628 6629 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6630 BuiltinID == AArch64::BI__builtin_arm_stg) { 6631 if (checkArgCount(*this, TheCall, 1)) 6632 return true; 6633 Expr *Arg0 = TheCall->getArg(0); 6634 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6635 if (FirstArg.isInvalid()) 6636 return true; 6637 6638 QualType FirstArgType = FirstArg.get()->getType(); 6639 if (!FirstArgType->isAnyPointerType()) 6640 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6641 << "first" << FirstArgType << Arg0->getSourceRange(); 6642 TheCall->setArg(0, FirstArg.get()); 6643 6644 // Derive the return type from the pointer argument. 6645 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6646 TheCall->setType(FirstArgType); 6647 return false; 6648 } 6649 6650 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6651 Expr *ArgA = TheCall->getArg(0); 6652 Expr *ArgB = TheCall->getArg(1); 6653 6654 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6655 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6656 6657 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6658 return true; 6659 6660 QualType ArgTypeA = ArgExprA.get()->getType(); 6661 QualType ArgTypeB = ArgExprB.get()->getType(); 6662 6663 auto isNull = [&] (Expr *E) -> bool { 6664 return E->isNullPointerConstant( 6665 Context, Expr::NPC_ValueDependentIsNotNull); }; 6666 6667 // argument should be either a pointer or null 6668 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6669 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6670 << "first" << ArgTypeA << ArgA->getSourceRange(); 6671 6672 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6673 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6674 << "second" << ArgTypeB << ArgB->getSourceRange(); 6675 6676 // Ensure Pointee types are compatible 6677 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6678 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6679 QualType pointeeA = ArgTypeA->getPointeeType(); 6680 QualType pointeeB = ArgTypeB->getPointeeType(); 6681 if (!Context.typesAreCompatible( 6682 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6683 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6684 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6685 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6686 << ArgB->getSourceRange(); 6687 } 6688 } 6689 6690 // at least one argument should be pointer type 6691 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6692 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6693 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6694 6695 if (isNull(ArgA)) // adopt type of the other pointer 6696 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6697 6698 if (isNull(ArgB)) 6699 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6700 6701 TheCall->setArg(0, ArgExprA.get()); 6702 TheCall->setArg(1, ArgExprB.get()); 6703 TheCall->setType(Context.LongLongTy); 6704 return false; 6705 } 6706 assert(false && "Unhandled ARM MTE intrinsic"); 6707 return true; 6708 } 6709 6710 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6711 /// TheCall is an ARM/AArch64 special register string literal. 6712 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6713 int ArgNum, unsigned ExpectedFieldNum, 6714 bool AllowName) { 6715 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6716 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6717 BuiltinID == ARM::BI__builtin_arm_rsr || 6718 BuiltinID == ARM::BI__builtin_arm_rsrp || 6719 BuiltinID == ARM::BI__builtin_arm_wsr || 6720 BuiltinID == ARM::BI__builtin_arm_wsrp; 6721 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6722 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6723 BuiltinID == AArch64::BI__builtin_arm_rsr || 6724 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6725 BuiltinID == AArch64::BI__builtin_arm_wsr || 6726 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6727 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6728 6729 // We can't check the value of a dependent argument. 6730 Expr *Arg = TheCall->getArg(ArgNum); 6731 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6732 return false; 6733 6734 // Check if the argument is a string literal. 6735 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6736 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6737 << Arg->getSourceRange(); 6738 6739 // Check the type of special register given. 6740 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6741 SmallVector<StringRef, 6> Fields; 6742 Reg.split(Fields, ":"); 6743 6744 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6745 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6746 << Arg->getSourceRange(); 6747 6748 // If the string is the name of a register then we cannot check that it is 6749 // valid here but if the string is of one the forms described in ACLE then we 6750 // can check that the supplied fields are integers and within the valid 6751 // ranges. 6752 if (Fields.size() > 1) { 6753 bool FiveFields = Fields.size() == 5; 6754 6755 bool ValidString = true; 6756 if (IsARMBuiltin) { 6757 ValidString &= Fields[0].startswith_lower("cp") || 6758 Fields[0].startswith_lower("p"); 6759 if (ValidString) 6760 Fields[0] = 6761 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6762 6763 ValidString &= Fields[2].startswith_lower("c"); 6764 if (ValidString) 6765 Fields[2] = Fields[2].drop_front(1); 6766 6767 if (FiveFields) { 6768 ValidString &= Fields[3].startswith_lower("c"); 6769 if (ValidString) 6770 Fields[3] = Fields[3].drop_front(1); 6771 } 6772 } 6773 6774 SmallVector<int, 5> Ranges; 6775 if (FiveFields) 6776 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6777 else 6778 Ranges.append({15, 7, 15}); 6779 6780 for (unsigned i=0; i<Fields.size(); ++i) { 6781 int IntField; 6782 ValidString &= !Fields[i].getAsInteger(10, IntField); 6783 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6784 } 6785 6786 if (!ValidString) 6787 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6788 << Arg->getSourceRange(); 6789 } else if (IsAArch64Builtin && Fields.size() == 1) { 6790 // If the register name is one of those that appear in the condition below 6791 // and the special register builtin being used is one of the write builtins, 6792 // then we require that the argument provided for writing to the register 6793 // is an integer constant expression. This is because it will be lowered to 6794 // an MSR (immediate) instruction, so we need to know the immediate at 6795 // compile time. 6796 if (TheCall->getNumArgs() != 2) 6797 return false; 6798 6799 std::string RegLower = Reg.lower(); 6800 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6801 RegLower != "pan" && RegLower != "uao") 6802 return false; 6803 6804 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6805 } 6806 6807 return false; 6808 } 6809 6810 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 6811 /// Emit an error and return true on failure; return false on success. 6812 /// TypeStr is a string containing the type descriptor of the value returned by 6813 /// the builtin and the descriptors of the expected type of the arguments. 6814 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) { 6815 6816 assert((TypeStr[0] != '\0') && 6817 "Invalid types in PPC MMA builtin declaration"); 6818 6819 unsigned Mask = 0; 6820 unsigned ArgNum = 0; 6821 6822 // The first type in TypeStr is the type of the value returned by the 6823 // builtin. So we first read that type and change the type of TheCall. 6824 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6825 TheCall->setType(type); 6826 6827 while (*TypeStr != '\0') { 6828 Mask = 0; 6829 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6830 if (ArgNum >= TheCall->getNumArgs()) { 6831 ArgNum++; 6832 break; 6833 } 6834 6835 Expr *Arg = TheCall->getArg(ArgNum); 6836 QualType ArgType = Arg->getType(); 6837 6838 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) || 6839 (!ExpectedType->isVoidPointerType() && 6840 ArgType.getCanonicalType() != ExpectedType)) 6841 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6842 << ArgType << ExpectedType << 1 << 0 << 0; 6843 6844 // If the value of the Mask is not 0, we have a constraint in the size of 6845 // the integer argument so here we ensure the argument is a constant that 6846 // is in the valid range. 6847 if (Mask != 0 && 6848 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 6849 return true; 6850 6851 ArgNum++; 6852 } 6853 6854 // In case we exited early from the previous loop, there are other types to 6855 // read from TypeStr. So we need to read them all to ensure we have the right 6856 // number of arguments in TheCall and if it is not the case, to display a 6857 // better error message. 6858 while (*TypeStr != '\0') { 6859 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6860 ArgNum++; 6861 } 6862 if (checkArgCount(*this, TheCall, ArgNum)) 6863 return true; 6864 6865 return false; 6866 } 6867 6868 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6869 /// This checks that the target supports __builtin_longjmp and 6870 /// that val is a constant 1. 6871 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6872 if (!Context.getTargetInfo().hasSjLjLowering()) 6873 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6874 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6875 6876 Expr *Arg = TheCall->getArg(1); 6877 llvm::APSInt Result; 6878 6879 // TODO: This is less than ideal. Overload this to take a value. 6880 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6881 return true; 6882 6883 if (Result != 1) 6884 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6885 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6886 6887 return false; 6888 } 6889 6890 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6891 /// This checks that the target supports __builtin_setjmp. 6892 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6893 if (!Context.getTargetInfo().hasSjLjLowering()) 6894 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6895 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6896 return false; 6897 } 6898 6899 namespace { 6900 6901 class UncoveredArgHandler { 6902 enum { Unknown = -1, AllCovered = -2 }; 6903 6904 signed FirstUncoveredArg = Unknown; 6905 SmallVector<const Expr *, 4> DiagnosticExprs; 6906 6907 public: 6908 UncoveredArgHandler() = default; 6909 6910 bool hasUncoveredArg() const { 6911 return (FirstUncoveredArg >= 0); 6912 } 6913 6914 unsigned getUncoveredArg() const { 6915 assert(hasUncoveredArg() && "no uncovered argument"); 6916 return FirstUncoveredArg; 6917 } 6918 6919 void setAllCovered() { 6920 // A string has been found with all arguments covered, so clear out 6921 // the diagnostics. 6922 DiagnosticExprs.clear(); 6923 FirstUncoveredArg = AllCovered; 6924 } 6925 6926 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6927 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6928 6929 // Don't update if a previous string covers all arguments. 6930 if (FirstUncoveredArg == AllCovered) 6931 return; 6932 6933 // UncoveredArgHandler tracks the highest uncovered argument index 6934 // and with it all the strings that match this index. 6935 if (NewFirstUncoveredArg == FirstUncoveredArg) 6936 DiagnosticExprs.push_back(StrExpr); 6937 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6938 DiagnosticExprs.clear(); 6939 DiagnosticExprs.push_back(StrExpr); 6940 FirstUncoveredArg = NewFirstUncoveredArg; 6941 } 6942 } 6943 6944 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6945 }; 6946 6947 enum StringLiteralCheckType { 6948 SLCT_NotALiteral, 6949 SLCT_UncheckedLiteral, 6950 SLCT_CheckedLiteral 6951 }; 6952 6953 } // namespace 6954 6955 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6956 BinaryOperatorKind BinOpKind, 6957 bool AddendIsRight) { 6958 unsigned BitWidth = Offset.getBitWidth(); 6959 unsigned AddendBitWidth = Addend.getBitWidth(); 6960 // There might be negative interim results. 6961 if (Addend.isUnsigned()) { 6962 Addend = Addend.zext(++AddendBitWidth); 6963 Addend.setIsSigned(true); 6964 } 6965 // Adjust the bit width of the APSInts. 6966 if (AddendBitWidth > BitWidth) { 6967 Offset = Offset.sext(AddendBitWidth); 6968 BitWidth = AddendBitWidth; 6969 } else if (BitWidth > AddendBitWidth) { 6970 Addend = Addend.sext(BitWidth); 6971 } 6972 6973 bool Ov = false; 6974 llvm::APSInt ResOffset = Offset; 6975 if (BinOpKind == BO_Add) 6976 ResOffset = Offset.sadd_ov(Addend, Ov); 6977 else { 6978 assert(AddendIsRight && BinOpKind == BO_Sub && 6979 "operator must be add or sub with addend on the right"); 6980 ResOffset = Offset.ssub_ov(Addend, Ov); 6981 } 6982 6983 // We add an offset to a pointer here so we should support an offset as big as 6984 // possible. 6985 if (Ov) { 6986 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6987 "index (intermediate) result too big"); 6988 Offset = Offset.sext(2 * BitWidth); 6989 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6990 return; 6991 } 6992 6993 Offset = ResOffset; 6994 } 6995 6996 namespace { 6997 6998 // This is a wrapper class around StringLiteral to support offsetted string 6999 // literals as format strings. It takes the offset into account when returning 7000 // the string and its length or the source locations to display notes correctly. 7001 class FormatStringLiteral { 7002 const StringLiteral *FExpr; 7003 int64_t Offset; 7004 7005 public: 7006 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 7007 : FExpr(fexpr), Offset(Offset) {} 7008 7009 StringRef getString() const { 7010 return FExpr->getString().drop_front(Offset); 7011 } 7012 7013 unsigned getByteLength() const { 7014 return FExpr->getByteLength() - getCharByteWidth() * Offset; 7015 } 7016 7017 unsigned getLength() const { return FExpr->getLength() - Offset; } 7018 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 7019 7020 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 7021 7022 QualType getType() const { return FExpr->getType(); } 7023 7024 bool isAscii() const { return FExpr->isAscii(); } 7025 bool isWide() const { return FExpr->isWide(); } 7026 bool isUTF8() const { return FExpr->isUTF8(); } 7027 bool isUTF16() const { return FExpr->isUTF16(); } 7028 bool isUTF32() const { return FExpr->isUTF32(); } 7029 bool isPascal() const { return FExpr->isPascal(); } 7030 7031 SourceLocation getLocationOfByte( 7032 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 7033 const TargetInfo &Target, unsigned *StartToken = nullptr, 7034 unsigned *StartTokenByteOffset = nullptr) const { 7035 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 7036 StartToken, StartTokenByteOffset); 7037 } 7038 7039 SourceLocation getBeginLoc() const LLVM_READONLY { 7040 return FExpr->getBeginLoc().getLocWithOffset(Offset); 7041 } 7042 7043 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 7044 }; 7045 7046 } // namespace 7047 7048 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 7049 const Expr *OrigFormatExpr, 7050 ArrayRef<const Expr *> Args, 7051 bool HasVAListArg, unsigned format_idx, 7052 unsigned firstDataArg, 7053 Sema::FormatStringType Type, 7054 bool inFunctionCall, 7055 Sema::VariadicCallType CallType, 7056 llvm::SmallBitVector &CheckedVarArgs, 7057 UncoveredArgHandler &UncoveredArg, 7058 bool IgnoreStringsWithoutSpecifiers); 7059 7060 // Determine if an expression is a string literal or constant string. 7061 // If this function returns false on the arguments to a function expecting a 7062 // format string, we will usually need to emit a warning. 7063 // True string literals are then checked by CheckFormatString. 7064 static StringLiteralCheckType 7065 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 7066 bool HasVAListArg, unsigned format_idx, 7067 unsigned firstDataArg, Sema::FormatStringType Type, 7068 Sema::VariadicCallType CallType, bool InFunctionCall, 7069 llvm::SmallBitVector &CheckedVarArgs, 7070 UncoveredArgHandler &UncoveredArg, 7071 llvm::APSInt Offset, 7072 bool IgnoreStringsWithoutSpecifiers = false) { 7073 if (S.isConstantEvaluated()) 7074 return SLCT_NotALiteral; 7075 tryAgain: 7076 assert(Offset.isSigned() && "invalid offset"); 7077 7078 if (E->isTypeDependent() || E->isValueDependent()) 7079 return SLCT_NotALiteral; 7080 7081 E = E->IgnoreParenCasts(); 7082 7083 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 7084 // Technically -Wformat-nonliteral does not warn about this case. 7085 // The behavior of printf and friends in this case is implementation 7086 // dependent. Ideally if the format string cannot be null then 7087 // it should have a 'nonnull' attribute in the function prototype. 7088 return SLCT_UncheckedLiteral; 7089 7090 switch (E->getStmtClass()) { 7091 case Stmt::BinaryConditionalOperatorClass: 7092 case Stmt::ConditionalOperatorClass: { 7093 // The expression is a literal if both sub-expressions were, and it was 7094 // completely checked only if both sub-expressions were checked. 7095 const AbstractConditionalOperator *C = 7096 cast<AbstractConditionalOperator>(E); 7097 7098 // Determine whether it is necessary to check both sub-expressions, for 7099 // example, because the condition expression is a constant that can be 7100 // evaluated at compile time. 7101 bool CheckLeft = true, CheckRight = true; 7102 7103 bool Cond; 7104 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 7105 S.isConstantEvaluated())) { 7106 if (Cond) 7107 CheckRight = false; 7108 else 7109 CheckLeft = false; 7110 } 7111 7112 // We need to maintain the offsets for the right and the left hand side 7113 // separately to check if every possible indexed expression is a valid 7114 // string literal. They might have different offsets for different string 7115 // literals in the end. 7116 StringLiteralCheckType Left; 7117 if (!CheckLeft) 7118 Left = SLCT_UncheckedLiteral; 7119 else { 7120 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 7121 HasVAListArg, format_idx, firstDataArg, 7122 Type, CallType, InFunctionCall, 7123 CheckedVarArgs, UncoveredArg, Offset, 7124 IgnoreStringsWithoutSpecifiers); 7125 if (Left == SLCT_NotALiteral || !CheckRight) { 7126 return Left; 7127 } 7128 } 7129 7130 StringLiteralCheckType Right = checkFormatStringExpr( 7131 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 7132 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7133 IgnoreStringsWithoutSpecifiers); 7134 7135 return (CheckLeft && Left < Right) ? Left : Right; 7136 } 7137 7138 case Stmt::ImplicitCastExprClass: 7139 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 7140 goto tryAgain; 7141 7142 case Stmt::OpaqueValueExprClass: 7143 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 7144 E = src; 7145 goto tryAgain; 7146 } 7147 return SLCT_NotALiteral; 7148 7149 case Stmt::PredefinedExprClass: 7150 // While __func__, etc., are technically not string literals, they 7151 // cannot contain format specifiers and thus are not a security 7152 // liability. 7153 return SLCT_UncheckedLiteral; 7154 7155 case Stmt::DeclRefExprClass: { 7156 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 7157 7158 // As an exception, do not flag errors for variables binding to 7159 // const string literals. 7160 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 7161 bool isConstant = false; 7162 QualType T = DR->getType(); 7163 7164 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 7165 isConstant = AT->getElementType().isConstant(S.Context); 7166 } else if (const PointerType *PT = T->getAs<PointerType>()) { 7167 isConstant = T.isConstant(S.Context) && 7168 PT->getPointeeType().isConstant(S.Context); 7169 } else if (T->isObjCObjectPointerType()) { 7170 // In ObjC, there is usually no "const ObjectPointer" type, 7171 // so don't check if the pointee type is constant. 7172 isConstant = T.isConstant(S.Context); 7173 } 7174 7175 if (isConstant) { 7176 if (const Expr *Init = VD->getAnyInitializer()) { 7177 // Look through initializers like const char c[] = { "foo" } 7178 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 7179 if (InitList->isStringLiteralInit()) 7180 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 7181 } 7182 return checkFormatStringExpr(S, Init, Args, 7183 HasVAListArg, format_idx, 7184 firstDataArg, Type, CallType, 7185 /*InFunctionCall*/ false, CheckedVarArgs, 7186 UncoveredArg, Offset); 7187 } 7188 } 7189 7190 // For vprintf* functions (i.e., HasVAListArg==true), we add a 7191 // special check to see if the format string is a function parameter 7192 // of the function calling the printf function. If the function 7193 // has an attribute indicating it is a printf-like function, then we 7194 // should suppress warnings concerning non-literals being used in a call 7195 // to a vprintf function. For example: 7196 // 7197 // void 7198 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 7199 // va_list ap; 7200 // va_start(ap, fmt); 7201 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 7202 // ... 7203 // } 7204 if (HasVAListArg) { 7205 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 7206 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 7207 int PVIndex = PV->getFunctionScopeIndex() + 1; 7208 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 7209 // adjust for implicit parameter 7210 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 7211 if (MD->isInstance()) 7212 ++PVIndex; 7213 // We also check if the formats are compatible. 7214 // We can't pass a 'scanf' string to a 'printf' function. 7215 if (PVIndex == PVFormat->getFormatIdx() && 7216 Type == S.GetFormatStringType(PVFormat)) 7217 return SLCT_UncheckedLiteral; 7218 } 7219 } 7220 } 7221 } 7222 } 7223 7224 return SLCT_NotALiteral; 7225 } 7226 7227 case Stmt::CallExprClass: 7228 case Stmt::CXXMemberCallExprClass: { 7229 const CallExpr *CE = cast<CallExpr>(E); 7230 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 7231 bool IsFirst = true; 7232 StringLiteralCheckType CommonResult; 7233 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 7234 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 7235 StringLiteralCheckType Result = checkFormatStringExpr( 7236 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7237 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7238 IgnoreStringsWithoutSpecifiers); 7239 if (IsFirst) { 7240 CommonResult = Result; 7241 IsFirst = false; 7242 } 7243 } 7244 if (!IsFirst) 7245 return CommonResult; 7246 7247 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 7248 unsigned BuiltinID = FD->getBuiltinID(); 7249 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 7250 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 7251 const Expr *Arg = CE->getArg(0); 7252 return checkFormatStringExpr(S, Arg, Args, 7253 HasVAListArg, format_idx, 7254 firstDataArg, Type, CallType, 7255 InFunctionCall, CheckedVarArgs, 7256 UncoveredArg, Offset, 7257 IgnoreStringsWithoutSpecifiers); 7258 } 7259 } 7260 } 7261 7262 return SLCT_NotALiteral; 7263 } 7264 case Stmt::ObjCMessageExprClass: { 7265 const auto *ME = cast<ObjCMessageExpr>(E); 7266 if (const auto *MD = ME->getMethodDecl()) { 7267 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 7268 // As a special case heuristic, if we're using the method -[NSBundle 7269 // localizedStringForKey:value:table:], ignore any key strings that lack 7270 // format specifiers. The idea is that if the key doesn't have any 7271 // format specifiers then its probably just a key to map to the 7272 // localized strings. If it does have format specifiers though, then its 7273 // likely that the text of the key is the format string in the 7274 // programmer's language, and should be checked. 7275 const ObjCInterfaceDecl *IFace; 7276 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7277 IFace->getIdentifier()->isStr("NSBundle") && 7278 MD->getSelector().isKeywordSelector( 7279 {"localizedStringForKey", "value", "table"})) { 7280 IgnoreStringsWithoutSpecifiers = true; 7281 } 7282 7283 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7284 return checkFormatStringExpr( 7285 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7286 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7287 IgnoreStringsWithoutSpecifiers); 7288 } 7289 } 7290 7291 return SLCT_NotALiteral; 7292 } 7293 case Stmt::ObjCStringLiteralClass: 7294 case Stmt::StringLiteralClass: { 7295 const StringLiteral *StrE = nullptr; 7296 7297 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7298 StrE = ObjCFExpr->getString(); 7299 else 7300 StrE = cast<StringLiteral>(E); 7301 7302 if (StrE) { 7303 if (Offset.isNegative() || Offset > StrE->getLength()) { 7304 // TODO: It would be better to have an explicit warning for out of 7305 // bounds literals. 7306 return SLCT_NotALiteral; 7307 } 7308 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7309 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7310 firstDataArg, Type, InFunctionCall, CallType, 7311 CheckedVarArgs, UncoveredArg, 7312 IgnoreStringsWithoutSpecifiers); 7313 return SLCT_CheckedLiteral; 7314 } 7315 7316 return SLCT_NotALiteral; 7317 } 7318 case Stmt::BinaryOperatorClass: { 7319 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7320 7321 // A string literal + an int offset is still a string literal. 7322 if (BinOp->isAdditiveOp()) { 7323 Expr::EvalResult LResult, RResult; 7324 7325 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7326 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7327 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7328 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7329 7330 if (LIsInt != RIsInt) { 7331 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7332 7333 if (LIsInt) { 7334 if (BinOpKind == BO_Add) { 7335 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7336 E = BinOp->getRHS(); 7337 goto tryAgain; 7338 } 7339 } else { 7340 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7341 E = BinOp->getLHS(); 7342 goto tryAgain; 7343 } 7344 } 7345 } 7346 7347 return SLCT_NotALiteral; 7348 } 7349 case Stmt::UnaryOperatorClass: { 7350 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7351 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7352 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7353 Expr::EvalResult IndexResult; 7354 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7355 Expr::SE_NoSideEffects, 7356 S.isConstantEvaluated())) { 7357 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7358 /*RHS is int*/ true); 7359 E = ASE->getBase(); 7360 goto tryAgain; 7361 } 7362 } 7363 7364 return SLCT_NotALiteral; 7365 } 7366 7367 default: 7368 return SLCT_NotALiteral; 7369 } 7370 } 7371 7372 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7373 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7374 .Case("scanf", FST_Scanf) 7375 .Cases("printf", "printf0", FST_Printf) 7376 .Cases("NSString", "CFString", FST_NSString) 7377 .Case("strftime", FST_Strftime) 7378 .Case("strfmon", FST_Strfmon) 7379 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7380 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7381 .Case("os_trace", FST_OSLog) 7382 .Case("os_log", FST_OSLog) 7383 .Default(FST_Unknown); 7384 } 7385 7386 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7387 /// functions) for correct use of format strings. 7388 /// Returns true if a format string has been fully checked. 7389 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7390 ArrayRef<const Expr *> Args, 7391 bool IsCXXMember, 7392 VariadicCallType CallType, 7393 SourceLocation Loc, SourceRange Range, 7394 llvm::SmallBitVector &CheckedVarArgs) { 7395 FormatStringInfo FSI; 7396 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7397 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7398 FSI.FirstDataArg, GetFormatStringType(Format), 7399 CallType, Loc, Range, CheckedVarArgs); 7400 return false; 7401 } 7402 7403 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7404 bool HasVAListArg, unsigned format_idx, 7405 unsigned firstDataArg, FormatStringType Type, 7406 VariadicCallType CallType, 7407 SourceLocation Loc, SourceRange Range, 7408 llvm::SmallBitVector &CheckedVarArgs) { 7409 // CHECK: printf/scanf-like function is called with no format string. 7410 if (format_idx >= Args.size()) { 7411 Diag(Loc, diag::warn_missing_format_string) << Range; 7412 return false; 7413 } 7414 7415 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7416 7417 // CHECK: format string is not a string literal. 7418 // 7419 // Dynamically generated format strings are difficult to 7420 // automatically vet at compile time. Requiring that format strings 7421 // are string literals: (1) permits the checking of format strings by 7422 // the compiler and thereby (2) can practically remove the source of 7423 // many format string exploits. 7424 7425 // Format string can be either ObjC string (e.g. @"%d") or 7426 // C string (e.g. "%d") 7427 // ObjC string uses the same format specifiers as C string, so we can use 7428 // the same format string checking logic for both ObjC and C strings. 7429 UncoveredArgHandler UncoveredArg; 7430 StringLiteralCheckType CT = 7431 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7432 format_idx, firstDataArg, Type, CallType, 7433 /*IsFunctionCall*/ true, CheckedVarArgs, 7434 UncoveredArg, 7435 /*no string offset*/ llvm::APSInt(64, false) = 0); 7436 7437 // Generate a diagnostic where an uncovered argument is detected. 7438 if (UncoveredArg.hasUncoveredArg()) { 7439 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7440 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7441 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7442 } 7443 7444 if (CT != SLCT_NotALiteral) 7445 // Literal format string found, check done! 7446 return CT == SLCT_CheckedLiteral; 7447 7448 // Strftime is particular as it always uses a single 'time' argument, 7449 // so it is safe to pass a non-literal string. 7450 if (Type == FST_Strftime) 7451 return false; 7452 7453 // Do not emit diag when the string param is a macro expansion and the 7454 // format is either NSString or CFString. This is a hack to prevent 7455 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7456 // which are usually used in place of NS and CF string literals. 7457 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7458 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7459 return false; 7460 7461 // If there are no arguments specified, warn with -Wformat-security, otherwise 7462 // warn only with -Wformat-nonliteral. 7463 if (Args.size() == firstDataArg) { 7464 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7465 << OrigFormatExpr->getSourceRange(); 7466 switch (Type) { 7467 default: 7468 break; 7469 case FST_Kprintf: 7470 case FST_FreeBSDKPrintf: 7471 case FST_Printf: 7472 Diag(FormatLoc, diag::note_format_security_fixit) 7473 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7474 break; 7475 case FST_NSString: 7476 Diag(FormatLoc, diag::note_format_security_fixit) 7477 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7478 break; 7479 } 7480 } else { 7481 Diag(FormatLoc, diag::warn_format_nonliteral) 7482 << OrigFormatExpr->getSourceRange(); 7483 } 7484 return false; 7485 } 7486 7487 namespace { 7488 7489 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7490 protected: 7491 Sema &S; 7492 const FormatStringLiteral *FExpr; 7493 const Expr *OrigFormatExpr; 7494 const Sema::FormatStringType FSType; 7495 const unsigned FirstDataArg; 7496 const unsigned NumDataArgs; 7497 const char *Beg; // Start of format string. 7498 const bool HasVAListArg; 7499 ArrayRef<const Expr *> Args; 7500 unsigned FormatIdx; 7501 llvm::SmallBitVector CoveredArgs; 7502 bool usesPositionalArgs = false; 7503 bool atFirstArg = true; 7504 bool inFunctionCall; 7505 Sema::VariadicCallType CallType; 7506 llvm::SmallBitVector &CheckedVarArgs; 7507 UncoveredArgHandler &UncoveredArg; 7508 7509 public: 7510 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7511 const Expr *origFormatExpr, 7512 const Sema::FormatStringType type, unsigned firstDataArg, 7513 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7514 ArrayRef<const Expr *> Args, unsigned formatIdx, 7515 bool inFunctionCall, Sema::VariadicCallType callType, 7516 llvm::SmallBitVector &CheckedVarArgs, 7517 UncoveredArgHandler &UncoveredArg) 7518 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7519 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7520 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7521 inFunctionCall(inFunctionCall), CallType(callType), 7522 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7523 CoveredArgs.resize(numDataArgs); 7524 CoveredArgs.reset(); 7525 } 7526 7527 void DoneProcessing(); 7528 7529 void HandleIncompleteSpecifier(const char *startSpecifier, 7530 unsigned specifierLen) override; 7531 7532 void HandleInvalidLengthModifier( 7533 const analyze_format_string::FormatSpecifier &FS, 7534 const analyze_format_string::ConversionSpecifier &CS, 7535 const char *startSpecifier, unsigned specifierLen, 7536 unsigned DiagID); 7537 7538 void HandleNonStandardLengthModifier( 7539 const analyze_format_string::FormatSpecifier &FS, 7540 const char *startSpecifier, unsigned specifierLen); 7541 7542 void HandleNonStandardConversionSpecifier( 7543 const analyze_format_string::ConversionSpecifier &CS, 7544 const char *startSpecifier, unsigned specifierLen); 7545 7546 void HandlePosition(const char *startPos, unsigned posLen) override; 7547 7548 void HandleInvalidPosition(const char *startSpecifier, 7549 unsigned specifierLen, 7550 analyze_format_string::PositionContext p) override; 7551 7552 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7553 7554 void HandleNullChar(const char *nullCharacter) override; 7555 7556 template <typename Range> 7557 static void 7558 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7559 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7560 bool IsStringLocation, Range StringRange, 7561 ArrayRef<FixItHint> Fixit = None); 7562 7563 protected: 7564 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7565 const char *startSpec, 7566 unsigned specifierLen, 7567 const char *csStart, unsigned csLen); 7568 7569 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7570 const char *startSpec, 7571 unsigned specifierLen); 7572 7573 SourceRange getFormatStringRange(); 7574 CharSourceRange getSpecifierRange(const char *startSpecifier, 7575 unsigned specifierLen); 7576 SourceLocation getLocationOfByte(const char *x); 7577 7578 const Expr *getDataArg(unsigned i) const; 7579 7580 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7581 const analyze_format_string::ConversionSpecifier &CS, 7582 const char *startSpecifier, unsigned specifierLen, 7583 unsigned argIndex); 7584 7585 template <typename Range> 7586 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7587 bool IsStringLocation, Range StringRange, 7588 ArrayRef<FixItHint> Fixit = None); 7589 }; 7590 7591 } // namespace 7592 7593 SourceRange CheckFormatHandler::getFormatStringRange() { 7594 return OrigFormatExpr->getSourceRange(); 7595 } 7596 7597 CharSourceRange CheckFormatHandler:: 7598 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7599 SourceLocation Start = getLocationOfByte(startSpecifier); 7600 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7601 7602 // Advance the end SourceLocation by one due to half-open ranges. 7603 End = End.getLocWithOffset(1); 7604 7605 return CharSourceRange::getCharRange(Start, End); 7606 } 7607 7608 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7609 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7610 S.getLangOpts(), S.Context.getTargetInfo()); 7611 } 7612 7613 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7614 unsigned specifierLen){ 7615 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7616 getLocationOfByte(startSpecifier), 7617 /*IsStringLocation*/true, 7618 getSpecifierRange(startSpecifier, specifierLen)); 7619 } 7620 7621 void CheckFormatHandler::HandleInvalidLengthModifier( 7622 const analyze_format_string::FormatSpecifier &FS, 7623 const analyze_format_string::ConversionSpecifier &CS, 7624 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7625 using namespace analyze_format_string; 7626 7627 const LengthModifier &LM = FS.getLengthModifier(); 7628 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7629 7630 // See if we know how to fix this length modifier. 7631 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7632 if (FixedLM) { 7633 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7634 getLocationOfByte(LM.getStart()), 7635 /*IsStringLocation*/true, 7636 getSpecifierRange(startSpecifier, specifierLen)); 7637 7638 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7639 << FixedLM->toString() 7640 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7641 7642 } else { 7643 FixItHint Hint; 7644 if (DiagID == diag::warn_format_nonsensical_length) 7645 Hint = FixItHint::CreateRemoval(LMRange); 7646 7647 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7648 getLocationOfByte(LM.getStart()), 7649 /*IsStringLocation*/true, 7650 getSpecifierRange(startSpecifier, specifierLen), 7651 Hint); 7652 } 7653 } 7654 7655 void CheckFormatHandler::HandleNonStandardLengthModifier( 7656 const analyze_format_string::FormatSpecifier &FS, 7657 const char *startSpecifier, unsigned specifierLen) { 7658 using namespace analyze_format_string; 7659 7660 const LengthModifier &LM = FS.getLengthModifier(); 7661 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7662 7663 // See if we know how to fix this length modifier. 7664 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7665 if (FixedLM) { 7666 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7667 << LM.toString() << 0, 7668 getLocationOfByte(LM.getStart()), 7669 /*IsStringLocation*/true, 7670 getSpecifierRange(startSpecifier, specifierLen)); 7671 7672 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7673 << FixedLM->toString() 7674 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7675 7676 } else { 7677 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7678 << LM.toString() << 0, 7679 getLocationOfByte(LM.getStart()), 7680 /*IsStringLocation*/true, 7681 getSpecifierRange(startSpecifier, specifierLen)); 7682 } 7683 } 7684 7685 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7686 const analyze_format_string::ConversionSpecifier &CS, 7687 const char *startSpecifier, unsigned specifierLen) { 7688 using namespace analyze_format_string; 7689 7690 // See if we know how to fix this conversion specifier. 7691 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7692 if (FixedCS) { 7693 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7694 << CS.toString() << /*conversion specifier*/1, 7695 getLocationOfByte(CS.getStart()), 7696 /*IsStringLocation*/true, 7697 getSpecifierRange(startSpecifier, specifierLen)); 7698 7699 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7700 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7701 << FixedCS->toString() 7702 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7703 } else { 7704 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7705 << CS.toString() << /*conversion specifier*/1, 7706 getLocationOfByte(CS.getStart()), 7707 /*IsStringLocation*/true, 7708 getSpecifierRange(startSpecifier, specifierLen)); 7709 } 7710 } 7711 7712 void CheckFormatHandler::HandlePosition(const char *startPos, 7713 unsigned posLen) { 7714 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7715 getLocationOfByte(startPos), 7716 /*IsStringLocation*/true, 7717 getSpecifierRange(startPos, posLen)); 7718 } 7719 7720 void 7721 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7722 analyze_format_string::PositionContext p) { 7723 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7724 << (unsigned) p, 7725 getLocationOfByte(startPos), /*IsStringLocation*/true, 7726 getSpecifierRange(startPos, posLen)); 7727 } 7728 7729 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7730 unsigned posLen) { 7731 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7732 getLocationOfByte(startPos), 7733 /*IsStringLocation*/true, 7734 getSpecifierRange(startPos, posLen)); 7735 } 7736 7737 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7738 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7739 // The presence of a null character is likely an error. 7740 EmitFormatDiagnostic( 7741 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7742 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7743 getFormatStringRange()); 7744 } 7745 } 7746 7747 // Note that this may return NULL if there was an error parsing or building 7748 // one of the argument expressions. 7749 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7750 return Args[FirstDataArg + i]; 7751 } 7752 7753 void CheckFormatHandler::DoneProcessing() { 7754 // Does the number of data arguments exceed the number of 7755 // format conversions in the format string? 7756 if (!HasVAListArg) { 7757 // Find any arguments that weren't covered. 7758 CoveredArgs.flip(); 7759 signed notCoveredArg = CoveredArgs.find_first(); 7760 if (notCoveredArg >= 0) { 7761 assert((unsigned)notCoveredArg < NumDataArgs); 7762 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7763 } else { 7764 UncoveredArg.setAllCovered(); 7765 } 7766 } 7767 } 7768 7769 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7770 const Expr *ArgExpr) { 7771 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7772 "Invalid state"); 7773 7774 if (!ArgExpr) 7775 return; 7776 7777 SourceLocation Loc = ArgExpr->getBeginLoc(); 7778 7779 if (S.getSourceManager().isInSystemMacro(Loc)) 7780 return; 7781 7782 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7783 for (auto E : DiagnosticExprs) 7784 PDiag << E->getSourceRange(); 7785 7786 CheckFormatHandler::EmitFormatDiagnostic( 7787 S, IsFunctionCall, DiagnosticExprs[0], 7788 PDiag, Loc, /*IsStringLocation*/false, 7789 DiagnosticExprs[0]->getSourceRange()); 7790 } 7791 7792 bool 7793 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7794 SourceLocation Loc, 7795 const char *startSpec, 7796 unsigned specifierLen, 7797 const char *csStart, 7798 unsigned csLen) { 7799 bool keepGoing = true; 7800 if (argIndex < NumDataArgs) { 7801 // Consider the argument coverered, even though the specifier doesn't 7802 // make sense. 7803 CoveredArgs.set(argIndex); 7804 } 7805 else { 7806 // If argIndex exceeds the number of data arguments we 7807 // don't issue a warning because that is just a cascade of warnings (and 7808 // they may have intended '%%' anyway). We don't want to continue processing 7809 // the format string after this point, however, as we will like just get 7810 // gibberish when trying to match arguments. 7811 keepGoing = false; 7812 } 7813 7814 StringRef Specifier(csStart, csLen); 7815 7816 // If the specifier in non-printable, it could be the first byte of a UTF-8 7817 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7818 // hex value. 7819 std::string CodePointStr; 7820 if (!llvm::sys::locale::isPrint(*csStart)) { 7821 llvm::UTF32 CodePoint; 7822 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7823 const llvm::UTF8 *E = 7824 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7825 llvm::ConversionResult Result = 7826 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7827 7828 if (Result != llvm::conversionOK) { 7829 unsigned char FirstChar = *csStart; 7830 CodePoint = (llvm::UTF32)FirstChar; 7831 } 7832 7833 llvm::raw_string_ostream OS(CodePointStr); 7834 if (CodePoint < 256) 7835 OS << "\\x" << llvm::format("%02x", CodePoint); 7836 else if (CodePoint <= 0xFFFF) 7837 OS << "\\u" << llvm::format("%04x", CodePoint); 7838 else 7839 OS << "\\U" << llvm::format("%08x", CodePoint); 7840 OS.flush(); 7841 Specifier = CodePointStr; 7842 } 7843 7844 EmitFormatDiagnostic( 7845 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7846 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7847 7848 return keepGoing; 7849 } 7850 7851 void 7852 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7853 const char *startSpec, 7854 unsigned specifierLen) { 7855 EmitFormatDiagnostic( 7856 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7857 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7858 } 7859 7860 bool 7861 CheckFormatHandler::CheckNumArgs( 7862 const analyze_format_string::FormatSpecifier &FS, 7863 const analyze_format_string::ConversionSpecifier &CS, 7864 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7865 7866 if (argIndex >= NumDataArgs) { 7867 PartialDiagnostic PDiag = FS.usesPositionalArg() 7868 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7869 << (argIndex+1) << NumDataArgs) 7870 : S.PDiag(diag::warn_printf_insufficient_data_args); 7871 EmitFormatDiagnostic( 7872 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7873 getSpecifierRange(startSpecifier, specifierLen)); 7874 7875 // Since more arguments than conversion tokens are given, by extension 7876 // all arguments are covered, so mark this as so. 7877 UncoveredArg.setAllCovered(); 7878 return false; 7879 } 7880 return true; 7881 } 7882 7883 template<typename Range> 7884 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7885 SourceLocation Loc, 7886 bool IsStringLocation, 7887 Range StringRange, 7888 ArrayRef<FixItHint> FixIt) { 7889 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7890 Loc, IsStringLocation, StringRange, FixIt); 7891 } 7892 7893 /// If the format string is not within the function call, emit a note 7894 /// so that the function call and string are in diagnostic messages. 7895 /// 7896 /// \param InFunctionCall if true, the format string is within the function 7897 /// call and only one diagnostic message will be produced. Otherwise, an 7898 /// extra note will be emitted pointing to location of the format string. 7899 /// 7900 /// \param ArgumentExpr the expression that is passed as the format string 7901 /// argument in the function call. Used for getting locations when two 7902 /// diagnostics are emitted. 7903 /// 7904 /// \param PDiag the callee should already have provided any strings for the 7905 /// diagnostic message. This function only adds locations and fixits 7906 /// to diagnostics. 7907 /// 7908 /// \param Loc primary location for diagnostic. If two diagnostics are 7909 /// required, one will be at Loc and a new SourceLocation will be created for 7910 /// the other one. 7911 /// 7912 /// \param IsStringLocation if true, Loc points to the format string should be 7913 /// used for the note. Otherwise, Loc points to the argument list and will 7914 /// be used with PDiag. 7915 /// 7916 /// \param StringRange some or all of the string to highlight. This is 7917 /// templated so it can accept either a CharSourceRange or a SourceRange. 7918 /// 7919 /// \param FixIt optional fix it hint for the format string. 7920 template <typename Range> 7921 void CheckFormatHandler::EmitFormatDiagnostic( 7922 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7923 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7924 Range StringRange, ArrayRef<FixItHint> FixIt) { 7925 if (InFunctionCall) { 7926 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7927 D << StringRange; 7928 D << FixIt; 7929 } else { 7930 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7931 << ArgumentExpr->getSourceRange(); 7932 7933 const Sema::SemaDiagnosticBuilder &Note = 7934 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7935 diag::note_format_string_defined); 7936 7937 Note << StringRange; 7938 Note << FixIt; 7939 } 7940 } 7941 7942 //===--- CHECK: Printf format string checking ------------------------------===// 7943 7944 namespace { 7945 7946 class CheckPrintfHandler : public CheckFormatHandler { 7947 public: 7948 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7949 const Expr *origFormatExpr, 7950 const Sema::FormatStringType type, unsigned firstDataArg, 7951 unsigned numDataArgs, bool isObjC, const char *beg, 7952 bool hasVAListArg, ArrayRef<const Expr *> Args, 7953 unsigned formatIdx, bool inFunctionCall, 7954 Sema::VariadicCallType CallType, 7955 llvm::SmallBitVector &CheckedVarArgs, 7956 UncoveredArgHandler &UncoveredArg) 7957 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7958 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7959 inFunctionCall, CallType, CheckedVarArgs, 7960 UncoveredArg) {} 7961 7962 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7963 7964 /// Returns true if '%@' specifiers are allowed in the format string. 7965 bool allowsObjCArg() const { 7966 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7967 FSType == Sema::FST_OSTrace; 7968 } 7969 7970 bool HandleInvalidPrintfConversionSpecifier( 7971 const analyze_printf::PrintfSpecifier &FS, 7972 const char *startSpecifier, 7973 unsigned specifierLen) override; 7974 7975 void handleInvalidMaskType(StringRef MaskType) override; 7976 7977 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7978 const char *startSpecifier, 7979 unsigned specifierLen) override; 7980 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7981 const char *StartSpecifier, 7982 unsigned SpecifierLen, 7983 const Expr *E); 7984 7985 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7986 const char *startSpecifier, unsigned specifierLen); 7987 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7988 const analyze_printf::OptionalAmount &Amt, 7989 unsigned type, 7990 const char *startSpecifier, unsigned specifierLen); 7991 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7992 const analyze_printf::OptionalFlag &flag, 7993 const char *startSpecifier, unsigned specifierLen); 7994 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7995 const analyze_printf::OptionalFlag &ignoredFlag, 7996 const analyze_printf::OptionalFlag &flag, 7997 const char *startSpecifier, unsigned specifierLen); 7998 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7999 const Expr *E); 8000 8001 void HandleEmptyObjCModifierFlag(const char *startFlag, 8002 unsigned flagLen) override; 8003 8004 void HandleInvalidObjCModifierFlag(const char *startFlag, 8005 unsigned flagLen) override; 8006 8007 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 8008 const char *flagsEnd, 8009 const char *conversionPosition) 8010 override; 8011 }; 8012 8013 } // namespace 8014 8015 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 8016 const analyze_printf::PrintfSpecifier &FS, 8017 const char *startSpecifier, 8018 unsigned specifierLen) { 8019 const analyze_printf::PrintfConversionSpecifier &CS = 8020 FS.getConversionSpecifier(); 8021 8022 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8023 getLocationOfByte(CS.getStart()), 8024 startSpecifier, specifierLen, 8025 CS.getStart(), CS.getLength()); 8026 } 8027 8028 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 8029 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 8030 } 8031 8032 bool CheckPrintfHandler::HandleAmount( 8033 const analyze_format_string::OptionalAmount &Amt, 8034 unsigned k, const char *startSpecifier, 8035 unsigned specifierLen) { 8036 if (Amt.hasDataArgument()) { 8037 if (!HasVAListArg) { 8038 unsigned argIndex = Amt.getArgIndex(); 8039 if (argIndex >= NumDataArgs) { 8040 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 8041 << k, 8042 getLocationOfByte(Amt.getStart()), 8043 /*IsStringLocation*/true, 8044 getSpecifierRange(startSpecifier, specifierLen)); 8045 // Don't do any more checking. We will just emit 8046 // spurious errors. 8047 return false; 8048 } 8049 8050 // Type check the data argument. It should be an 'int'. 8051 // Although not in conformance with C99, we also allow the argument to be 8052 // an 'unsigned int' as that is a reasonably safe case. GCC also 8053 // doesn't emit a warning for that case. 8054 CoveredArgs.set(argIndex); 8055 const Expr *Arg = getDataArg(argIndex); 8056 if (!Arg) 8057 return false; 8058 8059 QualType T = Arg->getType(); 8060 8061 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 8062 assert(AT.isValid()); 8063 8064 if (!AT.matchesType(S.Context, T)) { 8065 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 8066 << k << AT.getRepresentativeTypeName(S.Context) 8067 << T << Arg->getSourceRange(), 8068 getLocationOfByte(Amt.getStart()), 8069 /*IsStringLocation*/true, 8070 getSpecifierRange(startSpecifier, specifierLen)); 8071 // Don't do any more checking. We will just emit 8072 // spurious errors. 8073 return false; 8074 } 8075 } 8076 } 8077 return true; 8078 } 8079 8080 void CheckPrintfHandler::HandleInvalidAmount( 8081 const analyze_printf::PrintfSpecifier &FS, 8082 const analyze_printf::OptionalAmount &Amt, 8083 unsigned type, 8084 const char *startSpecifier, 8085 unsigned specifierLen) { 8086 const analyze_printf::PrintfConversionSpecifier &CS = 8087 FS.getConversionSpecifier(); 8088 8089 FixItHint fixit = 8090 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 8091 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 8092 Amt.getConstantLength())) 8093 : FixItHint(); 8094 8095 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 8096 << type << CS.toString(), 8097 getLocationOfByte(Amt.getStart()), 8098 /*IsStringLocation*/true, 8099 getSpecifierRange(startSpecifier, specifierLen), 8100 fixit); 8101 } 8102 8103 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8104 const analyze_printf::OptionalFlag &flag, 8105 const char *startSpecifier, 8106 unsigned specifierLen) { 8107 // Warn about pointless flag with a fixit removal. 8108 const analyze_printf::PrintfConversionSpecifier &CS = 8109 FS.getConversionSpecifier(); 8110 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 8111 << flag.toString() << CS.toString(), 8112 getLocationOfByte(flag.getPosition()), 8113 /*IsStringLocation*/true, 8114 getSpecifierRange(startSpecifier, specifierLen), 8115 FixItHint::CreateRemoval( 8116 getSpecifierRange(flag.getPosition(), 1))); 8117 } 8118 8119 void CheckPrintfHandler::HandleIgnoredFlag( 8120 const analyze_printf::PrintfSpecifier &FS, 8121 const analyze_printf::OptionalFlag &ignoredFlag, 8122 const analyze_printf::OptionalFlag &flag, 8123 const char *startSpecifier, 8124 unsigned specifierLen) { 8125 // Warn about ignored flag with a fixit removal. 8126 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 8127 << ignoredFlag.toString() << flag.toString(), 8128 getLocationOfByte(ignoredFlag.getPosition()), 8129 /*IsStringLocation*/true, 8130 getSpecifierRange(startSpecifier, specifierLen), 8131 FixItHint::CreateRemoval( 8132 getSpecifierRange(ignoredFlag.getPosition(), 1))); 8133 } 8134 8135 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 8136 unsigned flagLen) { 8137 // Warn about an empty flag. 8138 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 8139 getLocationOfByte(startFlag), 8140 /*IsStringLocation*/true, 8141 getSpecifierRange(startFlag, flagLen)); 8142 } 8143 8144 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 8145 unsigned flagLen) { 8146 // Warn about an invalid flag. 8147 auto Range = getSpecifierRange(startFlag, flagLen); 8148 StringRef flag(startFlag, flagLen); 8149 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 8150 getLocationOfByte(startFlag), 8151 /*IsStringLocation*/true, 8152 Range, FixItHint::CreateRemoval(Range)); 8153 } 8154 8155 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 8156 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 8157 // Warn about using '[...]' without a '@' conversion. 8158 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 8159 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 8160 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 8161 getLocationOfByte(conversionPosition), 8162 /*IsStringLocation*/true, 8163 Range, FixItHint::CreateRemoval(Range)); 8164 } 8165 8166 // Determines if the specified is a C++ class or struct containing 8167 // a member with the specified name and kind (e.g. a CXXMethodDecl named 8168 // "c_str()"). 8169 template<typename MemberKind> 8170 static llvm::SmallPtrSet<MemberKind*, 1> 8171 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 8172 const RecordType *RT = Ty->getAs<RecordType>(); 8173 llvm::SmallPtrSet<MemberKind*, 1> Results; 8174 8175 if (!RT) 8176 return Results; 8177 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 8178 if (!RD || !RD->getDefinition()) 8179 return Results; 8180 8181 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 8182 Sema::LookupMemberName); 8183 R.suppressDiagnostics(); 8184 8185 // We just need to include all members of the right kind turned up by the 8186 // filter, at this point. 8187 if (S.LookupQualifiedName(R, RT->getDecl())) 8188 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8189 NamedDecl *decl = (*I)->getUnderlyingDecl(); 8190 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 8191 Results.insert(FK); 8192 } 8193 return Results; 8194 } 8195 8196 /// Check if we could call '.c_str()' on an object. 8197 /// 8198 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 8199 /// allow the call, or if it would be ambiguous). 8200 bool Sema::hasCStrMethod(const Expr *E) { 8201 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8202 8203 MethodSet Results = 8204 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 8205 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8206 MI != ME; ++MI) 8207 if ((*MI)->getMinRequiredArguments() == 0) 8208 return true; 8209 return false; 8210 } 8211 8212 // Check if a (w)string was passed when a (w)char* was needed, and offer a 8213 // better diagnostic if so. AT is assumed to be valid. 8214 // Returns true when a c_str() conversion method is found. 8215 bool CheckPrintfHandler::checkForCStrMembers( 8216 const analyze_printf::ArgType &AT, const Expr *E) { 8217 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8218 8219 MethodSet Results = 8220 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 8221 8222 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8223 MI != ME; ++MI) { 8224 const CXXMethodDecl *Method = *MI; 8225 if (Method->getMinRequiredArguments() == 0 && 8226 AT.matchesType(S.Context, Method->getReturnType())) { 8227 // FIXME: Suggest parens if the expression needs them. 8228 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 8229 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 8230 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 8231 return true; 8232 } 8233 } 8234 8235 return false; 8236 } 8237 8238 bool 8239 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 8240 &FS, 8241 const char *startSpecifier, 8242 unsigned specifierLen) { 8243 using namespace analyze_format_string; 8244 using namespace analyze_printf; 8245 8246 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 8247 8248 if (FS.consumesDataArgument()) { 8249 if (atFirstArg) { 8250 atFirstArg = false; 8251 usesPositionalArgs = FS.usesPositionalArg(); 8252 } 8253 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8254 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8255 startSpecifier, specifierLen); 8256 return false; 8257 } 8258 } 8259 8260 // First check if the field width, precision, and conversion specifier 8261 // have matching data arguments. 8262 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 8263 startSpecifier, specifierLen)) { 8264 return false; 8265 } 8266 8267 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 8268 startSpecifier, specifierLen)) { 8269 return false; 8270 } 8271 8272 if (!CS.consumesDataArgument()) { 8273 // FIXME: Technically specifying a precision or field width here 8274 // makes no sense. Worth issuing a warning at some point. 8275 return true; 8276 } 8277 8278 // Consume the argument. 8279 unsigned argIndex = FS.getArgIndex(); 8280 if (argIndex < NumDataArgs) { 8281 // The check to see if the argIndex is valid will come later. 8282 // We set the bit here because we may exit early from this 8283 // function if we encounter some other error. 8284 CoveredArgs.set(argIndex); 8285 } 8286 8287 // FreeBSD kernel extensions. 8288 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8289 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8290 // We need at least two arguments. 8291 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8292 return false; 8293 8294 // Claim the second argument. 8295 CoveredArgs.set(argIndex + 1); 8296 8297 // Type check the first argument (int for %b, pointer for %D) 8298 const Expr *Ex = getDataArg(argIndex); 8299 const analyze_printf::ArgType &AT = 8300 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8301 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8302 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8303 EmitFormatDiagnostic( 8304 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8305 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8306 << false << Ex->getSourceRange(), 8307 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8308 getSpecifierRange(startSpecifier, specifierLen)); 8309 8310 // Type check the second argument (char * for both %b and %D) 8311 Ex = getDataArg(argIndex + 1); 8312 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8313 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8314 EmitFormatDiagnostic( 8315 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8316 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8317 << false << Ex->getSourceRange(), 8318 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8319 getSpecifierRange(startSpecifier, specifierLen)); 8320 8321 return true; 8322 } 8323 8324 // Check for using an Objective-C specific conversion specifier 8325 // in a non-ObjC literal. 8326 if (!allowsObjCArg() && CS.isObjCArg()) { 8327 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8328 specifierLen); 8329 } 8330 8331 // %P can only be used with os_log. 8332 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8333 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8334 specifierLen); 8335 } 8336 8337 // %n is not allowed with os_log. 8338 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8339 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8340 getLocationOfByte(CS.getStart()), 8341 /*IsStringLocation*/ false, 8342 getSpecifierRange(startSpecifier, specifierLen)); 8343 8344 return true; 8345 } 8346 8347 // Only scalars are allowed for os_trace. 8348 if (FSType == Sema::FST_OSTrace && 8349 (CS.getKind() == ConversionSpecifier::PArg || 8350 CS.getKind() == ConversionSpecifier::sArg || 8351 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8352 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8353 specifierLen); 8354 } 8355 8356 // Check for use of public/private annotation outside of os_log(). 8357 if (FSType != Sema::FST_OSLog) { 8358 if (FS.isPublic().isSet()) { 8359 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8360 << "public", 8361 getLocationOfByte(FS.isPublic().getPosition()), 8362 /*IsStringLocation*/ false, 8363 getSpecifierRange(startSpecifier, specifierLen)); 8364 } 8365 if (FS.isPrivate().isSet()) { 8366 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8367 << "private", 8368 getLocationOfByte(FS.isPrivate().getPosition()), 8369 /*IsStringLocation*/ false, 8370 getSpecifierRange(startSpecifier, specifierLen)); 8371 } 8372 } 8373 8374 // Check for invalid use of field width 8375 if (!FS.hasValidFieldWidth()) { 8376 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8377 startSpecifier, specifierLen); 8378 } 8379 8380 // Check for invalid use of precision 8381 if (!FS.hasValidPrecision()) { 8382 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8383 startSpecifier, specifierLen); 8384 } 8385 8386 // Precision is mandatory for %P specifier. 8387 if (CS.getKind() == ConversionSpecifier::PArg && 8388 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8389 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8390 getLocationOfByte(startSpecifier), 8391 /*IsStringLocation*/ false, 8392 getSpecifierRange(startSpecifier, specifierLen)); 8393 } 8394 8395 // Check each flag does not conflict with any other component. 8396 if (!FS.hasValidThousandsGroupingPrefix()) 8397 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8398 if (!FS.hasValidLeadingZeros()) 8399 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8400 if (!FS.hasValidPlusPrefix()) 8401 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8402 if (!FS.hasValidSpacePrefix()) 8403 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8404 if (!FS.hasValidAlternativeForm()) 8405 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8406 if (!FS.hasValidLeftJustified()) 8407 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8408 8409 // Check that flags are not ignored by another flag 8410 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8411 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8412 startSpecifier, specifierLen); 8413 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8414 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8415 startSpecifier, specifierLen); 8416 8417 // Check the length modifier is valid with the given conversion specifier. 8418 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8419 S.getLangOpts())) 8420 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8421 diag::warn_format_nonsensical_length); 8422 else if (!FS.hasStandardLengthModifier()) 8423 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8424 else if (!FS.hasStandardLengthConversionCombination()) 8425 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8426 diag::warn_format_non_standard_conversion_spec); 8427 8428 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8429 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8430 8431 // The remaining checks depend on the data arguments. 8432 if (HasVAListArg) 8433 return true; 8434 8435 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8436 return false; 8437 8438 const Expr *Arg = getDataArg(argIndex); 8439 if (!Arg) 8440 return true; 8441 8442 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8443 } 8444 8445 static bool requiresParensToAddCast(const Expr *E) { 8446 // FIXME: We should have a general way to reason about operator 8447 // precedence and whether parens are actually needed here. 8448 // Take care of a few common cases where they aren't. 8449 const Expr *Inside = E->IgnoreImpCasts(); 8450 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8451 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8452 8453 switch (Inside->getStmtClass()) { 8454 case Stmt::ArraySubscriptExprClass: 8455 case Stmt::CallExprClass: 8456 case Stmt::CharacterLiteralClass: 8457 case Stmt::CXXBoolLiteralExprClass: 8458 case Stmt::DeclRefExprClass: 8459 case Stmt::FloatingLiteralClass: 8460 case Stmt::IntegerLiteralClass: 8461 case Stmt::MemberExprClass: 8462 case Stmt::ObjCArrayLiteralClass: 8463 case Stmt::ObjCBoolLiteralExprClass: 8464 case Stmt::ObjCBoxedExprClass: 8465 case Stmt::ObjCDictionaryLiteralClass: 8466 case Stmt::ObjCEncodeExprClass: 8467 case Stmt::ObjCIvarRefExprClass: 8468 case Stmt::ObjCMessageExprClass: 8469 case Stmt::ObjCPropertyRefExprClass: 8470 case Stmt::ObjCStringLiteralClass: 8471 case Stmt::ObjCSubscriptRefExprClass: 8472 case Stmt::ParenExprClass: 8473 case Stmt::StringLiteralClass: 8474 case Stmt::UnaryOperatorClass: 8475 return false; 8476 default: 8477 return true; 8478 } 8479 } 8480 8481 static std::pair<QualType, StringRef> 8482 shouldNotPrintDirectly(const ASTContext &Context, 8483 QualType IntendedTy, 8484 const Expr *E) { 8485 // Use a 'while' to peel off layers of typedefs. 8486 QualType TyTy = IntendedTy; 8487 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8488 StringRef Name = UserTy->getDecl()->getName(); 8489 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8490 .Case("CFIndex", Context.getNSIntegerType()) 8491 .Case("NSInteger", Context.getNSIntegerType()) 8492 .Case("NSUInteger", Context.getNSUIntegerType()) 8493 .Case("SInt32", Context.IntTy) 8494 .Case("UInt32", Context.UnsignedIntTy) 8495 .Default(QualType()); 8496 8497 if (!CastTy.isNull()) 8498 return std::make_pair(CastTy, Name); 8499 8500 TyTy = UserTy->desugar(); 8501 } 8502 8503 // Strip parens if necessary. 8504 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8505 return shouldNotPrintDirectly(Context, 8506 PE->getSubExpr()->getType(), 8507 PE->getSubExpr()); 8508 8509 // If this is a conditional expression, then its result type is constructed 8510 // via usual arithmetic conversions and thus there might be no necessary 8511 // typedef sugar there. Recurse to operands to check for NSInteger & 8512 // Co. usage condition. 8513 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8514 QualType TrueTy, FalseTy; 8515 StringRef TrueName, FalseName; 8516 8517 std::tie(TrueTy, TrueName) = 8518 shouldNotPrintDirectly(Context, 8519 CO->getTrueExpr()->getType(), 8520 CO->getTrueExpr()); 8521 std::tie(FalseTy, FalseName) = 8522 shouldNotPrintDirectly(Context, 8523 CO->getFalseExpr()->getType(), 8524 CO->getFalseExpr()); 8525 8526 if (TrueTy == FalseTy) 8527 return std::make_pair(TrueTy, TrueName); 8528 else if (TrueTy.isNull()) 8529 return std::make_pair(FalseTy, FalseName); 8530 else if (FalseTy.isNull()) 8531 return std::make_pair(TrueTy, TrueName); 8532 } 8533 8534 return std::make_pair(QualType(), StringRef()); 8535 } 8536 8537 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8538 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8539 /// type do not count. 8540 static bool 8541 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8542 QualType From = ICE->getSubExpr()->getType(); 8543 QualType To = ICE->getType(); 8544 // It's an integer promotion if the destination type is the promoted 8545 // source type. 8546 if (ICE->getCastKind() == CK_IntegralCast && 8547 From->isPromotableIntegerType() && 8548 S.Context.getPromotedIntegerType(From) == To) 8549 return true; 8550 // Look through vector types, since we do default argument promotion for 8551 // those in OpenCL. 8552 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8553 From = VecTy->getElementType(); 8554 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8555 To = VecTy->getElementType(); 8556 // It's a floating promotion if the source type is a lower rank. 8557 return ICE->getCastKind() == CK_FloatingCast && 8558 S.Context.getFloatingTypeOrder(From, To) < 0; 8559 } 8560 8561 bool 8562 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8563 const char *StartSpecifier, 8564 unsigned SpecifierLen, 8565 const Expr *E) { 8566 using namespace analyze_format_string; 8567 using namespace analyze_printf; 8568 8569 // Now type check the data expression that matches the 8570 // format specifier. 8571 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8572 if (!AT.isValid()) 8573 return true; 8574 8575 QualType ExprTy = E->getType(); 8576 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8577 ExprTy = TET->getUnderlyingExpr()->getType(); 8578 } 8579 8580 // Diagnose attempts to print a boolean value as a character. Unlike other 8581 // -Wformat diagnostics, this is fine from a type perspective, but it still 8582 // doesn't make sense. 8583 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8584 E->isKnownToHaveBooleanValue()) { 8585 const CharSourceRange &CSR = 8586 getSpecifierRange(StartSpecifier, SpecifierLen); 8587 SmallString<4> FSString; 8588 llvm::raw_svector_ostream os(FSString); 8589 FS.toString(os); 8590 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8591 << FSString, 8592 E->getExprLoc(), false, CSR); 8593 return true; 8594 } 8595 8596 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8597 if (Match == analyze_printf::ArgType::Match) 8598 return true; 8599 8600 // Look through argument promotions for our error message's reported type. 8601 // This includes the integral and floating promotions, but excludes array 8602 // and function pointer decay (seeing that an argument intended to be a 8603 // string has type 'char [6]' is probably more confusing than 'char *') and 8604 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8605 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8606 if (isArithmeticArgumentPromotion(S, ICE)) { 8607 E = ICE->getSubExpr(); 8608 ExprTy = E->getType(); 8609 8610 // Check if we didn't match because of an implicit cast from a 'char' 8611 // or 'short' to an 'int'. This is done because printf is a varargs 8612 // function. 8613 if (ICE->getType() == S.Context.IntTy || 8614 ICE->getType() == S.Context.UnsignedIntTy) { 8615 // All further checking is done on the subexpression 8616 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8617 AT.matchesType(S.Context, ExprTy); 8618 if (ImplicitMatch == analyze_printf::ArgType::Match) 8619 return true; 8620 if (ImplicitMatch == ArgType::NoMatchPedantic || 8621 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8622 Match = ImplicitMatch; 8623 } 8624 } 8625 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8626 // Special case for 'a', which has type 'int' in C. 8627 // Note, however, that we do /not/ want to treat multibyte constants like 8628 // 'MooV' as characters! This form is deprecated but still exists. 8629 if (ExprTy == S.Context.IntTy) 8630 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8631 ExprTy = S.Context.CharTy; 8632 } 8633 8634 // Look through enums to their underlying type. 8635 bool IsEnum = false; 8636 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8637 ExprTy = EnumTy->getDecl()->getIntegerType(); 8638 IsEnum = true; 8639 } 8640 8641 // %C in an Objective-C context prints a unichar, not a wchar_t. 8642 // If the argument is an integer of some kind, believe the %C and suggest 8643 // a cast instead of changing the conversion specifier. 8644 QualType IntendedTy = ExprTy; 8645 if (isObjCContext() && 8646 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8647 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8648 !ExprTy->isCharType()) { 8649 // 'unichar' is defined as a typedef of unsigned short, but we should 8650 // prefer using the typedef if it is visible. 8651 IntendedTy = S.Context.UnsignedShortTy; 8652 8653 // While we are here, check if the value is an IntegerLiteral that happens 8654 // to be within the valid range. 8655 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8656 const llvm::APInt &V = IL->getValue(); 8657 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8658 return true; 8659 } 8660 8661 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8662 Sema::LookupOrdinaryName); 8663 if (S.LookupName(Result, S.getCurScope())) { 8664 NamedDecl *ND = Result.getFoundDecl(); 8665 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8666 if (TD->getUnderlyingType() == IntendedTy) 8667 IntendedTy = S.Context.getTypedefType(TD); 8668 } 8669 } 8670 } 8671 8672 // Special-case some of Darwin's platform-independence types by suggesting 8673 // casts to primitive types that are known to be large enough. 8674 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8675 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8676 QualType CastTy; 8677 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8678 if (!CastTy.isNull()) { 8679 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8680 // (long in ASTContext). Only complain to pedants. 8681 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8682 (AT.isSizeT() || AT.isPtrdiffT()) && 8683 AT.matchesType(S.Context, CastTy)) 8684 Match = ArgType::NoMatchPedantic; 8685 IntendedTy = CastTy; 8686 ShouldNotPrintDirectly = true; 8687 } 8688 } 8689 8690 // We may be able to offer a FixItHint if it is a supported type. 8691 PrintfSpecifier fixedFS = FS; 8692 bool Success = 8693 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8694 8695 if (Success) { 8696 // Get the fix string from the fixed format specifier 8697 SmallString<16> buf; 8698 llvm::raw_svector_ostream os(buf); 8699 fixedFS.toString(os); 8700 8701 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8702 8703 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8704 unsigned Diag; 8705 switch (Match) { 8706 case ArgType::Match: llvm_unreachable("expected non-matching"); 8707 case ArgType::NoMatchPedantic: 8708 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8709 break; 8710 case ArgType::NoMatchTypeConfusion: 8711 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8712 break; 8713 case ArgType::NoMatch: 8714 Diag = diag::warn_format_conversion_argument_type_mismatch; 8715 break; 8716 } 8717 8718 // In this case, the specifier is wrong and should be changed to match 8719 // the argument. 8720 EmitFormatDiagnostic(S.PDiag(Diag) 8721 << AT.getRepresentativeTypeName(S.Context) 8722 << IntendedTy << IsEnum << E->getSourceRange(), 8723 E->getBeginLoc(), 8724 /*IsStringLocation*/ false, SpecRange, 8725 FixItHint::CreateReplacement(SpecRange, os.str())); 8726 } else { 8727 // The canonical type for formatting this value is different from the 8728 // actual type of the expression. (This occurs, for example, with Darwin's 8729 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8730 // should be printed as 'long' for 64-bit compatibility.) 8731 // Rather than emitting a normal format/argument mismatch, we want to 8732 // add a cast to the recommended type (and correct the format string 8733 // if necessary). 8734 SmallString<16> CastBuf; 8735 llvm::raw_svector_ostream CastFix(CastBuf); 8736 CastFix << "("; 8737 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8738 CastFix << ")"; 8739 8740 SmallVector<FixItHint,4> Hints; 8741 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8742 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8743 8744 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8745 // If there's already a cast present, just replace it. 8746 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8747 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8748 8749 } else if (!requiresParensToAddCast(E)) { 8750 // If the expression has high enough precedence, 8751 // just write the C-style cast. 8752 Hints.push_back( 8753 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8754 } else { 8755 // Otherwise, add parens around the expression as well as the cast. 8756 CastFix << "("; 8757 Hints.push_back( 8758 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8759 8760 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8761 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8762 } 8763 8764 if (ShouldNotPrintDirectly) { 8765 // The expression has a type that should not be printed directly. 8766 // We extract the name from the typedef because we don't want to show 8767 // the underlying type in the diagnostic. 8768 StringRef Name; 8769 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8770 Name = TypedefTy->getDecl()->getName(); 8771 else 8772 Name = CastTyName; 8773 unsigned Diag = Match == ArgType::NoMatchPedantic 8774 ? diag::warn_format_argument_needs_cast_pedantic 8775 : diag::warn_format_argument_needs_cast; 8776 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8777 << E->getSourceRange(), 8778 E->getBeginLoc(), /*IsStringLocation=*/false, 8779 SpecRange, Hints); 8780 } else { 8781 // In this case, the expression could be printed using a different 8782 // specifier, but we've decided that the specifier is probably correct 8783 // and we should cast instead. Just use the normal warning message. 8784 EmitFormatDiagnostic( 8785 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8786 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8787 << E->getSourceRange(), 8788 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8789 } 8790 } 8791 } else { 8792 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8793 SpecifierLen); 8794 // Since the warning for passing non-POD types to variadic functions 8795 // was deferred until now, we emit a warning for non-POD 8796 // arguments here. 8797 switch (S.isValidVarArgType(ExprTy)) { 8798 case Sema::VAK_Valid: 8799 case Sema::VAK_ValidInCXX11: { 8800 unsigned Diag; 8801 switch (Match) { 8802 case ArgType::Match: llvm_unreachable("expected non-matching"); 8803 case ArgType::NoMatchPedantic: 8804 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8805 break; 8806 case ArgType::NoMatchTypeConfusion: 8807 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8808 break; 8809 case ArgType::NoMatch: 8810 Diag = diag::warn_format_conversion_argument_type_mismatch; 8811 break; 8812 } 8813 8814 EmitFormatDiagnostic( 8815 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8816 << IsEnum << CSR << E->getSourceRange(), 8817 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8818 break; 8819 } 8820 case Sema::VAK_Undefined: 8821 case Sema::VAK_MSVCUndefined: 8822 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8823 << S.getLangOpts().CPlusPlus11 << ExprTy 8824 << CallType 8825 << AT.getRepresentativeTypeName(S.Context) << CSR 8826 << E->getSourceRange(), 8827 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8828 checkForCStrMembers(AT, E); 8829 break; 8830 8831 case Sema::VAK_Invalid: 8832 if (ExprTy->isObjCObjectType()) 8833 EmitFormatDiagnostic( 8834 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8835 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8836 << AT.getRepresentativeTypeName(S.Context) << CSR 8837 << E->getSourceRange(), 8838 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8839 else 8840 // FIXME: If this is an initializer list, suggest removing the braces 8841 // or inserting a cast to the target type. 8842 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8843 << isa<InitListExpr>(E) << ExprTy << CallType 8844 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8845 break; 8846 } 8847 8848 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8849 "format string specifier index out of range"); 8850 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8851 } 8852 8853 return true; 8854 } 8855 8856 //===--- CHECK: Scanf format string checking ------------------------------===// 8857 8858 namespace { 8859 8860 class CheckScanfHandler : public CheckFormatHandler { 8861 public: 8862 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8863 const Expr *origFormatExpr, Sema::FormatStringType type, 8864 unsigned firstDataArg, unsigned numDataArgs, 8865 const char *beg, bool hasVAListArg, 8866 ArrayRef<const Expr *> Args, unsigned formatIdx, 8867 bool inFunctionCall, Sema::VariadicCallType CallType, 8868 llvm::SmallBitVector &CheckedVarArgs, 8869 UncoveredArgHandler &UncoveredArg) 8870 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8871 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8872 inFunctionCall, CallType, CheckedVarArgs, 8873 UncoveredArg) {} 8874 8875 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8876 const char *startSpecifier, 8877 unsigned specifierLen) override; 8878 8879 bool HandleInvalidScanfConversionSpecifier( 8880 const analyze_scanf::ScanfSpecifier &FS, 8881 const char *startSpecifier, 8882 unsigned specifierLen) override; 8883 8884 void HandleIncompleteScanList(const char *start, const char *end) override; 8885 }; 8886 8887 } // namespace 8888 8889 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8890 const char *end) { 8891 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8892 getLocationOfByte(end), /*IsStringLocation*/true, 8893 getSpecifierRange(start, end - start)); 8894 } 8895 8896 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8897 const analyze_scanf::ScanfSpecifier &FS, 8898 const char *startSpecifier, 8899 unsigned specifierLen) { 8900 const analyze_scanf::ScanfConversionSpecifier &CS = 8901 FS.getConversionSpecifier(); 8902 8903 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8904 getLocationOfByte(CS.getStart()), 8905 startSpecifier, specifierLen, 8906 CS.getStart(), CS.getLength()); 8907 } 8908 8909 bool CheckScanfHandler::HandleScanfSpecifier( 8910 const analyze_scanf::ScanfSpecifier &FS, 8911 const char *startSpecifier, 8912 unsigned specifierLen) { 8913 using namespace analyze_scanf; 8914 using namespace analyze_format_string; 8915 8916 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8917 8918 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8919 // be used to decide if we are using positional arguments consistently. 8920 if (FS.consumesDataArgument()) { 8921 if (atFirstArg) { 8922 atFirstArg = false; 8923 usesPositionalArgs = FS.usesPositionalArg(); 8924 } 8925 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8926 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8927 startSpecifier, specifierLen); 8928 return false; 8929 } 8930 } 8931 8932 // Check if the field with is non-zero. 8933 const OptionalAmount &Amt = FS.getFieldWidth(); 8934 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8935 if (Amt.getConstantAmount() == 0) { 8936 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8937 Amt.getConstantLength()); 8938 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8939 getLocationOfByte(Amt.getStart()), 8940 /*IsStringLocation*/true, R, 8941 FixItHint::CreateRemoval(R)); 8942 } 8943 } 8944 8945 if (!FS.consumesDataArgument()) { 8946 // FIXME: Technically specifying a precision or field width here 8947 // makes no sense. Worth issuing a warning at some point. 8948 return true; 8949 } 8950 8951 // Consume the argument. 8952 unsigned argIndex = FS.getArgIndex(); 8953 if (argIndex < NumDataArgs) { 8954 // The check to see if the argIndex is valid will come later. 8955 // We set the bit here because we may exit early from this 8956 // function if we encounter some other error. 8957 CoveredArgs.set(argIndex); 8958 } 8959 8960 // Check the length modifier is valid with the given conversion specifier. 8961 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8962 S.getLangOpts())) 8963 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8964 diag::warn_format_nonsensical_length); 8965 else if (!FS.hasStandardLengthModifier()) 8966 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8967 else if (!FS.hasStandardLengthConversionCombination()) 8968 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8969 diag::warn_format_non_standard_conversion_spec); 8970 8971 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8972 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8973 8974 // The remaining checks depend on the data arguments. 8975 if (HasVAListArg) 8976 return true; 8977 8978 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8979 return false; 8980 8981 // Check that the argument type matches the format specifier. 8982 const Expr *Ex = getDataArg(argIndex); 8983 if (!Ex) 8984 return true; 8985 8986 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8987 8988 if (!AT.isValid()) { 8989 return true; 8990 } 8991 8992 analyze_format_string::ArgType::MatchKind Match = 8993 AT.matchesType(S.Context, Ex->getType()); 8994 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8995 if (Match == analyze_format_string::ArgType::Match) 8996 return true; 8997 8998 ScanfSpecifier fixedFS = FS; 8999 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 9000 S.getLangOpts(), S.Context); 9001 9002 unsigned Diag = 9003 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 9004 : diag::warn_format_conversion_argument_type_mismatch; 9005 9006 if (Success) { 9007 // Get the fix string from the fixed format specifier. 9008 SmallString<128> buf; 9009 llvm::raw_svector_ostream os(buf); 9010 fixedFS.toString(os); 9011 9012 EmitFormatDiagnostic( 9013 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 9014 << Ex->getType() << false << Ex->getSourceRange(), 9015 Ex->getBeginLoc(), 9016 /*IsStringLocation*/ false, 9017 getSpecifierRange(startSpecifier, specifierLen), 9018 FixItHint::CreateReplacement( 9019 getSpecifierRange(startSpecifier, specifierLen), os.str())); 9020 } else { 9021 EmitFormatDiagnostic(S.PDiag(Diag) 9022 << AT.getRepresentativeTypeName(S.Context) 9023 << Ex->getType() << false << Ex->getSourceRange(), 9024 Ex->getBeginLoc(), 9025 /*IsStringLocation*/ false, 9026 getSpecifierRange(startSpecifier, specifierLen)); 9027 } 9028 9029 return true; 9030 } 9031 9032 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 9033 const Expr *OrigFormatExpr, 9034 ArrayRef<const Expr *> Args, 9035 bool HasVAListArg, unsigned format_idx, 9036 unsigned firstDataArg, 9037 Sema::FormatStringType Type, 9038 bool inFunctionCall, 9039 Sema::VariadicCallType CallType, 9040 llvm::SmallBitVector &CheckedVarArgs, 9041 UncoveredArgHandler &UncoveredArg, 9042 bool IgnoreStringsWithoutSpecifiers) { 9043 // CHECK: is the format string a wide literal? 9044 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 9045 CheckFormatHandler::EmitFormatDiagnostic( 9046 S, inFunctionCall, Args[format_idx], 9047 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 9048 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9049 return; 9050 } 9051 9052 // Str - The format string. NOTE: this is NOT null-terminated! 9053 StringRef StrRef = FExpr->getString(); 9054 const char *Str = StrRef.data(); 9055 // Account for cases where the string literal is truncated in a declaration. 9056 const ConstantArrayType *T = 9057 S.Context.getAsConstantArrayType(FExpr->getType()); 9058 assert(T && "String literal not of constant array type!"); 9059 size_t TypeSize = T->getSize().getZExtValue(); 9060 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9061 const unsigned numDataArgs = Args.size() - firstDataArg; 9062 9063 if (IgnoreStringsWithoutSpecifiers && 9064 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 9065 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 9066 return; 9067 9068 // Emit a warning if the string literal is truncated and does not contain an 9069 // embedded null character. 9070 if (TypeSize <= StrRef.size() && 9071 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 9072 CheckFormatHandler::EmitFormatDiagnostic( 9073 S, inFunctionCall, Args[format_idx], 9074 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 9075 FExpr->getBeginLoc(), 9076 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 9077 return; 9078 } 9079 9080 // CHECK: empty format string? 9081 if (StrLen == 0 && numDataArgs > 0) { 9082 CheckFormatHandler::EmitFormatDiagnostic( 9083 S, inFunctionCall, Args[format_idx], 9084 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 9085 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9086 return; 9087 } 9088 9089 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 9090 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 9091 Type == Sema::FST_OSTrace) { 9092 CheckPrintfHandler H( 9093 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 9094 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 9095 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 9096 CheckedVarArgs, UncoveredArg); 9097 9098 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 9099 S.getLangOpts(), 9100 S.Context.getTargetInfo(), 9101 Type == Sema::FST_FreeBSDKPrintf)) 9102 H.DoneProcessing(); 9103 } else if (Type == Sema::FST_Scanf) { 9104 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 9105 numDataArgs, Str, HasVAListArg, Args, format_idx, 9106 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 9107 9108 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 9109 S.getLangOpts(), 9110 S.Context.getTargetInfo())) 9111 H.DoneProcessing(); 9112 } // TODO: handle other formats 9113 } 9114 9115 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 9116 // Str - The format string. NOTE: this is NOT null-terminated! 9117 StringRef StrRef = FExpr->getString(); 9118 const char *Str = StrRef.data(); 9119 // Account for cases where the string literal is truncated in a declaration. 9120 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 9121 assert(T && "String literal not of constant array type!"); 9122 size_t TypeSize = T->getSize().getZExtValue(); 9123 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9124 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 9125 getLangOpts(), 9126 Context.getTargetInfo()); 9127 } 9128 9129 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 9130 9131 // Returns the related absolute value function that is larger, of 0 if one 9132 // does not exist. 9133 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 9134 switch (AbsFunction) { 9135 default: 9136 return 0; 9137 9138 case Builtin::BI__builtin_abs: 9139 return Builtin::BI__builtin_labs; 9140 case Builtin::BI__builtin_labs: 9141 return Builtin::BI__builtin_llabs; 9142 case Builtin::BI__builtin_llabs: 9143 return 0; 9144 9145 case Builtin::BI__builtin_fabsf: 9146 return Builtin::BI__builtin_fabs; 9147 case Builtin::BI__builtin_fabs: 9148 return Builtin::BI__builtin_fabsl; 9149 case Builtin::BI__builtin_fabsl: 9150 return 0; 9151 9152 case Builtin::BI__builtin_cabsf: 9153 return Builtin::BI__builtin_cabs; 9154 case Builtin::BI__builtin_cabs: 9155 return Builtin::BI__builtin_cabsl; 9156 case Builtin::BI__builtin_cabsl: 9157 return 0; 9158 9159 case Builtin::BIabs: 9160 return Builtin::BIlabs; 9161 case Builtin::BIlabs: 9162 return Builtin::BIllabs; 9163 case Builtin::BIllabs: 9164 return 0; 9165 9166 case Builtin::BIfabsf: 9167 return Builtin::BIfabs; 9168 case Builtin::BIfabs: 9169 return Builtin::BIfabsl; 9170 case Builtin::BIfabsl: 9171 return 0; 9172 9173 case Builtin::BIcabsf: 9174 return Builtin::BIcabs; 9175 case Builtin::BIcabs: 9176 return Builtin::BIcabsl; 9177 case Builtin::BIcabsl: 9178 return 0; 9179 } 9180 } 9181 9182 // Returns the argument type of the absolute value function. 9183 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 9184 unsigned AbsType) { 9185 if (AbsType == 0) 9186 return QualType(); 9187 9188 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 9189 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 9190 if (Error != ASTContext::GE_None) 9191 return QualType(); 9192 9193 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 9194 if (!FT) 9195 return QualType(); 9196 9197 if (FT->getNumParams() != 1) 9198 return QualType(); 9199 9200 return FT->getParamType(0); 9201 } 9202 9203 // Returns the best absolute value function, or zero, based on type and 9204 // current absolute value function. 9205 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 9206 unsigned AbsFunctionKind) { 9207 unsigned BestKind = 0; 9208 uint64_t ArgSize = Context.getTypeSize(ArgType); 9209 for (unsigned Kind = AbsFunctionKind; Kind != 0; 9210 Kind = getLargerAbsoluteValueFunction(Kind)) { 9211 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 9212 if (Context.getTypeSize(ParamType) >= ArgSize) { 9213 if (BestKind == 0) 9214 BestKind = Kind; 9215 else if (Context.hasSameType(ParamType, ArgType)) { 9216 BestKind = Kind; 9217 break; 9218 } 9219 } 9220 } 9221 return BestKind; 9222 } 9223 9224 enum AbsoluteValueKind { 9225 AVK_Integer, 9226 AVK_Floating, 9227 AVK_Complex 9228 }; 9229 9230 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 9231 if (T->isIntegralOrEnumerationType()) 9232 return AVK_Integer; 9233 if (T->isRealFloatingType()) 9234 return AVK_Floating; 9235 if (T->isAnyComplexType()) 9236 return AVK_Complex; 9237 9238 llvm_unreachable("Type not integer, floating, or complex"); 9239 } 9240 9241 // Changes the absolute value function to a different type. Preserves whether 9242 // the function is a builtin. 9243 static unsigned changeAbsFunction(unsigned AbsKind, 9244 AbsoluteValueKind ValueKind) { 9245 switch (ValueKind) { 9246 case AVK_Integer: 9247 switch (AbsKind) { 9248 default: 9249 return 0; 9250 case Builtin::BI__builtin_fabsf: 9251 case Builtin::BI__builtin_fabs: 9252 case Builtin::BI__builtin_fabsl: 9253 case Builtin::BI__builtin_cabsf: 9254 case Builtin::BI__builtin_cabs: 9255 case Builtin::BI__builtin_cabsl: 9256 return Builtin::BI__builtin_abs; 9257 case Builtin::BIfabsf: 9258 case Builtin::BIfabs: 9259 case Builtin::BIfabsl: 9260 case Builtin::BIcabsf: 9261 case Builtin::BIcabs: 9262 case Builtin::BIcabsl: 9263 return Builtin::BIabs; 9264 } 9265 case AVK_Floating: 9266 switch (AbsKind) { 9267 default: 9268 return 0; 9269 case Builtin::BI__builtin_abs: 9270 case Builtin::BI__builtin_labs: 9271 case Builtin::BI__builtin_llabs: 9272 case Builtin::BI__builtin_cabsf: 9273 case Builtin::BI__builtin_cabs: 9274 case Builtin::BI__builtin_cabsl: 9275 return Builtin::BI__builtin_fabsf; 9276 case Builtin::BIabs: 9277 case Builtin::BIlabs: 9278 case Builtin::BIllabs: 9279 case Builtin::BIcabsf: 9280 case Builtin::BIcabs: 9281 case Builtin::BIcabsl: 9282 return Builtin::BIfabsf; 9283 } 9284 case AVK_Complex: 9285 switch (AbsKind) { 9286 default: 9287 return 0; 9288 case Builtin::BI__builtin_abs: 9289 case Builtin::BI__builtin_labs: 9290 case Builtin::BI__builtin_llabs: 9291 case Builtin::BI__builtin_fabsf: 9292 case Builtin::BI__builtin_fabs: 9293 case Builtin::BI__builtin_fabsl: 9294 return Builtin::BI__builtin_cabsf; 9295 case Builtin::BIabs: 9296 case Builtin::BIlabs: 9297 case Builtin::BIllabs: 9298 case Builtin::BIfabsf: 9299 case Builtin::BIfabs: 9300 case Builtin::BIfabsl: 9301 return Builtin::BIcabsf; 9302 } 9303 } 9304 llvm_unreachable("Unable to convert function"); 9305 } 9306 9307 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9308 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9309 if (!FnInfo) 9310 return 0; 9311 9312 switch (FDecl->getBuiltinID()) { 9313 default: 9314 return 0; 9315 case Builtin::BI__builtin_abs: 9316 case Builtin::BI__builtin_fabs: 9317 case Builtin::BI__builtin_fabsf: 9318 case Builtin::BI__builtin_fabsl: 9319 case Builtin::BI__builtin_labs: 9320 case Builtin::BI__builtin_llabs: 9321 case Builtin::BI__builtin_cabs: 9322 case Builtin::BI__builtin_cabsf: 9323 case Builtin::BI__builtin_cabsl: 9324 case Builtin::BIabs: 9325 case Builtin::BIlabs: 9326 case Builtin::BIllabs: 9327 case Builtin::BIfabs: 9328 case Builtin::BIfabsf: 9329 case Builtin::BIfabsl: 9330 case Builtin::BIcabs: 9331 case Builtin::BIcabsf: 9332 case Builtin::BIcabsl: 9333 return FDecl->getBuiltinID(); 9334 } 9335 llvm_unreachable("Unknown Builtin type"); 9336 } 9337 9338 // If the replacement is valid, emit a note with replacement function. 9339 // Additionally, suggest including the proper header if not already included. 9340 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9341 unsigned AbsKind, QualType ArgType) { 9342 bool EmitHeaderHint = true; 9343 const char *HeaderName = nullptr; 9344 const char *FunctionName = nullptr; 9345 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9346 FunctionName = "std::abs"; 9347 if (ArgType->isIntegralOrEnumerationType()) { 9348 HeaderName = "cstdlib"; 9349 } else if (ArgType->isRealFloatingType()) { 9350 HeaderName = "cmath"; 9351 } else { 9352 llvm_unreachable("Invalid Type"); 9353 } 9354 9355 // Lookup all std::abs 9356 if (NamespaceDecl *Std = S.getStdNamespace()) { 9357 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9358 R.suppressDiagnostics(); 9359 S.LookupQualifiedName(R, Std); 9360 9361 for (const auto *I : R) { 9362 const FunctionDecl *FDecl = nullptr; 9363 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9364 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9365 } else { 9366 FDecl = dyn_cast<FunctionDecl>(I); 9367 } 9368 if (!FDecl) 9369 continue; 9370 9371 // Found std::abs(), check that they are the right ones. 9372 if (FDecl->getNumParams() != 1) 9373 continue; 9374 9375 // Check that the parameter type can handle the argument. 9376 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9377 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9378 S.Context.getTypeSize(ArgType) <= 9379 S.Context.getTypeSize(ParamType)) { 9380 // Found a function, don't need the header hint. 9381 EmitHeaderHint = false; 9382 break; 9383 } 9384 } 9385 } 9386 } else { 9387 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9388 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9389 9390 if (HeaderName) { 9391 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9392 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9393 R.suppressDiagnostics(); 9394 S.LookupName(R, S.getCurScope()); 9395 9396 if (R.isSingleResult()) { 9397 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9398 if (FD && FD->getBuiltinID() == AbsKind) { 9399 EmitHeaderHint = false; 9400 } else { 9401 return; 9402 } 9403 } else if (!R.empty()) { 9404 return; 9405 } 9406 } 9407 } 9408 9409 S.Diag(Loc, diag::note_replace_abs_function) 9410 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9411 9412 if (!HeaderName) 9413 return; 9414 9415 if (!EmitHeaderHint) 9416 return; 9417 9418 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9419 << FunctionName; 9420 } 9421 9422 template <std::size_t StrLen> 9423 static bool IsStdFunction(const FunctionDecl *FDecl, 9424 const char (&Str)[StrLen]) { 9425 if (!FDecl) 9426 return false; 9427 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9428 return false; 9429 if (!FDecl->isInStdNamespace()) 9430 return false; 9431 9432 return true; 9433 } 9434 9435 // Warn when using the wrong abs() function. 9436 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9437 const FunctionDecl *FDecl) { 9438 if (Call->getNumArgs() != 1) 9439 return; 9440 9441 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9442 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9443 if (AbsKind == 0 && !IsStdAbs) 9444 return; 9445 9446 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9447 QualType ParamType = Call->getArg(0)->getType(); 9448 9449 // Unsigned types cannot be negative. Suggest removing the absolute value 9450 // function call. 9451 if (ArgType->isUnsignedIntegerType()) { 9452 const char *FunctionName = 9453 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9454 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9455 Diag(Call->getExprLoc(), diag::note_remove_abs) 9456 << FunctionName 9457 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9458 return; 9459 } 9460 9461 // Taking the absolute value of a pointer is very suspicious, they probably 9462 // wanted to index into an array, dereference a pointer, call a function, etc. 9463 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9464 unsigned DiagType = 0; 9465 if (ArgType->isFunctionType()) 9466 DiagType = 1; 9467 else if (ArgType->isArrayType()) 9468 DiagType = 2; 9469 9470 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9471 return; 9472 } 9473 9474 // std::abs has overloads which prevent most of the absolute value problems 9475 // from occurring. 9476 if (IsStdAbs) 9477 return; 9478 9479 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9480 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9481 9482 // The argument and parameter are the same kind. Check if they are the right 9483 // size. 9484 if (ArgValueKind == ParamValueKind) { 9485 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9486 return; 9487 9488 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9489 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9490 << FDecl << ArgType << ParamType; 9491 9492 if (NewAbsKind == 0) 9493 return; 9494 9495 emitReplacement(*this, Call->getExprLoc(), 9496 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9497 return; 9498 } 9499 9500 // ArgValueKind != ParamValueKind 9501 // The wrong type of absolute value function was used. Attempt to find the 9502 // proper one. 9503 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9504 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9505 if (NewAbsKind == 0) 9506 return; 9507 9508 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9509 << FDecl << ParamValueKind << ArgValueKind; 9510 9511 emitReplacement(*this, Call->getExprLoc(), 9512 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9513 } 9514 9515 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9516 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9517 const FunctionDecl *FDecl) { 9518 if (!Call || !FDecl) return; 9519 9520 // Ignore template specializations and macros. 9521 if (inTemplateInstantiation()) return; 9522 if (Call->getExprLoc().isMacroID()) return; 9523 9524 // Only care about the one template argument, two function parameter std::max 9525 if (Call->getNumArgs() != 2) return; 9526 if (!IsStdFunction(FDecl, "max")) return; 9527 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9528 if (!ArgList) return; 9529 if (ArgList->size() != 1) return; 9530 9531 // Check that template type argument is unsigned integer. 9532 const auto& TA = ArgList->get(0); 9533 if (TA.getKind() != TemplateArgument::Type) return; 9534 QualType ArgType = TA.getAsType(); 9535 if (!ArgType->isUnsignedIntegerType()) return; 9536 9537 // See if either argument is a literal zero. 9538 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9539 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9540 if (!MTE) return false; 9541 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9542 if (!Num) return false; 9543 if (Num->getValue() != 0) return false; 9544 return true; 9545 }; 9546 9547 const Expr *FirstArg = Call->getArg(0); 9548 const Expr *SecondArg = Call->getArg(1); 9549 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9550 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9551 9552 // Only warn when exactly one argument is zero. 9553 if (IsFirstArgZero == IsSecondArgZero) return; 9554 9555 SourceRange FirstRange = FirstArg->getSourceRange(); 9556 SourceRange SecondRange = SecondArg->getSourceRange(); 9557 9558 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9559 9560 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9561 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9562 9563 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9564 SourceRange RemovalRange; 9565 if (IsFirstArgZero) { 9566 RemovalRange = SourceRange(FirstRange.getBegin(), 9567 SecondRange.getBegin().getLocWithOffset(-1)); 9568 } else { 9569 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9570 SecondRange.getEnd()); 9571 } 9572 9573 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9574 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9575 << FixItHint::CreateRemoval(RemovalRange); 9576 } 9577 9578 //===--- CHECK: Standard memory functions ---------------------------------===// 9579 9580 /// Takes the expression passed to the size_t parameter of functions 9581 /// such as memcmp, strncat, etc and warns if it's a comparison. 9582 /// 9583 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9584 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9585 IdentifierInfo *FnName, 9586 SourceLocation FnLoc, 9587 SourceLocation RParenLoc) { 9588 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9589 if (!Size) 9590 return false; 9591 9592 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9593 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9594 return false; 9595 9596 SourceRange SizeRange = Size->getSourceRange(); 9597 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9598 << SizeRange << FnName; 9599 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9600 << FnName 9601 << FixItHint::CreateInsertion( 9602 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9603 << FixItHint::CreateRemoval(RParenLoc); 9604 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9605 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9606 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9607 ")"); 9608 9609 return true; 9610 } 9611 9612 /// Determine whether the given type is or contains a dynamic class type 9613 /// (e.g., whether it has a vtable). 9614 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9615 bool &IsContained) { 9616 // Look through array types while ignoring qualifiers. 9617 const Type *Ty = T->getBaseElementTypeUnsafe(); 9618 IsContained = false; 9619 9620 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9621 RD = RD ? RD->getDefinition() : nullptr; 9622 if (!RD || RD->isInvalidDecl()) 9623 return nullptr; 9624 9625 if (RD->isDynamicClass()) 9626 return RD; 9627 9628 // Check all the fields. If any bases were dynamic, the class is dynamic. 9629 // It's impossible for a class to transitively contain itself by value, so 9630 // infinite recursion is impossible. 9631 for (auto *FD : RD->fields()) { 9632 bool SubContained; 9633 if (const CXXRecordDecl *ContainedRD = 9634 getContainedDynamicClass(FD->getType(), SubContained)) { 9635 IsContained = true; 9636 return ContainedRD; 9637 } 9638 } 9639 9640 return nullptr; 9641 } 9642 9643 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9644 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9645 if (Unary->getKind() == UETT_SizeOf) 9646 return Unary; 9647 return nullptr; 9648 } 9649 9650 /// If E is a sizeof expression, returns its argument expression, 9651 /// otherwise returns NULL. 9652 static const Expr *getSizeOfExprArg(const Expr *E) { 9653 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9654 if (!SizeOf->isArgumentType()) 9655 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9656 return nullptr; 9657 } 9658 9659 /// If E is a sizeof expression, returns its argument type. 9660 static QualType getSizeOfArgType(const Expr *E) { 9661 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9662 return SizeOf->getTypeOfArgument(); 9663 return QualType(); 9664 } 9665 9666 namespace { 9667 9668 struct SearchNonTrivialToInitializeField 9669 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9670 using Super = 9671 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9672 9673 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9674 9675 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9676 SourceLocation SL) { 9677 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9678 asDerived().visitArray(PDIK, AT, SL); 9679 return; 9680 } 9681 9682 Super::visitWithKind(PDIK, FT, SL); 9683 } 9684 9685 void visitARCStrong(QualType FT, SourceLocation SL) { 9686 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9687 } 9688 void visitARCWeak(QualType FT, SourceLocation SL) { 9689 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9690 } 9691 void visitStruct(QualType FT, SourceLocation SL) { 9692 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9693 visit(FD->getType(), FD->getLocation()); 9694 } 9695 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9696 const ArrayType *AT, SourceLocation SL) { 9697 visit(getContext().getBaseElementType(AT), SL); 9698 } 9699 void visitTrivial(QualType FT, SourceLocation SL) {} 9700 9701 static void diag(QualType RT, const Expr *E, Sema &S) { 9702 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9703 } 9704 9705 ASTContext &getContext() { return S.getASTContext(); } 9706 9707 const Expr *E; 9708 Sema &S; 9709 }; 9710 9711 struct SearchNonTrivialToCopyField 9712 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9713 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9714 9715 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9716 9717 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9718 SourceLocation SL) { 9719 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9720 asDerived().visitArray(PCK, AT, SL); 9721 return; 9722 } 9723 9724 Super::visitWithKind(PCK, FT, SL); 9725 } 9726 9727 void visitARCStrong(QualType FT, SourceLocation SL) { 9728 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9729 } 9730 void visitARCWeak(QualType FT, SourceLocation SL) { 9731 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9732 } 9733 void visitStruct(QualType FT, SourceLocation SL) { 9734 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9735 visit(FD->getType(), FD->getLocation()); 9736 } 9737 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9738 SourceLocation SL) { 9739 visit(getContext().getBaseElementType(AT), SL); 9740 } 9741 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9742 SourceLocation SL) {} 9743 void visitTrivial(QualType FT, SourceLocation SL) {} 9744 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9745 9746 static void diag(QualType RT, const Expr *E, Sema &S) { 9747 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9748 } 9749 9750 ASTContext &getContext() { return S.getASTContext(); } 9751 9752 const Expr *E; 9753 Sema &S; 9754 }; 9755 9756 } 9757 9758 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9759 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9760 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9761 9762 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9763 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9764 return false; 9765 9766 return doesExprLikelyComputeSize(BO->getLHS()) || 9767 doesExprLikelyComputeSize(BO->getRHS()); 9768 } 9769 9770 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9771 } 9772 9773 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9774 /// 9775 /// \code 9776 /// #define MACRO 0 9777 /// foo(MACRO); 9778 /// foo(0); 9779 /// \endcode 9780 /// 9781 /// This should return true for the first call to foo, but not for the second 9782 /// (regardless of whether foo is a macro or function). 9783 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9784 SourceLocation CallLoc, 9785 SourceLocation ArgLoc) { 9786 if (!CallLoc.isMacroID()) 9787 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9788 9789 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9790 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9791 } 9792 9793 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9794 /// last two arguments transposed. 9795 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9796 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9797 return; 9798 9799 const Expr *SizeArg = 9800 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9801 9802 auto isLiteralZero = [](const Expr *E) { 9803 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9804 }; 9805 9806 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9807 SourceLocation CallLoc = Call->getRParenLoc(); 9808 SourceManager &SM = S.getSourceManager(); 9809 if (isLiteralZero(SizeArg) && 9810 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9811 9812 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9813 9814 // Some platforms #define bzero to __builtin_memset. See if this is the 9815 // case, and if so, emit a better diagnostic. 9816 if (BId == Builtin::BIbzero || 9817 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9818 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9819 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9820 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9821 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9822 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9823 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9824 } 9825 return; 9826 } 9827 9828 // If the second argument to a memset is a sizeof expression and the third 9829 // isn't, this is also likely an error. This should catch 9830 // 'memset(buf, sizeof(buf), 0xff)'. 9831 if (BId == Builtin::BImemset && 9832 doesExprLikelyComputeSize(Call->getArg(1)) && 9833 !doesExprLikelyComputeSize(Call->getArg(2))) { 9834 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9835 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9836 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9837 return; 9838 } 9839 } 9840 9841 /// Check for dangerous or invalid arguments to memset(). 9842 /// 9843 /// This issues warnings on known problematic, dangerous or unspecified 9844 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9845 /// function calls. 9846 /// 9847 /// \param Call The call expression to diagnose. 9848 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9849 unsigned BId, 9850 IdentifierInfo *FnName) { 9851 assert(BId != 0); 9852 9853 // It is possible to have a non-standard definition of memset. Validate 9854 // we have enough arguments, and if not, abort further checking. 9855 unsigned ExpectedNumArgs = 9856 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9857 if (Call->getNumArgs() < ExpectedNumArgs) 9858 return; 9859 9860 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9861 BId == Builtin::BIstrndup ? 1 : 2); 9862 unsigned LenArg = 9863 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9864 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9865 9866 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9867 Call->getBeginLoc(), Call->getRParenLoc())) 9868 return; 9869 9870 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9871 CheckMemaccessSize(*this, BId, Call); 9872 9873 // We have special checking when the length is a sizeof expression. 9874 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9875 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9876 llvm::FoldingSetNodeID SizeOfArgID; 9877 9878 // Although widely used, 'bzero' is not a standard function. Be more strict 9879 // with the argument types before allowing diagnostics and only allow the 9880 // form bzero(ptr, sizeof(...)). 9881 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9882 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9883 return; 9884 9885 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9886 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9887 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9888 9889 QualType DestTy = Dest->getType(); 9890 QualType PointeeTy; 9891 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9892 PointeeTy = DestPtrTy->getPointeeType(); 9893 9894 // Never warn about void type pointers. This can be used to suppress 9895 // false positives. 9896 if (PointeeTy->isVoidType()) 9897 continue; 9898 9899 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9900 // actually comparing the expressions for equality. Because computing the 9901 // expression IDs can be expensive, we only do this if the diagnostic is 9902 // enabled. 9903 if (SizeOfArg && 9904 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9905 SizeOfArg->getExprLoc())) { 9906 // We only compute IDs for expressions if the warning is enabled, and 9907 // cache the sizeof arg's ID. 9908 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9909 SizeOfArg->Profile(SizeOfArgID, Context, true); 9910 llvm::FoldingSetNodeID DestID; 9911 Dest->Profile(DestID, Context, true); 9912 if (DestID == SizeOfArgID) { 9913 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9914 // over sizeof(src) as well. 9915 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9916 StringRef ReadableName = FnName->getName(); 9917 9918 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9919 if (UnaryOp->getOpcode() == UO_AddrOf) 9920 ActionIdx = 1; // If its an address-of operator, just remove it. 9921 if (!PointeeTy->isIncompleteType() && 9922 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9923 ActionIdx = 2; // If the pointee's size is sizeof(char), 9924 // suggest an explicit length. 9925 9926 // If the function is defined as a builtin macro, do not show macro 9927 // expansion. 9928 SourceLocation SL = SizeOfArg->getExprLoc(); 9929 SourceRange DSR = Dest->getSourceRange(); 9930 SourceRange SSR = SizeOfArg->getSourceRange(); 9931 SourceManager &SM = getSourceManager(); 9932 9933 if (SM.isMacroArgExpansion(SL)) { 9934 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9935 SL = SM.getSpellingLoc(SL); 9936 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9937 SM.getSpellingLoc(DSR.getEnd())); 9938 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9939 SM.getSpellingLoc(SSR.getEnd())); 9940 } 9941 9942 DiagRuntimeBehavior(SL, SizeOfArg, 9943 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9944 << ReadableName 9945 << PointeeTy 9946 << DestTy 9947 << DSR 9948 << SSR); 9949 DiagRuntimeBehavior(SL, SizeOfArg, 9950 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9951 << ActionIdx 9952 << SSR); 9953 9954 break; 9955 } 9956 } 9957 9958 // Also check for cases where the sizeof argument is the exact same 9959 // type as the memory argument, and where it points to a user-defined 9960 // record type. 9961 if (SizeOfArgTy != QualType()) { 9962 if (PointeeTy->isRecordType() && 9963 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9964 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9965 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9966 << FnName << SizeOfArgTy << ArgIdx 9967 << PointeeTy << Dest->getSourceRange() 9968 << LenExpr->getSourceRange()); 9969 break; 9970 } 9971 } 9972 } else if (DestTy->isArrayType()) { 9973 PointeeTy = DestTy; 9974 } 9975 9976 if (PointeeTy == QualType()) 9977 continue; 9978 9979 // Always complain about dynamic classes. 9980 bool IsContained; 9981 if (const CXXRecordDecl *ContainedRD = 9982 getContainedDynamicClass(PointeeTy, IsContained)) { 9983 9984 unsigned OperationType = 0; 9985 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9986 // "overwritten" if we're warning about the destination for any call 9987 // but memcmp; otherwise a verb appropriate to the call. 9988 if (ArgIdx != 0 || IsCmp) { 9989 if (BId == Builtin::BImemcpy) 9990 OperationType = 1; 9991 else if(BId == Builtin::BImemmove) 9992 OperationType = 2; 9993 else if (IsCmp) 9994 OperationType = 3; 9995 } 9996 9997 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9998 PDiag(diag::warn_dyn_class_memaccess) 9999 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 10000 << IsContained << ContainedRD << OperationType 10001 << Call->getCallee()->getSourceRange()); 10002 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 10003 BId != Builtin::BImemset) 10004 DiagRuntimeBehavior( 10005 Dest->getExprLoc(), Dest, 10006 PDiag(diag::warn_arc_object_memaccess) 10007 << ArgIdx << FnName << PointeeTy 10008 << Call->getCallee()->getSourceRange()); 10009 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 10010 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 10011 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 10012 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10013 PDiag(diag::warn_cstruct_memaccess) 10014 << ArgIdx << FnName << PointeeTy << 0); 10015 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 10016 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 10017 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 10018 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10019 PDiag(diag::warn_cstruct_memaccess) 10020 << ArgIdx << FnName << PointeeTy << 1); 10021 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 10022 } else { 10023 continue; 10024 } 10025 } else 10026 continue; 10027 10028 DiagRuntimeBehavior( 10029 Dest->getExprLoc(), Dest, 10030 PDiag(diag::note_bad_memaccess_silence) 10031 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 10032 break; 10033 } 10034 } 10035 10036 // A little helper routine: ignore addition and subtraction of integer literals. 10037 // This intentionally does not ignore all integer constant expressions because 10038 // we don't want to remove sizeof(). 10039 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 10040 Ex = Ex->IgnoreParenCasts(); 10041 10042 while (true) { 10043 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 10044 if (!BO || !BO->isAdditiveOp()) 10045 break; 10046 10047 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 10048 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 10049 10050 if (isa<IntegerLiteral>(RHS)) 10051 Ex = LHS; 10052 else if (isa<IntegerLiteral>(LHS)) 10053 Ex = RHS; 10054 else 10055 break; 10056 } 10057 10058 return Ex; 10059 } 10060 10061 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 10062 ASTContext &Context) { 10063 // Only handle constant-sized or VLAs, but not flexible members. 10064 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 10065 // Only issue the FIXIT for arrays of size > 1. 10066 if (CAT->getSize().getSExtValue() <= 1) 10067 return false; 10068 } else if (!Ty->isVariableArrayType()) { 10069 return false; 10070 } 10071 return true; 10072 } 10073 10074 // Warn if the user has made the 'size' argument to strlcpy or strlcat 10075 // be the size of the source, instead of the destination. 10076 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 10077 IdentifierInfo *FnName) { 10078 10079 // Don't crash if the user has the wrong number of arguments 10080 unsigned NumArgs = Call->getNumArgs(); 10081 if ((NumArgs != 3) && (NumArgs != 4)) 10082 return; 10083 10084 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 10085 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 10086 const Expr *CompareWithSrc = nullptr; 10087 10088 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 10089 Call->getBeginLoc(), Call->getRParenLoc())) 10090 return; 10091 10092 // Look for 'strlcpy(dst, x, sizeof(x))' 10093 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 10094 CompareWithSrc = Ex; 10095 else { 10096 // Look for 'strlcpy(dst, x, strlen(x))' 10097 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 10098 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 10099 SizeCall->getNumArgs() == 1) 10100 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 10101 } 10102 } 10103 10104 if (!CompareWithSrc) 10105 return; 10106 10107 // Determine if the argument to sizeof/strlen is equal to the source 10108 // argument. In principle there's all kinds of things you could do 10109 // here, for instance creating an == expression and evaluating it with 10110 // EvaluateAsBooleanCondition, but this uses a more direct technique: 10111 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 10112 if (!SrcArgDRE) 10113 return; 10114 10115 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 10116 if (!CompareWithSrcDRE || 10117 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 10118 return; 10119 10120 const Expr *OriginalSizeArg = Call->getArg(2); 10121 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 10122 << OriginalSizeArg->getSourceRange() << FnName; 10123 10124 // Output a FIXIT hint if the destination is an array (rather than a 10125 // pointer to an array). This could be enhanced to handle some 10126 // pointers if we know the actual size, like if DstArg is 'array+2' 10127 // we could say 'sizeof(array)-2'. 10128 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 10129 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 10130 return; 10131 10132 SmallString<128> sizeString; 10133 llvm::raw_svector_ostream OS(sizeString); 10134 OS << "sizeof("; 10135 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10136 OS << ")"; 10137 10138 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 10139 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 10140 OS.str()); 10141 } 10142 10143 /// Check if two expressions refer to the same declaration. 10144 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 10145 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 10146 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 10147 return D1->getDecl() == D2->getDecl(); 10148 return false; 10149 } 10150 10151 static const Expr *getStrlenExprArg(const Expr *E) { 10152 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 10153 const FunctionDecl *FD = CE->getDirectCallee(); 10154 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 10155 return nullptr; 10156 return CE->getArg(0)->IgnoreParenCasts(); 10157 } 10158 return nullptr; 10159 } 10160 10161 // Warn on anti-patterns as the 'size' argument to strncat. 10162 // The correct size argument should look like following: 10163 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 10164 void Sema::CheckStrncatArguments(const CallExpr *CE, 10165 IdentifierInfo *FnName) { 10166 // Don't crash if the user has the wrong number of arguments. 10167 if (CE->getNumArgs() < 3) 10168 return; 10169 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 10170 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 10171 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 10172 10173 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 10174 CE->getRParenLoc())) 10175 return; 10176 10177 // Identify common expressions, which are wrongly used as the size argument 10178 // to strncat and may lead to buffer overflows. 10179 unsigned PatternType = 0; 10180 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 10181 // - sizeof(dst) 10182 if (referToTheSameDecl(SizeOfArg, DstArg)) 10183 PatternType = 1; 10184 // - sizeof(src) 10185 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 10186 PatternType = 2; 10187 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 10188 if (BE->getOpcode() == BO_Sub) { 10189 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 10190 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 10191 // - sizeof(dst) - strlen(dst) 10192 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 10193 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 10194 PatternType = 1; 10195 // - sizeof(src) - (anything) 10196 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 10197 PatternType = 2; 10198 } 10199 } 10200 10201 if (PatternType == 0) 10202 return; 10203 10204 // Generate the diagnostic. 10205 SourceLocation SL = LenArg->getBeginLoc(); 10206 SourceRange SR = LenArg->getSourceRange(); 10207 SourceManager &SM = getSourceManager(); 10208 10209 // If the function is defined as a builtin macro, do not show macro expansion. 10210 if (SM.isMacroArgExpansion(SL)) { 10211 SL = SM.getSpellingLoc(SL); 10212 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 10213 SM.getSpellingLoc(SR.getEnd())); 10214 } 10215 10216 // Check if the destination is an array (rather than a pointer to an array). 10217 QualType DstTy = DstArg->getType(); 10218 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 10219 Context); 10220 if (!isKnownSizeArray) { 10221 if (PatternType == 1) 10222 Diag(SL, diag::warn_strncat_wrong_size) << SR; 10223 else 10224 Diag(SL, diag::warn_strncat_src_size) << SR; 10225 return; 10226 } 10227 10228 if (PatternType == 1) 10229 Diag(SL, diag::warn_strncat_large_size) << SR; 10230 else 10231 Diag(SL, diag::warn_strncat_src_size) << SR; 10232 10233 SmallString<128> sizeString; 10234 llvm::raw_svector_ostream OS(sizeString); 10235 OS << "sizeof("; 10236 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10237 OS << ") - "; 10238 OS << "strlen("; 10239 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10240 OS << ") - 1"; 10241 10242 Diag(SL, diag::note_strncat_wrong_size) 10243 << FixItHint::CreateReplacement(SR, OS.str()); 10244 } 10245 10246 namespace { 10247 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10248 const UnaryOperator *UnaryExpr, 10249 const VarDecl *Var) { 10250 StorageClass Class = Var->getStorageClass(); 10251 if (Class == StorageClass::SC_Extern || 10252 Class == StorageClass::SC_PrivateExtern || 10253 Var->getType()->isReferenceType()) 10254 return; 10255 10256 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10257 << CalleeName << Var; 10258 } 10259 10260 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10261 const UnaryOperator *UnaryExpr, const Decl *D) { 10262 if (const auto *Field = dyn_cast<FieldDecl>(D)) 10263 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10264 << CalleeName << Field; 10265 } 10266 10267 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 10268 const UnaryOperator *UnaryExpr) { 10269 if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf) 10270 return; 10271 10272 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) 10273 if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl())) 10274 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var); 10275 10276 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 10277 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 10278 Lvalue->getMemberDecl()); 10279 } 10280 10281 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 10282 const DeclRefExpr *Lvalue) { 10283 if (!Lvalue->getType()->isArrayType()) 10284 return; 10285 10286 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 10287 if (Var == nullptr) 10288 return; 10289 10290 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 10291 << CalleeName << Var; 10292 } 10293 } // namespace 10294 10295 /// Alerts the user that they are attempting to free a non-malloc'd object. 10296 void Sema::CheckFreeArguments(const CallExpr *E) { 10297 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 10298 const std::string CalleeName = 10299 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 10300 10301 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 10302 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 10303 10304 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 10305 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 10306 } 10307 10308 void 10309 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 10310 SourceLocation ReturnLoc, 10311 bool isObjCMethod, 10312 const AttrVec *Attrs, 10313 const FunctionDecl *FD) { 10314 // Check if the return value is null but should not be. 10315 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 10316 (!isObjCMethod && isNonNullType(Context, lhsType))) && 10317 CheckNonNullExpr(*this, RetValExp)) 10318 Diag(ReturnLoc, diag::warn_null_ret) 10319 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 10320 10321 // C++11 [basic.stc.dynamic.allocation]p4: 10322 // If an allocation function declared with a non-throwing 10323 // exception-specification fails to allocate storage, it shall return 10324 // a null pointer. Any other allocation function that fails to allocate 10325 // storage shall indicate failure only by throwing an exception [...] 10326 if (FD) { 10327 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 10328 if (Op == OO_New || Op == OO_Array_New) { 10329 const FunctionProtoType *Proto 10330 = FD->getType()->castAs<FunctionProtoType>(); 10331 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 10332 CheckNonNullExpr(*this, RetValExp)) 10333 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 10334 << FD << getLangOpts().CPlusPlus11; 10335 } 10336 } 10337 10338 // PPC MMA non-pointer types are not allowed as return type. Checking the type 10339 // here prevent the user from using a PPC MMA type as trailing return type. 10340 if (Context.getTargetInfo().getTriple().isPPC64()) 10341 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 10342 } 10343 10344 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10345 10346 /// Check for comparisons of floating point operands using != and ==. 10347 /// Issue a warning if these are no self-comparisons, as they are not likely 10348 /// to do what the programmer intended. 10349 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10350 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10351 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10352 10353 // Special case: check for x == x (which is OK). 10354 // Do not emit warnings for such cases. 10355 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10356 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10357 if (DRL->getDecl() == DRR->getDecl()) 10358 return; 10359 10360 // Special case: check for comparisons against literals that can be exactly 10361 // represented by APFloat. In such cases, do not emit a warning. This 10362 // is a heuristic: often comparison against such literals are used to 10363 // detect if a value in a variable has not changed. This clearly can 10364 // lead to false negatives. 10365 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10366 if (FLL->isExact()) 10367 return; 10368 } else 10369 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10370 if (FLR->isExact()) 10371 return; 10372 10373 // Check for comparisons with builtin types. 10374 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10375 if (CL->getBuiltinCallee()) 10376 return; 10377 10378 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10379 if (CR->getBuiltinCallee()) 10380 return; 10381 10382 // Emit the diagnostic. 10383 Diag(Loc, diag::warn_floatingpoint_eq) 10384 << LHS->getSourceRange() << RHS->getSourceRange(); 10385 } 10386 10387 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10388 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10389 10390 namespace { 10391 10392 /// Structure recording the 'active' range of an integer-valued 10393 /// expression. 10394 struct IntRange { 10395 /// The number of bits active in the int. Note that this includes exactly one 10396 /// sign bit if !NonNegative. 10397 unsigned Width; 10398 10399 /// True if the int is known not to have negative values. If so, all leading 10400 /// bits before Width are known zero, otherwise they are known to be the 10401 /// same as the MSB within Width. 10402 bool NonNegative; 10403 10404 IntRange(unsigned Width, bool NonNegative) 10405 : Width(Width), NonNegative(NonNegative) {} 10406 10407 /// Number of bits excluding the sign bit. 10408 unsigned valueBits() const { 10409 return NonNegative ? Width : Width - 1; 10410 } 10411 10412 /// Returns the range of the bool type. 10413 static IntRange forBoolType() { 10414 return IntRange(1, true); 10415 } 10416 10417 /// Returns the range of an opaque value of the given integral type. 10418 static IntRange forValueOfType(ASTContext &C, QualType T) { 10419 return forValueOfCanonicalType(C, 10420 T->getCanonicalTypeInternal().getTypePtr()); 10421 } 10422 10423 /// Returns the range of an opaque value of a canonical integral type. 10424 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10425 assert(T->isCanonicalUnqualified()); 10426 10427 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10428 T = VT->getElementType().getTypePtr(); 10429 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10430 T = CT->getElementType().getTypePtr(); 10431 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10432 T = AT->getValueType().getTypePtr(); 10433 10434 if (!C.getLangOpts().CPlusPlus) { 10435 // For enum types in C code, use the underlying datatype. 10436 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10437 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10438 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10439 // For enum types in C++, use the known bit width of the enumerators. 10440 EnumDecl *Enum = ET->getDecl(); 10441 // In C++11, enums can have a fixed underlying type. Use this type to 10442 // compute the range. 10443 if (Enum->isFixed()) { 10444 return IntRange(C.getIntWidth(QualType(T, 0)), 10445 !ET->isSignedIntegerOrEnumerationType()); 10446 } 10447 10448 unsigned NumPositive = Enum->getNumPositiveBits(); 10449 unsigned NumNegative = Enum->getNumNegativeBits(); 10450 10451 if (NumNegative == 0) 10452 return IntRange(NumPositive, true/*NonNegative*/); 10453 else 10454 return IntRange(std::max(NumPositive + 1, NumNegative), 10455 false/*NonNegative*/); 10456 } 10457 10458 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10459 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10460 10461 const BuiltinType *BT = cast<BuiltinType>(T); 10462 assert(BT->isInteger()); 10463 10464 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10465 } 10466 10467 /// Returns the "target" range of a canonical integral type, i.e. 10468 /// the range of values expressible in the type. 10469 /// 10470 /// This matches forValueOfCanonicalType except that enums have the 10471 /// full range of their type, not the range of their enumerators. 10472 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10473 assert(T->isCanonicalUnqualified()); 10474 10475 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10476 T = VT->getElementType().getTypePtr(); 10477 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10478 T = CT->getElementType().getTypePtr(); 10479 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10480 T = AT->getValueType().getTypePtr(); 10481 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10482 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10483 10484 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10485 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10486 10487 const BuiltinType *BT = cast<BuiltinType>(T); 10488 assert(BT->isInteger()); 10489 10490 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10491 } 10492 10493 /// Returns the supremum of two ranges: i.e. their conservative merge. 10494 static IntRange join(IntRange L, IntRange R) { 10495 bool Unsigned = L.NonNegative && R.NonNegative; 10496 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 10497 L.NonNegative && R.NonNegative); 10498 } 10499 10500 /// Return the range of a bitwise-AND of the two ranges. 10501 static IntRange bit_and(IntRange L, IntRange R) { 10502 unsigned Bits = std::max(L.Width, R.Width); 10503 bool NonNegative = false; 10504 if (L.NonNegative) { 10505 Bits = std::min(Bits, L.Width); 10506 NonNegative = true; 10507 } 10508 if (R.NonNegative) { 10509 Bits = std::min(Bits, R.Width); 10510 NonNegative = true; 10511 } 10512 return IntRange(Bits, NonNegative); 10513 } 10514 10515 /// Return the range of a sum of the two ranges. 10516 static IntRange sum(IntRange L, IntRange R) { 10517 bool Unsigned = L.NonNegative && R.NonNegative; 10518 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 10519 Unsigned); 10520 } 10521 10522 /// Return the range of a difference of the two ranges. 10523 static IntRange difference(IntRange L, IntRange R) { 10524 // We need a 1-bit-wider range if: 10525 // 1) LHS can be negative: least value can be reduced. 10526 // 2) RHS can be negative: greatest value can be increased. 10527 bool CanWiden = !L.NonNegative || !R.NonNegative; 10528 bool Unsigned = L.NonNegative && R.Width == 0; 10529 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 10530 !Unsigned, 10531 Unsigned); 10532 } 10533 10534 /// Return the range of a product of the two ranges. 10535 static IntRange product(IntRange L, IntRange R) { 10536 // If both LHS and RHS can be negative, we can form 10537 // -2^L * -2^R = 2^(L + R) 10538 // which requires L + R + 1 value bits to represent. 10539 bool CanWiden = !L.NonNegative && !R.NonNegative; 10540 bool Unsigned = L.NonNegative && R.NonNegative; 10541 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 10542 Unsigned); 10543 } 10544 10545 /// Return the range of a remainder operation between the two ranges. 10546 static IntRange rem(IntRange L, IntRange R) { 10547 // The result of a remainder can't be larger than the result of 10548 // either side. The sign of the result is the sign of the LHS. 10549 bool Unsigned = L.NonNegative; 10550 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 10551 Unsigned); 10552 } 10553 }; 10554 10555 } // namespace 10556 10557 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10558 unsigned MaxWidth) { 10559 if (value.isSigned() && value.isNegative()) 10560 return IntRange(value.getMinSignedBits(), false); 10561 10562 if (value.getBitWidth() > MaxWidth) 10563 value = value.trunc(MaxWidth); 10564 10565 // isNonNegative() just checks the sign bit without considering 10566 // signedness. 10567 return IntRange(value.getActiveBits(), true); 10568 } 10569 10570 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10571 unsigned MaxWidth) { 10572 if (result.isInt()) 10573 return GetValueRange(C, result.getInt(), MaxWidth); 10574 10575 if (result.isVector()) { 10576 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10577 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10578 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10579 R = IntRange::join(R, El); 10580 } 10581 return R; 10582 } 10583 10584 if (result.isComplexInt()) { 10585 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10586 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10587 return IntRange::join(R, I); 10588 } 10589 10590 // This can happen with lossless casts to intptr_t of "based" lvalues. 10591 // Assume it might use arbitrary bits. 10592 // FIXME: The only reason we need to pass the type in here is to get 10593 // the sign right on this one case. It would be nice if APValue 10594 // preserved this. 10595 assert(result.isLValue() || result.isAddrLabelDiff()); 10596 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10597 } 10598 10599 static QualType GetExprType(const Expr *E) { 10600 QualType Ty = E->getType(); 10601 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10602 Ty = AtomicRHS->getValueType(); 10603 return Ty; 10604 } 10605 10606 /// Pseudo-evaluate the given integer expression, estimating the 10607 /// range of values it might take. 10608 /// 10609 /// \param MaxWidth The width to which the value will be truncated. 10610 /// \param Approximate If \c true, return a likely range for the result: in 10611 /// particular, assume that aritmetic on narrower types doesn't leave 10612 /// those types. If \c false, return a range including all possible 10613 /// result values. 10614 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10615 bool InConstantContext, bool Approximate) { 10616 E = E->IgnoreParens(); 10617 10618 // Try a full evaluation first. 10619 Expr::EvalResult result; 10620 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10621 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10622 10623 // I think we only want to look through implicit casts here; if the 10624 // user has an explicit widening cast, we should treat the value as 10625 // being of the new, wider type. 10626 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10627 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10628 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 10629 Approximate); 10630 10631 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10632 10633 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10634 CE->getCastKind() == CK_BooleanToSignedIntegral; 10635 10636 // Assume that non-integer casts can span the full range of the type. 10637 if (!isIntegerCast) 10638 return OutputTypeRange; 10639 10640 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10641 std::min(MaxWidth, OutputTypeRange.Width), 10642 InConstantContext, Approximate); 10643 10644 // Bail out if the subexpr's range is as wide as the cast type. 10645 if (SubRange.Width >= OutputTypeRange.Width) 10646 return OutputTypeRange; 10647 10648 // Otherwise, we take the smaller width, and we're non-negative if 10649 // either the output type or the subexpr is. 10650 return IntRange(SubRange.Width, 10651 SubRange.NonNegative || OutputTypeRange.NonNegative); 10652 } 10653 10654 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10655 // If we can fold the condition, just take that operand. 10656 bool CondResult; 10657 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10658 return GetExprRange(C, 10659 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10660 MaxWidth, InConstantContext, Approximate); 10661 10662 // Otherwise, conservatively merge. 10663 // GetExprRange requires an integer expression, but a throw expression 10664 // results in a void type. 10665 Expr *E = CO->getTrueExpr(); 10666 IntRange L = E->getType()->isVoidType() 10667 ? IntRange{0, true} 10668 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10669 E = CO->getFalseExpr(); 10670 IntRange R = E->getType()->isVoidType() 10671 ? IntRange{0, true} 10672 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10673 return IntRange::join(L, R); 10674 } 10675 10676 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10677 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 10678 10679 switch (BO->getOpcode()) { 10680 case BO_Cmp: 10681 llvm_unreachable("builtin <=> should have class type"); 10682 10683 // Boolean-valued operations are single-bit and positive. 10684 case BO_LAnd: 10685 case BO_LOr: 10686 case BO_LT: 10687 case BO_GT: 10688 case BO_LE: 10689 case BO_GE: 10690 case BO_EQ: 10691 case BO_NE: 10692 return IntRange::forBoolType(); 10693 10694 // The type of the assignments is the type of the LHS, so the RHS 10695 // is not necessarily the same type. 10696 case BO_MulAssign: 10697 case BO_DivAssign: 10698 case BO_RemAssign: 10699 case BO_AddAssign: 10700 case BO_SubAssign: 10701 case BO_XorAssign: 10702 case BO_OrAssign: 10703 // TODO: bitfields? 10704 return IntRange::forValueOfType(C, GetExprType(E)); 10705 10706 // Simple assignments just pass through the RHS, which will have 10707 // been coerced to the LHS type. 10708 case BO_Assign: 10709 // TODO: bitfields? 10710 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 10711 Approximate); 10712 10713 // Operations with opaque sources are black-listed. 10714 case BO_PtrMemD: 10715 case BO_PtrMemI: 10716 return IntRange::forValueOfType(C, GetExprType(E)); 10717 10718 // Bitwise-and uses the *infinum* of the two source ranges. 10719 case BO_And: 10720 case BO_AndAssign: 10721 Combine = IntRange::bit_and; 10722 break; 10723 10724 // Left shift gets black-listed based on a judgement call. 10725 case BO_Shl: 10726 // ...except that we want to treat '1 << (blah)' as logically 10727 // positive. It's an important idiom. 10728 if (IntegerLiteral *I 10729 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10730 if (I->getValue() == 1) { 10731 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10732 return IntRange(R.Width, /*NonNegative*/ true); 10733 } 10734 } 10735 LLVM_FALLTHROUGH; 10736 10737 case BO_ShlAssign: 10738 return IntRange::forValueOfType(C, GetExprType(E)); 10739 10740 // Right shift by a constant can narrow its left argument. 10741 case BO_Shr: 10742 case BO_ShrAssign: { 10743 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 10744 Approximate); 10745 10746 // If the shift amount is a positive constant, drop the width by 10747 // that much. 10748 if (Optional<llvm::APSInt> shift = 10749 BO->getRHS()->getIntegerConstantExpr(C)) { 10750 if (shift->isNonNegative()) { 10751 unsigned zext = shift->getZExtValue(); 10752 if (zext >= L.Width) 10753 L.Width = (L.NonNegative ? 0 : 1); 10754 else 10755 L.Width -= zext; 10756 } 10757 } 10758 10759 return L; 10760 } 10761 10762 // Comma acts as its right operand. 10763 case BO_Comma: 10764 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 10765 Approximate); 10766 10767 case BO_Add: 10768 if (!Approximate) 10769 Combine = IntRange::sum; 10770 break; 10771 10772 case BO_Sub: 10773 if (BO->getLHS()->getType()->isPointerType()) 10774 return IntRange::forValueOfType(C, GetExprType(E)); 10775 if (!Approximate) 10776 Combine = IntRange::difference; 10777 break; 10778 10779 case BO_Mul: 10780 if (!Approximate) 10781 Combine = IntRange::product; 10782 break; 10783 10784 // The width of a division result is mostly determined by the size 10785 // of the LHS. 10786 case BO_Div: { 10787 // Don't 'pre-truncate' the operands. 10788 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10789 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 10790 Approximate); 10791 10792 // If the divisor is constant, use that. 10793 if (Optional<llvm::APSInt> divisor = 10794 BO->getRHS()->getIntegerConstantExpr(C)) { 10795 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 10796 if (log2 >= L.Width) 10797 L.Width = (L.NonNegative ? 0 : 1); 10798 else 10799 L.Width = std::min(L.Width - log2, MaxWidth); 10800 return L; 10801 } 10802 10803 // Otherwise, just use the LHS's width. 10804 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 10805 // could be -1. 10806 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 10807 Approximate); 10808 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10809 } 10810 10811 case BO_Rem: 10812 Combine = IntRange::rem; 10813 break; 10814 10815 // The default behavior is okay for these. 10816 case BO_Xor: 10817 case BO_Or: 10818 break; 10819 } 10820 10821 // Combine the two ranges, but limit the result to the type in which we 10822 // performed the computation. 10823 QualType T = GetExprType(E); 10824 unsigned opWidth = C.getIntWidth(T); 10825 IntRange L = 10826 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 10827 IntRange R = 10828 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 10829 IntRange C = Combine(L, R); 10830 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 10831 C.Width = std::min(C.Width, MaxWidth); 10832 return C; 10833 } 10834 10835 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10836 switch (UO->getOpcode()) { 10837 // Boolean-valued operations are white-listed. 10838 case UO_LNot: 10839 return IntRange::forBoolType(); 10840 10841 // Operations with opaque sources are black-listed. 10842 case UO_Deref: 10843 case UO_AddrOf: // should be impossible 10844 return IntRange::forValueOfType(C, GetExprType(E)); 10845 10846 default: 10847 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 10848 Approximate); 10849 } 10850 } 10851 10852 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10853 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 10854 Approximate); 10855 10856 if (const auto *BitField = E->getSourceBitField()) 10857 return IntRange(BitField->getBitWidthValue(C), 10858 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10859 10860 return IntRange::forValueOfType(C, GetExprType(E)); 10861 } 10862 10863 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10864 bool InConstantContext, bool Approximate) { 10865 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 10866 Approximate); 10867 } 10868 10869 /// Checks whether the given value, which currently has the given 10870 /// source semantics, has the same value when coerced through the 10871 /// target semantics. 10872 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10873 const llvm::fltSemantics &Src, 10874 const llvm::fltSemantics &Tgt) { 10875 llvm::APFloat truncated = value; 10876 10877 bool ignored; 10878 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10879 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10880 10881 return truncated.bitwiseIsEqual(value); 10882 } 10883 10884 /// Checks whether the given value, which currently has the given 10885 /// source semantics, has the same value when coerced through the 10886 /// target semantics. 10887 /// 10888 /// The value might be a vector of floats (or a complex number). 10889 static bool IsSameFloatAfterCast(const APValue &value, 10890 const llvm::fltSemantics &Src, 10891 const llvm::fltSemantics &Tgt) { 10892 if (value.isFloat()) 10893 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10894 10895 if (value.isVector()) { 10896 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10897 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10898 return false; 10899 return true; 10900 } 10901 10902 assert(value.isComplexFloat()); 10903 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10904 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10905 } 10906 10907 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10908 bool IsListInit = false); 10909 10910 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10911 // Suppress cases where we are comparing against an enum constant. 10912 if (const DeclRefExpr *DR = 10913 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10914 if (isa<EnumConstantDecl>(DR->getDecl())) 10915 return true; 10916 10917 // Suppress cases where the value is expanded from a macro, unless that macro 10918 // is how a language represents a boolean literal. This is the case in both C 10919 // and Objective-C. 10920 SourceLocation BeginLoc = E->getBeginLoc(); 10921 if (BeginLoc.isMacroID()) { 10922 StringRef MacroName = Lexer::getImmediateMacroName( 10923 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10924 return MacroName != "YES" && MacroName != "NO" && 10925 MacroName != "true" && MacroName != "false"; 10926 } 10927 10928 return false; 10929 } 10930 10931 static bool isKnownToHaveUnsignedValue(Expr *E) { 10932 return E->getType()->isIntegerType() && 10933 (!E->getType()->isSignedIntegerType() || 10934 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10935 } 10936 10937 namespace { 10938 /// The promoted range of values of a type. In general this has the 10939 /// following structure: 10940 /// 10941 /// |-----------| . . . |-----------| 10942 /// ^ ^ ^ ^ 10943 /// Min HoleMin HoleMax Max 10944 /// 10945 /// ... where there is only a hole if a signed type is promoted to unsigned 10946 /// (in which case Min and Max are the smallest and largest representable 10947 /// values). 10948 struct PromotedRange { 10949 // Min, or HoleMax if there is a hole. 10950 llvm::APSInt PromotedMin; 10951 // Max, or HoleMin if there is a hole. 10952 llvm::APSInt PromotedMax; 10953 10954 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10955 if (R.Width == 0) 10956 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10957 else if (R.Width >= BitWidth && !Unsigned) { 10958 // Promotion made the type *narrower*. This happens when promoting 10959 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10960 // Treat all values of 'signed int' as being in range for now. 10961 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10962 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10963 } else { 10964 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10965 .extOrTrunc(BitWidth); 10966 PromotedMin.setIsUnsigned(Unsigned); 10967 10968 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10969 .extOrTrunc(BitWidth); 10970 PromotedMax.setIsUnsigned(Unsigned); 10971 } 10972 } 10973 10974 // Determine whether this range is contiguous (has no hole). 10975 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10976 10977 // Where a constant value is within the range. 10978 enum ComparisonResult { 10979 LT = 0x1, 10980 LE = 0x2, 10981 GT = 0x4, 10982 GE = 0x8, 10983 EQ = 0x10, 10984 NE = 0x20, 10985 InRangeFlag = 0x40, 10986 10987 Less = LE | LT | NE, 10988 Min = LE | InRangeFlag, 10989 InRange = InRangeFlag, 10990 Max = GE | InRangeFlag, 10991 Greater = GE | GT | NE, 10992 10993 OnlyValue = LE | GE | EQ | InRangeFlag, 10994 InHole = NE 10995 }; 10996 10997 ComparisonResult compare(const llvm::APSInt &Value) const { 10998 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10999 Value.isUnsigned() == PromotedMin.isUnsigned()); 11000 if (!isContiguous()) { 11001 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 11002 if (Value.isMinValue()) return Min; 11003 if (Value.isMaxValue()) return Max; 11004 if (Value >= PromotedMin) return InRange; 11005 if (Value <= PromotedMax) return InRange; 11006 return InHole; 11007 } 11008 11009 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 11010 case -1: return Less; 11011 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 11012 case 1: 11013 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 11014 case -1: return InRange; 11015 case 0: return Max; 11016 case 1: return Greater; 11017 } 11018 } 11019 11020 llvm_unreachable("impossible compare result"); 11021 } 11022 11023 static llvm::Optional<StringRef> 11024 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 11025 if (Op == BO_Cmp) { 11026 ComparisonResult LTFlag = LT, GTFlag = GT; 11027 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 11028 11029 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 11030 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 11031 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 11032 return llvm::None; 11033 } 11034 11035 ComparisonResult TrueFlag, FalseFlag; 11036 if (Op == BO_EQ) { 11037 TrueFlag = EQ; 11038 FalseFlag = NE; 11039 } else if (Op == BO_NE) { 11040 TrueFlag = NE; 11041 FalseFlag = EQ; 11042 } else { 11043 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 11044 TrueFlag = LT; 11045 FalseFlag = GE; 11046 } else { 11047 TrueFlag = GT; 11048 FalseFlag = LE; 11049 } 11050 if (Op == BO_GE || Op == BO_LE) 11051 std::swap(TrueFlag, FalseFlag); 11052 } 11053 if (R & TrueFlag) 11054 return StringRef("true"); 11055 if (R & FalseFlag) 11056 return StringRef("false"); 11057 return llvm::None; 11058 } 11059 }; 11060 } 11061 11062 static bool HasEnumType(Expr *E) { 11063 // Strip off implicit integral promotions. 11064 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11065 if (ICE->getCastKind() != CK_IntegralCast && 11066 ICE->getCastKind() != CK_NoOp) 11067 break; 11068 E = ICE->getSubExpr(); 11069 } 11070 11071 return E->getType()->isEnumeralType(); 11072 } 11073 11074 static int classifyConstantValue(Expr *Constant) { 11075 // The values of this enumeration are used in the diagnostics 11076 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 11077 enum ConstantValueKind { 11078 Miscellaneous = 0, 11079 LiteralTrue, 11080 LiteralFalse 11081 }; 11082 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 11083 return BL->getValue() ? ConstantValueKind::LiteralTrue 11084 : ConstantValueKind::LiteralFalse; 11085 return ConstantValueKind::Miscellaneous; 11086 } 11087 11088 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 11089 Expr *Constant, Expr *Other, 11090 const llvm::APSInt &Value, 11091 bool RhsConstant) { 11092 if (S.inTemplateInstantiation()) 11093 return false; 11094 11095 Expr *OriginalOther = Other; 11096 11097 Constant = Constant->IgnoreParenImpCasts(); 11098 Other = Other->IgnoreParenImpCasts(); 11099 11100 // Suppress warnings on tautological comparisons between values of the same 11101 // enumeration type. There are only two ways we could warn on this: 11102 // - If the constant is outside the range of representable values of 11103 // the enumeration. In such a case, we should warn about the cast 11104 // to enumeration type, not about the comparison. 11105 // - If the constant is the maximum / minimum in-range value. For an 11106 // enumeratin type, such comparisons can be meaningful and useful. 11107 if (Constant->getType()->isEnumeralType() && 11108 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 11109 return false; 11110 11111 IntRange OtherValueRange = GetExprRange( 11112 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 11113 11114 QualType OtherT = Other->getType(); 11115 if (const auto *AT = OtherT->getAs<AtomicType>()) 11116 OtherT = AT->getValueType(); 11117 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 11118 11119 // Special case for ObjC BOOL on targets where its a typedef for a signed char 11120 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 11121 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 11122 S.NSAPIObj->isObjCBOOLType(OtherT) && 11123 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 11124 11125 // Whether we're treating Other as being a bool because of the form of 11126 // expression despite it having another type (typically 'int' in C). 11127 bool OtherIsBooleanDespiteType = 11128 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 11129 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 11130 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 11131 11132 // Check if all values in the range of possible values of this expression 11133 // lead to the same comparison outcome. 11134 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 11135 Value.isUnsigned()); 11136 auto Cmp = OtherPromotedValueRange.compare(Value); 11137 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 11138 if (!Result) 11139 return false; 11140 11141 // Also consider the range determined by the type alone. This allows us to 11142 // classify the warning under the proper diagnostic group. 11143 bool TautologicalTypeCompare = false; 11144 { 11145 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 11146 Value.isUnsigned()); 11147 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 11148 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 11149 RhsConstant)) { 11150 TautologicalTypeCompare = true; 11151 Cmp = TypeCmp; 11152 Result = TypeResult; 11153 } 11154 } 11155 11156 // Don't warn if the non-constant operand actually always evaluates to the 11157 // same value. 11158 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 11159 return false; 11160 11161 // Suppress the diagnostic for an in-range comparison if the constant comes 11162 // from a macro or enumerator. We don't want to diagnose 11163 // 11164 // some_long_value <= INT_MAX 11165 // 11166 // when sizeof(int) == sizeof(long). 11167 bool InRange = Cmp & PromotedRange::InRangeFlag; 11168 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 11169 return false; 11170 11171 // A comparison of an unsigned bit-field against 0 is really a type problem, 11172 // even though at the type level the bit-field might promote to 'signed int'. 11173 if (Other->refersToBitField() && InRange && Value == 0 && 11174 Other->getType()->isUnsignedIntegerOrEnumerationType()) 11175 TautologicalTypeCompare = true; 11176 11177 // If this is a comparison to an enum constant, include that 11178 // constant in the diagnostic. 11179 const EnumConstantDecl *ED = nullptr; 11180 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 11181 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 11182 11183 // Should be enough for uint128 (39 decimal digits) 11184 SmallString<64> PrettySourceValue; 11185 llvm::raw_svector_ostream OS(PrettySourceValue); 11186 if (ED) { 11187 OS << '\'' << *ED << "' (" << Value << ")"; 11188 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 11189 Constant->IgnoreParenImpCasts())) { 11190 OS << (BL->getValue() ? "YES" : "NO"); 11191 } else { 11192 OS << Value; 11193 } 11194 11195 if (!TautologicalTypeCompare) { 11196 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 11197 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 11198 << E->getOpcodeStr() << OS.str() << *Result 11199 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11200 return true; 11201 } 11202 11203 if (IsObjCSignedCharBool) { 11204 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11205 S.PDiag(diag::warn_tautological_compare_objc_bool) 11206 << OS.str() << *Result); 11207 return true; 11208 } 11209 11210 // FIXME: We use a somewhat different formatting for the in-range cases and 11211 // cases involving boolean values for historical reasons. We should pick a 11212 // consistent way of presenting these diagnostics. 11213 if (!InRange || Other->isKnownToHaveBooleanValue()) { 11214 11215 S.DiagRuntimeBehavior( 11216 E->getOperatorLoc(), E, 11217 S.PDiag(!InRange ? diag::warn_out_of_range_compare 11218 : diag::warn_tautological_bool_compare) 11219 << OS.str() << classifyConstantValue(Constant) << OtherT 11220 << OtherIsBooleanDespiteType << *Result 11221 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 11222 } else { 11223 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 11224 ? (HasEnumType(OriginalOther) 11225 ? diag::warn_unsigned_enum_always_true_comparison 11226 : diag::warn_unsigned_always_true_comparison) 11227 : diag::warn_tautological_constant_compare; 11228 11229 S.Diag(E->getOperatorLoc(), Diag) 11230 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 11231 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11232 } 11233 11234 return true; 11235 } 11236 11237 /// Analyze the operands of the given comparison. Implements the 11238 /// fallback case from AnalyzeComparison. 11239 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 11240 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11241 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11242 } 11243 11244 /// Implements -Wsign-compare. 11245 /// 11246 /// \param E the binary operator to check for warnings 11247 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 11248 // The type the comparison is being performed in. 11249 QualType T = E->getLHS()->getType(); 11250 11251 // Only analyze comparison operators where both sides have been converted to 11252 // the same type. 11253 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 11254 return AnalyzeImpConvsInComparison(S, E); 11255 11256 // Don't analyze value-dependent comparisons directly. 11257 if (E->isValueDependent()) 11258 return AnalyzeImpConvsInComparison(S, E); 11259 11260 Expr *LHS = E->getLHS(); 11261 Expr *RHS = E->getRHS(); 11262 11263 if (T->isIntegralType(S.Context)) { 11264 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 11265 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 11266 11267 // We don't care about expressions whose result is a constant. 11268 if (RHSValue && LHSValue) 11269 return AnalyzeImpConvsInComparison(S, E); 11270 11271 // We only care about expressions where just one side is literal 11272 if ((bool)RHSValue ^ (bool)LHSValue) { 11273 // Is the constant on the RHS or LHS? 11274 const bool RhsConstant = (bool)RHSValue; 11275 Expr *Const = RhsConstant ? RHS : LHS; 11276 Expr *Other = RhsConstant ? LHS : RHS; 11277 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 11278 11279 // Check whether an integer constant comparison results in a value 11280 // of 'true' or 'false'. 11281 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 11282 return AnalyzeImpConvsInComparison(S, E); 11283 } 11284 } 11285 11286 if (!T->hasUnsignedIntegerRepresentation()) { 11287 // We don't do anything special if this isn't an unsigned integral 11288 // comparison: we're only interested in integral comparisons, and 11289 // signed comparisons only happen in cases we don't care to warn about. 11290 return AnalyzeImpConvsInComparison(S, E); 11291 } 11292 11293 LHS = LHS->IgnoreParenImpCasts(); 11294 RHS = RHS->IgnoreParenImpCasts(); 11295 11296 if (!S.getLangOpts().CPlusPlus) { 11297 // Avoid warning about comparison of integers with different signs when 11298 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 11299 // the type of `E`. 11300 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 11301 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11302 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 11303 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11304 } 11305 11306 // Check to see if one of the (unmodified) operands is of different 11307 // signedness. 11308 Expr *signedOperand, *unsignedOperand; 11309 if (LHS->getType()->hasSignedIntegerRepresentation()) { 11310 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 11311 "unsigned comparison between two signed integer expressions?"); 11312 signedOperand = LHS; 11313 unsignedOperand = RHS; 11314 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 11315 signedOperand = RHS; 11316 unsignedOperand = LHS; 11317 } else { 11318 return AnalyzeImpConvsInComparison(S, E); 11319 } 11320 11321 // Otherwise, calculate the effective range of the signed operand. 11322 IntRange signedRange = GetExprRange( 11323 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 11324 11325 // Go ahead and analyze implicit conversions in the operands. Note 11326 // that we skip the implicit conversions on both sides. 11327 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 11328 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 11329 11330 // If the signed range is non-negative, -Wsign-compare won't fire. 11331 if (signedRange.NonNegative) 11332 return; 11333 11334 // For (in)equality comparisons, if the unsigned operand is a 11335 // constant which cannot collide with a overflowed signed operand, 11336 // then reinterpreting the signed operand as unsigned will not 11337 // change the result of the comparison. 11338 if (E->isEqualityOp()) { 11339 unsigned comparisonWidth = S.Context.getIntWidth(T); 11340 IntRange unsignedRange = 11341 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 11342 /*Approximate*/ true); 11343 11344 // We should never be unable to prove that the unsigned operand is 11345 // non-negative. 11346 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 11347 11348 if (unsignedRange.Width < comparisonWidth) 11349 return; 11350 } 11351 11352 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11353 S.PDiag(diag::warn_mixed_sign_comparison) 11354 << LHS->getType() << RHS->getType() 11355 << LHS->getSourceRange() << RHS->getSourceRange()); 11356 } 11357 11358 /// Analyzes an attempt to assign the given value to a bitfield. 11359 /// 11360 /// Returns true if there was something fishy about the attempt. 11361 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 11362 SourceLocation InitLoc) { 11363 assert(Bitfield->isBitField()); 11364 if (Bitfield->isInvalidDecl()) 11365 return false; 11366 11367 // White-list bool bitfields. 11368 QualType BitfieldType = Bitfield->getType(); 11369 if (BitfieldType->isBooleanType()) 11370 return false; 11371 11372 if (BitfieldType->isEnumeralType()) { 11373 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 11374 // If the underlying enum type was not explicitly specified as an unsigned 11375 // type and the enum contain only positive values, MSVC++ will cause an 11376 // inconsistency by storing this as a signed type. 11377 if (S.getLangOpts().CPlusPlus11 && 11378 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 11379 BitfieldEnumDecl->getNumPositiveBits() > 0 && 11380 BitfieldEnumDecl->getNumNegativeBits() == 0) { 11381 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 11382 << BitfieldEnumDecl; 11383 } 11384 } 11385 11386 if (Bitfield->getType()->isBooleanType()) 11387 return false; 11388 11389 // Ignore value- or type-dependent expressions. 11390 if (Bitfield->getBitWidth()->isValueDependent() || 11391 Bitfield->getBitWidth()->isTypeDependent() || 11392 Init->isValueDependent() || 11393 Init->isTypeDependent()) 11394 return false; 11395 11396 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 11397 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 11398 11399 Expr::EvalResult Result; 11400 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 11401 Expr::SE_AllowSideEffects)) { 11402 // The RHS is not constant. If the RHS has an enum type, make sure the 11403 // bitfield is wide enough to hold all the values of the enum without 11404 // truncation. 11405 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 11406 EnumDecl *ED = EnumTy->getDecl(); 11407 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 11408 11409 // Enum types are implicitly signed on Windows, so check if there are any 11410 // negative enumerators to see if the enum was intended to be signed or 11411 // not. 11412 bool SignedEnum = ED->getNumNegativeBits() > 0; 11413 11414 // Check for surprising sign changes when assigning enum values to a 11415 // bitfield of different signedness. If the bitfield is signed and we 11416 // have exactly the right number of bits to store this unsigned enum, 11417 // suggest changing the enum to an unsigned type. This typically happens 11418 // on Windows where unfixed enums always use an underlying type of 'int'. 11419 unsigned DiagID = 0; 11420 if (SignedEnum && !SignedBitfield) { 11421 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 11422 } else if (SignedBitfield && !SignedEnum && 11423 ED->getNumPositiveBits() == FieldWidth) { 11424 DiagID = diag::warn_signed_bitfield_enum_conversion; 11425 } 11426 11427 if (DiagID) { 11428 S.Diag(InitLoc, DiagID) << Bitfield << ED; 11429 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 11430 SourceRange TypeRange = 11431 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 11432 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 11433 << SignedEnum << TypeRange; 11434 } 11435 11436 // Compute the required bitwidth. If the enum has negative values, we need 11437 // one more bit than the normal number of positive bits to represent the 11438 // sign bit. 11439 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 11440 ED->getNumNegativeBits()) 11441 : ED->getNumPositiveBits(); 11442 11443 // Check the bitwidth. 11444 if (BitsNeeded > FieldWidth) { 11445 Expr *WidthExpr = Bitfield->getBitWidth(); 11446 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 11447 << Bitfield << ED; 11448 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 11449 << BitsNeeded << ED << WidthExpr->getSourceRange(); 11450 } 11451 } 11452 11453 return false; 11454 } 11455 11456 llvm::APSInt Value = Result.Val.getInt(); 11457 11458 unsigned OriginalWidth = Value.getBitWidth(); 11459 11460 if (!Value.isSigned() || Value.isNegative()) 11461 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 11462 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 11463 OriginalWidth = Value.getMinSignedBits(); 11464 11465 if (OriginalWidth <= FieldWidth) 11466 return false; 11467 11468 // Compute the value which the bitfield will contain. 11469 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 11470 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 11471 11472 // Check whether the stored value is equal to the original value. 11473 TruncatedValue = TruncatedValue.extend(OriginalWidth); 11474 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 11475 return false; 11476 11477 // Special-case bitfields of width 1: booleans are naturally 0/1, and 11478 // therefore don't strictly fit into a signed bitfield of width 1. 11479 if (FieldWidth == 1 && Value == 1) 11480 return false; 11481 11482 std::string PrettyValue = Value.toString(10); 11483 std::string PrettyTrunc = TruncatedValue.toString(10); 11484 11485 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 11486 << PrettyValue << PrettyTrunc << OriginalInit->getType() 11487 << Init->getSourceRange(); 11488 11489 return true; 11490 } 11491 11492 /// Analyze the given simple or compound assignment for warning-worthy 11493 /// operations. 11494 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 11495 // Just recurse on the LHS. 11496 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11497 11498 // We want to recurse on the RHS as normal unless we're assigning to 11499 // a bitfield. 11500 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 11501 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 11502 E->getOperatorLoc())) { 11503 // Recurse, ignoring any implicit conversions on the RHS. 11504 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 11505 E->getOperatorLoc()); 11506 } 11507 } 11508 11509 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11510 11511 // Diagnose implicitly sequentially-consistent atomic assignment. 11512 if (E->getLHS()->getType()->isAtomicType()) 11513 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11514 } 11515 11516 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11517 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 11518 SourceLocation CContext, unsigned diag, 11519 bool pruneControlFlow = false) { 11520 if (pruneControlFlow) { 11521 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11522 S.PDiag(diag) 11523 << SourceType << T << E->getSourceRange() 11524 << SourceRange(CContext)); 11525 return; 11526 } 11527 S.Diag(E->getExprLoc(), diag) 11528 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 11529 } 11530 11531 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11532 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 11533 SourceLocation CContext, 11534 unsigned diag, bool pruneControlFlow = false) { 11535 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 11536 } 11537 11538 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 11539 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 11540 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 11541 } 11542 11543 static void adornObjCBoolConversionDiagWithTernaryFixit( 11544 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 11545 Expr *Ignored = SourceExpr->IgnoreImplicit(); 11546 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 11547 Ignored = OVE->getSourceExpr(); 11548 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 11549 isa<BinaryOperator>(Ignored) || 11550 isa<CXXOperatorCallExpr>(Ignored); 11551 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 11552 if (NeedsParens) 11553 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 11554 << FixItHint::CreateInsertion(EndLoc, ")"); 11555 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 11556 } 11557 11558 /// Diagnose an implicit cast from a floating point value to an integer value. 11559 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 11560 SourceLocation CContext) { 11561 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 11562 const bool PruneWarnings = S.inTemplateInstantiation(); 11563 11564 Expr *InnerE = E->IgnoreParenImpCasts(); 11565 // We also want to warn on, e.g., "int i = -1.234" 11566 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 11567 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 11568 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11569 11570 const bool IsLiteral = 11571 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11572 11573 llvm::APFloat Value(0.0); 11574 bool IsConstant = 11575 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11576 if (!IsConstant) { 11577 if (isObjCSignedCharBool(S, T)) { 11578 return adornObjCBoolConversionDiagWithTernaryFixit( 11579 S, E, 11580 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11581 << E->getType()); 11582 } 11583 11584 return DiagnoseImpCast(S, E, T, CContext, 11585 diag::warn_impcast_float_integer, PruneWarnings); 11586 } 11587 11588 bool isExact = false; 11589 11590 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11591 T->hasUnsignedIntegerRepresentation()); 11592 llvm::APFloat::opStatus Result = Value.convertToInteger( 11593 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11594 11595 // FIXME: Force the precision of the source value down so we don't print 11596 // digits which are usually useless (we don't really care here if we 11597 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11598 // would automatically print the shortest representation, but it's a bit 11599 // tricky to implement. 11600 SmallString<16> PrettySourceValue; 11601 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11602 precision = (precision * 59 + 195) / 196; 11603 Value.toString(PrettySourceValue, precision); 11604 11605 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11606 return adornObjCBoolConversionDiagWithTernaryFixit( 11607 S, E, 11608 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11609 << PrettySourceValue); 11610 } 11611 11612 if (Result == llvm::APFloat::opOK && isExact) { 11613 if (IsLiteral) return; 11614 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11615 PruneWarnings); 11616 } 11617 11618 // Conversion of a floating-point value to a non-bool integer where the 11619 // integral part cannot be represented by the integer type is undefined. 11620 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11621 return DiagnoseImpCast( 11622 S, E, T, CContext, 11623 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11624 : diag::warn_impcast_float_to_integer_out_of_range, 11625 PruneWarnings); 11626 11627 unsigned DiagID = 0; 11628 if (IsLiteral) { 11629 // Warn on floating point literal to integer. 11630 DiagID = diag::warn_impcast_literal_float_to_integer; 11631 } else if (IntegerValue == 0) { 11632 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11633 return DiagnoseImpCast(S, E, T, CContext, 11634 diag::warn_impcast_float_integer, PruneWarnings); 11635 } 11636 // Warn on non-zero to zero conversion. 11637 DiagID = diag::warn_impcast_float_to_integer_zero; 11638 } else { 11639 if (IntegerValue.isUnsigned()) { 11640 if (!IntegerValue.isMaxValue()) { 11641 return DiagnoseImpCast(S, E, T, CContext, 11642 diag::warn_impcast_float_integer, PruneWarnings); 11643 } 11644 } else { // IntegerValue.isSigned() 11645 if (!IntegerValue.isMaxSignedValue() && 11646 !IntegerValue.isMinSignedValue()) { 11647 return DiagnoseImpCast(S, E, T, CContext, 11648 diag::warn_impcast_float_integer, PruneWarnings); 11649 } 11650 } 11651 // Warn on evaluatable floating point expression to integer conversion. 11652 DiagID = diag::warn_impcast_float_to_integer; 11653 } 11654 11655 SmallString<16> PrettyTargetValue; 11656 if (IsBool) 11657 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11658 else 11659 IntegerValue.toString(PrettyTargetValue); 11660 11661 if (PruneWarnings) { 11662 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11663 S.PDiag(DiagID) 11664 << E->getType() << T.getUnqualifiedType() 11665 << PrettySourceValue << PrettyTargetValue 11666 << E->getSourceRange() << SourceRange(CContext)); 11667 } else { 11668 S.Diag(E->getExprLoc(), DiagID) 11669 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11670 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11671 } 11672 } 11673 11674 /// Analyze the given compound assignment for the possible losing of 11675 /// floating-point precision. 11676 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11677 assert(isa<CompoundAssignOperator>(E) && 11678 "Must be compound assignment operation"); 11679 // Recurse on the LHS and RHS in here 11680 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11681 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11682 11683 if (E->getLHS()->getType()->isAtomicType()) 11684 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11685 11686 // Now check the outermost expression 11687 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11688 const auto *RBT = cast<CompoundAssignOperator>(E) 11689 ->getComputationResultType() 11690 ->getAs<BuiltinType>(); 11691 11692 // The below checks assume source is floating point. 11693 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11694 11695 // If source is floating point but target is an integer. 11696 if (ResultBT->isInteger()) 11697 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11698 E->getExprLoc(), diag::warn_impcast_float_integer); 11699 11700 if (!ResultBT->isFloatingPoint()) 11701 return; 11702 11703 // If both source and target are floating points, warn about losing precision. 11704 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11705 QualType(ResultBT, 0), QualType(RBT, 0)); 11706 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11707 // warn about dropping FP rank. 11708 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11709 diag::warn_impcast_float_result_precision); 11710 } 11711 11712 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11713 IntRange Range) { 11714 if (!Range.Width) return "0"; 11715 11716 llvm::APSInt ValueInRange = Value; 11717 ValueInRange.setIsSigned(!Range.NonNegative); 11718 ValueInRange = ValueInRange.trunc(Range.Width); 11719 return ValueInRange.toString(10); 11720 } 11721 11722 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11723 if (!isa<ImplicitCastExpr>(Ex)) 11724 return false; 11725 11726 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11727 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11728 const Type *Source = 11729 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11730 if (Target->isDependentType()) 11731 return false; 11732 11733 const BuiltinType *FloatCandidateBT = 11734 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11735 const Type *BoolCandidateType = ToBool ? Target : Source; 11736 11737 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11738 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11739 } 11740 11741 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11742 SourceLocation CC) { 11743 unsigned NumArgs = TheCall->getNumArgs(); 11744 for (unsigned i = 0; i < NumArgs; ++i) { 11745 Expr *CurrA = TheCall->getArg(i); 11746 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11747 continue; 11748 11749 bool IsSwapped = ((i > 0) && 11750 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11751 IsSwapped |= ((i < (NumArgs - 1)) && 11752 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11753 if (IsSwapped) { 11754 // Warn on this floating-point to bool conversion. 11755 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11756 CurrA->getType(), CC, 11757 diag::warn_impcast_floating_point_to_bool); 11758 } 11759 } 11760 } 11761 11762 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11763 SourceLocation CC) { 11764 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11765 E->getExprLoc())) 11766 return; 11767 11768 // Don't warn on functions which have return type nullptr_t. 11769 if (isa<CallExpr>(E)) 11770 return; 11771 11772 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11773 const Expr::NullPointerConstantKind NullKind = 11774 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11775 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11776 return; 11777 11778 // Return if target type is a safe conversion. 11779 if (T->isAnyPointerType() || T->isBlockPointerType() || 11780 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11781 return; 11782 11783 SourceLocation Loc = E->getSourceRange().getBegin(); 11784 11785 // Venture through the macro stacks to get to the source of macro arguments. 11786 // The new location is a better location than the complete location that was 11787 // passed in. 11788 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11789 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11790 11791 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11792 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11793 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11794 Loc, S.SourceMgr, S.getLangOpts()); 11795 if (MacroName == "NULL") 11796 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11797 } 11798 11799 // Only warn if the null and context location are in the same macro expansion. 11800 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11801 return; 11802 11803 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11804 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11805 << FixItHint::CreateReplacement(Loc, 11806 S.getFixItZeroLiteralForType(T, Loc)); 11807 } 11808 11809 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11810 ObjCArrayLiteral *ArrayLiteral); 11811 11812 static void 11813 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11814 ObjCDictionaryLiteral *DictionaryLiteral); 11815 11816 /// Check a single element within a collection literal against the 11817 /// target element type. 11818 static void checkObjCCollectionLiteralElement(Sema &S, 11819 QualType TargetElementType, 11820 Expr *Element, 11821 unsigned ElementKind) { 11822 // Skip a bitcast to 'id' or qualified 'id'. 11823 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11824 if (ICE->getCastKind() == CK_BitCast && 11825 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11826 Element = ICE->getSubExpr(); 11827 } 11828 11829 QualType ElementType = Element->getType(); 11830 ExprResult ElementResult(Element); 11831 if (ElementType->getAs<ObjCObjectPointerType>() && 11832 S.CheckSingleAssignmentConstraints(TargetElementType, 11833 ElementResult, 11834 false, false) 11835 != Sema::Compatible) { 11836 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11837 << ElementType << ElementKind << TargetElementType 11838 << Element->getSourceRange(); 11839 } 11840 11841 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11842 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11843 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11844 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11845 } 11846 11847 /// Check an Objective-C array literal being converted to the given 11848 /// target type. 11849 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11850 ObjCArrayLiteral *ArrayLiteral) { 11851 if (!S.NSArrayDecl) 11852 return; 11853 11854 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11855 if (!TargetObjCPtr) 11856 return; 11857 11858 if (TargetObjCPtr->isUnspecialized() || 11859 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11860 != S.NSArrayDecl->getCanonicalDecl()) 11861 return; 11862 11863 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11864 if (TypeArgs.size() != 1) 11865 return; 11866 11867 QualType TargetElementType = TypeArgs[0]; 11868 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11869 checkObjCCollectionLiteralElement(S, TargetElementType, 11870 ArrayLiteral->getElement(I), 11871 0); 11872 } 11873 } 11874 11875 /// Check an Objective-C dictionary literal being converted to the given 11876 /// target type. 11877 static void 11878 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11879 ObjCDictionaryLiteral *DictionaryLiteral) { 11880 if (!S.NSDictionaryDecl) 11881 return; 11882 11883 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11884 if (!TargetObjCPtr) 11885 return; 11886 11887 if (TargetObjCPtr->isUnspecialized() || 11888 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11889 != S.NSDictionaryDecl->getCanonicalDecl()) 11890 return; 11891 11892 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11893 if (TypeArgs.size() != 2) 11894 return; 11895 11896 QualType TargetKeyType = TypeArgs[0]; 11897 QualType TargetObjectType = TypeArgs[1]; 11898 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11899 auto Element = DictionaryLiteral->getKeyValueElement(I); 11900 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11901 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11902 } 11903 } 11904 11905 // Helper function to filter out cases for constant width constant conversion. 11906 // Don't warn on char array initialization or for non-decimal values. 11907 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11908 SourceLocation CC) { 11909 // If initializing from a constant, and the constant starts with '0', 11910 // then it is a binary, octal, or hexadecimal. Allow these constants 11911 // to fill all the bits, even if there is a sign change. 11912 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11913 const char FirstLiteralCharacter = 11914 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11915 if (FirstLiteralCharacter == '0') 11916 return false; 11917 } 11918 11919 // If the CC location points to a '{', and the type is char, then assume 11920 // assume it is an array initialization. 11921 if (CC.isValid() && T->isCharType()) { 11922 const char FirstContextCharacter = 11923 S.getSourceManager().getCharacterData(CC)[0]; 11924 if (FirstContextCharacter == '{') 11925 return false; 11926 } 11927 11928 return true; 11929 } 11930 11931 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11932 const auto *IL = dyn_cast<IntegerLiteral>(E); 11933 if (!IL) { 11934 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11935 if (UO->getOpcode() == UO_Minus) 11936 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11937 } 11938 } 11939 11940 return IL; 11941 } 11942 11943 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11944 E = E->IgnoreParenImpCasts(); 11945 SourceLocation ExprLoc = E->getExprLoc(); 11946 11947 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11948 BinaryOperator::Opcode Opc = BO->getOpcode(); 11949 Expr::EvalResult Result; 11950 // Do not diagnose unsigned shifts. 11951 if (Opc == BO_Shl) { 11952 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11953 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11954 if (LHS && LHS->getValue() == 0) 11955 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11956 else if (!E->isValueDependent() && LHS && RHS && 11957 RHS->getValue().isNonNegative() && 11958 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11959 S.Diag(ExprLoc, diag::warn_left_shift_always) 11960 << (Result.Val.getInt() != 0); 11961 else if (E->getType()->isSignedIntegerType()) 11962 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11963 } 11964 } 11965 11966 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11967 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11968 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11969 if (!LHS || !RHS) 11970 return; 11971 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11972 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11973 // Do not diagnose common idioms. 11974 return; 11975 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11976 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11977 } 11978 } 11979 11980 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11981 SourceLocation CC, 11982 bool *ICContext = nullptr, 11983 bool IsListInit = false) { 11984 if (E->isTypeDependent() || E->isValueDependent()) return; 11985 11986 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11987 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11988 if (Source == Target) return; 11989 if (Target->isDependentType()) return; 11990 11991 // If the conversion context location is invalid don't complain. We also 11992 // don't want to emit a warning if the issue occurs from the expansion of 11993 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11994 // delay this check as long as possible. Once we detect we are in that 11995 // scenario, we just return. 11996 if (CC.isInvalid()) 11997 return; 11998 11999 if (Source->isAtomicType()) 12000 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 12001 12002 // Diagnose implicit casts to bool. 12003 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 12004 if (isa<StringLiteral>(E)) 12005 // Warn on string literal to bool. Checks for string literals in logical 12006 // and expressions, for instance, assert(0 && "error here"), are 12007 // prevented by a check in AnalyzeImplicitConversions(). 12008 return DiagnoseImpCast(S, E, T, CC, 12009 diag::warn_impcast_string_literal_to_bool); 12010 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 12011 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 12012 // This covers the literal expressions that evaluate to Objective-C 12013 // objects. 12014 return DiagnoseImpCast(S, E, T, CC, 12015 diag::warn_impcast_objective_c_literal_to_bool); 12016 } 12017 if (Source->isPointerType() || Source->canDecayToPointerType()) { 12018 // Warn on pointer to bool conversion that is always true. 12019 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 12020 SourceRange(CC)); 12021 } 12022 } 12023 12024 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 12025 // is a typedef for signed char (macOS), then that constant value has to be 1 12026 // or 0. 12027 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 12028 Expr::EvalResult Result; 12029 if (E->EvaluateAsInt(Result, S.getASTContext(), 12030 Expr::SE_AllowSideEffects)) { 12031 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 12032 adornObjCBoolConversionDiagWithTernaryFixit( 12033 S, E, 12034 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 12035 << Result.Val.getInt().toString(10)); 12036 } 12037 return; 12038 } 12039 } 12040 12041 // Check implicit casts from Objective-C collection literals to specialized 12042 // collection types, e.g., NSArray<NSString *> *. 12043 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 12044 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 12045 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 12046 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 12047 12048 // Strip vector types. 12049 if (isa<VectorType>(Source)) { 12050 if (!isa<VectorType>(Target)) { 12051 if (S.SourceMgr.isInSystemMacro(CC)) 12052 return; 12053 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 12054 } 12055 12056 // If the vector cast is cast between two vectors of the same size, it is 12057 // a bitcast, not a conversion. 12058 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 12059 return; 12060 12061 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 12062 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 12063 } 12064 if (auto VecTy = dyn_cast<VectorType>(Target)) 12065 Target = VecTy->getElementType().getTypePtr(); 12066 12067 // Strip complex types. 12068 if (isa<ComplexType>(Source)) { 12069 if (!isa<ComplexType>(Target)) { 12070 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 12071 return; 12072 12073 return DiagnoseImpCast(S, E, T, CC, 12074 S.getLangOpts().CPlusPlus 12075 ? diag::err_impcast_complex_scalar 12076 : diag::warn_impcast_complex_scalar); 12077 } 12078 12079 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 12080 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 12081 } 12082 12083 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 12084 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 12085 12086 // If the source is floating point... 12087 if (SourceBT && SourceBT->isFloatingPoint()) { 12088 // ...and the target is floating point... 12089 if (TargetBT && TargetBT->isFloatingPoint()) { 12090 // ...then warn if we're dropping FP rank. 12091 12092 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12093 QualType(SourceBT, 0), QualType(TargetBT, 0)); 12094 if (Order > 0) { 12095 // Don't warn about float constants that are precisely 12096 // representable in the target type. 12097 Expr::EvalResult result; 12098 if (E->EvaluateAsRValue(result, S.Context)) { 12099 // Value might be a float, a float vector, or a float complex. 12100 if (IsSameFloatAfterCast(result.Val, 12101 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 12102 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 12103 return; 12104 } 12105 12106 if (S.SourceMgr.isInSystemMacro(CC)) 12107 return; 12108 12109 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 12110 } 12111 // ... or possibly if we're increasing rank, too 12112 else if (Order < 0) { 12113 if (S.SourceMgr.isInSystemMacro(CC)) 12114 return; 12115 12116 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 12117 } 12118 return; 12119 } 12120 12121 // If the target is integral, always warn. 12122 if (TargetBT && TargetBT->isInteger()) { 12123 if (S.SourceMgr.isInSystemMacro(CC)) 12124 return; 12125 12126 DiagnoseFloatingImpCast(S, E, T, CC); 12127 } 12128 12129 // Detect the case where a call result is converted from floating-point to 12130 // to bool, and the final argument to the call is converted from bool, to 12131 // discover this typo: 12132 // 12133 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 12134 // 12135 // FIXME: This is an incredibly special case; is there some more general 12136 // way to detect this class of misplaced-parentheses bug? 12137 if (Target->isBooleanType() && isa<CallExpr>(E)) { 12138 // Check last argument of function call to see if it is an 12139 // implicit cast from a type matching the type the result 12140 // is being cast to. 12141 CallExpr *CEx = cast<CallExpr>(E); 12142 if (unsigned NumArgs = CEx->getNumArgs()) { 12143 Expr *LastA = CEx->getArg(NumArgs - 1); 12144 Expr *InnerE = LastA->IgnoreParenImpCasts(); 12145 if (isa<ImplicitCastExpr>(LastA) && 12146 InnerE->getType()->isBooleanType()) { 12147 // Warn on this floating-point to bool conversion 12148 DiagnoseImpCast(S, E, T, CC, 12149 diag::warn_impcast_floating_point_to_bool); 12150 } 12151 } 12152 } 12153 return; 12154 } 12155 12156 // Valid casts involving fixed point types should be accounted for here. 12157 if (Source->isFixedPointType()) { 12158 if (Target->isUnsaturatedFixedPointType()) { 12159 Expr::EvalResult Result; 12160 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 12161 S.isConstantEvaluated())) { 12162 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 12163 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 12164 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 12165 if (Value > MaxVal || Value < MinVal) { 12166 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12167 S.PDiag(diag::warn_impcast_fixed_point_range) 12168 << Value.toString() << T 12169 << E->getSourceRange() 12170 << clang::SourceRange(CC)); 12171 return; 12172 } 12173 } 12174 } else if (Target->isIntegerType()) { 12175 Expr::EvalResult Result; 12176 if (!S.isConstantEvaluated() && 12177 E->EvaluateAsFixedPoint(Result, S.Context, 12178 Expr::SE_AllowSideEffects)) { 12179 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 12180 12181 bool Overflowed; 12182 llvm::APSInt IntResult = FXResult.convertToInt( 12183 S.Context.getIntWidth(T), 12184 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 12185 12186 if (Overflowed) { 12187 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12188 S.PDiag(diag::warn_impcast_fixed_point_range) 12189 << FXResult.toString() << T 12190 << E->getSourceRange() 12191 << clang::SourceRange(CC)); 12192 return; 12193 } 12194 } 12195 } 12196 } else if (Target->isUnsaturatedFixedPointType()) { 12197 if (Source->isIntegerType()) { 12198 Expr::EvalResult Result; 12199 if (!S.isConstantEvaluated() && 12200 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 12201 llvm::APSInt Value = Result.Val.getInt(); 12202 12203 bool Overflowed; 12204 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 12205 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 12206 12207 if (Overflowed) { 12208 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12209 S.PDiag(diag::warn_impcast_fixed_point_range) 12210 << Value.toString(/*Radix=*/10) << T 12211 << E->getSourceRange() 12212 << clang::SourceRange(CC)); 12213 return; 12214 } 12215 } 12216 } 12217 } 12218 12219 // If we are casting an integer type to a floating point type without 12220 // initialization-list syntax, we might lose accuracy if the floating 12221 // point type has a narrower significand than the integer type. 12222 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 12223 TargetBT->isFloatingType() && !IsListInit) { 12224 // Determine the number of precision bits in the source integer type. 12225 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 12226 /*Approximate*/ true); 12227 unsigned int SourcePrecision = SourceRange.Width; 12228 12229 // Determine the number of precision bits in the 12230 // target floating point type. 12231 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 12232 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12233 12234 if (SourcePrecision > 0 && TargetPrecision > 0 && 12235 SourcePrecision > TargetPrecision) { 12236 12237 if (Optional<llvm::APSInt> SourceInt = 12238 E->getIntegerConstantExpr(S.Context)) { 12239 // If the source integer is a constant, convert it to the target 12240 // floating point type. Issue a warning if the value changes 12241 // during the whole conversion. 12242 llvm::APFloat TargetFloatValue( 12243 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12244 llvm::APFloat::opStatus ConversionStatus = 12245 TargetFloatValue.convertFromAPInt( 12246 *SourceInt, SourceBT->isSignedInteger(), 12247 llvm::APFloat::rmNearestTiesToEven); 12248 12249 if (ConversionStatus != llvm::APFloat::opOK) { 12250 std::string PrettySourceValue = SourceInt->toString(10); 12251 SmallString<32> PrettyTargetValue; 12252 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 12253 12254 S.DiagRuntimeBehavior( 12255 E->getExprLoc(), E, 12256 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 12257 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12258 << E->getSourceRange() << clang::SourceRange(CC)); 12259 } 12260 } else { 12261 // Otherwise, the implicit conversion may lose precision. 12262 DiagnoseImpCast(S, E, T, CC, 12263 diag::warn_impcast_integer_float_precision); 12264 } 12265 } 12266 } 12267 12268 DiagnoseNullConversion(S, E, T, CC); 12269 12270 S.DiscardMisalignedMemberAddress(Target, E); 12271 12272 if (Target->isBooleanType()) 12273 DiagnoseIntInBoolContext(S, E); 12274 12275 if (!Source->isIntegerType() || !Target->isIntegerType()) 12276 return; 12277 12278 // TODO: remove this early return once the false positives for constant->bool 12279 // in templates, macros, etc, are reduced or removed. 12280 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 12281 return; 12282 12283 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 12284 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 12285 return adornObjCBoolConversionDiagWithTernaryFixit( 12286 S, E, 12287 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 12288 << E->getType()); 12289 } 12290 12291 IntRange SourceTypeRange = 12292 IntRange::forTargetOfCanonicalType(S.Context, Source); 12293 IntRange LikelySourceRange = 12294 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 12295 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 12296 12297 if (LikelySourceRange.Width > TargetRange.Width) { 12298 // If the source is a constant, use a default-on diagnostic. 12299 // TODO: this should happen for bitfield stores, too. 12300 Expr::EvalResult Result; 12301 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 12302 S.isConstantEvaluated())) { 12303 llvm::APSInt Value(32); 12304 Value = Result.Val.getInt(); 12305 12306 if (S.SourceMgr.isInSystemMacro(CC)) 12307 return; 12308 12309 std::string PrettySourceValue = Value.toString(10); 12310 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12311 12312 S.DiagRuntimeBehavior( 12313 E->getExprLoc(), E, 12314 S.PDiag(diag::warn_impcast_integer_precision_constant) 12315 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12316 << E->getSourceRange() << SourceRange(CC)); 12317 return; 12318 } 12319 12320 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 12321 if (S.SourceMgr.isInSystemMacro(CC)) 12322 return; 12323 12324 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 12325 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 12326 /* pruneControlFlow */ true); 12327 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 12328 } 12329 12330 if (TargetRange.Width > SourceTypeRange.Width) { 12331 if (auto *UO = dyn_cast<UnaryOperator>(E)) 12332 if (UO->getOpcode() == UO_Minus) 12333 if (Source->isUnsignedIntegerType()) { 12334 if (Target->isUnsignedIntegerType()) 12335 return DiagnoseImpCast(S, E, T, CC, 12336 diag::warn_impcast_high_order_zero_bits); 12337 if (Target->isSignedIntegerType()) 12338 return DiagnoseImpCast(S, E, T, CC, 12339 diag::warn_impcast_nonnegative_result); 12340 } 12341 } 12342 12343 if (TargetRange.Width == LikelySourceRange.Width && 12344 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 12345 Source->isSignedIntegerType()) { 12346 // Warn when doing a signed to signed conversion, warn if the positive 12347 // source value is exactly the width of the target type, which will 12348 // cause a negative value to be stored. 12349 12350 Expr::EvalResult Result; 12351 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 12352 !S.SourceMgr.isInSystemMacro(CC)) { 12353 llvm::APSInt Value = Result.Val.getInt(); 12354 if (isSameWidthConstantConversion(S, E, T, CC)) { 12355 std::string PrettySourceValue = Value.toString(10); 12356 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12357 12358 S.DiagRuntimeBehavior( 12359 E->getExprLoc(), E, 12360 S.PDiag(diag::warn_impcast_integer_precision_constant) 12361 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12362 << E->getSourceRange() << SourceRange(CC)); 12363 return; 12364 } 12365 } 12366 12367 // Fall through for non-constants to give a sign conversion warning. 12368 } 12369 12370 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 12371 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 12372 LikelySourceRange.Width == TargetRange.Width)) { 12373 if (S.SourceMgr.isInSystemMacro(CC)) 12374 return; 12375 12376 unsigned DiagID = diag::warn_impcast_integer_sign; 12377 12378 // Traditionally, gcc has warned about this under -Wsign-compare. 12379 // We also want to warn about it in -Wconversion. 12380 // So if -Wconversion is off, use a completely identical diagnostic 12381 // in the sign-compare group. 12382 // The conditional-checking code will 12383 if (ICContext) { 12384 DiagID = diag::warn_impcast_integer_sign_conditional; 12385 *ICContext = true; 12386 } 12387 12388 return DiagnoseImpCast(S, E, T, CC, DiagID); 12389 } 12390 12391 // Diagnose conversions between different enumeration types. 12392 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 12393 // type, to give us better diagnostics. 12394 QualType SourceType = E->getType(); 12395 if (!S.getLangOpts().CPlusPlus) { 12396 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12397 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 12398 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 12399 SourceType = S.Context.getTypeDeclType(Enum); 12400 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 12401 } 12402 } 12403 12404 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 12405 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 12406 if (SourceEnum->getDecl()->hasNameForLinkage() && 12407 TargetEnum->getDecl()->hasNameForLinkage() && 12408 SourceEnum != TargetEnum) { 12409 if (S.SourceMgr.isInSystemMacro(CC)) 12410 return; 12411 12412 return DiagnoseImpCast(S, E, SourceType, T, CC, 12413 diag::warn_impcast_different_enum_types); 12414 } 12415 } 12416 12417 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12418 SourceLocation CC, QualType T); 12419 12420 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 12421 SourceLocation CC, bool &ICContext) { 12422 E = E->IgnoreParenImpCasts(); 12423 12424 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 12425 return CheckConditionalOperator(S, CO, CC, T); 12426 12427 AnalyzeImplicitConversions(S, E, CC); 12428 if (E->getType() != T) 12429 return CheckImplicitConversion(S, E, T, CC, &ICContext); 12430 } 12431 12432 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12433 SourceLocation CC, QualType T) { 12434 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 12435 12436 Expr *TrueExpr = E->getTrueExpr(); 12437 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 12438 TrueExpr = BCO->getCommon(); 12439 12440 bool Suspicious = false; 12441 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 12442 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 12443 12444 if (T->isBooleanType()) 12445 DiagnoseIntInBoolContext(S, E); 12446 12447 // If -Wconversion would have warned about either of the candidates 12448 // for a signedness conversion to the context type... 12449 if (!Suspicious) return; 12450 12451 // ...but it's currently ignored... 12452 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 12453 return; 12454 12455 // ...then check whether it would have warned about either of the 12456 // candidates for a signedness conversion to the condition type. 12457 if (E->getType() == T) return; 12458 12459 Suspicious = false; 12460 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 12461 E->getType(), CC, &Suspicious); 12462 if (!Suspicious) 12463 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 12464 E->getType(), CC, &Suspicious); 12465 } 12466 12467 /// Check conversion of given expression to boolean. 12468 /// Input argument E is a logical expression. 12469 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 12470 if (S.getLangOpts().Bool) 12471 return; 12472 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 12473 return; 12474 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 12475 } 12476 12477 namespace { 12478 struct AnalyzeImplicitConversionsWorkItem { 12479 Expr *E; 12480 SourceLocation CC; 12481 bool IsListInit; 12482 }; 12483 } 12484 12485 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 12486 /// that should be visited are added to WorkList. 12487 static void AnalyzeImplicitConversions( 12488 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 12489 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 12490 Expr *OrigE = Item.E; 12491 SourceLocation CC = Item.CC; 12492 12493 QualType T = OrigE->getType(); 12494 Expr *E = OrigE->IgnoreParenImpCasts(); 12495 12496 // Propagate whether we are in a C++ list initialization expression. 12497 // If so, we do not issue warnings for implicit int-float conversion 12498 // precision loss, because C++11 narrowing already handles it. 12499 bool IsListInit = Item.IsListInit || 12500 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 12501 12502 if (E->isTypeDependent() || E->isValueDependent()) 12503 return; 12504 12505 Expr *SourceExpr = E; 12506 // Examine, but don't traverse into the source expression of an 12507 // OpaqueValueExpr, since it may have multiple parents and we don't want to 12508 // emit duplicate diagnostics. Its fine to examine the form or attempt to 12509 // evaluate it in the context of checking the specific conversion to T though. 12510 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 12511 if (auto *Src = OVE->getSourceExpr()) 12512 SourceExpr = Src; 12513 12514 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 12515 if (UO->getOpcode() == UO_Not && 12516 UO->getSubExpr()->isKnownToHaveBooleanValue()) 12517 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 12518 << OrigE->getSourceRange() << T->isBooleanType() 12519 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 12520 12521 // For conditional operators, we analyze the arguments as if they 12522 // were being fed directly into the output. 12523 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 12524 CheckConditionalOperator(S, CO, CC, T); 12525 return; 12526 } 12527 12528 // Check implicit argument conversions for function calls. 12529 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 12530 CheckImplicitArgumentConversions(S, Call, CC); 12531 12532 // Go ahead and check any implicit conversions we might have skipped. 12533 // The non-canonical typecheck is just an optimization; 12534 // CheckImplicitConversion will filter out dead implicit conversions. 12535 if (SourceExpr->getType() != T) 12536 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 12537 12538 // Now continue drilling into this expression. 12539 12540 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 12541 // The bound subexpressions in a PseudoObjectExpr are not reachable 12542 // as transitive children. 12543 // FIXME: Use a more uniform representation for this. 12544 for (auto *SE : POE->semantics()) 12545 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 12546 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 12547 } 12548 12549 // Skip past explicit casts. 12550 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 12551 E = CE->getSubExpr()->IgnoreParenImpCasts(); 12552 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 12553 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12554 WorkList.push_back({E, CC, IsListInit}); 12555 return; 12556 } 12557 12558 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12559 // Do a somewhat different check with comparison operators. 12560 if (BO->isComparisonOp()) 12561 return AnalyzeComparison(S, BO); 12562 12563 // And with simple assignments. 12564 if (BO->getOpcode() == BO_Assign) 12565 return AnalyzeAssignment(S, BO); 12566 // And with compound assignments. 12567 if (BO->isAssignmentOp()) 12568 return AnalyzeCompoundAssignment(S, BO); 12569 } 12570 12571 // These break the otherwise-useful invariant below. Fortunately, 12572 // we don't really need to recurse into them, because any internal 12573 // expressions should have been analyzed already when they were 12574 // built into statements. 12575 if (isa<StmtExpr>(E)) return; 12576 12577 // Don't descend into unevaluated contexts. 12578 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12579 12580 // Now just recurse over the expression's children. 12581 CC = E->getExprLoc(); 12582 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12583 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12584 for (Stmt *SubStmt : E->children()) { 12585 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12586 if (!ChildExpr) 12587 continue; 12588 12589 if (IsLogicalAndOperator && 12590 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12591 // Ignore checking string literals that are in logical and operators. 12592 // This is a common pattern for asserts. 12593 continue; 12594 WorkList.push_back({ChildExpr, CC, IsListInit}); 12595 } 12596 12597 if (BO && BO->isLogicalOp()) { 12598 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12599 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12600 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12601 12602 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12603 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12604 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12605 } 12606 12607 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12608 if (U->getOpcode() == UO_LNot) { 12609 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12610 } else if (U->getOpcode() != UO_AddrOf) { 12611 if (U->getSubExpr()->getType()->isAtomicType()) 12612 S.Diag(U->getSubExpr()->getBeginLoc(), 12613 diag::warn_atomic_implicit_seq_cst); 12614 } 12615 } 12616 } 12617 12618 /// AnalyzeImplicitConversions - Find and report any interesting 12619 /// implicit conversions in the given expression. There are a couple 12620 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 12621 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 12622 bool IsListInit/*= false*/) { 12623 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 12624 WorkList.push_back({OrigE, CC, IsListInit}); 12625 while (!WorkList.empty()) 12626 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 12627 } 12628 12629 /// Diagnose integer type and any valid implicit conversion to it. 12630 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12631 // Taking into account implicit conversions, 12632 // allow any integer. 12633 if (!E->getType()->isIntegerType()) { 12634 S.Diag(E->getBeginLoc(), 12635 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12636 return true; 12637 } 12638 // Potentially emit standard warnings for implicit conversions if enabled 12639 // using -Wconversion. 12640 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12641 return false; 12642 } 12643 12644 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12645 // Returns true when emitting a warning about taking the address of a reference. 12646 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12647 const PartialDiagnostic &PD) { 12648 E = E->IgnoreParenImpCasts(); 12649 12650 const FunctionDecl *FD = nullptr; 12651 12652 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12653 if (!DRE->getDecl()->getType()->isReferenceType()) 12654 return false; 12655 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12656 if (!M->getMemberDecl()->getType()->isReferenceType()) 12657 return false; 12658 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12659 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12660 return false; 12661 FD = Call->getDirectCallee(); 12662 } else { 12663 return false; 12664 } 12665 12666 SemaRef.Diag(E->getExprLoc(), PD); 12667 12668 // If possible, point to location of function. 12669 if (FD) { 12670 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12671 } 12672 12673 return true; 12674 } 12675 12676 // Returns true if the SourceLocation is expanded from any macro body. 12677 // Returns false if the SourceLocation is invalid, is from not in a macro 12678 // expansion, or is from expanded from a top-level macro argument. 12679 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12680 if (Loc.isInvalid()) 12681 return false; 12682 12683 while (Loc.isMacroID()) { 12684 if (SM.isMacroBodyExpansion(Loc)) 12685 return true; 12686 Loc = SM.getImmediateMacroCallerLoc(Loc); 12687 } 12688 12689 return false; 12690 } 12691 12692 /// Diagnose pointers that are always non-null. 12693 /// \param E the expression containing the pointer 12694 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12695 /// compared to a null pointer 12696 /// \param IsEqual True when the comparison is equal to a null pointer 12697 /// \param Range Extra SourceRange to highlight in the diagnostic 12698 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12699 Expr::NullPointerConstantKind NullKind, 12700 bool IsEqual, SourceRange Range) { 12701 if (!E) 12702 return; 12703 12704 // Don't warn inside macros. 12705 if (E->getExprLoc().isMacroID()) { 12706 const SourceManager &SM = getSourceManager(); 12707 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12708 IsInAnyMacroBody(SM, Range.getBegin())) 12709 return; 12710 } 12711 E = E->IgnoreImpCasts(); 12712 12713 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12714 12715 if (isa<CXXThisExpr>(E)) { 12716 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12717 : diag::warn_this_bool_conversion; 12718 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12719 return; 12720 } 12721 12722 bool IsAddressOf = false; 12723 12724 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12725 if (UO->getOpcode() != UO_AddrOf) 12726 return; 12727 IsAddressOf = true; 12728 E = UO->getSubExpr(); 12729 } 12730 12731 if (IsAddressOf) { 12732 unsigned DiagID = IsCompare 12733 ? diag::warn_address_of_reference_null_compare 12734 : diag::warn_address_of_reference_bool_conversion; 12735 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12736 << IsEqual; 12737 if (CheckForReference(*this, E, PD)) { 12738 return; 12739 } 12740 } 12741 12742 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12743 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12744 std::string Str; 12745 llvm::raw_string_ostream S(Str); 12746 E->printPretty(S, nullptr, getPrintingPolicy()); 12747 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12748 : diag::warn_cast_nonnull_to_bool; 12749 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12750 << E->getSourceRange() << Range << IsEqual; 12751 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12752 }; 12753 12754 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12755 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12756 if (auto *Callee = Call->getDirectCallee()) { 12757 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12758 ComplainAboutNonnullParamOrCall(A); 12759 return; 12760 } 12761 } 12762 } 12763 12764 // Expect to find a single Decl. Skip anything more complicated. 12765 ValueDecl *D = nullptr; 12766 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12767 D = R->getDecl(); 12768 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12769 D = M->getMemberDecl(); 12770 } 12771 12772 // Weak Decls can be null. 12773 if (!D || D->isWeak()) 12774 return; 12775 12776 // Check for parameter decl with nonnull attribute 12777 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12778 if (getCurFunction() && 12779 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12780 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12781 ComplainAboutNonnullParamOrCall(A); 12782 return; 12783 } 12784 12785 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12786 // Skip function template not specialized yet. 12787 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12788 return; 12789 auto ParamIter = llvm::find(FD->parameters(), PV); 12790 assert(ParamIter != FD->param_end()); 12791 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12792 12793 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12794 if (!NonNull->args_size()) { 12795 ComplainAboutNonnullParamOrCall(NonNull); 12796 return; 12797 } 12798 12799 for (const ParamIdx &ArgNo : NonNull->args()) { 12800 if (ArgNo.getASTIndex() == ParamNo) { 12801 ComplainAboutNonnullParamOrCall(NonNull); 12802 return; 12803 } 12804 } 12805 } 12806 } 12807 } 12808 } 12809 12810 QualType T = D->getType(); 12811 const bool IsArray = T->isArrayType(); 12812 const bool IsFunction = T->isFunctionType(); 12813 12814 // Address of function is used to silence the function warning. 12815 if (IsAddressOf && IsFunction) { 12816 return; 12817 } 12818 12819 // Found nothing. 12820 if (!IsAddressOf && !IsFunction && !IsArray) 12821 return; 12822 12823 // Pretty print the expression for the diagnostic. 12824 std::string Str; 12825 llvm::raw_string_ostream S(Str); 12826 E->printPretty(S, nullptr, getPrintingPolicy()); 12827 12828 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12829 : diag::warn_impcast_pointer_to_bool; 12830 enum { 12831 AddressOf, 12832 FunctionPointer, 12833 ArrayPointer 12834 } DiagType; 12835 if (IsAddressOf) 12836 DiagType = AddressOf; 12837 else if (IsFunction) 12838 DiagType = FunctionPointer; 12839 else if (IsArray) 12840 DiagType = ArrayPointer; 12841 else 12842 llvm_unreachable("Could not determine diagnostic."); 12843 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12844 << Range << IsEqual; 12845 12846 if (!IsFunction) 12847 return; 12848 12849 // Suggest '&' to silence the function warning. 12850 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12851 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12852 12853 // Check to see if '()' fixit should be emitted. 12854 QualType ReturnType; 12855 UnresolvedSet<4> NonTemplateOverloads; 12856 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12857 if (ReturnType.isNull()) 12858 return; 12859 12860 if (IsCompare) { 12861 // There are two cases here. If there is null constant, the only suggest 12862 // for a pointer return type. If the null is 0, then suggest if the return 12863 // type is a pointer or an integer type. 12864 if (!ReturnType->isPointerType()) { 12865 if (NullKind == Expr::NPCK_ZeroExpression || 12866 NullKind == Expr::NPCK_ZeroLiteral) { 12867 if (!ReturnType->isIntegerType()) 12868 return; 12869 } else { 12870 return; 12871 } 12872 } 12873 } else { // !IsCompare 12874 // For function to bool, only suggest if the function pointer has bool 12875 // return type. 12876 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12877 return; 12878 } 12879 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12880 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12881 } 12882 12883 /// Diagnoses "dangerous" implicit conversions within the given 12884 /// expression (which is a full expression). Implements -Wconversion 12885 /// and -Wsign-compare. 12886 /// 12887 /// \param CC the "context" location of the implicit conversion, i.e. 12888 /// the most location of the syntactic entity requiring the implicit 12889 /// conversion 12890 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12891 // Don't diagnose in unevaluated contexts. 12892 if (isUnevaluatedContext()) 12893 return; 12894 12895 // Don't diagnose for value- or type-dependent expressions. 12896 if (E->isTypeDependent() || E->isValueDependent()) 12897 return; 12898 12899 // Check for array bounds violations in cases where the check isn't triggered 12900 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12901 // ArraySubscriptExpr is on the RHS of a variable initialization. 12902 CheckArrayAccess(E); 12903 12904 // This is not the right CC for (e.g.) a variable initialization. 12905 AnalyzeImplicitConversions(*this, E, CC); 12906 } 12907 12908 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12909 /// Input argument E is a logical expression. 12910 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12911 ::CheckBoolLikeConversion(*this, E, CC); 12912 } 12913 12914 /// Diagnose when expression is an integer constant expression and its evaluation 12915 /// results in integer overflow 12916 void Sema::CheckForIntOverflow (Expr *E) { 12917 // Use a work list to deal with nested struct initializers. 12918 SmallVector<Expr *, 2> Exprs(1, E); 12919 12920 do { 12921 Expr *OriginalE = Exprs.pop_back_val(); 12922 Expr *E = OriginalE->IgnoreParenCasts(); 12923 12924 if (isa<BinaryOperator>(E)) { 12925 E->EvaluateForOverflow(Context); 12926 continue; 12927 } 12928 12929 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12930 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12931 else if (isa<ObjCBoxedExpr>(OriginalE)) 12932 E->EvaluateForOverflow(Context); 12933 else if (auto Call = dyn_cast<CallExpr>(E)) 12934 Exprs.append(Call->arg_begin(), Call->arg_end()); 12935 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12936 Exprs.append(Message->arg_begin(), Message->arg_end()); 12937 } while (!Exprs.empty()); 12938 } 12939 12940 namespace { 12941 12942 /// Visitor for expressions which looks for unsequenced operations on the 12943 /// same object. 12944 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 12945 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 12946 12947 /// A tree of sequenced regions within an expression. Two regions are 12948 /// unsequenced if one is an ancestor or a descendent of the other. When we 12949 /// finish processing an expression with sequencing, such as a comma 12950 /// expression, we fold its tree nodes into its parent, since they are 12951 /// unsequenced with respect to nodes we will visit later. 12952 class SequenceTree { 12953 struct Value { 12954 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12955 unsigned Parent : 31; 12956 unsigned Merged : 1; 12957 }; 12958 SmallVector<Value, 8> Values; 12959 12960 public: 12961 /// A region within an expression which may be sequenced with respect 12962 /// to some other region. 12963 class Seq { 12964 friend class SequenceTree; 12965 12966 unsigned Index; 12967 12968 explicit Seq(unsigned N) : Index(N) {} 12969 12970 public: 12971 Seq() : Index(0) {} 12972 }; 12973 12974 SequenceTree() { Values.push_back(Value(0)); } 12975 Seq root() const { return Seq(0); } 12976 12977 /// Create a new sequence of operations, which is an unsequenced 12978 /// subset of \p Parent. This sequence of operations is sequenced with 12979 /// respect to other children of \p Parent. 12980 Seq allocate(Seq Parent) { 12981 Values.push_back(Value(Parent.Index)); 12982 return Seq(Values.size() - 1); 12983 } 12984 12985 /// Merge a sequence of operations into its parent. 12986 void merge(Seq S) { 12987 Values[S.Index].Merged = true; 12988 } 12989 12990 /// Determine whether two operations are unsequenced. This operation 12991 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12992 /// should have been merged into its parent as appropriate. 12993 bool isUnsequenced(Seq Cur, Seq Old) { 12994 unsigned C = representative(Cur.Index); 12995 unsigned Target = representative(Old.Index); 12996 while (C >= Target) { 12997 if (C == Target) 12998 return true; 12999 C = Values[C].Parent; 13000 } 13001 return false; 13002 } 13003 13004 private: 13005 /// Pick a representative for a sequence. 13006 unsigned representative(unsigned K) { 13007 if (Values[K].Merged) 13008 // Perform path compression as we go. 13009 return Values[K].Parent = representative(Values[K].Parent); 13010 return K; 13011 } 13012 }; 13013 13014 /// An object for which we can track unsequenced uses. 13015 using Object = const NamedDecl *; 13016 13017 /// Different flavors of object usage which we track. We only track the 13018 /// least-sequenced usage of each kind. 13019 enum UsageKind { 13020 /// A read of an object. Multiple unsequenced reads are OK. 13021 UK_Use, 13022 13023 /// A modification of an object which is sequenced before the value 13024 /// computation of the expression, such as ++n in C++. 13025 UK_ModAsValue, 13026 13027 /// A modification of an object which is not sequenced before the value 13028 /// computation of the expression, such as n++. 13029 UK_ModAsSideEffect, 13030 13031 UK_Count = UK_ModAsSideEffect + 1 13032 }; 13033 13034 /// Bundle together a sequencing region and the expression corresponding 13035 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 13036 struct Usage { 13037 const Expr *UsageExpr; 13038 SequenceTree::Seq Seq; 13039 13040 Usage() : UsageExpr(nullptr), Seq() {} 13041 }; 13042 13043 struct UsageInfo { 13044 Usage Uses[UK_Count]; 13045 13046 /// Have we issued a diagnostic for this object already? 13047 bool Diagnosed; 13048 13049 UsageInfo() : Uses(), Diagnosed(false) {} 13050 }; 13051 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 13052 13053 Sema &SemaRef; 13054 13055 /// Sequenced regions within the expression. 13056 SequenceTree Tree; 13057 13058 /// Declaration modifications and references which we have seen. 13059 UsageInfoMap UsageMap; 13060 13061 /// The region we are currently within. 13062 SequenceTree::Seq Region; 13063 13064 /// Filled in with declarations which were modified as a side-effect 13065 /// (that is, post-increment operations). 13066 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 13067 13068 /// Expressions to check later. We defer checking these to reduce 13069 /// stack usage. 13070 SmallVectorImpl<const Expr *> &WorkList; 13071 13072 /// RAII object wrapping the visitation of a sequenced subexpression of an 13073 /// expression. At the end of this process, the side-effects of the evaluation 13074 /// become sequenced with respect to the value computation of the result, so 13075 /// we downgrade any UK_ModAsSideEffect within the evaluation to 13076 /// UK_ModAsValue. 13077 struct SequencedSubexpression { 13078 SequencedSubexpression(SequenceChecker &Self) 13079 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 13080 Self.ModAsSideEffect = &ModAsSideEffect; 13081 } 13082 13083 ~SequencedSubexpression() { 13084 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 13085 // Add a new usage with usage kind UK_ModAsValue, and then restore 13086 // the previous usage with UK_ModAsSideEffect (thus clearing it if 13087 // the previous one was empty). 13088 UsageInfo &UI = Self.UsageMap[M.first]; 13089 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 13090 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 13091 SideEffectUsage = M.second; 13092 } 13093 Self.ModAsSideEffect = OldModAsSideEffect; 13094 } 13095 13096 SequenceChecker &Self; 13097 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 13098 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 13099 }; 13100 13101 /// RAII object wrapping the visitation of a subexpression which we might 13102 /// choose to evaluate as a constant. If any subexpression is evaluated and 13103 /// found to be non-constant, this allows us to suppress the evaluation of 13104 /// the outer expression. 13105 class EvaluationTracker { 13106 public: 13107 EvaluationTracker(SequenceChecker &Self) 13108 : Self(Self), Prev(Self.EvalTracker) { 13109 Self.EvalTracker = this; 13110 } 13111 13112 ~EvaluationTracker() { 13113 Self.EvalTracker = Prev; 13114 if (Prev) 13115 Prev->EvalOK &= EvalOK; 13116 } 13117 13118 bool evaluate(const Expr *E, bool &Result) { 13119 if (!EvalOK || E->isValueDependent()) 13120 return false; 13121 EvalOK = E->EvaluateAsBooleanCondition( 13122 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 13123 return EvalOK; 13124 } 13125 13126 private: 13127 SequenceChecker &Self; 13128 EvaluationTracker *Prev; 13129 bool EvalOK = true; 13130 } *EvalTracker = nullptr; 13131 13132 /// Find the object which is produced by the specified expression, 13133 /// if any. 13134 Object getObject(const Expr *E, bool Mod) const { 13135 E = E->IgnoreParenCasts(); 13136 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13137 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 13138 return getObject(UO->getSubExpr(), Mod); 13139 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13140 if (BO->getOpcode() == BO_Comma) 13141 return getObject(BO->getRHS(), Mod); 13142 if (Mod && BO->isAssignmentOp()) 13143 return getObject(BO->getLHS(), Mod); 13144 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 13145 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 13146 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 13147 return ME->getMemberDecl(); 13148 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13149 // FIXME: If this is a reference, map through to its value. 13150 return DRE->getDecl(); 13151 return nullptr; 13152 } 13153 13154 /// Note that an object \p O was modified or used by an expression 13155 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 13156 /// the object \p O as obtained via the \p UsageMap. 13157 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 13158 // Get the old usage for the given object and usage kind. 13159 Usage &U = UI.Uses[UK]; 13160 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 13161 // If we have a modification as side effect and are in a sequenced 13162 // subexpression, save the old Usage so that we can restore it later 13163 // in SequencedSubexpression::~SequencedSubexpression. 13164 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 13165 ModAsSideEffect->push_back(std::make_pair(O, U)); 13166 // Then record the new usage with the current sequencing region. 13167 U.UsageExpr = UsageExpr; 13168 U.Seq = Region; 13169 } 13170 } 13171 13172 /// Check whether a modification or use of an object \p O in an expression 13173 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 13174 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 13175 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 13176 /// usage and false we are checking for a mod-use unsequenced usage. 13177 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 13178 UsageKind OtherKind, bool IsModMod) { 13179 if (UI.Diagnosed) 13180 return; 13181 13182 const Usage &U = UI.Uses[OtherKind]; 13183 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 13184 return; 13185 13186 const Expr *Mod = U.UsageExpr; 13187 const Expr *ModOrUse = UsageExpr; 13188 if (OtherKind == UK_Use) 13189 std::swap(Mod, ModOrUse); 13190 13191 SemaRef.DiagRuntimeBehavior( 13192 Mod->getExprLoc(), {Mod, ModOrUse}, 13193 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 13194 : diag::warn_unsequenced_mod_use) 13195 << O << SourceRange(ModOrUse->getExprLoc())); 13196 UI.Diagnosed = true; 13197 } 13198 13199 // A note on note{Pre, Post}{Use, Mod}: 13200 // 13201 // (It helps to follow the algorithm with an expression such as 13202 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 13203 // operations before C++17 and both are well-defined in C++17). 13204 // 13205 // When visiting a node which uses/modify an object we first call notePreUse 13206 // or notePreMod before visiting its sub-expression(s). At this point the 13207 // children of the current node have not yet been visited and so the eventual 13208 // uses/modifications resulting from the children of the current node have not 13209 // been recorded yet. 13210 // 13211 // We then visit the children of the current node. After that notePostUse or 13212 // notePostMod is called. These will 1) detect an unsequenced modification 13213 // as side effect (as in "k++ + k") and 2) add a new usage with the 13214 // appropriate usage kind. 13215 // 13216 // We also have to be careful that some operation sequences modification as 13217 // side effect as well (for example: || or ,). To account for this we wrap 13218 // the visitation of such a sub-expression (for example: the LHS of || or ,) 13219 // with SequencedSubexpression. SequencedSubexpression is an RAII object 13220 // which record usages which are modifications as side effect, and then 13221 // downgrade them (or more accurately restore the previous usage which was a 13222 // modification as side effect) when exiting the scope of the sequenced 13223 // subexpression. 13224 13225 void notePreUse(Object O, const Expr *UseExpr) { 13226 UsageInfo &UI = UsageMap[O]; 13227 // Uses conflict with other modifications. 13228 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 13229 } 13230 13231 void notePostUse(Object O, const Expr *UseExpr) { 13232 UsageInfo &UI = UsageMap[O]; 13233 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 13234 /*IsModMod=*/false); 13235 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 13236 } 13237 13238 void notePreMod(Object O, const Expr *ModExpr) { 13239 UsageInfo &UI = UsageMap[O]; 13240 // Modifications conflict with other modifications and with uses. 13241 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 13242 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 13243 } 13244 13245 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 13246 UsageInfo &UI = UsageMap[O]; 13247 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 13248 /*IsModMod=*/true); 13249 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 13250 } 13251 13252 public: 13253 SequenceChecker(Sema &S, const Expr *E, 13254 SmallVectorImpl<const Expr *> &WorkList) 13255 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 13256 Visit(E); 13257 // Silence a -Wunused-private-field since WorkList is now unused. 13258 // TODO: Evaluate if it can be used, and if not remove it. 13259 (void)this->WorkList; 13260 } 13261 13262 void VisitStmt(const Stmt *S) { 13263 // Skip all statements which aren't expressions for now. 13264 } 13265 13266 void VisitExpr(const Expr *E) { 13267 // By default, just recurse to evaluated subexpressions. 13268 Base::VisitStmt(E); 13269 } 13270 13271 void VisitCastExpr(const CastExpr *E) { 13272 Object O = Object(); 13273 if (E->getCastKind() == CK_LValueToRValue) 13274 O = getObject(E->getSubExpr(), false); 13275 13276 if (O) 13277 notePreUse(O, E); 13278 VisitExpr(E); 13279 if (O) 13280 notePostUse(O, E); 13281 } 13282 13283 void VisitSequencedExpressions(const Expr *SequencedBefore, 13284 const Expr *SequencedAfter) { 13285 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 13286 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 13287 SequenceTree::Seq OldRegion = Region; 13288 13289 { 13290 SequencedSubexpression SeqBefore(*this); 13291 Region = BeforeRegion; 13292 Visit(SequencedBefore); 13293 } 13294 13295 Region = AfterRegion; 13296 Visit(SequencedAfter); 13297 13298 Region = OldRegion; 13299 13300 Tree.merge(BeforeRegion); 13301 Tree.merge(AfterRegion); 13302 } 13303 13304 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 13305 // C++17 [expr.sub]p1: 13306 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 13307 // expression E1 is sequenced before the expression E2. 13308 if (SemaRef.getLangOpts().CPlusPlus17) 13309 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 13310 else { 13311 Visit(ASE->getLHS()); 13312 Visit(ASE->getRHS()); 13313 } 13314 } 13315 13316 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13317 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13318 void VisitBinPtrMem(const BinaryOperator *BO) { 13319 // C++17 [expr.mptr.oper]p4: 13320 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 13321 // the expression E1 is sequenced before the expression E2. 13322 if (SemaRef.getLangOpts().CPlusPlus17) 13323 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13324 else { 13325 Visit(BO->getLHS()); 13326 Visit(BO->getRHS()); 13327 } 13328 } 13329 13330 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13331 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13332 void VisitBinShlShr(const BinaryOperator *BO) { 13333 // C++17 [expr.shift]p4: 13334 // The expression E1 is sequenced before the expression E2. 13335 if (SemaRef.getLangOpts().CPlusPlus17) 13336 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13337 else { 13338 Visit(BO->getLHS()); 13339 Visit(BO->getRHS()); 13340 } 13341 } 13342 13343 void VisitBinComma(const BinaryOperator *BO) { 13344 // C++11 [expr.comma]p1: 13345 // Every value computation and side effect associated with the left 13346 // expression is sequenced before every value computation and side 13347 // effect associated with the right expression. 13348 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13349 } 13350 13351 void VisitBinAssign(const BinaryOperator *BO) { 13352 SequenceTree::Seq RHSRegion; 13353 SequenceTree::Seq LHSRegion; 13354 if (SemaRef.getLangOpts().CPlusPlus17) { 13355 RHSRegion = Tree.allocate(Region); 13356 LHSRegion = Tree.allocate(Region); 13357 } else { 13358 RHSRegion = Region; 13359 LHSRegion = Region; 13360 } 13361 SequenceTree::Seq OldRegion = Region; 13362 13363 // C++11 [expr.ass]p1: 13364 // [...] the assignment is sequenced after the value computation 13365 // of the right and left operands, [...] 13366 // 13367 // so check it before inspecting the operands and update the 13368 // map afterwards. 13369 Object O = getObject(BO->getLHS(), /*Mod=*/true); 13370 if (O) 13371 notePreMod(O, BO); 13372 13373 if (SemaRef.getLangOpts().CPlusPlus17) { 13374 // C++17 [expr.ass]p1: 13375 // [...] The right operand is sequenced before the left operand. [...] 13376 { 13377 SequencedSubexpression SeqBefore(*this); 13378 Region = RHSRegion; 13379 Visit(BO->getRHS()); 13380 } 13381 13382 Region = LHSRegion; 13383 Visit(BO->getLHS()); 13384 13385 if (O && isa<CompoundAssignOperator>(BO)) 13386 notePostUse(O, BO); 13387 13388 } else { 13389 // C++11 does not specify any sequencing between the LHS and RHS. 13390 Region = LHSRegion; 13391 Visit(BO->getLHS()); 13392 13393 if (O && isa<CompoundAssignOperator>(BO)) 13394 notePostUse(O, BO); 13395 13396 Region = RHSRegion; 13397 Visit(BO->getRHS()); 13398 } 13399 13400 // C++11 [expr.ass]p1: 13401 // the assignment is sequenced [...] before the value computation of the 13402 // assignment expression. 13403 // C11 6.5.16/3 has no such rule. 13404 Region = OldRegion; 13405 if (O) 13406 notePostMod(O, BO, 13407 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13408 : UK_ModAsSideEffect); 13409 if (SemaRef.getLangOpts().CPlusPlus17) { 13410 Tree.merge(RHSRegion); 13411 Tree.merge(LHSRegion); 13412 } 13413 } 13414 13415 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 13416 VisitBinAssign(CAO); 13417 } 13418 13419 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13420 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13421 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 13422 Object O = getObject(UO->getSubExpr(), true); 13423 if (!O) 13424 return VisitExpr(UO); 13425 13426 notePreMod(O, UO); 13427 Visit(UO->getSubExpr()); 13428 // C++11 [expr.pre.incr]p1: 13429 // the expression ++x is equivalent to x+=1 13430 notePostMod(O, UO, 13431 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13432 : UK_ModAsSideEffect); 13433 } 13434 13435 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13436 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13437 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 13438 Object O = getObject(UO->getSubExpr(), true); 13439 if (!O) 13440 return VisitExpr(UO); 13441 13442 notePreMod(O, UO); 13443 Visit(UO->getSubExpr()); 13444 notePostMod(O, UO, UK_ModAsSideEffect); 13445 } 13446 13447 void VisitBinLOr(const BinaryOperator *BO) { 13448 // C++11 [expr.log.or]p2: 13449 // If the second expression is evaluated, every value computation and 13450 // side effect associated with the first expression is sequenced before 13451 // every value computation and side effect associated with the 13452 // second expression. 13453 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13454 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13455 SequenceTree::Seq OldRegion = Region; 13456 13457 EvaluationTracker Eval(*this); 13458 { 13459 SequencedSubexpression Sequenced(*this); 13460 Region = LHSRegion; 13461 Visit(BO->getLHS()); 13462 } 13463 13464 // C++11 [expr.log.or]p1: 13465 // [...] the second operand is not evaluated if the first operand 13466 // evaluates to true. 13467 bool EvalResult = false; 13468 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13469 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 13470 if (ShouldVisitRHS) { 13471 Region = RHSRegion; 13472 Visit(BO->getRHS()); 13473 } 13474 13475 Region = OldRegion; 13476 Tree.merge(LHSRegion); 13477 Tree.merge(RHSRegion); 13478 } 13479 13480 void VisitBinLAnd(const BinaryOperator *BO) { 13481 // C++11 [expr.log.and]p2: 13482 // If the second expression is evaluated, every value computation and 13483 // side effect associated with the first expression is sequenced before 13484 // every value computation and side effect associated with the 13485 // second expression. 13486 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13487 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13488 SequenceTree::Seq OldRegion = Region; 13489 13490 EvaluationTracker Eval(*this); 13491 { 13492 SequencedSubexpression Sequenced(*this); 13493 Region = LHSRegion; 13494 Visit(BO->getLHS()); 13495 } 13496 13497 // C++11 [expr.log.and]p1: 13498 // [...] the second operand is not evaluated if the first operand is false. 13499 bool EvalResult = false; 13500 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13501 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 13502 if (ShouldVisitRHS) { 13503 Region = RHSRegion; 13504 Visit(BO->getRHS()); 13505 } 13506 13507 Region = OldRegion; 13508 Tree.merge(LHSRegion); 13509 Tree.merge(RHSRegion); 13510 } 13511 13512 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 13513 // C++11 [expr.cond]p1: 13514 // [...] Every value computation and side effect associated with the first 13515 // expression is sequenced before every value computation and side effect 13516 // associated with the second or third expression. 13517 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 13518 13519 // No sequencing is specified between the true and false expression. 13520 // However since exactly one of both is going to be evaluated we can 13521 // consider them to be sequenced. This is needed to avoid warning on 13522 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 13523 // both the true and false expressions because we can't evaluate x. 13524 // This will still allow us to detect an expression like (pre C++17) 13525 // "(x ? y += 1 : y += 2) = y". 13526 // 13527 // We don't wrap the visitation of the true and false expression with 13528 // SequencedSubexpression because we don't want to downgrade modifications 13529 // as side effect in the true and false expressions after the visition 13530 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 13531 // not warn between the two "y++", but we should warn between the "y++" 13532 // and the "y". 13533 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 13534 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 13535 SequenceTree::Seq OldRegion = Region; 13536 13537 EvaluationTracker Eval(*this); 13538 { 13539 SequencedSubexpression Sequenced(*this); 13540 Region = ConditionRegion; 13541 Visit(CO->getCond()); 13542 } 13543 13544 // C++11 [expr.cond]p1: 13545 // [...] The first expression is contextually converted to bool (Clause 4). 13546 // It is evaluated and if it is true, the result of the conditional 13547 // expression is the value of the second expression, otherwise that of the 13548 // third expression. Only one of the second and third expressions is 13549 // evaluated. [...] 13550 bool EvalResult = false; 13551 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 13552 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 13553 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 13554 if (ShouldVisitTrueExpr) { 13555 Region = TrueRegion; 13556 Visit(CO->getTrueExpr()); 13557 } 13558 if (ShouldVisitFalseExpr) { 13559 Region = FalseRegion; 13560 Visit(CO->getFalseExpr()); 13561 } 13562 13563 Region = OldRegion; 13564 Tree.merge(ConditionRegion); 13565 Tree.merge(TrueRegion); 13566 Tree.merge(FalseRegion); 13567 } 13568 13569 void VisitCallExpr(const CallExpr *CE) { 13570 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 13571 13572 if (CE->isUnevaluatedBuiltinCall(Context)) 13573 return; 13574 13575 // C++11 [intro.execution]p15: 13576 // When calling a function [...], every value computation and side effect 13577 // associated with any argument expression, or with the postfix expression 13578 // designating the called function, is sequenced before execution of every 13579 // expression or statement in the body of the function [and thus before 13580 // the value computation of its result]. 13581 SequencedSubexpression Sequenced(*this); 13582 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 13583 // C++17 [expr.call]p5 13584 // The postfix-expression is sequenced before each expression in the 13585 // expression-list and any default argument. [...] 13586 SequenceTree::Seq CalleeRegion; 13587 SequenceTree::Seq OtherRegion; 13588 if (SemaRef.getLangOpts().CPlusPlus17) { 13589 CalleeRegion = Tree.allocate(Region); 13590 OtherRegion = Tree.allocate(Region); 13591 } else { 13592 CalleeRegion = Region; 13593 OtherRegion = Region; 13594 } 13595 SequenceTree::Seq OldRegion = Region; 13596 13597 // Visit the callee expression first. 13598 Region = CalleeRegion; 13599 if (SemaRef.getLangOpts().CPlusPlus17) { 13600 SequencedSubexpression Sequenced(*this); 13601 Visit(CE->getCallee()); 13602 } else { 13603 Visit(CE->getCallee()); 13604 } 13605 13606 // Then visit the argument expressions. 13607 Region = OtherRegion; 13608 for (const Expr *Argument : CE->arguments()) 13609 Visit(Argument); 13610 13611 Region = OldRegion; 13612 if (SemaRef.getLangOpts().CPlusPlus17) { 13613 Tree.merge(CalleeRegion); 13614 Tree.merge(OtherRegion); 13615 } 13616 }); 13617 } 13618 13619 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 13620 // C++17 [over.match.oper]p2: 13621 // [...] the operator notation is first transformed to the equivalent 13622 // function-call notation as summarized in Table 12 (where @ denotes one 13623 // of the operators covered in the specified subclause). However, the 13624 // operands are sequenced in the order prescribed for the built-in 13625 // operator (Clause 8). 13626 // 13627 // From the above only overloaded binary operators and overloaded call 13628 // operators have sequencing rules in C++17 that we need to handle 13629 // separately. 13630 if (!SemaRef.getLangOpts().CPlusPlus17 || 13631 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 13632 return VisitCallExpr(CXXOCE); 13633 13634 enum { 13635 NoSequencing, 13636 LHSBeforeRHS, 13637 RHSBeforeLHS, 13638 LHSBeforeRest 13639 } SequencingKind; 13640 switch (CXXOCE->getOperator()) { 13641 case OO_Equal: 13642 case OO_PlusEqual: 13643 case OO_MinusEqual: 13644 case OO_StarEqual: 13645 case OO_SlashEqual: 13646 case OO_PercentEqual: 13647 case OO_CaretEqual: 13648 case OO_AmpEqual: 13649 case OO_PipeEqual: 13650 case OO_LessLessEqual: 13651 case OO_GreaterGreaterEqual: 13652 SequencingKind = RHSBeforeLHS; 13653 break; 13654 13655 case OO_LessLess: 13656 case OO_GreaterGreater: 13657 case OO_AmpAmp: 13658 case OO_PipePipe: 13659 case OO_Comma: 13660 case OO_ArrowStar: 13661 case OO_Subscript: 13662 SequencingKind = LHSBeforeRHS; 13663 break; 13664 13665 case OO_Call: 13666 SequencingKind = LHSBeforeRest; 13667 break; 13668 13669 default: 13670 SequencingKind = NoSequencing; 13671 break; 13672 } 13673 13674 if (SequencingKind == NoSequencing) 13675 return VisitCallExpr(CXXOCE); 13676 13677 // This is a call, so all subexpressions are sequenced before the result. 13678 SequencedSubexpression Sequenced(*this); 13679 13680 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 13681 assert(SemaRef.getLangOpts().CPlusPlus17 && 13682 "Should only get there with C++17 and above!"); 13683 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 13684 "Should only get there with an overloaded binary operator" 13685 " or an overloaded call operator!"); 13686 13687 if (SequencingKind == LHSBeforeRest) { 13688 assert(CXXOCE->getOperator() == OO_Call && 13689 "We should only have an overloaded call operator here!"); 13690 13691 // This is very similar to VisitCallExpr, except that we only have the 13692 // C++17 case. The postfix-expression is the first argument of the 13693 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 13694 // are in the following arguments. 13695 // 13696 // Note that we intentionally do not visit the callee expression since 13697 // it is just a decayed reference to a function. 13698 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 13699 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 13700 SequenceTree::Seq OldRegion = Region; 13701 13702 assert(CXXOCE->getNumArgs() >= 1 && 13703 "An overloaded call operator must have at least one argument" 13704 " for the postfix-expression!"); 13705 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 13706 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 13707 CXXOCE->getNumArgs() - 1); 13708 13709 // Visit the postfix-expression first. 13710 { 13711 Region = PostfixExprRegion; 13712 SequencedSubexpression Sequenced(*this); 13713 Visit(PostfixExpr); 13714 } 13715 13716 // Then visit the argument expressions. 13717 Region = ArgsRegion; 13718 for (const Expr *Arg : Args) 13719 Visit(Arg); 13720 13721 Region = OldRegion; 13722 Tree.merge(PostfixExprRegion); 13723 Tree.merge(ArgsRegion); 13724 } else { 13725 assert(CXXOCE->getNumArgs() == 2 && 13726 "Should only have two arguments here!"); 13727 assert((SequencingKind == LHSBeforeRHS || 13728 SequencingKind == RHSBeforeLHS) && 13729 "Unexpected sequencing kind!"); 13730 13731 // We do not visit the callee expression since it is just a decayed 13732 // reference to a function. 13733 const Expr *E1 = CXXOCE->getArg(0); 13734 const Expr *E2 = CXXOCE->getArg(1); 13735 if (SequencingKind == RHSBeforeLHS) 13736 std::swap(E1, E2); 13737 13738 return VisitSequencedExpressions(E1, E2); 13739 } 13740 }); 13741 } 13742 13743 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 13744 // This is a call, so all subexpressions are sequenced before the result. 13745 SequencedSubexpression Sequenced(*this); 13746 13747 if (!CCE->isListInitialization()) 13748 return VisitExpr(CCE); 13749 13750 // In C++11, list initializations are sequenced. 13751 SmallVector<SequenceTree::Seq, 32> Elts; 13752 SequenceTree::Seq Parent = Region; 13753 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 13754 E = CCE->arg_end(); 13755 I != E; ++I) { 13756 Region = Tree.allocate(Parent); 13757 Elts.push_back(Region); 13758 Visit(*I); 13759 } 13760 13761 // Forget that the initializers are sequenced. 13762 Region = Parent; 13763 for (unsigned I = 0; I < Elts.size(); ++I) 13764 Tree.merge(Elts[I]); 13765 } 13766 13767 void VisitInitListExpr(const InitListExpr *ILE) { 13768 if (!SemaRef.getLangOpts().CPlusPlus11) 13769 return VisitExpr(ILE); 13770 13771 // In C++11, list initializations are sequenced. 13772 SmallVector<SequenceTree::Seq, 32> Elts; 13773 SequenceTree::Seq Parent = Region; 13774 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 13775 const Expr *E = ILE->getInit(I); 13776 if (!E) 13777 continue; 13778 Region = Tree.allocate(Parent); 13779 Elts.push_back(Region); 13780 Visit(E); 13781 } 13782 13783 // Forget that the initializers are sequenced. 13784 Region = Parent; 13785 for (unsigned I = 0; I < Elts.size(); ++I) 13786 Tree.merge(Elts[I]); 13787 } 13788 }; 13789 13790 } // namespace 13791 13792 void Sema::CheckUnsequencedOperations(const Expr *E) { 13793 SmallVector<const Expr *, 8> WorkList; 13794 WorkList.push_back(E); 13795 while (!WorkList.empty()) { 13796 const Expr *Item = WorkList.pop_back_val(); 13797 SequenceChecker(*this, Item, WorkList); 13798 } 13799 } 13800 13801 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 13802 bool IsConstexpr) { 13803 llvm::SaveAndRestore<bool> ConstantContext( 13804 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 13805 CheckImplicitConversions(E, CheckLoc); 13806 if (!E->isInstantiationDependent()) 13807 CheckUnsequencedOperations(E); 13808 if (!IsConstexpr && !E->isValueDependent()) 13809 CheckForIntOverflow(E); 13810 DiagnoseMisalignedMembers(); 13811 } 13812 13813 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 13814 FieldDecl *BitField, 13815 Expr *Init) { 13816 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 13817 } 13818 13819 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 13820 SourceLocation Loc) { 13821 if (!PType->isVariablyModifiedType()) 13822 return; 13823 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 13824 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 13825 return; 13826 } 13827 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 13828 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 13829 return; 13830 } 13831 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 13832 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 13833 return; 13834 } 13835 13836 const ArrayType *AT = S.Context.getAsArrayType(PType); 13837 if (!AT) 13838 return; 13839 13840 if (AT->getSizeModifier() != ArrayType::Star) { 13841 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 13842 return; 13843 } 13844 13845 S.Diag(Loc, diag::err_array_star_in_function_definition); 13846 } 13847 13848 /// CheckParmsForFunctionDef - Check that the parameters of the given 13849 /// function are appropriate for the definition of a function. This 13850 /// takes care of any checks that cannot be performed on the 13851 /// declaration itself, e.g., that the types of each of the function 13852 /// parameters are complete. 13853 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 13854 bool CheckParameterNames) { 13855 bool HasInvalidParm = false; 13856 for (ParmVarDecl *Param : Parameters) { 13857 // C99 6.7.5.3p4: the parameters in a parameter type list in a 13858 // function declarator that is part of a function definition of 13859 // that function shall not have incomplete type. 13860 // 13861 // This is also C++ [dcl.fct]p6. 13862 if (!Param->isInvalidDecl() && 13863 RequireCompleteType(Param->getLocation(), Param->getType(), 13864 diag::err_typecheck_decl_incomplete_type)) { 13865 Param->setInvalidDecl(); 13866 HasInvalidParm = true; 13867 } 13868 13869 // C99 6.9.1p5: If the declarator includes a parameter type list, the 13870 // declaration of each parameter shall include an identifier. 13871 if (CheckParameterNames && Param->getIdentifier() == nullptr && 13872 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 13873 // Diagnose this as an extension in C17 and earlier. 13874 if (!getLangOpts().C2x) 13875 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 13876 } 13877 13878 // C99 6.7.5.3p12: 13879 // If the function declarator is not part of a definition of that 13880 // function, parameters may have incomplete type and may use the [*] 13881 // notation in their sequences of declarator specifiers to specify 13882 // variable length array types. 13883 QualType PType = Param->getOriginalType(); 13884 // FIXME: This diagnostic should point the '[*]' if source-location 13885 // information is added for it. 13886 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 13887 13888 // If the parameter is a c++ class type and it has to be destructed in the 13889 // callee function, declare the destructor so that it can be called by the 13890 // callee function. Do not perform any direct access check on the dtor here. 13891 if (!Param->isInvalidDecl()) { 13892 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 13893 if (!ClassDecl->isInvalidDecl() && 13894 !ClassDecl->hasIrrelevantDestructor() && 13895 !ClassDecl->isDependentContext() && 13896 ClassDecl->isParamDestroyedInCallee()) { 13897 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13898 MarkFunctionReferenced(Param->getLocation(), Destructor); 13899 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 13900 } 13901 } 13902 } 13903 13904 // Parameters with the pass_object_size attribute only need to be marked 13905 // constant at function definitions. Because we lack information about 13906 // whether we're on a declaration or definition when we're instantiating the 13907 // attribute, we need to check for constness here. 13908 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 13909 if (!Param->getType().isConstQualified()) 13910 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 13911 << Attr->getSpelling() << 1; 13912 13913 // Check for parameter names shadowing fields from the class. 13914 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13915 // The owning context for the parameter should be the function, but we 13916 // want to see if this function's declaration context is a record. 13917 DeclContext *DC = Param->getDeclContext(); 13918 if (DC && DC->isFunctionOrMethod()) { 13919 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13920 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13921 RD, /*DeclIsField*/ false); 13922 } 13923 } 13924 } 13925 13926 return HasInvalidParm; 13927 } 13928 13929 Optional<std::pair<CharUnits, CharUnits>> 13930 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 13931 13932 /// Compute the alignment and offset of the base class object given the 13933 /// derived-to-base cast expression and the alignment and offset of the derived 13934 /// class object. 13935 static std::pair<CharUnits, CharUnits> 13936 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 13937 CharUnits BaseAlignment, CharUnits Offset, 13938 ASTContext &Ctx) { 13939 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 13940 ++PathI) { 13941 const CXXBaseSpecifier *Base = *PathI; 13942 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 13943 if (Base->isVirtual()) { 13944 // The complete object may have a lower alignment than the non-virtual 13945 // alignment of the base, in which case the base may be misaligned. Choose 13946 // the smaller of the non-virtual alignment and BaseAlignment, which is a 13947 // conservative lower bound of the complete object alignment. 13948 CharUnits NonVirtualAlignment = 13949 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 13950 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 13951 Offset = CharUnits::Zero(); 13952 } else { 13953 const ASTRecordLayout &RL = 13954 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 13955 Offset += RL.getBaseClassOffset(BaseDecl); 13956 } 13957 DerivedType = Base->getType(); 13958 } 13959 13960 return std::make_pair(BaseAlignment, Offset); 13961 } 13962 13963 /// Compute the alignment and offset of a binary additive operator. 13964 static Optional<std::pair<CharUnits, CharUnits>> 13965 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 13966 bool IsSub, ASTContext &Ctx) { 13967 QualType PointeeType = PtrE->getType()->getPointeeType(); 13968 13969 if (!PointeeType->isConstantSizeType()) 13970 return llvm::None; 13971 13972 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 13973 13974 if (!P) 13975 return llvm::None; 13976 13977 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 13978 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 13979 CharUnits Offset = EltSize * IdxRes->getExtValue(); 13980 if (IsSub) 13981 Offset = -Offset; 13982 return std::make_pair(P->first, P->second + Offset); 13983 } 13984 13985 // If the integer expression isn't a constant expression, compute the lower 13986 // bound of the alignment using the alignment and offset of the pointer 13987 // expression and the element size. 13988 return std::make_pair( 13989 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 13990 CharUnits::Zero()); 13991 } 13992 13993 /// This helper function takes an lvalue expression and returns the alignment of 13994 /// a VarDecl and a constant offset from the VarDecl. 13995 Optional<std::pair<CharUnits, CharUnits>> 13996 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 13997 E = E->IgnoreParens(); 13998 switch (E->getStmtClass()) { 13999 default: 14000 break; 14001 case Stmt::CStyleCastExprClass: 14002 case Stmt::CXXStaticCastExprClass: 14003 case Stmt::ImplicitCastExprClass: { 14004 auto *CE = cast<CastExpr>(E); 14005 const Expr *From = CE->getSubExpr(); 14006 switch (CE->getCastKind()) { 14007 default: 14008 break; 14009 case CK_NoOp: 14010 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14011 case CK_UncheckedDerivedToBase: 14012 case CK_DerivedToBase: { 14013 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14014 if (!P) 14015 break; 14016 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 14017 P->second, Ctx); 14018 } 14019 } 14020 break; 14021 } 14022 case Stmt::ArraySubscriptExprClass: { 14023 auto *ASE = cast<ArraySubscriptExpr>(E); 14024 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 14025 false, Ctx); 14026 } 14027 case Stmt::DeclRefExprClass: { 14028 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 14029 // FIXME: If VD is captured by copy or is an escaping __block variable, 14030 // use the alignment of VD's type. 14031 if (!VD->getType()->isReferenceType()) 14032 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 14033 if (VD->hasInit()) 14034 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 14035 } 14036 break; 14037 } 14038 case Stmt::MemberExprClass: { 14039 auto *ME = cast<MemberExpr>(E); 14040 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 14041 if (!FD || FD->getType()->isReferenceType()) 14042 break; 14043 Optional<std::pair<CharUnits, CharUnits>> P; 14044 if (ME->isArrow()) 14045 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 14046 else 14047 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 14048 if (!P) 14049 break; 14050 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 14051 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 14052 return std::make_pair(P->first, 14053 P->second + CharUnits::fromQuantity(Offset)); 14054 } 14055 case Stmt::UnaryOperatorClass: { 14056 auto *UO = cast<UnaryOperator>(E); 14057 switch (UO->getOpcode()) { 14058 default: 14059 break; 14060 case UO_Deref: 14061 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 14062 } 14063 break; 14064 } 14065 case Stmt::BinaryOperatorClass: { 14066 auto *BO = cast<BinaryOperator>(E); 14067 auto Opcode = BO->getOpcode(); 14068 switch (Opcode) { 14069 default: 14070 break; 14071 case BO_Comma: 14072 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 14073 } 14074 break; 14075 } 14076 } 14077 return llvm::None; 14078 } 14079 14080 /// This helper function takes a pointer expression and returns the alignment of 14081 /// a VarDecl and a constant offset from the VarDecl. 14082 Optional<std::pair<CharUnits, CharUnits>> 14083 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 14084 E = E->IgnoreParens(); 14085 switch (E->getStmtClass()) { 14086 default: 14087 break; 14088 case Stmt::CStyleCastExprClass: 14089 case Stmt::CXXStaticCastExprClass: 14090 case Stmt::ImplicitCastExprClass: { 14091 auto *CE = cast<CastExpr>(E); 14092 const Expr *From = CE->getSubExpr(); 14093 switch (CE->getCastKind()) { 14094 default: 14095 break; 14096 case CK_NoOp: 14097 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14098 case CK_ArrayToPointerDecay: 14099 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14100 case CK_UncheckedDerivedToBase: 14101 case CK_DerivedToBase: { 14102 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14103 if (!P) 14104 break; 14105 return getDerivedToBaseAlignmentAndOffset( 14106 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 14107 } 14108 } 14109 break; 14110 } 14111 case Stmt::CXXThisExprClass: { 14112 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 14113 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 14114 return std::make_pair(Alignment, CharUnits::Zero()); 14115 } 14116 case Stmt::UnaryOperatorClass: { 14117 auto *UO = cast<UnaryOperator>(E); 14118 if (UO->getOpcode() == UO_AddrOf) 14119 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 14120 break; 14121 } 14122 case Stmt::BinaryOperatorClass: { 14123 auto *BO = cast<BinaryOperator>(E); 14124 auto Opcode = BO->getOpcode(); 14125 switch (Opcode) { 14126 default: 14127 break; 14128 case BO_Add: 14129 case BO_Sub: { 14130 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 14131 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 14132 std::swap(LHS, RHS); 14133 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 14134 Ctx); 14135 } 14136 case BO_Comma: 14137 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 14138 } 14139 break; 14140 } 14141 } 14142 return llvm::None; 14143 } 14144 14145 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 14146 // See if we can compute the alignment of a VarDecl and an offset from it. 14147 Optional<std::pair<CharUnits, CharUnits>> P = 14148 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 14149 14150 if (P) 14151 return P->first.alignmentAtOffset(P->second); 14152 14153 // If that failed, return the type's alignment. 14154 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 14155 } 14156 14157 /// CheckCastAlign - Implements -Wcast-align, which warns when a 14158 /// pointer cast increases the alignment requirements. 14159 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 14160 // This is actually a lot of work to potentially be doing on every 14161 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 14162 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 14163 return; 14164 14165 // Ignore dependent types. 14166 if (T->isDependentType() || Op->getType()->isDependentType()) 14167 return; 14168 14169 // Require that the destination be a pointer type. 14170 const PointerType *DestPtr = T->getAs<PointerType>(); 14171 if (!DestPtr) return; 14172 14173 // If the destination has alignment 1, we're done. 14174 QualType DestPointee = DestPtr->getPointeeType(); 14175 if (DestPointee->isIncompleteType()) return; 14176 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 14177 if (DestAlign.isOne()) return; 14178 14179 // Require that the source be a pointer type. 14180 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 14181 if (!SrcPtr) return; 14182 QualType SrcPointee = SrcPtr->getPointeeType(); 14183 14184 // Explicitly allow casts from cv void*. We already implicitly 14185 // allowed casts to cv void*, since they have alignment 1. 14186 // Also allow casts involving incomplete types, which implicitly 14187 // includes 'void'. 14188 if (SrcPointee->isIncompleteType()) return; 14189 14190 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 14191 14192 if (SrcAlign >= DestAlign) return; 14193 14194 Diag(TRange.getBegin(), diag::warn_cast_align) 14195 << Op->getType() << T 14196 << static_cast<unsigned>(SrcAlign.getQuantity()) 14197 << static_cast<unsigned>(DestAlign.getQuantity()) 14198 << TRange << Op->getSourceRange(); 14199 } 14200 14201 /// Check whether this array fits the idiom of a size-one tail padded 14202 /// array member of a struct. 14203 /// 14204 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 14205 /// commonly used to emulate flexible arrays in C89 code. 14206 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 14207 const NamedDecl *ND) { 14208 if (Size != 1 || !ND) return false; 14209 14210 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 14211 if (!FD) return false; 14212 14213 // Don't consider sizes resulting from macro expansions or template argument 14214 // substitution to form C89 tail-padded arrays. 14215 14216 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 14217 while (TInfo) { 14218 TypeLoc TL = TInfo->getTypeLoc(); 14219 // Look through typedefs. 14220 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 14221 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 14222 TInfo = TDL->getTypeSourceInfo(); 14223 continue; 14224 } 14225 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 14226 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 14227 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 14228 return false; 14229 } 14230 break; 14231 } 14232 14233 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 14234 if (!RD) return false; 14235 if (RD->isUnion()) return false; 14236 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 14237 if (!CRD->isStandardLayout()) return false; 14238 } 14239 14240 // See if this is the last field decl in the record. 14241 const Decl *D = FD; 14242 while ((D = D->getNextDeclInContext())) 14243 if (isa<FieldDecl>(D)) 14244 return false; 14245 return true; 14246 } 14247 14248 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 14249 const ArraySubscriptExpr *ASE, 14250 bool AllowOnePastEnd, bool IndexNegated) { 14251 // Already diagnosed by the constant evaluator. 14252 if (isConstantEvaluated()) 14253 return; 14254 14255 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 14256 if (IndexExpr->isValueDependent()) 14257 return; 14258 14259 const Type *EffectiveType = 14260 BaseExpr->getType()->getPointeeOrArrayElementType(); 14261 BaseExpr = BaseExpr->IgnoreParenCasts(); 14262 const ConstantArrayType *ArrayTy = 14263 Context.getAsConstantArrayType(BaseExpr->getType()); 14264 14265 if (!ArrayTy) 14266 return; 14267 14268 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 14269 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 14270 return; 14271 14272 Expr::EvalResult Result; 14273 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 14274 return; 14275 14276 llvm::APSInt index = Result.Val.getInt(); 14277 if (IndexNegated) 14278 index = -index; 14279 14280 const NamedDecl *ND = nullptr; 14281 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14282 ND = DRE->getDecl(); 14283 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14284 ND = ME->getMemberDecl(); 14285 14286 if (index.isUnsigned() || !index.isNegative()) { 14287 // It is possible that the type of the base expression after 14288 // IgnoreParenCasts is incomplete, even though the type of the base 14289 // expression before IgnoreParenCasts is complete (see PR39746 for an 14290 // example). In this case we have no information about whether the array 14291 // access exceeds the array bounds. However we can still diagnose an array 14292 // access which precedes the array bounds. 14293 if (BaseType->isIncompleteType()) 14294 return; 14295 14296 llvm::APInt size = ArrayTy->getSize(); 14297 if (!size.isStrictlyPositive()) 14298 return; 14299 14300 if (BaseType != EffectiveType) { 14301 // Make sure we're comparing apples to apples when comparing index to size 14302 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 14303 uint64_t array_typesize = Context.getTypeSize(BaseType); 14304 // Handle ptrarith_typesize being zero, such as when casting to void* 14305 if (!ptrarith_typesize) ptrarith_typesize = 1; 14306 if (ptrarith_typesize != array_typesize) { 14307 // There's a cast to a different size type involved 14308 uint64_t ratio = array_typesize / ptrarith_typesize; 14309 // TODO: Be smarter about handling cases where array_typesize is not a 14310 // multiple of ptrarith_typesize 14311 if (ptrarith_typesize * ratio == array_typesize) 14312 size *= llvm::APInt(size.getBitWidth(), ratio); 14313 } 14314 } 14315 14316 if (size.getBitWidth() > index.getBitWidth()) 14317 index = index.zext(size.getBitWidth()); 14318 else if (size.getBitWidth() < index.getBitWidth()) 14319 size = size.zext(index.getBitWidth()); 14320 14321 // For array subscripting the index must be less than size, but for pointer 14322 // arithmetic also allow the index (offset) to be equal to size since 14323 // computing the next address after the end of the array is legal and 14324 // commonly done e.g. in C++ iterators and range-based for loops. 14325 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 14326 return; 14327 14328 // Also don't warn for arrays of size 1 which are members of some 14329 // structure. These are often used to approximate flexible arrays in C89 14330 // code. 14331 if (IsTailPaddedMemberArray(*this, size, ND)) 14332 return; 14333 14334 // Suppress the warning if the subscript expression (as identified by the 14335 // ']' location) and the index expression are both from macro expansions 14336 // within a system header. 14337 if (ASE) { 14338 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 14339 ASE->getRBracketLoc()); 14340 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 14341 SourceLocation IndexLoc = 14342 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 14343 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 14344 return; 14345 } 14346 } 14347 14348 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 14349 if (ASE) 14350 DiagID = diag::warn_array_index_exceeds_bounds; 14351 14352 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14353 PDiag(DiagID) << index.toString(10, true) 14354 << size.toString(10, true) 14355 << (unsigned)size.getLimitedValue(~0U) 14356 << IndexExpr->getSourceRange()); 14357 } else { 14358 unsigned DiagID = diag::warn_array_index_precedes_bounds; 14359 if (!ASE) { 14360 DiagID = diag::warn_ptr_arith_precedes_bounds; 14361 if (index.isNegative()) index = -index; 14362 } 14363 14364 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14365 PDiag(DiagID) << index.toString(10, true) 14366 << IndexExpr->getSourceRange()); 14367 } 14368 14369 if (!ND) { 14370 // Try harder to find a NamedDecl to point at in the note. 14371 while (const ArraySubscriptExpr *ASE = 14372 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 14373 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 14374 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14375 ND = DRE->getDecl(); 14376 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14377 ND = ME->getMemberDecl(); 14378 } 14379 14380 if (ND) 14381 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 14382 PDiag(diag::note_array_declared_here) << ND); 14383 } 14384 14385 void Sema::CheckArrayAccess(const Expr *expr) { 14386 int AllowOnePastEnd = 0; 14387 while (expr) { 14388 expr = expr->IgnoreParenImpCasts(); 14389 switch (expr->getStmtClass()) { 14390 case Stmt::ArraySubscriptExprClass: { 14391 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 14392 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 14393 AllowOnePastEnd > 0); 14394 expr = ASE->getBase(); 14395 break; 14396 } 14397 case Stmt::MemberExprClass: { 14398 expr = cast<MemberExpr>(expr)->getBase(); 14399 break; 14400 } 14401 case Stmt::OMPArraySectionExprClass: { 14402 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 14403 if (ASE->getLowerBound()) 14404 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 14405 /*ASE=*/nullptr, AllowOnePastEnd > 0); 14406 return; 14407 } 14408 case Stmt::UnaryOperatorClass: { 14409 // Only unwrap the * and & unary operators 14410 const UnaryOperator *UO = cast<UnaryOperator>(expr); 14411 expr = UO->getSubExpr(); 14412 switch (UO->getOpcode()) { 14413 case UO_AddrOf: 14414 AllowOnePastEnd++; 14415 break; 14416 case UO_Deref: 14417 AllowOnePastEnd--; 14418 break; 14419 default: 14420 return; 14421 } 14422 break; 14423 } 14424 case Stmt::ConditionalOperatorClass: { 14425 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 14426 if (const Expr *lhs = cond->getLHS()) 14427 CheckArrayAccess(lhs); 14428 if (const Expr *rhs = cond->getRHS()) 14429 CheckArrayAccess(rhs); 14430 return; 14431 } 14432 case Stmt::CXXOperatorCallExprClass: { 14433 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 14434 for (const auto *Arg : OCE->arguments()) 14435 CheckArrayAccess(Arg); 14436 return; 14437 } 14438 default: 14439 return; 14440 } 14441 } 14442 } 14443 14444 //===--- CHECK: Objective-C retain cycles ----------------------------------// 14445 14446 namespace { 14447 14448 struct RetainCycleOwner { 14449 VarDecl *Variable = nullptr; 14450 SourceRange Range; 14451 SourceLocation Loc; 14452 bool Indirect = false; 14453 14454 RetainCycleOwner() = default; 14455 14456 void setLocsFrom(Expr *e) { 14457 Loc = e->getExprLoc(); 14458 Range = e->getSourceRange(); 14459 } 14460 }; 14461 14462 } // namespace 14463 14464 /// Consider whether capturing the given variable can possibly lead to 14465 /// a retain cycle. 14466 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 14467 // In ARC, it's captured strongly iff the variable has __strong 14468 // lifetime. In MRR, it's captured strongly if the variable is 14469 // __block and has an appropriate type. 14470 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14471 return false; 14472 14473 owner.Variable = var; 14474 if (ref) 14475 owner.setLocsFrom(ref); 14476 return true; 14477 } 14478 14479 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 14480 while (true) { 14481 e = e->IgnoreParens(); 14482 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 14483 switch (cast->getCastKind()) { 14484 case CK_BitCast: 14485 case CK_LValueBitCast: 14486 case CK_LValueToRValue: 14487 case CK_ARCReclaimReturnedObject: 14488 e = cast->getSubExpr(); 14489 continue; 14490 14491 default: 14492 return false; 14493 } 14494 } 14495 14496 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 14497 ObjCIvarDecl *ivar = ref->getDecl(); 14498 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14499 return false; 14500 14501 // Try to find a retain cycle in the base. 14502 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 14503 return false; 14504 14505 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 14506 owner.Indirect = true; 14507 return true; 14508 } 14509 14510 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 14511 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 14512 if (!var) return false; 14513 return considerVariable(var, ref, owner); 14514 } 14515 14516 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 14517 if (member->isArrow()) return false; 14518 14519 // Don't count this as an indirect ownership. 14520 e = member->getBase(); 14521 continue; 14522 } 14523 14524 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 14525 // Only pay attention to pseudo-objects on property references. 14526 ObjCPropertyRefExpr *pre 14527 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 14528 ->IgnoreParens()); 14529 if (!pre) return false; 14530 if (pre->isImplicitProperty()) return false; 14531 ObjCPropertyDecl *property = pre->getExplicitProperty(); 14532 if (!property->isRetaining() && 14533 !(property->getPropertyIvarDecl() && 14534 property->getPropertyIvarDecl()->getType() 14535 .getObjCLifetime() == Qualifiers::OCL_Strong)) 14536 return false; 14537 14538 owner.Indirect = true; 14539 if (pre->isSuperReceiver()) { 14540 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 14541 if (!owner.Variable) 14542 return false; 14543 owner.Loc = pre->getLocation(); 14544 owner.Range = pre->getSourceRange(); 14545 return true; 14546 } 14547 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 14548 ->getSourceExpr()); 14549 continue; 14550 } 14551 14552 // Array ivars? 14553 14554 return false; 14555 } 14556 } 14557 14558 namespace { 14559 14560 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 14561 ASTContext &Context; 14562 VarDecl *Variable; 14563 Expr *Capturer = nullptr; 14564 bool VarWillBeReased = false; 14565 14566 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 14567 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 14568 Context(Context), Variable(variable) {} 14569 14570 void VisitDeclRefExpr(DeclRefExpr *ref) { 14571 if (ref->getDecl() == Variable && !Capturer) 14572 Capturer = ref; 14573 } 14574 14575 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 14576 if (Capturer) return; 14577 Visit(ref->getBase()); 14578 if (Capturer && ref->isFreeIvar()) 14579 Capturer = ref; 14580 } 14581 14582 void VisitBlockExpr(BlockExpr *block) { 14583 // Look inside nested blocks 14584 if (block->getBlockDecl()->capturesVariable(Variable)) 14585 Visit(block->getBlockDecl()->getBody()); 14586 } 14587 14588 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 14589 if (Capturer) return; 14590 if (OVE->getSourceExpr()) 14591 Visit(OVE->getSourceExpr()); 14592 } 14593 14594 void VisitBinaryOperator(BinaryOperator *BinOp) { 14595 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 14596 return; 14597 Expr *LHS = BinOp->getLHS(); 14598 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 14599 if (DRE->getDecl() != Variable) 14600 return; 14601 if (Expr *RHS = BinOp->getRHS()) { 14602 RHS = RHS->IgnoreParenCasts(); 14603 Optional<llvm::APSInt> Value; 14604 VarWillBeReased = 14605 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 14606 *Value == 0); 14607 } 14608 } 14609 } 14610 }; 14611 14612 } // namespace 14613 14614 /// Check whether the given argument is a block which captures a 14615 /// variable. 14616 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 14617 assert(owner.Variable && owner.Loc.isValid()); 14618 14619 e = e->IgnoreParenCasts(); 14620 14621 // Look through [^{...} copy] and Block_copy(^{...}). 14622 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 14623 Selector Cmd = ME->getSelector(); 14624 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 14625 e = ME->getInstanceReceiver(); 14626 if (!e) 14627 return nullptr; 14628 e = e->IgnoreParenCasts(); 14629 } 14630 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 14631 if (CE->getNumArgs() == 1) { 14632 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 14633 if (Fn) { 14634 const IdentifierInfo *FnI = Fn->getIdentifier(); 14635 if (FnI && FnI->isStr("_Block_copy")) { 14636 e = CE->getArg(0)->IgnoreParenCasts(); 14637 } 14638 } 14639 } 14640 } 14641 14642 BlockExpr *block = dyn_cast<BlockExpr>(e); 14643 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 14644 return nullptr; 14645 14646 FindCaptureVisitor visitor(S.Context, owner.Variable); 14647 visitor.Visit(block->getBlockDecl()->getBody()); 14648 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 14649 } 14650 14651 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 14652 RetainCycleOwner &owner) { 14653 assert(capturer); 14654 assert(owner.Variable && owner.Loc.isValid()); 14655 14656 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 14657 << owner.Variable << capturer->getSourceRange(); 14658 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 14659 << owner.Indirect << owner.Range; 14660 } 14661 14662 /// Check for a keyword selector that starts with the word 'add' or 14663 /// 'set'. 14664 static bool isSetterLikeSelector(Selector sel) { 14665 if (sel.isUnarySelector()) return false; 14666 14667 StringRef str = sel.getNameForSlot(0); 14668 while (!str.empty() && str.front() == '_') str = str.substr(1); 14669 if (str.startswith("set")) 14670 str = str.substr(3); 14671 else if (str.startswith("add")) { 14672 // Specially allow 'addOperationWithBlock:'. 14673 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 14674 return false; 14675 str = str.substr(3); 14676 } 14677 else 14678 return false; 14679 14680 if (str.empty()) return true; 14681 return !isLowercase(str.front()); 14682 } 14683 14684 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 14685 ObjCMessageExpr *Message) { 14686 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 14687 Message->getReceiverInterface(), 14688 NSAPI::ClassId_NSMutableArray); 14689 if (!IsMutableArray) { 14690 return None; 14691 } 14692 14693 Selector Sel = Message->getSelector(); 14694 14695 Optional<NSAPI::NSArrayMethodKind> MKOpt = 14696 S.NSAPIObj->getNSArrayMethodKind(Sel); 14697 if (!MKOpt) { 14698 return None; 14699 } 14700 14701 NSAPI::NSArrayMethodKind MK = *MKOpt; 14702 14703 switch (MK) { 14704 case NSAPI::NSMutableArr_addObject: 14705 case NSAPI::NSMutableArr_insertObjectAtIndex: 14706 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 14707 return 0; 14708 case NSAPI::NSMutableArr_replaceObjectAtIndex: 14709 return 1; 14710 14711 default: 14712 return None; 14713 } 14714 14715 return None; 14716 } 14717 14718 static 14719 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 14720 ObjCMessageExpr *Message) { 14721 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 14722 Message->getReceiverInterface(), 14723 NSAPI::ClassId_NSMutableDictionary); 14724 if (!IsMutableDictionary) { 14725 return None; 14726 } 14727 14728 Selector Sel = Message->getSelector(); 14729 14730 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 14731 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 14732 if (!MKOpt) { 14733 return None; 14734 } 14735 14736 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 14737 14738 switch (MK) { 14739 case NSAPI::NSMutableDict_setObjectForKey: 14740 case NSAPI::NSMutableDict_setValueForKey: 14741 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 14742 return 0; 14743 14744 default: 14745 return None; 14746 } 14747 14748 return None; 14749 } 14750 14751 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 14752 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 14753 Message->getReceiverInterface(), 14754 NSAPI::ClassId_NSMutableSet); 14755 14756 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 14757 Message->getReceiverInterface(), 14758 NSAPI::ClassId_NSMutableOrderedSet); 14759 if (!IsMutableSet && !IsMutableOrderedSet) { 14760 return None; 14761 } 14762 14763 Selector Sel = Message->getSelector(); 14764 14765 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 14766 if (!MKOpt) { 14767 return None; 14768 } 14769 14770 NSAPI::NSSetMethodKind MK = *MKOpt; 14771 14772 switch (MK) { 14773 case NSAPI::NSMutableSet_addObject: 14774 case NSAPI::NSOrderedSet_setObjectAtIndex: 14775 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 14776 case NSAPI::NSOrderedSet_insertObjectAtIndex: 14777 return 0; 14778 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 14779 return 1; 14780 } 14781 14782 return None; 14783 } 14784 14785 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 14786 if (!Message->isInstanceMessage()) { 14787 return; 14788 } 14789 14790 Optional<int> ArgOpt; 14791 14792 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 14793 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 14794 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 14795 return; 14796 } 14797 14798 int ArgIndex = *ArgOpt; 14799 14800 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 14801 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 14802 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 14803 } 14804 14805 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 14806 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14807 if (ArgRE->isObjCSelfExpr()) { 14808 Diag(Message->getSourceRange().getBegin(), 14809 diag::warn_objc_circular_container) 14810 << ArgRE->getDecl() << StringRef("'super'"); 14811 } 14812 } 14813 } else { 14814 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 14815 14816 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 14817 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 14818 } 14819 14820 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 14821 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14822 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 14823 ValueDecl *Decl = ReceiverRE->getDecl(); 14824 Diag(Message->getSourceRange().getBegin(), 14825 diag::warn_objc_circular_container) 14826 << Decl << Decl; 14827 if (!ArgRE->isObjCSelfExpr()) { 14828 Diag(Decl->getLocation(), 14829 diag::note_objc_circular_container_declared_here) 14830 << Decl; 14831 } 14832 } 14833 } 14834 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 14835 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 14836 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 14837 ObjCIvarDecl *Decl = IvarRE->getDecl(); 14838 Diag(Message->getSourceRange().getBegin(), 14839 diag::warn_objc_circular_container) 14840 << Decl << Decl; 14841 Diag(Decl->getLocation(), 14842 diag::note_objc_circular_container_declared_here) 14843 << Decl; 14844 } 14845 } 14846 } 14847 } 14848 } 14849 14850 /// Check a message send to see if it's likely to cause a retain cycle. 14851 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 14852 // Only check instance methods whose selector looks like a setter. 14853 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 14854 return; 14855 14856 // Try to find a variable that the receiver is strongly owned by. 14857 RetainCycleOwner owner; 14858 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 14859 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 14860 return; 14861 } else { 14862 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 14863 owner.Variable = getCurMethodDecl()->getSelfDecl(); 14864 owner.Loc = msg->getSuperLoc(); 14865 owner.Range = msg->getSuperLoc(); 14866 } 14867 14868 // Check whether the receiver is captured by any of the arguments. 14869 const ObjCMethodDecl *MD = msg->getMethodDecl(); 14870 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 14871 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 14872 // noescape blocks should not be retained by the method. 14873 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 14874 continue; 14875 return diagnoseRetainCycle(*this, capturer, owner); 14876 } 14877 } 14878 } 14879 14880 /// Check a property assign to see if it's likely to cause a retain cycle. 14881 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 14882 RetainCycleOwner owner; 14883 if (!findRetainCycleOwner(*this, receiver, owner)) 14884 return; 14885 14886 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 14887 diagnoseRetainCycle(*this, capturer, owner); 14888 } 14889 14890 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 14891 RetainCycleOwner Owner; 14892 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 14893 return; 14894 14895 // Because we don't have an expression for the variable, we have to set the 14896 // location explicitly here. 14897 Owner.Loc = Var->getLocation(); 14898 Owner.Range = Var->getSourceRange(); 14899 14900 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 14901 diagnoseRetainCycle(*this, Capturer, Owner); 14902 } 14903 14904 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 14905 Expr *RHS, bool isProperty) { 14906 // Check if RHS is an Objective-C object literal, which also can get 14907 // immediately zapped in a weak reference. Note that we explicitly 14908 // allow ObjCStringLiterals, since those are designed to never really die. 14909 RHS = RHS->IgnoreParenImpCasts(); 14910 14911 // This enum needs to match with the 'select' in 14912 // warn_objc_arc_literal_assign (off-by-1). 14913 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 14914 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 14915 return false; 14916 14917 S.Diag(Loc, diag::warn_arc_literal_assign) 14918 << (unsigned) Kind 14919 << (isProperty ? 0 : 1) 14920 << RHS->getSourceRange(); 14921 14922 return true; 14923 } 14924 14925 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 14926 Qualifiers::ObjCLifetime LT, 14927 Expr *RHS, bool isProperty) { 14928 // Strip off any implicit cast added to get to the one ARC-specific. 14929 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14930 if (cast->getCastKind() == CK_ARCConsumeObject) { 14931 S.Diag(Loc, diag::warn_arc_retained_assign) 14932 << (LT == Qualifiers::OCL_ExplicitNone) 14933 << (isProperty ? 0 : 1) 14934 << RHS->getSourceRange(); 14935 return true; 14936 } 14937 RHS = cast->getSubExpr(); 14938 } 14939 14940 if (LT == Qualifiers::OCL_Weak && 14941 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 14942 return true; 14943 14944 return false; 14945 } 14946 14947 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 14948 QualType LHS, Expr *RHS) { 14949 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 14950 14951 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 14952 return false; 14953 14954 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 14955 return true; 14956 14957 return false; 14958 } 14959 14960 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 14961 Expr *LHS, Expr *RHS) { 14962 QualType LHSType; 14963 // PropertyRef on LHS type need be directly obtained from 14964 // its declaration as it has a PseudoType. 14965 ObjCPropertyRefExpr *PRE 14966 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 14967 if (PRE && !PRE->isImplicitProperty()) { 14968 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14969 if (PD) 14970 LHSType = PD->getType(); 14971 } 14972 14973 if (LHSType.isNull()) 14974 LHSType = LHS->getType(); 14975 14976 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 14977 14978 if (LT == Qualifiers::OCL_Weak) { 14979 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 14980 getCurFunction()->markSafeWeakUse(LHS); 14981 } 14982 14983 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 14984 return; 14985 14986 // FIXME. Check for other life times. 14987 if (LT != Qualifiers::OCL_None) 14988 return; 14989 14990 if (PRE) { 14991 if (PRE->isImplicitProperty()) 14992 return; 14993 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14994 if (!PD) 14995 return; 14996 14997 unsigned Attributes = PD->getPropertyAttributes(); 14998 if (Attributes & ObjCPropertyAttribute::kind_assign) { 14999 // when 'assign' attribute was not explicitly specified 15000 // by user, ignore it and rely on property type itself 15001 // for lifetime info. 15002 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 15003 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 15004 LHSType->isObjCRetainableType()) 15005 return; 15006 15007 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15008 if (cast->getCastKind() == CK_ARCConsumeObject) { 15009 Diag(Loc, diag::warn_arc_retained_property_assign) 15010 << RHS->getSourceRange(); 15011 return; 15012 } 15013 RHS = cast->getSubExpr(); 15014 } 15015 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 15016 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 15017 return; 15018 } 15019 } 15020 } 15021 15022 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 15023 15024 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 15025 SourceLocation StmtLoc, 15026 const NullStmt *Body) { 15027 // Do not warn if the body is a macro that expands to nothing, e.g: 15028 // 15029 // #define CALL(x) 15030 // if (condition) 15031 // CALL(0); 15032 if (Body->hasLeadingEmptyMacro()) 15033 return false; 15034 15035 // Get line numbers of statement and body. 15036 bool StmtLineInvalid; 15037 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 15038 &StmtLineInvalid); 15039 if (StmtLineInvalid) 15040 return false; 15041 15042 bool BodyLineInvalid; 15043 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 15044 &BodyLineInvalid); 15045 if (BodyLineInvalid) 15046 return false; 15047 15048 // Warn if null statement and body are on the same line. 15049 if (StmtLine != BodyLine) 15050 return false; 15051 15052 return true; 15053 } 15054 15055 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 15056 const Stmt *Body, 15057 unsigned DiagID) { 15058 // Since this is a syntactic check, don't emit diagnostic for template 15059 // instantiations, this just adds noise. 15060 if (CurrentInstantiationScope) 15061 return; 15062 15063 // The body should be a null statement. 15064 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15065 if (!NBody) 15066 return; 15067 15068 // Do the usual checks. 15069 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15070 return; 15071 15072 Diag(NBody->getSemiLoc(), DiagID); 15073 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15074 } 15075 15076 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 15077 const Stmt *PossibleBody) { 15078 assert(!CurrentInstantiationScope); // Ensured by caller 15079 15080 SourceLocation StmtLoc; 15081 const Stmt *Body; 15082 unsigned DiagID; 15083 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 15084 StmtLoc = FS->getRParenLoc(); 15085 Body = FS->getBody(); 15086 DiagID = diag::warn_empty_for_body; 15087 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 15088 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 15089 Body = WS->getBody(); 15090 DiagID = diag::warn_empty_while_body; 15091 } else 15092 return; // Neither `for' nor `while'. 15093 15094 // The body should be a null statement. 15095 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15096 if (!NBody) 15097 return; 15098 15099 // Skip expensive checks if diagnostic is disabled. 15100 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 15101 return; 15102 15103 // Do the usual checks. 15104 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15105 return; 15106 15107 // `for(...);' and `while(...);' are popular idioms, so in order to keep 15108 // noise level low, emit diagnostics only if for/while is followed by a 15109 // CompoundStmt, e.g.: 15110 // for (int i = 0; i < n; i++); 15111 // { 15112 // a(i); 15113 // } 15114 // or if for/while is followed by a statement with more indentation 15115 // than for/while itself: 15116 // for (int i = 0; i < n; i++); 15117 // a(i); 15118 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 15119 if (!ProbableTypo) { 15120 bool BodyColInvalid; 15121 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 15122 PossibleBody->getBeginLoc(), &BodyColInvalid); 15123 if (BodyColInvalid) 15124 return; 15125 15126 bool StmtColInvalid; 15127 unsigned StmtCol = 15128 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 15129 if (StmtColInvalid) 15130 return; 15131 15132 if (BodyCol > StmtCol) 15133 ProbableTypo = true; 15134 } 15135 15136 if (ProbableTypo) { 15137 Diag(NBody->getSemiLoc(), DiagID); 15138 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15139 } 15140 } 15141 15142 //===--- CHECK: Warn on self move with std::move. -------------------------===// 15143 15144 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 15145 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 15146 SourceLocation OpLoc) { 15147 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 15148 return; 15149 15150 if (inTemplateInstantiation()) 15151 return; 15152 15153 // Strip parens and casts away. 15154 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 15155 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 15156 15157 // Check for a call expression 15158 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 15159 if (!CE || CE->getNumArgs() != 1) 15160 return; 15161 15162 // Check for a call to std::move 15163 if (!CE->isCallToStdMove()) 15164 return; 15165 15166 // Get argument from std::move 15167 RHSExpr = CE->getArg(0); 15168 15169 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 15170 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 15171 15172 // Two DeclRefExpr's, check that the decls are the same. 15173 if (LHSDeclRef && RHSDeclRef) { 15174 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15175 return; 15176 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15177 RHSDeclRef->getDecl()->getCanonicalDecl()) 15178 return; 15179 15180 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15181 << LHSExpr->getSourceRange() 15182 << RHSExpr->getSourceRange(); 15183 return; 15184 } 15185 15186 // Member variables require a different approach to check for self moves. 15187 // MemberExpr's are the same if every nested MemberExpr refers to the same 15188 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 15189 // the base Expr's are CXXThisExpr's. 15190 const Expr *LHSBase = LHSExpr; 15191 const Expr *RHSBase = RHSExpr; 15192 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 15193 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 15194 if (!LHSME || !RHSME) 15195 return; 15196 15197 while (LHSME && RHSME) { 15198 if (LHSME->getMemberDecl()->getCanonicalDecl() != 15199 RHSME->getMemberDecl()->getCanonicalDecl()) 15200 return; 15201 15202 LHSBase = LHSME->getBase(); 15203 RHSBase = RHSME->getBase(); 15204 LHSME = dyn_cast<MemberExpr>(LHSBase); 15205 RHSME = dyn_cast<MemberExpr>(RHSBase); 15206 } 15207 15208 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 15209 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 15210 if (LHSDeclRef && RHSDeclRef) { 15211 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15212 return; 15213 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15214 RHSDeclRef->getDecl()->getCanonicalDecl()) 15215 return; 15216 15217 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15218 << LHSExpr->getSourceRange() 15219 << RHSExpr->getSourceRange(); 15220 return; 15221 } 15222 15223 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 15224 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15225 << LHSExpr->getSourceRange() 15226 << RHSExpr->getSourceRange(); 15227 } 15228 15229 //===--- Layout compatibility ----------------------------------------------// 15230 15231 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 15232 15233 /// Check if two enumeration types are layout-compatible. 15234 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 15235 // C++11 [dcl.enum] p8: 15236 // Two enumeration types are layout-compatible if they have the same 15237 // underlying type. 15238 return ED1->isComplete() && ED2->isComplete() && 15239 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 15240 } 15241 15242 /// Check if two fields are layout-compatible. 15243 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 15244 FieldDecl *Field2) { 15245 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 15246 return false; 15247 15248 if (Field1->isBitField() != Field2->isBitField()) 15249 return false; 15250 15251 if (Field1->isBitField()) { 15252 // Make sure that the bit-fields are the same length. 15253 unsigned Bits1 = Field1->getBitWidthValue(C); 15254 unsigned Bits2 = Field2->getBitWidthValue(C); 15255 15256 if (Bits1 != Bits2) 15257 return false; 15258 } 15259 15260 return true; 15261 } 15262 15263 /// Check if two standard-layout structs are layout-compatible. 15264 /// (C++11 [class.mem] p17) 15265 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 15266 RecordDecl *RD2) { 15267 // If both records are C++ classes, check that base classes match. 15268 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 15269 // If one of records is a CXXRecordDecl we are in C++ mode, 15270 // thus the other one is a CXXRecordDecl, too. 15271 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 15272 // Check number of base classes. 15273 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 15274 return false; 15275 15276 // Check the base classes. 15277 for (CXXRecordDecl::base_class_const_iterator 15278 Base1 = D1CXX->bases_begin(), 15279 BaseEnd1 = D1CXX->bases_end(), 15280 Base2 = D2CXX->bases_begin(); 15281 Base1 != BaseEnd1; 15282 ++Base1, ++Base2) { 15283 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 15284 return false; 15285 } 15286 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 15287 // If only RD2 is a C++ class, it should have zero base classes. 15288 if (D2CXX->getNumBases() > 0) 15289 return false; 15290 } 15291 15292 // Check the fields. 15293 RecordDecl::field_iterator Field2 = RD2->field_begin(), 15294 Field2End = RD2->field_end(), 15295 Field1 = RD1->field_begin(), 15296 Field1End = RD1->field_end(); 15297 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 15298 if (!isLayoutCompatible(C, *Field1, *Field2)) 15299 return false; 15300 } 15301 if (Field1 != Field1End || Field2 != Field2End) 15302 return false; 15303 15304 return true; 15305 } 15306 15307 /// Check if two standard-layout unions are layout-compatible. 15308 /// (C++11 [class.mem] p18) 15309 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 15310 RecordDecl *RD2) { 15311 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 15312 for (auto *Field2 : RD2->fields()) 15313 UnmatchedFields.insert(Field2); 15314 15315 for (auto *Field1 : RD1->fields()) { 15316 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 15317 I = UnmatchedFields.begin(), 15318 E = UnmatchedFields.end(); 15319 15320 for ( ; I != E; ++I) { 15321 if (isLayoutCompatible(C, Field1, *I)) { 15322 bool Result = UnmatchedFields.erase(*I); 15323 (void) Result; 15324 assert(Result); 15325 break; 15326 } 15327 } 15328 if (I == E) 15329 return false; 15330 } 15331 15332 return UnmatchedFields.empty(); 15333 } 15334 15335 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 15336 RecordDecl *RD2) { 15337 if (RD1->isUnion() != RD2->isUnion()) 15338 return false; 15339 15340 if (RD1->isUnion()) 15341 return isLayoutCompatibleUnion(C, RD1, RD2); 15342 else 15343 return isLayoutCompatibleStruct(C, RD1, RD2); 15344 } 15345 15346 /// Check if two types are layout-compatible in C++11 sense. 15347 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 15348 if (T1.isNull() || T2.isNull()) 15349 return false; 15350 15351 // C++11 [basic.types] p11: 15352 // If two types T1 and T2 are the same type, then T1 and T2 are 15353 // layout-compatible types. 15354 if (C.hasSameType(T1, T2)) 15355 return true; 15356 15357 T1 = T1.getCanonicalType().getUnqualifiedType(); 15358 T2 = T2.getCanonicalType().getUnqualifiedType(); 15359 15360 const Type::TypeClass TC1 = T1->getTypeClass(); 15361 const Type::TypeClass TC2 = T2->getTypeClass(); 15362 15363 if (TC1 != TC2) 15364 return false; 15365 15366 if (TC1 == Type::Enum) { 15367 return isLayoutCompatible(C, 15368 cast<EnumType>(T1)->getDecl(), 15369 cast<EnumType>(T2)->getDecl()); 15370 } else if (TC1 == Type::Record) { 15371 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 15372 return false; 15373 15374 return isLayoutCompatible(C, 15375 cast<RecordType>(T1)->getDecl(), 15376 cast<RecordType>(T2)->getDecl()); 15377 } 15378 15379 return false; 15380 } 15381 15382 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 15383 15384 /// Given a type tag expression find the type tag itself. 15385 /// 15386 /// \param TypeExpr Type tag expression, as it appears in user's code. 15387 /// 15388 /// \param VD Declaration of an identifier that appears in a type tag. 15389 /// 15390 /// \param MagicValue Type tag magic value. 15391 /// 15392 /// \param isConstantEvaluated wether the evalaution should be performed in 15393 15394 /// constant context. 15395 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 15396 const ValueDecl **VD, uint64_t *MagicValue, 15397 bool isConstantEvaluated) { 15398 while(true) { 15399 if (!TypeExpr) 15400 return false; 15401 15402 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 15403 15404 switch (TypeExpr->getStmtClass()) { 15405 case Stmt::UnaryOperatorClass: { 15406 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 15407 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 15408 TypeExpr = UO->getSubExpr(); 15409 continue; 15410 } 15411 return false; 15412 } 15413 15414 case Stmt::DeclRefExprClass: { 15415 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 15416 *VD = DRE->getDecl(); 15417 return true; 15418 } 15419 15420 case Stmt::IntegerLiteralClass: { 15421 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 15422 llvm::APInt MagicValueAPInt = IL->getValue(); 15423 if (MagicValueAPInt.getActiveBits() <= 64) { 15424 *MagicValue = MagicValueAPInt.getZExtValue(); 15425 return true; 15426 } else 15427 return false; 15428 } 15429 15430 case Stmt::BinaryConditionalOperatorClass: 15431 case Stmt::ConditionalOperatorClass: { 15432 const AbstractConditionalOperator *ACO = 15433 cast<AbstractConditionalOperator>(TypeExpr); 15434 bool Result; 15435 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 15436 isConstantEvaluated)) { 15437 if (Result) 15438 TypeExpr = ACO->getTrueExpr(); 15439 else 15440 TypeExpr = ACO->getFalseExpr(); 15441 continue; 15442 } 15443 return false; 15444 } 15445 15446 case Stmt::BinaryOperatorClass: { 15447 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 15448 if (BO->getOpcode() == BO_Comma) { 15449 TypeExpr = BO->getRHS(); 15450 continue; 15451 } 15452 return false; 15453 } 15454 15455 default: 15456 return false; 15457 } 15458 } 15459 } 15460 15461 /// Retrieve the C type corresponding to type tag TypeExpr. 15462 /// 15463 /// \param TypeExpr Expression that specifies a type tag. 15464 /// 15465 /// \param MagicValues Registered magic values. 15466 /// 15467 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 15468 /// kind. 15469 /// 15470 /// \param TypeInfo Information about the corresponding C type. 15471 /// 15472 /// \param isConstantEvaluated wether the evalaution should be performed in 15473 /// constant context. 15474 /// 15475 /// \returns true if the corresponding C type was found. 15476 static bool GetMatchingCType( 15477 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 15478 const ASTContext &Ctx, 15479 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 15480 *MagicValues, 15481 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 15482 bool isConstantEvaluated) { 15483 FoundWrongKind = false; 15484 15485 // Variable declaration that has type_tag_for_datatype attribute. 15486 const ValueDecl *VD = nullptr; 15487 15488 uint64_t MagicValue; 15489 15490 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 15491 return false; 15492 15493 if (VD) { 15494 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 15495 if (I->getArgumentKind() != ArgumentKind) { 15496 FoundWrongKind = true; 15497 return false; 15498 } 15499 TypeInfo.Type = I->getMatchingCType(); 15500 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 15501 TypeInfo.MustBeNull = I->getMustBeNull(); 15502 return true; 15503 } 15504 return false; 15505 } 15506 15507 if (!MagicValues) 15508 return false; 15509 15510 llvm::DenseMap<Sema::TypeTagMagicValue, 15511 Sema::TypeTagData>::const_iterator I = 15512 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 15513 if (I == MagicValues->end()) 15514 return false; 15515 15516 TypeInfo = I->second; 15517 return true; 15518 } 15519 15520 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 15521 uint64_t MagicValue, QualType Type, 15522 bool LayoutCompatible, 15523 bool MustBeNull) { 15524 if (!TypeTagForDatatypeMagicValues) 15525 TypeTagForDatatypeMagicValues.reset( 15526 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 15527 15528 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 15529 (*TypeTagForDatatypeMagicValues)[Magic] = 15530 TypeTagData(Type, LayoutCompatible, MustBeNull); 15531 } 15532 15533 static bool IsSameCharType(QualType T1, QualType T2) { 15534 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 15535 if (!BT1) 15536 return false; 15537 15538 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 15539 if (!BT2) 15540 return false; 15541 15542 BuiltinType::Kind T1Kind = BT1->getKind(); 15543 BuiltinType::Kind T2Kind = BT2->getKind(); 15544 15545 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 15546 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 15547 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 15548 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 15549 } 15550 15551 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 15552 const ArrayRef<const Expr *> ExprArgs, 15553 SourceLocation CallSiteLoc) { 15554 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 15555 bool IsPointerAttr = Attr->getIsPointer(); 15556 15557 // Retrieve the argument representing the 'type_tag'. 15558 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 15559 if (TypeTagIdxAST >= ExprArgs.size()) { 15560 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15561 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 15562 return; 15563 } 15564 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 15565 bool FoundWrongKind; 15566 TypeTagData TypeInfo; 15567 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 15568 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 15569 TypeInfo, isConstantEvaluated())) { 15570 if (FoundWrongKind) 15571 Diag(TypeTagExpr->getExprLoc(), 15572 diag::warn_type_tag_for_datatype_wrong_kind) 15573 << TypeTagExpr->getSourceRange(); 15574 return; 15575 } 15576 15577 // Retrieve the argument representing the 'arg_idx'. 15578 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 15579 if (ArgumentIdxAST >= ExprArgs.size()) { 15580 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15581 << 1 << Attr->getArgumentIdx().getSourceIndex(); 15582 return; 15583 } 15584 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 15585 if (IsPointerAttr) { 15586 // Skip implicit cast of pointer to `void *' (as a function argument). 15587 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 15588 if (ICE->getType()->isVoidPointerType() && 15589 ICE->getCastKind() == CK_BitCast) 15590 ArgumentExpr = ICE->getSubExpr(); 15591 } 15592 QualType ArgumentType = ArgumentExpr->getType(); 15593 15594 // Passing a `void*' pointer shouldn't trigger a warning. 15595 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 15596 return; 15597 15598 if (TypeInfo.MustBeNull) { 15599 // Type tag with matching void type requires a null pointer. 15600 if (!ArgumentExpr->isNullPointerConstant(Context, 15601 Expr::NPC_ValueDependentIsNotNull)) { 15602 Diag(ArgumentExpr->getExprLoc(), 15603 diag::warn_type_safety_null_pointer_required) 15604 << ArgumentKind->getName() 15605 << ArgumentExpr->getSourceRange() 15606 << TypeTagExpr->getSourceRange(); 15607 } 15608 return; 15609 } 15610 15611 QualType RequiredType = TypeInfo.Type; 15612 if (IsPointerAttr) 15613 RequiredType = Context.getPointerType(RequiredType); 15614 15615 bool mismatch = false; 15616 if (!TypeInfo.LayoutCompatible) { 15617 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 15618 15619 // C++11 [basic.fundamental] p1: 15620 // Plain char, signed char, and unsigned char are three distinct types. 15621 // 15622 // But we treat plain `char' as equivalent to `signed char' or `unsigned 15623 // char' depending on the current char signedness mode. 15624 if (mismatch) 15625 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 15626 RequiredType->getPointeeType())) || 15627 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 15628 mismatch = false; 15629 } else 15630 if (IsPointerAttr) 15631 mismatch = !isLayoutCompatible(Context, 15632 ArgumentType->getPointeeType(), 15633 RequiredType->getPointeeType()); 15634 else 15635 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 15636 15637 if (mismatch) 15638 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 15639 << ArgumentType << ArgumentKind 15640 << TypeInfo.LayoutCompatible << RequiredType 15641 << ArgumentExpr->getSourceRange() 15642 << TypeTagExpr->getSourceRange(); 15643 } 15644 15645 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 15646 CharUnits Alignment) { 15647 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 15648 } 15649 15650 void Sema::DiagnoseMisalignedMembers() { 15651 for (MisalignedMember &m : MisalignedMembers) { 15652 const NamedDecl *ND = m.RD; 15653 if (ND->getName().empty()) { 15654 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 15655 ND = TD; 15656 } 15657 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 15658 << m.MD << ND << m.E->getSourceRange(); 15659 } 15660 MisalignedMembers.clear(); 15661 } 15662 15663 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 15664 E = E->IgnoreParens(); 15665 if (!T->isPointerType() && !T->isIntegerType()) 15666 return; 15667 if (isa<UnaryOperator>(E) && 15668 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 15669 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 15670 if (isa<MemberExpr>(Op)) { 15671 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 15672 if (MA != MisalignedMembers.end() && 15673 (T->isIntegerType() || 15674 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 15675 Context.getTypeAlignInChars( 15676 T->getPointeeType()) <= MA->Alignment)))) 15677 MisalignedMembers.erase(MA); 15678 } 15679 } 15680 } 15681 15682 void Sema::RefersToMemberWithReducedAlignment( 15683 Expr *E, 15684 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 15685 Action) { 15686 const auto *ME = dyn_cast<MemberExpr>(E); 15687 if (!ME) 15688 return; 15689 15690 // No need to check expressions with an __unaligned-qualified type. 15691 if (E->getType().getQualifiers().hasUnaligned()) 15692 return; 15693 15694 // For a chain of MemberExpr like "a.b.c.d" this list 15695 // will keep FieldDecl's like [d, c, b]. 15696 SmallVector<FieldDecl *, 4> ReverseMemberChain; 15697 const MemberExpr *TopME = nullptr; 15698 bool AnyIsPacked = false; 15699 do { 15700 QualType BaseType = ME->getBase()->getType(); 15701 if (BaseType->isDependentType()) 15702 return; 15703 if (ME->isArrow()) 15704 BaseType = BaseType->getPointeeType(); 15705 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 15706 if (RD->isInvalidDecl()) 15707 return; 15708 15709 ValueDecl *MD = ME->getMemberDecl(); 15710 auto *FD = dyn_cast<FieldDecl>(MD); 15711 // We do not care about non-data members. 15712 if (!FD || FD->isInvalidDecl()) 15713 return; 15714 15715 AnyIsPacked = 15716 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 15717 ReverseMemberChain.push_back(FD); 15718 15719 TopME = ME; 15720 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 15721 } while (ME); 15722 assert(TopME && "We did not compute a topmost MemberExpr!"); 15723 15724 // Not the scope of this diagnostic. 15725 if (!AnyIsPacked) 15726 return; 15727 15728 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 15729 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 15730 // TODO: The innermost base of the member expression may be too complicated. 15731 // For now, just disregard these cases. This is left for future 15732 // improvement. 15733 if (!DRE && !isa<CXXThisExpr>(TopBase)) 15734 return; 15735 15736 // Alignment expected by the whole expression. 15737 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 15738 15739 // No need to do anything else with this case. 15740 if (ExpectedAlignment.isOne()) 15741 return; 15742 15743 // Synthesize offset of the whole access. 15744 CharUnits Offset; 15745 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 15746 I++) { 15747 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 15748 } 15749 15750 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 15751 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 15752 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 15753 15754 // The base expression of the innermost MemberExpr may give 15755 // stronger guarantees than the class containing the member. 15756 if (DRE && !TopME->isArrow()) { 15757 const ValueDecl *VD = DRE->getDecl(); 15758 if (!VD->getType()->isReferenceType()) 15759 CompleteObjectAlignment = 15760 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 15761 } 15762 15763 // Check if the synthesized offset fulfills the alignment. 15764 if (Offset % ExpectedAlignment != 0 || 15765 // It may fulfill the offset it but the effective alignment may still be 15766 // lower than the expected expression alignment. 15767 CompleteObjectAlignment < ExpectedAlignment) { 15768 // If this happens, we want to determine a sensible culprit of this. 15769 // Intuitively, watching the chain of member expressions from right to 15770 // left, we start with the required alignment (as required by the field 15771 // type) but some packed attribute in that chain has reduced the alignment. 15772 // It may happen that another packed structure increases it again. But if 15773 // we are here such increase has not been enough. So pointing the first 15774 // FieldDecl that either is packed or else its RecordDecl is, 15775 // seems reasonable. 15776 FieldDecl *FD = nullptr; 15777 CharUnits Alignment; 15778 for (FieldDecl *FDI : ReverseMemberChain) { 15779 if (FDI->hasAttr<PackedAttr>() || 15780 FDI->getParent()->hasAttr<PackedAttr>()) { 15781 FD = FDI; 15782 Alignment = std::min( 15783 Context.getTypeAlignInChars(FD->getType()), 15784 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 15785 break; 15786 } 15787 } 15788 assert(FD && "We did not find a packed FieldDecl!"); 15789 Action(E, FD->getParent(), FD, Alignment); 15790 } 15791 } 15792 15793 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 15794 using namespace std::placeholders; 15795 15796 RefersToMemberWithReducedAlignment( 15797 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 15798 _2, _3, _4)); 15799 } 15800 15801 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 15802 ExprResult CallResult) { 15803 if (checkArgCount(*this, TheCall, 1)) 15804 return ExprError(); 15805 15806 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 15807 if (MatrixArg.isInvalid()) 15808 return MatrixArg; 15809 Expr *Matrix = MatrixArg.get(); 15810 15811 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 15812 if (!MType) { 15813 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 15814 return ExprError(); 15815 } 15816 15817 // Create returned matrix type by swapping rows and columns of the argument 15818 // matrix type. 15819 QualType ResultType = Context.getConstantMatrixType( 15820 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 15821 15822 // Change the return type to the type of the returned matrix. 15823 TheCall->setType(ResultType); 15824 15825 // Update call argument to use the possibly converted matrix argument. 15826 TheCall->setArg(0, Matrix); 15827 return CallResult; 15828 } 15829 15830 // Get and verify the matrix dimensions. 15831 static llvm::Optional<unsigned> 15832 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 15833 SourceLocation ErrorPos; 15834 Optional<llvm::APSInt> Value = 15835 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 15836 if (!Value) { 15837 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 15838 << Name; 15839 return {}; 15840 } 15841 uint64_t Dim = Value->getZExtValue(); 15842 if (!ConstantMatrixType::isDimensionValid(Dim)) { 15843 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 15844 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 15845 return {}; 15846 } 15847 return Dim; 15848 } 15849 15850 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 15851 ExprResult CallResult) { 15852 if (!getLangOpts().MatrixTypes) { 15853 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 15854 return ExprError(); 15855 } 15856 15857 if (checkArgCount(*this, TheCall, 4)) 15858 return ExprError(); 15859 15860 unsigned PtrArgIdx = 0; 15861 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15862 Expr *RowsExpr = TheCall->getArg(1); 15863 Expr *ColumnsExpr = TheCall->getArg(2); 15864 Expr *StrideExpr = TheCall->getArg(3); 15865 15866 bool ArgError = false; 15867 15868 // Check pointer argument. 15869 { 15870 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15871 if (PtrConv.isInvalid()) 15872 return PtrConv; 15873 PtrExpr = PtrConv.get(); 15874 TheCall->setArg(0, PtrExpr); 15875 if (PtrExpr->isTypeDependent()) { 15876 TheCall->setType(Context.DependentTy); 15877 return TheCall; 15878 } 15879 } 15880 15881 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15882 QualType ElementTy; 15883 if (!PtrTy) { 15884 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15885 << PtrArgIdx + 1; 15886 ArgError = true; 15887 } else { 15888 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 15889 15890 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 15891 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15892 << PtrArgIdx + 1; 15893 ArgError = true; 15894 } 15895 } 15896 15897 // Apply default Lvalue conversions and convert the expression to size_t. 15898 auto ApplyArgumentConversions = [this](Expr *E) { 15899 ExprResult Conv = DefaultLvalueConversion(E); 15900 if (Conv.isInvalid()) 15901 return Conv; 15902 15903 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 15904 }; 15905 15906 // Apply conversion to row and column expressions. 15907 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 15908 if (!RowsConv.isInvalid()) { 15909 RowsExpr = RowsConv.get(); 15910 TheCall->setArg(1, RowsExpr); 15911 } else 15912 RowsExpr = nullptr; 15913 15914 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 15915 if (!ColumnsConv.isInvalid()) { 15916 ColumnsExpr = ColumnsConv.get(); 15917 TheCall->setArg(2, ColumnsExpr); 15918 } else 15919 ColumnsExpr = nullptr; 15920 15921 // If any any part of the result matrix type is still pending, just use 15922 // Context.DependentTy, until all parts are resolved. 15923 if ((RowsExpr && RowsExpr->isTypeDependent()) || 15924 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 15925 TheCall->setType(Context.DependentTy); 15926 return CallResult; 15927 } 15928 15929 // Check row and column dimenions. 15930 llvm::Optional<unsigned> MaybeRows; 15931 if (RowsExpr) 15932 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 15933 15934 llvm::Optional<unsigned> MaybeColumns; 15935 if (ColumnsExpr) 15936 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 15937 15938 // Check stride argument. 15939 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 15940 if (StrideConv.isInvalid()) 15941 return ExprError(); 15942 StrideExpr = StrideConv.get(); 15943 TheCall->setArg(3, StrideExpr); 15944 15945 if (MaybeRows) { 15946 if (Optional<llvm::APSInt> Value = 15947 StrideExpr->getIntegerConstantExpr(Context)) { 15948 uint64_t Stride = Value->getZExtValue(); 15949 if (Stride < *MaybeRows) { 15950 Diag(StrideExpr->getBeginLoc(), 15951 diag::err_builtin_matrix_stride_too_small); 15952 ArgError = true; 15953 } 15954 } 15955 } 15956 15957 if (ArgError || !MaybeRows || !MaybeColumns) 15958 return ExprError(); 15959 15960 TheCall->setType( 15961 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 15962 return CallResult; 15963 } 15964 15965 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 15966 ExprResult CallResult) { 15967 if (checkArgCount(*this, TheCall, 3)) 15968 return ExprError(); 15969 15970 unsigned PtrArgIdx = 1; 15971 Expr *MatrixExpr = TheCall->getArg(0); 15972 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15973 Expr *StrideExpr = TheCall->getArg(2); 15974 15975 bool ArgError = false; 15976 15977 { 15978 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 15979 if (MatrixConv.isInvalid()) 15980 return MatrixConv; 15981 MatrixExpr = MatrixConv.get(); 15982 TheCall->setArg(0, MatrixExpr); 15983 } 15984 if (MatrixExpr->isTypeDependent()) { 15985 TheCall->setType(Context.DependentTy); 15986 return TheCall; 15987 } 15988 15989 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 15990 if (!MatrixTy) { 15991 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 15992 ArgError = true; 15993 } 15994 15995 { 15996 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15997 if (PtrConv.isInvalid()) 15998 return PtrConv; 15999 PtrExpr = PtrConv.get(); 16000 TheCall->setArg(1, PtrExpr); 16001 if (PtrExpr->isTypeDependent()) { 16002 TheCall->setType(Context.DependentTy); 16003 return TheCall; 16004 } 16005 } 16006 16007 // Check pointer argument. 16008 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16009 if (!PtrTy) { 16010 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16011 << PtrArgIdx + 1; 16012 ArgError = true; 16013 } else { 16014 QualType ElementTy = PtrTy->getPointeeType(); 16015 if (ElementTy.isConstQualified()) { 16016 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 16017 ArgError = true; 16018 } 16019 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 16020 if (MatrixTy && 16021 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 16022 Diag(PtrExpr->getBeginLoc(), 16023 diag::err_builtin_matrix_pointer_arg_mismatch) 16024 << ElementTy << MatrixTy->getElementType(); 16025 ArgError = true; 16026 } 16027 } 16028 16029 // Apply default Lvalue conversions and convert the stride expression to 16030 // size_t. 16031 { 16032 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 16033 if (StrideConv.isInvalid()) 16034 return StrideConv; 16035 16036 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 16037 if (StrideConv.isInvalid()) 16038 return StrideConv; 16039 StrideExpr = StrideConv.get(); 16040 TheCall->setArg(2, StrideExpr); 16041 } 16042 16043 // Check stride argument. 16044 if (MatrixTy) { 16045 if (Optional<llvm::APSInt> Value = 16046 StrideExpr->getIntegerConstantExpr(Context)) { 16047 uint64_t Stride = Value->getZExtValue(); 16048 if (Stride < MatrixTy->getNumRows()) { 16049 Diag(StrideExpr->getBeginLoc(), 16050 diag::err_builtin_matrix_stride_too_small); 16051 ArgError = true; 16052 } 16053 } 16054 } 16055 16056 if (ArgError) 16057 return ExprError(); 16058 16059 return CallResult; 16060 } 16061