1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSet.h" 79 #include "llvm/ADT/StringSwitch.h" 80 #include "llvm/ADT/Triple.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ConvertUTF.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/Locale.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/SaveAndRestore.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 #include <bitset> 93 #include <cassert> 94 #include <cctype> 95 #include <cstddef> 96 #include <cstdint> 97 #include <functional> 98 #include <limits> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 103 using namespace clang; 104 using namespace sema; 105 106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 107 unsigned ByteNo) const { 108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 109 Context.getTargetInfo()); 110 } 111 112 /// Checks that a call expression's argument count is the desired number. 113 /// This is useful when doing custom type-checking. Returns true on error. 114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 115 unsigned argCount = call->getNumArgs(); 116 if (argCount == desiredArgCount) return false; 117 118 if (argCount < desiredArgCount) 119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 120 << 0 /*function call*/ << desiredArgCount << argCount 121 << call->getSourceRange(); 122 123 // Highlight all the excess arguments. 124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 125 call->getArg(argCount - 1)->getEndLoc()); 126 127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 128 << 0 /*function call*/ << desiredArgCount << argCount 129 << call->getArg(1)->getSourceRange(); 130 } 131 132 /// Check that the first argument to __builtin_annotation is an integer 133 /// and the second argument is a non-wide string literal. 134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 135 if (checkArgCount(S, TheCall, 2)) 136 return true; 137 138 // First argument should be an integer. 139 Expr *ValArg = TheCall->getArg(0); 140 QualType Ty = ValArg->getType(); 141 if (!Ty->isIntegerType()) { 142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 143 << ValArg->getSourceRange(); 144 return true; 145 } 146 147 // Second argument should be a constant string. 148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 150 if (!Literal || !Literal->isAscii()) { 151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 152 << StrArg->getSourceRange(); 153 return true; 154 } 155 156 TheCall->setType(Ty); 157 return false; 158 } 159 160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 161 // We need at least one argument. 162 if (TheCall->getNumArgs() < 1) { 163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 164 << 0 << 1 << TheCall->getNumArgs() 165 << TheCall->getCallee()->getSourceRange(); 166 return true; 167 } 168 169 // All arguments should be wide string literals. 170 for (Expr *Arg : TheCall->arguments()) { 171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 172 if (!Literal || !Literal->isWide()) { 173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 174 << Arg->getSourceRange(); 175 return true; 176 } 177 } 178 179 return false; 180 } 181 182 /// Check that the argument to __builtin_addressof is a glvalue, and set the 183 /// result type to the corresponding pointer type. 184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 185 if (checkArgCount(S, TheCall, 1)) 186 return true; 187 188 ExprResult Arg(TheCall->getArg(0)); 189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 190 if (ResultType.isNull()) 191 return true; 192 193 TheCall->setArg(0, Arg.get()); 194 TheCall->setType(ResultType); 195 return false; 196 } 197 198 /// Check the number of arguments and set the result type to 199 /// the argument type. 200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 201 if (checkArgCount(S, TheCall, 1)) 202 return true; 203 204 TheCall->setType(TheCall->getArg(0)->getType()); 205 return false; 206 } 207 208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 210 /// type (but not a function pointer) and that the alignment is a power-of-two. 211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 212 if (checkArgCount(S, TheCall, 2)) 213 return true; 214 215 clang::Expr *Source = TheCall->getArg(0); 216 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 217 218 auto IsValidIntegerType = [](QualType Ty) { 219 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 220 }; 221 QualType SrcTy = Source->getType(); 222 // We should also be able to use it with arrays (but not functions!). 223 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 224 SrcTy = S.Context.getDecayedType(SrcTy); 225 } 226 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 227 SrcTy->isFunctionPointerType()) { 228 // FIXME: this is not quite the right error message since we don't allow 229 // floating point types, or member pointers. 230 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 231 << SrcTy; 232 return true; 233 } 234 235 clang::Expr *AlignOp = TheCall->getArg(1); 236 if (!IsValidIntegerType(AlignOp->getType())) { 237 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 238 << AlignOp->getType(); 239 return true; 240 } 241 Expr::EvalResult AlignResult; 242 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 243 // We can't check validity of alignment if it is value dependent. 244 if (!AlignOp->isValueDependent() && 245 AlignOp->EvaluateAsInt(AlignResult, S.Context, 246 Expr::SE_AllowSideEffects)) { 247 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 248 llvm::APSInt MaxValue( 249 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 250 if (AlignValue < 1) { 251 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 252 return true; 253 } 254 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 255 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 256 << MaxValue.toString(10); 257 return true; 258 } 259 if (!AlignValue.isPowerOf2()) { 260 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 261 return true; 262 } 263 if (AlignValue == 1) { 264 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 265 << IsBooleanAlignBuiltin; 266 } 267 } 268 269 ExprResult SrcArg = S.PerformCopyInitialization( 270 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 271 SourceLocation(), Source); 272 if (SrcArg.isInvalid()) 273 return true; 274 TheCall->setArg(0, SrcArg.get()); 275 ExprResult AlignArg = 276 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 277 S.Context, AlignOp->getType(), false), 278 SourceLocation(), AlignOp); 279 if (AlignArg.isInvalid()) 280 return true; 281 TheCall->setArg(1, AlignArg.get()); 282 // For align_up/align_down, the return type is the same as the (potentially 283 // decayed) argument type including qualifiers. For is_aligned(), the result 284 // is always bool. 285 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 286 return false; 287 } 288 289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 290 unsigned BuiltinID) { 291 if (checkArgCount(S, TheCall, 3)) 292 return true; 293 294 // First two arguments should be integers. 295 for (unsigned I = 0; I < 2; ++I) { 296 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 297 if (Arg.isInvalid()) return true; 298 TheCall->setArg(I, Arg.get()); 299 300 QualType Ty = Arg.get()->getType(); 301 if (!Ty->isIntegerType()) { 302 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 303 << Ty << Arg.get()->getSourceRange(); 304 return true; 305 } 306 } 307 308 // Third argument should be a pointer to a non-const integer. 309 // IRGen correctly handles volatile, restrict, and address spaces, and 310 // the other qualifiers aren't possible. 311 { 312 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 313 if (Arg.isInvalid()) return true; 314 TheCall->setArg(2, Arg.get()); 315 316 QualType Ty = Arg.get()->getType(); 317 const auto *PtrTy = Ty->getAs<PointerType>(); 318 if (!PtrTy || 319 !PtrTy->getPointeeType()->isIntegerType() || 320 PtrTy->getPointeeType().isConstQualified()) { 321 S.Diag(Arg.get()->getBeginLoc(), 322 diag::err_overflow_builtin_must_be_ptr_int) 323 << Ty << Arg.get()->getSourceRange(); 324 return true; 325 } 326 } 327 328 // Disallow signed ExtIntType args larger than 128 bits to mul function until 329 // we improve backend support. 330 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 331 for (unsigned I = 0; I < 3; ++I) { 332 const auto Arg = TheCall->getArg(I); 333 // Third argument will be a pointer. 334 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 335 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 336 S.getASTContext().getIntWidth(Ty) > 128) 337 return S.Diag(Arg->getBeginLoc(), 338 diag::err_overflow_builtin_ext_int_max_size) 339 << 128; 340 } 341 } 342 343 return false; 344 } 345 346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 347 if (checkArgCount(S, BuiltinCall, 2)) 348 return true; 349 350 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 351 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 352 Expr *Call = BuiltinCall->getArg(0); 353 Expr *Chain = BuiltinCall->getArg(1); 354 355 if (Call->getStmtClass() != Stmt::CallExprClass) { 356 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 357 << Call->getSourceRange(); 358 return true; 359 } 360 361 auto CE = cast<CallExpr>(Call); 362 if (CE->getCallee()->getType()->isBlockPointerType()) { 363 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 364 << Call->getSourceRange(); 365 return true; 366 } 367 368 const Decl *TargetDecl = CE->getCalleeDecl(); 369 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 370 if (FD->getBuiltinID()) { 371 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 372 << Call->getSourceRange(); 373 return true; 374 } 375 376 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 377 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 378 << Call->getSourceRange(); 379 return true; 380 } 381 382 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 383 if (ChainResult.isInvalid()) 384 return true; 385 if (!ChainResult.get()->getType()->isPointerType()) { 386 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 387 << Chain->getSourceRange(); 388 return true; 389 } 390 391 QualType ReturnTy = CE->getCallReturnType(S.Context); 392 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 393 QualType BuiltinTy = S.Context.getFunctionType( 394 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 395 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 396 397 Builtin = 398 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 399 400 BuiltinCall->setType(CE->getType()); 401 BuiltinCall->setValueKind(CE->getValueKind()); 402 BuiltinCall->setObjectKind(CE->getObjectKind()); 403 BuiltinCall->setCallee(Builtin); 404 BuiltinCall->setArg(1, ChainResult.get()); 405 406 return false; 407 } 408 409 namespace { 410 411 class EstimateSizeFormatHandler 412 : public analyze_format_string::FormatStringHandler { 413 size_t Size; 414 415 public: 416 EstimateSizeFormatHandler(StringRef Format) 417 : Size(std::min(Format.find(0), Format.size()) + 418 1 /* null byte always written by sprintf */) {} 419 420 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 421 const char *, unsigned SpecifierLen) override { 422 423 const size_t FieldWidth = computeFieldWidth(FS); 424 const size_t Precision = computePrecision(FS); 425 426 // The actual format. 427 switch (FS.getConversionSpecifier().getKind()) { 428 // Just a char. 429 case analyze_format_string::ConversionSpecifier::cArg: 430 case analyze_format_string::ConversionSpecifier::CArg: 431 Size += std::max(FieldWidth, (size_t)1); 432 break; 433 // Just an integer. 434 case analyze_format_string::ConversionSpecifier::dArg: 435 case analyze_format_string::ConversionSpecifier::DArg: 436 case analyze_format_string::ConversionSpecifier::iArg: 437 case analyze_format_string::ConversionSpecifier::oArg: 438 case analyze_format_string::ConversionSpecifier::OArg: 439 case analyze_format_string::ConversionSpecifier::uArg: 440 case analyze_format_string::ConversionSpecifier::UArg: 441 case analyze_format_string::ConversionSpecifier::xArg: 442 case analyze_format_string::ConversionSpecifier::XArg: 443 Size += std::max(FieldWidth, Precision); 444 break; 445 446 // %g style conversion switches between %f or %e style dynamically. 447 // %f always takes less space, so default to it. 448 case analyze_format_string::ConversionSpecifier::gArg: 449 case analyze_format_string::ConversionSpecifier::GArg: 450 451 // Floating point number in the form '[+]ddd.ddd'. 452 case analyze_format_string::ConversionSpecifier::fArg: 453 case analyze_format_string::ConversionSpecifier::FArg: 454 Size += std::max(FieldWidth, 1 /* integer part */ + 455 (Precision ? 1 + Precision 456 : 0) /* period + decimal */); 457 break; 458 459 // Floating point number in the form '[-]d.ddde[+-]dd'. 460 case analyze_format_string::ConversionSpecifier::eArg: 461 case analyze_format_string::ConversionSpecifier::EArg: 462 Size += 463 std::max(FieldWidth, 464 1 /* integer part */ + 465 (Precision ? 1 + Precision : 0) /* period + decimal */ + 466 1 /* e or E letter */ + 2 /* exponent */); 467 break; 468 469 // Floating point number in the form '[-]0xh.hhhhp±dd'. 470 case analyze_format_string::ConversionSpecifier::aArg: 471 case analyze_format_string::ConversionSpecifier::AArg: 472 Size += 473 std::max(FieldWidth, 474 2 /* 0x */ + 1 /* integer part */ + 475 (Precision ? 1 + Precision : 0) /* period + decimal */ + 476 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 477 break; 478 479 // Just a string. 480 case analyze_format_string::ConversionSpecifier::sArg: 481 case analyze_format_string::ConversionSpecifier::SArg: 482 Size += FieldWidth; 483 break; 484 485 // Just a pointer in the form '0xddd'. 486 case analyze_format_string::ConversionSpecifier::pArg: 487 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 488 break; 489 490 // A plain percent. 491 case analyze_format_string::ConversionSpecifier::PercentArg: 492 Size += 1; 493 break; 494 495 default: 496 break; 497 } 498 499 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 500 501 if (FS.hasAlternativeForm()) { 502 switch (FS.getConversionSpecifier().getKind()) { 503 default: 504 break; 505 // Force a leading '0'. 506 case analyze_format_string::ConversionSpecifier::oArg: 507 Size += 1; 508 break; 509 // Force a leading '0x'. 510 case analyze_format_string::ConversionSpecifier::xArg: 511 case analyze_format_string::ConversionSpecifier::XArg: 512 Size += 2; 513 break; 514 // Force a period '.' before decimal, even if precision is 0. 515 case analyze_format_string::ConversionSpecifier::aArg: 516 case analyze_format_string::ConversionSpecifier::AArg: 517 case analyze_format_string::ConversionSpecifier::eArg: 518 case analyze_format_string::ConversionSpecifier::EArg: 519 case analyze_format_string::ConversionSpecifier::fArg: 520 case analyze_format_string::ConversionSpecifier::FArg: 521 case analyze_format_string::ConversionSpecifier::gArg: 522 case analyze_format_string::ConversionSpecifier::GArg: 523 Size += (Precision ? 0 : 1); 524 break; 525 } 526 } 527 assert(SpecifierLen <= Size && "no underflow"); 528 Size -= SpecifierLen; 529 return true; 530 } 531 532 size_t getSizeLowerBound() const { return Size; } 533 534 private: 535 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 536 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 537 size_t FieldWidth = 0; 538 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 539 FieldWidth = FW.getConstantAmount(); 540 return FieldWidth; 541 } 542 543 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 544 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 545 size_t Precision = 0; 546 547 // See man 3 printf for default precision value based on the specifier. 548 switch (FW.getHowSpecified()) { 549 case analyze_format_string::OptionalAmount::NotSpecified: 550 switch (FS.getConversionSpecifier().getKind()) { 551 default: 552 break; 553 case analyze_format_string::ConversionSpecifier::dArg: // %d 554 case analyze_format_string::ConversionSpecifier::DArg: // %D 555 case analyze_format_string::ConversionSpecifier::iArg: // %i 556 Precision = 1; 557 break; 558 case analyze_format_string::ConversionSpecifier::oArg: // %d 559 case analyze_format_string::ConversionSpecifier::OArg: // %D 560 case analyze_format_string::ConversionSpecifier::uArg: // %d 561 case analyze_format_string::ConversionSpecifier::UArg: // %D 562 case analyze_format_string::ConversionSpecifier::xArg: // %d 563 case analyze_format_string::ConversionSpecifier::XArg: // %D 564 Precision = 1; 565 break; 566 case analyze_format_string::ConversionSpecifier::fArg: // %f 567 case analyze_format_string::ConversionSpecifier::FArg: // %F 568 case analyze_format_string::ConversionSpecifier::eArg: // %e 569 case analyze_format_string::ConversionSpecifier::EArg: // %E 570 case analyze_format_string::ConversionSpecifier::gArg: // %g 571 case analyze_format_string::ConversionSpecifier::GArg: // %G 572 Precision = 6; 573 break; 574 case analyze_format_string::ConversionSpecifier::pArg: // %d 575 Precision = 1; 576 break; 577 } 578 break; 579 case analyze_format_string::OptionalAmount::Constant: 580 Precision = FW.getConstantAmount(); 581 break; 582 default: 583 break; 584 } 585 return Precision; 586 } 587 }; 588 589 } // namespace 590 591 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 592 /// __builtin_*_chk function, then use the object size argument specified in the 593 /// source. Otherwise, infer the object size using __builtin_object_size. 594 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 595 CallExpr *TheCall) { 596 // FIXME: There are some more useful checks we could be doing here: 597 // - Evaluate strlen of strcpy arguments, use as object size. 598 599 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 600 isConstantEvaluated()) 601 return; 602 603 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 604 if (!BuiltinID) 605 return; 606 607 const TargetInfo &TI = getASTContext().getTargetInfo(); 608 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 609 610 unsigned DiagID = 0; 611 bool IsChkVariant = false; 612 Optional<llvm::APSInt> UsedSize; 613 unsigned SizeIndex, ObjectIndex; 614 switch (BuiltinID) { 615 default: 616 return; 617 case Builtin::BIsprintf: 618 case Builtin::BI__builtin___sprintf_chk: { 619 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 620 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 621 622 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 623 624 if (!Format->isAscii() && !Format->isUTF8()) 625 return; 626 627 StringRef FormatStrRef = Format->getString(); 628 EstimateSizeFormatHandler H(FormatStrRef); 629 const char *FormatBytes = FormatStrRef.data(); 630 const ConstantArrayType *T = 631 Context.getAsConstantArrayType(Format->getType()); 632 assert(T && "String literal not of constant array type!"); 633 size_t TypeSize = T->getSize().getZExtValue(); 634 635 // In case there's a null byte somewhere. 636 size_t StrLen = 637 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 638 if (!analyze_format_string::ParsePrintfString( 639 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 640 Context.getTargetInfo(), false)) { 641 DiagID = diag::warn_fortify_source_format_overflow; 642 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 643 .extOrTrunc(SizeTypeWidth); 644 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 645 IsChkVariant = true; 646 ObjectIndex = 2; 647 } else { 648 IsChkVariant = false; 649 ObjectIndex = 0; 650 } 651 break; 652 } 653 } 654 return; 655 } 656 case Builtin::BI__builtin___memcpy_chk: 657 case Builtin::BI__builtin___memmove_chk: 658 case Builtin::BI__builtin___memset_chk: 659 case Builtin::BI__builtin___strlcat_chk: 660 case Builtin::BI__builtin___strlcpy_chk: 661 case Builtin::BI__builtin___strncat_chk: 662 case Builtin::BI__builtin___strncpy_chk: 663 case Builtin::BI__builtin___stpncpy_chk: 664 case Builtin::BI__builtin___memccpy_chk: 665 case Builtin::BI__builtin___mempcpy_chk: { 666 DiagID = diag::warn_builtin_chk_overflow; 667 IsChkVariant = true; 668 SizeIndex = TheCall->getNumArgs() - 2; 669 ObjectIndex = TheCall->getNumArgs() - 1; 670 break; 671 } 672 673 case Builtin::BI__builtin___snprintf_chk: 674 case Builtin::BI__builtin___vsnprintf_chk: { 675 DiagID = diag::warn_builtin_chk_overflow; 676 IsChkVariant = true; 677 SizeIndex = 1; 678 ObjectIndex = 3; 679 break; 680 } 681 682 case Builtin::BIstrncat: 683 case Builtin::BI__builtin_strncat: 684 case Builtin::BIstrncpy: 685 case Builtin::BI__builtin_strncpy: 686 case Builtin::BIstpncpy: 687 case Builtin::BI__builtin_stpncpy: { 688 // Whether these functions overflow depends on the runtime strlen of the 689 // string, not just the buffer size, so emitting the "always overflow" 690 // diagnostic isn't quite right. We should still diagnose passing a buffer 691 // size larger than the destination buffer though; this is a runtime abort 692 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 693 DiagID = diag::warn_fortify_source_size_mismatch; 694 SizeIndex = TheCall->getNumArgs() - 1; 695 ObjectIndex = 0; 696 break; 697 } 698 699 case Builtin::BImemcpy: 700 case Builtin::BI__builtin_memcpy: 701 case Builtin::BImemmove: 702 case Builtin::BI__builtin_memmove: 703 case Builtin::BImemset: 704 case Builtin::BI__builtin_memset: 705 case Builtin::BImempcpy: 706 case Builtin::BI__builtin_mempcpy: { 707 DiagID = diag::warn_fortify_source_overflow; 708 SizeIndex = TheCall->getNumArgs() - 1; 709 ObjectIndex = 0; 710 break; 711 } 712 case Builtin::BIsnprintf: 713 case Builtin::BI__builtin_snprintf: 714 case Builtin::BIvsnprintf: 715 case Builtin::BI__builtin_vsnprintf: { 716 DiagID = diag::warn_fortify_source_size_mismatch; 717 SizeIndex = 1; 718 ObjectIndex = 0; 719 break; 720 } 721 } 722 723 llvm::APSInt ObjectSize; 724 // For __builtin___*_chk, the object size is explicitly provided by the caller 725 // (usually using __builtin_object_size). Use that value to check this call. 726 if (IsChkVariant) { 727 Expr::EvalResult Result; 728 Expr *SizeArg = TheCall->getArg(ObjectIndex); 729 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 730 return; 731 ObjectSize = Result.Val.getInt(); 732 733 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 734 } else { 735 // If the parameter has a pass_object_size attribute, then we should use its 736 // (potentially) more strict checking mode. Otherwise, conservatively assume 737 // type 0. 738 int BOSType = 0; 739 if (const auto *POS = 740 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 741 BOSType = POS->getType(); 742 743 Expr *ObjArg = TheCall->getArg(ObjectIndex); 744 uint64_t Result; 745 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 746 return; 747 // Get the object size in the target's size_t width. 748 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 749 } 750 751 // Evaluate the number of bytes of the object that this call will use. 752 if (!UsedSize) { 753 Expr::EvalResult Result; 754 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 755 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 756 return; 757 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 758 } 759 760 if (UsedSize.getValue().ule(ObjectSize)) 761 return; 762 763 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 764 // Skim off the details of whichever builtin was called to produce a better 765 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 766 if (IsChkVariant) { 767 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 768 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 769 } else if (FunctionName.startswith("__builtin_")) { 770 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 771 } 772 773 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 774 PDiag(DiagID) 775 << FunctionName << ObjectSize.toString(/*Radix=*/10) 776 << UsedSize.getValue().toString(/*Radix=*/10)); 777 } 778 779 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 780 Scope::ScopeFlags NeededScopeFlags, 781 unsigned DiagID) { 782 // Scopes aren't available during instantiation. Fortunately, builtin 783 // functions cannot be template args so they cannot be formed through template 784 // instantiation. Therefore checking once during the parse is sufficient. 785 if (SemaRef.inTemplateInstantiation()) 786 return false; 787 788 Scope *S = SemaRef.getCurScope(); 789 while (S && !S->isSEHExceptScope()) 790 S = S->getParent(); 791 if (!S || !(S->getFlags() & NeededScopeFlags)) { 792 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 793 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 794 << DRE->getDecl()->getIdentifier(); 795 return true; 796 } 797 798 return false; 799 } 800 801 static inline bool isBlockPointer(Expr *Arg) { 802 return Arg->getType()->isBlockPointerType(); 803 } 804 805 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 806 /// void*, which is a requirement of device side enqueue. 807 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 808 const BlockPointerType *BPT = 809 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 810 ArrayRef<QualType> Params = 811 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 812 unsigned ArgCounter = 0; 813 bool IllegalParams = false; 814 // Iterate through the block parameters until either one is found that is not 815 // a local void*, or the block is valid. 816 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 817 I != E; ++I, ++ArgCounter) { 818 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 819 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 820 LangAS::opencl_local) { 821 // Get the location of the error. If a block literal has been passed 822 // (BlockExpr) then we can point straight to the offending argument, 823 // else we just point to the variable reference. 824 SourceLocation ErrorLoc; 825 if (isa<BlockExpr>(BlockArg)) { 826 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 827 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 828 } else if (isa<DeclRefExpr>(BlockArg)) { 829 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 830 } 831 S.Diag(ErrorLoc, 832 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 833 IllegalParams = true; 834 } 835 } 836 837 return IllegalParams; 838 } 839 840 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 841 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) { 842 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 843 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 844 return true; 845 } 846 return false; 847 } 848 849 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 850 if (checkArgCount(S, TheCall, 2)) 851 return true; 852 853 if (checkOpenCLSubgroupExt(S, TheCall)) 854 return true; 855 856 // First argument is an ndrange_t type. 857 Expr *NDRangeArg = TheCall->getArg(0); 858 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 859 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 860 << TheCall->getDirectCallee() << "'ndrange_t'"; 861 return true; 862 } 863 864 Expr *BlockArg = TheCall->getArg(1); 865 if (!isBlockPointer(BlockArg)) { 866 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 867 << TheCall->getDirectCallee() << "block"; 868 return true; 869 } 870 return checkOpenCLBlockArgs(S, BlockArg); 871 } 872 873 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 874 /// get_kernel_work_group_size 875 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 876 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 877 if (checkArgCount(S, TheCall, 1)) 878 return true; 879 880 Expr *BlockArg = TheCall->getArg(0); 881 if (!isBlockPointer(BlockArg)) { 882 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 883 << TheCall->getDirectCallee() << "block"; 884 return true; 885 } 886 return checkOpenCLBlockArgs(S, BlockArg); 887 } 888 889 /// Diagnose integer type and any valid implicit conversion to it. 890 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 891 const QualType &IntType); 892 893 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 894 unsigned Start, unsigned End) { 895 bool IllegalParams = false; 896 for (unsigned I = Start; I <= End; ++I) 897 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 898 S.Context.getSizeType()); 899 return IllegalParams; 900 } 901 902 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 903 /// 'local void*' parameter of passed block. 904 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 905 Expr *BlockArg, 906 unsigned NumNonVarArgs) { 907 const BlockPointerType *BPT = 908 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 909 unsigned NumBlockParams = 910 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 911 unsigned TotalNumArgs = TheCall->getNumArgs(); 912 913 // For each argument passed to the block, a corresponding uint needs to 914 // be passed to describe the size of the local memory. 915 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 916 S.Diag(TheCall->getBeginLoc(), 917 diag::err_opencl_enqueue_kernel_local_size_args); 918 return true; 919 } 920 921 // Check that the sizes of the local memory are specified by integers. 922 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 923 TotalNumArgs - 1); 924 } 925 926 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 927 /// overload formats specified in Table 6.13.17.1. 928 /// int enqueue_kernel(queue_t queue, 929 /// kernel_enqueue_flags_t flags, 930 /// const ndrange_t ndrange, 931 /// void (^block)(void)) 932 /// int enqueue_kernel(queue_t queue, 933 /// kernel_enqueue_flags_t flags, 934 /// const ndrange_t ndrange, 935 /// uint num_events_in_wait_list, 936 /// clk_event_t *event_wait_list, 937 /// clk_event_t *event_ret, 938 /// void (^block)(void)) 939 /// int enqueue_kernel(queue_t queue, 940 /// kernel_enqueue_flags_t flags, 941 /// const ndrange_t ndrange, 942 /// void (^block)(local void*, ...), 943 /// uint size0, ...) 944 /// int enqueue_kernel(queue_t queue, 945 /// kernel_enqueue_flags_t flags, 946 /// const ndrange_t ndrange, 947 /// uint num_events_in_wait_list, 948 /// clk_event_t *event_wait_list, 949 /// clk_event_t *event_ret, 950 /// void (^block)(local void*, ...), 951 /// uint size0, ...) 952 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 953 unsigned NumArgs = TheCall->getNumArgs(); 954 955 if (NumArgs < 4) { 956 S.Diag(TheCall->getBeginLoc(), 957 diag::err_typecheck_call_too_few_args_at_least) 958 << 0 << 4 << NumArgs; 959 return true; 960 } 961 962 Expr *Arg0 = TheCall->getArg(0); 963 Expr *Arg1 = TheCall->getArg(1); 964 Expr *Arg2 = TheCall->getArg(2); 965 Expr *Arg3 = TheCall->getArg(3); 966 967 // First argument always needs to be a queue_t type. 968 if (!Arg0->getType()->isQueueT()) { 969 S.Diag(TheCall->getArg(0)->getBeginLoc(), 970 diag::err_opencl_builtin_expected_type) 971 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 972 return true; 973 } 974 975 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 976 if (!Arg1->getType()->isIntegerType()) { 977 S.Diag(TheCall->getArg(1)->getBeginLoc(), 978 diag::err_opencl_builtin_expected_type) 979 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 980 return true; 981 } 982 983 // Third argument is always an ndrange_t type. 984 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 985 S.Diag(TheCall->getArg(2)->getBeginLoc(), 986 diag::err_opencl_builtin_expected_type) 987 << TheCall->getDirectCallee() << "'ndrange_t'"; 988 return true; 989 } 990 991 // With four arguments, there is only one form that the function could be 992 // called in: no events and no variable arguments. 993 if (NumArgs == 4) { 994 // check that the last argument is the right block type. 995 if (!isBlockPointer(Arg3)) { 996 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 997 << TheCall->getDirectCallee() << "block"; 998 return true; 999 } 1000 // we have a block type, check the prototype 1001 const BlockPointerType *BPT = 1002 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1003 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1004 S.Diag(Arg3->getBeginLoc(), 1005 diag::err_opencl_enqueue_kernel_blocks_no_args); 1006 return true; 1007 } 1008 return false; 1009 } 1010 // we can have block + varargs. 1011 if (isBlockPointer(Arg3)) 1012 return (checkOpenCLBlockArgs(S, Arg3) || 1013 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1014 // last two cases with either exactly 7 args or 7 args and varargs. 1015 if (NumArgs >= 7) { 1016 // check common block argument. 1017 Expr *Arg6 = TheCall->getArg(6); 1018 if (!isBlockPointer(Arg6)) { 1019 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1020 << TheCall->getDirectCallee() << "block"; 1021 return true; 1022 } 1023 if (checkOpenCLBlockArgs(S, Arg6)) 1024 return true; 1025 1026 // Forth argument has to be any integer type. 1027 if (!Arg3->getType()->isIntegerType()) { 1028 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1029 diag::err_opencl_builtin_expected_type) 1030 << TheCall->getDirectCallee() << "integer"; 1031 return true; 1032 } 1033 // check remaining common arguments. 1034 Expr *Arg4 = TheCall->getArg(4); 1035 Expr *Arg5 = TheCall->getArg(5); 1036 1037 // Fifth argument is always passed as a pointer to clk_event_t. 1038 if (!Arg4->isNullPointerConstant(S.Context, 1039 Expr::NPC_ValueDependentIsNotNull) && 1040 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1041 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1042 diag::err_opencl_builtin_expected_type) 1043 << TheCall->getDirectCallee() 1044 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1045 return true; 1046 } 1047 1048 // Sixth argument is always passed as a pointer to clk_event_t. 1049 if (!Arg5->isNullPointerConstant(S.Context, 1050 Expr::NPC_ValueDependentIsNotNull) && 1051 !(Arg5->getType()->isPointerType() && 1052 Arg5->getType()->getPointeeType()->isClkEventT())) { 1053 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1054 diag::err_opencl_builtin_expected_type) 1055 << TheCall->getDirectCallee() 1056 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1057 return true; 1058 } 1059 1060 if (NumArgs == 7) 1061 return false; 1062 1063 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1064 } 1065 1066 // None of the specific case has been detected, give generic error 1067 S.Diag(TheCall->getBeginLoc(), 1068 diag::err_opencl_enqueue_kernel_incorrect_args); 1069 return true; 1070 } 1071 1072 /// Returns OpenCL access qual. 1073 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1074 return D->getAttr<OpenCLAccessAttr>(); 1075 } 1076 1077 /// Returns true if pipe element type is different from the pointer. 1078 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1079 const Expr *Arg0 = Call->getArg(0); 1080 // First argument type should always be pipe. 1081 if (!Arg0->getType()->isPipeType()) { 1082 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1083 << Call->getDirectCallee() << Arg0->getSourceRange(); 1084 return true; 1085 } 1086 OpenCLAccessAttr *AccessQual = 1087 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1088 // Validates the access qualifier is compatible with the call. 1089 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1090 // read_only and write_only, and assumed to be read_only if no qualifier is 1091 // specified. 1092 switch (Call->getDirectCallee()->getBuiltinID()) { 1093 case Builtin::BIread_pipe: 1094 case Builtin::BIreserve_read_pipe: 1095 case Builtin::BIcommit_read_pipe: 1096 case Builtin::BIwork_group_reserve_read_pipe: 1097 case Builtin::BIsub_group_reserve_read_pipe: 1098 case Builtin::BIwork_group_commit_read_pipe: 1099 case Builtin::BIsub_group_commit_read_pipe: 1100 if (!(!AccessQual || AccessQual->isReadOnly())) { 1101 S.Diag(Arg0->getBeginLoc(), 1102 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1103 << "read_only" << Arg0->getSourceRange(); 1104 return true; 1105 } 1106 break; 1107 case Builtin::BIwrite_pipe: 1108 case Builtin::BIreserve_write_pipe: 1109 case Builtin::BIcommit_write_pipe: 1110 case Builtin::BIwork_group_reserve_write_pipe: 1111 case Builtin::BIsub_group_reserve_write_pipe: 1112 case Builtin::BIwork_group_commit_write_pipe: 1113 case Builtin::BIsub_group_commit_write_pipe: 1114 if (!(AccessQual && AccessQual->isWriteOnly())) { 1115 S.Diag(Arg0->getBeginLoc(), 1116 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1117 << "write_only" << Arg0->getSourceRange(); 1118 return true; 1119 } 1120 break; 1121 default: 1122 break; 1123 } 1124 return false; 1125 } 1126 1127 /// Returns true if pipe element type is different from the pointer. 1128 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1129 const Expr *Arg0 = Call->getArg(0); 1130 const Expr *ArgIdx = Call->getArg(Idx); 1131 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1132 const QualType EltTy = PipeTy->getElementType(); 1133 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1134 // The Idx argument should be a pointer and the type of the pointer and 1135 // the type of pipe element should also be the same. 1136 if (!ArgTy || 1137 !S.Context.hasSameType( 1138 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1139 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1140 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1141 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1142 return true; 1143 } 1144 return false; 1145 } 1146 1147 // Performs semantic analysis for the read/write_pipe call. 1148 // \param S Reference to the semantic analyzer. 1149 // \param Call A pointer to the builtin call. 1150 // \return True if a semantic error has been found, false otherwise. 1151 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1152 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1153 // functions have two forms. 1154 switch (Call->getNumArgs()) { 1155 case 2: 1156 if (checkOpenCLPipeArg(S, Call)) 1157 return true; 1158 // The call with 2 arguments should be 1159 // read/write_pipe(pipe T, T*). 1160 // Check packet type T. 1161 if (checkOpenCLPipePacketType(S, Call, 1)) 1162 return true; 1163 break; 1164 1165 case 4: { 1166 if (checkOpenCLPipeArg(S, Call)) 1167 return true; 1168 // The call with 4 arguments should be 1169 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1170 // Check reserve_id_t. 1171 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1172 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1173 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1174 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1175 return true; 1176 } 1177 1178 // Check the index. 1179 const Expr *Arg2 = Call->getArg(2); 1180 if (!Arg2->getType()->isIntegerType() && 1181 !Arg2->getType()->isUnsignedIntegerType()) { 1182 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1183 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1184 << Arg2->getType() << Arg2->getSourceRange(); 1185 return true; 1186 } 1187 1188 // Check packet type T. 1189 if (checkOpenCLPipePacketType(S, Call, 3)) 1190 return true; 1191 } break; 1192 default: 1193 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1194 << Call->getDirectCallee() << Call->getSourceRange(); 1195 return true; 1196 } 1197 1198 return false; 1199 } 1200 1201 // Performs a semantic analysis on the {work_group_/sub_group_ 1202 // /_}reserve_{read/write}_pipe 1203 // \param S Reference to the semantic analyzer. 1204 // \param Call The call to the builtin function to be analyzed. 1205 // \return True if a semantic error was found, false otherwise. 1206 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1207 if (checkArgCount(S, Call, 2)) 1208 return true; 1209 1210 if (checkOpenCLPipeArg(S, Call)) 1211 return true; 1212 1213 // Check the reserve size. 1214 if (!Call->getArg(1)->getType()->isIntegerType() && 1215 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1216 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1217 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1218 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1219 return true; 1220 } 1221 1222 // Since return type of reserve_read/write_pipe built-in function is 1223 // reserve_id_t, which is not defined in the builtin def file , we used int 1224 // as return type and need to override the return type of these functions. 1225 Call->setType(S.Context.OCLReserveIDTy); 1226 1227 return false; 1228 } 1229 1230 // Performs a semantic analysis on {work_group_/sub_group_ 1231 // /_}commit_{read/write}_pipe 1232 // \param S Reference to the semantic analyzer. 1233 // \param Call The call to the builtin function to be analyzed. 1234 // \return True if a semantic error was found, false otherwise. 1235 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1236 if (checkArgCount(S, Call, 2)) 1237 return true; 1238 1239 if (checkOpenCLPipeArg(S, Call)) 1240 return true; 1241 1242 // Check reserve_id_t. 1243 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1244 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1245 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1246 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1247 return true; 1248 } 1249 1250 return false; 1251 } 1252 1253 // Performs a semantic analysis on the call to built-in Pipe 1254 // Query Functions. 1255 // \param S Reference to the semantic analyzer. 1256 // \param Call The call to the builtin function to be analyzed. 1257 // \return True if a semantic error was found, false otherwise. 1258 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1259 if (checkArgCount(S, Call, 1)) 1260 return true; 1261 1262 if (!Call->getArg(0)->getType()->isPipeType()) { 1263 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1264 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1272 // Performs semantic analysis for the to_global/local/private call. 1273 // \param S Reference to the semantic analyzer. 1274 // \param BuiltinID ID of the builtin function. 1275 // \param Call A pointer to the builtin call. 1276 // \return True if a semantic error has been found, false otherwise. 1277 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1278 CallExpr *Call) { 1279 if (checkArgCount(S, Call, 1)) 1280 return true; 1281 1282 auto RT = Call->getArg(0)->getType(); 1283 if (!RT->isPointerType() || RT->getPointeeType() 1284 .getAddressSpace() == LangAS::opencl_constant) { 1285 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1286 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1287 return true; 1288 } 1289 1290 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1291 S.Diag(Call->getArg(0)->getBeginLoc(), 1292 diag::warn_opencl_generic_address_space_arg) 1293 << Call->getDirectCallee()->getNameInfo().getAsString() 1294 << Call->getArg(0)->getSourceRange(); 1295 } 1296 1297 RT = RT->getPointeeType(); 1298 auto Qual = RT.getQualifiers(); 1299 switch (BuiltinID) { 1300 case Builtin::BIto_global: 1301 Qual.setAddressSpace(LangAS::opencl_global); 1302 break; 1303 case Builtin::BIto_local: 1304 Qual.setAddressSpace(LangAS::opencl_local); 1305 break; 1306 case Builtin::BIto_private: 1307 Qual.setAddressSpace(LangAS::opencl_private); 1308 break; 1309 default: 1310 llvm_unreachable("Invalid builtin function"); 1311 } 1312 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1313 RT.getUnqualifiedType(), Qual))); 1314 1315 return false; 1316 } 1317 1318 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1319 if (checkArgCount(S, TheCall, 1)) 1320 return ExprError(); 1321 1322 // Compute __builtin_launder's parameter type from the argument. 1323 // The parameter type is: 1324 // * The type of the argument if it's not an array or function type, 1325 // Otherwise, 1326 // * The decayed argument type. 1327 QualType ParamTy = [&]() { 1328 QualType ArgTy = TheCall->getArg(0)->getType(); 1329 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1330 return S.Context.getPointerType(Ty->getElementType()); 1331 if (ArgTy->isFunctionType()) { 1332 return S.Context.getPointerType(ArgTy); 1333 } 1334 return ArgTy; 1335 }(); 1336 1337 TheCall->setType(ParamTy); 1338 1339 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1340 if (!ParamTy->isPointerType()) 1341 return 0; 1342 if (ParamTy->isFunctionPointerType()) 1343 return 1; 1344 if (ParamTy->isVoidPointerType()) 1345 return 2; 1346 return llvm::Optional<unsigned>{}; 1347 }(); 1348 if (DiagSelect.hasValue()) { 1349 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1350 << DiagSelect.getValue() << TheCall->getSourceRange(); 1351 return ExprError(); 1352 } 1353 1354 // We either have an incomplete class type, or we have a class template 1355 // whose instantiation has not been forced. Example: 1356 // 1357 // template <class T> struct Foo { T value; }; 1358 // Foo<int> *p = nullptr; 1359 // auto *d = __builtin_launder(p); 1360 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1361 diag::err_incomplete_type)) 1362 return ExprError(); 1363 1364 assert(ParamTy->getPointeeType()->isObjectType() && 1365 "Unhandled non-object pointer case"); 1366 1367 InitializedEntity Entity = 1368 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1369 ExprResult Arg = 1370 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1371 if (Arg.isInvalid()) 1372 return ExprError(); 1373 TheCall->setArg(0, Arg.get()); 1374 1375 return TheCall; 1376 } 1377 1378 // Emit an error and return true if the current architecture is not in the list 1379 // of supported architectures. 1380 static bool 1381 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1382 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1383 llvm::Triple::ArchType CurArch = 1384 S.getASTContext().getTargetInfo().getTriple().getArch(); 1385 if (llvm::is_contained(SupportedArchs, CurArch)) 1386 return false; 1387 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1388 << TheCall->getSourceRange(); 1389 return true; 1390 } 1391 1392 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1393 SourceLocation CallSiteLoc); 1394 1395 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1396 CallExpr *TheCall) { 1397 switch (TI.getTriple().getArch()) { 1398 default: 1399 // Some builtins don't require additional checking, so just consider these 1400 // acceptable. 1401 return false; 1402 case llvm::Triple::arm: 1403 case llvm::Triple::armeb: 1404 case llvm::Triple::thumb: 1405 case llvm::Triple::thumbeb: 1406 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1407 case llvm::Triple::aarch64: 1408 case llvm::Triple::aarch64_32: 1409 case llvm::Triple::aarch64_be: 1410 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1411 case llvm::Triple::bpfeb: 1412 case llvm::Triple::bpfel: 1413 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1414 case llvm::Triple::hexagon: 1415 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1416 case llvm::Triple::mips: 1417 case llvm::Triple::mipsel: 1418 case llvm::Triple::mips64: 1419 case llvm::Triple::mips64el: 1420 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1421 case llvm::Triple::systemz: 1422 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1423 case llvm::Triple::x86: 1424 case llvm::Triple::x86_64: 1425 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1426 case llvm::Triple::ppc: 1427 case llvm::Triple::ppcle: 1428 case llvm::Triple::ppc64: 1429 case llvm::Triple::ppc64le: 1430 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1431 case llvm::Triple::amdgcn: 1432 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1433 case llvm::Triple::riscv32: 1434 case llvm::Triple::riscv64: 1435 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); 1436 } 1437 } 1438 1439 ExprResult 1440 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1441 CallExpr *TheCall) { 1442 ExprResult TheCallResult(TheCall); 1443 1444 // Find out if any arguments are required to be integer constant expressions. 1445 unsigned ICEArguments = 0; 1446 ASTContext::GetBuiltinTypeError Error; 1447 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1448 if (Error != ASTContext::GE_None) 1449 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1450 1451 // If any arguments are required to be ICE's, check and diagnose. 1452 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1453 // Skip arguments not required to be ICE's. 1454 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1455 1456 llvm::APSInt Result; 1457 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1458 return true; 1459 ICEArguments &= ~(1 << ArgNo); 1460 } 1461 1462 switch (BuiltinID) { 1463 case Builtin::BI__builtin___CFStringMakeConstantString: 1464 assert(TheCall->getNumArgs() == 1 && 1465 "Wrong # arguments to builtin CFStringMakeConstantString"); 1466 if (CheckObjCString(TheCall->getArg(0))) 1467 return ExprError(); 1468 break; 1469 case Builtin::BI__builtin_ms_va_start: 1470 case Builtin::BI__builtin_stdarg_start: 1471 case Builtin::BI__builtin_va_start: 1472 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1473 return ExprError(); 1474 break; 1475 case Builtin::BI__va_start: { 1476 switch (Context.getTargetInfo().getTriple().getArch()) { 1477 case llvm::Triple::aarch64: 1478 case llvm::Triple::arm: 1479 case llvm::Triple::thumb: 1480 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1481 return ExprError(); 1482 break; 1483 default: 1484 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1485 return ExprError(); 1486 break; 1487 } 1488 break; 1489 } 1490 1491 // The acquire, release, and no fence variants are ARM and AArch64 only. 1492 case Builtin::BI_interlockedbittestandset_acq: 1493 case Builtin::BI_interlockedbittestandset_rel: 1494 case Builtin::BI_interlockedbittestandset_nf: 1495 case Builtin::BI_interlockedbittestandreset_acq: 1496 case Builtin::BI_interlockedbittestandreset_rel: 1497 case Builtin::BI_interlockedbittestandreset_nf: 1498 if (CheckBuiltinTargetSupport( 1499 *this, BuiltinID, TheCall, 1500 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1501 return ExprError(); 1502 break; 1503 1504 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1505 case Builtin::BI_bittest64: 1506 case Builtin::BI_bittestandcomplement64: 1507 case Builtin::BI_bittestandreset64: 1508 case Builtin::BI_bittestandset64: 1509 case Builtin::BI_interlockedbittestandreset64: 1510 case Builtin::BI_interlockedbittestandset64: 1511 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1512 {llvm::Triple::x86_64, llvm::Triple::arm, 1513 llvm::Triple::thumb, llvm::Triple::aarch64})) 1514 return ExprError(); 1515 break; 1516 1517 case Builtin::BI__builtin_isgreater: 1518 case Builtin::BI__builtin_isgreaterequal: 1519 case Builtin::BI__builtin_isless: 1520 case Builtin::BI__builtin_islessequal: 1521 case Builtin::BI__builtin_islessgreater: 1522 case Builtin::BI__builtin_isunordered: 1523 if (SemaBuiltinUnorderedCompare(TheCall)) 1524 return ExprError(); 1525 break; 1526 case Builtin::BI__builtin_fpclassify: 1527 if (SemaBuiltinFPClassification(TheCall, 6)) 1528 return ExprError(); 1529 break; 1530 case Builtin::BI__builtin_isfinite: 1531 case Builtin::BI__builtin_isinf: 1532 case Builtin::BI__builtin_isinf_sign: 1533 case Builtin::BI__builtin_isnan: 1534 case Builtin::BI__builtin_isnormal: 1535 case Builtin::BI__builtin_signbit: 1536 case Builtin::BI__builtin_signbitf: 1537 case Builtin::BI__builtin_signbitl: 1538 if (SemaBuiltinFPClassification(TheCall, 1)) 1539 return ExprError(); 1540 break; 1541 case Builtin::BI__builtin_shufflevector: 1542 return SemaBuiltinShuffleVector(TheCall); 1543 // TheCall will be freed by the smart pointer here, but that's fine, since 1544 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1545 case Builtin::BI__builtin_prefetch: 1546 if (SemaBuiltinPrefetch(TheCall)) 1547 return ExprError(); 1548 break; 1549 case Builtin::BI__builtin_alloca_with_align: 1550 if (SemaBuiltinAllocaWithAlign(TheCall)) 1551 return ExprError(); 1552 LLVM_FALLTHROUGH; 1553 case Builtin::BI__builtin_alloca: 1554 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1555 << TheCall->getDirectCallee(); 1556 break; 1557 case Builtin::BI__assume: 1558 case Builtin::BI__builtin_assume: 1559 if (SemaBuiltinAssume(TheCall)) 1560 return ExprError(); 1561 break; 1562 case Builtin::BI__builtin_assume_aligned: 1563 if (SemaBuiltinAssumeAligned(TheCall)) 1564 return ExprError(); 1565 break; 1566 case Builtin::BI__builtin_dynamic_object_size: 1567 case Builtin::BI__builtin_object_size: 1568 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1569 return ExprError(); 1570 break; 1571 case Builtin::BI__builtin_longjmp: 1572 if (SemaBuiltinLongjmp(TheCall)) 1573 return ExprError(); 1574 break; 1575 case Builtin::BI__builtin_setjmp: 1576 if (SemaBuiltinSetjmp(TheCall)) 1577 return ExprError(); 1578 break; 1579 case Builtin::BI__builtin_classify_type: 1580 if (checkArgCount(*this, TheCall, 1)) return true; 1581 TheCall->setType(Context.IntTy); 1582 break; 1583 case Builtin::BI__builtin_complex: 1584 if (SemaBuiltinComplex(TheCall)) 1585 return ExprError(); 1586 break; 1587 case Builtin::BI__builtin_constant_p: { 1588 if (checkArgCount(*this, TheCall, 1)) return true; 1589 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1590 if (Arg.isInvalid()) return true; 1591 TheCall->setArg(0, Arg.get()); 1592 TheCall->setType(Context.IntTy); 1593 break; 1594 } 1595 case Builtin::BI__builtin_launder: 1596 return SemaBuiltinLaunder(*this, TheCall); 1597 case Builtin::BI__sync_fetch_and_add: 1598 case Builtin::BI__sync_fetch_and_add_1: 1599 case Builtin::BI__sync_fetch_and_add_2: 1600 case Builtin::BI__sync_fetch_and_add_4: 1601 case Builtin::BI__sync_fetch_and_add_8: 1602 case Builtin::BI__sync_fetch_and_add_16: 1603 case Builtin::BI__sync_fetch_and_sub: 1604 case Builtin::BI__sync_fetch_and_sub_1: 1605 case Builtin::BI__sync_fetch_and_sub_2: 1606 case Builtin::BI__sync_fetch_and_sub_4: 1607 case Builtin::BI__sync_fetch_and_sub_8: 1608 case Builtin::BI__sync_fetch_and_sub_16: 1609 case Builtin::BI__sync_fetch_and_or: 1610 case Builtin::BI__sync_fetch_and_or_1: 1611 case Builtin::BI__sync_fetch_and_or_2: 1612 case Builtin::BI__sync_fetch_and_or_4: 1613 case Builtin::BI__sync_fetch_and_or_8: 1614 case Builtin::BI__sync_fetch_and_or_16: 1615 case Builtin::BI__sync_fetch_and_and: 1616 case Builtin::BI__sync_fetch_and_and_1: 1617 case Builtin::BI__sync_fetch_and_and_2: 1618 case Builtin::BI__sync_fetch_and_and_4: 1619 case Builtin::BI__sync_fetch_and_and_8: 1620 case Builtin::BI__sync_fetch_and_and_16: 1621 case Builtin::BI__sync_fetch_and_xor: 1622 case Builtin::BI__sync_fetch_and_xor_1: 1623 case Builtin::BI__sync_fetch_and_xor_2: 1624 case Builtin::BI__sync_fetch_and_xor_4: 1625 case Builtin::BI__sync_fetch_and_xor_8: 1626 case Builtin::BI__sync_fetch_and_xor_16: 1627 case Builtin::BI__sync_fetch_and_nand: 1628 case Builtin::BI__sync_fetch_and_nand_1: 1629 case Builtin::BI__sync_fetch_and_nand_2: 1630 case Builtin::BI__sync_fetch_and_nand_4: 1631 case Builtin::BI__sync_fetch_and_nand_8: 1632 case Builtin::BI__sync_fetch_and_nand_16: 1633 case Builtin::BI__sync_add_and_fetch: 1634 case Builtin::BI__sync_add_and_fetch_1: 1635 case Builtin::BI__sync_add_and_fetch_2: 1636 case Builtin::BI__sync_add_and_fetch_4: 1637 case Builtin::BI__sync_add_and_fetch_8: 1638 case Builtin::BI__sync_add_and_fetch_16: 1639 case Builtin::BI__sync_sub_and_fetch: 1640 case Builtin::BI__sync_sub_and_fetch_1: 1641 case Builtin::BI__sync_sub_and_fetch_2: 1642 case Builtin::BI__sync_sub_and_fetch_4: 1643 case Builtin::BI__sync_sub_and_fetch_8: 1644 case Builtin::BI__sync_sub_and_fetch_16: 1645 case Builtin::BI__sync_and_and_fetch: 1646 case Builtin::BI__sync_and_and_fetch_1: 1647 case Builtin::BI__sync_and_and_fetch_2: 1648 case Builtin::BI__sync_and_and_fetch_4: 1649 case Builtin::BI__sync_and_and_fetch_8: 1650 case Builtin::BI__sync_and_and_fetch_16: 1651 case Builtin::BI__sync_or_and_fetch: 1652 case Builtin::BI__sync_or_and_fetch_1: 1653 case Builtin::BI__sync_or_and_fetch_2: 1654 case Builtin::BI__sync_or_and_fetch_4: 1655 case Builtin::BI__sync_or_and_fetch_8: 1656 case Builtin::BI__sync_or_and_fetch_16: 1657 case Builtin::BI__sync_xor_and_fetch: 1658 case Builtin::BI__sync_xor_and_fetch_1: 1659 case Builtin::BI__sync_xor_and_fetch_2: 1660 case Builtin::BI__sync_xor_and_fetch_4: 1661 case Builtin::BI__sync_xor_and_fetch_8: 1662 case Builtin::BI__sync_xor_and_fetch_16: 1663 case Builtin::BI__sync_nand_and_fetch: 1664 case Builtin::BI__sync_nand_and_fetch_1: 1665 case Builtin::BI__sync_nand_and_fetch_2: 1666 case Builtin::BI__sync_nand_and_fetch_4: 1667 case Builtin::BI__sync_nand_and_fetch_8: 1668 case Builtin::BI__sync_nand_and_fetch_16: 1669 case Builtin::BI__sync_val_compare_and_swap: 1670 case Builtin::BI__sync_val_compare_and_swap_1: 1671 case Builtin::BI__sync_val_compare_and_swap_2: 1672 case Builtin::BI__sync_val_compare_and_swap_4: 1673 case Builtin::BI__sync_val_compare_and_swap_8: 1674 case Builtin::BI__sync_val_compare_and_swap_16: 1675 case Builtin::BI__sync_bool_compare_and_swap: 1676 case Builtin::BI__sync_bool_compare_and_swap_1: 1677 case Builtin::BI__sync_bool_compare_and_swap_2: 1678 case Builtin::BI__sync_bool_compare_and_swap_4: 1679 case Builtin::BI__sync_bool_compare_and_swap_8: 1680 case Builtin::BI__sync_bool_compare_and_swap_16: 1681 case Builtin::BI__sync_lock_test_and_set: 1682 case Builtin::BI__sync_lock_test_and_set_1: 1683 case Builtin::BI__sync_lock_test_and_set_2: 1684 case Builtin::BI__sync_lock_test_and_set_4: 1685 case Builtin::BI__sync_lock_test_and_set_8: 1686 case Builtin::BI__sync_lock_test_and_set_16: 1687 case Builtin::BI__sync_lock_release: 1688 case Builtin::BI__sync_lock_release_1: 1689 case Builtin::BI__sync_lock_release_2: 1690 case Builtin::BI__sync_lock_release_4: 1691 case Builtin::BI__sync_lock_release_8: 1692 case Builtin::BI__sync_lock_release_16: 1693 case Builtin::BI__sync_swap: 1694 case Builtin::BI__sync_swap_1: 1695 case Builtin::BI__sync_swap_2: 1696 case Builtin::BI__sync_swap_4: 1697 case Builtin::BI__sync_swap_8: 1698 case Builtin::BI__sync_swap_16: 1699 return SemaBuiltinAtomicOverloaded(TheCallResult); 1700 case Builtin::BI__sync_synchronize: 1701 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1702 << TheCall->getCallee()->getSourceRange(); 1703 break; 1704 case Builtin::BI__builtin_nontemporal_load: 1705 case Builtin::BI__builtin_nontemporal_store: 1706 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1707 case Builtin::BI__builtin_memcpy_inline: { 1708 clang::Expr *SizeOp = TheCall->getArg(2); 1709 // We warn about copying to or from `nullptr` pointers when `size` is 1710 // greater than 0. When `size` is value dependent we cannot evaluate its 1711 // value so we bail out. 1712 if (SizeOp->isValueDependent()) 1713 break; 1714 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1715 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1716 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1717 } 1718 break; 1719 } 1720 #define BUILTIN(ID, TYPE, ATTRS) 1721 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1722 case Builtin::BI##ID: \ 1723 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1724 #include "clang/Basic/Builtins.def" 1725 case Builtin::BI__annotation: 1726 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1727 return ExprError(); 1728 break; 1729 case Builtin::BI__builtin_annotation: 1730 if (SemaBuiltinAnnotation(*this, TheCall)) 1731 return ExprError(); 1732 break; 1733 case Builtin::BI__builtin_addressof: 1734 if (SemaBuiltinAddressof(*this, TheCall)) 1735 return ExprError(); 1736 break; 1737 case Builtin::BI__builtin_is_aligned: 1738 case Builtin::BI__builtin_align_up: 1739 case Builtin::BI__builtin_align_down: 1740 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1741 return ExprError(); 1742 break; 1743 case Builtin::BI__builtin_add_overflow: 1744 case Builtin::BI__builtin_sub_overflow: 1745 case Builtin::BI__builtin_mul_overflow: 1746 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1747 return ExprError(); 1748 break; 1749 case Builtin::BI__builtin_operator_new: 1750 case Builtin::BI__builtin_operator_delete: { 1751 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1752 ExprResult Res = 1753 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1754 if (Res.isInvalid()) 1755 CorrectDelayedTyposInExpr(TheCallResult.get()); 1756 return Res; 1757 } 1758 case Builtin::BI__builtin_dump_struct: { 1759 // We first want to ensure we are called with 2 arguments 1760 if (checkArgCount(*this, TheCall, 2)) 1761 return ExprError(); 1762 // Ensure that the first argument is of type 'struct XX *' 1763 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1764 const QualType PtrArgType = PtrArg->getType(); 1765 if (!PtrArgType->isPointerType() || 1766 !PtrArgType->getPointeeType()->isRecordType()) { 1767 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1768 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1769 << "structure pointer"; 1770 return ExprError(); 1771 } 1772 1773 // Ensure that the second argument is of type 'FunctionType' 1774 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1775 const QualType FnPtrArgType = FnPtrArg->getType(); 1776 if (!FnPtrArgType->isPointerType()) { 1777 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1778 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1779 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1780 return ExprError(); 1781 } 1782 1783 const auto *FuncType = 1784 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1785 1786 if (!FuncType) { 1787 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1788 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1789 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1790 return ExprError(); 1791 } 1792 1793 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1794 if (!FT->getNumParams()) { 1795 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1796 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1797 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1798 return ExprError(); 1799 } 1800 QualType PT = FT->getParamType(0); 1801 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1802 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1803 !PT->getPointeeType().isConstQualified()) { 1804 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1805 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1806 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1807 return ExprError(); 1808 } 1809 } 1810 1811 TheCall->setType(Context.IntTy); 1812 break; 1813 } 1814 case Builtin::BI__builtin_expect_with_probability: { 1815 // We first want to ensure we are called with 3 arguments 1816 if (checkArgCount(*this, TheCall, 3)) 1817 return ExprError(); 1818 // then check probability is constant float in range [0.0, 1.0] 1819 const Expr *ProbArg = TheCall->getArg(2); 1820 SmallVector<PartialDiagnosticAt, 8> Notes; 1821 Expr::EvalResult Eval; 1822 Eval.Diag = &Notes; 1823 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 1824 !Eval.Val.isFloat()) { 1825 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1826 << ProbArg->getSourceRange(); 1827 for (const PartialDiagnosticAt &PDiag : Notes) 1828 Diag(PDiag.first, PDiag.second); 1829 return ExprError(); 1830 } 1831 llvm::APFloat Probability = Eval.Val.getFloat(); 1832 bool LoseInfo = false; 1833 Probability.convert(llvm::APFloat::IEEEdouble(), 1834 llvm::RoundingMode::Dynamic, &LoseInfo); 1835 if (!(Probability >= llvm::APFloat(0.0) && 1836 Probability <= llvm::APFloat(1.0))) { 1837 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1838 << ProbArg->getSourceRange(); 1839 return ExprError(); 1840 } 1841 break; 1842 } 1843 case Builtin::BI__builtin_preserve_access_index: 1844 if (SemaBuiltinPreserveAI(*this, TheCall)) 1845 return ExprError(); 1846 break; 1847 case Builtin::BI__builtin_call_with_static_chain: 1848 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1849 return ExprError(); 1850 break; 1851 case Builtin::BI__exception_code: 1852 case Builtin::BI_exception_code: 1853 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1854 diag::err_seh___except_block)) 1855 return ExprError(); 1856 break; 1857 case Builtin::BI__exception_info: 1858 case Builtin::BI_exception_info: 1859 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1860 diag::err_seh___except_filter)) 1861 return ExprError(); 1862 break; 1863 case Builtin::BI__GetExceptionInfo: 1864 if (checkArgCount(*this, TheCall, 1)) 1865 return ExprError(); 1866 1867 if (CheckCXXThrowOperand( 1868 TheCall->getBeginLoc(), 1869 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1870 TheCall)) 1871 return ExprError(); 1872 1873 TheCall->setType(Context.VoidPtrTy); 1874 break; 1875 // OpenCL v2.0, s6.13.16 - Pipe functions 1876 case Builtin::BIread_pipe: 1877 case Builtin::BIwrite_pipe: 1878 // Since those two functions are declared with var args, we need a semantic 1879 // check for the argument. 1880 if (SemaBuiltinRWPipe(*this, TheCall)) 1881 return ExprError(); 1882 break; 1883 case Builtin::BIreserve_read_pipe: 1884 case Builtin::BIreserve_write_pipe: 1885 case Builtin::BIwork_group_reserve_read_pipe: 1886 case Builtin::BIwork_group_reserve_write_pipe: 1887 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1888 return ExprError(); 1889 break; 1890 case Builtin::BIsub_group_reserve_read_pipe: 1891 case Builtin::BIsub_group_reserve_write_pipe: 1892 if (checkOpenCLSubgroupExt(*this, TheCall) || 1893 SemaBuiltinReserveRWPipe(*this, TheCall)) 1894 return ExprError(); 1895 break; 1896 case Builtin::BIcommit_read_pipe: 1897 case Builtin::BIcommit_write_pipe: 1898 case Builtin::BIwork_group_commit_read_pipe: 1899 case Builtin::BIwork_group_commit_write_pipe: 1900 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1901 return ExprError(); 1902 break; 1903 case Builtin::BIsub_group_commit_read_pipe: 1904 case Builtin::BIsub_group_commit_write_pipe: 1905 if (checkOpenCLSubgroupExt(*this, TheCall) || 1906 SemaBuiltinCommitRWPipe(*this, TheCall)) 1907 return ExprError(); 1908 break; 1909 case Builtin::BIget_pipe_num_packets: 1910 case Builtin::BIget_pipe_max_packets: 1911 if (SemaBuiltinPipePackets(*this, TheCall)) 1912 return ExprError(); 1913 break; 1914 case Builtin::BIto_global: 1915 case Builtin::BIto_local: 1916 case Builtin::BIto_private: 1917 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1918 return ExprError(); 1919 break; 1920 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1921 case Builtin::BIenqueue_kernel: 1922 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1923 return ExprError(); 1924 break; 1925 case Builtin::BIget_kernel_work_group_size: 1926 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1927 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1928 return ExprError(); 1929 break; 1930 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1931 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1932 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1933 return ExprError(); 1934 break; 1935 case Builtin::BI__builtin_os_log_format: 1936 Cleanup.setExprNeedsCleanups(true); 1937 LLVM_FALLTHROUGH; 1938 case Builtin::BI__builtin_os_log_format_buffer_size: 1939 if (SemaBuiltinOSLogFormat(TheCall)) 1940 return ExprError(); 1941 break; 1942 case Builtin::BI__builtin_frame_address: 1943 case Builtin::BI__builtin_return_address: { 1944 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1945 return ExprError(); 1946 1947 // -Wframe-address warning if non-zero passed to builtin 1948 // return/frame address. 1949 Expr::EvalResult Result; 1950 if (!TheCall->getArg(0)->isValueDependent() && 1951 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1952 Result.Val.getInt() != 0) 1953 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1954 << ((BuiltinID == Builtin::BI__builtin_return_address) 1955 ? "__builtin_return_address" 1956 : "__builtin_frame_address") 1957 << TheCall->getSourceRange(); 1958 break; 1959 } 1960 1961 case Builtin::BI__builtin_matrix_transpose: 1962 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1963 1964 case Builtin::BI__builtin_matrix_column_major_load: 1965 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1966 1967 case Builtin::BI__builtin_matrix_column_major_store: 1968 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1969 1970 case Builtin::BI__builtin_get_device_side_mangled_name: { 1971 auto Check = [](CallExpr *TheCall) { 1972 if (TheCall->getNumArgs() != 1) 1973 return false; 1974 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts()); 1975 if (!DRE) 1976 return false; 1977 auto *D = DRE->getDecl(); 1978 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) 1979 return false; 1980 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || 1981 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); 1982 }; 1983 if (!Check(TheCall)) { 1984 Diag(TheCall->getBeginLoc(), 1985 diag::err_hip_invalid_args_builtin_mangled_name); 1986 return ExprError(); 1987 } 1988 } 1989 } 1990 1991 // Since the target specific builtins for each arch overlap, only check those 1992 // of the arch we are compiling for. 1993 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1994 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1995 assert(Context.getAuxTargetInfo() && 1996 "Aux Target Builtin, but not an aux target?"); 1997 1998 if (CheckTSBuiltinFunctionCall( 1999 *Context.getAuxTargetInfo(), 2000 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 2001 return ExprError(); 2002 } else { 2003 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 2004 TheCall)) 2005 return ExprError(); 2006 } 2007 } 2008 2009 return TheCallResult; 2010 } 2011 2012 // Get the valid immediate range for the specified NEON type code. 2013 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 2014 NeonTypeFlags Type(t); 2015 int IsQuad = ForceQuad ? true : Type.isQuad(); 2016 switch (Type.getEltType()) { 2017 case NeonTypeFlags::Int8: 2018 case NeonTypeFlags::Poly8: 2019 return shift ? 7 : (8 << IsQuad) - 1; 2020 case NeonTypeFlags::Int16: 2021 case NeonTypeFlags::Poly16: 2022 return shift ? 15 : (4 << IsQuad) - 1; 2023 case NeonTypeFlags::Int32: 2024 return shift ? 31 : (2 << IsQuad) - 1; 2025 case NeonTypeFlags::Int64: 2026 case NeonTypeFlags::Poly64: 2027 return shift ? 63 : (1 << IsQuad) - 1; 2028 case NeonTypeFlags::Poly128: 2029 return shift ? 127 : (1 << IsQuad) - 1; 2030 case NeonTypeFlags::Float16: 2031 assert(!shift && "cannot shift float types!"); 2032 return (4 << IsQuad) - 1; 2033 case NeonTypeFlags::Float32: 2034 assert(!shift && "cannot shift float types!"); 2035 return (2 << IsQuad) - 1; 2036 case NeonTypeFlags::Float64: 2037 assert(!shift && "cannot shift float types!"); 2038 return (1 << IsQuad) - 1; 2039 case NeonTypeFlags::BFloat16: 2040 assert(!shift && "cannot shift float types!"); 2041 return (4 << IsQuad) - 1; 2042 } 2043 llvm_unreachable("Invalid NeonTypeFlag!"); 2044 } 2045 2046 /// getNeonEltType - Return the QualType corresponding to the elements of 2047 /// the vector type specified by the NeonTypeFlags. This is used to check 2048 /// the pointer arguments for Neon load/store intrinsics. 2049 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2050 bool IsPolyUnsigned, bool IsInt64Long) { 2051 switch (Flags.getEltType()) { 2052 case NeonTypeFlags::Int8: 2053 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2054 case NeonTypeFlags::Int16: 2055 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2056 case NeonTypeFlags::Int32: 2057 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2058 case NeonTypeFlags::Int64: 2059 if (IsInt64Long) 2060 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2061 else 2062 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2063 : Context.LongLongTy; 2064 case NeonTypeFlags::Poly8: 2065 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2066 case NeonTypeFlags::Poly16: 2067 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2068 case NeonTypeFlags::Poly64: 2069 if (IsInt64Long) 2070 return Context.UnsignedLongTy; 2071 else 2072 return Context.UnsignedLongLongTy; 2073 case NeonTypeFlags::Poly128: 2074 break; 2075 case NeonTypeFlags::Float16: 2076 return Context.HalfTy; 2077 case NeonTypeFlags::Float32: 2078 return Context.FloatTy; 2079 case NeonTypeFlags::Float64: 2080 return Context.DoubleTy; 2081 case NeonTypeFlags::BFloat16: 2082 return Context.BFloat16Ty; 2083 } 2084 llvm_unreachable("Invalid NeonTypeFlag!"); 2085 } 2086 2087 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2088 // Range check SVE intrinsics that take immediate values. 2089 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2090 2091 switch (BuiltinID) { 2092 default: 2093 return false; 2094 #define GET_SVE_IMMEDIATE_CHECK 2095 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2096 #undef GET_SVE_IMMEDIATE_CHECK 2097 } 2098 2099 // Perform all the immediate checks for this builtin call. 2100 bool HasError = false; 2101 for (auto &I : ImmChecks) { 2102 int ArgNum, CheckTy, ElementSizeInBits; 2103 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2104 2105 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2106 2107 // Function that checks whether the operand (ArgNum) is an immediate 2108 // that is one of the predefined values. 2109 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2110 int ErrDiag) -> bool { 2111 // We can't check the value of a dependent argument. 2112 Expr *Arg = TheCall->getArg(ArgNum); 2113 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2114 return false; 2115 2116 // Check constant-ness first. 2117 llvm::APSInt Imm; 2118 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2119 return true; 2120 2121 if (!CheckImm(Imm.getSExtValue())) 2122 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2123 return false; 2124 }; 2125 2126 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2127 case SVETypeFlags::ImmCheck0_31: 2128 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2129 HasError = true; 2130 break; 2131 case SVETypeFlags::ImmCheck0_13: 2132 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2133 HasError = true; 2134 break; 2135 case SVETypeFlags::ImmCheck1_16: 2136 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2137 HasError = true; 2138 break; 2139 case SVETypeFlags::ImmCheck0_7: 2140 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2141 HasError = true; 2142 break; 2143 case SVETypeFlags::ImmCheckExtract: 2144 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2145 (2048 / ElementSizeInBits) - 1)) 2146 HasError = true; 2147 break; 2148 case SVETypeFlags::ImmCheckShiftRight: 2149 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2150 HasError = true; 2151 break; 2152 case SVETypeFlags::ImmCheckShiftRightNarrow: 2153 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2154 ElementSizeInBits / 2)) 2155 HasError = true; 2156 break; 2157 case SVETypeFlags::ImmCheckShiftLeft: 2158 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2159 ElementSizeInBits - 1)) 2160 HasError = true; 2161 break; 2162 case SVETypeFlags::ImmCheckLaneIndex: 2163 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2164 (128 / (1 * ElementSizeInBits)) - 1)) 2165 HasError = true; 2166 break; 2167 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2168 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2169 (128 / (2 * ElementSizeInBits)) - 1)) 2170 HasError = true; 2171 break; 2172 case SVETypeFlags::ImmCheckLaneIndexDot: 2173 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2174 (128 / (4 * ElementSizeInBits)) - 1)) 2175 HasError = true; 2176 break; 2177 case SVETypeFlags::ImmCheckComplexRot90_270: 2178 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2179 diag::err_rotation_argument_to_cadd)) 2180 HasError = true; 2181 break; 2182 case SVETypeFlags::ImmCheckComplexRotAll90: 2183 if (CheckImmediateInSet( 2184 [](int64_t V) { 2185 return V == 0 || V == 90 || V == 180 || V == 270; 2186 }, 2187 diag::err_rotation_argument_to_cmla)) 2188 HasError = true; 2189 break; 2190 case SVETypeFlags::ImmCheck0_1: 2191 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2192 HasError = true; 2193 break; 2194 case SVETypeFlags::ImmCheck0_2: 2195 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2196 HasError = true; 2197 break; 2198 case SVETypeFlags::ImmCheck0_3: 2199 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2200 HasError = true; 2201 break; 2202 } 2203 } 2204 2205 return HasError; 2206 } 2207 2208 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2209 unsigned BuiltinID, CallExpr *TheCall) { 2210 llvm::APSInt Result; 2211 uint64_t mask = 0; 2212 unsigned TV = 0; 2213 int PtrArgNum = -1; 2214 bool HasConstPtr = false; 2215 switch (BuiltinID) { 2216 #define GET_NEON_OVERLOAD_CHECK 2217 #include "clang/Basic/arm_neon.inc" 2218 #include "clang/Basic/arm_fp16.inc" 2219 #undef GET_NEON_OVERLOAD_CHECK 2220 } 2221 2222 // For NEON intrinsics which are overloaded on vector element type, validate 2223 // the immediate which specifies which variant to emit. 2224 unsigned ImmArg = TheCall->getNumArgs()-1; 2225 if (mask) { 2226 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2227 return true; 2228 2229 TV = Result.getLimitedValue(64); 2230 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2231 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2232 << TheCall->getArg(ImmArg)->getSourceRange(); 2233 } 2234 2235 if (PtrArgNum >= 0) { 2236 // Check that pointer arguments have the specified type. 2237 Expr *Arg = TheCall->getArg(PtrArgNum); 2238 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2239 Arg = ICE->getSubExpr(); 2240 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2241 QualType RHSTy = RHS.get()->getType(); 2242 2243 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2244 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2245 Arch == llvm::Triple::aarch64_32 || 2246 Arch == llvm::Triple::aarch64_be; 2247 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2248 QualType EltTy = 2249 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2250 if (HasConstPtr) 2251 EltTy = EltTy.withConst(); 2252 QualType LHSTy = Context.getPointerType(EltTy); 2253 AssignConvertType ConvTy; 2254 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2255 if (RHS.isInvalid()) 2256 return true; 2257 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2258 RHS.get(), AA_Assigning)) 2259 return true; 2260 } 2261 2262 // For NEON intrinsics which take an immediate value as part of the 2263 // instruction, range check them here. 2264 unsigned i = 0, l = 0, u = 0; 2265 switch (BuiltinID) { 2266 default: 2267 return false; 2268 #define GET_NEON_IMMEDIATE_CHECK 2269 #include "clang/Basic/arm_neon.inc" 2270 #include "clang/Basic/arm_fp16.inc" 2271 #undef GET_NEON_IMMEDIATE_CHECK 2272 } 2273 2274 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2275 } 2276 2277 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2278 switch (BuiltinID) { 2279 default: 2280 return false; 2281 #include "clang/Basic/arm_mve_builtin_sema.inc" 2282 } 2283 } 2284 2285 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2286 CallExpr *TheCall) { 2287 bool Err = false; 2288 switch (BuiltinID) { 2289 default: 2290 return false; 2291 #include "clang/Basic/arm_cde_builtin_sema.inc" 2292 } 2293 2294 if (Err) 2295 return true; 2296 2297 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2298 } 2299 2300 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2301 const Expr *CoprocArg, bool WantCDE) { 2302 if (isConstantEvaluated()) 2303 return false; 2304 2305 // We can't check the value of a dependent argument. 2306 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2307 return false; 2308 2309 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2310 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2311 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2312 2313 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2314 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2315 2316 if (IsCDECoproc != WantCDE) 2317 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2318 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2319 2320 return false; 2321 } 2322 2323 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2324 unsigned MaxWidth) { 2325 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2326 BuiltinID == ARM::BI__builtin_arm_ldaex || 2327 BuiltinID == ARM::BI__builtin_arm_strex || 2328 BuiltinID == ARM::BI__builtin_arm_stlex || 2329 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2330 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2331 BuiltinID == AArch64::BI__builtin_arm_strex || 2332 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2333 "unexpected ARM builtin"); 2334 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2335 BuiltinID == ARM::BI__builtin_arm_ldaex || 2336 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2337 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2338 2339 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2340 2341 // Ensure that we have the proper number of arguments. 2342 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2343 return true; 2344 2345 // Inspect the pointer argument of the atomic builtin. This should always be 2346 // a pointer type, whose element is an integral scalar or pointer type. 2347 // Because it is a pointer type, we don't have to worry about any implicit 2348 // casts here. 2349 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2350 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2351 if (PointerArgRes.isInvalid()) 2352 return true; 2353 PointerArg = PointerArgRes.get(); 2354 2355 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2356 if (!pointerType) { 2357 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2358 << PointerArg->getType() << PointerArg->getSourceRange(); 2359 return true; 2360 } 2361 2362 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2363 // task is to insert the appropriate casts into the AST. First work out just 2364 // what the appropriate type is. 2365 QualType ValType = pointerType->getPointeeType(); 2366 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2367 if (IsLdrex) 2368 AddrType.addConst(); 2369 2370 // Issue a warning if the cast is dodgy. 2371 CastKind CastNeeded = CK_NoOp; 2372 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2373 CastNeeded = CK_BitCast; 2374 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2375 << PointerArg->getType() << Context.getPointerType(AddrType) 2376 << AA_Passing << PointerArg->getSourceRange(); 2377 } 2378 2379 // Finally, do the cast and replace the argument with the corrected version. 2380 AddrType = Context.getPointerType(AddrType); 2381 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2382 if (PointerArgRes.isInvalid()) 2383 return true; 2384 PointerArg = PointerArgRes.get(); 2385 2386 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2387 2388 // In general, we allow ints, floats and pointers to be loaded and stored. 2389 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2390 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2391 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2392 << PointerArg->getType() << PointerArg->getSourceRange(); 2393 return true; 2394 } 2395 2396 // But ARM doesn't have instructions to deal with 128-bit versions. 2397 if (Context.getTypeSize(ValType) > MaxWidth) { 2398 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2399 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2400 << PointerArg->getType() << PointerArg->getSourceRange(); 2401 return true; 2402 } 2403 2404 switch (ValType.getObjCLifetime()) { 2405 case Qualifiers::OCL_None: 2406 case Qualifiers::OCL_ExplicitNone: 2407 // okay 2408 break; 2409 2410 case Qualifiers::OCL_Weak: 2411 case Qualifiers::OCL_Strong: 2412 case Qualifiers::OCL_Autoreleasing: 2413 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2414 << ValType << PointerArg->getSourceRange(); 2415 return true; 2416 } 2417 2418 if (IsLdrex) { 2419 TheCall->setType(ValType); 2420 return false; 2421 } 2422 2423 // Initialize the argument to be stored. 2424 ExprResult ValArg = TheCall->getArg(0); 2425 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2426 Context, ValType, /*consume*/ false); 2427 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2428 if (ValArg.isInvalid()) 2429 return true; 2430 TheCall->setArg(0, ValArg.get()); 2431 2432 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2433 // but the custom checker bypasses all default analysis. 2434 TheCall->setType(Context.IntTy); 2435 return false; 2436 } 2437 2438 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2439 CallExpr *TheCall) { 2440 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2441 BuiltinID == ARM::BI__builtin_arm_ldaex || 2442 BuiltinID == ARM::BI__builtin_arm_strex || 2443 BuiltinID == ARM::BI__builtin_arm_stlex) { 2444 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2445 } 2446 2447 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2448 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2449 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2450 } 2451 2452 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2453 BuiltinID == ARM::BI__builtin_arm_wsr64) 2454 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2455 2456 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2457 BuiltinID == ARM::BI__builtin_arm_rsrp || 2458 BuiltinID == ARM::BI__builtin_arm_wsr || 2459 BuiltinID == ARM::BI__builtin_arm_wsrp) 2460 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2461 2462 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2463 return true; 2464 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2465 return true; 2466 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2467 return true; 2468 2469 // For intrinsics which take an immediate value as part of the instruction, 2470 // range check them here. 2471 // FIXME: VFP Intrinsics should error if VFP not present. 2472 switch (BuiltinID) { 2473 default: return false; 2474 case ARM::BI__builtin_arm_ssat: 2475 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2476 case ARM::BI__builtin_arm_usat: 2477 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2478 case ARM::BI__builtin_arm_ssat16: 2479 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2480 case ARM::BI__builtin_arm_usat16: 2481 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2482 case ARM::BI__builtin_arm_vcvtr_f: 2483 case ARM::BI__builtin_arm_vcvtr_d: 2484 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2485 case ARM::BI__builtin_arm_dmb: 2486 case ARM::BI__builtin_arm_dsb: 2487 case ARM::BI__builtin_arm_isb: 2488 case ARM::BI__builtin_arm_dbg: 2489 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2490 case ARM::BI__builtin_arm_cdp: 2491 case ARM::BI__builtin_arm_cdp2: 2492 case ARM::BI__builtin_arm_mcr: 2493 case ARM::BI__builtin_arm_mcr2: 2494 case ARM::BI__builtin_arm_mrc: 2495 case ARM::BI__builtin_arm_mrc2: 2496 case ARM::BI__builtin_arm_mcrr: 2497 case ARM::BI__builtin_arm_mcrr2: 2498 case ARM::BI__builtin_arm_mrrc: 2499 case ARM::BI__builtin_arm_mrrc2: 2500 case ARM::BI__builtin_arm_ldc: 2501 case ARM::BI__builtin_arm_ldcl: 2502 case ARM::BI__builtin_arm_ldc2: 2503 case ARM::BI__builtin_arm_ldc2l: 2504 case ARM::BI__builtin_arm_stc: 2505 case ARM::BI__builtin_arm_stcl: 2506 case ARM::BI__builtin_arm_stc2: 2507 case ARM::BI__builtin_arm_stc2l: 2508 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2509 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2510 /*WantCDE*/ false); 2511 } 2512 } 2513 2514 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2515 unsigned BuiltinID, 2516 CallExpr *TheCall) { 2517 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2518 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2519 BuiltinID == AArch64::BI__builtin_arm_strex || 2520 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2521 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2522 } 2523 2524 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2525 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2526 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2527 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2528 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2529 } 2530 2531 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2532 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2533 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2534 2535 // Memory Tagging Extensions (MTE) Intrinsics 2536 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2537 BuiltinID == AArch64::BI__builtin_arm_addg || 2538 BuiltinID == AArch64::BI__builtin_arm_gmi || 2539 BuiltinID == AArch64::BI__builtin_arm_ldg || 2540 BuiltinID == AArch64::BI__builtin_arm_stg || 2541 BuiltinID == AArch64::BI__builtin_arm_subp) { 2542 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2543 } 2544 2545 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2546 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2547 BuiltinID == AArch64::BI__builtin_arm_wsr || 2548 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2549 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2550 2551 // Only check the valid encoding range. Any constant in this range would be 2552 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2553 // an exception for incorrect registers. This matches MSVC behavior. 2554 if (BuiltinID == AArch64::BI_ReadStatusReg || 2555 BuiltinID == AArch64::BI_WriteStatusReg) 2556 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2557 2558 if (BuiltinID == AArch64::BI__getReg) 2559 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2560 2561 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2562 return true; 2563 2564 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2565 return true; 2566 2567 // For intrinsics which take an immediate value as part of the instruction, 2568 // range check them here. 2569 unsigned i = 0, l = 0, u = 0; 2570 switch (BuiltinID) { 2571 default: return false; 2572 case AArch64::BI__builtin_arm_dmb: 2573 case AArch64::BI__builtin_arm_dsb: 2574 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2575 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2576 } 2577 2578 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2579 } 2580 2581 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2582 if (Arg->getType()->getAsPlaceholderType()) 2583 return false; 2584 2585 // The first argument needs to be a record field access. 2586 // If it is an array element access, we delay decision 2587 // to BPF backend to check whether the access is a 2588 // field access or not. 2589 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2590 dyn_cast<MemberExpr>(Arg->IgnoreParens()) || 2591 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens())); 2592 } 2593 2594 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2595 QualType VectorTy, QualType EltTy) { 2596 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2597 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2598 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2599 << Call->getSourceRange() << VectorEltTy << EltTy; 2600 return false; 2601 } 2602 return true; 2603 } 2604 2605 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2606 QualType ArgType = Arg->getType(); 2607 if (ArgType->getAsPlaceholderType()) 2608 return false; 2609 2610 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2611 // format: 2612 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2613 // 2. <type> var; 2614 // __builtin_preserve_type_info(var, flag); 2615 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) && 2616 !dyn_cast<UnaryOperator>(Arg->IgnoreParens())) 2617 return false; 2618 2619 // Typedef type. 2620 if (ArgType->getAs<TypedefType>()) 2621 return true; 2622 2623 // Record type or Enum type. 2624 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2625 if (const auto *RT = Ty->getAs<RecordType>()) { 2626 if (!RT->getDecl()->getDeclName().isEmpty()) 2627 return true; 2628 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2629 if (!ET->getDecl()->getDeclName().isEmpty()) 2630 return true; 2631 } 2632 2633 return false; 2634 } 2635 2636 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2637 QualType ArgType = Arg->getType(); 2638 if (ArgType->getAsPlaceholderType()) 2639 return false; 2640 2641 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 2642 // format: 2643 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 2644 // flag); 2645 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 2646 if (!UO) 2647 return false; 2648 2649 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 2650 if (!CE) 2651 return false; 2652 if (CE->getCastKind() != CK_IntegralToPointer && 2653 CE->getCastKind() != CK_NullToPointer) 2654 return false; 2655 2656 // The integer must be from an EnumConstantDecl. 2657 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 2658 if (!DR) 2659 return false; 2660 2661 const EnumConstantDecl *Enumerator = 2662 dyn_cast<EnumConstantDecl>(DR->getDecl()); 2663 if (!Enumerator) 2664 return false; 2665 2666 // The type must be EnumType. 2667 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2668 const auto *ET = Ty->getAs<EnumType>(); 2669 if (!ET) 2670 return false; 2671 2672 // The enum value must be supported. 2673 for (auto *EDI : ET->getDecl()->enumerators()) { 2674 if (EDI == Enumerator) 2675 return true; 2676 } 2677 2678 return false; 2679 } 2680 2681 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2682 CallExpr *TheCall) { 2683 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2684 BuiltinID == BPF::BI__builtin_btf_type_id || 2685 BuiltinID == BPF::BI__builtin_preserve_type_info || 2686 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 2687 "unexpected BPF builtin"); 2688 2689 if (checkArgCount(*this, TheCall, 2)) 2690 return true; 2691 2692 // The second argument needs to be a constant int 2693 Expr *Arg = TheCall->getArg(1); 2694 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 2695 diag::kind kind; 2696 if (!Value) { 2697 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 2698 kind = diag::err_preserve_field_info_not_const; 2699 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 2700 kind = diag::err_btf_type_id_not_const; 2701 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 2702 kind = diag::err_preserve_type_info_not_const; 2703 else 2704 kind = diag::err_preserve_enum_value_not_const; 2705 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 2706 return true; 2707 } 2708 2709 // The first argument 2710 Arg = TheCall->getArg(0); 2711 bool InvalidArg = false; 2712 bool ReturnUnsignedInt = true; 2713 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 2714 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 2715 InvalidArg = true; 2716 kind = diag::err_preserve_field_info_not_field; 2717 } 2718 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 2719 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 2720 InvalidArg = true; 2721 kind = diag::err_preserve_type_info_invalid; 2722 } 2723 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 2724 if (!isValidBPFPreserveEnumValueArg(Arg)) { 2725 InvalidArg = true; 2726 kind = diag::err_preserve_enum_value_invalid; 2727 } 2728 ReturnUnsignedInt = false; 2729 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2730 ReturnUnsignedInt = false; 2731 } 2732 2733 if (InvalidArg) { 2734 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 2735 return true; 2736 } 2737 2738 if (ReturnUnsignedInt) 2739 TheCall->setType(Context.UnsignedIntTy); 2740 else 2741 TheCall->setType(Context.UnsignedLongTy); 2742 return false; 2743 } 2744 2745 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2746 struct ArgInfo { 2747 uint8_t OpNum; 2748 bool IsSigned; 2749 uint8_t BitWidth; 2750 uint8_t Align; 2751 }; 2752 struct BuiltinInfo { 2753 unsigned BuiltinID; 2754 ArgInfo Infos[2]; 2755 }; 2756 2757 static BuiltinInfo Infos[] = { 2758 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2759 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2760 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2761 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2762 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2763 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2764 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2765 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2766 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2767 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2768 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2769 2770 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2772 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2774 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2777 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2781 2782 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2798 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2803 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2804 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2807 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2808 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2809 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2810 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2811 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2812 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2813 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2814 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2815 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2816 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2817 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2818 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2819 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2820 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2821 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2822 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2823 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2824 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2825 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2826 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2828 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2830 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2834 {{ 1, false, 6, 0 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2837 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2838 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2842 {{ 1, false, 5, 0 }} }, 2843 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2845 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2846 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2847 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2848 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2849 { 2, false, 5, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2851 { 2, false, 6, 0 }} }, 2852 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2853 { 3, false, 5, 0 }} }, 2854 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2855 { 3, false, 6, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2857 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2859 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2864 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2866 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2867 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2868 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2869 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2871 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2872 {{ 2, false, 4, 0 }, 2873 { 3, false, 5, 0 }} }, 2874 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2875 {{ 2, false, 4, 0 }, 2876 { 3, false, 5, 0 }} }, 2877 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2878 {{ 2, false, 4, 0 }, 2879 { 3, false, 5, 0 }} }, 2880 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2881 {{ 2, false, 4, 0 }, 2882 { 3, false, 5, 0 }} }, 2883 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2885 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2886 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2890 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2892 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2894 { 2, false, 5, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2896 { 2, false, 6, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2898 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2900 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2902 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2903 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2905 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2906 {{ 1, false, 4, 0 }} }, 2907 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2908 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2909 {{ 1, false, 4, 0 }} }, 2910 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2911 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2912 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2913 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2914 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2915 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2916 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2917 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2918 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2919 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2920 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2921 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2922 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2923 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2924 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2925 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2926 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2927 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2928 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2929 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2930 {{ 3, false, 1, 0 }} }, 2931 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2932 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2933 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2934 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2935 {{ 3, false, 1, 0 }} }, 2936 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2937 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2938 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2939 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2940 {{ 3, false, 1, 0 }} }, 2941 }; 2942 2943 // Use a dynamically initialized static to sort the table exactly once on 2944 // first run. 2945 static const bool SortOnce = 2946 (llvm::sort(Infos, 2947 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2948 return LHS.BuiltinID < RHS.BuiltinID; 2949 }), 2950 true); 2951 (void)SortOnce; 2952 2953 const BuiltinInfo *F = llvm::partition_point( 2954 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2955 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2956 return false; 2957 2958 bool Error = false; 2959 2960 for (const ArgInfo &A : F->Infos) { 2961 // Ignore empty ArgInfo elements. 2962 if (A.BitWidth == 0) 2963 continue; 2964 2965 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2966 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2967 if (!A.Align) { 2968 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2969 } else { 2970 unsigned M = 1 << A.Align; 2971 Min *= M; 2972 Max *= M; 2973 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2974 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2975 } 2976 } 2977 return Error; 2978 } 2979 2980 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2981 CallExpr *TheCall) { 2982 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2983 } 2984 2985 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2986 unsigned BuiltinID, CallExpr *TheCall) { 2987 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2988 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2989 } 2990 2991 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2992 CallExpr *TheCall) { 2993 2994 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2995 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2996 if (!TI.hasFeature("dsp")) 2997 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2998 } 2999 3000 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 3001 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 3002 if (!TI.hasFeature("dspr2")) 3003 return Diag(TheCall->getBeginLoc(), 3004 diag::err_mips_builtin_requires_dspr2); 3005 } 3006 3007 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 3008 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 3009 if (!TI.hasFeature("msa")) 3010 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 3011 } 3012 3013 return false; 3014 } 3015 3016 // CheckMipsBuiltinArgument - Checks the constant value passed to the 3017 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 3018 // ordering for DSP is unspecified. MSA is ordered by the data format used 3019 // by the underlying instruction i.e., df/m, df/n and then by size. 3020 // 3021 // FIXME: The size tests here should instead be tablegen'd along with the 3022 // definitions from include/clang/Basic/BuiltinsMips.def. 3023 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 3024 // be too. 3025 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 3026 unsigned i = 0, l = 0, u = 0, m = 0; 3027 switch (BuiltinID) { 3028 default: return false; 3029 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3030 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3031 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3032 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3033 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3034 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3035 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3036 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3037 // df/m field. 3038 // These intrinsics take an unsigned 3 bit immediate. 3039 case Mips::BI__builtin_msa_bclri_b: 3040 case Mips::BI__builtin_msa_bnegi_b: 3041 case Mips::BI__builtin_msa_bseti_b: 3042 case Mips::BI__builtin_msa_sat_s_b: 3043 case Mips::BI__builtin_msa_sat_u_b: 3044 case Mips::BI__builtin_msa_slli_b: 3045 case Mips::BI__builtin_msa_srai_b: 3046 case Mips::BI__builtin_msa_srari_b: 3047 case Mips::BI__builtin_msa_srli_b: 3048 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3049 case Mips::BI__builtin_msa_binsli_b: 3050 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3051 // These intrinsics take an unsigned 4 bit immediate. 3052 case Mips::BI__builtin_msa_bclri_h: 3053 case Mips::BI__builtin_msa_bnegi_h: 3054 case Mips::BI__builtin_msa_bseti_h: 3055 case Mips::BI__builtin_msa_sat_s_h: 3056 case Mips::BI__builtin_msa_sat_u_h: 3057 case Mips::BI__builtin_msa_slli_h: 3058 case Mips::BI__builtin_msa_srai_h: 3059 case Mips::BI__builtin_msa_srari_h: 3060 case Mips::BI__builtin_msa_srli_h: 3061 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3062 case Mips::BI__builtin_msa_binsli_h: 3063 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3064 // These intrinsics take an unsigned 5 bit immediate. 3065 // The first block of intrinsics actually have an unsigned 5 bit field, 3066 // not a df/n field. 3067 case Mips::BI__builtin_msa_cfcmsa: 3068 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3069 case Mips::BI__builtin_msa_clei_u_b: 3070 case Mips::BI__builtin_msa_clei_u_h: 3071 case Mips::BI__builtin_msa_clei_u_w: 3072 case Mips::BI__builtin_msa_clei_u_d: 3073 case Mips::BI__builtin_msa_clti_u_b: 3074 case Mips::BI__builtin_msa_clti_u_h: 3075 case Mips::BI__builtin_msa_clti_u_w: 3076 case Mips::BI__builtin_msa_clti_u_d: 3077 case Mips::BI__builtin_msa_maxi_u_b: 3078 case Mips::BI__builtin_msa_maxi_u_h: 3079 case Mips::BI__builtin_msa_maxi_u_w: 3080 case Mips::BI__builtin_msa_maxi_u_d: 3081 case Mips::BI__builtin_msa_mini_u_b: 3082 case Mips::BI__builtin_msa_mini_u_h: 3083 case Mips::BI__builtin_msa_mini_u_w: 3084 case Mips::BI__builtin_msa_mini_u_d: 3085 case Mips::BI__builtin_msa_addvi_b: 3086 case Mips::BI__builtin_msa_addvi_h: 3087 case Mips::BI__builtin_msa_addvi_w: 3088 case Mips::BI__builtin_msa_addvi_d: 3089 case Mips::BI__builtin_msa_bclri_w: 3090 case Mips::BI__builtin_msa_bnegi_w: 3091 case Mips::BI__builtin_msa_bseti_w: 3092 case Mips::BI__builtin_msa_sat_s_w: 3093 case Mips::BI__builtin_msa_sat_u_w: 3094 case Mips::BI__builtin_msa_slli_w: 3095 case Mips::BI__builtin_msa_srai_w: 3096 case Mips::BI__builtin_msa_srari_w: 3097 case Mips::BI__builtin_msa_srli_w: 3098 case Mips::BI__builtin_msa_srlri_w: 3099 case Mips::BI__builtin_msa_subvi_b: 3100 case Mips::BI__builtin_msa_subvi_h: 3101 case Mips::BI__builtin_msa_subvi_w: 3102 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3103 case Mips::BI__builtin_msa_binsli_w: 3104 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3105 // These intrinsics take an unsigned 6 bit immediate. 3106 case Mips::BI__builtin_msa_bclri_d: 3107 case Mips::BI__builtin_msa_bnegi_d: 3108 case Mips::BI__builtin_msa_bseti_d: 3109 case Mips::BI__builtin_msa_sat_s_d: 3110 case Mips::BI__builtin_msa_sat_u_d: 3111 case Mips::BI__builtin_msa_slli_d: 3112 case Mips::BI__builtin_msa_srai_d: 3113 case Mips::BI__builtin_msa_srari_d: 3114 case Mips::BI__builtin_msa_srli_d: 3115 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3116 case Mips::BI__builtin_msa_binsli_d: 3117 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3118 // These intrinsics take a signed 5 bit immediate. 3119 case Mips::BI__builtin_msa_ceqi_b: 3120 case Mips::BI__builtin_msa_ceqi_h: 3121 case Mips::BI__builtin_msa_ceqi_w: 3122 case Mips::BI__builtin_msa_ceqi_d: 3123 case Mips::BI__builtin_msa_clti_s_b: 3124 case Mips::BI__builtin_msa_clti_s_h: 3125 case Mips::BI__builtin_msa_clti_s_w: 3126 case Mips::BI__builtin_msa_clti_s_d: 3127 case Mips::BI__builtin_msa_clei_s_b: 3128 case Mips::BI__builtin_msa_clei_s_h: 3129 case Mips::BI__builtin_msa_clei_s_w: 3130 case Mips::BI__builtin_msa_clei_s_d: 3131 case Mips::BI__builtin_msa_maxi_s_b: 3132 case Mips::BI__builtin_msa_maxi_s_h: 3133 case Mips::BI__builtin_msa_maxi_s_w: 3134 case Mips::BI__builtin_msa_maxi_s_d: 3135 case Mips::BI__builtin_msa_mini_s_b: 3136 case Mips::BI__builtin_msa_mini_s_h: 3137 case Mips::BI__builtin_msa_mini_s_w: 3138 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3139 // These intrinsics take an unsigned 8 bit immediate. 3140 case Mips::BI__builtin_msa_andi_b: 3141 case Mips::BI__builtin_msa_nori_b: 3142 case Mips::BI__builtin_msa_ori_b: 3143 case Mips::BI__builtin_msa_shf_b: 3144 case Mips::BI__builtin_msa_shf_h: 3145 case Mips::BI__builtin_msa_shf_w: 3146 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3147 case Mips::BI__builtin_msa_bseli_b: 3148 case Mips::BI__builtin_msa_bmnzi_b: 3149 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3150 // df/n format 3151 // These intrinsics take an unsigned 4 bit immediate. 3152 case Mips::BI__builtin_msa_copy_s_b: 3153 case Mips::BI__builtin_msa_copy_u_b: 3154 case Mips::BI__builtin_msa_insve_b: 3155 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3156 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3157 // These intrinsics take an unsigned 3 bit immediate. 3158 case Mips::BI__builtin_msa_copy_s_h: 3159 case Mips::BI__builtin_msa_copy_u_h: 3160 case Mips::BI__builtin_msa_insve_h: 3161 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3162 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3163 // These intrinsics take an unsigned 2 bit immediate. 3164 case Mips::BI__builtin_msa_copy_s_w: 3165 case Mips::BI__builtin_msa_copy_u_w: 3166 case Mips::BI__builtin_msa_insve_w: 3167 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3168 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3169 // These intrinsics take an unsigned 1 bit immediate. 3170 case Mips::BI__builtin_msa_copy_s_d: 3171 case Mips::BI__builtin_msa_copy_u_d: 3172 case Mips::BI__builtin_msa_insve_d: 3173 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3174 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3175 // Memory offsets and immediate loads. 3176 // These intrinsics take a signed 10 bit immediate. 3177 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3178 case Mips::BI__builtin_msa_ldi_h: 3179 case Mips::BI__builtin_msa_ldi_w: 3180 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3181 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3182 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3183 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3184 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3185 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3186 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3187 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3188 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3189 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3190 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3191 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3192 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3193 } 3194 3195 if (!m) 3196 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3197 3198 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3199 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3200 } 3201 3202 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3203 /// advancing the pointer over the consumed characters. The decoded type is 3204 /// returned. If the decoded type represents a constant integer with a 3205 /// constraint on its value then Mask is set to that value. The type descriptors 3206 /// used in Str are specific to PPC MMA builtins and are documented in the file 3207 /// defining the PPC builtins. 3208 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3209 unsigned &Mask) { 3210 bool RequireICE = false; 3211 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3212 switch (*Str++) { 3213 case 'V': 3214 return Context.getVectorType(Context.UnsignedCharTy, 16, 3215 VectorType::VectorKind::AltiVecVector); 3216 case 'i': { 3217 char *End; 3218 unsigned size = strtoul(Str, &End, 10); 3219 assert(End != Str && "Missing constant parameter constraint"); 3220 Str = End; 3221 Mask = size; 3222 return Context.IntTy; 3223 } 3224 case 'W': { 3225 char *End; 3226 unsigned size = strtoul(Str, &End, 10); 3227 assert(End != Str && "Missing PowerPC MMA type size"); 3228 Str = End; 3229 QualType Type; 3230 switch (size) { 3231 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3232 case size: Type = Context.Id##Ty; break; 3233 #include "clang/Basic/PPCTypes.def" 3234 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3235 } 3236 bool CheckVectorArgs = false; 3237 while (!CheckVectorArgs) { 3238 switch (*Str++) { 3239 case '*': 3240 Type = Context.getPointerType(Type); 3241 break; 3242 case 'C': 3243 Type = Type.withConst(); 3244 break; 3245 default: 3246 CheckVectorArgs = true; 3247 --Str; 3248 break; 3249 } 3250 } 3251 return Type; 3252 } 3253 default: 3254 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3255 } 3256 } 3257 3258 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3259 CallExpr *TheCall) { 3260 unsigned i = 0, l = 0, u = 0; 3261 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3262 BuiltinID == PPC::BI__builtin_divdeu || 3263 BuiltinID == PPC::BI__builtin_bpermd; 3264 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3265 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3266 BuiltinID == PPC::BI__builtin_divweu || 3267 BuiltinID == PPC::BI__builtin_divde || 3268 BuiltinID == PPC::BI__builtin_divdeu; 3269 3270 if (Is64BitBltin && !IsTarget64Bit) 3271 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3272 << TheCall->getSourceRange(); 3273 3274 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || 3275 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) 3276 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3277 << TheCall->getSourceRange(); 3278 3279 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3280 if (!TI.hasFeature("vsx")) 3281 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3282 << TheCall->getSourceRange(); 3283 return false; 3284 }; 3285 3286 switch (BuiltinID) { 3287 default: return false; 3288 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3289 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3290 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3291 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3292 case PPC::BI__builtin_altivec_dss: 3293 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3294 case PPC::BI__builtin_tbegin: 3295 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3296 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3297 case PPC::BI__builtin_tabortwc: 3298 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3299 case PPC::BI__builtin_tabortwci: 3300 case PPC::BI__builtin_tabortdci: 3301 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3302 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3303 case PPC::BI__builtin_altivec_dst: 3304 case PPC::BI__builtin_altivec_dstt: 3305 case PPC::BI__builtin_altivec_dstst: 3306 case PPC::BI__builtin_altivec_dststt: 3307 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3308 case PPC::BI__builtin_vsx_xxpermdi: 3309 case PPC::BI__builtin_vsx_xxsldwi: 3310 return SemaBuiltinVSX(TheCall); 3311 case PPC::BI__builtin_unpack_vector_int128: 3312 return SemaVSXCheck(TheCall) || 3313 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3314 case PPC::BI__builtin_pack_vector_int128: 3315 return SemaVSXCheck(TheCall); 3316 case PPC::BI__builtin_altivec_vgnb: 3317 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3318 case PPC::BI__builtin_altivec_vec_replace_elt: 3319 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3320 QualType VecTy = TheCall->getArg(0)->getType(); 3321 QualType EltTy = TheCall->getArg(1)->getType(); 3322 unsigned Width = Context.getIntWidth(EltTy); 3323 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3324 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3325 } 3326 case PPC::BI__builtin_vsx_xxeval: 3327 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3328 case PPC::BI__builtin_altivec_vsldbi: 3329 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3330 case PPC::BI__builtin_altivec_vsrdbi: 3331 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3332 case PPC::BI__builtin_vsx_xxpermx: 3333 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3334 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 3335 case PPC::BI__builtin_##Name: \ 3336 return SemaBuiltinPPCMMACall(TheCall, Types); 3337 #include "clang/Basic/BuiltinsPPC.def" 3338 } 3339 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3340 } 3341 3342 // Check if the given type is a non-pointer PPC MMA type. This function is used 3343 // in Sema to prevent invalid uses of restricted PPC MMA types. 3344 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3345 if (Type->isPointerType() || Type->isArrayType()) 3346 return false; 3347 3348 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3349 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3350 if (false 3351 #include "clang/Basic/PPCTypes.def" 3352 ) { 3353 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3354 return true; 3355 } 3356 return false; 3357 } 3358 3359 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3360 CallExpr *TheCall) { 3361 // position of memory order and scope arguments in the builtin 3362 unsigned OrderIndex, ScopeIndex; 3363 switch (BuiltinID) { 3364 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3365 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3366 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3367 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3368 OrderIndex = 2; 3369 ScopeIndex = 3; 3370 break; 3371 case AMDGPU::BI__builtin_amdgcn_fence: 3372 OrderIndex = 0; 3373 ScopeIndex = 1; 3374 break; 3375 default: 3376 return false; 3377 } 3378 3379 ExprResult Arg = TheCall->getArg(OrderIndex); 3380 auto ArgExpr = Arg.get(); 3381 Expr::EvalResult ArgResult; 3382 3383 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3384 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3385 << ArgExpr->getType(); 3386 auto Ord = ArgResult.Val.getInt().getZExtValue(); 3387 3388 // Check valididty of memory ordering as per C11 / C++11's memody model. 3389 // Only fence needs check. Atomic dec/inc allow all memory orders. 3390 if (!llvm::isValidAtomicOrderingCABI(Ord)) 3391 return Diag(ArgExpr->getBeginLoc(), 3392 diag::warn_atomic_op_has_invalid_memory_order) 3393 << ArgExpr->getSourceRange(); 3394 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { 3395 case llvm::AtomicOrderingCABI::relaxed: 3396 case llvm::AtomicOrderingCABI::consume: 3397 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) 3398 return Diag(ArgExpr->getBeginLoc(), 3399 diag::warn_atomic_op_has_invalid_memory_order) 3400 << ArgExpr->getSourceRange(); 3401 break; 3402 case llvm::AtomicOrderingCABI::acquire: 3403 case llvm::AtomicOrderingCABI::release: 3404 case llvm::AtomicOrderingCABI::acq_rel: 3405 case llvm::AtomicOrderingCABI::seq_cst: 3406 break; 3407 } 3408 3409 Arg = TheCall->getArg(ScopeIndex); 3410 ArgExpr = Arg.get(); 3411 Expr::EvalResult ArgResult1; 3412 // Check that sync scope is a constant literal 3413 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3414 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3415 << ArgExpr->getType(); 3416 3417 return false; 3418 } 3419 3420 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { 3421 llvm::APSInt Result; 3422 3423 // We can't check the value of a dependent argument. 3424 Expr *Arg = TheCall->getArg(ArgNum); 3425 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3426 return false; 3427 3428 // Check constant-ness first. 3429 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3430 return true; 3431 3432 int64_t Val = Result.getSExtValue(); 3433 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) 3434 return false; 3435 3436 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) 3437 << Arg->getSourceRange(); 3438 } 3439 3440 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, 3441 unsigned BuiltinID, 3442 CallExpr *TheCall) { 3443 // CodeGenFunction can also detect this, but this gives a better error 3444 // message. 3445 bool FeatureMissing = false; 3446 SmallVector<StringRef> ReqFeatures; 3447 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID); 3448 Features.split(ReqFeatures, ','); 3449 3450 // Check if each required feature is included 3451 for (StringRef F : ReqFeatures) { 3452 if (TI.hasFeature(F)) 3453 continue; 3454 3455 // If the feature is 64bit, alter the string so it will print better in 3456 // the diagnostic. 3457 if (F == "64bit") 3458 F = "RV64"; 3459 3460 // Convert features like "zbr" and "experimental-zbr" to "Zbr". 3461 F.consume_front("experimental-"); 3462 std::string FeatureStr = F.str(); 3463 FeatureStr[0] = std::toupper(FeatureStr[0]); 3464 3465 // Error message 3466 FeatureMissing = true; 3467 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension) 3468 << TheCall->getSourceRange() << StringRef(FeatureStr); 3469 } 3470 3471 if (FeatureMissing) 3472 return true; 3473 3474 switch (BuiltinID) { 3475 case RISCV::BI__builtin_rvv_vsetvli: 3476 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) || 3477 CheckRISCVLMUL(TheCall, 2); 3478 case RISCV::BI__builtin_rvv_vsetvlimax: 3479 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) || 3480 CheckRISCVLMUL(TheCall, 1); 3481 } 3482 3483 return false; 3484 } 3485 3486 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3487 CallExpr *TheCall) { 3488 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3489 Expr *Arg = TheCall->getArg(0); 3490 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 3491 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 3492 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3493 << Arg->getSourceRange(); 3494 } 3495 3496 // For intrinsics which take an immediate value as part of the instruction, 3497 // range check them here. 3498 unsigned i = 0, l = 0, u = 0; 3499 switch (BuiltinID) { 3500 default: return false; 3501 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3502 case SystemZ::BI__builtin_s390_verimb: 3503 case SystemZ::BI__builtin_s390_verimh: 3504 case SystemZ::BI__builtin_s390_verimf: 3505 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3506 case SystemZ::BI__builtin_s390_vfaeb: 3507 case SystemZ::BI__builtin_s390_vfaeh: 3508 case SystemZ::BI__builtin_s390_vfaef: 3509 case SystemZ::BI__builtin_s390_vfaebs: 3510 case SystemZ::BI__builtin_s390_vfaehs: 3511 case SystemZ::BI__builtin_s390_vfaefs: 3512 case SystemZ::BI__builtin_s390_vfaezb: 3513 case SystemZ::BI__builtin_s390_vfaezh: 3514 case SystemZ::BI__builtin_s390_vfaezf: 3515 case SystemZ::BI__builtin_s390_vfaezbs: 3516 case SystemZ::BI__builtin_s390_vfaezhs: 3517 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3518 case SystemZ::BI__builtin_s390_vfisb: 3519 case SystemZ::BI__builtin_s390_vfidb: 3520 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3521 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3522 case SystemZ::BI__builtin_s390_vftcisb: 3523 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3524 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3525 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3526 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3527 case SystemZ::BI__builtin_s390_vstrcb: 3528 case SystemZ::BI__builtin_s390_vstrch: 3529 case SystemZ::BI__builtin_s390_vstrcf: 3530 case SystemZ::BI__builtin_s390_vstrczb: 3531 case SystemZ::BI__builtin_s390_vstrczh: 3532 case SystemZ::BI__builtin_s390_vstrczf: 3533 case SystemZ::BI__builtin_s390_vstrcbs: 3534 case SystemZ::BI__builtin_s390_vstrchs: 3535 case SystemZ::BI__builtin_s390_vstrcfs: 3536 case SystemZ::BI__builtin_s390_vstrczbs: 3537 case SystemZ::BI__builtin_s390_vstrczhs: 3538 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3539 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3540 case SystemZ::BI__builtin_s390_vfminsb: 3541 case SystemZ::BI__builtin_s390_vfmaxsb: 3542 case SystemZ::BI__builtin_s390_vfmindb: 3543 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3544 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3545 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3546 } 3547 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3548 } 3549 3550 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3551 /// This checks that the target supports __builtin_cpu_supports and 3552 /// that the string argument is constant and valid. 3553 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3554 CallExpr *TheCall) { 3555 Expr *Arg = TheCall->getArg(0); 3556 3557 // Check if the argument is a string literal. 3558 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3559 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3560 << Arg->getSourceRange(); 3561 3562 // Check the contents of the string. 3563 StringRef Feature = 3564 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3565 if (!TI.validateCpuSupports(Feature)) 3566 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3567 << Arg->getSourceRange(); 3568 return false; 3569 } 3570 3571 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3572 /// This checks that the target supports __builtin_cpu_is and 3573 /// that the string argument is constant and valid. 3574 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3575 Expr *Arg = TheCall->getArg(0); 3576 3577 // Check if the argument is a string literal. 3578 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3579 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3580 << Arg->getSourceRange(); 3581 3582 // Check the contents of the string. 3583 StringRef Feature = 3584 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3585 if (!TI.validateCpuIs(Feature)) 3586 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3587 << Arg->getSourceRange(); 3588 return false; 3589 } 3590 3591 // Check if the rounding mode is legal. 3592 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3593 // Indicates if this instruction has rounding control or just SAE. 3594 bool HasRC = false; 3595 3596 unsigned ArgNum = 0; 3597 switch (BuiltinID) { 3598 default: 3599 return false; 3600 case X86::BI__builtin_ia32_vcvttsd2si32: 3601 case X86::BI__builtin_ia32_vcvttsd2si64: 3602 case X86::BI__builtin_ia32_vcvttsd2usi32: 3603 case X86::BI__builtin_ia32_vcvttsd2usi64: 3604 case X86::BI__builtin_ia32_vcvttss2si32: 3605 case X86::BI__builtin_ia32_vcvttss2si64: 3606 case X86::BI__builtin_ia32_vcvttss2usi32: 3607 case X86::BI__builtin_ia32_vcvttss2usi64: 3608 ArgNum = 1; 3609 break; 3610 case X86::BI__builtin_ia32_maxpd512: 3611 case X86::BI__builtin_ia32_maxps512: 3612 case X86::BI__builtin_ia32_minpd512: 3613 case X86::BI__builtin_ia32_minps512: 3614 ArgNum = 2; 3615 break; 3616 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3617 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3618 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3619 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3620 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3621 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3622 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3623 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3624 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3625 case X86::BI__builtin_ia32_exp2pd_mask: 3626 case X86::BI__builtin_ia32_exp2ps_mask: 3627 case X86::BI__builtin_ia32_getexppd512_mask: 3628 case X86::BI__builtin_ia32_getexpps512_mask: 3629 case X86::BI__builtin_ia32_rcp28pd_mask: 3630 case X86::BI__builtin_ia32_rcp28ps_mask: 3631 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3632 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3633 case X86::BI__builtin_ia32_vcomisd: 3634 case X86::BI__builtin_ia32_vcomiss: 3635 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3636 ArgNum = 3; 3637 break; 3638 case X86::BI__builtin_ia32_cmppd512_mask: 3639 case X86::BI__builtin_ia32_cmpps512_mask: 3640 case X86::BI__builtin_ia32_cmpsd_mask: 3641 case X86::BI__builtin_ia32_cmpss_mask: 3642 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3643 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3644 case X86::BI__builtin_ia32_getexpss128_round_mask: 3645 case X86::BI__builtin_ia32_getmantpd512_mask: 3646 case X86::BI__builtin_ia32_getmantps512_mask: 3647 case X86::BI__builtin_ia32_maxsd_round_mask: 3648 case X86::BI__builtin_ia32_maxss_round_mask: 3649 case X86::BI__builtin_ia32_minsd_round_mask: 3650 case X86::BI__builtin_ia32_minss_round_mask: 3651 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3652 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3653 case X86::BI__builtin_ia32_reducepd512_mask: 3654 case X86::BI__builtin_ia32_reduceps512_mask: 3655 case X86::BI__builtin_ia32_rndscalepd_mask: 3656 case X86::BI__builtin_ia32_rndscaleps_mask: 3657 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3658 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3659 ArgNum = 4; 3660 break; 3661 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3662 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3663 case X86::BI__builtin_ia32_fixupimmps512_mask: 3664 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3665 case X86::BI__builtin_ia32_fixupimmsd_mask: 3666 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3667 case X86::BI__builtin_ia32_fixupimmss_mask: 3668 case X86::BI__builtin_ia32_fixupimmss_maskz: 3669 case X86::BI__builtin_ia32_getmantsd_round_mask: 3670 case X86::BI__builtin_ia32_getmantss_round_mask: 3671 case X86::BI__builtin_ia32_rangepd512_mask: 3672 case X86::BI__builtin_ia32_rangeps512_mask: 3673 case X86::BI__builtin_ia32_rangesd128_round_mask: 3674 case X86::BI__builtin_ia32_rangess128_round_mask: 3675 case X86::BI__builtin_ia32_reducesd_mask: 3676 case X86::BI__builtin_ia32_reducess_mask: 3677 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3678 case X86::BI__builtin_ia32_rndscaless_round_mask: 3679 ArgNum = 5; 3680 break; 3681 case X86::BI__builtin_ia32_vcvtsd2si64: 3682 case X86::BI__builtin_ia32_vcvtsd2si32: 3683 case X86::BI__builtin_ia32_vcvtsd2usi32: 3684 case X86::BI__builtin_ia32_vcvtsd2usi64: 3685 case X86::BI__builtin_ia32_vcvtss2si32: 3686 case X86::BI__builtin_ia32_vcvtss2si64: 3687 case X86::BI__builtin_ia32_vcvtss2usi32: 3688 case X86::BI__builtin_ia32_vcvtss2usi64: 3689 case X86::BI__builtin_ia32_sqrtpd512: 3690 case X86::BI__builtin_ia32_sqrtps512: 3691 ArgNum = 1; 3692 HasRC = true; 3693 break; 3694 case X86::BI__builtin_ia32_addpd512: 3695 case X86::BI__builtin_ia32_addps512: 3696 case X86::BI__builtin_ia32_divpd512: 3697 case X86::BI__builtin_ia32_divps512: 3698 case X86::BI__builtin_ia32_mulpd512: 3699 case X86::BI__builtin_ia32_mulps512: 3700 case X86::BI__builtin_ia32_subpd512: 3701 case X86::BI__builtin_ia32_subps512: 3702 case X86::BI__builtin_ia32_cvtsi2sd64: 3703 case X86::BI__builtin_ia32_cvtsi2ss32: 3704 case X86::BI__builtin_ia32_cvtsi2ss64: 3705 case X86::BI__builtin_ia32_cvtusi2sd64: 3706 case X86::BI__builtin_ia32_cvtusi2ss32: 3707 case X86::BI__builtin_ia32_cvtusi2ss64: 3708 ArgNum = 2; 3709 HasRC = true; 3710 break; 3711 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3712 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3713 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3714 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3715 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3716 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3717 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3718 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3719 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3720 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3721 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3722 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3723 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3724 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3725 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3726 ArgNum = 3; 3727 HasRC = true; 3728 break; 3729 case X86::BI__builtin_ia32_addss_round_mask: 3730 case X86::BI__builtin_ia32_addsd_round_mask: 3731 case X86::BI__builtin_ia32_divss_round_mask: 3732 case X86::BI__builtin_ia32_divsd_round_mask: 3733 case X86::BI__builtin_ia32_mulss_round_mask: 3734 case X86::BI__builtin_ia32_mulsd_round_mask: 3735 case X86::BI__builtin_ia32_subss_round_mask: 3736 case X86::BI__builtin_ia32_subsd_round_mask: 3737 case X86::BI__builtin_ia32_scalefpd512_mask: 3738 case X86::BI__builtin_ia32_scalefps512_mask: 3739 case X86::BI__builtin_ia32_scalefsd_round_mask: 3740 case X86::BI__builtin_ia32_scalefss_round_mask: 3741 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3742 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3743 case X86::BI__builtin_ia32_sqrtss_round_mask: 3744 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3745 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3746 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3747 case X86::BI__builtin_ia32_vfmaddss3_mask: 3748 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3749 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3750 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3751 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3752 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3753 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3754 case X86::BI__builtin_ia32_vfmaddps512_mask: 3755 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3756 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3757 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3758 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3759 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3760 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3761 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3762 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3763 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3764 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3765 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3766 ArgNum = 4; 3767 HasRC = true; 3768 break; 3769 } 3770 3771 llvm::APSInt Result; 3772 3773 // We can't check the value of a dependent argument. 3774 Expr *Arg = TheCall->getArg(ArgNum); 3775 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3776 return false; 3777 3778 // Check constant-ness first. 3779 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3780 return true; 3781 3782 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3783 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3784 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3785 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3786 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3787 Result == 8/*ROUND_NO_EXC*/ || 3788 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3789 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3790 return false; 3791 3792 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3793 << Arg->getSourceRange(); 3794 } 3795 3796 // Check if the gather/scatter scale is legal. 3797 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3798 CallExpr *TheCall) { 3799 unsigned ArgNum = 0; 3800 switch (BuiltinID) { 3801 default: 3802 return false; 3803 case X86::BI__builtin_ia32_gatherpfdpd: 3804 case X86::BI__builtin_ia32_gatherpfdps: 3805 case X86::BI__builtin_ia32_gatherpfqpd: 3806 case X86::BI__builtin_ia32_gatherpfqps: 3807 case X86::BI__builtin_ia32_scatterpfdpd: 3808 case X86::BI__builtin_ia32_scatterpfdps: 3809 case X86::BI__builtin_ia32_scatterpfqpd: 3810 case X86::BI__builtin_ia32_scatterpfqps: 3811 ArgNum = 3; 3812 break; 3813 case X86::BI__builtin_ia32_gatherd_pd: 3814 case X86::BI__builtin_ia32_gatherd_pd256: 3815 case X86::BI__builtin_ia32_gatherq_pd: 3816 case X86::BI__builtin_ia32_gatherq_pd256: 3817 case X86::BI__builtin_ia32_gatherd_ps: 3818 case X86::BI__builtin_ia32_gatherd_ps256: 3819 case X86::BI__builtin_ia32_gatherq_ps: 3820 case X86::BI__builtin_ia32_gatherq_ps256: 3821 case X86::BI__builtin_ia32_gatherd_q: 3822 case X86::BI__builtin_ia32_gatherd_q256: 3823 case X86::BI__builtin_ia32_gatherq_q: 3824 case X86::BI__builtin_ia32_gatherq_q256: 3825 case X86::BI__builtin_ia32_gatherd_d: 3826 case X86::BI__builtin_ia32_gatherd_d256: 3827 case X86::BI__builtin_ia32_gatherq_d: 3828 case X86::BI__builtin_ia32_gatherq_d256: 3829 case X86::BI__builtin_ia32_gather3div2df: 3830 case X86::BI__builtin_ia32_gather3div2di: 3831 case X86::BI__builtin_ia32_gather3div4df: 3832 case X86::BI__builtin_ia32_gather3div4di: 3833 case X86::BI__builtin_ia32_gather3div4sf: 3834 case X86::BI__builtin_ia32_gather3div4si: 3835 case X86::BI__builtin_ia32_gather3div8sf: 3836 case X86::BI__builtin_ia32_gather3div8si: 3837 case X86::BI__builtin_ia32_gather3siv2df: 3838 case X86::BI__builtin_ia32_gather3siv2di: 3839 case X86::BI__builtin_ia32_gather3siv4df: 3840 case X86::BI__builtin_ia32_gather3siv4di: 3841 case X86::BI__builtin_ia32_gather3siv4sf: 3842 case X86::BI__builtin_ia32_gather3siv4si: 3843 case X86::BI__builtin_ia32_gather3siv8sf: 3844 case X86::BI__builtin_ia32_gather3siv8si: 3845 case X86::BI__builtin_ia32_gathersiv8df: 3846 case X86::BI__builtin_ia32_gathersiv16sf: 3847 case X86::BI__builtin_ia32_gatherdiv8df: 3848 case X86::BI__builtin_ia32_gatherdiv16sf: 3849 case X86::BI__builtin_ia32_gathersiv8di: 3850 case X86::BI__builtin_ia32_gathersiv16si: 3851 case X86::BI__builtin_ia32_gatherdiv8di: 3852 case X86::BI__builtin_ia32_gatherdiv16si: 3853 case X86::BI__builtin_ia32_scatterdiv2df: 3854 case X86::BI__builtin_ia32_scatterdiv2di: 3855 case X86::BI__builtin_ia32_scatterdiv4df: 3856 case X86::BI__builtin_ia32_scatterdiv4di: 3857 case X86::BI__builtin_ia32_scatterdiv4sf: 3858 case X86::BI__builtin_ia32_scatterdiv4si: 3859 case X86::BI__builtin_ia32_scatterdiv8sf: 3860 case X86::BI__builtin_ia32_scatterdiv8si: 3861 case X86::BI__builtin_ia32_scattersiv2df: 3862 case X86::BI__builtin_ia32_scattersiv2di: 3863 case X86::BI__builtin_ia32_scattersiv4df: 3864 case X86::BI__builtin_ia32_scattersiv4di: 3865 case X86::BI__builtin_ia32_scattersiv4sf: 3866 case X86::BI__builtin_ia32_scattersiv4si: 3867 case X86::BI__builtin_ia32_scattersiv8sf: 3868 case X86::BI__builtin_ia32_scattersiv8si: 3869 case X86::BI__builtin_ia32_scattersiv8df: 3870 case X86::BI__builtin_ia32_scattersiv16sf: 3871 case X86::BI__builtin_ia32_scatterdiv8df: 3872 case X86::BI__builtin_ia32_scatterdiv16sf: 3873 case X86::BI__builtin_ia32_scattersiv8di: 3874 case X86::BI__builtin_ia32_scattersiv16si: 3875 case X86::BI__builtin_ia32_scatterdiv8di: 3876 case X86::BI__builtin_ia32_scatterdiv16si: 3877 ArgNum = 4; 3878 break; 3879 } 3880 3881 llvm::APSInt Result; 3882 3883 // We can't check the value of a dependent argument. 3884 Expr *Arg = TheCall->getArg(ArgNum); 3885 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3886 return false; 3887 3888 // Check constant-ness first. 3889 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3890 return true; 3891 3892 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3893 return false; 3894 3895 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3896 << Arg->getSourceRange(); 3897 } 3898 3899 enum { TileRegLow = 0, TileRegHigh = 7 }; 3900 3901 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 3902 ArrayRef<int> ArgNums) { 3903 for (int ArgNum : ArgNums) { 3904 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 3905 return true; 3906 } 3907 return false; 3908 } 3909 3910 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 3911 ArrayRef<int> ArgNums) { 3912 // Because the max number of tile register is TileRegHigh + 1, so here we use 3913 // each bit to represent the usage of them in bitset. 3914 std::bitset<TileRegHigh + 1> ArgValues; 3915 for (int ArgNum : ArgNums) { 3916 Expr *Arg = TheCall->getArg(ArgNum); 3917 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3918 continue; 3919 3920 llvm::APSInt Result; 3921 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3922 return true; 3923 int ArgExtValue = Result.getExtValue(); 3924 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 3925 "Incorrect tile register num."); 3926 if (ArgValues.test(ArgExtValue)) 3927 return Diag(TheCall->getBeginLoc(), 3928 diag::err_x86_builtin_tile_arg_duplicate) 3929 << TheCall->getArg(ArgNum)->getSourceRange(); 3930 ArgValues.set(ArgExtValue); 3931 } 3932 return false; 3933 } 3934 3935 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 3936 ArrayRef<int> ArgNums) { 3937 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 3938 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 3939 } 3940 3941 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 3942 switch (BuiltinID) { 3943 default: 3944 return false; 3945 case X86::BI__builtin_ia32_tileloadd64: 3946 case X86::BI__builtin_ia32_tileloaddt164: 3947 case X86::BI__builtin_ia32_tilestored64: 3948 case X86::BI__builtin_ia32_tilezero: 3949 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 3950 case X86::BI__builtin_ia32_tdpbssd: 3951 case X86::BI__builtin_ia32_tdpbsud: 3952 case X86::BI__builtin_ia32_tdpbusd: 3953 case X86::BI__builtin_ia32_tdpbuud: 3954 case X86::BI__builtin_ia32_tdpbf16ps: 3955 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 3956 } 3957 } 3958 static bool isX86_32Builtin(unsigned BuiltinID) { 3959 // These builtins only work on x86-32 targets. 3960 switch (BuiltinID) { 3961 case X86::BI__builtin_ia32_readeflags_u32: 3962 case X86::BI__builtin_ia32_writeeflags_u32: 3963 return true; 3964 } 3965 3966 return false; 3967 } 3968 3969 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3970 CallExpr *TheCall) { 3971 if (BuiltinID == X86::BI__builtin_cpu_supports) 3972 return SemaBuiltinCpuSupports(*this, TI, TheCall); 3973 3974 if (BuiltinID == X86::BI__builtin_cpu_is) 3975 return SemaBuiltinCpuIs(*this, TI, TheCall); 3976 3977 // Check for 32-bit only builtins on a 64-bit target. 3978 const llvm::Triple &TT = TI.getTriple(); 3979 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3980 return Diag(TheCall->getCallee()->getBeginLoc(), 3981 diag::err_32_bit_builtin_64_bit_tgt); 3982 3983 // If the intrinsic has rounding or SAE make sure its valid. 3984 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3985 return true; 3986 3987 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3988 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3989 return true; 3990 3991 // If the intrinsic has a tile arguments, make sure they are valid. 3992 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 3993 return true; 3994 3995 // For intrinsics which take an immediate value as part of the instruction, 3996 // range check them here. 3997 int i = 0, l = 0, u = 0; 3998 switch (BuiltinID) { 3999 default: 4000 return false; 4001 case X86::BI__builtin_ia32_vec_ext_v2si: 4002 case X86::BI__builtin_ia32_vec_ext_v2di: 4003 case X86::BI__builtin_ia32_vextractf128_pd256: 4004 case X86::BI__builtin_ia32_vextractf128_ps256: 4005 case X86::BI__builtin_ia32_vextractf128_si256: 4006 case X86::BI__builtin_ia32_extract128i256: 4007 case X86::BI__builtin_ia32_extractf64x4_mask: 4008 case X86::BI__builtin_ia32_extracti64x4_mask: 4009 case X86::BI__builtin_ia32_extractf32x8_mask: 4010 case X86::BI__builtin_ia32_extracti32x8_mask: 4011 case X86::BI__builtin_ia32_extractf64x2_256_mask: 4012 case X86::BI__builtin_ia32_extracti64x2_256_mask: 4013 case X86::BI__builtin_ia32_extractf32x4_256_mask: 4014 case X86::BI__builtin_ia32_extracti32x4_256_mask: 4015 i = 1; l = 0; u = 1; 4016 break; 4017 case X86::BI__builtin_ia32_vec_set_v2di: 4018 case X86::BI__builtin_ia32_vinsertf128_pd256: 4019 case X86::BI__builtin_ia32_vinsertf128_ps256: 4020 case X86::BI__builtin_ia32_vinsertf128_si256: 4021 case X86::BI__builtin_ia32_insert128i256: 4022 case X86::BI__builtin_ia32_insertf32x8: 4023 case X86::BI__builtin_ia32_inserti32x8: 4024 case X86::BI__builtin_ia32_insertf64x4: 4025 case X86::BI__builtin_ia32_inserti64x4: 4026 case X86::BI__builtin_ia32_insertf64x2_256: 4027 case X86::BI__builtin_ia32_inserti64x2_256: 4028 case X86::BI__builtin_ia32_insertf32x4_256: 4029 case X86::BI__builtin_ia32_inserti32x4_256: 4030 i = 2; l = 0; u = 1; 4031 break; 4032 case X86::BI__builtin_ia32_vpermilpd: 4033 case X86::BI__builtin_ia32_vec_ext_v4hi: 4034 case X86::BI__builtin_ia32_vec_ext_v4si: 4035 case X86::BI__builtin_ia32_vec_ext_v4sf: 4036 case X86::BI__builtin_ia32_vec_ext_v4di: 4037 case X86::BI__builtin_ia32_extractf32x4_mask: 4038 case X86::BI__builtin_ia32_extracti32x4_mask: 4039 case X86::BI__builtin_ia32_extractf64x2_512_mask: 4040 case X86::BI__builtin_ia32_extracti64x2_512_mask: 4041 i = 1; l = 0; u = 3; 4042 break; 4043 case X86::BI_mm_prefetch: 4044 case X86::BI__builtin_ia32_vec_ext_v8hi: 4045 case X86::BI__builtin_ia32_vec_ext_v8si: 4046 i = 1; l = 0; u = 7; 4047 break; 4048 case X86::BI__builtin_ia32_sha1rnds4: 4049 case X86::BI__builtin_ia32_blendpd: 4050 case X86::BI__builtin_ia32_shufpd: 4051 case X86::BI__builtin_ia32_vec_set_v4hi: 4052 case X86::BI__builtin_ia32_vec_set_v4si: 4053 case X86::BI__builtin_ia32_vec_set_v4di: 4054 case X86::BI__builtin_ia32_shuf_f32x4_256: 4055 case X86::BI__builtin_ia32_shuf_f64x2_256: 4056 case X86::BI__builtin_ia32_shuf_i32x4_256: 4057 case X86::BI__builtin_ia32_shuf_i64x2_256: 4058 case X86::BI__builtin_ia32_insertf64x2_512: 4059 case X86::BI__builtin_ia32_inserti64x2_512: 4060 case X86::BI__builtin_ia32_insertf32x4: 4061 case X86::BI__builtin_ia32_inserti32x4: 4062 i = 2; l = 0; u = 3; 4063 break; 4064 case X86::BI__builtin_ia32_vpermil2pd: 4065 case X86::BI__builtin_ia32_vpermil2pd256: 4066 case X86::BI__builtin_ia32_vpermil2ps: 4067 case X86::BI__builtin_ia32_vpermil2ps256: 4068 i = 3; l = 0; u = 3; 4069 break; 4070 case X86::BI__builtin_ia32_cmpb128_mask: 4071 case X86::BI__builtin_ia32_cmpw128_mask: 4072 case X86::BI__builtin_ia32_cmpd128_mask: 4073 case X86::BI__builtin_ia32_cmpq128_mask: 4074 case X86::BI__builtin_ia32_cmpb256_mask: 4075 case X86::BI__builtin_ia32_cmpw256_mask: 4076 case X86::BI__builtin_ia32_cmpd256_mask: 4077 case X86::BI__builtin_ia32_cmpq256_mask: 4078 case X86::BI__builtin_ia32_cmpb512_mask: 4079 case X86::BI__builtin_ia32_cmpw512_mask: 4080 case X86::BI__builtin_ia32_cmpd512_mask: 4081 case X86::BI__builtin_ia32_cmpq512_mask: 4082 case X86::BI__builtin_ia32_ucmpb128_mask: 4083 case X86::BI__builtin_ia32_ucmpw128_mask: 4084 case X86::BI__builtin_ia32_ucmpd128_mask: 4085 case X86::BI__builtin_ia32_ucmpq128_mask: 4086 case X86::BI__builtin_ia32_ucmpb256_mask: 4087 case X86::BI__builtin_ia32_ucmpw256_mask: 4088 case X86::BI__builtin_ia32_ucmpd256_mask: 4089 case X86::BI__builtin_ia32_ucmpq256_mask: 4090 case X86::BI__builtin_ia32_ucmpb512_mask: 4091 case X86::BI__builtin_ia32_ucmpw512_mask: 4092 case X86::BI__builtin_ia32_ucmpd512_mask: 4093 case X86::BI__builtin_ia32_ucmpq512_mask: 4094 case X86::BI__builtin_ia32_vpcomub: 4095 case X86::BI__builtin_ia32_vpcomuw: 4096 case X86::BI__builtin_ia32_vpcomud: 4097 case X86::BI__builtin_ia32_vpcomuq: 4098 case X86::BI__builtin_ia32_vpcomb: 4099 case X86::BI__builtin_ia32_vpcomw: 4100 case X86::BI__builtin_ia32_vpcomd: 4101 case X86::BI__builtin_ia32_vpcomq: 4102 case X86::BI__builtin_ia32_vec_set_v8hi: 4103 case X86::BI__builtin_ia32_vec_set_v8si: 4104 i = 2; l = 0; u = 7; 4105 break; 4106 case X86::BI__builtin_ia32_vpermilpd256: 4107 case X86::BI__builtin_ia32_roundps: 4108 case X86::BI__builtin_ia32_roundpd: 4109 case X86::BI__builtin_ia32_roundps256: 4110 case X86::BI__builtin_ia32_roundpd256: 4111 case X86::BI__builtin_ia32_getmantpd128_mask: 4112 case X86::BI__builtin_ia32_getmantpd256_mask: 4113 case X86::BI__builtin_ia32_getmantps128_mask: 4114 case X86::BI__builtin_ia32_getmantps256_mask: 4115 case X86::BI__builtin_ia32_getmantpd512_mask: 4116 case X86::BI__builtin_ia32_getmantps512_mask: 4117 case X86::BI__builtin_ia32_vec_ext_v16qi: 4118 case X86::BI__builtin_ia32_vec_ext_v16hi: 4119 i = 1; l = 0; u = 15; 4120 break; 4121 case X86::BI__builtin_ia32_pblendd128: 4122 case X86::BI__builtin_ia32_blendps: 4123 case X86::BI__builtin_ia32_blendpd256: 4124 case X86::BI__builtin_ia32_shufpd256: 4125 case X86::BI__builtin_ia32_roundss: 4126 case X86::BI__builtin_ia32_roundsd: 4127 case X86::BI__builtin_ia32_rangepd128_mask: 4128 case X86::BI__builtin_ia32_rangepd256_mask: 4129 case X86::BI__builtin_ia32_rangepd512_mask: 4130 case X86::BI__builtin_ia32_rangeps128_mask: 4131 case X86::BI__builtin_ia32_rangeps256_mask: 4132 case X86::BI__builtin_ia32_rangeps512_mask: 4133 case X86::BI__builtin_ia32_getmantsd_round_mask: 4134 case X86::BI__builtin_ia32_getmantss_round_mask: 4135 case X86::BI__builtin_ia32_vec_set_v16qi: 4136 case X86::BI__builtin_ia32_vec_set_v16hi: 4137 i = 2; l = 0; u = 15; 4138 break; 4139 case X86::BI__builtin_ia32_vec_ext_v32qi: 4140 i = 1; l = 0; u = 31; 4141 break; 4142 case X86::BI__builtin_ia32_cmpps: 4143 case X86::BI__builtin_ia32_cmpss: 4144 case X86::BI__builtin_ia32_cmppd: 4145 case X86::BI__builtin_ia32_cmpsd: 4146 case X86::BI__builtin_ia32_cmpps256: 4147 case X86::BI__builtin_ia32_cmppd256: 4148 case X86::BI__builtin_ia32_cmpps128_mask: 4149 case X86::BI__builtin_ia32_cmppd128_mask: 4150 case X86::BI__builtin_ia32_cmpps256_mask: 4151 case X86::BI__builtin_ia32_cmppd256_mask: 4152 case X86::BI__builtin_ia32_cmpps512_mask: 4153 case X86::BI__builtin_ia32_cmppd512_mask: 4154 case X86::BI__builtin_ia32_cmpsd_mask: 4155 case X86::BI__builtin_ia32_cmpss_mask: 4156 case X86::BI__builtin_ia32_vec_set_v32qi: 4157 i = 2; l = 0; u = 31; 4158 break; 4159 case X86::BI__builtin_ia32_permdf256: 4160 case X86::BI__builtin_ia32_permdi256: 4161 case X86::BI__builtin_ia32_permdf512: 4162 case X86::BI__builtin_ia32_permdi512: 4163 case X86::BI__builtin_ia32_vpermilps: 4164 case X86::BI__builtin_ia32_vpermilps256: 4165 case X86::BI__builtin_ia32_vpermilpd512: 4166 case X86::BI__builtin_ia32_vpermilps512: 4167 case X86::BI__builtin_ia32_pshufd: 4168 case X86::BI__builtin_ia32_pshufd256: 4169 case X86::BI__builtin_ia32_pshufd512: 4170 case X86::BI__builtin_ia32_pshufhw: 4171 case X86::BI__builtin_ia32_pshufhw256: 4172 case X86::BI__builtin_ia32_pshufhw512: 4173 case X86::BI__builtin_ia32_pshuflw: 4174 case X86::BI__builtin_ia32_pshuflw256: 4175 case X86::BI__builtin_ia32_pshuflw512: 4176 case X86::BI__builtin_ia32_vcvtps2ph: 4177 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4178 case X86::BI__builtin_ia32_vcvtps2ph256: 4179 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4180 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4181 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4182 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4183 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4184 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4185 case X86::BI__builtin_ia32_rndscaleps_mask: 4186 case X86::BI__builtin_ia32_rndscalepd_mask: 4187 case X86::BI__builtin_ia32_reducepd128_mask: 4188 case X86::BI__builtin_ia32_reducepd256_mask: 4189 case X86::BI__builtin_ia32_reducepd512_mask: 4190 case X86::BI__builtin_ia32_reduceps128_mask: 4191 case X86::BI__builtin_ia32_reduceps256_mask: 4192 case X86::BI__builtin_ia32_reduceps512_mask: 4193 case X86::BI__builtin_ia32_prold512: 4194 case X86::BI__builtin_ia32_prolq512: 4195 case X86::BI__builtin_ia32_prold128: 4196 case X86::BI__builtin_ia32_prold256: 4197 case X86::BI__builtin_ia32_prolq128: 4198 case X86::BI__builtin_ia32_prolq256: 4199 case X86::BI__builtin_ia32_prord512: 4200 case X86::BI__builtin_ia32_prorq512: 4201 case X86::BI__builtin_ia32_prord128: 4202 case X86::BI__builtin_ia32_prord256: 4203 case X86::BI__builtin_ia32_prorq128: 4204 case X86::BI__builtin_ia32_prorq256: 4205 case X86::BI__builtin_ia32_fpclasspd128_mask: 4206 case X86::BI__builtin_ia32_fpclasspd256_mask: 4207 case X86::BI__builtin_ia32_fpclassps128_mask: 4208 case X86::BI__builtin_ia32_fpclassps256_mask: 4209 case X86::BI__builtin_ia32_fpclassps512_mask: 4210 case X86::BI__builtin_ia32_fpclasspd512_mask: 4211 case X86::BI__builtin_ia32_fpclasssd_mask: 4212 case X86::BI__builtin_ia32_fpclassss_mask: 4213 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4214 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4215 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4216 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4217 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4218 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4219 case X86::BI__builtin_ia32_kshiftliqi: 4220 case X86::BI__builtin_ia32_kshiftlihi: 4221 case X86::BI__builtin_ia32_kshiftlisi: 4222 case X86::BI__builtin_ia32_kshiftlidi: 4223 case X86::BI__builtin_ia32_kshiftriqi: 4224 case X86::BI__builtin_ia32_kshiftrihi: 4225 case X86::BI__builtin_ia32_kshiftrisi: 4226 case X86::BI__builtin_ia32_kshiftridi: 4227 i = 1; l = 0; u = 255; 4228 break; 4229 case X86::BI__builtin_ia32_vperm2f128_pd256: 4230 case X86::BI__builtin_ia32_vperm2f128_ps256: 4231 case X86::BI__builtin_ia32_vperm2f128_si256: 4232 case X86::BI__builtin_ia32_permti256: 4233 case X86::BI__builtin_ia32_pblendw128: 4234 case X86::BI__builtin_ia32_pblendw256: 4235 case X86::BI__builtin_ia32_blendps256: 4236 case X86::BI__builtin_ia32_pblendd256: 4237 case X86::BI__builtin_ia32_palignr128: 4238 case X86::BI__builtin_ia32_palignr256: 4239 case X86::BI__builtin_ia32_palignr512: 4240 case X86::BI__builtin_ia32_alignq512: 4241 case X86::BI__builtin_ia32_alignd512: 4242 case X86::BI__builtin_ia32_alignd128: 4243 case X86::BI__builtin_ia32_alignd256: 4244 case X86::BI__builtin_ia32_alignq128: 4245 case X86::BI__builtin_ia32_alignq256: 4246 case X86::BI__builtin_ia32_vcomisd: 4247 case X86::BI__builtin_ia32_vcomiss: 4248 case X86::BI__builtin_ia32_shuf_f32x4: 4249 case X86::BI__builtin_ia32_shuf_f64x2: 4250 case X86::BI__builtin_ia32_shuf_i32x4: 4251 case X86::BI__builtin_ia32_shuf_i64x2: 4252 case X86::BI__builtin_ia32_shufpd512: 4253 case X86::BI__builtin_ia32_shufps: 4254 case X86::BI__builtin_ia32_shufps256: 4255 case X86::BI__builtin_ia32_shufps512: 4256 case X86::BI__builtin_ia32_dbpsadbw128: 4257 case X86::BI__builtin_ia32_dbpsadbw256: 4258 case X86::BI__builtin_ia32_dbpsadbw512: 4259 case X86::BI__builtin_ia32_vpshldd128: 4260 case X86::BI__builtin_ia32_vpshldd256: 4261 case X86::BI__builtin_ia32_vpshldd512: 4262 case X86::BI__builtin_ia32_vpshldq128: 4263 case X86::BI__builtin_ia32_vpshldq256: 4264 case X86::BI__builtin_ia32_vpshldq512: 4265 case X86::BI__builtin_ia32_vpshldw128: 4266 case X86::BI__builtin_ia32_vpshldw256: 4267 case X86::BI__builtin_ia32_vpshldw512: 4268 case X86::BI__builtin_ia32_vpshrdd128: 4269 case X86::BI__builtin_ia32_vpshrdd256: 4270 case X86::BI__builtin_ia32_vpshrdd512: 4271 case X86::BI__builtin_ia32_vpshrdq128: 4272 case X86::BI__builtin_ia32_vpshrdq256: 4273 case X86::BI__builtin_ia32_vpshrdq512: 4274 case X86::BI__builtin_ia32_vpshrdw128: 4275 case X86::BI__builtin_ia32_vpshrdw256: 4276 case X86::BI__builtin_ia32_vpshrdw512: 4277 i = 2; l = 0; u = 255; 4278 break; 4279 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4280 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4281 case X86::BI__builtin_ia32_fixupimmps512_mask: 4282 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4283 case X86::BI__builtin_ia32_fixupimmsd_mask: 4284 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4285 case X86::BI__builtin_ia32_fixupimmss_mask: 4286 case X86::BI__builtin_ia32_fixupimmss_maskz: 4287 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4288 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4289 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4290 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4291 case X86::BI__builtin_ia32_fixupimmps128_mask: 4292 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4293 case X86::BI__builtin_ia32_fixupimmps256_mask: 4294 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4295 case X86::BI__builtin_ia32_pternlogd512_mask: 4296 case X86::BI__builtin_ia32_pternlogd512_maskz: 4297 case X86::BI__builtin_ia32_pternlogq512_mask: 4298 case X86::BI__builtin_ia32_pternlogq512_maskz: 4299 case X86::BI__builtin_ia32_pternlogd128_mask: 4300 case X86::BI__builtin_ia32_pternlogd128_maskz: 4301 case X86::BI__builtin_ia32_pternlogd256_mask: 4302 case X86::BI__builtin_ia32_pternlogd256_maskz: 4303 case X86::BI__builtin_ia32_pternlogq128_mask: 4304 case X86::BI__builtin_ia32_pternlogq128_maskz: 4305 case X86::BI__builtin_ia32_pternlogq256_mask: 4306 case X86::BI__builtin_ia32_pternlogq256_maskz: 4307 i = 3; l = 0; u = 255; 4308 break; 4309 case X86::BI__builtin_ia32_gatherpfdpd: 4310 case X86::BI__builtin_ia32_gatherpfdps: 4311 case X86::BI__builtin_ia32_gatherpfqpd: 4312 case X86::BI__builtin_ia32_gatherpfqps: 4313 case X86::BI__builtin_ia32_scatterpfdpd: 4314 case X86::BI__builtin_ia32_scatterpfdps: 4315 case X86::BI__builtin_ia32_scatterpfqpd: 4316 case X86::BI__builtin_ia32_scatterpfqps: 4317 i = 4; l = 2; u = 3; 4318 break; 4319 case X86::BI__builtin_ia32_reducesd_mask: 4320 case X86::BI__builtin_ia32_reducess_mask: 4321 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4322 case X86::BI__builtin_ia32_rndscaless_round_mask: 4323 i = 4; l = 0; u = 255; 4324 break; 4325 } 4326 4327 // Note that we don't force a hard error on the range check here, allowing 4328 // template-generated or macro-generated dead code to potentially have out-of- 4329 // range values. These need to code generate, but don't need to necessarily 4330 // make any sense. We use a warning that defaults to an error. 4331 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4332 } 4333 4334 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4335 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4336 /// Returns true when the format fits the function and the FormatStringInfo has 4337 /// been populated. 4338 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4339 FormatStringInfo *FSI) { 4340 FSI->HasVAListArg = Format->getFirstArg() == 0; 4341 FSI->FormatIdx = Format->getFormatIdx() - 1; 4342 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4343 4344 // The way the format attribute works in GCC, the implicit this argument 4345 // of member functions is counted. However, it doesn't appear in our own 4346 // lists, so decrement format_idx in that case. 4347 if (IsCXXMember) { 4348 if(FSI->FormatIdx == 0) 4349 return false; 4350 --FSI->FormatIdx; 4351 if (FSI->FirstDataArg != 0) 4352 --FSI->FirstDataArg; 4353 } 4354 return true; 4355 } 4356 4357 /// Checks if a the given expression evaluates to null. 4358 /// 4359 /// Returns true if the value evaluates to null. 4360 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4361 // If the expression has non-null type, it doesn't evaluate to null. 4362 if (auto nullability 4363 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4364 if (*nullability == NullabilityKind::NonNull) 4365 return false; 4366 } 4367 4368 // As a special case, transparent unions initialized with zero are 4369 // considered null for the purposes of the nonnull attribute. 4370 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4371 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4372 if (const CompoundLiteralExpr *CLE = 4373 dyn_cast<CompoundLiteralExpr>(Expr)) 4374 if (const InitListExpr *ILE = 4375 dyn_cast<InitListExpr>(CLE->getInitializer())) 4376 Expr = ILE->getInit(0); 4377 } 4378 4379 bool Result; 4380 return (!Expr->isValueDependent() && 4381 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4382 !Result); 4383 } 4384 4385 static void CheckNonNullArgument(Sema &S, 4386 const Expr *ArgExpr, 4387 SourceLocation CallSiteLoc) { 4388 if (CheckNonNullExpr(S, ArgExpr)) 4389 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4390 S.PDiag(diag::warn_null_arg) 4391 << ArgExpr->getSourceRange()); 4392 } 4393 4394 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4395 FormatStringInfo FSI; 4396 if ((GetFormatStringType(Format) == FST_NSString) && 4397 getFormatStringInfo(Format, false, &FSI)) { 4398 Idx = FSI.FormatIdx; 4399 return true; 4400 } 4401 return false; 4402 } 4403 4404 /// Diagnose use of %s directive in an NSString which is being passed 4405 /// as formatting string to formatting method. 4406 static void 4407 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4408 const NamedDecl *FDecl, 4409 Expr **Args, 4410 unsigned NumArgs) { 4411 unsigned Idx = 0; 4412 bool Format = false; 4413 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4414 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4415 Idx = 2; 4416 Format = true; 4417 } 4418 else 4419 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4420 if (S.GetFormatNSStringIdx(I, Idx)) { 4421 Format = true; 4422 break; 4423 } 4424 } 4425 if (!Format || NumArgs <= Idx) 4426 return; 4427 const Expr *FormatExpr = Args[Idx]; 4428 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4429 FormatExpr = CSCE->getSubExpr(); 4430 const StringLiteral *FormatString; 4431 if (const ObjCStringLiteral *OSL = 4432 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4433 FormatString = OSL->getString(); 4434 else 4435 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4436 if (!FormatString) 4437 return; 4438 if (S.FormatStringHasSArg(FormatString)) { 4439 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4440 << "%s" << 1 << 1; 4441 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4442 << FDecl->getDeclName(); 4443 } 4444 } 4445 4446 /// Determine whether the given type has a non-null nullability annotation. 4447 static bool isNonNullType(ASTContext &ctx, QualType type) { 4448 if (auto nullability = type->getNullability(ctx)) 4449 return *nullability == NullabilityKind::NonNull; 4450 4451 return false; 4452 } 4453 4454 static void CheckNonNullArguments(Sema &S, 4455 const NamedDecl *FDecl, 4456 const FunctionProtoType *Proto, 4457 ArrayRef<const Expr *> Args, 4458 SourceLocation CallSiteLoc) { 4459 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4460 4461 // Already checked by by constant evaluator. 4462 if (S.isConstantEvaluated()) 4463 return; 4464 // Check the attributes attached to the method/function itself. 4465 llvm::SmallBitVector NonNullArgs; 4466 if (FDecl) { 4467 // Handle the nonnull attribute on the function/method declaration itself. 4468 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4469 if (!NonNull->args_size()) { 4470 // Easy case: all pointer arguments are nonnull. 4471 for (const auto *Arg : Args) 4472 if (S.isValidPointerAttrType(Arg->getType())) 4473 CheckNonNullArgument(S, Arg, CallSiteLoc); 4474 return; 4475 } 4476 4477 for (const ParamIdx &Idx : NonNull->args()) { 4478 unsigned IdxAST = Idx.getASTIndex(); 4479 if (IdxAST >= Args.size()) 4480 continue; 4481 if (NonNullArgs.empty()) 4482 NonNullArgs.resize(Args.size()); 4483 NonNullArgs.set(IdxAST); 4484 } 4485 } 4486 } 4487 4488 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4489 // Handle the nonnull attribute on the parameters of the 4490 // function/method. 4491 ArrayRef<ParmVarDecl*> parms; 4492 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4493 parms = FD->parameters(); 4494 else 4495 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4496 4497 unsigned ParamIndex = 0; 4498 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4499 I != E; ++I, ++ParamIndex) { 4500 const ParmVarDecl *PVD = *I; 4501 if (PVD->hasAttr<NonNullAttr>() || 4502 isNonNullType(S.Context, PVD->getType())) { 4503 if (NonNullArgs.empty()) 4504 NonNullArgs.resize(Args.size()); 4505 4506 NonNullArgs.set(ParamIndex); 4507 } 4508 } 4509 } else { 4510 // If we have a non-function, non-method declaration but no 4511 // function prototype, try to dig out the function prototype. 4512 if (!Proto) { 4513 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4514 QualType type = VD->getType().getNonReferenceType(); 4515 if (auto pointerType = type->getAs<PointerType>()) 4516 type = pointerType->getPointeeType(); 4517 else if (auto blockType = type->getAs<BlockPointerType>()) 4518 type = blockType->getPointeeType(); 4519 // FIXME: data member pointers? 4520 4521 // Dig out the function prototype, if there is one. 4522 Proto = type->getAs<FunctionProtoType>(); 4523 } 4524 } 4525 4526 // Fill in non-null argument information from the nullability 4527 // information on the parameter types (if we have them). 4528 if (Proto) { 4529 unsigned Index = 0; 4530 for (auto paramType : Proto->getParamTypes()) { 4531 if (isNonNullType(S.Context, paramType)) { 4532 if (NonNullArgs.empty()) 4533 NonNullArgs.resize(Args.size()); 4534 4535 NonNullArgs.set(Index); 4536 } 4537 4538 ++Index; 4539 } 4540 } 4541 } 4542 4543 // Check for non-null arguments. 4544 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4545 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4546 if (NonNullArgs[ArgIndex]) 4547 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4548 } 4549 } 4550 4551 /// Warn if a pointer or reference argument passed to a function points to an 4552 /// object that is less aligned than the parameter. This can happen when 4553 /// creating a typedef with a lower alignment than the original type and then 4554 /// calling functions defined in terms of the original type. 4555 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, 4556 StringRef ParamName, QualType ArgTy, 4557 QualType ParamTy) { 4558 4559 // If a function accepts a pointer or reference type 4560 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) 4561 return; 4562 4563 // If the parameter is a pointer type, get the pointee type for the 4564 // argument too. If the parameter is a reference type, don't try to get 4565 // the pointee type for the argument. 4566 if (ParamTy->isPointerType()) 4567 ArgTy = ArgTy->getPointeeType(); 4568 4569 // Remove reference or pointer 4570 ParamTy = ParamTy->getPointeeType(); 4571 4572 // Find expected alignment, and the actual alignment of the passed object. 4573 // getTypeAlignInChars requires complete types 4574 if (ParamTy->isIncompleteType() || ArgTy->isIncompleteType()) 4575 return; 4576 4577 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); 4578 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); 4579 4580 // If the argument is less aligned than the parameter, there is a 4581 // potential alignment issue. 4582 if (ArgAlign < ParamAlign) 4583 Diag(Loc, diag::warn_param_mismatched_alignment) 4584 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() 4585 << ParamName << FDecl; 4586 } 4587 4588 /// Handles the checks for format strings, non-POD arguments to vararg 4589 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4590 /// attributes. 4591 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4592 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4593 bool IsMemberFunction, SourceLocation Loc, 4594 SourceRange Range, VariadicCallType CallType) { 4595 // FIXME: We should check as much as we can in the template definition. 4596 if (CurContext->isDependentContext()) 4597 return; 4598 4599 // Printf and scanf checking. 4600 llvm::SmallBitVector CheckedVarArgs; 4601 if (FDecl) { 4602 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4603 // Only create vector if there are format attributes. 4604 CheckedVarArgs.resize(Args.size()); 4605 4606 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4607 CheckedVarArgs); 4608 } 4609 } 4610 4611 // Refuse POD arguments that weren't caught by the format string 4612 // checks above. 4613 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4614 if (CallType != VariadicDoesNotApply && 4615 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4616 unsigned NumParams = Proto ? Proto->getNumParams() 4617 : FDecl && isa<FunctionDecl>(FDecl) 4618 ? cast<FunctionDecl>(FDecl)->getNumParams() 4619 : FDecl && isa<ObjCMethodDecl>(FDecl) 4620 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4621 : 0; 4622 4623 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4624 // Args[ArgIdx] can be null in malformed code. 4625 if (const Expr *Arg = Args[ArgIdx]) { 4626 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4627 checkVariadicArgument(Arg, CallType); 4628 } 4629 } 4630 } 4631 4632 if (FDecl || Proto) { 4633 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4634 4635 // Type safety checking. 4636 if (FDecl) { 4637 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4638 CheckArgumentWithTypeTag(I, Args, Loc); 4639 } 4640 } 4641 4642 // Check that passed arguments match the alignment of original arguments. 4643 // Try to get the missing prototype from the declaration. 4644 if (!Proto && FDecl) { 4645 const auto *FT = FDecl->getFunctionType(); 4646 if (isa_and_nonnull<FunctionProtoType>(FT)) 4647 Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); 4648 } 4649 if (Proto) { 4650 // For variadic functions, we may have more args than parameters. 4651 // For some K&R functions, we may have less args than parameters. 4652 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size()); 4653 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { 4654 // Args[ArgIdx] can be null in malformed code. 4655 if (const Expr *Arg = Args[ArgIdx]) { 4656 QualType ParamTy = Proto->getParamType(ArgIdx); 4657 QualType ArgTy = Arg->getType(); 4658 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), 4659 ArgTy, ParamTy); 4660 } 4661 } 4662 } 4663 4664 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4665 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4666 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4667 if (!Arg->isValueDependent()) { 4668 Expr::EvalResult Align; 4669 if (Arg->EvaluateAsInt(Align, Context)) { 4670 const llvm::APSInt &I = Align.Val.getInt(); 4671 if (!I.isPowerOf2()) 4672 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4673 << Arg->getSourceRange(); 4674 4675 if (I > Sema::MaximumAlignment) 4676 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4677 << Arg->getSourceRange() << Sema::MaximumAlignment; 4678 } 4679 } 4680 } 4681 4682 if (FD) 4683 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4684 } 4685 4686 /// CheckConstructorCall - Check a constructor call for correctness and safety 4687 /// properties not enforced by the C type system. 4688 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, 4689 ArrayRef<const Expr *> Args, 4690 const FunctionProtoType *Proto, 4691 SourceLocation Loc) { 4692 VariadicCallType CallType = 4693 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4694 4695 auto *Ctor = cast<CXXConstructorDecl>(FDecl); 4696 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType), 4697 Context.getPointerType(Ctor->getThisObjectType())); 4698 4699 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4700 Loc, SourceRange(), CallType); 4701 } 4702 4703 /// CheckFunctionCall - Check a direct function call for various correctness 4704 /// and safety properties not strictly enforced by the C type system. 4705 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4706 const FunctionProtoType *Proto) { 4707 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4708 isa<CXXMethodDecl>(FDecl); 4709 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4710 IsMemberOperatorCall; 4711 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4712 TheCall->getCallee()); 4713 Expr** Args = TheCall->getArgs(); 4714 unsigned NumArgs = TheCall->getNumArgs(); 4715 4716 Expr *ImplicitThis = nullptr; 4717 if (IsMemberOperatorCall) { 4718 // If this is a call to a member operator, hide the first argument 4719 // from checkCall. 4720 // FIXME: Our choice of AST representation here is less than ideal. 4721 ImplicitThis = Args[0]; 4722 ++Args; 4723 --NumArgs; 4724 } else if (IsMemberFunction) 4725 ImplicitThis = 4726 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4727 4728 if (ImplicitThis) { 4729 // ImplicitThis may or may not be a pointer, depending on whether . or -> is 4730 // used. 4731 QualType ThisType = ImplicitThis->getType(); 4732 if (!ThisType->isPointerType()) { 4733 assert(!ThisType->isReferenceType()); 4734 ThisType = Context.getPointerType(ThisType); 4735 } 4736 4737 QualType ThisTypeFromDecl = 4738 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType()); 4739 4740 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, 4741 ThisTypeFromDecl); 4742 } 4743 4744 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4745 IsMemberFunction, TheCall->getRParenLoc(), 4746 TheCall->getCallee()->getSourceRange(), CallType); 4747 4748 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4749 // None of the checks below are needed for functions that don't have 4750 // simple names (e.g., C++ conversion functions). 4751 if (!FnInfo) 4752 return false; 4753 4754 CheckTCBEnforcement(TheCall, FDecl); 4755 4756 CheckAbsoluteValueFunction(TheCall, FDecl); 4757 CheckMaxUnsignedZero(TheCall, FDecl); 4758 4759 if (getLangOpts().ObjC) 4760 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4761 4762 unsigned CMId = FDecl->getMemoryFunctionKind(); 4763 4764 // Handle memory setting and copying functions. 4765 switch (CMId) { 4766 case 0: 4767 return false; 4768 case Builtin::BIstrlcpy: // fallthrough 4769 case Builtin::BIstrlcat: 4770 CheckStrlcpycatArguments(TheCall, FnInfo); 4771 break; 4772 case Builtin::BIstrncat: 4773 CheckStrncatArguments(TheCall, FnInfo); 4774 break; 4775 case Builtin::BIfree: 4776 CheckFreeArguments(TheCall); 4777 break; 4778 default: 4779 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4780 } 4781 4782 return false; 4783 } 4784 4785 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4786 ArrayRef<const Expr *> Args) { 4787 VariadicCallType CallType = 4788 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4789 4790 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4791 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4792 CallType); 4793 4794 return false; 4795 } 4796 4797 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4798 const FunctionProtoType *Proto) { 4799 QualType Ty; 4800 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4801 Ty = V->getType().getNonReferenceType(); 4802 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4803 Ty = F->getType().getNonReferenceType(); 4804 else 4805 return false; 4806 4807 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4808 !Ty->isFunctionProtoType()) 4809 return false; 4810 4811 VariadicCallType CallType; 4812 if (!Proto || !Proto->isVariadic()) { 4813 CallType = VariadicDoesNotApply; 4814 } else if (Ty->isBlockPointerType()) { 4815 CallType = VariadicBlock; 4816 } else { // Ty->isFunctionPointerType() 4817 CallType = VariadicFunction; 4818 } 4819 4820 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4821 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4822 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4823 TheCall->getCallee()->getSourceRange(), CallType); 4824 4825 return false; 4826 } 4827 4828 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4829 /// such as function pointers returned from functions. 4830 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4831 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4832 TheCall->getCallee()); 4833 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4834 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4835 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4836 TheCall->getCallee()->getSourceRange(), CallType); 4837 4838 return false; 4839 } 4840 4841 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4842 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4843 return false; 4844 4845 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4846 switch (Op) { 4847 case AtomicExpr::AO__c11_atomic_init: 4848 case AtomicExpr::AO__opencl_atomic_init: 4849 llvm_unreachable("There is no ordering argument for an init"); 4850 4851 case AtomicExpr::AO__c11_atomic_load: 4852 case AtomicExpr::AO__opencl_atomic_load: 4853 case AtomicExpr::AO__atomic_load_n: 4854 case AtomicExpr::AO__atomic_load: 4855 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4856 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4857 4858 case AtomicExpr::AO__c11_atomic_store: 4859 case AtomicExpr::AO__opencl_atomic_store: 4860 case AtomicExpr::AO__atomic_store: 4861 case AtomicExpr::AO__atomic_store_n: 4862 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4863 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4864 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4865 4866 default: 4867 return true; 4868 } 4869 } 4870 4871 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4872 AtomicExpr::AtomicOp Op) { 4873 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4874 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4875 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4876 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4877 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4878 Op); 4879 } 4880 4881 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4882 SourceLocation RParenLoc, MultiExprArg Args, 4883 AtomicExpr::AtomicOp Op, 4884 AtomicArgumentOrder ArgOrder) { 4885 // All the non-OpenCL operations take one of the following forms. 4886 // The OpenCL operations take the __c11 forms with one extra argument for 4887 // synchronization scope. 4888 enum { 4889 // C __c11_atomic_init(A *, C) 4890 Init, 4891 4892 // C __c11_atomic_load(A *, int) 4893 Load, 4894 4895 // void __atomic_load(A *, CP, int) 4896 LoadCopy, 4897 4898 // void __atomic_store(A *, CP, int) 4899 Copy, 4900 4901 // C __c11_atomic_add(A *, M, int) 4902 Arithmetic, 4903 4904 // C __atomic_exchange_n(A *, CP, int) 4905 Xchg, 4906 4907 // void __atomic_exchange(A *, C *, CP, int) 4908 GNUXchg, 4909 4910 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4911 C11CmpXchg, 4912 4913 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4914 GNUCmpXchg 4915 } Form = Init; 4916 4917 const unsigned NumForm = GNUCmpXchg + 1; 4918 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4919 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4920 // where: 4921 // C is an appropriate type, 4922 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4923 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4924 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4925 // the int parameters are for orderings. 4926 4927 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4928 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4929 "need to update code for modified forms"); 4930 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4931 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4932 AtomicExpr::AO__atomic_load, 4933 "need to update code for modified C11 atomics"); 4934 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4935 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4936 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4937 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4938 IsOpenCL; 4939 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4940 Op == AtomicExpr::AO__atomic_store_n || 4941 Op == AtomicExpr::AO__atomic_exchange_n || 4942 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4943 bool IsAddSub = false; 4944 4945 switch (Op) { 4946 case AtomicExpr::AO__c11_atomic_init: 4947 case AtomicExpr::AO__opencl_atomic_init: 4948 Form = Init; 4949 break; 4950 4951 case AtomicExpr::AO__c11_atomic_load: 4952 case AtomicExpr::AO__opencl_atomic_load: 4953 case AtomicExpr::AO__atomic_load_n: 4954 Form = Load; 4955 break; 4956 4957 case AtomicExpr::AO__atomic_load: 4958 Form = LoadCopy; 4959 break; 4960 4961 case AtomicExpr::AO__c11_atomic_store: 4962 case AtomicExpr::AO__opencl_atomic_store: 4963 case AtomicExpr::AO__atomic_store: 4964 case AtomicExpr::AO__atomic_store_n: 4965 Form = Copy; 4966 break; 4967 4968 case AtomicExpr::AO__c11_atomic_fetch_add: 4969 case AtomicExpr::AO__c11_atomic_fetch_sub: 4970 case AtomicExpr::AO__opencl_atomic_fetch_add: 4971 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4972 case AtomicExpr::AO__atomic_fetch_add: 4973 case AtomicExpr::AO__atomic_fetch_sub: 4974 case AtomicExpr::AO__atomic_add_fetch: 4975 case AtomicExpr::AO__atomic_sub_fetch: 4976 IsAddSub = true; 4977 Form = Arithmetic; 4978 break; 4979 case AtomicExpr::AO__c11_atomic_fetch_and: 4980 case AtomicExpr::AO__c11_atomic_fetch_or: 4981 case AtomicExpr::AO__c11_atomic_fetch_xor: 4982 case AtomicExpr::AO__opencl_atomic_fetch_and: 4983 case AtomicExpr::AO__opencl_atomic_fetch_or: 4984 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4985 case AtomicExpr::AO__atomic_fetch_and: 4986 case AtomicExpr::AO__atomic_fetch_or: 4987 case AtomicExpr::AO__atomic_fetch_xor: 4988 case AtomicExpr::AO__atomic_fetch_nand: 4989 case AtomicExpr::AO__atomic_and_fetch: 4990 case AtomicExpr::AO__atomic_or_fetch: 4991 case AtomicExpr::AO__atomic_xor_fetch: 4992 case AtomicExpr::AO__atomic_nand_fetch: 4993 Form = Arithmetic; 4994 break; 4995 case AtomicExpr::AO__c11_atomic_fetch_min: 4996 case AtomicExpr::AO__c11_atomic_fetch_max: 4997 case AtomicExpr::AO__opencl_atomic_fetch_min: 4998 case AtomicExpr::AO__opencl_atomic_fetch_max: 4999 case AtomicExpr::AO__atomic_min_fetch: 5000 case AtomicExpr::AO__atomic_max_fetch: 5001 case AtomicExpr::AO__atomic_fetch_min: 5002 case AtomicExpr::AO__atomic_fetch_max: 5003 Form = Arithmetic; 5004 break; 5005 5006 case AtomicExpr::AO__c11_atomic_exchange: 5007 case AtomicExpr::AO__opencl_atomic_exchange: 5008 case AtomicExpr::AO__atomic_exchange_n: 5009 Form = Xchg; 5010 break; 5011 5012 case AtomicExpr::AO__atomic_exchange: 5013 Form = GNUXchg; 5014 break; 5015 5016 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 5017 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 5018 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 5019 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 5020 Form = C11CmpXchg; 5021 break; 5022 5023 case AtomicExpr::AO__atomic_compare_exchange: 5024 case AtomicExpr::AO__atomic_compare_exchange_n: 5025 Form = GNUCmpXchg; 5026 break; 5027 } 5028 5029 unsigned AdjustedNumArgs = NumArgs[Form]; 5030 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 5031 ++AdjustedNumArgs; 5032 // Check we have the right number of arguments. 5033 if (Args.size() < AdjustedNumArgs) { 5034 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 5035 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5036 << ExprRange; 5037 return ExprError(); 5038 } else if (Args.size() > AdjustedNumArgs) { 5039 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 5040 diag::err_typecheck_call_too_many_args) 5041 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5042 << ExprRange; 5043 return ExprError(); 5044 } 5045 5046 // Inspect the first argument of the atomic operation. 5047 Expr *Ptr = Args[0]; 5048 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 5049 if (ConvertedPtr.isInvalid()) 5050 return ExprError(); 5051 5052 Ptr = ConvertedPtr.get(); 5053 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 5054 if (!pointerType) { 5055 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 5056 << Ptr->getType() << Ptr->getSourceRange(); 5057 return ExprError(); 5058 } 5059 5060 // For a __c11 builtin, this should be a pointer to an _Atomic type. 5061 QualType AtomTy = pointerType->getPointeeType(); // 'A' 5062 QualType ValType = AtomTy; // 'C' 5063 if (IsC11) { 5064 if (!AtomTy->isAtomicType()) { 5065 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 5066 << Ptr->getType() << Ptr->getSourceRange(); 5067 return ExprError(); 5068 } 5069 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 5070 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 5071 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 5072 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 5073 << Ptr->getSourceRange(); 5074 return ExprError(); 5075 } 5076 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 5077 } else if (Form != Load && Form != LoadCopy) { 5078 if (ValType.isConstQualified()) { 5079 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 5080 << Ptr->getType() << Ptr->getSourceRange(); 5081 return ExprError(); 5082 } 5083 } 5084 5085 // For an arithmetic operation, the implied arithmetic must be well-formed. 5086 if (Form == Arithmetic) { 5087 // gcc does not enforce these rules for GNU atomics, but we do so for 5088 // sanity. 5089 auto IsAllowedValueType = [&](QualType ValType) { 5090 if (ValType->isIntegerType()) 5091 return true; 5092 if (ValType->isPointerType()) 5093 return true; 5094 if (!ValType->isFloatingType()) 5095 return false; 5096 // LLVM Parser does not allow atomicrmw with x86_fp80 type. 5097 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && 5098 &Context.getTargetInfo().getLongDoubleFormat() == 5099 &llvm::APFloat::x87DoubleExtended()) 5100 return false; 5101 return true; 5102 }; 5103 if (IsAddSub && !IsAllowedValueType(ValType)) { 5104 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp) 5105 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5106 return ExprError(); 5107 } 5108 if (!IsAddSub && !ValType->isIntegerType()) { 5109 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 5110 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5111 return ExprError(); 5112 } 5113 if (IsC11 && ValType->isPointerType() && 5114 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 5115 diag::err_incomplete_type)) { 5116 return ExprError(); 5117 } 5118 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 5119 // For __atomic_*_n operations, the value type must be a scalar integral or 5120 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 5121 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 5122 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5123 return ExprError(); 5124 } 5125 5126 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 5127 !AtomTy->isScalarType()) { 5128 // For GNU atomics, require a trivially-copyable type. This is not part of 5129 // the GNU atomics specification, but we enforce it for sanity. 5130 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 5131 << Ptr->getType() << Ptr->getSourceRange(); 5132 return ExprError(); 5133 } 5134 5135 switch (ValType.getObjCLifetime()) { 5136 case Qualifiers::OCL_None: 5137 case Qualifiers::OCL_ExplicitNone: 5138 // okay 5139 break; 5140 5141 case Qualifiers::OCL_Weak: 5142 case Qualifiers::OCL_Strong: 5143 case Qualifiers::OCL_Autoreleasing: 5144 // FIXME: Can this happen? By this point, ValType should be known 5145 // to be trivially copyable. 5146 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 5147 << ValType << Ptr->getSourceRange(); 5148 return ExprError(); 5149 } 5150 5151 // All atomic operations have an overload which takes a pointer to a volatile 5152 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 5153 // into the result or the other operands. Similarly atomic_load takes a 5154 // pointer to a const 'A'. 5155 ValType.removeLocalVolatile(); 5156 ValType.removeLocalConst(); 5157 QualType ResultType = ValType; 5158 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 5159 Form == Init) 5160 ResultType = Context.VoidTy; 5161 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 5162 ResultType = Context.BoolTy; 5163 5164 // The type of a parameter passed 'by value'. In the GNU atomics, such 5165 // arguments are actually passed as pointers. 5166 QualType ByValType = ValType; // 'CP' 5167 bool IsPassedByAddress = false; 5168 if (!IsC11 && !IsN) { 5169 ByValType = Ptr->getType(); 5170 IsPassedByAddress = true; 5171 } 5172 5173 SmallVector<Expr *, 5> APIOrderedArgs; 5174 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 5175 APIOrderedArgs.push_back(Args[0]); 5176 switch (Form) { 5177 case Init: 5178 case Load: 5179 APIOrderedArgs.push_back(Args[1]); // Val1/Order 5180 break; 5181 case LoadCopy: 5182 case Copy: 5183 case Arithmetic: 5184 case Xchg: 5185 APIOrderedArgs.push_back(Args[2]); // Val1 5186 APIOrderedArgs.push_back(Args[1]); // Order 5187 break; 5188 case GNUXchg: 5189 APIOrderedArgs.push_back(Args[2]); // Val1 5190 APIOrderedArgs.push_back(Args[3]); // Val2 5191 APIOrderedArgs.push_back(Args[1]); // Order 5192 break; 5193 case C11CmpXchg: 5194 APIOrderedArgs.push_back(Args[2]); // Val1 5195 APIOrderedArgs.push_back(Args[4]); // Val2 5196 APIOrderedArgs.push_back(Args[1]); // Order 5197 APIOrderedArgs.push_back(Args[3]); // OrderFail 5198 break; 5199 case GNUCmpXchg: 5200 APIOrderedArgs.push_back(Args[2]); // Val1 5201 APIOrderedArgs.push_back(Args[4]); // Val2 5202 APIOrderedArgs.push_back(Args[5]); // Weak 5203 APIOrderedArgs.push_back(Args[1]); // Order 5204 APIOrderedArgs.push_back(Args[3]); // OrderFail 5205 break; 5206 } 5207 } else 5208 APIOrderedArgs.append(Args.begin(), Args.end()); 5209 5210 // The first argument's non-CV pointer type is used to deduce the type of 5211 // subsequent arguments, except for: 5212 // - weak flag (always converted to bool) 5213 // - memory order (always converted to int) 5214 // - scope (always converted to int) 5215 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5216 QualType Ty; 5217 if (i < NumVals[Form] + 1) { 5218 switch (i) { 5219 case 0: 5220 // The first argument is always a pointer. It has a fixed type. 5221 // It is always dereferenced, a nullptr is undefined. 5222 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5223 // Nothing else to do: we already know all we want about this pointer. 5224 continue; 5225 case 1: 5226 // The second argument is the non-atomic operand. For arithmetic, this 5227 // is always passed by value, and for a compare_exchange it is always 5228 // passed by address. For the rest, GNU uses by-address and C11 uses 5229 // by-value. 5230 assert(Form != Load); 5231 if (Form == Arithmetic && ValType->isPointerType()) 5232 Ty = Context.getPointerDiffType(); 5233 else if (Form == Init || Form == Arithmetic) 5234 Ty = ValType; 5235 else if (Form == Copy || Form == Xchg) { 5236 if (IsPassedByAddress) { 5237 // The value pointer is always dereferenced, a nullptr is undefined. 5238 CheckNonNullArgument(*this, APIOrderedArgs[i], 5239 ExprRange.getBegin()); 5240 } 5241 Ty = ByValType; 5242 } else { 5243 Expr *ValArg = APIOrderedArgs[i]; 5244 // The value pointer is always dereferenced, a nullptr is undefined. 5245 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 5246 LangAS AS = LangAS::Default; 5247 // Keep address space of non-atomic pointer type. 5248 if (const PointerType *PtrTy = 5249 ValArg->getType()->getAs<PointerType>()) { 5250 AS = PtrTy->getPointeeType().getAddressSpace(); 5251 } 5252 Ty = Context.getPointerType( 5253 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 5254 } 5255 break; 5256 case 2: 5257 // The third argument to compare_exchange / GNU exchange is the desired 5258 // value, either by-value (for the C11 and *_n variant) or as a pointer. 5259 if (IsPassedByAddress) 5260 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5261 Ty = ByValType; 5262 break; 5263 case 3: 5264 // The fourth argument to GNU compare_exchange is a 'weak' flag. 5265 Ty = Context.BoolTy; 5266 break; 5267 } 5268 } else { 5269 // The order(s) and scope are always converted to int. 5270 Ty = Context.IntTy; 5271 } 5272 5273 InitializedEntity Entity = 5274 InitializedEntity::InitializeParameter(Context, Ty, false); 5275 ExprResult Arg = APIOrderedArgs[i]; 5276 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5277 if (Arg.isInvalid()) 5278 return true; 5279 APIOrderedArgs[i] = Arg.get(); 5280 } 5281 5282 // Permute the arguments into a 'consistent' order. 5283 SmallVector<Expr*, 5> SubExprs; 5284 SubExprs.push_back(Ptr); 5285 switch (Form) { 5286 case Init: 5287 // Note, AtomicExpr::getVal1() has a special case for this atomic. 5288 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5289 break; 5290 case Load: 5291 SubExprs.push_back(APIOrderedArgs[1]); // Order 5292 break; 5293 case LoadCopy: 5294 case Copy: 5295 case Arithmetic: 5296 case Xchg: 5297 SubExprs.push_back(APIOrderedArgs[2]); // Order 5298 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5299 break; 5300 case GNUXchg: 5301 // Note, AtomicExpr::getVal2() has a special case for this atomic. 5302 SubExprs.push_back(APIOrderedArgs[3]); // Order 5303 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5304 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5305 break; 5306 case C11CmpXchg: 5307 SubExprs.push_back(APIOrderedArgs[3]); // Order 5308 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5309 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 5310 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5311 break; 5312 case GNUCmpXchg: 5313 SubExprs.push_back(APIOrderedArgs[4]); // Order 5314 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5315 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 5316 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5317 SubExprs.push_back(APIOrderedArgs[3]); // Weak 5318 break; 5319 } 5320 5321 if (SubExprs.size() >= 2 && Form != Init) { 5322 if (Optional<llvm::APSInt> Result = 5323 SubExprs[1]->getIntegerConstantExpr(Context)) 5324 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 5325 Diag(SubExprs[1]->getBeginLoc(), 5326 diag::warn_atomic_op_has_invalid_memory_order) 5327 << SubExprs[1]->getSourceRange(); 5328 } 5329 5330 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 5331 auto *Scope = Args[Args.size() - 1]; 5332 if (Optional<llvm::APSInt> Result = 5333 Scope->getIntegerConstantExpr(Context)) { 5334 if (!ScopeModel->isValid(Result->getZExtValue())) 5335 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 5336 << Scope->getSourceRange(); 5337 } 5338 SubExprs.push_back(Scope); 5339 } 5340 5341 AtomicExpr *AE = new (Context) 5342 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 5343 5344 if ((Op == AtomicExpr::AO__c11_atomic_load || 5345 Op == AtomicExpr::AO__c11_atomic_store || 5346 Op == AtomicExpr::AO__opencl_atomic_load || 5347 Op == AtomicExpr::AO__opencl_atomic_store ) && 5348 Context.AtomicUsesUnsupportedLibcall(AE)) 5349 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 5350 << ((Op == AtomicExpr::AO__c11_atomic_load || 5351 Op == AtomicExpr::AO__opencl_atomic_load) 5352 ? 0 5353 : 1); 5354 5355 if (ValType->isExtIntType()) { 5356 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 5357 return ExprError(); 5358 } 5359 5360 return AE; 5361 } 5362 5363 /// checkBuiltinArgument - Given a call to a builtin function, perform 5364 /// normal type-checking on the given argument, updating the call in 5365 /// place. This is useful when a builtin function requires custom 5366 /// type-checking for some of its arguments but not necessarily all of 5367 /// them. 5368 /// 5369 /// Returns true on error. 5370 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 5371 FunctionDecl *Fn = E->getDirectCallee(); 5372 assert(Fn && "builtin call without direct callee!"); 5373 5374 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 5375 InitializedEntity Entity = 5376 InitializedEntity::InitializeParameter(S.Context, Param); 5377 5378 ExprResult Arg = E->getArg(0); 5379 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 5380 if (Arg.isInvalid()) 5381 return true; 5382 5383 E->setArg(ArgIndex, Arg.get()); 5384 return false; 5385 } 5386 5387 /// We have a call to a function like __sync_fetch_and_add, which is an 5388 /// overloaded function based on the pointer type of its first argument. 5389 /// The main BuildCallExpr routines have already promoted the types of 5390 /// arguments because all of these calls are prototyped as void(...). 5391 /// 5392 /// This function goes through and does final semantic checking for these 5393 /// builtins, as well as generating any warnings. 5394 ExprResult 5395 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5396 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5397 Expr *Callee = TheCall->getCallee(); 5398 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5399 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5400 5401 // Ensure that we have at least one argument to do type inference from. 5402 if (TheCall->getNumArgs() < 1) { 5403 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5404 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5405 return ExprError(); 5406 } 5407 5408 // Inspect the first argument of the atomic builtin. This should always be 5409 // a pointer type, whose element is an integral scalar or pointer type. 5410 // Because it is a pointer type, we don't have to worry about any implicit 5411 // casts here. 5412 // FIXME: We don't allow floating point scalars as input. 5413 Expr *FirstArg = TheCall->getArg(0); 5414 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5415 if (FirstArgResult.isInvalid()) 5416 return ExprError(); 5417 FirstArg = FirstArgResult.get(); 5418 TheCall->setArg(0, FirstArg); 5419 5420 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5421 if (!pointerType) { 5422 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5423 << FirstArg->getType() << FirstArg->getSourceRange(); 5424 return ExprError(); 5425 } 5426 5427 QualType ValType = pointerType->getPointeeType(); 5428 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5429 !ValType->isBlockPointerType()) { 5430 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5431 << FirstArg->getType() << FirstArg->getSourceRange(); 5432 return ExprError(); 5433 } 5434 5435 if (ValType.isConstQualified()) { 5436 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5437 << FirstArg->getType() << FirstArg->getSourceRange(); 5438 return ExprError(); 5439 } 5440 5441 switch (ValType.getObjCLifetime()) { 5442 case Qualifiers::OCL_None: 5443 case Qualifiers::OCL_ExplicitNone: 5444 // okay 5445 break; 5446 5447 case Qualifiers::OCL_Weak: 5448 case Qualifiers::OCL_Strong: 5449 case Qualifiers::OCL_Autoreleasing: 5450 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5451 << ValType << FirstArg->getSourceRange(); 5452 return ExprError(); 5453 } 5454 5455 // Strip any qualifiers off ValType. 5456 ValType = ValType.getUnqualifiedType(); 5457 5458 // The majority of builtins return a value, but a few have special return 5459 // types, so allow them to override appropriately below. 5460 QualType ResultType = ValType; 5461 5462 // We need to figure out which concrete builtin this maps onto. For example, 5463 // __sync_fetch_and_add with a 2 byte object turns into 5464 // __sync_fetch_and_add_2. 5465 #define BUILTIN_ROW(x) \ 5466 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5467 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5468 5469 static const unsigned BuiltinIndices[][5] = { 5470 BUILTIN_ROW(__sync_fetch_and_add), 5471 BUILTIN_ROW(__sync_fetch_and_sub), 5472 BUILTIN_ROW(__sync_fetch_and_or), 5473 BUILTIN_ROW(__sync_fetch_and_and), 5474 BUILTIN_ROW(__sync_fetch_and_xor), 5475 BUILTIN_ROW(__sync_fetch_and_nand), 5476 5477 BUILTIN_ROW(__sync_add_and_fetch), 5478 BUILTIN_ROW(__sync_sub_and_fetch), 5479 BUILTIN_ROW(__sync_and_and_fetch), 5480 BUILTIN_ROW(__sync_or_and_fetch), 5481 BUILTIN_ROW(__sync_xor_and_fetch), 5482 BUILTIN_ROW(__sync_nand_and_fetch), 5483 5484 BUILTIN_ROW(__sync_val_compare_and_swap), 5485 BUILTIN_ROW(__sync_bool_compare_and_swap), 5486 BUILTIN_ROW(__sync_lock_test_and_set), 5487 BUILTIN_ROW(__sync_lock_release), 5488 BUILTIN_ROW(__sync_swap) 5489 }; 5490 #undef BUILTIN_ROW 5491 5492 // Determine the index of the size. 5493 unsigned SizeIndex; 5494 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5495 case 1: SizeIndex = 0; break; 5496 case 2: SizeIndex = 1; break; 5497 case 4: SizeIndex = 2; break; 5498 case 8: SizeIndex = 3; break; 5499 case 16: SizeIndex = 4; break; 5500 default: 5501 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5502 << FirstArg->getType() << FirstArg->getSourceRange(); 5503 return ExprError(); 5504 } 5505 5506 // Each of these builtins has one pointer argument, followed by some number of 5507 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5508 // that we ignore. Find out which row of BuiltinIndices to read from as well 5509 // as the number of fixed args. 5510 unsigned BuiltinID = FDecl->getBuiltinID(); 5511 unsigned BuiltinIndex, NumFixed = 1; 5512 bool WarnAboutSemanticsChange = false; 5513 switch (BuiltinID) { 5514 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5515 case Builtin::BI__sync_fetch_and_add: 5516 case Builtin::BI__sync_fetch_and_add_1: 5517 case Builtin::BI__sync_fetch_and_add_2: 5518 case Builtin::BI__sync_fetch_and_add_4: 5519 case Builtin::BI__sync_fetch_and_add_8: 5520 case Builtin::BI__sync_fetch_and_add_16: 5521 BuiltinIndex = 0; 5522 break; 5523 5524 case Builtin::BI__sync_fetch_and_sub: 5525 case Builtin::BI__sync_fetch_and_sub_1: 5526 case Builtin::BI__sync_fetch_and_sub_2: 5527 case Builtin::BI__sync_fetch_and_sub_4: 5528 case Builtin::BI__sync_fetch_and_sub_8: 5529 case Builtin::BI__sync_fetch_and_sub_16: 5530 BuiltinIndex = 1; 5531 break; 5532 5533 case Builtin::BI__sync_fetch_and_or: 5534 case Builtin::BI__sync_fetch_and_or_1: 5535 case Builtin::BI__sync_fetch_and_or_2: 5536 case Builtin::BI__sync_fetch_and_or_4: 5537 case Builtin::BI__sync_fetch_and_or_8: 5538 case Builtin::BI__sync_fetch_and_or_16: 5539 BuiltinIndex = 2; 5540 break; 5541 5542 case Builtin::BI__sync_fetch_and_and: 5543 case Builtin::BI__sync_fetch_and_and_1: 5544 case Builtin::BI__sync_fetch_and_and_2: 5545 case Builtin::BI__sync_fetch_and_and_4: 5546 case Builtin::BI__sync_fetch_and_and_8: 5547 case Builtin::BI__sync_fetch_and_and_16: 5548 BuiltinIndex = 3; 5549 break; 5550 5551 case Builtin::BI__sync_fetch_and_xor: 5552 case Builtin::BI__sync_fetch_and_xor_1: 5553 case Builtin::BI__sync_fetch_and_xor_2: 5554 case Builtin::BI__sync_fetch_and_xor_4: 5555 case Builtin::BI__sync_fetch_and_xor_8: 5556 case Builtin::BI__sync_fetch_and_xor_16: 5557 BuiltinIndex = 4; 5558 break; 5559 5560 case Builtin::BI__sync_fetch_and_nand: 5561 case Builtin::BI__sync_fetch_and_nand_1: 5562 case Builtin::BI__sync_fetch_and_nand_2: 5563 case Builtin::BI__sync_fetch_and_nand_4: 5564 case Builtin::BI__sync_fetch_and_nand_8: 5565 case Builtin::BI__sync_fetch_and_nand_16: 5566 BuiltinIndex = 5; 5567 WarnAboutSemanticsChange = true; 5568 break; 5569 5570 case Builtin::BI__sync_add_and_fetch: 5571 case Builtin::BI__sync_add_and_fetch_1: 5572 case Builtin::BI__sync_add_and_fetch_2: 5573 case Builtin::BI__sync_add_and_fetch_4: 5574 case Builtin::BI__sync_add_and_fetch_8: 5575 case Builtin::BI__sync_add_and_fetch_16: 5576 BuiltinIndex = 6; 5577 break; 5578 5579 case Builtin::BI__sync_sub_and_fetch: 5580 case Builtin::BI__sync_sub_and_fetch_1: 5581 case Builtin::BI__sync_sub_and_fetch_2: 5582 case Builtin::BI__sync_sub_and_fetch_4: 5583 case Builtin::BI__sync_sub_and_fetch_8: 5584 case Builtin::BI__sync_sub_and_fetch_16: 5585 BuiltinIndex = 7; 5586 break; 5587 5588 case Builtin::BI__sync_and_and_fetch: 5589 case Builtin::BI__sync_and_and_fetch_1: 5590 case Builtin::BI__sync_and_and_fetch_2: 5591 case Builtin::BI__sync_and_and_fetch_4: 5592 case Builtin::BI__sync_and_and_fetch_8: 5593 case Builtin::BI__sync_and_and_fetch_16: 5594 BuiltinIndex = 8; 5595 break; 5596 5597 case Builtin::BI__sync_or_and_fetch: 5598 case Builtin::BI__sync_or_and_fetch_1: 5599 case Builtin::BI__sync_or_and_fetch_2: 5600 case Builtin::BI__sync_or_and_fetch_4: 5601 case Builtin::BI__sync_or_and_fetch_8: 5602 case Builtin::BI__sync_or_and_fetch_16: 5603 BuiltinIndex = 9; 5604 break; 5605 5606 case Builtin::BI__sync_xor_and_fetch: 5607 case Builtin::BI__sync_xor_and_fetch_1: 5608 case Builtin::BI__sync_xor_and_fetch_2: 5609 case Builtin::BI__sync_xor_and_fetch_4: 5610 case Builtin::BI__sync_xor_and_fetch_8: 5611 case Builtin::BI__sync_xor_and_fetch_16: 5612 BuiltinIndex = 10; 5613 break; 5614 5615 case Builtin::BI__sync_nand_and_fetch: 5616 case Builtin::BI__sync_nand_and_fetch_1: 5617 case Builtin::BI__sync_nand_and_fetch_2: 5618 case Builtin::BI__sync_nand_and_fetch_4: 5619 case Builtin::BI__sync_nand_and_fetch_8: 5620 case Builtin::BI__sync_nand_and_fetch_16: 5621 BuiltinIndex = 11; 5622 WarnAboutSemanticsChange = true; 5623 break; 5624 5625 case Builtin::BI__sync_val_compare_and_swap: 5626 case Builtin::BI__sync_val_compare_and_swap_1: 5627 case Builtin::BI__sync_val_compare_and_swap_2: 5628 case Builtin::BI__sync_val_compare_and_swap_4: 5629 case Builtin::BI__sync_val_compare_and_swap_8: 5630 case Builtin::BI__sync_val_compare_and_swap_16: 5631 BuiltinIndex = 12; 5632 NumFixed = 2; 5633 break; 5634 5635 case Builtin::BI__sync_bool_compare_and_swap: 5636 case Builtin::BI__sync_bool_compare_and_swap_1: 5637 case Builtin::BI__sync_bool_compare_and_swap_2: 5638 case Builtin::BI__sync_bool_compare_and_swap_4: 5639 case Builtin::BI__sync_bool_compare_and_swap_8: 5640 case Builtin::BI__sync_bool_compare_and_swap_16: 5641 BuiltinIndex = 13; 5642 NumFixed = 2; 5643 ResultType = Context.BoolTy; 5644 break; 5645 5646 case Builtin::BI__sync_lock_test_and_set: 5647 case Builtin::BI__sync_lock_test_and_set_1: 5648 case Builtin::BI__sync_lock_test_and_set_2: 5649 case Builtin::BI__sync_lock_test_and_set_4: 5650 case Builtin::BI__sync_lock_test_and_set_8: 5651 case Builtin::BI__sync_lock_test_and_set_16: 5652 BuiltinIndex = 14; 5653 break; 5654 5655 case Builtin::BI__sync_lock_release: 5656 case Builtin::BI__sync_lock_release_1: 5657 case Builtin::BI__sync_lock_release_2: 5658 case Builtin::BI__sync_lock_release_4: 5659 case Builtin::BI__sync_lock_release_8: 5660 case Builtin::BI__sync_lock_release_16: 5661 BuiltinIndex = 15; 5662 NumFixed = 0; 5663 ResultType = Context.VoidTy; 5664 break; 5665 5666 case Builtin::BI__sync_swap: 5667 case Builtin::BI__sync_swap_1: 5668 case Builtin::BI__sync_swap_2: 5669 case Builtin::BI__sync_swap_4: 5670 case Builtin::BI__sync_swap_8: 5671 case Builtin::BI__sync_swap_16: 5672 BuiltinIndex = 16; 5673 break; 5674 } 5675 5676 // Now that we know how many fixed arguments we expect, first check that we 5677 // have at least that many. 5678 if (TheCall->getNumArgs() < 1+NumFixed) { 5679 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5680 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5681 << Callee->getSourceRange(); 5682 return ExprError(); 5683 } 5684 5685 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5686 << Callee->getSourceRange(); 5687 5688 if (WarnAboutSemanticsChange) { 5689 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5690 << Callee->getSourceRange(); 5691 } 5692 5693 // Get the decl for the concrete builtin from this, we can tell what the 5694 // concrete integer type we should convert to is. 5695 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5696 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5697 FunctionDecl *NewBuiltinDecl; 5698 if (NewBuiltinID == BuiltinID) 5699 NewBuiltinDecl = FDecl; 5700 else { 5701 // Perform builtin lookup to avoid redeclaring it. 5702 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5703 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5704 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5705 assert(Res.getFoundDecl()); 5706 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5707 if (!NewBuiltinDecl) 5708 return ExprError(); 5709 } 5710 5711 // The first argument --- the pointer --- has a fixed type; we 5712 // deduce the types of the rest of the arguments accordingly. Walk 5713 // the remaining arguments, converting them to the deduced value type. 5714 for (unsigned i = 0; i != NumFixed; ++i) { 5715 ExprResult Arg = TheCall->getArg(i+1); 5716 5717 // GCC does an implicit conversion to the pointer or integer ValType. This 5718 // can fail in some cases (1i -> int**), check for this error case now. 5719 // Initialize the argument. 5720 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5721 ValType, /*consume*/ false); 5722 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5723 if (Arg.isInvalid()) 5724 return ExprError(); 5725 5726 // Okay, we have something that *can* be converted to the right type. Check 5727 // to see if there is a potentially weird extension going on here. This can 5728 // happen when you do an atomic operation on something like an char* and 5729 // pass in 42. The 42 gets converted to char. This is even more strange 5730 // for things like 45.123 -> char, etc. 5731 // FIXME: Do this check. 5732 TheCall->setArg(i+1, Arg.get()); 5733 } 5734 5735 // Create a new DeclRefExpr to refer to the new decl. 5736 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5737 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5738 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5739 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5740 5741 // Set the callee in the CallExpr. 5742 // FIXME: This loses syntactic information. 5743 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5744 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5745 CK_BuiltinFnToFnPtr); 5746 TheCall->setCallee(PromotedCall.get()); 5747 5748 // Change the result type of the call to match the original value type. This 5749 // is arbitrary, but the codegen for these builtins ins design to handle it 5750 // gracefully. 5751 TheCall->setType(ResultType); 5752 5753 // Prohibit use of _ExtInt with atomic builtins. 5754 // The arguments would have already been converted to the first argument's 5755 // type, so only need to check the first argument. 5756 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 5757 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 5758 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 5759 return ExprError(); 5760 } 5761 5762 return TheCallResult; 5763 } 5764 5765 /// SemaBuiltinNontemporalOverloaded - We have a call to 5766 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5767 /// overloaded function based on the pointer type of its last argument. 5768 /// 5769 /// This function goes through and does final semantic checking for these 5770 /// builtins. 5771 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5772 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5773 DeclRefExpr *DRE = 5774 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5775 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5776 unsigned BuiltinID = FDecl->getBuiltinID(); 5777 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5778 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5779 "Unexpected nontemporal load/store builtin!"); 5780 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5781 unsigned numArgs = isStore ? 2 : 1; 5782 5783 // Ensure that we have the proper number of arguments. 5784 if (checkArgCount(*this, TheCall, numArgs)) 5785 return ExprError(); 5786 5787 // Inspect the last argument of the nontemporal builtin. This should always 5788 // be a pointer type, from which we imply the type of the memory access. 5789 // Because it is a pointer type, we don't have to worry about any implicit 5790 // casts here. 5791 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5792 ExprResult PointerArgResult = 5793 DefaultFunctionArrayLvalueConversion(PointerArg); 5794 5795 if (PointerArgResult.isInvalid()) 5796 return ExprError(); 5797 PointerArg = PointerArgResult.get(); 5798 TheCall->setArg(numArgs - 1, PointerArg); 5799 5800 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5801 if (!pointerType) { 5802 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5803 << PointerArg->getType() << PointerArg->getSourceRange(); 5804 return ExprError(); 5805 } 5806 5807 QualType ValType = pointerType->getPointeeType(); 5808 5809 // Strip any qualifiers off ValType. 5810 ValType = ValType.getUnqualifiedType(); 5811 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5812 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5813 !ValType->isVectorType()) { 5814 Diag(DRE->getBeginLoc(), 5815 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5816 << PointerArg->getType() << PointerArg->getSourceRange(); 5817 return ExprError(); 5818 } 5819 5820 if (!isStore) { 5821 TheCall->setType(ValType); 5822 return TheCallResult; 5823 } 5824 5825 ExprResult ValArg = TheCall->getArg(0); 5826 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5827 Context, ValType, /*consume*/ false); 5828 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5829 if (ValArg.isInvalid()) 5830 return ExprError(); 5831 5832 TheCall->setArg(0, ValArg.get()); 5833 TheCall->setType(Context.VoidTy); 5834 return TheCallResult; 5835 } 5836 5837 /// CheckObjCString - Checks that the argument to the builtin 5838 /// CFString constructor is correct 5839 /// Note: It might also make sense to do the UTF-16 conversion here (would 5840 /// simplify the backend). 5841 bool Sema::CheckObjCString(Expr *Arg) { 5842 Arg = Arg->IgnoreParenCasts(); 5843 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5844 5845 if (!Literal || !Literal->isAscii()) { 5846 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5847 << Arg->getSourceRange(); 5848 return true; 5849 } 5850 5851 if (Literal->containsNonAsciiOrNull()) { 5852 StringRef String = Literal->getString(); 5853 unsigned NumBytes = String.size(); 5854 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5855 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5856 llvm::UTF16 *ToPtr = &ToBuf[0]; 5857 5858 llvm::ConversionResult Result = 5859 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5860 ToPtr + NumBytes, llvm::strictConversion); 5861 // Check for conversion failure. 5862 if (Result != llvm::conversionOK) 5863 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5864 << Arg->getSourceRange(); 5865 } 5866 return false; 5867 } 5868 5869 /// CheckObjCString - Checks that the format string argument to the os_log() 5870 /// and os_trace() functions is correct, and converts it to const char *. 5871 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5872 Arg = Arg->IgnoreParenCasts(); 5873 auto *Literal = dyn_cast<StringLiteral>(Arg); 5874 if (!Literal) { 5875 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5876 Literal = ObjcLiteral->getString(); 5877 } 5878 } 5879 5880 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5881 return ExprError( 5882 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5883 << Arg->getSourceRange()); 5884 } 5885 5886 ExprResult Result(Literal); 5887 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5888 InitializedEntity Entity = 5889 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5890 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5891 return Result; 5892 } 5893 5894 /// Check that the user is calling the appropriate va_start builtin for the 5895 /// target and calling convention. 5896 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5897 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5898 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5899 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5900 TT.getArch() == llvm::Triple::aarch64_32); 5901 bool IsWindows = TT.isOSWindows(); 5902 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5903 if (IsX64 || IsAArch64) { 5904 CallingConv CC = CC_C; 5905 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5906 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5907 if (IsMSVAStart) { 5908 // Don't allow this in System V ABI functions. 5909 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5910 return S.Diag(Fn->getBeginLoc(), 5911 diag::err_ms_va_start_used_in_sysv_function); 5912 } else { 5913 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5914 // On x64 Windows, don't allow this in System V ABI functions. 5915 // (Yes, that means there's no corresponding way to support variadic 5916 // System V ABI functions on Windows.) 5917 if ((IsWindows && CC == CC_X86_64SysV) || 5918 (!IsWindows && CC == CC_Win64)) 5919 return S.Diag(Fn->getBeginLoc(), 5920 diag::err_va_start_used_in_wrong_abi_function) 5921 << !IsWindows; 5922 } 5923 return false; 5924 } 5925 5926 if (IsMSVAStart) 5927 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5928 return false; 5929 } 5930 5931 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5932 ParmVarDecl **LastParam = nullptr) { 5933 // Determine whether the current function, block, or obj-c method is variadic 5934 // and get its parameter list. 5935 bool IsVariadic = false; 5936 ArrayRef<ParmVarDecl *> Params; 5937 DeclContext *Caller = S.CurContext; 5938 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5939 IsVariadic = Block->isVariadic(); 5940 Params = Block->parameters(); 5941 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5942 IsVariadic = FD->isVariadic(); 5943 Params = FD->parameters(); 5944 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5945 IsVariadic = MD->isVariadic(); 5946 // FIXME: This isn't correct for methods (results in bogus warning). 5947 Params = MD->parameters(); 5948 } else if (isa<CapturedDecl>(Caller)) { 5949 // We don't support va_start in a CapturedDecl. 5950 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5951 return true; 5952 } else { 5953 // This must be some other declcontext that parses exprs. 5954 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5955 return true; 5956 } 5957 5958 if (!IsVariadic) { 5959 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5960 return true; 5961 } 5962 5963 if (LastParam) 5964 *LastParam = Params.empty() ? nullptr : Params.back(); 5965 5966 return false; 5967 } 5968 5969 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5970 /// for validity. Emit an error and return true on failure; return false 5971 /// on success. 5972 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5973 Expr *Fn = TheCall->getCallee(); 5974 5975 if (checkVAStartABI(*this, BuiltinID, Fn)) 5976 return true; 5977 5978 if (checkArgCount(*this, TheCall, 2)) 5979 return true; 5980 5981 // Type-check the first argument normally. 5982 if (checkBuiltinArgument(*this, TheCall, 0)) 5983 return true; 5984 5985 // Check that the current function is variadic, and get its last parameter. 5986 ParmVarDecl *LastParam; 5987 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5988 return true; 5989 5990 // Verify that the second argument to the builtin is the last argument of the 5991 // current function or method. 5992 bool SecondArgIsLastNamedArgument = false; 5993 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5994 5995 // These are valid if SecondArgIsLastNamedArgument is false after the next 5996 // block. 5997 QualType Type; 5998 SourceLocation ParamLoc; 5999 bool IsCRegister = false; 6000 6001 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 6002 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 6003 SecondArgIsLastNamedArgument = PV == LastParam; 6004 6005 Type = PV->getType(); 6006 ParamLoc = PV->getLocation(); 6007 IsCRegister = 6008 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 6009 } 6010 } 6011 6012 if (!SecondArgIsLastNamedArgument) 6013 Diag(TheCall->getArg(1)->getBeginLoc(), 6014 diag::warn_second_arg_of_va_start_not_last_named_param); 6015 else if (IsCRegister || Type->isReferenceType() || 6016 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 6017 // Promotable integers are UB, but enumerations need a bit of 6018 // extra checking to see what their promotable type actually is. 6019 if (!Type->isPromotableIntegerType()) 6020 return false; 6021 if (!Type->isEnumeralType()) 6022 return true; 6023 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 6024 return !(ED && 6025 Context.typesAreCompatible(ED->getPromotionType(), Type)); 6026 }()) { 6027 unsigned Reason = 0; 6028 if (Type->isReferenceType()) Reason = 1; 6029 else if (IsCRegister) Reason = 2; 6030 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 6031 Diag(ParamLoc, diag::note_parameter_type) << Type; 6032 } 6033 6034 TheCall->setType(Context.VoidTy); 6035 return false; 6036 } 6037 6038 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 6039 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 6040 // const char *named_addr); 6041 6042 Expr *Func = Call->getCallee(); 6043 6044 if (Call->getNumArgs() < 3) 6045 return Diag(Call->getEndLoc(), 6046 diag::err_typecheck_call_too_few_args_at_least) 6047 << 0 /*function call*/ << 3 << Call->getNumArgs(); 6048 6049 // Type-check the first argument normally. 6050 if (checkBuiltinArgument(*this, Call, 0)) 6051 return true; 6052 6053 // Check that the current function is variadic. 6054 if (checkVAStartIsInVariadicFunction(*this, Func)) 6055 return true; 6056 6057 // __va_start on Windows does not validate the parameter qualifiers 6058 6059 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 6060 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 6061 6062 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 6063 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 6064 6065 const QualType &ConstCharPtrTy = 6066 Context.getPointerType(Context.CharTy.withConst()); 6067 if (!Arg1Ty->isPointerType() || 6068 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 6069 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6070 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 6071 << 0 /* qualifier difference */ 6072 << 3 /* parameter mismatch */ 6073 << 2 << Arg1->getType() << ConstCharPtrTy; 6074 6075 const QualType SizeTy = Context.getSizeType(); 6076 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 6077 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6078 << Arg2->getType() << SizeTy << 1 /* different class */ 6079 << 0 /* qualifier difference */ 6080 << 3 /* parameter mismatch */ 6081 << 3 << Arg2->getType() << SizeTy; 6082 6083 return false; 6084 } 6085 6086 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 6087 /// friends. This is declared to take (...), so we have to check everything. 6088 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 6089 if (checkArgCount(*this, TheCall, 2)) 6090 return true; 6091 6092 ExprResult OrigArg0 = TheCall->getArg(0); 6093 ExprResult OrigArg1 = TheCall->getArg(1); 6094 6095 // Do standard promotions between the two arguments, returning their common 6096 // type. 6097 QualType Res = UsualArithmeticConversions( 6098 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 6099 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 6100 return true; 6101 6102 // Make sure any conversions are pushed back into the call; this is 6103 // type safe since unordered compare builtins are declared as "_Bool 6104 // foo(...)". 6105 TheCall->setArg(0, OrigArg0.get()); 6106 TheCall->setArg(1, OrigArg1.get()); 6107 6108 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 6109 return false; 6110 6111 // If the common type isn't a real floating type, then the arguments were 6112 // invalid for this operation. 6113 if (Res.isNull() || !Res->isRealFloatingType()) 6114 return Diag(OrigArg0.get()->getBeginLoc(), 6115 diag::err_typecheck_call_invalid_ordered_compare) 6116 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 6117 << SourceRange(OrigArg0.get()->getBeginLoc(), 6118 OrigArg1.get()->getEndLoc()); 6119 6120 return false; 6121 } 6122 6123 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 6124 /// __builtin_isnan and friends. This is declared to take (...), so we have 6125 /// to check everything. We expect the last argument to be a floating point 6126 /// value. 6127 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 6128 if (checkArgCount(*this, TheCall, NumArgs)) 6129 return true; 6130 6131 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 6132 // on all preceding parameters just being int. Try all of those. 6133 for (unsigned i = 0; i < NumArgs - 1; ++i) { 6134 Expr *Arg = TheCall->getArg(i); 6135 6136 if (Arg->isTypeDependent()) 6137 return false; 6138 6139 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 6140 6141 if (Res.isInvalid()) 6142 return true; 6143 TheCall->setArg(i, Res.get()); 6144 } 6145 6146 Expr *OrigArg = TheCall->getArg(NumArgs-1); 6147 6148 if (OrigArg->isTypeDependent()) 6149 return false; 6150 6151 // Usual Unary Conversions will convert half to float, which we want for 6152 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 6153 // type how it is, but do normal L->Rvalue conversions. 6154 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 6155 OrigArg = UsualUnaryConversions(OrigArg).get(); 6156 else 6157 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 6158 TheCall->setArg(NumArgs - 1, OrigArg); 6159 6160 // This operation requires a non-_Complex floating-point number. 6161 if (!OrigArg->getType()->isRealFloatingType()) 6162 return Diag(OrigArg->getBeginLoc(), 6163 diag::err_typecheck_call_invalid_unary_fp) 6164 << OrigArg->getType() << OrigArg->getSourceRange(); 6165 6166 return false; 6167 } 6168 6169 /// Perform semantic analysis for a call to __builtin_complex. 6170 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 6171 if (checkArgCount(*this, TheCall, 2)) 6172 return true; 6173 6174 bool Dependent = false; 6175 for (unsigned I = 0; I != 2; ++I) { 6176 Expr *Arg = TheCall->getArg(I); 6177 QualType T = Arg->getType(); 6178 if (T->isDependentType()) { 6179 Dependent = true; 6180 continue; 6181 } 6182 6183 // Despite supporting _Complex int, GCC requires a real floating point type 6184 // for the operands of __builtin_complex. 6185 if (!T->isRealFloatingType()) { 6186 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 6187 << Arg->getType() << Arg->getSourceRange(); 6188 } 6189 6190 ExprResult Converted = DefaultLvalueConversion(Arg); 6191 if (Converted.isInvalid()) 6192 return true; 6193 TheCall->setArg(I, Converted.get()); 6194 } 6195 6196 if (Dependent) { 6197 TheCall->setType(Context.DependentTy); 6198 return false; 6199 } 6200 6201 Expr *Real = TheCall->getArg(0); 6202 Expr *Imag = TheCall->getArg(1); 6203 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6204 return Diag(Real->getBeginLoc(), 6205 diag::err_typecheck_call_different_arg_types) 6206 << Real->getType() << Imag->getType() 6207 << Real->getSourceRange() << Imag->getSourceRange(); 6208 } 6209 6210 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6211 // don't allow this builtin to form those types either. 6212 // FIXME: Should we allow these types? 6213 if (Real->getType()->isFloat16Type()) 6214 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6215 << "_Float16"; 6216 if (Real->getType()->isHalfType()) 6217 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6218 << "half"; 6219 6220 TheCall->setType(Context.getComplexType(Real->getType())); 6221 return false; 6222 } 6223 6224 // Customized Sema Checking for VSX builtins that have the following signature: 6225 // vector [...] builtinName(vector [...], vector [...], const int); 6226 // Which takes the same type of vectors (any legal vector type) for the first 6227 // two arguments and takes compile time constant for the third argument. 6228 // Example builtins are : 6229 // vector double vec_xxpermdi(vector double, vector double, int); 6230 // vector short vec_xxsldwi(vector short, vector short, int); 6231 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 6232 unsigned ExpectedNumArgs = 3; 6233 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 6234 return true; 6235 6236 // Check the third argument is a compile time constant 6237 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 6238 return Diag(TheCall->getBeginLoc(), 6239 diag::err_vsx_builtin_nonconstant_argument) 6240 << 3 /* argument index */ << TheCall->getDirectCallee() 6241 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 6242 TheCall->getArg(2)->getEndLoc()); 6243 6244 QualType Arg1Ty = TheCall->getArg(0)->getType(); 6245 QualType Arg2Ty = TheCall->getArg(1)->getType(); 6246 6247 // Check the type of argument 1 and argument 2 are vectors. 6248 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 6249 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 6250 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 6251 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 6252 << TheCall->getDirectCallee() 6253 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6254 TheCall->getArg(1)->getEndLoc()); 6255 } 6256 6257 // Check the first two arguments are the same type. 6258 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 6259 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 6260 << TheCall->getDirectCallee() 6261 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6262 TheCall->getArg(1)->getEndLoc()); 6263 } 6264 6265 // When default clang type checking is turned off and the customized type 6266 // checking is used, the returning type of the function must be explicitly 6267 // set. Otherwise it is _Bool by default. 6268 TheCall->setType(Arg1Ty); 6269 6270 return false; 6271 } 6272 6273 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 6274 // This is declared to take (...), so we have to check everything. 6275 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 6276 if (TheCall->getNumArgs() < 2) 6277 return ExprError(Diag(TheCall->getEndLoc(), 6278 diag::err_typecheck_call_too_few_args_at_least) 6279 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 6280 << TheCall->getSourceRange()); 6281 6282 // Determine which of the following types of shufflevector we're checking: 6283 // 1) unary, vector mask: (lhs, mask) 6284 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 6285 QualType resType = TheCall->getArg(0)->getType(); 6286 unsigned numElements = 0; 6287 6288 if (!TheCall->getArg(0)->isTypeDependent() && 6289 !TheCall->getArg(1)->isTypeDependent()) { 6290 QualType LHSType = TheCall->getArg(0)->getType(); 6291 QualType RHSType = TheCall->getArg(1)->getType(); 6292 6293 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 6294 return ExprError( 6295 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 6296 << TheCall->getDirectCallee() 6297 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6298 TheCall->getArg(1)->getEndLoc())); 6299 6300 numElements = LHSType->castAs<VectorType>()->getNumElements(); 6301 unsigned numResElements = TheCall->getNumArgs() - 2; 6302 6303 // Check to see if we have a call with 2 vector arguments, the unary shuffle 6304 // with mask. If so, verify that RHS is an integer vector type with the 6305 // same number of elts as lhs. 6306 if (TheCall->getNumArgs() == 2) { 6307 if (!RHSType->hasIntegerRepresentation() || 6308 RHSType->castAs<VectorType>()->getNumElements() != numElements) 6309 return ExprError(Diag(TheCall->getBeginLoc(), 6310 diag::err_vec_builtin_incompatible_vector) 6311 << TheCall->getDirectCallee() 6312 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 6313 TheCall->getArg(1)->getEndLoc())); 6314 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 6315 return ExprError(Diag(TheCall->getBeginLoc(), 6316 diag::err_vec_builtin_incompatible_vector) 6317 << TheCall->getDirectCallee() 6318 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6319 TheCall->getArg(1)->getEndLoc())); 6320 } else if (numElements != numResElements) { 6321 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 6322 resType = Context.getVectorType(eltType, numResElements, 6323 VectorType::GenericVector); 6324 } 6325 } 6326 6327 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 6328 if (TheCall->getArg(i)->isTypeDependent() || 6329 TheCall->getArg(i)->isValueDependent()) 6330 continue; 6331 6332 Optional<llvm::APSInt> Result; 6333 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 6334 return ExprError(Diag(TheCall->getBeginLoc(), 6335 diag::err_shufflevector_nonconstant_argument) 6336 << TheCall->getArg(i)->getSourceRange()); 6337 6338 // Allow -1 which will be translated to undef in the IR. 6339 if (Result->isSigned() && Result->isAllOnesValue()) 6340 continue; 6341 6342 if (Result->getActiveBits() > 64 || 6343 Result->getZExtValue() >= numElements * 2) 6344 return ExprError(Diag(TheCall->getBeginLoc(), 6345 diag::err_shufflevector_argument_too_large) 6346 << TheCall->getArg(i)->getSourceRange()); 6347 } 6348 6349 SmallVector<Expr*, 32> exprs; 6350 6351 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 6352 exprs.push_back(TheCall->getArg(i)); 6353 TheCall->setArg(i, nullptr); 6354 } 6355 6356 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 6357 TheCall->getCallee()->getBeginLoc(), 6358 TheCall->getRParenLoc()); 6359 } 6360 6361 /// SemaConvertVectorExpr - Handle __builtin_convertvector 6362 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 6363 SourceLocation BuiltinLoc, 6364 SourceLocation RParenLoc) { 6365 ExprValueKind VK = VK_RValue; 6366 ExprObjectKind OK = OK_Ordinary; 6367 QualType DstTy = TInfo->getType(); 6368 QualType SrcTy = E->getType(); 6369 6370 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 6371 return ExprError(Diag(BuiltinLoc, 6372 diag::err_convertvector_non_vector) 6373 << E->getSourceRange()); 6374 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 6375 return ExprError(Diag(BuiltinLoc, 6376 diag::err_convertvector_non_vector_type)); 6377 6378 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 6379 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 6380 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 6381 if (SrcElts != DstElts) 6382 return ExprError(Diag(BuiltinLoc, 6383 diag::err_convertvector_incompatible_vector) 6384 << E->getSourceRange()); 6385 } 6386 6387 return new (Context) 6388 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 6389 } 6390 6391 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 6392 // This is declared to take (const void*, ...) and can take two 6393 // optional constant int args. 6394 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 6395 unsigned NumArgs = TheCall->getNumArgs(); 6396 6397 if (NumArgs > 3) 6398 return Diag(TheCall->getEndLoc(), 6399 diag::err_typecheck_call_too_many_args_at_most) 6400 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6401 6402 // Argument 0 is checked for us and the remaining arguments must be 6403 // constant integers. 6404 for (unsigned i = 1; i != NumArgs; ++i) 6405 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 6406 return true; 6407 6408 return false; 6409 } 6410 6411 /// SemaBuiltinAssume - Handle __assume (MS Extension). 6412 // __assume does not evaluate its arguments, and should warn if its argument 6413 // has side effects. 6414 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6415 Expr *Arg = TheCall->getArg(0); 6416 if (Arg->isInstantiationDependent()) return false; 6417 6418 if (Arg->HasSideEffects(Context)) 6419 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6420 << Arg->getSourceRange() 6421 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6422 6423 return false; 6424 } 6425 6426 /// Handle __builtin_alloca_with_align. This is declared 6427 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6428 /// than 8. 6429 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6430 // The alignment must be a constant integer. 6431 Expr *Arg = TheCall->getArg(1); 6432 6433 // We can't check the value of a dependent argument. 6434 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6435 if (const auto *UE = 6436 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6437 if (UE->getKind() == UETT_AlignOf || 6438 UE->getKind() == UETT_PreferredAlignOf) 6439 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6440 << Arg->getSourceRange(); 6441 6442 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6443 6444 if (!Result.isPowerOf2()) 6445 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6446 << Arg->getSourceRange(); 6447 6448 if (Result < Context.getCharWidth()) 6449 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6450 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6451 6452 if (Result > std::numeric_limits<int32_t>::max()) 6453 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6454 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6455 } 6456 6457 return false; 6458 } 6459 6460 /// Handle __builtin_assume_aligned. This is declared 6461 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6462 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6463 unsigned NumArgs = TheCall->getNumArgs(); 6464 6465 if (NumArgs > 3) 6466 return Diag(TheCall->getEndLoc(), 6467 diag::err_typecheck_call_too_many_args_at_most) 6468 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6469 6470 // The alignment must be a constant integer. 6471 Expr *Arg = TheCall->getArg(1); 6472 6473 // We can't check the value of a dependent argument. 6474 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6475 llvm::APSInt Result; 6476 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6477 return true; 6478 6479 if (!Result.isPowerOf2()) 6480 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6481 << Arg->getSourceRange(); 6482 6483 if (Result > Sema::MaximumAlignment) 6484 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6485 << Arg->getSourceRange() << Sema::MaximumAlignment; 6486 } 6487 6488 if (NumArgs > 2) { 6489 ExprResult Arg(TheCall->getArg(2)); 6490 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6491 Context.getSizeType(), false); 6492 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6493 if (Arg.isInvalid()) return true; 6494 TheCall->setArg(2, Arg.get()); 6495 } 6496 6497 return false; 6498 } 6499 6500 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6501 unsigned BuiltinID = 6502 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6503 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6504 6505 unsigned NumArgs = TheCall->getNumArgs(); 6506 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6507 if (NumArgs < NumRequiredArgs) { 6508 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6509 << 0 /* function call */ << NumRequiredArgs << NumArgs 6510 << TheCall->getSourceRange(); 6511 } 6512 if (NumArgs >= NumRequiredArgs + 0x100) { 6513 return Diag(TheCall->getEndLoc(), 6514 diag::err_typecheck_call_too_many_args_at_most) 6515 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6516 << TheCall->getSourceRange(); 6517 } 6518 unsigned i = 0; 6519 6520 // For formatting call, check buffer arg. 6521 if (!IsSizeCall) { 6522 ExprResult Arg(TheCall->getArg(i)); 6523 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6524 Context, Context.VoidPtrTy, false); 6525 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6526 if (Arg.isInvalid()) 6527 return true; 6528 TheCall->setArg(i, Arg.get()); 6529 i++; 6530 } 6531 6532 // Check string literal arg. 6533 unsigned FormatIdx = i; 6534 { 6535 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6536 if (Arg.isInvalid()) 6537 return true; 6538 TheCall->setArg(i, Arg.get()); 6539 i++; 6540 } 6541 6542 // Make sure variadic args are scalar. 6543 unsigned FirstDataArg = i; 6544 while (i < NumArgs) { 6545 ExprResult Arg = DefaultVariadicArgumentPromotion( 6546 TheCall->getArg(i), VariadicFunction, nullptr); 6547 if (Arg.isInvalid()) 6548 return true; 6549 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6550 if (ArgSize.getQuantity() >= 0x100) { 6551 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6552 << i << (int)ArgSize.getQuantity() << 0xff 6553 << TheCall->getSourceRange(); 6554 } 6555 TheCall->setArg(i, Arg.get()); 6556 i++; 6557 } 6558 6559 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6560 // call to avoid duplicate diagnostics. 6561 if (!IsSizeCall) { 6562 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6563 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6564 bool Success = CheckFormatArguments( 6565 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6566 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6567 CheckedVarArgs); 6568 if (!Success) 6569 return true; 6570 } 6571 6572 if (IsSizeCall) { 6573 TheCall->setType(Context.getSizeType()); 6574 } else { 6575 TheCall->setType(Context.VoidPtrTy); 6576 } 6577 return false; 6578 } 6579 6580 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6581 /// TheCall is a constant expression. 6582 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6583 llvm::APSInt &Result) { 6584 Expr *Arg = TheCall->getArg(ArgNum); 6585 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6586 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6587 6588 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6589 6590 Optional<llvm::APSInt> R; 6591 if (!(R = Arg->getIntegerConstantExpr(Context))) 6592 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6593 << FDecl->getDeclName() << Arg->getSourceRange(); 6594 Result = *R; 6595 return false; 6596 } 6597 6598 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6599 /// TheCall is a constant expression in the range [Low, High]. 6600 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6601 int Low, int High, bool RangeIsError) { 6602 if (isConstantEvaluated()) 6603 return false; 6604 llvm::APSInt Result; 6605 6606 // We can't check the value of a dependent argument. 6607 Expr *Arg = TheCall->getArg(ArgNum); 6608 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6609 return false; 6610 6611 // Check constant-ness first. 6612 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6613 return true; 6614 6615 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6616 if (RangeIsError) 6617 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6618 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6619 else 6620 // Defer the warning until we know if the code will be emitted so that 6621 // dead code can ignore this. 6622 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6623 PDiag(diag::warn_argument_invalid_range) 6624 << Result.toString(10) << Low << High 6625 << Arg->getSourceRange()); 6626 } 6627 6628 return false; 6629 } 6630 6631 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6632 /// TheCall is a constant expression is a multiple of Num.. 6633 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6634 unsigned Num) { 6635 llvm::APSInt Result; 6636 6637 // We can't check the value of a dependent argument. 6638 Expr *Arg = TheCall->getArg(ArgNum); 6639 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6640 return false; 6641 6642 // Check constant-ness first. 6643 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6644 return true; 6645 6646 if (Result.getSExtValue() % Num != 0) 6647 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6648 << Num << Arg->getSourceRange(); 6649 6650 return false; 6651 } 6652 6653 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6654 /// constant expression representing a power of 2. 6655 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6656 llvm::APSInt Result; 6657 6658 // We can't check the value of a dependent argument. 6659 Expr *Arg = TheCall->getArg(ArgNum); 6660 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6661 return false; 6662 6663 // Check constant-ness first. 6664 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6665 return true; 6666 6667 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6668 // and only if x is a power of 2. 6669 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6670 return false; 6671 6672 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6673 << Arg->getSourceRange(); 6674 } 6675 6676 static bool IsShiftedByte(llvm::APSInt Value) { 6677 if (Value.isNegative()) 6678 return false; 6679 6680 // Check if it's a shifted byte, by shifting it down 6681 while (true) { 6682 // If the value fits in the bottom byte, the check passes. 6683 if (Value < 0x100) 6684 return true; 6685 6686 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6687 // fails. 6688 if ((Value & 0xFF) != 0) 6689 return false; 6690 6691 // If the bottom 8 bits are all 0, but something above that is nonzero, 6692 // then shifting the value right by 8 bits won't affect whether it's a 6693 // shifted byte or not. So do that, and go round again. 6694 Value >>= 8; 6695 } 6696 } 6697 6698 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6699 /// a constant expression representing an arbitrary byte value shifted left by 6700 /// a multiple of 8 bits. 6701 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6702 unsigned ArgBits) { 6703 llvm::APSInt Result; 6704 6705 // We can't check the value of a dependent argument. 6706 Expr *Arg = TheCall->getArg(ArgNum); 6707 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6708 return false; 6709 6710 // Check constant-ness first. 6711 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6712 return true; 6713 6714 // Truncate to the given size. 6715 Result = Result.getLoBits(ArgBits); 6716 Result.setIsUnsigned(true); 6717 6718 if (IsShiftedByte(Result)) 6719 return false; 6720 6721 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6722 << Arg->getSourceRange(); 6723 } 6724 6725 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6726 /// TheCall is a constant expression representing either a shifted byte value, 6727 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6728 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6729 /// Arm MVE intrinsics. 6730 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6731 int ArgNum, 6732 unsigned ArgBits) { 6733 llvm::APSInt Result; 6734 6735 // We can't check the value of a dependent argument. 6736 Expr *Arg = TheCall->getArg(ArgNum); 6737 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6738 return false; 6739 6740 // Check constant-ness first. 6741 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6742 return true; 6743 6744 // Truncate to the given size. 6745 Result = Result.getLoBits(ArgBits); 6746 Result.setIsUnsigned(true); 6747 6748 // Check to see if it's in either of the required forms. 6749 if (IsShiftedByte(Result) || 6750 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6751 return false; 6752 6753 return Diag(TheCall->getBeginLoc(), 6754 diag::err_argument_not_shifted_byte_or_xxff) 6755 << Arg->getSourceRange(); 6756 } 6757 6758 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6759 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6760 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6761 if (checkArgCount(*this, TheCall, 2)) 6762 return true; 6763 Expr *Arg0 = TheCall->getArg(0); 6764 Expr *Arg1 = TheCall->getArg(1); 6765 6766 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6767 if (FirstArg.isInvalid()) 6768 return true; 6769 QualType FirstArgType = FirstArg.get()->getType(); 6770 if (!FirstArgType->isAnyPointerType()) 6771 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6772 << "first" << FirstArgType << Arg0->getSourceRange(); 6773 TheCall->setArg(0, FirstArg.get()); 6774 6775 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6776 if (SecArg.isInvalid()) 6777 return true; 6778 QualType SecArgType = SecArg.get()->getType(); 6779 if (!SecArgType->isIntegerType()) 6780 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6781 << "second" << SecArgType << Arg1->getSourceRange(); 6782 6783 // Derive the return type from the pointer argument. 6784 TheCall->setType(FirstArgType); 6785 return false; 6786 } 6787 6788 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6789 if (checkArgCount(*this, TheCall, 2)) 6790 return true; 6791 6792 Expr *Arg0 = TheCall->getArg(0); 6793 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6794 if (FirstArg.isInvalid()) 6795 return true; 6796 QualType FirstArgType = FirstArg.get()->getType(); 6797 if (!FirstArgType->isAnyPointerType()) 6798 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6799 << "first" << FirstArgType << Arg0->getSourceRange(); 6800 TheCall->setArg(0, FirstArg.get()); 6801 6802 // Derive the return type from the pointer argument. 6803 TheCall->setType(FirstArgType); 6804 6805 // Second arg must be an constant in range [0,15] 6806 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6807 } 6808 6809 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6810 if (checkArgCount(*this, TheCall, 2)) 6811 return true; 6812 Expr *Arg0 = TheCall->getArg(0); 6813 Expr *Arg1 = TheCall->getArg(1); 6814 6815 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6816 if (FirstArg.isInvalid()) 6817 return true; 6818 QualType FirstArgType = FirstArg.get()->getType(); 6819 if (!FirstArgType->isAnyPointerType()) 6820 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6821 << "first" << FirstArgType << Arg0->getSourceRange(); 6822 6823 QualType SecArgType = Arg1->getType(); 6824 if (!SecArgType->isIntegerType()) 6825 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6826 << "second" << SecArgType << Arg1->getSourceRange(); 6827 TheCall->setType(Context.IntTy); 6828 return false; 6829 } 6830 6831 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6832 BuiltinID == AArch64::BI__builtin_arm_stg) { 6833 if (checkArgCount(*this, TheCall, 1)) 6834 return true; 6835 Expr *Arg0 = TheCall->getArg(0); 6836 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6837 if (FirstArg.isInvalid()) 6838 return true; 6839 6840 QualType FirstArgType = FirstArg.get()->getType(); 6841 if (!FirstArgType->isAnyPointerType()) 6842 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6843 << "first" << FirstArgType << Arg0->getSourceRange(); 6844 TheCall->setArg(0, FirstArg.get()); 6845 6846 // Derive the return type from the pointer argument. 6847 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6848 TheCall->setType(FirstArgType); 6849 return false; 6850 } 6851 6852 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6853 Expr *ArgA = TheCall->getArg(0); 6854 Expr *ArgB = TheCall->getArg(1); 6855 6856 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6857 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6858 6859 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6860 return true; 6861 6862 QualType ArgTypeA = ArgExprA.get()->getType(); 6863 QualType ArgTypeB = ArgExprB.get()->getType(); 6864 6865 auto isNull = [&] (Expr *E) -> bool { 6866 return E->isNullPointerConstant( 6867 Context, Expr::NPC_ValueDependentIsNotNull); }; 6868 6869 // argument should be either a pointer or null 6870 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6871 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6872 << "first" << ArgTypeA << ArgA->getSourceRange(); 6873 6874 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6875 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6876 << "second" << ArgTypeB << ArgB->getSourceRange(); 6877 6878 // Ensure Pointee types are compatible 6879 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6880 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6881 QualType pointeeA = ArgTypeA->getPointeeType(); 6882 QualType pointeeB = ArgTypeB->getPointeeType(); 6883 if (!Context.typesAreCompatible( 6884 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6885 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6886 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6887 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6888 << ArgB->getSourceRange(); 6889 } 6890 } 6891 6892 // at least one argument should be pointer type 6893 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6894 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6895 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6896 6897 if (isNull(ArgA)) // adopt type of the other pointer 6898 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6899 6900 if (isNull(ArgB)) 6901 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6902 6903 TheCall->setArg(0, ArgExprA.get()); 6904 TheCall->setArg(1, ArgExprB.get()); 6905 TheCall->setType(Context.LongLongTy); 6906 return false; 6907 } 6908 assert(false && "Unhandled ARM MTE intrinsic"); 6909 return true; 6910 } 6911 6912 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6913 /// TheCall is an ARM/AArch64 special register string literal. 6914 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6915 int ArgNum, unsigned ExpectedFieldNum, 6916 bool AllowName) { 6917 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6918 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6919 BuiltinID == ARM::BI__builtin_arm_rsr || 6920 BuiltinID == ARM::BI__builtin_arm_rsrp || 6921 BuiltinID == ARM::BI__builtin_arm_wsr || 6922 BuiltinID == ARM::BI__builtin_arm_wsrp; 6923 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6924 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6925 BuiltinID == AArch64::BI__builtin_arm_rsr || 6926 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6927 BuiltinID == AArch64::BI__builtin_arm_wsr || 6928 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6929 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6930 6931 // We can't check the value of a dependent argument. 6932 Expr *Arg = TheCall->getArg(ArgNum); 6933 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6934 return false; 6935 6936 // Check if the argument is a string literal. 6937 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6938 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6939 << Arg->getSourceRange(); 6940 6941 // Check the type of special register given. 6942 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6943 SmallVector<StringRef, 6> Fields; 6944 Reg.split(Fields, ":"); 6945 6946 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6947 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6948 << Arg->getSourceRange(); 6949 6950 // If the string is the name of a register then we cannot check that it is 6951 // valid here but if the string is of one the forms described in ACLE then we 6952 // can check that the supplied fields are integers and within the valid 6953 // ranges. 6954 if (Fields.size() > 1) { 6955 bool FiveFields = Fields.size() == 5; 6956 6957 bool ValidString = true; 6958 if (IsARMBuiltin) { 6959 ValidString &= Fields[0].startswith_lower("cp") || 6960 Fields[0].startswith_lower("p"); 6961 if (ValidString) 6962 Fields[0] = 6963 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6964 6965 ValidString &= Fields[2].startswith_lower("c"); 6966 if (ValidString) 6967 Fields[2] = Fields[2].drop_front(1); 6968 6969 if (FiveFields) { 6970 ValidString &= Fields[3].startswith_lower("c"); 6971 if (ValidString) 6972 Fields[3] = Fields[3].drop_front(1); 6973 } 6974 } 6975 6976 SmallVector<int, 5> Ranges; 6977 if (FiveFields) 6978 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6979 else 6980 Ranges.append({15, 7, 15}); 6981 6982 for (unsigned i=0; i<Fields.size(); ++i) { 6983 int IntField; 6984 ValidString &= !Fields[i].getAsInteger(10, IntField); 6985 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6986 } 6987 6988 if (!ValidString) 6989 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6990 << Arg->getSourceRange(); 6991 } else if (IsAArch64Builtin && Fields.size() == 1) { 6992 // If the register name is one of those that appear in the condition below 6993 // and the special register builtin being used is one of the write builtins, 6994 // then we require that the argument provided for writing to the register 6995 // is an integer constant expression. This is because it will be lowered to 6996 // an MSR (immediate) instruction, so we need to know the immediate at 6997 // compile time. 6998 if (TheCall->getNumArgs() != 2) 6999 return false; 7000 7001 std::string RegLower = Reg.lower(); 7002 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 7003 RegLower != "pan" && RegLower != "uao") 7004 return false; 7005 7006 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7007 } 7008 7009 return false; 7010 } 7011 7012 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 7013 /// Emit an error and return true on failure; return false on success. 7014 /// TypeStr is a string containing the type descriptor of the value returned by 7015 /// the builtin and the descriptors of the expected type of the arguments. 7016 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) { 7017 7018 assert((TypeStr[0] != '\0') && 7019 "Invalid types in PPC MMA builtin declaration"); 7020 7021 unsigned Mask = 0; 7022 unsigned ArgNum = 0; 7023 7024 // The first type in TypeStr is the type of the value returned by the 7025 // builtin. So we first read that type and change the type of TheCall. 7026 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7027 TheCall->setType(type); 7028 7029 while (*TypeStr != '\0') { 7030 Mask = 0; 7031 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7032 if (ArgNum >= TheCall->getNumArgs()) { 7033 ArgNum++; 7034 break; 7035 } 7036 7037 Expr *Arg = TheCall->getArg(ArgNum); 7038 QualType ArgType = Arg->getType(); 7039 7040 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) || 7041 (!ExpectedType->isVoidPointerType() && 7042 ArgType.getCanonicalType() != ExpectedType)) 7043 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 7044 << ArgType << ExpectedType << 1 << 0 << 0; 7045 7046 // If the value of the Mask is not 0, we have a constraint in the size of 7047 // the integer argument so here we ensure the argument is a constant that 7048 // is in the valid range. 7049 if (Mask != 0 && 7050 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 7051 return true; 7052 7053 ArgNum++; 7054 } 7055 7056 // In case we exited early from the previous loop, there are other types to 7057 // read from TypeStr. So we need to read them all to ensure we have the right 7058 // number of arguments in TheCall and if it is not the case, to display a 7059 // better error message. 7060 while (*TypeStr != '\0') { 7061 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7062 ArgNum++; 7063 } 7064 if (checkArgCount(*this, TheCall, ArgNum)) 7065 return true; 7066 7067 return false; 7068 } 7069 7070 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 7071 /// This checks that the target supports __builtin_longjmp and 7072 /// that val is a constant 1. 7073 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 7074 if (!Context.getTargetInfo().hasSjLjLowering()) 7075 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 7076 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7077 7078 Expr *Arg = TheCall->getArg(1); 7079 llvm::APSInt Result; 7080 7081 // TODO: This is less than ideal. Overload this to take a value. 7082 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 7083 return true; 7084 7085 if (Result != 1) 7086 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 7087 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 7088 7089 return false; 7090 } 7091 7092 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 7093 /// This checks that the target supports __builtin_setjmp. 7094 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 7095 if (!Context.getTargetInfo().hasSjLjLowering()) 7096 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 7097 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7098 return false; 7099 } 7100 7101 namespace { 7102 7103 class UncoveredArgHandler { 7104 enum { Unknown = -1, AllCovered = -2 }; 7105 7106 signed FirstUncoveredArg = Unknown; 7107 SmallVector<const Expr *, 4> DiagnosticExprs; 7108 7109 public: 7110 UncoveredArgHandler() = default; 7111 7112 bool hasUncoveredArg() const { 7113 return (FirstUncoveredArg >= 0); 7114 } 7115 7116 unsigned getUncoveredArg() const { 7117 assert(hasUncoveredArg() && "no uncovered argument"); 7118 return FirstUncoveredArg; 7119 } 7120 7121 void setAllCovered() { 7122 // A string has been found with all arguments covered, so clear out 7123 // the diagnostics. 7124 DiagnosticExprs.clear(); 7125 FirstUncoveredArg = AllCovered; 7126 } 7127 7128 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 7129 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 7130 7131 // Don't update if a previous string covers all arguments. 7132 if (FirstUncoveredArg == AllCovered) 7133 return; 7134 7135 // UncoveredArgHandler tracks the highest uncovered argument index 7136 // and with it all the strings that match this index. 7137 if (NewFirstUncoveredArg == FirstUncoveredArg) 7138 DiagnosticExprs.push_back(StrExpr); 7139 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 7140 DiagnosticExprs.clear(); 7141 DiagnosticExprs.push_back(StrExpr); 7142 FirstUncoveredArg = NewFirstUncoveredArg; 7143 } 7144 } 7145 7146 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 7147 }; 7148 7149 enum StringLiteralCheckType { 7150 SLCT_NotALiteral, 7151 SLCT_UncheckedLiteral, 7152 SLCT_CheckedLiteral 7153 }; 7154 7155 } // namespace 7156 7157 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 7158 BinaryOperatorKind BinOpKind, 7159 bool AddendIsRight) { 7160 unsigned BitWidth = Offset.getBitWidth(); 7161 unsigned AddendBitWidth = Addend.getBitWidth(); 7162 // There might be negative interim results. 7163 if (Addend.isUnsigned()) { 7164 Addend = Addend.zext(++AddendBitWidth); 7165 Addend.setIsSigned(true); 7166 } 7167 // Adjust the bit width of the APSInts. 7168 if (AddendBitWidth > BitWidth) { 7169 Offset = Offset.sext(AddendBitWidth); 7170 BitWidth = AddendBitWidth; 7171 } else if (BitWidth > AddendBitWidth) { 7172 Addend = Addend.sext(BitWidth); 7173 } 7174 7175 bool Ov = false; 7176 llvm::APSInt ResOffset = Offset; 7177 if (BinOpKind == BO_Add) 7178 ResOffset = Offset.sadd_ov(Addend, Ov); 7179 else { 7180 assert(AddendIsRight && BinOpKind == BO_Sub && 7181 "operator must be add or sub with addend on the right"); 7182 ResOffset = Offset.ssub_ov(Addend, Ov); 7183 } 7184 7185 // We add an offset to a pointer here so we should support an offset as big as 7186 // possible. 7187 if (Ov) { 7188 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 7189 "index (intermediate) result too big"); 7190 Offset = Offset.sext(2 * BitWidth); 7191 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 7192 return; 7193 } 7194 7195 Offset = ResOffset; 7196 } 7197 7198 namespace { 7199 7200 // This is a wrapper class around StringLiteral to support offsetted string 7201 // literals as format strings. It takes the offset into account when returning 7202 // the string and its length or the source locations to display notes correctly. 7203 class FormatStringLiteral { 7204 const StringLiteral *FExpr; 7205 int64_t Offset; 7206 7207 public: 7208 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 7209 : FExpr(fexpr), Offset(Offset) {} 7210 7211 StringRef getString() const { 7212 return FExpr->getString().drop_front(Offset); 7213 } 7214 7215 unsigned getByteLength() const { 7216 return FExpr->getByteLength() - getCharByteWidth() * Offset; 7217 } 7218 7219 unsigned getLength() const { return FExpr->getLength() - Offset; } 7220 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 7221 7222 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 7223 7224 QualType getType() const { return FExpr->getType(); } 7225 7226 bool isAscii() const { return FExpr->isAscii(); } 7227 bool isWide() const { return FExpr->isWide(); } 7228 bool isUTF8() const { return FExpr->isUTF8(); } 7229 bool isUTF16() const { return FExpr->isUTF16(); } 7230 bool isUTF32() const { return FExpr->isUTF32(); } 7231 bool isPascal() const { return FExpr->isPascal(); } 7232 7233 SourceLocation getLocationOfByte( 7234 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 7235 const TargetInfo &Target, unsigned *StartToken = nullptr, 7236 unsigned *StartTokenByteOffset = nullptr) const { 7237 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 7238 StartToken, StartTokenByteOffset); 7239 } 7240 7241 SourceLocation getBeginLoc() const LLVM_READONLY { 7242 return FExpr->getBeginLoc().getLocWithOffset(Offset); 7243 } 7244 7245 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 7246 }; 7247 7248 } // namespace 7249 7250 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 7251 const Expr *OrigFormatExpr, 7252 ArrayRef<const Expr *> Args, 7253 bool HasVAListArg, unsigned format_idx, 7254 unsigned firstDataArg, 7255 Sema::FormatStringType Type, 7256 bool inFunctionCall, 7257 Sema::VariadicCallType CallType, 7258 llvm::SmallBitVector &CheckedVarArgs, 7259 UncoveredArgHandler &UncoveredArg, 7260 bool IgnoreStringsWithoutSpecifiers); 7261 7262 // Determine if an expression is a string literal or constant string. 7263 // If this function returns false on the arguments to a function expecting a 7264 // format string, we will usually need to emit a warning. 7265 // True string literals are then checked by CheckFormatString. 7266 static StringLiteralCheckType 7267 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 7268 bool HasVAListArg, unsigned format_idx, 7269 unsigned firstDataArg, Sema::FormatStringType Type, 7270 Sema::VariadicCallType CallType, bool InFunctionCall, 7271 llvm::SmallBitVector &CheckedVarArgs, 7272 UncoveredArgHandler &UncoveredArg, 7273 llvm::APSInt Offset, 7274 bool IgnoreStringsWithoutSpecifiers = false) { 7275 if (S.isConstantEvaluated()) 7276 return SLCT_NotALiteral; 7277 tryAgain: 7278 assert(Offset.isSigned() && "invalid offset"); 7279 7280 if (E->isTypeDependent() || E->isValueDependent()) 7281 return SLCT_NotALiteral; 7282 7283 E = E->IgnoreParenCasts(); 7284 7285 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 7286 // Technically -Wformat-nonliteral does not warn about this case. 7287 // The behavior of printf and friends in this case is implementation 7288 // dependent. Ideally if the format string cannot be null then 7289 // it should have a 'nonnull' attribute in the function prototype. 7290 return SLCT_UncheckedLiteral; 7291 7292 switch (E->getStmtClass()) { 7293 case Stmt::BinaryConditionalOperatorClass: 7294 case Stmt::ConditionalOperatorClass: { 7295 // The expression is a literal if both sub-expressions were, and it was 7296 // completely checked only if both sub-expressions were checked. 7297 const AbstractConditionalOperator *C = 7298 cast<AbstractConditionalOperator>(E); 7299 7300 // Determine whether it is necessary to check both sub-expressions, for 7301 // example, because the condition expression is a constant that can be 7302 // evaluated at compile time. 7303 bool CheckLeft = true, CheckRight = true; 7304 7305 bool Cond; 7306 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 7307 S.isConstantEvaluated())) { 7308 if (Cond) 7309 CheckRight = false; 7310 else 7311 CheckLeft = false; 7312 } 7313 7314 // We need to maintain the offsets for the right and the left hand side 7315 // separately to check if every possible indexed expression is a valid 7316 // string literal. They might have different offsets for different string 7317 // literals in the end. 7318 StringLiteralCheckType Left; 7319 if (!CheckLeft) 7320 Left = SLCT_UncheckedLiteral; 7321 else { 7322 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 7323 HasVAListArg, format_idx, firstDataArg, 7324 Type, CallType, InFunctionCall, 7325 CheckedVarArgs, UncoveredArg, Offset, 7326 IgnoreStringsWithoutSpecifiers); 7327 if (Left == SLCT_NotALiteral || !CheckRight) { 7328 return Left; 7329 } 7330 } 7331 7332 StringLiteralCheckType Right = checkFormatStringExpr( 7333 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 7334 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7335 IgnoreStringsWithoutSpecifiers); 7336 7337 return (CheckLeft && Left < Right) ? Left : Right; 7338 } 7339 7340 case Stmt::ImplicitCastExprClass: 7341 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 7342 goto tryAgain; 7343 7344 case Stmt::OpaqueValueExprClass: 7345 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 7346 E = src; 7347 goto tryAgain; 7348 } 7349 return SLCT_NotALiteral; 7350 7351 case Stmt::PredefinedExprClass: 7352 // While __func__, etc., are technically not string literals, they 7353 // cannot contain format specifiers and thus are not a security 7354 // liability. 7355 return SLCT_UncheckedLiteral; 7356 7357 case Stmt::DeclRefExprClass: { 7358 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 7359 7360 // As an exception, do not flag errors for variables binding to 7361 // const string literals. 7362 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 7363 bool isConstant = false; 7364 QualType T = DR->getType(); 7365 7366 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 7367 isConstant = AT->getElementType().isConstant(S.Context); 7368 } else if (const PointerType *PT = T->getAs<PointerType>()) { 7369 isConstant = T.isConstant(S.Context) && 7370 PT->getPointeeType().isConstant(S.Context); 7371 } else if (T->isObjCObjectPointerType()) { 7372 // In ObjC, there is usually no "const ObjectPointer" type, 7373 // so don't check if the pointee type is constant. 7374 isConstant = T.isConstant(S.Context); 7375 } 7376 7377 if (isConstant) { 7378 if (const Expr *Init = VD->getAnyInitializer()) { 7379 // Look through initializers like const char c[] = { "foo" } 7380 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 7381 if (InitList->isStringLiteralInit()) 7382 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 7383 } 7384 return checkFormatStringExpr(S, Init, Args, 7385 HasVAListArg, format_idx, 7386 firstDataArg, Type, CallType, 7387 /*InFunctionCall*/ false, CheckedVarArgs, 7388 UncoveredArg, Offset); 7389 } 7390 } 7391 7392 // For vprintf* functions (i.e., HasVAListArg==true), we add a 7393 // special check to see if the format string is a function parameter 7394 // of the function calling the printf function. If the function 7395 // has an attribute indicating it is a printf-like function, then we 7396 // should suppress warnings concerning non-literals being used in a call 7397 // to a vprintf function. For example: 7398 // 7399 // void 7400 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 7401 // va_list ap; 7402 // va_start(ap, fmt); 7403 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 7404 // ... 7405 // } 7406 if (HasVAListArg) { 7407 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 7408 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 7409 int PVIndex = PV->getFunctionScopeIndex() + 1; 7410 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 7411 // adjust for implicit parameter 7412 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 7413 if (MD->isInstance()) 7414 ++PVIndex; 7415 // We also check if the formats are compatible. 7416 // We can't pass a 'scanf' string to a 'printf' function. 7417 if (PVIndex == PVFormat->getFormatIdx() && 7418 Type == S.GetFormatStringType(PVFormat)) 7419 return SLCT_UncheckedLiteral; 7420 } 7421 } 7422 } 7423 } 7424 } 7425 7426 return SLCT_NotALiteral; 7427 } 7428 7429 case Stmt::CallExprClass: 7430 case Stmt::CXXMemberCallExprClass: { 7431 const CallExpr *CE = cast<CallExpr>(E); 7432 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 7433 bool IsFirst = true; 7434 StringLiteralCheckType CommonResult; 7435 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 7436 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 7437 StringLiteralCheckType Result = checkFormatStringExpr( 7438 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7439 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7440 IgnoreStringsWithoutSpecifiers); 7441 if (IsFirst) { 7442 CommonResult = Result; 7443 IsFirst = false; 7444 } 7445 } 7446 if (!IsFirst) 7447 return CommonResult; 7448 7449 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 7450 unsigned BuiltinID = FD->getBuiltinID(); 7451 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 7452 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 7453 const Expr *Arg = CE->getArg(0); 7454 return checkFormatStringExpr(S, Arg, Args, 7455 HasVAListArg, format_idx, 7456 firstDataArg, Type, CallType, 7457 InFunctionCall, CheckedVarArgs, 7458 UncoveredArg, Offset, 7459 IgnoreStringsWithoutSpecifiers); 7460 } 7461 } 7462 } 7463 7464 return SLCT_NotALiteral; 7465 } 7466 case Stmt::ObjCMessageExprClass: { 7467 const auto *ME = cast<ObjCMessageExpr>(E); 7468 if (const auto *MD = ME->getMethodDecl()) { 7469 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 7470 // As a special case heuristic, if we're using the method -[NSBundle 7471 // localizedStringForKey:value:table:], ignore any key strings that lack 7472 // format specifiers. The idea is that if the key doesn't have any 7473 // format specifiers then its probably just a key to map to the 7474 // localized strings. If it does have format specifiers though, then its 7475 // likely that the text of the key is the format string in the 7476 // programmer's language, and should be checked. 7477 const ObjCInterfaceDecl *IFace; 7478 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7479 IFace->getIdentifier()->isStr("NSBundle") && 7480 MD->getSelector().isKeywordSelector( 7481 {"localizedStringForKey", "value", "table"})) { 7482 IgnoreStringsWithoutSpecifiers = true; 7483 } 7484 7485 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7486 return checkFormatStringExpr( 7487 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7488 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7489 IgnoreStringsWithoutSpecifiers); 7490 } 7491 } 7492 7493 return SLCT_NotALiteral; 7494 } 7495 case Stmt::ObjCStringLiteralClass: 7496 case Stmt::StringLiteralClass: { 7497 const StringLiteral *StrE = nullptr; 7498 7499 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7500 StrE = ObjCFExpr->getString(); 7501 else 7502 StrE = cast<StringLiteral>(E); 7503 7504 if (StrE) { 7505 if (Offset.isNegative() || Offset > StrE->getLength()) { 7506 // TODO: It would be better to have an explicit warning for out of 7507 // bounds literals. 7508 return SLCT_NotALiteral; 7509 } 7510 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7511 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7512 firstDataArg, Type, InFunctionCall, CallType, 7513 CheckedVarArgs, UncoveredArg, 7514 IgnoreStringsWithoutSpecifiers); 7515 return SLCT_CheckedLiteral; 7516 } 7517 7518 return SLCT_NotALiteral; 7519 } 7520 case Stmt::BinaryOperatorClass: { 7521 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7522 7523 // A string literal + an int offset is still a string literal. 7524 if (BinOp->isAdditiveOp()) { 7525 Expr::EvalResult LResult, RResult; 7526 7527 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7528 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7529 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7530 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7531 7532 if (LIsInt != RIsInt) { 7533 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7534 7535 if (LIsInt) { 7536 if (BinOpKind == BO_Add) { 7537 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7538 E = BinOp->getRHS(); 7539 goto tryAgain; 7540 } 7541 } else { 7542 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7543 E = BinOp->getLHS(); 7544 goto tryAgain; 7545 } 7546 } 7547 } 7548 7549 return SLCT_NotALiteral; 7550 } 7551 case Stmt::UnaryOperatorClass: { 7552 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7553 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7554 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7555 Expr::EvalResult IndexResult; 7556 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7557 Expr::SE_NoSideEffects, 7558 S.isConstantEvaluated())) { 7559 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7560 /*RHS is int*/ true); 7561 E = ASE->getBase(); 7562 goto tryAgain; 7563 } 7564 } 7565 7566 return SLCT_NotALiteral; 7567 } 7568 7569 default: 7570 return SLCT_NotALiteral; 7571 } 7572 } 7573 7574 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7575 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7576 .Case("scanf", FST_Scanf) 7577 .Cases("printf", "printf0", FST_Printf) 7578 .Cases("NSString", "CFString", FST_NSString) 7579 .Case("strftime", FST_Strftime) 7580 .Case("strfmon", FST_Strfmon) 7581 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7582 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7583 .Case("os_trace", FST_OSLog) 7584 .Case("os_log", FST_OSLog) 7585 .Default(FST_Unknown); 7586 } 7587 7588 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7589 /// functions) for correct use of format strings. 7590 /// Returns true if a format string has been fully checked. 7591 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7592 ArrayRef<const Expr *> Args, 7593 bool IsCXXMember, 7594 VariadicCallType CallType, 7595 SourceLocation Loc, SourceRange Range, 7596 llvm::SmallBitVector &CheckedVarArgs) { 7597 FormatStringInfo FSI; 7598 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7599 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7600 FSI.FirstDataArg, GetFormatStringType(Format), 7601 CallType, Loc, Range, CheckedVarArgs); 7602 return false; 7603 } 7604 7605 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7606 bool HasVAListArg, unsigned format_idx, 7607 unsigned firstDataArg, FormatStringType Type, 7608 VariadicCallType CallType, 7609 SourceLocation Loc, SourceRange Range, 7610 llvm::SmallBitVector &CheckedVarArgs) { 7611 // CHECK: printf/scanf-like function is called with no format string. 7612 if (format_idx >= Args.size()) { 7613 Diag(Loc, diag::warn_missing_format_string) << Range; 7614 return false; 7615 } 7616 7617 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7618 7619 // CHECK: format string is not a string literal. 7620 // 7621 // Dynamically generated format strings are difficult to 7622 // automatically vet at compile time. Requiring that format strings 7623 // are string literals: (1) permits the checking of format strings by 7624 // the compiler and thereby (2) can practically remove the source of 7625 // many format string exploits. 7626 7627 // Format string can be either ObjC string (e.g. @"%d") or 7628 // C string (e.g. "%d") 7629 // ObjC string uses the same format specifiers as C string, so we can use 7630 // the same format string checking logic for both ObjC and C strings. 7631 UncoveredArgHandler UncoveredArg; 7632 StringLiteralCheckType CT = 7633 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7634 format_idx, firstDataArg, Type, CallType, 7635 /*IsFunctionCall*/ true, CheckedVarArgs, 7636 UncoveredArg, 7637 /*no string offset*/ llvm::APSInt(64, false) = 0); 7638 7639 // Generate a diagnostic where an uncovered argument is detected. 7640 if (UncoveredArg.hasUncoveredArg()) { 7641 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7642 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7643 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7644 } 7645 7646 if (CT != SLCT_NotALiteral) 7647 // Literal format string found, check done! 7648 return CT == SLCT_CheckedLiteral; 7649 7650 // Strftime is particular as it always uses a single 'time' argument, 7651 // so it is safe to pass a non-literal string. 7652 if (Type == FST_Strftime) 7653 return false; 7654 7655 // Do not emit diag when the string param is a macro expansion and the 7656 // format is either NSString or CFString. This is a hack to prevent 7657 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7658 // which are usually used in place of NS and CF string literals. 7659 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7660 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7661 return false; 7662 7663 // If there are no arguments specified, warn with -Wformat-security, otherwise 7664 // warn only with -Wformat-nonliteral. 7665 if (Args.size() == firstDataArg) { 7666 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7667 << OrigFormatExpr->getSourceRange(); 7668 switch (Type) { 7669 default: 7670 break; 7671 case FST_Kprintf: 7672 case FST_FreeBSDKPrintf: 7673 case FST_Printf: 7674 Diag(FormatLoc, diag::note_format_security_fixit) 7675 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7676 break; 7677 case FST_NSString: 7678 Diag(FormatLoc, diag::note_format_security_fixit) 7679 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7680 break; 7681 } 7682 } else { 7683 Diag(FormatLoc, diag::warn_format_nonliteral) 7684 << OrigFormatExpr->getSourceRange(); 7685 } 7686 return false; 7687 } 7688 7689 namespace { 7690 7691 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7692 protected: 7693 Sema &S; 7694 const FormatStringLiteral *FExpr; 7695 const Expr *OrigFormatExpr; 7696 const Sema::FormatStringType FSType; 7697 const unsigned FirstDataArg; 7698 const unsigned NumDataArgs; 7699 const char *Beg; // Start of format string. 7700 const bool HasVAListArg; 7701 ArrayRef<const Expr *> Args; 7702 unsigned FormatIdx; 7703 llvm::SmallBitVector CoveredArgs; 7704 bool usesPositionalArgs = false; 7705 bool atFirstArg = true; 7706 bool inFunctionCall; 7707 Sema::VariadicCallType CallType; 7708 llvm::SmallBitVector &CheckedVarArgs; 7709 UncoveredArgHandler &UncoveredArg; 7710 7711 public: 7712 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7713 const Expr *origFormatExpr, 7714 const Sema::FormatStringType type, unsigned firstDataArg, 7715 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7716 ArrayRef<const Expr *> Args, unsigned formatIdx, 7717 bool inFunctionCall, Sema::VariadicCallType callType, 7718 llvm::SmallBitVector &CheckedVarArgs, 7719 UncoveredArgHandler &UncoveredArg) 7720 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7721 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7722 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7723 inFunctionCall(inFunctionCall), CallType(callType), 7724 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7725 CoveredArgs.resize(numDataArgs); 7726 CoveredArgs.reset(); 7727 } 7728 7729 void DoneProcessing(); 7730 7731 void HandleIncompleteSpecifier(const char *startSpecifier, 7732 unsigned specifierLen) override; 7733 7734 void HandleInvalidLengthModifier( 7735 const analyze_format_string::FormatSpecifier &FS, 7736 const analyze_format_string::ConversionSpecifier &CS, 7737 const char *startSpecifier, unsigned specifierLen, 7738 unsigned DiagID); 7739 7740 void HandleNonStandardLengthModifier( 7741 const analyze_format_string::FormatSpecifier &FS, 7742 const char *startSpecifier, unsigned specifierLen); 7743 7744 void HandleNonStandardConversionSpecifier( 7745 const analyze_format_string::ConversionSpecifier &CS, 7746 const char *startSpecifier, unsigned specifierLen); 7747 7748 void HandlePosition(const char *startPos, unsigned posLen) override; 7749 7750 void HandleInvalidPosition(const char *startSpecifier, 7751 unsigned specifierLen, 7752 analyze_format_string::PositionContext p) override; 7753 7754 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7755 7756 void HandleNullChar(const char *nullCharacter) override; 7757 7758 template <typename Range> 7759 static void 7760 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7761 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7762 bool IsStringLocation, Range StringRange, 7763 ArrayRef<FixItHint> Fixit = None); 7764 7765 protected: 7766 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7767 const char *startSpec, 7768 unsigned specifierLen, 7769 const char *csStart, unsigned csLen); 7770 7771 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7772 const char *startSpec, 7773 unsigned specifierLen); 7774 7775 SourceRange getFormatStringRange(); 7776 CharSourceRange getSpecifierRange(const char *startSpecifier, 7777 unsigned specifierLen); 7778 SourceLocation getLocationOfByte(const char *x); 7779 7780 const Expr *getDataArg(unsigned i) const; 7781 7782 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7783 const analyze_format_string::ConversionSpecifier &CS, 7784 const char *startSpecifier, unsigned specifierLen, 7785 unsigned argIndex); 7786 7787 template <typename Range> 7788 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7789 bool IsStringLocation, Range StringRange, 7790 ArrayRef<FixItHint> Fixit = None); 7791 }; 7792 7793 } // namespace 7794 7795 SourceRange CheckFormatHandler::getFormatStringRange() { 7796 return OrigFormatExpr->getSourceRange(); 7797 } 7798 7799 CharSourceRange CheckFormatHandler:: 7800 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7801 SourceLocation Start = getLocationOfByte(startSpecifier); 7802 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7803 7804 // Advance the end SourceLocation by one due to half-open ranges. 7805 End = End.getLocWithOffset(1); 7806 7807 return CharSourceRange::getCharRange(Start, End); 7808 } 7809 7810 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7811 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7812 S.getLangOpts(), S.Context.getTargetInfo()); 7813 } 7814 7815 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7816 unsigned specifierLen){ 7817 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7818 getLocationOfByte(startSpecifier), 7819 /*IsStringLocation*/true, 7820 getSpecifierRange(startSpecifier, specifierLen)); 7821 } 7822 7823 void CheckFormatHandler::HandleInvalidLengthModifier( 7824 const analyze_format_string::FormatSpecifier &FS, 7825 const analyze_format_string::ConversionSpecifier &CS, 7826 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7827 using namespace analyze_format_string; 7828 7829 const LengthModifier &LM = FS.getLengthModifier(); 7830 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7831 7832 // See if we know how to fix this length modifier. 7833 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7834 if (FixedLM) { 7835 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7836 getLocationOfByte(LM.getStart()), 7837 /*IsStringLocation*/true, 7838 getSpecifierRange(startSpecifier, specifierLen)); 7839 7840 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7841 << FixedLM->toString() 7842 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7843 7844 } else { 7845 FixItHint Hint; 7846 if (DiagID == diag::warn_format_nonsensical_length) 7847 Hint = FixItHint::CreateRemoval(LMRange); 7848 7849 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7850 getLocationOfByte(LM.getStart()), 7851 /*IsStringLocation*/true, 7852 getSpecifierRange(startSpecifier, specifierLen), 7853 Hint); 7854 } 7855 } 7856 7857 void CheckFormatHandler::HandleNonStandardLengthModifier( 7858 const analyze_format_string::FormatSpecifier &FS, 7859 const char *startSpecifier, unsigned specifierLen) { 7860 using namespace analyze_format_string; 7861 7862 const LengthModifier &LM = FS.getLengthModifier(); 7863 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7864 7865 // See if we know how to fix this length modifier. 7866 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7867 if (FixedLM) { 7868 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7869 << LM.toString() << 0, 7870 getLocationOfByte(LM.getStart()), 7871 /*IsStringLocation*/true, 7872 getSpecifierRange(startSpecifier, specifierLen)); 7873 7874 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7875 << FixedLM->toString() 7876 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7877 7878 } else { 7879 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7880 << LM.toString() << 0, 7881 getLocationOfByte(LM.getStart()), 7882 /*IsStringLocation*/true, 7883 getSpecifierRange(startSpecifier, specifierLen)); 7884 } 7885 } 7886 7887 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7888 const analyze_format_string::ConversionSpecifier &CS, 7889 const char *startSpecifier, unsigned specifierLen) { 7890 using namespace analyze_format_string; 7891 7892 // See if we know how to fix this conversion specifier. 7893 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7894 if (FixedCS) { 7895 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7896 << CS.toString() << /*conversion specifier*/1, 7897 getLocationOfByte(CS.getStart()), 7898 /*IsStringLocation*/true, 7899 getSpecifierRange(startSpecifier, specifierLen)); 7900 7901 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7902 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7903 << FixedCS->toString() 7904 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7905 } else { 7906 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7907 << CS.toString() << /*conversion specifier*/1, 7908 getLocationOfByte(CS.getStart()), 7909 /*IsStringLocation*/true, 7910 getSpecifierRange(startSpecifier, specifierLen)); 7911 } 7912 } 7913 7914 void CheckFormatHandler::HandlePosition(const char *startPos, 7915 unsigned posLen) { 7916 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7917 getLocationOfByte(startPos), 7918 /*IsStringLocation*/true, 7919 getSpecifierRange(startPos, posLen)); 7920 } 7921 7922 void 7923 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7924 analyze_format_string::PositionContext p) { 7925 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7926 << (unsigned) p, 7927 getLocationOfByte(startPos), /*IsStringLocation*/true, 7928 getSpecifierRange(startPos, posLen)); 7929 } 7930 7931 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7932 unsigned posLen) { 7933 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7934 getLocationOfByte(startPos), 7935 /*IsStringLocation*/true, 7936 getSpecifierRange(startPos, posLen)); 7937 } 7938 7939 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7940 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7941 // The presence of a null character is likely an error. 7942 EmitFormatDiagnostic( 7943 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7944 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7945 getFormatStringRange()); 7946 } 7947 } 7948 7949 // Note that this may return NULL if there was an error parsing or building 7950 // one of the argument expressions. 7951 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7952 return Args[FirstDataArg + i]; 7953 } 7954 7955 void CheckFormatHandler::DoneProcessing() { 7956 // Does the number of data arguments exceed the number of 7957 // format conversions in the format string? 7958 if (!HasVAListArg) { 7959 // Find any arguments that weren't covered. 7960 CoveredArgs.flip(); 7961 signed notCoveredArg = CoveredArgs.find_first(); 7962 if (notCoveredArg >= 0) { 7963 assert((unsigned)notCoveredArg < NumDataArgs); 7964 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7965 } else { 7966 UncoveredArg.setAllCovered(); 7967 } 7968 } 7969 } 7970 7971 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7972 const Expr *ArgExpr) { 7973 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7974 "Invalid state"); 7975 7976 if (!ArgExpr) 7977 return; 7978 7979 SourceLocation Loc = ArgExpr->getBeginLoc(); 7980 7981 if (S.getSourceManager().isInSystemMacro(Loc)) 7982 return; 7983 7984 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7985 for (auto E : DiagnosticExprs) 7986 PDiag << E->getSourceRange(); 7987 7988 CheckFormatHandler::EmitFormatDiagnostic( 7989 S, IsFunctionCall, DiagnosticExprs[0], 7990 PDiag, Loc, /*IsStringLocation*/false, 7991 DiagnosticExprs[0]->getSourceRange()); 7992 } 7993 7994 bool 7995 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7996 SourceLocation Loc, 7997 const char *startSpec, 7998 unsigned specifierLen, 7999 const char *csStart, 8000 unsigned csLen) { 8001 bool keepGoing = true; 8002 if (argIndex < NumDataArgs) { 8003 // Consider the argument coverered, even though the specifier doesn't 8004 // make sense. 8005 CoveredArgs.set(argIndex); 8006 } 8007 else { 8008 // If argIndex exceeds the number of data arguments we 8009 // don't issue a warning because that is just a cascade of warnings (and 8010 // they may have intended '%%' anyway). We don't want to continue processing 8011 // the format string after this point, however, as we will like just get 8012 // gibberish when trying to match arguments. 8013 keepGoing = false; 8014 } 8015 8016 StringRef Specifier(csStart, csLen); 8017 8018 // If the specifier in non-printable, it could be the first byte of a UTF-8 8019 // sequence. In that case, print the UTF-8 code point. If not, print the byte 8020 // hex value. 8021 std::string CodePointStr; 8022 if (!llvm::sys::locale::isPrint(*csStart)) { 8023 llvm::UTF32 CodePoint; 8024 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 8025 const llvm::UTF8 *E = 8026 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 8027 llvm::ConversionResult Result = 8028 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 8029 8030 if (Result != llvm::conversionOK) { 8031 unsigned char FirstChar = *csStart; 8032 CodePoint = (llvm::UTF32)FirstChar; 8033 } 8034 8035 llvm::raw_string_ostream OS(CodePointStr); 8036 if (CodePoint < 256) 8037 OS << "\\x" << llvm::format("%02x", CodePoint); 8038 else if (CodePoint <= 0xFFFF) 8039 OS << "\\u" << llvm::format("%04x", CodePoint); 8040 else 8041 OS << "\\U" << llvm::format("%08x", CodePoint); 8042 OS.flush(); 8043 Specifier = CodePointStr; 8044 } 8045 8046 EmitFormatDiagnostic( 8047 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 8048 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 8049 8050 return keepGoing; 8051 } 8052 8053 void 8054 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 8055 const char *startSpec, 8056 unsigned specifierLen) { 8057 EmitFormatDiagnostic( 8058 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 8059 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 8060 } 8061 8062 bool 8063 CheckFormatHandler::CheckNumArgs( 8064 const analyze_format_string::FormatSpecifier &FS, 8065 const analyze_format_string::ConversionSpecifier &CS, 8066 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 8067 8068 if (argIndex >= NumDataArgs) { 8069 PartialDiagnostic PDiag = FS.usesPositionalArg() 8070 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 8071 << (argIndex+1) << NumDataArgs) 8072 : S.PDiag(diag::warn_printf_insufficient_data_args); 8073 EmitFormatDiagnostic( 8074 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 8075 getSpecifierRange(startSpecifier, specifierLen)); 8076 8077 // Since more arguments than conversion tokens are given, by extension 8078 // all arguments are covered, so mark this as so. 8079 UncoveredArg.setAllCovered(); 8080 return false; 8081 } 8082 return true; 8083 } 8084 8085 template<typename Range> 8086 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 8087 SourceLocation Loc, 8088 bool IsStringLocation, 8089 Range StringRange, 8090 ArrayRef<FixItHint> FixIt) { 8091 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 8092 Loc, IsStringLocation, StringRange, FixIt); 8093 } 8094 8095 /// If the format string is not within the function call, emit a note 8096 /// so that the function call and string are in diagnostic messages. 8097 /// 8098 /// \param InFunctionCall if true, the format string is within the function 8099 /// call and only one diagnostic message will be produced. Otherwise, an 8100 /// extra note will be emitted pointing to location of the format string. 8101 /// 8102 /// \param ArgumentExpr the expression that is passed as the format string 8103 /// argument in the function call. Used for getting locations when two 8104 /// diagnostics are emitted. 8105 /// 8106 /// \param PDiag the callee should already have provided any strings for the 8107 /// diagnostic message. This function only adds locations and fixits 8108 /// to diagnostics. 8109 /// 8110 /// \param Loc primary location for diagnostic. If two diagnostics are 8111 /// required, one will be at Loc and a new SourceLocation will be created for 8112 /// the other one. 8113 /// 8114 /// \param IsStringLocation if true, Loc points to the format string should be 8115 /// used for the note. Otherwise, Loc points to the argument list and will 8116 /// be used with PDiag. 8117 /// 8118 /// \param StringRange some or all of the string to highlight. This is 8119 /// templated so it can accept either a CharSourceRange or a SourceRange. 8120 /// 8121 /// \param FixIt optional fix it hint for the format string. 8122 template <typename Range> 8123 void CheckFormatHandler::EmitFormatDiagnostic( 8124 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 8125 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 8126 Range StringRange, ArrayRef<FixItHint> FixIt) { 8127 if (InFunctionCall) { 8128 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 8129 D << StringRange; 8130 D << FixIt; 8131 } else { 8132 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 8133 << ArgumentExpr->getSourceRange(); 8134 8135 const Sema::SemaDiagnosticBuilder &Note = 8136 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 8137 diag::note_format_string_defined); 8138 8139 Note << StringRange; 8140 Note << FixIt; 8141 } 8142 } 8143 8144 //===--- CHECK: Printf format string checking ------------------------------===// 8145 8146 namespace { 8147 8148 class CheckPrintfHandler : public CheckFormatHandler { 8149 public: 8150 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 8151 const Expr *origFormatExpr, 8152 const Sema::FormatStringType type, unsigned firstDataArg, 8153 unsigned numDataArgs, bool isObjC, const char *beg, 8154 bool hasVAListArg, ArrayRef<const Expr *> Args, 8155 unsigned formatIdx, bool inFunctionCall, 8156 Sema::VariadicCallType CallType, 8157 llvm::SmallBitVector &CheckedVarArgs, 8158 UncoveredArgHandler &UncoveredArg) 8159 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8160 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8161 inFunctionCall, CallType, CheckedVarArgs, 8162 UncoveredArg) {} 8163 8164 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 8165 8166 /// Returns true if '%@' specifiers are allowed in the format string. 8167 bool allowsObjCArg() const { 8168 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 8169 FSType == Sema::FST_OSTrace; 8170 } 8171 8172 bool HandleInvalidPrintfConversionSpecifier( 8173 const analyze_printf::PrintfSpecifier &FS, 8174 const char *startSpecifier, 8175 unsigned specifierLen) override; 8176 8177 void handleInvalidMaskType(StringRef MaskType) override; 8178 8179 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 8180 const char *startSpecifier, 8181 unsigned specifierLen) override; 8182 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8183 const char *StartSpecifier, 8184 unsigned SpecifierLen, 8185 const Expr *E); 8186 8187 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 8188 const char *startSpecifier, unsigned specifierLen); 8189 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 8190 const analyze_printf::OptionalAmount &Amt, 8191 unsigned type, 8192 const char *startSpecifier, unsigned specifierLen); 8193 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8194 const analyze_printf::OptionalFlag &flag, 8195 const char *startSpecifier, unsigned specifierLen); 8196 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 8197 const analyze_printf::OptionalFlag &ignoredFlag, 8198 const analyze_printf::OptionalFlag &flag, 8199 const char *startSpecifier, unsigned specifierLen); 8200 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 8201 const Expr *E); 8202 8203 void HandleEmptyObjCModifierFlag(const char *startFlag, 8204 unsigned flagLen) override; 8205 8206 void HandleInvalidObjCModifierFlag(const char *startFlag, 8207 unsigned flagLen) override; 8208 8209 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 8210 const char *flagsEnd, 8211 const char *conversionPosition) 8212 override; 8213 }; 8214 8215 } // namespace 8216 8217 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 8218 const analyze_printf::PrintfSpecifier &FS, 8219 const char *startSpecifier, 8220 unsigned specifierLen) { 8221 const analyze_printf::PrintfConversionSpecifier &CS = 8222 FS.getConversionSpecifier(); 8223 8224 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8225 getLocationOfByte(CS.getStart()), 8226 startSpecifier, specifierLen, 8227 CS.getStart(), CS.getLength()); 8228 } 8229 8230 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 8231 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 8232 } 8233 8234 bool CheckPrintfHandler::HandleAmount( 8235 const analyze_format_string::OptionalAmount &Amt, 8236 unsigned k, const char *startSpecifier, 8237 unsigned specifierLen) { 8238 if (Amt.hasDataArgument()) { 8239 if (!HasVAListArg) { 8240 unsigned argIndex = Amt.getArgIndex(); 8241 if (argIndex >= NumDataArgs) { 8242 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 8243 << k, 8244 getLocationOfByte(Amt.getStart()), 8245 /*IsStringLocation*/true, 8246 getSpecifierRange(startSpecifier, specifierLen)); 8247 // Don't do any more checking. We will just emit 8248 // spurious errors. 8249 return false; 8250 } 8251 8252 // Type check the data argument. It should be an 'int'. 8253 // Although not in conformance with C99, we also allow the argument to be 8254 // an 'unsigned int' as that is a reasonably safe case. GCC also 8255 // doesn't emit a warning for that case. 8256 CoveredArgs.set(argIndex); 8257 const Expr *Arg = getDataArg(argIndex); 8258 if (!Arg) 8259 return false; 8260 8261 QualType T = Arg->getType(); 8262 8263 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 8264 assert(AT.isValid()); 8265 8266 if (!AT.matchesType(S.Context, T)) { 8267 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 8268 << k << AT.getRepresentativeTypeName(S.Context) 8269 << T << Arg->getSourceRange(), 8270 getLocationOfByte(Amt.getStart()), 8271 /*IsStringLocation*/true, 8272 getSpecifierRange(startSpecifier, specifierLen)); 8273 // Don't do any more checking. We will just emit 8274 // spurious errors. 8275 return false; 8276 } 8277 } 8278 } 8279 return true; 8280 } 8281 8282 void CheckPrintfHandler::HandleInvalidAmount( 8283 const analyze_printf::PrintfSpecifier &FS, 8284 const analyze_printf::OptionalAmount &Amt, 8285 unsigned type, 8286 const char *startSpecifier, 8287 unsigned specifierLen) { 8288 const analyze_printf::PrintfConversionSpecifier &CS = 8289 FS.getConversionSpecifier(); 8290 8291 FixItHint fixit = 8292 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 8293 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 8294 Amt.getConstantLength())) 8295 : FixItHint(); 8296 8297 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 8298 << type << CS.toString(), 8299 getLocationOfByte(Amt.getStart()), 8300 /*IsStringLocation*/true, 8301 getSpecifierRange(startSpecifier, specifierLen), 8302 fixit); 8303 } 8304 8305 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8306 const analyze_printf::OptionalFlag &flag, 8307 const char *startSpecifier, 8308 unsigned specifierLen) { 8309 // Warn about pointless flag with a fixit removal. 8310 const analyze_printf::PrintfConversionSpecifier &CS = 8311 FS.getConversionSpecifier(); 8312 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 8313 << flag.toString() << CS.toString(), 8314 getLocationOfByte(flag.getPosition()), 8315 /*IsStringLocation*/true, 8316 getSpecifierRange(startSpecifier, specifierLen), 8317 FixItHint::CreateRemoval( 8318 getSpecifierRange(flag.getPosition(), 1))); 8319 } 8320 8321 void CheckPrintfHandler::HandleIgnoredFlag( 8322 const analyze_printf::PrintfSpecifier &FS, 8323 const analyze_printf::OptionalFlag &ignoredFlag, 8324 const analyze_printf::OptionalFlag &flag, 8325 const char *startSpecifier, 8326 unsigned specifierLen) { 8327 // Warn about ignored flag with a fixit removal. 8328 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 8329 << ignoredFlag.toString() << flag.toString(), 8330 getLocationOfByte(ignoredFlag.getPosition()), 8331 /*IsStringLocation*/true, 8332 getSpecifierRange(startSpecifier, specifierLen), 8333 FixItHint::CreateRemoval( 8334 getSpecifierRange(ignoredFlag.getPosition(), 1))); 8335 } 8336 8337 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 8338 unsigned flagLen) { 8339 // Warn about an empty flag. 8340 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 8341 getLocationOfByte(startFlag), 8342 /*IsStringLocation*/true, 8343 getSpecifierRange(startFlag, flagLen)); 8344 } 8345 8346 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 8347 unsigned flagLen) { 8348 // Warn about an invalid flag. 8349 auto Range = getSpecifierRange(startFlag, flagLen); 8350 StringRef flag(startFlag, flagLen); 8351 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 8352 getLocationOfByte(startFlag), 8353 /*IsStringLocation*/true, 8354 Range, FixItHint::CreateRemoval(Range)); 8355 } 8356 8357 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 8358 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 8359 // Warn about using '[...]' without a '@' conversion. 8360 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 8361 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 8362 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 8363 getLocationOfByte(conversionPosition), 8364 /*IsStringLocation*/true, 8365 Range, FixItHint::CreateRemoval(Range)); 8366 } 8367 8368 // Determines if the specified is a C++ class or struct containing 8369 // a member with the specified name and kind (e.g. a CXXMethodDecl named 8370 // "c_str()"). 8371 template<typename MemberKind> 8372 static llvm::SmallPtrSet<MemberKind*, 1> 8373 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 8374 const RecordType *RT = Ty->getAs<RecordType>(); 8375 llvm::SmallPtrSet<MemberKind*, 1> Results; 8376 8377 if (!RT) 8378 return Results; 8379 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 8380 if (!RD || !RD->getDefinition()) 8381 return Results; 8382 8383 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 8384 Sema::LookupMemberName); 8385 R.suppressDiagnostics(); 8386 8387 // We just need to include all members of the right kind turned up by the 8388 // filter, at this point. 8389 if (S.LookupQualifiedName(R, RT->getDecl())) 8390 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8391 NamedDecl *decl = (*I)->getUnderlyingDecl(); 8392 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 8393 Results.insert(FK); 8394 } 8395 return Results; 8396 } 8397 8398 /// Check if we could call '.c_str()' on an object. 8399 /// 8400 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 8401 /// allow the call, or if it would be ambiguous). 8402 bool Sema::hasCStrMethod(const Expr *E) { 8403 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8404 8405 MethodSet Results = 8406 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 8407 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8408 MI != ME; ++MI) 8409 if ((*MI)->getMinRequiredArguments() == 0) 8410 return true; 8411 return false; 8412 } 8413 8414 // Check if a (w)string was passed when a (w)char* was needed, and offer a 8415 // better diagnostic if so. AT is assumed to be valid. 8416 // Returns true when a c_str() conversion method is found. 8417 bool CheckPrintfHandler::checkForCStrMembers( 8418 const analyze_printf::ArgType &AT, const Expr *E) { 8419 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8420 8421 MethodSet Results = 8422 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 8423 8424 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8425 MI != ME; ++MI) { 8426 const CXXMethodDecl *Method = *MI; 8427 if (Method->getMinRequiredArguments() == 0 && 8428 AT.matchesType(S.Context, Method->getReturnType())) { 8429 // FIXME: Suggest parens if the expression needs them. 8430 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 8431 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 8432 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 8433 return true; 8434 } 8435 } 8436 8437 return false; 8438 } 8439 8440 bool 8441 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 8442 &FS, 8443 const char *startSpecifier, 8444 unsigned specifierLen) { 8445 using namespace analyze_format_string; 8446 using namespace analyze_printf; 8447 8448 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 8449 8450 if (FS.consumesDataArgument()) { 8451 if (atFirstArg) { 8452 atFirstArg = false; 8453 usesPositionalArgs = FS.usesPositionalArg(); 8454 } 8455 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8456 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8457 startSpecifier, specifierLen); 8458 return false; 8459 } 8460 } 8461 8462 // First check if the field width, precision, and conversion specifier 8463 // have matching data arguments. 8464 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 8465 startSpecifier, specifierLen)) { 8466 return false; 8467 } 8468 8469 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 8470 startSpecifier, specifierLen)) { 8471 return false; 8472 } 8473 8474 if (!CS.consumesDataArgument()) { 8475 // FIXME: Technically specifying a precision or field width here 8476 // makes no sense. Worth issuing a warning at some point. 8477 return true; 8478 } 8479 8480 // Consume the argument. 8481 unsigned argIndex = FS.getArgIndex(); 8482 if (argIndex < NumDataArgs) { 8483 // The check to see if the argIndex is valid will come later. 8484 // We set the bit here because we may exit early from this 8485 // function if we encounter some other error. 8486 CoveredArgs.set(argIndex); 8487 } 8488 8489 // FreeBSD kernel extensions. 8490 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8491 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8492 // We need at least two arguments. 8493 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8494 return false; 8495 8496 // Claim the second argument. 8497 CoveredArgs.set(argIndex + 1); 8498 8499 // Type check the first argument (int for %b, pointer for %D) 8500 const Expr *Ex = getDataArg(argIndex); 8501 const analyze_printf::ArgType &AT = 8502 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8503 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8504 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8505 EmitFormatDiagnostic( 8506 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8507 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8508 << false << Ex->getSourceRange(), 8509 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8510 getSpecifierRange(startSpecifier, specifierLen)); 8511 8512 // Type check the second argument (char * for both %b and %D) 8513 Ex = getDataArg(argIndex + 1); 8514 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8515 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8516 EmitFormatDiagnostic( 8517 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8518 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8519 << false << Ex->getSourceRange(), 8520 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8521 getSpecifierRange(startSpecifier, specifierLen)); 8522 8523 return true; 8524 } 8525 8526 // Check for using an Objective-C specific conversion specifier 8527 // in a non-ObjC literal. 8528 if (!allowsObjCArg() && CS.isObjCArg()) { 8529 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8530 specifierLen); 8531 } 8532 8533 // %P can only be used with os_log. 8534 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8535 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8536 specifierLen); 8537 } 8538 8539 // %n is not allowed with os_log. 8540 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8541 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8542 getLocationOfByte(CS.getStart()), 8543 /*IsStringLocation*/ false, 8544 getSpecifierRange(startSpecifier, specifierLen)); 8545 8546 return true; 8547 } 8548 8549 // Only scalars are allowed for os_trace. 8550 if (FSType == Sema::FST_OSTrace && 8551 (CS.getKind() == ConversionSpecifier::PArg || 8552 CS.getKind() == ConversionSpecifier::sArg || 8553 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8554 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8555 specifierLen); 8556 } 8557 8558 // Check for use of public/private annotation outside of os_log(). 8559 if (FSType != Sema::FST_OSLog) { 8560 if (FS.isPublic().isSet()) { 8561 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8562 << "public", 8563 getLocationOfByte(FS.isPublic().getPosition()), 8564 /*IsStringLocation*/ false, 8565 getSpecifierRange(startSpecifier, specifierLen)); 8566 } 8567 if (FS.isPrivate().isSet()) { 8568 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8569 << "private", 8570 getLocationOfByte(FS.isPrivate().getPosition()), 8571 /*IsStringLocation*/ false, 8572 getSpecifierRange(startSpecifier, specifierLen)); 8573 } 8574 } 8575 8576 // Check for invalid use of field width 8577 if (!FS.hasValidFieldWidth()) { 8578 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8579 startSpecifier, specifierLen); 8580 } 8581 8582 // Check for invalid use of precision 8583 if (!FS.hasValidPrecision()) { 8584 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8585 startSpecifier, specifierLen); 8586 } 8587 8588 // Precision is mandatory for %P specifier. 8589 if (CS.getKind() == ConversionSpecifier::PArg && 8590 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8591 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8592 getLocationOfByte(startSpecifier), 8593 /*IsStringLocation*/ false, 8594 getSpecifierRange(startSpecifier, specifierLen)); 8595 } 8596 8597 // Check each flag does not conflict with any other component. 8598 if (!FS.hasValidThousandsGroupingPrefix()) 8599 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8600 if (!FS.hasValidLeadingZeros()) 8601 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8602 if (!FS.hasValidPlusPrefix()) 8603 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8604 if (!FS.hasValidSpacePrefix()) 8605 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8606 if (!FS.hasValidAlternativeForm()) 8607 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8608 if (!FS.hasValidLeftJustified()) 8609 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8610 8611 // Check that flags are not ignored by another flag 8612 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8613 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8614 startSpecifier, specifierLen); 8615 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8616 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8617 startSpecifier, specifierLen); 8618 8619 // Check the length modifier is valid with the given conversion specifier. 8620 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8621 S.getLangOpts())) 8622 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8623 diag::warn_format_nonsensical_length); 8624 else if (!FS.hasStandardLengthModifier()) 8625 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8626 else if (!FS.hasStandardLengthConversionCombination()) 8627 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8628 diag::warn_format_non_standard_conversion_spec); 8629 8630 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8631 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8632 8633 // The remaining checks depend on the data arguments. 8634 if (HasVAListArg) 8635 return true; 8636 8637 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8638 return false; 8639 8640 const Expr *Arg = getDataArg(argIndex); 8641 if (!Arg) 8642 return true; 8643 8644 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8645 } 8646 8647 static bool requiresParensToAddCast(const Expr *E) { 8648 // FIXME: We should have a general way to reason about operator 8649 // precedence and whether parens are actually needed here. 8650 // Take care of a few common cases where they aren't. 8651 const Expr *Inside = E->IgnoreImpCasts(); 8652 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8653 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8654 8655 switch (Inside->getStmtClass()) { 8656 case Stmt::ArraySubscriptExprClass: 8657 case Stmt::CallExprClass: 8658 case Stmt::CharacterLiteralClass: 8659 case Stmt::CXXBoolLiteralExprClass: 8660 case Stmt::DeclRefExprClass: 8661 case Stmt::FloatingLiteralClass: 8662 case Stmt::IntegerLiteralClass: 8663 case Stmt::MemberExprClass: 8664 case Stmt::ObjCArrayLiteralClass: 8665 case Stmt::ObjCBoolLiteralExprClass: 8666 case Stmt::ObjCBoxedExprClass: 8667 case Stmt::ObjCDictionaryLiteralClass: 8668 case Stmt::ObjCEncodeExprClass: 8669 case Stmt::ObjCIvarRefExprClass: 8670 case Stmt::ObjCMessageExprClass: 8671 case Stmt::ObjCPropertyRefExprClass: 8672 case Stmt::ObjCStringLiteralClass: 8673 case Stmt::ObjCSubscriptRefExprClass: 8674 case Stmt::ParenExprClass: 8675 case Stmt::StringLiteralClass: 8676 case Stmt::UnaryOperatorClass: 8677 return false; 8678 default: 8679 return true; 8680 } 8681 } 8682 8683 static std::pair<QualType, StringRef> 8684 shouldNotPrintDirectly(const ASTContext &Context, 8685 QualType IntendedTy, 8686 const Expr *E) { 8687 // Use a 'while' to peel off layers of typedefs. 8688 QualType TyTy = IntendedTy; 8689 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8690 StringRef Name = UserTy->getDecl()->getName(); 8691 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8692 .Case("CFIndex", Context.getNSIntegerType()) 8693 .Case("NSInteger", Context.getNSIntegerType()) 8694 .Case("NSUInteger", Context.getNSUIntegerType()) 8695 .Case("SInt32", Context.IntTy) 8696 .Case("UInt32", Context.UnsignedIntTy) 8697 .Default(QualType()); 8698 8699 if (!CastTy.isNull()) 8700 return std::make_pair(CastTy, Name); 8701 8702 TyTy = UserTy->desugar(); 8703 } 8704 8705 // Strip parens if necessary. 8706 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8707 return shouldNotPrintDirectly(Context, 8708 PE->getSubExpr()->getType(), 8709 PE->getSubExpr()); 8710 8711 // If this is a conditional expression, then its result type is constructed 8712 // via usual arithmetic conversions and thus there might be no necessary 8713 // typedef sugar there. Recurse to operands to check for NSInteger & 8714 // Co. usage condition. 8715 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8716 QualType TrueTy, FalseTy; 8717 StringRef TrueName, FalseName; 8718 8719 std::tie(TrueTy, TrueName) = 8720 shouldNotPrintDirectly(Context, 8721 CO->getTrueExpr()->getType(), 8722 CO->getTrueExpr()); 8723 std::tie(FalseTy, FalseName) = 8724 shouldNotPrintDirectly(Context, 8725 CO->getFalseExpr()->getType(), 8726 CO->getFalseExpr()); 8727 8728 if (TrueTy == FalseTy) 8729 return std::make_pair(TrueTy, TrueName); 8730 else if (TrueTy.isNull()) 8731 return std::make_pair(FalseTy, FalseName); 8732 else if (FalseTy.isNull()) 8733 return std::make_pair(TrueTy, TrueName); 8734 } 8735 8736 return std::make_pair(QualType(), StringRef()); 8737 } 8738 8739 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8740 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8741 /// type do not count. 8742 static bool 8743 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8744 QualType From = ICE->getSubExpr()->getType(); 8745 QualType To = ICE->getType(); 8746 // It's an integer promotion if the destination type is the promoted 8747 // source type. 8748 if (ICE->getCastKind() == CK_IntegralCast && 8749 From->isPromotableIntegerType() && 8750 S.Context.getPromotedIntegerType(From) == To) 8751 return true; 8752 // Look through vector types, since we do default argument promotion for 8753 // those in OpenCL. 8754 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8755 From = VecTy->getElementType(); 8756 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8757 To = VecTy->getElementType(); 8758 // It's a floating promotion if the source type is a lower rank. 8759 return ICE->getCastKind() == CK_FloatingCast && 8760 S.Context.getFloatingTypeOrder(From, To) < 0; 8761 } 8762 8763 bool 8764 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8765 const char *StartSpecifier, 8766 unsigned SpecifierLen, 8767 const Expr *E) { 8768 using namespace analyze_format_string; 8769 using namespace analyze_printf; 8770 8771 // Now type check the data expression that matches the 8772 // format specifier. 8773 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8774 if (!AT.isValid()) 8775 return true; 8776 8777 QualType ExprTy = E->getType(); 8778 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8779 ExprTy = TET->getUnderlyingExpr()->getType(); 8780 } 8781 8782 // Diagnose attempts to print a boolean value as a character. Unlike other 8783 // -Wformat diagnostics, this is fine from a type perspective, but it still 8784 // doesn't make sense. 8785 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8786 E->isKnownToHaveBooleanValue()) { 8787 const CharSourceRange &CSR = 8788 getSpecifierRange(StartSpecifier, SpecifierLen); 8789 SmallString<4> FSString; 8790 llvm::raw_svector_ostream os(FSString); 8791 FS.toString(os); 8792 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8793 << FSString, 8794 E->getExprLoc(), false, CSR); 8795 return true; 8796 } 8797 8798 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8799 if (Match == analyze_printf::ArgType::Match) 8800 return true; 8801 8802 // Look through argument promotions for our error message's reported type. 8803 // This includes the integral and floating promotions, but excludes array 8804 // and function pointer decay (seeing that an argument intended to be a 8805 // string has type 'char [6]' is probably more confusing than 'char *') and 8806 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8807 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8808 if (isArithmeticArgumentPromotion(S, ICE)) { 8809 E = ICE->getSubExpr(); 8810 ExprTy = E->getType(); 8811 8812 // Check if we didn't match because of an implicit cast from a 'char' 8813 // or 'short' to an 'int'. This is done because printf is a varargs 8814 // function. 8815 if (ICE->getType() == S.Context.IntTy || 8816 ICE->getType() == S.Context.UnsignedIntTy) { 8817 // All further checking is done on the subexpression 8818 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8819 AT.matchesType(S.Context, ExprTy); 8820 if (ImplicitMatch == analyze_printf::ArgType::Match) 8821 return true; 8822 if (ImplicitMatch == ArgType::NoMatchPedantic || 8823 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8824 Match = ImplicitMatch; 8825 } 8826 } 8827 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8828 // Special case for 'a', which has type 'int' in C. 8829 // Note, however, that we do /not/ want to treat multibyte constants like 8830 // 'MooV' as characters! This form is deprecated but still exists. In 8831 // addition, don't treat expressions as of type 'char' if one byte length 8832 // modifier is provided. 8833 if (ExprTy == S.Context.IntTy && 8834 FS.getLengthModifier().getKind() != LengthModifier::AsChar) 8835 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8836 ExprTy = S.Context.CharTy; 8837 } 8838 8839 // Look through enums to their underlying type. 8840 bool IsEnum = false; 8841 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8842 ExprTy = EnumTy->getDecl()->getIntegerType(); 8843 IsEnum = true; 8844 } 8845 8846 // %C in an Objective-C context prints a unichar, not a wchar_t. 8847 // If the argument is an integer of some kind, believe the %C and suggest 8848 // a cast instead of changing the conversion specifier. 8849 QualType IntendedTy = ExprTy; 8850 if (isObjCContext() && 8851 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8852 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8853 !ExprTy->isCharType()) { 8854 // 'unichar' is defined as a typedef of unsigned short, but we should 8855 // prefer using the typedef if it is visible. 8856 IntendedTy = S.Context.UnsignedShortTy; 8857 8858 // While we are here, check if the value is an IntegerLiteral that happens 8859 // to be within the valid range. 8860 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8861 const llvm::APInt &V = IL->getValue(); 8862 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8863 return true; 8864 } 8865 8866 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8867 Sema::LookupOrdinaryName); 8868 if (S.LookupName(Result, S.getCurScope())) { 8869 NamedDecl *ND = Result.getFoundDecl(); 8870 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8871 if (TD->getUnderlyingType() == IntendedTy) 8872 IntendedTy = S.Context.getTypedefType(TD); 8873 } 8874 } 8875 } 8876 8877 // Special-case some of Darwin's platform-independence types by suggesting 8878 // casts to primitive types that are known to be large enough. 8879 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8880 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8881 QualType CastTy; 8882 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8883 if (!CastTy.isNull()) { 8884 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8885 // (long in ASTContext). Only complain to pedants. 8886 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8887 (AT.isSizeT() || AT.isPtrdiffT()) && 8888 AT.matchesType(S.Context, CastTy)) 8889 Match = ArgType::NoMatchPedantic; 8890 IntendedTy = CastTy; 8891 ShouldNotPrintDirectly = true; 8892 } 8893 } 8894 8895 // We may be able to offer a FixItHint if it is a supported type. 8896 PrintfSpecifier fixedFS = FS; 8897 bool Success = 8898 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8899 8900 if (Success) { 8901 // Get the fix string from the fixed format specifier 8902 SmallString<16> buf; 8903 llvm::raw_svector_ostream os(buf); 8904 fixedFS.toString(os); 8905 8906 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8907 8908 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8909 unsigned Diag; 8910 switch (Match) { 8911 case ArgType::Match: llvm_unreachable("expected non-matching"); 8912 case ArgType::NoMatchPedantic: 8913 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8914 break; 8915 case ArgType::NoMatchTypeConfusion: 8916 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8917 break; 8918 case ArgType::NoMatch: 8919 Diag = diag::warn_format_conversion_argument_type_mismatch; 8920 break; 8921 } 8922 8923 // In this case, the specifier is wrong and should be changed to match 8924 // the argument. 8925 EmitFormatDiagnostic(S.PDiag(Diag) 8926 << AT.getRepresentativeTypeName(S.Context) 8927 << IntendedTy << IsEnum << E->getSourceRange(), 8928 E->getBeginLoc(), 8929 /*IsStringLocation*/ false, SpecRange, 8930 FixItHint::CreateReplacement(SpecRange, os.str())); 8931 } else { 8932 // The canonical type for formatting this value is different from the 8933 // actual type of the expression. (This occurs, for example, with Darwin's 8934 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8935 // should be printed as 'long' for 64-bit compatibility.) 8936 // Rather than emitting a normal format/argument mismatch, we want to 8937 // add a cast to the recommended type (and correct the format string 8938 // if necessary). 8939 SmallString<16> CastBuf; 8940 llvm::raw_svector_ostream CastFix(CastBuf); 8941 CastFix << "("; 8942 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8943 CastFix << ")"; 8944 8945 SmallVector<FixItHint,4> Hints; 8946 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8947 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8948 8949 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8950 // If there's already a cast present, just replace it. 8951 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8952 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8953 8954 } else if (!requiresParensToAddCast(E)) { 8955 // If the expression has high enough precedence, 8956 // just write the C-style cast. 8957 Hints.push_back( 8958 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8959 } else { 8960 // Otherwise, add parens around the expression as well as the cast. 8961 CastFix << "("; 8962 Hints.push_back( 8963 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8964 8965 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8966 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8967 } 8968 8969 if (ShouldNotPrintDirectly) { 8970 // The expression has a type that should not be printed directly. 8971 // We extract the name from the typedef because we don't want to show 8972 // the underlying type in the diagnostic. 8973 StringRef Name; 8974 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8975 Name = TypedefTy->getDecl()->getName(); 8976 else 8977 Name = CastTyName; 8978 unsigned Diag = Match == ArgType::NoMatchPedantic 8979 ? diag::warn_format_argument_needs_cast_pedantic 8980 : diag::warn_format_argument_needs_cast; 8981 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8982 << E->getSourceRange(), 8983 E->getBeginLoc(), /*IsStringLocation=*/false, 8984 SpecRange, Hints); 8985 } else { 8986 // In this case, the expression could be printed using a different 8987 // specifier, but we've decided that the specifier is probably correct 8988 // and we should cast instead. Just use the normal warning message. 8989 EmitFormatDiagnostic( 8990 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8991 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8992 << E->getSourceRange(), 8993 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8994 } 8995 } 8996 } else { 8997 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8998 SpecifierLen); 8999 // Since the warning for passing non-POD types to variadic functions 9000 // was deferred until now, we emit a warning for non-POD 9001 // arguments here. 9002 switch (S.isValidVarArgType(ExprTy)) { 9003 case Sema::VAK_Valid: 9004 case Sema::VAK_ValidInCXX11: { 9005 unsigned Diag; 9006 switch (Match) { 9007 case ArgType::Match: llvm_unreachable("expected non-matching"); 9008 case ArgType::NoMatchPedantic: 9009 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9010 break; 9011 case ArgType::NoMatchTypeConfusion: 9012 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9013 break; 9014 case ArgType::NoMatch: 9015 Diag = diag::warn_format_conversion_argument_type_mismatch; 9016 break; 9017 } 9018 9019 EmitFormatDiagnostic( 9020 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 9021 << IsEnum << CSR << E->getSourceRange(), 9022 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9023 break; 9024 } 9025 case Sema::VAK_Undefined: 9026 case Sema::VAK_MSVCUndefined: 9027 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 9028 << S.getLangOpts().CPlusPlus11 << ExprTy 9029 << CallType 9030 << AT.getRepresentativeTypeName(S.Context) << CSR 9031 << E->getSourceRange(), 9032 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9033 checkForCStrMembers(AT, E); 9034 break; 9035 9036 case Sema::VAK_Invalid: 9037 if (ExprTy->isObjCObjectType()) 9038 EmitFormatDiagnostic( 9039 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 9040 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 9041 << AT.getRepresentativeTypeName(S.Context) << CSR 9042 << E->getSourceRange(), 9043 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9044 else 9045 // FIXME: If this is an initializer list, suggest removing the braces 9046 // or inserting a cast to the target type. 9047 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 9048 << isa<InitListExpr>(E) << ExprTy << CallType 9049 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 9050 break; 9051 } 9052 9053 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 9054 "format string specifier index out of range"); 9055 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 9056 } 9057 9058 return true; 9059 } 9060 9061 //===--- CHECK: Scanf format string checking ------------------------------===// 9062 9063 namespace { 9064 9065 class CheckScanfHandler : public CheckFormatHandler { 9066 public: 9067 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 9068 const Expr *origFormatExpr, Sema::FormatStringType type, 9069 unsigned firstDataArg, unsigned numDataArgs, 9070 const char *beg, bool hasVAListArg, 9071 ArrayRef<const Expr *> Args, unsigned formatIdx, 9072 bool inFunctionCall, Sema::VariadicCallType CallType, 9073 llvm::SmallBitVector &CheckedVarArgs, 9074 UncoveredArgHandler &UncoveredArg) 9075 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 9076 numDataArgs, beg, hasVAListArg, Args, formatIdx, 9077 inFunctionCall, CallType, CheckedVarArgs, 9078 UncoveredArg) {} 9079 9080 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 9081 const char *startSpecifier, 9082 unsigned specifierLen) override; 9083 9084 bool HandleInvalidScanfConversionSpecifier( 9085 const analyze_scanf::ScanfSpecifier &FS, 9086 const char *startSpecifier, 9087 unsigned specifierLen) override; 9088 9089 void HandleIncompleteScanList(const char *start, const char *end) override; 9090 }; 9091 9092 } // namespace 9093 9094 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 9095 const char *end) { 9096 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 9097 getLocationOfByte(end), /*IsStringLocation*/true, 9098 getSpecifierRange(start, end - start)); 9099 } 9100 9101 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 9102 const analyze_scanf::ScanfSpecifier &FS, 9103 const char *startSpecifier, 9104 unsigned specifierLen) { 9105 const analyze_scanf::ScanfConversionSpecifier &CS = 9106 FS.getConversionSpecifier(); 9107 9108 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 9109 getLocationOfByte(CS.getStart()), 9110 startSpecifier, specifierLen, 9111 CS.getStart(), CS.getLength()); 9112 } 9113 9114 bool CheckScanfHandler::HandleScanfSpecifier( 9115 const analyze_scanf::ScanfSpecifier &FS, 9116 const char *startSpecifier, 9117 unsigned specifierLen) { 9118 using namespace analyze_scanf; 9119 using namespace analyze_format_string; 9120 9121 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 9122 9123 // Handle case where '%' and '*' don't consume an argument. These shouldn't 9124 // be used to decide if we are using positional arguments consistently. 9125 if (FS.consumesDataArgument()) { 9126 if (atFirstArg) { 9127 atFirstArg = false; 9128 usesPositionalArgs = FS.usesPositionalArg(); 9129 } 9130 else if (usesPositionalArgs != FS.usesPositionalArg()) { 9131 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 9132 startSpecifier, specifierLen); 9133 return false; 9134 } 9135 } 9136 9137 // Check if the field with is non-zero. 9138 const OptionalAmount &Amt = FS.getFieldWidth(); 9139 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 9140 if (Amt.getConstantAmount() == 0) { 9141 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 9142 Amt.getConstantLength()); 9143 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 9144 getLocationOfByte(Amt.getStart()), 9145 /*IsStringLocation*/true, R, 9146 FixItHint::CreateRemoval(R)); 9147 } 9148 } 9149 9150 if (!FS.consumesDataArgument()) { 9151 // FIXME: Technically specifying a precision or field width here 9152 // makes no sense. Worth issuing a warning at some point. 9153 return true; 9154 } 9155 9156 // Consume the argument. 9157 unsigned argIndex = FS.getArgIndex(); 9158 if (argIndex < NumDataArgs) { 9159 // The check to see if the argIndex is valid will come later. 9160 // We set the bit here because we may exit early from this 9161 // function if we encounter some other error. 9162 CoveredArgs.set(argIndex); 9163 } 9164 9165 // Check the length modifier is valid with the given conversion specifier. 9166 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 9167 S.getLangOpts())) 9168 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9169 diag::warn_format_nonsensical_length); 9170 else if (!FS.hasStandardLengthModifier()) 9171 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 9172 else if (!FS.hasStandardLengthConversionCombination()) 9173 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9174 diag::warn_format_non_standard_conversion_spec); 9175 9176 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 9177 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 9178 9179 // The remaining checks depend on the data arguments. 9180 if (HasVAListArg) 9181 return true; 9182 9183 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 9184 return false; 9185 9186 // Check that the argument type matches the format specifier. 9187 const Expr *Ex = getDataArg(argIndex); 9188 if (!Ex) 9189 return true; 9190 9191 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 9192 9193 if (!AT.isValid()) { 9194 return true; 9195 } 9196 9197 analyze_format_string::ArgType::MatchKind Match = 9198 AT.matchesType(S.Context, Ex->getType()); 9199 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 9200 if (Match == analyze_format_string::ArgType::Match) 9201 return true; 9202 9203 ScanfSpecifier fixedFS = FS; 9204 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 9205 S.getLangOpts(), S.Context); 9206 9207 unsigned Diag = 9208 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 9209 : diag::warn_format_conversion_argument_type_mismatch; 9210 9211 if (Success) { 9212 // Get the fix string from the fixed format specifier. 9213 SmallString<128> buf; 9214 llvm::raw_svector_ostream os(buf); 9215 fixedFS.toString(os); 9216 9217 EmitFormatDiagnostic( 9218 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 9219 << Ex->getType() << false << Ex->getSourceRange(), 9220 Ex->getBeginLoc(), 9221 /*IsStringLocation*/ false, 9222 getSpecifierRange(startSpecifier, specifierLen), 9223 FixItHint::CreateReplacement( 9224 getSpecifierRange(startSpecifier, specifierLen), os.str())); 9225 } else { 9226 EmitFormatDiagnostic(S.PDiag(Diag) 9227 << AT.getRepresentativeTypeName(S.Context) 9228 << Ex->getType() << false << Ex->getSourceRange(), 9229 Ex->getBeginLoc(), 9230 /*IsStringLocation*/ false, 9231 getSpecifierRange(startSpecifier, specifierLen)); 9232 } 9233 9234 return true; 9235 } 9236 9237 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 9238 const Expr *OrigFormatExpr, 9239 ArrayRef<const Expr *> Args, 9240 bool HasVAListArg, unsigned format_idx, 9241 unsigned firstDataArg, 9242 Sema::FormatStringType Type, 9243 bool inFunctionCall, 9244 Sema::VariadicCallType CallType, 9245 llvm::SmallBitVector &CheckedVarArgs, 9246 UncoveredArgHandler &UncoveredArg, 9247 bool IgnoreStringsWithoutSpecifiers) { 9248 // CHECK: is the format string a wide literal? 9249 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 9250 CheckFormatHandler::EmitFormatDiagnostic( 9251 S, inFunctionCall, Args[format_idx], 9252 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 9253 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9254 return; 9255 } 9256 9257 // Str - The format string. NOTE: this is NOT null-terminated! 9258 StringRef StrRef = FExpr->getString(); 9259 const char *Str = StrRef.data(); 9260 // Account for cases where the string literal is truncated in a declaration. 9261 const ConstantArrayType *T = 9262 S.Context.getAsConstantArrayType(FExpr->getType()); 9263 assert(T && "String literal not of constant array type!"); 9264 size_t TypeSize = T->getSize().getZExtValue(); 9265 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9266 const unsigned numDataArgs = Args.size() - firstDataArg; 9267 9268 if (IgnoreStringsWithoutSpecifiers && 9269 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 9270 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 9271 return; 9272 9273 // Emit a warning if the string literal is truncated and does not contain an 9274 // embedded null character. 9275 if (TypeSize <= StrRef.size() && 9276 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 9277 CheckFormatHandler::EmitFormatDiagnostic( 9278 S, inFunctionCall, Args[format_idx], 9279 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 9280 FExpr->getBeginLoc(), 9281 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 9282 return; 9283 } 9284 9285 // CHECK: empty format string? 9286 if (StrLen == 0 && numDataArgs > 0) { 9287 CheckFormatHandler::EmitFormatDiagnostic( 9288 S, inFunctionCall, Args[format_idx], 9289 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 9290 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9291 return; 9292 } 9293 9294 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 9295 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 9296 Type == Sema::FST_OSTrace) { 9297 CheckPrintfHandler H( 9298 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 9299 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 9300 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 9301 CheckedVarArgs, UncoveredArg); 9302 9303 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 9304 S.getLangOpts(), 9305 S.Context.getTargetInfo(), 9306 Type == Sema::FST_FreeBSDKPrintf)) 9307 H.DoneProcessing(); 9308 } else if (Type == Sema::FST_Scanf) { 9309 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 9310 numDataArgs, Str, HasVAListArg, Args, format_idx, 9311 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 9312 9313 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 9314 S.getLangOpts(), 9315 S.Context.getTargetInfo())) 9316 H.DoneProcessing(); 9317 } // TODO: handle other formats 9318 } 9319 9320 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 9321 // Str - The format string. NOTE: this is NOT null-terminated! 9322 StringRef StrRef = FExpr->getString(); 9323 const char *Str = StrRef.data(); 9324 // Account for cases where the string literal is truncated in a declaration. 9325 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 9326 assert(T && "String literal not of constant array type!"); 9327 size_t TypeSize = T->getSize().getZExtValue(); 9328 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9329 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 9330 getLangOpts(), 9331 Context.getTargetInfo()); 9332 } 9333 9334 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 9335 9336 // Returns the related absolute value function that is larger, of 0 if one 9337 // does not exist. 9338 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 9339 switch (AbsFunction) { 9340 default: 9341 return 0; 9342 9343 case Builtin::BI__builtin_abs: 9344 return Builtin::BI__builtin_labs; 9345 case Builtin::BI__builtin_labs: 9346 return Builtin::BI__builtin_llabs; 9347 case Builtin::BI__builtin_llabs: 9348 return 0; 9349 9350 case Builtin::BI__builtin_fabsf: 9351 return Builtin::BI__builtin_fabs; 9352 case Builtin::BI__builtin_fabs: 9353 return Builtin::BI__builtin_fabsl; 9354 case Builtin::BI__builtin_fabsl: 9355 return 0; 9356 9357 case Builtin::BI__builtin_cabsf: 9358 return Builtin::BI__builtin_cabs; 9359 case Builtin::BI__builtin_cabs: 9360 return Builtin::BI__builtin_cabsl; 9361 case Builtin::BI__builtin_cabsl: 9362 return 0; 9363 9364 case Builtin::BIabs: 9365 return Builtin::BIlabs; 9366 case Builtin::BIlabs: 9367 return Builtin::BIllabs; 9368 case Builtin::BIllabs: 9369 return 0; 9370 9371 case Builtin::BIfabsf: 9372 return Builtin::BIfabs; 9373 case Builtin::BIfabs: 9374 return Builtin::BIfabsl; 9375 case Builtin::BIfabsl: 9376 return 0; 9377 9378 case Builtin::BIcabsf: 9379 return Builtin::BIcabs; 9380 case Builtin::BIcabs: 9381 return Builtin::BIcabsl; 9382 case Builtin::BIcabsl: 9383 return 0; 9384 } 9385 } 9386 9387 // Returns the argument type of the absolute value function. 9388 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 9389 unsigned AbsType) { 9390 if (AbsType == 0) 9391 return QualType(); 9392 9393 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 9394 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 9395 if (Error != ASTContext::GE_None) 9396 return QualType(); 9397 9398 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 9399 if (!FT) 9400 return QualType(); 9401 9402 if (FT->getNumParams() != 1) 9403 return QualType(); 9404 9405 return FT->getParamType(0); 9406 } 9407 9408 // Returns the best absolute value function, or zero, based on type and 9409 // current absolute value function. 9410 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 9411 unsigned AbsFunctionKind) { 9412 unsigned BestKind = 0; 9413 uint64_t ArgSize = Context.getTypeSize(ArgType); 9414 for (unsigned Kind = AbsFunctionKind; Kind != 0; 9415 Kind = getLargerAbsoluteValueFunction(Kind)) { 9416 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 9417 if (Context.getTypeSize(ParamType) >= ArgSize) { 9418 if (BestKind == 0) 9419 BestKind = Kind; 9420 else if (Context.hasSameType(ParamType, ArgType)) { 9421 BestKind = Kind; 9422 break; 9423 } 9424 } 9425 } 9426 return BestKind; 9427 } 9428 9429 enum AbsoluteValueKind { 9430 AVK_Integer, 9431 AVK_Floating, 9432 AVK_Complex 9433 }; 9434 9435 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 9436 if (T->isIntegralOrEnumerationType()) 9437 return AVK_Integer; 9438 if (T->isRealFloatingType()) 9439 return AVK_Floating; 9440 if (T->isAnyComplexType()) 9441 return AVK_Complex; 9442 9443 llvm_unreachable("Type not integer, floating, or complex"); 9444 } 9445 9446 // Changes the absolute value function to a different type. Preserves whether 9447 // the function is a builtin. 9448 static unsigned changeAbsFunction(unsigned AbsKind, 9449 AbsoluteValueKind ValueKind) { 9450 switch (ValueKind) { 9451 case AVK_Integer: 9452 switch (AbsKind) { 9453 default: 9454 return 0; 9455 case Builtin::BI__builtin_fabsf: 9456 case Builtin::BI__builtin_fabs: 9457 case Builtin::BI__builtin_fabsl: 9458 case Builtin::BI__builtin_cabsf: 9459 case Builtin::BI__builtin_cabs: 9460 case Builtin::BI__builtin_cabsl: 9461 return Builtin::BI__builtin_abs; 9462 case Builtin::BIfabsf: 9463 case Builtin::BIfabs: 9464 case Builtin::BIfabsl: 9465 case Builtin::BIcabsf: 9466 case Builtin::BIcabs: 9467 case Builtin::BIcabsl: 9468 return Builtin::BIabs; 9469 } 9470 case AVK_Floating: 9471 switch (AbsKind) { 9472 default: 9473 return 0; 9474 case Builtin::BI__builtin_abs: 9475 case Builtin::BI__builtin_labs: 9476 case Builtin::BI__builtin_llabs: 9477 case Builtin::BI__builtin_cabsf: 9478 case Builtin::BI__builtin_cabs: 9479 case Builtin::BI__builtin_cabsl: 9480 return Builtin::BI__builtin_fabsf; 9481 case Builtin::BIabs: 9482 case Builtin::BIlabs: 9483 case Builtin::BIllabs: 9484 case Builtin::BIcabsf: 9485 case Builtin::BIcabs: 9486 case Builtin::BIcabsl: 9487 return Builtin::BIfabsf; 9488 } 9489 case AVK_Complex: 9490 switch (AbsKind) { 9491 default: 9492 return 0; 9493 case Builtin::BI__builtin_abs: 9494 case Builtin::BI__builtin_labs: 9495 case Builtin::BI__builtin_llabs: 9496 case Builtin::BI__builtin_fabsf: 9497 case Builtin::BI__builtin_fabs: 9498 case Builtin::BI__builtin_fabsl: 9499 return Builtin::BI__builtin_cabsf; 9500 case Builtin::BIabs: 9501 case Builtin::BIlabs: 9502 case Builtin::BIllabs: 9503 case Builtin::BIfabsf: 9504 case Builtin::BIfabs: 9505 case Builtin::BIfabsl: 9506 return Builtin::BIcabsf; 9507 } 9508 } 9509 llvm_unreachable("Unable to convert function"); 9510 } 9511 9512 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9513 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9514 if (!FnInfo) 9515 return 0; 9516 9517 switch (FDecl->getBuiltinID()) { 9518 default: 9519 return 0; 9520 case Builtin::BI__builtin_abs: 9521 case Builtin::BI__builtin_fabs: 9522 case Builtin::BI__builtin_fabsf: 9523 case Builtin::BI__builtin_fabsl: 9524 case Builtin::BI__builtin_labs: 9525 case Builtin::BI__builtin_llabs: 9526 case Builtin::BI__builtin_cabs: 9527 case Builtin::BI__builtin_cabsf: 9528 case Builtin::BI__builtin_cabsl: 9529 case Builtin::BIabs: 9530 case Builtin::BIlabs: 9531 case Builtin::BIllabs: 9532 case Builtin::BIfabs: 9533 case Builtin::BIfabsf: 9534 case Builtin::BIfabsl: 9535 case Builtin::BIcabs: 9536 case Builtin::BIcabsf: 9537 case Builtin::BIcabsl: 9538 return FDecl->getBuiltinID(); 9539 } 9540 llvm_unreachable("Unknown Builtin type"); 9541 } 9542 9543 // If the replacement is valid, emit a note with replacement function. 9544 // Additionally, suggest including the proper header if not already included. 9545 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9546 unsigned AbsKind, QualType ArgType) { 9547 bool EmitHeaderHint = true; 9548 const char *HeaderName = nullptr; 9549 const char *FunctionName = nullptr; 9550 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9551 FunctionName = "std::abs"; 9552 if (ArgType->isIntegralOrEnumerationType()) { 9553 HeaderName = "cstdlib"; 9554 } else if (ArgType->isRealFloatingType()) { 9555 HeaderName = "cmath"; 9556 } else { 9557 llvm_unreachable("Invalid Type"); 9558 } 9559 9560 // Lookup all std::abs 9561 if (NamespaceDecl *Std = S.getStdNamespace()) { 9562 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9563 R.suppressDiagnostics(); 9564 S.LookupQualifiedName(R, Std); 9565 9566 for (const auto *I : R) { 9567 const FunctionDecl *FDecl = nullptr; 9568 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9569 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9570 } else { 9571 FDecl = dyn_cast<FunctionDecl>(I); 9572 } 9573 if (!FDecl) 9574 continue; 9575 9576 // Found std::abs(), check that they are the right ones. 9577 if (FDecl->getNumParams() != 1) 9578 continue; 9579 9580 // Check that the parameter type can handle the argument. 9581 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9582 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9583 S.Context.getTypeSize(ArgType) <= 9584 S.Context.getTypeSize(ParamType)) { 9585 // Found a function, don't need the header hint. 9586 EmitHeaderHint = false; 9587 break; 9588 } 9589 } 9590 } 9591 } else { 9592 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9593 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9594 9595 if (HeaderName) { 9596 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9597 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9598 R.suppressDiagnostics(); 9599 S.LookupName(R, S.getCurScope()); 9600 9601 if (R.isSingleResult()) { 9602 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9603 if (FD && FD->getBuiltinID() == AbsKind) { 9604 EmitHeaderHint = false; 9605 } else { 9606 return; 9607 } 9608 } else if (!R.empty()) { 9609 return; 9610 } 9611 } 9612 } 9613 9614 S.Diag(Loc, diag::note_replace_abs_function) 9615 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9616 9617 if (!HeaderName) 9618 return; 9619 9620 if (!EmitHeaderHint) 9621 return; 9622 9623 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9624 << FunctionName; 9625 } 9626 9627 template <std::size_t StrLen> 9628 static bool IsStdFunction(const FunctionDecl *FDecl, 9629 const char (&Str)[StrLen]) { 9630 if (!FDecl) 9631 return false; 9632 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9633 return false; 9634 if (!FDecl->isInStdNamespace()) 9635 return false; 9636 9637 return true; 9638 } 9639 9640 // Warn when using the wrong abs() function. 9641 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9642 const FunctionDecl *FDecl) { 9643 if (Call->getNumArgs() != 1) 9644 return; 9645 9646 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9647 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9648 if (AbsKind == 0 && !IsStdAbs) 9649 return; 9650 9651 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9652 QualType ParamType = Call->getArg(0)->getType(); 9653 9654 // Unsigned types cannot be negative. Suggest removing the absolute value 9655 // function call. 9656 if (ArgType->isUnsignedIntegerType()) { 9657 const char *FunctionName = 9658 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9659 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9660 Diag(Call->getExprLoc(), diag::note_remove_abs) 9661 << FunctionName 9662 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9663 return; 9664 } 9665 9666 // Taking the absolute value of a pointer is very suspicious, they probably 9667 // wanted to index into an array, dereference a pointer, call a function, etc. 9668 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9669 unsigned DiagType = 0; 9670 if (ArgType->isFunctionType()) 9671 DiagType = 1; 9672 else if (ArgType->isArrayType()) 9673 DiagType = 2; 9674 9675 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9676 return; 9677 } 9678 9679 // std::abs has overloads which prevent most of the absolute value problems 9680 // from occurring. 9681 if (IsStdAbs) 9682 return; 9683 9684 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9685 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9686 9687 // The argument and parameter are the same kind. Check if they are the right 9688 // size. 9689 if (ArgValueKind == ParamValueKind) { 9690 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9691 return; 9692 9693 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9694 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9695 << FDecl << ArgType << ParamType; 9696 9697 if (NewAbsKind == 0) 9698 return; 9699 9700 emitReplacement(*this, Call->getExprLoc(), 9701 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9702 return; 9703 } 9704 9705 // ArgValueKind != ParamValueKind 9706 // The wrong type of absolute value function was used. Attempt to find the 9707 // proper one. 9708 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9709 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9710 if (NewAbsKind == 0) 9711 return; 9712 9713 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9714 << FDecl << ParamValueKind << ArgValueKind; 9715 9716 emitReplacement(*this, Call->getExprLoc(), 9717 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9718 } 9719 9720 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9721 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9722 const FunctionDecl *FDecl) { 9723 if (!Call || !FDecl) return; 9724 9725 // Ignore template specializations and macros. 9726 if (inTemplateInstantiation()) return; 9727 if (Call->getExprLoc().isMacroID()) return; 9728 9729 // Only care about the one template argument, two function parameter std::max 9730 if (Call->getNumArgs() != 2) return; 9731 if (!IsStdFunction(FDecl, "max")) return; 9732 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9733 if (!ArgList) return; 9734 if (ArgList->size() != 1) return; 9735 9736 // Check that template type argument is unsigned integer. 9737 const auto& TA = ArgList->get(0); 9738 if (TA.getKind() != TemplateArgument::Type) return; 9739 QualType ArgType = TA.getAsType(); 9740 if (!ArgType->isUnsignedIntegerType()) return; 9741 9742 // See if either argument is a literal zero. 9743 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9744 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9745 if (!MTE) return false; 9746 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9747 if (!Num) return false; 9748 if (Num->getValue() != 0) return false; 9749 return true; 9750 }; 9751 9752 const Expr *FirstArg = Call->getArg(0); 9753 const Expr *SecondArg = Call->getArg(1); 9754 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9755 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9756 9757 // Only warn when exactly one argument is zero. 9758 if (IsFirstArgZero == IsSecondArgZero) return; 9759 9760 SourceRange FirstRange = FirstArg->getSourceRange(); 9761 SourceRange SecondRange = SecondArg->getSourceRange(); 9762 9763 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9764 9765 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9766 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9767 9768 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9769 SourceRange RemovalRange; 9770 if (IsFirstArgZero) { 9771 RemovalRange = SourceRange(FirstRange.getBegin(), 9772 SecondRange.getBegin().getLocWithOffset(-1)); 9773 } else { 9774 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9775 SecondRange.getEnd()); 9776 } 9777 9778 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9779 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9780 << FixItHint::CreateRemoval(RemovalRange); 9781 } 9782 9783 //===--- CHECK: Standard memory functions ---------------------------------===// 9784 9785 /// Takes the expression passed to the size_t parameter of functions 9786 /// such as memcmp, strncat, etc and warns if it's a comparison. 9787 /// 9788 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9789 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9790 IdentifierInfo *FnName, 9791 SourceLocation FnLoc, 9792 SourceLocation RParenLoc) { 9793 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9794 if (!Size) 9795 return false; 9796 9797 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9798 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9799 return false; 9800 9801 SourceRange SizeRange = Size->getSourceRange(); 9802 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9803 << SizeRange << FnName; 9804 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9805 << FnName 9806 << FixItHint::CreateInsertion( 9807 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9808 << FixItHint::CreateRemoval(RParenLoc); 9809 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9810 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9811 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9812 ")"); 9813 9814 return true; 9815 } 9816 9817 /// Determine whether the given type is or contains a dynamic class type 9818 /// (e.g., whether it has a vtable). 9819 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9820 bool &IsContained) { 9821 // Look through array types while ignoring qualifiers. 9822 const Type *Ty = T->getBaseElementTypeUnsafe(); 9823 IsContained = false; 9824 9825 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9826 RD = RD ? RD->getDefinition() : nullptr; 9827 if (!RD || RD->isInvalidDecl()) 9828 return nullptr; 9829 9830 if (RD->isDynamicClass()) 9831 return RD; 9832 9833 // Check all the fields. If any bases were dynamic, the class is dynamic. 9834 // It's impossible for a class to transitively contain itself by value, so 9835 // infinite recursion is impossible. 9836 for (auto *FD : RD->fields()) { 9837 bool SubContained; 9838 if (const CXXRecordDecl *ContainedRD = 9839 getContainedDynamicClass(FD->getType(), SubContained)) { 9840 IsContained = true; 9841 return ContainedRD; 9842 } 9843 } 9844 9845 return nullptr; 9846 } 9847 9848 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9849 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9850 if (Unary->getKind() == UETT_SizeOf) 9851 return Unary; 9852 return nullptr; 9853 } 9854 9855 /// If E is a sizeof expression, returns its argument expression, 9856 /// otherwise returns NULL. 9857 static const Expr *getSizeOfExprArg(const Expr *E) { 9858 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9859 if (!SizeOf->isArgumentType()) 9860 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9861 return nullptr; 9862 } 9863 9864 /// If E is a sizeof expression, returns its argument type. 9865 static QualType getSizeOfArgType(const Expr *E) { 9866 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9867 return SizeOf->getTypeOfArgument(); 9868 return QualType(); 9869 } 9870 9871 namespace { 9872 9873 struct SearchNonTrivialToInitializeField 9874 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9875 using Super = 9876 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9877 9878 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9879 9880 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9881 SourceLocation SL) { 9882 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9883 asDerived().visitArray(PDIK, AT, SL); 9884 return; 9885 } 9886 9887 Super::visitWithKind(PDIK, FT, SL); 9888 } 9889 9890 void visitARCStrong(QualType FT, SourceLocation SL) { 9891 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9892 } 9893 void visitARCWeak(QualType FT, SourceLocation SL) { 9894 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9895 } 9896 void visitStruct(QualType FT, SourceLocation SL) { 9897 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9898 visit(FD->getType(), FD->getLocation()); 9899 } 9900 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9901 const ArrayType *AT, SourceLocation SL) { 9902 visit(getContext().getBaseElementType(AT), SL); 9903 } 9904 void visitTrivial(QualType FT, SourceLocation SL) {} 9905 9906 static void diag(QualType RT, const Expr *E, Sema &S) { 9907 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9908 } 9909 9910 ASTContext &getContext() { return S.getASTContext(); } 9911 9912 const Expr *E; 9913 Sema &S; 9914 }; 9915 9916 struct SearchNonTrivialToCopyField 9917 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9918 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9919 9920 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9921 9922 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9923 SourceLocation SL) { 9924 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9925 asDerived().visitArray(PCK, AT, SL); 9926 return; 9927 } 9928 9929 Super::visitWithKind(PCK, FT, SL); 9930 } 9931 9932 void visitARCStrong(QualType FT, SourceLocation SL) { 9933 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9934 } 9935 void visitARCWeak(QualType FT, SourceLocation SL) { 9936 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9937 } 9938 void visitStruct(QualType FT, SourceLocation SL) { 9939 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9940 visit(FD->getType(), FD->getLocation()); 9941 } 9942 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9943 SourceLocation SL) { 9944 visit(getContext().getBaseElementType(AT), SL); 9945 } 9946 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9947 SourceLocation SL) {} 9948 void visitTrivial(QualType FT, SourceLocation SL) {} 9949 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9950 9951 static void diag(QualType RT, const Expr *E, Sema &S) { 9952 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9953 } 9954 9955 ASTContext &getContext() { return S.getASTContext(); } 9956 9957 const Expr *E; 9958 Sema &S; 9959 }; 9960 9961 } 9962 9963 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9964 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9965 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9966 9967 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9968 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9969 return false; 9970 9971 return doesExprLikelyComputeSize(BO->getLHS()) || 9972 doesExprLikelyComputeSize(BO->getRHS()); 9973 } 9974 9975 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9976 } 9977 9978 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9979 /// 9980 /// \code 9981 /// #define MACRO 0 9982 /// foo(MACRO); 9983 /// foo(0); 9984 /// \endcode 9985 /// 9986 /// This should return true for the first call to foo, but not for the second 9987 /// (regardless of whether foo is a macro or function). 9988 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9989 SourceLocation CallLoc, 9990 SourceLocation ArgLoc) { 9991 if (!CallLoc.isMacroID()) 9992 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9993 9994 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9995 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9996 } 9997 9998 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9999 /// last two arguments transposed. 10000 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 10001 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 10002 return; 10003 10004 const Expr *SizeArg = 10005 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 10006 10007 auto isLiteralZero = [](const Expr *E) { 10008 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 10009 }; 10010 10011 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 10012 SourceLocation CallLoc = Call->getRParenLoc(); 10013 SourceManager &SM = S.getSourceManager(); 10014 if (isLiteralZero(SizeArg) && 10015 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 10016 10017 SourceLocation DiagLoc = SizeArg->getExprLoc(); 10018 10019 // Some platforms #define bzero to __builtin_memset. See if this is the 10020 // case, and if so, emit a better diagnostic. 10021 if (BId == Builtin::BIbzero || 10022 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 10023 CallLoc, SM, S.getLangOpts()) == "bzero")) { 10024 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 10025 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 10026 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 10027 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 10028 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 10029 } 10030 return; 10031 } 10032 10033 // If the second argument to a memset is a sizeof expression and the third 10034 // isn't, this is also likely an error. This should catch 10035 // 'memset(buf, sizeof(buf), 0xff)'. 10036 if (BId == Builtin::BImemset && 10037 doesExprLikelyComputeSize(Call->getArg(1)) && 10038 !doesExprLikelyComputeSize(Call->getArg(2))) { 10039 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 10040 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 10041 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 10042 return; 10043 } 10044 } 10045 10046 /// Check for dangerous or invalid arguments to memset(). 10047 /// 10048 /// This issues warnings on known problematic, dangerous or unspecified 10049 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 10050 /// function calls. 10051 /// 10052 /// \param Call The call expression to diagnose. 10053 void Sema::CheckMemaccessArguments(const CallExpr *Call, 10054 unsigned BId, 10055 IdentifierInfo *FnName) { 10056 assert(BId != 0); 10057 10058 // It is possible to have a non-standard definition of memset. Validate 10059 // we have enough arguments, and if not, abort further checking. 10060 unsigned ExpectedNumArgs = 10061 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 10062 if (Call->getNumArgs() < ExpectedNumArgs) 10063 return; 10064 10065 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 10066 BId == Builtin::BIstrndup ? 1 : 2); 10067 unsigned LenArg = 10068 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 10069 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 10070 10071 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 10072 Call->getBeginLoc(), Call->getRParenLoc())) 10073 return; 10074 10075 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 10076 CheckMemaccessSize(*this, BId, Call); 10077 10078 // We have special checking when the length is a sizeof expression. 10079 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 10080 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 10081 llvm::FoldingSetNodeID SizeOfArgID; 10082 10083 // Although widely used, 'bzero' is not a standard function. Be more strict 10084 // with the argument types before allowing diagnostics and only allow the 10085 // form bzero(ptr, sizeof(...)). 10086 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10087 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 10088 return; 10089 10090 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 10091 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 10092 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 10093 10094 QualType DestTy = Dest->getType(); 10095 QualType PointeeTy; 10096 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 10097 PointeeTy = DestPtrTy->getPointeeType(); 10098 10099 // Never warn about void type pointers. This can be used to suppress 10100 // false positives. 10101 if (PointeeTy->isVoidType()) 10102 continue; 10103 10104 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 10105 // actually comparing the expressions for equality. Because computing the 10106 // expression IDs can be expensive, we only do this if the diagnostic is 10107 // enabled. 10108 if (SizeOfArg && 10109 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 10110 SizeOfArg->getExprLoc())) { 10111 // We only compute IDs for expressions if the warning is enabled, and 10112 // cache the sizeof arg's ID. 10113 if (SizeOfArgID == llvm::FoldingSetNodeID()) 10114 SizeOfArg->Profile(SizeOfArgID, Context, true); 10115 llvm::FoldingSetNodeID DestID; 10116 Dest->Profile(DestID, Context, true); 10117 if (DestID == SizeOfArgID) { 10118 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 10119 // over sizeof(src) as well. 10120 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 10121 StringRef ReadableName = FnName->getName(); 10122 10123 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 10124 if (UnaryOp->getOpcode() == UO_AddrOf) 10125 ActionIdx = 1; // If its an address-of operator, just remove it. 10126 if (!PointeeTy->isIncompleteType() && 10127 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 10128 ActionIdx = 2; // If the pointee's size is sizeof(char), 10129 // suggest an explicit length. 10130 10131 // If the function is defined as a builtin macro, do not show macro 10132 // expansion. 10133 SourceLocation SL = SizeOfArg->getExprLoc(); 10134 SourceRange DSR = Dest->getSourceRange(); 10135 SourceRange SSR = SizeOfArg->getSourceRange(); 10136 SourceManager &SM = getSourceManager(); 10137 10138 if (SM.isMacroArgExpansion(SL)) { 10139 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 10140 SL = SM.getSpellingLoc(SL); 10141 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 10142 SM.getSpellingLoc(DSR.getEnd())); 10143 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 10144 SM.getSpellingLoc(SSR.getEnd())); 10145 } 10146 10147 DiagRuntimeBehavior(SL, SizeOfArg, 10148 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 10149 << ReadableName 10150 << PointeeTy 10151 << DestTy 10152 << DSR 10153 << SSR); 10154 DiagRuntimeBehavior(SL, SizeOfArg, 10155 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 10156 << ActionIdx 10157 << SSR); 10158 10159 break; 10160 } 10161 } 10162 10163 // Also check for cases where the sizeof argument is the exact same 10164 // type as the memory argument, and where it points to a user-defined 10165 // record type. 10166 if (SizeOfArgTy != QualType()) { 10167 if (PointeeTy->isRecordType() && 10168 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 10169 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 10170 PDiag(diag::warn_sizeof_pointer_type_memaccess) 10171 << FnName << SizeOfArgTy << ArgIdx 10172 << PointeeTy << Dest->getSourceRange() 10173 << LenExpr->getSourceRange()); 10174 break; 10175 } 10176 } 10177 } else if (DestTy->isArrayType()) { 10178 PointeeTy = DestTy; 10179 } 10180 10181 if (PointeeTy == QualType()) 10182 continue; 10183 10184 // Always complain about dynamic classes. 10185 bool IsContained; 10186 if (const CXXRecordDecl *ContainedRD = 10187 getContainedDynamicClass(PointeeTy, IsContained)) { 10188 10189 unsigned OperationType = 0; 10190 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 10191 // "overwritten" if we're warning about the destination for any call 10192 // but memcmp; otherwise a verb appropriate to the call. 10193 if (ArgIdx != 0 || IsCmp) { 10194 if (BId == Builtin::BImemcpy) 10195 OperationType = 1; 10196 else if(BId == Builtin::BImemmove) 10197 OperationType = 2; 10198 else if (IsCmp) 10199 OperationType = 3; 10200 } 10201 10202 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10203 PDiag(diag::warn_dyn_class_memaccess) 10204 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 10205 << IsContained << ContainedRD << OperationType 10206 << Call->getCallee()->getSourceRange()); 10207 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 10208 BId != Builtin::BImemset) 10209 DiagRuntimeBehavior( 10210 Dest->getExprLoc(), Dest, 10211 PDiag(diag::warn_arc_object_memaccess) 10212 << ArgIdx << FnName << PointeeTy 10213 << Call->getCallee()->getSourceRange()); 10214 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 10215 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 10216 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 10217 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10218 PDiag(diag::warn_cstruct_memaccess) 10219 << ArgIdx << FnName << PointeeTy << 0); 10220 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 10221 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 10222 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 10223 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10224 PDiag(diag::warn_cstruct_memaccess) 10225 << ArgIdx << FnName << PointeeTy << 1); 10226 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 10227 } else { 10228 continue; 10229 } 10230 } else 10231 continue; 10232 10233 DiagRuntimeBehavior( 10234 Dest->getExprLoc(), Dest, 10235 PDiag(diag::note_bad_memaccess_silence) 10236 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 10237 break; 10238 } 10239 } 10240 10241 // A little helper routine: ignore addition and subtraction of integer literals. 10242 // This intentionally does not ignore all integer constant expressions because 10243 // we don't want to remove sizeof(). 10244 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 10245 Ex = Ex->IgnoreParenCasts(); 10246 10247 while (true) { 10248 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 10249 if (!BO || !BO->isAdditiveOp()) 10250 break; 10251 10252 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 10253 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 10254 10255 if (isa<IntegerLiteral>(RHS)) 10256 Ex = LHS; 10257 else if (isa<IntegerLiteral>(LHS)) 10258 Ex = RHS; 10259 else 10260 break; 10261 } 10262 10263 return Ex; 10264 } 10265 10266 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 10267 ASTContext &Context) { 10268 // Only handle constant-sized or VLAs, but not flexible members. 10269 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 10270 // Only issue the FIXIT for arrays of size > 1. 10271 if (CAT->getSize().getSExtValue() <= 1) 10272 return false; 10273 } else if (!Ty->isVariableArrayType()) { 10274 return false; 10275 } 10276 return true; 10277 } 10278 10279 // Warn if the user has made the 'size' argument to strlcpy or strlcat 10280 // be the size of the source, instead of the destination. 10281 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 10282 IdentifierInfo *FnName) { 10283 10284 // Don't crash if the user has the wrong number of arguments 10285 unsigned NumArgs = Call->getNumArgs(); 10286 if ((NumArgs != 3) && (NumArgs != 4)) 10287 return; 10288 10289 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 10290 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 10291 const Expr *CompareWithSrc = nullptr; 10292 10293 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 10294 Call->getBeginLoc(), Call->getRParenLoc())) 10295 return; 10296 10297 // Look for 'strlcpy(dst, x, sizeof(x))' 10298 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 10299 CompareWithSrc = Ex; 10300 else { 10301 // Look for 'strlcpy(dst, x, strlen(x))' 10302 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 10303 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 10304 SizeCall->getNumArgs() == 1) 10305 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 10306 } 10307 } 10308 10309 if (!CompareWithSrc) 10310 return; 10311 10312 // Determine if the argument to sizeof/strlen is equal to the source 10313 // argument. In principle there's all kinds of things you could do 10314 // here, for instance creating an == expression and evaluating it with 10315 // EvaluateAsBooleanCondition, but this uses a more direct technique: 10316 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 10317 if (!SrcArgDRE) 10318 return; 10319 10320 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 10321 if (!CompareWithSrcDRE || 10322 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 10323 return; 10324 10325 const Expr *OriginalSizeArg = Call->getArg(2); 10326 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 10327 << OriginalSizeArg->getSourceRange() << FnName; 10328 10329 // Output a FIXIT hint if the destination is an array (rather than a 10330 // pointer to an array). This could be enhanced to handle some 10331 // pointers if we know the actual size, like if DstArg is 'array+2' 10332 // we could say 'sizeof(array)-2'. 10333 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 10334 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 10335 return; 10336 10337 SmallString<128> sizeString; 10338 llvm::raw_svector_ostream OS(sizeString); 10339 OS << "sizeof("; 10340 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10341 OS << ")"; 10342 10343 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 10344 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 10345 OS.str()); 10346 } 10347 10348 /// Check if two expressions refer to the same declaration. 10349 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 10350 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 10351 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 10352 return D1->getDecl() == D2->getDecl(); 10353 return false; 10354 } 10355 10356 static const Expr *getStrlenExprArg(const Expr *E) { 10357 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 10358 const FunctionDecl *FD = CE->getDirectCallee(); 10359 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 10360 return nullptr; 10361 return CE->getArg(0)->IgnoreParenCasts(); 10362 } 10363 return nullptr; 10364 } 10365 10366 // Warn on anti-patterns as the 'size' argument to strncat. 10367 // The correct size argument should look like following: 10368 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 10369 void Sema::CheckStrncatArguments(const CallExpr *CE, 10370 IdentifierInfo *FnName) { 10371 // Don't crash if the user has the wrong number of arguments. 10372 if (CE->getNumArgs() < 3) 10373 return; 10374 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 10375 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 10376 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 10377 10378 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 10379 CE->getRParenLoc())) 10380 return; 10381 10382 // Identify common expressions, which are wrongly used as the size argument 10383 // to strncat and may lead to buffer overflows. 10384 unsigned PatternType = 0; 10385 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 10386 // - sizeof(dst) 10387 if (referToTheSameDecl(SizeOfArg, DstArg)) 10388 PatternType = 1; 10389 // - sizeof(src) 10390 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 10391 PatternType = 2; 10392 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 10393 if (BE->getOpcode() == BO_Sub) { 10394 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 10395 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 10396 // - sizeof(dst) - strlen(dst) 10397 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 10398 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 10399 PatternType = 1; 10400 // - sizeof(src) - (anything) 10401 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 10402 PatternType = 2; 10403 } 10404 } 10405 10406 if (PatternType == 0) 10407 return; 10408 10409 // Generate the diagnostic. 10410 SourceLocation SL = LenArg->getBeginLoc(); 10411 SourceRange SR = LenArg->getSourceRange(); 10412 SourceManager &SM = getSourceManager(); 10413 10414 // If the function is defined as a builtin macro, do not show macro expansion. 10415 if (SM.isMacroArgExpansion(SL)) { 10416 SL = SM.getSpellingLoc(SL); 10417 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 10418 SM.getSpellingLoc(SR.getEnd())); 10419 } 10420 10421 // Check if the destination is an array (rather than a pointer to an array). 10422 QualType DstTy = DstArg->getType(); 10423 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 10424 Context); 10425 if (!isKnownSizeArray) { 10426 if (PatternType == 1) 10427 Diag(SL, diag::warn_strncat_wrong_size) << SR; 10428 else 10429 Diag(SL, diag::warn_strncat_src_size) << SR; 10430 return; 10431 } 10432 10433 if (PatternType == 1) 10434 Diag(SL, diag::warn_strncat_large_size) << SR; 10435 else 10436 Diag(SL, diag::warn_strncat_src_size) << SR; 10437 10438 SmallString<128> sizeString; 10439 llvm::raw_svector_ostream OS(sizeString); 10440 OS << "sizeof("; 10441 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10442 OS << ") - "; 10443 OS << "strlen("; 10444 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10445 OS << ") - 1"; 10446 10447 Diag(SL, diag::note_strncat_wrong_size) 10448 << FixItHint::CreateReplacement(SR, OS.str()); 10449 } 10450 10451 namespace { 10452 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10453 const UnaryOperator *UnaryExpr, const Decl *D) { 10454 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) { 10455 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10456 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); 10457 return; 10458 } 10459 } 10460 10461 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 10462 const UnaryOperator *UnaryExpr) { 10463 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) { 10464 const Decl *D = Lvalue->getDecl(); 10465 if (isa<VarDecl, FunctionDecl>(D)) 10466 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); 10467 } 10468 10469 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 10470 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 10471 Lvalue->getMemberDecl()); 10472 } 10473 10474 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, 10475 const UnaryOperator *UnaryExpr) { 10476 const auto *Lambda = dyn_cast<LambdaExpr>( 10477 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); 10478 if (!Lambda) 10479 return; 10480 10481 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) 10482 << CalleeName << 2 /*object: lambda expression*/; 10483 } 10484 10485 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 10486 const DeclRefExpr *Lvalue) { 10487 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 10488 if (Var == nullptr) 10489 return; 10490 10491 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 10492 << CalleeName << 0 /*object: */ << Var; 10493 } 10494 10495 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, 10496 const CastExpr *Cast) { 10497 SmallString<128> SizeString; 10498 llvm::raw_svector_ostream OS(SizeString); 10499 10500 clang::CastKind Kind = Cast->getCastKind(); 10501 if (Kind == clang::CK_BitCast && 10502 !Cast->getSubExpr()->getType()->isFunctionPointerType()) 10503 return; 10504 if (Kind == clang::CK_IntegralToPointer && 10505 !isa<IntegerLiteral>( 10506 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) 10507 return; 10508 10509 switch (Cast->getCastKind()) { 10510 case clang::CK_BitCast: 10511 case clang::CK_IntegralToPointer: 10512 case clang::CK_FunctionToPointerDecay: 10513 OS << '\''; 10514 Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); 10515 OS << '\''; 10516 break; 10517 default: 10518 return; 10519 } 10520 10521 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) 10522 << CalleeName << 0 /*object: */ << OS.str(); 10523 } 10524 } // namespace 10525 10526 /// Alerts the user that they are attempting to free a non-malloc'd object. 10527 void Sema::CheckFreeArguments(const CallExpr *E) { 10528 const std::string CalleeName = 10529 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 10530 10531 { // Prefer something that doesn't involve a cast to make things simpler. 10532 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 10533 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 10534 switch (UnaryExpr->getOpcode()) { 10535 case UnaryOperator::Opcode::UO_AddrOf: 10536 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 10537 case UnaryOperator::Opcode::UO_Plus: 10538 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); 10539 default: 10540 break; 10541 } 10542 10543 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 10544 if (Lvalue->getType()->isArrayType()) 10545 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 10546 10547 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) { 10548 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) 10549 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); 10550 return; 10551 } 10552 10553 if (isa<BlockExpr>(Arg)) { 10554 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) 10555 << CalleeName << 1 /*object: block*/; 10556 return; 10557 } 10558 } 10559 // Maybe the cast was important, check after the other cases. 10560 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0))) 10561 return CheckFreeArgumentsCast(*this, CalleeName, Cast); 10562 } 10563 10564 void 10565 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 10566 SourceLocation ReturnLoc, 10567 bool isObjCMethod, 10568 const AttrVec *Attrs, 10569 const FunctionDecl *FD) { 10570 // Check if the return value is null but should not be. 10571 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 10572 (!isObjCMethod && isNonNullType(Context, lhsType))) && 10573 CheckNonNullExpr(*this, RetValExp)) 10574 Diag(ReturnLoc, diag::warn_null_ret) 10575 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 10576 10577 // C++11 [basic.stc.dynamic.allocation]p4: 10578 // If an allocation function declared with a non-throwing 10579 // exception-specification fails to allocate storage, it shall return 10580 // a null pointer. Any other allocation function that fails to allocate 10581 // storage shall indicate failure only by throwing an exception [...] 10582 if (FD) { 10583 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 10584 if (Op == OO_New || Op == OO_Array_New) { 10585 const FunctionProtoType *Proto 10586 = FD->getType()->castAs<FunctionProtoType>(); 10587 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 10588 CheckNonNullExpr(*this, RetValExp)) 10589 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 10590 << FD << getLangOpts().CPlusPlus11; 10591 } 10592 } 10593 10594 // PPC MMA non-pointer types are not allowed as return type. Checking the type 10595 // here prevent the user from using a PPC MMA type as trailing return type. 10596 if (Context.getTargetInfo().getTriple().isPPC64()) 10597 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 10598 } 10599 10600 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10601 10602 /// Check for comparisons of floating point operands using != and ==. 10603 /// Issue a warning if these are no self-comparisons, as they are not likely 10604 /// to do what the programmer intended. 10605 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10606 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10607 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10608 10609 // Special case: check for x == x (which is OK). 10610 // Do not emit warnings for such cases. 10611 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10612 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10613 if (DRL->getDecl() == DRR->getDecl()) 10614 return; 10615 10616 // Special case: check for comparisons against literals that can be exactly 10617 // represented by APFloat. In such cases, do not emit a warning. This 10618 // is a heuristic: often comparison against such literals are used to 10619 // detect if a value in a variable has not changed. This clearly can 10620 // lead to false negatives. 10621 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10622 if (FLL->isExact()) 10623 return; 10624 } else 10625 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10626 if (FLR->isExact()) 10627 return; 10628 10629 // Check for comparisons with builtin types. 10630 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10631 if (CL->getBuiltinCallee()) 10632 return; 10633 10634 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10635 if (CR->getBuiltinCallee()) 10636 return; 10637 10638 // Emit the diagnostic. 10639 Diag(Loc, diag::warn_floatingpoint_eq) 10640 << LHS->getSourceRange() << RHS->getSourceRange(); 10641 } 10642 10643 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10644 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10645 10646 namespace { 10647 10648 /// Structure recording the 'active' range of an integer-valued 10649 /// expression. 10650 struct IntRange { 10651 /// The number of bits active in the int. Note that this includes exactly one 10652 /// sign bit if !NonNegative. 10653 unsigned Width; 10654 10655 /// True if the int is known not to have negative values. If so, all leading 10656 /// bits before Width are known zero, otherwise they are known to be the 10657 /// same as the MSB within Width. 10658 bool NonNegative; 10659 10660 IntRange(unsigned Width, bool NonNegative) 10661 : Width(Width), NonNegative(NonNegative) {} 10662 10663 /// Number of bits excluding the sign bit. 10664 unsigned valueBits() const { 10665 return NonNegative ? Width : Width - 1; 10666 } 10667 10668 /// Returns the range of the bool type. 10669 static IntRange forBoolType() { 10670 return IntRange(1, true); 10671 } 10672 10673 /// Returns the range of an opaque value of the given integral type. 10674 static IntRange forValueOfType(ASTContext &C, QualType T) { 10675 return forValueOfCanonicalType(C, 10676 T->getCanonicalTypeInternal().getTypePtr()); 10677 } 10678 10679 /// Returns the range of an opaque value of a canonical integral type. 10680 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10681 assert(T->isCanonicalUnqualified()); 10682 10683 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10684 T = VT->getElementType().getTypePtr(); 10685 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10686 T = CT->getElementType().getTypePtr(); 10687 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10688 T = AT->getValueType().getTypePtr(); 10689 10690 if (!C.getLangOpts().CPlusPlus) { 10691 // For enum types in C code, use the underlying datatype. 10692 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10693 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10694 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10695 // For enum types in C++, use the known bit width of the enumerators. 10696 EnumDecl *Enum = ET->getDecl(); 10697 // In C++11, enums can have a fixed underlying type. Use this type to 10698 // compute the range. 10699 if (Enum->isFixed()) { 10700 return IntRange(C.getIntWidth(QualType(T, 0)), 10701 !ET->isSignedIntegerOrEnumerationType()); 10702 } 10703 10704 unsigned NumPositive = Enum->getNumPositiveBits(); 10705 unsigned NumNegative = Enum->getNumNegativeBits(); 10706 10707 if (NumNegative == 0) 10708 return IntRange(NumPositive, true/*NonNegative*/); 10709 else 10710 return IntRange(std::max(NumPositive + 1, NumNegative), 10711 false/*NonNegative*/); 10712 } 10713 10714 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10715 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10716 10717 const BuiltinType *BT = cast<BuiltinType>(T); 10718 assert(BT->isInteger()); 10719 10720 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10721 } 10722 10723 /// Returns the "target" range of a canonical integral type, i.e. 10724 /// the range of values expressible in the type. 10725 /// 10726 /// This matches forValueOfCanonicalType except that enums have the 10727 /// full range of their type, not the range of their enumerators. 10728 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10729 assert(T->isCanonicalUnqualified()); 10730 10731 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10732 T = VT->getElementType().getTypePtr(); 10733 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10734 T = CT->getElementType().getTypePtr(); 10735 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10736 T = AT->getValueType().getTypePtr(); 10737 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10738 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10739 10740 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10741 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10742 10743 const BuiltinType *BT = cast<BuiltinType>(T); 10744 assert(BT->isInteger()); 10745 10746 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10747 } 10748 10749 /// Returns the supremum of two ranges: i.e. their conservative merge. 10750 static IntRange join(IntRange L, IntRange R) { 10751 bool Unsigned = L.NonNegative && R.NonNegative; 10752 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 10753 L.NonNegative && R.NonNegative); 10754 } 10755 10756 /// Return the range of a bitwise-AND of the two ranges. 10757 static IntRange bit_and(IntRange L, IntRange R) { 10758 unsigned Bits = std::max(L.Width, R.Width); 10759 bool NonNegative = false; 10760 if (L.NonNegative) { 10761 Bits = std::min(Bits, L.Width); 10762 NonNegative = true; 10763 } 10764 if (R.NonNegative) { 10765 Bits = std::min(Bits, R.Width); 10766 NonNegative = true; 10767 } 10768 return IntRange(Bits, NonNegative); 10769 } 10770 10771 /// Return the range of a sum of the two ranges. 10772 static IntRange sum(IntRange L, IntRange R) { 10773 bool Unsigned = L.NonNegative && R.NonNegative; 10774 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 10775 Unsigned); 10776 } 10777 10778 /// Return the range of a difference of the two ranges. 10779 static IntRange difference(IntRange L, IntRange R) { 10780 // We need a 1-bit-wider range if: 10781 // 1) LHS can be negative: least value can be reduced. 10782 // 2) RHS can be negative: greatest value can be increased. 10783 bool CanWiden = !L.NonNegative || !R.NonNegative; 10784 bool Unsigned = L.NonNegative && R.Width == 0; 10785 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 10786 !Unsigned, 10787 Unsigned); 10788 } 10789 10790 /// Return the range of a product of the two ranges. 10791 static IntRange product(IntRange L, IntRange R) { 10792 // If both LHS and RHS can be negative, we can form 10793 // -2^L * -2^R = 2^(L + R) 10794 // which requires L + R + 1 value bits to represent. 10795 bool CanWiden = !L.NonNegative && !R.NonNegative; 10796 bool Unsigned = L.NonNegative && R.NonNegative; 10797 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 10798 Unsigned); 10799 } 10800 10801 /// Return the range of a remainder operation between the two ranges. 10802 static IntRange rem(IntRange L, IntRange R) { 10803 // The result of a remainder can't be larger than the result of 10804 // either side. The sign of the result is the sign of the LHS. 10805 bool Unsigned = L.NonNegative; 10806 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 10807 Unsigned); 10808 } 10809 }; 10810 10811 } // namespace 10812 10813 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10814 unsigned MaxWidth) { 10815 if (value.isSigned() && value.isNegative()) 10816 return IntRange(value.getMinSignedBits(), false); 10817 10818 if (value.getBitWidth() > MaxWidth) 10819 value = value.trunc(MaxWidth); 10820 10821 // isNonNegative() just checks the sign bit without considering 10822 // signedness. 10823 return IntRange(value.getActiveBits(), true); 10824 } 10825 10826 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10827 unsigned MaxWidth) { 10828 if (result.isInt()) 10829 return GetValueRange(C, result.getInt(), MaxWidth); 10830 10831 if (result.isVector()) { 10832 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10833 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10834 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10835 R = IntRange::join(R, El); 10836 } 10837 return R; 10838 } 10839 10840 if (result.isComplexInt()) { 10841 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10842 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10843 return IntRange::join(R, I); 10844 } 10845 10846 // This can happen with lossless casts to intptr_t of "based" lvalues. 10847 // Assume it might use arbitrary bits. 10848 // FIXME: The only reason we need to pass the type in here is to get 10849 // the sign right on this one case. It would be nice if APValue 10850 // preserved this. 10851 assert(result.isLValue() || result.isAddrLabelDiff()); 10852 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10853 } 10854 10855 static QualType GetExprType(const Expr *E) { 10856 QualType Ty = E->getType(); 10857 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10858 Ty = AtomicRHS->getValueType(); 10859 return Ty; 10860 } 10861 10862 /// Pseudo-evaluate the given integer expression, estimating the 10863 /// range of values it might take. 10864 /// 10865 /// \param MaxWidth The width to which the value will be truncated. 10866 /// \param Approximate If \c true, return a likely range for the result: in 10867 /// particular, assume that aritmetic on narrower types doesn't leave 10868 /// those types. If \c false, return a range including all possible 10869 /// result values. 10870 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10871 bool InConstantContext, bool Approximate) { 10872 E = E->IgnoreParens(); 10873 10874 // Try a full evaluation first. 10875 Expr::EvalResult result; 10876 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10877 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10878 10879 // I think we only want to look through implicit casts here; if the 10880 // user has an explicit widening cast, we should treat the value as 10881 // being of the new, wider type. 10882 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10883 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10884 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 10885 Approximate); 10886 10887 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10888 10889 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10890 CE->getCastKind() == CK_BooleanToSignedIntegral; 10891 10892 // Assume that non-integer casts can span the full range of the type. 10893 if (!isIntegerCast) 10894 return OutputTypeRange; 10895 10896 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10897 std::min(MaxWidth, OutputTypeRange.Width), 10898 InConstantContext, Approximate); 10899 10900 // Bail out if the subexpr's range is as wide as the cast type. 10901 if (SubRange.Width >= OutputTypeRange.Width) 10902 return OutputTypeRange; 10903 10904 // Otherwise, we take the smaller width, and we're non-negative if 10905 // either the output type or the subexpr is. 10906 return IntRange(SubRange.Width, 10907 SubRange.NonNegative || OutputTypeRange.NonNegative); 10908 } 10909 10910 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10911 // If we can fold the condition, just take that operand. 10912 bool CondResult; 10913 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10914 return GetExprRange(C, 10915 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10916 MaxWidth, InConstantContext, Approximate); 10917 10918 // Otherwise, conservatively merge. 10919 // GetExprRange requires an integer expression, but a throw expression 10920 // results in a void type. 10921 Expr *E = CO->getTrueExpr(); 10922 IntRange L = E->getType()->isVoidType() 10923 ? IntRange{0, true} 10924 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10925 E = CO->getFalseExpr(); 10926 IntRange R = E->getType()->isVoidType() 10927 ? IntRange{0, true} 10928 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10929 return IntRange::join(L, R); 10930 } 10931 10932 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10933 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 10934 10935 switch (BO->getOpcode()) { 10936 case BO_Cmp: 10937 llvm_unreachable("builtin <=> should have class type"); 10938 10939 // Boolean-valued operations are single-bit and positive. 10940 case BO_LAnd: 10941 case BO_LOr: 10942 case BO_LT: 10943 case BO_GT: 10944 case BO_LE: 10945 case BO_GE: 10946 case BO_EQ: 10947 case BO_NE: 10948 return IntRange::forBoolType(); 10949 10950 // The type of the assignments is the type of the LHS, so the RHS 10951 // is not necessarily the same type. 10952 case BO_MulAssign: 10953 case BO_DivAssign: 10954 case BO_RemAssign: 10955 case BO_AddAssign: 10956 case BO_SubAssign: 10957 case BO_XorAssign: 10958 case BO_OrAssign: 10959 // TODO: bitfields? 10960 return IntRange::forValueOfType(C, GetExprType(E)); 10961 10962 // Simple assignments just pass through the RHS, which will have 10963 // been coerced to the LHS type. 10964 case BO_Assign: 10965 // TODO: bitfields? 10966 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 10967 Approximate); 10968 10969 // Operations with opaque sources are black-listed. 10970 case BO_PtrMemD: 10971 case BO_PtrMemI: 10972 return IntRange::forValueOfType(C, GetExprType(E)); 10973 10974 // Bitwise-and uses the *infinum* of the two source ranges. 10975 case BO_And: 10976 case BO_AndAssign: 10977 Combine = IntRange::bit_and; 10978 break; 10979 10980 // Left shift gets black-listed based on a judgement call. 10981 case BO_Shl: 10982 // ...except that we want to treat '1 << (blah)' as logically 10983 // positive. It's an important idiom. 10984 if (IntegerLiteral *I 10985 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10986 if (I->getValue() == 1) { 10987 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10988 return IntRange(R.Width, /*NonNegative*/ true); 10989 } 10990 } 10991 LLVM_FALLTHROUGH; 10992 10993 case BO_ShlAssign: 10994 return IntRange::forValueOfType(C, GetExprType(E)); 10995 10996 // Right shift by a constant can narrow its left argument. 10997 case BO_Shr: 10998 case BO_ShrAssign: { 10999 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 11000 Approximate); 11001 11002 // If the shift amount is a positive constant, drop the width by 11003 // that much. 11004 if (Optional<llvm::APSInt> shift = 11005 BO->getRHS()->getIntegerConstantExpr(C)) { 11006 if (shift->isNonNegative()) { 11007 unsigned zext = shift->getZExtValue(); 11008 if (zext >= L.Width) 11009 L.Width = (L.NonNegative ? 0 : 1); 11010 else 11011 L.Width -= zext; 11012 } 11013 } 11014 11015 return L; 11016 } 11017 11018 // Comma acts as its right operand. 11019 case BO_Comma: 11020 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11021 Approximate); 11022 11023 case BO_Add: 11024 if (!Approximate) 11025 Combine = IntRange::sum; 11026 break; 11027 11028 case BO_Sub: 11029 if (BO->getLHS()->getType()->isPointerType()) 11030 return IntRange::forValueOfType(C, GetExprType(E)); 11031 if (!Approximate) 11032 Combine = IntRange::difference; 11033 break; 11034 11035 case BO_Mul: 11036 if (!Approximate) 11037 Combine = IntRange::product; 11038 break; 11039 11040 // The width of a division result is mostly determined by the size 11041 // of the LHS. 11042 case BO_Div: { 11043 // Don't 'pre-truncate' the operands. 11044 unsigned opWidth = C.getIntWidth(GetExprType(E)); 11045 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 11046 Approximate); 11047 11048 // If the divisor is constant, use that. 11049 if (Optional<llvm::APSInt> divisor = 11050 BO->getRHS()->getIntegerConstantExpr(C)) { 11051 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 11052 if (log2 >= L.Width) 11053 L.Width = (L.NonNegative ? 0 : 1); 11054 else 11055 L.Width = std::min(L.Width - log2, MaxWidth); 11056 return L; 11057 } 11058 11059 // Otherwise, just use the LHS's width. 11060 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 11061 // could be -1. 11062 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 11063 Approximate); 11064 return IntRange(L.Width, L.NonNegative && R.NonNegative); 11065 } 11066 11067 case BO_Rem: 11068 Combine = IntRange::rem; 11069 break; 11070 11071 // The default behavior is okay for these. 11072 case BO_Xor: 11073 case BO_Or: 11074 break; 11075 } 11076 11077 // Combine the two ranges, but limit the result to the type in which we 11078 // performed the computation. 11079 QualType T = GetExprType(E); 11080 unsigned opWidth = C.getIntWidth(T); 11081 IntRange L = 11082 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 11083 IntRange R = 11084 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 11085 IntRange C = Combine(L, R); 11086 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 11087 C.Width = std::min(C.Width, MaxWidth); 11088 return C; 11089 } 11090 11091 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 11092 switch (UO->getOpcode()) { 11093 // Boolean-valued operations are white-listed. 11094 case UO_LNot: 11095 return IntRange::forBoolType(); 11096 11097 // Operations with opaque sources are black-listed. 11098 case UO_Deref: 11099 case UO_AddrOf: // should be impossible 11100 return IntRange::forValueOfType(C, GetExprType(E)); 11101 11102 default: 11103 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 11104 Approximate); 11105 } 11106 } 11107 11108 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 11109 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 11110 Approximate); 11111 11112 if (const auto *BitField = E->getSourceBitField()) 11113 return IntRange(BitField->getBitWidthValue(C), 11114 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 11115 11116 return IntRange::forValueOfType(C, GetExprType(E)); 11117 } 11118 11119 static IntRange GetExprRange(ASTContext &C, const Expr *E, 11120 bool InConstantContext, bool Approximate) { 11121 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 11122 Approximate); 11123 } 11124 11125 /// Checks whether the given value, which currently has the given 11126 /// source semantics, has the same value when coerced through the 11127 /// target semantics. 11128 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 11129 const llvm::fltSemantics &Src, 11130 const llvm::fltSemantics &Tgt) { 11131 llvm::APFloat truncated = value; 11132 11133 bool ignored; 11134 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 11135 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 11136 11137 return truncated.bitwiseIsEqual(value); 11138 } 11139 11140 /// Checks whether the given value, which currently has the given 11141 /// source semantics, has the same value when coerced through the 11142 /// target semantics. 11143 /// 11144 /// The value might be a vector of floats (or a complex number). 11145 static bool IsSameFloatAfterCast(const APValue &value, 11146 const llvm::fltSemantics &Src, 11147 const llvm::fltSemantics &Tgt) { 11148 if (value.isFloat()) 11149 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 11150 11151 if (value.isVector()) { 11152 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 11153 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 11154 return false; 11155 return true; 11156 } 11157 11158 assert(value.isComplexFloat()); 11159 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 11160 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 11161 } 11162 11163 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 11164 bool IsListInit = false); 11165 11166 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 11167 // Suppress cases where we are comparing against an enum constant. 11168 if (const DeclRefExpr *DR = 11169 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 11170 if (isa<EnumConstantDecl>(DR->getDecl())) 11171 return true; 11172 11173 // Suppress cases where the value is expanded from a macro, unless that macro 11174 // is how a language represents a boolean literal. This is the case in both C 11175 // and Objective-C. 11176 SourceLocation BeginLoc = E->getBeginLoc(); 11177 if (BeginLoc.isMacroID()) { 11178 StringRef MacroName = Lexer::getImmediateMacroName( 11179 BeginLoc, S.getSourceManager(), S.getLangOpts()); 11180 return MacroName != "YES" && MacroName != "NO" && 11181 MacroName != "true" && MacroName != "false"; 11182 } 11183 11184 return false; 11185 } 11186 11187 static bool isKnownToHaveUnsignedValue(Expr *E) { 11188 return E->getType()->isIntegerType() && 11189 (!E->getType()->isSignedIntegerType() || 11190 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 11191 } 11192 11193 namespace { 11194 /// The promoted range of values of a type. In general this has the 11195 /// following structure: 11196 /// 11197 /// |-----------| . . . |-----------| 11198 /// ^ ^ ^ ^ 11199 /// Min HoleMin HoleMax Max 11200 /// 11201 /// ... where there is only a hole if a signed type is promoted to unsigned 11202 /// (in which case Min and Max are the smallest and largest representable 11203 /// values). 11204 struct PromotedRange { 11205 // Min, or HoleMax if there is a hole. 11206 llvm::APSInt PromotedMin; 11207 // Max, or HoleMin if there is a hole. 11208 llvm::APSInt PromotedMax; 11209 11210 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 11211 if (R.Width == 0) 11212 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 11213 else if (R.Width >= BitWidth && !Unsigned) { 11214 // Promotion made the type *narrower*. This happens when promoting 11215 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 11216 // Treat all values of 'signed int' as being in range for now. 11217 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 11218 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 11219 } else { 11220 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 11221 .extOrTrunc(BitWidth); 11222 PromotedMin.setIsUnsigned(Unsigned); 11223 11224 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 11225 .extOrTrunc(BitWidth); 11226 PromotedMax.setIsUnsigned(Unsigned); 11227 } 11228 } 11229 11230 // Determine whether this range is contiguous (has no hole). 11231 bool isContiguous() const { return PromotedMin <= PromotedMax; } 11232 11233 // Where a constant value is within the range. 11234 enum ComparisonResult { 11235 LT = 0x1, 11236 LE = 0x2, 11237 GT = 0x4, 11238 GE = 0x8, 11239 EQ = 0x10, 11240 NE = 0x20, 11241 InRangeFlag = 0x40, 11242 11243 Less = LE | LT | NE, 11244 Min = LE | InRangeFlag, 11245 InRange = InRangeFlag, 11246 Max = GE | InRangeFlag, 11247 Greater = GE | GT | NE, 11248 11249 OnlyValue = LE | GE | EQ | InRangeFlag, 11250 InHole = NE 11251 }; 11252 11253 ComparisonResult compare(const llvm::APSInt &Value) const { 11254 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 11255 Value.isUnsigned() == PromotedMin.isUnsigned()); 11256 if (!isContiguous()) { 11257 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 11258 if (Value.isMinValue()) return Min; 11259 if (Value.isMaxValue()) return Max; 11260 if (Value >= PromotedMin) return InRange; 11261 if (Value <= PromotedMax) return InRange; 11262 return InHole; 11263 } 11264 11265 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 11266 case -1: return Less; 11267 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 11268 case 1: 11269 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 11270 case -1: return InRange; 11271 case 0: return Max; 11272 case 1: return Greater; 11273 } 11274 } 11275 11276 llvm_unreachable("impossible compare result"); 11277 } 11278 11279 static llvm::Optional<StringRef> 11280 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 11281 if (Op == BO_Cmp) { 11282 ComparisonResult LTFlag = LT, GTFlag = GT; 11283 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 11284 11285 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 11286 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 11287 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 11288 return llvm::None; 11289 } 11290 11291 ComparisonResult TrueFlag, FalseFlag; 11292 if (Op == BO_EQ) { 11293 TrueFlag = EQ; 11294 FalseFlag = NE; 11295 } else if (Op == BO_NE) { 11296 TrueFlag = NE; 11297 FalseFlag = EQ; 11298 } else { 11299 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 11300 TrueFlag = LT; 11301 FalseFlag = GE; 11302 } else { 11303 TrueFlag = GT; 11304 FalseFlag = LE; 11305 } 11306 if (Op == BO_GE || Op == BO_LE) 11307 std::swap(TrueFlag, FalseFlag); 11308 } 11309 if (R & TrueFlag) 11310 return StringRef("true"); 11311 if (R & FalseFlag) 11312 return StringRef("false"); 11313 return llvm::None; 11314 } 11315 }; 11316 } 11317 11318 static bool HasEnumType(Expr *E) { 11319 // Strip off implicit integral promotions. 11320 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11321 if (ICE->getCastKind() != CK_IntegralCast && 11322 ICE->getCastKind() != CK_NoOp) 11323 break; 11324 E = ICE->getSubExpr(); 11325 } 11326 11327 return E->getType()->isEnumeralType(); 11328 } 11329 11330 static int classifyConstantValue(Expr *Constant) { 11331 // The values of this enumeration are used in the diagnostics 11332 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 11333 enum ConstantValueKind { 11334 Miscellaneous = 0, 11335 LiteralTrue, 11336 LiteralFalse 11337 }; 11338 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 11339 return BL->getValue() ? ConstantValueKind::LiteralTrue 11340 : ConstantValueKind::LiteralFalse; 11341 return ConstantValueKind::Miscellaneous; 11342 } 11343 11344 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 11345 Expr *Constant, Expr *Other, 11346 const llvm::APSInt &Value, 11347 bool RhsConstant) { 11348 if (S.inTemplateInstantiation()) 11349 return false; 11350 11351 Expr *OriginalOther = Other; 11352 11353 Constant = Constant->IgnoreParenImpCasts(); 11354 Other = Other->IgnoreParenImpCasts(); 11355 11356 // Suppress warnings on tautological comparisons between values of the same 11357 // enumeration type. There are only two ways we could warn on this: 11358 // - If the constant is outside the range of representable values of 11359 // the enumeration. In such a case, we should warn about the cast 11360 // to enumeration type, not about the comparison. 11361 // - If the constant is the maximum / minimum in-range value. For an 11362 // enumeratin type, such comparisons can be meaningful and useful. 11363 if (Constant->getType()->isEnumeralType() && 11364 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 11365 return false; 11366 11367 IntRange OtherValueRange = GetExprRange( 11368 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 11369 11370 QualType OtherT = Other->getType(); 11371 if (const auto *AT = OtherT->getAs<AtomicType>()) 11372 OtherT = AT->getValueType(); 11373 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 11374 11375 // Special case for ObjC BOOL on targets where its a typedef for a signed char 11376 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 11377 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 11378 S.NSAPIObj->isObjCBOOLType(OtherT) && 11379 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 11380 11381 // Whether we're treating Other as being a bool because of the form of 11382 // expression despite it having another type (typically 'int' in C). 11383 bool OtherIsBooleanDespiteType = 11384 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 11385 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 11386 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 11387 11388 // Check if all values in the range of possible values of this expression 11389 // lead to the same comparison outcome. 11390 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 11391 Value.isUnsigned()); 11392 auto Cmp = OtherPromotedValueRange.compare(Value); 11393 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 11394 if (!Result) 11395 return false; 11396 11397 // Also consider the range determined by the type alone. This allows us to 11398 // classify the warning under the proper diagnostic group. 11399 bool TautologicalTypeCompare = false; 11400 { 11401 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 11402 Value.isUnsigned()); 11403 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 11404 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 11405 RhsConstant)) { 11406 TautologicalTypeCompare = true; 11407 Cmp = TypeCmp; 11408 Result = TypeResult; 11409 } 11410 } 11411 11412 // Don't warn if the non-constant operand actually always evaluates to the 11413 // same value. 11414 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 11415 return false; 11416 11417 // Suppress the diagnostic for an in-range comparison if the constant comes 11418 // from a macro or enumerator. We don't want to diagnose 11419 // 11420 // some_long_value <= INT_MAX 11421 // 11422 // when sizeof(int) == sizeof(long). 11423 bool InRange = Cmp & PromotedRange::InRangeFlag; 11424 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 11425 return false; 11426 11427 // A comparison of an unsigned bit-field against 0 is really a type problem, 11428 // even though at the type level the bit-field might promote to 'signed int'. 11429 if (Other->refersToBitField() && InRange && Value == 0 && 11430 Other->getType()->isUnsignedIntegerOrEnumerationType()) 11431 TautologicalTypeCompare = true; 11432 11433 // If this is a comparison to an enum constant, include that 11434 // constant in the diagnostic. 11435 const EnumConstantDecl *ED = nullptr; 11436 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 11437 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 11438 11439 // Should be enough for uint128 (39 decimal digits) 11440 SmallString<64> PrettySourceValue; 11441 llvm::raw_svector_ostream OS(PrettySourceValue); 11442 if (ED) { 11443 OS << '\'' << *ED << "' (" << Value << ")"; 11444 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 11445 Constant->IgnoreParenImpCasts())) { 11446 OS << (BL->getValue() ? "YES" : "NO"); 11447 } else { 11448 OS << Value; 11449 } 11450 11451 if (!TautologicalTypeCompare) { 11452 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 11453 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 11454 << E->getOpcodeStr() << OS.str() << *Result 11455 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11456 return true; 11457 } 11458 11459 if (IsObjCSignedCharBool) { 11460 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11461 S.PDiag(diag::warn_tautological_compare_objc_bool) 11462 << OS.str() << *Result); 11463 return true; 11464 } 11465 11466 // FIXME: We use a somewhat different formatting for the in-range cases and 11467 // cases involving boolean values for historical reasons. We should pick a 11468 // consistent way of presenting these diagnostics. 11469 if (!InRange || Other->isKnownToHaveBooleanValue()) { 11470 11471 S.DiagRuntimeBehavior( 11472 E->getOperatorLoc(), E, 11473 S.PDiag(!InRange ? diag::warn_out_of_range_compare 11474 : diag::warn_tautological_bool_compare) 11475 << OS.str() << classifyConstantValue(Constant) << OtherT 11476 << OtherIsBooleanDespiteType << *Result 11477 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 11478 } else { 11479 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; 11480 unsigned Diag = 11481 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 11482 ? (HasEnumType(OriginalOther) 11483 ? diag::warn_unsigned_enum_always_true_comparison 11484 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison 11485 : diag::warn_unsigned_always_true_comparison) 11486 : diag::warn_tautological_constant_compare; 11487 11488 S.Diag(E->getOperatorLoc(), Diag) 11489 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 11490 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11491 } 11492 11493 return true; 11494 } 11495 11496 /// Analyze the operands of the given comparison. Implements the 11497 /// fallback case from AnalyzeComparison. 11498 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 11499 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11500 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11501 } 11502 11503 /// Implements -Wsign-compare. 11504 /// 11505 /// \param E the binary operator to check for warnings 11506 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 11507 // The type the comparison is being performed in. 11508 QualType T = E->getLHS()->getType(); 11509 11510 // Only analyze comparison operators where both sides have been converted to 11511 // the same type. 11512 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 11513 return AnalyzeImpConvsInComparison(S, E); 11514 11515 // Don't analyze value-dependent comparisons directly. 11516 if (E->isValueDependent()) 11517 return AnalyzeImpConvsInComparison(S, E); 11518 11519 Expr *LHS = E->getLHS(); 11520 Expr *RHS = E->getRHS(); 11521 11522 if (T->isIntegralType(S.Context)) { 11523 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 11524 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 11525 11526 // We don't care about expressions whose result is a constant. 11527 if (RHSValue && LHSValue) 11528 return AnalyzeImpConvsInComparison(S, E); 11529 11530 // We only care about expressions where just one side is literal 11531 if ((bool)RHSValue ^ (bool)LHSValue) { 11532 // Is the constant on the RHS or LHS? 11533 const bool RhsConstant = (bool)RHSValue; 11534 Expr *Const = RhsConstant ? RHS : LHS; 11535 Expr *Other = RhsConstant ? LHS : RHS; 11536 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 11537 11538 // Check whether an integer constant comparison results in a value 11539 // of 'true' or 'false'. 11540 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 11541 return AnalyzeImpConvsInComparison(S, E); 11542 } 11543 } 11544 11545 if (!T->hasUnsignedIntegerRepresentation()) { 11546 // We don't do anything special if this isn't an unsigned integral 11547 // comparison: we're only interested in integral comparisons, and 11548 // signed comparisons only happen in cases we don't care to warn about. 11549 return AnalyzeImpConvsInComparison(S, E); 11550 } 11551 11552 LHS = LHS->IgnoreParenImpCasts(); 11553 RHS = RHS->IgnoreParenImpCasts(); 11554 11555 if (!S.getLangOpts().CPlusPlus) { 11556 // Avoid warning about comparison of integers with different signs when 11557 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 11558 // the type of `E`. 11559 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 11560 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11561 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 11562 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11563 } 11564 11565 // Check to see if one of the (unmodified) operands is of different 11566 // signedness. 11567 Expr *signedOperand, *unsignedOperand; 11568 if (LHS->getType()->hasSignedIntegerRepresentation()) { 11569 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 11570 "unsigned comparison between two signed integer expressions?"); 11571 signedOperand = LHS; 11572 unsignedOperand = RHS; 11573 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 11574 signedOperand = RHS; 11575 unsignedOperand = LHS; 11576 } else { 11577 return AnalyzeImpConvsInComparison(S, E); 11578 } 11579 11580 // Otherwise, calculate the effective range of the signed operand. 11581 IntRange signedRange = GetExprRange( 11582 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 11583 11584 // Go ahead and analyze implicit conversions in the operands. Note 11585 // that we skip the implicit conversions on both sides. 11586 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 11587 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 11588 11589 // If the signed range is non-negative, -Wsign-compare won't fire. 11590 if (signedRange.NonNegative) 11591 return; 11592 11593 // For (in)equality comparisons, if the unsigned operand is a 11594 // constant which cannot collide with a overflowed signed operand, 11595 // then reinterpreting the signed operand as unsigned will not 11596 // change the result of the comparison. 11597 if (E->isEqualityOp()) { 11598 unsigned comparisonWidth = S.Context.getIntWidth(T); 11599 IntRange unsignedRange = 11600 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 11601 /*Approximate*/ true); 11602 11603 // We should never be unable to prove that the unsigned operand is 11604 // non-negative. 11605 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 11606 11607 if (unsignedRange.Width < comparisonWidth) 11608 return; 11609 } 11610 11611 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11612 S.PDiag(diag::warn_mixed_sign_comparison) 11613 << LHS->getType() << RHS->getType() 11614 << LHS->getSourceRange() << RHS->getSourceRange()); 11615 } 11616 11617 /// Analyzes an attempt to assign the given value to a bitfield. 11618 /// 11619 /// Returns true if there was something fishy about the attempt. 11620 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 11621 SourceLocation InitLoc) { 11622 assert(Bitfield->isBitField()); 11623 if (Bitfield->isInvalidDecl()) 11624 return false; 11625 11626 // White-list bool bitfields. 11627 QualType BitfieldType = Bitfield->getType(); 11628 if (BitfieldType->isBooleanType()) 11629 return false; 11630 11631 if (BitfieldType->isEnumeralType()) { 11632 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 11633 // If the underlying enum type was not explicitly specified as an unsigned 11634 // type and the enum contain only positive values, MSVC++ will cause an 11635 // inconsistency by storing this as a signed type. 11636 if (S.getLangOpts().CPlusPlus11 && 11637 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 11638 BitfieldEnumDecl->getNumPositiveBits() > 0 && 11639 BitfieldEnumDecl->getNumNegativeBits() == 0) { 11640 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 11641 << BitfieldEnumDecl; 11642 } 11643 } 11644 11645 if (Bitfield->getType()->isBooleanType()) 11646 return false; 11647 11648 // Ignore value- or type-dependent expressions. 11649 if (Bitfield->getBitWidth()->isValueDependent() || 11650 Bitfield->getBitWidth()->isTypeDependent() || 11651 Init->isValueDependent() || 11652 Init->isTypeDependent()) 11653 return false; 11654 11655 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 11656 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 11657 11658 Expr::EvalResult Result; 11659 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 11660 Expr::SE_AllowSideEffects)) { 11661 // The RHS is not constant. If the RHS has an enum type, make sure the 11662 // bitfield is wide enough to hold all the values of the enum without 11663 // truncation. 11664 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 11665 EnumDecl *ED = EnumTy->getDecl(); 11666 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 11667 11668 // Enum types are implicitly signed on Windows, so check if there are any 11669 // negative enumerators to see if the enum was intended to be signed or 11670 // not. 11671 bool SignedEnum = ED->getNumNegativeBits() > 0; 11672 11673 // Check for surprising sign changes when assigning enum values to a 11674 // bitfield of different signedness. If the bitfield is signed and we 11675 // have exactly the right number of bits to store this unsigned enum, 11676 // suggest changing the enum to an unsigned type. This typically happens 11677 // on Windows where unfixed enums always use an underlying type of 'int'. 11678 unsigned DiagID = 0; 11679 if (SignedEnum && !SignedBitfield) { 11680 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 11681 } else if (SignedBitfield && !SignedEnum && 11682 ED->getNumPositiveBits() == FieldWidth) { 11683 DiagID = diag::warn_signed_bitfield_enum_conversion; 11684 } 11685 11686 if (DiagID) { 11687 S.Diag(InitLoc, DiagID) << Bitfield << ED; 11688 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 11689 SourceRange TypeRange = 11690 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 11691 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 11692 << SignedEnum << TypeRange; 11693 } 11694 11695 // Compute the required bitwidth. If the enum has negative values, we need 11696 // one more bit than the normal number of positive bits to represent the 11697 // sign bit. 11698 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 11699 ED->getNumNegativeBits()) 11700 : ED->getNumPositiveBits(); 11701 11702 // Check the bitwidth. 11703 if (BitsNeeded > FieldWidth) { 11704 Expr *WidthExpr = Bitfield->getBitWidth(); 11705 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 11706 << Bitfield << ED; 11707 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 11708 << BitsNeeded << ED << WidthExpr->getSourceRange(); 11709 } 11710 } 11711 11712 return false; 11713 } 11714 11715 llvm::APSInt Value = Result.Val.getInt(); 11716 11717 unsigned OriginalWidth = Value.getBitWidth(); 11718 11719 if (!Value.isSigned() || Value.isNegative()) 11720 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 11721 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 11722 OriginalWidth = Value.getMinSignedBits(); 11723 11724 if (OriginalWidth <= FieldWidth) 11725 return false; 11726 11727 // Compute the value which the bitfield will contain. 11728 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 11729 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 11730 11731 // Check whether the stored value is equal to the original value. 11732 TruncatedValue = TruncatedValue.extend(OriginalWidth); 11733 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 11734 return false; 11735 11736 // Special-case bitfields of width 1: booleans are naturally 0/1, and 11737 // therefore don't strictly fit into a signed bitfield of width 1. 11738 if (FieldWidth == 1 && Value == 1) 11739 return false; 11740 11741 std::string PrettyValue = Value.toString(10); 11742 std::string PrettyTrunc = TruncatedValue.toString(10); 11743 11744 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 11745 << PrettyValue << PrettyTrunc << OriginalInit->getType() 11746 << Init->getSourceRange(); 11747 11748 return true; 11749 } 11750 11751 /// Analyze the given simple or compound assignment for warning-worthy 11752 /// operations. 11753 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 11754 // Just recurse on the LHS. 11755 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11756 11757 // We want to recurse on the RHS as normal unless we're assigning to 11758 // a bitfield. 11759 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 11760 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 11761 E->getOperatorLoc())) { 11762 // Recurse, ignoring any implicit conversions on the RHS. 11763 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 11764 E->getOperatorLoc()); 11765 } 11766 } 11767 11768 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11769 11770 // Diagnose implicitly sequentially-consistent atomic assignment. 11771 if (E->getLHS()->getType()->isAtomicType()) 11772 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11773 } 11774 11775 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11776 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 11777 SourceLocation CContext, unsigned diag, 11778 bool pruneControlFlow = false) { 11779 if (pruneControlFlow) { 11780 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11781 S.PDiag(diag) 11782 << SourceType << T << E->getSourceRange() 11783 << SourceRange(CContext)); 11784 return; 11785 } 11786 S.Diag(E->getExprLoc(), diag) 11787 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 11788 } 11789 11790 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11791 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 11792 SourceLocation CContext, 11793 unsigned diag, bool pruneControlFlow = false) { 11794 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 11795 } 11796 11797 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 11798 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 11799 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 11800 } 11801 11802 static void adornObjCBoolConversionDiagWithTernaryFixit( 11803 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 11804 Expr *Ignored = SourceExpr->IgnoreImplicit(); 11805 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 11806 Ignored = OVE->getSourceExpr(); 11807 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 11808 isa<BinaryOperator>(Ignored) || 11809 isa<CXXOperatorCallExpr>(Ignored); 11810 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 11811 if (NeedsParens) 11812 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 11813 << FixItHint::CreateInsertion(EndLoc, ")"); 11814 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 11815 } 11816 11817 /// Diagnose an implicit cast from a floating point value to an integer value. 11818 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 11819 SourceLocation CContext) { 11820 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 11821 const bool PruneWarnings = S.inTemplateInstantiation(); 11822 11823 Expr *InnerE = E->IgnoreParenImpCasts(); 11824 // We also want to warn on, e.g., "int i = -1.234" 11825 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 11826 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 11827 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11828 11829 const bool IsLiteral = 11830 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11831 11832 llvm::APFloat Value(0.0); 11833 bool IsConstant = 11834 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11835 if (!IsConstant) { 11836 if (isObjCSignedCharBool(S, T)) { 11837 return adornObjCBoolConversionDiagWithTernaryFixit( 11838 S, E, 11839 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11840 << E->getType()); 11841 } 11842 11843 return DiagnoseImpCast(S, E, T, CContext, 11844 diag::warn_impcast_float_integer, PruneWarnings); 11845 } 11846 11847 bool isExact = false; 11848 11849 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11850 T->hasUnsignedIntegerRepresentation()); 11851 llvm::APFloat::opStatus Result = Value.convertToInteger( 11852 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11853 11854 // FIXME: Force the precision of the source value down so we don't print 11855 // digits which are usually useless (we don't really care here if we 11856 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11857 // would automatically print the shortest representation, but it's a bit 11858 // tricky to implement. 11859 SmallString<16> PrettySourceValue; 11860 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11861 precision = (precision * 59 + 195) / 196; 11862 Value.toString(PrettySourceValue, precision); 11863 11864 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11865 return adornObjCBoolConversionDiagWithTernaryFixit( 11866 S, E, 11867 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11868 << PrettySourceValue); 11869 } 11870 11871 if (Result == llvm::APFloat::opOK && isExact) { 11872 if (IsLiteral) return; 11873 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11874 PruneWarnings); 11875 } 11876 11877 // Conversion of a floating-point value to a non-bool integer where the 11878 // integral part cannot be represented by the integer type is undefined. 11879 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11880 return DiagnoseImpCast( 11881 S, E, T, CContext, 11882 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11883 : diag::warn_impcast_float_to_integer_out_of_range, 11884 PruneWarnings); 11885 11886 unsigned DiagID = 0; 11887 if (IsLiteral) { 11888 // Warn on floating point literal to integer. 11889 DiagID = diag::warn_impcast_literal_float_to_integer; 11890 } else if (IntegerValue == 0) { 11891 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11892 return DiagnoseImpCast(S, E, T, CContext, 11893 diag::warn_impcast_float_integer, PruneWarnings); 11894 } 11895 // Warn on non-zero to zero conversion. 11896 DiagID = diag::warn_impcast_float_to_integer_zero; 11897 } else { 11898 if (IntegerValue.isUnsigned()) { 11899 if (!IntegerValue.isMaxValue()) { 11900 return DiagnoseImpCast(S, E, T, CContext, 11901 diag::warn_impcast_float_integer, PruneWarnings); 11902 } 11903 } else { // IntegerValue.isSigned() 11904 if (!IntegerValue.isMaxSignedValue() && 11905 !IntegerValue.isMinSignedValue()) { 11906 return DiagnoseImpCast(S, E, T, CContext, 11907 diag::warn_impcast_float_integer, PruneWarnings); 11908 } 11909 } 11910 // Warn on evaluatable floating point expression to integer conversion. 11911 DiagID = diag::warn_impcast_float_to_integer; 11912 } 11913 11914 SmallString<16> PrettyTargetValue; 11915 if (IsBool) 11916 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11917 else 11918 IntegerValue.toString(PrettyTargetValue); 11919 11920 if (PruneWarnings) { 11921 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11922 S.PDiag(DiagID) 11923 << E->getType() << T.getUnqualifiedType() 11924 << PrettySourceValue << PrettyTargetValue 11925 << E->getSourceRange() << SourceRange(CContext)); 11926 } else { 11927 S.Diag(E->getExprLoc(), DiagID) 11928 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11929 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11930 } 11931 } 11932 11933 /// Analyze the given compound assignment for the possible losing of 11934 /// floating-point precision. 11935 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11936 assert(isa<CompoundAssignOperator>(E) && 11937 "Must be compound assignment operation"); 11938 // Recurse on the LHS and RHS in here 11939 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11940 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11941 11942 if (E->getLHS()->getType()->isAtomicType()) 11943 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11944 11945 // Now check the outermost expression 11946 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11947 const auto *RBT = cast<CompoundAssignOperator>(E) 11948 ->getComputationResultType() 11949 ->getAs<BuiltinType>(); 11950 11951 // The below checks assume source is floating point. 11952 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11953 11954 // If source is floating point but target is an integer. 11955 if (ResultBT->isInteger()) 11956 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11957 E->getExprLoc(), diag::warn_impcast_float_integer); 11958 11959 if (!ResultBT->isFloatingPoint()) 11960 return; 11961 11962 // If both source and target are floating points, warn about losing precision. 11963 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11964 QualType(ResultBT, 0), QualType(RBT, 0)); 11965 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11966 // warn about dropping FP rank. 11967 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11968 diag::warn_impcast_float_result_precision); 11969 } 11970 11971 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11972 IntRange Range) { 11973 if (!Range.Width) return "0"; 11974 11975 llvm::APSInt ValueInRange = Value; 11976 ValueInRange.setIsSigned(!Range.NonNegative); 11977 ValueInRange = ValueInRange.trunc(Range.Width); 11978 return ValueInRange.toString(10); 11979 } 11980 11981 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11982 if (!isa<ImplicitCastExpr>(Ex)) 11983 return false; 11984 11985 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11986 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11987 const Type *Source = 11988 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11989 if (Target->isDependentType()) 11990 return false; 11991 11992 const BuiltinType *FloatCandidateBT = 11993 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11994 const Type *BoolCandidateType = ToBool ? Target : Source; 11995 11996 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11997 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11998 } 11999 12000 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 12001 SourceLocation CC) { 12002 unsigned NumArgs = TheCall->getNumArgs(); 12003 for (unsigned i = 0; i < NumArgs; ++i) { 12004 Expr *CurrA = TheCall->getArg(i); 12005 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 12006 continue; 12007 12008 bool IsSwapped = ((i > 0) && 12009 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 12010 IsSwapped |= ((i < (NumArgs - 1)) && 12011 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 12012 if (IsSwapped) { 12013 // Warn on this floating-point to bool conversion. 12014 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 12015 CurrA->getType(), CC, 12016 diag::warn_impcast_floating_point_to_bool); 12017 } 12018 } 12019 } 12020 12021 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 12022 SourceLocation CC) { 12023 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 12024 E->getExprLoc())) 12025 return; 12026 12027 // Don't warn on functions which have return type nullptr_t. 12028 if (isa<CallExpr>(E)) 12029 return; 12030 12031 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 12032 const Expr::NullPointerConstantKind NullKind = 12033 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 12034 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 12035 return; 12036 12037 // Return if target type is a safe conversion. 12038 if (T->isAnyPointerType() || T->isBlockPointerType() || 12039 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 12040 return; 12041 12042 SourceLocation Loc = E->getSourceRange().getBegin(); 12043 12044 // Venture through the macro stacks to get to the source of macro arguments. 12045 // The new location is a better location than the complete location that was 12046 // passed in. 12047 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 12048 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 12049 12050 // __null is usually wrapped in a macro. Go up a macro if that is the case. 12051 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 12052 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 12053 Loc, S.SourceMgr, S.getLangOpts()); 12054 if (MacroName == "NULL") 12055 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 12056 } 12057 12058 // Only warn if the null and context location are in the same macro expansion. 12059 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 12060 return; 12061 12062 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 12063 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 12064 << FixItHint::CreateReplacement(Loc, 12065 S.getFixItZeroLiteralForType(T, Loc)); 12066 } 12067 12068 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12069 ObjCArrayLiteral *ArrayLiteral); 12070 12071 static void 12072 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12073 ObjCDictionaryLiteral *DictionaryLiteral); 12074 12075 /// Check a single element within a collection literal against the 12076 /// target element type. 12077 static void checkObjCCollectionLiteralElement(Sema &S, 12078 QualType TargetElementType, 12079 Expr *Element, 12080 unsigned ElementKind) { 12081 // Skip a bitcast to 'id' or qualified 'id'. 12082 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 12083 if (ICE->getCastKind() == CK_BitCast && 12084 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 12085 Element = ICE->getSubExpr(); 12086 } 12087 12088 QualType ElementType = Element->getType(); 12089 ExprResult ElementResult(Element); 12090 if (ElementType->getAs<ObjCObjectPointerType>() && 12091 S.CheckSingleAssignmentConstraints(TargetElementType, 12092 ElementResult, 12093 false, false) 12094 != Sema::Compatible) { 12095 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 12096 << ElementType << ElementKind << TargetElementType 12097 << Element->getSourceRange(); 12098 } 12099 12100 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 12101 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 12102 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 12103 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 12104 } 12105 12106 /// Check an Objective-C array literal being converted to the given 12107 /// target type. 12108 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12109 ObjCArrayLiteral *ArrayLiteral) { 12110 if (!S.NSArrayDecl) 12111 return; 12112 12113 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12114 if (!TargetObjCPtr) 12115 return; 12116 12117 if (TargetObjCPtr->isUnspecialized() || 12118 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12119 != S.NSArrayDecl->getCanonicalDecl()) 12120 return; 12121 12122 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12123 if (TypeArgs.size() != 1) 12124 return; 12125 12126 QualType TargetElementType = TypeArgs[0]; 12127 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 12128 checkObjCCollectionLiteralElement(S, TargetElementType, 12129 ArrayLiteral->getElement(I), 12130 0); 12131 } 12132 } 12133 12134 /// Check an Objective-C dictionary literal being converted to the given 12135 /// target type. 12136 static void 12137 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12138 ObjCDictionaryLiteral *DictionaryLiteral) { 12139 if (!S.NSDictionaryDecl) 12140 return; 12141 12142 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12143 if (!TargetObjCPtr) 12144 return; 12145 12146 if (TargetObjCPtr->isUnspecialized() || 12147 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12148 != S.NSDictionaryDecl->getCanonicalDecl()) 12149 return; 12150 12151 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12152 if (TypeArgs.size() != 2) 12153 return; 12154 12155 QualType TargetKeyType = TypeArgs[0]; 12156 QualType TargetObjectType = TypeArgs[1]; 12157 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 12158 auto Element = DictionaryLiteral->getKeyValueElement(I); 12159 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 12160 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 12161 } 12162 } 12163 12164 // Helper function to filter out cases for constant width constant conversion. 12165 // Don't warn on char array initialization or for non-decimal values. 12166 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 12167 SourceLocation CC) { 12168 // If initializing from a constant, and the constant starts with '0', 12169 // then it is a binary, octal, or hexadecimal. Allow these constants 12170 // to fill all the bits, even if there is a sign change. 12171 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 12172 const char FirstLiteralCharacter = 12173 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 12174 if (FirstLiteralCharacter == '0') 12175 return false; 12176 } 12177 12178 // If the CC location points to a '{', and the type is char, then assume 12179 // assume it is an array initialization. 12180 if (CC.isValid() && T->isCharType()) { 12181 const char FirstContextCharacter = 12182 S.getSourceManager().getCharacterData(CC)[0]; 12183 if (FirstContextCharacter == '{') 12184 return false; 12185 } 12186 12187 return true; 12188 } 12189 12190 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 12191 const auto *IL = dyn_cast<IntegerLiteral>(E); 12192 if (!IL) { 12193 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 12194 if (UO->getOpcode() == UO_Minus) 12195 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 12196 } 12197 } 12198 12199 return IL; 12200 } 12201 12202 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 12203 E = E->IgnoreParenImpCasts(); 12204 SourceLocation ExprLoc = E->getExprLoc(); 12205 12206 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 12207 BinaryOperator::Opcode Opc = BO->getOpcode(); 12208 Expr::EvalResult Result; 12209 // Do not diagnose unsigned shifts. 12210 if (Opc == BO_Shl) { 12211 const auto *LHS = getIntegerLiteral(BO->getLHS()); 12212 const auto *RHS = getIntegerLiteral(BO->getRHS()); 12213 if (LHS && LHS->getValue() == 0) 12214 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 12215 else if (!E->isValueDependent() && LHS && RHS && 12216 RHS->getValue().isNonNegative() && 12217 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 12218 S.Diag(ExprLoc, diag::warn_left_shift_always) 12219 << (Result.Val.getInt() != 0); 12220 else if (E->getType()->isSignedIntegerType()) 12221 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 12222 } 12223 } 12224 12225 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 12226 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 12227 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 12228 if (!LHS || !RHS) 12229 return; 12230 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 12231 (RHS->getValue() == 0 || RHS->getValue() == 1)) 12232 // Do not diagnose common idioms. 12233 return; 12234 if (LHS->getValue() != 0 && RHS->getValue() != 0) 12235 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 12236 } 12237 } 12238 12239 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 12240 SourceLocation CC, 12241 bool *ICContext = nullptr, 12242 bool IsListInit = false) { 12243 if (E->isTypeDependent() || E->isValueDependent()) return; 12244 12245 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 12246 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 12247 if (Source == Target) return; 12248 if (Target->isDependentType()) return; 12249 12250 // If the conversion context location is invalid don't complain. We also 12251 // don't want to emit a warning if the issue occurs from the expansion of 12252 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 12253 // delay this check as long as possible. Once we detect we are in that 12254 // scenario, we just return. 12255 if (CC.isInvalid()) 12256 return; 12257 12258 if (Source->isAtomicType()) 12259 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 12260 12261 // Diagnose implicit casts to bool. 12262 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 12263 if (isa<StringLiteral>(E)) 12264 // Warn on string literal to bool. Checks for string literals in logical 12265 // and expressions, for instance, assert(0 && "error here"), are 12266 // prevented by a check in AnalyzeImplicitConversions(). 12267 return DiagnoseImpCast(S, E, T, CC, 12268 diag::warn_impcast_string_literal_to_bool); 12269 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 12270 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 12271 // This covers the literal expressions that evaluate to Objective-C 12272 // objects. 12273 return DiagnoseImpCast(S, E, T, CC, 12274 diag::warn_impcast_objective_c_literal_to_bool); 12275 } 12276 if (Source->isPointerType() || Source->canDecayToPointerType()) { 12277 // Warn on pointer to bool conversion that is always true. 12278 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 12279 SourceRange(CC)); 12280 } 12281 } 12282 12283 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 12284 // is a typedef for signed char (macOS), then that constant value has to be 1 12285 // or 0. 12286 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 12287 Expr::EvalResult Result; 12288 if (E->EvaluateAsInt(Result, S.getASTContext(), 12289 Expr::SE_AllowSideEffects)) { 12290 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 12291 adornObjCBoolConversionDiagWithTernaryFixit( 12292 S, E, 12293 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 12294 << Result.Val.getInt().toString(10)); 12295 } 12296 return; 12297 } 12298 } 12299 12300 // Check implicit casts from Objective-C collection literals to specialized 12301 // collection types, e.g., NSArray<NSString *> *. 12302 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 12303 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 12304 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 12305 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 12306 12307 // Strip vector types. 12308 if (const auto *SourceVT = dyn_cast<VectorType>(Source)) { 12309 if (Target->isVLSTBuiltinType()) { 12310 auto SourceVectorKind = SourceVT->getVectorKind(); 12311 if (SourceVectorKind == VectorType::SveFixedLengthDataVector || 12312 SourceVectorKind == VectorType::SveFixedLengthPredicateVector || 12313 (SourceVectorKind == VectorType::GenericVector && 12314 S.Context.getTypeSize(Source) == S.getLangOpts().ArmSveVectorBits)) 12315 return; 12316 } 12317 12318 if (!isa<VectorType>(Target)) { 12319 if (S.SourceMgr.isInSystemMacro(CC)) 12320 return; 12321 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 12322 } 12323 12324 // If the vector cast is cast between two vectors of the same size, it is 12325 // a bitcast, not a conversion. 12326 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 12327 return; 12328 12329 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 12330 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 12331 } 12332 if (auto VecTy = dyn_cast<VectorType>(Target)) 12333 Target = VecTy->getElementType().getTypePtr(); 12334 12335 // Strip complex types. 12336 if (isa<ComplexType>(Source)) { 12337 if (!isa<ComplexType>(Target)) { 12338 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 12339 return; 12340 12341 return DiagnoseImpCast(S, E, T, CC, 12342 S.getLangOpts().CPlusPlus 12343 ? diag::err_impcast_complex_scalar 12344 : diag::warn_impcast_complex_scalar); 12345 } 12346 12347 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 12348 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 12349 } 12350 12351 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 12352 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 12353 12354 // If the source is floating point... 12355 if (SourceBT && SourceBT->isFloatingPoint()) { 12356 // ...and the target is floating point... 12357 if (TargetBT && TargetBT->isFloatingPoint()) { 12358 // ...then warn if we're dropping FP rank. 12359 12360 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12361 QualType(SourceBT, 0), QualType(TargetBT, 0)); 12362 if (Order > 0) { 12363 // Don't warn about float constants that are precisely 12364 // representable in the target type. 12365 Expr::EvalResult result; 12366 if (E->EvaluateAsRValue(result, S.Context)) { 12367 // Value might be a float, a float vector, or a float complex. 12368 if (IsSameFloatAfterCast(result.Val, 12369 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 12370 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 12371 return; 12372 } 12373 12374 if (S.SourceMgr.isInSystemMacro(CC)) 12375 return; 12376 12377 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 12378 } 12379 // ... or possibly if we're increasing rank, too 12380 else if (Order < 0) { 12381 if (S.SourceMgr.isInSystemMacro(CC)) 12382 return; 12383 12384 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 12385 } 12386 return; 12387 } 12388 12389 // If the target is integral, always warn. 12390 if (TargetBT && TargetBT->isInteger()) { 12391 if (S.SourceMgr.isInSystemMacro(CC)) 12392 return; 12393 12394 DiagnoseFloatingImpCast(S, E, T, CC); 12395 } 12396 12397 // Detect the case where a call result is converted from floating-point to 12398 // to bool, and the final argument to the call is converted from bool, to 12399 // discover this typo: 12400 // 12401 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 12402 // 12403 // FIXME: This is an incredibly special case; is there some more general 12404 // way to detect this class of misplaced-parentheses bug? 12405 if (Target->isBooleanType() && isa<CallExpr>(E)) { 12406 // Check last argument of function call to see if it is an 12407 // implicit cast from a type matching the type the result 12408 // is being cast to. 12409 CallExpr *CEx = cast<CallExpr>(E); 12410 if (unsigned NumArgs = CEx->getNumArgs()) { 12411 Expr *LastA = CEx->getArg(NumArgs - 1); 12412 Expr *InnerE = LastA->IgnoreParenImpCasts(); 12413 if (isa<ImplicitCastExpr>(LastA) && 12414 InnerE->getType()->isBooleanType()) { 12415 // Warn on this floating-point to bool conversion 12416 DiagnoseImpCast(S, E, T, CC, 12417 diag::warn_impcast_floating_point_to_bool); 12418 } 12419 } 12420 } 12421 return; 12422 } 12423 12424 // Valid casts involving fixed point types should be accounted for here. 12425 if (Source->isFixedPointType()) { 12426 if (Target->isUnsaturatedFixedPointType()) { 12427 Expr::EvalResult Result; 12428 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 12429 S.isConstantEvaluated())) { 12430 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 12431 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 12432 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 12433 if (Value > MaxVal || Value < MinVal) { 12434 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12435 S.PDiag(diag::warn_impcast_fixed_point_range) 12436 << Value.toString() << T 12437 << E->getSourceRange() 12438 << clang::SourceRange(CC)); 12439 return; 12440 } 12441 } 12442 } else if (Target->isIntegerType()) { 12443 Expr::EvalResult Result; 12444 if (!S.isConstantEvaluated() && 12445 E->EvaluateAsFixedPoint(Result, S.Context, 12446 Expr::SE_AllowSideEffects)) { 12447 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 12448 12449 bool Overflowed; 12450 llvm::APSInt IntResult = FXResult.convertToInt( 12451 S.Context.getIntWidth(T), 12452 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 12453 12454 if (Overflowed) { 12455 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12456 S.PDiag(diag::warn_impcast_fixed_point_range) 12457 << FXResult.toString() << T 12458 << E->getSourceRange() 12459 << clang::SourceRange(CC)); 12460 return; 12461 } 12462 } 12463 } 12464 } else if (Target->isUnsaturatedFixedPointType()) { 12465 if (Source->isIntegerType()) { 12466 Expr::EvalResult Result; 12467 if (!S.isConstantEvaluated() && 12468 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 12469 llvm::APSInt Value = Result.Val.getInt(); 12470 12471 bool Overflowed; 12472 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 12473 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 12474 12475 if (Overflowed) { 12476 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12477 S.PDiag(diag::warn_impcast_fixed_point_range) 12478 << Value.toString(/*Radix=*/10) << T 12479 << E->getSourceRange() 12480 << clang::SourceRange(CC)); 12481 return; 12482 } 12483 } 12484 } 12485 } 12486 12487 // If we are casting an integer type to a floating point type without 12488 // initialization-list syntax, we might lose accuracy if the floating 12489 // point type has a narrower significand than the integer type. 12490 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 12491 TargetBT->isFloatingType() && !IsListInit) { 12492 // Determine the number of precision bits in the source integer type. 12493 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 12494 /*Approximate*/ true); 12495 unsigned int SourcePrecision = SourceRange.Width; 12496 12497 // Determine the number of precision bits in the 12498 // target floating point type. 12499 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 12500 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12501 12502 if (SourcePrecision > 0 && TargetPrecision > 0 && 12503 SourcePrecision > TargetPrecision) { 12504 12505 if (Optional<llvm::APSInt> SourceInt = 12506 E->getIntegerConstantExpr(S.Context)) { 12507 // If the source integer is a constant, convert it to the target 12508 // floating point type. Issue a warning if the value changes 12509 // during the whole conversion. 12510 llvm::APFloat TargetFloatValue( 12511 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12512 llvm::APFloat::opStatus ConversionStatus = 12513 TargetFloatValue.convertFromAPInt( 12514 *SourceInt, SourceBT->isSignedInteger(), 12515 llvm::APFloat::rmNearestTiesToEven); 12516 12517 if (ConversionStatus != llvm::APFloat::opOK) { 12518 std::string PrettySourceValue = SourceInt->toString(10); 12519 SmallString<32> PrettyTargetValue; 12520 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 12521 12522 S.DiagRuntimeBehavior( 12523 E->getExprLoc(), E, 12524 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 12525 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12526 << E->getSourceRange() << clang::SourceRange(CC)); 12527 } 12528 } else { 12529 // Otherwise, the implicit conversion may lose precision. 12530 DiagnoseImpCast(S, E, T, CC, 12531 diag::warn_impcast_integer_float_precision); 12532 } 12533 } 12534 } 12535 12536 DiagnoseNullConversion(S, E, T, CC); 12537 12538 S.DiscardMisalignedMemberAddress(Target, E); 12539 12540 if (Target->isBooleanType()) 12541 DiagnoseIntInBoolContext(S, E); 12542 12543 if (!Source->isIntegerType() || !Target->isIntegerType()) 12544 return; 12545 12546 // TODO: remove this early return once the false positives for constant->bool 12547 // in templates, macros, etc, are reduced or removed. 12548 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 12549 return; 12550 12551 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 12552 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 12553 return adornObjCBoolConversionDiagWithTernaryFixit( 12554 S, E, 12555 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 12556 << E->getType()); 12557 } 12558 12559 IntRange SourceTypeRange = 12560 IntRange::forTargetOfCanonicalType(S.Context, Source); 12561 IntRange LikelySourceRange = 12562 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 12563 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 12564 12565 if (LikelySourceRange.Width > TargetRange.Width) { 12566 // If the source is a constant, use a default-on diagnostic. 12567 // TODO: this should happen for bitfield stores, too. 12568 Expr::EvalResult Result; 12569 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 12570 S.isConstantEvaluated())) { 12571 llvm::APSInt Value(32); 12572 Value = Result.Val.getInt(); 12573 12574 if (S.SourceMgr.isInSystemMacro(CC)) 12575 return; 12576 12577 std::string PrettySourceValue = Value.toString(10); 12578 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12579 12580 S.DiagRuntimeBehavior( 12581 E->getExprLoc(), E, 12582 S.PDiag(diag::warn_impcast_integer_precision_constant) 12583 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12584 << E->getSourceRange() << SourceRange(CC)); 12585 return; 12586 } 12587 12588 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 12589 if (S.SourceMgr.isInSystemMacro(CC)) 12590 return; 12591 12592 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 12593 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 12594 /* pruneControlFlow */ true); 12595 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 12596 } 12597 12598 if (TargetRange.Width > SourceTypeRange.Width) { 12599 if (auto *UO = dyn_cast<UnaryOperator>(E)) 12600 if (UO->getOpcode() == UO_Minus) 12601 if (Source->isUnsignedIntegerType()) { 12602 if (Target->isUnsignedIntegerType()) 12603 return DiagnoseImpCast(S, E, T, CC, 12604 diag::warn_impcast_high_order_zero_bits); 12605 if (Target->isSignedIntegerType()) 12606 return DiagnoseImpCast(S, E, T, CC, 12607 diag::warn_impcast_nonnegative_result); 12608 } 12609 } 12610 12611 if (TargetRange.Width == LikelySourceRange.Width && 12612 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 12613 Source->isSignedIntegerType()) { 12614 // Warn when doing a signed to signed conversion, warn if the positive 12615 // source value is exactly the width of the target type, which will 12616 // cause a negative value to be stored. 12617 12618 Expr::EvalResult Result; 12619 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 12620 !S.SourceMgr.isInSystemMacro(CC)) { 12621 llvm::APSInt Value = Result.Val.getInt(); 12622 if (isSameWidthConstantConversion(S, E, T, CC)) { 12623 std::string PrettySourceValue = Value.toString(10); 12624 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12625 12626 S.DiagRuntimeBehavior( 12627 E->getExprLoc(), E, 12628 S.PDiag(diag::warn_impcast_integer_precision_constant) 12629 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12630 << E->getSourceRange() << SourceRange(CC)); 12631 return; 12632 } 12633 } 12634 12635 // Fall through for non-constants to give a sign conversion warning. 12636 } 12637 12638 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 12639 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 12640 LikelySourceRange.Width == TargetRange.Width)) { 12641 if (S.SourceMgr.isInSystemMacro(CC)) 12642 return; 12643 12644 unsigned DiagID = diag::warn_impcast_integer_sign; 12645 12646 // Traditionally, gcc has warned about this under -Wsign-compare. 12647 // We also want to warn about it in -Wconversion. 12648 // So if -Wconversion is off, use a completely identical diagnostic 12649 // in the sign-compare group. 12650 // The conditional-checking code will 12651 if (ICContext) { 12652 DiagID = diag::warn_impcast_integer_sign_conditional; 12653 *ICContext = true; 12654 } 12655 12656 return DiagnoseImpCast(S, E, T, CC, DiagID); 12657 } 12658 12659 // Diagnose conversions between different enumeration types. 12660 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 12661 // type, to give us better diagnostics. 12662 QualType SourceType = E->getType(); 12663 if (!S.getLangOpts().CPlusPlus) { 12664 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12665 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 12666 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 12667 SourceType = S.Context.getTypeDeclType(Enum); 12668 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 12669 } 12670 } 12671 12672 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 12673 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 12674 if (SourceEnum->getDecl()->hasNameForLinkage() && 12675 TargetEnum->getDecl()->hasNameForLinkage() && 12676 SourceEnum != TargetEnum) { 12677 if (S.SourceMgr.isInSystemMacro(CC)) 12678 return; 12679 12680 return DiagnoseImpCast(S, E, SourceType, T, CC, 12681 diag::warn_impcast_different_enum_types); 12682 } 12683 } 12684 12685 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12686 SourceLocation CC, QualType T); 12687 12688 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 12689 SourceLocation CC, bool &ICContext) { 12690 E = E->IgnoreParenImpCasts(); 12691 12692 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 12693 return CheckConditionalOperator(S, CO, CC, T); 12694 12695 AnalyzeImplicitConversions(S, E, CC); 12696 if (E->getType() != T) 12697 return CheckImplicitConversion(S, E, T, CC, &ICContext); 12698 } 12699 12700 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12701 SourceLocation CC, QualType T) { 12702 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 12703 12704 Expr *TrueExpr = E->getTrueExpr(); 12705 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 12706 TrueExpr = BCO->getCommon(); 12707 12708 bool Suspicious = false; 12709 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 12710 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 12711 12712 if (T->isBooleanType()) 12713 DiagnoseIntInBoolContext(S, E); 12714 12715 // If -Wconversion would have warned about either of the candidates 12716 // for a signedness conversion to the context type... 12717 if (!Suspicious) return; 12718 12719 // ...but it's currently ignored... 12720 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 12721 return; 12722 12723 // ...then check whether it would have warned about either of the 12724 // candidates for a signedness conversion to the condition type. 12725 if (E->getType() == T) return; 12726 12727 Suspicious = false; 12728 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 12729 E->getType(), CC, &Suspicious); 12730 if (!Suspicious) 12731 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 12732 E->getType(), CC, &Suspicious); 12733 } 12734 12735 /// Check conversion of given expression to boolean. 12736 /// Input argument E is a logical expression. 12737 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 12738 if (S.getLangOpts().Bool) 12739 return; 12740 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 12741 return; 12742 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 12743 } 12744 12745 namespace { 12746 struct AnalyzeImplicitConversionsWorkItem { 12747 Expr *E; 12748 SourceLocation CC; 12749 bool IsListInit; 12750 }; 12751 } 12752 12753 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 12754 /// that should be visited are added to WorkList. 12755 static void AnalyzeImplicitConversions( 12756 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 12757 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 12758 Expr *OrigE = Item.E; 12759 SourceLocation CC = Item.CC; 12760 12761 QualType T = OrigE->getType(); 12762 Expr *E = OrigE->IgnoreParenImpCasts(); 12763 12764 // Propagate whether we are in a C++ list initialization expression. 12765 // If so, we do not issue warnings for implicit int-float conversion 12766 // precision loss, because C++11 narrowing already handles it. 12767 bool IsListInit = Item.IsListInit || 12768 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 12769 12770 if (E->isTypeDependent() || E->isValueDependent()) 12771 return; 12772 12773 Expr *SourceExpr = E; 12774 // Examine, but don't traverse into the source expression of an 12775 // OpaqueValueExpr, since it may have multiple parents and we don't want to 12776 // emit duplicate diagnostics. Its fine to examine the form or attempt to 12777 // evaluate it in the context of checking the specific conversion to T though. 12778 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 12779 if (auto *Src = OVE->getSourceExpr()) 12780 SourceExpr = Src; 12781 12782 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 12783 if (UO->getOpcode() == UO_Not && 12784 UO->getSubExpr()->isKnownToHaveBooleanValue()) 12785 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 12786 << OrigE->getSourceRange() << T->isBooleanType() 12787 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 12788 12789 // For conditional operators, we analyze the arguments as if they 12790 // were being fed directly into the output. 12791 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 12792 CheckConditionalOperator(S, CO, CC, T); 12793 return; 12794 } 12795 12796 // Check implicit argument conversions for function calls. 12797 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 12798 CheckImplicitArgumentConversions(S, Call, CC); 12799 12800 // Go ahead and check any implicit conversions we might have skipped. 12801 // The non-canonical typecheck is just an optimization; 12802 // CheckImplicitConversion will filter out dead implicit conversions. 12803 if (SourceExpr->getType() != T) 12804 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 12805 12806 // Now continue drilling into this expression. 12807 12808 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 12809 // The bound subexpressions in a PseudoObjectExpr are not reachable 12810 // as transitive children. 12811 // FIXME: Use a more uniform representation for this. 12812 for (auto *SE : POE->semantics()) 12813 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 12814 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 12815 } 12816 12817 // Skip past explicit casts. 12818 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 12819 E = CE->getSubExpr()->IgnoreParenImpCasts(); 12820 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 12821 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12822 WorkList.push_back({E, CC, IsListInit}); 12823 return; 12824 } 12825 12826 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12827 // Do a somewhat different check with comparison operators. 12828 if (BO->isComparisonOp()) 12829 return AnalyzeComparison(S, BO); 12830 12831 // And with simple assignments. 12832 if (BO->getOpcode() == BO_Assign) 12833 return AnalyzeAssignment(S, BO); 12834 // And with compound assignments. 12835 if (BO->isAssignmentOp()) 12836 return AnalyzeCompoundAssignment(S, BO); 12837 } 12838 12839 // These break the otherwise-useful invariant below. Fortunately, 12840 // we don't really need to recurse into them, because any internal 12841 // expressions should have been analyzed already when they were 12842 // built into statements. 12843 if (isa<StmtExpr>(E)) return; 12844 12845 // Don't descend into unevaluated contexts. 12846 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12847 12848 // Now just recurse over the expression's children. 12849 CC = E->getExprLoc(); 12850 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12851 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12852 for (Stmt *SubStmt : E->children()) { 12853 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12854 if (!ChildExpr) 12855 continue; 12856 12857 if (IsLogicalAndOperator && 12858 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12859 // Ignore checking string literals that are in logical and operators. 12860 // This is a common pattern for asserts. 12861 continue; 12862 WorkList.push_back({ChildExpr, CC, IsListInit}); 12863 } 12864 12865 if (BO && BO->isLogicalOp()) { 12866 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12867 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12868 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12869 12870 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12871 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12872 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12873 } 12874 12875 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12876 if (U->getOpcode() == UO_LNot) { 12877 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12878 } else if (U->getOpcode() != UO_AddrOf) { 12879 if (U->getSubExpr()->getType()->isAtomicType()) 12880 S.Diag(U->getSubExpr()->getBeginLoc(), 12881 diag::warn_atomic_implicit_seq_cst); 12882 } 12883 } 12884 } 12885 12886 /// AnalyzeImplicitConversions - Find and report any interesting 12887 /// implicit conversions in the given expression. There are a couple 12888 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 12889 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 12890 bool IsListInit/*= false*/) { 12891 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 12892 WorkList.push_back({OrigE, CC, IsListInit}); 12893 while (!WorkList.empty()) 12894 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 12895 } 12896 12897 /// Diagnose integer type and any valid implicit conversion to it. 12898 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12899 // Taking into account implicit conversions, 12900 // allow any integer. 12901 if (!E->getType()->isIntegerType()) { 12902 S.Diag(E->getBeginLoc(), 12903 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12904 return true; 12905 } 12906 // Potentially emit standard warnings for implicit conversions if enabled 12907 // using -Wconversion. 12908 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12909 return false; 12910 } 12911 12912 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12913 // Returns true when emitting a warning about taking the address of a reference. 12914 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12915 const PartialDiagnostic &PD) { 12916 E = E->IgnoreParenImpCasts(); 12917 12918 const FunctionDecl *FD = nullptr; 12919 12920 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12921 if (!DRE->getDecl()->getType()->isReferenceType()) 12922 return false; 12923 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12924 if (!M->getMemberDecl()->getType()->isReferenceType()) 12925 return false; 12926 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12927 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12928 return false; 12929 FD = Call->getDirectCallee(); 12930 } else { 12931 return false; 12932 } 12933 12934 SemaRef.Diag(E->getExprLoc(), PD); 12935 12936 // If possible, point to location of function. 12937 if (FD) { 12938 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12939 } 12940 12941 return true; 12942 } 12943 12944 // Returns true if the SourceLocation is expanded from any macro body. 12945 // Returns false if the SourceLocation is invalid, is from not in a macro 12946 // expansion, or is from expanded from a top-level macro argument. 12947 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12948 if (Loc.isInvalid()) 12949 return false; 12950 12951 while (Loc.isMacroID()) { 12952 if (SM.isMacroBodyExpansion(Loc)) 12953 return true; 12954 Loc = SM.getImmediateMacroCallerLoc(Loc); 12955 } 12956 12957 return false; 12958 } 12959 12960 /// Diagnose pointers that are always non-null. 12961 /// \param E the expression containing the pointer 12962 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12963 /// compared to a null pointer 12964 /// \param IsEqual True when the comparison is equal to a null pointer 12965 /// \param Range Extra SourceRange to highlight in the diagnostic 12966 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12967 Expr::NullPointerConstantKind NullKind, 12968 bool IsEqual, SourceRange Range) { 12969 if (!E) 12970 return; 12971 12972 // Don't warn inside macros. 12973 if (E->getExprLoc().isMacroID()) { 12974 const SourceManager &SM = getSourceManager(); 12975 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12976 IsInAnyMacroBody(SM, Range.getBegin())) 12977 return; 12978 } 12979 E = E->IgnoreImpCasts(); 12980 12981 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12982 12983 if (isa<CXXThisExpr>(E)) { 12984 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12985 : diag::warn_this_bool_conversion; 12986 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12987 return; 12988 } 12989 12990 bool IsAddressOf = false; 12991 12992 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12993 if (UO->getOpcode() != UO_AddrOf) 12994 return; 12995 IsAddressOf = true; 12996 E = UO->getSubExpr(); 12997 } 12998 12999 if (IsAddressOf) { 13000 unsigned DiagID = IsCompare 13001 ? diag::warn_address_of_reference_null_compare 13002 : diag::warn_address_of_reference_bool_conversion; 13003 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 13004 << IsEqual; 13005 if (CheckForReference(*this, E, PD)) { 13006 return; 13007 } 13008 } 13009 13010 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 13011 bool IsParam = isa<NonNullAttr>(NonnullAttr); 13012 std::string Str; 13013 llvm::raw_string_ostream S(Str); 13014 E->printPretty(S, nullptr, getPrintingPolicy()); 13015 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 13016 : diag::warn_cast_nonnull_to_bool; 13017 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 13018 << E->getSourceRange() << Range << IsEqual; 13019 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 13020 }; 13021 13022 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 13023 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 13024 if (auto *Callee = Call->getDirectCallee()) { 13025 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 13026 ComplainAboutNonnullParamOrCall(A); 13027 return; 13028 } 13029 } 13030 } 13031 13032 // Expect to find a single Decl. Skip anything more complicated. 13033 ValueDecl *D = nullptr; 13034 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 13035 D = R->getDecl(); 13036 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13037 D = M->getMemberDecl(); 13038 } 13039 13040 // Weak Decls can be null. 13041 if (!D || D->isWeak()) 13042 return; 13043 13044 // Check for parameter decl with nonnull attribute 13045 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 13046 if (getCurFunction() && 13047 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 13048 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 13049 ComplainAboutNonnullParamOrCall(A); 13050 return; 13051 } 13052 13053 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 13054 // Skip function template not specialized yet. 13055 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 13056 return; 13057 auto ParamIter = llvm::find(FD->parameters(), PV); 13058 assert(ParamIter != FD->param_end()); 13059 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 13060 13061 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 13062 if (!NonNull->args_size()) { 13063 ComplainAboutNonnullParamOrCall(NonNull); 13064 return; 13065 } 13066 13067 for (const ParamIdx &ArgNo : NonNull->args()) { 13068 if (ArgNo.getASTIndex() == ParamNo) { 13069 ComplainAboutNonnullParamOrCall(NonNull); 13070 return; 13071 } 13072 } 13073 } 13074 } 13075 } 13076 } 13077 13078 QualType T = D->getType(); 13079 const bool IsArray = T->isArrayType(); 13080 const bool IsFunction = T->isFunctionType(); 13081 13082 // Address of function is used to silence the function warning. 13083 if (IsAddressOf && IsFunction) { 13084 return; 13085 } 13086 13087 // Found nothing. 13088 if (!IsAddressOf && !IsFunction && !IsArray) 13089 return; 13090 13091 // Pretty print the expression for the diagnostic. 13092 std::string Str; 13093 llvm::raw_string_ostream S(Str); 13094 E->printPretty(S, nullptr, getPrintingPolicy()); 13095 13096 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 13097 : diag::warn_impcast_pointer_to_bool; 13098 enum { 13099 AddressOf, 13100 FunctionPointer, 13101 ArrayPointer 13102 } DiagType; 13103 if (IsAddressOf) 13104 DiagType = AddressOf; 13105 else if (IsFunction) 13106 DiagType = FunctionPointer; 13107 else if (IsArray) 13108 DiagType = ArrayPointer; 13109 else 13110 llvm_unreachable("Could not determine diagnostic."); 13111 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 13112 << Range << IsEqual; 13113 13114 if (!IsFunction) 13115 return; 13116 13117 // Suggest '&' to silence the function warning. 13118 Diag(E->getExprLoc(), diag::note_function_warning_silence) 13119 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 13120 13121 // Check to see if '()' fixit should be emitted. 13122 QualType ReturnType; 13123 UnresolvedSet<4> NonTemplateOverloads; 13124 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 13125 if (ReturnType.isNull()) 13126 return; 13127 13128 if (IsCompare) { 13129 // There are two cases here. If there is null constant, the only suggest 13130 // for a pointer return type. If the null is 0, then suggest if the return 13131 // type is a pointer or an integer type. 13132 if (!ReturnType->isPointerType()) { 13133 if (NullKind == Expr::NPCK_ZeroExpression || 13134 NullKind == Expr::NPCK_ZeroLiteral) { 13135 if (!ReturnType->isIntegerType()) 13136 return; 13137 } else { 13138 return; 13139 } 13140 } 13141 } else { // !IsCompare 13142 // For function to bool, only suggest if the function pointer has bool 13143 // return type. 13144 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 13145 return; 13146 } 13147 Diag(E->getExprLoc(), diag::note_function_to_function_call) 13148 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 13149 } 13150 13151 /// Diagnoses "dangerous" implicit conversions within the given 13152 /// expression (which is a full expression). Implements -Wconversion 13153 /// and -Wsign-compare. 13154 /// 13155 /// \param CC the "context" location of the implicit conversion, i.e. 13156 /// the most location of the syntactic entity requiring the implicit 13157 /// conversion 13158 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 13159 // Don't diagnose in unevaluated contexts. 13160 if (isUnevaluatedContext()) 13161 return; 13162 13163 // Don't diagnose for value- or type-dependent expressions. 13164 if (E->isTypeDependent() || E->isValueDependent()) 13165 return; 13166 13167 // Check for array bounds violations in cases where the check isn't triggered 13168 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 13169 // ArraySubscriptExpr is on the RHS of a variable initialization. 13170 CheckArrayAccess(E); 13171 13172 // This is not the right CC for (e.g.) a variable initialization. 13173 AnalyzeImplicitConversions(*this, E, CC); 13174 } 13175 13176 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 13177 /// Input argument E is a logical expression. 13178 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 13179 ::CheckBoolLikeConversion(*this, E, CC); 13180 } 13181 13182 /// Diagnose when expression is an integer constant expression and its evaluation 13183 /// results in integer overflow 13184 void Sema::CheckForIntOverflow (Expr *E) { 13185 // Use a work list to deal with nested struct initializers. 13186 SmallVector<Expr *, 2> Exprs(1, E); 13187 13188 do { 13189 Expr *OriginalE = Exprs.pop_back_val(); 13190 Expr *E = OriginalE->IgnoreParenCasts(); 13191 13192 if (isa<BinaryOperator>(E)) { 13193 E->EvaluateForOverflow(Context); 13194 continue; 13195 } 13196 13197 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 13198 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 13199 else if (isa<ObjCBoxedExpr>(OriginalE)) 13200 E->EvaluateForOverflow(Context); 13201 else if (auto Call = dyn_cast<CallExpr>(E)) 13202 Exprs.append(Call->arg_begin(), Call->arg_end()); 13203 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 13204 Exprs.append(Message->arg_begin(), Message->arg_end()); 13205 } while (!Exprs.empty()); 13206 } 13207 13208 namespace { 13209 13210 /// Visitor for expressions which looks for unsequenced operations on the 13211 /// same object. 13212 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 13213 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 13214 13215 /// A tree of sequenced regions within an expression. Two regions are 13216 /// unsequenced if one is an ancestor or a descendent of the other. When we 13217 /// finish processing an expression with sequencing, such as a comma 13218 /// expression, we fold its tree nodes into its parent, since they are 13219 /// unsequenced with respect to nodes we will visit later. 13220 class SequenceTree { 13221 struct Value { 13222 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 13223 unsigned Parent : 31; 13224 unsigned Merged : 1; 13225 }; 13226 SmallVector<Value, 8> Values; 13227 13228 public: 13229 /// A region within an expression which may be sequenced with respect 13230 /// to some other region. 13231 class Seq { 13232 friend class SequenceTree; 13233 13234 unsigned Index; 13235 13236 explicit Seq(unsigned N) : Index(N) {} 13237 13238 public: 13239 Seq() : Index(0) {} 13240 }; 13241 13242 SequenceTree() { Values.push_back(Value(0)); } 13243 Seq root() const { return Seq(0); } 13244 13245 /// Create a new sequence of operations, which is an unsequenced 13246 /// subset of \p Parent. This sequence of operations is sequenced with 13247 /// respect to other children of \p Parent. 13248 Seq allocate(Seq Parent) { 13249 Values.push_back(Value(Parent.Index)); 13250 return Seq(Values.size() - 1); 13251 } 13252 13253 /// Merge a sequence of operations into its parent. 13254 void merge(Seq S) { 13255 Values[S.Index].Merged = true; 13256 } 13257 13258 /// Determine whether two operations are unsequenced. This operation 13259 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 13260 /// should have been merged into its parent as appropriate. 13261 bool isUnsequenced(Seq Cur, Seq Old) { 13262 unsigned C = representative(Cur.Index); 13263 unsigned Target = representative(Old.Index); 13264 while (C >= Target) { 13265 if (C == Target) 13266 return true; 13267 C = Values[C].Parent; 13268 } 13269 return false; 13270 } 13271 13272 private: 13273 /// Pick a representative for a sequence. 13274 unsigned representative(unsigned K) { 13275 if (Values[K].Merged) 13276 // Perform path compression as we go. 13277 return Values[K].Parent = representative(Values[K].Parent); 13278 return K; 13279 } 13280 }; 13281 13282 /// An object for which we can track unsequenced uses. 13283 using Object = const NamedDecl *; 13284 13285 /// Different flavors of object usage which we track. We only track the 13286 /// least-sequenced usage of each kind. 13287 enum UsageKind { 13288 /// A read of an object. Multiple unsequenced reads are OK. 13289 UK_Use, 13290 13291 /// A modification of an object which is sequenced before the value 13292 /// computation of the expression, such as ++n in C++. 13293 UK_ModAsValue, 13294 13295 /// A modification of an object which is not sequenced before the value 13296 /// computation of the expression, such as n++. 13297 UK_ModAsSideEffect, 13298 13299 UK_Count = UK_ModAsSideEffect + 1 13300 }; 13301 13302 /// Bundle together a sequencing region and the expression corresponding 13303 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 13304 struct Usage { 13305 const Expr *UsageExpr; 13306 SequenceTree::Seq Seq; 13307 13308 Usage() : UsageExpr(nullptr), Seq() {} 13309 }; 13310 13311 struct UsageInfo { 13312 Usage Uses[UK_Count]; 13313 13314 /// Have we issued a diagnostic for this object already? 13315 bool Diagnosed; 13316 13317 UsageInfo() : Uses(), Diagnosed(false) {} 13318 }; 13319 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 13320 13321 Sema &SemaRef; 13322 13323 /// Sequenced regions within the expression. 13324 SequenceTree Tree; 13325 13326 /// Declaration modifications and references which we have seen. 13327 UsageInfoMap UsageMap; 13328 13329 /// The region we are currently within. 13330 SequenceTree::Seq Region; 13331 13332 /// Filled in with declarations which were modified as a side-effect 13333 /// (that is, post-increment operations). 13334 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 13335 13336 /// Expressions to check later. We defer checking these to reduce 13337 /// stack usage. 13338 SmallVectorImpl<const Expr *> &WorkList; 13339 13340 /// RAII object wrapping the visitation of a sequenced subexpression of an 13341 /// expression. At the end of this process, the side-effects of the evaluation 13342 /// become sequenced with respect to the value computation of the result, so 13343 /// we downgrade any UK_ModAsSideEffect within the evaluation to 13344 /// UK_ModAsValue. 13345 struct SequencedSubexpression { 13346 SequencedSubexpression(SequenceChecker &Self) 13347 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 13348 Self.ModAsSideEffect = &ModAsSideEffect; 13349 } 13350 13351 ~SequencedSubexpression() { 13352 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 13353 // Add a new usage with usage kind UK_ModAsValue, and then restore 13354 // the previous usage with UK_ModAsSideEffect (thus clearing it if 13355 // the previous one was empty). 13356 UsageInfo &UI = Self.UsageMap[M.first]; 13357 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 13358 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 13359 SideEffectUsage = M.second; 13360 } 13361 Self.ModAsSideEffect = OldModAsSideEffect; 13362 } 13363 13364 SequenceChecker &Self; 13365 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 13366 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 13367 }; 13368 13369 /// RAII object wrapping the visitation of a subexpression which we might 13370 /// choose to evaluate as a constant. If any subexpression is evaluated and 13371 /// found to be non-constant, this allows us to suppress the evaluation of 13372 /// the outer expression. 13373 class EvaluationTracker { 13374 public: 13375 EvaluationTracker(SequenceChecker &Self) 13376 : Self(Self), Prev(Self.EvalTracker) { 13377 Self.EvalTracker = this; 13378 } 13379 13380 ~EvaluationTracker() { 13381 Self.EvalTracker = Prev; 13382 if (Prev) 13383 Prev->EvalOK &= EvalOK; 13384 } 13385 13386 bool evaluate(const Expr *E, bool &Result) { 13387 if (!EvalOK || E->isValueDependent()) 13388 return false; 13389 EvalOK = E->EvaluateAsBooleanCondition( 13390 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 13391 return EvalOK; 13392 } 13393 13394 private: 13395 SequenceChecker &Self; 13396 EvaluationTracker *Prev; 13397 bool EvalOK = true; 13398 } *EvalTracker = nullptr; 13399 13400 /// Find the object which is produced by the specified expression, 13401 /// if any. 13402 Object getObject(const Expr *E, bool Mod) const { 13403 E = E->IgnoreParenCasts(); 13404 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13405 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 13406 return getObject(UO->getSubExpr(), Mod); 13407 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13408 if (BO->getOpcode() == BO_Comma) 13409 return getObject(BO->getRHS(), Mod); 13410 if (Mod && BO->isAssignmentOp()) 13411 return getObject(BO->getLHS(), Mod); 13412 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 13413 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 13414 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 13415 return ME->getMemberDecl(); 13416 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13417 // FIXME: If this is a reference, map through to its value. 13418 return DRE->getDecl(); 13419 return nullptr; 13420 } 13421 13422 /// Note that an object \p O was modified or used by an expression 13423 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 13424 /// the object \p O as obtained via the \p UsageMap. 13425 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 13426 // Get the old usage for the given object and usage kind. 13427 Usage &U = UI.Uses[UK]; 13428 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 13429 // If we have a modification as side effect and are in a sequenced 13430 // subexpression, save the old Usage so that we can restore it later 13431 // in SequencedSubexpression::~SequencedSubexpression. 13432 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 13433 ModAsSideEffect->push_back(std::make_pair(O, U)); 13434 // Then record the new usage with the current sequencing region. 13435 U.UsageExpr = UsageExpr; 13436 U.Seq = Region; 13437 } 13438 } 13439 13440 /// Check whether a modification or use of an object \p O in an expression 13441 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 13442 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 13443 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 13444 /// usage and false we are checking for a mod-use unsequenced usage. 13445 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 13446 UsageKind OtherKind, bool IsModMod) { 13447 if (UI.Diagnosed) 13448 return; 13449 13450 const Usage &U = UI.Uses[OtherKind]; 13451 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 13452 return; 13453 13454 const Expr *Mod = U.UsageExpr; 13455 const Expr *ModOrUse = UsageExpr; 13456 if (OtherKind == UK_Use) 13457 std::swap(Mod, ModOrUse); 13458 13459 SemaRef.DiagRuntimeBehavior( 13460 Mod->getExprLoc(), {Mod, ModOrUse}, 13461 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 13462 : diag::warn_unsequenced_mod_use) 13463 << O << SourceRange(ModOrUse->getExprLoc())); 13464 UI.Diagnosed = true; 13465 } 13466 13467 // A note on note{Pre, Post}{Use, Mod}: 13468 // 13469 // (It helps to follow the algorithm with an expression such as 13470 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 13471 // operations before C++17 and both are well-defined in C++17). 13472 // 13473 // When visiting a node which uses/modify an object we first call notePreUse 13474 // or notePreMod before visiting its sub-expression(s). At this point the 13475 // children of the current node have not yet been visited and so the eventual 13476 // uses/modifications resulting from the children of the current node have not 13477 // been recorded yet. 13478 // 13479 // We then visit the children of the current node. After that notePostUse or 13480 // notePostMod is called. These will 1) detect an unsequenced modification 13481 // as side effect (as in "k++ + k") and 2) add a new usage with the 13482 // appropriate usage kind. 13483 // 13484 // We also have to be careful that some operation sequences modification as 13485 // side effect as well (for example: || or ,). To account for this we wrap 13486 // the visitation of such a sub-expression (for example: the LHS of || or ,) 13487 // with SequencedSubexpression. SequencedSubexpression is an RAII object 13488 // which record usages which are modifications as side effect, and then 13489 // downgrade them (or more accurately restore the previous usage which was a 13490 // modification as side effect) when exiting the scope of the sequenced 13491 // subexpression. 13492 13493 void notePreUse(Object O, const Expr *UseExpr) { 13494 UsageInfo &UI = UsageMap[O]; 13495 // Uses conflict with other modifications. 13496 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 13497 } 13498 13499 void notePostUse(Object O, const Expr *UseExpr) { 13500 UsageInfo &UI = UsageMap[O]; 13501 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 13502 /*IsModMod=*/false); 13503 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 13504 } 13505 13506 void notePreMod(Object O, const Expr *ModExpr) { 13507 UsageInfo &UI = UsageMap[O]; 13508 // Modifications conflict with other modifications and with uses. 13509 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 13510 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 13511 } 13512 13513 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 13514 UsageInfo &UI = UsageMap[O]; 13515 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 13516 /*IsModMod=*/true); 13517 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 13518 } 13519 13520 public: 13521 SequenceChecker(Sema &S, const Expr *E, 13522 SmallVectorImpl<const Expr *> &WorkList) 13523 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 13524 Visit(E); 13525 // Silence a -Wunused-private-field since WorkList is now unused. 13526 // TODO: Evaluate if it can be used, and if not remove it. 13527 (void)this->WorkList; 13528 } 13529 13530 void VisitStmt(const Stmt *S) { 13531 // Skip all statements which aren't expressions for now. 13532 } 13533 13534 void VisitExpr(const Expr *E) { 13535 // By default, just recurse to evaluated subexpressions. 13536 Base::VisitStmt(E); 13537 } 13538 13539 void VisitCastExpr(const CastExpr *E) { 13540 Object O = Object(); 13541 if (E->getCastKind() == CK_LValueToRValue) 13542 O = getObject(E->getSubExpr(), false); 13543 13544 if (O) 13545 notePreUse(O, E); 13546 VisitExpr(E); 13547 if (O) 13548 notePostUse(O, E); 13549 } 13550 13551 void VisitSequencedExpressions(const Expr *SequencedBefore, 13552 const Expr *SequencedAfter) { 13553 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 13554 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 13555 SequenceTree::Seq OldRegion = Region; 13556 13557 { 13558 SequencedSubexpression SeqBefore(*this); 13559 Region = BeforeRegion; 13560 Visit(SequencedBefore); 13561 } 13562 13563 Region = AfterRegion; 13564 Visit(SequencedAfter); 13565 13566 Region = OldRegion; 13567 13568 Tree.merge(BeforeRegion); 13569 Tree.merge(AfterRegion); 13570 } 13571 13572 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 13573 // C++17 [expr.sub]p1: 13574 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 13575 // expression E1 is sequenced before the expression E2. 13576 if (SemaRef.getLangOpts().CPlusPlus17) 13577 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 13578 else { 13579 Visit(ASE->getLHS()); 13580 Visit(ASE->getRHS()); 13581 } 13582 } 13583 13584 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13585 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13586 void VisitBinPtrMem(const BinaryOperator *BO) { 13587 // C++17 [expr.mptr.oper]p4: 13588 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 13589 // the expression E1 is sequenced before the expression E2. 13590 if (SemaRef.getLangOpts().CPlusPlus17) 13591 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13592 else { 13593 Visit(BO->getLHS()); 13594 Visit(BO->getRHS()); 13595 } 13596 } 13597 13598 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13599 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13600 void VisitBinShlShr(const BinaryOperator *BO) { 13601 // C++17 [expr.shift]p4: 13602 // The expression E1 is sequenced before the expression E2. 13603 if (SemaRef.getLangOpts().CPlusPlus17) 13604 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13605 else { 13606 Visit(BO->getLHS()); 13607 Visit(BO->getRHS()); 13608 } 13609 } 13610 13611 void VisitBinComma(const BinaryOperator *BO) { 13612 // C++11 [expr.comma]p1: 13613 // Every value computation and side effect associated with the left 13614 // expression is sequenced before every value computation and side 13615 // effect associated with the right expression. 13616 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13617 } 13618 13619 void VisitBinAssign(const BinaryOperator *BO) { 13620 SequenceTree::Seq RHSRegion; 13621 SequenceTree::Seq LHSRegion; 13622 if (SemaRef.getLangOpts().CPlusPlus17) { 13623 RHSRegion = Tree.allocate(Region); 13624 LHSRegion = Tree.allocate(Region); 13625 } else { 13626 RHSRegion = Region; 13627 LHSRegion = Region; 13628 } 13629 SequenceTree::Seq OldRegion = Region; 13630 13631 // C++11 [expr.ass]p1: 13632 // [...] the assignment is sequenced after the value computation 13633 // of the right and left operands, [...] 13634 // 13635 // so check it before inspecting the operands and update the 13636 // map afterwards. 13637 Object O = getObject(BO->getLHS(), /*Mod=*/true); 13638 if (O) 13639 notePreMod(O, BO); 13640 13641 if (SemaRef.getLangOpts().CPlusPlus17) { 13642 // C++17 [expr.ass]p1: 13643 // [...] The right operand is sequenced before the left operand. [...] 13644 { 13645 SequencedSubexpression SeqBefore(*this); 13646 Region = RHSRegion; 13647 Visit(BO->getRHS()); 13648 } 13649 13650 Region = LHSRegion; 13651 Visit(BO->getLHS()); 13652 13653 if (O && isa<CompoundAssignOperator>(BO)) 13654 notePostUse(O, BO); 13655 13656 } else { 13657 // C++11 does not specify any sequencing between the LHS and RHS. 13658 Region = LHSRegion; 13659 Visit(BO->getLHS()); 13660 13661 if (O && isa<CompoundAssignOperator>(BO)) 13662 notePostUse(O, BO); 13663 13664 Region = RHSRegion; 13665 Visit(BO->getRHS()); 13666 } 13667 13668 // C++11 [expr.ass]p1: 13669 // the assignment is sequenced [...] before the value computation of the 13670 // assignment expression. 13671 // C11 6.5.16/3 has no such rule. 13672 Region = OldRegion; 13673 if (O) 13674 notePostMod(O, BO, 13675 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13676 : UK_ModAsSideEffect); 13677 if (SemaRef.getLangOpts().CPlusPlus17) { 13678 Tree.merge(RHSRegion); 13679 Tree.merge(LHSRegion); 13680 } 13681 } 13682 13683 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 13684 VisitBinAssign(CAO); 13685 } 13686 13687 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13688 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13689 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 13690 Object O = getObject(UO->getSubExpr(), true); 13691 if (!O) 13692 return VisitExpr(UO); 13693 13694 notePreMod(O, UO); 13695 Visit(UO->getSubExpr()); 13696 // C++11 [expr.pre.incr]p1: 13697 // the expression ++x is equivalent to x+=1 13698 notePostMod(O, UO, 13699 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13700 : UK_ModAsSideEffect); 13701 } 13702 13703 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13704 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13705 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 13706 Object O = getObject(UO->getSubExpr(), true); 13707 if (!O) 13708 return VisitExpr(UO); 13709 13710 notePreMod(O, UO); 13711 Visit(UO->getSubExpr()); 13712 notePostMod(O, UO, UK_ModAsSideEffect); 13713 } 13714 13715 void VisitBinLOr(const BinaryOperator *BO) { 13716 // C++11 [expr.log.or]p2: 13717 // If the second expression is evaluated, every value computation and 13718 // side effect associated with the first expression is sequenced before 13719 // every value computation and side effect associated with the 13720 // second expression. 13721 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13722 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13723 SequenceTree::Seq OldRegion = Region; 13724 13725 EvaluationTracker Eval(*this); 13726 { 13727 SequencedSubexpression Sequenced(*this); 13728 Region = LHSRegion; 13729 Visit(BO->getLHS()); 13730 } 13731 13732 // C++11 [expr.log.or]p1: 13733 // [...] the second operand is not evaluated if the first operand 13734 // evaluates to true. 13735 bool EvalResult = false; 13736 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13737 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 13738 if (ShouldVisitRHS) { 13739 Region = RHSRegion; 13740 Visit(BO->getRHS()); 13741 } 13742 13743 Region = OldRegion; 13744 Tree.merge(LHSRegion); 13745 Tree.merge(RHSRegion); 13746 } 13747 13748 void VisitBinLAnd(const BinaryOperator *BO) { 13749 // C++11 [expr.log.and]p2: 13750 // If the second expression is evaluated, every value computation and 13751 // side effect associated with the first expression is sequenced before 13752 // every value computation and side effect associated with the 13753 // second expression. 13754 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13755 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13756 SequenceTree::Seq OldRegion = Region; 13757 13758 EvaluationTracker Eval(*this); 13759 { 13760 SequencedSubexpression Sequenced(*this); 13761 Region = LHSRegion; 13762 Visit(BO->getLHS()); 13763 } 13764 13765 // C++11 [expr.log.and]p1: 13766 // [...] the second operand is not evaluated if the first operand is false. 13767 bool EvalResult = false; 13768 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13769 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 13770 if (ShouldVisitRHS) { 13771 Region = RHSRegion; 13772 Visit(BO->getRHS()); 13773 } 13774 13775 Region = OldRegion; 13776 Tree.merge(LHSRegion); 13777 Tree.merge(RHSRegion); 13778 } 13779 13780 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 13781 // C++11 [expr.cond]p1: 13782 // [...] Every value computation and side effect associated with the first 13783 // expression is sequenced before every value computation and side effect 13784 // associated with the second or third expression. 13785 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 13786 13787 // No sequencing is specified between the true and false expression. 13788 // However since exactly one of both is going to be evaluated we can 13789 // consider them to be sequenced. This is needed to avoid warning on 13790 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 13791 // both the true and false expressions because we can't evaluate x. 13792 // This will still allow us to detect an expression like (pre C++17) 13793 // "(x ? y += 1 : y += 2) = y". 13794 // 13795 // We don't wrap the visitation of the true and false expression with 13796 // SequencedSubexpression because we don't want to downgrade modifications 13797 // as side effect in the true and false expressions after the visition 13798 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 13799 // not warn between the two "y++", but we should warn between the "y++" 13800 // and the "y". 13801 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 13802 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 13803 SequenceTree::Seq OldRegion = Region; 13804 13805 EvaluationTracker Eval(*this); 13806 { 13807 SequencedSubexpression Sequenced(*this); 13808 Region = ConditionRegion; 13809 Visit(CO->getCond()); 13810 } 13811 13812 // C++11 [expr.cond]p1: 13813 // [...] The first expression is contextually converted to bool (Clause 4). 13814 // It is evaluated and if it is true, the result of the conditional 13815 // expression is the value of the second expression, otherwise that of the 13816 // third expression. Only one of the second and third expressions is 13817 // evaluated. [...] 13818 bool EvalResult = false; 13819 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 13820 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 13821 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 13822 if (ShouldVisitTrueExpr) { 13823 Region = TrueRegion; 13824 Visit(CO->getTrueExpr()); 13825 } 13826 if (ShouldVisitFalseExpr) { 13827 Region = FalseRegion; 13828 Visit(CO->getFalseExpr()); 13829 } 13830 13831 Region = OldRegion; 13832 Tree.merge(ConditionRegion); 13833 Tree.merge(TrueRegion); 13834 Tree.merge(FalseRegion); 13835 } 13836 13837 void VisitCallExpr(const CallExpr *CE) { 13838 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 13839 13840 if (CE->isUnevaluatedBuiltinCall(Context)) 13841 return; 13842 13843 // C++11 [intro.execution]p15: 13844 // When calling a function [...], every value computation and side effect 13845 // associated with any argument expression, or with the postfix expression 13846 // designating the called function, is sequenced before execution of every 13847 // expression or statement in the body of the function [and thus before 13848 // the value computation of its result]. 13849 SequencedSubexpression Sequenced(*this); 13850 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 13851 // C++17 [expr.call]p5 13852 // The postfix-expression is sequenced before each expression in the 13853 // expression-list and any default argument. [...] 13854 SequenceTree::Seq CalleeRegion; 13855 SequenceTree::Seq OtherRegion; 13856 if (SemaRef.getLangOpts().CPlusPlus17) { 13857 CalleeRegion = Tree.allocate(Region); 13858 OtherRegion = Tree.allocate(Region); 13859 } else { 13860 CalleeRegion = Region; 13861 OtherRegion = Region; 13862 } 13863 SequenceTree::Seq OldRegion = Region; 13864 13865 // Visit the callee expression first. 13866 Region = CalleeRegion; 13867 if (SemaRef.getLangOpts().CPlusPlus17) { 13868 SequencedSubexpression Sequenced(*this); 13869 Visit(CE->getCallee()); 13870 } else { 13871 Visit(CE->getCallee()); 13872 } 13873 13874 // Then visit the argument expressions. 13875 Region = OtherRegion; 13876 for (const Expr *Argument : CE->arguments()) 13877 Visit(Argument); 13878 13879 Region = OldRegion; 13880 if (SemaRef.getLangOpts().CPlusPlus17) { 13881 Tree.merge(CalleeRegion); 13882 Tree.merge(OtherRegion); 13883 } 13884 }); 13885 } 13886 13887 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 13888 // C++17 [over.match.oper]p2: 13889 // [...] the operator notation is first transformed to the equivalent 13890 // function-call notation as summarized in Table 12 (where @ denotes one 13891 // of the operators covered in the specified subclause). However, the 13892 // operands are sequenced in the order prescribed for the built-in 13893 // operator (Clause 8). 13894 // 13895 // From the above only overloaded binary operators and overloaded call 13896 // operators have sequencing rules in C++17 that we need to handle 13897 // separately. 13898 if (!SemaRef.getLangOpts().CPlusPlus17 || 13899 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 13900 return VisitCallExpr(CXXOCE); 13901 13902 enum { 13903 NoSequencing, 13904 LHSBeforeRHS, 13905 RHSBeforeLHS, 13906 LHSBeforeRest 13907 } SequencingKind; 13908 switch (CXXOCE->getOperator()) { 13909 case OO_Equal: 13910 case OO_PlusEqual: 13911 case OO_MinusEqual: 13912 case OO_StarEqual: 13913 case OO_SlashEqual: 13914 case OO_PercentEqual: 13915 case OO_CaretEqual: 13916 case OO_AmpEqual: 13917 case OO_PipeEqual: 13918 case OO_LessLessEqual: 13919 case OO_GreaterGreaterEqual: 13920 SequencingKind = RHSBeforeLHS; 13921 break; 13922 13923 case OO_LessLess: 13924 case OO_GreaterGreater: 13925 case OO_AmpAmp: 13926 case OO_PipePipe: 13927 case OO_Comma: 13928 case OO_ArrowStar: 13929 case OO_Subscript: 13930 SequencingKind = LHSBeforeRHS; 13931 break; 13932 13933 case OO_Call: 13934 SequencingKind = LHSBeforeRest; 13935 break; 13936 13937 default: 13938 SequencingKind = NoSequencing; 13939 break; 13940 } 13941 13942 if (SequencingKind == NoSequencing) 13943 return VisitCallExpr(CXXOCE); 13944 13945 // This is a call, so all subexpressions are sequenced before the result. 13946 SequencedSubexpression Sequenced(*this); 13947 13948 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 13949 assert(SemaRef.getLangOpts().CPlusPlus17 && 13950 "Should only get there with C++17 and above!"); 13951 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 13952 "Should only get there with an overloaded binary operator" 13953 " or an overloaded call operator!"); 13954 13955 if (SequencingKind == LHSBeforeRest) { 13956 assert(CXXOCE->getOperator() == OO_Call && 13957 "We should only have an overloaded call operator here!"); 13958 13959 // This is very similar to VisitCallExpr, except that we only have the 13960 // C++17 case. The postfix-expression is the first argument of the 13961 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 13962 // are in the following arguments. 13963 // 13964 // Note that we intentionally do not visit the callee expression since 13965 // it is just a decayed reference to a function. 13966 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 13967 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 13968 SequenceTree::Seq OldRegion = Region; 13969 13970 assert(CXXOCE->getNumArgs() >= 1 && 13971 "An overloaded call operator must have at least one argument" 13972 " for the postfix-expression!"); 13973 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 13974 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 13975 CXXOCE->getNumArgs() - 1); 13976 13977 // Visit the postfix-expression first. 13978 { 13979 Region = PostfixExprRegion; 13980 SequencedSubexpression Sequenced(*this); 13981 Visit(PostfixExpr); 13982 } 13983 13984 // Then visit the argument expressions. 13985 Region = ArgsRegion; 13986 for (const Expr *Arg : Args) 13987 Visit(Arg); 13988 13989 Region = OldRegion; 13990 Tree.merge(PostfixExprRegion); 13991 Tree.merge(ArgsRegion); 13992 } else { 13993 assert(CXXOCE->getNumArgs() == 2 && 13994 "Should only have two arguments here!"); 13995 assert((SequencingKind == LHSBeforeRHS || 13996 SequencingKind == RHSBeforeLHS) && 13997 "Unexpected sequencing kind!"); 13998 13999 // We do not visit the callee expression since it is just a decayed 14000 // reference to a function. 14001 const Expr *E1 = CXXOCE->getArg(0); 14002 const Expr *E2 = CXXOCE->getArg(1); 14003 if (SequencingKind == RHSBeforeLHS) 14004 std::swap(E1, E2); 14005 14006 return VisitSequencedExpressions(E1, E2); 14007 } 14008 }); 14009 } 14010 14011 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 14012 // This is a call, so all subexpressions are sequenced before the result. 14013 SequencedSubexpression Sequenced(*this); 14014 14015 if (!CCE->isListInitialization()) 14016 return VisitExpr(CCE); 14017 14018 // In C++11, list initializations are sequenced. 14019 SmallVector<SequenceTree::Seq, 32> Elts; 14020 SequenceTree::Seq Parent = Region; 14021 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 14022 E = CCE->arg_end(); 14023 I != E; ++I) { 14024 Region = Tree.allocate(Parent); 14025 Elts.push_back(Region); 14026 Visit(*I); 14027 } 14028 14029 // Forget that the initializers are sequenced. 14030 Region = Parent; 14031 for (unsigned I = 0; I < Elts.size(); ++I) 14032 Tree.merge(Elts[I]); 14033 } 14034 14035 void VisitInitListExpr(const InitListExpr *ILE) { 14036 if (!SemaRef.getLangOpts().CPlusPlus11) 14037 return VisitExpr(ILE); 14038 14039 // In C++11, list initializations are sequenced. 14040 SmallVector<SequenceTree::Seq, 32> Elts; 14041 SequenceTree::Seq Parent = Region; 14042 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 14043 const Expr *E = ILE->getInit(I); 14044 if (!E) 14045 continue; 14046 Region = Tree.allocate(Parent); 14047 Elts.push_back(Region); 14048 Visit(E); 14049 } 14050 14051 // Forget that the initializers are sequenced. 14052 Region = Parent; 14053 for (unsigned I = 0; I < Elts.size(); ++I) 14054 Tree.merge(Elts[I]); 14055 } 14056 }; 14057 14058 } // namespace 14059 14060 void Sema::CheckUnsequencedOperations(const Expr *E) { 14061 SmallVector<const Expr *, 8> WorkList; 14062 WorkList.push_back(E); 14063 while (!WorkList.empty()) { 14064 const Expr *Item = WorkList.pop_back_val(); 14065 SequenceChecker(*this, Item, WorkList); 14066 } 14067 } 14068 14069 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 14070 bool IsConstexpr) { 14071 llvm::SaveAndRestore<bool> ConstantContext( 14072 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 14073 CheckImplicitConversions(E, CheckLoc); 14074 if (!E->isInstantiationDependent()) 14075 CheckUnsequencedOperations(E); 14076 if (!IsConstexpr && !E->isValueDependent()) 14077 CheckForIntOverflow(E); 14078 DiagnoseMisalignedMembers(); 14079 } 14080 14081 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 14082 FieldDecl *BitField, 14083 Expr *Init) { 14084 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 14085 } 14086 14087 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 14088 SourceLocation Loc) { 14089 if (!PType->isVariablyModifiedType()) 14090 return; 14091 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 14092 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 14093 return; 14094 } 14095 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 14096 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 14097 return; 14098 } 14099 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 14100 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 14101 return; 14102 } 14103 14104 const ArrayType *AT = S.Context.getAsArrayType(PType); 14105 if (!AT) 14106 return; 14107 14108 if (AT->getSizeModifier() != ArrayType::Star) { 14109 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 14110 return; 14111 } 14112 14113 S.Diag(Loc, diag::err_array_star_in_function_definition); 14114 } 14115 14116 /// CheckParmsForFunctionDef - Check that the parameters of the given 14117 /// function are appropriate for the definition of a function. This 14118 /// takes care of any checks that cannot be performed on the 14119 /// declaration itself, e.g., that the types of each of the function 14120 /// parameters are complete. 14121 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 14122 bool CheckParameterNames) { 14123 bool HasInvalidParm = false; 14124 for (ParmVarDecl *Param : Parameters) { 14125 // C99 6.7.5.3p4: the parameters in a parameter type list in a 14126 // function declarator that is part of a function definition of 14127 // that function shall not have incomplete type. 14128 // 14129 // This is also C++ [dcl.fct]p6. 14130 if (!Param->isInvalidDecl() && 14131 RequireCompleteType(Param->getLocation(), Param->getType(), 14132 diag::err_typecheck_decl_incomplete_type)) { 14133 Param->setInvalidDecl(); 14134 HasInvalidParm = true; 14135 } 14136 14137 // C99 6.9.1p5: If the declarator includes a parameter type list, the 14138 // declaration of each parameter shall include an identifier. 14139 if (CheckParameterNames && Param->getIdentifier() == nullptr && 14140 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 14141 // Diagnose this as an extension in C17 and earlier. 14142 if (!getLangOpts().C2x) 14143 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 14144 } 14145 14146 // C99 6.7.5.3p12: 14147 // If the function declarator is not part of a definition of that 14148 // function, parameters may have incomplete type and may use the [*] 14149 // notation in their sequences of declarator specifiers to specify 14150 // variable length array types. 14151 QualType PType = Param->getOriginalType(); 14152 // FIXME: This diagnostic should point the '[*]' if source-location 14153 // information is added for it. 14154 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 14155 14156 // If the parameter is a c++ class type and it has to be destructed in the 14157 // callee function, declare the destructor so that it can be called by the 14158 // callee function. Do not perform any direct access check on the dtor here. 14159 if (!Param->isInvalidDecl()) { 14160 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 14161 if (!ClassDecl->isInvalidDecl() && 14162 !ClassDecl->hasIrrelevantDestructor() && 14163 !ClassDecl->isDependentContext() && 14164 ClassDecl->isParamDestroyedInCallee()) { 14165 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 14166 MarkFunctionReferenced(Param->getLocation(), Destructor); 14167 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 14168 } 14169 } 14170 } 14171 14172 // Parameters with the pass_object_size attribute only need to be marked 14173 // constant at function definitions. Because we lack information about 14174 // whether we're on a declaration or definition when we're instantiating the 14175 // attribute, we need to check for constness here. 14176 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 14177 if (!Param->getType().isConstQualified()) 14178 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 14179 << Attr->getSpelling() << 1; 14180 14181 // Check for parameter names shadowing fields from the class. 14182 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 14183 // The owning context for the parameter should be the function, but we 14184 // want to see if this function's declaration context is a record. 14185 DeclContext *DC = Param->getDeclContext(); 14186 if (DC && DC->isFunctionOrMethod()) { 14187 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 14188 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 14189 RD, /*DeclIsField*/ false); 14190 } 14191 } 14192 } 14193 14194 return HasInvalidParm; 14195 } 14196 14197 Optional<std::pair<CharUnits, CharUnits>> 14198 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 14199 14200 /// Compute the alignment and offset of the base class object given the 14201 /// derived-to-base cast expression and the alignment and offset of the derived 14202 /// class object. 14203 static std::pair<CharUnits, CharUnits> 14204 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 14205 CharUnits BaseAlignment, CharUnits Offset, 14206 ASTContext &Ctx) { 14207 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 14208 ++PathI) { 14209 const CXXBaseSpecifier *Base = *PathI; 14210 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 14211 if (Base->isVirtual()) { 14212 // The complete object may have a lower alignment than the non-virtual 14213 // alignment of the base, in which case the base may be misaligned. Choose 14214 // the smaller of the non-virtual alignment and BaseAlignment, which is a 14215 // conservative lower bound of the complete object alignment. 14216 CharUnits NonVirtualAlignment = 14217 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 14218 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 14219 Offset = CharUnits::Zero(); 14220 } else { 14221 const ASTRecordLayout &RL = 14222 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 14223 Offset += RL.getBaseClassOffset(BaseDecl); 14224 } 14225 DerivedType = Base->getType(); 14226 } 14227 14228 return std::make_pair(BaseAlignment, Offset); 14229 } 14230 14231 /// Compute the alignment and offset of a binary additive operator. 14232 static Optional<std::pair<CharUnits, CharUnits>> 14233 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 14234 bool IsSub, ASTContext &Ctx) { 14235 QualType PointeeType = PtrE->getType()->getPointeeType(); 14236 14237 if (!PointeeType->isConstantSizeType()) 14238 return llvm::None; 14239 14240 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 14241 14242 if (!P) 14243 return llvm::None; 14244 14245 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 14246 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 14247 CharUnits Offset = EltSize * IdxRes->getExtValue(); 14248 if (IsSub) 14249 Offset = -Offset; 14250 return std::make_pair(P->first, P->second + Offset); 14251 } 14252 14253 // If the integer expression isn't a constant expression, compute the lower 14254 // bound of the alignment using the alignment and offset of the pointer 14255 // expression and the element size. 14256 return std::make_pair( 14257 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 14258 CharUnits::Zero()); 14259 } 14260 14261 /// This helper function takes an lvalue expression and returns the alignment of 14262 /// a VarDecl and a constant offset from the VarDecl. 14263 Optional<std::pair<CharUnits, CharUnits>> 14264 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 14265 E = E->IgnoreParens(); 14266 switch (E->getStmtClass()) { 14267 default: 14268 break; 14269 case Stmt::CStyleCastExprClass: 14270 case Stmt::CXXStaticCastExprClass: 14271 case Stmt::ImplicitCastExprClass: { 14272 auto *CE = cast<CastExpr>(E); 14273 const Expr *From = CE->getSubExpr(); 14274 switch (CE->getCastKind()) { 14275 default: 14276 break; 14277 case CK_NoOp: 14278 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14279 case CK_UncheckedDerivedToBase: 14280 case CK_DerivedToBase: { 14281 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14282 if (!P) 14283 break; 14284 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 14285 P->second, Ctx); 14286 } 14287 } 14288 break; 14289 } 14290 case Stmt::ArraySubscriptExprClass: { 14291 auto *ASE = cast<ArraySubscriptExpr>(E); 14292 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 14293 false, Ctx); 14294 } 14295 case Stmt::DeclRefExprClass: { 14296 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 14297 // FIXME: If VD is captured by copy or is an escaping __block variable, 14298 // use the alignment of VD's type. 14299 if (!VD->getType()->isReferenceType()) 14300 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 14301 if (VD->hasInit()) 14302 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 14303 } 14304 break; 14305 } 14306 case Stmt::MemberExprClass: { 14307 auto *ME = cast<MemberExpr>(E); 14308 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 14309 if (!FD || FD->getType()->isReferenceType()) 14310 break; 14311 Optional<std::pair<CharUnits, CharUnits>> P; 14312 if (ME->isArrow()) 14313 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 14314 else 14315 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 14316 if (!P) 14317 break; 14318 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 14319 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 14320 return std::make_pair(P->first, 14321 P->second + CharUnits::fromQuantity(Offset)); 14322 } 14323 case Stmt::UnaryOperatorClass: { 14324 auto *UO = cast<UnaryOperator>(E); 14325 switch (UO->getOpcode()) { 14326 default: 14327 break; 14328 case UO_Deref: 14329 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 14330 } 14331 break; 14332 } 14333 case Stmt::BinaryOperatorClass: { 14334 auto *BO = cast<BinaryOperator>(E); 14335 auto Opcode = BO->getOpcode(); 14336 switch (Opcode) { 14337 default: 14338 break; 14339 case BO_Comma: 14340 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 14341 } 14342 break; 14343 } 14344 } 14345 return llvm::None; 14346 } 14347 14348 /// This helper function takes a pointer expression and returns the alignment of 14349 /// a VarDecl and a constant offset from the VarDecl. 14350 Optional<std::pair<CharUnits, CharUnits>> 14351 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 14352 E = E->IgnoreParens(); 14353 switch (E->getStmtClass()) { 14354 default: 14355 break; 14356 case Stmt::CStyleCastExprClass: 14357 case Stmt::CXXStaticCastExprClass: 14358 case Stmt::ImplicitCastExprClass: { 14359 auto *CE = cast<CastExpr>(E); 14360 const Expr *From = CE->getSubExpr(); 14361 switch (CE->getCastKind()) { 14362 default: 14363 break; 14364 case CK_NoOp: 14365 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14366 case CK_ArrayToPointerDecay: 14367 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14368 case CK_UncheckedDerivedToBase: 14369 case CK_DerivedToBase: { 14370 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14371 if (!P) 14372 break; 14373 return getDerivedToBaseAlignmentAndOffset( 14374 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 14375 } 14376 } 14377 break; 14378 } 14379 case Stmt::CXXThisExprClass: { 14380 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 14381 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 14382 return std::make_pair(Alignment, CharUnits::Zero()); 14383 } 14384 case Stmt::UnaryOperatorClass: { 14385 auto *UO = cast<UnaryOperator>(E); 14386 if (UO->getOpcode() == UO_AddrOf) 14387 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 14388 break; 14389 } 14390 case Stmt::BinaryOperatorClass: { 14391 auto *BO = cast<BinaryOperator>(E); 14392 auto Opcode = BO->getOpcode(); 14393 switch (Opcode) { 14394 default: 14395 break; 14396 case BO_Add: 14397 case BO_Sub: { 14398 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 14399 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 14400 std::swap(LHS, RHS); 14401 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 14402 Ctx); 14403 } 14404 case BO_Comma: 14405 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 14406 } 14407 break; 14408 } 14409 } 14410 return llvm::None; 14411 } 14412 14413 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 14414 // See if we can compute the alignment of a VarDecl and an offset from it. 14415 Optional<std::pair<CharUnits, CharUnits>> P = 14416 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 14417 14418 if (P) 14419 return P->first.alignmentAtOffset(P->second); 14420 14421 // If that failed, return the type's alignment. 14422 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 14423 } 14424 14425 /// CheckCastAlign - Implements -Wcast-align, which warns when a 14426 /// pointer cast increases the alignment requirements. 14427 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 14428 // This is actually a lot of work to potentially be doing on every 14429 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 14430 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 14431 return; 14432 14433 // Ignore dependent types. 14434 if (T->isDependentType() || Op->getType()->isDependentType()) 14435 return; 14436 14437 // Require that the destination be a pointer type. 14438 const PointerType *DestPtr = T->getAs<PointerType>(); 14439 if (!DestPtr) return; 14440 14441 // If the destination has alignment 1, we're done. 14442 QualType DestPointee = DestPtr->getPointeeType(); 14443 if (DestPointee->isIncompleteType()) return; 14444 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 14445 if (DestAlign.isOne()) return; 14446 14447 // Require that the source be a pointer type. 14448 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 14449 if (!SrcPtr) return; 14450 QualType SrcPointee = SrcPtr->getPointeeType(); 14451 14452 // Explicitly allow casts from cv void*. We already implicitly 14453 // allowed casts to cv void*, since they have alignment 1. 14454 // Also allow casts involving incomplete types, which implicitly 14455 // includes 'void'. 14456 if (SrcPointee->isIncompleteType()) return; 14457 14458 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 14459 14460 if (SrcAlign >= DestAlign) return; 14461 14462 Diag(TRange.getBegin(), diag::warn_cast_align) 14463 << Op->getType() << T 14464 << static_cast<unsigned>(SrcAlign.getQuantity()) 14465 << static_cast<unsigned>(DestAlign.getQuantity()) 14466 << TRange << Op->getSourceRange(); 14467 } 14468 14469 /// Check whether this array fits the idiom of a size-one tail padded 14470 /// array member of a struct. 14471 /// 14472 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 14473 /// commonly used to emulate flexible arrays in C89 code. 14474 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 14475 const NamedDecl *ND) { 14476 if (Size != 1 || !ND) return false; 14477 14478 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 14479 if (!FD) return false; 14480 14481 // Don't consider sizes resulting from macro expansions or template argument 14482 // substitution to form C89 tail-padded arrays. 14483 14484 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 14485 while (TInfo) { 14486 TypeLoc TL = TInfo->getTypeLoc(); 14487 // Look through typedefs. 14488 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 14489 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 14490 TInfo = TDL->getTypeSourceInfo(); 14491 continue; 14492 } 14493 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 14494 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 14495 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 14496 return false; 14497 } 14498 break; 14499 } 14500 14501 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 14502 if (!RD) return false; 14503 if (RD->isUnion()) return false; 14504 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 14505 if (!CRD->isStandardLayout()) return false; 14506 } 14507 14508 // See if this is the last field decl in the record. 14509 const Decl *D = FD; 14510 while ((D = D->getNextDeclInContext())) 14511 if (isa<FieldDecl>(D)) 14512 return false; 14513 return true; 14514 } 14515 14516 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 14517 const ArraySubscriptExpr *ASE, 14518 bool AllowOnePastEnd, bool IndexNegated) { 14519 // Already diagnosed by the constant evaluator. 14520 if (isConstantEvaluated()) 14521 return; 14522 14523 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 14524 if (IndexExpr->isValueDependent()) 14525 return; 14526 14527 const Type *EffectiveType = 14528 BaseExpr->getType()->getPointeeOrArrayElementType(); 14529 BaseExpr = BaseExpr->IgnoreParenCasts(); 14530 const ConstantArrayType *ArrayTy = 14531 Context.getAsConstantArrayType(BaseExpr->getType()); 14532 14533 if (!ArrayTy) 14534 return; 14535 14536 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 14537 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 14538 return; 14539 14540 Expr::EvalResult Result; 14541 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 14542 return; 14543 14544 llvm::APSInt index = Result.Val.getInt(); 14545 if (IndexNegated) 14546 index = -index; 14547 14548 const NamedDecl *ND = nullptr; 14549 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14550 ND = DRE->getDecl(); 14551 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14552 ND = ME->getMemberDecl(); 14553 14554 if (index.isUnsigned() || !index.isNegative()) { 14555 // It is possible that the type of the base expression after 14556 // IgnoreParenCasts is incomplete, even though the type of the base 14557 // expression before IgnoreParenCasts is complete (see PR39746 for an 14558 // example). In this case we have no information about whether the array 14559 // access exceeds the array bounds. However we can still diagnose an array 14560 // access which precedes the array bounds. 14561 if (BaseType->isIncompleteType()) 14562 return; 14563 14564 llvm::APInt size = ArrayTy->getSize(); 14565 if (!size.isStrictlyPositive()) 14566 return; 14567 14568 if (BaseType != EffectiveType) { 14569 // Make sure we're comparing apples to apples when comparing index to size 14570 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 14571 uint64_t array_typesize = Context.getTypeSize(BaseType); 14572 // Handle ptrarith_typesize being zero, such as when casting to void* 14573 if (!ptrarith_typesize) ptrarith_typesize = 1; 14574 if (ptrarith_typesize != array_typesize) { 14575 // There's a cast to a different size type involved 14576 uint64_t ratio = array_typesize / ptrarith_typesize; 14577 // TODO: Be smarter about handling cases where array_typesize is not a 14578 // multiple of ptrarith_typesize 14579 if (ptrarith_typesize * ratio == array_typesize) 14580 size *= llvm::APInt(size.getBitWidth(), ratio); 14581 } 14582 } 14583 14584 if (size.getBitWidth() > index.getBitWidth()) 14585 index = index.zext(size.getBitWidth()); 14586 else if (size.getBitWidth() < index.getBitWidth()) 14587 size = size.zext(index.getBitWidth()); 14588 14589 // For array subscripting the index must be less than size, but for pointer 14590 // arithmetic also allow the index (offset) to be equal to size since 14591 // computing the next address after the end of the array is legal and 14592 // commonly done e.g. in C++ iterators and range-based for loops. 14593 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 14594 return; 14595 14596 // Also don't warn for arrays of size 1 which are members of some 14597 // structure. These are often used to approximate flexible arrays in C89 14598 // code. 14599 if (IsTailPaddedMemberArray(*this, size, ND)) 14600 return; 14601 14602 // Suppress the warning if the subscript expression (as identified by the 14603 // ']' location) and the index expression are both from macro expansions 14604 // within a system header. 14605 if (ASE) { 14606 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 14607 ASE->getRBracketLoc()); 14608 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 14609 SourceLocation IndexLoc = 14610 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 14611 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 14612 return; 14613 } 14614 } 14615 14616 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 14617 if (ASE) 14618 DiagID = diag::warn_array_index_exceeds_bounds; 14619 14620 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14621 PDiag(DiagID) << index.toString(10, true) 14622 << size.toString(10, true) 14623 << (unsigned)size.getLimitedValue(~0U) 14624 << IndexExpr->getSourceRange()); 14625 } else { 14626 unsigned DiagID = diag::warn_array_index_precedes_bounds; 14627 if (!ASE) { 14628 DiagID = diag::warn_ptr_arith_precedes_bounds; 14629 if (index.isNegative()) index = -index; 14630 } 14631 14632 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14633 PDiag(DiagID) << index.toString(10, true) 14634 << IndexExpr->getSourceRange()); 14635 } 14636 14637 if (!ND) { 14638 // Try harder to find a NamedDecl to point at in the note. 14639 while (const ArraySubscriptExpr *ASE = 14640 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 14641 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 14642 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14643 ND = DRE->getDecl(); 14644 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14645 ND = ME->getMemberDecl(); 14646 } 14647 14648 if (ND) 14649 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 14650 PDiag(diag::note_array_declared_here) << ND); 14651 } 14652 14653 void Sema::CheckArrayAccess(const Expr *expr) { 14654 int AllowOnePastEnd = 0; 14655 while (expr) { 14656 expr = expr->IgnoreParenImpCasts(); 14657 switch (expr->getStmtClass()) { 14658 case Stmt::ArraySubscriptExprClass: { 14659 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 14660 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 14661 AllowOnePastEnd > 0); 14662 expr = ASE->getBase(); 14663 break; 14664 } 14665 case Stmt::MemberExprClass: { 14666 expr = cast<MemberExpr>(expr)->getBase(); 14667 break; 14668 } 14669 case Stmt::OMPArraySectionExprClass: { 14670 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 14671 if (ASE->getLowerBound()) 14672 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 14673 /*ASE=*/nullptr, AllowOnePastEnd > 0); 14674 return; 14675 } 14676 case Stmt::UnaryOperatorClass: { 14677 // Only unwrap the * and & unary operators 14678 const UnaryOperator *UO = cast<UnaryOperator>(expr); 14679 expr = UO->getSubExpr(); 14680 switch (UO->getOpcode()) { 14681 case UO_AddrOf: 14682 AllowOnePastEnd++; 14683 break; 14684 case UO_Deref: 14685 AllowOnePastEnd--; 14686 break; 14687 default: 14688 return; 14689 } 14690 break; 14691 } 14692 case Stmt::ConditionalOperatorClass: { 14693 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 14694 if (const Expr *lhs = cond->getLHS()) 14695 CheckArrayAccess(lhs); 14696 if (const Expr *rhs = cond->getRHS()) 14697 CheckArrayAccess(rhs); 14698 return; 14699 } 14700 case Stmt::CXXOperatorCallExprClass: { 14701 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 14702 for (const auto *Arg : OCE->arguments()) 14703 CheckArrayAccess(Arg); 14704 return; 14705 } 14706 default: 14707 return; 14708 } 14709 } 14710 } 14711 14712 //===--- CHECK: Objective-C retain cycles ----------------------------------// 14713 14714 namespace { 14715 14716 struct RetainCycleOwner { 14717 VarDecl *Variable = nullptr; 14718 SourceRange Range; 14719 SourceLocation Loc; 14720 bool Indirect = false; 14721 14722 RetainCycleOwner() = default; 14723 14724 void setLocsFrom(Expr *e) { 14725 Loc = e->getExprLoc(); 14726 Range = e->getSourceRange(); 14727 } 14728 }; 14729 14730 } // namespace 14731 14732 /// Consider whether capturing the given variable can possibly lead to 14733 /// a retain cycle. 14734 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 14735 // In ARC, it's captured strongly iff the variable has __strong 14736 // lifetime. In MRR, it's captured strongly if the variable is 14737 // __block and has an appropriate type. 14738 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14739 return false; 14740 14741 owner.Variable = var; 14742 if (ref) 14743 owner.setLocsFrom(ref); 14744 return true; 14745 } 14746 14747 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 14748 while (true) { 14749 e = e->IgnoreParens(); 14750 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 14751 switch (cast->getCastKind()) { 14752 case CK_BitCast: 14753 case CK_LValueBitCast: 14754 case CK_LValueToRValue: 14755 case CK_ARCReclaimReturnedObject: 14756 e = cast->getSubExpr(); 14757 continue; 14758 14759 default: 14760 return false; 14761 } 14762 } 14763 14764 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 14765 ObjCIvarDecl *ivar = ref->getDecl(); 14766 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14767 return false; 14768 14769 // Try to find a retain cycle in the base. 14770 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 14771 return false; 14772 14773 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 14774 owner.Indirect = true; 14775 return true; 14776 } 14777 14778 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 14779 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 14780 if (!var) return false; 14781 return considerVariable(var, ref, owner); 14782 } 14783 14784 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 14785 if (member->isArrow()) return false; 14786 14787 // Don't count this as an indirect ownership. 14788 e = member->getBase(); 14789 continue; 14790 } 14791 14792 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 14793 // Only pay attention to pseudo-objects on property references. 14794 ObjCPropertyRefExpr *pre 14795 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 14796 ->IgnoreParens()); 14797 if (!pre) return false; 14798 if (pre->isImplicitProperty()) return false; 14799 ObjCPropertyDecl *property = pre->getExplicitProperty(); 14800 if (!property->isRetaining() && 14801 !(property->getPropertyIvarDecl() && 14802 property->getPropertyIvarDecl()->getType() 14803 .getObjCLifetime() == Qualifiers::OCL_Strong)) 14804 return false; 14805 14806 owner.Indirect = true; 14807 if (pre->isSuperReceiver()) { 14808 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 14809 if (!owner.Variable) 14810 return false; 14811 owner.Loc = pre->getLocation(); 14812 owner.Range = pre->getSourceRange(); 14813 return true; 14814 } 14815 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 14816 ->getSourceExpr()); 14817 continue; 14818 } 14819 14820 // Array ivars? 14821 14822 return false; 14823 } 14824 } 14825 14826 namespace { 14827 14828 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 14829 ASTContext &Context; 14830 VarDecl *Variable; 14831 Expr *Capturer = nullptr; 14832 bool VarWillBeReased = false; 14833 14834 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 14835 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 14836 Context(Context), Variable(variable) {} 14837 14838 void VisitDeclRefExpr(DeclRefExpr *ref) { 14839 if (ref->getDecl() == Variable && !Capturer) 14840 Capturer = ref; 14841 } 14842 14843 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 14844 if (Capturer) return; 14845 Visit(ref->getBase()); 14846 if (Capturer && ref->isFreeIvar()) 14847 Capturer = ref; 14848 } 14849 14850 void VisitBlockExpr(BlockExpr *block) { 14851 // Look inside nested blocks 14852 if (block->getBlockDecl()->capturesVariable(Variable)) 14853 Visit(block->getBlockDecl()->getBody()); 14854 } 14855 14856 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 14857 if (Capturer) return; 14858 if (OVE->getSourceExpr()) 14859 Visit(OVE->getSourceExpr()); 14860 } 14861 14862 void VisitBinaryOperator(BinaryOperator *BinOp) { 14863 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 14864 return; 14865 Expr *LHS = BinOp->getLHS(); 14866 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 14867 if (DRE->getDecl() != Variable) 14868 return; 14869 if (Expr *RHS = BinOp->getRHS()) { 14870 RHS = RHS->IgnoreParenCasts(); 14871 Optional<llvm::APSInt> Value; 14872 VarWillBeReased = 14873 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 14874 *Value == 0); 14875 } 14876 } 14877 } 14878 }; 14879 14880 } // namespace 14881 14882 /// Check whether the given argument is a block which captures a 14883 /// variable. 14884 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 14885 assert(owner.Variable && owner.Loc.isValid()); 14886 14887 e = e->IgnoreParenCasts(); 14888 14889 // Look through [^{...} copy] and Block_copy(^{...}). 14890 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 14891 Selector Cmd = ME->getSelector(); 14892 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 14893 e = ME->getInstanceReceiver(); 14894 if (!e) 14895 return nullptr; 14896 e = e->IgnoreParenCasts(); 14897 } 14898 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 14899 if (CE->getNumArgs() == 1) { 14900 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 14901 if (Fn) { 14902 const IdentifierInfo *FnI = Fn->getIdentifier(); 14903 if (FnI && FnI->isStr("_Block_copy")) { 14904 e = CE->getArg(0)->IgnoreParenCasts(); 14905 } 14906 } 14907 } 14908 } 14909 14910 BlockExpr *block = dyn_cast<BlockExpr>(e); 14911 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 14912 return nullptr; 14913 14914 FindCaptureVisitor visitor(S.Context, owner.Variable); 14915 visitor.Visit(block->getBlockDecl()->getBody()); 14916 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 14917 } 14918 14919 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 14920 RetainCycleOwner &owner) { 14921 assert(capturer); 14922 assert(owner.Variable && owner.Loc.isValid()); 14923 14924 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 14925 << owner.Variable << capturer->getSourceRange(); 14926 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 14927 << owner.Indirect << owner.Range; 14928 } 14929 14930 /// Check for a keyword selector that starts with the word 'add' or 14931 /// 'set'. 14932 static bool isSetterLikeSelector(Selector sel) { 14933 if (sel.isUnarySelector()) return false; 14934 14935 StringRef str = sel.getNameForSlot(0); 14936 while (!str.empty() && str.front() == '_') str = str.substr(1); 14937 if (str.startswith("set")) 14938 str = str.substr(3); 14939 else if (str.startswith("add")) { 14940 // Specially allow 'addOperationWithBlock:'. 14941 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 14942 return false; 14943 str = str.substr(3); 14944 } 14945 else 14946 return false; 14947 14948 if (str.empty()) return true; 14949 return !isLowercase(str.front()); 14950 } 14951 14952 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 14953 ObjCMessageExpr *Message) { 14954 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 14955 Message->getReceiverInterface(), 14956 NSAPI::ClassId_NSMutableArray); 14957 if (!IsMutableArray) { 14958 return None; 14959 } 14960 14961 Selector Sel = Message->getSelector(); 14962 14963 Optional<NSAPI::NSArrayMethodKind> MKOpt = 14964 S.NSAPIObj->getNSArrayMethodKind(Sel); 14965 if (!MKOpt) { 14966 return None; 14967 } 14968 14969 NSAPI::NSArrayMethodKind MK = *MKOpt; 14970 14971 switch (MK) { 14972 case NSAPI::NSMutableArr_addObject: 14973 case NSAPI::NSMutableArr_insertObjectAtIndex: 14974 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 14975 return 0; 14976 case NSAPI::NSMutableArr_replaceObjectAtIndex: 14977 return 1; 14978 14979 default: 14980 return None; 14981 } 14982 14983 return None; 14984 } 14985 14986 static 14987 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 14988 ObjCMessageExpr *Message) { 14989 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 14990 Message->getReceiverInterface(), 14991 NSAPI::ClassId_NSMutableDictionary); 14992 if (!IsMutableDictionary) { 14993 return None; 14994 } 14995 14996 Selector Sel = Message->getSelector(); 14997 14998 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 14999 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 15000 if (!MKOpt) { 15001 return None; 15002 } 15003 15004 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 15005 15006 switch (MK) { 15007 case NSAPI::NSMutableDict_setObjectForKey: 15008 case NSAPI::NSMutableDict_setValueForKey: 15009 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 15010 return 0; 15011 15012 default: 15013 return None; 15014 } 15015 15016 return None; 15017 } 15018 15019 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 15020 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 15021 Message->getReceiverInterface(), 15022 NSAPI::ClassId_NSMutableSet); 15023 15024 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 15025 Message->getReceiverInterface(), 15026 NSAPI::ClassId_NSMutableOrderedSet); 15027 if (!IsMutableSet && !IsMutableOrderedSet) { 15028 return None; 15029 } 15030 15031 Selector Sel = Message->getSelector(); 15032 15033 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 15034 if (!MKOpt) { 15035 return None; 15036 } 15037 15038 NSAPI::NSSetMethodKind MK = *MKOpt; 15039 15040 switch (MK) { 15041 case NSAPI::NSMutableSet_addObject: 15042 case NSAPI::NSOrderedSet_setObjectAtIndex: 15043 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 15044 case NSAPI::NSOrderedSet_insertObjectAtIndex: 15045 return 0; 15046 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 15047 return 1; 15048 } 15049 15050 return None; 15051 } 15052 15053 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 15054 if (!Message->isInstanceMessage()) { 15055 return; 15056 } 15057 15058 Optional<int> ArgOpt; 15059 15060 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 15061 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 15062 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 15063 return; 15064 } 15065 15066 int ArgIndex = *ArgOpt; 15067 15068 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 15069 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 15070 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 15071 } 15072 15073 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 15074 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15075 if (ArgRE->isObjCSelfExpr()) { 15076 Diag(Message->getSourceRange().getBegin(), 15077 diag::warn_objc_circular_container) 15078 << ArgRE->getDecl() << StringRef("'super'"); 15079 } 15080 } 15081 } else { 15082 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 15083 15084 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 15085 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 15086 } 15087 15088 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 15089 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15090 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 15091 ValueDecl *Decl = ReceiverRE->getDecl(); 15092 Diag(Message->getSourceRange().getBegin(), 15093 diag::warn_objc_circular_container) 15094 << Decl << Decl; 15095 if (!ArgRE->isObjCSelfExpr()) { 15096 Diag(Decl->getLocation(), 15097 diag::note_objc_circular_container_declared_here) 15098 << Decl; 15099 } 15100 } 15101 } 15102 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 15103 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 15104 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 15105 ObjCIvarDecl *Decl = IvarRE->getDecl(); 15106 Diag(Message->getSourceRange().getBegin(), 15107 diag::warn_objc_circular_container) 15108 << Decl << Decl; 15109 Diag(Decl->getLocation(), 15110 diag::note_objc_circular_container_declared_here) 15111 << Decl; 15112 } 15113 } 15114 } 15115 } 15116 } 15117 15118 /// Check a message send to see if it's likely to cause a retain cycle. 15119 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 15120 // Only check instance methods whose selector looks like a setter. 15121 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 15122 return; 15123 15124 // Try to find a variable that the receiver is strongly owned by. 15125 RetainCycleOwner owner; 15126 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 15127 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 15128 return; 15129 } else { 15130 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 15131 owner.Variable = getCurMethodDecl()->getSelfDecl(); 15132 owner.Loc = msg->getSuperLoc(); 15133 owner.Range = msg->getSuperLoc(); 15134 } 15135 15136 // Check whether the receiver is captured by any of the arguments. 15137 const ObjCMethodDecl *MD = msg->getMethodDecl(); 15138 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 15139 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 15140 // noescape blocks should not be retained by the method. 15141 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 15142 continue; 15143 return diagnoseRetainCycle(*this, capturer, owner); 15144 } 15145 } 15146 } 15147 15148 /// Check a property assign to see if it's likely to cause a retain cycle. 15149 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 15150 RetainCycleOwner owner; 15151 if (!findRetainCycleOwner(*this, receiver, owner)) 15152 return; 15153 15154 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 15155 diagnoseRetainCycle(*this, capturer, owner); 15156 } 15157 15158 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 15159 RetainCycleOwner Owner; 15160 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 15161 return; 15162 15163 // Because we don't have an expression for the variable, we have to set the 15164 // location explicitly here. 15165 Owner.Loc = Var->getLocation(); 15166 Owner.Range = Var->getSourceRange(); 15167 15168 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 15169 diagnoseRetainCycle(*this, Capturer, Owner); 15170 } 15171 15172 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 15173 Expr *RHS, bool isProperty) { 15174 // Check if RHS is an Objective-C object literal, which also can get 15175 // immediately zapped in a weak reference. Note that we explicitly 15176 // allow ObjCStringLiterals, since those are designed to never really die. 15177 RHS = RHS->IgnoreParenImpCasts(); 15178 15179 // This enum needs to match with the 'select' in 15180 // warn_objc_arc_literal_assign (off-by-1). 15181 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 15182 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 15183 return false; 15184 15185 S.Diag(Loc, diag::warn_arc_literal_assign) 15186 << (unsigned) Kind 15187 << (isProperty ? 0 : 1) 15188 << RHS->getSourceRange(); 15189 15190 return true; 15191 } 15192 15193 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 15194 Qualifiers::ObjCLifetime LT, 15195 Expr *RHS, bool isProperty) { 15196 // Strip off any implicit cast added to get to the one ARC-specific. 15197 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15198 if (cast->getCastKind() == CK_ARCConsumeObject) { 15199 S.Diag(Loc, diag::warn_arc_retained_assign) 15200 << (LT == Qualifiers::OCL_ExplicitNone) 15201 << (isProperty ? 0 : 1) 15202 << RHS->getSourceRange(); 15203 return true; 15204 } 15205 RHS = cast->getSubExpr(); 15206 } 15207 15208 if (LT == Qualifiers::OCL_Weak && 15209 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 15210 return true; 15211 15212 return false; 15213 } 15214 15215 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 15216 QualType LHS, Expr *RHS) { 15217 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 15218 15219 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 15220 return false; 15221 15222 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 15223 return true; 15224 15225 return false; 15226 } 15227 15228 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 15229 Expr *LHS, Expr *RHS) { 15230 QualType LHSType; 15231 // PropertyRef on LHS type need be directly obtained from 15232 // its declaration as it has a PseudoType. 15233 ObjCPropertyRefExpr *PRE 15234 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 15235 if (PRE && !PRE->isImplicitProperty()) { 15236 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15237 if (PD) 15238 LHSType = PD->getType(); 15239 } 15240 15241 if (LHSType.isNull()) 15242 LHSType = LHS->getType(); 15243 15244 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 15245 15246 if (LT == Qualifiers::OCL_Weak) { 15247 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 15248 getCurFunction()->markSafeWeakUse(LHS); 15249 } 15250 15251 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 15252 return; 15253 15254 // FIXME. Check for other life times. 15255 if (LT != Qualifiers::OCL_None) 15256 return; 15257 15258 if (PRE) { 15259 if (PRE->isImplicitProperty()) 15260 return; 15261 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15262 if (!PD) 15263 return; 15264 15265 unsigned Attributes = PD->getPropertyAttributes(); 15266 if (Attributes & ObjCPropertyAttribute::kind_assign) { 15267 // when 'assign' attribute was not explicitly specified 15268 // by user, ignore it and rely on property type itself 15269 // for lifetime info. 15270 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 15271 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 15272 LHSType->isObjCRetainableType()) 15273 return; 15274 15275 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15276 if (cast->getCastKind() == CK_ARCConsumeObject) { 15277 Diag(Loc, diag::warn_arc_retained_property_assign) 15278 << RHS->getSourceRange(); 15279 return; 15280 } 15281 RHS = cast->getSubExpr(); 15282 } 15283 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 15284 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 15285 return; 15286 } 15287 } 15288 } 15289 15290 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 15291 15292 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 15293 SourceLocation StmtLoc, 15294 const NullStmt *Body) { 15295 // Do not warn if the body is a macro that expands to nothing, e.g: 15296 // 15297 // #define CALL(x) 15298 // if (condition) 15299 // CALL(0); 15300 if (Body->hasLeadingEmptyMacro()) 15301 return false; 15302 15303 // Get line numbers of statement and body. 15304 bool StmtLineInvalid; 15305 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 15306 &StmtLineInvalid); 15307 if (StmtLineInvalid) 15308 return false; 15309 15310 bool BodyLineInvalid; 15311 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 15312 &BodyLineInvalid); 15313 if (BodyLineInvalid) 15314 return false; 15315 15316 // Warn if null statement and body are on the same line. 15317 if (StmtLine != BodyLine) 15318 return false; 15319 15320 return true; 15321 } 15322 15323 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 15324 const Stmt *Body, 15325 unsigned DiagID) { 15326 // Since this is a syntactic check, don't emit diagnostic for template 15327 // instantiations, this just adds noise. 15328 if (CurrentInstantiationScope) 15329 return; 15330 15331 // The body should be a null statement. 15332 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15333 if (!NBody) 15334 return; 15335 15336 // Do the usual checks. 15337 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15338 return; 15339 15340 Diag(NBody->getSemiLoc(), DiagID); 15341 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15342 } 15343 15344 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 15345 const Stmt *PossibleBody) { 15346 assert(!CurrentInstantiationScope); // Ensured by caller 15347 15348 SourceLocation StmtLoc; 15349 const Stmt *Body; 15350 unsigned DiagID; 15351 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 15352 StmtLoc = FS->getRParenLoc(); 15353 Body = FS->getBody(); 15354 DiagID = diag::warn_empty_for_body; 15355 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 15356 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 15357 Body = WS->getBody(); 15358 DiagID = diag::warn_empty_while_body; 15359 } else 15360 return; // Neither `for' nor `while'. 15361 15362 // The body should be a null statement. 15363 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15364 if (!NBody) 15365 return; 15366 15367 // Skip expensive checks if diagnostic is disabled. 15368 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 15369 return; 15370 15371 // Do the usual checks. 15372 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15373 return; 15374 15375 // `for(...);' and `while(...);' are popular idioms, so in order to keep 15376 // noise level low, emit diagnostics only if for/while is followed by a 15377 // CompoundStmt, e.g.: 15378 // for (int i = 0; i < n; i++); 15379 // { 15380 // a(i); 15381 // } 15382 // or if for/while is followed by a statement with more indentation 15383 // than for/while itself: 15384 // for (int i = 0; i < n; i++); 15385 // a(i); 15386 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 15387 if (!ProbableTypo) { 15388 bool BodyColInvalid; 15389 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 15390 PossibleBody->getBeginLoc(), &BodyColInvalid); 15391 if (BodyColInvalid) 15392 return; 15393 15394 bool StmtColInvalid; 15395 unsigned StmtCol = 15396 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 15397 if (StmtColInvalid) 15398 return; 15399 15400 if (BodyCol > StmtCol) 15401 ProbableTypo = true; 15402 } 15403 15404 if (ProbableTypo) { 15405 Diag(NBody->getSemiLoc(), DiagID); 15406 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15407 } 15408 } 15409 15410 //===--- CHECK: Warn on self move with std::move. -------------------------===// 15411 15412 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 15413 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 15414 SourceLocation OpLoc) { 15415 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 15416 return; 15417 15418 if (inTemplateInstantiation()) 15419 return; 15420 15421 // Strip parens and casts away. 15422 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 15423 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 15424 15425 // Check for a call expression 15426 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 15427 if (!CE || CE->getNumArgs() != 1) 15428 return; 15429 15430 // Check for a call to std::move 15431 if (!CE->isCallToStdMove()) 15432 return; 15433 15434 // Get argument from std::move 15435 RHSExpr = CE->getArg(0); 15436 15437 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 15438 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 15439 15440 // Two DeclRefExpr's, check that the decls are the same. 15441 if (LHSDeclRef && RHSDeclRef) { 15442 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15443 return; 15444 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15445 RHSDeclRef->getDecl()->getCanonicalDecl()) 15446 return; 15447 15448 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15449 << LHSExpr->getSourceRange() 15450 << RHSExpr->getSourceRange(); 15451 return; 15452 } 15453 15454 // Member variables require a different approach to check for self moves. 15455 // MemberExpr's are the same if every nested MemberExpr refers to the same 15456 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 15457 // the base Expr's are CXXThisExpr's. 15458 const Expr *LHSBase = LHSExpr; 15459 const Expr *RHSBase = RHSExpr; 15460 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 15461 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 15462 if (!LHSME || !RHSME) 15463 return; 15464 15465 while (LHSME && RHSME) { 15466 if (LHSME->getMemberDecl()->getCanonicalDecl() != 15467 RHSME->getMemberDecl()->getCanonicalDecl()) 15468 return; 15469 15470 LHSBase = LHSME->getBase(); 15471 RHSBase = RHSME->getBase(); 15472 LHSME = dyn_cast<MemberExpr>(LHSBase); 15473 RHSME = dyn_cast<MemberExpr>(RHSBase); 15474 } 15475 15476 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 15477 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 15478 if (LHSDeclRef && RHSDeclRef) { 15479 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15480 return; 15481 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15482 RHSDeclRef->getDecl()->getCanonicalDecl()) 15483 return; 15484 15485 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15486 << LHSExpr->getSourceRange() 15487 << RHSExpr->getSourceRange(); 15488 return; 15489 } 15490 15491 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 15492 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15493 << LHSExpr->getSourceRange() 15494 << RHSExpr->getSourceRange(); 15495 } 15496 15497 //===--- Layout compatibility ----------------------------------------------// 15498 15499 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 15500 15501 /// Check if two enumeration types are layout-compatible. 15502 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 15503 // C++11 [dcl.enum] p8: 15504 // Two enumeration types are layout-compatible if they have the same 15505 // underlying type. 15506 return ED1->isComplete() && ED2->isComplete() && 15507 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 15508 } 15509 15510 /// Check if two fields are layout-compatible. 15511 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 15512 FieldDecl *Field2) { 15513 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 15514 return false; 15515 15516 if (Field1->isBitField() != Field2->isBitField()) 15517 return false; 15518 15519 if (Field1->isBitField()) { 15520 // Make sure that the bit-fields are the same length. 15521 unsigned Bits1 = Field1->getBitWidthValue(C); 15522 unsigned Bits2 = Field2->getBitWidthValue(C); 15523 15524 if (Bits1 != Bits2) 15525 return false; 15526 } 15527 15528 return true; 15529 } 15530 15531 /// Check if two standard-layout structs are layout-compatible. 15532 /// (C++11 [class.mem] p17) 15533 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 15534 RecordDecl *RD2) { 15535 // If both records are C++ classes, check that base classes match. 15536 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 15537 // If one of records is a CXXRecordDecl we are in C++ mode, 15538 // thus the other one is a CXXRecordDecl, too. 15539 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 15540 // Check number of base classes. 15541 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 15542 return false; 15543 15544 // Check the base classes. 15545 for (CXXRecordDecl::base_class_const_iterator 15546 Base1 = D1CXX->bases_begin(), 15547 BaseEnd1 = D1CXX->bases_end(), 15548 Base2 = D2CXX->bases_begin(); 15549 Base1 != BaseEnd1; 15550 ++Base1, ++Base2) { 15551 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 15552 return false; 15553 } 15554 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 15555 // If only RD2 is a C++ class, it should have zero base classes. 15556 if (D2CXX->getNumBases() > 0) 15557 return false; 15558 } 15559 15560 // Check the fields. 15561 RecordDecl::field_iterator Field2 = RD2->field_begin(), 15562 Field2End = RD2->field_end(), 15563 Field1 = RD1->field_begin(), 15564 Field1End = RD1->field_end(); 15565 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 15566 if (!isLayoutCompatible(C, *Field1, *Field2)) 15567 return false; 15568 } 15569 if (Field1 != Field1End || Field2 != Field2End) 15570 return false; 15571 15572 return true; 15573 } 15574 15575 /// Check if two standard-layout unions are layout-compatible. 15576 /// (C++11 [class.mem] p18) 15577 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 15578 RecordDecl *RD2) { 15579 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 15580 for (auto *Field2 : RD2->fields()) 15581 UnmatchedFields.insert(Field2); 15582 15583 for (auto *Field1 : RD1->fields()) { 15584 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 15585 I = UnmatchedFields.begin(), 15586 E = UnmatchedFields.end(); 15587 15588 for ( ; I != E; ++I) { 15589 if (isLayoutCompatible(C, Field1, *I)) { 15590 bool Result = UnmatchedFields.erase(*I); 15591 (void) Result; 15592 assert(Result); 15593 break; 15594 } 15595 } 15596 if (I == E) 15597 return false; 15598 } 15599 15600 return UnmatchedFields.empty(); 15601 } 15602 15603 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 15604 RecordDecl *RD2) { 15605 if (RD1->isUnion() != RD2->isUnion()) 15606 return false; 15607 15608 if (RD1->isUnion()) 15609 return isLayoutCompatibleUnion(C, RD1, RD2); 15610 else 15611 return isLayoutCompatibleStruct(C, RD1, RD2); 15612 } 15613 15614 /// Check if two types are layout-compatible in C++11 sense. 15615 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 15616 if (T1.isNull() || T2.isNull()) 15617 return false; 15618 15619 // C++11 [basic.types] p11: 15620 // If two types T1 and T2 are the same type, then T1 and T2 are 15621 // layout-compatible types. 15622 if (C.hasSameType(T1, T2)) 15623 return true; 15624 15625 T1 = T1.getCanonicalType().getUnqualifiedType(); 15626 T2 = T2.getCanonicalType().getUnqualifiedType(); 15627 15628 const Type::TypeClass TC1 = T1->getTypeClass(); 15629 const Type::TypeClass TC2 = T2->getTypeClass(); 15630 15631 if (TC1 != TC2) 15632 return false; 15633 15634 if (TC1 == Type::Enum) { 15635 return isLayoutCompatible(C, 15636 cast<EnumType>(T1)->getDecl(), 15637 cast<EnumType>(T2)->getDecl()); 15638 } else if (TC1 == Type::Record) { 15639 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 15640 return false; 15641 15642 return isLayoutCompatible(C, 15643 cast<RecordType>(T1)->getDecl(), 15644 cast<RecordType>(T2)->getDecl()); 15645 } 15646 15647 return false; 15648 } 15649 15650 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 15651 15652 /// Given a type tag expression find the type tag itself. 15653 /// 15654 /// \param TypeExpr Type tag expression, as it appears in user's code. 15655 /// 15656 /// \param VD Declaration of an identifier that appears in a type tag. 15657 /// 15658 /// \param MagicValue Type tag magic value. 15659 /// 15660 /// \param isConstantEvaluated wether the evalaution should be performed in 15661 15662 /// constant context. 15663 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 15664 const ValueDecl **VD, uint64_t *MagicValue, 15665 bool isConstantEvaluated) { 15666 while(true) { 15667 if (!TypeExpr) 15668 return false; 15669 15670 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 15671 15672 switch (TypeExpr->getStmtClass()) { 15673 case Stmt::UnaryOperatorClass: { 15674 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 15675 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 15676 TypeExpr = UO->getSubExpr(); 15677 continue; 15678 } 15679 return false; 15680 } 15681 15682 case Stmt::DeclRefExprClass: { 15683 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 15684 *VD = DRE->getDecl(); 15685 return true; 15686 } 15687 15688 case Stmt::IntegerLiteralClass: { 15689 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 15690 llvm::APInt MagicValueAPInt = IL->getValue(); 15691 if (MagicValueAPInt.getActiveBits() <= 64) { 15692 *MagicValue = MagicValueAPInt.getZExtValue(); 15693 return true; 15694 } else 15695 return false; 15696 } 15697 15698 case Stmt::BinaryConditionalOperatorClass: 15699 case Stmt::ConditionalOperatorClass: { 15700 const AbstractConditionalOperator *ACO = 15701 cast<AbstractConditionalOperator>(TypeExpr); 15702 bool Result; 15703 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 15704 isConstantEvaluated)) { 15705 if (Result) 15706 TypeExpr = ACO->getTrueExpr(); 15707 else 15708 TypeExpr = ACO->getFalseExpr(); 15709 continue; 15710 } 15711 return false; 15712 } 15713 15714 case Stmt::BinaryOperatorClass: { 15715 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 15716 if (BO->getOpcode() == BO_Comma) { 15717 TypeExpr = BO->getRHS(); 15718 continue; 15719 } 15720 return false; 15721 } 15722 15723 default: 15724 return false; 15725 } 15726 } 15727 } 15728 15729 /// Retrieve the C type corresponding to type tag TypeExpr. 15730 /// 15731 /// \param TypeExpr Expression that specifies a type tag. 15732 /// 15733 /// \param MagicValues Registered magic values. 15734 /// 15735 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 15736 /// kind. 15737 /// 15738 /// \param TypeInfo Information about the corresponding C type. 15739 /// 15740 /// \param isConstantEvaluated wether the evalaution should be performed in 15741 /// constant context. 15742 /// 15743 /// \returns true if the corresponding C type was found. 15744 static bool GetMatchingCType( 15745 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 15746 const ASTContext &Ctx, 15747 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 15748 *MagicValues, 15749 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 15750 bool isConstantEvaluated) { 15751 FoundWrongKind = false; 15752 15753 // Variable declaration that has type_tag_for_datatype attribute. 15754 const ValueDecl *VD = nullptr; 15755 15756 uint64_t MagicValue; 15757 15758 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 15759 return false; 15760 15761 if (VD) { 15762 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 15763 if (I->getArgumentKind() != ArgumentKind) { 15764 FoundWrongKind = true; 15765 return false; 15766 } 15767 TypeInfo.Type = I->getMatchingCType(); 15768 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 15769 TypeInfo.MustBeNull = I->getMustBeNull(); 15770 return true; 15771 } 15772 return false; 15773 } 15774 15775 if (!MagicValues) 15776 return false; 15777 15778 llvm::DenseMap<Sema::TypeTagMagicValue, 15779 Sema::TypeTagData>::const_iterator I = 15780 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 15781 if (I == MagicValues->end()) 15782 return false; 15783 15784 TypeInfo = I->second; 15785 return true; 15786 } 15787 15788 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 15789 uint64_t MagicValue, QualType Type, 15790 bool LayoutCompatible, 15791 bool MustBeNull) { 15792 if (!TypeTagForDatatypeMagicValues) 15793 TypeTagForDatatypeMagicValues.reset( 15794 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 15795 15796 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 15797 (*TypeTagForDatatypeMagicValues)[Magic] = 15798 TypeTagData(Type, LayoutCompatible, MustBeNull); 15799 } 15800 15801 static bool IsSameCharType(QualType T1, QualType T2) { 15802 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 15803 if (!BT1) 15804 return false; 15805 15806 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 15807 if (!BT2) 15808 return false; 15809 15810 BuiltinType::Kind T1Kind = BT1->getKind(); 15811 BuiltinType::Kind T2Kind = BT2->getKind(); 15812 15813 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 15814 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 15815 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 15816 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 15817 } 15818 15819 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 15820 const ArrayRef<const Expr *> ExprArgs, 15821 SourceLocation CallSiteLoc) { 15822 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 15823 bool IsPointerAttr = Attr->getIsPointer(); 15824 15825 // Retrieve the argument representing the 'type_tag'. 15826 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 15827 if (TypeTagIdxAST >= ExprArgs.size()) { 15828 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15829 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 15830 return; 15831 } 15832 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 15833 bool FoundWrongKind; 15834 TypeTagData TypeInfo; 15835 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 15836 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 15837 TypeInfo, isConstantEvaluated())) { 15838 if (FoundWrongKind) 15839 Diag(TypeTagExpr->getExprLoc(), 15840 diag::warn_type_tag_for_datatype_wrong_kind) 15841 << TypeTagExpr->getSourceRange(); 15842 return; 15843 } 15844 15845 // Retrieve the argument representing the 'arg_idx'. 15846 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 15847 if (ArgumentIdxAST >= ExprArgs.size()) { 15848 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15849 << 1 << Attr->getArgumentIdx().getSourceIndex(); 15850 return; 15851 } 15852 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 15853 if (IsPointerAttr) { 15854 // Skip implicit cast of pointer to `void *' (as a function argument). 15855 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 15856 if (ICE->getType()->isVoidPointerType() && 15857 ICE->getCastKind() == CK_BitCast) 15858 ArgumentExpr = ICE->getSubExpr(); 15859 } 15860 QualType ArgumentType = ArgumentExpr->getType(); 15861 15862 // Passing a `void*' pointer shouldn't trigger a warning. 15863 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 15864 return; 15865 15866 if (TypeInfo.MustBeNull) { 15867 // Type tag with matching void type requires a null pointer. 15868 if (!ArgumentExpr->isNullPointerConstant(Context, 15869 Expr::NPC_ValueDependentIsNotNull)) { 15870 Diag(ArgumentExpr->getExprLoc(), 15871 diag::warn_type_safety_null_pointer_required) 15872 << ArgumentKind->getName() 15873 << ArgumentExpr->getSourceRange() 15874 << TypeTagExpr->getSourceRange(); 15875 } 15876 return; 15877 } 15878 15879 QualType RequiredType = TypeInfo.Type; 15880 if (IsPointerAttr) 15881 RequiredType = Context.getPointerType(RequiredType); 15882 15883 bool mismatch = false; 15884 if (!TypeInfo.LayoutCompatible) { 15885 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 15886 15887 // C++11 [basic.fundamental] p1: 15888 // Plain char, signed char, and unsigned char are three distinct types. 15889 // 15890 // But we treat plain `char' as equivalent to `signed char' or `unsigned 15891 // char' depending on the current char signedness mode. 15892 if (mismatch) 15893 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 15894 RequiredType->getPointeeType())) || 15895 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 15896 mismatch = false; 15897 } else 15898 if (IsPointerAttr) 15899 mismatch = !isLayoutCompatible(Context, 15900 ArgumentType->getPointeeType(), 15901 RequiredType->getPointeeType()); 15902 else 15903 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 15904 15905 if (mismatch) 15906 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 15907 << ArgumentType << ArgumentKind 15908 << TypeInfo.LayoutCompatible << RequiredType 15909 << ArgumentExpr->getSourceRange() 15910 << TypeTagExpr->getSourceRange(); 15911 } 15912 15913 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 15914 CharUnits Alignment) { 15915 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 15916 } 15917 15918 void Sema::DiagnoseMisalignedMembers() { 15919 for (MisalignedMember &m : MisalignedMembers) { 15920 const NamedDecl *ND = m.RD; 15921 if (ND->getName().empty()) { 15922 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 15923 ND = TD; 15924 } 15925 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 15926 << m.MD << ND << m.E->getSourceRange(); 15927 } 15928 MisalignedMembers.clear(); 15929 } 15930 15931 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 15932 E = E->IgnoreParens(); 15933 if (!T->isPointerType() && !T->isIntegerType()) 15934 return; 15935 if (isa<UnaryOperator>(E) && 15936 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 15937 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 15938 if (isa<MemberExpr>(Op)) { 15939 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 15940 if (MA != MisalignedMembers.end() && 15941 (T->isIntegerType() || 15942 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 15943 Context.getTypeAlignInChars( 15944 T->getPointeeType()) <= MA->Alignment)))) 15945 MisalignedMembers.erase(MA); 15946 } 15947 } 15948 } 15949 15950 void Sema::RefersToMemberWithReducedAlignment( 15951 Expr *E, 15952 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 15953 Action) { 15954 const auto *ME = dyn_cast<MemberExpr>(E); 15955 if (!ME) 15956 return; 15957 15958 // No need to check expressions with an __unaligned-qualified type. 15959 if (E->getType().getQualifiers().hasUnaligned()) 15960 return; 15961 15962 // For a chain of MemberExpr like "a.b.c.d" this list 15963 // will keep FieldDecl's like [d, c, b]. 15964 SmallVector<FieldDecl *, 4> ReverseMemberChain; 15965 const MemberExpr *TopME = nullptr; 15966 bool AnyIsPacked = false; 15967 do { 15968 QualType BaseType = ME->getBase()->getType(); 15969 if (BaseType->isDependentType()) 15970 return; 15971 if (ME->isArrow()) 15972 BaseType = BaseType->getPointeeType(); 15973 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 15974 if (RD->isInvalidDecl()) 15975 return; 15976 15977 ValueDecl *MD = ME->getMemberDecl(); 15978 auto *FD = dyn_cast<FieldDecl>(MD); 15979 // We do not care about non-data members. 15980 if (!FD || FD->isInvalidDecl()) 15981 return; 15982 15983 AnyIsPacked = 15984 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 15985 ReverseMemberChain.push_back(FD); 15986 15987 TopME = ME; 15988 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 15989 } while (ME); 15990 assert(TopME && "We did not compute a topmost MemberExpr!"); 15991 15992 // Not the scope of this diagnostic. 15993 if (!AnyIsPacked) 15994 return; 15995 15996 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 15997 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 15998 // TODO: The innermost base of the member expression may be too complicated. 15999 // For now, just disregard these cases. This is left for future 16000 // improvement. 16001 if (!DRE && !isa<CXXThisExpr>(TopBase)) 16002 return; 16003 16004 // Alignment expected by the whole expression. 16005 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 16006 16007 // No need to do anything else with this case. 16008 if (ExpectedAlignment.isOne()) 16009 return; 16010 16011 // Synthesize offset of the whole access. 16012 CharUnits Offset; 16013 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 16014 I++) { 16015 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 16016 } 16017 16018 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 16019 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 16020 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 16021 16022 // The base expression of the innermost MemberExpr may give 16023 // stronger guarantees than the class containing the member. 16024 if (DRE && !TopME->isArrow()) { 16025 const ValueDecl *VD = DRE->getDecl(); 16026 if (!VD->getType()->isReferenceType()) 16027 CompleteObjectAlignment = 16028 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 16029 } 16030 16031 // Check if the synthesized offset fulfills the alignment. 16032 if (Offset % ExpectedAlignment != 0 || 16033 // It may fulfill the offset it but the effective alignment may still be 16034 // lower than the expected expression alignment. 16035 CompleteObjectAlignment < ExpectedAlignment) { 16036 // If this happens, we want to determine a sensible culprit of this. 16037 // Intuitively, watching the chain of member expressions from right to 16038 // left, we start with the required alignment (as required by the field 16039 // type) but some packed attribute in that chain has reduced the alignment. 16040 // It may happen that another packed structure increases it again. But if 16041 // we are here such increase has not been enough. So pointing the first 16042 // FieldDecl that either is packed or else its RecordDecl is, 16043 // seems reasonable. 16044 FieldDecl *FD = nullptr; 16045 CharUnits Alignment; 16046 for (FieldDecl *FDI : ReverseMemberChain) { 16047 if (FDI->hasAttr<PackedAttr>() || 16048 FDI->getParent()->hasAttr<PackedAttr>()) { 16049 FD = FDI; 16050 Alignment = std::min( 16051 Context.getTypeAlignInChars(FD->getType()), 16052 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 16053 break; 16054 } 16055 } 16056 assert(FD && "We did not find a packed FieldDecl!"); 16057 Action(E, FD->getParent(), FD, Alignment); 16058 } 16059 } 16060 16061 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 16062 using namespace std::placeholders; 16063 16064 RefersToMemberWithReducedAlignment( 16065 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 16066 _2, _3, _4)); 16067 } 16068 16069 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 16070 ExprResult CallResult) { 16071 if (checkArgCount(*this, TheCall, 1)) 16072 return ExprError(); 16073 16074 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 16075 if (MatrixArg.isInvalid()) 16076 return MatrixArg; 16077 Expr *Matrix = MatrixArg.get(); 16078 16079 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 16080 if (!MType) { 16081 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 16082 return ExprError(); 16083 } 16084 16085 // Create returned matrix type by swapping rows and columns of the argument 16086 // matrix type. 16087 QualType ResultType = Context.getConstantMatrixType( 16088 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 16089 16090 // Change the return type to the type of the returned matrix. 16091 TheCall->setType(ResultType); 16092 16093 // Update call argument to use the possibly converted matrix argument. 16094 TheCall->setArg(0, Matrix); 16095 return CallResult; 16096 } 16097 16098 // Get and verify the matrix dimensions. 16099 static llvm::Optional<unsigned> 16100 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 16101 SourceLocation ErrorPos; 16102 Optional<llvm::APSInt> Value = 16103 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 16104 if (!Value) { 16105 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 16106 << Name; 16107 return {}; 16108 } 16109 uint64_t Dim = Value->getZExtValue(); 16110 if (!ConstantMatrixType::isDimensionValid(Dim)) { 16111 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 16112 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 16113 return {}; 16114 } 16115 return Dim; 16116 } 16117 16118 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 16119 ExprResult CallResult) { 16120 if (!getLangOpts().MatrixTypes) { 16121 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 16122 return ExprError(); 16123 } 16124 16125 if (checkArgCount(*this, TheCall, 4)) 16126 return ExprError(); 16127 16128 unsigned PtrArgIdx = 0; 16129 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16130 Expr *RowsExpr = TheCall->getArg(1); 16131 Expr *ColumnsExpr = TheCall->getArg(2); 16132 Expr *StrideExpr = TheCall->getArg(3); 16133 16134 bool ArgError = false; 16135 16136 // Check pointer argument. 16137 { 16138 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16139 if (PtrConv.isInvalid()) 16140 return PtrConv; 16141 PtrExpr = PtrConv.get(); 16142 TheCall->setArg(0, PtrExpr); 16143 if (PtrExpr->isTypeDependent()) { 16144 TheCall->setType(Context.DependentTy); 16145 return TheCall; 16146 } 16147 } 16148 16149 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16150 QualType ElementTy; 16151 if (!PtrTy) { 16152 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16153 << PtrArgIdx + 1; 16154 ArgError = true; 16155 } else { 16156 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 16157 16158 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 16159 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16160 << PtrArgIdx + 1; 16161 ArgError = true; 16162 } 16163 } 16164 16165 // Apply default Lvalue conversions and convert the expression to size_t. 16166 auto ApplyArgumentConversions = [this](Expr *E) { 16167 ExprResult Conv = DefaultLvalueConversion(E); 16168 if (Conv.isInvalid()) 16169 return Conv; 16170 16171 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 16172 }; 16173 16174 // Apply conversion to row and column expressions. 16175 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 16176 if (!RowsConv.isInvalid()) { 16177 RowsExpr = RowsConv.get(); 16178 TheCall->setArg(1, RowsExpr); 16179 } else 16180 RowsExpr = nullptr; 16181 16182 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 16183 if (!ColumnsConv.isInvalid()) { 16184 ColumnsExpr = ColumnsConv.get(); 16185 TheCall->setArg(2, ColumnsExpr); 16186 } else 16187 ColumnsExpr = nullptr; 16188 16189 // If any any part of the result matrix type is still pending, just use 16190 // Context.DependentTy, until all parts are resolved. 16191 if ((RowsExpr && RowsExpr->isTypeDependent()) || 16192 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 16193 TheCall->setType(Context.DependentTy); 16194 return CallResult; 16195 } 16196 16197 // Check row and column dimenions. 16198 llvm::Optional<unsigned> MaybeRows; 16199 if (RowsExpr) 16200 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 16201 16202 llvm::Optional<unsigned> MaybeColumns; 16203 if (ColumnsExpr) 16204 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 16205 16206 // Check stride argument. 16207 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 16208 if (StrideConv.isInvalid()) 16209 return ExprError(); 16210 StrideExpr = StrideConv.get(); 16211 TheCall->setArg(3, StrideExpr); 16212 16213 if (MaybeRows) { 16214 if (Optional<llvm::APSInt> Value = 16215 StrideExpr->getIntegerConstantExpr(Context)) { 16216 uint64_t Stride = Value->getZExtValue(); 16217 if (Stride < *MaybeRows) { 16218 Diag(StrideExpr->getBeginLoc(), 16219 diag::err_builtin_matrix_stride_too_small); 16220 ArgError = true; 16221 } 16222 } 16223 } 16224 16225 if (ArgError || !MaybeRows || !MaybeColumns) 16226 return ExprError(); 16227 16228 TheCall->setType( 16229 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 16230 return CallResult; 16231 } 16232 16233 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 16234 ExprResult CallResult) { 16235 if (checkArgCount(*this, TheCall, 3)) 16236 return ExprError(); 16237 16238 unsigned PtrArgIdx = 1; 16239 Expr *MatrixExpr = TheCall->getArg(0); 16240 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16241 Expr *StrideExpr = TheCall->getArg(2); 16242 16243 bool ArgError = false; 16244 16245 { 16246 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 16247 if (MatrixConv.isInvalid()) 16248 return MatrixConv; 16249 MatrixExpr = MatrixConv.get(); 16250 TheCall->setArg(0, MatrixExpr); 16251 } 16252 if (MatrixExpr->isTypeDependent()) { 16253 TheCall->setType(Context.DependentTy); 16254 return TheCall; 16255 } 16256 16257 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 16258 if (!MatrixTy) { 16259 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 16260 ArgError = true; 16261 } 16262 16263 { 16264 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16265 if (PtrConv.isInvalid()) 16266 return PtrConv; 16267 PtrExpr = PtrConv.get(); 16268 TheCall->setArg(1, PtrExpr); 16269 if (PtrExpr->isTypeDependent()) { 16270 TheCall->setType(Context.DependentTy); 16271 return TheCall; 16272 } 16273 } 16274 16275 // Check pointer argument. 16276 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16277 if (!PtrTy) { 16278 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16279 << PtrArgIdx + 1; 16280 ArgError = true; 16281 } else { 16282 QualType ElementTy = PtrTy->getPointeeType(); 16283 if (ElementTy.isConstQualified()) { 16284 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 16285 ArgError = true; 16286 } 16287 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 16288 if (MatrixTy && 16289 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 16290 Diag(PtrExpr->getBeginLoc(), 16291 diag::err_builtin_matrix_pointer_arg_mismatch) 16292 << ElementTy << MatrixTy->getElementType(); 16293 ArgError = true; 16294 } 16295 } 16296 16297 // Apply default Lvalue conversions and convert the stride expression to 16298 // size_t. 16299 { 16300 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 16301 if (StrideConv.isInvalid()) 16302 return StrideConv; 16303 16304 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 16305 if (StrideConv.isInvalid()) 16306 return StrideConv; 16307 StrideExpr = StrideConv.get(); 16308 TheCall->setArg(2, StrideExpr); 16309 } 16310 16311 // Check stride argument. 16312 if (MatrixTy) { 16313 if (Optional<llvm::APSInt> Value = 16314 StrideExpr->getIntegerConstantExpr(Context)) { 16315 uint64_t Stride = Value->getZExtValue(); 16316 if (Stride < MatrixTy->getNumRows()) { 16317 Diag(StrideExpr->getBeginLoc(), 16318 diag::err_builtin_matrix_stride_too_small); 16319 ArgError = true; 16320 } 16321 } 16322 } 16323 16324 if (ArgError) 16325 return ExprError(); 16326 16327 return CallResult; 16328 } 16329 16330 /// \brief Enforce the bounds of a TCB 16331 /// CheckTCBEnforcement - Enforces that every function in a named TCB only 16332 /// directly calls other functions in the same TCB as marked by the enforce_tcb 16333 /// and enforce_tcb_leaf attributes. 16334 void Sema::CheckTCBEnforcement(const CallExpr *TheCall, 16335 const FunctionDecl *Callee) { 16336 const FunctionDecl *Caller = getCurFunctionDecl(); 16337 16338 // Calls to builtins are not enforced. 16339 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() || 16340 Callee->getBuiltinID() != 0) 16341 return; 16342 16343 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find 16344 // all TCBs the callee is a part of. 16345 llvm::StringSet<> CalleeTCBs; 16346 for_each(Callee->specific_attrs<EnforceTCBAttr>(), 16347 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16348 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(), 16349 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16350 16351 // Go through the TCBs the caller is a part of and emit warnings if Caller 16352 // is in a TCB that the Callee is not. 16353 for_each( 16354 Caller->specific_attrs<EnforceTCBAttr>(), 16355 [&](const auto *A) { 16356 StringRef CallerTCB = A->getTCBName(); 16357 if (CalleeTCBs.count(CallerTCB) == 0) { 16358 this->Diag(TheCall->getExprLoc(), 16359 diag::warn_tcb_enforcement_violation) << Callee 16360 << CallerTCB; 16361 } 16362 }); 16363 } 16364