1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ExprOpenMP.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Analysis/Analyses/FormatString.h"
28 #include "clang/Basic/CharInfo.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <limits>
42 using namespace clang;
43 using namespace sema;
44 
45 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46                                                     unsigned ByteNo) const {
47   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
48                                Context.getTargetInfo());
49 }
50 
51 /// Checks that a call expression's argument count is the desired number.
52 /// This is useful when doing custom type-checking.  Returns true on error.
53 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
54   unsigned argCount = call->getNumArgs();
55   if (argCount == desiredArgCount) return false;
56 
57   if (argCount < desiredArgCount)
58     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59         << 0 /*function call*/ << desiredArgCount << argCount
60         << call->getSourceRange();
61 
62   // Highlight all the excess arguments.
63   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
64                     call->getArg(argCount - 1)->getLocEnd());
65 
66   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
67     << 0 /*function call*/ << desiredArgCount << argCount
68     << call->getArg(1)->getSourceRange();
69 }
70 
71 /// Check that the first argument to __builtin_annotation is an integer
72 /// and the second argument is a non-wide string literal.
73 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
74   if (checkArgCount(S, TheCall, 2))
75     return true;
76 
77   // First argument should be an integer.
78   Expr *ValArg = TheCall->getArg(0);
79   QualType Ty = ValArg->getType();
80   if (!Ty->isIntegerType()) {
81     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
82       << ValArg->getSourceRange();
83     return true;
84   }
85 
86   // Second argument should be a constant string.
87   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
88   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89   if (!Literal || !Literal->isAscii()) {
90     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
91       << StrArg->getSourceRange();
92     return true;
93   }
94 
95   TheCall->setType(Ty);
96   return false;
97 }
98 
99 /// Check that the argument to __builtin_addressof is a glvalue, and set the
100 /// result type to the corresponding pointer type.
101 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
102   if (checkArgCount(S, TheCall, 1))
103     return true;
104 
105   ExprResult Arg(TheCall->getArg(0));
106   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
107   if (ResultType.isNull())
108     return true;
109 
110   TheCall->setArg(0, Arg.get());
111   TheCall->setType(ResultType);
112   return false;
113 }
114 
115 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
116 		                  CallExpr *TheCall, unsigned SizeIdx,
117                                   unsigned DstSizeIdx) {
118   if (TheCall->getNumArgs() <= SizeIdx ||
119       TheCall->getNumArgs() <= DstSizeIdx)
120     return;
121 
122   const Expr *SizeArg = TheCall->getArg(SizeIdx);
123   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
124 
125   llvm::APSInt Size, DstSize;
126 
127   // find out if both sizes are known at compile time
128   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
129       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
130     return;
131 
132   if (Size.ule(DstSize))
133     return;
134 
135   // confirmed overflow so generate the diagnostic.
136   IdentifierInfo *FnName = FDecl->getIdentifier();
137   SourceLocation SL = TheCall->getLocStart();
138   SourceRange SR = TheCall->getSourceRange();
139 
140   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
141 }
142 
143 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
144   if (checkArgCount(S, BuiltinCall, 2))
145     return true;
146 
147   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
148   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
149   Expr *Call = BuiltinCall->getArg(0);
150   Expr *Chain = BuiltinCall->getArg(1);
151 
152   if (Call->getStmtClass() != Stmt::CallExprClass) {
153     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
154         << Call->getSourceRange();
155     return true;
156   }
157 
158   auto CE = cast<CallExpr>(Call);
159   if (CE->getCallee()->getType()->isBlockPointerType()) {
160     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
161         << Call->getSourceRange();
162     return true;
163   }
164 
165   const Decl *TargetDecl = CE->getCalleeDecl();
166   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
167     if (FD->getBuiltinID()) {
168       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
169           << Call->getSourceRange();
170       return true;
171     }
172 
173   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
174     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
175         << Call->getSourceRange();
176     return true;
177   }
178 
179   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
180   if (ChainResult.isInvalid())
181     return true;
182   if (!ChainResult.get()->getType()->isPointerType()) {
183     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
184         << Chain->getSourceRange();
185     return true;
186   }
187 
188   QualType ReturnTy = CE->getCallReturnType(S.Context);
189   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
190   QualType BuiltinTy = S.Context.getFunctionType(
191       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
192   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
193 
194   Builtin =
195       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
196 
197   BuiltinCall->setType(CE->getType());
198   BuiltinCall->setValueKind(CE->getValueKind());
199   BuiltinCall->setObjectKind(CE->getObjectKind());
200   BuiltinCall->setCallee(Builtin);
201   BuiltinCall->setArg(1, ChainResult.get());
202 
203   return false;
204 }
205 
206 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
207                                      Scope::ScopeFlags NeededScopeFlags,
208                                      unsigned DiagID) {
209   // Scopes aren't available during instantiation. Fortunately, builtin
210   // functions cannot be template args so they cannot be formed through template
211   // instantiation. Therefore checking once during the parse is sufficient.
212   if (!SemaRef.ActiveTemplateInstantiations.empty())
213     return false;
214 
215   Scope *S = SemaRef.getCurScope();
216   while (S && !S->isSEHExceptScope())
217     S = S->getParent();
218   if (!S || !(S->getFlags() & NeededScopeFlags)) {
219     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
220     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
221         << DRE->getDecl()->getIdentifier();
222     return true;
223   }
224 
225   return false;
226 }
227 
228 ExprResult
229 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
230                                CallExpr *TheCall) {
231   ExprResult TheCallResult(TheCall);
232 
233   // Find out if any arguments are required to be integer constant expressions.
234   unsigned ICEArguments = 0;
235   ASTContext::GetBuiltinTypeError Error;
236   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
237   if (Error != ASTContext::GE_None)
238     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
239 
240   // If any arguments are required to be ICE's, check and diagnose.
241   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
242     // Skip arguments not required to be ICE's.
243     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
244 
245     llvm::APSInt Result;
246     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
247       return true;
248     ICEArguments &= ~(1 << ArgNo);
249   }
250 
251   switch (BuiltinID) {
252   case Builtin::BI__builtin___CFStringMakeConstantString:
253     assert(TheCall->getNumArgs() == 1 &&
254            "Wrong # arguments to builtin CFStringMakeConstantString");
255     if (CheckObjCString(TheCall->getArg(0)))
256       return ExprError();
257     break;
258   case Builtin::BI__builtin_stdarg_start:
259   case Builtin::BI__builtin_va_start:
260     if (SemaBuiltinVAStart(TheCall))
261       return ExprError();
262     break;
263   case Builtin::BI__va_start: {
264     switch (Context.getTargetInfo().getTriple().getArch()) {
265     case llvm::Triple::arm:
266     case llvm::Triple::thumb:
267       if (SemaBuiltinVAStartARM(TheCall))
268         return ExprError();
269       break;
270     default:
271       if (SemaBuiltinVAStart(TheCall))
272         return ExprError();
273       break;
274     }
275     break;
276   }
277   case Builtin::BI__builtin_isgreater:
278   case Builtin::BI__builtin_isgreaterequal:
279   case Builtin::BI__builtin_isless:
280   case Builtin::BI__builtin_islessequal:
281   case Builtin::BI__builtin_islessgreater:
282   case Builtin::BI__builtin_isunordered:
283     if (SemaBuiltinUnorderedCompare(TheCall))
284       return ExprError();
285     break;
286   case Builtin::BI__builtin_fpclassify:
287     if (SemaBuiltinFPClassification(TheCall, 6))
288       return ExprError();
289     break;
290   case Builtin::BI__builtin_isfinite:
291   case Builtin::BI__builtin_isinf:
292   case Builtin::BI__builtin_isinf_sign:
293   case Builtin::BI__builtin_isnan:
294   case Builtin::BI__builtin_isnormal:
295     if (SemaBuiltinFPClassification(TheCall, 1))
296       return ExprError();
297     break;
298   case Builtin::BI__builtin_shufflevector:
299     return SemaBuiltinShuffleVector(TheCall);
300     // TheCall will be freed by the smart pointer here, but that's fine, since
301     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
302   case Builtin::BI__builtin_prefetch:
303     if (SemaBuiltinPrefetch(TheCall))
304       return ExprError();
305     break;
306   case Builtin::BI__assume:
307   case Builtin::BI__builtin_assume:
308     if (SemaBuiltinAssume(TheCall))
309       return ExprError();
310     break;
311   case Builtin::BI__builtin_assume_aligned:
312     if (SemaBuiltinAssumeAligned(TheCall))
313       return ExprError();
314     break;
315   case Builtin::BI__builtin_object_size:
316     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
317       return ExprError();
318     break;
319   case Builtin::BI__builtin_longjmp:
320     if (SemaBuiltinLongjmp(TheCall))
321       return ExprError();
322     break;
323   case Builtin::BI__builtin_setjmp:
324     if (SemaBuiltinSetjmp(TheCall))
325       return ExprError();
326     break;
327   case Builtin::BI_setjmp:
328   case Builtin::BI_setjmpex:
329     if (checkArgCount(*this, TheCall, 1))
330       return true;
331     break;
332 
333   case Builtin::BI__builtin_classify_type:
334     if (checkArgCount(*this, TheCall, 1)) return true;
335     TheCall->setType(Context.IntTy);
336     break;
337   case Builtin::BI__builtin_constant_p:
338     if (checkArgCount(*this, TheCall, 1)) return true;
339     TheCall->setType(Context.IntTy);
340     break;
341   case Builtin::BI__sync_fetch_and_add:
342   case Builtin::BI__sync_fetch_and_add_1:
343   case Builtin::BI__sync_fetch_and_add_2:
344   case Builtin::BI__sync_fetch_and_add_4:
345   case Builtin::BI__sync_fetch_and_add_8:
346   case Builtin::BI__sync_fetch_and_add_16:
347   case Builtin::BI__sync_fetch_and_sub:
348   case Builtin::BI__sync_fetch_and_sub_1:
349   case Builtin::BI__sync_fetch_and_sub_2:
350   case Builtin::BI__sync_fetch_and_sub_4:
351   case Builtin::BI__sync_fetch_and_sub_8:
352   case Builtin::BI__sync_fetch_and_sub_16:
353   case Builtin::BI__sync_fetch_and_or:
354   case Builtin::BI__sync_fetch_and_or_1:
355   case Builtin::BI__sync_fetch_and_or_2:
356   case Builtin::BI__sync_fetch_and_or_4:
357   case Builtin::BI__sync_fetch_and_or_8:
358   case Builtin::BI__sync_fetch_and_or_16:
359   case Builtin::BI__sync_fetch_and_and:
360   case Builtin::BI__sync_fetch_and_and_1:
361   case Builtin::BI__sync_fetch_and_and_2:
362   case Builtin::BI__sync_fetch_and_and_4:
363   case Builtin::BI__sync_fetch_and_and_8:
364   case Builtin::BI__sync_fetch_and_and_16:
365   case Builtin::BI__sync_fetch_and_xor:
366   case Builtin::BI__sync_fetch_and_xor_1:
367   case Builtin::BI__sync_fetch_and_xor_2:
368   case Builtin::BI__sync_fetch_and_xor_4:
369   case Builtin::BI__sync_fetch_and_xor_8:
370   case Builtin::BI__sync_fetch_and_xor_16:
371   case Builtin::BI__sync_fetch_and_nand:
372   case Builtin::BI__sync_fetch_and_nand_1:
373   case Builtin::BI__sync_fetch_and_nand_2:
374   case Builtin::BI__sync_fetch_and_nand_4:
375   case Builtin::BI__sync_fetch_and_nand_8:
376   case Builtin::BI__sync_fetch_and_nand_16:
377   case Builtin::BI__sync_add_and_fetch:
378   case Builtin::BI__sync_add_and_fetch_1:
379   case Builtin::BI__sync_add_and_fetch_2:
380   case Builtin::BI__sync_add_and_fetch_4:
381   case Builtin::BI__sync_add_and_fetch_8:
382   case Builtin::BI__sync_add_and_fetch_16:
383   case Builtin::BI__sync_sub_and_fetch:
384   case Builtin::BI__sync_sub_and_fetch_1:
385   case Builtin::BI__sync_sub_and_fetch_2:
386   case Builtin::BI__sync_sub_and_fetch_4:
387   case Builtin::BI__sync_sub_and_fetch_8:
388   case Builtin::BI__sync_sub_and_fetch_16:
389   case Builtin::BI__sync_and_and_fetch:
390   case Builtin::BI__sync_and_and_fetch_1:
391   case Builtin::BI__sync_and_and_fetch_2:
392   case Builtin::BI__sync_and_and_fetch_4:
393   case Builtin::BI__sync_and_and_fetch_8:
394   case Builtin::BI__sync_and_and_fetch_16:
395   case Builtin::BI__sync_or_and_fetch:
396   case Builtin::BI__sync_or_and_fetch_1:
397   case Builtin::BI__sync_or_and_fetch_2:
398   case Builtin::BI__sync_or_and_fetch_4:
399   case Builtin::BI__sync_or_and_fetch_8:
400   case Builtin::BI__sync_or_and_fetch_16:
401   case Builtin::BI__sync_xor_and_fetch:
402   case Builtin::BI__sync_xor_and_fetch_1:
403   case Builtin::BI__sync_xor_and_fetch_2:
404   case Builtin::BI__sync_xor_and_fetch_4:
405   case Builtin::BI__sync_xor_and_fetch_8:
406   case Builtin::BI__sync_xor_and_fetch_16:
407   case Builtin::BI__sync_nand_and_fetch:
408   case Builtin::BI__sync_nand_and_fetch_1:
409   case Builtin::BI__sync_nand_and_fetch_2:
410   case Builtin::BI__sync_nand_and_fetch_4:
411   case Builtin::BI__sync_nand_and_fetch_8:
412   case Builtin::BI__sync_nand_and_fetch_16:
413   case Builtin::BI__sync_val_compare_and_swap:
414   case Builtin::BI__sync_val_compare_and_swap_1:
415   case Builtin::BI__sync_val_compare_and_swap_2:
416   case Builtin::BI__sync_val_compare_and_swap_4:
417   case Builtin::BI__sync_val_compare_and_swap_8:
418   case Builtin::BI__sync_val_compare_and_swap_16:
419   case Builtin::BI__sync_bool_compare_and_swap:
420   case Builtin::BI__sync_bool_compare_and_swap_1:
421   case Builtin::BI__sync_bool_compare_and_swap_2:
422   case Builtin::BI__sync_bool_compare_and_swap_4:
423   case Builtin::BI__sync_bool_compare_and_swap_8:
424   case Builtin::BI__sync_bool_compare_and_swap_16:
425   case Builtin::BI__sync_lock_test_and_set:
426   case Builtin::BI__sync_lock_test_and_set_1:
427   case Builtin::BI__sync_lock_test_and_set_2:
428   case Builtin::BI__sync_lock_test_and_set_4:
429   case Builtin::BI__sync_lock_test_and_set_8:
430   case Builtin::BI__sync_lock_test_and_set_16:
431   case Builtin::BI__sync_lock_release:
432   case Builtin::BI__sync_lock_release_1:
433   case Builtin::BI__sync_lock_release_2:
434   case Builtin::BI__sync_lock_release_4:
435   case Builtin::BI__sync_lock_release_8:
436   case Builtin::BI__sync_lock_release_16:
437   case Builtin::BI__sync_swap:
438   case Builtin::BI__sync_swap_1:
439   case Builtin::BI__sync_swap_2:
440   case Builtin::BI__sync_swap_4:
441   case Builtin::BI__sync_swap_8:
442   case Builtin::BI__sync_swap_16:
443     return SemaBuiltinAtomicOverloaded(TheCallResult);
444   case Builtin::BI__builtin_nontemporal_load:
445   case Builtin::BI__builtin_nontemporal_store:
446     return SemaBuiltinNontemporalOverloaded(TheCallResult);
447 #define BUILTIN(ID, TYPE, ATTRS)
448 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
449   case Builtin::BI##ID: \
450     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
451 #include "clang/Basic/Builtins.def"
452   case Builtin::BI__builtin_annotation:
453     if (SemaBuiltinAnnotation(*this, TheCall))
454       return ExprError();
455     break;
456   case Builtin::BI__builtin_addressof:
457     if (SemaBuiltinAddressof(*this, TheCall))
458       return ExprError();
459     break;
460   case Builtin::BI__builtin_operator_new:
461   case Builtin::BI__builtin_operator_delete:
462     if (!getLangOpts().CPlusPlus) {
463       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
464         << (BuiltinID == Builtin::BI__builtin_operator_new
465                 ? "__builtin_operator_new"
466                 : "__builtin_operator_delete")
467         << "C++";
468       return ExprError();
469     }
470     // CodeGen assumes it can find the global new and delete to call,
471     // so ensure that they are declared.
472     DeclareGlobalNewDelete();
473     break;
474 
475   // check secure string manipulation functions where overflows
476   // are detectable at compile time
477   case Builtin::BI__builtin___memcpy_chk:
478   case Builtin::BI__builtin___memmove_chk:
479   case Builtin::BI__builtin___memset_chk:
480   case Builtin::BI__builtin___strlcat_chk:
481   case Builtin::BI__builtin___strlcpy_chk:
482   case Builtin::BI__builtin___strncat_chk:
483   case Builtin::BI__builtin___strncpy_chk:
484   case Builtin::BI__builtin___stpncpy_chk:
485     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
486     break;
487   case Builtin::BI__builtin___memccpy_chk:
488     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
489     break;
490   case Builtin::BI__builtin___snprintf_chk:
491   case Builtin::BI__builtin___vsnprintf_chk:
492     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
493     break;
494 
495   case Builtin::BI__builtin_call_with_static_chain:
496     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
497       return ExprError();
498     break;
499 
500   case Builtin::BI__exception_code:
501   case Builtin::BI_exception_code: {
502     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
503                                  diag::err_seh___except_block))
504       return ExprError();
505     break;
506   }
507   case Builtin::BI__exception_info:
508   case Builtin::BI_exception_info: {
509     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
510                                  diag::err_seh___except_filter))
511       return ExprError();
512     break;
513   }
514 
515   case Builtin::BI__GetExceptionInfo:
516     if (checkArgCount(*this, TheCall, 1))
517       return ExprError();
518 
519     if (CheckCXXThrowOperand(
520             TheCall->getLocStart(),
521             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
522             TheCall))
523       return ExprError();
524 
525     TheCall->setType(Context.VoidPtrTy);
526     break;
527 
528   }
529 
530   // Since the target specific builtins for each arch overlap, only check those
531   // of the arch we are compiling for.
532   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
533     switch (Context.getTargetInfo().getTriple().getArch()) {
534       case llvm::Triple::arm:
535       case llvm::Triple::armeb:
536       case llvm::Triple::thumb:
537       case llvm::Triple::thumbeb:
538         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
539           return ExprError();
540         break;
541       case llvm::Triple::aarch64:
542       case llvm::Triple::aarch64_be:
543         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
544           return ExprError();
545         break;
546       case llvm::Triple::mips:
547       case llvm::Triple::mipsel:
548       case llvm::Triple::mips64:
549       case llvm::Triple::mips64el:
550         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
551           return ExprError();
552         break;
553       case llvm::Triple::systemz:
554         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
555           return ExprError();
556         break;
557       case llvm::Triple::x86:
558       case llvm::Triple::x86_64:
559         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
560           return ExprError();
561         break;
562       case llvm::Triple::ppc:
563       case llvm::Triple::ppc64:
564       case llvm::Triple::ppc64le:
565         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
566           return ExprError();
567         break;
568       default:
569         break;
570     }
571   }
572 
573   return TheCallResult;
574 }
575 
576 // Get the valid immediate range for the specified NEON type code.
577 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
578   NeonTypeFlags Type(t);
579   int IsQuad = ForceQuad ? true : Type.isQuad();
580   switch (Type.getEltType()) {
581   case NeonTypeFlags::Int8:
582   case NeonTypeFlags::Poly8:
583     return shift ? 7 : (8 << IsQuad) - 1;
584   case NeonTypeFlags::Int16:
585   case NeonTypeFlags::Poly16:
586     return shift ? 15 : (4 << IsQuad) - 1;
587   case NeonTypeFlags::Int32:
588     return shift ? 31 : (2 << IsQuad) - 1;
589   case NeonTypeFlags::Int64:
590   case NeonTypeFlags::Poly64:
591     return shift ? 63 : (1 << IsQuad) - 1;
592   case NeonTypeFlags::Poly128:
593     return shift ? 127 : (1 << IsQuad) - 1;
594   case NeonTypeFlags::Float16:
595     assert(!shift && "cannot shift float types!");
596     return (4 << IsQuad) - 1;
597   case NeonTypeFlags::Float32:
598     assert(!shift && "cannot shift float types!");
599     return (2 << IsQuad) - 1;
600   case NeonTypeFlags::Float64:
601     assert(!shift && "cannot shift float types!");
602     return (1 << IsQuad) - 1;
603   }
604   llvm_unreachable("Invalid NeonTypeFlag!");
605 }
606 
607 /// getNeonEltType - Return the QualType corresponding to the elements of
608 /// the vector type specified by the NeonTypeFlags.  This is used to check
609 /// the pointer arguments for Neon load/store intrinsics.
610 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
611                                bool IsPolyUnsigned, bool IsInt64Long) {
612   switch (Flags.getEltType()) {
613   case NeonTypeFlags::Int8:
614     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
615   case NeonTypeFlags::Int16:
616     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
617   case NeonTypeFlags::Int32:
618     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
619   case NeonTypeFlags::Int64:
620     if (IsInt64Long)
621       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
622     else
623       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
624                                 : Context.LongLongTy;
625   case NeonTypeFlags::Poly8:
626     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
627   case NeonTypeFlags::Poly16:
628     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
629   case NeonTypeFlags::Poly64:
630     if (IsInt64Long)
631       return Context.UnsignedLongTy;
632     else
633       return Context.UnsignedLongLongTy;
634   case NeonTypeFlags::Poly128:
635     break;
636   case NeonTypeFlags::Float16:
637     return Context.HalfTy;
638   case NeonTypeFlags::Float32:
639     return Context.FloatTy;
640   case NeonTypeFlags::Float64:
641     return Context.DoubleTy;
642   }
643   llvm_unreachable("Invalid NeonTypeFlag!");
644 }
645 
646 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
647   llvm::APSInt Result;
648   uint64_t mask = 0;
649   unsigned TV = 0;
650   int PtrArgNum = -1;
651   bool HasConstPtr = false;
652   switch (BuiltinID) {
653 #define GET_NEON_OVERLOAD_CHECK
654 #include "clang/Basic/arm_neon.inc"
655 #undef GET_NEON_OVERLOAD_CHECK
656   }
657 
658   // For NEON intrinsics which are overloaded on vector element type, validate
659   // the immediate which specifies which variant to emit.
660   unsigned ImmArg = TheCall->getNumArgs()-1;
661   if (mask) {
662     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
663       return true;
664 
665     TV = Result.getLimitedValue(64);
666     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
667       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
668         << TheCall->getArg(ImmArg)->getSourceRange();
669   }
670 
671   if (PtrArgNum >= 0) {
672     // Check that pointer arguments have the specified type.
673     Expr *Arg = TheCall->getArg(PtrArgNum);
674     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
675       Arg = ICE->getSubExpr();
676     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
677     QualType RHSTy = RHS.get()->getType();
678 
679     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
680     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
681     bool IsInt64Long =
682         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
683     QualType EltTy =
684         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
685     if (HasConstPtr)
686       EltTy = EltTy.withConst();
687     QualType LHSTy = Context.getPointerType(EltTy);
688     AssignConvertType ConvTy;
689     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
690     if (RHS.isInvalid())
691       return true;
692     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
693                                  RHS.get(), AA_Assigning))
694       return true;
695   }
696 
697   // For NEON intrinsics which take an immediate value as part of the
698   // instruction, range check them here.
699   unsigned i = 0, l = 0, u = 0;
700   switch (BuiltinID) {
701   default:
702     return false;
703 #define GET_NEON_IMMEDIATE_CHECK
704 #include "clang/Basic/arm_neon.inc"
705 #undef GET_NEON_IMMEDIATE_CHECK
706   }
707 
708   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
709 }
710 
711 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
712                                         unsigned MaxWidth) {
713   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
714           BuiltinID == ARM::BI__builtin_arm_ldaex ||
715           BuiltinID == ARM::BI__builtin_arm_strex ||
716           BuiltinID == ARM::BI__builtin_arm_stlex ||
717           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
718           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
719           BuiltinID == AArch64::BI__builtin_arm_strex ||
720           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
721          "unexpected ARM builtin");
722   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
723                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
724                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
725                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
726 
727   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
728 
729   // Ensure that we have the proper number of arguments.
730   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
731     return true;
732 
733   // Inspect the pointer argument of the atomic builtin.  This should always be
734   // a pointer type, whose element is an integral scalar or pointer type.
735   // Because it is a pointer type, we don't have to worry about any implicit
736   // casts here.
737   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
738   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
739   if (PointerArgRes.isInvalid())
740     return true;
741   PointerArg = PointerArgRes.get();
742 
743   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
744   if (!pointerType) {
745     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
746       << PointerArg->getType() << PointerArg->getSourceRange();
747     return true;
748   }
749 
750   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
751   // task is to insert the appropriate casts into the AST. First work out just
752   // what the appropriate type is.
753   QualType ValType = pointerType->getPointeeType();
754   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
755   if (IsLdrex)
756     AddrType.addConst();
757 
758   // Issue a warning if the cast is dodgy.
759   CastKind CastNeeded = CK_NoOp;
760   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
761     CastNeeded = CK_BitCast;
762     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
763       << PointerArg->getType()
764       << Context.getPointerType(AddrType)
765       << AA_Passing << PointerArg->getSourceRange();
766   }
767 
768   // Finally, do the cast and replace the argument with the corrected version.
769   AddrType = Context.getPointerType(AddrType);
770   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
771   if (PointerArgRes.isInvalid())
772     return true;
773   PointerArg = PointerArgRes.get();
774 
775   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
776 
777   // In general, we allow ints, floats and pointers to be loaded and stored.
778   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
779       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
780     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
781       << PointerArg->getType() << PointerArg->getSourceRange();
782     return true;
783   }
784 
785   // But ARM doesn't have instructions to deal with 128-bit versions.
786   if (Context.getTypeSize(ValType) > MaxWidth) {
787     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
788     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
789       << PointerArg->getType() << PointerArg->getSourceRange();
790     return true;
791   }
792 
793   switch (ValType.getObjCLifetime()) {
794   case Qualifiers::OCL_None:
795   case Qualifiers::OCL_ExplicitNone:
796     // okay
797     break;
798 
799   case Qualifiers::OCL_Weak:
800   case Qualifiers::OCL_Strong:
801   case Qualifiers::OCL_Autoreleasing:
802     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
803       << ValType << PointerArg->getSourceRange();
804     return true;
805   }
806 
807 
808   if (IsLdrex) {
809     TheCall->setType(ValType);
810     return false;
811   }
812 
813   // Initialize the argument to be stored.
814   ExprResult ValArg = TheCall->getArg(0);
815   InitializedEntity Entity = InitializedEntity::InitializeParameter(
816       Context, ValType, /*consume*/ false);
817   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
818   if (ValArg.isInvalid())
819     return true;
820   TheCall->setArg(0, ValArg.get());
821 
822   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
823   // but the custom checker bypasses all default analysis.
824   TheCall->setType(Context.IntTy);
825   return false;
826 }
827 
828 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
829   llvm::APSInt Result;
830 
831   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
832       BuiltinID == ARM::BI__builtin_arm_ldaex ||
833       BuiltinID == ARM::BI__builtin_arm_strex ||
834       BuiltinID == ARM::BI__builtin_arm_stlex) {
835     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
836   }
837 
838   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
839     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
840       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
841   }
842 
843   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
844       BuiltinID == ARM::BI__builtin_arm_wsr64)
845     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
846 
847   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
848       BuiltinID == ARM::BI__builtin_arm_rsrp ||
849       BuiltinID == ARM::BI__builtin_arm_wsr ||
850       BuiltinID == ARM::BI__builtin_arm_wsrp)
851     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
852 
853   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
854     return true;
855 
856   // For intrinsics which take an immediate value as part of the instruction,
857   // range check them here.
858   unsigned i = 0, l = 0, u = 0;
859   switch (BuiltinID) {
860   default: return false;
861   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
862   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
863   case ARM::BI__builtin_arm_vcvtr_f:
864   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
865   case ARM::BI__builtin_arm_dmb:
866   case ARM::BI__builtin_arm_dsb:
867   case ARM::BI__builtin_arm_isb:
868   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
869   }
870 
871   // FIXME: VFP Intrinsics should error if VFP not present.
872   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
873 }
874 
875 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
876                                          CallExpr *TheCall) {
877   llvm::APSInt Result;
878 
879   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
880       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
881       BuiltinID == AArch64::BI__builtin_arm_strex ||
882       BuiltinID == AArch64::BI__builtin_arm_stlex) {
883     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
884   }
885 
886   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
887     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
888       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
889       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
890       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
891   }
892 
893   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
894       BuiltinID == AArch64::BI__builtin_arm_wsr64)
895     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, false);
896 
897   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
898       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
899       BuiltinID == AArch64::BI__builtin_arm_wsr ||
900       BuiltinID == AArch64::BI__builtin_arm_wsrp)
901     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
902 
903   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
904     return true;
905 
906   // For intrinsics which take an immediate value as part of the instruction,
907   // range check them here.
908   unsigned i = 0, l = 0, u = 0;
909   switch (BuiltinID) {
910   default: return false;
911   case AArch64::BI__builtin_arm_dmb:
912   case AArch64::BI__builtin_arm_dsb:
913   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
914   }
915 
916   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
917 }
918 
919 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
920   unsigned i = 0, l = 0, u = 0;
921   switch (BuiltinID) {
922   default: return false;
923   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
924   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
925   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
926   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
927   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
928   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
929   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
930   }
931 
932   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
933 }
934 
935 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
936   unsigned i = 0, l = 0, u = 0;
937   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
938                       BuiltinID == PPC::BI__builtin_divdeu ||
939                       BuiltinID == PPC::BI__builtin_bpermd;
940   bool IsTarget64Bit = Context.getTargetInfo()
941                               .getTypeWidth(Context
942                                             .getTargetInfo()
943                                             .getIntPtrType()) == 64;
944   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
945                        BuiltinID == PPC::BI__builtin_divweu ||
946                        BuiltinID == PPC::BI__builtin_divde ||
947                        BuiltinID == PPC::BI__builtin_divdeu;
948 
949   if (Is64BitBltin && !IsTarget64Bit)
950       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
951              << TheCall->getSourceRange();
952 
953   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
954       (BuiltinID == PPC::BI__builtin_bpermd &&
955        !Context.getTargetInfo().hasFeature("bpermd")))
956     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
957            << TheCall->getSourceRange();
958 
959   switch (BuiltinID) {
960   default: return false;
961   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
962   case PPC::BI__builtin_altivec_crypto_vshasigmad:
963     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
964            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
965   case PPC::BI__builtin_tbegin:
966   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
967   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
968   case PPC::BI__builtin_tabortwc:
969   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
970   case PPC::BI__builtin_tabortwci:
971   case PPC::BI__builtin_tabortdci:
972     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
973            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
974   }
975   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
976 }
977 
978 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
979                                            CallExpr *TheCall) {
980   if (BuiltinID == SystemZ::BI__builtin_tabort) {
981     Expr *Arg = TheCall->getArg(0);
982     llvm::APSInt AbortCode(32);
983     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
984         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
985       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
986              << Arg->getSourceRange();
987   }
988 
989   // For intrinsics which take an immediate value as part of the instruction,
990   // range check them here.
991   unsigned i = 0, l = 0, u = 0;
992   switch (BuiltinID) {
993   default: return false;
994   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
995   case SystemZ::BI__builtin_s390_verimb:
996   case SystemZ::BI__builtin_s390_verimh:
997   case SystemZ::BI__builtin_s390_verimf:
998   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
999   case SystemZ::BI__builtin_s390_vfaeb:
1000   case SystemZ::BI__builtin_s390_vfaeh:
1001   case SystemZ::BI__builtin_s390_vfaef:
1002   case SystemZ::BI__builtin_s390_vfaebs:
1003   case SystemZ::BI__builtin_s390_vfaehs:
1004   case SystemZ::BI__builtin_s390_vfaefs:
1005   case SystemZ::BI__builtin_s390_vfaezb:
1006   case SystemZ::BI__builtin_s390_vfaezh:
1007   case SystemZ::BI__builtin_s390_vfaezf:
1008   case SystemZ::BI__builtin_s390_vfaezbs:
1009   case SystemZ::BI__builtin_s390_vfaezhs:
1010   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
1011   case SystemZ::BI__builtin_s390_vfidb:
1012     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
1013            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1014   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
1015   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
1016   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
1017   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
1018   case SystemZ::BI__builtin_s390_vstrcb:
1019   case SystemZ::BI__builtin_s390_vstrch:
1020   case SystemZ::BI__builtin_s390_vstrcf:
1021   case SystemZ::BI__builtin_s390_vstrczb:
1022   case SystemZ::BI__builtin_s390_vstrczh:
1023   case SystemZ::BI__builtin_s390_vstrczf:
1024   case SystemZ::BI__builtin_s390_vstrcbs:
1025   case SystemZ::BI__builtin_s390_vstrchs:
1026   case SystemZ::BI__builtin_s390_vstrcfs:
1027   case SystemZ::BI__builtin_s390_vstrczbs:
1028   case SystemZ::BI__builtin_s390_vstrczhs:
1029   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
1030   }
1031   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1032 }
1033 
1034 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1035   unsigned i = 0, l = 0, u = 0;
1036   switch (BuiltinID) {
1037   default: return false;
1038   case X86::BI__builtin_cpu_supports:
1039     return SemaBuiltinCpuSupports(TheCall);
1040   case X86::BI__builtin_ms_va_start:
1041     return SemaBuiltinMSVAStart(TheCall);
1042   case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
1043   case X86::BI__builtin_ia32_sha1rnds4: i = 2, l = 0; u = 3; break;
1044   case X86::BI__builtin_ia32_vpermil2pd:
1045   case X86::BI__builtin_ia32_vpermil2pd256:
1046   case X86::BI__builtin_ia32_vpermil2ps:
1047   case X86::BI__builtin_ia32_vpermil2ps256: i = 3, l = 0; u = 3; break;
1048   case X86::BI__builtin_ia32_cmpb128_mask:
1049   case X86::BI__builtin_ia32_cmpw128_mask:
1050   case X86::BI__builtin_ia32_cmpd128_mask:
1051   case X86::BI__builtin_ia32_cmpq128_mask:
1052   case X86::BI__builtin_ia32_cmpb256_mask:
1053   case X86::BI__builtin_ia32_cmpw256_mask:
1054   case X86::BI__builtin_ia32_cmpd256_mask:
1055   case X86::BI__builtin_ia32_cmpq256_mask:
1056   case X86::BI__builtin_ia32_cmpb512_mask:
1057   case X86::BI__builtin_ia32_cmpw512_mask:
1058   case X86::BI__builtin_ia32_cmpd512_mask:
1059   case X86::BI__builtin_ia32_cmpq512_mask:
1060   case X86::BI__builtin_ia32_ucmpb128_mask:
1061   case X86::BI__builtin_ia32_ucmpw128_mask:
1062   case X86::BI__builtin_ia32_ucmpd128_mask:
1063   case X86::BI__builtin_ia32_ucmpq128_mask:
1064   case X86::BI__builtin_ia32_ucmpb256_mask:
1065   case X86::BI__builtin_ia32_ucmpw256_mask:
1066   case X86::BI__builtin_ia32_ucmpd256_mask:
1067   case X86::BI__builtin_ia32_ucmpq256_mask:
1068   case X86::BI__builtin_ia32_ucmpb512_mask:
1069   case X86::BI__builtin_ia32_ucmpw512_mask:
1070   case X86::BI__builtin_ia32_ucmpd512_mask:
1071   case X86::BI__builtin_ia32_ucmpq512_mask: i = 2; l = 0; u = 7; break;
1072   case X86::BI__builtin_ia32_roundps:
1073   case X86::BI__builtin_ia32_roundpd:
1074   case X86::BI__builtin_ia32_roundps256:
1075   case X86::BI__builtin_ia32_roundpd256: i = 1, l = 0; u = 15; break;
1076   case X86::BI__builtin_ia32_roundss:
1077   case X86::BI__builtin_ia32_roundsd: i = 2, l = 0; u = 15; break;
1078   case X86::BI__builtin_ia32_cmpps:
1079   case X86::BI__builtin_ia32_cmpss:
1080   case X86::BI__builtin_ia32_cmppd:
1081   case X86::BI__builtin_ia32_cmpsd:
1082   case X86::BI__builtin_ia32_cmpps256:
1083   case X86::BI__builtin_ia32_cmppd256:
1084   case X86::BI__builtin_ia32_cmpps512_mask:
1085   case X86::BI__builtin_ia32_cmppd512_mask: i = 2; l = 0; u = 31; break;
1086   case X86::BI__builtin_ia32_vpcomub:
1087   case X86::BI__builtin_ia32_vpcomuw:
1088   case X86::BI__builtin_ia32_vpcomud:
1089   case X86::BI__builtin_ia32_vpcomuq:
1090   case X86::BI__builtin_ia32_vpcomb:
1091   case X86::BI__builtin_ia32_vpcomw:
1092   case X86::BI__builtin_ia32_vpcomd:
1093   case X86::BI__builtin_ia32_vpcomq: i = 2; l = 0; u = 7; break;
1094   }
1095   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1096 }
1097 
1098 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
1099 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
1100 /// Returns true when the format fits the function and the FormatStringInfo has
1101 /// been populated.
1102 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
1103                                FormatStringInfo *FSI) {
1104   FSI->HasVAListArg = Format->getFirstArg() == 0;
1105   FSI->FormatIdx = Format->getFormatIdx() - 1;
1106   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
1107 
1108   // The way the format attribute works in GCC, the implicit this argument
1109   // of member functions is counted. However, it doesn't appear in our own
1110   // lists, so decrement format_idx in that case.
1111   if (IsCXXMember) {
1112     if(FSI->FormatIdx == 0)
1113       return false;
1114     --FSI->FormatIdx;
1115     if (FSI->FirstDataArg != 0)
1116       --FSI->FirstDataArg;
1117   }
1118   return true;
1119 }
1120 
1121 /// Checks if a the given expression evaluates to null.
1122 ///
1123 /// \brief Returns true if the value evaluates to null.
1124 static bool CheckNonNullExpr(Sema &S,
1125                              const Expr *Expr) {
1126   // If the expression has non-null type, it doesn't evaluate to null.
1127   if (auto nullability
1128         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
1129     if (*nullability == NullabilityKind::NonNull)
1130       return false;
1131   }
1132 
1133   // As a special case, transparent unions initialized with zero are
1134   // considered null for the purposes of the nonnull attribute.
1135   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
1136     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1137       if (const CompoundLiteralExpr *CLE =
1138           dyn_cast<CompoundLiteralExpr>(Expr))
1139         if (const InitListExpr *ILE =
1140             dyn_cast<InitListExpr>(CLE->getInitializer()))
1141           Expr = ILE->getInit(0);
1142   }
1143 
1144   bool Result;
1145   return (!Expr->isValueDependent() &&
1146           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
1147           !Result);
1148 }
1149 
1150 static void CheckNonNullArgument(Sema &S,
1151                                  const Expr *ArgExpr,
1152                                  SourceLocation CallSiteLoc) {
1153   if (CheckNonNullExpr(S, ArgExpr))
1154     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
1155            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
1156 }
1157 
1158 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
1159   FormatStringInfo FSI;
1160   if ((GetFormatStringType(Format) == FST_NSString) &&
1161       getFormatStringInfo(Format, false, &FSI)) {
1162     Idx = FSI.FormatIdx;
1163     return true;
1164   }
1165   return false;
1166 }
1167 /// \brief Diagnose use of %s directive in an NSString which is being passed
1168 /// as formatting string to formatting method.
1169 static void
1170 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
1171                                         const NamedDecl *FDecl,
1172                                         Expr **Args,
1173                                         unsigned NumArgs) {
1174   unsigned Idx = 0;
1175   bool Format = false;
1176   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
1177   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
1178     Idx = 2;
1179     Format = true;
1180   }
1181   else
1182     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1183       if (S.GetFormatNSStringIdx(I, Idx)) {
1184         Format = true;
1185         break;
1186       }
1187     }
1188   if (!Format || NumArgs <= Idx)
1189     return;
1190   const Expr *FormatExpr = Args[Idx];
1191   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
1192     FormatExpr = CSCE->getSubExpr();
1193   const StringLiteral *FormatString;
1194   if (const ObjCStringLiteral *OSL =
1195       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
1196     FormatString = OSL->getString();
1197   else
1198     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
1199   if (!FormatString)
1200     return;
1201   if (S.FormatStringHasSArg(FormatString)) {
1202     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
1203       << "%s" << 1 << 1;
1204     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
1205       << FDecl->getDeclName();
1206   }
1207 }
1208 
1209 /// Determine whether the given type has a non-null nullability annotation.
1210 static bool isNonNullType(ASTContext &ctx, QualType type) {
1211   if (auto nullability = type->getNullability(ctx))
1212     return *nullability == NullabilityKind::NonNull;
1213 
1214   return false;
1215 }
1216 
1217 static void CheckNonNullArguments(Sema &S,
1218                                   const NamedDecl *FDecl,
1219                                   const FunctionProtoType *Proto,
1220                                   ArrayRef<const Expr *> Args,
1221                                   SourceLocation CallSiteLoc) {
1222   assert((FDecl || Proto) && "Need a function declaration or prototype");
1223 
1224   // Check the attributes attached to the method/function itself.
1225   llvm::SmallBitVector NonNullArgs;
1226   if (FDecl) {
1227     // Handle the nonnull attribute on the function/method declaration itself.
1228     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
1229       if (!NonNull->args_size()) {
1230         // Easy case: all pointer arguments are nonnull.
1231         for (const auto *Arg : Args)
1232           if (S.isValidPointerAttrType(Arg->getType()))
1233             CheckNonNullArgument(S, Arg, CallSiteLoc);
1234         return;
1235       }
1236 
1237       for (unsigned Val : NonNull->args()) {
1238         if (Val >= Args.size())
1239           continue;
1240         if (NonNullArgs.empty())
1241           NonNullArgs.resize(Args.size());
1242         NonNullArgs.set(Val);
1243       }
1244     }
1245   }
1246 
1247   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
1248     // Handle the nonnull attribute on the parameters of the
1249     // function/method.
1250     ArrayRef<ParmVarDecl*> parms;
1251     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
1252       parms = FD->parameters();
1253     else
1254       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
1255 
1256     unsigned ParamIndex = 0;
1257     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
1258          I != E; ++I, ++ParamIndex) {
1259       const ParmVarDecl *PVD = *I;
1260       if (PVD->hasAttr<NonNullAttr>() ||
1261           isNonNullType(S.Context, PVD->getType())) {
1262         if (NonNullArgs.empty())
1263           NonNullArgs.resize(Args.size());
1264 
1265         NonNullArgs.set(ParamIndex);
1266       }
1267     }
1268   } else {
1269     // If we have a non-function, non-method declaration but no
1270     // function prototype, try to dig out the function prototype.
1271     if (!Proto) {
1272       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
1273         QualType type = VD->getType().getNonReferenceType();
1274         if (auto pointerType = type->getAs<PointerType>())
1275           type = pointerType->getPointeeType();
1276         else if (auto blockType = type->getAs<BlockPointerType>())
1277           type = blockType->getPointeeType();
1278         // FIXME: data member pointers?
1279 
1280         // Dig out the function prototype, if there is one.
1281         Proto = type->getAs<FunctionProtoType>();
1282       }
1283     }
1284 
1285     // Fill in non-null argument information from the nullability
1286     // information on the parameter types (if we have them).
1287     if (Proto) {
1288       unsigned Index = 0;
1289       for (auto paramType : Proto->getParamTypes()) {
1290         if (isNonNullType(S.Context, paramType)) {
1291           if (NonNullArgs.empty())
1292             NonNullArgs.resize(Args.size());
1293 
1294           NonNullArgs.set(Index);
1295         }
1296 
1297         ++Index;
1298       }
1299     }
1300   }
1301 
1302   // Check for non-null arguments.
1303   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
1304        ArgIndex != ArgIndexEnd; ++ArgIndex) {
1305     if (NonNullArgs[ArgIndex])
1306       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
1307   }
1308 }
1309 
1310 /// Handles the checks for format strings, non-POD arguments to vararg
1311 /// functions, and NULL arguments passed to non-NULL parameters.
1312 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
1313                      ArrayRef<const Expr *> Args, bool IsMemberFunction,
1314                      SourceLocation Loc, SourceRange Range,
1315                      VariadicCallType CallType) {
1316   // FIXME: We should check as much as we can in the template definition.
1317   if (CurContext->isDependentContext())
1318     return;
1319 
1320   // Printf and scanf checking.
1321   llvm::SmallBitVector CheckedVarArgs;
1322   if (FDecl) {
1323     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1324       // Only create vector if there are format attributes.
1325       CheckedVarArgs.resize(Args.size());
1326 
1327       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
1328                            CheckedVarArgs);
1329     }
1330   }
1331 
1332   // Refuse POD arguments that weren't caught by the format string
1333   // checks above.
1334   if (CallType != VariadicDoesNotApply) {
1335     unsigned NumParams = Proto ? Proto->getNumParams()
1336                        : FDecl && isa<FunctionDecl>(FDecl)
1337                            ? cast<FunctionDecl>(FDecl)->getNumParams()
1338                        : FDecl && isa<ObjCMethodDecl>(FDecl)
1339                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
1340                        : 0;
1341 
1342     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
1343       // Args[ArgIdx] can be null in malformed code.
1344       if (const Expr *Arg = Args[ArgIdx]) {
1345         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
1346           checkVariadicArgument(Arg, CallType);
1347       }
1348     }
1349   }
1350 
1351   if (FDecl || Proto) {
1352     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
1353 
1354     // Type safety checking.
1355     if (FDecl) {
1356       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
1357         CheckArgumentWithTypeTag(I, Args.data());
1358     }
1359   }
1360 }
1361 
1362 /// CheckConstructorCall - Check a constructor call for correctness and safety
1363 /// properties not enforced by the C type system.
1364 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
1365                                 ArrayRef<const Expr *> Args,
1366                                 const FunctionProtoType *Proto,
1367                                 SourceLocation Loc) {
1368   VariadicCallType CallType =
1369     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
1370   checkCall(FDecl, Proto, Args, /*IsMemberFunction=*/true, Loc, SourceRange(),
1371             CallType);
1372 }
1373 
1374 /// CheckFunctionCall - Check a direct function call for various correctness
1375 /// and safety properties not strictly enforced by the C type system.
1376 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
1377                              const FunctionProtoType *Proto) {
1378   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1379                               isa<CXXMethodDecl>(FDecl);
1380   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
1381                           IsMemberOperatorCall;
1382   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
1383                                                   TheCall->getCallee());
1384   Expr** Args = TheCall->getArgs();
1385   unsigned NumArgs = TheCall->getNumArgs();
1386   if (IsMemberOperatorCall) {
1387     // If this is a call to a member operator, hide the first argument
1388     // from checkCall.
1389     // FIXME: Our choice of AST representation here is less than ideal.
1390     ++Args;
1391     --NumArgs;
1392   }
1393   checkCall(FDecl, Proto, llvm::makeArrayRef(Args, NumArgs),
1394             IsMemberFunction, TheCall->getRParenLoc(),
1395             TheCall->getCallee()->getSourceRange(), CallType);
1396 
1397   IdentifierInfo *FnInfo = FDecl->getIdentifier();
1398   // None of the checks below are needed for functions that don't have
1399   // simple names (e.g., C++ conversion functions).
1400   if (!FnInfo)
1401     return false;
1402 
1403   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
1404   if (getLangOpts().ObjC1)
1405     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
1406 
1407   unsigned CMId = FDecl->getMemoryFunctionKind();
1408   if (CMId == 0)
1409     return false;
1410 
1411   // Handle memory setting and copying functions.
1412   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
1413     CheckStrlcpycatArguments(TheCall, FnInfo);
1414   else if (CMId == Builtin::BIstrncat)
1415     CheckStrncatArguments(TheCall, FnInfo);
1416   else
1417     CheckMemaccessArguments(TheCall, CMId, FnInfo);
1418 
1419   return false;
1420 }
1421 
1422 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
1423                                ArrayRef<const Expr *> Args) {
1424   VariadicCallType CallType =
1425       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
1426 
1427   checkCall(Method, nullptr, Args,
1428             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
1429             CallType);
1430 
1431   return false;
1432 }
1433 
1434 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
1435                             const FunctionProtoType *Proto) {
1436   QualType Ty;
1437   if (const auto *V = dyn_cast<VarDecl>(NDecl))
1438     Ty = V->getType().getNonReferenceType();
1439   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
1440     Ty = F->getType().getNonReferenceType();
1441   else
1442     return false;
1443 
1444   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
1445       !Ty->isFunctionProtoType())
1446     return false;
1447 
1448   VariadicCallType CallType;
1449   if (!Proto || !Proto->isVariadic()) {
1450     CallType = VariadicDoesNotApply;
1451   } else if (Ty->isBlockPointerType()) {
1452     CallType = VariadicBlock;
1453   } else { // Ty->isFunctionPointerType()
1454     CallType = VariadicFunction;
1455   }
1456 
1457   checkCall(NDecl, Proto,
1458             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1459             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1460             TheCall->getCallee()->getSourceRange(), CallType);
1461 
1462   return false;
1463 }
1464 
1465 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
1466 /// such as function pointers returned from functions.
1467 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
1468   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
1469                                                   TheCall->getCallee());
1470   checkCall(/*FDecl=*/nullptr, Proto,
1471             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1472             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1473             TheCall->getCallee()->getSourceRange(), CallType);
1474 
1475   return false;
1476 }
1477 
1478 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
1479   if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
1480       Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
1481     return false;
1482 
1483   switch (Op) {
1484   case AtomicExpr::AO__c11_atomic_init:
1485     llvm_unreachable("There is no ordering argument for an init");
1486 
1487   case AtomicExpr::AO__c11_atomic_load:
1488   case AtomicExpr::AO__atomic_load_n:
1489   case AtomicExpr::AO__atomic_load:
1490     return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
1491            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1492 
1493   case AtomicExpr::AO__c11_atomic_store:
1494   case AtomicExpr::AO__atomic_store:
1495   case AtomicExpr::AO__atomic_store_n:
1496     return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
1497            Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
1498            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1499 
1500   default:
1501     return true;
1502   }
1503 }
1504 
1505 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
1506                                          AtomicExpr::AtomicOp Op) {
1507   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1508   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1509 
1510   // All these operations take one of the following forms:
1511   enum {
1512     // C    __c11_atomic_init(A *, C)
1513     Init,
1514     // C    __c11_atomic_load(A *, int)
1515     Load,
1516     // void __atomic_load(A *, CP, int)
1517     Copy,
1518     // C    __c11_atomic_add(A *, M, int)
1519     Arithmetic,
1520     // C    __atomic_exchange_n(A *, CP, int)
1521     Xchg,
1522     // void __atomic_exchange(A *, C *, CP, int)
1523     GNUXchg,
1524     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
1525     C11CmpXchg,
1526     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
1527     GNUCmpXchg
1528   } Form = Init;
1529   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
1530   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
1531   // where:
1532   //   C is an appropriate type,
1533   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
1534   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
1535   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
1536   //   the int parameters are for orderings.
1537 
1538   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
1539                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
1540                         AtomicExpr::AO__atomic_load,
1541                 "need to update code for modified C11 atomics");
1542   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
1543                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
1544   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
1545              Op == AtomicExpr::AO__atomic_store_n ||
1546              Op == AtomicExpr::AO__atomic_exchange_n ||
1547              Op == AtomicExpr::AO__atomic_compare_exchange_n;
1548   bool IsAddSub = false;
1549 
1550   switch (Op) {
1551   case AtomicExpr::AO__c11_atomic_init:
1552     Form = Init;
1553     break;
1554 
1555   case AtomicExpr::AO__c11_atomic_load:
1556   case AtomicExpr::AO__atomic_load_n:
1557     Form = Load;
1558     break;
1559 
1560   case AtomicExpr::AO__c11_atomic_store:
1561   case AtomicExpr::AO__atomic_load:
1562   case AtomicExpr::AO__atomic_store:
1563   case AtomicExpr::AO__atomic_store_n:
1564     Form = Copy;
1565     break;
1566 
1567   case AtomicExpr::AO__c11_atomic_fetch_add:
1568   case AtomicExpr::AO__c11_atomic_fetch_sub:
1569   case AtomicExpr::AO__atomic_fetch_add:
1570   case AtomicExpr::AO__atomic_fetch_sub:
1571   case AtomicExpr::AO__atomic_add_fetch:
1572   case AtomicExpr::AO__atomic_sub_fetch:
1573     IsAddSub = true;
1574     // Fall through.
1575   case AtomicExpr::AO__c11_atomic_fetch_and:
1576   case AtomicExpr::AO__c11_atomic_fetch_or:
1577   case AtomicExpr::AO__c11_atomic_fetch_xor:
1578   case AtomicExpr::AO__atomic_fetch_and:
1579   case AtomicExpr::AO__atomic_fetch_or:
1580   case AtomicExpr::AO__atomic_fetch_xor:
1581   case AtomicExpr::AO__atomic_fetch_nand:
1582   case AtomicExpr::AO__atomic_and_fetch:
1583   case AtomicExpr::AO__atomic_or_fetch:
1584   case AtomicExpr::AO__atomic_xor_fetch:
1585   case AtomicExpr::AO__atomic_nand_fetch:
1586     Form = Arithmetic;
1587     break;
1588 
1589   case AtomicExpr::AO__c11_atomic_exchange:
1590   case AtomicExpr::AO__atomic_exchange_n:
1591     Form = Xchg;
1592     break;
1593 
1594   case AtomicExpr::AO__atomic_exchange:
1595     Form = GNUXchg;
1596     break;
1597 
1598   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1599   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1600     Form = C11CmpXchg;
1601     break;
1602 
1603   case AtomicExpr::AO__atomic_compare_exchange:
1604   case AtomicExpr::AO__atomic_compare_exchange_n:
1605     Form = GNUCmpXchg;
1606     break;
1607   }
1608 
1609   // Check we have the right number of arguments.
1610   if (TheCall->getNumArgs() < NumArgs[Form]) {
1611     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1612       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1613       << TheCall->getCallee()->getSourceRange();
1614     return ExprError();
1615   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1616     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1617          diag::err_typecheck_call_too_many_args)
1618       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1619       << TheCall->getCallee()->getSourceRange();
1620     return ExprError();
1621   }
1622 
1623   // Inspect the first argument of the atomic operation.
1624   Expr *Ptr = TheCall->getArg(0);
1625   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1626   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1627   if (!pointerType) {
1628     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1629       << Ptr->getType() << Ptr->getSourceRange();
1630     return ExprError();
1631   }
1632 
1633   // For a __c11 builtin, this should be a pointer to an _Atomic type.
1634   QualType AtomTy = pointerType->getPointeeType(); // 'A'
1635   QualType ValType = AtomTy; // 'C'
1636   if (IsC11) {
1637     if (!AtomTy->isAtomicType()) {
1638       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1639         << Ptr->getType() << Ptr->getSourceRange();
1640       return ExprError();
1641     }
1642     if (AtomTy.isConstQualified()) {
1643       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1644         << Ptr->getType() << Ptr->getSourceRange();
1645       return ExprError();
1646     }
1647     ValType = AtomTy->getAs<AtomicType>()->getValueType();
1648   } else if (Form != Load && Op != AtomicExpr::AO__atomic_load) {
1649     if (ValType.isConstQualified()) {
1650       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
1651         << Ptr->getType() << Ptr->getSourceRange();
1652       return ExprError();
1653     }
1654   }
1655 
1656   // For an arithmetic operation, the implied arithmetic must be well-formed.
1657   if (Form == Arithmetic) {
1658     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1659     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1660       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1661         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1662       return ExprError();
1663     }
1664     if (!IsAddSub && !ValType->isIntegerType()) {
1665       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1666         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1667       return ExprError();
1668     }
1669     if (IsC11 && ValType->isPointerType() &&
1670         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
1671                             diag::err_incomplete_type)) {
1672       return ExprError();
1673     }
1674   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1675     // For __atomic_*_n operations, the value type must be a scalar integral or
1676     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1677     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1678       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1679     return ExprError();
1680   }
1681 
1682   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1683       !AtomTy->isScalarType()) {
1684     // For GNU atomics, require a trivially-copyable type. This is not part of
1685     // the GNU atomics specification, but we enforce it for sanity.
1686     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1687       << Ptr->getType() << Ptr->getSourceRange();
1688     return ExprError();
1689   }
1690 
1691   switch (ValType.getObjCLifetime()) {
1692   case Qualifiers::OCL_None:
1693   case Qualifiers::OCL_ExplicitNone:
1694     // okay
1695     break;
1696 
1697   case Qualifiers::OCL_Weak:
1698   case Qualifiers::OCL_Strong:
1699   case Qualifiers::OCL_Autoreleasing:
1700     // FIXME: Can this happen? By this point, ValType should be known
1701     // to be trivially copyable.
1702     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1703       << ValType << Ptr->getSourceRange();
1704     return ExprError();
1705   }
1706 
1707   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
1708   // volatile-ness of the pointee-type inject itself into the result or the
1709   // other operands.
1710   ValType.removeLocalVolatile();
1711   QualType ResultType = ValType;
1712   if (Form == Copy || Form == GNUXchg || Form == Init)
1713     ResultType = Context.VoidTy;
1714   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1715     ResultType = Context.BoolTy;
1716 
1717   // The type of a parameter passed 'by value'. In the GNU atomics, such
1718   // arguments are actually passed as pointers.
1719   QualType ByValType = ValType; // 'CP'
1720   if (!IsC11 && !IsN)
1721     ByValType = Ptr->getType();
1722 
1723   // FIXME: __atomic_load allows the first argument to be a a pointer to const
1724   // but not the second argument. We need to manually remove possible const
1725   // qualifiers.
1726 
1727   // The first argument --- the pointer --- has a fixed type; we
1728   // deduce the types of the rest of the arguments accordingly.  Walk
1729   // the remaining arguments, converting them to the deduced value type.
1730   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1731     QualType Ty;
1732     if (i < NumVals[Form] + 1) {
1733       switch (i) {
1734       case 1:
1735         // The second argument is the non-atomic operand. For arithmetic, this
1736         // is always passed by value, and for a compare_exchange it is always
1737         // passed by address. For the rest, GNU uses by-address and C11 uses
1738         // by-value.
1739         assert(Form != Load);
1740         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1741           Ty = ValType;
1742         else if (Form == Copy || Form == Xchg)
1743           Ty = ByValType;
1744         else if (Form == Arithmetic)
1745           Ty = Context.getPointerDiffType();
1746         else
1747           Ty = Context.getPointerType(ValType.getUnqualifiedType());
1748         break;
1749       case 2:
1750         // The third argument to compare_exchange / GNU exchange is a
1751         // (pointer to a) desired value.
1752         Ty = ByValType;
1753         break;
1754       case 3:
1755         // The fourth argument to GNU compare_exchange is a 'weak' flag.
1756         Ty = Context.BoolTy;
1757         break;
1758       }
1759     } else {
1760       // The order(s) are always converted to int.
1761       Ty = Context.IntTy;
1762     }
1763 
1764     InitializedEntity Entity =
1765         InitializedEntity::InitializeParameter(Context, Ty, false);
1766     ExprResult Arg = TheCall->getArg(i);
1767     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1768     if (Arg.isInvalid())
1769       return true;
1770     TheCall->setArg(i, Arg.get());
1771   }
1772 
1773   // Permute the arguments into a 'consistent' order.
1774   SmallVector<Expr*, 5> SubExprs;
1775   SubExprs.push_back(Ptr);
1776   switch (Form) {
1777   case Init:
1778     // Note, AtomicExpr::getVal1() has a special case for this atomic.
1779     SubExprs.push_back(TheCall->getArg(1)); // Val1
1780     break;
1781   case Load:
1782     SubExprs.push_back(TheCall->getArg(1)); // Order
1783     break;
1784   case Copy:
1785   case Arithmetic:
1786   case Xchg:
1787     SubExprs.push_back(TheCall->getArg(2)); // Order
1788     SubExprs.push_back(TheCall->getArg(1)); // Val1
1789     break;
1790   case GNUXchg:
1791     // Note, AtomicExpr::getVal2() has a special case for this atomic.
1792     SubExprs.push_back(TheCall->getArg(3)); // Order
1793     SubExprs.push_back(TheCall->getArg(1)); // Val1
1794     SubExprs.push_back(TheCall->getArg(2)); // Val2
1795     break;
1796   case C11CmpXchg:
1797     SubExprs.push_back(TheCall->getArg(3)); // Order
1798     SubExprs.push_back(TheCall->getArg(1)); // Val1
1799     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1800     SubExprs.push_back(TheCall->getArg(2)); // Val2
1801     break;
1802   case GNUCmpXchg:
1803     SubExprs.push_back(TheCall->getArg(4)); // Order
1804     SubExprs.push_back(TheCall->getArg(1)); // Val1
1805     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1806     SubExprs.push_back(TheCall->getArg(2)); // Val2
1807     SubExprs.push_back(TheCall->getArg(3)); // Weak
1808     break;
1809   }
1810 
1811   if (SubExprs.size() >= 2 && Form != Init) {
1812     llvm::APSInt Result(32);
1813     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1814         !isValidOrderingForOp(Result.getSExtValue(), Op))
1815       Diag(SubExprs[1]->getLocStart(),
1816            diag::warn_atomic_op_has_invalid_memory_order)
1817           << SubExprs[1]->getSourceRange();
1818   }
1819 
1820   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1821                                             SubExprs, ResultType, Op,
1822                                             TheCall->getRParenLoc());
1823 
1824   if ((Op == AtomicExpr::AO__c11_atomic_load ||
1825        (Op == AtomicExpr::AO__c11_atomic_store)) &&
1826       Context.AtomicUsesUnsupportedLibcall(AE))
1827     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1828     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1829 
1830   return AE;
1831 }
1832 
1833 
1834 /// checkBuiltinArgument - Given a call to a builtin function, perform
1835 /// normal type-checking on the given argument, updating the call in
1836 /// place.  This is useful when a builtin function requires custom
1837 /// type-checking for some of its arguments but not necessarily all of
1838 /// them.
1839 ///
1840 /// Returns true on error.
1841 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1842   FunctionDecl *Fn = E->getDirectCallee();
1843   assert(Fn && "builtin call without direct callee!");
1844 
1845   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1846   InitializedEntity Entity =
1847     InitializedEntity::InitializeParameter(S.Context, Param);
1848 
1849   ExprResult Arg = E->getArg(0);
1850   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1851   if (Arg.isInvalid())
1852     return true;
1853 
1854   E->setArg(ArgIndex, Arg.get());
1855   return false;
1856 }
1857 
1858 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1859 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1860 /// type of its first argument.  The main ActOnCallExpr routines have already
1861 /// promoted the types of arguments because all of these calls are prototyped as
1862 /// void(...).
1863 ///
1864 /// This function goes through and does final semantic checking for these
1865 /// builtins,
1866 ExprResult
1867 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1868   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1869   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1870   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1871 
1872   // Ensure that we have at least one argument to do type inference from.
1873   if (TheCall->getNumArgs() < 1) {
1874     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1875       << 0 << 1 << TheCall->getNumArgs()
1876       << TheCall->getCallee()->getSourceRange();
1877     return ExprError();
1878   }
1879 
1880   // Inspect the first argument of the atomic builtin.  This should always be
1881   // a pointer type, whose element is an integral scalar or pointer type.
1882   // Because it is a pointer type, we don't have to worry about any implicit
1883   // casts here.
1884   // FIXME: We don't allow floating point scalars as input.
1885   Expr *FirstArg = TheCall->getArg(0);
1886   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1887   if (FirstArgResult.isInvalid())
1888     return ExprError();
1889   FirstArg = FirstArgResult.get();
1890   TheCall->setArg(0, FirstArg);
1891 
1892   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1893   if (!pointerType) {
1894     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1895       << FirstArg->getType() << FirstArg->getSourceRange();
1896     return ExprError();
1897   }
1898 
1899   QualType ValType = pointerType->getPointeeType();
1900   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1901       !ValType->isBlockPointerType()) {
1902     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1903       << FirstArg->getType() << FirstArg->getSourceRange();
1904     return ExprError();
1905   }
1906 
1907   switch (ValType.getObjCLifetime()) {
1908   case Qualifiers::OCL_None:
1909   case Qualifiers::OCL_ExplicitNone:
1910     // okay
1911     break;
1912 
1913   case Qualifiers::OCL_Weak:
1914   case Qualifiers::OCL_Strong:
1915   case Qualifiers::OCL_Autoreleasing:
1916     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1917       << ValType << FirstArg->getSourceRange();
1918     return ExprError();
1919   }
1920 
1921   // Strip any qualifiers off ValType.
1922   ValType = ValType.getUnqualifiedType();
1923 
1924   // The majority of builtins return a value, but a few have special return
1925   // types, so allow them to override appropriately below.
1926   QualType ResultType = ValType;
1927 
1928   // We need to figure out which concrete builtin this maps onto.  For example,
1929   // __sync_fetch_and_add with a 2 byte object turns into
1930   // __sync_fetch_and_add_2.
1931 #define BUILTIN_ROW(x) \
1932   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1933     Builtin::BI##x##_8, Builtin::BI##x##_16 }
1934 
1935   static const unsigned BuiltinIndices[][5] = {
1936     BUILTIN_ROW(__sync_fetch_and_add),
1937     BUILTIN_ROW(__sync_fetch_and_sub),
1938     BUILTIN_ROW(__sync_fetch_and_or),
1939     BUILTIN_ROW(__sync_fetch_and_and),
1940     BUILTIN_ROW(__sync_fetch_and_xor),
1941     BUILTIN_ROW(__sync_fetch_and_nand),
1942 
1943     BUILTIN_ROW(__sync_add_and_fetch),
1944     BUILTIN_ROW(__sync_sub_and_fetch),
1945     BUILTIN_ROW(__sync_and_and_fetch),
1946     BUILTIN_ROW(__sync_or_and_fetch),
1947     BUILTIN_ROW(__sync_xor_and_fetch),
1948     BUILTIN_ROW(__sync_nand_and_fetch),
1949 
1950     BUILTIN_ROW(__sync_val_compare_and_swap),
1951     BUILTIN_ROW(__sync_bool_compare_and_swap),
1952     BUILTIN_ROW(__sync_lock_test_and_set),
1953     BUILTIN_ROW(__sync_lock_release),
1954     BUILTIN_ROW(__sync_swap)
1955   };
1956 #undef BUILTIN_ROW
1957 
1958   // Determine the index of the size.
1959   unsigned SizeIndex;
1960   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1961   case 1: SizeIndex = 0; break;
1962   case 2: SizeIndex = 1; break;
1963   case 4: SizeIndex = 2; break;
1964   case 8: SizeIndex = 3; break;
1965   case 16: SizeIndex = 4; break;
1966   default:
1967     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1968       << FirstArg->getType() << FirstArg->getSourceRange();
1969     return ExprError();
1970   }
1971 
1972   // Each of these builtins has one pointer argument, followed by some number of
1973   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1974   // that we ignore.  Find out which row of BuiltinIndices to read from as well
1975   // as the number of fixed args.
1976   unsigned BuiltinID = FDecl->getBuiltinID();
1977   unsigned BuiltinIndex, NumFixed = 1;
1978   bool WarnAboutSemanticsChange = false;
1979   switch (BuiltinID) {
1980   default: llvm_unreachable("Unknown overloaded atomic builtin!");
1981   case Builtin::BI__sync_fetch_and_add:
1982   case Builtin::BI__sync_fetch_and_add_1:
1983   case Builtin::BI__sync_fetch_and_add_2:
1984   case Builtin::BI__sync_fetch_and_add_4:
1985   case Builtin::BI__sync_fetch_and_add_8:
1986   case Builtin::BI__sync_fetch_and_add_16:
1987     BuiltinIndex = 0;
1988     break;
1989 
1990   case Builtin::BI__sync_fetch_and_sub:
1991   case Builtin::BI__sync_fetch_and_sub_1:
1992   case Builtin::BI__sync_fetch_and_sub_2:
1993   case Builtin::BI__sync_fetch_and_sub_4:
1994   case Builtin::BI__sync_fetch_and_sub_8:
1995   case Builtin::BI__sync_fetch_and_sub_16:
1996     BuiltinIndex = 1;
1997     break;
1998 
1999   case Builtin::BI__sync_fetch_and_or:
2000   case Builtin::BI__sync_fetch_and_or_1:
2001   case Builtin::BI__sync_fetch_and_or_2:
2002   case Builtin::BI__sync_fetch_and_or_4:
2003   case Builtin::BI__sync_fetch_and_or_8:
2004   case Builtin::BI__sync_fetch_and_or_16:
2005     BuiltinIndex = 2;
2006     break;
2007 
2008   case Builtin::BI__sync_fetch_and_and:
2009   case Builtin::BI__sync_fetch_and_and_1:
2010   case Builtin::BI__sync_fetch_and_and_2:
2011   case Builtin::BI__sync_fetch_and_and_4:
2012   case Builtin::BI__sync_fetch_and_and_8:
2013   case Builtin::BI__sync_fetch_and_and_16:
2014     BuiltinIndex = 3;
2015     break;
2016 
2017   case Builtin::BI__sync_fetch_and_xor:
2018   case Builtin::BI__sync_fetch_and_xor_1:
2019   case Builtin::BI__sync_fetch_and_xor_2:
2020   case Builtin::BI__sync_fetch_and_xor_4:
2021   case Builtin::BI__sync_fetch_and_xor_8:
2022   case Builtin::BI__sync_fetch_and_xor_16:
2023     BuiltinIndex = 4;
2024     break;
2025 
2026   case Builtin::BI__sync_fetch_and_nand:
2027   case Builtin::BI__sync_fetch_and_nand_1:
2028   case Builtin::BI__sync_fetch_and_nand_2:
2029   case Builtin::BI__sync_fetch_and_nand_4:
2030   case Builtin::BI__sync_fetch_and_nand_8:
2031   case Builtin::BI__sync_fetch_and_nand_16:
2032     BuiltinIndex = 5;
2033     WarnAboutSemanticsChange = true;
2034     break;
2035 
2036   case Builtin::BI__sync_add_and_fetch:
2037   case Builtin::BI__sync_add_and_fetch_1:
2038   case Builtin::BI__sync_add_and_fetch_2:
2039   case Builtin::BI__sync_add_and_fetch_4:
2040   case Builtin::BI__sync_add_and_fetch_8:
2041   case Builtin::BI__sync_add_and_fetch_16:
2042     BuiltinIndex = 6;
2043     break;
2044 
2045   case Builtin::BI__sync_sub_and_fetch:
2046   case Builtin::BI__sync_sub_and_fetch_1:
2047   case Builtin::BI__sync_sub_and_fetch_2:
2048   case Builtin::BI__sync_sub_and_fetch_4:
2049   case Builtin::BI__sync_sub_and_fetch_8:
2050   case Builtin::BI__sync_sub_and_fetch_16:
2051     BuiltinIndex = 7;
2052     break;
2053 
2054   case Builtin::BI__sync_and_and_fetch:
2055   case Builtin::BI__sync_and_and_fetch_1:
2056   case Builtin::BI__sync_and_and_fetch_2:
2057   case Builtin::BI__sync_and_and_fetch_4:
2058   case Builtin::BI__sync_and_and_fetch_8:
2059   case Builtin::BI__sync_and_and_fetch_16:
2060     BuiltinIndex = 8;
2061     break;
2062 
2063   case Builtin::BI__sync_or_and_fetch:
2064   case Builtin::BI__sync_or_and_fetch_1:
2065   case Builtin::BI__sync_or_and_fetch_2:
2066   case Builtin::BI__sync_or_and_fetch_4:
2067   case Builtin::BI__sync_or_and_fetch_8:
2068   case Builtin::BI__sync_or_and_fetch_16:
2069     BuiltinIndex = 9;
2070     break;
2071 
2072   case Builtin::BI__sync_xor_and_fetch:
2073   case Builtin::BI__sync_xor_and_fetch_1:
2074   case Builtin::BI__sync_xor_and_fetch_2:
2075   case Builtin::BI__sync_xor_and_fetch_4:
2076   case Builtin::BI__sync_xor_and_fetch_8:
2077   case Builtin::BI__sync_xor_and_fetch_16:
2078     BuiltinIndex = 10;
2079     break;
2080 
2081   case Builtin::BI__sync_nand_and_fetch:
2082   case Builtin::BI__sync_nand_and_fetch_1:
2083   case Builtin::BI__sync_nand_and_fetch_2:
2084   case Builtin::BI__sync_nand_and_fetch_4:
2085   case Builtin::BI__sync_nand_and_fetch_8:
2086   case Builtin::BI__sync_nand_and_fetch_16:
2087     BuiltinIndex = 11;
2088     WarnAboutSemanticsChange = true;
2089     break;
2090 
2091   case Builtin::BI__sync_val_compare_and_swap:
2092   case Builtin::BI__sync_val_compare_and_swap_1:
2093   case Builtin::BI__sync_val_compare_and_swap_2:
2094   case Builtin::BI__sync_val_compare_and_swap_4:
2095   case Builtin::BI__sync_val_compare_and_swap_8:
2096   case Builtin::BI__sync_val_compare_and_swap_16:
2097     BuiltinIndex = 12;
2098     NumFixed = 2;
2099     break;
2100 
2101   case Builtin::BI__sync_bool_compare_and_swap:
2102   case Builtin::BI__sync_bool_compare_and_swap_1:
2103   case Builtin::BI__sync_bool_compare_and_swap_2:
2104   case Builtin::BI__sync_bool_compare_and_swap_4:
2105   case Builtin::BI__sync_bool_compare_and_swap_8:
2106   case Builtin::BI__sync_bool_compare_and_swap_16:
2107     BuiltinIndex = 13;
2108     NumFixed = 2;
2109     ResultType = Context.BoolTy;
2110     break;
2111 
2112   case Builtin::BI__sync_lock_test_and_set:
2113   case Builtin::BI__sync_lock_test_and_set_1:
2114   case Builtin::BI__sync_lock_test_and_set_2:
2115   case Builtin::BI__sync_lock_test_and_set_4:
2116   case Builtin::BI__sync_lock_test_and_set_8:
2117   case Builtin::BI__sync_lock_test_and_set_16:
2118     BuiltinIndex = 14;
2119     break;
2120 
2121   case Builtin::BI__sync_lock_release:
2122   case Builtin::BI__sync_lock_release_1:
2123   case Builtin::BI__sync_lock_release_2:
2124   case Builtin::BI__sync_lock_release_4:
2125   case Builtin::BI__sync_lock_release_8:
2126   case Builtin::BI__sync_lock_release_16:
2127     BuiltinIndex = 15;
2128     NumFixed = 0;
2129     ResultType = Context.VoidTy;
2130     break;
2131 
2132   case Builtin::BI__sync_swap:
2133   case Builtin::BI__sync_swap_1:
2134   case Builtin::BI__sync_swap_2:
2135   case Builtin::BI__sync_swap_4:
2136   case Builtin::BI__sync_swap_8:
2137   case Builtin::BI__sync_swap_16:
2138     BuiltinIndex = 16;
2139     break;
2140   }
2141 
2142   // Now that we know how many fixed arguments we expect, first check that we
2143   // have at least that many.
2144   if (TheCall->getNumArgs() < 1+NumFixed) {
2145     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
2146       << 0 << 1+NumFixed << TheCall->getNumArgs()
2147       << TheCall->getCallee()->getSourceRange();
2148     return ExprError();
2149   }
2150 
2151   if (WarnAboutSemanticsChange) {
2152     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
2153       << TheCall->getCallee()->getSourceRange();
2154   }
2155 
2156   // Get the decl for the concrete builtin from this, we can tell what the
2157   // concrete integer type we should convert to is.
2158   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
2159   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
2160   FunctionDecl *NewBuiltinDecl;
2161   if (NewBuiltinID == BuiltinID)
2162     NewBuiltinDecl = FDecl;
2163   else {
2164     // Perform builtin lookup to avoid redeclaring it.
2165     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
2166     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
2167     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
2168     assert(Res.getFoundDecl());
2169     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
2170     if (!NewBuiltinDecl)
2171       return ExprError();
2172   }
2173 
2174   // The first argument --- the pointer --- has a fixed type; we
2175   // deduce the types of the rest of the arguments accordingly.  Walk
2176   // the remaining arguments, converting them to the deduced value type.
2177   for (unsigned i = 0; i != NumFixed; ++i) {
2178     ExprResult Arg = TheCall->getArg(i+1);
2179 
2180     // GCC does an implicit conversion to the pointer or integer ValType.  This
2181     // can fail in some cases (1i -> int**), check for this error case now.
2182     // Initialize the argument.
2183     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2184                                                    ValType, /*consume*/ false);
2185     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2186     if (Arg.isInvalid())
2187       return ExprError();
2188 
2189     // Okay, we have something that *can* be converted to the right type.  Check
2190     // to see if there is a potentially weird extension going on here.  This can
2191     // happen when you do an atomic operation on something like an char* and
2192     // pass in 42.  The 42 gets converted to char.  This is even more strange
2193     // for things like 45.123 -> char, etc.
2194     // FIXME: Do this check.
2195     TheCall->setArg(i+1, Arg.get());
2196   }
2197 
2198   ASTContext& Context = this->getASTContext();
2199 
2200   // Create a new DeclRefExpr to refer to the new decl.
2201   DeclRefExpr* NewDRE = DeclRefExpr::Create(
2202       Context,
2203       DRE->getQualifierLoc(),
2204       SourceLocation(),
2205       NewBuiltinDecl,
2206       /*enclosing*/ false,
2207       DRE->getLocation(),
2208       Context.BuiltinFnTy,
2209       DRE->getValueKind());
2210 
2211   // Set the callee in the CallExpr.
2212   // FIXME: This loses syntactic information.
2213   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
2214   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
2215                                               CK_BuiltinFnToFnPtr);
2216   TheCall->setCallee(PromotedCall.get());
2217 
2218   // Change the result type of the call to match the original value type. This
2219   // is arbitrary, but the codegen for these builtins ins design to handle it
2220   // gracefully.
2221   TheCall->setType(ResultType);
2222 
2223   return TheCallResult;
2224 }
2225 
2226 /// SemaBuiltinNontemporalOverloaded - We have a call to
2227 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
2228 /// overloaded function based on the pointer type of its last argument.
2229 ///
2230 /// This function goes through and does final semantic checking for these
2231 /// builtins.
2232 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
2233   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
2234   DeclRefExpr *DRE =
2235       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2236   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2237   unsigned BuiltinID = FDecl->getBuiltinID();
2238   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
2239           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
2240          "Unexpected nontemporal load/store builtin!");
2241   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
2242   unsigned numArgs = isStore ? 2 : 1;
2243 
2244   // Ensure that we have the proper number of arguments.
2245   if (checkArgCount(*this, TheCall, numArgs))
2246     return ExprError();
2247 
2248   // Inspect the last argument of the nontemporal builtin.  This should always
2249   // be a pointer type, from which we imply the type of the memory access.
2250   // Because it is a pointer type, we don't have to worry about any implicit
2251   // casts here.
2252   Expr *PointerArg = TheCall->getArg(numArgs - 1);
2253   ExprResult PointerArgResult =
2254       DefaultFunctionArrayLvalueConversion(PointerArg);
2255 
2256   if (PointerArgResult.isInvalid())
2257     return ExprError();
2258   PointerArg = PointerArgResult.get();
2259   TheCall->setArg(numArgs - 1, PointerArg);
2260 
2261   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2262   if (!pointerType) {
2263     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
2264         << PointerArg->getType() << PointerArg->getSourceRange();
2265     return ExprError();
2266   }
2267 
2268   QualType ValType = pointerType->getPointeeType();
2269 
2270   // Strip any qualifiers off ValType.
2271   ValType = ValType.getUnqualifiedType();
2272   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2273       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
2274       !ValType->isVectorType()) {
2275     Diag(DRE->getLocStart(),
2276          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
2277         << PointerArg->getType() << PointerArg->getSourceRange();
2278     return ExprError();
2279   }
2280 
2281   if (!isStore) {
2282     TheCall->setType(ValType);
2283     return TheCallResult;
2284   }
2285 
2286   ExprResult ValArg = TheCall->getArg(0);
2287   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2288       Context, ValType, /*consume*/ false);
2289   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2290   if (ValArg.isInvalid())
2291     return ExprError();
2292 
2293   TheCall->setArg(0, ValArg.get());
2294   TheCall->setType(Context.VoidTy);
2295   return TheCallResult;
2296 }
2297 
2298 /// CheckObjCString - Checks that the argument to the builtin
2299 /// CFString constructor is correct
2300 /// Note: It might also make sense to do the UTF-16 conversion here (would
2301 /// simplify the backend).
2302 bool Sema::CheckObjCString(Expr *Arg) {
2303   Arg = Arg->IgnoreParenCasts();
2304   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
2305 
2306   if (!Literal || !Literal->isAscii()) {
2307     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
2308       << Arg->getSourceRange();
2309     return true;
2310   }
2311 
2312   if (Literal->containsNonAsciiOrNull()) {
2313     StringRef String = Literal->getString();
2314     unsigned NumBytes = String.size();
2315     SmallVector<UTF16, 128> ToBuf(NumBytes);
2316     const UTF8 *FromPtr = (const UTF8 *)String.data();
2317     UTF16 *ToPtr = &ToBuf[0];
2318 
2319     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2320                                                  &ToPtr, ToPtr + NumBytes,
2321                                                  strictConversion);
2322     // Check for conversion failure.
2323     if (Result != conversionOK)
2324       Diag(Arg->getLocStart(),
2325            diag::warn_cfstring_truncated) << Arg->getSourceRange();
2326   }
2327   return false;
2328 }
2329 
2330 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
2331 /// for validity.  Emit an error and return true on failure; return false
2332 /// on success.
2333 bool Sema::SemaBuiltinVAStartImpl(CallExpr *TheCall) {
2334   Expr *Fn = TheCall->getCallee();
2335   if (TheCall->getNumArgs() > 2) {
2336     Diag(TheCall->getArg(2)->getLocStart(),
2337          diag::err_typecheck_call_too_many_args)
2338       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2339       << Fn->getSourceRange()
2340       << SourceRange(TheCall->getArg(2)->getLocStart(),
2341                      (*(TheCall->arg_end()-1))->getLocEnd());
2342     return true;
2343   }
2344 
2345   if (TheCall->getNumArgs() < 2) {
2346     return Diag(TheCall->getLocEnd(),
2347       diag::err_typecheck_call_too_few_args_at_least)
2348       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
2349   }
2350 
2351   // Type-check the first argument normally.
2352   if (checkBuiltinArgument(*this, TheCall, 0))
2353     return true;
2354 
2355   // Determine whether the current function is variadic or not.
2356   BlockScopeInfo *CurBlock = getCurBlock();
2357   bool isVariadic;
2358   if (CurBlock)
2359     isVariadic = CurBlock->TheDecl->isVariadic();
2360   else if (FunctionDecl *FD = getCurFunctionDecl())
2361     isVariadic = FD->isVariadic();
2362   else
2363     isVariadic = getCurMethodDecl()->isVariadic();
2364 
2365   if (!isVariadic) {
2366     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2367     return true;
2368   }
2369 
2370   // Verify that the second argument to the builtin is the last argument of the
2371   // current function or method.
2372   bool SecondArgIsLastNamedArgument = false;
2373   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
2374 
2375   // These are valid if SecondArgIsLastNamedArgument is false after the next
2376   // block.
2377   QualType Type;
2378   SourceLocation ParamLoc;
2379 
2380   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
2381     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
2382       // FIXME: This isn't correct for methods (results in bogus warning).
2383       // Get the last formal in the current function.
2384       const ParmVarDecl *LastArg;
2385       if (CurBlock)
2386         LastArg = *(CurBlock->TheDecl->param_end()-1);
2387       else if (FunctionDecl *FD = getCurFunctionDecl())
2388         LastArg = *(FD->param_end()-1);
2389       else
2390         LastArg = *(getCurMethodDecl()->param_end()-1);
2391       SecondArgIsLastNamedArgument = PV == LastArg;
2392 
2393       Type = PV->getType();
2394       ParamLoc = PV->getLocation();
2395     }
2396   }
2397 
2398   if (!SecondArgIsLastNamedArgument)
2399     Diag(TheCall->getArg(1)->getLocStart(),
2400          diag::warn_second_parameter_of_va_start_not_last_named_argument);
2401   else if (Type->isReferenceType()) {
2402     Diag(Arg->getLocStart(),
2403          diag::warn_va_start_of_reference_type_is_undefined);
2404     Diag(ParamLoc, diag::note_parameter_type) << Type;
2405   }
2406 
2407   TheCall->setType(Context.VoidTy);
2408   return false;
2409 }
2410 
2411 /// Check the arguments to '__builtin_va_start' for validity, and that
2412 /// it was called from a function of the native ABI.
2413 /// Emit an error and return true on failure; return false on success.
2414 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
2415   // On x86-64 Unix, don't allow this in Win64 ABI functions.
2416   // On x64 Windows, don't allow this in System V ABI functions.
2417   // (Yes, that means there's no corresponding way to support variadic
2418   // System V ABI functions on Windows.)
2419   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) {
2420     unsigned OS = Context.getTargetInfo().getTriple().getOS();
2421     clang::CallingConv CC = CC_C;
2422     if (const FunctionDecl *FD = getCurFunctionDecl())
2423       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
2424     if ((OS == llvm::Triple::Win32 && CC == CC_X86_64SysV) ||
2425         (OS != llvm::Triple::Win32 && CC == CC_X86_64Win64))
2426       return Diag(TheCall->getCallee()->getLocStart(),
2427                   diag::err_va_start_used_in_wrong_abi_function)
2428              << (OS != llvm::Triple::Win32);
2429   }
2430   return SemaBuiltinVAStartImpl(TheCall);
2431 }
2432 
2433 /// Check the arguments to '__builtin_ms_va_start' for validity, and that
2434 /// it was called from a Win64 ABI function.
2435 /// Emit an error and return true on failure; return false on success.
2436 bool Sema::SemaBuiltinMSVAStart(CallExpr *TheCall) {
2437   // This only makes sense for x86-64.
2438   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
2439   Expr *Callee = TheCall->getCallee();
2440   if (TT.getArch() != llvm::Triple::x86_64)
2441     return Diag(Callee->getLocStart(), diag::err_x86_builtin_32_bit_tgt);
2442   // Don't allow this in System V ABI functions.
2443   clang::CallingConv CC = CC_C;
2444   if (const FunctionDecl *FD = getCurFunctionDecl())
2445     CC = FD->getType()->getAs<FunctionType>()->getCallConv();
2446   if (CC == CC_X86_64SysV ||
2447       (TT.getOS() != llvm::Triple::Win32 && CC != CC_X86_64Win64))
2448     return Diag(Callee->getLocStart(),
2449                 diag::err_ms_va_start_used_in_sysv_function);
2450   return SemaBuiltinVAStartImpl(TheCall);
2451 }
2452 
2453 bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
2454   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
2455   //                 const char *named_addr);
2456 
2457   Expr *Func = Call->getCallee();
2458 
2459   if (Call->getNumArgs() < 3)
2460     return Diag(Call->getLocEnd(),
2461                 diag::err_typecheck_call_too_few_args_at_least)
2462            << 0 /*function call*/ << 3 << Call->getNumArgs();
2463 
2464   // Determine whether the current function is variadic or not.
2465   bool IsVariadic;
2466   if (BlockScopeInfo *CurBlock = getCurBlock())
2467     IsVariadic = CurBlock->TheDecl->isVariadic();
2468   else if (FunctionDecl *FD = getCurFunctionDecl())
2469     IsVariadic = FD->isVariadic();
2470   else if (ObjCMethodDecl *MD = getCurMethodDecl())
2471     IsVariadic = MD->isVariadic();
2472   else
2473     llvm_unreachable("unexpected statement type");
2474 
2475   if (!IsVariadic) {
2476     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2477     return true;
2478   }
2479 
2480   // Type-check the first argument normally.
2481   if (checkBuiltinArgument(*this, Call, 0))
2482     return true;
2483 
2484   const struct {
2485     unsigned ArgNo;
2486     QualType Type;
2487   } ArgumentTypes[] = {
2488     { 1, Context.getPointerType(Context.CharTy.withConst()) },
2489     { 2, Context.getSizeType() },
2490   };
2491 
2492   for (const auto &AT : ArgumentTypes) {
2493     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
2494     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
2495       continue;
2496     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
2497       << Arg->getType() << AT.Type << 1 /* different class */
2498       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
2499       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
2500   }
2501 
2502   return false;
2503 }
2504 
2505 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
2506 /// friends.  This is declared to take (...), so we have to check everything.
2507 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
2508   if (TheCall->getNumArgs() < 2)
2509     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2510       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
2511   if (TheCall->getNumArgs() > 2)
2512     return Diag(TheCall->getArg(2)->getLocStart(),
2513                 diag::err_typecheck_call_too_many_args)
2514       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2515       << SourceRange(TheCall->getArg(2)->getLocStart(),
2516                      (*(TheCall->arg_end()-1))->getLocEnd());
2517 
2518   ExprResult OrigArg0 = TheCall->getArg(0);
2519   ExprResult OrigArg1 = TheCall->getArg(1);
2520 
2521   // Do standard promotions between the two arguments, returning their common
2522   // type.
2523   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
2524   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
2525     return true;
2526 
2527   // Make sure any conversions are pushed back into the call; this is
2528   // type safe since unordered compare builtins are declared as "_Bool
2529   // foo(...)".
2530   TheCall->setArg(0, OrigArg0.get());
2531   TheCall->setArg(1, OrigArg1.get());
2532 
2533   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
2534     return false;
2535 
2536   // If the common type isn't a real floating type, then the arguments were
2537   // invalid for this operation.
2538   if (Res.isNull() || !Res->isRealFloatingType())
2539     return Diag(OrigArg0.get()->getLocStart(),
2540                 diag::err_typecheck_call_invalid_ordered_compare)
2541       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
2542       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
2543 
2544   return false;
2545 }
2546 
2547 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
2548 /// __builtin_isnan and friends.  This is declared to take (...), so we have
2549 /// to check everything. We expect the last argument to be a floating point
2550 /// value.
2551 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
2552   if (TheCall->getNumArgs() < NumArgs)
2553     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2554       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
2555   if (TheCall->getNumArgs() > NumArgs)
2556     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
2557                 diag::err_typecheck_call_too_many_args)
2558       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
2559       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
2560                      (*(TheCall->arg_end()-1))->getLocEnd());
2561 
2562   Expr *OrigArg = TheCall->getArg(NumArgs-1);
2563 
2564   if (OrigArg->isTypeDependent())
2565     return false;
2566 
2567   // This operation requires a non-_Complex floating-point number.
2568   if (!OrigArg->getType()->isRealFloatingType())
2569     return Diag(OrigArg->getLocStart(),
2570                 diag::err_typecheck_call_invalid_unary_fp)
2571       << OrigArg->getType() << OrigArg->getSourceRange();
2572 
2573   // If this is an implicit conversion from float -> double, remove it.
2574   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
2575     Expr *CastArg = Cast->getSubExpr();
2576     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
2577       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
2578              "promotion from float to double is the only expected cast here");
2579       Cast->setSubExpr(nullptr);
2580       TheCall->setArg(NumArgs-1, CastArg);
2581     }
2582   }
2583 
2584   return false;
2585 }
2586 
2587 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
2588 // This is declared to take (...), so we have to check everything.
2589 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
2590   if (TheCall->getNumArgs() < 2)
2591     return ExprError(Diag(TheCall->getLocEnd(),
2592                           diag::err_typecheck_call_too_few_args_at_least)
2593                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2594                      << TheCall->getSourceRange());
2595 
2596   // Determine which of the following types of shufflevector we're checking:
2597   // 1) unary, vector mask: (lhs, mask)
2598   // 2) binary, vector mask: (lhs, rhs, mask)
2599   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
2600   QualType resType = TheCall->getArg(0)->getType();
2601   unsigned numElements = 0;
2602 
2603   if (!TheCall->getArg(0)->isTypeDependent() &&
2604       !TheCall->getArg(1)->isTypeDependent()) {
2605     QualType LHSType = TheCall->getArg(0)->getType();
2606     QualType RHSType = TheCall->getArg(1)->getType();
2607 
2608     if (!LHSType->isVectorType() || !RHSType->isVectorType())
2609       return ExprError(Diag(TheCall->getLocStart(),
2610                             diag::err_shufflevector_non_vector)
2611                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2612                                       TheCall->getArg(1)->getLocEnd()));
2613 
2614     numElements = LHSType->getAs<VectorType>()->getNumElements();
2615     unsigned numResElements = TheCall->getNumArgs() - 2;
2616 
2617     // Check to see if we have a call with 2 vector arguments, the unary shuffle
2618     // with mask.  If so, verify that RHS is an integer vector type with the
2619     // same number of elts as lhs.
2620     if (TheCall->getNumArgs() == 2) {
2621       if (!RHSType->hasIntegerRepresentation() ||
2622           RHSType->getAs<VectorType>()->getNumElements() != numElements)
2623         return ExprError(Diag(TheCall->getLocStart(),
2624                               diag::err_shufflevector_incompatible_vector)
2625                          << SourceRange(TheCall->getArg(1)->getLocStart(),
2626                                         TheCall->getArg(1)->getLocEnd()));
2627     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
2628       return ExprError(Diag(TheCall->getLocStart(),
2629                             diag::err_shufflevector_incompatible_vector)
2630                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2631                                       TheCall->getArg(1)->getLocEnd()));
2632     } else if (numElements != numResElements) {
2633       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
2634       resType = Context.getVectorType(eltType, numResElements,
2635                                       VectorType::GenericVector);
2636     }
2637   }
2638 
2639   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
2640     if (TheCall->getArg(i)->isTypeDependent() ||
2641         TheCall->getArg(i)->isValueDependent())
2642       continue;
2643 
2644     llvm::APSInt Result(32);
2645     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
2646       return ExprError(Diag(TheCall->getLocStart(),
2647                             diag::err_shufflevector_nonconstant_argument)
2648                        << TheCall->getArg(i)->getSourceRange());
2649 
2650     // Allow -1 which will be translated to undef in the IR.
2651     if (Result.isSigned() && Result.isAllOnesValue())
2652       continue;
2653 
2654     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
2655       return ExprError(Diag(TheCall->getLocStart(),
2656                             diag::err_shufflevector_argument_too_large)
2657                        << TheCall->getArg(i)->getSourceRange());
2658   }
2659 
2660   SmallVector<Expr*, 32> exprs;
2661 
2662   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
2663     exprs.push_back(TheCall->getArg(i));
2664     TheCall->setArg(i, nullptr);
2665   }
2666 
2667   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
2668                                          TheCall->getCallee()->getLocStart(),
2669                                          TheCall->getRParenLoc());
2670 }
2671 
2672 /// SemaConvertVectorExpr - Handle __builtin_convertvector
2673 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
2674                                        SourceLocation BuiltinLoc,
2675                                        SourceLocation RParenLoc) {
2676   ExprValueKind VK = VK_RValue;
2677   ExprObjectKind OK = OK_Ordinary;
2678   QualType DstTy = TInfo->getType();
2679   QualType SrcTy = E->getType();
2680 
2681   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
2682     return ExprError(Diag(BuiltinLoc,
2683                           diag::err_convertvector_non_vector)
2684                      << E->getSourceRange());
2685   if (!DstTy->isVectorType() && !DstTy->isDependentType())
2686     return ExprError(Diag(BuiltinLoc,
2687                           diag::err_convertvector_non_vector_type));
2688 
2689   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
2690     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
2691     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
2692     if (SrcElts != DstElts)
2693       return ExprError(Diag(BuiltinLoc,
2694                             diag::err_convertvector_incompatible_vector)
2695                        << E->getSourceRange());
2696   }
2697 
2698   return new (Context)
2699       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
2700 }
2701 
2702 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
2703 // This is declared to take (const void*, ...) and can take two
2704 // optional constant int args.
2705 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
2706   unsigned NumArgs = TheCall->getNumArgs();
2707 
2708   if (NumArgs > 3)
2709     return Diag(TheCall->getLocEnd(),
2710              diag::err_typecheck_call_too_many_args_at_most)
2711              << 0 /*function call*/ << 3 << NumArgs
2712              << TheCall->getSourceRange();
2713 
2714   // Argument 0 is checked for us and the remaining arguments must be
2715   // constant integers.
2716   for (unsigned i = 1; i != NumArgs; ++i)
2717     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
2718       return true;
2719 
2720   return false;
2721 }
2722 
2723 /// SemaBuiltinAssume - Handle __assume (MS Extension).
2724 // __assume does not evaluate its arguments, and should warn if its argument
2725 // has side effects.
2726 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
2727   Expr *Arg = TheCall->getArg(0);
2728   if (Arg->isInstantiationDependent()) return false;
2729 
2730   if (Arg->HasSideEffects(Context))
2731     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
2732       << Arg->getSourceRange()
2733       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
2734 
2735   return false;
2736 }
2737 
2738 /// Handle __builtin_assume_aligned. This is declared
2739 /// as (const void*, size_t, ...) and can take one optional constant int arg.
2740 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
2741   unsigned NumArgs = TheCall->getNumArgs();
2742 
2743   if (NumArgs > 3)
2744     return Diag(TheCall->getLocEnd(),
2745              diag::err_typecheck_call_too_many_args_at_most)
2746              << 0 /*function call*/ << 3 << NumArgs
2747              << TheCall->getSourceRange();
2748 
2749   // The alignment must be a constant integer.
2750   Expr *Arg = TheCall->getArg(1);
2751 
2752   // We can't check the value of a dependent argument.
2753   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
2754     llvm::APSInt Result;
2755     if (SemaBuiltinConstantArg(TheCall, 1, Result))
2756       return true;
2757 
2758     if (!Result.isPowerOf2())
2759       return Diag(TheCall->getLocStart(),
2760                   diag::err_alignment_not_power_of_two)
2761            << Arg->getSourceRange();
2762   }
2763 
2764   if (NumArgs > 2) {
2765     ExprResult Arg(TheCall->getArg(2));
2766     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2767       Context.getSizeType(), false);
2768     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2769     if (Arg.isInvalid()) return true;
2770     TheCall->setArg(2, Arg.get());
2771   }
2772 
2773   return false;
2774 }
2775 
2776 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
2777 /// TheCall is a constant expression.
2778 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
2779                                   llvm::APSInt &Result) {
2780   Expr *Arg = TheCall->getArg(ArgNum);
2781   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2782   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2783 
2784   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
2785 
2786   if (!Arg->isIntegerConstantExpr(Result, Context))
2787     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
2788                 << FDecl->getDeclName() <<  Arg->getSourceRange();
2789 
2790   return false;
2791 }
2792 
2793 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
2794 /// TheCall is a constant expression in the range [Low, High].
2795 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
2796                                        int Low, int High) {
2797   llvm::APSInt Result;
2798 
2799   // We can't check the value of a dependent argument.
2800   Expr *Arg = TheCall->getArg(ArgNum);
2801   if (Arg->isTypeDependent() || Arg->isValueDependent())
2802     return false;
2803 
2804   // Check constant-ness first.
2805   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2806     return true;
2807 
2808   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
2809     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
2810       << Low << High << Arg->getSourceRange();
2811 
2812   return false;
2813 }
2814 
2815 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
2816 /// TheCall is an ARM/AArch64 special register string literal.
2817 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
2818                                     int ArgNum, unsigned ExpectedFieldNum,
2819                                     bool AllowName) {
2820   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2821                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
2822                       BuiltinID == ARM::BI__builtin_arm_rsr ||
2823                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2824                       BuiltinID == ARM::BI__builtin_arm_wsr ||
2825                       BuiltinID == ARM::BI__builtin_arm_wsrp;
2826   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2827                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
2828                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
2829                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2830                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
2831                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
2832   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
2833 
2834   // We can't check the value of a dependent argument.
2835   Expr *Arg = TheCall->getArg(ArgNum);
2836   if (Arg->isTypeDependent() || Arg->isValueDependent())
2837     return false;
2838 
2839   // Check if the argument is a string literal.
2840   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
2841     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
2842            << Arg->getSourceRange();
2843 
2844   // Check the type of special register given.
2845   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
2846   SmallVector<StringRef, 6> Fields;
2847   Reg.split(Fields, ":");
2848 
2849   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
2850     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
2851            << Arg->getSourceRange();
2852 
2853   // If the string is the name of a register then we cannot check that it is
2854   // valid here but if the string is of one the forms described in ACLE then we
2855   // can check that the supplied fields are integers and within the valid
2856   // ranges.
2857   if (Fields.size() > 1) {
2858     bool FiveFields = Fields.size() == 5;
2859 
2860     bool ValidString = true;
2861     if (IsARMBuiltin) {
2862       ValidString &= Fields[0].startswith_lower("cp") ||
2863                      Fields[0].startswith_lower("p");
2864       if (ValidString)
2865         Fields[0] =
2866           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
2867 
2868       ValidString &= Fields[2].startswith_lower("c");
2869       if (ValidString)
2870         Fields[2] = Fields[2].drop_front(1);
2871 
2872       if (FiveFields) {
2873         ValidString &= Fields[3].startswith_lower("c");
2874         if (ValidString)
2875           Fields[3] = Fields[3].drop_front(1);
2876       }
2877     }
2878 
2879     SmallVector<int, 5> Ranges;
2880     if (FiveFields)
2881       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 7, 15, 15});
2882     else
2883       Ranges.append({15, 7, 15});
2884 
2885     for (unsigned i=0; i<Fields.size(); ++i) {
2886       int IntField;
2887       ValidString &= !Fields[i].getAsInteger(10, IntField);
2888       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
2889     }
2890 
2891     if (!ValidString)
2892       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
2893              << Arg->getSourceRange();
2894 
2895   } else if (IsAArch64Builtin && Fields.size() == 1) {
2896     // If the register name is one of those that appear in the condition below
2897     // and the special register builtin being used is one of the write builtins,
2898     // then we require that the argument provided for writing to the register
2899     // is an integer constant expression. This is because it will be lowered to
2900     // an MSR (immediate) instruction, so we need to know the immediate at
2901     // compile time.
2902     if (TheCall->getNumArgs() != 2)
2903       return false;
2904 
2905     std::string RegLower = Reg.lower();
2906     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
2907         RegLower != "pan" && RegLower != "uao")
2908       return false;
2909 
2910     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2911   }
2912 
2913   return false;
2914 }
2915 
2916 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
2917 /// This checks that the target supports __builtin_cpu_supports and
2918 /// that the string argument is constant and valid.
2919 bool Sema::SemaBuiltinCpuSupports(CallExpr *TheCall) {
2920   Expr *Arg = TheCall->getArg(0);
2921 
2922   // Check if the argument is a string literal.
2923   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
2924     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
2925            << Arg->getSourceRange();
2926 
2927   // Check the contents of the string.
2928   StringRef Feature =
2929       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
2930   if (!Context.getTargetInfo().validateCpuSupports(Feature))
2931     return Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
2932            << Arg->getSourceRange();
2933   return false;
2934 }
2935 
2936 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
2937 /// This checks that the target supports __builtin_longjmp and
2938 /// that val is a constant 1.
2939 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
2940   if (!Context.getTargetInfo().hasSjLjLowering())
2941     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
2942              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2943 
2944   Expr *Arg = TheCall->getArg(1);
2945   llvm::APSInt Result;
2946 
2947   // TODO: This is less than ideal. Overload this to take a value.
2948   if (SemaBuiltinConstantArg(TheCall, 1, Result))
2949     return true;
2950 
2951   if (Result != 1)
2952     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
2953              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
2954 
2955   return false;
2956 }
2957 
2958 
2959 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
2960 /// This checks that the target supports __builtin_setjmp.
2961 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
2962   if (!Context.getTargetInfo().hasSjLjLowering())
2963     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
2964              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2965   return false;
2966 }
2967 
2968 namespace {
2969 enum StringLiteralCheckType {
2970   SLCT_NotALiteral,
2971   SLCT_UncheckedLiteral,
2972   SLCT_CheckedLiteral
2973 };
2974 }
2975 
2976 // Determine if an expression is a string literal or constant string.
2977 // If this function returns false on the arguments to a function expecting a
2978 // format string, we will usually need to emit a warning.
2979 // True string literals are then checked by CheckFormatString.
2980 static StringLiteralCheckType
2981 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
2982                       bool HasVAListArg, unsigned format_idx,
2983                       unsigned firstDataArg, Sema::FormatStringType Type,
2984                       Sema::VariadicCallType CallType, bool InFunctionCall,
2985                       llvm::SmallBitVector &CheckedVarArgs) {
2986  tryAgain:
2987   if (E->isTypeDependent() || E->isValueDependent())
2988     return SLCT_NotALiteral;
2989 
2990   E = E->IgnoreParenCasts();
2991 
2992   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
2993     // Technically -Wformat-nonliteral does not warn about this case.
2994     // The behavior of printf and friends in this case is implementation
2995     // dependent.  Ideally if the format string cannot be null then
2996     // it should have a 'nonnull' attribute in the function prototype.
2997     return SLCT_UncheckedLiteral;
2998 
2999   switch (E->getStmtClass()) {
3000   case Stmt::BinaryConditionalOperatorClass:
3001   case Stmt::ConditionalOperatorClass: {
3002     // The expression is a literal if both sub-expressions were, and it was
3003     // completely checked only if both sub-expressions were checked.
3004     const AbstractConditionalOperator *C =
3005         cast<AbstractConditionalOperator>(E);
3006     StringLiteralCheckType Left =
3007         checkFormatStringExpr(S, C->getTrueExpr(), Args,
3008                               HasVAListArg, format_idx, firstDataArg,
3009                               Type, CallType, InFunctionCall, CheckedVarArgs);
3010     if (Left == SLCT_NotALiteral)
3011       return SLCT_NotALiteral;
3012     StringLiteralCheckType Right =
3013         checkFormatStringExpr(S, C->getFalseExpr(), Args,
3014                               HasVAListArg, format_idx, firstDataArg,
3015                               Type, CallType, InFunctionCall, CheckedVarArgs);
3016     return Left < Right ? Left : Right;
3017   }
3018 
3019   case Stmt::ImplicitCastExprClass: {
3020     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3021     goto tryAgain;
3022   }
3023 
3024   case Stmt::OpaqueValueExprClass:
3025     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
3026       E = src;
3027       goto tryAgain;
3028     }
3029     return SLCT_NotALiteral;
3030 
3031   case Stmt::PredefinedExprClass:
3032     // While __func__, etc., are technically not string literals, they
3033     // cannot contain format specifiers and thus are not a security
3034     // liability.
3035     return SLCT_UncheckedLiteral;
3036 
3037   case Stmt::DeclRefExprClass: {
3038     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
3039 
3040     // As an exception, do not flag errors for variables binding to
3041     // const string literals.
3042     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
3043       bool isConstant = false;
3044       QualType T = DR->getType();
3045 
3046       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
3047         isConstant = AT->getElementType().isConstant(S.Context);
3048       } else if (const PointerType *PT = T->getAs<PointerType>()) {
3049         isConstant = T.isConstant(S.Context) &&
3050                      PT->getPointeeType().isConstant(S.Context);
3051       } else if (T->isObjCObjectPointerType()) {
3052         // In ObjC, there is usually no "const ObjectPointer" type,
3053         // so don't check if the pointee type is constant.
3054         isConstant = T.isConstant(S.Context);
3055       }
3056 
3057       if (isConstant) {
3058         if (const Expr *Init = VD->getAnyInitializer()) {
3059           // Look through initializers like const char c[] = { "foo" }
3060           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3061             if (InitList->isStringLiteralInit())
3062               Init = InitList->getInit(0)->IgnoreParenImpCasts();
3063           }
3064           return checkFormatStringExpr(S, Init, Args,
3065                                        HasVAListArg, format_idx,
3066                                        firstDataArg, Type, CallType,
3067                                        /*InFunctionCall*/false, CheckedVarArgs);
3068         }
3069       }
3070 
3071       // For vprintf* functions (i.e., HasVAListArg==true), we add a
3072       // special check to see if the format string is a function parameter
3073       // of the function calling the printf function.  If the function
3074       // has an attribute indicating it is a printf-like function, then we
3075       // should suppress warnings concerning non-literals being used in a call
3076       // to a vprintf function.  For example:
3077       //
3078       // void
3079       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
3080       //      va_list ap;
3081       //      va_start(ap, fmt);
3082       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
3083       //      ...
3084       // }
3085       if (HasVAListArg) {
3086         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
3087           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
3088             int PVIndex = PV->getFunctionScopeIndex() + 1;
3089             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
3090               // adjust for implicit parameter
3091               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3092                 if (MD->isInstance())
3093                   ++PVIndex;
3094               // We also check if the formats are compatible.
3095               // We can't pass a 'scanf' string to a 'printf' function.
3096               if (PVIndex == PVFormat->getFormatIdx() &&
3097                   Type == S.GetFormatStringType(PVFormat))
3098                 return SLCT_UncheckedLiteral;
3099             }
3100           }
3101         }
3102       }
3103     }
3104 
3105     return SLCT_NotALiteral;
3106   }
3107 
3108   case Stmt::CallExprClass:
3109   case Stmt::CXXMemberCallExprClass: {
3110     const CallExpr *CE = cast<CallExpr>(E);
3111     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
3112       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
3113         unsigned ArgIndex = FA->getFormatIdx();
3114         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3115           if (MD->isInstance())
3116             --ArgIndex;
3117         const Expr *Arg = CE->getArg(ArgIndex - 1);
3118 
3119         return checkFormatStringExpr(S, Arg, Args,
3120                                      HasVAListArg, format_idx, firstDataArg,
3121                                      Type, CallType, InFunctionCall,
3122                                      CheckedVarArgs);
3123       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
3124         unsigned BuiltinID = FD->getBuiltinID();
3125         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
3126             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
3127           const Expr *Arg = CE->getArg(0);
3128           return checkFormatStringExpr(S, Arg, Args,
3129                                        HasVAListArg, format_idx,
3130                                        firstDataArg, Type, CallType,
3131                                        InFunctionCall, CheckedVarArgs);
3132         }
3133       }
3134     }
3135 
3136     return SLCT_NotALiteral;
3137   }
3138   case Stmt::ObjCStringLiteralClass:
3139   case Stmt::StringLiteralClass: {
3140     const StringLiteral *StrE = nullptr;
3141 
3142     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
3143       StrE = ObjCFExpr->getString();
3144     else
3145       StrE = cast<StringLiteral>(E);
3146 
3147     if (StrE) {
3148       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
3149                           Type, InFunctionCall, CallType, CheckedVarArgs);
3150       return SLCT_CheckedLiteral;
3151     }
3152 
3153     return SLCT_NotALiteral;
3154   }
3155 
3156   default:
3157     return SLCT_NotALiteral;
3158   }
3159 }
3160 
3161 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
3162   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
3163   .Case("scanf", FST_Scanf)
3164   .Cases("printf", "printf0", FST_Printf)
3165   .Cases("NSString", "CFString", FST_NSString)
3166   .Case("strftime", FST_Strftime)
3167   .Case("strfmon", FST_Strfmon)
3168   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
3169   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
3170   .Case("os_trace", FST_OSTrace)
3171   .Default(FST_Unknown);
3172 }
3173 
3174 /// CheckFormatArguments - Check calls to printf and scanf (and similar
3175 /// functions) for correct use of format strings.
3176 /// Returns true if a format string has been fully checked.
3177 bool Sema::CheckFormatArguments(const FormatAttr *Format,
3178                                 ArrayRef<const Expr *> Args,
3179                                 bool IsCXXMember,
3180                                 VariadicCallType CallType,
3181                                 SourceLocation Loc, SourceRange Range,
3182                                 llvm::SmallBitVector &CheckedVarArgs) {
3183   FormatStringInfo FSI;
3184   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
3185     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
3186                                 FSI.FirstDataArg, GetFormatStringType(Format),
3187                                 CallType, Loc, Range, CheckedVarArgs);
3188   return false;
3189 }
3190 
3191 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
3192                                 bool HasVAListArg, unsigned format_idx,
3193                                 unsigned firstDataArg, FormatStringType Type,
3194                                 VariadicCallType CallType,
3195                                 SourceLocation Loc, SourceRange Range,
3196                                 llvm::SmallBitVector &CheckedVarArgs) {
3197   // CHECK: printf/scanf-like function is called with no format string.
3198   if (format_idx >= Args.size()) {
3199     Diag(Loc, diag::warn_missing_format_string) << Range;
3200     return false;
3201   }
3202 
3203   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
3204 
3205   // CHECK: format string is not a string literal.
3206   //
3207   // Dynamically generated format strings are difficult to
3208   // automatically vet at compile time.  Requiring that format strings
3209   // are string literals: (1) permits the checking of format strings by
3210   // the compiler and thereby (2) can practically remove the source of
3211   // many format string exploits.
3212 
3213   // Format string can be either ObjC string (e.g. @"%d") or
3214   // C string (e.g. "%d")
3215   // ObjC string uses the same format specifiers as C string, so we can use
3216   // the same format string checking logic for both ObjC and C strings.
3217   StringLiteralCheckType CT =
3218       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
3219                             format_idx, firstDataArg, Type, CallType,
3220                             /*IsFunctionCall*/true, CheckedVarArgs);
3221   if (CT != SLCT_NotALiteral)
3222     // Literal format string found, check done!
3223     return CT == SLCT_CheckedLiteral;
3224 
3225   // Strftime is particular as it always uses a single 'time' argument,
3226   // so it is safe to pass a non-literal string.
3227   if (Type == FST_Strftime)
3228     return false;
3229 
3230   // Do not emit diag when the string param is a macro expansion and the
3231   // format is either NSString or CFString. This is a hack to prevent
3232   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
3233   // which are usually used in place of NS and CF string literals.
3234   if (Type == FST_NSString &&
3235       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
3236     return false;
3237 
3238   // If there are no arguments specified, warn with -Wformat-security, otherwise
3239   // warn only with -Wformat-nonliteral.
3240   if (Args.size() == firstDataArg)
3241     Diag(Args[format_idx]->getLocStart(),
3242          diag::warn_format_nonliteral_noargs)
3243       << OrigFormatExpr->getSourceRange();
3244   else
3245     Diag(Args[format_idx]->getLocStart(),
3246          diag::warn_format_nonliteral)
3247            << OrigFormatExpr->getSourceRange();
3248   return false;
3249 }
3250 
3251 namespace {
3252 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
3253 protected:
3254   Sema &S;
3255   const StringLiteral *FExpr;
3256   const Expr *OrigFormatExpr;
3257   const unsigned FirstDataArg;
3258   const unsigned NumDataArgs;
3259   const char *Beg; // Start of format string.
3260   const bool HasVAListArg;
3261   ArrayRef<const Expr *> Args;
3262   unsigned FormatIdx;
3263   llvm::SmallBitVector CoveredArgs;
3264   bool usesPositionalArgs;
3265   bool atFirstArg;
3266   bool inFunctionCall;
3267   Sema::VariadicCallType CallType;
3268   llvm::SmallBitVector &CheckedVarArgs;
3269 public:
3270   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
3271                      const Expr *origFormatExpr, unsigned firstDataArg,
3272                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
3273                      ArrayRef<const Expr *> Args,
3274                      unsigned formatIdx, bool inFunctionCall,
3275                      Sema::VariadicCallType callType,
3276                      llvm::SmallBitVector &CheckedVarArgs)
3277     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
3278       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
3279       Beg(beg), HasVAListArg(hasVAListArg),
3280       Args(Args), FormatIdx(formatIdx),
3281       usesPositionalArgs(false), atFirstArg(true),
3282       inFunctionCall(inFunctionCall), CallType(callType),
3283       CheckedVarArgs(CheckedVarArgs) {
3284     CoveredArgs.resize(numDataArgs);
3285     CoveredArgs.reset();
3286   }
3287 
3288   void DoneProcessing();
3289 
3290   void HandleIncompleteSpecifier(const char *startSpecifier,
3291                                  unsigned specifierLen) override;
3292 
3293   void HandleInvalidLengthModifier(
3294                            const analyze_format_string::FormatSpecifier &FS,
3295                            const analyze_format_string::ConversionSpecifier &CS,
3296                            const char *startSpecifier, unsigned specifierLen,
3297                            unsigned DiagID);
3298 
3299   void HandleNonStandardLengthModifier(
3300                     const analyze_format_string::FormatSpecifier &FS,
3301                     const char *startSpecifier, unsigned specifierLen);
3302 
3303   void HandleNonStandardConversionSpecifier(
3304                     const analyze_format_string::ConversionSpecifier &CS,
3305                     const char *startSpecifier, unsigned specifierLen);
3306 
3307   void HandlePosition(const char *startPos, unsigned posLen) override;
3308 
3309   void HandleInvalidPosition(const char *startSpecifier,
3310                              unsigned specifierLen,
3311                              analyze_format_string::PositionContext p) override;
3312 
3313   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
3314 
3315   void HandleNullChar(const char *nullCharacter) override;
3316 
3317   template <typename Range>
3318   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
3319                                    const Expr *ArgumentExpr,
3320                                    PartialDiagnostic PDiag,
3321                                    SourceLocation StringLoc,
3322                                    bool IsStringLocation, Range StringRange,
3323                                    ArrayRef<FixItHint> Fixit = None);
3324 
3325 protected:
3326   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
3327                                         const char *startSpec,
3328                                         unsigned specifierLen,
3329                                         const char *csStart, unsigned csLen);
3330 
3331   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
3332                                          const char *startSpec,
3333                                          unsigned specifierLen);
3334 
3335   SourceRange getFormatStringRange();
3336   CharSourceRange getSpecifierRange(const char *startSpecifier,
3337                                     unsigned specifierLen);
3338   SourceLocation getLocationOfByte(const char *x);
3339 
3340   const Expr *getDataArg(unsigned i) const;
3341 
3342   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
3343                     const analyze_format_string::ConversionSpecifier &CS,
3344                     const char *startSpecifier, unsigned specifierLen,
3345                     unsigned argIndex);
3346 
3347   template <typename Range>
3348   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
3349                             bool IsStringLocation, Range StringRange,
3350                             ArrayRef<FixItHint> Fixit = None);
3351 };
3352 }
3353 
3354 SourceRange CheckFormatHandler::getFormatStringRange() {
3355   return OrigFormatExpr->getSourceRange();
3356 }
3357 
3358 CharSourceRange CheckFormatHandler::
3359 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
3360   SourceLocation Start = getLocationOfByte(startSpecifier);
3361   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
3362 
3363   // Advance the end SourceLocation by one due to half-open ranges.
3364   End = End.getLocWithOffset(1);
3365 
3366   return CharSourceRange::getCharRange(Start, End);
3367 }
3368 
3369 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
3370   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
3371 }
3372 
3373 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
3374                                                    unsigned specifierLen){
3375   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
3376                        getLocationOfByte(startSpecifier),
3377                        /*IsStringLocation*/true,
3378                        getSpecifierRange(startSpecifier, specifierLen));
3379 }
3380 
3381 void CheckFormatHandler::HandleInvalidLengthModifier(
3382     const analyze_format_string::FormatSpecifier &FS,
3383     const analyze_format_string::ConversionSpecifier &CS,
3384     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
3385   using namespace analyze_format_string;
3386 
3387   const LengthModifier &LM = FS.getLengthModifier();
3388   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
3389 
3390   // See if we know how to fix this length modifier.
3391   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3392   if (FixedLM) {
3393     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3394                          getLocationOfByte(LM.getStart()),
3395                          /*IsStringLocation*/true,
3396                          getSpecifierRange(startSpecifier, specifierLen));
3397 
3398     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3399       << FixedLM->toString()
3400       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3401 
3402   } else {
3403     FixItHint Hint;
3404     if (DiagID == diag::warn_format_nonsensical_length)
3405       Hint = FixItHint::CreateRemoval(LMRange);
3406 
3407     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3408                          getLocationOfByte(LM.getStart()),
3409                          /*IsStringLocation*/true,
3410                          getSpecifierRange(startSpecifier, specifierLen),
3411                          Hint);
3412   }
3413 }
3414 
3415 void CheckFormatHandler::HandleNonStandardLengthModifier(
3416     const analyze_format_string::FormatSpecifier &FS,
3417     const char *startSpecifier, unsigned specifierLen) {
3418   using namespace analyze_format_string;
3419 
3420   const LengthModifier &LM = FS.getLengthModifier();
3421   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
3422 
3423   // See if we know how to fix this length modifier.
3424   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3425   if (FixedLM) {
3426     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3427                            << LM.toString() << 0,
3428                          getLocationOfByte(LM.getStart()),
3429                          /*IsStringLocation*/true,
3430                          getSpecifierRange(startSpecifier, specifierLen));
3431 
3432     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3433       << FixedLM->toString()
3434       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3435 
3436   } else {
3437     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3438                            << LM.toString() << 0,
3439                          getLocationOfByte(LM.getStart()),
3440                          /*IsStringLocation*/true,
3441                          getSpecifierRange(startSpecifier, specifierLen));
3442   }
3443 }
3444 
3445 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
3446     const analyze_format_string::ConversionSpecifier &CS,
3447     const char *startSpecifier, unsigned specifierLen) {
3448   using namespace analyze_format_string;
3449 
3450   // See if we know how to fix this conversion specifier.
3451   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
3452   if (FixedCS) {
3453     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3454                           << CS.toString() << /*conversion specifier*/1,
3455                          getLocationOfByte(CS.getStart()),
3456                          /*IsStringLocation*/true,
3457                          getSpecifierRange(startSpecifier, specifierLen));
3458 
3459     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
3460     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
3461       << FixedCS->toString()
3462       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
3463   } else {
3464     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3465                           << CS.toString() << /*conversion specifier*/1,
3466                          getLocationOfByte(CS.getStart()),
3467                          /*IsStringLocation*/true,
3468                          getSpecifierRange(startSpecifier, specifierLen));
3469   }
3470 }
3471 
3472 void CheckFormatHandler::HandlePosition(const char *startPos,
3473                                         unsigned posLen) {
3474   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
3475                                getLocationOfByte(startPos),
3476                                /*IsStringLocation*/true,
3477                                getSpecifierRange(startPos, posLen));
3478 }
3479 
3480 void
3481 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
3482                                      analyze_format_string::PositionContext p) {
3483   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
3484                          << (unsigned) p,
3485                        getLocationOfByte(startPos), /*IsStringLocation*/true,
3486                        getSpecifierRange(startPos, posLen));
3487 }
3488 
3489 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
3490                                             unsigned posLen) {
3491   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
3492                                getLocationOfByte(startPos),
3493                                /*IsStringLocation*/true,
3494                                getSpecifierRange(startPos, posLen));
3495 }
3496 
3497 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
3498   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
3499     // The presence of a null character is likely an error.
3500     EmitFormatDiagnostic(
3501       S.PDiag(diag::warn_printf_format_string_contains_null_char),
3502       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
3503       getFormatStringRange());
3504   }
3505 }
3506 
3507 // Note that this may return NULL if there was an error parsing or building
3508 // one of the argument expressions.
3509 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
3510   return Args[FirstDataArg + i];
3511 }
3512 
3513 void CheckFormatHandler::DoneProcessing() {
3514     // Does the number of data arguments exceed the number of
3515     // format conversions in the format string?
3516   if (!HasVAListArg) {
3517       // Find any arguments that weren't covered.
3518     CoveredArgs.flip();
3519     signed notCoveredArg = CoveredArgs.find_first();
3520     if (notCoveredArg >= 0) {
3521       assert((unsigned)notCoveredArg < NumDataArgs);
3522       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
3523         SourceLocation Loc = E->getLocStart();
3524         if (!S.getSourceManager().isInSystemMacro(Loc)) {
3525           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
3526                                Loc, /*IsStringLocation*/false,
3527                                getFormatStringRange());
3528         }
3529       }
3530     }
3531   }
3532 }
3533 
3534 bool
3535 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
3536                                                      SourceLocation Loc,
3537                                                      const char *startSpec,
3538                                                      unsigned specifierLen,
3539                                                      const char *csStart,
3540                                                      unsigned csLen) {
3541 
3542   bool keepGoing = true;
3543   if (argIndex < NumDataArgs) {
3544     // Consider the argument coverered, even though the specifier doesn't
3545     // make sense.
3546     CoveredArgs.set(argIndex);
3547   }
3548   else {
3549     // If argIndex exceeds the number of data arguments we
3550     // don't issue a warning because that is just a cascade of warnings (and
3551     // they may have intended '%%' anyway). We don't want to continue processing
3552     // the format string after this point, however, as we will like just get
3553     // gibberish when trying to match arguments.
3554     keepGoing = false;
3555   }
3556 
3557   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
3558                          << StringRef(csStart, csLen),
3559                        Loc, /*IsStringLocation*/true,
3560                        getSpecifierRange(startSpec, specifierLen));
3561 
3562   return keepGoing;
3563 }
3564 
3565 void
3566 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
3567                                                       const char *startSpec,
3568                                                       unsigned specifierLen) {
3569   EmitFormatDiagnostic(
3570     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
3571     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
3572 }
3573 
3574 bool
3575 CheckFormatHandler::CheckNumArgs(
3576   const analyze_format_string::FormatSpecifier &FS,
3577   const analyze_format_string::ConversionSpecifier &CS,
3578   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
3579 
3580   if (argIndex >= NumDataArgs) {
3581     PartialDiagnostic PDiag = FS.usesPositionalArg()
3582       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
3583            << (argIndex+1) << NumDataArgs)
3584       : S.PDiag(diag::warn_printf_insufficient_data_args);
3585     EmitFormatDiagnostic(
3586       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
3587       getSpecifierRange(startSpecifier, specifierLen));
3588     return false;
3589   }
3590   return true;
3591 }
3592 
3593 template<typename Range>
3594 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
3595                                               SourceLocation Loc,
3596                                               bool IsStringLocation,
3597                                               Range StringRange,
3598                                               ArrayRef<FixItHint> FixIt) {
3599   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
3600                        Loc, IsStringLocation, StringRange, FixIt);
3601 }
3602 
3603 /// \brief If the format string is not within the funcion call, emit a note
3604 /// so that the function call and string are in diagnostic messages.
3605 ///
3606 /// \param InFunctionCall if true, the format string is within the function
3607 /// call and only one diagnostic message will be produced.  Otherwise, an
3608 /// extra note will be emitted pointing to location of the format string.
3609 ///
3610 /// \param ArgumentExpr the expression that is passed as the format string
3611 /// argument in the function call.  Used for getting locations when two
3612 /// diagnostics are emitted.
3613 ///
3614 /// \param PDiag the callee should already have provided any strings for the
3615 /// diagnostic message.  This function only adds locations and fixits
3616 /// to diagnostics.
3617 ///
3618 /// \param Loc primary location for diagnostic.  If two diagnostics are
3619 /// required, one will be at Loc and a new SourceLocation will be created for
3620 /// the other one.
3621 ///
3622 /// \param IsStringLocation if true, Loc points to the format string should be
3623 /// used for the note.  Otherwise, Loc points to the argument list and will
3624 /// be used with PDiag.
3625 ///
3626 /// \param StringRange some or all of the string to highlight.  This is
3627 /// templated so it can accept either a CharSourceRange or a SourceRange.
3628 ///
3629 /// \param FixIt optional fix it hint for the format string.
3630 template<typename Range>
3631 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
3632                                               const Expr *ArgumentExpr,
3633                                               PartialDiagnostic PDiag,
3634                                               SourceLocation Loc,
3635                                               bool IsStringLocation,
3636                                               Range StringRange,
3637                                               ArrayRef<FixItHint> FixIt) {
3638   if (InFunctionCall) {
3639     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
3640     D << StringRange;
3641     D << FixIt;
3642   } else {
3643     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
3644       << ArgumentExpr->getSourceRange();
3645 
3646     const Sema::SemaDiagnosticBuilder &Note =
3647       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
3648              diag::note_format_string_defined);
3649 
3650     Note << StringRange;
3651     Note << FixIt;
3652   }
3653 }
3654 
3655 //===--- CHECK: Printf format string checking ------------------------------===//
3656 
3657 namespace {
3658 class CheckPrintfHandler : public CheckFormatHandler {
3659   bool ObjCContext;
3660 public:
3661   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
3662                      const Expr *origFormatExpr, unsigned firstDataArg,
3663                      unsigned numDataArgs, bool isObjC,
3664                      const char *beg, bool hasVAListArg,
3665                      ArrayRef<const Expr *> Args,
3666                      unsigned formatIdx, bool inFunctionCall,
3667                      Sema::VariadicCallType CallType,
3668                      llvm::SmallBitVector &CheckedVarArgs)
3669     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3670                          numDataArgs, beg, hasVAListArg, Args,
3671                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
3672       ObjCContext(isObjC)
3673   {}
3674 
3675 
3676   bool HandleInvalidPrintfConversionSpecifier(
3677                                       const analyze_printf::PrintfSpecifier &FS,
3678                                       const char *startSpecifier,
3679                                       unsigned specifierLen) override;
3680 
3681   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
3682                              const char *startSpecifier,
3683                              unsigned specifierLen) override;
3684   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3685                        const char *StartSpecifier,
3686                        unsigned SpecifierLen,
3687                        const Expr *E);
3688 
3689   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
3690                     const char *startSpecifier, unsigned specifierLen);
3691   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
3692                            const analyze_printf::OptionalAmount &Amt,
3693                            unsigned type,
3694                            const char *startSpecifier, unsigned specifierLen);
3695   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3696                   const analyze_printf::OptionalFlag &flag,
3697                   const char *startSpecifier, unsigned specifierLen);
3698   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
3699                          const analyze_printf::OptionalFlag &ignoredFlag,
3700                          const analyze_printf::OptionalFlag &flag,
3701                          const char *startSpecifier, unsigned specifierLen);
3702   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
3703                            const Expr *E);
3704 
3705   void HandleEmptyObjCModifierFlag(const char *startFlag,
3706                                    unsigned flagLen) override;
3707 
3708   void HandleInvalidObjCModifierFlag(const char *startFlag,
3709                                             unsigned flagLen) override;
3710 
3711   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
3712                                            const char *flagsEnd,
3713                                            const char *conversionPosition)
3714                                              override;
3715 };
3716 }
3717 
3718 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
3719                                       const analyze_printf::PrintfSpecifier &FS,
3720                                       const char *startSpecifier,
3721                                       unsigned specifierLen) {
3722   const analyze_printf::PrintfConversionSpecifier &CS =
3723     FS.getConversionSpecifier();
3724 
3725   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3726                                           getLocationOfByte(CS.getStart()),
3727                                           startSpecifier, specifierLen,
3728                                           CS.getStart(), CS.getLength());
3729 }
3730 
3731 bool CheckPrintfHandler::HandleAmount(
3732                                const analyze_format_string::OptionalAmount &Amt,
3733                                unsigned k, const char *startSpecifier,
3734                                unsigned specifierLen) {
3735 
3736   if (Amt.hasDataArgument()) {
3737     if (!HasVAListArg) {
3738       unsigned argIndex = Amt.getArgIndex();
3739       if (argIndex >= NumDataArgs) {
3740         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
3741                                << k,
3742                              getLocationOfByte(Amt.getStart()),
3743                              /*IsStringLocation*/true,
3744                              getSpecifierRange(startSpecifier, specifierLen));
3745         // Don't do any more checking.  We will just emit
3746         // spurious errors.
3747         return false;
3748       }
3749 
3750       // Type check the data argument.  It should be an 'int'.
3751       // Although not in conformance with C99, we also allow the argument to be
3752       // an 'unsigned int' as that is a reasonably safe case.  GCC also
3753       // doesn't emit a warning for that case.
3754       CoveredArgs.set(argIndex);
3755       const Expr *Arg = getDataArg(argIndex);
3756       if (!Arg)
3757         return false;
3758 
3759       QualType T = Arg->getType();
3760 
3761       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
3762       assert(AT.isValid());
3763 
3764       if (!AT.matchesType(S.Context, T)) {
3765         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
3766                                << k << AT.getRepresentativeTypeName(S.Context)
3767                                << T << Arg->getSourceRange(),
3768                              getLocationOfByte(Amt.getStart()),
3769                              /*IsStringLocation*/true,
3770                              getSpecifierRange(startSpecifier, specifierLen));
3771         // Don't do any more checking.  We will just emit
3772         // spurious errors.
3773         return false;
3774       }
3775     }
3776   }
3777   return true;
3778 }
3779 
3780 void CheckPrintfHandler::HandleInvalidAmount(
3781                                       const analyze_printf::PrintfSpecifier &FS,
3782                                       const analyze_printf::OptionalAmount &Amt,
3783                                       unsigned type,
3784                                       const char *startSpecifier,
3785                                       unsigned specifierLen) {
3786   const analyze_printf::PrintfConversionSpecifier &CS =
3787     FS.getConversionSpecifier();
3788 
3789   FixItHint fixit =
3790     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
3791       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
3792                                  Amt.getConstantLength()))
3793       : FixItHint();
3794 
3795   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
3796                          << type << CS.toString(),
3797                        getLocationOfByte(Amt.getStart()),
3798                        /*IsStringLocation*/true,
3799                        getSpecifierRange(startSpecifier, specifierLen),
3800                        fixit);
3801 }
3802 
3803 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3804                                     const analyze_printf::OptionalFlag &flag,
3805                                     const char *startSpecifier,
3806                                     unsigned specifierLen) {
3807   // Warn about pointless flag with a fixit removal.
3808   const analyze_printf::PrintfConversionSpecifier &CS =
3809     FS.getConversionSpecifier();
3810   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
3811                          << flag.toString() << CS.toString(),
3812                        getLocationOfByte(flag.getPosition()),
3813                        /*IsStringLocation*/true,
3814                        getSpecifierRange(startSpecifier, specifierLen),
3815                        FixItHint::CreateRemoval(
3816                          getSpecifierRange(flag.getPosition(), 1)));
3817 }
3818 
3819 void CheckPrintfHandler::HandleIgnoredFlag(
3820                                 const analyze_printf::PrintfSpecifier &FS,
3821                                 const analyze_printf::OptionalFlag &ignoredFlag,
3822                                 const analyze_printf::OptionalFlag &flag,
3823                                 const char *startSpecifier,
3824                                 unsigned specifierLen) {
3825   // Warn about ignored flag with a fixit removal.
3826   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
3827                          << ignoredFlag.toString() << flag.toString(),
3828                        getLocationOfByte(ignoredFlag.getPosition()),
3829                        /*IsStringLocation*/true,
3830                        getSpecifierRange(startSpecifier, specifierLen),
3831                        FixItHint::CreateRemoval(
3832                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
3833 }
3834 
3835 //  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
3836 //                            bool IsStringLocation, Range StringRange,
3837 //                            ArrayRef<FixItHint> Fixit = None);
3838 
3839 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
3840                                                      unsigned flagLen) {
3841   // Warn about an empty flag.
3842   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
3843                        getLocationOfByte(startFlag),
3844                        /*IsStringLocation*/true,
3845                        getSpecifierRange(startFlag, flagLen));
3846 }
3847 
3848 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
3849                                                        unsigned flagLen) {
3850   // Warn about an invalid flag.
3851   auto Range = getSpecifierRange(startFlag, flagLen);
3852   StringRef flag(startFlag, flagLen);
3853   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
3854                       getLocationOfByte(startFlag),
3855                       /*IsStringLocation*/true,
3856                       Range, FixItHint::CreateRemoval(Range));
3857 }
3858 
3859 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
3860     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
3861     // Warn about using '[...]' without a '@' conversion.
3862     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
3863     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
3864     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
3865                          getLocationOfByte(conversionPosition),
3866                          /*IsStringLocation*/true,
3867                          Range, FixItHint::CreateRemoval(Range));
3868 }
3869 
3870 // Determines if the specified is a C++ class or struct containing
3871 // a member with the specified name and kind (e.g. a CXXMethodDecl named
3872 // "c_str()").
3873 template<typename MemberKind>
3874 static llvm::SmallPtrSet<MemberKind*, 1>
3875 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
3876   const RecordType *RT = Ty->getAs<RecordType>();
3877   llvm::SmallPtrSet<MemberKind*, 1> Results;
3878 
3879   if (!RT)
3880     return Results;
3881   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3882   if (!RD || !RD->getDefinition())
3883     return Results;
3884 
3885   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
3886                  Sema::LookupMemberName);
3887   R.suppressDiagnostics();
3888 
3889   // We just need to include all members of the right kind turned up by the
3890   // filter, at this point.
3891   if (S.LookupQualifiedName(R, RT->getDecl()))
3892     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3893       NamedDecl *decl = (*I)->getUnderlyingDecl();
3894       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
3895         Results.insert(FK);
3896     }
3897   return Results;
3898 }
3899 
3900 /// Check if we could call '.c_str()' on an object.
3901 ///
3902 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
3903 /// allow the call, or if it would be ambiguous).
3904 bool Sema::hasCStrMethod(const Expr *E) {
3905   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3906   MethodSet Results =
3907       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
3908   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3909        MI != ME; ++MI)
3910     if ((*MI)->getMinRequiredArguments() == 0)
3911       return true;
3912   return false;
3913 }
3914 
3915 // Check if a (w)string was passed when a (w)char* was needed, and offer a
3916 // better diagnostic if so. AT is assumed to be valid.
3917 // Returns true when a c_str() conversion method is found.
3918 bool CheckPrintfHandler::checkForCStrMembers(
3919     const analyze_printf::ArgType &AT, const Expr *E) {
3920   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3921 
3922   MethodSet Results =
3923       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
3924 
3925   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3926        MI != ME; ++MI) {
3927     const CXXMethodDecl *Method = *MI;
3928     if (Method->getMinRequiredArguments() == 0 &&
3929         AT.matchesType(S.Context, Method->getReturnType())) {
3930       // FIXME: Suggest parens if the expression needs them.
3931       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
3932       S.Diag(E->getLocStart(), diag::note_printf_c_str)
3933           << "c_str()"
3934           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
3935       return true;
3936     }
3937   }
3938 
3939   return false;
3940 }
3941 
3942 bool
3943 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
3944                                             &FS,
3945                                           const char *startSpecifier,
3946                                           unsigned specifierLen) {
3947 
3948   using namespace analyze_format_string;
3949   using namespace analyze_printf;
3950   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
3951 
3952   if (FS.consumesDataArgument()) {
3953     if (atFirstArg) {
3954         atFirstArg = false;
3955         usesPositionalArgs = FS.usesPositionalArg();
3956     }
3957     else if (usesPositionalArgs != FS.usesPositionalArg()) {
3958       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3959                                         startSpecifier, specifierLen);
3960       return false;
3961     }
3962   }
3963 
3964   // First check if the field width, precision, and conversion specifier
3965   // have matching data arguments.
3966   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
3967                     startSpecifier, specifierLen)) {
3968     return false;
3969   }
3970 
3971   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
3972                     startSpecifier, specifierLen)) {
3973     return false;
3974   }
3975 
3976   if (!CS.consumesDataArgument()) {
3977     // FIXME: Technically specifying a precision or field width here
3978     // makes no sense.  Worth issuing a warning at some point.
3979     return true;
3980   }
3981 
3982   // Consume the argument.
3983   unsigned argIndex = FS.getArgIndex();
3984   if (argIndex < NumDataArgs) {
3985     // The check to see if the argIndex is valid will come later.
3986     // We set the bit here because we may exit early from this
3987     // function if we encounter some other error.
3988     CoveredArgs.set(argIndex);
3989   }
3990 
3991   // FreeBSD kernel extensions.
3992   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
3993       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
3994     // We need at least two arguments.
3995     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
3996       return false;
3997 
3998     // Claim the second argument.
3999     CoveredArgs.set(argIndex + 1);
4000 
4001     // Type check the first argument (int for %b, pointer for %D)
4002     const Expr *Ex = getDataArg(argIndex);
4003     const analyze_printf::ArgType &AT =
4004       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
4005         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
4006     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
4007       EmitFormatDiagnostic(
4008         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4009         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
4010         << false << Ex->getSourceRange(),
4011         Ex->getLocStart(), /*IsStringLocation*/false,
4012         getSpecifierRange(startSpecifier, specifierLen));
4013 
4014     // Type check the second argument (char * for both %b and %D)
4015     Ex = getDataArg(argIndex + 1);
4016     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
4017     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
4018       EmitFormatDiagnostic(
4019         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4020         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
4021         << false << Ex->getSourceRange(),
4022         Ex->getLocStart(), /*IsStringLocation*/false,
4023         getSpecifierRange(startSpecifier, specifierLen));
4024 
4025      return true;
4026   }
4027 
4028   // Check for using an Objective-C specific conversion specifier
4029   // in a non-ObjC literal.
4030   if (!ObjCContext && CS.isObjCArg()) {
4031     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
4032                                                   specifierLen);
4033   }
4034 
4035   // Check for invalid use of field width
4036   if (!FS.hasValidFieldWidth()) {
4037     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
4038         startSpecifier, specifierLen);
4039   }
4040 
4041   // Check for invalid use of precision
4042   if (!FS.hasValidPrecision()) {
4043     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
4044         startSpecifier, specifierLen);
4045   }
4046 
4047   // Check each flag does not conflict with any other component.
4048   if (!FS.hasValidThousandsGroupingPrefix())
4049     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
4050   if (!FS.hasValidLeadingZeros())
4051     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
4052   if (!FS.hasValidPlusPrefix())
4053     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
4054   if (!FS.hasValidSpacePrefix())
4055     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
4056   if (!FS.hasValidAlternativeForm())
4057     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
4058   if (!FS.hasValidLeftJustified())
4059     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
4060 
4061   // Check that flags are not ignored by another flag
4062   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
4063     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
4064         startSpecifier, specifierLen);
4065   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
4066     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
4067             startSpecifier, specifierLen);
4068 
4069   // Check the length modifier is valid with the given conversion specifier.
4070   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4071     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4072                                 diag::warn_format_nonsensical_length);
4073   else if (!FS.hasStandardLengthModifier())
4074     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4075   else if (!FS.hasStandardLengthConversionCombination())
4076     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4077                                 diag::warn_format_non_standard_conversion_spec);
4078 
4079   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
4080     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
4081 
4082   // The remaining checks depend on the data arguments.
4083   if (HasVAListArg)
4084     return true;
4085 
4086   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
4087     return false;
4088 
4089   const Expr *Arg = getDataArg(argIndex);
4090   if (!Arg)
4091     return true;
4092 
4093   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
4094 }
4095 
4096 static bool requiresParensToAddCast(const Expr *E) {
4097   // FIXME: We should have a general way to reason about operator
4098   // precedence and whether parens are actually needed here.
4099   // Take care of a few common cases where they aren't.
4100   const Expr *Inside = E->IgnoreImpCasts();
4101   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
4102     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
4103 
4104   switch (Inside->getStmtClass()) {
4105   case Stmt::ArraySubscriptExprClass:
4106   case Stmt::CallExprClass:
4107   case Stmt::CharacterLiteralClass:
4108   case Stmt::CXXBoolLiteralExprClass:
4109   case Stmt::DeclRefExprClass:
4110   case Stmt::FloatingLiteralClass:
4111   case Stmt::IntegerLiteralClass:
4112   case Stmt::MemberExprClass:
4113   case Stmt::ObjCArrayLiteralClass:
4114   case Stmt::ObjCBoolLiteralExprClass:
4115   case Stmt::ObjCBoxedExprClass:
4116   case Stmt::ObjCDictionaryLiteralClass:
4117   case Stmt::ObjCEncodeExprClass:
4118   case Stmt::ObjCIvarRefExprClass:
4119   case Stmt::ObjCMessageExprClass:
4120   case Stmt::ObjCPropertyRefExprClass:
4121   case Stmt::ObjCStringLiteralClass:
4122   case Stmt::ObjCSubscriptRefExprClass:
4123   case Stmt::ParenExprClass:
4124   case Stmt::StringLiteralClass:
4125   case Stmt::UnaryOperatorClass:
4126     return false;
4127   default:
4128     return true;
4129   }
4130 }
4131 
4132 static std::pair<QualType, StringRef>
4133 shouldNotPrintDirectly(const ASTContext &Context,
4134                        QualType IntendedTy,
4135                        const Expr *E) {
4136   // Use a 'while' to peel off layers of typedefs.
4137   QualType TyTy = IntendedTy;
4138   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
4139     StringRef Name = UserTy->getDecl()->getName();
4140     QualType CastTy = llvm::StringSwitch<QualType>(Name)
4141       .Case("NSInteger", Context.LongTy)
4142       .Case("NSUInteger", Context.UnsignedLongTy)
4143       .Case("SInt32", Context.IntTy)
4144       .Case("UInt32", Context.UnsignedIntTy)
4145       .Default(QualType());
4146 
4147     if (!CastTy.isNull())
4148       return std::make_pair(CastTy, Name);
4149 
4150     TyTy = UserTy->desugar();
4151   }
4152 
4153   // Strip parens if necessary.
4154   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
4155     return shouldNotPrintDirectly(Context,
4156                                   PE->getSubExpr()->getType(),
4157                                   PE->getSubExpr());
4158 
4159   // If this is a conditional expression, then its result type is constructed
4160   // via usual arithmetic conversions and thus there might be no necessary
4161   // typedef sugar there.  Recurse to operands to check for NSInteger &
4162   // Co. usage condition.
4163   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4164     QualType TrueTy, FalseTy;
4165     StringRef TrueName, FalseName;
4166 
4167     std::tie(TrueTy, TrueName) =
4168       shouldNotPrintDirectly(Context,
4169                              CO->getTrueExpr()->getType(),
4170                              CO->getTrueExpr());
4171     std::tie(FalseTy, FalseName) =
4172       shouldNotPrintDirectly(Context,
4173                              CO->getFalseExpr()->getType(),
4174                              CO->getFalseExpr());
4175 
4176     if (TrueTy == FalseTy)
4177       return std::make_pair(TrueTy, TrueName);
4178     else if (TrueTy.isNull())
4179       return std::make_pair(FalseTy, FalseName);
4180     else if (FalseTy.isNull())
4181       return std::make_pair(TrueTy, TrueName);
4182   }
4183 
4184   return std::make_pair(QualType(), StringRef());
4185 }
4186 
4187 bool
4188 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
4189                                     const char *StartSpecifier,
4190                                     unsigned SpecifierLen,
4191                                     const Expr *E) {
4192   using namespace analyze_format_string;
4193   using namespace analyze_printf;
4194   // Now type check the data expression that matches the
4195   // format specifier.
4196   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
4197                                                     ObjCContext);
4198   if (!AT.isValid())
4199     return true;
4200 
4201   QualType ExprTy = E->getType();
4202   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
4203     ExprTy = TET->getUnderlyingExpr()->getType();
4204   }
4205 
4206   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
4207 
4208   if (match == analyze_printf::ArgType::Match) {
4209     return true;
4210   }
4211 
4212   // Look through argument promotions for our error message's reported type.
4213   // This includes the integral and floating promotions, but excludes array
4214   // and function pointer decay; seeing that an argument intended to be a
4215   // string has type 'char [6]' is probably more confusing than 'char *'.
4216   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4217     if (ICE->getCastKind() == CK_IntegralCast ||
4218         ICE->getCastKind() == CK_FloatingCast) {
4219       E = ICE->getSubExpr();
4220       ExprTy = E->getType();
4221 
4222       // Check if we didn't match because of an implicit cast from a 'char'
4223       // or 'short' to an 'int'.  This is done because printf is a varargs
4224       // function.
4225       if (ICE->getType() == S.Context.IntTy ||
4226           ICE->getType() == S.Context.UnsignedIntTy) {
4227         // All further checking is done on the subexpression.
4228         if (AT.matchesType(S.Context, ExprTy))
4229           return true;
4230       }
4231     }
4232   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
4233     // Special case for 'a', which has type 'int' in C.
4234     // Note, however, that we do /not/ want to treat multibyte constants like
4235     // 'MooV' as characters! This form is deprecated but still exists.
4236     if (ExprTy == S.Context.IntTy)
4237       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
4238         ExprTy = S.Context.CharTy;
4239   }
4240 
4241   // Look through enums to their underlying type.
4242   bool IsEnum = false;
4243   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
4244     ExprTy = EnumTy->getDecl()->getIntegerType();
4245     IsEnum = true;
4246   }
4247 
4248   // %C in an Objective-C context prints a unichar, not a wchar_t.
4249   // If the argument is an integer of some kind, believe the %C and suggest
4250   // a cast instead of changing the conversion specifier.
4251   QualType IntendedTy = ExprTy;
4252   if (ObjCContext &&
4253       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
4254     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
4255         !ExprTy->isCharType()) {
4256       // 'unichar' is defined as a typedef of unsigned short, but we should
4257       // prefer using the typedef if it is visible.
4258       IntendedTy = S.Context.UnsignedShortTy;
4259 
4260       // While we are here, check if the value is an IntegerLiteral that happens
4261       // to be within the valid range.
4262       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
4263         const llvm::APInt &V = IL->getValue();
4264         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
4265           return true;
4266       }
4267 
4268       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
4269                           Sema::LookupOrdinaryName);
4270       if (S.LookupName(Result, S.getCurScope())) {
4271         NamedDecl *ND = Result.getFoundDecl();
4272         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4273           if (TD->getUnderlyingType() == IntendedTy)
4274             IntendedTy = S.Context.getTypedefType(TD);
4275       }
4276     }
4277   }
4278 
4279   // Special-case some of Darwin's platform-independence types by suggesting
4280   // casts to primitive types that are known to be large enough.
4281   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
4282   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
4283     QualType CastTy;
4284     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
4285     if (!CastTy.isNull()) {
4286       IntendedTy = CastTy;
4287       ShouldNotPrintDirectly = true;
4288     }
4289   }
4290 
4291   // We may be able to offer a FixItHint if it is a supported type.
4292   PrintfSpecifier fixedFS = FS;
4293   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
4294                                  S.Context, ObjCContext);
4295 
4296   if (success) {
4297     // Get the fix string from the fixed format specifier
4298     SmallString<16> buf;
4299     llvm::raw_svector_ostream os(buf);
4300     fixedFS.toString(os);
4301 
4302     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
4303 
4304     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
4305       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4306       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
4307         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4308       }
4309       // In this case, the specifier is wrong and should be changed to match
4310       // the argument.
4311       EmitFormatDiagnostic(S.PDiag(diag)
4312                                << AT.getRepresentativeTypeName(S.Context)
4313                                << IntendedTy << IsEnum << E->getSourceRange(),
4314                            E->getLocStart(),
4315                            /*IsStringLocation*/ false, SpecRange,
4316                            FixItHint::CreateReplacement(SpecRange, os.str()));
4317 
4318     } else {
4319       // The canonical type for formatting this value is different from the
4320       // actual type of the expression. (This occurs, for example, with Darwin's
4321       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
4322       // should be printed as 'long' for 64-bit compatibility.)
4323       // Rather than emitting a normal format/argument mismatch, we want to
4324       // add a cast to the recommended type (and correct the format string
4325       // if necessary).
4326       SmallString<16> CastBuf;
4327       llvm::raw_svector_ostream CastFix(CastBuf);
4328       CastFix << "(";
4329       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
4330       CastFix << ")";
4331 
4332       SmallVector<FixItHint,4> Hints;
4333       if (!AT.matchesType(S.Context, IntendedTy))
4334         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
4335 
4336       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
4337         // If there's already a cast present, just replace it.
4338         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
4339         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
4340 
4341       } else if (!requiresParensToAddCast(E)) {
4342         // If the expression has high enough precedence,
4343         // just write the C-style cast.
4344         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
4345                                                    CastFix.str()));
4346       } else {
4347         // Otherwise, add parens around the expression as well as the cast.
4348         CastFix << "(";
4349         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
4350                                                    CastFix.str()));
4351 
4352         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
4353         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
4354       }
4355 
4356       if (ShouldNotPrintDirectly) {
4357         // The expression has a type that should not be printed directly.
4358         // We extract the name from the typedef because we don't want to show
4359         // the underlying type in the diagnostic.
4360         StringRef Name;
4361         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
4362           Name = TypedefTy->getDecl()->getName();
4363         else
4364           Name = CastTyName;
4365         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
4366                                << Name << IntendedTy << IsEnum
4367                                << E->getSourceRange(),
4368                              E->getLocStart(), /*IsStringLocation=*/false,
4369                              SpecRange, Hints);
4370       } else {
4371         // In this case, the expression could be printed using a different
4372         // specifier, but we've decided that the specifier is probably correct
4373         // and we should cast instead. Just use the normal warning message.
4374         EmitFormatDiagnostic(
4375           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4376             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
4377             << E->getSourceRange(),
4378           E->getLocStart(), /*IsStringLocation*/false,
4379           SpecRange, Hints);
4380       }
4381     }
4382   } else {
4383     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
4384                                                    SpecifierLen);
4385     // Since the warning for passing non-POD types to variadic functions
4386     // was deferred until now, we emit a warning for non-POD
4387     // arguments here.
4388     switch (S.isValidVarArgType(ExprTy)) {
4389     case Sema::VAK_Valid:
4390     case Sema::VAK_ValidInCXX11: {
4391       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4392       if (match == analyze_printf::ArgType::NoMatchPedantic) {
4393         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4394       }
4395 
4396       EmitFormatDiagnostic(
4397           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
4398                         << IsEnum << CSR << E->getSourceRange(),
4399           E->getLocStart(), /*IsStringLocation*/ false, CSR);
4400       break;
4401     }
4402     case Sema::VAK_Undefined:
4403     case Sema::VAK_MSVCUndefined:
4404       EmitFormatDiagnostic(
4405         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
4406           << S.getLangOpts().CPlusPlus11
4407           << ExprTy
4408           << CallType
4409           << AT.getRepresentativeTypeName(S.Context)
4410           << CSR
4411           << E->getSourceRange(),
4412         E->getLocStart(), /*IsStringLocation*/false, CSR);
4413       checkForCStrMembers(AT, E);
4414       break;
4415 
4416     case Sema::VAK_Invalid:
4417       if (ExprTy->isObjCObjectType())
4418         EmitFormatDiagnostic(
4419           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
4420             << S.getLangOpts().CPlusPlus11
4421             << ExprTy
4422             << CallType
4423             << AT.getRepresentativeTypeName(S.Context)
4424             << CSR
4425             << E->getSourceRange(),
4426           E->getLocStart(), /*IsStringLocation*/false, CSR);
4427       else
4428         // FIXME: If this is an initializer list, suggest removing the braces
4429         // or inserting a cast to the target type.
4430         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
4431           << isa<InitListExpr>(E) << ExprTy << CallType
4432           << AT.getRepresentativeTypeName(S.Context)
4433           << E->getSourceRange();
4434       break;
4435     }
4436 
4437     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
4438            "format string specifier index out of range");
4439     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
4440   }
4441 
4442   return true;
4443 }
4444 
4445 //===--- CHECK: Scanf format string checking ------------------------------===//
4446 
4447 namespace {
4448 class CheckScanfHandler : public CheckFormatHandler {
4449 public:
4450   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
4451                     const Expr *origFormatExpr, unsigned firstDataArg,
4452                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
4453                     ArrayRef<const Expr *> Args,
4454                     unsigned formatIdx, bool inFunctionCall,
4455                     Sema::VariadicCallType CallType,
4456                     llvm::SmallBitVector &CheckedVarArgs)
4457     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
4458                          numDataArgs, beg, hasVAListArg,
4459                          Args, formatIdx, inFunctionCall, CallType,
4460                          CheckedVarArgs)
4461   {}
4462 
4463   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
4464                             const char *startSpecifier,
4465                             unsigned specifierLen) override;
4466 
4467   bool HandleInvalidScanfConversionSpecifier(
4468           const analyze_scanf::ScanfSpecifier &FS,
4469           const char *startSpecifier,
4470           unsigned specifierLen) override;
4471 
4472   void HandleIncompleteScanList(const char *start, const char *end) override;
4473 };
4474 }
4475 
4476 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
4477                                                  const char *end) {
4478   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
4479                        getLocationOfByte(end), /*IsStringLocation*/true,
4480                        getSpecifierRange(start, end - start));
4481 }
4482 
4483 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
4484                                         const analyze_scanf::ScanfSpecifier &FS,
4485                                         const char *startSpecifier,
4486                                         unsigned specifierLen) {
4487 
4488   const analyze_scanf::ScanfConversionSpecifier &CS =
4489     FS.getConversionSpecifier();
4490 
4491   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
4492                                           getLocationOfByte(CS.getStart()),
4493                                           startSpecifier, specifierLen,
4494                                           CS.getStart(), CS.getLength());
4495 }
4496 
4497 bool CheckScanfHandler::HandleScanfSpecifier(
4498                                        const analyze_scanf::ScanfSpecifier &FS,
4499                                        const char *startSpecifier,
4500                                        unsigned specifierLen) {
4501 
4502   using namespace analyze_scanf;
4503   using namespace analyze_format_string;
4504 
4505   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
4506 
4507   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
4508   // be used to decide if we are using positional arguments consistently.
4509   if (FS.consumesDataArgument()) {
4510     if (atFirstArg) {
4511       atFirstArg = false;
4512       usesPositionalArgs = FS.usesPositionalArg();
4513     }
4514     else if (usesPositionalArgs != FS.usesPositionalArg()) {
4515       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
4516                                         startSpecifier, specifierLen);
4517       return false;
4518     }
4519   }
4520 
4521   // Check if the field with is non-zero.
4522   const OptionalAmount &Amt = FS.getFieldWidth();
4523   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
4524     if (Amt.getConstantAmount() == 0) {
4525       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
4526                                                    Amt.getConstantLength());
4527       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
4528                            getLocationOfByte(Amt.getStart()),
4529                            /*IsStringLocation*/true, R,
4530                            FixItHint::CreateRemoval(R));
4531     }
4532   }
4533 
4534   if (!FS.consumesDataArgument()) {
4535     // FIXME: Technically specifying a precision or field width here
4536     // makes no sense.  Worth issuing a warning at some point.
4537     return true;
4538   }
4539 
4540   // Consume the argument.
4541   unsigned argIndex = FS.getArgIndex();
4542   if (argIndex < NumDataArgs) {
4543       // The check to see if the argIndex is valid will come later.
4544       // We set the bit here because we may exit early from this
4545       // function if we encounter some other error.
4546     CoveredArgs.set(argIndex);
4547   }
4548 
4549   // Check the length modifier is valid with the given conversion specifier.
4550   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4551     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4552                                 diag::warn_format_nonsensical_length);
4553   else if (!FS.hasStandardLengthModifier())
4554     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4555   else if (!FS.hasStandardLengthConversionCombination())
4556     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4557                                 diag::warn_format_non_standard_conversion_spec);
4558 
4559   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
4560     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
4561 
4562   // The remaining checks depend on the data arguments.
4563   if (HasVAListArg)
4564     return true;
4565 
4566   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
4567     return false;
4568 
4569   // Check that the argument type matches the format specifier.
4570   const Expr *Ex = getDataArg(argIndex);
4571   if (!Ex)
4572     return true;
4573 
4574   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
4575 
4576   if (!AT.isValid()) {
4577     return true;
4578   }
4579 
4580   analyze_format_string::ArgType::MatchKind match =
4581       AT.matchesType(S.Context, Ex->getType());
4582   if (match == analyze_format_string::ArgType::Match) {
4583     return true;
4584   }
4585 
4586   ScanfSpecifier fixedFS = FS;
4587   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
4588                                  S.getLangOpts(), S.Context);
4589 
4590   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4591   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
4592     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4593   }
4594 
4595   if (success) {
4596     // Get the fix string from the fixed format specifier.
4597     SmallString<128> buf;
4598     llvm::raw_svector_ostream os(buf);
4599     fixedFS.toString(os);
4600 
4601     EmitFormatDiagnostic(
4602         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
4603                       << Ex->getType() << false << Ex->getSourceRange(),
4604         Ex->getLocStart(),
4605         /*IsStringLocation*/ false,
4606         getSpecifierRange(startSpecifier, specifierLen),
4607         FixItHint::CreateReplacement(
4608             getSpecifierRange(startSpecifier, specifierLen), os.str()));
4609   } else {
4610     EmitFormatDiagnostic(S.PDiag(diag)
4611                              << AT.getRepresentativeTypeName(S.Context)
4612                              << Ex->getType() << false << Ex->getSourceRange(),
4613                          Ex->getLocStart(),
4614                          /*IsStringLocation*/ false,
4615                          getSpecifierRange(startSpecifier, specifierLen));
4616   }
4617 
4618   return true;
4619 }
4620 
4621 void Sema::CheckFormatString(const StringLiteral *FExpr,
4622                              const Expr *OrigFormatExpr,
4623                              ArrayRef<const Expr *> Args,
4624                              bool HasVAListArg, unsigned format_idx,
4625                              unsigned firstDataArg, FormatStringType Type,
4626                              bool inFunctionCall, VariadicCallType CallType,
4627                              llvm::SmallBitVector &CheckedVarArgs) {
4628 
4629   // CHECK: is the format string a wide literal?
4630   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
4631     CheckFormatHandler::EmitFormatDiagnostic(
4632       *this, inFunctionCall, Args[format_idx],
4633       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
4634       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4635     return;
4636   }
4637 
4638   // Str - The format string.  NOTE: this is NOT null-terminated!
4639   StringRef StrRef = FExpr->getString();
4640   const char *Str = StrRef.data();
4641   // Account for cases where the string literal is truncated in a declaration.
4642   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4643   assert(T && "String literal not of constant array type!");
4644   size_t TypeSize = T->getSize().getZExtValue();
4645   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4646   const unsigned numDataArgs = Args.size() - firstDataArg;
4647 
4648   // Emit a warning if the string literal is truncated and does not contain an
4649   // embedded null character.
4650   if (TypeSize <= StrRef.size() &&
4651       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
4652     CheckFormatHandler::EmitFormatDiagnostic(
4653         *this, inFunctionCall, Args[format_idx],
4654         PDiag(diag::warn_printf_format_string_not_null_terminated),
4655         FExpr->getLocStart(),
4656         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
4657     return;
4658   }
4659 
4660   // CHECK: empty format string?
4661   if (StrLen == 0 && numDataArgs > 0) {
4662     CheckFormatHandler::EmitFormatDiagnostic(
4663       *this, inFunctionCall, Args[format_idx],
4664       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
4665       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4666     return;
4667   }
4668 
4669   if (Type == FST_Printf || Type == FST_NSString ||
4670       Type == FST_FreeBSDKPrintf || Type == FST_OSTrace) {
4671     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
4672                          numDataArgs, (Type == FST_NSString || Type == FST_OSTrace),
4673                          Str, HasVAListArg, Args, format_idx,
4674                          inFunctionCall, CallType, CheckedVarArgs);
4675 
4676     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
4677                                                   getLangOpts(),
4678                                                   Context.getTargetInfo(),
4679                                                   Type == FST_FreeBSDKPrintf))
4680       H.DoneProcessing();
4681   } else if (Type == FST_Scanf) {
4682     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
4683                         Str, HasVAListArg, Args, format_idx,
4684                         inFunctionCall, CallType, CheckedVarArgs);
4685 
4686     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
4687                                                  getLangOpts(),
4688                                                  Context.getTargetInfo()))
4689       H.DoneProcessing();
4690   } // TODO: handle other formats
4691 }
4692 
4693 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
4694   // Str - The format string.  NOTE: this is NOT null-terminated!
4695   StringRef StrRef = FExpr->getString();
4696   const char *Str = StrRef.data();
4697   // Account for cases where the string literal is truncated in a declaration.
4698   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4699   assert(T && "String literal not of constant array type!");
4700   size_t TypeSize = T->getSize().getZExtValue();
4701   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4702   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
4703                                                          getLangOpts(),
4704                                                          Context.getTargetInfo());
4705 }
4706 
4707 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
4708 
4709 // Returns the related absolute value function that is larger, of 0 if one
4710 // does not exist.
4711 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
4712   switch (AbsFunction) {
4713   default:
4714     return 0;
4715 
4716   case Builtin::BI__builtin_abs:
4717     return Builtin::BI__builtin_labs;
4718   case Builtin::BI__builtin_labs:
4719     return Builtin::BI__builtin_llabs;
4720   case Builtin::BI__builtin_llabs:
4721     return 0;
4722 
4723   case Builtin::BI__builtin_fabsf:
4724     return Builtin::BI__builtin_fabs;
4725   case Builtin::BI__builtin_fabs:
4726     return Builtin::BI__builtin_fabsl;
4727   case Builtin::BI__builtin_fabsl:
4728     return 0;
4729 
4730   case Builtin::BI__builtin_cabsf:
4731     return Builtin::BI__builtin_cabs;
4732   case Builtin::BI__builtin_cabs:
4733     return Builtin::BI__builtin_cabsl;
4734   case Builtin::BI__builtin_cabsl:
4735     return 0;
4736 
4737   case Builtin::BIabs:
4738     return Builtin::BIlabs;
4739   case Builtin::BIlabs:
4740     return Builtin::BIllabs;
4741   case Builtin::BIllabs:
4742     return 0;
4743 
4744   case Builtin::BIfabsf:
4745     return Builtin::BIfabs;
4746   case Builtin::BIfabs:
4747     return Builtin::BIfabsl;
4748   case Builtin::BIfabsl:
4749     return 0;
4750 
4751   case Builtin::BIcabsf:
4752    return Builtin::BIcabs;
4753   case Builtin::BIcabs:
4754     return Builtin::BIcabsl;
4755   case Builtin::BIcabsl:
4756     return 0;
4757   }
4758 }
4759 
4760 // Returns the argument type of the absolute value function.
4761 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
4762                                              unsigned AbsType) {
4763   if (AbsType == 0)
4764     return QualType();
4765 
4766   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4767   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
4768   if (Error != ASTContext::GE_None)
4769     return QualType();
4770 
4771   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
4772   if (!FT)
4773     return QualType();
4774 
4775   if (FT->getNumParams() != 1)
4776     return QualType();
4777 
4778   return FT->getParamType(0);
4779 }
4780 
4781 // Returns the best absolute value function, or zero, based on type and
4782 // current absolute value function.
4783 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
4784                                    unsigned AbsFunctionKind) {
4785   unsigned BestKind = 0;
4786   uint64_t ArgSize = Context.getTypeSize(ArgType);
4787   for (unsigned Kind = AbsFunctionKind; Kind != 0;
4788        Kind = getLargerAbsoluteValueFunction(Kind)) {
4789     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
4790     if (Context.getTypeSize(ParamType) >= ArgSize) {
4791       if (BestKind == 0)
4792         BestKind = Kind;
4793       else if (Context.hasSameType(ParamType, ArgType)) {
4794         BestKind = Kind;
4795         break;
4796       }
4797     }
4798   }
4799   return BestKind;
4800 }
4801 
4802 enum AbsoluteValueKind {
4803   AVK_Integer,
4804   AVK_Floating,
4805   AVK_Complex
4806 };
4807 
4808 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
4809   if (T->isIntegralOrEnumerationType())
4810     return AVK_Integer;
4811   if (T->isRealFloatingType())
4812     return AVK_Floating;
4813   if (T->isAnyComplexType())
4814     return AVK_Complex;
4815 
4816   llvm_unreachable("Type not integer, floating, or complex");
4817 }
4818 
4819 // Changes the absolute value function to a different type.  Preserves whether
4820 // the function is a builtin.
4821 static unsigned changeAbsFunction(unsigned AbsKind,
4822                                   AbsoluteValueKind ValueKind) {
4823   switch (ValueKind) {
4824   case AVK_Integer:
4825     switch (AbsKind) {
4826     default:
4827       return 0;
4828     case Builtin::BI__builtin_fabsf:
4829     case Builtin::BI__builtin_fabs:
4830     case Builtin::BI__builtin_fabsl:
4831     case Builtin::BI__builtin_cabsf:
4832     case Builtin::BI__builtin_cabs:
4833     case Builtin::BI__builtin_cabsl:
4834       return Builtin::BI__builtin_abs;
4835     case Builtin::BIfabsf:
4836     case Builtin::BIfabs:
4837     case Builtin::BIfabsl:
4838     case Builtin::BIcabsf:
4839     case Builtin::BIcabs:
4840     case Builtin::BIcabsl:
4841       return Builtin::BIabs;
4842     }
4843   case AVK_Floating:
4844     switch (AbsKind) {
4845     default:
4846       return 0;
4847     case Builtin::BI__builtin_abs:
4848     case Builtin::BI__builtin_labs:
4849     case Builtin::BI__builtin_llabs:
4850     case Builtin::BI__builtin_cabsf:
4851     case Builtin::BI__builtin_cabs:
4852     case Builtin::BI__builtin_cabsl:
4853       return Builtin::BI__builtin_fabsf;
4854     case Builtin::BIabs:
4855     case Builtin::BIlabs:
4856     case Builtin::BIllabs:
4857     case Builtin::BIcabsf:
4858     case Builtin::BIcabs:
4859     case Builtin::BIcabsl:
4860       return Builtin::BIfabsf;
4861     }
4862   case AVK_Complex:
4863     switch (AbsKind) {
4864     default:
4865       return 0;
4866     case Builtin::BI__builtin_abs:
4867     case Builtin::BI__builtin_labs:
4868     case Builtin::BI__builtin_llabs:
4869     case Builtin::BI__builtin_fabsf:
4870     case Builtin::BI__builtin_fabs:
4871     case Builtin::BI__builtin_fabsl:
4872       return Builtin::BI__builtin_cabsf;
4873     case Builtin::BIabs:
4874     case Builtin::BIlabs:
4875     case Builtin::BIllabs:
4876     case Builtin::BIfabsf:
4877     case Builtin::BIfabs:
4878     case Builtin::BIfabsl:
4879       return Builtin::BIcabsf;
4880     }
4881   }
4882   llvm_unreachable("Unable to convert function");
4883 }
4884 
4885 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
4886   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
4887   if (!FnInfo)
4888     return 0;
4889 
4890   switch (FDecl->getBuiltinID()) {
4891   default:
4892     return 0;
4893   case Builtin::BI__builtin_abs:
4894   case Builtin::BI__builtin_fabs:
4895   case Builtin::BI__builtin_fabsf:
4896   case Builtin::BI__builtin_fabsl:
4897   case Builtin::BI__builtin_labs:
4898   case Builtin::BI__builtin_llabs:
4899   case Builtin::BI__builtin_cabs:
4900   case Builtin::BI__builtin_cabsf:
4901   case Builtin::BI__builtin_cabsl:
4902   case Builtin::BIabs:
4903   case Builtin::BIlabs:
4904   case Builtin::BIllabs:
4905   case Builtin::BIfabs:
4906   case Builtin::BIfabsf:
4907   case Builtin::BIfabsl:
4908   case Builtin::BIcabs:
4909   case Builtin::BIcabsf:
4910   case Builtin::BIcabsl:
4911     return FDecl->getBuiltinID();
4912   }
4913   llvm_unreachable("Unknown Builtin type");
4914 }
4915 
4916 // If the replacement is valid, emit a note with replacement function.
4917 // Additionally, suggest including the proper header if not already included.
4918 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
4919                             unsigned AbsKind, QualType ArgType) {
4920   bool EmitHeaderHint = true;
4921   const char *HeaderName = nullptr;
4922   const char *FunctionName = nullptr;
4923   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
4924     FunctionName = "std::abs";
4925     if (ArgType->isIntegralOrEnumerationType()) {
4926       HeaderName = "cstdlib";
4927     } else if (ArgType->isRealFloatingType()) {
4928       HeaderName = "cmath";
4929     } else {
4930       llvm_unreachable("Invalid Type");
4931     }
4932 
4933     // Lookup all std::abs
4934     if (NamespaceDecl *Std = S.getStdNamespace()) {
4935       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
4936       R.suppressDiagnostics();
4937       S.LookupQualifiedName(R, Std);
4938 
4939       for (const auto *I : R) {
4940         const FunctionDecl *FDecl = nullptr;
4941         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
4942           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
4943         } else {
4944           FDecl = dyn_cast<FunctionDecl>(I);
4945         }
4946         if (!FDecl)
4947           continue;
4948 
4949         // Found std::abs(), check that they are the right ones.
4950         if (FDecl->getNumParams() != 1)
4951           continue;
4952 
4953         // Check that the parameter type can handle the argument.
4954         QualType ParamType = FDecl->getParamDecl(0)->getType();
4955         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
4956             S.Context.getTypeSize(ArgType) <=
4957                 S.Context.getTypeSize(ParamType)) {
4958           // Found a function, don't need the header hint.
4959           EmitHeaderHint = false;
4960           break;
4961         }
4962       }
4963     }
4964   } else {
4965     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
4966     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
4967 
4968     if (HeaderName) {
4969       DeclarationName DN(&S.Context.Idents.get(FunctionName));
4970       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
4971       R.suppressDiagnostics();
4972       S.LookupName(R, S.getCurScope());
4973 
4974       if (R.isSingleResult()) {
4975         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
4976         if (FD && FD->getBuiltinID() == AbsKind) {
4977           EmitHeaderHint = false;
4978         } else {
4979           return;
4980         }
4981       } else if (!R.empty()) {
4982         return;
4983       }
4984     }
4985   }
4986 
4987   S.Diag(Loc, diag::note_replace_abs_function)
4988       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
4989 
4990   if (!HeaderName)
4991     return;
4992 
4993   if (!EmitHeaderHint)
4994     return;
4995 
4996   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
4997                                                     << FunctionName;
4998 }
4999 
5000 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
5001   if (!FDecl)
5002     return false;
5003 
5004   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
5005     return false;
5006 
5007   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
5008 
5009   while (ND && ND->isInlineNamespace()) {
5010     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
5011   }
5012 
5013   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
5014     return false;
5015 
5016   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
5017     return false;
5018 
5019   return true;
5020 }
5021 
5022 // Warn when using the wrong abs() function.
5023 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
5024                                       const FunctionDecl *FDecl,
5025                                       IdentifierInfo *FnInfo) {
5026   if (Call->getNumArgs() != 1)
5027     return;
5028 
5029   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
5030   bool IsStdAbs = IsFunctionStdAbs(FDecl);
5031   if (AbsKind == 0 && !IsStdAbs)
5032     return;
5033 
5034   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
5035   QualType ParamType = Call->getArg(0)->getType();
5036 
5037   // Unsigned types cannot be negative.  Suggest removing the absolute value
5038   // function call.
5039   if (ArgType->isUnsignedIntegerType()) {
5040     const char *FunctionName =
5041         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
5042     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
5043     Diag(Call->getExprLoc(), diag::note_remove_abs)
5044         << FunctionName
5045         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
5046     return;
5047   }
5048 
5049   // std::abs has overloads which prevent most of the absolute value problems
5050   // from occurring.
5051   if (IsStdAbs)
5052     return;
5053 
5054   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
5055   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
5056 
5057   // The argument and parameter are the same kind.  Check if they are the right
5058   // size.
5059   if (ArgValueKind == ParamValueKind) {
5060     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
5061       return;
5062 
5063     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
5064     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
5065         << FDecl << ArgType << ParamType;
5066 
5067     if (NewAbsKind == 0)
5068       return;
5069 
5070     emitReplacement(*this, Call->getExprLoc(),
5071                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
5072     return;
5073   }
5074 
5075   // ArgValueKind != ParamValueKind
5076   // The wrong type of absolute value function was used.  Attempt to find the
5077   // proper one.
5078   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
5079   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
5080   if (NewAbsKind == 0)
5081     return;
5082 
5083   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
5084       << FDecl << ParamValueKind << ArgValueKind;
5085 
5086   emitReplacement(*this, Call->getExprLoc(),
5087                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
5088   return;
5089 }
5090 
5091 //===--- CHECK: Standard memory functions ---------------------------------===//
5092 
5093 /// \brief Takes the expression passed to the size_t parameter of functions
5094 /// such as memcmp, strncat, etc and warns if it's a comparison.
5095 ///
5096 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
5097 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
5098                                            IdentifierInfo *FnName,
5099                                            SourceLocation FnLoc,
5100                                            SourceLocation RParenLoc) {
5101   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
5102   if (!Size)
5103     return false;
5104 
5105   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
5106   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
5107     return false;
5108 
5109   SourceRange SizeRange = Size->getSourceRange();
5110   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
5111       << SizeRange << FnName;
5112   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
5113       << FnName << FixItHint::CreateInsertion(
5114                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
5115       << FixItHint::CreateRemoval(RParenLoc);
5116   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
5117       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
5118       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
5119                                     ")");
5120 
5121   return true;
5122 }
5123 
5124 /// \brief Determine whether the given type is or contains a dynamic class type
5125 /// (e.g., whether it has a vtable).
5126 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
5127                                                      bool &IsContained) {
5128   // Look through array types while ignoring qualifiers.
5129   const Type *Ty = T->getBaseElementTypeUnsafe();
5130   IsContained = false;
5131 
5132   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
5133   RD = RD ? RD->getDefinition() : nullptr;
5134   if (!RD)
5135     return nullptr;
5136 
5137   if (RD->isDynamicClass())
5138     return RD;
5139 
5140   // Check all the fields.  If any bases were dynamic, the class is dynamic.
5141   // It's impossible for a class to transitively contain itself by value, so
5142   // infinite recursion is impossible.
5143   for (auto *FD : RD->fields()) {
5144     bool SubContained;
5145     if (const CXXRecordDecl *ContainedRD =
5146             getContainedDynamicClass(FD->getType(), SubContained)) {
5147       IsContained = true;
5148       return ContainedRD;
5149     }
5150   }
5151 
5152   return nullptr;
5153 }
5154 
5155 /// \brief If E is a sizeof expression, returns its argument expression,
5156 /// otherwise returns NULL.
5157 static const Expr *getSizeOfExprArg(const Expr *E) {
5158   if (const UnaryExprOrTypeTraitExpr *SizeOf =
5159       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
5160     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
5161       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
5162 
5163   return nullptr;
5164 }
5165 
5166 /// \brief If E is a sizeof expression, returns its argument type.
5167 static QualType getSizeOfArgType(const Expr *E) {
5168   if (const UnaryExprOrTypeTraitExpr *SizeOf =
5169       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
5170     if (SizeOf->getKind() == clang::UETT_SizeOf)
5171       return SizeOf->getTypeOfArgument();
5172 
5173   return QualType();
5174 }
5175 
5176 /// \brief Check for dangerous or invalid arguments to memset().
5177 ///
5178 /// This issues warnings on known problematic, dangerous or unspecified
5179 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
5180 /// function calls.
5181 ///
5182 /// \param Call The call expression to diagnose.
5183 void Sema::CheckMemaccessArguments(const CallExpr *Call,
5184                                    unsigned BId,
5185                                    IdentifierInfo *FnName) {
5186   assert(BId != 0);
5187 
5188   // It is possible to have a non-standard definition of memset.  Validate
5189   // we have enough arguments, and if not, abort further checking.
5190   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
5191   if (Call->getNumArgs() < ExpectedNumArgs)
5192     return;
5193 
5194   unsigned LastArg = (BId == Builtin::BImemset ||
5195                       BId == Builtin::BIstrndup ? 1 : 2);
5196   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
5197   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
5198 
5199   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
5200                                      Call->getLocStart(), Call->getRParenLoc()))
5201     return;
5202 
5203   // We have special checking when the length is a sizeof expression.
5204   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
5205   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
5206   llvm::FoldingSetNodeID SizeOfArgID;
5207 
5208   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
5209     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
5210     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
5211 
5212     QualType DestTy = Dest->getType();
5213     QualType PointeeTy;
5214     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
5215       PointeeTy = DestPtrTy->getPointeeType();
5216 
5217       // Never warn about void type pointers. This can be used to suppress
5218       // false positives.
5219       if (PointeeTy->isVoidType())
5220         continue;
5221 
5222       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
5223       // actually comparing the expressions for equality. Because computing the
5224       // expression IDs can be expensive, we only do this if the diagnostic is
5225       // enabled.
5226       if (SizeOfArg &&
5227           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
5228                            SizeOfArg->getExprLoc())) {
5229         // We only compute IDs for expressions if the warning is enabled, and
5230         // cache the sizeof arg's ID.
5231         if (SizeOfArgID == llvm::FoldingSetNodeID())
5232           SizeOfArg->Profile(SizeOfArgID, Context, true);
5233         llvm::FoldingSetNodeID DestID;
5234         Dest->Profile(DestID, Context, true);
5235         if (DestID == SizeOfArgID) {
5236           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
5237           //       over sizeof(src) as well.
5238           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
5239           StringRef ReadableName = FnName->getName();
5240 
5241           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
5242             if (UnaryOp->getOpcode() == UO_AddrOf)
5243               ActionIdx = 1; // If its an address-of operator, just remove it.
5244           if (!PointeeTy->isIncompleteType() &&
5245               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
5246             ActionIdx = 2; // If the pointee's size is sizeof(char),
5247                            // suggest an explicit length.
5248 
5249           // If the function is defined as a builtin macro, do not show macro
5250           // expansion.
5251           SourceLocation SL = SizeOfArg->getExprLoc();
5252           SourceRange DSR = Dest->getSourceRange();
5253           SourceRange SSR = SizeOfArg->getSourceRange();
5254           SourceManager &SM = getSourceManager();
5255 
5256           if (SM.isMacroArgExpansion(SL)) {
5257             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
5258             SL = SM.getSpellingLoc(SL);
5259             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
5260                              SM.getSpellingLoc(DSR.getEnd()));
5261             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
5262                              SM.getSpellingLoc(SSR.getEnd()));
5263           }
5264 
5265           DiagRuntimeBehavior(SL, SizeOfArg,
5266                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
5267                                 << ReadableName
5268                                 << PointeeTy
5269                                 << DestTy
5270                                 << DSR
5271                                 << SSR);
5272           DiagRuntimeBehavior(SL, SizeOfArg,
5273                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
5274                                 << ActionIdx
5275                                 << SSR);
5276 
5277           break;
5278         }
5279       }
5280 
5281       // Also check for cases where the sizeof argument is the exact same
5282       // type as the memory argument, and where it points to a user-defined
5283       // record type.
5284       if (SizeOfArgTy != QualType()) {
5285         if (PointeeTy->isRecordType() &&
5286             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
5287           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
5288                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
5289                                 << FnName << SizeOfArgTy << ArgIdx
5290                                 << PointeeTy << Dest->getSourceRange()
5291                                 << LenExpr->getSourceRange());
5292           break;
5293         }
5294       }
5295     } else if (DestTy->isArrayType()) {
5296       PointeeTy = DestTy;
5297     }
5298 
5299     if (PointeeTy == QualType())
5300       continue;
5301 
5302     // Always complain about dynamic classes.
5303     bool IsContained;
5304     if (const CXXRecordDecl *ContainedRD =
5305             getContainedDynamicClass(PointeeTy, IsContained)) {
5306 
5307       unsigned OperationType = 0;
5308       // "overwritten" if we're warning about the destination for any call
5309       // but memcmp; otherwise a verb appropriate to the call.
5310       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
5311         if (BId == Builtin::BImemcpy)
5312           OperationType = 1;
5313         else if(BId == Builtin::BImemmove)
5314           OperationType = 2;
5315         else if (BId == Builtin::BImemcmp)
5316           OperationType = 3;
5317       }
5318 
5319       DiagRuntimeBehavior(
5320         Dest->getExprLoc(), Dest,
5321         PDiag(diag::warn_dyn_class_memaccess)
5322           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
5323           << FnName << IsContained << ContainedRD << OperationType
5324           << Call->getCallee()->getSourceRange());
5325     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
5326              BId != Builtin::BImemset)
5327       DiagRuntimeBehavior(
5328         Dest->getExprLoc(), Dest,
5329         PDiag(diag::warn_arc_object_memaccess)
5330           << ArgIdx << FnName << PointeeTy
5331           << Call->getCallee()->getSourceRange());
5332     else
5333       continue;
5334 
5335     DiagRuntimeBehavior(
5336       Dest->getExprLoc(), Dest,
5337       PDiag(diag::note_bad_memaccess_silence)
5338         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
5339     break;
5340   }
5341 
5342 }
5343 
5344 // A little helper routine: ignore addition and subtraction of integer literals.
5345 // This intentionally does not ignore all integer constant expressions because
5346 // we don't want to remove sizeof().
5347 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
5348   Ex = Ex->IgnoreParenCasts();
5349 
5350   for (;;) {
5351     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
5352     if (!BO || !BO->isAdditiveOp())
5353       break;
5354 
5355     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
5356     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
5357 
5358     if (isa<IntegerLiteral>(RHS))
5359       Ex = LHS;
5360     else if (isa<IntegerLiteral>(LHS))
5361       Ex = RHS;
5362     else
5363       break;
5364   }
5365 
5366   return Ex;
5367 }
5368 
5369 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
5370                                                       ASTContext &Context) {
5371   // Only handle constant-sized or VLAs, but not flexible members.
5372   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
5373     // Only issue the FIXIT for arrays of size > 1.
5374     if (CAT->getSize().getSExtValue() <= 1)
5375       return false;
5376   } else if (!Ty->isVariableArrayType()) {
5377     return false;
5378   }
5379   return true;
5380 }
5381 
5382 // Warn if the user has made the 'size' argument to strlcpy or strlcat
5383 // be the size of the source, instead of the destination.
5384 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
5385                                     IdentifierInfo *FnName) {
5386 
5387   // Don't crash if the user has the wrong number of arguments
5388   unsigned NumArgs = Call->getNumArgs();
5389   if ((NumArgs != 3) && (NumArgs != 4))
5390     return;
5391 
5392   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
5393   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
5394   const Expr *CompareWithSrc = nullptr;
5395 
5396   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
5397                                      Call->getLocStart(), Call->getRParenLoc()))
5398     return;
5399 
5400   // Look for 'strlcpy(dst, x, sizeof(x))'
5401   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
5402     CompareWithSrc = Ex;
5403   else {
5404     // Look for 'strlcpy(dst, x, strlen(x))'
5405     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
5406       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
5407           SizeCall->getNumArgs() == 1)
5408         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
5409     }
5410   }
5411 
5412   if (!CompareWithSrc)
5413     return;
5414 
5415   // Determine if the argument to sizeof/strlen is equal to the source
5416   // argument.  In principle there's all kinds of things you could do
5417   // here, for instance creating an == expression and evaluating it with
5418   // EvaluateAsBooleanCondition, but this uses a more direct technique:
5419   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
5420   if (!SrcArgDRE)
5421     return;
5422 
5423   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
5424   if (!CompareWithSrcDRE ||
5425       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
5426     return;
5427 
5428   const Expr *OriginalSizeArg = Call->getArg(2);
5429   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
5430     << OriginalSizeArg->getSourceRange() << FnName;
5431 
5432   // Output a FIXIT hint if the destination is an array (rather than a
5433   // pointer to an array).  This could be enhanced to handle some
5434   // pointers if we know the actual size, like if DstArg is 'array+2'
5435   // we could say 'sizeof(array)-2'.
5436   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
5437   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
5438     return;
5439 
5440   SmallString<128> sizeString;
5441   llvm::raw_svector_ostream OS(sizeString);
5442   OS << "sizeof(";
5443   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5444   OS << ")";
5445 
5446   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
5447     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
5448                                     OS.str());
5449 }
5450 
5451 /// Check if two expressions refer to the same declaration.
5452 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
5453   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
5454     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
5455       return D1->getDecl() == D2->getDecl();
5456   return false;
5457 }
5458 
5459 static const Expr *getStrlenExprArg(const Expr *E) {
5460   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
5461     const FunctionDecl *FD = CE->getDirectCallee();
5462     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
5463       return nullptr;
5464     return CE->getArg(0)->IgnoreParenCasts();
5465   }
5466   return nullptr;
5467 }
5468 
5469 // Warn on anti-patterns as the 'size' argument to strncat.
5470 // The correct size argument should look like following:
5471 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
5472 void Sema::CheckStrncatArguments(const CallExpr *CE,
5473                                  IdentifierInfo *FnName) {
5474   // Don't crash if the user has the wrong number of arguments.
5475   if (CE->getNumArgs() < 3)
5476     return;
5477   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
5478   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
5479   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
5480 
5481   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
5482                                      CE->getRParenLoc()))
5483     return;
5484 
5485   // Identify common expressions, which are wrongly used as the size argument
5486   // to strncat and may lead to buffer overflows.
5487   unsigned PatternType = 0;
5488   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
5489     // - sizeof(dst)
5490     if (referToTheSameDecl(SizeOfArg, DstArg))
5491       PatternType = 1;
5492     // - sizeof(src)
5493     else if (referToTheSameDecl(SizeOfArg, SrcArg))
5494       PatternType = 2;
5495   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
5496     if (BE->getOpcode() == BO_Sub) {
5497       const Expr *L = BE->getLHS()->IgnoreParenCasts();
5498       const Expr *R = BE->getRHS()->IgnoreParenCasts();
5499       // - sizeof(dst) - strlen(dst)
5500       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
5501           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
5502         PatternType = 1;
5503       // - sizeof(src) - (anything)
5504       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
5505         PatternType = 2;
5506     }
5507   }
5508 
5509   if (PatternType == 0)
5510     return;
5511 
5512   // Generate the diagnostic.
5513   SourceLocation SL = LenArg->getLocStart();
5514   SourceRange SR = LenArg->getSourceRange();
5515   SourceManager &SM = getSourceManager();
5516 
5517   // If the function is defined as a builtin macro, do not show macro expansion.
5518   if (SM.isMacroArgExpansion(SL)) {
5519     SL = SM.getSpellingLoc(SL);
5520     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
5521                      SM.getSpellingLoc(SR.getEnd()));
5522   }
5523 
5524   // Check if the destination is an array (rather than a pointer to an array).
5525   QualType DstTy = DstArg->getType();
5526   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
5527                                                                     Context);
5528   if (!isKnownSizeArray) {
5529     if (PatternType == 1)
5530       Diag(SL, diag::warn_strncat_wrong_size) << SR;
5531     else
5532       Diag(SL, diag::warn_strncat_src_size) << SR;
5533     return;
5534   }
5535 
5536   if (PatternType == 1)
5537     Diag(SL, diag::warn_strncat_large_size) << SR;
5538   else
5539     Diag(SL, diag::warn_strncat_src_size) << SR;
5540 
5541   SmallString<128> sizeString;
5542   llvm::raw_svector_ostream OS(sizeString);
5543   OS << "sizeof(";
5544   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5545   OS << ") - ";
5546   OS << "strlen(";
5547   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5548   OS << ") - 1";
5549 
5550   Diag(SL, diag::note_strncat_wrong_size)
5551     << FixItHint::CreateReplacement(SR, OS.str());
5552 }
5553 
5554 //===--- CHECK: Return Address of Stack Variable --------------------------===//
5555 
5556 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5557                      Decl *ParentDecl);
5558 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
5559                       Decl *ParentDecl);
5560 
5561 /// CheckReturnStackAddr - Check if a return statement returns the address
5562 ///   of a stack variable.
5563 static void
5564 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
5565                      SourceLocation ReturnLoc) {
5566 
5567   Expr *stackE = nullptr;
5568   SmallVector<DeclRefExpr *, 8> refVars;
5569 
5570   // Perform checking for returned stack addresses, local blocks,
5571   // label addresses or references to temporaries.
5572   if (lhsType->isPointerType() ||
5573       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
5574     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
5575   } else if (lhsType->isReferenceType()) {
5576     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
5577   }
5578 
5579   if (!stackE)
5580     return; // Nothing suspicious was found.
5581 
5582   SourceLocation diagLoc;
5583   SourceRange diagRange;
5584   if (refVars.empty()) {
5585     diagLoc = stackE->getLocStart();
5586     diagRange = stackE->getSourceRange();
5587   } else {
5588     // We followed through a reference variable. 'stackE' contains the
5589     // problematic expression but we will warn at the return statement pointing
5590     // at the reference variable. We will later display the "trail" of
5591     // reference variables using notes.
5592     diagLoc = refVars[0]->getLocStart();
5593     diagRange = refVars[0]->getSourceRange();
5594   }
5595 
5596   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
5597     S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
5598                                              : diag::warn_ret_stack_addr)
5599      << DR->getDecl()->getDeclName() << diagRange;
5600   } else if (isa<BlockExpr>(stackE)) { // local block.
5601     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
5602   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
5603     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
5604   } else { // local temporary.
5605     S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
5606                                                : diag::warn_ret_local_temp_addr)
5607      << diagRange;
5608   }
5609 
5610   // Display the "trail" of reference variables that we followed until we
5611   // found the problematic expression using notes.
5612   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
5613     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
5614     // If this var binds to another reference var, show the range of the next
5615     // var, otherwise the var binds to the problematic expression, in which case
5616     // show the range of the expression.
5617     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
5618                                   : stackE->getSourceRange();
5619     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
5620         << VD->getDeclName() << range;
5621   }
5622 }
5623 
5624 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
5625 ///  check if the expression in a return statement evaluates to an address
5626 ///  to a location on the stack, a local block, an address of a label, or a
5627 ///  reference to local temporary. The recursion is used to traverse the
5628 ///  AST of the return expression, with recursion backtracking when we
5629 ///  encounter a subexpression that (1) clearly does not lead to one of the
5630 ///  above problematic expressions (2) is something we cannot determine leads to
5631 ///  a problematic expression based on such local checking.
5632 ///
5633 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
5634 ///  the expression that they point to. Such variables are added to the
5635 ///  'refVars' vector so that we know what the reference variable "trail" was.
5636 ///
5637 ///  EvalAddr processes expressions that are pointers that are used as
5638 ///  references (and not L-values).  EvalVal handles all other values.
5639 ///  At the base case of the recursion is a check for the above problematic
5640 ///  expressions.
5641 ///
5642 ///  This implementation handles:
5643 ///
5644 ///   * pointer-to-pointer casts
5645 ///   * implicit conversions from array references to pointers
5646 ///   * taking the address of fields
5647 ///   * arbitrary interplay between "&" and "*" operators
5648 ///   * pointer arithmetic from an address of a stack variable
5649 ///   * taking the address of an array element where the array is on the stack
5650 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5651                       Decl *ParentDecl) {
5652   if (E->isTypeDependent())
5653     return nullptr;
5654 
5655   // We should only be called for evaluating pointer expressions.
5656   assert((E->getType()->isAnyPointerType() ||
5657           E->getType()->isBlockPointerType() ||
5658           E->getType()->isObjCQualifiedIdType()) &&
5659          "EvalAddr only works on pointers");
5660 
5661   E = E->IgnoreParens();
5662 
5663   // Our "symbolic interpreter" is just a dispatch off the currently
5664   // viewed AST node.  We then recursively traverse the AST by calling
5665   // EvalAddr and EvalVal appropriately.
5666   switch (E->getStmtClass()) {
5667   case Stmt::DeclRefExprClass: {
5668     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5669 
5670     // If we leave the immediate function, the lifetime isn't about to end.
5671     if (DR->refersToEnclosingVariableOrCapture())
5672       return nullptr;
5673 
5674     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
5675       // If this is a reference variable, follow through to the expression that
5676       // it points to.
5677       if (V->hasLocalStorage() &&
5678           V->getType()->isReferenceType() && V->hasInit()) {
5679         // Add the reference variable to the "trail".
5680         refVars.push_back(DR);
5681         return EvalAddr(V->getInit(), refVars, ParentDecl);
5682       }
5683 
5684     return nullptr;
5685   }
5686 
5687   case Stmt::UnaryOperatorClass: {
5688     // The only unary operator that make sense to handle here
5689     // is AddrOf.  All others don't make sense as pointers.
5690     UnaryOperator *U = cast<UnaryOperator>(E);
5691 
5692     if (U->getOpcode() == UO_AddrOf)
5693       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
5694     else
5695       return nullptr;
5696   }
5697 
5698   case Stmt::BinaryOperatorClass: {
5699     // Handle pointer arithmetic.  All other binary operators are not valid
5700     // in this context.
5701     BinaryOperator *B = cast<BinaryOperator>(E);
5702     BinaryOperatorKind op = B->getOpcode();
5703 
5704     if (op != BO_Add && op != BO_Sub)
5705       return nullptr;
5706 
5707     Expr *Base = B->getLHS();
5708 
5709     // Determine which argument is the real pointer base.  It could be
5710     // the RHS argument instead of the LHS.
5711     if (!Base->getType()->isPointerType()) Base = B->getRHS();
5712 
5713     assert (Base->getType()->isPointerType());
5714     return EvalAddr(Base, refVars, ParentDecl);
5715   }
5716 
5717   // For conditional operators we need to see if either the LHS or RHS are
5718   // valid DeclRefExpr*s.  If one of them is valid, we return it.
5719   case Stmt::ConditionalOperatorClass: {
5720     ConditionalOperator *C = cast<ConditionalOperator>(E);
5721 
5722     // Handle the GNU extension for missing LHS.
5723     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
5724     if (Expr *LHSExpr = C->getLHS()) {
5725       // In C++, we can have a throw-expression, which has 'void' type.
5726       if (!LHSExpr->getType()->isVoidType())
5727         if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
5728           return LHS;
5729     }
5730 
5731     // In C++, we can have a throw-expression, which has 'void' type.
5732     if (C->getRHS()->getType()->isVoidType())
5733       return nullptr;
5734 
5735     return EvalAddr(C->getRHS(), refVars, ParentDecl);
5736   }
5737 
5738   case Stmt::BlockExprClass:
5739     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
5740       return E; // local block.
5741     return nullptr;
5742 
5743   case Stmt::AddrLabelExprClass:
5744     return E; // address of label.
5745 
5746   case Stmt::ExprWithCleanupsClass:
5747     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
5748                     ParentDecl);
5749 
5750   // For casts, we need to handle conversions from arrays to
5751   // pointer values, and pointer-to-pointer conversions.
5752   case Stmt::ImplicitCastExprClass:
5753   case Stmt::CStyleCastExprClass:
5754   case Stmt::CXXFunctionalCastExprClass:
5755   case Stmt::ObjCBridgedCastExprClass:
5756   case Stmt::CXXStaticCastExprClass:
5757   case Stmt::CXXDynamicCastExprClass:
5758   case Stmt::CXXConstCastExprClass:
5759   case Stmt::CXXReinterpretCastExprClass: {
5760     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
5761     switch (cast<CastExpr>(E)->getCastKind()) {
5762     case CK_LValueToRValue:
5763     case CK_NoOp:
5764     case CK_BaseToDerived:
5765     case CK_DerivedToBase:
5766     case CK_UncheckedDerivedToBase:
5767     case CK_Dynamic:
5768     case CK_CPointerToObjCPointerCast:
5769     case CK_BlockPointerToObjCPointerCast:
5770     case CK_AnyPointerToBlockPointerCast:
5771       return EvalAddr(SubExpr, refVars, ParentDecl);
5772 
5773     case CK_ArrayToPointerDecay:
5774       return EvalVal(SubExpr, refVars, ParentDecl);
5775 
5776     case CK_BitCast:
5777       if (SubExpr->getType()->isAnyPointerType() ||
5778           SubExpr->getType()->isBlockPointerType() ||
5779           SubExpr->getType()->isObjCQualifiedIdType())
5780         return EvalAddr(SubExpr, refVars, ParentDecl);
5781       else
5782         return nullptr;
5783 
5784     default:
5785       return nullptr;
5786     }
5787   }
5788 
5789   case Stmt::MaterializeTemporaryExprClass:
5790     if (Expr *Result = EvalAddr(
5791                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5792                                 refVars, ParentDecl))
5793       return Result;
5794 
5795     return E;
5796 
5797   // Everything else: we simply don't reason about them.
5798   default:
5799     return nullptr;
5800   }
5801 }
5802 
5803 
5804 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
5805 ///   See the comments for EvalAddr for more details.
5806 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5807                      Decl *ParentDecl) {
5808 do {
5809   // We should only be called for evaluating non-pointer expressions, or
5810   // expressions with a pointer type that are not used as references but instead
5811   // are l-values (e.g., DeclRefExpr with a pointer type).
5812 
5813   // Our "symbolic interpreter" is just a dispatch off the currently
5814   // viewed AST node.  We then recursively traverse the AST by calling
5815   // EvalAddr and EvalVal appropriately.
5816 
5817   E = E->IgnoreParens();
5818   switch (E->getStmtClass()) {
5819   case Stmt::ImplicitCastExprClass: {
5820     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
5821     if (IE->getValueKind() == VK_LValue) {
5822       E = IE->getSubExpr();
5823       continue;
5824     }
5825     return nullptr;
5826   }
5827 
5828   case Stmt::ExprWithCleanupsClass:
5829     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
5830 
5831   case Stmt::DeclRefExprClass: {
5832     // When we hit a DeclRefExpr we are looking at code that refers to a
5833     // variable's name. If it's not a reference variable we check if it has
5834     // local storage within the function, and if so, return the expression.
5835     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5836 
5837     // If we leave the immediate function, the lifetime isn't about to end.
5838     if (DR->refersToEnclosingVariableOrCapture())
5839       return nullptr;
5840 
5841     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
5842       // Check if it refers to itself, e.g. "int& i = i;".
5843       if (V == ParentDecl)
5844         return DR;
5845 
5846       if (V->hasLocalStorage()) {
5847         if (!V->getType()->isReferenceType())
5848           return DR;
5849 
5850         // Reference variable, follow through to the expression that
5851         // it points to.
5852         if (V->hasInit()) {
5853           // Add the reference variable to the "trail".
5854           refVars.push_back(DR);
5855           return EvalVal(V->getInit(), refVars, V);
5856         }
5857       }
5858     }
5859 
5860     return nullptr;
5861   }
5862 
5863   case Stmt::UnaryOperatorClass: {
5864     // The only unary operator that make sense to handle here
5865     // is Deref.  All others don't resolve to a "name."  This includes
5866     // handling all sorts of rvalues passed to a unary operator.
5867     UnaryOperator *U = cast<UnaryOperator>(E);
5868 
5869     if (U->getOpcode() == UO_Deref)
5870       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
5871 
5872     return nullptr;
5873   }
5874 
5875   case Stmt::ArraySubscriptExprClass: {
5876     // Array subscripts are potential references to data on the stack.  We
5877     // retrieve the DeclRefExpr* for the array variable if it indeed
5878     // has local storage.
5879     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
5880   }
5881 
5882   case Stmt::OMPArraySectionExprClass: {
5883     return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
5884                     ParentDecl);
5885   }
5886 
5887   case Stmt::ConditionalOperatorClass: {
5888     // For conditional operators we need to see if either the LHS or RHS are
5889     // non-NULL Expr's.  If one is non-NULL, we return it.
5890     ConditionalOperator *C = cast<ConditionalOperator>(E);
5891 
5892     // Handle the GNU extension for missing LHS.
5893     if (Expr *LHSExpr = C->getLHS()) {
5894       // In C++, we can have a throw-expression, which has 'void' type.
5895       if (!LHSExpr->getType()->isVoidType())
5896         if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
5897           return LHS;
5898     }
5899 
5900     // In C++, we can have a throw-expression, which has 'void' type.
5901     if (C->getRHS()->getType()->isVoidType())
5902       return nullptr;
5903 
5904     return EvalVal(C->getRHS(), refVars, ParentDecl);
5905   }
5906 
5907   // Accesses to members are potential references to data on the stack.
5908   case Stmt::MemberExprClass: {
5909     MemberExpr *M = cast<MemberExpr>(E);
5910 
5911     // Check for indirect access.  We only want direct field accesses.
5912     if (M->isArrow())
5913       return nullptr;
5914 
5915     // Check whether the member type is itself a reference, in which case
5916     // we're not going to refer to the member, but to what the member refers to.
5917     if (M->getMemberDecl()->getType()->isReferenceType())
5918       return nullptr;
5919 
5920     return EvalVal(M->getBase(), refVars, ParentDecl);
5921   }
5922 
5923   case Stmt::MaterializeTemporaryExprClass:
5924     if (Expr *Result = EvalVal(
5925                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5926                                refVars, ParentDecl))
5927       return Result;
5928 
5929     return E;
5930 
5931   default:
5932     // Check that we don't return or take the address of a reference to a
5933     // temporary. This is only useful in C++.
5934     if (!E->isTypeDependent() && E->isRValue())
5935       return E;
5936 
5937     // Everything else: we simply don't reason about them.
5938     return nullptr;
5939   }
5940 } while (true);
5941 }
5942 
5943 void
5944 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
5945                          SourceLocation ReturnLoc,
5946                          bool isObjCMethod,
5947                          const AttrVec *Attrs,
5948                          const FunctionDecl *FD) {
5949   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
5950 
5951   // Check if the return value is null but should not be.
5952   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
5953        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
5954       CheckNonNullExpr(*this, RetValExp))
5955     Diag(ReturnLoc, diag::warn_null_ret)
5956       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
5957 
5958   // C++11 [basic.stc.dynamic.allocation]p4:
5959   //   If an allocation function declared with a non-throwing
5960   //   exception-specification fails to allocate storage, it shall return
5961   //   a null pointer. Any other allocation function that fails to allocate
5962   //   storage shall indicate failure only by throwing an exception [...]
5963   if (FD) {
5964     OverloadedOperatorKind Op = FD->getOverloadedOperator();
5965     if (Op == OO_New || Op == OO_Array_New) {
5966       const FunctionProtoType *Proto
5967         = FD->getType()->castAs<FunctionProtoType>();
5968       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
5969           CheckNonNullExpr(*this, RetValExp))
5970         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
5971           << FD << getLangOpts().CPlusPlus11;
5972     }
5973   }
5974 }
5975 
5976 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
5977 
5978 /// Check for comparisons of floating point operands using != and ==.
5979 /// Issue a warning if these are no self-comparisons, as they are not likely
5980 /// to do what the programmer intended.
5981 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
5982   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
5983   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
5984 
5985   // Special case: check for x == x (which is OK).
5986   // Do not emit warnings for such cases.
5987   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
5988     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
5989       if (DRL->getDecl() == DRR->getDecl())
5990         return;
5991 
5992 
5993   // Special case: check for comparisons against literals that can be exactly
5994   //  represented by APFloat.  In such cases, do not emit a warning.  This
5995   //  is a heuristic: often comparison against such literals are used to
5996   //  detect if a value in a variable has not changed.  This clearly can
5997   //  lead to false negatives.
5998   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
5999     if (FLL->isExact())
6000       return;
6001   } else
6002     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
6003       if (FLR->isExact())
6004         return;
6005 
6006   // Check for comparisons with builtin types.
6007   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
6008     if (CL->getBuiltinCallee())
6009       return;
6010 
6011   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
6012     if (CR->getBuiltinCallee())
6013       return;
6014 
6015   // Emit the diagnostic.
6016   Diag(Loc, diag::warn_floatingpoint_eq)
6017     << LHS->getSourceRange() << RHS->getSourceRange();
6018 }
6019 
6020 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
6021 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
6022 
6023 namespace {
6024 
6025 /// Structure recording the 'active' range of an integer-valued
6026 /// expression.
6027 struct IntRange {
6028   /// The number of bits active in the int.
6029   unsigned Width;
6030 
6031   /// True if the int is known not to have negative values.
6032   bool NonNegative;
6033 
6034   IntRange(unsigned Width, bool NonNegative)
6035     : Width(Width), NonNegative(NonNegative)
6036   {}
6037 
6038   /// Returns the range of the bool type.
6039   static IntRange forBoolType() {
6040     return IntRange(1, true);
6041   }
6042 
6043   /// Returns the range of an opaque value of the given integral type.
6044   static IntRange forValueOfType(ASTContext &C, QualType T) {
6045     return forValueOfCanonicalType(C,
6046                           T->getCanonicalTypeInternal().getTypePtr());
6047   }
6048 
6049   /// Returns the range of an opaque value of a canonical integral type.
6050   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
6051     assert(T->isCanonicalUnqualified());
6052 
6053     if (const VectorType *VT = dyn_cast<VectorType>(T))
6054       T = VT->getElementType().getTypePtr();
6055     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
6056       T = CT->getElementType().getTypePtr();
6057     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
6058       T = AT->getValueType().getTypePtr();
6059 
6060     // For enum types, use the known bit width of the enumerators.
6061     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
6062       EnumDecl *Enum = ET->getDecl();
6063       if (!Enum->isCompleteDefinition())
6064         return IntRange(C.getIntWidth(QualType(T, 0)), false);
6065 
6066       unsigned NumPositive = Enum->getNumPositiveBits();
6067       unsigned NumNegative = Enum->getNumNegativeBits();
6068 
6069       if (NumNegative == 0)
6070         return IntRange(NumPositive, true/*NonNegative*/);
6071       else
6072         return IntRange(std::max(NumPositive + 1, NumNegative),
6073                         false/*NonNegative*/);
6074     }
6075 
6076     const BuiltinType *BT = cast<BuiltinType>(T);
6077     assert(BT->isInteger());
6078 
6079     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
6080   }
6081 
6082   /// Returns the "target" range of a canonical integral type, i.e.
6083   /// the range of values expressible in the type.
6084   ///
6085   /// This matches forValueOfCanonicalType except that enums have the
6086   /// full range of their type, not the range of their enumerators.
6087   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
6088     assert(T->isCanonicalUnqualified());
6089 
6090     if (const VectorType *VT = dyn_cast<VectorType>(T))
6091       T = VT->getElementType().getTypePtr();
6092     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
6093       T = CT->getElementType().getTypePtr();
6094     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
6095       T = AT->getValueType().getTypePtr();
6096     if (const EnumType *ET = dyn_cast<EnumType>(T))
6097       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
6098 
6099     const BuiltinType *BT = cast<BuiltinType>(T);
6100     assert(BT->isInteger());
6101 
6102     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
6103   }
6104 
6105   /// Returns the supremum of two ranges: i.e. their conservative merge.
6106   static IntRange join(IntRange L, IntRange R) {
6107     return IntRange(std::max(L.Width, R.Width),
6108                     L.NonNegative && R.NonNegative);
6109   }
6110 
6111   /// Returns the infinum of two ranges: i.e. their aggressive merge.
6112   static IntRange meet(IntRange L, IntRange R) {
6113     return IntRange(std::min(L.Width, R.Width),
6114                     L.NonNegative || R.NonNegative);
6115   }
6116 };
6117 
6118 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
6119                               unsigned MaxWidth) {
6120   if (value.isSigned() && value.isNegative())
6121     return IntRange(value.getMinSignedBits(), false);
6122 
6123   if (value.getBitWidth() > MaxWidth)
6124     value = value.trunc(MaxWidth);
6125 
6126   // isNonNegative() just checks the sign bit without considering
6127   // signedness.
6128   return IntRange(value.getActiveBits(), true);
6129 }
6130 
6131 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
6132                               unsigned MaxWidth) {
6133   if (result.isInt())
6134     return GetValueRange(C, result.getInt(), MaxWidth);
6135 
6136   if (result.isVector()) {
6137     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
6138     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
6139       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
6140       R = IntRange::join(R, El);
6141     }
6142     return R;
6143   }
6144 
6145   if (result.isComplexInt()) {
6146     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
6147     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
6148     return IntRange::join(R, I);
6149   }
6150 
6151   // This can happen with lossless casts to intptr_t of "based" lvalues.
6152   // Assume it might use arbitrary bits.
6153   // FIXME: The only reason we need to pass the type in here is to get
6154   // the sign right on this one case.  It would be nice if APValue
6155   // preserved this.
6156   assert(result.isLValue() || result.isAddrLabelDiff());
6157   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
6158 }
6159 
6160 static QualType GetExprType(Expr *E) {
6161   QualType Ty = E->getType();
6162   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
6163     Ty = AtomicRHS->getValueType();
6164   return Ty;
6165 }
6166 
6167 /// Pseudo-evaluate the given integer expression, estimating the
6168 /// range of values it might take.
6169 ///
6170 /// \param MaxWidth - the width to which the value will be truncated
6171 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
6172   E = E->IgnoreParens();
6173 
6174   // Try a full evaluation first.
6175   Expr::EvalResult result;
6176   if (E->EvaluateAsRValue(result, C))
6177     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
6178 
6179   // I think we only want to look through implicit casts here; if the
6180   // user has an explicit widening cast, we should treat the value as
6181   // being of the new, wider type.
6182   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
6183     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
6184       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
6185 
6186     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
6187 
6188     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
6189 
6190     // Assume that non-integer casts can span the full range of the type.
6191     if (!isIntegerCast)
6192       return OutputTypeRange;
6193 
6194     IntRange SubRange
6195       = GetExprRange(C, CE->getSubExpr(),
6196                      std::min(MaxWidth, OutputTypeRange.Width));
6197 
6198     // Bail out if the subexpr's range is as wide as the cast type.
6199     if (SubRange.Width >= OutputTypeRange.Width)
6200       return OutputTypeRange;
6201 
6202     // Otherwise, we take the smaller width, and we're non-negative if
6203     // either the output type or the subexpr is.
6204     return IntRange(SubRange.Width,
6205                     SubRange.NonNegative || OutputTypeRange.NonNegative);
6206   }
6207 
6208   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6209     // If we can fold the condition, just take that operand.
6210     bool CondResult;
6211     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
6212       return GetExprRange(C, CondResult ? CO->getTrueExpr()
6213                                         : CO->getFalseExpr(),
6214                           MaxWidth);
6215 
6216     // Otherwise, conservatively merge.
6217     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
6218     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
6219     return IntRange::join(L, R);
6220   }
6221 
6222   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6223     switch (BO->getOpcode()) {
6224 
6225     // Boolean-valued operations are single-bit and positive.
6226     case BO_LAnd:
6227     case BO_LOr:
6228     case BO_LT:
6229     case BO_GT:
6230     case BO_LE:
6231     case BO_GE:
6232     case BO_EQ:
6233     case BO_NE:
6234       return IntRange::forBoolType();
6235 
6236     // The type of the assignments is the type of the LHS, so the RHS
6237     // is not necessarily the same type.
6238     case BO_MulAssign:
6239     case BO_DivAssign:
6240     case BO_RemAssign:
6241     case BO_AddAssign:
6242     case BO_SubAssign:
6243     case BO_XorAssign:
6244     case BO_OrAssign:
6245       // TODO: bitfields?
6246       return IntRange::forValueOfType(C, GetExprType(E));
6247 
6248     // Simple assignments just pass through the RHS, which will have
6249     // been coerced to the LHS type.
6250     case BO_Assign:
6251       // TODO: bitfields?
6252       return GetExprRange(C, BO->getRHS(), MaxWidth);
6253 
6254     // Operations with opaque sources are black-listed.
6255     case BO_PtrMemD:
6256     case BO_PtrMemI:
6257       return IntRange::forValueOfType(C, GetExprType(E));
6258 
6259     // Bitwise-and uses the *infinum* of the two source ranges.
6260     case BO_And:
6261     case BO_AndAssign:
6262       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
6263                             GetExprRange(C, BO->getRHS(), MaxWidth));
6264 
6265     // Left shift gets black-listed based on a judgement call.
6266     case BO_Shl:
6267       // ...except that we want to treat '1 << (blah)' as logically
6268       // positive.  It's an important idiom.
6269       if (IntegerLiteral *I
6270             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
6271         if (I->getValue() == 1) {
6272           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
6273           return IntRange(R.Width, /*NonNegative*/ true);
6274         }
6275       }
6276       // fallthrough
6277 
6278     case BO_ShlAssign:
6279       return IntRange::forValueOfType(C, GetExprType(E));
6280 
6281     // Right shift by a constant can narrow its left argument.
6282     case BO_Shr:
6283     case BO_ShrAssign: {
6284       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
6285 
6286       // If the shift amount is a positive constant, drop the width by
6287       // that much.
6288       llvm::APSInt shift;
6289       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
6290           shift.isNonNegative()) {
6291         unsigned zext = shift.getZExtValue();
6292         if (zext >= L.Width)
6293           L.Width = (L.NonNegative ? 0 : 1);
6294         else
6295           L.Width -= zext;
6296       }
6297 
6298       return L;
6299     }
6300 
6301     // Comma acts as its right operand.
6302     case BO_Comma:
6303       return GetExprRange(C, BO->getRHS(), MaxWidth);
6304 
6305     // Black-list pointer subtractions.
6306     case BO_Sub:
6307       if (BO->getLHS()->getType()->isPointerType())
6308         return IntRange::forValueOfType(C, GetExprType(E));
6309       break;
6310 
6311     // The width of a division result is mostly determined by the size
6312     // of the LHS.
6313     case BO_Div: {
6314       // Don't 'pre-truncate' the operands.
6315       unsigned opWidth = C.getIntWidth(GetExprType(E));
6316       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
6317 
6318       // If the divisor is constant, use that.
6319       llvm::APSInt divisor;
6320       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
6321         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
6322         if (log2 >= L.Width)
6323           L.Width = (L.NonNegative ? 0 : 1);
6324         else
6325           L.Width = std::min(L.Width - log2, MaxWidth);
6326         return L;
6327       }
6328 
6329       // Otherwise, just use the LHS's width.
6330       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
6331       return IntRange(L.Width, L.NonNegative && R.NonNegative);
6332     }
6333 
6334     // The result of a remainder can't be larger than the result of
6335     // either side.
6336     case BO_Rem: {
6337       // Don't 'pre-truncate' the operands.
6338       unsigned opWidth = C.getIntWidth(GetExprType(E));
6339       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
6340       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
6341 
6342       IntRange meet = IntRange::meet(L, R);
6343       meet.Width = std::min(meet.Width, MaxWidth);
6344       return meet;
6345     }
6346 
6347     // The default behavior is okay for these.
6348     case BO_Mul:
6349     case BO_Add:
6350     case BO_Xor:
6351     case BO_Or:
6352       break;
6353     }
6354 
6355     // The default case is to treat the operation as if it were closed
6356     // on the narrowest type that encompasses both operands.
6357     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
6358     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
6359     return IntRange::join(L, R);
6360   }
6361 
6362   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6363     switch (UO->getOpcode()) {
6364     // Boolean-valued operations are white-listed.
6365     case UO_LNot:
6366       return IntRange::forBoolType();
6367 
6368     // Operations with opaque sources are black-listed.
6369     case UO_Deref:
6370     case UO_AddrOf: // should be impossible
6371       return IntRange::forValueOfType(C, GetExprType(E));
6372 
6373     default:
6374       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
6375     }
6376   }
6377 
6378   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
6379     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
6380 
6381   if (FieldDecl *BitField = E->getSourceBitField())
6382     return IntRange(BitField->getBitWidthValue(C),
6383                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
6384 
6385   return IntRange::forValueOfType(C, GetExprType(E));
6386 }
6387 
6388 static IntRange GetExprRange(ASTContext &C, Expr *E) {
6389   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
6390 }
6391 
6392 /// Checks whether the given value, which currently has the given
6393 /// source semantics, has the same value when coerced through the
6394 /// target semantics.
6395 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
6396                                  const llvm::fltSemantics &Src,
6397                                  const llvm::fltSemantics &Tgt) {
6398   llvm::APFloat truncated = value;
6399 
6400   bool ignored;
6401   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
6402   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
6403 
6404   return truncated.bitwiseIsEqual(value);
6405 }
6406 
6407 /// Checks whether the given value, which currently has the given
6408 /// source semantics, has the same value when coerced through the
6409 /// target semantics.
6410 ///
6411 /// The value might be a vector of floats (or a complex number).
6412 static bool IsSameFloatAfterCast(const APValue &value,
6413                                  const llvm::fltSemantics &Src,
6414                                  const llvm::fltSemantics &Tgt) {
6415   if (value.isFloat())
6416     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
6417 
6418   if (value.isVector()) {
6419     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
6420       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
6421         return false;
6422     return true;
6423   }
6424 
6425   assert(value.isComplexFloat());
6426   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
6427           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
6428 }
6429 
6430 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
6431 
6432 static bool IsZero(Sema &S, Expr *E) {
6433   // Suppress cases where we are comparing against an enum constant.
6434   if (const DeclRefExpr *DR =
6435       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
6436     if (isa<EnumConstantDecl>(DR->getDecl()))
6437       return false;
6438 
6439   // Suppress cases where the '0' value is expanded from a macro.
6440   if (E->getLocStart().isMacroID())
6441     return false;
6442 
6443   llvm::APSInt Value;
6444   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
6445 }
6446 
6447 static bool HasEnumType(Expr *E) {
6448   // Strip off implicit integral promotions.
6449   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6450     if (ICE->getCastKind() != CK_IntegralCast &&
6451         ICE->getCastKind() != CK_NoOp)
6452       break;
6453     E = ICE->getSubExpr();
6454   }
6455 
6456   return E->getType()->isEnumeralType();
6457 }
6458 
6459 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
6460   // Disable warning in template instantiations.
6461   if (!S.ActiveTemplateInstantiations.empty())
6462     return;
6463 
6464   BinaryOperatorKind op = E->getOpcode();
6465   if (E->isValueDependent())
6466     return;
6467 
6468   if (op == BO_LT && IsZero(S, E->getRHS())) {
6469     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6470       << "< 0" << "false" << HasEnumType(E->getLHS())
6471       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6472   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
6473     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6474       << ">= 0" << "true" << HasEnumType(E->getLHS())
6475       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6476   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
6477     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6478       << "0 >" << "false" << HasEnumType(E->getRHS())
6479       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6480   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
6481     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6482       << "0 <=" << "true" << HasEnumType(E->getRHS())
6483       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6484   }
6485 }
6486 
6487 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
6488                                          Expr *Constant, Expr *Other,
6489                                          llvm::APSInt Value,
6490                                          bool RhsConstant) {
6491   // Disable warning in template instantiations.
6492   if (!S.ActiveTemplateInstantiations.empty())
6493     return;
6494 
6495   // TODO: Investigate using GetExprRange() to get tighter bounds
6496   // on the bit ranges.
6497   QualType OtherT = Other->getType();
6498   if (const auto *AT = OtherT->getAs<AtomicType>())
6499     OtherT = AT->getValueType();
6500   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
6501   unsigned OtherWidth = OtherRange.Width;
6502 
6503   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
6504 
6505   // 0 values are handled later by CheckTrivialUnsignedComparison().
6506   if ((Value == 0) && (!OtherIsBooleanType))
6507     return;
6508 
6509   BinaryOperatorKind op = E->getOpcode();
6510   bool IsTrue = true;
6511 
6512   // Used for diagnostic printout.
6513   enum {
6514     LiteralConstant = 0,
6515     CXXBoolLiteralTrue,
6516     CXXBoolLiteralFalse
6517   } LiteralOrBoolConstant = LiteralConstant;
6518 
6519   if (!OtherIsBooleanType) {
6520     QualType ConstantT = Constant->getType();
6521     QualType CommonT = E->getLHS()->getType();
6522 
6523     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
6524       return;
6525     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
6526            "comparison with non-integer type");
6527 
6528     bool ConstantSigned = ConstantT->isSignedIntegerType();
6529     bool CommonSigned = CommonT->isSignedIntegerType();
6530 
6531     bool EqualityOnly = false;
6532 
6533     if (CommonSigned) {
6534       // The common type is signed, therefore no signed to unsigned conversion.
6535       if (!OtherRange.NonNegative) {
6536         // Check that the constant is representable in type OtherT.
6537         if (ConstantSigned) {
6538           if (OtherWidth >= Value.getMinSignedBits())
6539             return;
6540         } else { // !ConstantSigned
6541           if (OtherWidth >= Value.getActiveBits() + 1)
6542             return;
6543         }
6544       } else { // !OtherSigned
6545                // Check that the constant is representable in type OtherT.
6546         // Negative values are out of range.
6547         if (ConstantSigned) {
6548           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
6549             return;
6550         } else { // !ConstantSigned
6551           if (OtherWidth >= Value.getActiveBits())
6552             return;
6553         }
6554       }
6555     } else { // !CommonSigned
6556       if (OtherRange.NonNegative) {
6557         if (OtherWidth >= Value.getActiveBits())
6558           return;
6559       } else { // OtherSigned
6560         assert(!ConstantSigned &&
6561                "Two signed types converted to unsigned types.");
6562         // Check to see if the constant is representable in OtherT.
6563         if (OtherWidth > Value.getActiveBits())
6564           return;
6565         // Check to see if the constant is equivalent to a negative value
6566         // cast to CommonT.
6567         if (S.Context.getIntWidth(ConstantT) ==
6568                 S.Context.getIntWidth(CommonT) &&
6569             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
6570           return;
6571         // The constant value rests between values that OtherT can represent
6572         // after conversion.  Relational comparison still works, but equality
6573         // comparisons will be tautological.
6574         EqualityOnly = true;
6575       }
6576     }
6577 
6578     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
6579 
6580     if (op == BO_EQ || op == BO_NE) {
6581       IsTrue = op == BO_NE;
6582     } else if (EqualityOnly) {
6583       return;
6584     } else if (RhsConstant) {
6585       if (op == BO_GT || op == BO_GE)
6586         IsTrue = !PositiveConstant;
6587       else // op == BO_LT || op == BO_LE
6588         IsTrue = PositiveConstant;
6589     } else {
6590       if (op == BO_LT || op == BO_LE)
6591         IsTrue = !PositiveConstant;
6592       else // op == BO_GT || op == BO_GE
6593         IsTrue = PositiveConstant;
6594     }
6595   } else {
6596     // Other isKnownToHaveBooleanValue
6597     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
6598     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
6599     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
6600 
6601     static const struct LinkedConditions {
6602       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
6603       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
6604       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
6605       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
6606       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
6607       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
6608 
6609     } TruthTable = {
6610         // Constant on LHS.              | Constant on RHS.              |
6611         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
6612         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
6613         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
6614         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
6615         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
6616         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
6617         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
6618       };
6619 
6620     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
6621 
6622     enum ConstantValue ConstVal = Zero;
6623     if (Value.isUnsigned() || Value.isNonNegative()) {
6624       if (Value == 0) {
6625         LiteralOrBoolConstant =
6626             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
6627         ConstVal = Zero;
6628       } else if (Value == 1) {
6629         LiteralOrBoolConstant =
6630             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
6631         ConstVal = One;
6632       } else {
6633         LiteralOrBoolConstant = LiteralConstant;
6634         ConstVal = GT_One;
6635       }
6636     } else {
6637       ConstVal = LT_Zero;
6638     }
6639 
6640     CompareBoolWithConstantResult CmpRes;
6641 
6642     switch (op) {
6643     case BO_LT:
6644       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
6645       break;
6646     case BO_GT:
6647       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
6648       break;
6649     case BO_LE:
6650       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
6651       break;
6652     case BO_GE:
6653       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
6654       break;
6655     case BO_EQ:
6656       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
6657       break;
6658     case BO_NE:
6659       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
6660       break;
6661     default:
6662       CmpRes = Unkwn;
6663       break;
6664     }
6665 
6666     if (CmpRes == AFals) {
6667       IsTrue = false;
6668     } else if (CmpRes == ATrue) {
6669       IsTrue = true;
6670     } else {
6671       return;
6672     }
6673   }
6674 
6675   // If this is a comparison to an enum constant, include that
6676   // constant in the diagnostic.
6677   const EnumConstantDecl *ED = nullptr;
6678   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
6679     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
6680 
6681   SmallString<64> PrettySourceValue;
6682   llvm::raw_svector_ostream OS(PrettySourceValue);
6683   if (ED)
6684     OS << '\'' << *ED << "' (" << Value << ")";
6685   else
6686     OS << Value;
6687 
6688   S.DiagRuntimeBehavior(
6689     E->getOperatorLoc(), E,
6690     S.PDiag(diag::warn_out_of_range_compare)
6691         << OS.str() << LiteralOrBoolConstant
6692         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
6693         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
6694 }
6695 
6696 /// Analyze the operands of the given comparison.  Implements the
6697 /// fallback case from AnalyzeComparison.
6698 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
6699   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6700   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6701 }
6702 
6703 /// \brief Implements -Wsign-compare.
6704 ///
6705 /// \param E the binary operator to check for warnings
6706 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
6707   // The type the comparison is being performed in.
6708   QualType T = E->getLHS()->getType();
6709 
6710   // Only analyze comparison operators where both sides have been converted to
6711   // the same type.
6712   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
6713     return AnalyzeImpConvsInComparison(S, E);
6714 
6715   // Don't analyze value-dependent comparisons directly.
6716   if (E->isValueDependent())
6717     return AnalyzeImpConvsInComparison(S, E);
6718 
6719   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
6720   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
6721 
6722   bool IsComparisonConstant = false;
6723 
6724   // Check whether an integer constant comparison results in a value
6725   // of 'true' or 'false'.
6726   if (T->isIntegralType(S.Context)) {
6727     llvm::APSInt RHSValue;
6728     bool IsRHSIntegralLiteral =
6729       RHS->isIntegerConstantExpr(RHSValue, S.Context);
6730     llvm::APSInt LHSValue;
6731     bool IsLHSIntegralLiteral =
6732       LHS->isIntegerConstantExpr(LHSValue, S.Context);
6733     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
6734         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
6735     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
6736       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
6737     else
6738       IsComparisonConstant =
6739         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
6740   } else if (!T->hasUnsignedIntegerRepresentation())
6741       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
6742 
6743   // We don't do anything special if this isn't an unsigned integral
6744   // comparison:  we're only interested in integral comparisons, and
6745   // signed comparisons only happen in cases we don't care to warn about.
6746   //
6747   // We also don't care about value-dependent expressions or expressions
6748   // whose result is a constant.
6749   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
6750     return AnalyzeImpConvsInComparison(S, E);
6751 
6752   // Check to see if one of the (unmodified) operands is of different
6753   // signedness.
6754   Expr *signedOperand, *unsignedOperand;
6755   if (LHS->getType()->hasSignedIntegerRepresentation()) {
6756     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
6757            "unsigned comparison between two signed integer expressions?");
6758     signedOperand = LHS;
6759     unsignedOperand = RHS;
6760   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
6761     signedOperand = RHS;
6762     unsignedOperand = LHS;
6763   } else {
6764     CheckTrivialUnsignedComparison(S, E);
6765     return AnalyzeImpConvsInComparison(S, E);
6766   }
6767 
6768   // Otherwise, calculate the effective range of the signed operand.
6769   IntRange signedRange = GetExprRange(S.Context, signedOperand);
6770 
6771   // Go ahead and analyze implicit conversions in the operands.  Note
6772   // that we skip the implicit conversions on both sides.
6773   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
6774   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
6775 
6776   // If the signed range is non-negative, -Wsign-compare won't fire,
6777   // but we should still check for comparisons which are always true
6778   // or false.
6779   if (signedRange.NonNegative)
6780     return CheckTrivialUnsignedComparison(S, E);
6781 
6782   // For (in)equality comparisons, if the unsigned operand is a
6783   // constant which cannot collide with a overflowed signed operand,
6784   // then reinterpreting the signed operand as unsigned will not
6785   // change the result of the comparison.
6786   if (E->isEqualityOp()) {
6787     unsigned comparisonWidth = S.Context.getIntWidth(T);
6788     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
6789 
6790     // We should never be unable to prove that the unsigned operand is
6791     // non-negative.
6792     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
6793 
6794     if (unsignedRange.Width < comparisonWidth)
6795       return;
6796   }
6797 
6798   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
6799     S.PDiag(diag::warn_mixed_sign_comparison)
6800       << LHS->getType() << RHS->getType()
6801       << LHS->getSourceRange() << RHS->getSourceRange());
6802 }
6803 
6804 /// Analyzes an attempt to assign the given value to a bitfield.
6805 ///
6806 /// Returns true if there was something fishy about the attempt.
6807 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
6808                                       SourceLocation InitLoc) {
6809   assert(Bitfield->isBitField());
6810   if (Bitfield->isInvalidDecl())
6811     return false;
6812 
6813   // White-list bool bitfields.
6814   if (Bitfield->getType()->isBooleanType())
6815     return false;
6816 
6817   // Ignore value- or type-dependent expressions.
6818   if (Bitfield->getBitWidth()->isValueDependent() ||
6819       Bitfield->getBitWidth()->isTypeDependent() ||
6820       Init->isValueDependent() ||
6821       Init->isTypeDependent())
6822     return false;
6823 
6824   Expr *OriginalInit = Init->IgnoreParenImpCasts();
6825 
6826   llvm::APSInt Value;
6827   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
6828     return false;
6829 
6830   unsigned OriginalWidth = Value.getBitWidth();
6831   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
6832 
6833   if (OriginalWidth <= FieldWidth)
6834     return false;
6835 
6836   // Compute the value which the bitfield will contain.
6837   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
6838   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
6839 
6840   // Check whether the stored value is equal to the original value.
6841   TruncatedValue = TruncatedValue.extend(OriginalWidth);
6842   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
6843     return false;
6844 
6845   // Special-case bitfields of width 1: booleans are naturally 0/1, and
6846   // therefore don't strictly fit into a signed bitfield of width 1.
6847   if (FieldWidth == 1 && Value == 1)
6848     return false;
6849 
6850   std::string PrettyValue = Value.toString(10);
6851   std::string PrettyTrunc = TruncatedValue.toString(10);
6852 
6853   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
6854     << PrettyValue << PrettyTrunc << OriginalInit->getType()
6855     << Init->getSourceRange();
6856 
6857   return true;
6858 }
6859 
6860 /// Analyze the given simple or compound assignment for warning-worthy
6861 /// operations.
6862 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
6863   // Just recurse on the LHS.
6864   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6865 
6866   // We want to recurse on the RHS as normal unless we're assigning to
6867   // a bitfield.
6868   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
6869     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
6870                                   E->getOperatorLoc())) {
6871       // Recurse, ignoring any implicit conversions on the RHS.
6872       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
6873                                         E->getOperatorLoc());
6874     }
6875   }
6876 
6877   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6878 }
6879 
6880 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
6881 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
6882                             SourceLocation CContext, unsigned diag,
6883                             bool pruneControlFlow = false) {
6884   if (pruneControlFlow) {
6885     S.DiagRuntimeBehavior(E->getExprLoc(), E,
6886                           S.PDiag(diag)
6887                             << SourceType << T << E->getSourceRange()
6888                             << SourceRange(CContext));
6889     return;
6890   }
6891   S.Diag(E->getExprLoc(), diag)
6892     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
6893 }
6894 
6895 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
6896 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
6897                             SourceLocation CContext, unsigned diag,
6898                             bool pruneControlFlow = false) {
6899   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
6900 }
6901 
6902 /// Diagnose an implicit cast from a literal expression. Does not warn when the
6903 /// cast wouldn't lose information.
6904 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
6905                                     SourceLocation CContext) {
6906   // Try to convert the literal exactly to an integer. If we can, don't warn.
6907   bool isExact = false;
6908   const llvm::APFloat &Value = FL->getValue();
6909   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
6910                             T->hasUnsignedIntegerRepresentation());
6911   if (Value.convertToInteger(IntegerValue,
6912                              llvm::APFloat::rmTowardZero, &isExact)
6913       == llvm::APFloat::opOK && isExact)
6914     return;
6915 
6916   // FIXME: Force the precision of the source value down so we don't print
6917   // digits which are usually useless (we don't really care here if we
6918   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
6919   // would automatically print the shortest representation, but it's a bit
6920   // tricky to implement.
6921   SmallString<16> PrettySourceValue;
6922   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
6923   precision = (precision * 59 + 195) / 196;
6924   Value.toString(PrettySourceValue, precision);
6925 
6926   SmallString<16> PrettyTargetValue;
6927   if (T->isSpecificBuiltinType(BuiltinType::Bool))
6928     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
6929   else
6930     IntegerValue.toString(PrettyTargetValue);
6931 
6932   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
6933     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
6934     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
6935 }
6936 
6937 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
6938   if (!Range.Width) return "0";
6939 
6940   llvm::APSInt ValueInRange = Value;
6941   ValueInRange.setIsSigned(!Range.NonNegative);
6942   ValueInRange = ValueInRange.trunc(Range.Width);
6943   return ValueInRange.toString(10);
6944 }
6945 
6946 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
6947   if (!isa<ImplicitCastExpr>(Ex))
6948     return false;
6949 
6950   Expr *InnerE = Ex->IgnoreParenImpCasts();
6951   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
6952   const Type *Source =
6953     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6954   if (Target->isDependentType())
6955     return false;
6956 
6957   const BuiltinType *FloatCandidateBT =
6958     dyn_cast<BuiltinType>(ToBool ? Source : Target);
6959   const Type *BoolCandidateType = ToBool ? Target : Source;
6960 
6961   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
6962           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
6963 }
6964 
6965 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
6966                                       SourceLocation CC) {
6967   unsigned NumArgs = TheCall->getNumArgs();
6968   for (unsigned i = 0; i < NumArgs; ++i) {
6969     Expr *CurrA = TheCall->getArg(i);
6970     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
6971       continue;
6972 
6973     bool IsSwapped = ((i > 0) &&
6974         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
6975     IsSwapped |= ((i < (NumArgs - 1)) &&
6976         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
6977     if (IsSwapped) {
6978       // Warn on this floating-point to bool conversion.
6979       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
6980                       CurrA->getType(), CC,
6981                       diag::warn_impcast_floating_point_to_bool);
6982     }
6983   }
6984 }
6985 
6986 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
6987                                    SourceLocation CC) {
6988   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
6989                         E->getExprLoc()))
6990     return;
6991 
6992   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
6993   const Expr::NullPointerConstantKind NullKind =
6994       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
6995   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
6996     return;
6997 
6998   // Return if target type is a safe conversion.
6999   if (T->isAnyPointerType() || T->isBlockPointerType() ||
7000       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
7001     return;
7002 
7003   SourceLocation Loc = E->getSourceRange().getBegin();
7004 
7005   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
7006   if (NullKind == Expr::NPCK_GNUNull) {
7007     if (Loc.isMacroID())
7008       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
7009   }
7010 
7011   // Only warn if the null and context location are in the same macro expansion.
7012   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
7013     return;
7014 
7015   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
7016       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
7017       << FixItHint::CreateReplacement(Loc,
7018                                       S.getFixItZeroLiteralForType(T, Loc));
7019 }
7020 
7021 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
7022                                   ObjCArrayLiteral *ArrayLiteral);
7023 static void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
7024                                        ObjCDictionaryLiteral *DictionaryLiteral);
7025 
7026 /// Check a single element within a collection literal against the
7027 /// target element type.
7028 static void checkObjCCollectionLiteralElement(Sema &S,
7029                                               QualType TargetElementType,
7030                                               Expr *Element,
7031                                               unsigned ElementKind) {
7032   // Skip a bitcast to 'id' or qualified 'id'.
7033   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
7034     if (ICE->getCastKind() == CK_BitCast &&
7035         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
7036       Element = ICE->getSubExpr();
7037   }
7038 
7039   QualType ElementType = Element->getType();
7040   ExprResult ElementResult(Element);
7041   if (ElementType->getAs<ObjCObjectPointerType>() &&
7042       S.CheckSingleAssignmentConstraints(TargetElementType,
7043                                          ElementResult,
7044                                          false, false)
7045         != Sema::Compatible) {
7046     S.Diag(Element->getLocStart(),
7047            diag::warn_objc_collection_literal_element)
7048       << ElementType << ElementKind << TargetElementType
7049       << Element->getSourceRange();
7050   }
7051 
7052   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
7053     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
7054   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
7055     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
7056 }
7057 
7058 /// Check an Objective-C array literal being converted to the given
7059 /// target type.
7060 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
7061                                   ObjCArrayLiteral *ArrayLiteral) {
7062   if (!S.NSArrayDecl)
7063     return;
7064 
7065   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
7066   if (!TargetObjCPtr)
7067     return;
7068 
7069   if (TargetObjCPtr->isUnspecialized() ||
7070       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
7071         != S.NSArrayDecl->getCanonicalDecl())
7072     return;
7073 
7074   auto TypeArgs = TargetObjCPtr->getTypeArgs();
7075   if (TypeArgs.size() != 1)
7076     return;
7077 
7078   QualType TargetElementType = TypeArgs[0];
7079   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
7080     checkObjCCollectionLiteralElement(S, TargetElementType,
7081                                       ArrayLiteral->getElement(I),
7082                                       0);
7083   }
7084 }
7085 
7086 /// Check an Objective-C dictionary literal being converted to the given
7087 /// target type.
7088 static void checkObjCDictionaryLiteral(
7089               Sema &S, QualType TargetType,
7090               ObjCDictionaryLiteral *DictionaryLiteral) {
7091   if (!S.NSDictionaryDecl)
7092     return;
7093 
7094   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
7095   if (!TargetObjCPtr)
7096     return;
7097 
7098   if (TargetObjCPtr->isUnspecialized() ||
7099       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
7100         != S.NSDictionaryDecl->getCanonicalDecl())
7101     return;
7102 
7103   auto TypeArgs = TargetObjCPtr->getTypeArgs();
7104   if (TypeArgs.size() != 2)
7105     return;
7106 
7107   QualType TargetKeyType = TypeArgs[0];
7108   QualType TargetObjectType = TypeArgs[1];
7109   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
7110     auto Element = DictionaryLiteral->getKeyValueElement(I);
7111     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
7112     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
7113   }
7114 }
7115 
7116 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
7117                              SourceLocation CC, bool *ICContext = nullptr) {
7118   if (E->isTypeDependent() || E->isValueDependent()) return;
7119 
7120   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
7121   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
7122   if (Source == Target) return;
7123   if (Target->isDependentType()) return;
7124 
7125   // If the conversion context location is invalid don't complain. We also
7126   // don't want to emit a warning if the issue occurs from the expansion of
7127   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
7128   // delay this check as long as possible. Once we detect we are in that
7129   // scenario, we just return.
7130   if (CC.isInvalid())
7131     return;
7132 
7133   // Diagnose implicit casts to bool.
7134   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
7135     if (isa<StringLiteral>(E))
7136       // Warn on string literal to bool.  Checks for string literals in logical
7137       // and expressions, for instance, assert(0 && "error here"), are
7138       // prevented by a check in AnalyzeImplicitConversions().
7139       return DiagnoseImpCast(S, E, T, CC,
7140                              diag::warn_impcast_string_literal_to_bool);
7141     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
7142         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
7143       // This covers the literal expressions that evaluate to Objective-C
7144       // objects.
7145       return DiagnoseImpCast(S, E, T, CC,
7146                              diag::warn_impcast_objective_c_literal_to_bool);
7147     }
7148     if (Source->isPointerType() || Source->canDecayToPointerType()) {
7149       // Warn on pointer to bool conversion that is always true.
7150       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
7151                                      SourceRange(CC));
7152     }
7153   }
7154 
7155   // Check implicit casts from Objective-C collection literals to specialized
7156   // collection types, e.g., NSArray<NSString *> *.
7157   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
7158     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
7159   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
7160     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
7161 
7162   // Strip vector types.
7163   if (isa<VectorType>(Source)) {
7164     if (!isa<VectorType>(Target)) {
7165       if (S.SourceMgr.isInSystemMacro(CC))
7166         return;
7167       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
7168     }
7169 
7170     // If the vector cast is cast between two vectors of the same size, it is
7171     // a bitcast, not a conversion.
7172     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
7173       return;
7174 
7175     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
7176     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
7177   }
7178   if (auto VecTy = dyn_cast<VectorType>(Target))
7179     Target = VecTy->getElementType().getTypePtr();
7180 
7181   // Strip complex types.
7182   if (isa<ComplexType>(Source)) {
7183     if (!isa<ComplexType>(Target)) {
7184       if (S.SourceMgr.isInSystemMacro(CC))
7185         return;
7186 
7187       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
7188     }
7189 
7190     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
7191     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
7192   }
7193 
7194   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
7195   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
7196 
7197   // If the source is floating point...
7198   if (SourceBT && SourceBT->isFloatingPoint()) {
7199     // ...and the target is floating point...
7200     if (TargetBT && TargetBT->isFloatingPoint()) {
7201       // ...then warn if we're dropping FP rank.
7202 
7203       // Builtin FP kinds are ordered by increasing FP rank.
7204       if (SourceBT->getKind() > TargetBT->getKind()) {
7205         // Don't warn about float constants that are precisely
7206         // representable in the target type.
7207         Expr::EvalResult result;
7208         if (E->EvaluateAsRValue(result, S.Context)) {
7209           // Value might be a float, a float vector, or a float complex.
7210           if (IsSameFloatAfterCast(result.Val,
7211                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
7212                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
7213             return;
7214         }
7215 
7216         if (S.SourceMgr.isInSystemMacro(CC))
7217           return;
7218 
7219         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
7220       }
7221       return;
7222     }
7223 
7224     // If the target is integral, always warn.
7225     if (TargetBT && TargetBT->isInteger()) {
7226       if (S.SourceMgr.isInSystemMacro(CC))
7227         return;
7228 
7229       Expr *InnerE = E->IgnoreParenImpCasts();
7230       // We also want to warn on, e.g., "int i = -1.234"
7231       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
7232         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
7233           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
7234 
7235       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
7236         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
7237       } else {
7238         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
7239       }
7240     }
7241 
7242     // If the target is bool, warn if expr is a function or method call.
7243     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
7244         isa<CallExpr>(E)) {
7245       // Check last argument of function call to see if it is an
7246       // implicit cast from a type matching the type the result
7247       // is being cast to.
7248       CallExpr *CEx = cast<CallExpr>(E);
7249       unsigned NumArgs = CEx->getNumArgs();
7250       if (NumArgs > 0) {
7251         Expr *LastA = CEx->getArg(NumArgs - 1);
7252         Expr *InnerE = LastA->IgnoreParenImpCasts();
7253         const Type *InnerType =
7254           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
7255         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
7256           // Warn on this floating-point to bool conversion
7257           DiagnoseImpCast(S, E, T, CC,
7258                           diag::warn_impcast_floating_point_to_bool);
7259         }
7260       }
7261     }
7262     return;
7263   }
7264 
7265   DiagnoseNullConversion(S, E, T, CC);
7266 
7267   if (!Source->isIntegerType() || !Target->isIntegerType())
7268     return;
7269 
7270   // TODO: remove this early return once the false positives for constant->bool
7271   // in templates, macros, etc, are reduced or removed.
7272   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
7273     return;
7274 
7275   IntRange SourceRange = GetExprRange(S.Context, E);
7276   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
7277 
7278   if (SourceRange.Width > TargetRange.Width) {
7279     // If the source is a constant, use a default-on diagnostic.
7280     // TODO: this should happen for bitfield stores, too.
7281     llvm::APSInt Value(32);
7282     if (E->isIntegerConstantExpr(Value, S.Context)) {
7283       if (S.SourceMgr.isInSystemMacro(CC))
7284         return;
7285 
7286       std::string PrettySourceValue = Value.toString(10);
7287       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
7288 
7289       S.DiagRuntimeBehavior(E->getExprLoc(), E,
7290         S.PDiag(diag::warn_impcast_integer_precision_constant)
7291             << PrettySourceValue << PrettyTargetValue
7292             << E->getType() << T << E->getSourceRange()
7293             << clang::SourceRange(CC));
7294       return;
7295     }
7296 
7297     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
7298     if (S.SourceMgr.isInSystemMacro(CC))
7299       return;
7300 
7301     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
7302       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
7303                              /* pruneControlFlow */ true);
7304     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
7305   }
7306 
7307   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
7308       (!TargetRange.NonNegative && SourceRange.NonNegative &&
7309        SourceRange.Width == TargetRange.Width)) {
7310 
7311     if (S.SourceMgr.isInSystemMacro(CC))
7312       return;
7313 
7314     unsigned DiagID = diag::warn_impcast_integer_sign;
7315 
7316     // Traditionally, gcc has warned about this under -Wsign-compare.
7317     // We also want to warn about it in -Wconversion.
7318     // So if -Wconversion is off, use a completely identical diagnostic
7319     // in the sign-compare group.
7320     // The conditional-checking code will
7321     if (ICContext) {
7322       DiagID = diag::warn_impcast_integer_sign_conditional;
7323       *ICContext = true;
7324     }
7325 
7326     return DiagnoseImpCast(S, E, T, CC, DiagID);
7327   }
7328 
7329   // Diagnose conversions between different enumeration types.
7330   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
7331   // type, to give us better diagnostics.
7332   QualType SourceType = E->getType();
7333   if (!S.getLangOpts().CPlusPlus) {
7334     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7335       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
7336         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
7337         SourceType = S.Context.getTypeDeclType(Enum);
7338         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
7339       }
7340   }
7341 
7342   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
7343     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
7344       if (SourceEnum->getDecl()->hasNameForLinkage() &&
7345           TargetEnum->getDecl()->hasNameForLinkage() &&
7346           SourceEnum != TargetEnum) {
7347         if (S.SourceMgr.isInSystemMacro(CC))
7348           return;
7349 
7350         return DiagnoseImpCast(S, E, SourceType, T, CC,
7351                                diag::warn_impcast_different_enum_types);
7352       }
7353 
7354   return;
7355 }
7356 
7357 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
7358                               SourceLocation CC, QualType T);
7359 
7360 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
7361                              SourceLocation CC, bool &ICContext) {
7362   E = E->IgnoreParenImpCasts();
7363 
7364   if (isa<ConditionalOperator>(E))
7365     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
7366 
7367   AnalyzeImplicitConversions(S, E, CC);
7368   if (E->getType() != T)
7369     return CheckImplicitConversion(S, E, T, CC, &ICContext);
7370   return;
7371 }
7372 
7373 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
7374                               SourceLocation CC, QualType T) {
7375   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
7376 
7377   bool Suspicious = false;
7378   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
7379   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
7380 
7381   // If -Wconversion would have warned about either of the candidates
7382   // for a signedness conversion to the context type...
7383   if (!Suspicious) return;
7384 
7385   // ...but it's currently ignored...
7386   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
7387     return;
7388 
7389   // ...then check whether it would have warned about either of the
7390   // candidates for a signedness conversion to the condition type.
7391   if (E->getType() == T) return;
7392 
7393   Suspicious = false;
7394   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
7395                           E->getType(), CC, &Suspicious);
7396   if (!Suspicious)
7397     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
7398                             E->getType(), CC, &Suspicious);
7399 }
7400 
7401 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7402 /// Input argument E is a logical expression.
7403 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
7404   if (S.getLangOpts().Bool)
7405     return;
7406   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
7407 }
7408 
7409 /// AnalyzeImplicitConversions - Find and report any interesting
7410 /// implicit conversions in the given expression.  There are a couple
7411 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
7412 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
7413   QualType T = OrigE->getType();
7414   Expr *E = OrigE->IgnoreParenImpCasts();
7415 
7416   if (E->isTypeDependent() || E->isValueDependent())
7417     return;
7418 
7419   // For conditional operators, we analyze the arguments as if they
7420   // were being fed directly into the output.
7421   if (isa<ConditionalOperator>(E)) {
7422     ConditionalOperator *CO = cast<ConditionalOperator>(E);
7423     CheckConditionalOperator(S, CO, CC, T);
7424     return;
7425   }
7426 
7427   // Check implicit argument conversions for function calls.
7428   if (CallExpr *Call = dyn_cast<CallExpr>(E))
7429     CheckImplicitArgumentConversions(S, Call, CC);
7430 
7431   // Go ahead and check any implicit conversions we might have skipped.
7432   // The non-canonical typecheck is just an optimization;
7433   // CheckImplicitConversion will filter out dead implicit conversions.
7434   if (E->getType() != T)
7435     CheckImplicitConversion(S, E, T, CC);
7436 
7437   // Now continue drilling into this expression.
7438 
7439   if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
7440     if (POE->getResultExpr())
7441       E = POE->getResultExpr();
7442   }
7443 
7444   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
7445     if (OVE->getSourceExpr())
7446       AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
7447     return;
7448   }
7449 
7450   // Skip past explicit casts.
7451   if (isa<ExplicitCastExpr>(E)) {
7452     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
7453     return AnalyzeImplicitConversions(S, E, CC);
7454   }
7455 
7456   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7457     // Do a somewhat different check with comparison operators.
7458     if (BO->isComparisonOp())
7459       return AnalyzeComparison(S, BO);
7460 
7461     // And with simple assignments.
7462     if (BO->getOpcode() == BO_Assign)
7463       return AnalyzeAssignment(S, BO);
7464   }
7465 
7466   // These break the otherwise-useful invariant below.  Fortunately,
7467   // we don't really need to recurse into them, because any internal
7468   // expressions should have been analyzed already when they were
7469   // built into statements.
7470   if (isa<StmtExpr>(E)) return;
7471 
7472   // Don't descend into unevaluated contexts.
7473   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
7474 
7475   // Now just recurse over the expression's children.
7476   CC = E->getExprLoc();
7477   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
7478   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
7479   for (Stmt *SubStmt : E->children()) {
7480     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
7481     if (!ChildExpr)
7482       continue;
7483 
7484     if (IsLogicalAndOperator &&
7485         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
7486       // Ignore checking string literals that are in logical and operators.
7487       // This is a common pattern for asserts.
7488       continue;
7489     AnalyzeImplicitConversions(S, ChildExpr, CC);
7490   }
7491 
7492   if (BO && BO->isLogicalOp()) {
7493     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
7494     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
7495       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
7496 
7497     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
7498     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
7499       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
7500   }
7501 
7502   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
7503     if (U->getOpcode() == UO_LNot)
7504       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
7505 }
7506 
7507 } // end anonymous namespace
7508 
7509 enum {
7510   AddressOf,
7511   FunctionPointer,
7512   ArrayPointer
7513 };
7514 
7515 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
7516 // Returns true when emitting a warning about taking the address of a reference.
7517 static bool CheckForReference(Sema &SemaRef, const Expr *E,
7518                               PartialDiagnostic PD) {
7519   E = E->IgnoreParenImpCasts();
7520 
7521   const FunctionDecl *FD = nullptr;
7522 
7523   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
7524     if (!DRE->getDecl()->getType()->isReferenceType())
7525       return false;
7526   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
7527     if (!M->getMemberDecl()->getType()->isReferenceType())
7528       return false;
7529   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
7530     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
7531       return false;
7532     FD = Call->getDirectCallee();
7533   } else {
7534     return false;
7535   }
7536 
7537   SemaRef.Diag(E->getExprLoc(), PD);
7538 
7539   // If possible, point to location of function.
7540   if (FD) {
7541     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
7542   }
7543 
7544   return true;
7545 }
7546 
7547 // Returns true if the SourceLocation is expanded from any macro body.
7548 // Returns false if the SourceLocation is invalid, is from not in a macro
7549 // expansion, or is from expanded from a top-level macro argument.
7550 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
7551   if (Loc.isInvalid())
7552     return false;
7553 
7554   while (Loc.isMacroID()) {
7555     if (SM.isMacroBodyExpansion(Loc))
7556       return true;
7557     Loc = SM.getImmediateMacroCallerLoc(Loc);
7558   }
7559 
7560   return false;
7561 }
7562 
7563 /// \brief Diagnose pointers that are always non-null.
7564 /// \param E the expression containing the pointer
7565 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
7566 /// compared to a null pointer
7567 /// \param IsEqual True when the comparison is equal to a null pointer
7568 /// \param Range Extra SourceRange to highlight in the diagnostic
7569 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
7570                                         Expr::NullPointerConstantKind NullKind,
7571                                         bool IsEqual, SourceRange Range) {
7572   if (!E)
7573     return;
7574 
7575   // Don't warn inside macros.
7576   if (E->getExprLoc().isMacroID()) {
7577     const SourceManager &SM = getSourceManager();
7578     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
7579         IsInAnyMacroBody(SM, Range.getBegin()))
7580       return;
7581   }
7582   E = E->IgnoreImpCasts();
7583 
7584   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
7585 
7586   if (isa<CXXThisExpr>(E)) {
7587     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
7588                                 : diag::warn_this_bool_conversion;
7589     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
7590     return;
7591   }
7592 
7593   bool IsAddressOf = false;
7594 
7595   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7596     if (UO->getOpcode() != UO_AddrOf)
7597       return;
7598     IsAddressOf = true;
7599     E = UO->getSubExpr();
7600   }
7601 
7602   if (IsAddressOf) {
7603     unsigned DiagID = IsCompare
7604                           ? diag::warn_address_of_reference_null_compare
7605                           : diag::warn_address_of_reference_bool_conversion;
7606     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
7607                                          << IsEqual;
7608     if (CheckForReference(*this, E, PD)) {
7609       return;
7610     }
7611   }
7612 
7613   // Expect to find a single Decl.  Skip anything more complicated.
7614   ValueDecl *D = nullptr;
7615   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
7616     D = R->getDecl();
7617   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
7618     D = M->getMemberDecl();
7619   }
7620 
7621   // Weak Decls can be null.
7622   if (!D || D->isWeak())
7623     return;
7624 
7625   // Check for parameter decl with nonnull attribute
7626   if (const ParmVarDecl* PV = dyn_cast<ParmVarDecl>(D)) {
7627     if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV))
7628       if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
7629         unsigned NumArgs = FD->getNumParams();
7630         llvm::SmallBitVector AttrNonNull(NumArgs);
7631         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
7632           if (!NonNull->args_size()) {
7633             AttrNonNull.set(0, NumArgs);
7634             break;
7635           }
7636           for (unsigned Val : NonNull->args()) {
7637             if (Val >= NumArgs)
7638               continue;
7639             AttrNonNull.set(Val);
7640           }
7641         }
7642         if (!AttrNonNull.empty())
7643           for (unsigned i = 0; i < NumArgs; ++i)
7644             if (FD->getParamDecl(i) == PV &&
7645                 (AttrNonNull[i] || PV->hasAttr<NonNullAttr>())) {
7646               std::string Str;
7647               llvm::raw_string_ostream S(Str);
7648               E->printPretty(S, nullptr, getPrintingPolicy());
7649               unsigned DiagID = IsCompare ? diag::warn_nonnull_parameter_compare
7650                                           : diag::warn_cast_nonnull_to_bool;
7651               Diag(E->getExprLoc(), DiagID) << S.str() << E->getSourceRange()
7652                 << Range << IsEqual;
7653               return;
7654             }
7655       }
7656     }
7657 
7658   QualType T = D->getType();
7659   const bool IsArray = T->isArrayType();
7660   const bool IsFunction = T->isFunctionType();
7661 
7662   // Address of function is used to silence the function warning.
7663   if (IsAddressOf && IsFunction) {
7664     return;
7665   }
7666 
7667   // Found nothing.
7668   if (!IsAddressOf && !IsFunction && !IsArray)
7669     return;
7670 
7671   // Pretty print the expression for the diagnostic.
7672   std::string Str;
7673   llvm::raw_string_ostream S(Str);
7674   E->printPretty(S, nullptr, getPrintingPolicy());
7675 
7676   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
7677                               : diag::warn_impcast_pointer_to_bool;
7678   unsigned DiagType;
7679   if (IsAddressOf)
7680     DiagType = AddressOf;
7681   else if (IsFunction)
7682     DiagType = FunctionPointer;
7683   else if (IsArray)
7684     DiagType = ArrayPointer;
7685   else
7686     llvm_unreachable("Could not determine diagnostic.");
7687   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
7688                                 << Range << IsEqual;
7689 
7690   if (!IsFunction)
7691     return;
7692 
7693   // Suggest '&' to silence the function warning.
7694   Diag(E->getExprLoc(), diag::note_function_warning_silence)
7695       << FixItHint::CreateInsertion(E->getLocStart(), "&");
7696 
7697   // Check to see if '()' fixit should be emitted.
7698   QualType ReturnType;
7699   UnresolvedSet<4> NonTemplateOverloads;
7700   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
7701   if (ReturnType.isNull())
7702     return;
7703 
7704   if (IsCompare) {
7705     // There are two cases here.  If there is null constant, the only suggest
7706     // for a pointer return type.  If the null is 0, then suggest if the return
7707     // type is a pointer or an integer type.
7708     if (!ReturnType->isPointerType()) {
7709       if (NullKind == Expr::NPCK_ZeroExpression ||
7710           NullKind == Expr::NPCK_ZeroLiteral) {
7711         if (!ReturnType->isIntegerType())
7712           return;
7713       } else {
7714         return;
7715       }
7716     }
7717   } else { // !IsCompare
7718     // For function to bool, only suggest if the function pointer has bool
7719     // return type.
7720     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
7721       return;
7722   }
7723   Diag(E->getExprLoc(), diag::note_function_to_function_call)
7724       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
7725 }
7726 
7727 
7728 /// Diagnoses "dangerous" implicit conversions within the given
7729 /// expression (which is a full expression).  Implements -Wconversion
7730 /// and -Wsign-compare.
7731 ///
7732 /// \param CC the "context" location of the implicit conversion, i.e.
7733 ///   the most location of the syntactic entity requiring the implicit
7734 ///   conversion
7735 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
7736   // Don't diagnose in unevaluated contexts.
7737   if (isUnevaluatedContext())
7738     return;
7739 
7740   // Don't diagnose for value- or type-dependent expressions.
7741   if (E->isTypeDependent() || E->isValueDependent())
7742     return;
7743 
7744   // Check for array bounds violations in cases where the check isn't triggered
7745   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
7746   // ArraySubscriptExpr is on the RHS of a variable initialization.
7747   CheckArrayAccess(E);
7748 
7749   // This is not the right CC for (e.g.) a variable initialization.
7750   AnalyzeImplicitConversions(*this, E, CC);
7751 }
7752 
7753 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7754 /// Input argument E is a logical expression.
7755 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
7756   ::CheckBoolLikeConversion(*this, E, CC);
7757 }
7758 
7759 /// Diagnose when expression is an integer constant expression and its evaluation
7760 /// results in integer overflow
7761 void Sema::CheckForIntOverflow (Expr *E) {
7762   if (isa<BinaryOperator>(E->IgnoreParenCasts()))
7763     E->IgnoreParenCasts()->EvaluateForOverflow(Context);
7764 }
7765 
7766 namespace {
7767 /// \brief Visitor for expressions which looks for unsequenced operations on the
7768 /// same object.
7769 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
7770   typedef EvaluatedExprVisitor<SequenceChecker> Base;
7771 
7772   /// \brief A tree of sequenced regions within an expression. Two regions are
7773   /// unsequenced if one is an ancestor or a descendent of the other. When we
7774   /// finish processing an expression with sequencing, such as a comma
7775   /// expression, we fold its tree nodes into its parent, since they are
7776   /// unsequenced with respect to nodes we will visit later.
7777   class SequenceTree {
7778     struct Value {
7779       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
7780       unsigned Parent : 31;
7781       bool Merged : 1;
7782     };
7783     SmallVector<Value, 8> Values;
7784 
7785   public:
7786     /// \brief A region within an expression which may be sequenced with respect
7787     /// to some other region.
7788     class Seq {
7789       explicit Seq(unsigned N) : Index(N) {}
7790       unsigned Index;
7791       friend class SequenceTree;
7792     public:
7793       Seq() : Index(0) {}
7794     };
7795 
7796     SequenceTree() { Values.push_back(Value(0)); }
7797     Seq root() const { return Seq(0); }
7798 
7799     /// \brief Create a new sequence of operations, which is an unsequenced
7800     /// subset of \p Parent. This sequence of operations is sequenced with
7801     /// respect to other children of \p Parent.
7802     Seq allocate(Seq Parent) {
7803       Values.push_back(Value(Parent.Index));
7804       return Seq(Values.size() - 1);
7805     }
7806 
7807     /// \brief Merge a sequence of operations into its parent.
7808     void merge(Seq S) {
7809       Values[S.Index].Merged = true;
7810     }
7811 
7812     /// \brief Determine whether two operations are unsequenced. This operation
7813     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
7814     /// should have been merged into its parent as appropriate.
7815     bool isUnsequenced(Seq Cur, Seq Old) {
7816       unsigned C = representative(Cur.Index);
7817       unsigned Target = representative(Old.Index);
7818       while (C >= Target) {
7819         if (C == Target)
7820           return true;
7821         C = Values[C].Parent;
7822       }
7823       return false;
7824     }
7825 
7826   private:
7827     /// \brief Pick a representative for a sequence.
7828     unsigned representative(unsigned K) {
7829       if (Values[K].Merged)
7830         // Perform path compression as we go.
7831         return Values[K].Parent = representative(Values[K].Parent);
7832       return K;
7833     }
7834   };
7835 
7836   /// An object for which we can track unsequenced uses.
7837   typedef NamedDecl *Object;
7838 
7839   /// Different flavors of object usage which we track. We only track the
7840   /// least-sequenced usage of each kind.
7841   enum UsageKind {
7842     /// A read of an object. Multiple unsequenced reads are OK.
7843     UK_Use,
7844     /// A modification of an object which is sequenced before the value
7845     /// computation of the expression, such as ++n in C++.
7846     UK_ModAsValue,
7847     /// A modification of an object which is not sequenced before the value
7848     /// computation of the expression, such as n++.
7849     UK_ModAsSideEffect,
7850 
7851     UK_Count = UK_ModAsSideEffect + 1
7852   };
7853 
7854   struct Usage {
7855     Usage() : Use(nullptr), Seq() {}
7856     Expr *Use;
7857     SequenceTree::Seq Seq;
7858   };
7859 
7860   struct UsageInfo {
7861     UsageInfo() : Diagnosed(false) {}
7862     Usage Uses[UK_Count];
7863     /// Have we issued a diagnostic for this variable already?
7864     bool Diagnosed;
7865   };
7866   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
7867 
7868   Sema &SemaRef;
7869   /// Sequenced regions within the expression.
7870   SequenceTree Tree;
7871   /// Declaration modifications and references which we have seen.
7872   UsageInfoMap UsageMap;
7873   /// The region we are currently within.
7874   SequenceTree::Seq Region;
7875   /// Filled in with declarations which were modified as a side-effect
7876   /// (that is, post-increment operations).
7877   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
7878   /// Expressions to check later. We defer checking these to reduce
7879   /// stack usage.
7880   SmallVectorImpl<Expr *> &WorkList;
7881 
7882   /// RAII object wrapping the visitation of a sequenced subexpression of an
7883   /// expression. At the end of this process, the side-effects of the evaluation
7884   /// become sequenced with respect to the value computation of the result, so
7885   /// we downgrade any UK_ModAsSideEffect within the evaluation to
7886   /// UK_ModAsValue.
7887   struct SequencedSubexpression {
7888     SequencedSubexpression(SequenceChecker &Self)
7889       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
7890       Self.ModAsSideEffect = &ModAsSideEffect;
7891     }
7892     ~SequencedSubexpression() {
7893       for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
7894            MI != ME; ++MI) {
7895         UsageInfo &U = Self.UsageMap[MI->first];
7896         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
7897         Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
7898         SideEffectUsage = MI->second;
7899       }
7900       Self.ModAsSideEffect = OldModAsSideEffect;
7901     }
7902 
7903     SequenceChecker &Self;
7904     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
7905     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
7906   };
7907 
7908   /// RAII object wrapping the visitation of a subexpression which we might
7909   /// choose to evaluate as a constant. If any subexpression is evaluated and
7910   /// found to be non-constant, this allows us to suppress the evaluation of
7911   /// the outer expression.
7912   class EvaluationTracker {
7913   public:
7914     EvaluationTracker(SequenceChecker &Self)
7915         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
7916       Self.EvalTracker = this;
7917     }
7918     ~EvaluationTracker() {
7919       Self.EvalTracker = Prev;
7920       if (Prev)
7921         Prev->EvalOK &= EvalOK;
7922     }
7923 
7924     bool evaluate(const Expr *E, bool &Result) {
7925       if (!EvalOK || E->isValueDependent())
7926         return false;
7927       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
7928       return EvalOK;
7929     }
7930 
7931   private:
7932     SequenceChecker &Self;
7933     EvaluationTracker *Prev;
7934     bool EvalOK;
7935   } *EvalTracker;
7936 
7937   /// \brief Find the object which is produced by the specified expression,
7938   /// if any.
7939   Object getObject(Expr *E, bool Mod) const {
7940     E = E->IgnoreParenCasts();
7941     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7942       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
7943         return getObject(UO->getSubExpr(), Mod);
7944     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7945       if (BO->getOpcode() == BO_Comma)
7946         return getObject(BO->getRHS(), Mod);
7947       if (Mod && BO->isAssignmentOp())
7948         return getObject(BO->getLHS(), Mod);
7949     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7950       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
7951       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
7952         return ME->getMemberDecl();
7953     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7954       // FIXME: If this is a reference, map through to its value.
7955       return DRE->getDecl();
7956     return nullptr;
7957   }
7958 
7959   /// \brief Note that an object was modified or used by an expression.
7960   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
7961     Usage &U = UI.Uses[UK];
7962     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
7963       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
7964         ModAsSideEffect->push_back(std::make_pair(O, U));
7965       U.Use = Ref;
7966       U.Seq = Region;
7967     }
7968   }
7969   /// \brief Check whether a modification or use conflicts with a prior usage.
7970   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
7971                   bool IsModMod) {
7972     if (UI.Diagnosed)
7973       return;
7974 
7975     const Usage &U = UI.Uses[OtherKind];
7976     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
7977       return;
7978 
7979     Expr *Mod = U.Use;
7980     Expr *ModOrUse = Ref;
7981     if (OtherKind == UK_Use)
7982       std::swap(Mod, ModOrUse);
7983 
7984     SemaRef.Diag(Mod->getExprLoc(),
7985                  IsModMod ? diag::warn_unsequenced_mod_mod
7986                           : diag::warn_unsequenced_mod_use)
7987       << O << SourceRange(ModOrUse->getExprLoc());
7988     UI.Diagnosed = true;
7989   }
7990 
7991   void notePreUse(Object O, Expr *Use) {
7992     UsageInfo &U = UsageMap[O];
7993     // Uses conflict with other modifications.
7994     checkUsage(O, U, Use, UK_ModAsValue, false);
7995   }
7996   void notePostUse(Object O, Expr *Use) {
7997     UsageInfo &U = UsageMap[O];
7998     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
7999     addUsage(U, O, Use, UK_Use);
8000   }
8001 
8002   void notePreMod(Object O, Expr *Mod) {
8003     UsageInfo &U = UsageMap[O];
8004     // Modifications conflict with other modifications and with uses.
8005     checkUsage(O, U, Mod, UK_ModAsValue, true);
8006     checkUsage(O, U, Mod, UK_Use, false);
8007   }
8008   void notePostMod(Object O, Expr *Use, UsageKind UK) {
8009     UsageInfo &U = UsageMap[O];
8010     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
8011     addUsage(U, O, Use, UK);
8012   }
8013 
8014 public:
8015   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
8016       : Base(S.Context), SemaRef(S), Region(Tree.root()),
8017         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
8018     Visit(E);
8019   }
8020 
8021   void VisitStmt(Stmt *S) {
8022     // Skip all statements which aren't expressions for now.
8023   }
8024 
8025   void VisitExpr(Expr *E) {
8026     // By default, just recurse to evaluated subexpressions.
8027     Base::VisitStmt(E);
8028   }
8029 
8030   void VisitCastExpr(CastExpr *E) {
8031     Object O = Object();
8032     if (E->getCastKind() == CK_LValueToRValue)
8033       O = getObject(E->getSubExpr(), false);
8034 
8035     if (O)
8036       notePreUse(O, E);
8037     VisitExpr(E);
8038     if (O)
8039       notePostUse(O, E);
8040   }
8041 
8042   void VisitBinComma(BinaryOperator *BO) {
8043     // C++11 [expr.comma]p1:
8044     //   Every value computation and side effect associated with the left
8045     //   expression is sequenced before every value computation and side
8046     //   effect associated with the right expression.
8047     SequenceTree::Seq LHS = Tree.allocate(Region);
8048     SequenceTree::Seq RHS = Tree.allocate(Region);
8049     SequenceTree::Seq OldRegion = Region;
8050 
8051     {
8052       SequencedSubexpression SeqLHS(*this);
8053       Region = LHS;
8054       Visit(BO->getLHS());
8055     }
8056 
8057     Region = RHS;
8058     Visit(BO->getRHS());
8059 
8060     Region = OldRegion;
8061 
8062     // Forget that LHS and RHS are sequenced. They are both unsequenced
8063     // with respect to other stuff.
8064     Tree.merge(LHS);
8065     Tree.merge(RHS);
8066   }
8067 
8068   void VisitBinAssign(BinaryOperator *BO) {
8069     // The modification is sequenced after the value computation of the LHS
8070     // and RHS, so check it before inspecting the operands and update the
8071     // map afterwards.
8072     Object O = getObject(BO->getLHS(), true);
8073     if (!O)
8074       return VisitExpr(BO);
8075 
8076     notePreMod(O, BO);
8077 
8078     // C++11 [expr.ass]p7:
8079     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
8080     //   only once.
8081     //
8082     // Therefore, for a compound assignment operator, O is considered used
8083     // everywhere except within the evaluation of E1 itself.
8084     if (isa<CompoundAssignOperator>(BO))
8085       notePreUse(O, BO);
8086 
8087     Visit(BO->getLHS());
8088 
8089     if (isa<CompoundAssignOperator>(BO))
8090       notePostUse(O, BO);
8091 
8092     Visit(BO->getRHS());
8093 
8094     // C++11 [expr.ass]p1:
8095     //   the assignment is sequenced [...] before the value computation of the
8096     //   assignment expression.
8097     // C11 6.5.16/3 has no such rule.
8098     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
8099                                                        : UK_ModAsSideEffect);
8100   }
8101   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
8102     VisitBinAssign(CAO);
8103   }
8104 
8105   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
8106   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
8107   void VisitUnaryPreIncDec(UnaryOperator *UO) {
8108     Object O = getObject(UO->getSubExpr(), true);
8109     if (!O)
8110       return VisitExpr(UO);
8111 
8112     notePreMod(O, UO);
8113     Visit(UO->getSubExpr());
8114     // C++11 [expr.pre.incr]p1:
8115     //   the expression ++x is equivalent to x+=1
8116     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
8117                                                        : UK_ModAsSideEffect);
8118   }
8119 
8120   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
8121   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
8122   void VisitUnaryPostIncDec(UnaryOperator *UO) {
8123     Object O = getObject(UO->getSubExpr(), true);
8124     if (!O)
8125       return VisitExpr(UO);
8126 
8127     notePreMod(O, UO);
8128     Visit(UO->getSubExpr());
8129     notePostMod(O, UO, UK_ModAsSideEffect);
8130   }
8131 
8132   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
8133   void VisitBinLOr(BinaryOperator *BO) {
8134     // The side-effects of the LHS of an '&&' are sequenced before the
8135     // value computation of the RHS, and hence before the value computation
8136     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
8137     // as if they were unconditionally sequenced.
8138     EvaluationTracker Eval(*this);
8139     {
8140       SequencedSubexpression Sequenced(*this);
8141       Visit(BO->getLHS());
8142     }
8143 
8144     bool Result;
8145     if (Eval.evaluate(BO->getLHS(), Result)) {
8146       if (!Result)
8147         Visit(BO->getRHS());
8148     } else {
8149       // Check for unsequenced operations in the RHS, treating it as an
8150       // entirely separate evaluation.
8151       //
8152       // FIXME: If there are operations in the RHS which are unsequenced
8153       // with respect to operations outside the RHS, and those operations
8154       // are unconditionally evaluated, diagnose them.
8155       WorkList.push_back(BO->getRHS());
8156     }
8157   }
8158   void VisitBinLAnd(BinaryOperator *BO) {
8159     EvaluationTracker Eval(*this);
8160     {
8161       SequencedSubexpression Sequenced(*this);
8162       Visit(BO->getLHS());
8163     }
8164 
8165     bool Result;
8166     if (Eval.evaluate(BO->getLHS(), Result)) {
8167       if (Result)
8168         Visit(BO->getRHS());
8169     } else {
8170       WorkList.push_back(BO->getRHS());
8171     }
8172   }
8173 
8174   // Only visit the condition, unless we can be sure which subexpression will
8175   // be chosen.
8176   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
8177     EvaluationTracker Eval(*this);
8178     {
8179       SequencedSubexpression Sequenced(*this);
8180       Visit(CO->getCond());
8181     }
8182 
8183     bool Result;
8184     if (Eval.evaluate(CO->getCond(), Result))
8185       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
8186     else {
8187       WorkList.push_back(CO->getTrueExpr());
8188       WorkList.push_back(CO->getFalseExpr());
8189     }
8190   }
8191 
8192   void VisitCallExpr(CallExpr *CE) {
8193     // C++11 [intro.execution]p15:
8194     //   When calling a function [...], every value computation and side effect
8195     //   associated with any argument expression, or with the postfix expression
8196     //   designating the called function, is sequenced before execution of every
8197     //   expression or statement in the body of the function [and thus before
8198     //   the value computation of its result].
8199     SequencedSubexpression Sequenced(*this);
8200     Base::VisitCallExpr(CE);
8201 
8202     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
8203   }
8204 
8205   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
8206     // This is a call, so all subexpressions are sequenced before the result.
8207     SequencedSubexpression Sequenced(*this);
8208 
8209     if (!CCE->isListInitialization())
8210       return VisitExpr(CCE);
8211 
8212     // In C++11, list initializations are sequenced.
8213     SmallVector<SequenceTree::Seq, 32> Elts;
8214     SequenceTree::Seq Parent = Region;
8215     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
8216                                         E = CCE->arg_end();
8217          I != E; ++I) {
8218       Region = Tree.allocate(Parent);
8219       Elts.push_back(Region);
8220       Visit(*I);
8221     }
8222 
8223     // Forget that the initializers are sequenced.
8224     Region = Parent;
8225     for (unsigned I = 0; I < Elts.size(); ++I)
8226       Tree.merge(Elts[I]);
8227   }
8228 
8229   void VisitInitListExpr(InitListExpr *ILE) {
8230     if (!SemaRef.getLangOpts().CPlusPlus11)
8231       return VisitExpr(ILE);
8232 
8233     // In C++11, list initializations are sequenced.
8234     SmallVector<SequenceTree::Seq, 32> Elts;
8235     SequenceTree::Seq Parent = Region;
8236     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
8237       Expr *E = ILE->getInit(I);
8238       if (!E) continue;
8239       Region = Tree.allocate(Parent);
8240       Elts.push_back(Region);
8241       Visit(E);
8242     }
8243 
8244     // Forget that the initializers are sequenced.
8245     Region = Parent;
8246     for (unsigned I = 0; I < Elts.size(); ++I)
8247       Tree.merge(Elts[I]);
8248   }
8249 };
8250 }
8251 
8252 void Sema::CheckUnsequencedOperations(Expr *E) {
8253   SmallVector<Expr *, 8> WorkList;
8254   WorkList.push_back(E);
8255   while (!WorkList.empty()) {
8256     Expr *Item = WorkList.pop_back_val();
8257     SequenceChecker(*this, Item, WorkList);
8258   }
8259 }
8260 
8261 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
8262                               bool IsConstexpr) {
8263   CheckImplicitConversions(E, CheckLoc);
8264   CheckUnsequencedOperations(E);
8265   if (!IsConstexpr && !E->isValueDependent())
8266     CheckForIntOverflow(E);
8267 }
8268 
8269 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
8270                                        FieldDecl *BitField,
8271                                        Expr *Init) {
8272   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
8273 }
8274 
8275 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
8276                                          SourceLocation Loc) {
8277   if (!PType->isVariablyModifiedType())
8278     return;
8279   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
8280     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
8281     return;
8282   }
8283   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
8284     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
8285     return;
8286   }
8287   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
8288     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
8289     return;
8290   }
8291 
8292   const ArrayType *AT = S.Context.getAsArrayType(PType);
8293   if (!AT)
8294     return;
8295 
8296   if (AT->getSizeModifier() != ArrayType::Star) {
8297     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
8298     return;
8299   }
8300 
8301   S.Diag(Loc, diag::err_array_star_in_function_definition);
8302 }
8303 
8304 /// CheckParmsForFunctionDef - Check that the parameters of the given
8305 /// function are appropriate for the definition of a function. This
8306 /// takes care of any checks that cannot be performed on the
8307 /// declaration itself, e.g., that the types of each of the function
8308 /// parameters are complete.
8309 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
8310                                     ParmVarDecl *const *PEnd,
8311                                     bool CheckParameterNames) {
8312   bool HasInvalidParm = false;
8313   for (; P != PEnd; ++P) {
8314     ParmVarDecl *Param = *P;
8315 
8316     // C99 6.7.5.3p4: the parameters in a parameter type list in a
8317     // function declarator that is part of a function definition of
8318     // that function shall not have incomplete type.
8319     //
8320     // This is also C++ [dcl.fct]p6.
8321     if (!Param->isInvalidDecl() &&
8322         RequireCompleteType(Param->getLocation(), Param->getType(),
8323                             diag::err_typecheck_decl_incomplete_type)) {
8324       Param->setInvalidDecl();
8325       HasInvalidParm = true;
8326     }
8327 
8328     // C99 6.9.1p5: If the declarator includes a parameter type list, the
8329     // declaration of each parameter shall include an identifier.
8330     if (CheckParameterNames &&
8331         Param->getIdentifier() == nullptr &&
8332         !Param->isImplicit() &&
8333         !getLangOpts().CPlusPlus)
8334       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8335 
8336     // C99 6.7.5.3p12:
8337     //   If the function declarator is not part of a definition of that
8338     //   function, parameters may have incomplete type and may use the [*]
8339     //   notation in their sequences of declarator specifiers to specify
8340     //   variable length array types.
8341     QualType PType = Param->getOriginalType();
8342     // FIXME: This diagnostic should point the '[*]' if source-location
8343     // information is added for it.
8344     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
8345 
8346     // MSVC destroys objects passed by value in the callee.  Therefore a
8347     // function definition which takes such a parameter must be able to call the
8348     // object's destructor.  However, we don't perform any direct access check
8349     // on the dtor.
8350     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
8351                                        .getCXXABI()
8352                                        .areArgsDestroyedLeftToRightInCallee()) {
8353       if (!Param->isInvalidDecl()) {
8354         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
8355           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
8356           if (!ClassDecl->isInvalidDecl() &&
8357               !ClassDecl->hasIrrelevantDestructor() &&
8358               !ClassDecl->isDependentContext()) {
8359             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8360             MarkFunctionReferenced(Param->getLocation(), Destructor);
8361             DiagnoseUseOfDecl(Destructor, Param->getLocation());
8362           }
8363         }
8364       }
8365     }
8366   }
8367 
8368   return HasInvalidParm;
8369 }
8370 
8371 /// CheckCastAlign - Implements -Wcast-align, which warns when a
8372 /// pointer cast increases the alignment requirements.
8373 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
8374   // This is actually a lot of work to potentially be doing on every
8375   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
8376   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
8377     return;
8378 
8379   // Ignore dependent types.
8380   if (T->isDependentType() || Op->getType()->isDependentType())
8381     return;
8382 
8383   // Require that the destination be a pointer type.
8384   const PointerType *DestPtr = T->getAs<PointerType>();
8385   if (!DestPtr) return;
8386 
8387   // If the destination has alignment 1, we're done.
8388   QualType DestPointee = DestPtr->getPointeeType();
8389   if (DestPointee->isIncompleteType()) return;
8390   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
8391   if (DestAlign.isOne()) return;
8392 
8393   // Require that the source be a pointer type.
8394   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
8395   if (!SrcPtr) return;
8396   QualType SrcPointee = SrcPtr->getPointeeType();
8397 
8398   // Whitelist casts from cv void*.  We already implicitly
8399   // whitelisted casts to cv void*, since they have alignment 1.
8400   // Also whitelist casts involving incomplete types, which implicitly
8401   // includes 'void'.
8402   if (SrcPointee->isIncompleteType()) return;
8403 
8404   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
8405   if (SrcAlign >= DestAlign) return;
8406 
8407   Diag(TRange.getBegin(), diag::warn_cast_align)
8408     << Op->getType() << T
8409     << static_cast<unsigned>(SrcAlign.getQuantity())
8410     << static_cast<unsigned>(DestAlign.getQuantity())
8411     << TRange << Op->getSourceRange();
8412 }
8413 
8414 static const Type* getElementType(const Expr *BaseExpr) {
8415   const Type* EltType = BaseExpr->getType().getTypePtr();
8416   if (EltType->isAnyPointerType())
8417     return EltType->getPointeeType().getTypePtr();
8418   else if (EltType->isArrayType())
8419     return EltType->getBaseElementTypeUnsafe();
8420   return EltType;
8421 }
8422 
8423 /// \brief Check whether this array fits the idiom of a size-one tail padded
8424 /// array member of a struct.
8425 ///
8426 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
8427 /// commonly used to emulate flexible arrays in C89 code.
8428 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
8429                                     const NamedDecl *ND) {
8430   if (Size != 1 || !ND) return false;
8431 
8432   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
8433   if (!FD) return false;
8434 
8435   // Don't consider sizes resulting from macro expansions or template argument
8436   // substitution to form C89 tail-padded arrays.
8437 
8438   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
8439   while (TInfo) {
8440     TypeLoc TL = TInfo->getTypeLoc();
8441     // Look through typedefs.
8442     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
8443       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
8444       TInfo = TDL->getTypeSourceInfo();
8445       continue;
8446     }
8447     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
8448       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
8449       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
8450         return false;
8451     }
8452     break;
8453   }
8454 
8455   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
8456   if (!RD) return false;
8457   if (RD->isUnion()) return false;
8458   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8459     if (!CRD->isStandardLayout()) return false;
8460   }
8461 
8462   // See if this is the last field decl in the record.
8463   const Decl *D = FD;
8464   while ((D = D->getNextDeclInContext()))
8465     if (isa<FieldDecl>(D))
8466       return false;
8467   return true;
8468 }
8469 
8470 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
8471                             const ArraySubscriptExpr *ASE,
8472                             bool AllowOnePastEnd, bool IndexNegated) {
8473   IndexExpr = IndexExpr->IgnoreParenImpCasts();
8474   if (IndexExpr->isValueDependent())
8475     return;
8476 
8477   const Type *EffectiveType = getElementType(BaseExpr);
8478   BaseExpr = BaseExpr->IgnoreParenCasts();
8479   const ConstantArrayType *ArrayTy =
8480     Context.getAsConstantArrayType(BaseExpr->getType());
8481   if (!ArrayTy)
8482     return;
8483 
8484   llvm::APSInt index;
8485   if (!IndexExpr->EvaluateAsInt(index, Context))
8486     return;
8487   if (IndexNegated)
8488     index = -index;
8489 
8490   const NamedDecl *ND = nullptr;
8491   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
8492     ND = dyn_cast<NamedDecl>(DRE->getDecl());
8493   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
8494     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
8495 
8496   if (index.isUnsigned() || !index.isNegative()) {
8497     llvm::APInt size = ArrayTy->getSize();
8498     if (!size.isStrictlyPositive())
8499       return;
8500 
8501     const Type* BaseType = getElementType(BaseExpr);
8502     if (BaseType != EffectiveType) {
8503       // Make sure we're comparing apples to apples when comparing index to size
8504       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
8505       uint64_t array_typesize = Context.getTypeSize(BaseType);
8506       // Handle ptrarith_typesize being zero, such as when casting to void*
8507       if (!ptrarith_typesize) ptrarith_typesize = 1;
8508       if (ptrarith_typesize != array_typesize) {
8509         // There's a cast to a different size type involved
8510         uint64_t ratio = array_typesize / ptrarith_typesize;
8511         // TODO: Be smarter about handling cases where array_typesize is not a
8512         // multiple of ptrarith_typesize
8513         if (ptrarith_typesize * ratio == array_typesize)
8514           size *= llvm::APInt(size.getBitWidth(), ratio);
8515       }
8516     }
8517 
8518     if (size.getBitWidth() > index.getBitWidth())
8519       index = index.zext(size.getBitWidth());
8520     else if (size.getBitWidth() < index.getBitWidth())
8521       size = size.zext(index.getBitWidth());
8522 
8523     // For array subscripting the index must be less than size, but for pointer
8524     // arithmetic also allow the index (offset) to be equal to size since
8525     // computing the next address after the end of the array is legal and
8526     // commonly done e.g. in C++ iterators and range-based for loops.
8527     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
8528       return;
8529 
8530     // Also don't warn for arrays of size 1 which are members of some
8531     // structure. These are often used to approximate flexible arrays in C89
8532     // code.
8533     if (IsTailPaddedMemberArray(*this, size, ND))
8534       return;
8535 
8536     // Suppress the warning if the subscript expression (as identified by the
8537     // ']' location) and the index expression are both from macro expansions
8538     // within a system header.
8539     if (ASE) {
8540       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
8541           ASE->getRBracketLoc());
8542       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
8543         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
8544             IndexExpr->getLocStart());
8545         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
8546           return;
8547       }
8548     }
8549 
8550     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
8551     if (ASE)
8552       DiagID = diag::warn_array_index_exceeds_bounds;
8553 
8554     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8555                         PDiag(DiagID) << index.toString(10, true)
8556                           << size.toString(10, true)
8557                           << (unsigned)size.getLimitedValue(~0U)
8558                           << IndexExpr->getSourceRange());
8559   } else {
8560     unsigned DiagID = diag::warn_array_index_precedes_bounds;
8561     if (!ASE) {
8562       DiagID = diag::warn_ptr_arith_precedes_bounds;
8563       if (index.isNegative()) index = -index;
8564     }
8565 
8566     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8567                         PDiag(DiagID) << index.toString(10, true)
8568                           << IndexExpr->getSourceRange());
8569   }
8570 
8571   if (!ND) {
8572     // Try harder to find a NamedDecl to point at in the note.
8573     while (const ArraySubscriptExpr *ASE =
8574            dyn_cast<ArraySubscriptExpr>(BaseExpr))
8575       BaseExpr = ASE->getBase()->IgnoreParenCasts();
8576     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
8577       ND = dyn_cast<NamedDecl>(DRE->getDecl());
8578     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
8579       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
8580   }
8581 
8582   if (ND)
8583     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
8584                         PDiag(diag::note_array_index_out_of_bounds)
8585                           << ND->getDeclName());
8586 }
8587 
8588 void Sema::CheckArrayAccess(const Expr *expr) {
8589   int AllowOnePastEnd = 0;
8590   while (expr) {
8591     expr = expr->IgnoreParenImpCasts();
8592     switch (expr->getStmtClass()) {
8593       case Stmt::ArraySubscriptExprClass: {
8594         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
8595         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
8596                          AllowOnePastEnd > 0);
8597         return;
8598       }
8599       case Stmt::OMPArraySectionExprClass: {
8600         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
8601         if (ASE->getLowerBound())
8602           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
8603                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
8604         return;
8605       }
8606       case Stmt::UnaryOperatorClass: {
8607         // Only unwrap the * and & unary operators
8608         const UnaryOperator *UO = cast<UnaryOperator>(expr);
8609         expr = UO->getSubExpr();
8610         switch (UO->getOpcode()) {
8611           case UO_AddrOf:
8612             AllowOnePastEnd++;
8613             break;
8614           case UO_Deref:
8615             AllowOnePastEnd--;
8616             break;
8617           default:
8618             return;
8619         }
8620         break;
8621       }
8622       case Stmt::ConditionalOperatorClass: {
8623         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
8624         if (const Expr *lhs = cond->getLHS())
8625           CheckArrayAccess(lhs);
8626         if (const Expr *rhs = cond->getRHS())
8627           CheckArrayAccess(rhs);
8628         return;
8629       }
8630       default:
8631         return;
8632     }
8633   }
8634 }
8635 
8636 //===--- CHECK: Objective-C retain cycles ----------------------------------//
8637 
8638 namespace {
8639   struct RetainCycleOwner {
8640     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
8641     VarDecl *Variable;
8642     SourceRange Range;
8643     SourceLocation Loc;
8644     bool Indirect;
8645 
8646     void setLocsFrom(Expr *e) {
8647       Loc = e->getExprLoc();
8648       Range = e->getSourceRange();
8649     }
8650   };
8651 }
8652 
8653 /// Consider whether capturing the given variable can possibly lead to
8654 /// a retain cycle.
8655 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
8656   // In ARC, it's captured strongly iff the variable has __strong
8657   // lifetime.  In MRR, it's captured strongly if the variable is
8658   // __block and has an appropriate type.
8659   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8660     return false;
8661 
8662   owner.Variable = var;
8663   if (ref)
8664     owner.setLocsFrom(ref);
8665   return true;
8666 }
8667 
8668 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
8669   while (true) {
8670     e = e->IgnoreParens();
8671     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
8672       switch (cast->getCastKind()) {
8673       case CK_BitCast:
8674       case CK_LValueBitCast:
8675       case CK_LValueToRValue:
8676       case CK_ARCReclaimReturnedObject:
8677         e = cast->getSubExpr();
8678         continue;
8679 
8680       default:
8681         return false;
8682       }
8683     }
8684 
8685     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
8686       ObjCIvarDecl *ivar = ref->getDecl();
8687       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8688         return false;
8689 
8690       // Try to find a retain cycle in the base.
8691       if (!findRetainCycleOwner(S, ref->getBase(), owner))
8692         return false;
8693 
8694       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
8695       owner.Indirect = true;
8696       return true;
8697     }
8698 
8699     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
8700       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
8701       if (!var) return false;
8702       return considerVariable(var, ref, owner);
8703     }
8704 
8705     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
8706       if (member->isArrow()) return false;
8707 
8708       // Don't count this as an indirect ownership.
8709       e = member->getBase();
8710       continue;
8711     }
8712 
8713     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
8714       // Only pay attention to pseudo-objects on property references.
8715       ObjCPropertyRefExpr *pre
8716         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
8717                                               ->IgnoreParens());
8718       if (!pre) return false;
8719       if (pre->isImplicitProperty()) return false;
8720       ObjCPropertyDecl *property = pre->getExplicitProperty();
8721       if (!property->isRetaining() &&
8722           !(property->getPropertyIvarDecl() &&
8723             property->getPropertyIvarDecl()->getType()
8724               .getObjCLifetime() == Qualifiers::OCL_Strong))
8725           return false;
8726 
8727       owner.Indirect = true;
8728       if (pre->isSuperReceiver()) {
8729         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
8730         if (!owner.Variable)
8731           return false;
8732         owner.Loc = pre->getLocation();
8733         owner.Range = pre->getSourceRange();
8734         return true;
8735       }
8736       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
8737                               ->getSourceExpr());
8738       continue;
8739     }
8740 
8741     // Array ivars?
8742 
8743     return false;
8744   }
8745 }
8746 
8747 namespace {
8748   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
8749     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
8750       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
8751         Context(Context), Variable(variable), Capturer(nullptr),
8752         VarWillBeReased(false) {}
8753     ASTContext &Context;
8754     VarDecl *Variable;
8755     Expr *Capturer;
8756     bool VarWillBeReased;
8757 
8758     void VisitDeclRefExpr(DeclRefExpr *ref) {
8759       if (ref->getDecl() == Variable && !Capturer)
8760         Capturer = ref;
8761     }
8762 
8763     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
8764       if (Capturer) return;
8765       Visit(ref->getBase());
8766       if (Capturer && ref->isFreeIvar())
8767         Capturer = ref;
8768     }
8769 
8770     void VisitBlockExpr(BlockExpr *block) {
8771       // Look inside nested blocks
8772       if (block->getBlockDecl()->capturesVariable(Variable))
8773         Visit(block->getBlockDecl()->getBody());
8774     }
8775 
8776     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
8777       if (Capturer) return;
8778       if (OVE->getSourceExpr())
8779         Visit(OVE->getSourceExpr());
8780     }
8781     void VisitBinaryOperator(BinaryOperator *BinOp) {
8782       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
8783         return;
8784       Expr *LHS = BinOp->getLHS();
8785       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
8786         if (DRE->getDecl() != Variable)
8787           return;
8788         if (Expr *RHS = BinOp->getRHS()) {
8789           RHS = RHS->IgnoreParenCasts();
8790           llvm::APSInt Value;
8791           VarWillBeReased =
8792             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
8793         }
8794       }
8795     }
8796   };
8797 }
8798 
8799 /// Check whether the given argument is a block which captures a
8800 /// variable.
8801 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
8802   assert(owner.Variable && owner.Loc.isValid());
8803 
8804   e = e->IgnoreParenCasts();
8805 
8806   // Look through [^{...} copy] and Block_copy(^{...}).
8807   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
8808     Selector Cmd = ME->getSelector();
8809     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
8810       e = ME->getInstanceReceiver();
8811       if (!e)
8812         return nullptr;
8813       e = e->IgnoreParenCasts();
8814     }
8815   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
8816     if (CE->getNumArgs() == 1) {
8817       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
8818       if (Fn) {
8819         const IdentifierInfo *FnI = Fn->getIdentifier();
8820         if (FnI && FnI->isStr("_Block_copy")) {
8821           e = CE->getArg(0)->IgnoreParenCasts();
8822         }
8823       }
8824     }
8825   }
8826 
8827   BlockExpr *block = dyn_cast<BlockExpr>(e);
8828   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
8829     return nullptr;
8830 
8831   FindCaptureVisitor visitor(S.Context, owner.Variable);
8832   visitor.Visit(block->getBlockDecl()->getBody());
8833   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
8834 }
8835 
8836 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
8837                                 RetainCycleOwner &owner) {
8838   assert(capturer);
8839   assert(owner.Variable && owner.Loc.isValid());
8840 
8841   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
8842     << owner.Variable << capturer->getSourceRange();
8843   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
8844     << owner.Indirect << owner.Range;
8845 }
8846 
8847 /// Check for a keyword selector that starts with the word 'add' or
8848 /// 'set'.
8849 static bool isSetterLikeSelector(Selector sel) {
8850   if (sel.isUnarySelector()) return false;
8851 
8852   StringRef str = sel.getNameForSlot(0);
8853   while (!str.empty() && str.front() == '_') str = str.substr(1);
8854   if (str.startswith("set"))
8855     str = str.substr(3);
8856   else if (str.startswith("add")) {
8857     // Specially whitelist 'addOperationWithBlock:'.
8858     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
8859       return false;
8860     str = str.substr(3);
8861   }
8862   else
8863     return false;
8864 
8865   if (str.empty()) return true;
8866   return !isLowercase(str.front());
8867 }
8868 
8869 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
8870                                                     ObjCMessageExpr *Message) {
8871   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
8872                                                 Message->getReceiverInterface(),
8873                                                 NSAPI::ClassId_NSMutableArray);
8874   if (!IsMutableArray) {
8875     return None;
8876   }
8877 
8878   Selector Sel = Message->getSelector();
8879 
8880   Optional<NSAPI::NSArrayMethodKind> MKOpt =
8881     S.NSAPIObj->getNSArrayMethodKind(Sel);
8882   if (!MKOpt) {
8883     return None;
8884   }
8885 
8886   NSAPI::NSArrayMethodKind MK = *MKOpt;
8887 
8888   switch (MK) {
8889     case NSAPI::NSMutableArr_addObject:
8890     case NSAPI::NSMutableArr_insertObjectAtIndex:
8891     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
8892       return 0;
8893     case NSAPI::NSMutableArr_replaceObjectAtIndex:
8894       return 1;
8895 
8896     default:
8897       return None;
8898   }
8899 
8900   return None;
8901 }
8902 
8903 static
8904 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
8905                                                   ObjCMessageExpr *Message) {
8906   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
8907                                             Message->getReceiverInterface(),
8908                                             NSAPI::ClassId_NSMutableDictionary);
8909   if (!IsMutableDictionary) {
8910     return None;
8911   }
8912 
8913   Selector Sel = Message->getSelector();
8914 
8915   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
8916     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
8917   if (!MKOpt) {
8918     return None;
8919   }
8920 
8921   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
8922 
8923   switch (MK) {
8924     case NSAPI::NSMutableDict_setObjectForKey:
8925     case NSAPI::NSMutableDict_setValueForKey:
8926     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
8927       return 0;
8928 
8929     default:
8930       return None;
8931   }
8932 
8933   return None;
8934 }
8935 
8936 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
8937   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
8938                                                 Message->getReceiverInterface(),
8939                                                 NSAPI::ClassId_NSMutableSet);
8940 
8941   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
8942                                             Message->getReceiverInterface(),
8943                                             NSAPI::ClassId_NSMutableOrderedSet);
8944   if (!IsMutableSet && !IsMutableOrderedSet) {
8945     return None;
8946   }
8947 
8948   Selector Sel = Message->getSelector();
8949 
8950   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
8951   if (!MKOpt) {
8952     return None;
8953   }
8954 
8955   NSAPI::NSSetMethodKind MK = *MKOpt;
8956 
8957   switch (MK) {
8958     case NSAPI::NSMutableSet_addObject:
8959     case NSAPI::NSOrderedSet_setObjectAtIndex:
8960     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
8961     case NSAPI::NSOrderedSet_insertObjectAtIndex:
8962       return 0;
8963     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
8964       return 1;
8965   }
8966 
8967   return None;
8968 }
8969 
8970 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
8971   if (!Message->isInstanceMessage()) {
8972     return;
8973   }
8974 
8975   Optional<int> ArgOpt;
8976 
8977   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
8978       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
8979       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
8980     return;
8981   }
8982 
8983   int ArgIndex = *ArgOpt;
8984 
8985   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
8986   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
8987     Arg = OE->getSourceExpr()->IgnoreImpCasts();
8988   }
8989 
8990   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
8991     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
8992       if (ArgRE->isObjCSelfExpr()) {
8993         Diag(Message->getSourceRange().getBegin(),
8994              diag::warn_objc_circular_container)
8995           << ArgRE->getDecl()->getName() << StringRef("super");
8996       }
8997     }
8998   } else {
8999     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
9000 
9001     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
9002       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
9003     }
9004 
9005     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
9006       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
9007         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
9008           ValueDecl *Decl = ReceiverRE->getDecl();
9009           Diag(Message->getSourceRange().getBegin(),
9010                diag::warn_objc_circular_container)
9011             << Decl->getName() << Decl->getName();
9012           if (!ArgRE->isObjCSelfExpr()) {
9013             Diag(Decl->getLocation(),
9014                  diag::note_objc_circular_container_declared_here)
9015               << Decl->getName();
9016           }
9017         }
9018       }
9019     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
9020       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
9021         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
9022           ObjCIvarDecl *Decl = IvarRE->getDecl();
9023           Diag(Message->getSourceRange().getBegin(),
9024                diag::warn_objc_circular_container)
9025             << Decl->getName() << Decl->getName();
9026           Diag(Decl->getLocation(),
9027                diag::note_objc_circular_container_declared_here)
9028             << Decl->getName();
9029         }
9030       }
9031     }
9032   }
9033 
9034 }
9035 
9036 /// Check a message send to see if it's likely to cause a retain cycle.
9037 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
9038   // Only check instance methods whose selector looks like a setter.
9039   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
9040     return;
9041 
9042   // Try to find a variable that the receiver is strongly owned by.
9043   RetainCycleOwner owner;
9044   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
9045     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
9046       return;
9047   } else {
9048     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
9049     owner.Variable = getCurMethodDecl()->getSelfDecl();
9050     owner.Loc = msg->getSuperLoc();
9051     owner.Range = msg->getSuperLoc();
9052   }
9053 
9054   // Check whether the receiver is captured by any of the arguments.
9055   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
9056     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
9057       return diagnoseRetainCycle(*this, capturer, owner);
9058 }
9059 
9060 /// Check a property assign to see if it's likely to cause a retain cycle.
9061 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
9062   RetainCycleOwner owner;
9063   if (!findRetainCycleOwner(*this, receiver, owner))
9064     return;
9065 
9066   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
9067     diagnoseRetainCycle(*this, capturer, owner);
9068 }
9069 
9070 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
9071   RetainCycleOwner Owner;
9072   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
9073     return;
9074 
9075   // Because we don't have an expression for the variable, we have to set the
9076   // location explicitly here.
9077   Owner.Loc = Var->getLocation();
9078   Owner.Range = Var->getSourceRange();
9079 
9080   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
9081     diagnoseRetainCycle(*this, Capturer, Owner);
9082 }
9083 
9084 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
9085                                      Expr *RHS, bool isProperty) {
9086   // Check if RHS is an Objective-C object literal, which also can get
9087   // immediately zapped in a weak reference.  Note that we explicitly
9088   // allow ObjCStringLiterals, since those are designed to never really die.
9089   RHS = RHS->IgnoreParenImpCasts();
9090 
9091   // This enum needs to match with the 'select' in
9092   // warn_objc_arc_literal_assign (off-by-1).
9093   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
9094   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
9095     return false;
9096 
9097   S.Diag(Loc, diag::warn_arc_literal_assign)
9098     << (unsigned) Kind
9099     << (isProperty ? 0 : 1)
9100     << RHS->getSourceRange();
9101 
9102   return true;
9103 }
9104 
9105 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
9106                                     Qualifiers::ObjCLifetime LT,
9107                                     Expr *RHS, bool isProperty) {
9108   // Strip off any implicit cast added to get to the one ARC-specific.
9109   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
9110     if (cast->getCastKind() == CK_ARCConsumeObject) {
9111       S.Diag(Loc, diag::warn_arc_retained_assign)
9112         << (LT == Qualifiers::OCL_ExplicitNone)
9113         << (isProperty ? 0 : 1)
9114         << RHS->getSourceRange();
9115       return true;
9116     }
9117     RHS = cast->getSubExpr();
9118   }
9119 
9120   if (LT == Qualifiers::OCL_Weak &&
9121       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
9122     return true;
9123 
9124   return false;
9125 }
9126 
9127 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
9128                               QualType LHS, Expr *RHS) {
9129   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
9130 
9131   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
9132     return false;
9133 
9134   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
9135     return true;
9136 
9137   return false;
9138 }
9139 
9140 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
9141                               Expr *LHS, Expr *RHS) {
9142   QualType LHSType;
9143   // PropertyRef on LHS type need be directly obtained from
9144   // its declaration as it has a PseudoType.
9145   ObjCPropertyRefExpr *PRE
9146     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
9147   if (PRE && !PRE->isImplicitProperty()) {
9148     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
9149     if (PD)
9150       LHSType = PD->getType();
9151   }
9152 
9153   if (LHSType.isNull())
9154     LHSType = LHS->getType();
9155 
9156   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
9157 
9158   if (LT == Qualifiers::OCL_Weak) {
9159     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
9160       getCurFunction()->markSafeWeakUse(LHS);
9161   }
9162 
9163   if (checkUnsafeAssigns(Loc, LHSType, RHS))
9164     return;
9165 
9166   // FIXME. Check for other life times.
9167   if (LT != Qualifiers::OCL_None)
9168     return;
9169 
9170   if (PRE) {
9171     if (PRE->isImplicitProperty())
9172       return;
9173     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
9174     if (!PD)
9175       return;
9176 
9177     unsigned Attributes = PD->getPropertyAttributes();
9178     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
9179       // when 'assign' attribute was not explicitly specified
9180       // by user, ignore it and rely on property type itself
9181       // for lifetime info.
9182       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
9183       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
9184           LHSType->isObjCRetainableType())
9185         return;
9186 
9187       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
9188         if (cast->getCastKind() == CK_ARCConsumeObject) {
9189           Diag(Loc, diag::warn_arc_retained_property_assign)
9190           << RHS->getSourceRange();
9191           return;
9192         }
9193         RHS = cast->getSubExpr();
9194       }
9195     }
9196     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
9197       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
9198         return;
9199     }
9200   }
9201 }
9202 
9203 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
9204 
9205 namespace {
9206 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
9207                                  SourceLocation StmtLoc,
9208                                  const NullStmt *Body) {
9209   // Do not warn if the body is a macro that expands to nothing, e.g:
9210   //
9211   // #define CALL(x)
9212   // if (condition)
9213   //   CALL(0);
9214   //
9215   if (Body->hasLeadingEmptyMacro())
9216     return false;
9217 
9218   // Get line numbers of statement and body.
9219   bool StmtLineInvalid;
9220   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
9221                                                       &StmtLineInvalid);
9222   if (StmtLineInvalid)
9223     return false;
9224 
9225   bool BodyLineInvalid;
9226   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
9227                                                       &BodyLineInvalid);
9228   if (BodyLineInvalid)
9229     return false;
9230 
9231   // Warn if null statement and body are on the same line.
9232   if (StmtLine != BodyLine)
9233     return false;
9234 
9235   return true;
9236 }
9237 } // Unnamed namespace
9238 
9239 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
9240                                  const Stmt *Body,
9241                                  unsigned DiagID) {
9242   // Since this is a syntactic check, don't emit diagnostic for template
9243   // instantiations, this just adds noise.
9244   if (CurrentInstantiationScope)
9245     return;
9246 
9247   // The body should be a null statement.
9248   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
9249   if (!NBody)
9250     return;
9251 
9252   // Do the usual checks.
9253   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
9254     return;
9255 
9256   Diag(NBody->getSemiLoc(), DiagID);
9257   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
9258 }
9259 
9260 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
9261                                  const Stmt *PossibleBody) {
9262   assert(!CurrentInstantiationScope); // Ensured by caller
9263 
9264   SourceLocation StmtLoc;
9265   const Stmt *Body;
9266   unsigned DiagID;
9267   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
9268     StmtLoc = FS->getRParenLoc();
9269     Body = FS->getBody();
9270     DiagID = diag::warn_empty_for_body;
9271   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
9272     StmtLoc = WS->getCond()->getSourceRange().getEnd();
9273     Body = WS->getBody();
9274     DiagID = diag::warn_empty_while_body;
9275   } else
9276     return; // Neither `for' nor `while'.
9277 
9278   // The body should be a null statement.
9279   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
9280   if (!NBody)
9281     return;
9282 
9283   // Skip expensive checks if diagnostic is disabled.
9284   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
9285     return;
9286 
9287   // Do the usual checks.
9288   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
9289     return;
9290 
9291   // `for(...);' and `while(...);' are popular idioms, so in order to keep
9292   // noise level low, emit diagnostics only if for/while is followed by a
9293   // CompoundStmt, e.g.:
9294   //    for (int i = 0; i < n; i++);
9295   //    {
9296   //      a(i);
9297   //    }
9298   // or if for/while is followed by a statement with more indentation
9299   // than for/while itself:
9300   //    for (int i = 0; i < n; i++);
9301   //      a(i);
9302   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
9303   if (!ProbableTypo) {
9304     bool BodyColInvalid;
9305     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
9306                              PossibleBody->getLocStart(),
9307                              &BodyColInvalid);
9308     if (BodyColInvalid)
9309       return;
9310 
9311     bool StmtColInvalid;
9312     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
9313                              S->getLocStart(),
9314                              &StmtColInvalid);
9315     if (StmtColInvalid)
9316       return;
9317 
9318     if (BodyCol > StmtCol)
9319       ProbableTypo = true;
9320   }
9321 
9322   if (ProbableTypo) {
9323     Diag(NBody->getSemiLoc(), DiagID);
9324     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
9325   }
9326 }
9327 
9328 //===--- CHECK: Warn on self move with std::move. -------------------------===//
9329 
9330 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
9331 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
9332                              SourceLocation OpLoc) {
9333 
9334   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
9335     return;
9336 
9337   if (!ActiveTemplateInstantiations.empty())
9338     return;
9339 
9340   // Strip parens and casts away.
9341   LHSExpr = LHSExpr->IgnoreParenImpCasts();
9342   RHSExpr = RHSExpr->IgnoreParenImpCasts();
9343 
9344   // Check for a call expression
9345   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
9346   if (!CE || CE->getNumArgs() != 1)
9347     return;
9348 
9349   // Check for a call to std::move
9350   const FunctionDecl *FD = CE->getDirectCallee();
9351   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
9352       !FD->getIdentifier()->isStr("move"))
9353     return;
9354 
9355   // Get argument from std::move
9356   RHSExpr = CE->getArg(0);
9357 
9358   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
9359   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
9360 
9361   // Two DeclRefExpr's, check that the decls are the same.
9362   if (LHSDeclRef && RHSDeclRef) {
9363     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
9364       return;
9365     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
9366         RHSDeclRef->getDecl()->getCanonicalDecl())
9367       return;
9368 
9369     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9370                                         << LHSExpr->getSourceRange()
9371                                         << RHSExpr->getSourceRange();
9372     return;
9373   }
9374 
9375   // Member variables require a different approach to check for self moves.
9376   // MemberExpr's are the same if every nested MemberExpr refers to the same
9377   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
9378   // the base Expr's are CXXThisExpr's.
9379   const Expr *LHSBase = LHSExpr;
9380   const Expr *RHSBase = RHSExpr;
9381   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
9382   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
9383   if (!LHSME || !RHSME)
9384     return;
9385 
9386   while (LHSME && RHSME) {
9387     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
9388         RHSME->getMemberDecl()->getCanonicalDecl())
9389       return;
9390 
9391     LHSBase = LHSME->getBase();
9392     RHSBase = RHSME->getBase();
9393     LHSME = dyn_cast<MemberExpr>(LHSBase);
9394     RHSME = dyn_cast<MemberExpr>(RHSBase);
9395   }
9396 
9397   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
9398   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
9399   if (LHSDeclRef && RHSDeclRef) {
9400     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
9401       return;
9402     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
9403         RHSDeclRef->getDecl()->getCanonicalDecl())
9404       return;
9405 
9406     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9407                                         << LHSExpr->getSourceRange()
9408                                         << RHSExpr->getSourceRange();
9409     return;
9410   }
9411 
9412   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
9413     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9414                                         << LHSExpr->getSourceRange()
9415                                         << RHSExpr->getSourceRange();
9416 }
9417 
9418 //===--- Layout compatibility ----------------------------------------------//
9419 
9420 namespace {
9421 
9422 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
9423 
9424 /// \brief Check if two enumeration types are layout-compatible.
9425 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
9426   // C++11 [dcl.enum] p8:
9427   // Two enumeration types are layout-compatible if they have the same
9428   // underlying type.
9429   return ED1->isComplete() && ED2->isComplete() &&
9430          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
9431 }
9432 
9433 /// \brief Check if two fields are layout-compatible.
9434 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
9435   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
9436     return false;
9437 
9438   if (Field1->isBitField() != Field2->isBitField())
9439     return false;
9440 
9441   if (Field1->isBitField()) {
9442     // Make sure that the bit-fields are the same length.
9443     unsigned Bits1 = Field1->getBitWidthValue(C);
9444     unsigned Bits2 = Field2->getBitWidthValue(C);
9445 
9446     if (Bits1 != Bits2)
9447       return false;
9448   }
9449 
9450   return true;
9451 }
9452 
9453 /// \brief Check if two standard-layout structs are layout-compatible.
9454 /// (C++11 [class.mem] p17)
9455 bool isLayoutCompatibleStruct(ASTContext &C,
9456                               RecordDecl *RD1,
9457                               RecordDecl *RD2) {
9458   // If both records are C++ classes, check that base classes match.
9459   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
9460     // If one of records is a CXXRecordDecl we are in C++ mode,
9461     // thus the other one is a CXXRecordDecl, too.
9462     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
9463     // Check number of base classes.
9464     if (D1CXX->getNumBases() != D2CXX->getNumBases())
9465       return false;
9466 
9467     // Check the base classes.
9468     for (CXXRecordDecl::base_class_const_iterator
9469                Base1 = D1CXX->bases_begin(),
9470            BaseEnd1 = D1CXX->bases_end(),
9471               Base2 = D2CXX->bases_begin();
9472          Base1 != BaseEnd1;
9473          ++Base1, ++Base2) {
9474       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
9475         return false;
9476     }
9477   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
9478     // If only RD2 is a C++ class, it should have zero base classes.
9479     if (D2CXX->getNumBases() > 0)
9480       return false;
9481   }
9482 
9483   // Check the fields.
9484   RecordDecl::field_iterator Field2 = RD2->field_begin(),
9485                              Field2End = RD2->field_end(),
9486                              Field1 = RD1->field_begin(),
9487                              Field1End = RD1->field_end();
9488   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
9489     if (!isLayoutCompatible(C, *Field1, *Field2))
9490       return false;
9491   }
9492   if (Field1 != Field1End || Field2 != Field2End)
9493     return false;
9494 
9495   return true;
9496 }
9497 
9498 /// \brief Check if two standard-layout unions are layout-compatible.
9499 /// (C++11 [class.mem] p18)
9500 bool isLayoutCompatibleUnion(ASTContext &C,
9501                              RecordDecl *RD1,
9502                              RecordDecl *RD2) {
9503   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
9504   for (auto *Field2 : RD2->fields())
9505     UnmatchedFields.insert(Field2);
9506 
9507   for (auto *Field1 : RD1->fields()) {
9508     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
9509         I = UnmatchedFields.begin(),
9510         E = UnmatchedFields.end();
9511 
9512     for ( ; I != E; ++I) {
9513       if (isLayoutCompatible(C, Field1, *I)) {
9514         bool Result = UnmatchedFields.erase(*I);
9515         (void) Result;
9516         assert(Result);
9517         break;
9518       }
9519     }
9520     if (I == E)
9521       return false;
9522   }
9523 
9524   return UnmatchedFields.empty();
9525 }
9526 
9527 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
9528   if (RD1->isUnion() != RD2->isUnion())
9529     return false;
9530 
9531   if (RD1->isUnion())
9532     return isLayoutCompatibleUnion(C, RD1, RD2);
9533   else
9534     return isLayoutCompatibleStruct(C, RD1, RD2);
9535 }
9536 
9537 /// \brief Check if two types are layout-compatible in C++11 sense.
9538 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
9539   if (T1.isNull() || T2.isNull())
9540     return false;
9541 
9542   // C++11 [basic.types] p11:
9543   // If two types T1 and T2 are the same type, then T1 and T2 are
9544   // layout-compatible types.
9545   if (C.hasSameType(T1, T2))
9546     return true;
9547 
9548   T1 = T1.getCanonicalType().getUnqualifiedType();
9549   T2 = T2.getCanonicalType().getUnqualifiedType();
9550 
9551   const Type::TypeClass TC1 = T1->getTypeClass();
9552   const Type::TypeClass TC2 = T2->getTypeClass();
9553 
9554   if (TC1 != TC2)
9555     return false;
9556 
9557   if (TC1 == Type::Enum) {
9558     return isLayoutCompatible(C,
9559                               cast<EnumType>(T1)->getDecl(),
9560                               cast<EnumType>(T2)->getDecl());
9561   } else if (TC1 == Type::Record) {
9562     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
9563       return false;
9564 
9565     return isLayoutCompatible(C,
9566                               cast<RecordType>(T1)->getDecl(),
9567                               cast<RecordType>(T2)->getDecl());
9568   }
9569 
9570   return false;
9571 }
9572 }
9573 
9574 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
9575 
9576 namespace {
9577 /// \brief Given a type tag expression find the type tag itself.
9578 ///
9579 /// \param TypeExpr Type tag expression, as it appears in user's code.
9580 ///
9581 /// \param VD Declaration of an identifier that appears in a type tag.
9582 ///
9583 /// \param MagicValue Type tag magic value.
9584 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
9585                      const ValueDecl **VD, uint64_t *MagicValue) {
9586   while(true) {
9587     if (!TypeExpr)
9588       return false;
9589 
9590     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
9591 
9592     switch (TypeExpr->getStmtClass()) {
9593     case Stmt::UnaryOperatorClass: {
9594       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
9595       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
9596         TypeExpr = UO->getSubExpr();
9597         continue;
9598       }
9599       return false;
9600     }
9601 
9602     case Stmt::DeclRefExprClass: {
9603       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
9604       *VD = DRE->getDecl();
9605       return true;
9606     }
9607 
9608     case Stmt::IntegerLiteralClass: {
9609       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
9610       llvm::APInt MagicValueAPInt = IL->getValue();
9611       if (MagicValueAPInt.getActiveBits() <= 64) {
9612         *MagicValue = MagicValueAPInt.getZExtValue();
9613         return true;
9614       } else
9615         return false;
9616     }
9617 
9618     case Stmt::BinaryConditionalOperatorClass:
9619     case Stmt::ConditionalOperatorClass: {
9620       const AbstractConditionalOperator *ACO =
9621           cast<AbstractConditionalOperator>(TypeExpr);
9622       bool Result;
9623       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
9624         if (Result)
9625           TypeExpr = ACO->getTrueExpr();
9626         else
9627           TypeExpr = ACO->getFalseExpr();
9628         continue;
9629       }
9630       return false;
9631     }
9632 
9633     case Stmt::BinaryOperatorClass: {
9634       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
9635       if (BO->getOpcode() == BO_Comma) {
9636         TypeExpr = BO->getRHS();
9637         continue;
9638       }
9639       return false;
9640     }
9641 
9642     default:
9643       return false;
9644     }
9645   }
9646 }
9647 
9648 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
9649 ///
9650 /// \param TypeExpr Expression that specifies a type tag.
9651 ///
9652 /// \param MagicValues Registered magic values.
9653 ///
9654 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
9655 ///        kind.
9656 ///
9657 /// \param TypeInfo Information about the corresponding C type.
9658 ///
9659 /// \returns true if the corresponding C type was found.
9660 bool GetMatchingCType(
9661         const IdentifierInfo *ArgumentKind,
9662         const Expr *TypeExpr, const ASTContext &Ctx,
9663         const llvm::DenseMap<Sema::TypeTagMagicValue,
9664                              Sema::TypeTagData> *MagicValues,
9665         bool &FoundWrongKind,
9666         Sema::TypeTagData &TypeInfo) {
9667   FoundWrongKind = false;
9668 
9669   // Variable declaration that has type_tag_for_datatype attribute.
9670   const ValueDecl *VD = nullptr;
9671 
9672   uint64_t MagicValue;
9673 
9674   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
9675     return false;
9676 
9677   if (VD) {
9678     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
9679       if (I->getArgumentKind() != ArgumentKind) {
9680         FoundWrongKind = true;
9681         return false;
9682       }
9683       TypeInfo.Type = I->getMatchingCType();
9684       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
9685       TypeInfo.MustBeNull = I->getMustBeNull();
9686       return true;
9687     }
9688     return false;
9689   }
9690 
9691   if (!MagicValues)
9692     return false;
9693 
9694   llvm::DenseMap<Sema::TypeTagMagicValue,
9695                  Sema::TypeTagData>::const_iterator I =
9696       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
9697   if (I == MagicValues->end())
9698     return false;
9699 
9700   TypeInfo = I->second;
9701   return true;
9702 }
9703 } // unnamed namespace
9704 
9705 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
9706                                       uint64_t MagicValue, QualType Type,
9707                                       bool LayoutCompatible,
9708                                       bool MustBeNull) {
9709   if (!TypeTagForDatatypeMagicValues)
9710     TypeTagForDatatypeMagicValues.reset(
9711         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
9712 
9713   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
9714   (*TypeTagForDatatypeMagicValues)[Magic] =
9715       TypeTagData(Type, LayoutCompatible, MustBeNull);
9716 }
9717 
9718 namespace {
9719 bool IsSameCharType(QualType T1, QualType T2) {
9720   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
9721   if (!BT1)
9722     return false;
9723 
9724   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
9725   if (!BT2)
9726     return false;
9727 
9728   BuiltinType::Kind T1Kind = BT1->getKind();
9729   BuiltinType::Kind T2Kind = BT2->getKind();
9730 
9731   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
9732          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
9733          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
9734          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
9735 }
9736 } // unnamed namespace
9737 
9738 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
9739                                     const Expr * const *ExprArgs) {
9740   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
9741   bool IsPointerAttr = Attr->getIsPointer();
9742 
9743   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
9744   bool FoundWrongKind;
9745   TypeTagData TypeInfo;
9746   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
9747                         TypeTagForDatatypeMagicValues.get(),
9748                         FoundWrongKind, TypeInfo)) {
9749     if (FoundWrongKind)
9750       Diag(TypeTagExpr->getExprLoc(),
9751            diag::warn_type_tag_for_datatype_wrong_kind)
9752         << TypeTagExpr->getSourceRange();
9753     return;
9754   }
9755 
9756   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
9757   if (IsPointerAttr) {
9758     // Skip implicit cast of pointer to `void *' (as a function argument).
9759     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
9760       if (ICE->getType()->isVoidPointerType() &&
9761           ICE->getCastKind() == CK_BitCast)
9762         ArgumentExpr = ICE->getSubExpr();
9763   }
9764   QualType ArgumentType = ArgumentExpr->getType();
9765 
9766   // Passing a `void*' pointer shouldn't trigger a warning.
9767   if (IsPointerAttr && ArgumentType->isVoidPointerType())
9768     return;
9769 
9770   if (TypeInfo.MustBeNull) {
9771     // Type tag with matching void type requires a null pointer.
9772     if (!ArgumentExpr->isNullPointerConstant(Context,
9773                                              Expr::NPC_ValueDependentIsNotNull)) {
9774       Diag(ArgumentExpr->getExprLoc(),
9775            diag::warn_type_safety_null_pointer_required)
9776           << ArgumentKind->getName()
9777           << ArgumentExpr->getSourceRange()
9778           << TypeTagExpr->getSourceRange();
9779     }
9780     return;
9781   }
9782 
9783   QualType RequiredType = TypeInfo.Type;
9784   if (IsPointerAttr)
9785     RequiredType = Context.getPointerType(RequiredType);
9786 
9787   bool mismatch = false;
9788   if (!TypeInfo.LayoutCompatible) {
9789     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
9790 
9791     // C++11 [basic.fundamental] p1:
9792     // Plain char, signed char, and unsigned char are three distinct types.
9793     //
9794     // But we treat plain `char' as equivalent to `signed char' or `unsigned
9795     // char' depending on the current char signedness mode.
9796     if (mismatch)
9797       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
9798                                            RequiredType->getPointeeType())) ||
9799           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
9800         mismatch = false;
9801   } else
9802     if (IsPointerAttr)
9803       mismatch = !isLayoutCompatible(Context,
9804                                      ArgumentType->getPointeeType(),
9805                                      RequiredType->getPointeeType());
9806     else
9807       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
9808 
9809   if (mismatch)
9810     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
9811         << ArgumentType << ArgumentKind
9812         << TypeInfo.LayoutCompatible << RequiredType
9813         << ArgumentExpr->getSourceRange()
9814         << TypeTagExpr->getSourceRange();
9815 }
9816 
9817