1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 /// Checks that a call expression's argument count is the desired number.
113 /// This is useful when doing custom type-checking.  Returns true on error.
114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115   unsigned argCount = call->getNumArgs();
116   if (argCount == desiredArgCount) return false;
117 
118   if (argCount < desiredArgCount)
119     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120            << 0 /*function call*/ << desiredArgCount << argCount
121            << call->getSourceRange();
122 
123   // Highlight all the excess arguments.
124   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125                     call->getArg(argCount - 1)->getEndLoc());
126 
127   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128     << 0 /*function call*/ << desiredArgCount << argCount
129     << call->getArg(1)->getSourceRange();
130 }
131 
132 /// Check that the first argument to __builtin_annotation is an integer
133 /// and the second argument is a non-wide string literal.
134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135   if (checkArgCount(S, TheCall, 2))
136     return true;
137 
138   // First argument should be an integer.
139   Expr *ValArg = TheCall->getArg(0);
140   QualType Ty = ValArg->getType();
141   if (!Ty->isIntegerType()) {
142     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143         << ValArg->getSourceRange();
144     return true;
145   }
146 
147   // Second argument should be a constant string.
148   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150   if (!Literal || !Literal->isAscii()) {
151     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152         << StrArg->getSourceRange();
153     return true;
154   }
155 
156   TheCall->setType(Ty);
157   return false;
158 }
159 
160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161   // We need at least one argument.
162   if (TheCall->getNumArgs() < 1) {
163     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164         << 0 << 1 << TheCall->getNumArgs()
165         << TheCall->getCallee()->getSourceRange();
166     return true;
167   }
168 
169   // All arguments should be wide string literals.
170   for (Expr *Arg : TheCall->arguments()) {
171     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172     if (!Literal || !Literal->isWide()) {
173       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174           << Arg->getSourceRange();
175       return true;
176     }
177   }
178 
179   return false;
180 }
181 
182 /// Check that the argument to __builtin_addressof is a glvalue, and set the
183 /// result type to the corresponding pointer type.
184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185   if (checkArgCount(S, TheCall, 1))
186     return true;
187 
188   ExprResult Arg(TheCall->getArg(0));
189   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190   if (ResultType.isNull())
191     return true;
192 
193   TheCall->setArg(0, Arg.get());
194   TheCall->setType(ResultType);
195   return false;
196 }
197 
198 /// Check that the argument to __builtin_function_start is a function.
199 static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
200   if (checkArgCount(S, TheCall, 1))
201     return true;
202 
203   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
204   if (Arg.isInvalid())
205     return true;
206 
207   TheCall->setArg(0, Arg.get());
208   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
209       Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
210 
211   if (!FD) {
212     S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
213         << TheCall->getSourceRange();
214     return true;
215   }
216 
217   return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
218                                               TheCall->getBeginLoc());
219 }
220 
221 /// Check the number of arguments and set the result type to
222 /// the argument type.
223 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
224   if (checkArgCount(S, TheCall, 1))
225     return true;
226 
227   TheCall->setType(TheCall->getArg(0)->getType());
228   return false;
229 }
230 
231 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
232 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
233 /// type (but not a function pointer) and that the alignment is a power-of-two.
234 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
235   if (checkArgCount(S, TheCall, 2))
236     return true;
237 
238   clang::Expr *Source = TheCall->getArg(0);
239   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
240 
241   auto IsValidIntegerType = [](QualType Ty) {
242     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
243   };
244   QualType SrcTy = Source->getType();
245   // We should also be able to use it with arrays (but not functions!).
246   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
247     SrcTy = S.Context.getDecayedType(SrcTy);
248   }
249   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
250       SrcTy->isFunctionPointerType()) {
251     // FIXME: this is not quite the right error message since we don't allow
252     // floating point types, or member pointers.
253     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
254         << SrcTy;
255     return true;
256   }
257 
258   clang::Expr *AlignOp = TheCall->getArg(1);
259   if (!IsValidIntegerType(AlignOp->getType())) {
260     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
261         << AlignOp->getType();
262     return true;
263   }
264   Expr::EvalResult AlignResult;
265   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
266   // We can't check validity of alignment if it is value dependent.
267   if (!AlignOp->isValueDependent() &&
268       AlignOp->EvaluateAsInt(AlignResult, S.Context,
269                              Expr::SE_AllowSideEffects)) {
270     llvm::APSInt AlignValue = AlignResult.Val.getInt();
271     llvm::APSInt MaxValue(
272         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
273     if (AlignValue < 1) {
274       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
275       return true;
276     }
277     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
278       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
279           << toString(MaxValue, 10);
280       return true;
281     }
282     if (!AlignValue.isPowerOf2()) {
283       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
284       return true;
285     }
286     if (AlignValue == 1) {
287       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
288           << IsBooleanAlignBuiltin;
289     }
290   }
291 
292   ExprResult SrcArg = S.PerformCopyInitialization(
293       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
294       SourceLocation(), Source);
295   if (SrcArg.isInvalid())
296     return true;
297   TheCall->setArg(0, SrcArg.get());
298   ExprResult AlignArg =
299       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
300                                       S.Context, AlignOp->getType(), false),
301                                   SourceLocation(), AlignOp);
302   if (AlignArg.isInvalid())
303     return true;
304   TheCall->setArg(1, AlignArg.get());
305   // For align_up/align_down, the return type is the same as the (potentially
306   // decayed) argument type including qualifiers. For is_aligned(), the result
307   // is always bool.
308   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
309   return false;
310 }
311 
312 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
313                                 unsigned BuiltinID) {
314   if (checkArgCount(S, TheCall, 3))
315     return true;
316 
317   // First two arguments should be integers.
318   for (unsigned I = 0; I < 2; ++I) {
319     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
320     if (Arg.isInvalid()) return true;
321     TheCall->setArg(I, Arg.get());
322 
323     QualType Ty = Arg.get()->getType();
324     if (!Ty->isIntegerType()) {
325       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
326           << Ty << Arg.get()->getSourceRange();
327       return true;
328     }
329   }
330 
331   // Third argument should be a pointer to a non-const integer.
332   // IRGen correctly handles volatile, restrict, and address spaces, and
333   // the other qualifiers aren't possible.
334   {
335     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
336     if (Arg.isInvalid()) return true;
337     TheCall->setArg(2, Arg.get());
338 
339     QualType Ty = Arg.get()->getType();
340     const auto *PtrTy = Ty->getAs<PointerType>();
341     if (!PtrTy ||
342         !PtrTy->getPointeeType()->isIntegerType() ||
343         PtrTy->getPointeeType().isConstQualified()) {
344       S.Diag(Arg.get()->getBeginLoc(),
345              diag::err_overflow_builtin_must_be_ptr_int)
346         << Ty << Arg.get()->getSourceRange();
347       return true;
348     }
349   }
350 
351   // Disallow signed bit-precise integer args larger than 128 bits to mul
352   // function until we improve backend support.
353   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
354     for (unsigned I = 0; I < 3; ++I) {
355       const auto Arg = TheCall->getArg(I);
356       // Third argument will be a pointer.
357       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
358       if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
359           S.getASTContext().getIntWidth(Ty) > 128)
360         return S.Diag(Arg->getBeginLoc(),
361                       diag::err_overflow_builtin_bit_int_max_size)
362                << 128;
363     }
364   }
365 
366   return false;
367 }
368 
369 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
370   if (checkArgCount(S, BuiltinCall, 2))
371     return true;
372 
373   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
374   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
375   Expr *Call = BuiltinCall->getArg(0);
376   Expr *Chain = BuiltinCall->getArg(1);
377 
378   if (Call->getStmtClass() != Stmt::CallExprClass) {
379     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
380         << Call->getSourceRange();
381     return true;
382   }
383 
384   auto CE = cast<CallExpr>(Call);
385   if (CE->getCallee()->getType()->isBlockPointerType()) {
386     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
387         << Call->getSourceRange();
388     return true;
389   }
390 
391   const Decl *TargetDecl = CE->getCalleeDecl();
392   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
393     if (FD->getBuiltinID()) {
394       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
395           << Call->getSourceRange();
396       return true;
397     }
398 
399   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
400     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
401         << Call->getSourceRange();
402     return true;
403   }
404 
405   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
406   if (ChainResult.isInvalid())
407     return true;
408   if (!ChainResult.get()->getType()->isPointerType()) {
409     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
410         << Chain->getSourceRange();
411     return true;
412   }
413 
414   QualType ReturnTy = CE->getCallReturnType(S.Context);
415   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
416   QualType BuiltinTy = S.Context.getFunctionType(
417       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
418   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
419 
420   Builtin =
421       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
422 
423   BuiltinCall->setType(CE->getType());
424   BuiltinCall->setValueKind(CE->getValueKind());
425   BuiltinCall->setObjectKind(CE->getObjectKind());
426   BuiltinCall->setCallee(Builtin);
427   BuiltinCall->setArg(1, ChainResult.get());
428 
429   return false;
430 }
431 
432 namespace {
433 
434 class ScanfDiagnosticFormatHandler
435     : public analyze_format_string::FormatStringHandler {
436   // Accepts the argument index (relative to the first destination index) of the
437   // argument whose size we want.
438   using ComputeSizeFunction =
439       llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
440 
441   // Accepts the argument index (relative to the first destination index), the
442   // destination size, and the source size).
443   using DiagnoseFunction =
444       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
445 
446   ComputeSizeFunction ComputeSizeArgument;
447   DiagnoseFunction Diagnose;
448 
449 public:
450   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
451                                DiagnoseFunction Diagnose)
452       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
453 
454   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
455                             const char *StartSpecifier,
456                             unsigned specifierLen) override {
457     if (!FS.consumesDataArgument())
458       return true;
459 
460     unsigned NulByte = 0;
461     switch ((FS.getConversionSpecifier().getKind())) {
462     default:
463       return true;
464     case analyze_format_string::ConversionSpecifier::sArg:
465     case analyze_format_string::ConversionSpecifier::ScanListArg:
466       NulByte = 1;
467       break;
468     case analyze_format_string::ConversionSpecifier::cArg:
469       break;
470     }
471 
472     analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
473     if (FW.getHowSpecified() !=
474         analyze_format_string::OptionalAmount::HowSpecified::Constant)
475       return true;
476 
477     unsigned SourceSize = FW.getConstantAmount() + NulByte;
478 
479     Optional<llvm::APSInt> DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
480     if (!DestSizeAPS)
481       return true;
482 
483     unsigned DestSize = DestSizeAPS->getZExtValue();
484 
485     if (DestSize < SourceSize)
486       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
487 
488     return true;
489   }
490 };
491 
492 class EstimateSizeFormatHandler
493     : public analyze_format_string::FormatStringHandler {
494   size_t Size;
495 
496 public:
497   EstimateSizeFormatHandler(StringRef Format)
498       : Size(std::min(Format.find(0), Format.size()) +
499              1 /* null byte always written by sprintf */) {}
500 
501   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
502                              const char *, unsigned SpecifierLen,
503                              const TargetInfo &) override {
504 
505     const size_t FieldWidth = computeFieldWidth(FS);
506     const size_t Precision = computePrecision(FS);
507 
508     // The actual format.
509     switch (FS.getConversionSpecifier().getKind()) {
510     // Just a char.
511     case analyze_format_string::ConversionSpecifier::cArg:
512     case analyze_format_string::ConversionSpecifier::CArg:
513       Size += std::max(FieldWidth, (size_t)1);
514       break;
515     // Just an integer.
516     case analyze_format_string::ConversionSpecifier::dArg:
517     case analyze_format_string::ConversionSpecifier::DArg:
518     case analyze_format_string::ConversionSpecifier::iArg:
519     case analyze_format_string::ConversionSpecifier::oArg:
520     case analyze_format_string::ConversionSpecifier::OArg:
521     case analyze_format_string::ConversionSpecifier::uArg:
522     case analyze_format_string::ConversionSpecifier::UArg:
523     case analyze_format_string::ConversionSpecifier::xArg:
524     case analyze_format_string::ConversionSpecifier::XArg:
525       Size += std::max(FieldWidth, Precision);
526       break;
527 
528     // %g style conversion switches between %f or %e style dynamically.
529     // %f always takes less space, so default to it.
530     case analyze_format_string::ConversionSpecifier::gArg:
531     case analyze_format_string::ConversionSpecifier::GArg:
532 
533     // Floating point number in the form '[+]ddd.ddd'.
534     case analyze_format_string::ConversionSpecifier::fArg:
535     case analyze_format_string::ConversionSpecifier::FArg:
536       Size += std::max(FieldWidth, 1 /* integer part */ +
537                                        (Precision ? 1 + Precision
538                                                   : 0) /* period + decimal */);
539       break;
540 
541     // Floating point number in the form '[-]d.ddde[+-]dd'.
542     case analyze_format_string::ConversionSpecifier::eArg:
543     case analyze_format_string::ConversionSpecifier::EArg:
544       Size +=
545           std::max(FieldWidth,
546                    1 /* integer part */ +
547                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
548                        1 /* e or E letter */ + 2 /* exponent */);
549       break;
550 
551     // Floating point number in the form '[-]0xh.hhhhp±dd'.
552     case analyze_format_string::ConversionSpecifier::aArg:
553     case analyze_format_string::ConversionSpecifier::AArg:
554       Size +=
555           std::max(FieldWidth,
556                    2 /* 0x */ + 1 /* integer part */ +
557                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
558                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
559       break;
560 
561     // Just a string.
562     case analyze_format_string::ConversionSpecifier::sArg:
563     case analyze_format_string::ConversionSpecifier::SArg:
564       Size += FieldWidth;
565       break;
566 
567     // Just a pointer in the form '0xddd'.
568     case analyze_format_string::ConversionSpecifier::pArg:
569       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
570       break;
571 
572     // A plain percent.
573     case analyze_format_string::ConversionSpecifier::PercentArg:
574       Size += 1;
575       break;
576 
577     default:
578       break;
579     }
580 
581     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
582 
583     if (FS.hasAlternativeForm()) {
584       switch (FS.getConversionSpecifier().getKind()) {
585       default:
586         break;
587       // Force a leading '0'.
588       case analyze_format_string::ConversionSpecifier::oArg:
589         Size += 1;
590         break;
591       // Force a leading '0x'.
592       case analyze_format_string::ConversionSpecifier::xArg:
593       case analyze_format_string::ConversionSpecifier::XArg:
594         Size += 2;
595         break;
596       // Force a period '.' before decimal, even if precision is 0.
597       case analyze_format_string::ConversionSpecifier::aArg:
598       case analyze_format_string::ConversionSpecifier::AArg:
599       case analyze_format_string::ConversionSpecifier::eArg:
600       case analyze_format_string::ConversionSpecifier::EArg:
601       case analyze_format_string::ConversionSpecifier::fArg:
602       case analyze_format_string::ConversionSpecifier::FArg:
603       case analyze_format_string::ConversionSpecifier::gArg:
604       case analyze_format_string::ConversionSpecifier::GArg:
605         Size += (Precision ? 0 : 1);
606         break;
607       }
608     }
609     assert(SpecifierLen <= Size && "no underflow");
610     Size -= SpecifierLen;
611     return true;
612   }
613 
614   size_t getSizeLowerBound() const { return Size; }
615 
616 private:
617   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
618     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
619     size_t FieldWidth = 0;
620     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
621       FieldWidth = FW.getConstantAmount();
622     return FieldWidth;
623   }
624 
625   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
626     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
627     size_t Precision = 0;
628 
629     // See man 3 printf for default precision value based on the specifier.
630     switch (FW.getHowSpecified()) {
631     case analyze_format_string::OptionalAmount::NotSpecified:
632       switch (FS.getConversionSpecifier().getKind()) {
633       default:
634         break;
635       case analyze_format_string::ConversionSpecifier::dArg: // %d
636       case analyze_format_string::ConversionSpecifier::DArg: // %D
637       case analyze_format_string::ConversionSpecifier::iArg: // %i
638         Precision = 1;
639         break;
640       case analyze_format_string::ConversionSpecifier::oArg: // %d
641       case analyze_format_string::ConversionSpecifier::OArg: // %D
642       case analyze_format_string::ConversionSpecifier::uArg: // %d
643       case analyze_format_string::ConversionSpecifier::UArg: // %D
644       case analyze_format_string::ConversionSpecifier::xArg: // %d
645       case analyze_format_string::ConversionSpecifier::XArg: // %D
646         Precision = 1;
647         break;
648       case analyze_format_string::ConversionSpecifier::fArg: // %f
649       case analyze_format_string::ConversionSpecifier::FArg: // %F
650       case analyze_format_string::ConversionSpecifier::eArg: // %e
651       case analyze_format_string::ConversionSpecifier::EArg: // %E
652       case analyze_format_string::ConversionSpecifier::gArg: // %g
653       case analyze_format_string::ConversionSpecifier::GArg: // %G
654         Precision = 6;
655         break;
656       case analyze_format_string::ConversionSpecifier::pArg: // %d
657         Precision = 1;
658         break;
659       }
660       break;
661     case analyze_format_string::OptionalAmount::Constant:
662       Precision = FW.getConstantAmount();
663       break;
664     default:
665       break;
666     }
667     return Precision;
668   }
669 };
670 
671 } // namespace
672 
673 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
674                                                CallExpr *TheCall) {
675   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
676       isConstantEvaluated())
677     return;
678 
679   bool UseDABAttr = false;
680   const FunctionDecl *UseDecl = FD;
681 
682   const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
683   if (DABAttr) {
684     UseDecl = DABAttr->getFunction();
685     assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
686     UseDABAttr = true;
687   }
688 
689   unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
690 
691   if (!BuiltinID)
692     return;
693 
694   const TargetInfo &TI = getASTContext().getTargetInfo();
695   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
696 
697   auto TranslateIndex = [&](unsigned Index) -> Optional<unsigned> {
698     // If we refer to a diagnose_as_builtin attribute, we need to change the
699     // argument index to refer to the arguments of the called function. Unless
700     // the index is out of bounds, which presumably means it's a variadic
701     // function.
702     if (!UseDABAttr)
703       return Index;
704     unsigned DABIndices = DABAttr->argIndices_size();
705     unsigned NewIndex = Index < DABIndices
706                             ? DABAttr->argIndices_begin()[Index]
707                             : Index - DABIndices + FD->getNumParams();
708     if (NewIndex >= TheCall->getNumArgs())
709       return llvm::None;
710     return NewIndex;
711   };
712 
713   auto ComputeExplicitObjectSizeArgument =
714       [&](unsigned Index) -> Optional<llvm::APSInt> {
715     Optional<unsigned> IndexOptional = TranslateIndex(Index);
716     if (!IndexOptional)
717       return llvm::None;
718     unsigned NewIndex = IndexOptional.getValue();
719     Expr::EvalResult Result;
720     Expr *SizeArg = TheCall->getArg(NewIndex);
721     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
722       return llvm::None;
723     llvm::APSInt Integer = Result.Val.getInt();
724     Integer.setIsUnsigned(true);
725     return Integer;
726   };
727 
728   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
729     // If the parameter has a pass_object_size attribute, then we should use its
730     // (potentially) more strict checking mode. Otherwise, conservatively assume
731     // type 0.
732     int BOSType = 0;
733     // This check can fail for variadic functions.
734     if (Index < FD->getNumParams()) {
735       if (const auto *POS =
736               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
737         BOSType = POS->getType();
738     }
739 
740     Optional<unsigned> IndexOptional = TranslateIndex(Index);
741     if (!IndexOptional)
742       return llvm::None;
743     unsigned NewIndex = IndexOptional.getValue();
744 
745     const Expr *ObjArg = TheCall->getArg(NewIndex);
746     uint64_t Result;
747     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
748       return llvm::None;
749 
750     // Get the object size in the target's size_t width.
751     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
752   };
753 
754   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
755     Optional<unsigned> IndexOptional = TranslateIndex(Index);
756     if (!IndexOptional)
757       return llvm::None;
758     unsigned NewIndex = IndexOptional.getValue();
759 
760     const Expr *ObjArg = TheCall->getArg(NewIndex);
761     uint64_t Result;
762     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
763       return llvm::None;
764     // Add 1 for null byte.
765     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
766   };
767 
768   Optional<llvm::APSInt> SourceSize;
769   Optional<llvm::APSInt> DestinationSize;
770   unsigned DiagID = 0;
771   bool IsChkVariant = false;
772 
773   auto GetFunctionName = [&]() {
774     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
775     // Skim off the details of whichever builtin was called to produce a better
776     // diagnostic, as it's unlikely that the user wrote the __builtin
777     // explicitly.
778     if (IsChkVariant) {
779       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
780       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
781     } else if (FunctionName.startswith("__builtin_")) {
782       FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
783     }
784     return FunctionName;
785   };
786 
787   switch (BuiltinID) {
788   default:
789     return;
790   case Builtin::BI__builtin_strcpy:
791   case Builtin::BIstrcpy: {
792     DiagID = diag::warn_fortify_strlen_overflow;
793     SourceSize = ComputeStrLenArgument(1);
794     DestinationSize = ComputeSizeArgument(0);
795     break;
796   }
797 
798   case Builtin::BI__builtin___strcpy_chk: {
799     DiagID = diag::warn_fortify_strlen_overflow;
800     SourceSize = ComputeStrLenArgument(1);
801     DestinationSize = ComputeExplicitObjectSizeArgument(2);
802     IsChkVariant = true;
803     break;
804   }
805 
806   case Builtin::BIscanf:
807   case Builtin::BIfscanf:
808   case Builtin::BIsscanf: {
809     unsigned FormatIndex = 1;
810     unsigned DataIndex = 2;
811     if (BuiltinID == Builtin::BIscanf) {
812       FormatIndex = 0;
813       DataIndex = 1;
814     }
815 
816     const auto *FormatExpr =
817         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
818 
819     const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
820     if (!Format)
821       return;
822 
823     if (!Format->isAscii() && !Format->isUTF8())
824       return;
825 
826     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
827                         unsigned SourceSize) {
828       DiagID = diag::warn_fortify_scanf_overflow;
829       unsigned Index = ArgIndex + DataIndex;
830       StringRef FunctionName = GetFunctionName();
831       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
832                           PDiag(DiagID) << FunctionName << (Index + 1)
833                                         << DestSize << SourceSize);
834     };
835 
836     StringRef FormatStrRef = Format->getString();
837     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
838       return ComputeSizeArgument(Index + DataIndex);
839     };
840     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
841     const char *FormatBytes = FormatStrRef.data();
842     const ConstantArrayType *T =
843         Context.getAsConstantArrayType(Format->getType());
844     assert(T && "String literal not of constant array type!");
845     size_t TypeSize = T->getSize().getZExtValue();
846 
847     // In case there's a null byte somewhere.
848     size_t StrLen =
849         std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
850 
851     analyze_format_string::ParseScanfString(H, FormatBytes,
852                                             FormatBytes + StrLen, getLangOpts(),
853                                             Context.getTargetInfo());
854 
855     // Unlike the other cases, in this one we have already issued the diagnostic
856     // here, so no need to continue (because unlike the other cases, here the
857     // diagnostic refers to the argument number).
858     return;
859   }
860 
861   case Builtin::BIsprintf:
862   case Builtin::BI__builtin___sprintf_chk: {
863     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
864     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
865 
866     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
867 
868       if (!Format->isAscii() && !Format->isUTF8())
869         return;
870 
871       StringRef FormatStrRef = Format->getString();
872       EstimateSizeFormatHandler H(FormatStrRef);
873       const char *FormatBytes = FormatStrRef.data();
874       const ConstantArrayType *T =
875           Context.getAsConstantArrayType(Format->getType());
876       assert(T && "String literal not of constant array type!");
877       size_t TypeSize = T->getSize().getZExtValue();
878 
879       // In case there's a null byte somewhere.
880       size_t StrLen =
881           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
882       if (!analyze_format_string::ParsePrintfString(
883               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
884               Context.getTargetInfo(), false)) {
885         DiagID = diag::warn_fortify_source_format_overflow;
886         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
887                          .extOrTrunc(SizeTypeWidth);
888         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
889           DestinationSize = ComputeExplicitObjectSizeArgument(2);
890           IsChkVariant = true;
891         } else {
892           DestinationSize = ComputeSizeArgument(0);
893         }
894         break;
895       }
896     }
897     return;
898   }
899   case Builtin::BI__builtin___memcpy_chk:
900   case Builtin::BI__builtin___memmove_chk:
901   case Builtin::BI__builtin___memset_chk:
902   case Builtin::BI__builtin___strlcat_chk:
903   case Builtin::BI__builtin___strlcpy_chk:
904   case Builtin::BI__builtin___strncat_chk:
905   case Builtin::BI__builtin___strncpy_chk:
906   case Builtin::BI__builtin___stpncpy_chk:
907   case Builtin::BI__builtin___memccpy_chk:
908   case Builtin::BI__builtin___mempcpy_chk: {
909     DiagID = diag::warn_builtin_chk_overflow;
910     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
911     DestinationSize =
912         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
913     IsChkVariant = true;
914     break;
915   }
916 
917   case Builtin::BI__builtin___snprintf_chk:
918   case Builtin::BI__builtin___vsnprintf_chk: {
919     DiagID = diag::warn_builtin_chk_overflow;
920     SourceSize = ComputeExplicitObjectSizeArgument(1);
921     DestinationSize = ComputeExplicitObjectSizeArgument(3);
922     IsChkVariant = true;
923     break;
924   }
925 
926   case Builtin::BIstrncat:
927   case Builtin::BI__builtin_strncat:
928   case Builtin::BIstrncpy:
929   case Builtin::BI__builtin_strncpy:
930   case Builtin::BIstpncpy:
931   case Builtin::BI__builtin_stpncpy: {
932     // Whether these functions overflow depends on the runtime strlen of the
933     // string, not just the buffer size, so emitting the "always overflow"
934     // diagnostic isn't quite right. We should still diagnose passing a buffer
935     // size larger than the destination buffer though; this is a runtime abort
936     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
937     DiagID = diag::warn_fortify_source_size_mismatch;
938     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
939     DestinationSize = ComputeSizeArgument(0);
940     break;
941   }
942 
943   case Builtin::BImemcpy:
944   case Builtin::BI__builtin_memcpy:
945   case Builtin::BImemmove:
946   case Builtin::BI__builtin_memmove:
947   case Builtin::BImemset:
948   case Builtin::BI__builtin_memset:
949   case Builtin::BImempcpy:
950   case Builtin::BI__builtin_mempcpy: {
951     DiagID = diag::warn_fortify_source_overflow;
952     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
953     DestinationSize = ComputeSizeArgument(0);
954     break;
955   }
956   case Builtin::BIsnprintf:
957   case Builtin::BI__builtin_snprintf:
958   case Builtin::BIvsnprintf:
959   case Builtin::BI__builtin_vsnprintf: {
960     DiagID = diag::warn_fortify_source_size_mismatch;
961     SourceSize = ComputeExplicitObjectSizeArgument(1);
962     DestinationSize = ComputeSizeArgument(0);
963     break;
964   }
965   }
966 
967   if (!SourceSize || !DestinationSize ||
968       llvm::APSInt::compareValues(SourceSize.getValue(),
969                                   DestinationSize.getValue()) <= 0)
970     return;
971 
972   StringRef FunctionName = GetFunctionName();
973 
974   SmallString<16> DestinationStr;
975   SmallString<16> SourceStr;
976   DestinationSize->toString(DestinationStr, /*Radix=*/10);
977   SourceSize->toString(SourceStr, /*Radix=*/10);
978   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
979                       PDiag(DiagID)
980                           << FunctionName << DestinationStr << SourceStr);
981 }
982 
983 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
984                                      Scope::ScopeFlags NeededScopeFlags,
985                                      unsigned DiagID) {
986   // Scopes aren't available during instantiation. Fortunately, builtin
987   // functions cannot be template args so they cannot be formed through template
988   // instantiation. Therefore checking once during the parse is sufficient.
989   if (SemaRef.inTemplateInstantiation())
990     return false;
991 
992   Scope *S = SemaRef.getCurScope();
993   while (S && !S->isSEHExceptScope())
994     S = S->getParent();
995   if (!S || !(S->getFlags() & NeededScopeFlags)) {
996     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
997     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
998         << DRE->getDecl()->getIdentifier();
999     return true;
1000   }
1001 
1002   return false;
1003 }
1004 
1005 static inline bool isBlockPointer(Expr *Arg) {
1006   return Arg->getType()->isBlockPointerType();
1007 }
1008 
1009 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
1010 /// void*, which is a requirement of device side enqueue.
1011 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
1012   const BlockPointerType *BPT =
1013       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1014   ArrayRef<QualType> Params =
1015       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
1016   unsigned ArgCounter = 0;
1017   bool IllegalParams = false;
1018   // Iterate through the block parameters until either one is found that is not
1019   // a local void*, or the block is valid.
1020   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
1021        I != E; ++I, ++ArgCounter) {
1022     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
1023         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
1024             LangAS::opencl_local) {
1025       // Get the location of the error. If a block literal has been passed
1026       // (BlockExpr) then we can point straight to the offending argument,
1027       // else we just point to the variable reference.
1028       SourceLocation ErrorLoc;
1029       if (isa<BlockExpr>(BlockArg)) {
1030         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
1031         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
1032       } else if (isa<DeclRefExpr>(BlockArg)) {
1033         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
1034       }
1035       S.Diag(ErrorLoc,
1036              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
1037       IllegalParams = true;
1038     }
1039   }
1040 
1041   return IllegalParams;
1042 }
1043 
1044 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
1045   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
1046     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
1047         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
1048     return true;
1049   }
1050   return false;
1051 }
1052 
1053 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
1054   if (checkArgCount(S, TheCall, 2))
1055     return true;
1056 
1057   if (checkOpenCLSubgroupExt(S, TheCall))
1058     return true;
1059 
1060   // First argument is an ndrange_t type.
1061   Expr *NDRangeArg = TheCall->getArg(0);
1062   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1063     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1064         << TheCall->getDirectCallee() << "'ndrange_t'";
1065     return true;
1066   }
1067 
1068   Expr *BlockArg = TheCall->getArg(1);
1069   if (!isBlockPointer(BlockArg)) {
1070     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1071         << TheCall->getDirectCallee() << "block";
1072     return true;
1073   }
1074   return checkOpenCLBlockArgs(S, BlockArg);
1075 }
1076 
1077 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1078 /// get_kernel_work_group_size
1079 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
1080 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1081   if (checkArgCount(S, TheCall, 1))
1082     return true;
1083 
1084   Expr *BlockArg = TheCall->getArg(0);
1085   if (!isBlockPointer(BlockArg)) {
1086     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1087         << TheCall->getDirectCallee() << "block";
1088     return true;
1089   }
1090   return checkOpenCLBlockArgs(S, BlockArg);
1091 }
1092 
1093 /// Diagnose integer type and any valid implicit conversion to it.
1094 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1095                                       const QualType &IntType);
1096 
1097 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1098                                             unsigned Start, unsigned End) {
1099   bool IllegalParams = false;
1100   for (unsigned I = Start; I <= End; ++I)
1101     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1102                                               S.Context.getSizeType());
1103   return IllegalParams;
1104 }
1105 
1106 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1107 /// 'local void*' parameter of passed block.
1108 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1109                                            Expr *BlockArg,
1110                                            unsigned NumNonVarArgs) {
1111   const BlockPointerType *BPT =
1112       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1113   unsigned NumBlockParams =
1114       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1115   unsigned TotalNumArgs = TheCall->getNumArgs();
1116 
1117   // For each argument passed to the block, a corresponding uint needs to
1118   // be passed to describe the size of the local memory.
1119   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1120     S.Diag(TheCall->getBeginLoc(),
1121            diag::err_opencl_enqueue_kernel_local_size_args);
1122     return true;
1123   }
1124 
1125   // Check that the sizes of the local memory are specified by integers.
1126   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1127                                          TotalNumArgs - 1);
1128 }
1129 
1130 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1131 /// overload formats specified in Table 6.13.17.1.
1132 /// int enqueue_kernel(queue_t queue,
1133 ///                    kernel_enqueue_flags_t flags,
1134 ///                    const ndrange_t ndrange,
1135 ///                    void (^block)(void))
1136 /// int enqueue_kernel(queue_t queue,
1137 ///                    kernel_enqueue_flags_t flags,
1138 ///                    const ndrange_t ndrange,
1139 ///                    uint num_events_in_wait_list,
1140 ///                    clk_event_t *event_wait_list,
1141 ///                    clk_event_t *event_ret,
1142 ///                    void (^block)(void))
1143 /// int enqueue_kernel(queue_t queue,
1144 ///                    kernel_enqueue_flags_t flags,
1145 ///                    const ndrange_t ndrange,
1146 ///                    void (^block)(local void*, ...),
1147 ///                    uint size0, ...)
1148 /// int enqueue_kernel(queue_t queue,
1149 ///                    kernel_enqueue_flags_t flags,
1150 ///                    const ndrange_t ndrange,
1151 ///                    uint num_events_in_wait_list,
1152 ///                    clk_event_t *event_wait_list,
1153 ///                    clk_event_t *event_ret,
1154 ///                    void (^block)(local void*, ...),
1155 ///                    uint size0, ...)
1156 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1157   unsigned NumArgs = TheCall->getNumArgs();
1158 
1159   if (NumArgs < 4) {
1160     S.Diag(TheCall->getBeginLoc(),
1161            diag::err_typecheck_call_too_few_args_at_least)
1162         << 0 << 4 << NumArgs;
1163     return true;
1164   }
1165 
1166   Expr *Arg0 = TheCall->getArg(0);
1167   Expr *Arg1 = TheCall->getArg(1);
1168   Expr *Arg2 = TheCall->getArg(2);
1169   Expr *Arg3 = TheCall->getArg(3);
1170 
1171   // First argument always needs to be a queue_t type.
1172   if (!Arg0->getType()->isQueueT()) {
1173     S.Diag(TheCall->getArg(0)->getBeginLoc(),
1174            diag::err_opencl_builtin_expected_type)
1175         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1176     return true;
1177   }
1178 
1179   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1180   if (!Arg1->getType()->isIntegerType()) {
1181     S.Diag(TheCall->getArg(1)->getBeginLoc(),
1182            diag::err_opencl_builtin_expected_type)
1183         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1184     return true;
1185   }
1186 
1187   // Third argument is always an ndrange_t type.
1188   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1189     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1190            diag::err_opencl_builtin_expected_type)
1191         << TheCall->getDirectCallee() << "'ndrange_t'";
1192     return true;
1193   }
1194 
1195   // With four arguments, there is only one form that the function could be
1196   // called in: no events and no variable arguments.
1197   if (NumArgs == 4) {
1198     // check that the last argument is the right block type.
1199     if (!isBlockPointer(Arg3)) {
1200       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1201           << TheCall->getDirectCallee() << "block";
1202       return true;
1203     }
1204     // we have a block type, check the prototype
1205     const BlockPointerType *BPT =
1206         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1207     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1208       S.Diag(Arg3->getBeginLoc(),
1209              diag::err_opencl_enqueue_kernel_blocks_no_args);
1210       return true;
1211     }
1212     return false;
1213   }
1214   // we can have block + varargs.
1215   if (isBlockPointer(Arg3))
1216     return (checkOpenCLBlockArgs(S, Arg3) ||
1217             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1218   // last two cases with either exactly 7 args or 7 args and varargs.
1219   if (NumArgs >= 7) {
1220     // check common block argument.
1221     Expr *Arg6 = TheCall->getArg(6);
1222     if (!isBlockPointer(Arg6)) {
1223       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1224           << TheCall->getDirectCallee() << "block";
1225       return true;
1226     }
1227     if (checkOpenCLBlockArgs(S, Arg6))
1228       return true;
1229 
1230     // Forth argument has to be any integer type.
1231     if (!Arg3->getType()->isIntegerType()) {
1232       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1233              diag::err_opencl_builtin_expected_type)
1234           << TheCall->getDirectCallee() << "integer";
1235       return true;
1236     }
1237     // check remaining common arguments.
1238     Expr *Arg4 = TheCall->getArg(4);
1239     Expr *Arg5 = TheCall->getArg(5);
1240 
1241     // Fifth argument is always passed as a pointer to clk_event_t.
1242     if (!Arg4->isNullPointerConstant(S.Context,
1243                                      Expr::NPC_ValueDependentIsNotNull) &&
1244         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1245       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1246              diag::err_opencl_builtin_expected_type)
1247           << TheCall->getDirectCallee()
1248           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1249       return true;
1250     }
1251 
1252     // Sixth argument is always passed as a pointer to clk_event_t.
1253     if (!Arg5->isNullPointerConstant(S.Context,
1254                                      Expr::NPC_ValueDependentIsNotNull) &&
1255         !(Arg5->getType()->isPointerType() &&
1256           Arg5->getType()->getPointeeType()->isClkEventT())) {
1257       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1258              diag::err_opencl_builtin_expected_type)
1259           << TheCall->getDirectCallee()
1260           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1261       return true;
1262     }
1263 
1264     if (NumArgs == 7)
1265       return false;
1266 
1267     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1268   }
1269 
1270   // None of the specific case has been detected, give generic error
1271   S.Diag(TheCall->getBeginLoc(),
1272          diag::err_opencl_enqueue_kernel_incorrect_args);
1273   return true;
1274 }
1275 
1276 /// Returns OpenCL access qual.
1277 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1278     return D->getAttr<OpenCLAccessAttr>();
1279 }
1280 
1281 /// Returns true if pipe element type is different from the pointer.
1282 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1283   const Expr *Arg0 = Call->getArg(0);
1284   // First argument type should always be pipe.
1285   if (!Arg0->getType()->isPipeType()) {
1286     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1287         << Call->getDirectCallee() << Arg0->getSourceRange();
1288     return true;
1289   }
1290   OpenCLAccessAttr *AccessQual =
1291       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1292   // Validates the access qualifier is compatible with the call.
1293   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1294   // read_only and write_only, and assumed to be read_only if no qualifier is
1295   // specified.
1296   switch (Call->getDirectCallee()->getBuiltinID()) {
1297   case Builtin::BIread_pipe:
1298   case Builtin::BIreserve_read_pipe:
1299   case Builtin::BIcommit_read_pipe:
1300   case Builtin::BIwork_group_reserve_read_pipe:
1301   case Builtin::BIsub_group_reserve_read_pipe:
1302   case Builtin::BIwork_group_commit_read_pipe:
1303   case Builtin::BIsub_group_commit_read_pipe:
1304     if (!(!AccessQual || AccessQual->isReadOnly())) {
1305       S.Diag(Arg0->getBeginLoc(),
1306              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1307           << "read_only" << Arg0->getSourceRange();
1308       return true;
1309     }
1310     break;
1311   case Builtin::BIwrite_pipe:
1312   case Builtin::BIreserve_write_pipe:
1313   case Builtin::BIcommit_write_pipe:
1314   case Builtin::BIwork_group_reserve_write_pipe:
1315   case Builtin::BIsub_group_reserve_write_pipe:
1316   case Builtin::BIwork_group_commit_write_pipe:
1317   case Builtin::BIsub_group_commit_write_pipe:
1318     if (!(AccessQual && AccessQual->isWriteOnly())) {
1319       S.Diag(Arg0->getBeginLoc(),
1320              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1321           << "write_only" << Arg0->getSourceRange();
1322       return true;
1323     }
1324     break;
1325   default:
1326     break;
1327   }
1328   return false;
1329 }
1330 
1331 /// Returns true if pipe element type is different from the pointer.
1332 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1333   const Expr *Arg0 = Call->getArg(0);
1334   const Expr *ArgIdx = Call->getArg(Idx);
1335   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1336   const QualType EltTy = PipeTy->getElementType();
1337   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1338   // The Idx argument should be a pointer and the type of the pointer and
1339   // the type of pipe element should also be the same.
1340   if (!ArgTy ||
1341       !S.Context.hasSameType(
1342           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1343     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1344         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1345         << ArgIdx->getType() << ArgIdx->getSourceRange();
1346     return true;
1347   }
1348   return false;
1349 }
1350 
1351 // Performs semantic analysis for the read/write_pipe call.
1352 // \param S Reference to the semantic analyzer.
1353 // \param Call A pointer to the builtin call.
1354 // \return True if a semantic error has been found, false otherwise.
1355 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1356   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1357   // functions have two forms.
1358   switch (Call->getNumArgs()) {
1359   case 2:
1360     if (checkOpenCLPipeArg(S, Call))
1361       return true;
1362     // The call with 2 arguments should be
1363     // read/write_pipe(pipe T, T*).
1364     // Check packet type T.
1365     if (checkOpenCLPipePacketType(S, Call, 1))
1366       return true;
1367     break;
1368 
1369   case 4: {
1370     if (checkOpenCLPipeArg(S, Call))
1371       return true;
1372     // The call with 4 arguments should be
1373     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1374     // Check reserve_id_t.
1375     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1376       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1377           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1378           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1379       return true;
1380     }
1381 
1382     // Check the index.
1383     const Expr *Arg2 = Call->getArg(2);
1384     if (!Arg2->getType()->isIntegerType() &&
1385         !Arg2->getType()->isUnsignedIntegerType()) {
1386       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1387           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1388           << Arg2->getType() << Arg2->getSourceRange();
1389       return true;
1390     }
1391 
1392     // Check packet type T.
1393     if (checkOpenCLPipePacketType(S, Call, 3))
1394       return true;
1395   } break;
1396   default:
1397     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1398         << Call->getDirectCallee() << Call->getSourceRange();
1399     return true;
1400   }
1401 
1402   return false;
1403 }
1404 
1405 // Performs a semantic analysis on the {work_group_/sub_group_
1406 //        /_}reserve_{read/write}_pipe
1407 // \param S Reference to the semantic analyzer.
1408 // \param Call The call to the builtin function to be analyzed.
1409 // \return True if a semantic error was found, false otherwise.
1410 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1411   if (checkArgCount(S, Call, 2))
1412     return true;
1413 
1414   if (checkOpenCLPipeArg(S, Call))
1415     return true;
1416 
1417   // Check the reserve size.
1418   if (!Call->getArg(1)->getType()->isIntegerType() &&
1419       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1420     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1421         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1422         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1423     return true;
1424   }
1425 
1426   // Since return type of reserve_read/write_pipe built-in function is
1427   // reserve_id_t, which is not defined in the builtin def file , we used int
1428   // as return type and need to override the return type of these functions.
1429   Call->setType(S.Context.OCLReserveIDTy);
1430 
1431   return false;
1432 }
1433 
1434 // Performs a semantic analysis on {work_group_/sub_group_
1435 //        /_}commit_{read/write}_pipe
1436 // \param S Reference to the semantic analyzer.
1437 // \param Call The call to the builtin function to be analyzed.
1438 // \return True if a semantic error was found, false otherwise.
1439 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1440   if (checkArgCount(S, Call, 2))
1441     return true;
1442 
1443   if (checkOpenCLPipeArg(S, Call))
1444     return true;
1445 
1446   // Check reserve_id_t.
1447   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1448     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1449         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1450         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1451     return true;
1452   }
1453 
1454   return false;
1455 }
1456 
1457 // Performs a semantic analysis on the call to built-in Pipe
1458 //        Query Functions.
1459 // \param S Reference to the semantic analyzer.
1460 // \param Call The call to the builtin function to be analyzed.
1461 // \return True if a semantic error was found, false otherwise.
1462 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1463   if (checkArgCount(S, Call, 1))
1464     return true;
1465 
1466   if (!Call->getArg(0)->getType()->isPipeType()) {
1467     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1468         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1469     return true;
1470   }
1471 
1472   return false;
1473 }
1474 
1475 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1476 // Performs semantic analysis for the to_global/local/private call.
1477 // \param S Reference to the semantic analyzer.
1478 // \param BuiltinID ID of the builtin function.
1479 // \param Call A pointer to the builtin call.
1480 // \return True if a semantic error has been found, false otherwise.
1481 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1482                                     CallExpr *Call) {
1483   if (checkArgCount(S, Call, 1))
1484     return true;
1485 
1486   auto RT = Call->getArg(0)->getType();
1487   if (!RT->isPointerType() || RT->getPointeeType()
1488       .getAddressSpace() == LangAS::opencl_constant) {
1489     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1490         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1491     return true;
1492   }
1493 
1494   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1495     S.Diag(Call->getArg(0)->getBeginLoc(),
1496            diag::warn_opencl_generic_address_space_arg)
1497         << Call->getDirectCallee()->getNameInfo().getAsString()
1498         << Call->getArg(0)->getSourceRange();
1499   }
1500 
1501   RT = RT->getPointeeType();
1502   auto Qual = RT.getQualifiers();
1503   switch (BuiltinID) {
1504   case Builtin::BIto_global:
1505     Qual.setAddressSpace(LangAS::opencl_global);
1506     break;
1507   case Builtin::BIto_local:
1508     Qual.setAddressSpace(LangAS::opencl_local);
1509     break;
1510   case Builtin::BIto_private:
1511     Qual.setAddressSpace(LangAS::opencl_private);
1512     break;
1513   default:
1514     llvm_unreachable("Invalid builtin function");
1515   }
1516   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1517       RT.getUnqualifiedType(), Qual)));
1518 
1519   return false;
1520 }
1521 
1522 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1523   if (checkArgCount(S, TheCall, 1))
1524     return ExprError();
1525 
1526   // Compute __builtin_launder's parameter type from the argument.
1527   // The parameter type is:
1528   //  * The type of the argument if it's not an array or function type,
1529   //  Otherwise,
1530   //  * The decayed argument type.
1531   QualType ParamTy = [&]() {
1532     QualType ArgTy = TheCall->getArg(0)->getType();
1533     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1534       return S.Context.getPointerType(Ty->getElementType());
1535     if (ArgTy->isFunctionType()) {
1536       return S.Context.getPointerType(ArgTy);
1537     }
1538     return ArgTy;
1539   }();
1540 
1541   TheCall->setType(ParamTy);
1542 
1543   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1544     if (!ParamTy->isPointerType())
1545       return 0;
1546     if (ParamTy->isFunctionPointerType())
1547       return 1;
1548     if (ParamTy->isVoidPointerType())
1549       return 2;
1550     return llvm::Optional<unsigned>{};
1551   }();
1552   if (DiagSelect.hasValue()) {
1553     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1554         << DiagSelect.getValue() << TheCall->getSourceRange();
1555     return ExprError();
1556   }
1557 
1558   // We either have an incomplete class type, or we have a class template
1559   // whose instantiation has not been forced. Example:
1560   //
1561   //   template <class T> struct Foo { T value; };
1562   //   Foo<int> *p = nullptr;
1563   //   auto *d = __builtin_launder(p);
1564   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1565                             diag::err_incomplete_type))
1566     return ExprError();
1567 
1568   assert(ParamTy->getPointeeType()->isObjectType() &&
1569          "Unhandled non-object pointer case");
1570 
1571   InitializedEntity Entity =
1572       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1573   ExprResult Arg =
1574       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1575   if (Arg.isInvalid())
1576     return ExprError();
1577   TheCall->setArg(0, Arg.get());
1578 
1579   return TheCall;
1580 }
1581 
1582 // Emit an error and return true if the current object format type is in the
1583 // list of unsupported types.
1584 static bool CheckBuiltinTargetNotInUnsupported(
1585     Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1586     ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1587   llvm::Triple::ObjectFormatType CurObjFormat =
1588       S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1589   if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1590     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1591         << TheCall->getSourceRange();
1592     return true;
1593   }
1594   return false;
1595 }
1596 
1597 // Emit an error and return true if the current architecture is not in the list
1598 // of supported architectures.
1599 static bool
1600 CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1601                               ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1602   llvm::Triple::ArchType CurArch =
1603       S.getASTContext().getTargetInfo().getTriple().getArch();
1604   if (llvm::is_contained(SupportedArchs, CurArch))
1605     return false;
1606   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1607       << TheCall->getSourceRange();
1608   return true;
1609 }
1610 
1611 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1612                                  SourceLocation CallSiteLoc);
1613 
1614 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1615                                       CallExpr *TheCall) {
1616   switch (TI.getTriple().getArch()) {
1617   default:
1618     // Some builtins don't require additional checking, so just consider these
1619     // acceptable.
1620     return false;
1621   case llvm::Triple::arm:
1622   case llvm::Triple::armeb:
1623   case llvm::Triple::thumb:
1624   case llvm::Triple::thumbeb:
1625     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1626   case llvm::Triple::aarch64:
1627   case llvm::Triple::aarch64_32:
1628   case llvm::Triple::aarch64_be:
1629     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1630   case llvm::Triple::bpfeb:
1631   case llvm::Triple::bpfel:
1632     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1633   case llvm::Triple::hexagon:
1634     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1635   case llvm::Triple::mips:
1636   case llvm::Triple::mipsel:
1637   case llvm::Triple::mips64:
1638   case llvm::Triple::mips64el:
1639     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1640   case llvm::Triple::systemz:
1641     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1642   case llvm::Triple::x86:
1643   case llvm::Triple::x86_64:
1644     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1645   case llvm::Triple::ppc:
1646   case llvm::Triple::ppcle:
1647   case llvm::Triple::ppc64:
1648   case llvm::Triple::ppc64le:
1649     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1650   case llvm::Triple::amdgcn:
1651     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1652   case llvm::Triple::riscv32:
1653   case llvm::Triple::riscv64:
1654     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1655   }
1656 }
1657 
1658 ExprResult
1659 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1660                                CallExpr *TheCall) {
1661   ExprResult TheCallResult(TheCall);
1662 
1663   // Find out if any arguments are required to be integer constant expressions.
1664   unsigned ICEArguments = 0;
1665   ASTContext::GetBuiltinTypeError Error;
1666   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1667   if (Error != ASTContext::GE_None)
1668     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1669 
1670   // If any arguments are required to be ICE's, check and diagnose.
1671   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1672     // Skip arguments not required to be ICE's.
1673     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1674 
1675     llvm::APSInt Result;
1676     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1677       return true;
1678     ICEArguments &= ~(1 << ArgNo);
1679   }
1680 
1681   switch (BuiltinID) {
1682   case Builtin::BI__builtin___CFStringMakeConstantString:
1683     // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
1684     // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
1685     if (CheckBuiltinTargetNotInUnsupported(
1686             *this, BuiltinID, TheCall,
1687             {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
1688       return ExprError();
1689     assert(TheCall->getNumArgs() == 1 &&
1690            "Wrong # arguments to builtin CFStringMakeConstantString");
1691     if (CheckObjCString(TheCall->getArg(0)))
1692       return ExprError();
1693     break;
1694   case Builtin::BI__builtin_ms_va_start:
1695   case Builtin::BI__builtin_stdarg_start:
1696   case Builtin::BI__builtin_va_start:
1697     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1698       return ExprError();
1699     break;
1700   case Builtin::BI__va_start: {
1701     switch (Context.getTargetInfo().getTriple().getArch()) {
1702     case llvm::Triple::aarch64:
1703     case llvm::Triple::arm:
1704     case llvm::Triple::thumb:
1705       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1706         return ExprError();
1707       break;
1708     default:
1709       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1710         return ExprError();
1711       break;
1712     }
1713     break;
1714   }
1715 
1716   // The acquire, release, and no fence variants are ARM and AArch64 only.
1717   case Builtin::BI_interlockedbittestandset_acq:
1718   case Builtin::BI_interlockedbittestandset_rel:
1719   case Builtin::BI_interlockedbittestandset_nf:
1720   case Builtin::BI_interlockedbittestandreset_acq:
1721   case Builtin::BI_interlockedbittestandreset_rel:
1722   case Builtin::BI_interlockedbittestandreset_nf:
1723     if (CheckBuiltinTargetInSupported(
1724             *this, BuiltinID, TheCall,
1725             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1726       return ExprError();
1727     break;
1728 
1729   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1730   case Builtin::BI_bittest64:
1731   case Builtin::BI_bittestandcomplement64:
1732   case Builtin::BI_bittestandreset64:
1733   case Builtin::BI_bittestandset64:
1734   case Builtin::BI_interlockedbittestandreset64:
1735   case Builtin::BI_interlockedbittestandset64:
1736     if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
1737                                       {llvm::Triple::x86_64, llvm::Triple::arm,
1738                                        llvm::Triple::thumb,
1739                                        llvm::Triple::aarch64}))
1740       return ExprError();
1741     break;
1742 
1743   case Builtin::BI__builtin_isgreater:
1744   case Builtin::BI__builtin_isgreaterequal:
1745   case Builtin::BI__builtin_isless:
1746   case Builtin::BI__builtin_islessequal:
1747   case Builtin::BI__builtin_islessgreater:
1748   case Builtin::BI__builtin_isunordered:
1749     if (SemaBuiltinUnorderedCompare(TheCall))
1750       return ExprError();
1751     break;
1752   case Builtin::BI__builtin_fpclassify:
1753     if (SemaBuiltinFPClassification(TheCall, 6))
1754       return ExprError();
1755     break;
1756   case Builtin::BI__builtin_isfinite:
1757   case Builtin::BI__builtin_isinf:
1758   case Builtin::BI__builtin_isinf_sign:
1759   case Builtin::BI__builtin_isnan:
1760   case Builtin::BI__builtin_isnormal:
1761   case Builtin::BI__builtin_signbit:
1762   case Builtin::BI__builtin_signbitf:
1763   case Builtin::BI__builtin_signbitl:
1764     if (SemaBuiltinFPClassification(TheCall, 1))
1765       return ExprError();
1766     break;
1767   case Builtin::BI__builtin_shufflevector:
1768     return SemaBuiltinShuffleVector(TheCall);
1769     // TheCall will be freed by the smart pointer here, but that's fine, since
1770     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1771   case Builtin::BI__builtin_prefetch:
1772     if (SemaBuiltinPrefetch(TheCall))
1773       return ExprError();
1774     break;
1775   case Builtin::BI__builtin_alloca_with_align:
1776   case Builtin::BI__builtin_alloca_with_align_uninitialized:
1777     if (SemaBuiltinAllocaWithAlign(TheCall))
1778       return ExprError();
1779     LLVM_FALLTHROUGH;
1780   case Builtin::BI__builtin_alloca:
1781   case Builtin::BI__builtin_alloca_uninitialized:
1782     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1783         << TheCall->getDirectCallee();
1784     break;
1785   case Builtin::BI__arithmetic_fence:
1786     if (SemaBuiltinArithmeticFence(TheCall))
1787       return ExprError();
1788     break;
1789   case Builtin::BI__assume:
1790   case Builtin::BI__builtin_assume:
1791     if (SemaBuiltinAssume(TheCall))
1792       return ExprError();
1793     break;
1794   case Builtin::BI__builtin_assume_aligned:
1795     if (SemaBuiltinAssumeAligned(TheCall))
1796       return ExprError();
1797     break;
1798   case Builtin::BI__builtin_dynamic_object_size:
1799   case Builtin::BI__builtin_object_size:
1800     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1801       return ExprError();
1802     break;
1803   case Builtin::BI__builtin_longjmp:
1804     if (SemaBuiltinLongjmp(TheCall))
1805       return ExprError();
1806     break;
1807   case Builtin::BI__builtin_setjmp:
1808     if (SemaBuiltinSetjmp(TheCall))
1809       return ExprError();
1810     break;
1811   case Builtin::BI__builtin_classify_type:
1812     if (checkArgCount(*this, TheCall, 1)) return true;
1813     TheCall->setType(Context.IntTy);
1814     break;
1815   case Builtin::BI__builtin_complex:
1816     if (SemaBuiltinComplex(TheCall))
1817       return ExprError();
1818     break;
1819   case Builtin::BI__builtin_constant_p: {
1820     if (checkArgCount(*this, TheCall, 1)) return true;
1821     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1822     if (Arg.isInvalid()) return true;
1823     TheCall->setArg(0, Arg.get());
1824     TheCall->setType(Context.IntTy);
1825     break;
1826   }
1827   case Builtin::BI__builtin_launder:
1828     return SemaBuiltinLaunder(*this, TheCall);
1829   case Builtin::BI__sync_fetch_and_add:
1830   case Builtin::BI__sync_fetch_and_add_1:
1831   case Builtin::BI__sync_fetch_and_add_2:
1832   case Builtin::BI__sync_fetch_and_add_4:
1833   case Builtin::BI__sync_fetch_and_add_8:
1834   case Builtin::BI__sync_fetch_and_add_16:
1835   case Builtin::BI__sync_fetch_and_sub:
1836   case Builtin::BI__sync_fetch_and_sub_1:
1837   case Builtin::BI__sync_fetch_and_sub_2:
1838   case Builtin::BI__sync_fetch_and_sub_4:
1839   case Builtin::BI__sync_fetch_and_sub_8:
1840   case Builtin::BI__sync_fetch_and_sub_16:
1841   case Builtin::BI__sync_fetch_and_or:
1842   case Builtin::BI__sync_fetch_and_or_1:
1843   case Builtin::BI__sync_fetch_and_or_2:
1844   case Builtin::BI__sync_fetch_and_or_4:
1845   case Builtin::BI__sync_fetch_and_or_8:
1846   case Builtin::BI__sync_fetch_and_or_16:
1847   case Builtin::BI__sync_fetch_and_and:
1848   case Builtin::BI__sync_fetch_and_and_1:
1849   case Builtin::BI__sync_fetch_and_and_2:
1850   case Builtin::BI__sync_fetch_and_and_4:
1851   case Builtin::BI__sync_fetch_and_and_8:
1852   case Builtin::BI__sync_fetch_and_and_16:
1853   case Builtin::BI__sync_fetch_and_xor:
1854   case Builtin::BI__sync_fetch_and_xor_1:
1855   case Builtin::BI__sync_fetch_and_xor_2:
1856   case Builtin::BI__sync_fetch_and_xor_4:
1857   case Builtin::BI__sync_fetch_and_xor_8:
1858   case Builtin::BI__sync_fetch_and_xor_16:
1859   case Builtin::BI__sync_fetch_and_nand:
1860   case Builtin::BI__sync_fetch_and_nand_1:
1861   case Builtin::BI__sync_fetch_and_nand_2:
1862   case Builtin::BI__sync_fetch_and_nand_4:
1863   case Builtin::BI__sync_fetch_and_nand_8:
1864   case Builtin::BI__sync_fetch_and_nand_16:
1865   case Builtin::BI__sync_add_and_fetch:
1866   case Builtin::BI__sync_add_and_fetch_1:
1867   case Builtin::BI__sync_add_and_fetch_2:
1868   case Builtin::BI__sync_add_and_fetch_4:
1869   case Builtin::BI__sync_add_and_fetch_8:
1870   case Builtin::BI__sync_add_and_fetch_16:
1871   case Builtin::BI__sync_sub_and_fetch:
1872   case Builtin::BI__sync_sub_and_fetch_1:
1873   case Builtin::BI__sync_sub_and_fetch_2:
1874   case Builtin::BI__sync_sub_and_fetch_4:
1875   case Builtin::BI__sync_sub_and_fetch_8:
1876   case Builtin::BI__sync_sub_and_fetch_16:
1877   case Builtin::BI__sync_and_and_fetch:
1878   case Builtin::BI__sync_and_and_fetch_1:
1879   case Builtin::BI__sync_and_and_fetch_2:
1880   case Builtin::BI__sync_and_and_fetch_4:
1881   case Builtin::BI__sync_and_and_fetch_8:
1882   case Builtin::BI__sync_and_and_fetch_16:
1883   case Builtin::BI__sync_or_and_fetch:
1884   case Builtin::BI__sync_or_and_fetch_1:
1885   case Builtin::BI__sync_or_and_fetch_2:
1886   case Builtin::BI__sync_or_and_fetch_4:
1887   case Builtin::BI__sync_or_and_fetch_8:
1888   case Builtin::BI__sync_or_and_fetch_16:
1889   case Builtin::BI__sync_xor_and_fetch:
1890   case Builtin::BI__sync_xor_and_fetch_1:
1891   case Builtin::BI__sync_xor_and_fetch_2:
1892   case Builtin::BI__sync_xor_and_fetch_4:
1893   case Builtin::BI__sync_xor_and_fetch_8:
1894   case Builtin::BI__sync_xor_and_fetch_16:
1895   case Builtin::BI__sync_nand_and_fetch:
1896   case Builtin::BI__sync_nand_and_fetch_1:
1897   case Builtin::BI__sync_nand_and_fetch_2:
1898   case Builtin::BI__sync_nand_and_fetch_4:
1899   case Builtin::BI__sync_nand_and_fetch_8:
1900   case Builtin::BI__sync_nand_and_fetch_16:
1901   case Builtin::BI__sync_val_compare_and_swap:
1902   case Builtin::BI__sync_val_compare_and_swap_1:
1903   case Builtin::BI__sync_val_compare_and_swap_2:
1904   case Builtin::BI__sync_val_compare_and_swap_4:
1905   case Builtin::BI__sync_val_compare_and_swap_8:
1906   case Builtin::BI__sync_val_compare_and_swap_16:
1907   case Builtin::BI__sync_bool_compare_and_swap:
1908   case Builtin::BI__sync_bool_compare_and_swap_1:
1909   case Builtin::BI__sync_bool_compare_and_swap_2:
1910   case Builtin::BI__sync_bool_compare_and_swap_4:
1911   case Builtin::BI__sync_bool_compare_and_swap_8:
1912   case Builtin::BI__sync_bool_compare_and_swap_16:
1913   case Builtin::BI__sync_lock_test_and_set:
1914   case Builtin::BI__sync_lock_test_and_set_1:
1915   case Builtin::BI__sync_lock_test_and_set_2:
1916   case Builtin::BI__sync_lock_test_and_set_4:
1917   case Builtin::BI__sync_lock_test_and_set_8:
1918   case Builtin::BI__sync_lock_test_and_set_16:
1919   case Builtin::BI__sync_lock_release:
1920   case Builtin::BI__sync_lock_release_1:
1921   case Builtin::BI__sync_lock_release_2:
1922   case Builtin::BI__sync_lock_release_4:
1923   case Builtin::BI__sync_lock_release_8:
1924   case Builtin::BI__sync_lock_release_16:
1925   case Builtin::BI__sync_swap:
1926   case Builtin::BI__sync_swap_1:
1927   case Builtin::BI__sync_swap_2:
1928   case Builtin::BI__sync_swap_4:
1929   case Builtin::BI__sync_swap_8:
1930   case Builtin::BI__sync_swap_16:
1931     return SemaBuiltinAtomicOverloaded(TheCallResult);
1932   case Builtin::BI__sync_synchronize:
1933     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1934         << TheCall->getCallee()->getSourceRange();
1935     break;
1936   case Builtin::BI__builtin_nontemporal_load:
1937   case Builtin::BI__builtin_nontemporal_store:
1938     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1939   case Builtin::BI__builtin_memcpy_inline: {
1940     clang::Expr *SizeOp = TheCall->getArg(2);
1941     // We warn about copying to or from `nullptr` pointers when `size` is
1942     // greater than 0. When `size` is value dependent we cannot evaluate its
1943     // value so we bail out.
1944     if (SizeOp->isValueDependent())
1945       break;
1946     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
1947       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1948       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1949     }
1950     break;
1951   }
1952 #define BUILTIN(ID, TYPE, ATTRS)
1953 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1954   case Builtin::BI##ID: \
1955     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1956 #include "clang/Basic/Builtins.def"
1957   case Builtin::BI__annotation:
1958     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1959       return ExprError();
1960     break;
1961   case Builtin::BI__builtin_annotation:
1962     if (SemaBuiltinAnnotation(*this, TheCall))
1963       return ExprError();
1964     break;
1965   case Builtin::BI__builtin_addressof:
1966     if (SemaBuiltinAddressof(*this, TheCall))
1967       return ExprError();
1968     break;
1969   case Builtin::BI__builtin_function_start:
1970     if (SemaBuiltinFunctionStart(*this, TheCall))
1971       return ExprError();
1972     break;
1973   case Builtin::BI__builtin_is_aligned:
1974   case Builtin::BI__builtin_align_up:
1975   case Builtin::BI__builtin_align_down:
1976     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1977       return ExprError();
1978     break;
1979   case Builtin::BI__builtin_add_overflow:
1980   case Builtin::BI__builtin_sub_overflow:
1981   case Builtin::BI__builtin_mul_overflow:
1982     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1983       return ExprError();
1984     break;
1985   case Builtin::BI__builtin_operator_new:
1986   case Builtin::BI__builtin_operator_delete: {
1987     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1988     ExprResult Res =
1989         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1990     if (Res.isInvalid())
1991       CorrectDelayedTyposInExpr(TheCallResult.get());
1992     return Res;
1993   }
1994   case Builtin::BI__builtin_dump_struct: {
1995     // We first want to ensure we are called with 2 arguments
1996     if (checkArgCount(*this, TheCall, 2))
1997       return ExprError();
1998     // Ensure that the first argument is of type 'struct XX *'
1999     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
2000     const QualType PtrArgType = PtrArg->getType();
2001     if (!PtrArgType->isPointerType() ||
2002         !PtrArgType->getPointeeType()->isRecordType()) {
2003       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2004           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
2005           << "structure pointer";
2006       return ExprError();
2007     }
2008 
2009     // Ensure that the second argument is of type 'FunctionType'
2010     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
2011     const QualType FnPtrArgType = FnPtrArg->getType();
2012     if (!FnPtrArgType->isPointerType()) {
2013       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2014           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
2015           << FnPtrArgType << "'int (*)(const char *, ...)'";
2016       return ExprError();
2017     }
2018 
2019     const auto *FuncType =
2020         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
2021 
2022     if (!FuncType) {
2023       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2024           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
2025           << FnPtrArgType << "'int (*)(const char *, ...)'";
2026       return ExprError();
2027     }
2028 
2029     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
2030       if (!FT->getNumParams()) {
2031         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2032             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
2033             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
2034         return ExprError();
2035       }
2036       QualType PT = FT->getParamType(0);
2037       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
2038           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
2039           !PT->getPointeeType().isConstQualified()) {
2040         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2041             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
2042             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
2043         return ExprError();
2044       }
2045     }
2046 
2047     TheCall->setType(Context.IntTy);
2048     break;
2049   }
2050   case Builtin::BI__builtin_expect_with_probability: {
2051     // We first want to ensure we are called with 3 arguments
2052     if (checkArgCount(*this, TheCall, 3))
2053       return ExprError();
2054     // then check probability is constant float in range [0.0, 1.0]
2055     const Expr *ProbArg = TheCall->getArg(2);
2056     SmallVector<PartialDiagnosticAt, 8> Notes;
2057     Expr::EvalResult Eval;
2058     Eval.Diag = &Notes;
2059     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2060         !Eval.Val.isFloat()) {
2061       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2062           << ProbArg->getSourceRange();
2063       for (const PartialDiagnosticAt &PDiag : Notes)
2064         Diag(PDiag.first, PDiag.second);
2065       return ExprError();
2066     }
2067     llvm::APFloat Probability = Eval.Val.getFloat();
2068     bool LoseInfo = false;
2069     Probability.convert(llvm::APFloat::IEEEdouble(),
2070                         llvm::RoundingMode::Dynamic, &LoseInfo);
2071     if (!(Probability >= llvm::APFloat(0.0) &&
2072           Probability <= llvm::APFloat(1.0))) {
2073       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2074           << ProbArg->getSourceRange();
2075       return ExprError();
2076     }
2077     break;
2078   }
2079   case Builtin::BI__builtin_preserve_access_index:
2080     if (SemaBuiltinPreserveAI(*this, TheCall))
2081       return ExprError();
2082     break;
2083   case Builtin::BI__builtin_call_with_static_chain:
2084     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
2085       return ExprError();
2086     break;
2087   case Builtin::BI__exception_code:
2088   case Builtin::BI_exception_code:
2089     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2090                                  diag::err_seh___except_block))
2091       return ExprError();
2092     break;
2093   case Builtin::BI__exception_info:
2094   case Builtin::BI_exception_info:
2095     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2096                                  diag::err_seh___except_filter))
2097       return ExprError();
2098     break;
2099   case Builtin::BI__GetExceptionInfo:
2100     if (checkArgCount(*this, TheCall, 1))
2101       return ExprError();
2102 
2103     if (CheckCXXThrowOperand(
2104             TheCall->getBeginLoc(),
2105             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2106             TheCall))
2107       return ExprError();
2108 
2109     TheCall->setType(Context.VoidPtrTy);
2110     break;
2111   // OpenCL v2.0, s6.13.16 - Pipe functions
2112   case Builtin::BIread_pipe:
2113   case Builtin::BIwrite_pipe:
2114     // Since those two functions are declared with var args, we need a semantic
2115     // check for the argument.
2116     if (SemaBuiltinRWPipe(*this, TheCall))
2117       return ExprError();
2118     break;
2119   case Builtin::BIreserve_read_pipe:
2120   case Builtin::BIreserve_write_pipe:
2121   case Builtin::BIwork_group_reserve_read_pipe:
2122   case Builtin::BIwork_group_reserve_write_pipe:
2123     if (SemaBuiltinReserveRWPipe(*this, TheCall))
2124       return ExprError();
2125     break;
2126   case Builtin::BIsub_group_reserve_read_pipe:
2127   case Builtin::BIsub_group_reserve_write_pipe:
2128     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2129         SemaBuiltinReserveRWPipe(*this, TheCall))
2130       return ExprError();
2131     break;
2132   case Builtin::BIcommit_read_pipe:
2133   case Builtin::BIcommit_write_pipe:
2134   case Builtin::BIwork_group_commit_read_pipe:
2135   case Builtin::BIwork_group_commit_write_pipe:
2136     if (SemaBuiltinCommitRWPipe(*this, TheCall))
2137       return ExprError();
2138     break;
2139   case Builtin::BIsub_group_commit_read_pipe:
2140   case Builtin::BIsub_group_commit_write_pipe:
2141     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2142         SemaBuiltinCommitRWPipe(*this, TheCall))
2143       return ExprError();
2144     break;
2145   case Builtin::BIget_pipe_num_packets:
2146   case Builtin::BIget_pipe_max_packets:
2147     if (SemaBuiltinPipePackets(*this, TheCall))
2148       return ExprError();
2149     break;
2150   case Builtin::BIto_global:
2151   case Builtin::BIto_local:
2152   case Builtin::BIto_private:
2153     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2154       return ExprError();
2155     break;
2156   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2157   case Builtin::BIenqueue_kernel:
2158     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2159       return ExprError();
2160     break;
2161   case Builtin::BIget_kernel_work_group_size:
2162   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2163     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2164       return ExprError();
2165     break;
2166   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2167   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2168     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2169       return ExprError();
2170     break;
2171   case Builtin::BI__builtin_os_log_format:
2172     Cleanup.setExprNeedsCleanups(true);
2173     LLVM_FALLTHROUGH;
2174   case Builtin::BI__builtin_os_log_format_buffer_size:
2175     if (SemaBuiltinOSLogFormat(TheCall))
2176       return ExprError();
2177     break;
2178   case Builtin::BI__builtin_frame_address:
2179   case Builtin::BI__builtin_return_address: {
2180     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2181       return ExprError();
2182 
2183     // -Wframe-address warning if non-zero passed to builtin
2184     // return/frame address.
2185     Expr::EvalResult Result;
2186     if (!TheCall->getArg(0)->isValueDependent() &&
2187         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2188         Result.Val.getInt() != 0)
2189       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2190           << ((BuiltinID == Builtin::BI__builtin_return_address)
2191                   ? "__builtin_return_address"
2192                   : "__builtin_frame_address")
2193           << TheCall->getSourceRange();
2194     break;
2195   }
2196 
2197   // __builtin_elementwise_abs restricts the element type to signed integers or
2198   // floating point types only.
2199   case Builtin::BI__builtin_elementwise_abs: {
2200     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2201       return ExprError();
2202 
2203     QualType ArgTy = TheCall->getArg(0)->getType();
2204     QualType EltTy = ArgTy;
2205 
2206     if (auto *VecTy = EltTy->getAs<VectorType>())
2207       EltTy = VecTy->getElementType();
2208     if (EltTy->isUnsignedIntegerType()) {
2209       Diag(TheCall->getArg(0)->getBeginLoc(),
2210            diag::err_builtin_invalid_arg_type)
2211           << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2212       return ExprError();
2213     }
2214     break;
2215   }
2216 
2217   // These builtins restrict the element type to floating point
2218   // types only.
2219   case Builtin::BI__builtin_elementwise_ceil:
2220   case Builtin::BI__builtin_elementwise_floor:
2221   case Builtin::BI__builtin_elementwise_roundeven:
2222   case Builtin::BI__builtin_elementwise_trunc: {
2223     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2224       return ExprError();
2225 
2226     QualType ArgTy = TheCall->getArg(0)->getType();
2227     QualType EltTy = ArgTy;
2228 
2229     if (auto *VecTy = EltTy->getAs<VectorType>())
2230       EltTy = VecTy->getElementType();
2231     if (!EltTy->isFloatingType()) {
2232       Diag(TheCall->getArg(0)->getBeginLoc(),
2233            diag::err_builtin_invalid_arg_type)
2234           << 1 << /* float ty*/ 5 << ArgTy;
2235 
2236       return ExprError();
2237     }
2238     break;
2239   }
2240 
2241   case Builtin::BI__builtin_elementwise_min:
2242   case Builtin::BI__builtin_elementwise_max:
2243     if (SemaBuiltinElementwiseMath(TheCall))
2244       return ExprError();
2245     break;
2246   case Builtin::BI__builtin_reduce_max:
2247   case Builtin::BI__builtin_reduce_min: {
2248     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2249       return ExprError();
2250 
2251     const Expr *Arg = TheCall->getArg(0);
2252     const auto *TyA = Arg->getType()->getAs<VectorType>();
2253     if (!TyA) {
2254       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2255           << 1 << /* vector ty*/ 4 << Arg->getType();
2256       return ExprError();
2257     }
2258 
2259     TheCall->setType(TyA->getElementType());
2260     break;
2261   }
2262 
2263   // These builtins support vectors of integers only.
2264   case Builtin::BI__builtin_reduce_xor:
2265   case Builtin::BI__builtin_reduce_or:
2266   case Builtin::BI__builtin_reduce_and: {
2267     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2268       return ExprError();
2269 
2270     const Expr *Arg = TheCall->getArg(0);
2271     const auto *TyA = Arg->getType()->getAs<VectorType>();
2272     if (!TyA || !TyA->getElementType()->isIntegerType()) {
2273       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2274           << 1  << /* vector of integers */ 6 << Arg->getType();
2275       return ExprError();
2276     }
2277     TheCall->setType(TyA->getElementType());
2278     break;
2279   }
2280 
2281   case Builtin::BI__builtin_matrix_transpose:
2282     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2283 
2284   case Builtin::BI__builtin_matrix_column_major_load:
2285     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2286 
2287   case Builtin::BI__builtin_matrix_column_major_store:
2288     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2289 
2290   case Builtin::BI__builtin_get_device_side_mangled_name: {
2291     auto Check = [](CallExpr *TheCall) {
2292       if (TheCall->getNumArgs() != 1)
2293         return false;
2294       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2295       if (!DRE)
2296         return false;
2297       auto *D = DRE->getDecl();
2298       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2299         return false;
2300       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2301              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2302     };
2303     if (!Check(TheCall)) {
2304       Diag(TheCall->getBeginLoc(),
2305            diag::err_hip_invalid_args_builtin_mangled_name);
2306       return ExprError();
2307     }
2308   }
2309   }
2310 
2311   // Since the target specific builtins for each arch overlap, only check those
2312   // of the arch we are compiling for.
2313   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2314     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2315       assert(Context.getAuxTargetInfo() &&
2316              "Aux Target Builtin, but not an aux target?");
2317 
2318       if (CheckTSBuiltinFunctionCall(
2319               *Context.getAuxTargetInfo(),
2320               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2321         return ExprError();
2322     } else {
2323       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2324                                      TheCall))
2325         return ExprError();
2326     }
2327   }
2328 
2329   return TheCallResult;
2330 }
2331 
2332 // Get the valid immediate range for the specified NEON type code.
2333 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2334   NeonTypeFlags Type(t);
2335   int IsQuad = ForceQuad ? true : Type.isQuad();
2336   switch (Type.getEltType()) {
2337   case NeonTypeFlags::Int8:
2338   case NeonTypeFlags::Poly8:
2339     return shift ? 7 : (8 << IsQuad) - 1;
2340   case NeonTypeFlags::Int16:
2341   case NeonTypeFlags::Poly16:
2342     return shift ? 15 : (4 << IsQuad) - 1;
2343   case NeonTypeFlags::Int32:
2344     return shift ? 31 : (2 << IsQuad) - 1;
2345   case NeonTypeFlags::Int64:
2346   case NeonTypeFlags::Poly64:
2347     return shift ? 63 : (1 << IsQuad) - 1;
2348   case NeonTypeFlags::Poly128:
2349     return shift ? 127 : (1 << IsQuad) - 1;
2350   case NeonTypeFlags::Float16:
2351     assert(!shift && "cannot shift float types!");
2352     return (4 << IsQuad) - 1;
2353   case NeonTypeFlags::Float32:
2354     assert(!shift && "cannot shift float types!");
2355     return (2 << IsQuad) - 1;
2356   case NeonTypeFlags::Float64:
2357     assert(!shift && "cannot shift float types!");
2358     return (1 << IsQuad) - 1;
2359   case NeonTypeFlags::BFloat16:
2360     assert(!shift && "cannot shift float types!");
2361     return (4 << IsQuad) - 1;
2362   }
2363   llvm_unreachable("Invalid NeonTypeFlag!");
2364 }
2365 
2366 /// getNeonEltType - Return the QualType corresponding to the elements of
2367 /// the vector type specified by the NeonTypeFlags.  This is used to check
2368 /// the pointer arguments for Neon load/store intrinsics.
2369 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2370                                bool IsPolyUnsigned, bool IsInt64Long) {
2371   switch (Flags.getEltType()) {
2372   case NeonTypeFlags::Int8:
2373     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2374   case NeonTypeFlags::Int16:
2375     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2376   case NeonTypeFlags::Int32:
2377     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2378   case NeonTypeFlags::Int64:
2379     if (IsInt64Long)
2380       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2381     else
2382       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2383                                 : Context.LongLongTy;
2384   case NeonTypeFlags::Poly8:
2385     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2386   case NeonTypeFlags::Poly16:
2387     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2388   case NeonTypeFlags::Poly64:
2389     if (IsInt64Long)
2390       return Context.UnsignedLongTy;
2391     else
2392       return Context.UnsignedLongLongTy;
2393   case NeonTypeFlags::Poly128:
2394     break;
2395   case NeonTypeFlags::Float16:
2396     return Context.HalfTy;
2397   case NeonTypeFlags::Float32:
2398     return Context.FloatTy;
2399   case NeonTypeFlags::Float64:
2400     return Context.DoubleTy;
2401   case NeonTypeFlags::BFloat16:
2402     return Context.BFloat16Ty;
2403   }
2404   llvm_unreachable("Invalid NeonTypeFlag!");
2405 }
2406 
2407 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2408   // Range check SVE intrinsics that take immediate values.
2409   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2410 
2411   switch (BuiltinID) {
2412   default:
2413     return false;
2414 #define GET_SVE_IMMEDIATE_CHECK
2415 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2416 #undef GET_SVE_IMMEDIATE_CHECK
2417   }
2418 
2419   // Perform all the immediate checks for this builtin call.
2420   bool HasError = false;
2421   for (auto &I : ImmChecks) {
2422     int ArgNum, CheckTy, ElementSizeInBits;
2423     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2424 
2425     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2426 
2427     // Function that checks whether the operand (ArgNum) is an immediate
2428     // that is one of the predefined values.
2429     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2430                                    int ErrDiag) -> bool {
2431       // We can't check the value of a dependent argument.
2432       Expr *Arg = TheCall->getArg(ArgNum);
2433       if (Arg->isTypeDependent() || Arg->isValueDependent())
2434         return false;
2435 
2436       // Check constant-ness first.
2437       llvm::APSInt Imm;
2438       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2439         return true;
2440 
2441       if (!CheckImm(Imm.getSExtValue()))
2442         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2443       return false;
2444     };
2445 
2446     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2447     case SVETypeFlags::ImmCheck0_31:
2448       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2449         HasError = true;
2450       break;
2451     case SVETypeFlags::ImmCheck0_13:
2452       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2453         HasError = true;
2454       break;
2455     case SVETypeFlags::ImmCheck1_16:
2456       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2457         HasError = true;
2458       break;
2459     case SVETypeFlags::ImmCheck0_7:
2460       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2461         HasError = true;
2462       break;
2463     case SVETypeFlags::ImmCheckExtract:
2464       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2465                                       (2048 / ElementSizeInBits) - 1))
2466         HasError = true;
2467       break;
2468     case SVETypeFlags::ImmCheckShiftRight:
2469       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2470         HasError = true;
2471       break;
2472     case SVETypeFlags::ImmCheckShiftRightNarrow:
2473       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2474                                       ElementSizeInBits / 2))
2475         HasError = true;
2476       break;
2477     case SVETypeFlags::ImmCheckShiftLeft:
2478       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2479                                       ElementSizeInBits - 1))
2480         HasError = true;
2481       break;
2482     case SVETypeFlags::ImmCheckLaneIndex:
2483       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2484                                       (128 / (1 * ElementSizeInBits)) - 1))
2485         HasError = true;
2486       break;
2487     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2488       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2489                                       (128 / (2 * ElementSizeInBits)) - 1))
2490         HasError = true;
2491       break;
2492     case SVETypeFlags::ImmCheckLaneIndexDot:
2493       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2494                                       (128 / (4 * ElementSizeInBits)) - 1))
2495         HasError = true;
2496       break;
2497     case SVETypeFlags::ImmCheckComplexRot90_270:
2498       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2499                               diag::err_rotation_argument_to_cadd))
2500         HasError = true;
2501       break;
2502     case SVETypeFlags::ImmCheckComplexRotAll90:
2503       if (CheckImmediateInSet(
2504               [](int64_t V) {
2505                 return V == 0 || V == 90 || V == 180 || V == 270;
2506               },
2507               diag::err_rotation_argument_to_cmla))
2508         HasError = true;
2509       break;
2510     case SVETypeFlags::ImmCheck0_1:
2511       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2512         HasError = true;
2513       break;
2514     case SVETypeFlags::ImmCheck0_2:
2515       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2516         HasError = true;
2517       break;
2518     case SVETypeFlags::ImmCheck0_3:
2519       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2520         HasError = true;
2521       break;
2522     }
2523   }
2524 
2525   return HasError;
2526 }
2527 
2528 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2529                                         unsigned BuiltinID, CallExpr *TheCall) {
2530   llvm::APSInt Result;
2531   uint64_t mask = 0;
2532   unsigned TV = 0;
2533   int PtrArgNum = -1;
2534   bool HasConstPtr = false;
2535   switch (BuiltinID) {
2536 #define GET_NEON_OVERLOAD_CHECK
2537 #include "clang/Basic/arm_neon.inc"
2538 #include "clang/Basic/arm_fp16.inc"
2539 #undef GET_NEON_OVERLOAD_CHECK
2540   }
2541 
2542   // For NEON intrinsics which are overloaded on vector element type, validate
2543   // the immediate which specifies which variant to emit.
2544   unsigned ImmArg = TheCall->getNumArgs()-1;
2545   if (mask) {
2546     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2547       return true;
2548 
2549     TV = Result.getLimitedValue(64);
2550     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2551       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2552              << TheCall->getArg(ImmArg)->getSourceRange();
2553   }
2554 
2555   if (PtrArgNum >= 0) {
2556     // Check that pointer arguments have the specified type.
2557     Expr *Arg = TheCall->getArg(PtrArgNum);
2558     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2559       Arg = ICE->getSubExpr();
2560     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2561     QualType RHSTy = RHS.get()->getType();
2562 
2563     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2564     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2565                           Arch == llvm::Triple::aarch64_32 ||
2566                           Arch == llvm::Triple::aarch64_be;
2567     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2568     QualType EltTy =
2569         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2570     if (HasConstPtr)
2571       EltTy = EltTy.withConst();
2572     QualType LHSTy = Context.getPointerType(EltTy);
2573     AssignConvertType ConvTy;
2574     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2575     if (RHS.isInvalid())
2576       return true;
2577     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2578                                  RHS.get(), AA_Assigning))
2579       return true;
2580   }
2581 
2582   // For NEON intrinsics which take an immediate value as part of the
2583   // instruction, range check them here.
2584   unsigned i = 0, l = 0, u = 0;
2585   switch (BuiltinID) {
2586   default:
2587     return false;
2588   #define GET_NEON_IMMEDIATE_CHECK
2589   #include "clang/Basic/arm_neon.inc"
2590   #include "clang/Basic/arm_fp16.inc"
2591   #undef GET_NEON_IMMEDIATE_CHECK
2592   }
2593 
2594   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2595 }
2596 
2597 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2598   switch (BuiltinID) {
2599   default:
2600     return false;
2601   #include "clang/Basic/arm_mve_builtin_sema.inc"
2602   }
2603 }
2604 
2605 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2606                                        CallExpr *TheCall) {
2607   bool Err = false;
2608   switch (BuiltinID) {
2609   default:
2610     return false;
2611 #include "clang/Basic/arm_cde_builtin_sema.inc"
2612   }
2613 
2614   if (Err)
2615     return true;
2616 
2617   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2618 }
2619 
2620 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2621                                         const Expr *CoprocArg, bool WantCDE) {
2622   if (isConstantEvaluated())
2623     return false;
2624 
2625   // We can't check the value of a dependent argument.
2626   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2627     return false;
2628 
2629   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2630   int64_t CoprocNo = CoprocNoAP.getExtValue();
2631   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2632 
2633   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2634   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2635 
2636   if (IsCDECoproc != WantCDE)
2637     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2638            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2639 
2640   return false;
2641 }
2642 
2643 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2644                                         unsigned MaxWidth) {
2645   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2646           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2647           BuiltinID == ARM::BI__builtin_arm_strex ||
2648           BuiltinID == ARM::BI__builtin_arm_stlex ||
2649           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2650           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2651           BuiltinID == AArch64::BI__builtin_arm_strex ||
2652           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2653          "unexpected ARM builtin");
2654   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2655                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2656                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2657                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2658 
2659   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2660 
2661   // Ensure that we have the proper number of arguments.
2662   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2663     return true;
2664 
2665   // Inspect the pointer argument of the atomic builtin.  This should always be
2666   // a pointer type, whose element is an integral scalar or pointer type.
2667   // Because it is a pointer type, we don't have to worry about any implicit
2668   // casts here.
2669   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2670   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2671   if (PointerArgRes.isInvalid())
2672     return true;
2673   PointerArg = PointerArgRes.get();
2674 
2675   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2676   if (!pointerType) {
2677     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2678         << PointerArg->getType() << PointerArg->getSourceRange();
2679     return true;
2680   }
2681 
2682   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2683   // task is to insert the appropriate casts into the AST. First work out just
2684   // what the appropriate type is.
2685   QualType ValType = pointerType->getPointeeType();
2686   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2687   if (IsLdrex)
2688     AddrType.addConst();
2689 
2690   // Issue a warning if the cast is dodgy.
2691   CastKind CastNeeded = CK_NoOp;
2692   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2693     CastNeeded = CK_BitCast;
2694     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2695         << PointerArg->getType() << Context.getPointerType(AddrType)
2696         << AA_Passing << PointerArg->getSourceRange();
2697   }
2698 
2699   // Finally, do the cast and replace the argument with the corrected version.
2700   AddrType = Context.getPointerType(AddrType);
2701   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2702   if (PointerArgRes.isInvalid())
2703     return true;
2704   PointerArg = PointerArgRes.get();
2705 
2706   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2707 
2708   // In general, we allow ints, floats and pointers to be loaded and stored.
2709   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2710       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2711     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2712         << PointerArg->getType() << PointerArg->getSourceRange();
2713     return true;
2714   }
2715 
2716   // But ARM doesn't have instructions to deal with 128-bit versions.
2717   if (Context.getTypeSize(ValType) > MaxWidth) {
2718     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2719     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2720         << PointerArg->getType() << PointerArg->getSourceRange();
2721     return true;
2722   }
2723 
2724   switch (ValType.getObjCLifetime()) {
2725   case Qualifiers::OCL_None:
2726   case Qualifiers::OCL_ExplicitNone:
2727     // okay
2728     break;
2729 
2730   case Qualifiers::OCL_Weak:
2731   case Qualifiers::OCL_Strong:
2732   case Qualifiers::OCL_Autoreleasing:
2733     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2734         << ValType << PointerArg->getSourceRange();
2735     return true;
2736   }
2737 
2738   if (IsLdrex) {
2739     TheCall->setType(ValType);
2740     return false;
2741   }
2742 
2743   // Initialize the argument to be stored.
2744   ExprResult ValArg = TheCall->getArg(0);
2745   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2746       Context, ValType, /*consume*/ false);
2747   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2748   if (ValArg.isInvalid())
2749     return true;
2750   TheCall->setArg(0, ValArg.get());
2751 
2752   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2753   // but the custom checker bypasses all default analysis.
2754   TheCall->setType(Context.IntTy);
2755   return false;
2756 }
2757 
2758 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2759                                        CallExpr *TheCall) {
2760   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2761       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2762       BuiltinID == ARM::BI__builtin_arm_strex ||
2763       BuiltinID == ARM::BI__builtin_arm_stlex) {
2764     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2765   }
2766 
2767   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2768     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2769       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2770   }
2771 
2772   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2773       BuiltinID == ARM::BI__builtin_arm_wsr64)
2774     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2775 
2776   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2777       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2778       BuiltinID == ARM::BI__builtin_arm_wsr ||
2779       BuiltinID == ARM::BI__builtin_arm_wsrp)
2780     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2781 
2782   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2783     return true;
2784   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2785     return true;
2786   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2787     return true;
2788 
2789   // For intrinsics which take an immediate value as part of the instruction,
2790   // range check them here.
2791   // FIXME: VFP Intrinsics should error if VFP not present.
2792   switch (BuiltinID) {
2793   default: return false;
2794   case ARM::BI__builtin_arm_ssat:
2795     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2796   case ARM::BI__builtin_arm_usat:
2797     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2798   case ARM::BI__builtin_arm_ssat16:
2799     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2800   case ARM::BI__builtin_arm_usat16:
2801     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2802   case ARM::BI__builtin_arm_vcvtr_f:
2803   case ARM::BI__builtin_arm_vcvtr_d:
2804     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2805   case ARM::BI__builtin_arm_dmb:
2806   case ARM::BI__builtin_arm_dsb:
2807   case ARM::BI__builtin_arm_isb:
2808   case ARM::BI__builtin_arm_dbg:
2809     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2810   case ARM::BI__builtin_arm_cdp:
2811   case ARM::BI__builtin_arm_cdp2:
2812   case ARM::BI__builtin_arm_mcr:
2813   case ARM::BI__builtin_arm_mcr2:
2814   case ARM::BI__builtin_arm_mrc:
2815   case ARM::BI__builtin_arm_mrc2:
2816   case ARM::BI__builtin_arm_mcrr:
2817   case ARM::BI__builtin_arm_mcrr2:
2818   case ARM::BI__builtin_arm_mrrc:
2819   case ARM::BI__builtin_arm_mrrc2:
2820   case ARM::BI__builtin_arm_ldc:
2821   case ARM::BI__builtin_arm_ldcl:
2822   case ARM::BI__builtin_arm_ldc2:
2823   case ARM::BI__builtin_arm_ldc2l:
2824   case ARM::BI__builtin_arm_stc:
2825   case ARM::BI__builtin_arm_stcl:
2826   case ARM::BI__builtin_arm_stc2:
2827   case ARM::BI__builtin_arm_stc2l:
2828     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2829            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2830                                         /*WantCDE*/ false);
2831   }
2832 }
2833 
2834 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2835                                            unsigned BuiltinID,
2836                                            CallExpr *TheCall) {
2837   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2838       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2839       BuiltinID == AArch64::BI__builtin_arm_strex ||
2840       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2841     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2842   }
2843 
2844   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2845     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2846       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2847       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2848       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2849   }
2850 
2851   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2852       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2853     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2854 
2855   // Memory Tagging Extensions (MTE) Intrinsics
2856   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2857       BuiltinID == AArch64::BI__builtin_arm_addg ||
2858       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2859       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2860       BuiltinID == AArch64::BI__builtin_arm_stg ||
2861       BuiltinID == AArch64::BI__builtin_arm_subp) {
2862     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2863   }
2864 
2865   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2866       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2867       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2868       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2869     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2870 
2871   // Only check the valid encoding range. Any constant in this range would be
2872   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2873   // an exception for incorrect registers. This matches MSVC behavior.
2874   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2875       BuiltinID == AArch64::BI_WriteStatusReg)
2876     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2877 
2878   if (BuiltinID == AArch64::BI__getReg)
2879     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2880 
2881   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2882     return true;
2883 
2884   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2885     return true;
2886 
2887   // For intrinsics which take an immediate value as part of the instruction,
2888   // range check them here.
2889   unsigned i = 0, l = 0, u = 0;
2890   switch (BuiltinID) {
2891   default: return false;
2892   case AArch64::BI__builtin_arm_dmb:
2893   case AArch64::BI__builtin_arm_dsb:
2894   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2895   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2896   }
2897 
2898   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2899 }
2900 
2901 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2902   if (Arg->getType()->getAsPlaceholderType())
2903     return false;
2904 
2905   // The first argument needs to be a record field access.
2906   // If it is an array element access, we delay decision
2907   // to BPF backend to check whether the access is a
2908   // field access or not.
2909   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2910           isa<MemberExpr>(Arg->IgnoreParens()) ||
2911           isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
2912 }
2913 
2914 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2915                             QualType VectorTy, QualType EltTy) {
2916   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2917   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2918     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2919         << Call->getSourceRange() << VectorEltTy << EltTy;
2920     return false;
2921   }
2922   return true;
2923 }
2924 
2925 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2926   QualType ArgType = Arg->getType();
2927   if (ArgType->getAsPlaceholderType())
2928     return false;
2929 
2930   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2931   // format:
2932   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2933   //   2. <type> var;
2934   //      __builtin_preserve_type_info(var, flag);
2935   if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
2936       !isa<UnaryOperator>(Arg->IgnoreParens()))
2937     return false;
2938 
2939   // Typedef type.
2940   if (ArgType->getAs<TypedefType>())
2941     return true;
2942 
2943   // Record type or Enum type.
2944   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2945   if (const auto *RT = Ty->getAs<RecordType>()) {
2946     if (!RT->getDecl()->getDeclName().isEmpty())
2947       return true;
2948   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2949     if (!ET->getDecl()->getDeclName().isEmpty())
2950       return true;
2951   }
2952 
2953   return false;
2954 }
2955 
2956 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2957   QualType ArgType = Arg->getType();
2958   if (ArgType->getAsPlaceholderType())
2959     return false;
2960 
2961   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2962   // format:
2963   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2964   //                                 flag);
2965   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2966   if (!UO)
2967     return false;
2968 
2969   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2970   if (!CE)
2971     return false;
2972   if (CE->getCastKind() != CK_IntegralToPointer &&
2973       CE->getCastKind() != CK_NullToPointer)
2974     return false;
2975 
2976   // The integer must be from an EnumConstantDecl.
2977   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2978   if (!DR)
2979     return false;
2980 
2981   const EnumConstantDecl *Enumerator =
2982       dyn_cast<EnumConstantDecl>(DR->getDecl());
2983   if (!Enumerator)
2984     return false;
2985 
2986   // The type must be EnumType.
2987   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2988   const auto *ET = Ty->getAs<EnumType>();
2989   if (!ET)
2990     return false;
2991 
2992   // The enum value must be supported.
2993   return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
2994 }
2995 
2996 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2997                                        CallExpr *TheCall) {
2998   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2999           BuiltinID == BPF::BI__builtin_btf_type_id ||
3000           BuiltinID == BPF::BI__builtin_preserve_type_info ||
3001           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
3002          "unexpected BPF builtin");
3003 
3004   if (checkArgCount(*this, TheCall, 2))
3005     return true;
3006 
3007   // The second argument needs to be a constant int
3008   Expr *Arg = TheCall->getArg(1);
3009   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
3010   diag::kind kind;
3011   if (!Value) {
3012     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
3013       kind = diag::err_preserve_field_info_not_const;
3014     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
3015       kind = diag::err_btf_type_id_not_const;
3016     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
3017       kind = diag::err_preserve_type_info_not_const;
3018     else
3019       kind = diag::err_preserve_enum_value_not_const;
3020     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
3021     return true;
3022   }
3023 
3024   // The first argument
3025   Arg = TheCall->getArg(0);
3026   bool InvalidArg = false;
3027   bool ReturnUnsignedInt = true;
3028   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
3029     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
3030       InvalidArg = true;
3031       kind = diag::err_preserve_field_info_not_field;
3032     }
3033   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
3034     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
3035       InvalidArg = true;
3036       kind = diag::err_preserve_type_info_invalid;
3037     }
3038   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
3039     if (!isValidBPFPreserveEnumValueArg(Arg)) {
3040       InvalidArg = true;
3041       kind = diag::err_preserve_enum_value_invalid;
3042     }
3043     ReturnUnsignedInt = false;
3044   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
3045     ReturnUnsignedInt = false;
3046   }
3047 
3048   if (InvalidArg) {
3049     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
3050     return true;
3051   }
3052 
3053   if (ReturnUnsignedInt)
3054     TheCall->setType(Context.UnsignedIntTy);
3055   else
3056     TheCall->setType(Context.UnsignedLongTy);
3057   return false;
3058 }
3059 
3060 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3061   struct ArgInfo {
3062     uint8_t OpNum;
3063     bool IsSigned;
3064     uint8_t BitWidth;
3065     uint8_t Align;
3066   };
3067   struct BuiltinInfo {
3068     unsigned BuiltinID;
3069     ArgInfo Infos[2];
3070   };
3071 
3072   static BuiltinInfo Infos[] = {
3073     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
3074     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
3075     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
3076     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
3077     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
3078     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
3079     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
3080     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
3081     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
3082     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
3083     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
3084 
3085     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
3086     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
3087     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
3088     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
3089     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
3090     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
3091     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
3092     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
3093     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
3094     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
3095     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
3096 
3097     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
3098     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
3099     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
3100     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
3101     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
3102     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
3103     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
3104     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
3105     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
3106     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
3107     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
3108     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
3109     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
3110     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
3111     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
3112     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
3113     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
3114     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
3115     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
3116     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
3117     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
3118     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
3119     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
3120     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
3121     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
3122     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
3123     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
3124     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
3125     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
3126     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
3127     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
3128     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
3129     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
3130     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
3131     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
3132     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
3133     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
3134     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
3135     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
3136     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
3137     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
3138     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
3139     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
3140     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
3141     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
3142     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
3143     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
3144     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
3145     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
3146     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
3147     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
3148     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
3149                                                       {{ 1, false, 6,  0 }} },
3150     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
3151     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
3152     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
3153     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
3154     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
3155     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
3156     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3157                                                       {{ 1, false, 5,  0 }} },
3158     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
3159     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
3160     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
3161     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
3162     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
3163     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
3164                                                        { 2, false, 5,  0 }} },
3165     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3166                                                        { 2, false, 6,  0 }} },
3167     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3168                                                        { 3, false, 5,  0 }} },
3169     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3170                                                        { 3, false, 6,  0 }} },
3171     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3172     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3173     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3174     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3175     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3176     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3177     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3178     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3179     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3180     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3181     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3182     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3183     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3184     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3185     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3186     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3187                                                       {{ 2, false, 4,  0 },
3188                                                        { 3, false, 5,  0 }} },
3189     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3190                                                       {{ 2, false, 4,  0 },
3191                                                        { 3, false, 5,  0 }} },
3192     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3193                                                       {{ 2, false, 4,  0 },
3194                                                        { 3, false, 5,  0 }} },
3195     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3196                                                       {{ 2, false, 4,  0 },
3197                                                        { 3, false, 5,  0 }} },
3198     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3199     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3200     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3201     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3202     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3203     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3204     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3205     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3206     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3207     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3208     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3209                                                        { 2, false, 5,  0 }} },
3210     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3211                                                        { 2, false, 6,  0 }} },
3212     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3213     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3214     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3215     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3216     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3217     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3218     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3219     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3220     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3221                                                       {{ 1, false, 4,  0 }} },
3222     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3223     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3224                                                       {{ 1, false, 4,  0 }} },
3225     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3226     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3227     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3228     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3229     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3230     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3231     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3232     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3233     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3234     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3235     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3236     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3237     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3238     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3239     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3240     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3241     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3242     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3243     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3244     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3245                                                       {{ 3, false, 1,  0 }} },
3246     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3247     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3248     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3249     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3250                                                       {{ 3, false, 1,  0 }} },
3251     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3252     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3253     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3254     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3255                                                       {{ 3, false, 1,  0 }} },
3256   };
3257 
3258   // Use a dynamically initialized static to sort the table exactly once on
3259   // first run.
3260   static const bool SortOnce =
3261       (llvm::sort(Infos,
3262                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3263                    return LHS.BuiltinID < RHS.BuiltinID;
3264                  }),
3265        true);
3266   (void)SortOnce;
3267 
3268   const BuiltinInfo *F = llvm::partition_point(
3269       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3270   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3271     return false;
3272 
3273   bool Error = false;
3274 
3275   for (const ArgInfo &A : F->Infos) {
3276     // Ignore empty ArgInfo elements.
3277     if (A.BitWidth == 0)
3278       continue;
3279 
3280     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3281     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3282     if (!A.Align) {
3283       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3284     } else {
3285       unsigned M = 1 << A.Align;
3286       Min *= M;
3287       Max *= M;
3288       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3289       Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3290     }
3291   }
3292   return Error;
3293 }
3294 
3295 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3296                                            CallExpr *TheCall) {
3297   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3298 }
3299 
3300 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3301                                         unsigned BuiltinID, CallExpr *TheCall) {
3302   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3303          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3304 }
3305 
3306 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3307                                CallExpr *TheCall) {
3308 
3309   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3310       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3311     if (!TI.hasFeature("dsp"))
3312       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3313   }
3314 
3315   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3316       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3317     if (!TI.hasFeature("dspr2"))
3318       return Diag(TheCall->getBeginLoc(),
3319                   diag::err_mips_builtin_requires_dspr2);
3320   }
3321 
3322   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3323       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3324     if (!TI.hasFeature("msa"))
3325       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3326   }
3327 
3328   return false;
3329 }
3330 
3331 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3332 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3333 // ordering for DSP is unspecified. MSA is ordered by the data format used
3334 // by the underlying instruction i.e., df/m, df/n and then by size.
3335 //
3336 // FIXME: The size tests here should instead be tablegen'd along with the
3337 //        definitions from include/clang/Basic/BuiltinsMips.def.
3338 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3339 //        be too.
3340 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3341   unsigned i = 0, l = 0, u = 0, m = 0;
3342   switch (BuiltinID) {
3343   default: return false;
3344   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3345   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3346   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3347   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3348   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3349   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3350   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3351   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3352   // df/m field.
3353   // These intrinsics take an unsigned 3 bit immediate.
3354   case Mips::BI__builtin_msa_bclri_b:
3355   case Mips::BI__builtin_msa_bnegi_b:
3356   case Mips::BI__builtin_msa_bseti_b:
3357   case Mips::BI__builtin_msa_sat_s_b:
3358   case Mips::BI__builtin_msa_sat_u_b:
3359   case Mips::BI__builtin_msa_slli_b:
3360   case Mips::BI__builtin_msa_srai_b:
3361   case Mips::BI__builtin_msa_srari_b:
3362   case Mips::BI__builtin_msa_srli_b:
3363   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3364   case Mips::BI__builtin_msa_binsli_b:
3365   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3366   // These intrinsics take an unsigned 4 bit immediate.
3367   case Mips::BI__builtin_msa_bclri_h:
3368   case Mips::BI__builtin_msa_bnegi_h:
3369   case Mips::BI__builtin_msa_bseti_h:
3370   case Mips::BI__builtin_msa_sat_s_h:
3371   case Mips::BI__builtin_msa_sat_u_h:
3372   case Mips::BI__builtin_msa_slli_h:
3373   case Mips::BI__builtin_msa_srai_h:
3374   case Mips::BI__builtin_msa_srari_h:
3375   case Mips::BI__builtin_msa_srli_h:
3376   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3377   case Mips::BI__builtin_msa_binsli_h:
3378   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3379   // These intrinsics take an unsigned 5 bit immediate.
3380   // The first block of intrinsics actually have an unsigned 5 bit field,
3381   // not a df/n field.
3382   case Mips::BI__builtin_msa_cfcmsa:
3383   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3384   case Mips::BI__builtin_msa_clei_u_b:
3385   case Mips::BI__builtin_msa_clei_u_h:
3386   case Mips::BI__builtin_msa_clei_u_w:
3387   case Mips::BI__builtin_msa_clei_u_d:
3388   case Mips::BI__builtin_msa_clti_u_b:
3389   case Mips::BI__builtin_msa_clti_u_h:
3390   case Mips::BI__builtin_msa_clti_u_w:
3391   case Mips::BI__builtin_msa_clti_u_d:
3392   case Mips::BI__builtin_msa_maxi_u_b:
3393   case Mips::BI__builtin_msa_maxi_u_h:
3394   case Mips::BI__builtin_msa_maxi_u_w:
3395   case Mips::BI__builtin_msa_maxi_u_d:
3396   case Mips::BI__builtin_msa_mini_u_b:
3397   case Mips::BI__builtin_msa_mini_u_h:
3398   case Mips::BI__builtin_msa_mini_u_w:
3399   case Mips::BI__builtin_msa_mini_u_d:
3400   case Mips::BI__builtin_msa_addvi_b:
3401   case Mips::BI__builtin_msa_addvi_h:
3402   case Mips::BI__builtin_msa_addvi_w:
3403   case Mips::BI__builtin_msa_addvi_d:
3404   case Mips::BI__builtin_msa_bclri_w:
3405   case Mips::BI__builtin_msa_bnegi_w:
3406   case Mips::BI__builtin_msa_bseti_w:
3407   case Mips::BI__builtin_msa_sat_s_w:
3408   case Mips::BI__builtin_msa_sat_u_w:
3409   case Mips::BI__builtin_msa_slli_w:
3410   case Mips::BI__builtin_msa_srai_w:
3411   case Mips::BI__builtin_msa_srari_w:
3412   case Mips::BI__builtin_msa_srli_w:
3413   case Mips::BI__builtin_msa_srlri_w:
3414   case Mips::BI__builtin_msa_subvi_b:
3415   case Mips::BI__builtin_msa_subvi_h:
3416   case Mips::BI__builtin_msa_subvi_w:
3417   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3418   case Mips::BI__builtin_msa_binsli_w:
3419   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3420   // These intrinsics take an unsigned 6 bit immediate.
3421   case Mips::BI__builtin_msa_bclri_d:
3422   case Mips::BI__builtin_msa_bnegi_d:
3423   case Mips::BI__builtin_msa_bseti_d:
3424   case Mips::BI__builtin_msa_sat_s_d:
3425   case Mips::BI__builtin_msa_sat_u_d:
3426   case Mips::BI__builtin_msa_slli_d:
3427   case Mips::BI__builtin_msa_srai_d:
3428   case Mips::BI__builtin_msa_srari_d:
3429   case Mips::BI__builtin_msa_srli_d:
3430   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3431   case Mips::BI__builtin_msa_binsli_d:
3432   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3433   // These intrinsics take a signed 5 bit immediate.
3434   case Mips::BI__builtin_msa_ceqi_b:
3435   case Mips::BI__builtin_msa_ceqi_h:
3436   case Mips::BI__builtin_msa_ceqi_w:
3437   case Mips::BI__builtin_msa_ceqi_d:
3438   case Mips::BI__builtin_msa_clti_s_b:
3439   case Mips::BI__builtin_msa_clti_s_h:
3440   case Mips::BI__builtin_msa_clti_s_w:
3441   case Mips::BI__builtin_msa_clti_s_d:
3442   case Mips::BI__builtin_msa_clei_s_b:
3443   case Mips::BI__builtin_msa_clei_s_h:
3444   case Mips::BI__builtin_msa_clei_s_w:
3445   case Mips::BI__builtin_msa_clei_s_d:
3446   case Mips::BI__builtin_msa_maxi_s_b:
3447   case Mips::BI__builtin_msa_maxi_s_h:
3448   case Mips::BI__builtin_msa_maxi_s_w:
3449   case Mips::BI__builtin_msa_maxi_s_d:
3450   case Mips::BI__builtin_msa_mini_s_b:
3451   case Mips::BI__builtin_msa_mini_s_h:
3452   case Mips::BI__builtin_msa_mini_s_w:
3453   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3454   // These intrinsics take an unsigned 8 bit immediate.
3455   case Mips::BI__builtin_msa_andi_b:
3456   case Mips::BI__builtin_msa_nori_b:
3457   case Mips::BI__builtin_msa_ori_b:
3458   case Mips::BI__builtin_msa_shf_b:
3459   case Mips::BI__builtin_msa_shf_h:
3460   case Mips::BI__builtin_msa_shf_w:
3461   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3462   case Mips::BI__builtin_msa_bseli_b:
3463   case Mips::BI__builtin_msa_bmnzi_b:
3464   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3465   // df/n format
3466   // These intrinsics take an unsigned 4 bit immediate.
3467   case Mips::BI__builtin_msa_copy_s_b:
3468   case Mips::BI__builtin_msa_copy_u_b:
3469   case Mips::BI__builtin_msa_insve_b:
3470   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3471   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3472   // These intrinsics take an unsigned 3 bit immediate.
3473   case Mips::BI__builtin_msa_copy_s_h:
3474   case Mips::BI__builtin_msa_copy_u_h:
3475   case Mips::BI__builtin_msa_insve_h:
3476   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3477   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3478   // These intrinsics take an unsigned 2 bit immediate.
3479   case Mips::BI__builtin_msa_copy_s_w:
3480   case Mips::BI__builtin_msa_copy_u_w:
3481   case Mips::BI__builtin_msa_insve_w:
3482   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3483   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3484   // These intrinsics take an unsigned 1 bit immediate.
3485   case Mips::BI__builtin_msa_copy_s_d:
3486   case Mips::BI__builtin_msa_copy_u_d:
3487   case Mips::BI__builtin_msa_insve_d:
3488   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3489   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3490   // Memory offsets and immediate loads.
3491   // These intrinsics take a signed 10 bit immediate.
3492   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3493   case Mips::BI__builtin_msa_ldi_h:
3494   case Mips::BI__builtin_msa_ldi_w:
3495   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3496   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3497   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3498   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3499   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3500   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3501   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3502   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3503   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3504   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3505   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3506   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3507   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3508   }
3509 
3510   if (!m)
3511     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3512 
3513   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3514          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3515 }
3516 
3517 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3518 /// advancing the pointer over the consumed characters. The decoded type is
3519 /// returned. If the decoded type represents a constant integer with a
3520 /// constraint on its value then Mask is set to that value. The type descriptors
3521 /// used in Str are specific to PPC MMA builtins and are documented in the file
3522 /// defining the PPC builtins.
3523 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3524                                         unsigned &Mask) {
3525   bool RequireICE = false;
3526   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3527   switch (*Str++) {
3528   case 'V':
3529     return Context.getVectorType(Context.UnsignedCharTy, 16,
3530                                  VectorType::VectorKind::AltiVecVector);
3531   case 'i': {
3532     char *End;
3533     unsigned size = strtoul(Str, &End, 10);
3534     assert(End != Str && "Missing constant parameter constraint");
3535     Str = End;
3536     Mask = size;
3537     return Context.IntTy;
3538   }
3539   case 'W': {
3540     char *End;
3541     unsigned size = strtoul(Str, &End, 10);
3542     assert(End != Str && "Missing PowerPC MMA type size");
3543     Str = End;
3544     QualType Type;
3545     switch (size) {
3546   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3547     case size: Type = Context.Id##Ty; break;
3548   #include "clang/Basic/PPCTypes.def"
3549     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3550     }
3551     bool CheckVectorArgs = false;
3552     while (!CheckVectorArgs) {
3553       switch (*Str++) {
3554       case '*':
3555         Type = Context.getPointerType(Type);
3556         break;
3557       case 'C':
3558         Type = Type.withConst();
3559         break;
3560       default:
3561         CheckVectorArgs = true;
3562         --Str;
3563         break;
3564       }
3565     }
3566     return Type;
3567   }
3568   default:
3569     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3570   }
3571 }
3572 
3573 static bool isPPC_64Builtin(unsigned BuiltinID) {
3574   // These builtins only work on PPC 64bit targets.
3575   switch (BuiltinID) {
3576   case PPC::BI__builtin_divde:
3577   case PPC::BI__builtin_divdeu:
3578   case PPC::BI__builtin_bpermd:
3579   case PPC::BI__builtin_ppc_ldarx:
3580   case PPC::BI__builtin_ppc_stdcx:
3581   case PPC::BI__builtin_ppc_tdw:
3582   case PPC::BI__builtin_ppc_trapd:
3583   case PPC::BI__builtin_ppc_cmpeqb:
3584   case PPC::BI__builtin_ppc_setb:
3585   case PPC::BI__builtin_ppc_mulhd:
3586   case PPC::BI__builtin_ppc_mulhdu:
3587   case PPC::BI__builtin_ppc_maddhd:
3588   case PPC::BI__builtin_ppc_maddhdu:
3589   case PPC::BI__builtin_ppc_maddld:
3590   case PPC::BI__builtin_ppc_load8r:
3591   case PPC::BI__builtin_ppc_store8r:
3592   case PPC::BI__builtin_ppc_insert_exp:
3593   case PPC::BI__builtin_ppc_extract_sig:
3594   case PPC::BI__builtin_ppc_addex:
3595   case PPC::BI__builtin_darn:
3596   case PPC::BI__builtin_darn_raw:
3597   case PPC::BI__builtin_ppc_compare_and_swaplp:
3598   case PPC::BI__builtin_ppc_fetch_and_addlp:
3599   case PPC::BI__builtin_ppc_fetch_and_andlp:
3600   case PPC::BI__builtin_ppc_fetch_and_orlp:
3601   case PPC::BI__builtin_ppc_fetch_and_swaplp:
3602     return true;
3603   }
3604   return false;
3605 }
3606 
3607 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3608                              StringRef FeatureToCheck, unsigned DiagID,
3609                              StringRef DiagArg = "") {
3610   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3611     return false;
3612 
3613   if (DiagArg.empty())
3614     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3615   else
3616     S.Diag(TheCall->getBeginLoc(), DiagID)
3617         << DiagArg << TheCall->getSourceRange();
3618 
3619   return true;
3620 }
3621 
3622 /// Returns true if the argument consists of one contiguous run of 1s with any
3623 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3624 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3625 /// since all 1s are not contiguous.
3626 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3627   llvm::APSInt Result;
3628   // We can't check the value of a dependent argument.
3629   Expr *Arg = TheCall->getArg(ArgNum);
3630   if (Arg->isTypeDependent() || Arg->isValueDependent())
3631     return false;
3632 
3633   // Check constant-ness first.
3634   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3635     return true;
3636 
3637   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3638   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3639     return false;
3640 
3641   return Diag(TheCall->getBeginLoc(),
3642               diag::err_argument_not_contiguous_bit_field)
3643          << ArgNum << Arg->getSourceRange();
3644 }
3645 
3646 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3647                                        CallExpr *TheCall) {
3648   unsigned i = 0, l = 0, u = 0;
3649   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3650   llvm::APSInt Result;
3651 
3652   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3653     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3654            << TheCall->getSourceRange();
3655 
3656   switch (BuiltinID) {
3657   default: return false;
3658   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3659   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3660     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3661            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3662   case PPC::BI__builtin_altivec_dss:
3663     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3664   case PPC::BI__builtin_tbegin:
3665   case PPC::BI__builtin_tend:
3666     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) ||
3667            SemaFeatureCheck(*this, TheCall, "htm",
3668                             diag::err_ppc_builtin_requires_htm);
3669   case PPC::BI__builtin_tsr:
3670     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3671            SemaFeatureCheck(*this, TheCall, "htm",
3672                             diag::err_ppc_builtin_requires_htm);
3673   case PPC::BI__builtin_tabortwc:
3674   case PPC::BI__builtin_tabortdc:
3675     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3676            SemaFeatureCheck(*this, TheCall, "htm",
3677                             diag::err_ppc_builtin_requires_htm);
3678   case PPC::BI__builtin_tabortwci:
3679   case PPC::BI__builtin_tabortdci:
3680     return SemaFeatureCheck(*this, TheCall, "htm",
3681                             diag::err_ppc_builtin_requires_htm) ||
3682            (SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3683             SemaBuiltinConstantArgRange(TheCall, 2, 0, 31));
3684   case PPC::BI__builtin_tabort:
3685   case PPC::BI__builtin_tcheck:
3686   case PPC::BI__builtin_treclaim:
3687   case PPC::BI__builtin_trechkpt:
3688   case PPC::BI__builtin_tendall:
3689   case PPC::BI__builtin_tresume:
3690   case PPC::BI__builtin_tsuspend:
3691   case PPC::BI__builtin_get_texasr:
3692   case PPC::BI__builtin_get_texasru:
3693   case PPC::BI__builtin_get_tfhar:
3694   case PPC::BI__builtin_get_tfiar:
3695   case PPC::BI__builtin_set_texasr:
3696   case PPC::BI__builtin_set_texasru:
3697   case PPC::BI__builtin_set_tfhar:
3698   case PPC::BI__builtin_set_tfiar:
3699   case PPC::BI__builtin_ttest:
3700     return SemaFeatureCheck(*this, TheCall, "htm",
3701                             diag::err_ppc_builtin_requires_htm);
3702   // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
3703   // __builtin_(un)pack_longdouble are available only if long double uses IBM
3704   // extended double representation.
3705   case PPC::BI__builtin_unpack_longdouble:
3706     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
3707       return true;
3708     LLVM_FALLTHROUGH;
3709   case PPC::BI__builtin_pack_longdouble:
3710     if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
3711       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
3712              << "ibmlongdouble";
3713     return false;
3714   case PPC::BI__builtin_altivec_dst:
3715   case PPC::BI__builtin_altivec_dstt:
3716   case PPC::BI__builtin_altivec_dstst:
3717   case PPC::BI__builtin_altivec_dststt:
3718     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3719   case PPC::BI__builtin_vsx_xxpermdi:
3720   case PPC::BI__builtin_vsx_xxsldwi:
3721     return SemaBuiltinVSX(TheCall);
3722   case PPC::BI__builtin_divwe:
3723   case PPC::BI__builtin_divweu:
3724   case PPC::BI__builtin_divde:
3725   case PPC::BI__builtin_divdeu:
3726     return SemaFeatureCheck(*this, TheCall, "extdiv",
3727                             diag::err_ppc_builtin_only_on_arch, "7");
3728   case PPC::BI__builtin_bpermd:
3729     return SemaFeatureCheck(*this, TheCall, "bpermd",
3730                             diag::err_ppc_builtin_only_on_arch, "7");
3731   case PPC::BI__builtin_unpack_vector_int128:
3732     return SemaFeatureCheck(*this, TheCall, "vsx",
3733                             diag::err_ppc_builtin_only_on_arch, "7") ||
3734            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3735   case PPC::BI__builtin_pack_vector_int128:
3736     return SemaFeatureCheck(*this, TheCall, "vsx",
3737                             diag::err_ppc_builtin_only_on_arch, "7");
3738   case PPC::BI__builtin_altivec_vgnb:
3739      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3740   case PPC::BI__builtin_altivec_vec_replace_elt:
3741   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3742     QualType VecTy = TheCall->getArg(0)->getType();
3743     QualType EltTy = TheCall->getArg(1)->getType();
3744     unsigned Width = Context.getIntWidth(EltTy);
3745     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3746            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3747   }
3748   case PPC::BI__builtin_vsx_xxeval:
3749      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3750   case PPC::BI__builtin_altivec_vsldbi:
3751      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3752   case PPC::BI__builtin_altivec_vsrdbi:
3753      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3754   case PPC::BI__builtin_vsx_xxpermx:
3755      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3756   case PPC::BI__builtin_ppc_tw:
3757   case PPC::BI__builtin_ppc_tdw:
3758     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3759   case PPC::BI__builtin_ppc_cmpeqb:
3760   case PPC::BI__builtin_ppc_setb:
3761   case PPC::BI__builtin_ppc_maddhd:
3762   case PPC::BI__builtin_ppc_maddhdu:
3763   case PPC::BI__builtin_ppc_maddld:
3764     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3765                             diag::err_ppc_builtin_only_on_arch, "9");
3766   case PPC::BI__builtin_ppc_cmprb:
3767     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3768                             diag::err_ppc_builtin_only_on_arch, "9") ||
3769            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3770   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3771   // be a constant that represents a contiguous bit field.
3772   case PPC::BI__builtin_ppc_rlwnm:
3773     return SemaValueIsRunOfOnes(TheCall, 2);
3774   case PPC::BI__builtin_ppc_rlwimi:
3775   case PPC::BI__builtin_ppc_rldimi:
3776     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3777            SemaValueIsRunOfOnes(TheCall, 3);
3778   case PPC::BI__builtin_ppc_extract_exp:
3779   case PPC::BI__builtin_ppc_extract_sig:
3780   case PPC::BI__builtin_ppc_insert_exp:
3781     return SemaFeatureCheck(*this, TheCall, "power9-vector",
3782                             diag::err_ppc_builtin_only_on_arch, "9");
3783   case PPC::BI__builtin_ppc_addex: {
3784     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3785                          diag::err_ppc_builtin_only_on_arch, "9") ||
3786         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3787       return true;
3788     // Output warning for reserved values 1 to 3.
3789     int ArgValue =
3790         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3791     if (ArgValue != 0)
3792       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3793           << ArgValue;
3794     return false;
3795   }
3796   case PPC::BI__builtin_ppc_mtfsb0:
3797   case PPC::BI__builtin_ppc_mtfsb1:
3798     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3799   case PPC::BI__builtin_ppc_mtfsf:
3800     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3801   case PPC::BI__builtin_ppc_mtfsfi:
3802     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3803            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3804   case PPC::BI__builtin_ppc_alignx:
3805     return SemaBuiltinConstantArgPower2(TheCall, 0);
3806   case PPC::BI__builtin_ppc_rdlam:
3807     return SemaValueIsRunOfOnes(TheCall, 2);
3808   case PPC::BI__builtin_ppc_icbt:
3809   case PPC::BI__builtin_ppc_sthcx:
3810   case PPC::BI__builtin_ppc_stbcx:
3811   case PPC::BI__builtin_ppc_lharx:
3812   case PPC::BI__builtin_ppc_lbarx:
3813     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3814                             diag::err_ppc_builtin_only_on_arch, "8");
3815   case PPC::BI__builtin_vsx_ldrmb:
3816   case PPC::BI__builtin_vsx_strmb:
3817     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3818                             diag::err_ppc_builtin_only_on_arch, "8") ||
3819            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3820   case PPC::BI__builtin_altivec_vcntmbb:
3821   case PPC::BI__builtin_altivec_vcntmbh:
3822   case PPC::BI__builtin_altivec_vcntmbw:
3823   case PPC::BI__builtin_altivec_vcntmbd:
3824     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3825   case PPC::BI__builtin_darn:
3826   case PPC::BI__builtin_darn_raw:
3827   case PPC::BI__builtin_darn_32:
3828     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3829                             diag::err_ppc_builtin_only_on_arch, "9");
3830   case PPC::BI__builtin_vsx_xxgenpcvbm:
3831   case PPC::BI__builtin_vsx_xxgenpcvhm:
3832   case PPC::BI__builtin_vsx_xxgenpcvwm:
3833   case PPC::BI__builtin_vsx_xxgenpcvdm:
3834     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3835   case PPC::BI__builtin_ppc_compare_exp_uo:
3836   case PPC::BI__builtin_ppc_compare_exp_lt:
3837   case PPC::BI__builtin_ppc_compare_exp_gt:
3838   case PPC::BI__builtin_ppc_compare_exp_eq:
3839     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3840                             diag::err_ppc_builtin_only_on_arch, "9") ||
3841            SemaFeatureCheck(*this, TheCall, "vsx",
3842                             diag::err_ppc_builtin_requires_vsx);
3843   case PPC::BI__builtin_ppc_test_data_class: {
3844     // Check if the first argument of the __builtin_ppc_test_data_class call is
3845     // valid. The argument must be either a 'float' or a 'double'.
3846     QualType ArgType = TheCall->getArg(0)->getType();
3847     if (ArgType != QualType(Context.FloatTy) &&
3848         ArgType != QualType(Context.DoubleTy))
3849       return Diag(TheCall->getBeginLoc(),
3850                   diag::err_ppc_invalid_test_data_class_type);
3851     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3852                             diag::err_ppc_builtin_only_on_arch, "9") ||
3853            SemaFeatureCheck(*this, TheCall, "vsx",
3854                             diag::err_ppc_builtin_requires_vsx) ||
3855            SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
3856   }
3857   case PPC::BI__builtin_ppc_load8r:
3858   case PPC::BI__builtin_ppc_store8r:
3859     return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
3860                             diag::err_ppc_builtin_only_on_arch, "7");
3861 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc)                                 \
3862   case PPC::BI__builtin_##Name:                                                \
3863     return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
3864 #include "clang/Basic/BuiltinsPPC.def"
3865   }
3866   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3867 }
3868 
3869 // Check if the given type is a non-pointer PPC MMA type. This function is used
3870 // in Sema to prevent invalid uses of restricted PPC MMA types.
3871 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3872   if (Type->isPointerType() || Type->isArrayType())
3873     return false;
3874 
3875   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3876 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3877   if (false
3878 #include "clang/Basic/PPCTypes.def"
3879      ) {
3880     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3881     return true;
3882   }
3883   return false;
3884 }
3885 
3886 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3887                                           CallExpr *TheCall) {
3888   // position of memory order and scope arguments in the builtin
3889   unsigned OrderIndex, ScopeIndex;
3890   switch (BuiltinID) {
3891   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3892   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3893   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3894   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3895     OrderIndex = 2;
3896     ScopeIndex = 3;
3897     break;
3898   case AMDGPU::BI__builtin_amdgcn_fence:
3899     OrderIndex = 0;
3900     ScopeIndex = 1;
3901     break;
3902   default:
3903     return false;
3904   }
3905 
3906   ExprResult Arg = TheCall->getArg(OrderIndex);
3907   auto ArgExpr = Arg.get();
3908   Expr::EvalResult ArgResult;
3909 
3910   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3911     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3912            << ArgExpr->getType();
3913   auto Ord = ArgResult.Val.getInt().getZExtValue();
3914 
3915   // Check validity of memory ordering as per C11 / C++11's memody model.
3916   // Only fence needs check. Atomic dec/inc allow all memory orders.
3917   if (!llvm::isValidAtomicOrderingCABI(Ord))
3918     return Diag(ArgExpr->getBeginLoc(),
3919                 diag::warn_atomic_op_has_invalid_memory_order)
3920            << ArgExpr->getSourceRange();
3921   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3922   case llvm::AtomicOrderingCABI::relaxed:
3923   case llvm::AtomicOrderingCABI::consume:
3924     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3925       return Diag(ArgExpr->getBeginLoc(),
3926                   diag::warn_atomic_op_has_invalid_memory_order)
3927              << ArgExpr->getSourceRange();
3928     break;
3929   case llvm::AtomicOrderingCABI::acquire:
3930   case llvm::AtomicOrderingCABI::release:
3931   case llvm::AtomicOrderingCABI::acq_rel:
3932   case llvm::AtomicOrderingCABI::seq_cst:
3933     break;
3934   }
3935 
3936   Arg = TheCall->getArg(ScopeIndex);
3937   ArgExpr = Arg.get();
3938   Expr::EvalResult ArgResult1;
3939   // Check that sync scope is a constant literal
3940   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3941     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3942            << ArgExpr->getType();
3943 
3944   return false;
3945 }
3946 
3947 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3948   llvm::APSInt Result;
3949 
3950   // We can't check the value of a dependent argument.
3951   Expr *Arg = TheCall->getArg(ArgNum);
3952   if (Arg->isTypeDependent() || Arg->isValueDependent())
3953     return false;
3954 
3955   // Check constant-ness first.
3956   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3957     return true;
3958 
3959   int64_t Val = Result.getSExtValue();
3960   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3961     return false;
3962 
3963   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3964          << Arg->getSourceRange();
3965 }
3966 
3967 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3968                                          unsigned BuiltinID,
3969                                          CallExpr *TheCall) {
3970   // CodeGenFunction can also detect this, but this gives a better error
3971   // message.
3972   bool FeatureMissing = false;
3973   SmallVector<StringRef> ReqFeatures;
3974   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3975   Features.split(ReqFeatures, ',');
3976 
3977   // Check if each required feature is included
3978   for (StringRef F : ReqFeatures) {
3979     SmallVector<StringRef> ReqOpFeatures;
3980     F.split(ReqOpFeatures, '|');
3981     bool HasFeature = false;
3982     for (StringRef OF : ReqOpFeatures) {
3983       if (TI.hasFeature(OF)) {
3984         HasFeature = true;
3985         continue;
3986       }
3987     }
3988 
3989     if (!HasFeature) {
3990       std::string FeatureStrs = "";
3991       for (StringRef OF : ReqOpFeatures) {
3992         // If the feature is 64bit, alter the string so it will print better in
3993         // the diagnostic.
3994         if (OF == "64bit")
3995           OF = "RV64";
3996 
3997         // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3998         OF.consume_front("experimental-");
3999         std::string FeatureStr = OF.str();
4000         FeatureStr[0] = std::toupper(FeatureStr[0]);
4001         // Combine strings.
4002         FeatureStrs += FeatureStrs == "" ? "" : ", ";
4003         FeatureStrs += "'";
4004         FeatureStrs += FeatureStr;
4005         FeatureStrs += "'";
4006       }
4007       // Error message
4008       FeatureMissing = true;
4009       Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
4010           << TheCall->getSourceRange() << StringRef(FeatureStrs);
4011     }
4012   }
4013 
4014   if (FeatureMissing)
4015     return true;
4016 
4017   switch (BuiltinID) {
4018   case RISCVVector::BI__builtin_rvv_vsetvli:
4019     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
4020            CheckRISCVLMUL(TheCall, 2);
4021   case RISCVVector::BI__builtin_rvv_vsetvlimax:
4022     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
4023            CheckRISCVLMUL(TheCall, 1);
4024   }
4025 
4026   return false;
4027 }
4028 
4029 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
4030                                            CallExpr *TheCall) {
4031   if (BuiltinID == SystemZ::BI__builtin_tabort) {
4032     Expr *Arg = TheCall->getArg(0);
4033     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
4034       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
4035         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
4036                << Arg->getSourceRange();
4037   }
4038 
4039   // For intrinsics which take an immediate value as part of the instruction,
4040   // range check them here.
4041   unsigned i = 0, l = 0, u = 0;
4042   switch (BuiltinID) {
4043   default: return false;
4044   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
4045   case SystemZ::BI__builtin_s390_verimb:
4046   case SystemZ::BI__builtin_s390_verimh:
4047   case SystemZ::BI__builtin_s390_verimf:
4048   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
4049   case SystemZ::BI__builtin_s390_vfaeb:
4050   case SystemZ::BI__builtin_s390_vfaeh:
4051   case SystemZ::BI__builtin_s390_vfaef:
4052   case SystemZ::BI__builtin_s390_vfaebs:
4053   case SystemZ::BI__builtin_s390_vfaehs:
4054   case SystemZ::BI__builtin_s390_vfaefs:
4055   case SystemZ::BI__builtin_s390_vfaezb:
4056   case SystemZ::BI__builtin_s390_vfaezh:
4057   case SystemZ::BI__builtin_s390_vfaezf:
4058   case SystemZ::BI__builtin_s390_vfaezbs:
4059   case SystemZ::BI__builtin_s390_vfaezhs:
4060   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
4061   case SystemZ::BI__builtin_s390_vfisb:
4062   case SystemZ::BI__builtin_s390_vfidb:
4063     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
4064            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4065   case SystemZ::BI__builtin_s390_vftcisb:
4066   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
4067   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
4068   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
4069   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
4070   case SystemZ::BI__builtin_s390_vstrcb:
4071   case SystemZ::BI__builtin_s390_vstrch:
4072   case SystemZ::BI__builtin_s390_vstrcf:
4073   case SystemZ::BI__builtin_s390_vstrczb:
4074   case SystemZ::BI__builtin_s390_vstrczh:
4075   case SystemZ::BI__builtin_s390_vstrczf:
4076   case SystemZ::BI__builtin_s390_vstrcbs:
4077   case SystemZ::BI__builtin_s390_vstrchs:
4078   case SystemZ::BI__builtin_s390_vstrcfs:
4079   case SystemZ::BI__builtin_s390_vstrczbs:
4080   case SystemZ::BI__builtin_s390_vstrczhs:
4081   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
4082   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
4083   case SystemZ::BI__builtin_s390_vfminsb:
4084   case SystemZ::BI__builtin_s390_vfmaxsb:
4085   case SystemZ::BI__builtin_s390_vfmindb:
4086   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
4087   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
4088   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
4089   case SystemZ::BI__builtin_s390_vclfnhs:
4090   case SystemZ::BI__builtin_s390_vclfnls:
4091   case SystemZ::BI__builtin_s390_vcfn:
4092   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
4093   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
4094   }
4095   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4096 }
4097 
4098 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
4099 /// This checks that the target supports __builtin_cpu_supports and
4100 /// that the string argument is constant and valid.
4101 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
4102                                    CallExpr *TheCall) {
4103   Expr *Arg = TheCall->getArg(0);
4104 
4105   // Check if the argument is a string literal.
4106   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4107     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4108            << Arg->getSourceRange();
4109 
4110   // Check the contents of the string.
4111   StringRef Feature =
4112       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4113   if (!TI.validateCpuSupports(Feature))
4114     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
4115            << Arg->getSourceRange();
4116   return false;
4117 }
4118 
4119 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
4120 /// This checks that the target supports __builtin_cpu_is and
4121 /// that the string argument is constant and valid.
4122 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
4123   Expr *Arg = TheCall->getArg(0);
4124 
4125   // Check if the argument is a string literal.
4126   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4127     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4128            << Arg->getSourceRange();
4129 
4130   // Check the contents of the string.
4131   StringRef Feature =
4132       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4133   if (!TI.validateCpuIs(Feature))
4134     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
4135            << Arg->getSourceRange();
4136   return false;
4137 }
4138 
4139 // Check if the rounding mode is legal.
4140 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
4141   // Indicates if this instruction has rounding control or just SAE.
4142   bool HasRC = false;
4143 
4144   unsigned ArgNum = 0;
4145   switch (BuiltinID) {
4146   default:
4147     return false;
4148   case X86::BI__builtin_ia32_vcvttsd2si32:
4149   case X86::BI__builtin_ia32_vcvttsd2si64:
4150   case X86::BI__builtin_ia32_vcvttsd2usi32:
4151   case X86::BI__builtin_ia32_vcvttsd2usi64:
4152   case X86::BI__builtin_ia32_vcvttss2si32:
4153   case X86::BI__builtin_ia32_vcvttss2si64:
4154   case X86::BI__builtin_ia32_vcvttss2usi32:
4155   case X86::BI__builtin_ia32_vcvttss2usi64:
4156   case X86::BI__builtin_ia32_vcvttsh2si32:
4157   case X86::BI__builtin_ia32_vcvttsh2si64:
4158   case X86::BI__builtin_ia32_vcvttsh2usi32:
4159   case X86::BI__builtin_ia32_vcvttsh2usi64:
4160     ArgNum = 1;
4161     break;
4162   case X86::BI__builtin_ia32_maxpd512:
4163   case X86::BI__builtin_ia32_maxps512:
4164   case X86::BI__builtin_ia32_minpd512:
4165   case X86::BI__builtin_ia32_minps512:
4166   case X86::BI__builtin_ia32_maxph512:
4167   case X86::BI__builtin_ia32_minph512:
4168     ArgNum = 2;
4169     break;
4170   case X86::BI__builtin_ia32_vcvtph2pd512_mask:
4171   case X86::BI__builtin_ia32_vcvtph2psx512_mask:
4172   case X86::BI__builtin_ia32_cvtps2pd512_mask:
4173   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
4174   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
4175   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
4176   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
4177   case X86::BI__builtin_ia32_cvttps2dq512_mask:
4178   case X86::BI__builtin_ia32_cvttps2qq512_mask:
4179   case X86::BI__builtin_ia32_cvttps2udq512_mask:
4180   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
4181   case X86::BI__builtin_ia32_vcvttph2w512_mask:
4182   case X86::BI__builtin_ia32_vcvttph2uw512_mask:
4183   case X86::BI__builtin_ia32_vcvttph2dq512_mask:
4184   case X86::BI__builtin_ia32_vcvttph2udq512_mask:
4185   case X86::BI__builtin_ia32_vcvttph2qq512_mask:
4186   case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
4187   case X86::BI__builtin_ia32_exp2pd_mask:
4188   case X86::BI__builtin_ia32_exp2ps_mask:
4189   case X86::BI__builtin_ia32_getexppd512_mask:
4190   case X86::BI__builtin_ia32_getexpps512_mask:
4191   case X86::BI__builtin_ia32_getexpph512_mask:
4192   case X86::BI__builtin_ia32_rcp28pd_mask:
4193   case X86::BI__builtin_ia32_rcp28ps_mask:
4194   case X86::BI__builtin_ia32_rsqrt28pd_mask:
4195   case X86::BI__builtin_ia32_rsqrt28ps_mask:
4196   case X86::BI__builtin_ia32_vcomisd:
4197   case X86::BI__builtin_ia32_vcomiss:
4198   case X86::BI__builtin_ia32_vcomish:
4199   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
4200     ArgNum = 3;
4201     break;
4202   case X86::BI__builtin_ia32_cmppd512_mask:
4203   case X86::BI__builtin_ia32_cmpps512_mask:
4204   case X86::BI__builtin_ia32_cmpsd_mask:
4205   case X86::BI__builtin_ia32_cmpss_mask:
4206   case X86::BI__builtin_ia32_cmpsh_mask:
4207   case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
4208   case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
4209   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
4210   case X86::BI__builtin_ia32_getexpsd128_round_mask:
4211   case X86::BI__builtin_ia32_getexpss128_round_mask:
4212   case X86::BI__builtin_ia32_getexpsh128_round_mask:
4213   case X86::BI__builtin_ia32_getmantpd512_mask:
4214   case X86::BI__builtin_ia32_getmantps512_mask:
4215   case X86::BI__builtin_ia32_getmantph512_mask:
4216   case X86::BI__builtin_ia32_maxsd_round_mask:
4217   case X86::BI__builtin_ia32_maxss_round_mask:
4218   case X86::BI__builtin_ia32_maxsh_round_mask:
4219   case X86::BI__builtin_ia32_minsd_round_mask:
4220   case X86::BI__builtin_ia32_minss_round_mask:
4221   case X86::BI__builtin_ia32_minsh_round_mask:
4222   case X86::BI__builtin_ia32_rcp28sd_round_mask:
4223   case X86::BI__builtin_ia32_rcp28ss_round_mask:
4224   case X86::BI__builtin_ia32_reducepd512_mask:
4225   case X86::BI__builtin_ia32_reduceps512_mask:
4226   case X86::BI__builtin_ia32_reduceph512_mask:
4227   case X86::BI__builtin_ia32_rndscalepd_mask:
4228   case X86::BI__builtin_ia32_rndscaleps_mask:
4229   case X86::BI__builtin_ia32_rndscaleph_mask:
4230   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4231   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4232     ArgNum = 4;
4233     break;
4234   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4235   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4236   case X86::BI__builtin_ia32_fixupimmps512_mask:
4237   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4238   case X86::BI__builtin_ia32_fixupimmsd_mask:
4239   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4240   case X86::BI__builtin_ia32_fixupimmss_mask:
4241   case X86::BI__builtin_ia32_fixupimmss_maskz:
4242   case X86::BI__builtin_ia32_getmantsd_round_mask:
4243   case X86::BI__builtin_ia32_getmantss_round_mask:
4244   case X86::BI__builtin_ia32_getmantsh_round_mask:
4245   case X86::BI__builtin_ia32_rangepd512_mask:
4246   case X86::BI__builtin_ia32_rangeps512_mask:
4247   case X86::BI__builtin_ia32_rangesd128_round_mask:
4248   case X86::BI__builtin_ia32_rangess128_round_mask:
4249   case X86::BI__builtin_ia32_reducesd_mask:
4250   case X86::BI__builtin_ia32_reducess_mask:
4251   case X86::BI__builtin_ia32_reducesh_mask:
4252   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4253   case X86::BI__builtin_ia32_rndscaless_round_mask:
4254   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4255     ArgNum = 5;
4256     break;
4257   case X86::BI__builtin_ia32_vcvtsd2si64:
4258   case X86::BI__builtin_ia32_vcvtsd2si32:
4259   case X86::BI__builtin_ia32_vcvtsd2usi32:
4260   case X86::BI__builtin_ia32_vcvtsd2usi64:
4261   case X86::BI__builtin_ia32_vcvtss2si32:
4262   case X86::BI__builtin_ia32_vcvtss2si64:
4263   case X86::BI__builtin_ia32_vcvtss2usi32:
4264   case X86::BI__builtin_ia32_vcvtss2usi64:
4265   case X86::BI__builtin_ia32_vcvtsh2si32:
4266   case X86::BI__builtin_ia32_vcvtsh2si64:
4267   case X86::BI__builtin_ia32_vcvtsh2usi32:
4268   case X86::BI__builtin_ia32_vcvtsh2usi64:
4269   case X86::BI__builtin_ia32_sqrtpd512:
4270   case X86::BI__builtin_ia32_sqrtps512:
4271   case X86::BI__builtin_ia32_sqrtph512:
4272     ArgNum = 1;
4273     HasRC = true;
4274     break;
4275   case X86::BI__builtin_ia32_addph512:
4276   case X86::BI__builtin_ia32_divph512:
4277   case X86::BI__builtin_ia32_mulph512:
4278   case X86::BI__builtin_ia32_subph512:
4279   case X86::BI__builtin_ia32_addpd512:
4280   case X86::BI__builtin_ia32_addps512:
4281   case X86::BI__builtin_ia32_divpd512:
4282   case X86::BI__builtin_ia32_divps512:
4283   case X86::BI__builtin_ia32_mulpd512:
4284   case X86::BI__builtin_ia32_mulps512:
4285   case X86::BI__builtin_ia32_subpd512:
4286   case X86::BI__builtin_ia32_subps512:
4287   case X86::BI__builtin_ia32_cvtsi2sd64:
4288   case X86::BI__builtin_ia32_cvtsi2ss32:
4289   case X86::BI__builtin_ia32_cvtsi2ss64:
4290   case X86::BI__builtin_ia32_cvtusi2sd64:
4291   case X86::BI__builtin_ia32_cvtusi2ss32:
4292   case X86::BI__builtin_ia32_cvtusi2ss64:
4293   case X86::BI__builtin_ia32_vcvtusi2sh:
4294   case X86::BI__builtin_ia32_vcvtusi642sh:
4295   case X86::BI__builtin_ia32_vcvtsi2sh:
4296   case X86::BI__builtin_ia32_vcvtsi642sh:
4297     ArgNum = 2;
4298     HasRC = true;
4299     break;
4300   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4301   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4302   case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4303   case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4304   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4305   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4306   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4307   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4308   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4309   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4310   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4311   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4312   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4313   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4314   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4315   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4316   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4317   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4318   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4319   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4320   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4321   case X86::BI__builtin_ia32_vcvtph2w512_mask:
4322   case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4323   case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4324   case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4325   case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4326   case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4327   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4328   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4329     ArgNum = 3;
4330     HasRC = true;
4331     break;
4332   case X86::BI__builtin_ia32_addsh_round_mask:
4333   case X86::BI__builtin_ia32_addss_round_mask:
4334   case X86::BI__builtin_ia32_addsd_round_mask:
4335   case X86::BI__builtin_ia32_divsh_round_mask:
4336   case X86::BI__builtin_ia32_divss_round_mask:
4337   case X86::BI__builtin_ia32_divsd_round_mask:
4338   case X86::BI__builtin_ia32_mulsh_round_mask:
4339   case X86::BI__builtin_ia32_mulss_round_mask:
4340   case X86::BI__builtin_ia32_mulsd_round_mask:
4341   case X86::BI__builtin_ia32_subsh_round_mask:
4342   case X86::BI__builtin_ia32_subss_round_mask:
4343   case X86::BI__builtin_ia32_subsd_round_mask:
4344   case X86::BI__builtin_ia32_scalefph512_mask:
4345   case X86::BI__builtin_ia32_scalefpd512_mask:
4346   case X86::BI__builtin_ia32_scalefps512_mask:
4347   case X86::BI__builtin_ia32_scalefsd_round_mask:
4348   case X86::BI__builtin_ia32_scalefss_round_mask:
4349   case X86::BI__builtin_ia32_scalefsh_round_mask:
4350   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4351   case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4352   case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4353   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4354   case X86::BI__builtin_ia32_sqrtss_round_mask:
4355   case X86::BI__builtin_ia32_sqrtsh_round_mask:
4356   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4357   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4358   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4359   case X86::BI__builtin_ia32_vfmaddss3_mask:
4360   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4361   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4362   case X86::BI__builtin_ia32_vfmaddsh3_mask:
4363   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4364   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4365   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4366   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4367   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4368   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4369   case X86::BI__builtin_ia32_vfmaddps512_mask:
4370   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4371   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4372   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4373   case X86::BI__builtin_ia32_vfmaddph512_mask:
4374   case X86::BI__builtin_ia32_vfmaddph512_maskz:
4375   case X86::BI__builtin_ia32_vfmaddph512_mask3:
4376   case X86::BI__builtin_ia32_vfmsubph512_mask3:
4377   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4378   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4379   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4380   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4381   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4382   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4383   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4384   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4385   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4386   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4387   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4388   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4389   case X86::BI__builtin_ia32_vfmaddcsh_mask:
4390   case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4391   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4392   case X86::BI__builtin_ia32_vfmaddcph512_mask:
4393   case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4394   case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4395   case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4396   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4397   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4398   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4399   case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4400   case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4401   case X86::BI__builtin_ia32_vfmulcsh_mask:
4402   case X86::BI__builtin_ia32_vfmulcph512_mask:
4403   case X86::BI__builtin_ia32_vfcmulcsh_mask:
4404   case X86::BI__builtin_ia32_vfcmulcph512_mask:
4405     ArgNum = 4;
4406     HasRC = true;
4407     break;
4408   }
4409 
4410   llvm::APSInt Result;
4411 
4412   // We can't check the value of a dependent argument.
4413   Expr *Arg = TheCall->getArg(ArgNum);
4414   if (Arg->isTypeDependent() || Arg->isValueDependent())
4415     return false;
4416 
4417   // Check constant-ness first.
4418   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4419     return true;
4420 
4421   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4422   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4423   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4424   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4425   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4426       Result == 8/*ROUND_NO_EXC*/ ||
4427       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4428       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4429     return false;
4430 
4431   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4432          << Arg->getSourceRange();
4433 }
4434 
4435 // Check if the gather/scatter scale is legal.
4436 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4437                                              CallExpr *TheCall) {
4438   unsigned ArgNum = 0;
4439   switch (BuiltinID) {
4440   default:
4441     return false;
4442   case X86::BI__builtin_ia32_gatherpfdpd:
4443   case X86::BI__builtin_ia32_gatherpfdps:
4444   case X86::BI__builtin_ia32_gatherpfqpd:
4445   case X86::BI__builtin_ia32_gatherpfqps:
4446   case X86::BI__builtin_ia32_scatterpfdpd:
4447   case X86::BI__builtin_ia32_scatterpfdps:
4448   case X86::BI__builtin_ia32_scatterpfqpd:
4449   case X86::BI__builtin_ia32_scatterpfqps:
4450     ArgNum = 3;
4451     break;
4452   case X86::BI__builtin_ia32_gatherd_pd:
4453   case X86::BI__builtin_ia32_gatherd_pd256:
4454   case X86::BI__builtin_ia32_gatherq_pd:
4455   case X86::BI__builtin_ia32_gatherq_pd256:
4456   case X86::BI__builtin_ia32_gatherd_ps:
4457   case X86::BI__builtin_ia32_gatherd_ps256:
4458   case X86::BI__builtin_ia32_gatherq_ps:
4459   case X86::BI__builtin_ia32_gatherq_ps256:
4460   case X86::BI__builtin_ia32_gatherd_q:
4461   case X86::BI__builtin_ia32_gatherd_q256:
4462   case X86::BI__builtin_ia32_gatherq_q:
4463   case X86::BI__builtin_ia32_gatherq_q256:
4464   case X86::BI__builtin_ia32_gatherd_d:
4465   case X86::BI__builtin_ia32_gatherd_d256:
4466   case X86::BI__builtin_ia32_gatherq_d:
4467   case X86::BI__builtin_ia32_gatherq_d256:
4468   case X86::BI__builtin_ia32_gather3div2df:
4469   case X86::BI__builtin_ia32_gather3div2di:
4470   case X86::BI__builtin_ia32_gather3div4df:
4471   case X86::BI__builtin_ia32_gather3div4di:
4472   case X86::BI__builtin_ia32_gather3div4sf:
4473   case X86::BI__builtin_ia32_gather3div4si:
4474   case X86::BI__builtin_ia32_gather3div8sf:
4475   case X86::BI__builtin_ia32_gather3div8si:
4476   case X86::BI__builtin_ia32_gather3siv2df:
4477   case X86::BI__builtin_ia32_gather3siv2di:
4478   case X86::BI__builtin_ia32_gather3siv4df:
4479   case X86::BI__builtin_ia32_gather3siv4di:
4480   case X86::BI__builtin_ia32_gather3siv4sf:
4481   case X86::BI__builtin_ia32_gather3siv4si:
4482   case X86::BI__builtin_ia32_gather3siv8sf:
4483   case X86::BI__builtin_ia32_gather3siv8si:
4484   case X86::BI__builtin_ia32_gathersiv8df:
4485   case X86::BI__builtin_ia32_gathersiv16sf:
4486   case X86::BI__builtin_ia32_gatherdiv8df:
4487   case X86::BI__builtin_ia32_gatherdiv16sf:
4488   case X86::BI__builtin_ia32_gathersiv8di:
4489   case X86::BI__builtin_ia32_gathersiv16si:
4490   case X86::BI__builtin_ia32_gatherdiv8di:
4491   case X86::BI__builtin_ia32_gatherdiv16si:
4492   case X86::BI__builtin_ia32_scatterdiv2df:
4493   case X86::BI__builtin_ia32_scatterdiv2di:
4494   case X86::BI__builtin_ia32_scatterdiv4df:
4495   case X86::BI__builtin_ia32_scatterdiv4di:
4496   case X86::BI__builtin_ia32_scatterdiv4sf:
4497   case X86::BI__builtin_ia32_scatterdiv4si:
4498   case X86::BI__builtin_ia32_scatterdiv8sf:
4499   case X86::BI__builtin_ia32_scatterdiv8si:
4500   case X86::BI__builtin_ia32_scattersiv2df:
4501   case X86::BI__builtin_ia32_scattersiv2di:
4502   case X86::BI__builtin_ia32_scattersiv4df:
4503   case X86::BI__builtin_ia32_scattersiv4di:
4504   case X86::BI__builtin_ia32_scattersiv4sf:
4505   case X86::BI__builtin_ia32_scattersiv4si:
4506   case X86::BI__builtin_ia32_scattersiv8sf:
4507   case X86::BI__builtin_ia32_scattersiv8si:
4508   case X86::BI__builtin_ia32_scattersiv8df:
4509   case X86::BI__builtin_ia32_scattersiv16sf:
4510   case X86::BI__builtin_ia32_scatterdiv8df:
4511   case X86::BI__builtin_ia32_scatterdiv16sf:
4512   case X86::BI__builtin_ia32_scattersiv8di:
4513   case X86::BI__builtin_ia32_scattersiv16si:
4514   case X86::BI__builtin_ia32_scatterdiv8di:
4515   case X86::BI__builtin_ia32_scatterdiv16si:
4516     ArgNum = 4;
4517     break;
4518   }
4519 
4520   llvm::APSInt Result;
4521 
4522   // We can't check the value of a dependent argument.
4523   Expr *Arg = TheCall->getArg(ArgNum);
4524   if (Arg->isTypeDependent() || Arg->isValueDependent())
4525     return false;
4526 
4527   // Check constant-ness first.
4528   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4529     return true;
4530 
4531   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4532     return false;
4533 
4534   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4535          << Arg->getSourceRange();
4536 }
4537 
4538 enum { TileRegLow = 0, TileRegHigh = 7 };
4539 
4540 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4541                                              ArrayRef<int> ArgNums) {
4542   for (int ArgNum : ArgNums) {
4543     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4544       return true;
4545   }
4546   return false;
4547 }
4548 
4549 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4550                                         ArrayRef<int> ArgNums) {
4551   // Because the max number of tile register is TileRegHigh + 1, so here we use
4552   // each bit to represent the usage of them in bitset.
4553   std::bitset<TileRegHigh + 1> ArgValues;
4554   for (int ArgNum : ArgNums) {
4555     Expr *Arg = TheCall->getArg(ArgNum);
4556     if (Arg->isTypeDependent() || Arg->isValueDependent())
4557       continue;
4558 
4559     llvm::APSInt Result;
4560     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4561       return true;
4562     int ArgExtValue = Result.getExtValue();
4563     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4564            "Incorrect tile register num.");
4565     if (ArgValues.test(ArgExtValue))
4566       return Diag(TheCall->getBeginLoc(),
4567                   diag::err_x86_builtin_tile_arg_duplicate)
4568              << TheCall->getArg(ArgNum)->getSourceRange();
4569     ArgValues.set(ArgExtValue);
4570   }
4571   return false;
4572 }
4573 
4574 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4575                                                 ArrayRef<int> ArgNums) {
4576   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4577          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4578 }
4579 
4580 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4581   switch (BuiltinID) {
4582   default:
4583     return false;
4584   case X86::BI__builtin_ia32_tileloadd64:
4585   case X86::BI__builtin_ia32_tileloaddt164:
4586   case X86::BI__builtin_ia32_tilestored64:
4587   case X86::BI__builtin_ia32_tilezero:
4588     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4589   case X86::BI__builtin_ia32_tdpbssd:
4590   case X86::BI__builtin_ia32_tdpbsud:
4591   case X86::BI__builtin_ia32_tdpbusd:
4592   case X86::BI__builtin_ia32_tdpbuud:
4593   case X86::BI__builtin_ia32_tdpbf16ps:
4594     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4595   }
4596 }
4597 static bool isX86_32Builtin(unsigned BuiltinID) {
4598   // These builtins only work on x86-32 targets.
4599   switch (BuiltinID) {
4600   case X86::BI__builtin_ia32_readeflags_u32:
4601   case X86::BI__builtin_ia32_writeeflags_u32:
4602     return true;
4603   }
4604 
4605   return false;
4606 }
4607 
4608 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4609                                        CallExpr *TheCall) {
4610   if (BuiltinID == X86::BI__builtin_cpu_supports)
4611     return SemaBuiltinCpuSupports(*this, TI, TheCall);
4612 
4613   if (BuiltinID == X86::BI__builtin_cpu_is)
4614     return SemaBuiltinCpuIs(*this, TI, TheCall);
4615 
4616   // Check for 32-bit only builtins on a 64-bit target.
4617   const llvm::Triple &TT = TI.getTriple();
4618   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4619     return Diag(TheCall->getCallee()->getBeginLoc(),
4620                 diag::err_32_bit_builtin_64_bit_tgt);
4621 
4622   // If the intrinsic has rounding or SAE make sure its valid.
4623   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4624     return true;
4625 
4626   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4627   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4628     return true;
4629 
4630   // If the intrinsic has a tile arguments, make sure they are valid.
4631   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4632     return true;
4633 
4634   // For intrinsics which take an immediate value as part of the instruction,
4635   // range check them here.
4636   int i = 0, l = 0, u = 0;
4637   switch (BuiltinID) {
4638   default:
4639     return false;
4640   case X86::BI__builtin_ia32_vec_ext_v2si:
4641   case X86::BI__builtin_ia32_vec_ext_v2di:
4642   case X86::BI__builtin_ia32_vextractf128_pd256:
4643   case X86::BI__builtin_ia32_vextractf128_ps256:
4644   case X86::BI__builtin_ia32_vextractf128_si256:
4645   case X86::BI__builtin_ia32_extract128i256:
4646   case X86::BI__builtin_ia32_extractf64x4_mask:
4647   case X86::BI__builtin_ia32_extracti64x4_mask:
4648   case X86::BI__builtin_ia32_extractf32x8_mask:
4649   case X86::BI__builtin_ia32_extracti32x8_mask:
4650   case X86::BI__builtin_ia32_extractf64x2_256_mask:
4651   case X86::BI__builtin_ia32_extracti64x2_256_mask:
4652   case X86::BI__builtin_ia32_extractf32x4_256_mask:
4653   case X86::BI__builtin_ia32_extracti32x4_256_mask:
4654     i = 1; l = 0; u = 1;
4655     break;
4656   case X86::BI__builtin_ia32_vec_set_v2di:
4657   case X86::BI__builtin_ia32_vinsertf128_pd256:
4658   case X86::BI__builtin_ia32_vinsertf128_ps256:
4659   case X86::BI__builtin_ia32_vinsertf128_si256:
4660   case X86::BI__builtin_ia32_insert128i256:
4661   case X86::BI__builtin_ia32_insertf32x8:
4662   case X86::BI__builtin_ia32_inserti32x8:
4663   case X86::BI__builtin_ia32_insertf64x4:
4664   case X86::BI__builtin_ia32_inserti64x4:
4665   case X86::BI__builtin_ia32_insertf64x2_256:
4666   case X86::BI__builtin_ia32_inserti64x2_256:
4667   case X86::BI__builtin_ia32_insertf32x4_256:
4668   case X86::BI__builtin_ia32_inserti32x4_256:
4669     i = 2; l = 0; u = 1;
4670     break;
4671   case X86::BI__builtin_ia32_vpermilpd:
4672   case X86::BI__builtin_ia32_vec_ext_v4hi:
4673   case X86::BI__builtin_ia32_vec_ext_v4si:
4674   case X86::BI__builtin_ia32_vec_ext_v4sf:
4675   case X86::BI__builtin_ia32_vec_ext_v4di:
4676   case X86::BI__builtin_ia32_extractf32x4_mask:
4677   case X86::BI__builtin_ia32_extracti32x4_mask:
4678   case X86::BI__builtin_ia32_extractf64x2_512_mask:
4679   case X86::BI__builtin_ia32_extracti64x2_512_mask:
4680     i = 1; l = 0; u = 3;
4681     break;
4682   case X86::BI_mm_prefetch:
4683   case X86::BI__builtin_ia32_vec_ext_v8hi:
4684   case X86::BI__builtin_ia32_vec_ext_v8si:
4685     i = 1; l = 0; u = 7;
4686     break;
4687   case X86::BI__builtin_ia32_sha1rnds4:
4688   case X86::BI__builtin_ia32_blendpd:
4689   case X86::BI__builtin_ia32_shufpd:
4690   case X86::BI__builtin_ia32_vec_set_v4hi:
4691   case X86::BI__builtin_ia32_vec_set_v4si:
4692   case X86::BI__builtin_ia32_vec_set_v4di:
4693   case X86::BI__builtin_ia32_shuf_f32x4_256:
4694   case X86::BI__builtin_ia32_shuf_f64x2_256:
4695   case X86::BI__builtin_ia32_shuf_i32x4_256:
4696   case X86::BI__builtin_ia32_shuf_i64x2_256:
4697   case X86::BI__builtin_ia32_insertf64x2_512:
4698   case X86::BI__builtin_ia32_inserti64x2_512:
4699   case X86::BI__builtin_ia32_insertf32x4:
4700   case X86::BI__builtin_ia32_inserti32x4:
4701     i = 2; l = 0; u = 3;
4702     break;
4703   case X86::BI__builtin_ia32_vpermil2pd:
4704   case X86::BI__builtin_ia32_vpermil2pd256:
4705   case X86::BI__builtin_ia32_vpermil2ps:
4706   case X86::BI__builtin_ia32_vpermil2ps256:
4707     i = 3; l = 0; u = 3;
4708     break;
4709   case X86::BI__builtin_ia32_cmpb128_mask:
4710   case X86::BI__builtin_ia32_cmpw128_mask:
4711   case X86::BI__builtin_ia32_cmpd128_mask:
4712   case X86::BI__builtin_ia32_cmpq128_mask:
4713   case X86::BI__builtin_ia32_cmpb256_mask:
4714   case X86::BI__builtin_ia32_cmpw256_mask:
4715   case X86::BI__builtin_ia32_cmpd256_mask:
4716   case X86::BI__builtin_ia32_cmpq256_mask:
4717   case X86::BI__builtin_ia32_cmpb512_mask:
4718   case X86::BI__builtin_ia32_cmpw512_mask:
4719   case X86::BI__builtin_ia32_cmpd512_mask:
4720   case X86::BI__builtin_ia32_cmpq512_mask:
4721   case X86::BI__builtin_ia32_ucmpb128_mask:
4722   case X86::BI__builtin_ia32_ucmpw128_mask:
4723   case X86::BI__builtin_ia32_ucmpd128_mask:
4724   case X86::BI__builtin_ia32_ucmpq128_mask:
4725   case X86::BI__builtin_ia32_ucmpb256_mask:
4726   case X86::BI__builtin_ia32_ucmpw256_mask:
4727   case X86::BI__builtin_ia32_ucmpd256_mask:
4728   case X86::BI__builtin_ia32_ucmpq256_mask:
4729   case X86::BI__builtin_ia32_ucmpb512_mask:
4730   case X86::BI__builtin_ia32_ucmpw512_mask:
4731   case X86::BI__builtin_ia32_ucmpd512_mask:
4732   case X86::BI__builtin_ia32_ucmpq512_mask:
4733   case X86::BI__builtin_ia32_vpcomub:
4734   case X86::BI__builtin_ia32_vpcomuw:
4735   case X86::BI__builtin_ia32_vpcomud:
4736   case X86::BI__builtin_ia32_vpcomuq:
4737   case X86::BI__builtin_ia32_vpcomb:
4738   case X86::BI__builtin_ia32_vpcomw:
4739   case X86::BI__builtin_ia32_vpcomd:
4740   case X86::BI__builtin_ia32_vpcomq:
4741   case X86::BI__builtin_ia32_vec_set_v8hi:
4742   case X86::BI__builtin_ia32_vec_set_v8si:
4743     i = 2; l = 0; u = 7;
4744     break;
4745   case X86::BI__builtin_ia32_vpermilpd256:
4746   case X86::BI__builtin_ia32_roundps:
4747   case X86::BI__builtin_ia32_roundpd:
4748   case X86::BI__builtin_ia32_roundps256:
4749   case X86::BI__builtin_ia32_roundpd256:
4750   case X86::BI__builtin_ia32_getmantpd128_mask:
4751   case X86::BI__builtin_ia32_getmantpd256_mask:
4752   case X86::BI__builtin_ia32_getmantps128_mask:
4753   case X86::BI__builtin_ia32_getmantps256_mask:
4754   case X86::BI__builtin_ia32_getmantpd512_mask:
4755   case X86::BI__builtin_ia32_getmantps512_mask:
4756   case X86::BI__builtin_ia32_getmantph128_mask:
4757   case X86::BI__builtin_ia32_getmantph256_mask:
4758   case X86::BI__builtin_ia32_getmantph512_mask:
4759   case X86::BI__builtin_ia32_vec_ext_v16qi:
4760   case X86::BI__builtin_ia32_vec_ext_v16hi:
4761     i = 1; l = 0; u = 15;
4762     break;
4763   case X86::BI__builtin_ia32_pblendd128:
4764   case X86::BI__builtin_ia32_blendps:
4765   case X86::BI__builtin_ia32_blendpd256:
4766   case X86::BI__builtin_ia32_shufpd256:
4767   case X86::BI__builtin_ia32_roundss:
4768   case X86::BI__builtin_ia32_roundsd:
4769   case X86::BI__builtin_ia32_rangepd128_mask:
4770   case X86::BI__builtin_ia32_rangepd256_mask:
4771   case X86::BI__builtin_ia32_rangepd512_mask:
4772   case X86::BI__builtin_ia32_rangeps128_mask:
4773   case X86::BI__builtin_ia32_rangeps256_mask:
4774   case X86::BI__builtin_ia32_rangeps512_mask:
4775   case X86::BI__builtin_ia32_getmantsd_round_mask:
4776   case X86::BI__builtin_ia32_getmantss_round_mask:
4777   case X86::BI__builtin_ia32_getmantsh_round_mask:
4778   case X86::BI__builtin_ia32_vec_set_v16qi:
4779   case X86::BI__builtin_ia32_vec_set_v16hi:
4780     i = 2; l = 0; u = 15;
4781     break;
4782   case X86::BI__builtin_ia32_vec_ext_v32qi:
4783     i = 1; l = 0; u = 31;
4784     break;
4785   case X86::BI__builtin_ia32_cmpps:
4786   case X86::BI__builtin_ia32_cmpss:
4787   case X86::BI__builtin_ia32_cmppd:
4788   case X86::BI__builtin_ia32_cmpsd:
4789   case X86::BI__builtin_ia32_cmpps256:
4790   case X86::BI__builtin_ia32_cmppd256:
4791   case X86::BI__builtin_ia32_cmpps128_mask:
4792   case X86::BI__builtin_ia32_cmppd128_mask:
4793   case X86::BI__builtin_ia32_cmpps256_mask:
4794   case X86::BI__builtin_ia32_cmppd256_mask:
4795   case X86::BI__builtin_ia32_cmpps512_mask:
4796   case X86::BI__builtin_ia32_cmppd512_mask:
4797   case X86::BI__builtin_ia32_cmpsd_mask:
4798   case X86::BI__builtin_ia32_cmpss_mask:
4799   case X86::BI__builtin_ia32_vec_set_v32qi:
4800     i = 2; l = 0; u = 31;
4801     break;
4802   case X86::BI__builtin_ia32_permdf256:
4803   case X86::BI__builtin_ia32_permdi256:
4804   case X86::BI__builtin_ia32_permdf512:
4805   case X86::BI__builtin_ia32_permdi512:
4806   case X86::BI__builtin_ia32_vpermilps:
4807   case X86::BI__builtin_ia32_vpermilps256:
4808   case X86::BI__builtin_ia32_vpermilpd512:
4809   case X86::BI__builtin_ia32_vpermilps512:
4810   case X86::BI__builtin_ia32_pshufd:
4811   case X86::BI__builtin_ia32_pshufd256:
4812   case X86::BI__builtin_ia32_pshufd512:
4813   case X86::BI__builtin_ia32_pshufhw:
4814   case X86::BI__builtin_ia32_pshufhw256:
4815   case X86::BI__builtin_ia32_pshufhw512:
4816   case X86::BI__builtin_ia32_pshuflw:
4817   case X86::BI__builtin_ia32_pshuflw256:
4818   case X86::BI__builtin_ia32_pshuflw512:
4819   case X86::BI__builtin_ia32_vcvtps2ph:
4820   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4821   case X86::BI__builtin_ia32_vcvtps2ph256:
4822   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4823   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4824   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4825   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4826   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4827   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4828   case X86::BI__builtin_ia32_rndscaleps_mask:
4829   case X86::BI__builtin_ia32_rndscalepd_mask:
4830   case X86::BI__builtin_ia32_rndscaleph_mask:
4831   case X86::BI__builtin_ia32_reducepd128_mask:
4832   case X86::BI__builtin_ia32_reducepd256_mask:
4833   case X86::BI__builtin_ia32_reducepd512_mask:
4834   case X86::BI__builtin_ia32_reduceps128_mask:
4835   case X86::BI__builtin_ia32_reduceps256_mask:
4836   case X86::BI__builtin_ia32_reduceps512_mask:
4837   case X86::BI__builtin_ia32_reduceph128_mask:
4838   case X86::BI__builtin_ia32_reduceph256_mask:
4839   case X86::BI__builtin_ia32_reduceph512_mask:
4840   case X86::BI__builtin_ia32_prold512:
4841   case X86::BI__builtin_ia32_prolq512:
4842   case X86::BI__builtin_ia32_prold128:
4843   case X86::BI__builtin_ia32_prold256:
4844   case X86::BI__builtin_ia32_prolq128:
4845   case X86::BI__builtin_ia32_prolq256:
4846   case X86::BI__builtin_ia32_prord512:
4847   case X86::BI__builtin_ia32_prorq512:
4848   case X86::BI__builtin_ia32_prord128:
4849   case X86::BI__builtin_ia32_prord256:
4850   case X86::BI__builtin_ia32_prorq128:
4851   case X86::BI__builtin_ia32_prorq256:
4852   case X86::BI__builtin_ia32_fpclasspd128_mask:
4853   case X86::BI__builtin_ia32_fpclasspd256_mask:
4854   case X86::BI__builtin_ia32_fpclassps128_mask:
4855   case X86::BI__builtin_ia32_fpclassps256_mask:
4856   case X86::BI__builtin_ia32_fpclassps512_mask:
4857   case X86::BI__builtin_ia32_fpclasspd512_mask:
4858   case X86::BI__builtin_ia32_fpclassph128_mask:
4859   case X86::BI__builtin_ia32_fpclassph256_mask:
4860   case X86::BI__builtin_ia32_fpclassph512_mask:
4861   case X86::BI__builtin_ia32_fpclasssd_mask:
4862   case X86::BI__builtin_ia32_fpclassss_mask:
4863   case X86::BI__builtin_ia32_fpclasssh_mask:
4864   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4865   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4866   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4867   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4868   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4869   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4870   case X86::BI__builtin_ia32_kshiftliqi:
4871   case X86::BI__builtin_ia32_kshiftlihi:
4872   case X86::BI__builtin_ia32_kshiftlisi:
4873   case X86::BI__builtin_ia32_kshiftlidi:
4874   case X86::BI__builtin_ia32_kshiftriqi:
4875   case X86::BI__builtin_ia32_kshiftrihi:
4876   case X86::BI__builtin_ia32_kshiftrisi:
4877   case X86::BI__builtin_ia32_kshiftridi:
4878     i = 1; l = 0; u = 255;
4879     break;
4880   case X86::BI__builtin_ia32_vperm2f128_pd256:
4881   case X86::BI__builtin_ia32_vperm2f128_ps256:
4882   case X86::BI__builtin_ia32_vperm2f128_si256:
4883   case X86::BI__builtin_ia32_permti256:
4884   case X86::BI__builtin_ia32_pblendw128:
4885   case X86::BI__builtin_ia32_pblendw256:
4886   case X86::BI__builtin_ia32_blendps256:
4887   case X86::BI__builtin_ia32_pblendd256:
4888   case X86::BI__builtin_ia32_palignr128:
4889   case X86::BI__builtin_ia32_palignr256:
4890   case X86::BI__builtin_ia32_palignr512:
4891   case X86::BI__builtin_ia32_alignq512:
4892   case X86::BI__builtin_ia32_alignd512:
4893   case X86::BI__builtin_ia32_alignd128:
4894   case X86::BI__builtin_ia32_alignd256:
4895   case X86::BI__builtin_ia32_alignq128:
4896   case X86::BI__builtin_ia32_alignq256:
4897   case X86::BI__builtin_ia32_vcomisd:
4898   case X86::BI__builtin_ia32_vcomiss:
4899   case X86::BI__builtin_ia32_shuf_f32x4:
4900   case X86::BI__builtin_ia32_shuf_f64x2:
4901   case X86::BI__builtin_ia32_shuf_i32x4:
4902   case X86::BI__builtin_ia32_shuf_i64x2:
4903   case X86::BI__builtin_ia32_shufpd512:
4904   case X86::BI__builtin_ia32_shufps:
4905   case X86::BI__builtin_ia32_shufps256:
4906   case X86::BI__builtin_ia32_shufps512:
4907   case X86::BI__builtin_ia32_dbpsadbw128:
4908   case X86::BI__builtin_ia32_dbpsadbw256:
4909   case X86::BI__builtin_ia32_dbpsadbw512:
4910   case X86::BI__builtin_ia32_vpshldd128:
4911   case X86::BI__builtin_ia32_vpshldd256:
4912   case X86::BI__builtin_ia32_vpshldd512:
4913   case X86::BI__builtin_ia32_vpshldq128:
4914   case X86::BI__builtin_ia32_vpshldq256:
4915   case X86::BI__builtin_ia32_vpshldq512:
4916   case X86::BI__builtin_ia32_vpshldw128:
4917   case X86::BI__builtin_ia32_vpshldw256:
4918   case X86::BI__builtin_ia32_vpshldw512:
4919   case X86::BI__builtin_ia32_vpshrdd128:
4920   case X86::BI__builtin_ia32_vpshrdd256:
4921   case X86::BI__builtin_ia32_vpshrdd512:
4922   case X86::BI__builtin_ia32_vpshrdq128:
4923   case X86::BI__builtin_ia32_vpshrdq256:
4924   case X86::BI__builtin_ia32_vpshrdq512:
4925   case X86::BI__builtin_ia32_vpshrdw128:
4926   case X86::BI__builtin_ia32_vpshrdw256:
4927   case X86::BI__builtin_ia32_vpshrdw512:
4928     i = 2; l = 0; u = 255;
4929     break;
4930   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4931   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4932   case X86::BI__builtin_ia32_fixupimmps512_mask:
4933   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4934   case X86::BI__builtin_ia32_fixupimmsd_mask:
4935   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4936   case X86::BI__builtin_ia32_fixupimmss_mask:
4937   case X86::BI__builtin_ia32_fixupimmss_maskz:
4938   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4939   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4940   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4941   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4942   case X86::BI__builtin_ia32_fixupimmps128_mask:
4943   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4944   case X86::BI__builtin_ia32_fixupimmps256_mask:
4945   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4946   case X86::BI__builtin_ia32_pternlogd512_mask:
4947   case X86::BI__builtin_ia32_pternlogd512_maskz:
4948   case X86::BI__builtin_ia32_pternlogq512_mask:
4949   case X86::BI__builtin_ia32_pternlogq512_maskz:
4950   case X86::BI__builtin_ia32_pternlogd128_mask:
4951   case X86::BI__builtin_ia32_pternlogd128_maskz:
4952   case X86::BI__builtin_ia32_pternlogd256_mask:
4953   case X86::BI__builtin_ia32_pternlogd256_maskz:
4954   case X86::BI__builtin_ia32_pternlogq128_mask:
4955   case X86::BI__builtin_ia32_pternlogq128_maskz:
4956   case X86::BI__builtin_ia32_pternlogq256_mask:
4957   case X86::BI__builtin_ia32_pternlogq256_maskz:
4958     i = 3; l = 0; u = 255;
4959     break;
4960   case X86::BI__builtin_ia32_gatherpfdpd:
4961   case X86::BI__builtin_ia32_gatherpfdps:
4962   case X86::BI__builtin_ia32_gatherpfqpd:
4963   case X86::BI__builtin_ia32_gatherpfqps:
4964   case X86::BI__builtin_ia32_scatterpfdpd:
4965   case X86::BI__builtin_ia32_scatterpfdps:
4966   case X86::BI__builtin_ia32_scatterpfqpd:
4967   case X86::BI__builtin_ia32_scatterpfqps:
4968     i = 4; l = 2; u = 3;
4969     break;
4970   case X86::BI__builtin_ia32_reducesd_mask:
4971   case X86::BI__builtin_ia32_reducess_mask:
4972   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4973   case X86::BI__builtin_ia32_rndscaless_round_mask:
4974   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4975   case X86::BI__builtin_ia32_reducesh_mask:
4976     i = 4; l = 0; u = 255;
4977     break;
4978   }
4979 
4980   // Note that we don't force a hard error on the range check here, allowing
4981   // template-generated or macro-generated dead code to potentially have out-of-
4982   // range values. These need to code generate, but don't need to necessarily
4983   // make any sense. We use a warning that defaults to an error.
4984   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4985 }
4986 
4987 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4988 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4989 /// Returns true when the format fits the function and the FormatStringInfo has
4990 /// been populated.
4991 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4992                                FormatStringInfo *FSI) {
4993   FSI->HasVAListArg = Format->getFirstArg() == 0;
4994   FSI->FormatIdx = Format->getFormatIdx() - 1;
4995   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4996 
4997   // The way the format attribute works in GCC, the implicit this argument
4998   // of member functions is counted. However, it doesn't appear in our own
4999   // lists, so decrement format_idx in that case.
5000   if (IsCXXMember) {
5001     if(FSI->FormatIdx == 0)
5002       return false;
5003     --FSI->FormatIdx;
5004     if (FSI->FirstDataArg != 0)
5005       --FSI->FirstDataArg;
5006   }
5007   return true;
5008 }
5009 
5010 /// Checks if a the given expression evaluates to null.
5011 ///
5012 /// Returns true if the value evaluates to null.
5013 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
5014   // If the expression has non-null type, it doesn't evaluate to null.
5015   if (auto nullability
5016         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
5017     if (*nullability == NullabilityKind::NonNull)
5018       return false;
5019   }
5020 
5021   // As a special case, transparent unions initialized with zero are
5022   // considered null for the purposes of the nonnull attribute.
5023   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
5024     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
5025       if (const CompoundLiteralExpr *CLE =
5026           dyn_cast<CompoundLiteralExpr>(Expr))
5027         if (const InitListExpr *ILE =
5028             dyn_cast<InitListExpr>(CLE->getInitializer()))
5029           Expr = ILE->getInit(0);
5030   }
5031 
5032   bool Result;
5033   return (!Expr->isValueDependent() &&
5034           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
5035           !Result);
5036 }
5037 
5038 static void CheckNonNullArgument(Sema &S,
5039                                  const Expr *ArgExpr,
5040                                  SourceLocation CallSiteLoc) {
5041   if (CheckNonNullExpr(S, ArgExpr))
5042     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
5043                           S.PDiag(diag::warn_null_arg)
5044                               << ArgExpr->getSourceRange());
5045 }
5046 
5047 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
5048   FormatStringInfo FSI;
5049   if ((GetFormatStringType(Format) == FST_NSString) &&
5050       getFormatStringInfo(Format, false, &FSI)) {
5051     Idx = FSI.FormatIdx;
5052     return true;
5053   }
5054   return false;
5055 }
5056 
5057 /// Diagnose use of %s directive in an NSString which is being passed
5058 /// as formatting string to formatting method.
5059 static void
5060 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
5061                                         const NamedDecl *FDecl,
5062                                         Expr **Args,
5063                                         unsigned NumArgs) {
5064   unsigned Idx = 0;
5065   bool Format = false;
5066   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
5067   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
5068     Idx = 2;
5069     Format = true;
5070   }
5071   else
5072     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5073       if (S.GetFormatNSStringIdx(I, Idx)) {
5074         Format = true;
5075         break;
5076       }
5077     }
5078   if (!Format || NumArgs <= Idx)
5079     return;
5080   const Expr *FormatExpr = Args[Idx];
5081   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
5082     FormatExpr = CSCE->getSubExpr();
5083   const StringLiteral *FormatString;
5084   if (const ObjCStringLiteral *OSL =
5085       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
5086     FormatString = OSL->getString();
5087   else
5088     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
5089   if (!FormatString)
5090     return;
5091   if (S.FormatStringHasSArg(FormatString)) {
5092     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
5093       << "%s" << 1 << 1;
5094     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
5095       << FDecl->getDeclName();
5096   }
5097 }
5098 
5099 /// Determine whether the given type has a non-null nullability annotation.
5100 static bool isNonNullType(ASTContext &ctx, QualType type) {
5101   if (auto nullability = type->getNullability(ctx))
5102     return *nullability == NullabilityKind::NonNull;
5103 
5104   return false;
5105 }
5106 
5107 static void CheckNonNullArguments(Sema &S,
5108                                   const NamedDecl *FDecl,
5109                                   const FunctionProtoType *Proto,
5110                                   ArrayRef<const Expr *> Args,
5111                                   SourceLocation CallSiteLoc) {
5112   assert((FDecl || Proto) && "Need a function declaration or prototype");
5113 
5114   // Already checked by by constant evaluator.
5115   if (S.isConstantEvaluated())
5116     return;
5117   // Check the attributes attached to the method/function itself.
5118   llvm::SmallBitVector NonNullArgs;
5119   if (FDecl) {
5120     // Handle the nonnull attribute on the function/method declaration itself.
5121     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
5122       if (!NonNull->args_size()) {
5123         // Easy case: all pointer arguments are nonnull.
5124         for (const auto *Arg : Args)
5125           if (S.isValidPointerAttrType(Arg->getType()))
5126             CheckNonNullArgument(S, Arg, CallSiteLoc);
5127         return;
5128       }
5129 
5130       for (const ParamIdx &Idx : NonNull->args()) {
5131         unsigned IdxAST = Idx.getASTIndex();
5132         if (IdxAST >= Args.size())
5133           continue;
5134         if (NonNullArgs.empty())
5135           NonNullArgs.resize(Args.size());
5136         NonNullArgs.set(IdxAST);
5137       }
5138     }
5139   }
5140 
5141   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
5142     // Handle the nonnull attribute on the parameters of the
5143     // function/method.
5144     ArrayRef<ParmVarDecl*> parms;
5145     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
5146       parms = FD->parameters();
5147     else
5148       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
5149 
5150     unsigned ParamIndex = 0;
5151     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
5152          I != E; ++I, ++ParamIndex) {
5153       const ParmVarDecl *PVD = *I;
5154       if (PVD->hasAttr<NonNullAttr>() ||
5155           isNonNullType(S.Context, PVD->getType())) {
5156         if (NonNullArgs.empty())
5157           NonNullArgs.resize(Args.size());
5158 
5159         NonNullArgs.set(ParamIndex);
5160       }
5161     }
5162   } else {
5163     // If we have a non-function, non-method declaration but no
5164     // function prototype, try to dig out the function prototype.
5165     if (!Proto) {
5166       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
5167         QualType type = VD->getType().getNonReferenceType();
5168         if (auto pointerType = type->getAs<PointerType>())
5169           type = pointerType->getPointeeType();
5170         else if (auto blockType = type->getAs<BlockPointerType>())
5171           type = blockType->getPointeeType();
5172         // FIXME: data member pointers?
5173 
5174         // Dig out the function prototype, if there is one.
5175         Proto = type->getAs<FunctionProtoType>();
5176       }
5177     }
5178 
5179     // Fill in non-null argument information from the nullability
5180     // information on the parameter types (if we have them).
5181     if (Proto) {
5182       unsigned Index = 0;
5183       for (auto paramType : Proto->getParamTypes()) {
5184         if (isNonNullType(S.Context, paramType)) {
5185           if (NonNullArgs.empty())
5186             NonNullArgs.resize(Args.size());
5187 
5188           NonNullArgs.set(Index);
5189         }
5190 
5191         ++Index;
5192       }
5193     }
5194   }
5195 
5196   // Check for non-null arguments.
5197   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
5198        ArgIndex != ArgIndexEnd; ++ArgIndex) {
5199     if (NonNullArgs[ArgIndex])
5200       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
5201   }
5202 }
5203 
5204 /// Warn if a pointer or reference argument passed to a function points to an
5205 /// object that is less aligned than the parameter. This can happen when
5206 /// creating a typedef with a lower alignment than the original type and then
5207 /// calling functions defined in terms of the original type.
5208 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
5209                              StringRef ParamName, QualType ArgTy,
5210                              QualType ParamTy) {
5211 
5212   // If a function accepts a pointer or reference type
5213   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5214     return;
5215 
5216   // If the parameter is a pointer type, get the pointee type for the
5217   // argument too. If the parameter is a reference type, don't try to get
5218   // the pointee type for the argument.
5219   if (ParamTy->isPointerType())
5220     ArgTy = ArgTy->getPointeeType();
5221 
5222   // Remove reference or pointer
5223   ParamTy = ParamTy->getPointeeType();
5224 
5225   // Find expected alignment, and the actual alignment of the passed object.
5226   // getTypeAlignInChars requires complete types
5227   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5228       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5229       ArgTy->isUndeducedType())
5230     return;
5231 
5232   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5233   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5234 
5235   // If the argument is less aligned than the parameter, there is a
5236   // potential alignment issue.
5237   if (ArgAlign < ParamAlign)
5238     Diag(Loc, diag::warn_param_mismatched_alignment)
5239         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5240         << ParamName << (FDecl != nullptr) << FDecl;
5241 }
5242 
5243 /// Handles the checks for format strings, non-POD arguments to vararg
5244 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5245 /// attributes.
5246 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5247                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
5248                      bool IsMemberFunction, SourceLocation Loc,
5249                      SourceRange Range, VariadicCallType CallType) {
5250   // FIXME: We should check as much as we can in the template definition.
5251   if (CurContext->isDependentContext())
5252     return;
5253 
5254   // Printf and scanf checking.
5255   llvm::SmallBitVector CheckedVarArgs;
5256   if (FDecl) {
5257     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5258       // Only create vector if there are format attributes.
5259       CheckedVarArgs.resize(Args.size());
5260 
5261       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5262                            CheckedVarArgs);
5263     }
5264   }
5265 
5266   // Refuse POD arguments that weren't caught by the format string
5267   // checks above.
5268   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5269   if (CallType != VariadicDoesNotApply &&
5270       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5271     unsigned NumParams = Proto ? Proto->getNumParams()
5272                        : FDecl && isa<FunctionDecl>(FDecl)
5273                            ? cast<FunctionDecl>(FDecl)->getNumParams()
5274                        : FDecl && isa<ObjCMethodDecl>(FDecl)
5275                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
5276                        : 0;
5277 
5278     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5279       // Args[ArgIdx] can be null in malformed code.
5280       if (const Expr *Arg = Args[ArgIdx]) {
5281         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5282           checkVariadicArgument(Arg, CallType);
5283       }
5284     }
5285   }
5286 
5287   if (FDecl || Proto) {
5288     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5289 
5290     // Type safety checking.
5291     if (FDecl) {
5292       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5293         CheckArgumentWithTypeTag(I, Args, Loc);
5294     }
5295   }
5296 
5297   // Check that passed arguments match the alignment of original arguments.
5298   // Try to get the missing prototype from the declaration.
5299   if (!Proto && FDecl) {
5300     const auto *FT = FDecl->getFunctionType();
5301     if (isa_and_nonnull<FunctionProtoType>(FT))
5302       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5303   }
5304   if (Proto) {
5305     // For variadic functions, we may have more args than parameters.
5306     // For some K&R functions, we may have less args than parameters.
5307     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5308     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5309       // Args[ArgIdx] can be null in malformed code.
5310       if (const Expr *Arg = Args[ArgIdx]) {
5311         if (Arg->containsErrors())
5312           continue;
5313 
5314         QualType ParamTy = Proto->getParamType(ArgIdx);
5315         QualType ArgTy = Arg->getType();
5316         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5317                           ArgTy, ParamTy);
5318       }
5319     }
5320   }
5321 
5322   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5323     auto *AA = FDecl->getAttr<AllocAlignAttr>();
5324     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5325     if (!Arg->isValueDependent()) {
5326       Expr::EvalResult Align;
5327       if (Arg->EvaluateAsInt(Align, Context)) {
5328         const llvm::APSInt &I = Align.Val.getInt();
5329         if (!I.isPowerOf2())
5330           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5331               << Arg->getSourceRange();
5332 
5333         if (I > Sema::MaximumAlignment)
5334           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5335               << Arg->getSourceRange() << Sema::MaximumAlignment;
5336       }
5337     }
5338   }
5339 
5340   if (FD)
5341     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5342 }
5343 
5344 /// CheckConstructorCall - Check a constructor call for correctness and safety
5345 /// properties not enforced by the C type system.
5346 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5347                                 ArrayRef<const Expr *> Args,
5348                                 const FunctionProtoType *Proto,
5349                                 SourceLocation Loc) {
5350   VariadicCallType CallType =
5351       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5352 
5353   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5354   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5355                     Context.getPointerType(Ctor->getThisObjectType()));
5356 
5357   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5358             Loc, SourceRange(), CallType);
5359 }
5360 
5361 /// CheckFunctionCall - Check a direct function call for various correctness
5362 /// and safety properties not strictly enforced by the C type system.
5363 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5364                              const FunctionProtoType *Proto) {
5365   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5366                               isa<CXXMethodDecl>(FDecl);
5367   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5368                           IsMemberOperatorCall;
5369   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5370                                                   TheCall->getCallee());
5371   Expr** Args = TheCall->getArgs();
5372   unsigned NumArgs = TheCall->getNumArgs();
5373 
5374   Expr *ImplicitThis = nullptr;
5375   if (IsMemberOperatorCall) {
5376     // If this is a call to a member operator, hide the first argument
5377     // from checkCall.
5378     // FIXME: Our choice of AST representation here is less than ideal.
5379     ImplicitThis = Args[0];
5380     ++Args;
5381     --NumArgs;
5382   } else if (IsMemberFunction)
5383     ImplicitThis =
5384         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5385 
5386   if (ImplicitThis) {
5387     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5388     // used.
5389     QualType ThisType = ImplicitThis->getType();
5390     if (!ThisType->isPointerType()) {
5391       assert(!ThisType->isReferenceType());
5392       ThisType = Context.getPointerType(ThisType);
5393     }
5394 
5395     QualType ThisTypeFromDecl =
5396         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5397 
5398     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5399                       ThisTypeFromDecl);
5400   }
5401 
5402   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5403             IsMemberFunction, TheCall->getRParenLoc(),
5404             TheCall->getCallee()->getSourceRange(), CallType);
5405 
5406   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5407   // None of the checks below are needed for functions that don't have
5408   // simple names (e.g., C++ conversion functions).
5409   if (!FnInfo)
5410     return false;
5411 
5412   CheckTCBEnforcement(TheCall, FDecl);
5413 
5414   CheckAbsoluteValueFunction(TheCall, FDecl);
5415   CheckMaxUnsignedZero(TheCall, FDecl);
5416 
5417   if (getLangOpts().ObjC)
5418     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5419 
5420   unsigned CMId = FDecl->getMemoryFunctionKind();
5421 
5422   // Handle memory setting and copying functions.
5423   switch (CMId) {
5424   case 0:
5425     return false;
5426   case Builtin::BIstrlcpy: // fallthrough
5427   case Builtin::BIstrlcat:
5428     CheckStrlcpycatArguments(TheCall, FnInfo);
5429     break;
5430   case Builtin::BIstrncat:
5431     CheckStrncatArguments(TheCall, FnInfo);
5432     break;
5433   case Builtin::BIfree:
5434     CheckFreeArguments(TheCall);
5435     break;
5436   default:
5437     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5438   }
5439 
5440   return false;
5441 }
5442 
5443 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5444                                ArrayRef<const Expr *> Args) {
5445   VariadicCallType CallType =
5446       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5447 
5448   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5449             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5450             CallType);
5451 
5452   return false;
5453 }
5454 
5455 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5456                             const FunctionProtoType *Proto) {
5457   QualType Ty;
5458   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5459     Ty = V->getType().getNonReferenceType();
5460   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5461     Ty = F->getType().getNonReferenceType();
5462   else
5463     return false;
5464 
5465   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5466       !Ty->isFunctionProtoType())
5467     return false;
5468 
5469   VariadicCallType CallType;
5470   if (!Proto || !Proto->isVariadic()) {
5471     CallType = VariadicDoesNotApply;
5472   } else if (Ty->isBlockPointerType()) {
5473     CallType = VariadicBlock;
5474   } else { // Ty->isFunctionPointerType()
5475     CallType = VariadicFunction;
5476   }
5477 
5478   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5479             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5480             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5481             TheCall->getCallee()->getSourceRange(), CallType);
5482 
5483   return false;
5484 }
5485 
5486 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5487 /// such as function pointers returned from functions.
5488 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5489   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5490                                                   TheCall->getCallee());
5491   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5492             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5493             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5494             TheCall->getCallee()->getSourceRange(), CallType);
5495 
5496   return false;
5497 }
5498 
5499 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5500   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5501     return false;
5502 
5503   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5504   switch (Op) {
5505   case AtomicExpr::AO__c11_atomic_init:
5506   case AtomicExpr::AO__opencl_atomic_init:
5507     llvm_unreachable("There is no ordering argument for an init");
5508 
5509   case AtomicExpr::AO__c11_atomic_load:
5510   case AtomicExpr::AO__opencl_atomic_load:
5511   case AtomicExpr::AO__hip_atomic_load:
5512   case AtomicExpr::AO__atomic_load_n:
5513   case AtomicExpr::AO__atomic_load:
5514     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5515            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5516 
5517   case AtomicExpr::AO__c11_atomic_store:
5518   case AtomicExpr::AO__opencl_atomic_store:
5519   case AtomicExpr::AO__hip_atomic_store:
5520   case AtomicExpr::AO__atomic_store:
5521   case AtomicExpr::AO__atomic_store_n:
5522     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5523            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5524            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5525 
5526   default:
5527     return true;
5528   }
5529 }
5530 
5531 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5532                                          AtomicExpr::AtomicOp Op) {
5533   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5534   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5535   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5536   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5537                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5538                          Op);
5539 }
5540 
5541 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5542                                  SourceLocation RParenLoc, MultiExprArg Args,
5543                                  AtomicExpr::AtomicOp Op,
5544                                  AtomicArgumentOrder ArgOrder) {
5545   // All the non-OpenCL operations take one of the following forms.
5546   // The OpenCL operations take the __c11 forms with one extra argument for
5547   // synchronization scope.
5548   enum {
5549     // C    __c11_atomic_init(A *, C)
5550     Init,
5551 
5552     // C    __c11_atomic_load(A *, int)
5553     Load,
5554 
5555     // void __atomic_load(A *, CP, int)
5556     LoadCopy,
5557 
5558     // void __atomic_store(A *, CP, int)
5559     Copy,
5560 
5561     // C    __c11_atomic_add(A *, M, int)
5562     Arithmetic,
5563 
5564     // C    __atomic_exchange_n(A *, CP, int)
5565     Xchg,
5566 
5567     // void __atomic_exchange(A *, C *, CP, int)
5568     GNUXchg,
5569 
5570     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5571     C11CmpXchg,
5572 
5573     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5574     GNUCmpXchg
5575   } Form = Init;
5576 
5577   const unsigned NumForm = GNUCmpXchg + 1;
5578   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5579   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5580   // where:
5581   //   C is an appropriate type,
5582   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5583   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5584   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5585   //   the int parameters are for orderings.
5586 
5587   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5588       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5589       "need to update code for modified forms");
5590   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5591                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5592                         AtomicExpr::AO__atomic_load,
5593                 "need to update code for modified C11 atomics");
5594   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5595                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5596   bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
5597                Op <= AtomicExpr::AO__hip_atomic_fetch_max;
5598   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5599                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5600                IsOpenCL;
5601   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5602              Op == AtomicExpr::AO__atomic_store_n ||
5603              Op == AtomicExpr::AO__atomic_exchange_n ||
5604              Op == AtomicExpr::AO__atomic_compare_exchange_n;
5605   bool IsAddSub = false;
5606 
5607   switch (Op) {
5608   case AtomicExpr::AO__c11_atomic_init:
5609   case AtomicExpr::AO__opencl_atomic_init:
5610     Form = Init;
5611     break;
5612 
5613   case AtomicExpr::AO__c11_atomic_load:
5614   case AtomicExpr::AO__opencl_atomic_load:
5615   case AtomicExpr::AO__hip_atomic_load:
5616   case AtomicExpr::AO__atomic_load_n:
5617     Form = Load;
5618     break;
5619 
5620   case AtomicExpr::AO__atomic_load:
5621     Form = LoadCopy;
5622     break;
5623 
5624   case AtomicExpr::AO__c11_atomic_store:
5625   case AtomicExpr::AO__opencl_atomic_store:
5626   case AtomicExpr::AO__hip_atomic_store:
5627   case AtomicExpr::AO__atomic_store:
5628   case AtomicExpr::AO__atomic_store_n:
5629     Form = Copy;
5630     break;
5631   case AtomicExpr::AO__hip_atomic_fetch_add:
5632   case AtomicExpr::AO__hip_atomic_fetch_min:
5633   case AtomicExpr::AO__hip_atomic_fetch_max:
5634   case AtomicExpr::AO__c11_atomic_fetch_add:
5635   case AtomicExpr::AO__c11_atomic_fetch_sub:
5636   case AtomicExpr::AO__opencl_atomic_fetch_add:
5637   case AtomicExpr::AO__opencl_atomic_fetch_sub:
5638   case AtomicExpr::AO__atomic_fetch_add:
5639   case AtomicExpr::AO__atomic_fetch_sub:
5640   case AtomicExpr::AO__atomic_add_fetch:
5641   case AtomicExpr::AO__atomic_sub_fetch:
5642     IsAddSub = true;
5643     Form = Arithmetic;
5644     break;
5645   case AtomicExpr::AO__c11_atomic_fetch_and:
5646   case AtomicExpr::AO__c11_atomic_fetch_or:
5647   case AtomicExpr::AO__c11_atomic_fetch_xor:
5648   case AtomicExpr::AO__hip_atomic_fetch_and:
5649   case AtomicExpr::AO__hip_atomic_fetch_or:
5650   case AtomicExpr::AO__hip_atomic_fetch_xor:
5651   case AtomicExpr::AO__c11_atomic_fetch_nand:
5652   case AtomicExpr::AO__opencl_atomic_fetch_and:
5653   case AtomicExpr::AO__opencl_atomic_fetch_or:
5654   case AtomicExpr::AO__opencl_atomic_fetch_xor:
5655   case AtomicExpr::AO__atomic_fetch_and:
5656   case AtomicExpr::AO__atomic_fetch_or:
5657   case AtomicExpr::AO__atomic_fetch_xor:
5658   case AtomicExpr::AO__atomic_fetch_nand:
5659   case AtomicExpr::AO__atomic_and_fetch:
5660   case AtomicExpr::AO__atomic_or_fetch:
5661   case AtomicExpr::AO__atomic_xor_fetch:
5662   case AtomicExpr::AO__atomic_nand_fetch:
5663     Form = Arithmetic;
5664     break;
5665   case AtomicExpr::AO__c11_atomic_fetch_min:
5666   case AtomicExpr::AO__c11_atomic_fetch_max:
5667   case AtomicExpr::AO__opencl_atomic_fetch_min:
5668   case AtomicExpr::AO__opencl_atomic_fetch_max:
5669   case AtomicExpr::AO__atomic_min_fetch:
5670   case AtomicExpr::AO__atomic_max_fetch:
5671   case AtomicExpr::AO__atomic_fetch_min:
5672   case AtomicExpr::AO__atomic_fetch_max:
5673     Form = Arithmetic;
5674     break;
5675 
5676   case AtomicExpr::AO__c11_atomic_exchange:
5677   case AtomicExpr::AO__hip_atomic_exchange:
5678   case AtomicExpr::AO__opencl_atomic_exchange:
5679   case AtomicExpr::AO__atomic_exchange_n:
5680     Form = Xchg;
5681     break;
5682 
5683   case AtomicExpr::AO__atomic_exchange:
5684     Form = GNUXchg;
5685     break;
5686 
5687   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5688   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5689   case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
5690   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5691   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5692   case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
5693     Form = C11CmpXchg;
5694     break;
5695 
5696   case AtomicExpr::AO__atomic_compare_exchange:
5697   case AtomicExpr::AO__atomic_compare_exchange_n:
5698     Form = GNUCmpXchg;
5699     break;
5700   }
5701 
5702   unsigned AdjustedNumArgs = NumArgs[Form];
5703   if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init)
5704     ++AdjustedNumArgs;
5705   // Check we have the right number of arguments.
5706   if (Args.size() < AdjustedNumArgs) {
5707     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5708         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5709         << ExprRange;
5710     return ExprError();
5711   } else if (Args.size() > AdjustedNumArgs) {
5712     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5713          diag::err_typecheck_call_too_many_args)
5714         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5715         << ExprRange;
5716     return ExprError();
5717   }
5718 
5719   // Inspect the first argument of the atomic operation.
5720   Expr *Ptr = Args[0];
5721   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5722   if (ConvertedPtr.isInvalid())
5723     return ExprError();
5724 
5725   Ptr = ConvertedPtr.get();
5726   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5727   if (!pointerType) {
5728     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5729         << Ptr->getType() << Ptr->getSourceRange();
5730     return ExprError();
5731   }
5732 
5733   // For a __c11 builtin, this should be a pointer to an _Atomic type.
5734   QualType AtomTy = pointerType->getPointeeType(); // 'A'
5735   QualType ValType = AtomTy; // 'C'
5736   if (IsC11) {
5737     if (!AtomTy->isAtomicType()) {
5738       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5739           << Ptr->getType() << Ptr->getSourceRange();
5740       return ExprError();
5741     }
5742     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5743         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5744       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5745           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5746           << Ptr->getSourceRange();
5747       return ExprError();
5748     }
5749     ValType = AtomTy->castAs<AtomicType>()->getValueType();
5750   } else if (Form != Load && Form != LoadCopy) {
5751     if (ValType.isConstQualified()) {
5752       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5753           << Ptr->getType() << Ptr->getSourceRange();
5754       return ExprError();
5755     }
5756   }
5757 
5758   // For an arithmetic operation, the implied arithmetic must be well-formed.
5759   if (Form == Arithmetic) {
5760     // GCC does not enforce these rules for GNU atomics, but we do to help catch
5761     // trivial type errors.
5762     auto IsAllowedValueType = [&](QualType ValType) {
5763       if (ValType->isIntegerType())
5764         return true;
5765       if (ValType->isPointerType())
5766         return true;
5767       if (!ValType->isFloatingType())
5768         return false;
5769       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5770       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5771           &Context.getTargetInfo().getLongDoubleFormat() ==
5772               &llvm::APFloat::x87DoubleExtended())
5773         return false;
5774       return true;
5775     };
5776     if (IsAddSub && !IsAllowedValueType(ValType)) {
5777       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5778           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5779       return ExprError();
5780     }
5781     if (!IsAddSub && !ValType->isIntegerType()) {
5782       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5783           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5784       return ExprError();
5785     }
5786     if (IsC11 && ValType->isPointerType() &&
5787         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5788                             diag::err_incomplete_type)) {
5789       return ExprError();
5790     }
5791   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5792     // For __atomic_*_n operations, the value type must be a scalar integral or
5793     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5794     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5795         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5796     return ExprError();
5797   }
5798 
5799   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5800       !AtomTy->isScalarType()) {
5801     // For GNU atomics, require a trivially-copyable type. This is not part of
5802     // the GNU atomics specification but we enforce it for consistency with
5803     // other atomics which generally all require a trivially-copyable type. This
5804     // is because atomics just copy bits.
5805     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5806         << Ptr->getType() << Ptr->getSourceRange();
5807     return ExprError();
5808   }
5809 
5810   switch (ValType.getObjCLifetime()) {
5811   case Qualifiers::OCL_None:
5812   case Qualifiers::OCL_ExplicitNone:
5813     // okay
5814     break;
5815 
5816   case Qualifiers::OCL_Weak:
5817   case Qualifiers::OCL_Strong:
5818   case Qualifiers::OCL_Autoreleasing:
5819     // FIXME: Can this happen? By this point, ValType should be known
5820     // to be trivially copyable.
5821     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5822         << ValType << Ptr->getSourceRange();
5823     return ExprError();
5824   }
5825 
5826   // All atomic operations have an overload which takes a pointer to a volatile
5827   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
5828   // into the result or the other operands. Similarly atomic_load takes a
5829   // pointer to a const 'A'.
5830   ValType.removeLocalVolatile();
5831   ValType.removeLocalConst();
5832   QualType ResultType = ValType;
5833   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5834       Form == Init)
5835     ResultType = Context.VoidTy;
5836   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5837     ResultType = Context.BoolTy;
5838 
5839   // The type of a parameter passed 'by value'. In the GNU atomics, such
5840   // arguments are actually passed as pointers.
5841   QualType ByValType = ValType; // 'CP'
5842   bool IsPassedByAddress = false;
5843   if (!IsC11 && !IsHIP && !IsN) {
5844     ByValType = Ptr->getType();
5845     IsPassedByAddress = true;
5846   }
5847 
5848   SmallVector<Expr *, 5> APIOrderedArgs;
5849   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5850     APIOrderedArgs.push_back(Args[0]);
5851     switch (Form) {
5852     case Init:
5853     case Load:
5854       APIOrderedArgs.push_back(Args[1]); // Val1/Order
5855       break;
5856     case LoadCopy:
5857     case Copy:
5858     case Arithmetic:
5859     case Xchg:
5860       APIOrderedArgs.push_back(Args[2]); // Val1
5861       APIOrderedArgs.push_back(Args[1]); // Order
5862       break;
5863     case GNUXchg:
5864       APIOrderedArgs.push_back(Args[2]); // Val1
5865       APIOrderedArgs.push_back(Args[3]); // Val2
5866       APIOrderedArgs.push_back(Args[1]); // Order
5867       break;
5868     case C11CmpXchg:
5869       APIOrderedArgs.push_back(Args[2]); // Val1
5870       APIOrderedArgs.push_back(Args[4]); // Val2
5871       APIOrderedArgs.push_back(Args[1]); // Order
5872       APIOrderedArgs.push_back(Args[3]); // OrderFail
5873       break;
5874     case GNUCmpXchg:
5875       APIOrderedArgs.push_back(Args[2]); // Val1
5876       APIOrderedArgs.push_back(Args[4]); // Val2
5877       APIOrderedArgs.push_back(Args[5]); // Weak
5878       APIOrderedArgs.push_back(Args[1]); // Order
5879       APIOrderedArgs.push_back(Args[3]); // OrderFail
5880       break;
5881     }
5882   } else
5883     APIOrderedArgs.append(Args.begin(), Args.end());
5884 
5885   // The first argument's non-CV pointer type is used to deduce the type of
5886   // subsequent arguments, except for:
5887   //  - weak flag (always converted to bool)
5888   //  - memory order (always converted to int)
5889   //  - scope  (always converted to int)
5890   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5891     QualType Ty;
5892     if (i < NumVals[Form] + 1) {
5893       switch (i) {
5894       case 0:
5895         // The first argument is always a pointer. It has a fixed type.
5896         // It is always dereferenced, a nullptr is undefined.
5897         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5898         // Nothing else to do: we already know all we want about this pointer.
5899         continue;
5900       case 1:
5901         // The second argument is the non-atomic operand. For arithmetic, this
5902         // is always passed by value, and for a compare_exchange it is always
5903         // passed by address. For the rest, GNU uses by-address and C11 uses
5904         // by-value.
5905         assert(Form != Load);
5906         if (Form == Arithmetic && ValType->isPointerType())
5907           Ty = Context.getPointerDiffType();
5908         else if (Form == Init || Form == Arithmetic)
5909           Ty = ValType;
5910         else if (Form == Copy || Form == Xchg) {
5911           if (IsPassedByAddress) {
5912             // The value pointer is always dereferenced, a nullptr is undefined.
5913             CheckNonNullArgument(*this, APIOrderedArgs[i],
5914                                  ExprRange.getBegin());
5915           }
5916           Ty = ByValType;
5917         } else {
5918           Expr *ValArg = APIOrderedArgs[i];
5919           // The value pointer is always dereferenced, a nullptr is undefined.
5920           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5921           LangAS AS = LangAS::Default;
5922           // Keep address space of non-atomic pointer type.
5923           if (const PointerType *PtrTy =
5924                   ValArg->getType()->getAs<PointerType>()) {
5925             AS = PtrTy->getPointeeType().getAddressSpace();
5926           }
5927           Ty = Context.getPointerType(
5928               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5929         }
5930         break;
5931       case 2:
5932         // The third argument to compare_exchange / GNU exchange is the desired
5933         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5934         if (IsPassedByAddress)
5935           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5936         Ty = ByValType;
5937         break;
5938       case 3:
5939         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5940         Ty = Context.BoolTy;
5941         break;
5942       }
5943     } else {
5944       // The order(s) and scope are always converted to int.
5945       Ty = Context.IntTy;
5946     }
5947 
5948     InitializedEntity Entity =
5949         InitializedEntity::InitializeParameter(Context, Ty, false);
5950     ExprResult Arg = APIOrderedArgs[i];
5951     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5952     if (Arg.isInvalid())
5953       return true;
5954     APIOrderedArgs[i] = Arg.get();
5955   }
5956 
5957   // Permute the arguments into a 'consistent' order.
5958   SmallVector<Expr*, 5> SubExprs;
5959   SubExprs.push_back(Ptr);
5960   switch (Form) {
5961   case Init:
5962     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5963     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5964     break;
5965   case Load:
5966     SubExprs.push_back(APIOrderedArgs[1]); // Order
5967     break;
5968   case LoadCopy:
5969   case Copy:
5970   case Arithmetic:
5971   case Xchg:
5972     SubExprs.push_back(APIOrderedArgs[2]); // Order
5973     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5974     break;
5975   case GNUXchg:
5976     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5977     SubExprs.push_back(APIOrderedArgs[3]); // Order
5978     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5979     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5980     break;
5981   case C11CmpXchg:
5982     SubExprs.push_back(APIOrderedArgs[3]); // Order
5983     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5984     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5985     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5986     break;
5987   case GNUCmpXchg:
5988     SubExprs.push_back(APIOrderedArgs[4]); // Order
5989     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5990     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5991     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5992     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5993     break;
5994   }
5995 
5996   if (SubExprs.size() >= 2 && Form != Init) {
5997     if (Optional<llvm::APSInt> Result =
5998             SubExprs[1]->getIntegerConstantExpr(Context))
5999       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
6000         Diag(SubExprs[1]->getBeginLoc(),
6001              diag::warn_atomic_op_has_invalid_memory_order)
6002             << SubExprs[1]->getSourceRange();
6003   }
6004 
6005   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
6006     auto *Scope = Args[Args.size() - 1];
6007     if (Optional<llvm::APSInt> Result =
6008             Scope->getIntegerConstantExpr(Context)) {
6009       if (!ScopeModel->isValid(Result->getZExtValue()))
6010         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
6011             << Scope->getSourceRange();
6012     }
6013     SubExprs.push_back(Scope);
6014   }
6015 
6016   AtomicExpr *AE = new (Context)
6017       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
6018 
6019   if ((Op == AtomicExpr::AO__c11_atomic_load ||
6020        Op == AtomicExpr::AO__c11_atomic_store ||
6021        Op == AtomicExpr::AO__opencl_atomic_load ||
6022        Op == AtomicExpr::AO__hip_atomic_load ||
6023        Op == AtomicExpr::AO__opencl_atomic_store ||
6024        Op == AtomicExpr::AO__hip_atomic_store) &&
6025       Context.AtomicUsesUnsupportedLibcall(AE))
6026     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
6027         << ((Op == AtomicExpr::AO__c11_atomic_load ||
6028              Op == AtomicExpr::AO__opencl_atomic_load ||
6029              Op == AtomicExpr::AO__hip_atomic_load)
6030                 ? 0
6031                 : 1);
6032 
6033   if (ValType->isBitIntType()) {
6034     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
6035     return ExprError();
6036   }
6037 
6038   return AE;
6039 }
6040 
6041 /// checkBuiltinArgument - Given a call to a builtin function, perform
6042 /// normal type-checking on the given argument, updating the call in
6043 /// place.  This is useful when a builtin function requires custom
6044 /// type-checking for some of its arguments but not necessarily all of
6045 /// them.
6046 ///
6047 /// Returns true on error.
6048 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
6049   FunctionDecl *Fn = E->getDirectCallee();
6050   assert(Fn && "builtin call without direct callee!");
6051 
6052   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
6053   InitializedEntity Entity =
6054     InitializedEntity::InitializeParameter(S.Context, Param);
6055 
6056   ExprResult Arg = E->getArg(0);
6057   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
6058   if (Arg.isInvalid())
6059     return true;
6060 
6061   E->setArg(ArgIndex, Arg.get());
6062   return false;
6063 }
6064 
6065 /// We have a call to a function like __sync_fetch_and_add, which is an
6066 /// overloaded function based on the pointer type of its first argument.
6067 /// The main BuildCallExpr routines have already promoted the types of
6068 /// arguments because all of these calls are prototyped as void(...).
6069 ///
6070 /// This function goes through and does final semantic checking for these
6071 /// builtins, as well as generating any warnings.
6072 ExprResult
6073 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
6074   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
6075   Expr *Callee = TheCall->getCallee();
6076   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
6077   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6078 
6079   // Ensure that we have at least one argument to do type inference from.
6080   if (TheCall->getNumArgs() < 1) {
6081     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6082         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
6083     return ExprError();
6084   }
6085 
6086   // Inspect the first argument of the atomic builtin.  This should always be
6087   // a pointer type, whose element is an integral scalar or pointer type.
6088   // Because it is a pointer type, we don't have to worry about any implicit
6089   // casts here.
6090   // FIXME: We don't allow floating point scalars as input.
6091   Expr *FirstArg = TheCall->getArg(0);
6092   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
6093   if (FirstArgResult.isInvalid())
6094     return ExprError();
6095   FirstArg = FirstArgResult.get();
6096   TheCall->setArg(0, FirstArg);
6097 
6098   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
6099   if (!pointerType) {
6100     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
6101         << FirstArg->getType() << FirstArg->getSourceRange();
6102     return ExprError();
6103   }
6104 
6105   QualType ValType = pointerType->getPointeeType();
6106   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6107       !ValType->isBlockPointerType()) {
6108     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
6109         << FirstArg->getType() << FirstArg->getSourceRange();
6110     return ExprError();
6111   }
6112 
6113   if (ValType.isConstQualified()) {
6114     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
6115         << FirstArg->getType() << FirstArg->getSourceRange();
6116     return ExprError();
6117   }
6118 
6119   switch (ValType.getObjCLifetime()) {
6120   case Qualifiers::OCL_None:
6121   case Qualifiers::OCL_ExplicitNone:
6122     // okay
6123     break;
6124 
6125   case Qualifiers::OCL_Weak:
6126   case Qualifiers::OCL_Strong:
6127   case Qualifiers::OCL_Autoreleasing:
6128     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
6129         << ValType << FirstArg->getSourceRange();
6130     return ExprError();
6131   }
6132 
6133   // Strip any qualifiers off ValType.
6134   ValType = ValType.getUnqualifiedType();
6135 
6136   // The majority of builtins return a value, but a few have special return
6137   // types, so allow them to override appropriately below.
6138   QualType ResultType = ValType;
6139 
6140   // We need to figure out which concrete builtin this maps onto.  For example,
6141   // __sync_fetch_and_add with a 2 byte object turns into
6142   // __sync_fetch_and_add_2.
6143 #define BUILTIN_ROW(x) \
6144   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
6145     Builtin::BI##x##_8, Builtin::BI##x##_16 }
6146 
6147   static const unsigned BuiltinIndices[][5] = {
6148     BUILTIN_ROW(__sync_fetch_and_add),
6149     BUILTIN_ROW(__sync_fetch_and_sub),
6150     BUILTIN_ROW(__sync_fetch_and_or),
6151     BUILTIN_ROW(__sync_fetch_and_and),
6152     BUILTIN_ROW(__sync_fetch_and_xor),
6153     BUILTIN_ROW(__sync_fetch_and_nand),
6154 
6155     BUILTIN_ROW(__sync_add_and_fetch),
6156     BUILTIN_ROW(__sync_sub_and_fetch),
6157     BUILTIN_ROW(__sync_and_and_fetch),
6158     BUILTIN_ROW(__sync_or_and_fetch),
6159     BUILTIN_ROW(__sync_xor_and_fetch),
6160     BUILTIN_ROW(__sync_nand_and_fetch),
6161 
6162     BUILTIN_ROW(__sync_val_compare_and_swap),
6163     BUILTIN_ROW(__sync_bool_compare_and_swap),
6164     BUILTIN_ROW(__sync_lock_test_and_set),
6165     BUILTIN_ROW(__sync_lock_release),
6166     BUILTIN_ROW(__sync_swap)
6167   };
6168 #undef BUILTIN_ROW
6169 
6170   // Determine the index of the size.
6171   unsigned SizeIndex;
6172   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
6173   case 1: SizeIndex = 0; break;
6174   case 2: SizeIndex = 1; break;
6175   case 4: SizeIndex = 2; break;
6176   case 8: SizeIndex = 3; break;
6177   case 16: SizeIndex = 4; break;
6178   default:
6179     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
6180         << FirstArg->getType() << FirstArg->getSourceRange();
6181     return ExprError();
6182   }
6183 
6184   // Each of these builtins has one pointer argument, followed by some number of
6185   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
6186   // that we ignore.  Find out which row of BuiltinIndices to read from as well
6187   // as the number of fixed args.
6188   unsigned BuiltinID = FDecl->getBuiltinID();
6189   unsigned BuiltinIndex, NumFixed = 1;
6190   bool WarnAboutSemanticsChange = false;
6191   switch (BuiltinID) {
6192   default: llvm_unreachable("Unknown overloaded atomic builtin!");
6193   case Builtin::BI__sync_fetch_and_add:
6194   case Builtin::BI__sync_fetch_and_add_1:
6195   case Builtin::BI__sync_fetch_and_add_2:
6196   case Builtin::BI__sync_fetch_and_add_4:
6197   case Builtin::BI__sync_fetch_and_add_8:
6198   case Builtin::BI__sync_fetch_and_add_16:
6199     BuiltinIndex = 0;
6200     break;
6201 
6202   case Builtin::BI__sync_fetch_and_sub:
6203   case Builtin::BI__sync_fetch_and_sub_1:
6204   case Builtin::BI__sync_fetch_and_sub_2:
6205   case Builtin::BI__sync_fetch_and_sub_4:
6206   case Builtin::BI__sync_fetch_and_sub_8:
6207   case Builtin::BI__sync_fetch_and_sub_16:
6208     BuiltinIndex = 1;
6209     break;
6210 
6211   case Builtin::BI__sync_fetch_and_or:
6212   case Builtin::BI__sync_fetch_and_or_1:
6213   case Builtin::BI__sync_fetch_and_or_2:
6214   case Builtin::BI__sync_fetch_and_or_4:
6215   case Builtin::BI__sync_fetch_and_or_8:
6216   case Builtin::BI__sync_fetch_and_or_16:
6217     BuiltinIndex = 2;
6218     break;
6219 
6220   case Builtin::BI__sync_fetch_and_and:
6221   case Builtin::BI__sync_fetch_and_and_1:
6222   case Builtin::BI__sync_fetch_and_and_2:
6223   case Builtin::BI__sync_fetch_and_and_4:
6224   case Builtin::BI__sync_fetch_and_and_8:
6225   case Builtin::BI__sync_fetch_and_and_16:
6226     BuiltinIndex = 3;
6227     break;
6228 
6229   case Builtin::BI__sync_fetch_and_xor:
6230   case Builtin::BI__sync_fetch_and_xor_1:
6231   case Builtin::BI__sync_fetch_and_xor_2:
6232   case Builtin::BI__sync_fetch_and_xor_4:
6233   case Builtin::BI__sync_fetch_and_xor_8:
6234   case Builtin::BI__sync_fetch_and_xor_16:
6235     BuiltinIndex = 4;
6236     break;
6237 
6238   case Builtin::BI__sync_fetch_and_nand:
6239   case Builtin::BI__sync_fetch_and_nand_1:
6240   case Builtin::BI__sync_fetch_and_nand_2:
6241   case Builtin::BI__sync_fetch_and_nand_4:
6242   case Builtin::BI__sync_fetch_and_nand_8:
6243   case Builtin::BI__sync_fetch_and_nand_16:
6244     BuiltinIndex = 5;
6245     WarnAboutSemanticsChange = true;
6246     break;
6247 
6248   case Builtin::BI__sync_add_and_fetch:
6249   case Builtin::BI__sync_add_and_fetch_1:
6250   case Builtin::BI__sync_add_and_fetch_2:
6251   case Builtin::BI__sync_add_and_fetch_4:
6252   case Builtin::BI__sync_add_and_fetch_8:
6253   case Builtin::BI__sync_add_and_fetch_16:
6254     BuiltinIndex = 6;
6255     break;
6256 
6257   case Builtin::BI__sync_sub_and_fetch:
6258   case Builtin::BI__sync_sub_and_fetch_1:
6259   case Builtin::BI__sync_sub_and_fetch_2:
6260   case Builtin::BI__sync_sub_and_fetch_4:
6261   case Builtin::BI__sync_sub_and_fetch_8:
6262   case Builtin::BI__sync_sub_and_fetch_16:
6263     BuiltinIndex = 7;
6264     break;
6265 
6266   case Builtin::BI__sync_and_and_fetch:
6267   case Builtin::BI__sync_and_and_fetch_1:
6268   case Builtin::BI__sync_and_and_fetch_2:
6269   case Builtin::BI__sync_and_and_fetch_4:
6270   case Builtin::BI__sync_and_and_fetch_8:
6271   case Builtin::BI__sync_and_and_fetch_16:
6272     BuiltinIndex = 8;
6273     break;
6274 
6275   case Builtin::BI__sync_or_and_fetch:
6276   case Builtin::BI__sync_or_and_fetch_1:
6277   case Builtin::BI__sync_or_and_fetch_2:
6278   case Builtin::BI__sync_or_and_fetch_4:
6279   case Builtin::BI__sync_or_and_fetch_8:
6280   case Builtin::BI__sync_or_and_fetch_16:
6281     BuiltinIndex = 9;
6282     break;
6283 
6284   case Builtin::BI__sync_xor_and_fetch:
6285   case Builtin::BI__sync_xor_and_fetch_1:
6286   case Builtin::BI__sync_xor_and_fetch_2:
6287   case Builtin::BI__sync_xor_and_fetch_4:
6288   case Builtin::BI__sync_xor_and_fetch_8:
6289   case Builtin::BI__sync_xor_and_fetch_16:
6290     BuiltinIndex = 10;
6291     break;
6292 
6293   case Builtin::BI__sync_nand_and_fetch:
6294   case Builtin::BI__sync_nand_and_fetch_1:
6295   case Builtin::BI__sync_nand_and_fetch_2:
6296   case Builtin::BI__sync_nand_and_fetch_4:
6297   case Builtin::BI__sync_nand_and_fetch_8:
6298   case Builtin::BI__sync_nand_and_fetch_16:
6299     BuiltinIndex = 11;
6300     WarnAboutSemanticsChange = true;
6301     break;
6302 
6303   case Builtin::BI__sync_val_compare_and_swap:
6304   case Builtin::BI__sync_val_compare_and_swap_1:
6305   case Builtin::BI__sync_val_compare_and_swap_2:
6306   case Builtin::BI__sync_val_compare_and_swap_4:
6307   case Builtin::BI__sync_val_compare_and_swap_8:
6308   case Builtin::BI__sync_val_compare_and_swap_16:
6309     BuiltinIndex = 12;
6310     NumFixed = 2;
6311     break;
6312 
6313   case Builtin::BI__sync_bool_compare_and_swap:
6314   case Builtin::BI__sync_bool_compare_and_swap_1:
6315   case Builtin::BI__sync_bool_compare_and_swap_2:
6316   case Builtin::BI__sync_bool_compare_and_swap_4:
6317   case Builtin::BI__sync_bool_compare_and_swap_8:
6318   case Builtin::BI__sync_bool_compare_and_swap_16:
6319     BuiltinIndex = 13;
6320     NumFixed = 2;
6321     ResultType = Context.BoolTy;
6322     break;
6323 
6324   case Builtin::BI__sync_lock_test_and_set:
6325   case Builtin::BI__sync_lock_test_and_set_1:
6326   case Builtin::BI__sync_lock_test_and_set_2:
6327   case Builtin::BI__sync_lock_test_and_set_4:
6328   case Builtin::BI__sync_lock_test_and_set_8:
6329   case Builtin::BI__sync_lock_test_and_set_16:
6330     BuiltinIndex = 14;
6331     break;
6332 
6333   case Builtin::BI__sync_lock_release:
6334   case Builtin::BI__sync_lock_release_1:
6335   case Builtin::BI__sync_lock_release_2:
6336   case Builtin::BI__sync_lock_release_4:
6337   case Builtin::BI__sync_lock_release_8:
6338   case Builtin::BI__sync_lock_release_16:
6339     BuiltinIndex = 15;
6340     NumFixed = 0;
6341     ResultType = Context.VoidTy;
6342     break;
6343 
6344   case Builtin::BI__sync_swap:
6345   case Builtin::BI__sync_swap_1:
6346   case Builtin::BI__sync_swap_2:
6347   case Builtin::BI__sync_swap_4:
6348   case Builtin::BI__sync_swap_8:
6349   case Builtin::BI__sync_swap_16:
6350     BuiltinIndex = 16;
6351     break;
6352   }
6353 
6354   // Now that we know how many fixed arguments we expect, first check that we
6355   // have at least that many.
6356   if (TheCall->getNumArgs() < 1+NumFixed) {
6357     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6358         << 0 << 1 + NumFixed << TheCall->getNumArgs()
6359         << Callee->getSourceRange();
6360     return ExprError();
6361   }
6362 
6363   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6364       << Callee->getSourceRange();
6365 
6366   if (WarnAboutSemanticsChange) {
6367     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6368         << Callee->getSourceRange();
6369   }
6370 
6371   // Get the decl for the concrete builtin from this, we can tell what the
6372   // concrete integer type we should convert to is.
6373   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6374   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6375   FunctionDecl *NewBuiltinDecl;
6376   if (NewBuiltinID == BuiltinID)
6377     NewBuiltinDecl = FDecl;
6378   else {
6379     // Perform builtin lookup to avoid redeclaring it.
6380     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6381     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6382     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6383     assert(Res.getFoundDecl());
6384     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6385     if (!NewBuiltinDecl)
6386       return ExprError();
6387   }
6388 
6389   // The first argument --- the pointer --- has a fixed type; we
6390   // deduce the types of the rest of the arguments accordingly.  Walk
6391   // the remaining arguments, converting them to the deduced value type.
6392   for (unsigned i = 0; i != NumFixed; ++i) {
6393     ExprResult Arg = TheCall->getArg(i+1);
6394 
6395     // GCC does an implicit conversion to the pointer or integer ValType.  This
6396     // can fail in some cases (1i -> int**), check for this error case now.
6397     // Initialize the argument.
6398     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6399                                                    ValType, /*consume*/ false);
6400     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6401     if (Arg.isInvalid())
6402       return ExprError();
6403 
6404     // Okay, we have something that *can* be converted to the right type.  Check
6405     // to see if there is a potentially weird extension going on here.  This can
6406     // happen when you do an atomic operation on something like an char* and
6407     // pass in 42.  The 42 gets converted to char.  This is even more strange
6408     // for things like 45.123 -> char, etc.
6409     // FIXME: Do this check.
6410     TheCall->setArg(i+1, Arg.get());
6411   }
6412 
6413   // Create a new DeclRefExpr to refer to the new decl.
6414   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6415       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6416       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6417       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6418 
6419   // Set the callee in the CallExpr.
6420   // FIXME: This loses syntactic information.
6421   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6422   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6423                                               CK_BuiltinFnToFnPtr);
6424   TheCall->setCallee(PromotedCall.get());
6425 
6426   // Change the result type of the call to match the original value type. This
6427   // is arbitrary, but the codegen for these builtins ins design to handle it
6428   // gracefully.
6429   TheCall->setType(ResultType);
6430 
6431   // Prohibit problematic uses of bit-precise integer types with atomic
6432   // builtins. The arguments would have already been converted to the first
6433   // argument's type, so only need to check the first argument.
6434   const auto *BitIntValType = ValType->getAs<BitIntType>();
6435   if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
6436     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6437     return ExprError();
6438   }
6439 
6440   return TheCallResult;
6441 }
6442 
6443 /// SemaBuiltinNontemporalOverloaded - We have a call to
6444 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6445 /// overloaded function based on the pointer type of its last argument.
6446 ///
6447 /// This function goes through and does final semantic checking for these
6448 /// builtins.
6449 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6450   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6451   DeclRefExpr *DRE =
6452       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6453   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6454   unsigned BuiltinID = FDecl->getBuiltinID();
6455   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6456           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6457          "Unexpected nontemporal load/store builtin!");
6458   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6459   unsigned numArgs = isStore ? 2 : 1;
6460 
6461   // Ensure that we have the proper number of arguments.
6462   if (checkArgCount(*this, TheCall, numArgs))
6463     return ExprError();
6464 
6465   // Inspect the last argument of the nontemporal builtin.  This should always
6466   // be a pointer type, from which we imply the type of the memory access.
6467   // Because it is a pointer type, we don't have to worry about any implicit
6468   // casts here.
6469   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6470   ExprResult PointerArgResult =
6471       DefaultFunctionArrayLvalueConversion(PointerArg);
6472 
6473   if (PointerArgResult.isInvalid())
6474     return ExprError();
6475   PointerArg = PointerArgResult.get();
6476   TheCall->setArg(numArgs - 1, PointerArg);
6477 
6478   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6479   if (!pointerType) {
6480     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6481         << PointerArg->getType() << PointerArg->getSourceRange();
6482     return ExprError();
6483   }
6484 
6485   QualType ValType = pointerType->getPointeeType();
6486 
6487   // Strip any qualifiers off ValType.
6488   ValType = ValType.getUnqualifiedType();
6489   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6490       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6491       !ValType->isVectorType()) {
6492     Diag(DRE->getBeginLoc(),
6493          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6494         << PointerArg->getType() << PointerArg->getSourceRange();
6495     return ExprError();
6496   }
6497 
6498   if (!isStore) {
6499     TheCall->setType(ValType);
6500     return TheCallResult;
6501   }
6502 
6503   ExprResult ValArg = TheCall->getArg(0);
6504   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6505       Context, ValType, /*consume*/ false);
6506   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6507   if (ValArg.isInvalid())
6508     return ExprError();
6509 
6510   TheCall->setArg(0, ValArg.get());
6511   TheCall->setType(Context.VoidTy);
6512   return TheCallResult;
6513 }
6514 
6515 /// CheckObjCString - Checks that the argument to the builtin
6516 /// CFString constructor is correct
6517 /// Note: It might also make sense to do the UTF-16 conversion here (would
6518 /// simplify the backend).
6519 bool Sema::CheckObjCString(Expr *Arg) {
6520   Arg = Arg->IgnoreParenCasts();
6521   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6522 
6523   if (!Literal || !Literal->isAscii()) {
6524     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6525         << Arg->getSourceRange();
6526     return true;
6527   }
6528 
6529   if (Literal->containsNonAsciiOrNull()) {
6530     StringRef String = Literal->getString();
6531     unsigned NumBytes = String.size();
6532     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6533     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6534     llvm::UTF16 *ToPtr = &ToBuf[0];
6535 
6536     llvm::ConversionResult Result =
6537         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6538                                  ToPtr + NumBytes, llvm::strictConversion);
6539     // Check for conversion failure.
6540     if (Result != llvm::conversionOK)
6541       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6542           << Arg->getSourceRange();
6543   }
6544   return false;
6545 }
6546 
6547 /// CheckObjCString - Checks that the format string argument to the os_log()
6548 /// and os_trace() functions is correct, and converts it to const char *.
6549 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6550   Arg = Arg->IgnoreParenCasts();
6551   auto *Literal = dyn_cast<StringLiteral>(Arg);
6552   if (!Literal) {
6553     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6554       Literal = ObjcLiteral->getString();
6555     }
6556   }
6557 
6558   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6559     return ExprError(
6560         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6561         << Arg->getSourceRange());
6562   }
6563 
6564   ExprResult Result(Literal);
6565   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6566   InitializedEntity Entity =
6567       InitializedEntity::InitializeParameter(Context, ResultTy, false);
6568   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6569   return Result;
6570 }
6571 
6572 /// Check that the user is calling the appropriate va_start builtin for the
6573 /// target and calling convention.
6574 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6575   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6576   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6577   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6578                     TT.getArch() == llvm::Triple::aarch64_32);
6579   bool IsWindows = TT.isOSWindows();
6580   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6581   if (IsX64 || IsAArch64) {
6582     CallingConv CC = CC_C;
6583     if (const FunctionDecl *FD = S.getCurFunctionDecl())
6584       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6585     if (IsMSVAStart) {
6586       // Don't allow this in System V ABI functions.
6587       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6588         return S.Diag(Fn->getBeginLoc(),
6589                       diag::err_ms_va_start_used_in_sysv_function);
6590     } else {
6591       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6592       // On x64 Windows, don't allow this in System V ABI functions.
6593       // (Yes, that means there's no corresponding way to support variadic
6594       // System V ABI functions on Windows.)
6595       if ((IsWindows && CC == CC_X86_64SysV) ||
6596           (!IsWindows && CC == CC_Win64))
6597         return S.Diag(Fn->getBeginLoc(),
6598                       diag::err_va_start_used_in_wrong_abi_function)
6599                << !IsWindows;
6600     }
6601     return false;
6602   }
6603 
6604   if (IsMSVAStart)
6605     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6606   return false;
6607 }
6608 
6609 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6610                                              ParmVarDecl **LastParam = nullptr) {
6611   // Determine whether the current function, block, or obj-c method is variadic
6612   // and get its parameter list.
6613   bool IsVariadic = false;
6614   ArrayRef<ParmVarDecl *> Params;
6615   DeclContext *Caller = S.CurContext;
6616   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6617     IsVariadic = Block->isVariadic();
6618     Params = Block->parameters();
6619   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6620     IsVariadic = FD->isVariadic();
6621     Params = FD->parameters();
6622   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6623     IsVariadic = MD->isVariadic();
6624     // FIXME: This isn't correct for methods (results in bogus warning).
6625     Params = MD->parameters();
6626   } else if (isa<CapturedDecl>(Caller)) {
6627     // We don't support va_start in a CapturedDecl.
6628     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6629     return true;
6630   } else {
6631     // This must be some other declcontext that parses exprs.
6632     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6633     return true;
6634   }
6635 
6636   if (!IsVariadic) {
6637     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6638     return true;
6639   }
6640 
6641   if (LastParam)
6642     *LastParam = Params.empty() ? nullptr : Params.back();
6643 
6644   return false;
6645 }
6646 
6647 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6648 /// for validity.  Emit an error and return true on failure; return false
6649 /// on success.
6650 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6651   Expr *Fn = TheCall->getCallee();
6652 
6653   if (checkVAStartABI(*this, BuiltinID, Fn))
6654     return true;
6655 
6656   if (checkArgCount(*this, TheCall, 2))
6657     return true;
6658 
6659   // Type-check the first argument normally.
6660   if (checkBuiltinArgument(*this, TheCall, 0))
6661     return true;
6662 
6663   // Check that the current function is variadic, and get its last parameter.
6664   ParmVarDecl *LastParam;
6665   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6666     return true;
6667 
6668   // Verify that the second argument to the builtin is the last argument of the
6669   // current function or method.
6670   bool SecondArgIsLastNamedArgument = false;
6671   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6672 
6673   // These are valid if SecondArgIsLastNamedArgument is false after the next
6674   // block.
6675   QualType Type;
6676   SourceLocation ParamLoc;
6677   bool IsCRegister = false;
6678 
6679   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6680     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6681       SecondArgIsLastNamedArgument = PV == LastParam;
6682 
6683       Type = PV->getType();
6684       ParamLoc = PV->getLocation();
6685       IsCRegister =
6686           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6687     }
6688   }
6689 
6690   if (!SecondArgIsLastNamedArgument)
6691     Diag(TheCall->getArg(1)->getBeginLoc(),
6692          diag::warn_second_arg_of_va_start_not_last_named_param);
6693   else if (IsCRegister || Type->isReferenceType() ||
6694            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6695              // Promotable integers are UB, but enumerations need a bit of
6696              // extra checking to see what their promotable type actually is.
6697              if (!Type->isPromotableIntegerType())
6698                return false;
6699              if (!Type->isEnumeralType())
6700                return true;
6701              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6702              return !(ED &&
6703                       Context.typesAreCompatible(ED->getPromotionType(), Type));
6704            }()) {
6705     unsigned Reason = 0;
6706     if (Type->isReferenceType())  Reason = 1;
6707     else if (IsCRegister)         Reason = 2;
6708     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6709     Diag(ParamLoc, diag::note_parameter_type) << Type;
6710   }
6711 
6712   TheCall->setType(Context.VoidTy);
6713   return false;
6714 }
6715 
6716 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6717   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
6718     const LangOptions &LO = getLangOpts();
6719 
6720     if (LO.CPlusPlus)
6721       return Arg->getType()
6722                  .getCanonicalType()
6723                  .getTypePtr()
6724                  ->getPointeeType()
6725                  .withoutLocalFastQualifiers() == Context.CharTy;
6726 
6727     // In C, allow aliasing through `char *`, this is required for AArch64 at
6728     // least.
6729     return true;
6730   };
6731 
6732   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6733   //                 const char *named_addr);
6734 
6735   Expr *Func = Call->getCallee();
6736 
6737   if (Call->getNumArgs() < 3)
6738     return Diag(Call->getEndLoc(),
6739                 diag::err_typecheck_call_too_few_args_at_least)
6740            << 0 /*function call*/ << 3 << Call->getNumArgs();
6741 
6742   // Type-check the first argument normally.
6743   if (checkBuiltinArgument(*this, Call, 0))
6744     return true;
6745 
6746   // Check that the current function is variadic.
6747   if (checkVAStartIsInVariadicFunction(*this, Func))
6748     return true;
6749 
6750   // __va_start on Windows does not validate the parameter qualifiers
6751 
6752   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6753   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6754 
6755   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6756   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6757 
6758   const QualType &ConstCharPtrTy =
6759       Context.getPointerType(Context.CharTy.withConst());
6760   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
6761     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6762         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6763         << 0                                      /* qualifier difference */
6764         << 3                                      /* parameter mismatch */
6765         << 2 << Arg1->getType() << ConstCharPtrTy;
6766 
6767   const QualType SizeTy = Context.getSizeType();
6768   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6769     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6770         << Arg2->getType() << SizeTy << 1 /* different class */
6771         << 0                              /* qualifier difference */
6772         << 3                              /* parameter mismatch */
6773         << 3 << Arg2->getType() << SizeTy;
6774 
6775   return false;
6776 }
6777 
6778 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6779 /// friends.  This is declared to take (...), so we have to check everything.
6780 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6781   if (checkArgCount(*this, TheCall, 2))
6782     return true;
6783 
6784   ExprResult OrigArg0 = TheCall->getArg(0);
6785   ExprResult OrigArg1 = TheCall->getArg(1);
6786 
6787   // Do standard promotions between the two arguments, returning their common
6788   // type.
6789   QualType Res = UsualArithmeticConversions(
6790       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6791   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6792     return true;
6793 
6794   // Make sure any conversions are pushed back into the call; this is
6795   // type safe since unordered compare builtins are declared as "_Bool
6796   // foo(...)".
6797   TheCall->setArg(0, OrigArg0.get());
6798   TheCall->setArg(1, OrigArg1.get());
6799 
6800   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6801     return false;
6802 
6803   // If the common type isn't a real floating type, then the arguments were
6804   // invalid for this operation.
6805   if (Res.isNull() || !Res->isRealFloatingType())
6806     return Diag(OrigArg0.get()->getBeginLoc(),
6807                 diag::err_typecheck_call_invalid_ordered_compare)
6808            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6809            << SourceRange(OrigArg0.get()->getBeginLoc(),
6810                           OrigArg1.get()->getEndLoc());
6811 
6812   return false;
6813 }
6814 
6815 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6816 /// __builtin_isnan and friends.  This is declared to take (...), so we have
6817 /// to check everything. We expect the last argument to be a floating point
6818 /// value.
6819 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6820   if (checkArgCount(*this, TheCall, NumArgs))
6821     return true;
6822 
6823   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6824   // on all preceding parameters just being int.  Try all of those.
6825   for (unsigned i = 0; i < NumArgs - 1; ++i) {
6826     Expr *Arg = TheCall->getArg(i);
6827 
6828     if (Arg->isTypeDependent())
6829       return false;
6830 
6831     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6832 
6833     if (Res.isInvalid())
6834       return true;
6835     TheCall->setArg(i, Res.get());
6836   }
6837 
6838   Expr *OrigArg = TheCall->getArg(NumArgs-1);
6839 
6840   if (OrigArg->isTypeDependent())
6841     return false;
6842 
6843   // Usual Unary Conversions will convert half to float, which we want for
6844   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6845   // type how it is, but do normal L->Rvalue conversions.
6846   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6847     OrigArg = UsualUnaryConversions(OrigArg).get();
6848   else
6849     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6850   TheCall->setArg(NumArgs - 1, OrigArg);
6851 
6852   // This operation requires a non-_Complex floating-point number.
6853   if (!OrigArg->getType()->isRealFloatingType())
6854     return Diag(OrigArg->getBeginLoc(),
6855                 diag::err_typecheck_call_invalid_unary_fp)
6856            << OrigArg->getType() << OrigArg->getSourceRange();
6857 
6858   return false;
6859 }
6860 
6861 /// Perform semantic analysis for a call to __builtin_complex.
6862 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6863   if (checkArgCount(*this, TheCall, 2))
6864     return true;
6865 
6866   bool Dependent = false;
6867   for (unsigned I = 0; I != 2; ++I) {
6868     Expr *Arg = TheCall->getArg(I);
6869     QualType T = Arg->getType();
6870     if (T->isDependentType()) {
6871       Dependent = true;
6872       continue;
6873     }
6874 
6875     // Despite supporting _Complex int, GCC requires a real floating point type
6876     // for the operands of __builtin_complex.
6877     if (!T->isRealFloatingType()) {
6878       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6879              << Arg->getType() << Arg->getSourceRange();
6880     }
6881 
6882     ExprResult Converted = DefaultLvalueConversion(Arg);
6883     if (Converted.isInvalid())
6884       return true;
6885     TheCall->setArg(I, Converted.get());
6886   }
6887 
6888   if (Dependent) {
6889     TheCall->setType(Context.DependentTy);
6890     return false;
6891   }
6892 
6893   Expr *Real = TheCall->getArg(0);
6894   Expr *Imag = TheCall->getArg(1);
6895   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6896     return Diag(Real->getBeginLoc(),
6897                 diag::err_typecheck_call_different_arg_types)
6898            << Real->getType() << Imag->getType()
6899            << Real->getSourceRange() << Imag->getSourceRange();
6900   }
6901 
6902   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6903   // don't allow this builtin to form those types either.
6904   // FIXME: Should we allow these types?
6905   if (Real->getType()->isFloat16Type())
6906     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6907            << "_Float16";
6908   if (Real->getType()->isHalfType())
6909     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6910            << "half";
6911 
6912   TheCall->setType(Context.getComplexType(Real->getType()));
6913   return false;
6914 }
6915 
6916 // Customized Sema Checking for VSX builtins that have the following signature:
6917 // vector [...] builtinName(vector [...], vector [...], const int);
6918 // Which takes the same type of vectors (any legal vector type) for the first
6919 // two arguments and takes compile time constant for the third argument.
6920 // Example builtins are :
6921 // vector double vec_xxpermdi(vector double, vector double, int);
6922 // vector short vec_xxsldwi(vector short, vector short, int);
6923 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6924   unsigned ExpectedNumArgs = 3;
6925   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6926     return true;
6927 
6928   // Check the third argument is a compile time constant
6929   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6930     return Diag(TheCall->getBeginLoc(),
6931                 diag::err_vsx_builtin_nonconstant_argument)
6932            << 3 /* argument index */ << TheCall->getDirectCallee()
6933            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6934                           TheCall->getArg(2)->getEndLoc());
6935 
6936   QualType Arg1Ty = TheCall->getArg(0)->getType();
6937   QualType Arg2Ty = TheCall->getArg(1)->getType();
6938 
6939   // Check the type of argument 1 and argument 2 are vectors.
6940   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6941   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6942       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6943     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6944            << TheCall->getDirectCallee()
6945            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6946                           TheCall->getArg(1)->getEndLoc());
6947   }
6948 
6949   // Check the first two arguments are the same type.
6950   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6951     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6952            << TheCall->getDirectCallee()
6953            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6954                           TheCall->getArg(1)->getEndLoc());
6955   }
6956 
6957   // When default clang type checking is turned off and the customized type
6958   // checking is used, the returning type of the function must be explicitly
6959   // set. Otherwise it is _Bool by default.
6960   TheCall->setType(Arg1Ty);
6961 
6962   return false;
6963 }
6964 
6965 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6966 // This is declared to take (...), so we have to check everything.
6967 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6968   if (TheCall->getNumArgs() < 2)
6969     return ExprError(Diag(TheCall->getEndLoc(),
6970                           diag::err_typecheck_call_too_few_args_at_least)
6971                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6972                      << TheCall->getSourceRange());
6973 
6974   // Determine which of the following types of shufflevector we're checking:
6975   // 1) unary, vector mask: (lhs, mask)
6976   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6977   QualType resType = TheCall->getArg(0)->getType();
6978   unsigned numElements = 0;
6979 
6980   if (!TheCall->getArg(0)->isTypeDependent() &&
6981       !TheCall->getArg(1)->isTypeDependent()) {
6982     QualType LHSType = TheCall->getArg(0)->getType();
6983     QualType RHSType = TheCall->getArg(1)->getType();
6984 
6985     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6986       return ExprError(
6987           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6988           << TheCall->getDirectCallee()
6989           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6990                          TheCall->getArg(1)->getEndLoc()));
6991 
6992     numElements = LHSType->castAs<VectorType>()->getNumElements();
6993     unsigned numResElements = TheCall->getNumArgs() - 2;
6994 
6995     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6996     // with mask.  If so, verify that RHS is an integer vector type with the
6997     // same number of elts as lhs.
6998     if (TheCall->getNumArgs() == 2) {
6999       if (!RHSType->hasIntegerRepresentation() ||
7000           RHSType->castAs<VectorType>()->getNumElements() != numElements)
7001         return ExprError(Diag(TheCall->getBeginLoc(),
7002                               diag::err_vec_builtin_incompatible_vector)
7003                          << TheCall->getDirectCallee()
7004                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
7005                                         TheCall->getArg(1)->getEndLoc()));
7006     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
7007       return ExprError(Diag(TheCall->getBeginLoc(),
7008                             diag::err_vec_builtin_incompatible_vector)
7009                        << TheCall->getDirectCallee()
7010                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7011                                       TheCall->getArg(1)->getEndLoc()));
7012     } else if (numElements != numResElements) {
7013       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
7014       resType = Context.getVectorType(eltType, numResElements,
7015                                       VectorType::GenericVector);
7016     }
7017   }
7018 
7019   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
7020     if (TheCall->getArg(i)->isTypeDependent() ||
7021         TheCall->getArg(i)->isValueDependent())
7022       continue;
7023 
7024     Optional<llvm::APSInt> Result;
7025     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
7026       return ExprError(Diag(TheCall->getBeginLoc(),
7027                             diag::err_shufflevector_nonconstant_argument)
7028                        << TheCall->getArg(i)->getSourceRange());
7029 
7030     // Allow -1 which will be translated to undef in the IR.
7031     if (Result->isSigned() && Result->isAllOnes())
7032       continue;
7033 
7034     if (Result->getActiveBits() > 64 ||
7035         Result->getZExtValue() >= numElements * 2)
7036       return ExprError(Diag(TheCall->getBeginLoc(),
7037                             diag::err_shufflevector_argument_too_large)
7038                        << TheCall->getArg(i)->getSourceRange());
7039   }
7040 
7041   SmallVector<Expr*, 32> exprs;
7042 
7043   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
7044     exprs.push_back(TheCall->getArg(i));
7045     TheCall->setArg(i, nullptr);
7046   }
7047 
7048   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
7049                                          TheCall->getCallee()->getBeginLoc(),
7050                                          TheCall->getRParenLoc());
7051 }
7052 
7053 /// SemaConvertVectorExpr - Handle __builtin_convertvector
7054 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
7055                                        SourceLocation BuiltinLoc,
7056                                        SourceLocation RParenLoc) {
7057   ExprValueKind VK = VK_PRValue;
7058   ExprObjectKind OK = OK_Ordinary;
7059   QualType DstTy = TInfo->getType();
7060   QualType SrcTy = E->getType();
7061 
7062   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
7063     return ExprError(Diag(BuiltinLoc,
7064                           diag::err_convertvector_non_vector)
7065                      << E->getSourceRange());
7066   if (!DstTy->isVectorType() && !DstTy->isDependentType())
7067     return ExprError(Diag(BuiltinLoc,
7068                           diag::err_convertvector_non_vector_type));
7069 
7070   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
7071     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
7072     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
7073     if (SrcElts != DstElts)
7074       return ExprError(Diag(BuiltinLoc,
7075                             diag::err_convertvector_incompatible_vector)
7076                        << E->getSourceRange());
7077   }
7078 
7079   return new (Context)
7080       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
7081 }
7082 
7083 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
7084 // This is declared to take (const void*, ...) and can take two
7085 // optional constant int args.
7086 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
7087   unsigned NumArgs = TheCall->getNumArgs();
7088 
7089   if (NumArgs > 3)
7090     return Diag(TheCall->getEndLoc(),
7091                 diag::err_typecheck_call_too_many_args_at_most)
7092            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7093 
7094   // Argument 0 is checked for us and the remaining arguments must be
7095   // constant integers.
7096   for (unsigned i = 1; i != NumArgs; ++i)
7097     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
7098       return true;
7099 
7100   return false;
7101 }
7102 
7103 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
7104 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
7105   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
7106     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
7107            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7108   if (checkArgCount(*this, TheCall, 1))
7109     return true;
7110   Expr *Arg = TheCall->getArg(0);
7111   if (Arg->isInstantiationDependent())
7112     return false;
7113 
7114   QualType ArgTy = Arg->getType();
7115   if (!ArgTy->hasFloatingRepresentation())
7116     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
7117            << ArgTy;
7118   if (Arg->isLValue()) {
7119     ExprResult FirstArg = DefaultLvalueConversion(Arg);
7120     TheCall->setArg(0, FirstArg.get());
7121   }
7122   TheCall->setType(TheCall->getArg(0)->getType());
7123   return false;
7124 }
7125 
7126 /// SemaBuiltinAssume - Handle __assume (MS Extension).
7127 // __assume does not evaluate its arguments, and should warn if its argument
7128 // has side effects.
7129 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
7130   Expr *Arg = TheCall->getArg(0);
7131   if (Arg->isInstantiationDependent()) return false;
7132 
7133   if (Arg->HasSideEffects(Context))
7134     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
7135         << Arg->getSourceRange()
7136         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
7137 
7138   return false;
7139 }
7140 
7141 /// Handle __builtin_alloca_with_align. This is declared
7142 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
7143 /// than 8.
7144 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
7145   // The alignment must be a constant integer.
7146   Expr *Arg = TheCall->getArg(1);
7147 
7148   // We can't check the value of a dependent argument.
7149   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7150     if (const auto *UE =
7151             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
7152       if (UE->getKind() == UETT_AlignOf ||
7153           UE->getKind() == UETT_PreferredAlignOf)
7154         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
7155             << Arg->getSourceRange();
7156 
7157     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
7158 
7159     if (!Result.isPowerOf2())
7160       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7161              << Arg->getSourceRange();
7162 
7163     if (Result < Context.getCharWidth())
7164       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
7165              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
7166 
7167     if (Result > std::numeric_limits<int32_t>::max())
7168       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
7169              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
7170   }
7171 
7172   return false;
7173 }
7174 
7175 /// Handle __builtin_assume_aligned. This is declared
7176 /// as (const void*, size_t, ...) and can take one optional constant int arg.
7177 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
7178   unsigned NumArgs = TheCall->getNumArgs();
7179 
7180   if (NumArgs > 3)
7181     return Diag(TheCall->getEndLoc(),
7182                 diag::err_typecheck_call_too_many_args_at_most)
7183            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7184 
7185   // The alignment must be a constant integer.
7186   Expr *Arg = TheCall->getArg(1);
7187 
7188   // We can't check the value of a dependent argument.
7189   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7190     llvm::APSInt Result;
7191     if (SemaBuiltinConstantArg(TheCall, 1, Result))
7192       return true;
7193 
7194     if (!Result.isPowerOf2())
7195       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7196              << Arg->getSourceRange();
7197 
7198     if (Result > Sema::MaximumAlignment)
7199       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
7200           << Arg->getSourceRange() << Sema::MaximumAlignment;
7201   }
7202 
7203   if (NumArgs > 2) {
7204     ExprResult Arg(TheCall->getArg(2));
7205     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
7206       Context.getSizeType(), false);
7207     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7208     if (Arg.isInvalid()) return true;
7209     TheCall->setArg(2, Arg.get());
7210   }
7211 
7212   return false;
7213 }
7214 
7215 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
7216   unsigned BuiltinID =
7217       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
7218   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
7219 
7220   unsigned NumArgs = TheCall->getNumArgs();
7221   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
7222   if (NumArgs < NumRequiredArgs) {
7223     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
7224            << 0 /* function call */ << NumRequiredArgs << NumArgs
7225            << TheCall->getSourceRange();
7226   }
7227   if (NumArgs >= NumRequiredArgs + 0x100) {
7228     return Diag(TheCall->getEndLoc(),
7229                 diag::err_typecheck_call_too_many_args_at_most)
7230            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7231            << TheCall->getSourceRange();
7232   }
7233   unsigned i = 0;
7234 
7235   // For formatting call, check buffer arg.
7236   if (!IsSizeCall) {
7237     ExprResult Arg(TheCall->getArg(i));
7238     InitializedEntity Entity = InitializedEntity::InitializeParameter(
7239         Context, Context.VoidPtrTy, false);
7240     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7241     if (Arg.isInvalid())
7242       return true;
7243     TheCall->setArg(i, Arg.get());
7244     i++;
7245   }
7246 
7247   // Check string literal arg.
7248   unsigned FormatIdx = i;
7249   {
7250     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7251     if (Arg.isInvalid())
7252       return true;
7253     TheCall->setArg(i, Arg.get());
7254     i++;
7255   }
7256 
7257   // Make sure variadic args are scalar.
7258   unsigned FirstDataArg = i;
7259   while (i < NumArgs) {
7260     ExprResult Arg = DefaultVariadicArgumentPromotion(
7261         TheCall->getArg(i), VariadicFunction, nullptr);
7262     if (Arg.isInvalid())
7263       return true;
7264     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7265     if (ArgSize.getQuantity() >= 0x100) {
7266       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7267              << i << (int)ArgSize.getQuantity() << 0xff
7268              << TheCall->getSourceRange();
7269     }
7270     TheCall->setArg(i, Arg.get());
7271     i++;
7272   }
7273 
7274   // Check formatting specifiers. NOTE: We're only doing this for the non-size
7275   // call to avoid duplicate diagnostics.
7276   if (!IsSizeCall) {
7277     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7278     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7279     bool Success = CheckFormatArguments(
7280         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
7281         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7282         CheckedVarArgs);
7283     if (!Success)
7284       return true;
7285   }
7286 
7287   if (IsSizeCall) {
7288     TheCall->setType(Context.getSizeType());
7289   } else {
7290     TheCall->setType(Context.VoidPtrTy);
7291   }
7292   return false;
7293 }
7294 
7295 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7296 /// TheCall is a constant expression.
7297 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7298                                   llvm::APSInt &Result) {
7299   Expr *Arg = TheCall->getArg(ArgNum);
7300   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7301   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7302 
7303   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7304 
7305   Optional<llvm::APSInt> R;
7306   if (!(R = Arg->getIntegerConstantExpr(Context)))
7307     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7308            << FDecl->getDeclName() << Arg->getSourceRange();
7309   Result = *R;
7310   return false;
7311 }
7312 
7313 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7314 /// TheCall is a constant expression in the range [Low, High].
7315 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7316                                        int Low, int High, bool RangeIsError) {
7317   if (isConstantEvaluated())
7318     return false;
7319   llvm::APSInt Result;
7320 
7321   // We can't check the value of a dependent argument.
7322   Expr *Arg = TheCall->getArg(ArgNum);
7323   if (Arg->isTypeDependent() || Arg->isValueDependent())
7324     return false;
7325 
7326   // Check constant-ness first.
7327   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7328     return true;
7329 
7330   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7331     if (RangeIsError)
7332       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7333              << toString(Result, 10) << Low << High << Arg->getSourceRange();
7334     else
7335       // Defer the warning until we know if the code will be emitted so that
7336       // dead code can ignore this.
7337       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7338                           PDiag(diag::warn_argument_invalid_range)
7339                               << toString(Result, 10) << Low << High
7340                               << Arg->getSourceRange());
7341   }
7342 
7343   return false;
7344 }
7345 
7346 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7347 /// TheCall is a constant expression is a multiple of Num..
7348 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7349                                           unsigned Num) {
7350   llvm::APSInt Result;
7351 
7352   // We can't check the value of a dependent argument.
7353   Expr *Arg = TheCall->getArg(ArgNum);
7354   if (Arg->isTypeDependent() || Arg->isValueDependent())
7355     return false;
7356 
7357   // Check constant-ness first.
7358   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7359     return true;
7360 
7361   if (Result.getSExtValue() % Num != 0)
7362     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7363            << Num << Arg->getSourceRange();
7364 
7365   return false;
7366 }
7367 
7368 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7369 /// constant expression representing a power of 2.
7370 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7371   llvm::APSInt Result;
7372 
7373   // We can't check the value of a dependent argument.
7374   Expr *Arg = TheCall->getArg(ArgNum);
7375   if (Arg->isTypeDependent() || Arg->isValueDependent())
7376     return false;
7377 
7378   // Check constant-ness first.
7379   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7380     return true;
7381 
7382   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7383   // and only if x is a power of 2.
7384   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7385     return false;
7386 
7387   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7388          << Arg->getSourceRange();
7389 }
7390 
7391 static bool IsShiftedByte(llvm::APSInt Value) {
7392   if (Value.isNegative())
7393     return false;
7394 
7395   // Check if it's a shifted byte, by shifting it down
7396   while (true) {
7397     // If the value fits in the bottom byte, the check passes.
7398     if (Value < 0x100)
7399       return true;
7400 
7401     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7402     // fails.
7403     if ((Value & 0xFF) != 0)
7404       return false;
7405 
7406     // If the bottom 8 bits are all 0, but something above that is nonzero,
7407     // then shifting the value right by 8 bits won't affect whether it's a
7408     // shifted byte or not. So do that, and go round again.
7409     Value >>= 8;
7410   }
7411 }
7412 
7413 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7414 /// a constant expression representing an arbitrary byte value shifted left by
7415 /// a multiple of 8 bits.
7416 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7417                                              unsigned ArgBits) {
7418   llvm::APSInt Result;
7419 
7420   // We can't check the value of a dependent argument.
7421   Expr *Arg = TheCall->getArg(ArgNum);
7422   if (Arg->isTypeDependent() || Arg->isValueDependent())
7423     return false;
7424 
7425   // Check constant-ness first.
7426   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7427     return true;
7428 
7429   // Truncate to the given size.
7430   Result = Result.getLoBits(ArgBits);
7431   Result.setIsUnsigned(true);
7432 
7433   if (IsShiftedByte(Result))
7434     return false;
7435 
7436   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7437          << Arg->getSourceRange();
7438 }
7439 
7440 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7441 /// TheCall is a constant expression representing either a shifted byte value,
7442 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7443 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7444 /// Arm MVE intrinsics.
7445 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7446                                                    int ArgNum,
7447                                                    unsigned ArgBits) {
7448   llvm::APSInt Result;
7449 
7450   // We can't check the value of a dependent argument.
7451   Expr *Arg = TheCall->getArg(ArgNum);
7452   if (Arg->isTypeDependent() || Arg->isValueDependent())
7453     return false;
7454 
7455   // Check constant-ness first.
7456   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7457     return true;
7458 
7459   // Truncate to the given size.
7460   Result = Result.getLoBits(ArgBits);
7461   Result.setIsUnsigned(true);
7462 
7463   // Check to see if it's in either of the required forms.
7464   if (IsShiftedByte(Result) ||
7465       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7466     return false;
7467 
7468   return Diag(TheCall->getBeginLoc(),
7469               diag::err_argument_not_shifted_byte_or_xxff)
7470          << Arg->getSourceRange();
7471 }
7472 
7473 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7474 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7475   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7476     if (checkArgCount(*this, TheCall, 2))
7477       return true;
7478     Expr *Arg0 = TheCall->getArg(0);
7479     Expr *Arg1 = TheCall->getArg(1);
7480 
7481     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7482     if (FirstArg.isInvalid())
7483       return true;
7484     QualType FirstArgType = FirstArg.get()->getType();
7485     if (!FirstArgType->isAnyPointerType())
7486       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7487                << "first" << FirstArgType << Arg0->getSourceRange();
7488     TheCall->setArg(0, FirstArg.get());
7489 
7490     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7491     if (SecArg.isInvalid())
7492       return true;
7493     QualType SecArgType = SecArg.get()->getType();
7494     if (!SecArgType->isIntegerType())
7495       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7496                << "second" << SecArgType << Arg1->getSourceRange();
7497 
7498     // Derive the return type from the pointer argument.
7499     TheCall->setType(FirstArgType);
7500     return false;
7501   }
7502 
7503   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7504     if (checkArgCount(*this, TheCall, 2))
7505       return true;
7506 
7507     Expr *Arg0 = TheCall->getArg(0);
7508     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7509     if (FirstArg.isInvalid())
7510       return true;
7511     QualType FirstArgType = FirstArg.get()->getType();
7512     if (!FirstArgType->isAnyPointerType())
7513       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7514                << "first" << FirstArgType << Arg0->getSourceRange();
7515     TheCall->setArg(0, FirstArg.get());
7516 
7517     // Derive the return type from the pointer argument.
7518     TheCall->setType(FirstArgType);
7519 
7520     // Second arg must be an constant in range [0,15]
7521     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7522   }
7523 
7524   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7525     if (checkArgCount(*this, TheCall, 2))
7526       return true;
7527     Expr *Arg0 = TheCall->getArg(0);
7528     Expr *Arg1 = TheCall->getArg(1);
7529 
7530     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7531     if (FirstArg.isInvalid())
7532       return true;
7533     QualType FirstArgType = FirstArg.get()->getType();
7534     if (!FirstArgType->isAnyPointerType())
7535       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7536                << "first" << FirstArgType << Arg0->getSourceRange();
7537 
7538     QualType SecArgType = Arg1->getType();
7539     if (!SecArgType->isIntegerType())
7540       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7541                << "second" << SecArgType << Arg1->getSourceRange();
7542     TheCall->setType(Context.IntTy);
7543     return false;
7544   }
7545 
7546   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7547       BuiltinID == AArch64::BI__builtin_arm_stg) {
7548     if (checkArgCount(*this, TheCall, 1))
7549       return true;
7550     Expr *Arg0 = TheCall->getArg(0);
7551     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7552     if (FirstArg.isInvalid())
7553       return true;
7554 
7555     QualType FirstArgType = FirstArg.get()->getType();
7556     if (!FirstArgType->isAnyPointerType())
7557       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7558                << "first" << FirstArgType << Arg0->getSourceRange();
7559     TheCall->setArg(0, FirstArg.get());
7560 
7561     // Derive the return type from the pointer argument.
7562     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7563       TheCall->setType(FirstArgType);
7564     return false;
7565   }
7566 
7567   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7568     Expr *ArgA = TheCall->getArg(0);
7569     Expr *ArgB = TheCall->getArg(1);
7570 
7571     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7572     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7573 
7574     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7575       return true;
7576 
7577     QualType ArgTypeA = ArgExprA.get()->getType();
7578     QualType ArgTypeB = ArgExprB.get()->getType();
7579 
7580     auto isNull = [&] (Expr *E) -> bool {
7581       return E->isNullPointerConstant(
7582                         Context, Expr::NPC_ValueDependentIsNotNull); };
7583 
7584     // argument should be either a pointer or null
7585     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7586       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7587         << "first" << ArgTypeA << ArgA->getSourceRange();
7588 
7589     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7590       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7591         << "second" << ArgTypeB << ArgB->getSourceRange();
7592 
7593     // Ensure Pointee types are compatible
7594     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7595         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7596       QualType pointeeA = ArgTypeA->getPointeeType();
7597       QualType pointeeB = ArgTypeB->getPointeeType();
7598       if (!Context.typesAreCompatible(
7599              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7600              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7601         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7602           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
7603           << ArgB->getSourceRange();
7604       }
7605     }
7606 
7607     // at least one argument should be pointer type
7608     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7609       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7610         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7611 
7612     if (isNull(ArgA)) // adopt type of the other pointer
7613       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7614 
7615     if (isNull(ArgB))
7616       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7617 
7618     TheCall->setArg(0, ArgExprA.get());
7619     TheCall->setArg(1, ArgExprB.get());
7620     TheCall->setType(Context.LongLongTy);
7621     return false;
7622   }
7623   assert(false && "Unhandled ARM MTE intrinsic");
7624   return true;
7625 }
7626 
7627 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7628 /// TheCall is an ARM/AArch64 special register string literal.
7629 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7630                                     int ArgNum, unsigned ExpectedFieldNum,
7631                                     bool AllowName) {
7632   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7633                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7634                       BuiltinID == ARM::BI__builtin_arm_rsr ||
7635                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7636                       BuiltinID == ARM::BI__builtin_arm_wsr ||
7637                       BuiltinID == ARM::BI__builtin_arm_wsrp;
7638   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7639                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7640                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
7641                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7642                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
7643                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
7644   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
7645 
7646   // We can't check the value of a dependent argument.
7647   Expr *Arg = TheCall->getArg(ArgNum);
7648   if (Arg->isTypeDependent() || Arg->isValueDependent())
7649     return false;
7650 
7651   // Check if the argument is a string literal.
7652   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7653     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7654            << Arg->getSourceRange();
7655 
7656   // Check the type of special register given.
7657   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7658   SmallVector<StringRef, 6> Fields;
7659   Reg.split(Fields, ":");
7660 
7661   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7662     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7663            << Arg->getSourceRange();
7664 
7665   // If the string is the name of a register then we cannot check that it is
7666   // valid here but if the string is of one the forms described in ACLE then we
7667   // can check that the supplied fields are integers and within the valid
7668   // ranges.
7669   if (Fields.size() > 1) {
7670     bool FiveFields = Fields.size() == 5;
7671 
7672     bool ValidString = true;
7673     if (IsARMBuiltin) {
7674       ValidString &= Fields[0].startswith_insensitive("cp") ||
7675                      Fields[0].startswith_insensitive("p");
7676       if (ValidString)
7677         Fields[0] = Fields[0].drop_front(
7678             Fields[0].startswith_insensitive("cp") ? 2 : 1);
7679 
7680       ValidString &= Fields[2].startswith_insensitive("c");
7681       if (ValidString)
7682         Fields[2] = Fields[2].drop_front(1);
7683 
7684       if (FiveFields) {
7685         ValidString &= Fields[3].startswith_insensitive("c");
7686         if (ValidString)
7687           Fields[3] = Fields[3].drop_front(1);
7688       }
7689     }
7690 
7691     SmallVector<int, 5> Ranges;
7692     if (FiveFields)
7693       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7694     else
7695       Ranges.append({15, 7, 15});
7696 
7697     for (unsigned i=0; i<Fields.size(); ++i) {
7698       int IntField;
7699       ValidString &= !Fields[i].getAsInteger(10, IntField);
7700       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7701     }
7702 
7703     if (!ValidString)
7704       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7705              << Arg->getSourceRange();
7706   } else if (IsAArch64Builtin && Fields.size() == 1) {
7707     // If the register name is one of those that appear in the condition below
7708     // and the special register builtin being used is one of the write builtins,
7709     // then we require that the argument provided for writing to the register
7710     // is an integer constant expression. This is because it will be lowered to
7711     // an MSR (immediate) instruction, so we need to know the immediate at
7712     // compile time.
7713     if (TheCall->getNumArgs() != 2)
7714       return false;
7715 
7716     std::string RegLower = Reg.lower();
7717     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7718         RegLower != "pan" && RegLower != "uao")
7719       return false;
7720 
7721     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7722   }
7723 
7724   return false;
7725 }
7726 
7727 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7728 /// Emit an error and return true on failure; return false on success.
7729 /// TypeStr is a string containing the type descriptor of the value returned by
7730 /// the builtin and the descriptors of the expected type of the arguments.
7731 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
7732                                  const char *TypeStr) {
7733 
7734   assert((TypeStr[0] != '\0') &&
7735          "Invalid types in PPC MMA builtin declaration");
7736 
7737   switch (BuiltinID) {
7738   default:
7739     // This function is called in CheckPPCBuiltinFunctionCall where the
7740     // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
7741     // we are isolating the pair vector memop builtins that can be used with mma
7742     // off so the default case is every builtin that requires mma and paired
7743     // vector memops.
7744     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7745                          diag::err_ppc_builtin_only_on_arch, "10") ||
7746         SemaFeatureCheck(*this, TheCall, "mma",
7747                          diag::err_ppc_builtin_only_on_arch, "10"))
7748       return true;
7749     break;
7750   case PPC::BI__builtin_vsx_lxvp:
7751   case PPC::BI__builtin_vsx_stxvp:
7752   case PPC::BI__builtin_vsx_assemble_pair:
7753   case PPC::BI__builtin_vsx_disassemble_pair:
7754     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7755                          diag::err_ppc_builtin_only_on_arch, "10"))
7756       return true;
7757     break;
7758   }
7759 
7760   unsigned Mask = 0;
7761   unsigned ArgNum = 0;
7762 
7763   // The first type in TypeStr is the type of the value returned by the
7764   // builtin. So we first read that type and change the type of TheCall.
7765   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7766   TheCall->setType(type);
7767 
7768   while (*TypeStr != '\0') {
7769     Mask = 0;
7770     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7771     if (ArgNum >= TheCall->getNumArgs()) {
7772       ArgNum++;
7773       break;
7774     }
7775 
7776     Expr *Arg = TheCall->getArg(ArgNum);
7777     QualType PassedType = Arg->getType();
7778     QualType StrippedRVType = PassedType.getCanonicalType();
7779 
7780     // Strip Restrict/Volatile qualifiers.
7781     if (StrippedRVType.isRestrictQualified() ||
7782         StrippedRVType.isVolatileQualified())
7783       StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
7784 
7785     // The only case where the argument type and expected type are allowed to
7786     // mismatch is if the argument type is a non-void pointer (or array) and
7787     // expected type is a void pointer.
7788     if (StrippedRVType != ExpectedType)
7789       if (!(ExpectedType->isVoidPointerType() &&
7790             (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
7791         return Diag(Arg->getBeginLoc(),
7792                     diag::err_typecheck_convert_incompatible)
7793                << PassedType << ExpectedType << 1 << 0 << 0;
7794 
7795     // If the value of the Mask is not 0, we have a constraint in the size of
7796     // the integer argument so here we ensure the argument is a constant that
7797     // is in the valid range.
7798     if (Mask != 0 &&
7799         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7800       return true;
7801 
7802     ArgNum++;
7803   }
7804 
7805   // In case we exited early from the previous loop, there are other types to
7806   // read from TypeStr. So we need to read them all to ensure we have the right
7807   // number of arguments in TheCall and if it is not the case, to display a
7808   // better error message.
7809   while (*TypeStr != '\0') {
7810     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7811     ArgNum++;
7812   }
7813   if (checkArgCount(*this, TheCall, ArgNum))
7814     return true;
7815 
7816   return false;
7817 }
7818 
7819 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7820 /// This checks that the target supports __builtin_longjmp and
7821 /// that val is a constant 1.
7822 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7823   if (!Context.getTargetInfo().hasSjLjLowering())
7824     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7825            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7826 
7827   Expr *Arg = TheCall->getArg(1);
7828   llvm::APSInt Result;
7829 
7830   // TODO: This is less than ideal. Overload this to take a value.
7831   if (SemaBuiltinConstantArg(TheCall, 1, Result))
7832     return true;
7833 
7834   if (Result != 1)
7835     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7836            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7837 
7838   return false;
7839 }
7840 
7841 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7842 /// This checks that the target supports __builtin_setjmp.
7843 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7844   if (!Context.getTargetInfo().hasSjLjLowering())
7845     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7846            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7847   return false;
7848 }
7849 
7850 namespace {
7851 
7852 class UncoveredArgHandler {
7853   enum { Unknown = -1, AllCovered = -2 };
7854 
7855   signed FirstUncoveredArg = Unknown;
7856   SmallVector<const Expr *, 4> DiagnosticExprs;
7857 
7858 public:
7859   UncoveredArgHandler() = default;
7860 
7861   bool hasUncoveredArg() const {
7862     return (FirstUncoveredArg >= 0);
7863   }
7864 
7865   unsigned getUncoveredArg() const {
7866     assert(hasUncoveredArg() && "no uncovered argument");
7867     return FirstUncoveredArg;
7868   }
7869 
7870   void setAllCovered() {
7871     // A string has been found with all arguments covered, so clear out
7872     // the diagnostics.
7873     DiagnosticExprs.clear();
7874     FirstUncoveredArg = AllCovered;
7875   }
7876 
7877   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7878     assert(NewFirstUncoveredArg >= 0 && "Outside range");
7879 
7880     // Don't update if a previous string covers all arguments.
7881     if (FirstUncoveredArg == AllCovered)
7882       return;
7883 
7884     // UncoveredArgHandler tracks the highest uncovered argument index
7885     // and with it all the strings that match this index.
7886     if (NewFirstUncoveredArg == FirstUncoveredArg)
7887       DiagnosticExprs.push_back(StrExpr);
7888     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7889       DiagnosticExprs.clear();
7890       DiagnosticExprs.push_back(StrExpr);
7891       FirstUncoveredArg = NewFirstUncoveredArg;
7892     }
7893   }
7894 
7895   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7896 };
7897 
7898 enum StringLiteralCheckType {
7899   SLCT_NotALiteral,
7900   SLCT_UncheckedLiteral,
7901   SLCT_CheckedLiteral
7902 };
7903 
7904 } // namespace
7905 
7906 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7907                                      BinaryOperatorKind BinOpKind,
7908                                      bool AddendIsRight) {
7909   unsigned BitWidth = Offset.getBitWidth();
7910   unsigned AddendBitWidth = Addend.getBitWidth();
7911   // There might be negative interim results.
7912   if (Addend.isUnsigned()) {
7913     Addend = Addend.zext(++AddendBitWidth);
7914     Addend.setIsSigned(true);
7915   }
7916   // Adjust the bit width of the APSInts.
7917   if (AddendBitWidth > BitWidth) {
7918     Offset = Offset.sext(AddendBitWidth);
7919     BitWidth = AddendBitWidth;
7920   } else if (BitWidth > AddendBitWidth) {
7921     Addend = Addend.sext(BitWidth);
7922   }
7923 
7924   bool Ov = false;
7925   llvm::APSInt ResOffset = Offset;
7926   if (BinOpKind == BO_Add)
7927     ResOffset = Offset.sadd_ov(Addend, Ov);
7928   else {
7929     assert(AddendIsRight && BinOpKind == BO_Sub &&
7930            "operator must be add or sub with addend on the right");
7931     ResOffset = Offset.ssub_ov(Addend, Ov);
7932   }
7933 
7934   // We add an offset to a pointer here so we should support an offset as big as
7935   // possible.
7936   if (Ov) {
7937     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
7938            "index (intermediate) result too big");
7939     Offset = Offset.sext(2 * BitWidth);
7940     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7941     return;
7942   }
7943 
7944   Offset = ResOffset;
7945 }
7946 
7947 namespace {
7948 
7949 // This is a wrapper class around StringLiteral to support offsetted string
7950 // literals as format strings. It takes the offset into account when returning
7951 // the string and its length or the source locations to display notes correctly.
7952 class FormatStringLiteral {
7953   const StringLiteral *FExpr;
7954   int64_t Offset;
7955 
7956  public:
7957   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7958       : FExpr(fexpr), Offset(Offset) {}
7959 
7960   StringRef getString() const {
7961     return FExpr->getString().drop_front(Offset);
7962   }
7963 
7964   unsigned getByteLength() const {
7965     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7966   }
7967 
7968   unsigned getLength() const { return FExpr->getLength() - Offset; }
7969   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7970 
7971   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7972 
7973   QualType getType() const { return FExpr->getType(); }
7974 
7975   bool isAscii() const { return FExpr->isAscii(); }
7976   bool isWide() const { return FExpr->isWide(); }
7977   bool isUTF8() const { return FExpr->isUTF8(); }
7978   bool isUTF16() const { return FExpr->isUTF16(); }
7979   bool isUTF32() const { return FExpr->isUTF32(); }
7980   bool isPascal() const { return FExpr->isPascal(); }
7981 
7982   SourceLocation getLocationOfByte(
7983       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7984       const TargetInfo &Target, unsigned *StartToken = nullptr,
7985       unsigned *StartTokenByteOffset = nullptr) const {
7986     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7987                                     StartToken, StartTokenByteOffset);
7988   }
7989 
7990   SourceLocation getBeginLoc() const LLVM_READONLY {
7991     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7992   }
7993 
7994   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7995 };
7996 
7997 }  // namespace
7998 
7999 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8000                               const Expr *OrigFormatExpr,
8001                               ArrayRef<const Expr *> Args,
8002                               bool HasVAListArg, unsigned format_idx,
8003                               unsigned firstDataArg,
8004                               Sema::FormatStringType Type,
8005                               bool inFunctionCall,
8006                               Sema::VariadicCallType CallType,
8007                               llvm::SmallBitVector &CheckedVarArgs,
8008                               UncoveredArgHandler &UncoveredArg,
8009                               bool IgnoreStringsWithoutSpecifiers);
8010 
8011 // Determine if an expression is a string literal or constant string.
8012 // If this function returns false on the arguments to a function expecting a
8013 // format string, we will usually need to emit a warning.
8014 // True string literals are then checked by CheckFormatString.
8015 static StringLiteralCheckType
8016 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
8017                       bool HasVAListArg, unsigned format_idx,
8018                       unsigned firstDataArg, Sema::FormatStringType Type,
8019                       Sema::VariadicCallType CallType, bool InFunctionCall,
8020                       llvm::SmallBitVector &CheckedVarArgs,
8021                       UncoveredArgHandler &UncoveredArg,
8022                       llvm::APSInt Offset,
8023                       bool IgnoreStringsWithoutSpecifiers = false) {
8024   if (S.isConstantEvaluated())
8025     return SLCT_NotALiteral;
8026  tryAgain:
8027   assert(Offset.isSigned() && "invalid offset");
8028 
8029   if (E->isTypeDependent() || E->isValueDependent())
8030     return SLCT_NotALiteral;
8031 
8032   E = E->IgnoreParenCasts();
8033 
8034   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
8035     // Technically -Wformat-nonliteral does not warn about this case.
8036     // The behavior of printf and friends in this case is implementation
8037     // dependent.  Ideally if the format string cannot be null then
8038     // it should have a 'nonnull' attribute in the function prototype.
8039     return SLCT_UncheckedLiteral;
8040 
8041   switch (E->getStmtClass()) {
8042   case Stmt::BinaryConditionalOperatorClass:
8043   case Stmt::ConditionalOperatorClass: {
8044     // The expression is a literal if both sub-expressions were, and it was
8045     // completely checked only if both sub-expressions were checked.
8046     const AbstractConditionalOperator *C =
8047         cast<AbstractConditionalOperator>(E);
8048 
8049     // Determine whether it is necessary to check both sub-expressions, for
8050     // example, because the condition expression is a constant that can be
8051     // evaluated at compile time.
8052     bool CheckLeft = true, CheckRight = true;
8053 
8054     bool Cond;
8055     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
8056                                                  S.isConstantEvaluated())) {
8057       if (Cond)
8058         CheckRight = false;
8059       else
8060         CheckLeft = false;
8061     }
8062 
8063     // We need to maintain the offsets for the right and the left hand side
8064     // separately to check if every possible indexed expression is a valid
8065     // string literal. They might have different offsets for different string
8066     // literals in the end.
8067     StringLiteralCheckType Left;
8068     if (!CheckLeft)
8069       Left = SLCT_UncheckedLiteral;
8070     else {
8071       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
8072                                    HasVAListArg, format_idx, firstDataArg,
8073                                    Type, CallType, InFunctionCall,
8074                                    CheckedVarArgs, UncoveredArg, Offset,
8075                                    IgnoreStringsWithoutSpecifiers);
8076       if (Left == SLCT_NotALiteral || !CheckRight) {
8077         return Left;
8078       }
8079     }
8080 
8081     StringLiteralCheckType Right = checkFormatStringExpr(
8082         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
8083         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8084         IgnoreStringsWithoutSpecifiers);
8085 
8086     return (CheckLeft && Left < Right) ? Left : Right;
8087   }
8088 
8089   case Stmt::ImplicitCastExprClass:
8090     E = cast<ImplicitCastExpr>(E)->getSubExpr();
8091     goto tryAgain;
8092 
8093   case Stmt::OpaqueValueExprClass:
8094     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
8095       E = src;
8096       goto tryAgain;
8097     }
8098     return SLCT_NotALiteral;
8099 
8100   case Stmt::PredefinedExprClass:
8101     // While __func__, etc., are technically not string literals, they
8102     // cannot contain format specifiers and thus are not a security
8103     // liability.
8104     return SLCT_UncheckedLiteral;
8105 
8106   case Stmt::DeclRefExprClass: {
8107     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8108 
8109     // As an exception, do not flag errors for variables binding to
8110     // const string literals.
8111     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
8112       bool isConstant = false;
8113       QualType T = DR->getType();
8114 
8115       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
8116         isConstant = AT->getElementType().isConstant(S.Context);
8117       } else if (const PointerType *PT = T->getAs<PointerType>()) {
8118         isConstant = T.isConstant(S.Context) &&
8119                      PT->getPointeeType().isConstant(S.Context);
8120       } else if (T->isObjCObjectPointerType()) {
8121         // In ObjC, there is usually no "const ObjectPointer" type,
8122         // so don't check if the pointee type is constant.
8123         isConstant = T.isConstant(S.Context);
8124       }
8125 
8126       if (isConstant) {
8127         if (const Expr *Init = VD->getAnyInitializer()) {
8128           // Look through initializers like const char c[] = { "foo" }
8129           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
8130             if (InitList->isStringLiteralInit())
8131               Init = InitList->getInit(0)->IgnoreParenImpCasts();
8132           }
8133           return checkFormatStringExpr(S, Init, Args,
8134                                        HasVAListArg, format_idx,
8135                                        firstDataArg, Type, CallType,
8136                                        /*InFunctionCall*/ false, CheckedVarArgs,
8137                                        UncoveredArg, Offset);
8138         }
8139       }
8140 
8141       // For vprintf* functions (i.e., HasVAListArg==true), we add a
8142       // special check to see if the format string is a function parameter
8143       // of the function calling the printf function.  If the function
8144       // has an attribute indicating it is a printf-like function, then we
8145       // should suppress warnings concerning non-literals being used in a call
8146       // to a vprintf function.  For example:
8147       //
8148       // void
8149       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
8150       //      va_list ap;
8151       //      va_start(ap, fmt);
8152       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
8153       //      ...
8154       // }
8155       if (HasVAListArg) {
8156         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
8157           if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) {
8158             int PVIndex = PV->getFunctionScopeIndex() + 1;
8159             for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
8160               // adjust for implicit parameter
8161               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
8162                 if (MD->isInstance())
8163                   ++PVIndex;
8164               // We also check if the formats are compatible.
8165               // We can't pass a 'scanf' string to a 'printf' function.
8166               if (PVIndex == PVFormat->getFormatIdx() &&
8167                   Type == S.GetFormatStringType(PVFormat))
8168                 return SLCT_UncheckedLiteral;
8169             }
8170           }
8171         }
8172       }
8173     }
8174 
8175     return SLCT_NotALiteral;
8176   }
8177 
8178   case Stmt::CallExprClass:
8179   case Stmt::CXXMemberCallExprClass: {
8180     const CallExpr *CE = cast<CallExpr>(E);
8181     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
8182       bool IsFirst = true;
8183       StringLiteralCheckType CommonResult;
8184       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
8185         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
8186         StringLiteralCheckType Result = checkFormatStringExpr(
8187             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8188             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8189             IgnoreStringsWithoutSpecifiers);
8190         if (IsFirst) {
8191           CommonResult = Result;
8192           IsFirst = false;
8193         }
8194       }
8195       if (!IsFirst)
8196         return CommonResult;
8197 
8198       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
8199         unsigned BuiltinID = FD->getBuiltinID();
8200         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
8201             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
8202           const Expr *Arg = CE->getArg(0);
8203           return checkFormatStringExpr(S, Arg, Args,
8204                                        HasVAListArg, format_idx,
8205                                        firstDataArg, Type, CallType,
8206                                        InFunctionCall, CheckedVarArgs,
8207                                        UncoveredArg, Offset,
8208                                        IgnoreStringsWithoutSpecifiers);
8209         }
8210       }
8211     }
8212 
8213     return SLCT_NotALiteral;
8214   }
8215   case Stmt::ObjCMessageExprClass: {
8216     const auto *ME = cast<ObjCMessageExpr>(E);
8217     if (const auto *MD = ME->getMethodDecl()) {
8218       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
8219         // As a special case heuristic, if we're using the method -[NSBundle
8220         // localizedStringForKey:value:table:], ignore any key strings that lack
8221         // format specifiers. The idea is that if the key doesn't have any
8222         // format specifiers then its probably just a key to map to the
8223         // localized strings. If it does have format specifiers though, then its
8224         // likely that the text of the key is the format string in the
8225         // programmer's language, and should be checked.
8226         const ObjCInterfaceDecl *IFace;
8227         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
8228             IFace->getIdentifier()->isStr("NSBundle") &&
8229             MD->getSelector().isKeywordSelector(
8230                 {"localizedStringForKey", "value", "table"})) {
8231           IgnoreStringsWithoutSpecifiers = true;
8232         }
8233 
8234         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8235         return checkFormatStringExpr(
8236             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8237             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8238             IgnoreStringsWithoutSpecifiers);
8239       }
8240     }
8241 
8242     return SLCT_NotALiteral;
8243   }
8244   case Stmt::ObjCStringLiteralClass:
8245   case Stmt::StringLiteralClass: {
8246     const StringLiteral *StrE = nullptr;
8247 
8248     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8249       StrE = ObjCFExpr->getString();
8250     else
8251       StrE = cast<StringLiteral>(E);
8252 
8253     if (StrE) {
8254       if (Offset.isNegative() || Offset > StrE->getLength()) {
8255         // TODO: It would be better to have an explicit warning for out of
8256         // bounds literals.
8257         return SLCT_NotALiteral;
8258       }
8259       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8260       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
8261                         firstDataArg, Type, InFunctionCall, CallType,
8262                         CheckedVarArgs, UncoveredArg,
8263                         IgnoreStringsWithoutSpecifiers);
8264       return SLCT_CheckedLiteral;
8265     }
8266 
8267     return SLCT_NotALiteral;
8268   }
8269   case Stmt::BinaryOperatorClass: {
8270     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8271 
8272     // A string literal + an int offset is still a string literal.
8273     if (BinOp->isAdditiveOp()) {
8274       Expr::EvalResult LResult, RResult;
8275 
8276       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8277           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8278       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8279           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8280 
8281       if (LIsInt != RIsInt) {
8282         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8283 
8284         if (LIsInt) {
8285           if (BinOpKind == BO_Add) {
8286             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8287             E = BinOp->getRHS();
8288             goto tryAgain;
8289           }
8290         } else {
8291           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8292           E = BinOp->getLHS();
8293           goto tryAgain;
8294         }
8295       }
8296     }
8297 
8298     return SLCT_NotALiteral;
8299   }
8300   case Stmt::UnaryOperatorClass: {
8301     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8302     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8303     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8304       Expr::EvalResult IndexResult;
8305       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8306                                        Expr::SE_NoSideEffects,
8307                                        S.isConstantEvaluated())) {
8308         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8309                    /*RHS is int*/ true);
8310         E = ASE->getBase();
8311         goto tryAgain;
8312       }
8313     }
8314 
8315     return SLCT_NotALiteral;
8316   }
8317 
8318   default:
8319     return SLCT_NotALiteral;
8320   }
8321 }
8322 
8323 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8324   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8325       .Case("scanf", FST_Scanf)
8326       .Cases("printf", "printf0", FST_Printf)
8327       .Cases("NSString", "CFString", FST_NSString)
8328       .Case("strftime", FST_Strftime)
8329       .Case("strfmon", FST_Strfmon)
8330       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8331       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8332       .Case("os_trace", FST_OSLog)
8333       .Case("os_log", FST_OSLog)
8334       .Default(FST_Unknown);
8335 }
8336 
8337 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8338 /// functions) for correct use of format strings.
8339 /// Returns true if a format string has been fully checked.
8340 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8341                                 ArrayRef<const Expr *> Args,
8342                                 bool IsCXXMember,
8343                                 VariadicCallType CallType,
8344                                 SourceLocation Loc, SourceRange Range,
8345                                 llvm::SmallBitVector &CheckedVarArgs) {
8346   FormatStringInfo FSI;
8347   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
8348     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
8349                                 FSI.FirstDataArg, GetFormatStringType(Format),
8350                                 CallType, Loc, Range, CheckedVarArgs);
8351   return false;
8352 }
8353 
8354 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8355                                 bool HasVAListArg, unsigned format_idx,
8356                                 unsigned firstDataArg, FormatStringType Type,
8357                                 VariadicCallType CallType,
8358                                 SourceLocation Loc, SourceRange Range,
8359                                 llvm::SmallBitVector &CheckedVarArgs) {
8360   // CHECK: printf/scanf-like function is called with no format string.
8361   if (format_idx >= Args.size()) {
8362     Diag(Loc, diag::warn_missing_format_string) << Range;
8363     return false;
8364   }
8365 
8366   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8367 
8368   // CHECK: format string is not a string literal.
8369   //
8370   // Dynamically generated format strings are difficult to
8371   // automatically vet at compile time.  Requiring that format strings
8372   // are string literals: (1) permits the checking of format strings by
8373   // the compiler and thereby (2) can practically remove the source of
8374   // many format string exploits.
8375 
8376   // Format string can be either ObjC string (e.g. @"%d") or
8377   // C string (e.g. "%d")
8378   // ObjC string uses the same format specifiers as C string, so we can use
8379   // the same format string checking logic for both ObjC and C strings.
8380   UncoveredArgHandler UncoveredArg;
8381   StringLiteralCheckType CT =
8382       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8383                             format_idx, firstDataArg, Type, CallType,
8384                             /*IsFunctionCall*/ true, CheckedVarArgs,
8385                             UncoveredArg,
8386                             /*no string offset*/ llvm::APSInt(64, false) = 0);
8387 
8388   // Generate a diagnostic where an uncovered argument is detected.
8389   if (UncoveredArg.hasUncoveredArg()) {
8390     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8391     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8392     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8393   }
8394 
8395   if (CT != SLCT_NotALiteral)
8396     // Literal format string found, check done!
8397     return CT == SLCT_CheckedLiteral;
8398 
8399   // Strftime is particular as it always uses a single 'time' argument,
8400   // so it is safe to pass a non-literal string.
8401   if (Type == FST_Strftime)
8402     return false;
8403 
8404   // Do not emit diag when the string param is a macro expansion and the
8405   // format is either NSString or CFString. This is a hack to prevent
8406   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8407   // which are usually used in place of NS and CF string literals.
8408   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8409   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8410     return false;
8411 
8412   // If there are no arguments specified, warn with -Wformat-security, otherwise
8413   // warn only with -Wformat-nonliteral.
8414   if (Args.size() == firstDataArg) {
8415     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8416       << OrigFormatExpr->getSourceRange();
8417     switch (Type) {
8418     default:
8419       break;
8420     case FST_Kprintf:
8421     case FST_FreeBSDKPrintf:
8422     case FST_Printf:
8423       Diag(FormatLoc, diag::note_format_security_fixit)
8424         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8425       break;
8426     case FST_NSString:
8427       Diag(FormatLoc, diag::note_format_security_fixit)
8428         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8429       break;
8430     }
8431   } else {
8432     Diag(FormatLoc, diag::warn_format_nonliteral)
8433       << OrigFormatExpr->getSourceRange();
8434   }
8435   return false;
8436 }
8437 
8438 namespace {
8439 
8440 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8441 protected:
8442   Sema &S;
8443   const FormatStringLiteral *FExpr;
8444   const Expr *OrigFormatExpr;
8445   const Sema::FormatStringType FSType;
8446   const unsigned FirstDataArg;
8447   const unsigned NumDataArgs;
8448   const char *Beg; // Start of format string.
8449   const bool HasVAListArg;
8450   ArrayRef<const Expr *> Args;
8451   unsigned FormatIdx;
8452   llvm::SmallBitVector CoveredArgs;
8453   bool usesPositionalArgs = false;
8454   bool atFirstArg = true;
8455   bool inFunctionCall;
8456   Sema::VariadicCallType CallType;
8457   llvm::SmallBitVector &CheckedVarArgs;
8458   UncoveredArgHandler &UncoveredArg;
8459 
8460 public:
8461   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8462                      const Expr *origFormatExpr,
8463                      const Sema::FormatStringType type, unsigned firstDataArg,
8464                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
8465                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8466                      bool inFunctionCall, Sema::VariadicCallType callType,
8467                      llvm::SmallBitVector &CheckedVarArgs,
8468                      UncoveredArgHandler &UncoveredArg)
8469       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8470         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8471         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8472         inFunctionCall(inFunctionCall), CallType(callType),
8473         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8474     CoveredArgs.resize(numDataArgs);
8475     CoveredArgs.reset();
8476   }
8477 
8478   void DoneProcessing();
8479 
8480   void HandleIncompleteSpecifier(const char *startSpecifier,
8481                                  unsigned specifierLen) override;
8482 
8483   void HandleInvalidLengthModifier(
8484                            const analyze_format_string::FormatSpecifier &FS,
8485                            const analyze_format_string::ConversionSpecifier &CS,
8486                            const char *startSpecifier, unsigned specifierLen,
8487                            unsigned DiagID);
8488 
8489   void HandleNonStandardLengthModifier(
8490                     const analyze_format_string::FormatSpecifier &FS,
8491                     const char *startSpecifier, unsigned specifierLen);
8492 
8493   void HandleNonStandardConversionSpecifier(
8494                     const analyze_format_string::ConversionSpecifier &CS,
8495                     const char *startSpecifier, unsigned specifierLen);
8496 
8497   void HandlePosition(const char *startPos, unsigned posLen) override;
8498 
8499   void HandleInvalidPosition(const char *startSpecifier,
8500                              unsigned specifierLen,
8501                              analyze_format_string::PositionContext p) override;
8502 
8503   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8504 
8505   void HandleNullChar(const char *nullCharacter) override;
8506 
8507   template <typename Range>
8508   static void
8509   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8510                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8511                        bool IsStringLocation, Range StringRange,
8512                        ArrayRef<FixItHint> Fixit = None);
8513 
8514 protected:
8515   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8516                                         const char *startSpec,
8517                                         unsigned specifierLen,
8518                                         const char *csStart, unsigned csLen);
8519 
8520   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8521                                          const char *startSpec,
8522                                          unsigned specifierLen);
8523 
8524   SourceRange getFormatStringRange();
8525   CharSourceRange getSpecifierRange(const char *startSpecifier,
8526                                     unsigned specifierLen);
8527   SourceLocation getLocationOfByte(const char *x);
8528 
8529   const Expr *getDataArg(unsigned i) const;
8530 
8531   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8532                     const analyze_format_string::ConversionSpecifier &CS,
8533                     const char *startSpecifier, unsigned specifierLen,
8534                     unsigned argIndex);
8535 
8536   template <typename Range>
8537   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8538                             bool IsStringLocation, Range StringRange,
8539                             ArrayRef<FixItHint> Fixit = None);
8540 };
8541 
8542 } // namespace
8543 
8544 SourceRange CheckFormatHandler::getFormatStringRange() {
8545   return OrigFormatExpr->getSourceRange();
8546 }
8547 
8548 CharSourceRange CheckFormatHandler::
8549 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8550   SourceLocation Start = getLocationOfByte(startSpecifier);
8551   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
8552 
8553   // Advance the end SourceLocation by one due to half-open ranges.
8554   End = End.getLocWithOffset(1);
8555 
8556   return CharSourceRange::getCharRange(Start, End);
8557 }
8558 
8559 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8560   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8561                                   S.getLangOpts(), S.Context.getTargetInfo());
8562 }
8563 
8564 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8565                                                    unsigned specifierLen){
8566   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8567                        getLocationOfByte(startSpecifier),
8568                        /*IsStringLocation*/true,
8569                        getSpecifierRange(startSpecifier, specifierLen));
8570 }
8571 
8572 void CheckFormatHandler::HandleInvalidLengthModifier(
8573     const analyze_format_string::FormatSpecifier &FS,
8574     const analyze_format_string::ConversionSpecifier &CS,
8575     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8576   using namespace analyze_format_string;
8577 
8578   const LengthModifier &LM = FS.getLengthModifier();
8579   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8580 
8581   // See if we know how to fix this length modifier.
8582   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8583   if (FixedLM) {
8584     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8585                          getLocationOfByte(LM.getStart()),
8586                          /*IsStringLocation*/true,
8587                          getSpecifierRange(startSpecifier, specifierLen));
8588 
8589     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8590       << FixedLM->toString()
8591       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8592 
8593   } else {
8594     FixItHint Hint;
8595     if (DiagID == diag::warn_format_nonsensical_length)
8596       Hint = FixItHint::CreateRemoval(LMRange);
8597 
8598     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8599                          getLocationOfByte(LM.getStart()),
8600                          /*IsStringLocation*/true,
8601                          getSpecifierRange(startSpecifier, specifierLen),
8602                          Hint);
8603   }
8604 }
8605 
8606 void CheckFormatHandler::HandleNonStandardLengthModifier(
8607     const analyze_format_string::FormatSpecifier &FS,
8608     const char *startSpecifier, unsigned specifierLen) {
8609   using namespace analyze_format_string;
8610 
8611   const LengthModifier &LM = FS.getLengthModifier();
8612   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8613 
8614   // See if we know how to fix this length modifier.
8615   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8616   if (FixedLM) {
8617     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8618                            << LM.toString() << 0,
8619                          getLocationOfByte(LM.getStart()),
8620                          /*IsStringLocation*/true,
8621                          getSpecifierRange(startSpecifier, specifierLen));
8622 
8623     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8624       << FixedLM->toString()
8625       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8626 
8627   } else {
8628     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8629                            << LM.toString() << 0,
8630                          getLocationOfByte(LM.getStart()),
8631                          /*IsStringLocation*/true,
8632                          getSpecifierRange(startSpecifier, specifierLen));
8633   }
8634 }
8635 
8636 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8637     const analyze_format_string::ConversionSpecifier &CS,
8638     const char *startSpecifier, unsigned specifierLen) {
8639   using namespace analyze_format_string;
8640 
8641   // See if we know how to fix this conversion specifier.
8642   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8643   if (FixedCS) {
8644     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8645                           << CS.toString() << /*conversion specifier*/1,
8646                          getLocationOfByte(CS.getStart()),
8647                          /*IsStringLocation*/true,
8648                          getSpecifierRange(startSpecifier, specifierLen));
8649 
8650     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8651     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8652       << FixedCS->toString()
8653       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8654   } else {
8655     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8656                           << CS.toString() << /*conversion specifier*/1,
8657                          getLocationOfByte(CS.getStart()),
8658                          /*IsStringLocation*/true,
8659                          getSpecifierRange(startSpecifier, specifierLen));
8660   }
8661 }
8662 
8663 void CheckFormatHandler::HandlePosition(const char *startPos,
8664                                         unsigned posLen) {
8665   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8666                                getLocationOfByte(startPos),
8667                                /*IsStringLocation*/true,
8668                                getSpecifierRange(startPos, posLen));
8669 }
8670 
8671 void
8672 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8673                                      analyze_format_string::PositionContext p) {
8674   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8675                          << (unsigned) p,
8676                        getLocationOfByte(startPos), /*IsStringLocation*/true,
8677                        getSpecifierRange(startPos, posLen));
8678 }
8679 
8680 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8681                                             unsigned posLen) {
8682   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8683                                getLocationOfByte(startPos),
8684                                /*IsStringLocation*/true,
8685                                getSpecifierRange(startPos, posLen));
8686 }
8687 
8688 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8689   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8690     // The presence of a null character is likely an error.
8691     EmitFormatDiagnostic(
8692       S.PDiag(diag::warn_printf_format_string_contains_null_char),
8693       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8694       getFormatStringRange());
8695   }
8696 }
8697 
8698 // Note that this may return NULL if there was an error parsing or building
8699 // one of the argument expressions.
8700 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8701   return Args[FirstDataArg + i];
8702 }
8703 
8704 void CheckFormatHandler::DoneProcessing() {
8705   // Does the number of data arguments exceed the number of
8706   // format conversions in the format string?
8707   if (!HasVAListArg) {
8708       // Find any arguments that weren't covered.
8709     CoveredArgs.flip();
8710     signed notCoveredArg = CoveredArgs.find_first();
8711     if (notCoveredArg >= 0) {
8712       assert((unsigned)notCoveredArg < NumDataArgs);
8713       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8714     } else {
8715       UncoveredArg.setAllCovered();
8716     }
8717   }
8718 }
8719 
8720 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8721                                    const Expr *ArgExpr) {
8722   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
8723          "Invalid state");
8724 
8725   if (!ArgExpr)
8726     return;
8727 
8728   SourceLocation Loc = ArgExpr->getBeginLoc();
8729 
8730   if (S.getSourceManager().isInSystemMacro(Loc))
8731     return;
8732 
8733   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8734   for (auto E : DiagnosticExprs)
8735     PDiag << E->getSourceRange();
8736 
8737   CheckFormatHandler::EmitFormatDiagnostic(
8738                                   S, IsFunctionCall, DiagnosticExprs[0],
8739                                   PDiag, Loc, /*IsStringLocation*/false,
8740                                   DiagnosticExprs[0]->getSourceRange());
8741 }
8742 
8743 bool
8744 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8745                                                      SourceLocation Loc,
8746                                                      const char *startSpec,
8747                                                      unsigned specifierLen,
8748                                                      const char *csStart,
8749                                                      unsigned csLen) {
8750   bool keepGoing = true;
8751   if (argIndex < NumDataArgs) {
8752     // Consider the argument coverered, even though the specifier doesn't
8753     // make sense.
8754     CoveredArgs.set(argIndex);
8755   }
8756   else {
8757     // If argIndex exceeds the number of data arguments we
8758     // don't issue a warning because that is just a cascade of warnings (and
8759     // they may have intended '%%' anyway). We don't want to continue processing
8760     // the format string after this point, however, as we will like just get
8761     // gibberish when trying to match arguments.
8762     keepGoing = false;
8763   }
8764 
8765   StringRef Specifier(csStart, csLen);
8766 
8767   // If the specifier in non-printable, it could be the first byte of a UTF-8
8768   // sequence. In that case, print the UTF-8 code point. If not, print the byte
8769   // hex value.
8770   std::string CodePointStr;
8771   if (!llvm::sys::locale::isPrint(*csStart)) {
8772     llvm::UTF32 CodePoint;
8773     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8774     const llvm::UTF8 *E =
8775         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8776     llvm::ConversionResult Result =
8777         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8778 
8779     if (Result != llvm::conversionOK) {
8780       unsigned char FirstChar = *csStart;
8781       CodePoint = (llvm::UTF32)FirstChar;
8782     }
8783 
8784     llvm::raw_string_ostream OS(CodePointStr);
8785     if (CodePoint < 256)
8786       OS << "\\x" << llvm::format("%02x", CodePoint);
8787     else if (CodePoint <= 0xFFFF)
8788       OS << "\\u" << llvm::format("%04x", CodePoint);
8789     else
8790       OS << "\\U" << llvm::format("%08x", CodePoint);
8791     OS.flush();
8792     Specifier = CodePointStr;
8793   }
8794 
8795   EmitFormatDiagnostic(
8796       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8797       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8798 
8799   return keepGoing;
8800 }
8801 
8802 void
8803 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8804                                                       const char *startSpec,
8805                                                       unsigned specifierLen) {
8806   EmitFormatDiagnostic(
8807     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8808     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8809 }
8810 
8811 bool
8812 CheckFormatHandler::CheckNumArgs(
8813   const analyze_format_string::FormatSpecifier &FS,
8814   const analyze_format_string::ConversionSpecifier &CS,
8815   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8816 
8817   if (argIndex >= NumDataArgs) {
8818     PartialDiagnostic PDiag = FS.usesPositionalArg()
8819       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8820            << (argIndex+1) << NumDataArgs)
8821       : S.PDiag(diag::warn_printf_insufficient_data_args);
8822     EmitFormatDiagnostic(
8823       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8824       getSpecifierRange(startSpecifier, specifierLen));
8825 
8826     // Since more arguments than conversion tokens are given, by extension
8827     // all arguments are covered, so mark this as so.
8828     UncoveredArg.setAllCovered();
8829     return false;
8830   }
8831   return true;
8832 }
8833 
8834 template<typename Range>
8835 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8836                                               SourceLocation Loc,
8837                                               bool IsStringLocation,
8838                                               Range StringRange,
8839                                               ArrayRef<FixItHint> FixIt) {
8840   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8841                        Loc, IsStringLocation, StringRange, FixIt);
8842 }
8843 
8844 /// If the format string is not within the function call, emit a note
8845 /// so that the function call and string are in diagnostic messages.
8846 ///
8847 /// \param InFunctionCall if true, the format string is within the function
8848 /// call and only one diagnostic message will be produced.  Otherwise, an
8849 /// extra note will be emitted pointing to location of the format string.
8850 ///
8851 /// \param ArgumentExpr the expression that is passed as the format string
8852 /// argument in the function call.  Used for getting locations when two
8853 /// diagnostics are emitted.
8854 ///
8855 /// \param PDiag the callee should already have provided any strings for the
8856 /// diagnostic message.  This function only adds locations and fixits
8857 /// to diagnostics.
8858 ///
8859 /// \param Loc primary location for diagnostic.  If two diagnostics are
8860 /// required, one will be at Loc and a new SourceLocation will be created for
8861 /// the other one.
8862 ///
8863 /// \param IsStringLocation if true, Loc points to the format string should be
8864 /// used for the note.  Otherwise, Loc points to the argument list and will
8865 /// be used with PDiag.
8866 ///
8867 /// \param StringRange some or all of the string to highlight.  This is
8868 /// templated so it can accept either a CharSourceRange or a SourceRange.
8869 ///
8870 /// \param FixIt optional fix it hint for the format string.
8871 template <typename Range>
8872 void CheckFormatHandler::EmitFormatDiagnostic(
8873     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8874     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8875     Range StringRange, ArrayRef<FixItHint> FixIt) {
8876   if (InFunctionCall) {
8877     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8878     D << StringRange;
8879     D << FixIt;
8880   } else {
8881     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8882       << ArgumentExpr->getSourceRange();
8883 
8884     const Sema::SemaDiagnosticBuilder &Note =
8885       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8886              diag::note_format_string_defined);
8887 
8888     Note << StringRange;
8889     Note << FixIt;
8890   }
8891 }
8892 
8893 //===--- CHECK: Printf format string checking ------------------------------===//
8894 
8895 namespace {
8896 
8897 class CheckPrintfHandler : public CheckFormatHandler {
8898 public:
8899   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8900                      const Expr *origFormatExpr,
8901                      const Sema::FormatStringType type, unsigned firstDataArg,
8902                      unsigned numDataArgs, bool isObjC, const char *beg,
8903                      bool hasVAListArg, ArrayRef<const Expr *> Args,
8904                      unsigned formatIdx, bool inFunctionCall,
8905                      Sema::VariadicCallType CallType,
8906                      llvm::SmallBitVector &CheckedVarArgs,
8907                      UncoveredArgHandler &UncoveredArg)
8908       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8909                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8910                            inFunctionCall, CallType, CheckedVarArgs,
8911                            UncoveredArg) {}
8912 
8913   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8914 
8915   /// Returns true if '%@' specifiers are allowed in the format string.
8916   bool allowsObjCArg() const {
8917     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8918            FSType == Sema::FST_OSTrace;
8919   }
8920 
8921   bool HandleInvalidPrintfConversionSpecifier(
8922                                       const analyze_printf::PrintfSpecifier &FS,
8923                                       const char *startSpecifier,
8924                                       unsigned specifierLen) override;
8925 
8926   void handleInvalidMaskType(StringRef MaskType) override;
8927 
8928   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8929                              const char *startSpecifier, unsigned specifierLen,
8930                              const TargetInfo &Target) override;
8931   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8932                        const char *StartSpecifier,
8933                        unsigned SpecifierLen,
8934                        const Expr *E);
8935 
8936   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8937                     const char *startSpecifier, unsigned specifierLen);
8938   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8939                            const analyze_printf::OptionalAmount &Amt,
8940                            unsigned type,
8941                            const char *startSpecifier, unsigned specifierLen);
8942   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8943                   const analyze_printf::OptionalFlag &flag,
8944                   const char *startSpecifier, unsigned specifierLen);
8945   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8946                          const analyze_printf::OptionalFlag &ignoredFlag,
8947                          const analyze_printf::OptionalFlag &flag,
8948                          const char *startSpecifier, unsigned specifierLen);
8949   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8950                            const Expr *E);
8951 
8952   void HandleEmptyObjCModifierFlag(const char *startFlag,
8953                                    unsigned flagLen) override;
8954 
8955   void HandleInvalidObjCModifierFlag(const char *startFlag,
8956                                             unsigned flagLen) override;
8957 
8958   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8959                                            const char *flagsEnd,
8960                                            const char *conversionPosition)
8961                                              override;
8962 };
8963 
8964 } // namespace
8965 
8966 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8967                                       const analyze_printf::PrintfSpecifier &FS,
8968                                       const char *startSpecifier,
8969                                       unsigned specifierLen) {
8970   const analyze_printf::PrintfConversionSpecifier &CS =
8971     FS.getConversionSpecifier();
8972 
8973   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8974                                           getLocationOfByte(CS.getStart()),
8975                                           startSpecifier, specifierLen,
8976                                           CS.getStart(), CS.getLength());
8977 }
8978 
8979 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8980   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8981 }
8982 
8983 bool CheckPrintfHandler::HandleAmount(
8984                                const analyze_format_string::OptionalAmount &Amt,
8985                                unsigned k, const char *startSpecifier,
8986                                unsigned specifierLen) {
8987   if (Amt.hasDataArgument()) {
8988     if (!HasVAListArg) {
8989       unsigned argIndex = Amt.getArgIndex();
8990       if (argIndex >= NumDataArgs) {
8991         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8992                                << k,
8993                              getLocationOfByte(Amt.getStart()),
8994                              /*IsStringLocation*/true,
8995                              getSpecifierRange(startSpecifier, specifierLen));
8996         // Don't do any more checking.  We will just emit
8997         // spurious errors.
8998         return false;
8999       }
9000 
9001       // Type check the data argument.  It should be an 'int'.
9002       // Although not in conformance with C99, we also allow the argument to be
9003       // an 'unsigned int' as that is a reasonably safe case.  GCC also
9004       // doesn't emit a warning for that case.
9005       CoveredArgs.set(argIndex);
9006       const Expr *Arg = getDataArg(argIndex);
9007       if (!Arg)
9008         return false;
9009 
9010       QualType T = Arg->getType();
9011 
9012       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
9013       assert(AT.isValid());
9014 
9015       if (!AT.matchesType(S.Context, T)) {
9016         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
9017                                << k << AT.getRepresentativeTypeName(S.Context)
9018                                << T << Arg->getSourceRange(),
9019                              getLocationOfByte(Amt.getStart()),
9020                              /*IsStringLocation*/true,
9021                              getSpecifierRange(startSpecifier, specifierLen));
9022         // Don't do any more checking.  We will just emit
9023         // spurious errors.
9024         return false;
9025       }
9026     }
9027   }
9028   return true;
9029 }
9030 
9031 void CheckPrintfHandler::HandleInvalidAmount(
9032                                       const analyze_printf::PrintfSpecifier &FS,
9033                                       const analyze_printf::OptionalAmount &Amt,
9034                                       unsigned type,
9035                                       const char *startSpecifier,
9036                                       unsigned specifierLen) {
9037   const analyze_printf::PrintfConversionSpecifier &CS =
9038     FS.getConversionSpecifier();
9039 
9040   FixItHint fixit =
9041     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
9042       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
9043                                  Amt.getConstantLength()))
9044       : FixItHint();
9045 
9046   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
9047                          << type << CS.toString(),
9048                        getLocationOfByte(Amt.getStart()),
9049                        /*IsStringLocation*/true,
9050                        getSpecifierRange(startSpecifier, specifierLen),
9051                        fixit);
9052 }
9053 
9054 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9055                                     const analyze_printf::OptionalFlag &flag,
9056                                     const char *startSpecifier,
9057                                     unsigned specifierLen) {
9058   // Warn about pointless flag with a fixit removal.
9059   const analyze_printf::PrintfConversionSpecifier &CS =
9060     FS.getConversionSpecifier();
9061   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
9062                          << flag.toString() << CS.toString(),
9063                        getLocationOfByte(flag.getPosition()),
9064                        /*IsStringLocation*/true,
9065                        getSpecifierRange(startSpecifier, specifierLen),
9066                        FixItHint::CreateRemoval(
9067                          getSpecifierRange(flag.getPosition(), 1)));
9068 }
9069 
9070 void CheckPrintfHandler::HandleIgnoredFlag(
9071                                 const analyze_printf::PrintfSpecifier &FS,
9072                                 const analyze_printf::OptionalFlag &ignoredFlag,
9073                                 const analyze_printf::OptionalFlag &flag,
9074                                 const char *startSpecifier,
9075                                 unsigned specifierLen) {
9076   // Warn about ignored flag with a fixit removal.
9077   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
9078                          << ignoredFlag.toString() << flag.toString(),
9079                        getLocationOfByte(ignoredFlag.getPosition()),
9080                        /*IsStringLocation*/true,
9081                        getSpecifierRange(startSpecifier, specifierLen),
9082                        FixItHint::CreateRemoval(
9083                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
9084 }
9085 
9086 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
9087                                                      unsigned flagLen) {
9088   // Warn about an empty flag.
9089   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
9090                        getLocationOfByte(startFlag),
9091                        /*IsStringLocation*/true,
9092                        getSpecifierRange(startFlag, flagLen));
9093 }
9094 
9095 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
9096                                                        unsigned flagLen) {
9097   // Warn about an invalid flag.
9098   auto Range = getSpecifierRange(startFlag, flagLen);
9099   StringRef flag(startFlag, flagLen);
9100   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
9101                       getLocationOfByte(startFlag),
9102                       /*IsStringLocation*/true,
9103                       Range, FixItHint::CreateRemoval(Range));
9104 }
9105 
9106 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
9107     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
9108     // Warn about using '[...]' without a '@' conversion.
9109     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
9110     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
9111     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
9112                          getLocationOfByte(conversionPosition),
9113                          /*IsStringLocation*/true,
9114                          Range, FixItHint::CreateRemoval(Range));
9115 }
9116 
9117 // Determines if the specified is a C++ class or struct containing
9118 // a member with the specified name and kind (e.g. a CXXMethodDecl named
9119 // "c_str()").
9120 template<typename MemberKind>
9121 static llvm::SmallPtrSet<MemberKind*, 1>
9122 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
9123   const RecordType *RT = Ty->getAs<RecordType>();
9124   llvm::SmallPtrSet<MemberKind*, 1> Results;
9125 
9126   if (!RT)
9127     return Results;
9128   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
9129   if (!RD || !RD->getDefinition())
9130     return Results;
9131 
9132   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
9133                  Sema::LookupMemberName);
9134   R.suppressDiagnostics();
9135 
9136   // We just need to include all members of the right kind turned up by the
9137   // filter, at this point.
9138   if (S.LookupQualifiedName(R, RT->getDecl()))
9139     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
9140       NamedDecl *decl = (*I)->getUnderlyingDecl();
9141       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
9142         Results.insert(FK);
9143     }
9144   return Results;
9145 }
9146 
9147 /// Check if we could call '.c_str()' on an object.
9148 ///
9149 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
9150 /// allow the call, or if it would be ambiguous).
9151 bool Sema::hasCStrMethod(const Expr *E) {
9152   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9153 
9154   MethodSet Results =
9155       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
9156   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9157        MI != ME; ++MI)
9158     if ((*MI)->getMinRequiredArguments() == 0)
9159       return true;
9160   return false;
9161 }
9162 
9163 // Check if a (w)string was passed when a (w)char* was needed, and offer a
9164 // better diagnostic if so. AT is assumed to be valid.
9165 // Returns true when a c_str() conversion method is found.
9166 bool CheckPrintfHandler::checkForCStrMembers(
9167     const analyze_printf::ArgType &AT, const Expr *E) {
9168   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9169 
9170   MethodSet Results =
9171       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
9172 
9173   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9174        MI != ME; ++MI) {
9175     const CXXMethodDecl *Method = *MI;
9176     if (Method->getMinRequiredArguments() == 0 &&
9177         AT.matchesType(S.Context, Method->getReturnType())) {
9178       // FIXME: Suggest parens if the expression needs them.
9179       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
9180       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
9181           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
9182       return true;
9183     }
9184   }
9185 
9186   return false;
9187 }
9188 
9189 bool CheckPrintfHandler::HandlePrintfSpecifier(
9190     const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
9191     unsigned specifierLen, const TargetInfo &Target) {
9192   using namespace analyze_format_string;
9193   using namespace analyze_printf;
9194 
9195   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
9196 
9197   if (FS.consumesDataArgument()) {
9198     if (atFirstArg) {
9199         atFirstArg = false;
9200         usesPositionalArgs = FS.usesPositionalArg();
9201     }
9202     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9203       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9204                                         startSpecifier, specifierLen);
9205       return false;
9206     }
9207   }
9208 
9209   // First check if the field width, precision, and conversion specifier
9210   // have matching data arguments.
9211   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
9212                     startSpecifier, specifierLen)) {
9213     return false;
9214   }
9215 
9216   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
9217                     startSpecifier, specifierLen)) {
9218     return false;
9219   }
9220 
9221   if (!CS.consumesDataArgument()) {
9222     // FIXME: Technically specifying a precision or field width here
9223     // makes no sense.  Worth issuing a warning at some point.
9224     return true;
9225   }
9226 
9227   // Consume the argument.
9228   unsigned argIndex = FS.getArgIndex();
9229   if (argIndex < NumDataArgs) {
9230     // The check to see if the argIndex is valid will come later.
9231     // We set the bit here because we may exit early from this
9232     // function if we encounter some other error.
9233     CoveredArgs.set(argIndex);
9234   }
9235 
9236   // FreeBSD kernel extensions.
9237   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9238       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9239     // We need at least two arguments.
9240     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9241       return false;
9242 
9243     // Claim the second argument.
9244     CoveredArgs.set(argIndex + 1);
9245 
9246     // Type check the first argument (int for %b, pointer for %D)
9247     const Expr *Ex = getDataArg(argIndex);
9248     const analyze_printf::ArgType &AT =
9249       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9250         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9251     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9252       EmitFormatDiagnostic(
9253           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9254               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9255               << false << Ex->getSourceRange(),
9256           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9257           getSpecifierRange(startSpecifier, specifierLen));
9258 
9259     // Type check the second argument (char * for both %b and %D)
9260     Ex = getDataArg(argIndex + 1);
9261     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9262     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9263       EmitFormatDiagnostic(
9264           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9265               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9266               << false << Ex->getSourceRange(),
9267           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9268           getSpecifierRange(startSpecifier, specifierLen));
9269 
9270      return true;
9271   }
9272 
9273   // Check for using an Objective-C specific conversion specifier
9274   // in a non-ObjC literal.
9275   if (!allowsObjCArg() && CS.isObjCArg()) {
9276     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9277                                                   specifierLen);
9278   }
9279 
9280   // %P can only be used with os_log.
9281   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9282     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9283                                                   specifierLen);
9284   }
9285 
9286   // %n is not allowed with os_log.
9287   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9288     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9289                          getLocationOfByte(CS.getStart()),
9290                          /*IsStringLocation*/ false,
9291                          getSpecifierRange(startSpecifier, specifierLen));
9292 
9293     return true;
9294   }
9295 
9296   // Only scalars are allowed for os_trace.
9297   if (FSType == Sema::FST_OSTrace &&
9298       (CS.getKind() == ConversionSpecifier::PArg ||
9299        CS.getKind() == ConversionSpecifier::sArg ||
9300        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9301     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9302                                                   specifierLen);
9303   }
9304 
9305   // Check for use of public/private annotation outside of os_log().
9306   if (FSType != Sema::FST_OSLog) {
9307     if (FS.isPublic().isSet()) {
9308       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9309                                << "public",
9310                            getLocationOfByte(FS.isPublic().getPosition()),
9311                            /*IsStringLocation*/ false,
9312                            getSpecifierRange(startSpecifier, specifierLen));
9313     }
9314     if (FS.isPrivate().isSet()) {
9315       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9316                                << "private",
9317                            getLocationOfByte(FS.isPrivate().getPosition()),
9318                            /*IsStringLocation*/ false,
9319                            getSpecifierRange(startSpecifier, specifierLen));
9320     }
9321   }
9322 
9323   const llvm::Triple &Triple = Target.getTriple();
9324   if (CS.getKind() == ConversionSpecifier::nArg &&
9325       (Triple.isAndroid() || Triple.isOSFuchsia())) {
9326     EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
9327                          getLocationOfByte(CS.getStart()),
9328                          /*IsStringLocation*/ false,
9329                          getSpecifierRange(startSpecifier, specifierLen));
9330   }
9331 
9332   // Check for invalid use of field width
9333   if (!FS.hasValidFieldWidth()) {
9334     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9335         startSpecifier, specifierLen);
9336   }
9337 
9338   // Check for invalid use of precision
9339   if (!FS.hasValidPrecision()) {
9340     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9341         startSpecifier, specifierLen);
9342   }
9343 
9344   // Precision is mandatory for %P specifier.
9345   if (CS.getKind() == ConversionSpecifier::PArg &&
9346       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9347     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9348                          getLocationOfByte(startSpecifier),
9349                          /*IsStringLocation*/ false,
9350                          getSpecifierRange(startSpecifier, specifierLen));
9351   }
9352 
9353   // Check each flag does not conflict with any other component.
9354   if (!FS.hasValidThousandsGroupingPrefix())
9355     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9356   if (!FS.hasValidLeadingZeros())
9357     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9358   if (!FS.hasValidPlusPrefix())
9359     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9360   if (!FS.hasValidSpacePrefix())
9361     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9362   if (!FS.hasValidAlternativeForm())
9363     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9364   if (!FS.hasValidLeftJustified())
9365     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9366 
9367   // Check that flags are not ignored by another flag
9368   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9369     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9370         startSpecifier, specifierLen);
9371   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9372     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9373             startSpecifier, specifierLen);
9374 
9375   // Check the length modifier is valid with the given conversion specifier.
9376   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9377                                  S.getLangOpts()))
9378     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9379                                 diag::warn_format_nonsensical_length);
9380   else if (!FS.hasStandardLengthModifier())
9381     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9382   else if (!FS.hasStandardLengthConversionCombination())
9383     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9384                                 diag::warn_format_non_standard_conversion_spec);
9385 
9386   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9387     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9388 
9389   // The remaining checks depend on the data arguments.
9390   if (HasVAListArg)
9391     return true;
9392 
9393   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9394     return false;
9395 
9396   const Expr *Arg = getDataArg(argIndex);
9397   if (!Arg)
9398     return true;
9399 
9400   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9401 }
9402 
9403 static bool requiresParensToAddCast(const Expr *E) {
9404   // FIXME: We should have a general way to reason about operator
9405   // precedence and whether parens are actually needed here.
9406   // Take care of a few common cases where they aren't.
9407   const Expr *Inside = E->IgnoreImpCasts();
9408   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9409     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9410 
9411   switch (Inside->getStmtClass()) {
9412   case Stmt::ArraySubscriptExprClass:
9413   case Stmt::CallExprClass:
9414   case Stmt::CharacterLiteralClass:
9415   case Stmt::CXXBoolLiteralExprClass:
9416   case Stmt::DeclRefExprClass:
9417   case Stmt::FloatingLiteralClass:
9418   case Stmt::IntegerLiteralClass:
9419   case Stmt::MemberExprClass:
9420   case Stmt::ObjCArrayLiteralClass:
9421   case Stmt::ObjCBoolLiteralExprClass:
9422   case Stmt::ObjCBoxedExprClass:
9423   case Stmt::ObjCDictionaryLiteralClass:
9424   case Stmt::ObjCEncodeExprClass:
9425   case Stmt::ObjCIvarRefExprClass:
9426   case Stmt::ObjCMessageExprClass:
9427   case Stmt::ObjCPropertyRefExprClass:
9428   case Stmt::ObjCStringLiteralClass:
9429   case Stmt::ObjCSubscriptRefExprClass:
9430   case Stmt::ParenExprClass:
9431   case Stmt::StringLiteralClass:
9432   case Stmt::UnaryOperatorClass:
9433     return false;
9434   default:
9435     return true;
9436   }
9437 }
9438 
9439 static std::pair<QualType, StringRef>
9440 shouldNotPrintDirectly(const ASTContext &Context,
9441                        QualType IntendedTy,
9442                        const Expr *E) {
9443   // Use a 'while' to peel off layers of typedefs.
9444   QualType TyTy = IntendedTy;
9445   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9446     StringRef Name = UserTy->getDecl()->getName();
9447     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9448       .Case("CFIndex", Context.getNSIntegerType())
9449       .Case("NSInteger", Context.getNSIntegerType())
9450       .Case("NSUInteger", Context.getNSUIntegerType())
9451       .Case("SInt32", Context.IntTy)
9452       .Case("UInt32", Context.UnsignedIntTy)
9453       .Default(QualType());
9454 
9455     if (!CastTy.isNull())
9456       return std::make_pair(CastTy, Name);
9457 
9458     TyTy = UserTy->desugar();
9459   }
9460 
9461   // Strip parens if necessary.
9462   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9463     return shouldNotPrintDirectly(Context,
9464                                   PE->getSubExpr()->getType(),
9465                                   PE->getSubExpr());
9466 
9467   // If this is a conditional expression, then its result type is constructed
9468   // via usual arithmetic conversions and thus there might be no necessary
9469   // typedef sugar there.  Recurse to operands to check for NSInteger &
9470   // Co. usage condition.
9471   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9472     QualType TrueTy, FalseTy;
9473     StringRef TrueName, FalseName;
9474 
9475     std::tie(TrueTy, TrueName) =
9476       shouldNotPrintDirectly(Context,
9477                              CO->getTrueExpr()->getType(),
9478                              CO->getTrueExpr());
9479     std::tie(FalseTy, FalseName) =
9480       shouldNotPrintDirectly(Context,
9481                              CO->getFalseExpr()->getType(),
9482                              CO->getFalseExpr());
9483 
9484     if (TrueTy == FalseTy)
9485       return std::make_pair(TrueTy, TrueName);
9486     else if (TrueTy.isNull())
9487       return std::make_pair(FalseTy, FalseName);
9488     else if (FalseTy.isNull())
9489       return std::make_pair(TrueTy, TrueName);
9490   }
9491 
9492   return std::make_pair(QualType(), StringRef());
9493 }
9494 
9495 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9496 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9497 /// type do not count.
9498 static bool
9499 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9500   QualType From = ICE->getSubExpr()->getType();
9501   QualType To = ICE->getType();
9502   // It's an integer promotion if the destination type is the promoted
9503   // source type.
9504   if (ICE->getCastKind() == CK_IntegralCast &&
9505       From->isPromotableIntegerType() &&
9506       S.Context.getPromotedIntegerType(From) == To)
9507     return true;
9508   // Look through vector types, since we do default argument promotion for
9509   // those in OpenCL.
9510   if (const auto *VecTy = From->getAs<ExtVectorType>())
9511     From = VecTy->getElementType();
9512   if (const auto *VecTy = To->getAs<ExtVectorType>())
9513     To = VecTy->getElementType();
9514   // It's a floating promotion if the source type is a lower rank.
9515   return ICE->getCastKind() == CK_FloatingCast &&
9516          S.Context.getFloatingTypeOrder(From, To) < 0;
9517 }
9518 
9519 bool
9520 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9521                                     const char *StartSpecifier,
9522                                     unsigned SpecifierLen,
9523                                     const Expr *E) {
9524   using namespace analyze_format_string;
9525   using namespace analyze_printf;
9526 
9527   // Now type check the data expression that matches the
9528   // format specifier.
9529   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9530   if (!AT.isValid())
9531     return true;
9532 
9533   QualType ExprTy = E->getType();
9534   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9535     ExprTy = TET->getUnderlyingExpr()->getType();
9536   }
9537 
9538   // Diagnose attempts to print a boolean value as a character. Unlike other
9539   // -Wformat diagnostics, this is fine from a type perspective, but it still
9540   // doesn't make sense.
9541   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9542       E->isKnownToHaveBooleanValue()) {
9543     const CharSourceRange &CSR =
9544         getSpecifierRange(StartSpecifier, SpecifierLen);
9545     SmallString<4> FSString;
9546     llvm::raw_svector_ostream os(FSString);
9547     FS.toString(os);
9548     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9549                              << FSString,
9550                          E->getExprLoc(), false, CSR);
9551     return true;
9552   }
9553 
9554   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9555   if (Match == analyze_printf::ArgType::Match)
9556     return true;
9557 
9558   // Look through argument promotions for our error message's reported type.
9559   // This includes the integral and floating promotions, but excludes array
9560   // and function pointer decay (seeing that an argument intended to be a
9561   // string has type 'char [6]' is probably more confusing than 'char *') and
9562   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9563   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9564     if (isArithmeticArgumentPromotion(S, ICE)) {
9565       E = ICE->getSubExpr();
9566       ExprTy = E->getType();
9567 
9568       // Check if we didn't match because of an implicit cast from a 'char'
9569       // or 'short' to an 'int'.  This is done because printf is a varargs
9570       // function.
9571       if (ICE->getType() == S.Context.IntTy ||
9572           ICE->getType() == S.Context.UnsignedIntTy) {
9573         // All further checking is done on the subexpression
9574         const analyze_printf::ArgType::MatchKind ImplicitMatch =
9575             AT.matchesType(S.Context, ExprTy);
9576         if (ImplicitMatch == analyze_printf::ArgType::Match)
9577           return true;
9578         if (ImplicitMatch == ArgType::NoMatchPedantic ||
9579             ImplicitMatch == ArgType::NoMatchTypeConfusion)
9580           Match = ImplicitMatch;
9581       }
9582     }
9583   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9584     // Special case for 'a', which has type 'int' in C.
9585     // Note, however, that we do /not/ want to treat multibyte constants like
9586     // 'MooV' as characters! This form is deprecated but still exists. In
9587     // addition, don't treat expressions as of type 'char' if one byte length
9588     // modifier is provided.
9589     if (ExprTy == S.Context.IntTy &&
9590         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9591       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9592         ExprTy = S.Context.CharTy;
9593   }
9594 
9595   // Look through enums to their underlying type.
9596   bool IsEnum = false;
9597   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9598     ExprTy = EnumTy->getDecl()->getIntegerType();
9599     IsEnum = true;
9600   }
9601 
9602   // %C in an Objective-C context prints a unichar, not a wchar_t.
9603   // If the argument is an integer of some kind, believe the %C and suggest
9604   // a cast instead of changing the conversion specifier.
9605   QualType IntendedTy = ExprTy;
9606   if (isObjCContext() &&
9607       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9608     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9609         !ExprTy->isCharType()) {
9610       // 'unichar' is defined as a typedef of unsigned short, but we should
9611       // prefer using the typedef if it is visible.
9612       IntendedTy = S.Context.UnsignedShortTy;
9613 
9614       // While we are here, check if the value is an IntegerLiteral that happens
9615       // to be within the valid range.
9616       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9617         const llvm::APInt &V = IL->getValue();
9618         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9619           return true;
9620       }
9621 
9622       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9623                           Sema::LookupOrdinaryName);
9624       if (S.LookupName(Result, S.getCurScope())) {
9625         NamedDecl *ND = Result.getFoundDecl();
9626         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9627           if (TD->getUnderlyingType() == IntendedTy)
9628             IntendedTy = S.Context.getTypedefType(TD);
9629       }
9630     }
9631   }
9632 
9633   // Special-case some of Darwin's platform-independence types by suggesting
9634   // casts to primitive types that are known to be large enough.
9635   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9636   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9637     QualType CastTy;
9638     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9639     if (!CastTy.isNull()) {
9640       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9641       // (long in ASTContext). Only complain to pedants.
9642       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9643           (AT.isSizeT() || AT.isPtrdiffT()) &&
9644           AT.matchesType(S.Context, CastTy))
9645         Match = ArgType::NoMatchPedantic;
9646       IntendedTy = CastTy;
9647       ShouldNotPrintDirectly = true;
9648     }
9649   }
9650 
9651   // We may be able to offer a FixItHint if it is a supported type.
9652   PrintfSpecifier fixedFS = FS;
9653   bool Success =
9654       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9655 
9656   if (Success) {
9657     // Get the fix string from the fixed format specifier
9658     SmallString<16> buf;
9659     llvm::raw_svector_ostream os(buf);
9660     fixedFS.toString(os);
9661 
9662     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9663 
9664     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9665       unsigned Diag;
9666       switch (Match) {
9667       case ArgType::Match: llvm_unreachable("expected non-matching");
9668       case ArgType::NoMatchPedantic:
9669         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9670         break;
9671       case ArgType::NoMatchTypeConfusion:
9672         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9673         break;
9674       case ArgType::NoMatch:
9675         Diag = diag::warn_format_conversion_argument_type_mismatch;
9676         break;
9677       }
9678 
9679       // In this case, the specifier is wrong and should be changed to match
9680       // the argument.
9681       EmitFormatDiagnostic(S.PDiag(Diag)
9682                                << AT.getRepresentativeTypeName(S.Context)
9683                                << IntendedTy << IsEnum << E->getSourceRange(),
9684                            E->getBeginLoc(),
9685                            /*IsStringLocation*/ false, SpecRange,
9686                            FixItHint::CreateReplacement(SpecRange, os.str()));
9687     } else {
9688       // The canonical type for formatting this value is different from the
9689       // actual type of the expression. (This occurs, for example, with Darwin's
9690       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9691       // should be printed as 'long' for 64-bit compatibility.)
9692       // Rather than emitting a normal format/argument mismatch, we want to
9693       // add a cast to the recommended type (and correct the format string
9694       // if necessary).
9695       SmallString<16> CastBuf;
9696       llvm::raw_svector_ostream CastFix(CastBuf);
9697       CastFix << "(";
9698       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9699       CastFix << ")";
9700 
9701       SmallVector<FixItHint,4> Hints;
9702       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9703         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9704 
9705       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9706         // If there's already a cast present, just replace it.
9707         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9708         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9709 
9710       } else if (!requiresParensToAddCast(E)) {
9711         // If the expression has high enough precedence,
9712         // just write the C-style cast.
9713         Hints.push_back(
9714             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9715       } else {
9716         // Otherwise, add parens around the expression as well as the cast.
9717         CastFix << "(";
9718         Hints.push_back(
9719             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9720 
9721         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9722         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9723       }
9724 
9725       if (ShouldNotPrintDirectly) {
9726         // The expression has a type that should not be printed directly.
9727         // We extract the name from the typedef because we don't want to show
9728         // the underlying type in the diagnostic.
9729         StringRef Name;
9730         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9731           Name = TypedefTy->getDecl()->getName();
9732         else
9733           Name = CastTyName;
9734         unsigned Diag = Match == ArgType::NoMatchPedantic
9735                             ? diag::warn_format_argument_needs_cast_pedantic
9736                             : diag::warn_format_argument_needs_cast;
9737         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9738                                            << E->getSourceRange(),
9739                              E->getBeginLoc(), /*IsStringLocation=*/false,
9740                              SpecRange, Hints);
9741       } else {
9742         // In this case, the expression could be printed using a different
9743         // specifier, but we've decided that the specifier is probably correct
9744         // and we should cast instead. Just use the normal warning message.
9745         EmitFormatDiagnostic(
9746             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9747                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9748                 << E->getSourceRange(),
9749             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9750       }
9751     }
9752   } else {
9753     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9754                                                    SpecifierLen);
9755     // Since the warning for passing non-POD types to variadic functions
9756     // was deferred until now, we emit a warning for non-POD
9757     // arguments here.
9758     switch (S.isValidVarArgType(ExprTy)) {
9759     case Sema::VAK_Valid:
9760     case Sema::VAK_ValidInCXX11: {
9761       unsigned Diag;
9762       switch (Match) {
9763       case ArgType::Match: llvm_unreachable("expected non-matching");
9764       case ArgType::NoMatchPedantic:
9765         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9766         break;
9767       case ArgType::NoMatchTypeConfusion:
9768         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9769         break;
9770       case ArgType::NoMatch:
9771         Diag = diag::warn_format_conversion_argument_type_mismatch;
9772         break;
9773       }
9774 
9775       EmitFormatDiagnostic(
9776           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9777                         << IsEnum << CSR << E->getSourceRange(),
9778           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9779       break;
9780     }
9781     case Sema::VAK_Undefined:
9782     case Sema::VAK_MSVCUndefined:
9783       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9784                                << S.getLangOpts().CPlusPlus11 << ExprTy
9785                                << CallType
9786                                << AT.getRepresentativeTypeName(S.Context) << CSR
9787                                << E->getSourceRange(),
9788                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9789       checkForCStrMembers(AT, E);
9790       break;
9791 
9792     case Sema::VAK_Invalid:
9793       if (ExprTy->isObjCObjectType())
9794         EmitFormatDiagnostic(
9795             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9796                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9797                 << AT.getRepresentativeTypeName(S.Context) << CSR
9798                 << E->getSourceRange(),
9799             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9800       else
9801         // FIXME: If this is an initializer list, suggest removing the braces
9802         // or inserting a cast to the target type.
9803         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9804             << isa<InitListExpr>(E) << ExprTy << CallType
9805             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9806       break;
9807     }
9808 
9809     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
9810            "format string specifier index out of range");
9811     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9812   }
9813 
9814   return true;
9815 }
9816 
9817 //===--- CHECK: Scanf format string checking ------------------------------===//
9818 
9819 namespace {
9820 
9821 class CheckScanfHandler : public CheckFormatHandler {
9822 public:
9823   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9824                     const Expr *origFormatExpr, Sema::FormatStringType type,
9825                     unsigned firstDataArg, unsigned numDataArgs,
9826                     const char *beg, bool hasVAListArg,
9827                     ArrayRef<const Expr *> Args, unsigned formatIdx,
9828                     bool inFunctionCall, Sema::VariadicCallType CallType,
9829                     llvm::SmallBitVector &CheckedVarArgs,
9830                     UncoveredArgHandler &UncoveredArg)
9831       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9832                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
9833                            inFunctionCall, CallType, CheckedVarArgs,
9834                            UncoveredArg) {}
9835 
9836   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9837                             const char *startSpecifier,
9838                             unsigned specifierLen) override;
9839 
9840   bool HandleInvalidScanfConversionSpecifier(
9841           const analyze_scanf::ScanfSpecifier &FS,
9842           const char *startSpecifier,
9843           unsigned specifierLen) override;
9844 
9845   void HandleIncompleteScanList(const char *start, const char *end) override;
9846 };
9847 
9848 } // namespace
9849 
9850 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9851                                                  const char *end) {
9852   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9853                        getLocationOfByte(end), /*IsStringLocation*/true,
9854                        getSpecifierRange(start, end - start));
9855 }
9856 
9857 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9858                                         const analyze_scanf::ScanfSpecifier &FS,
9859                                         const char *startSpecifier,
9860                                         unsigned specifierLen) {
9861   const analyze_scanf::ScanfConversionSpecifier &CS =
9862     FS.getConversionSpecifier();
9863 
9864   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9865                                           getLocationOfByte(CS.getStart()),
9866                                           startSpecifier, specifierLen,
9867                                           CS.getStart(), CS.getLength());
9868 }
9869 
9870 bool CheckScanfHandler::HandleScanfSpecifier(
9871                                        const analyze_scanf::ScanfSpecifier &FS,
9872                                        const char *startSpecifier,
9873                                        unsigned specifierLen) {
9874   using namespace analyze_scanf;
9875   using namespace analyze_format_string;
9876 
9877   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9878 
9879   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
9880   // be used to decide if we are using positional arguments consistently.
9881   if (FS.consumesDataArgument()) {
9882     if (atFirstArg) {
9883       atFirstArg = false;
9884       usesPositionalArgs = FS.usesPositionalArg();
9885     }
9886     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9887       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9888                                         startSpecifier, specifierLen);
9889       return false;
9890     }
9891   }
9892 
9893   // Check if the field with is non-zero.
9894   const OptionalAmount &Amt = FS.getFieldWidth();
9895   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9896     if (Amt.getConstantAmount() == 0) {
9897       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9898                                                    Amt.getConstantLength());
9899       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9900                            getLocationOfByte(Amt.getStart()),
9901                            /*IsStringLocation*/true, R,
9902                            FixItHint::CreateRemoval(R));
9903     }
9904   }
9905 
9906   if (!FS.consumesDataArgument()) {
9907     // FIXME: Technically specifying a precision or field width here
9908     // makes no sense.  Worth issuing a warning at some point.
9909     return true;
9910   }
9911 
9912   // Consume the argument.
9913   unsigned argIndex = FS.getArgIndex();
9914   if (argIndex < NumDataArgs) {
9915       // The check to see if the argIndex is valid will come later.
9916       // We set the bit here because we may exit early from this
9917       // function if we encounter some other error.
9918     CoveredArgs.set(argIndex);
9919   }
9920 
9921   // Check the length modifier is valid with the given conversion specifier.
9922   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9923                                  S.getLangOpts()))
9924     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9925                                 diag::warn_format_nonsensical_length);
9926   else if (!FS.hasStandardLengthModifier())
9927     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9928   else if (!FS.hasStandardLengthConversionCombination())
9929     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9930                                 diag::warn_format_non_standard_conversion_spec);
9931 
9932   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9933     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9934 
9935   // The remaining checks depend on the data arguments.
9936   if (HasVAListArg)
9937     return true;
9938 
9939   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9940     return false;
9941 
9942   // Check that the argument type matches the format specifier.
9943   const Expr *Ex = getDataArg(argIndex);
9944   if (!Ex)
9945     return true;
9946 
9947   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9948 
9949   if (!AT.isValid()) {
9950     return true;
9951   }
9952 
9953   analyze_format_string::ArgType::MatchKind Match =
9954       AT.matchesType(S.Context, Ex->getType());
9955   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9956   if (Match == analyze_format_string::ArgType::Match)
9957     return true;
9958 
9959   ScanfSpecifier fixedFS = FS;
9960   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9961                                  S.getLangOpts(), S.Context);
9962 
9963   unsigned Diag =
9964       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9965                : diag::warn_format_conversion_argument_type_mismatch;
9966 
9967   if (Success) {
9968     // Get the fix string from the fixed format specifier.
9969     SmallString<128> buf;
9970     llvm::raw_svector_ostream os(buf);
9971     fixedFS.toString(os);
9972 
9973     EmitFormatDiagnostic(
9974         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9975                       << Ex->getType() << false << Ex->getSourceRange(),
9976         Ex->getBeginLoc(),
9977         /*IsStringLocation*/ false,
9978         getSpecifierRange(startSpecifier, specifierLen),
9979         FixItHint::CreateReplacement(
9980             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9981   } else {
9982     EmitFormatDiagnostic(S.PDiag(Diag)
9983                              << AT.getRepresentativeTypeName(S.Context)
9984                              << Ex->getType() << false << Ex->getSourceRange(),
9985                          Ex->getBeginLoc(),
9986                          /*IsStringLocation*/ false,
9987                          getSpecifierRange(startSpecifier, specifierLen));
9988   }
9989 
9990   return true;
9991 }
9992 
9993 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9994                               const Expr *OrigFormatExpr,
9995                               ArrayRef<const Expr *> Args,
9996                               bool HasVAListArg, unsigned format_idx,
9997                               unsigned firstDataArg,
9998                               Sema::FormatStringType Type,
9999                               bool inFunctionCall,
10000                               Sema::VariadicCallType CallType,
10001                               llvm::SmallBitVector &CheckedVarArgs,
10002                               UncoveredArgHandler &UncoveredArg,
10003                               bool IgnoreStringsWithoutSpecifiers) {
10004   // CHECK: is the format string a wide literal?
10005   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
10006     CheckFormatHandler::EmitFormatDiagnostic(
10007         S, inFunctionCall, Args[format_idx],
10008         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
10009         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10010     return;
10011   }
10012 
10013   // Str - The format string.  NOTE: this is NOT null-terminated!
10014   StringRef StrRef = FExpr->getString();
10015   const char *Str = StrRef.data();
10016   // Account for cases where the string literal is truncated in a declaration.
10017   const ConstantArrayType *T =
10018     S.Context.getAsConstantArrayType(FExpr->getType());
10019   assert(T && "String literal not of constant array type!");
10020   size_t TypeSize = T->getSize().getZExtValue();
10021   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10022   const unsigned numDataArgs = Args.size() - firstDataArg;
10023 
10024   if (IgnoreStringsWithoutSpecifiers &&
10025       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
10026           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10027     return;
10028 
10029   // Emit a warning if the string literal is truncated and does not contain an
10030   // embedded null character.
10031   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
10032     CheckFormatHandler::EmitFormatDiagnostic(
10033         S, inFunctionCall, Args[format_idx],
10034         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
10035         FExpr->getBeginLoc(),
10036         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
10037     return;
10038   }
10039 
10040   // CHECK: empty format string?
10041   if (StrLen == 0 && numDataArgs > 0) {
10042     CheckFormatHandler::EmitFormatDiagnostic(
10043         S, inFunctionCall, Args[format_idx],
10044         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
10045         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10046     return;
10047   }
10048 
10049   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
10050       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
10051       Type == Sema::FST_OSTrace) {
10052     CheckPrintfHandler H(
10053         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
10054         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
10055         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
10056         CheckedVarArgs, UncoveredArg);
10057 
10058     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
10059                                                   S.getLangOpts(),
10060                                                   S.Context.getTargetInfo(),
10061                                             Type == Sema::FST_FreeBSDKPrintf))
10062       H.DoneProcessing();
10063   } else if (Type == Sema::FST_Scanf) {
10064     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
10065                         numDataArgs, Str, HasVAListArg, Args, format_idx,
10066                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
10067 
10068     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
10069                                                  S.getLangOpts(),
10070                                                  S.Context.getTargetInfo()))
10071       H.DoneProcessing();
10072   } // TODO: handle other formats
10073 }
10074 
10075 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
10076   // Str - The format string.  NOTE: this is NOT null-terminated!
10077   StringRef StrRef = FExpr->getString();
10078   const char *Str = StrRef.data();
10079   // Account for cases where the string literal is truncated in a declaration.
10080   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
10081   assert(T && "String literal not of constant array type!");
10082   size_t TypeSize = T->getSize().getZExtValue();
10083   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10084   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
10085                                                          getLangOpts(),
10086                                                          Context.getTargetInfo());
10087 }
10088 
10089 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
10090 
10091 // Returns the related absolute value function that is larger, of 0 if one
10092 // does not exist.
10093 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
10094   switch (AbsFunction) {
10095   default:
10096     return 0;
10097 
10098   case Builtin::BI__builtin_abs:
10099     return Builtin::BI__builtin_labs;
10100   case Builtin::BI__builtin_labs:
10101     return Builtin::BI__builtin_llabs;
10102   case Builtin::BI__builtin_llabs:
10103     return 0;
10104 
10105   case Builtin::BI__builtin_fabsf:
10106     return Builtin::BI__builtin_fabs;
10107   case Builtin::BI__builtin_fabs:
10108     return Builtin::BI__builtin_fabsl;
10109   case Builtin::BI__builtin_fabsl:
10110     return 0;
10111 
10112   case Builtin::BI__builtin_cabsf:
10113     return Builtin::BI__builtin_cabs;
10114   case Builtin::BI__builtin_cabs:
10115     return Builtin::BI__builtin_cabsl;
10116   case Builtin::BI__builtin_cabsl:
10117     return 0;
10118 
10119   case Builtin::BIabs:
10120     return Builtin::BIlabs;
10121   case Builtin::BIlabs:
10122     return Builtin::BIllabs;
10123   case Builtin::BIllabs:
10124     return 0;
10125 
10126   case Builtin::BIfabsf:
10127     return Builtin::BIfabs;
10128   case Builtin::BIfabs:
10129     return Builtin::BIfabsl;
10130   case Builtin::BIfabsl:
10131     return 0;
10132 
10133   case Builtin::BIcabsf:
10134    return Builtin::BIcabs;
10135   case Builtin::BIcabs:
10136     return Builtin::BIcabsl;
10137   case Builtin::BIcabsl:
10138     return 0;
10139   }
10140 }
10141 
10142 // Returns the argument type of the absolute value function.
10143 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
10144                                              unsigned AbsType) {
10145   if (AbsType == 0)
10146     return QualType();
10147 
10148   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
10149   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
10150   if (Error != ASTContext::GE_None)
10151     return QualType();
10152 
10153   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
10154   if (!FT)
10155     return QualType();
10156 
10157   if (FT->getNumParams() != 1)
10158     return QualType();
10159 
10160   return FT->getParamType(0);
10161 }
10162 
10163 // Returns the best absolute value function, or zero, based on type and
10164 // current absolute value function.
10165 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
10166                                    unsigned AbsFunctionKind) {
10167   unsigned BestKind = 0;
10168   uint64_t ArgSize = Context.getTypeSize(ArgType);
10169   for (unsigned Kind = AbsFunctionKind; Kind != 0;
10170        Kind = getLargerAbsoluteValueFunction(Kind)) {
10171     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
10172     if (Context.getTypeSize(ParamType) >= ArgSize) {
10173       if (BestKind == 0)
10174         BestKind = Kind;
10175       else if (Context.hasSameType(ParamType, ArgType)) {
10176         BestKind = Kind;
10177         break;
10178       }
10179     }
10180   }
10181   return BestKind;
10182 }
10183 
10184 enum AbsoluteValueKind {
10185   AVK_Integer,
10186   AVK_Floating,
10187   AVK_Complex
10188 };
10189 
10190 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
10191   if (T->isIntegralOrEnumerationType())
10192     return AVK_Integer;
10193   if (T->isRealFloatingType())
10194     return AVK_Floating;
10195   if (T->isAnyComplexType())
10196     return AVK_Complex;
10197 
10198   llvm_unreachable("Type not integer, floating, or complex");
10199 }
10200 
10201 // Changes the absolute value function to a different type.  Preserves whether
10202 // the function is a builtin.
10203 static unsigned changeAbsFunction(unsigned AbsKind,
10204                                   AbsoluteValueKind ValueKind) {
10205   switch (ValueKind) {
10206   case AVK_Integer:
10207     switch (AbsKind) {
10208     default:
10209       return 0;
10210     case Builtin::BI__builtin_fabsf:
10211     case Builtin::BI__builtin_fabs:
10212     case Builtin::BI__builtin_fabsl:
10213     case Builtin::BI__builtin_cabsf:
10214     case Builtin::BI__builtin_cabs:
10215     case Builtin::BI__builtin_cabsl:
10216       return Builtin::BI__builtin_abs;
10217     case Builtin::BIfabsf:
10218     case Builtin::BIfabs:
10219     case Builtin::BIfabsl:
10220     case Builtin::BIcabsf:
10221     case Builtin::BIcabs:
10222     case Builtin::BIcabsl:
10223       return Builtin::BIabs;
10224     }
10225   case AVK_Floating:
10226     switch (AbsKind) {
10227     default:
10228       return 0;
10229     case Builtin::BI__builtin_abs:
10230     case Builtin::BI__builtin_labs:
10231     case Builtin::BI__builtin_llabs:
10232     case Builtin::BI__builtin_cabsf:
10233     case Builtin::BI__builtin_cabs:
10234     case Builtin::BI__builtin_cabsl:
10235       return Builtin::BI__builtin_fabsf;
10236     case Builtin::BIabs:
10237     case Builtin::BIlabs:
10238     case Builtin::BIllabs:
10239     case Builtin::BIcabsf:
10240     case Builtin::BIcabs:
10241     case Builtin::BIcabsl:
10242       return Builtin::BIfabsf;
10243     }
10244   case AVK_Complex:
10245     switch (AbsKind) {
10246     default:
10247       return 0;
10248     case Builtin::BI__builtin_abs:
10249     case Builtin::BI__builtin_labs:
10250     case Builtin::BI__builtin_llabs:
10251     case Builtin::BI__builtin_fabsf:
10252     case Builtin::BI__builtin_fabs:
10253     case Builtin::BI__builtin_fabsl:
10254       return Builtin::BI__builtin_cabsf;
10255     case Builtin::BIabs:
10256     case Builtin::BIlabs:
10257     case Builtin::BIllabs:
10258     case Builtin::BIfabsf:
10259     case Builtin::BIfabs:
10260     case Builtin::BIfabsl:
10261       return Builtin::BIcabsf;
10262     }
10263   }
10264   llvm_unreachable("Unable to convert function");
10265 }
10266 
10267 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10268   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10269   if (!FnInfo)
10270     return 0;
10271 
10272   switch (FDecl->getBuiltinID()) {
10273   default:
10274     return 0;
10275   case Builtin::BI__builtin_abs:
10276   case Builtin::BI__builtin_fabs:
10277   case Builtin::BI__builtin_fabsf:
10278   case Builtin::BI__builtin_fabsl:
10279   case Builtin::BI__builtin_labs:
10280   case Builtin::BI__builtin_llabs:
10281   case Builtin::BI__builtin_cabs:
10282   case Builtin::BI__builtin_cabsf:
10283   case Builtin::BI__builtin_cabsl:
10284   case Builtin::BIabs:
10285   case Builtin::BIlabs:
10286   case Builtin::BIllabs:
10287   case Builtin::BIfabs:
10288   case Builtin::BIfabsf:
10289   case Builtin::BIfabsl:
10290   case Builtin::BIcabs:
10291   case Builtin::BIcabsf:
10292   case Builtin::BIcabsl:
10293     return FDecl->getBuiltinID();
10294   }
10295   llvm_unreachable("Unknown Builtin type");
10296 }
10297 
10298 // If the replacement is valid, emit a note with replacement function.
10299 // Additionally, suggest including the proper header if not already included.
10300 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10301                             unsigned AbsKind, QualType ArgType) {
10302   bool EmitHeaderHint = true;
10303   const char *HeaderName = nullptr;
10304   const char *FunctionName = nullptr;
10305   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10306     FunctionName = "std::abs";
10307     if (ArgType->isIntegralOrEnumerationType()) {
10308       HeaderName = "cstdlib";
10309     } else if (ArgType->isRealFloatingType()) {
10310       HeaderName = "cmath";
10311     } else {
10312       llvm_unreachable("Invalid Type");
10313     }
10314 
10315     // Lookup all std::abs
10316     if (NamespaceDecl *Std = S.getStdNamespace()) {
10317       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10318       R.suppressDiagnostics();
10319       S.LookupQualifiedName(R, Std);
10320 
10321       for (const auto *I : R) {
10322         const FunctionDecl *FDecl = nullptr;
10323         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10324           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10325         } else {
10326           FDecl = dyn_cast<FunctionDecl>(I);
10327         }
10328         if (!FDecl)
10329           continue;
10330 
10331         // Found std::abs(), check that they are the right ones.
10332         if (FDecl->getNumParams() != 1)
10333           continue;
10334 
10335         // Check that the parameter type can handle the argument.
10336         QualType ParamType = FDecl->getParamDecl(0)->getType();
10337         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10338             S.Context.getTypeSize(ArgType) <=
10339                 S.Context.getTypeSize(ParamType)) {
10340           // Found a function, don't need the header hint.
10341           EmitHeaderHint = false;
10342           break;
10343         }
10344       }
10345     }
10346   } else {
10347     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10348     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10349 
10350     if (HeaderName) {
10351       DeclarationName DN(&S.Context.Idents.get(FunctionName));
10352       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10353       R.suppressDiagnostics();
10354       S.LookupName(R, S.getCurScope());
10355 
10356       if (R.isSingleResult()) {
10357         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10358         if (FD && FD->getBuiltinID() == AbsKind) {
10359           EmitHeaderHint = false;
10360         } else {
10361           return;
10362         }
10363       } else if (!R.empty()) {
10364         return;
10365       }
10366     }
10367   }
10368 
10369   S.Diag(Loc, diag::note_replace_abs_function)
10370       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10371 
10372   if (!HeaderName)
10373     return;
10374 
10375   if (!EmitHeaderHint)
10376     return;
10377 
10378   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10379                                                     << FunctionName;
10380 }
10381 
10382 template <std::size_t StrLen>
10383 static bool IsStdFunction(const FunctionDecl *FDecl,
10384                           const char (&Str)[StrLen]) {
10385   if (!FDecl)
10386     return false;
10387   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10388     return false;
10389   if (!FDecl->isInStdNamespace())
10390     return false;
10391 
10392   return true;
10393 }
10394 
10395 // Warn when using the wrong abs() function.
10396 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10397                                       const FunctionDecl *FDecl) {
10398   if (Call->getNumArgs() != 1)
10399     return;
10400 
10401   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10402   bool IsStdAbs = IsStdFunction(FDecl, "abs");
10403   if (AbsKind == 0 && !IsStdAbs)
10404     return;
10405 
10406   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10407   QualType ParamType = Call->getArg(0)->getType();
10408 
10409   // Unsigned types cannot be negative.  Suggest removing the absolute value
10410   // function call.
10411   if (ArgType->isUnsignedIntegerType()) {
10412     const char *FunctionName =
10413         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10414     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10415     Diag(Call->getExprLoc(), diag::note_remove_abs)
10416         << FunctionName
10417         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10418     return;
10419   }
10420 
10421   // Taking the absolute value of a pointer is very suspicious, they probably
10422   // wanted to index into an array, dereference a pointer, call a function, etc.
10423   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10424     unsigned DiagType = 0;
10425     if (ArgType->isFunctionType())
10426       DiagType = 1;
10427     else if (ArgType->isArrayType())
10428       DiagType = 2;
10429 
10430     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10431     return;
10432   }
10433 
10434   // std::abs has overloads which prevent most of the absolute value problems
10435   // from occurring.
10436   if (IsStdAbs)
10437     return;
10438 
10439   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10440   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10441 
10442   // The argument and parameter are the same kind.  Check if they are the right
10443   // size.
10444   if (ArgValueKind == ParamValueKind) {
10445     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10446       return;
10447 
10448     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10449     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10450         << FDecl << ArgType << ParamType;
10451 
10452     if (NewAbsKind == 0)
10453       return;
10454 
10455     emitReplacement(*this, Call->getExprLoc(),
10456                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10457     return;
10458   }
10459 
10460   // ArgValueKind != ParamValueKind
10461   // The wrong type of absolute value function was used.  Attempt to find the
10462   // proper one.
10463   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10464   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10465   if (NewAbsKind == 0)
10466     return;
10467 
10468   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10469       << FDecl << ParamValueKind << ArgValueKind;
10470 
10471   emitReplacement(*this, Call->getExprLoc(),
10472                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10473 }
10474 
10475 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10476 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10477                                 const FunctionDecl *FDecl) {
10478   if (!Call || !FDecl) return;
10479 
10480   // Ignore template specializations and macros.
10481   if (inTemplateInstantiation()) return;
10482   if (Call->getExprLoc().isMacroID()) return;
10483 
10484   // Only care about the one template argument, two function parameter std::max
10485   if (Call->getNumArgs() != 2) return;
10486   if (!IsStdFunction(FDecl, "max")) return;
10487   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10488   if (!ArgList) return;
10489   if (ArgList->size() != 1) return;
10490 
10491   // Check that template type argument is unsigned integer.
10492   const auto& TA = ArgList->get(0);
10493   if (TA.getKind() != TemplateArgument::Type) return;
10494   QualType ArgType = TA.getAsType();
10495   if (!ArgType->isUnsignedIntegerType()) return;
10496 
10497   // See if either argument is a literal zero.
10498   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10499     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10500     if (!MTE) return false;
10501     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10502     if (!Num) return false;
10503     if (Num->getValue() != 0) return false;
10504     return true;
10505   };
10506 
10507   const Expr *FirstArg = Call->getArg(0);
10508   const Expr *SecondArg = Call->getArg(1);
10509   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10510   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10511 
10512   // Only warn when exactly one argument is zero.
10513   if (IsFirstArgZero == IsSecondArgZero) return;
10514 
10515   SourceRange FirstRange = FirstArg->getSourceRange();
10516   SourceRange SecondRange = SecondArg->getSourceRange();
10517 
10518   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10519 
10520   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10521       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10522 
10523   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10524   SourceRange RemovalRange;
10525   if (IsFirstArgZero) {
10526     RemovalRange = SourceRange(FirstRange.getBegin(),
10527                                SecondRange.getBegin().getLocWithOffset(-1));
10528   } else {
10529     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10530                                SecondRange.getEnd());
10531   }
10532 
10533   Diag(Call->getExprLoc(), diag::note_remove_max_call)
10534         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10535         << FixItHint::CreateRemoval(RemovalRange);
10536 }
10537 
10538 //===--- CHECK: Standard memory functions ---------------------------------===//
10539 
10540 /// Takes the expression passed to the size_t parameter of functions
10541 /// such as memcmp, strncat, etc and warns if it's a comparison.
10542 ///
10543 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10544 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10545                                            IdentifierInfo *FnName,
10546                                            SourceLocation FnLoc,
10547                                            SourceLocation RParenLoc) {
10548   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10549   if (!Size)
10550     return false;
10551 
10552   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10553   if (!Size->isComparisonOp() && !Size->isLogicalOp())
10554     return false;
10555 
10556   SourceRange SizeRange = Size->getSourceRange();
10557   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10558       << SizeRange << FnName;
10559   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10560       << FnName
10561       << FixItHint::CreateInsertion(
10562              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10563       << FixItHint::CreateRemoval(RParenLoc);
10564   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10565       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10566       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10567                                     ")");
10568 
10569   return true;
10570 }
10571 
10572 /// Determine whether the given type is or contains a dynamic class type
10573 /// (e.g., whether it has a vtable).
10574 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10575                                                      bool &IsContained) {
10576   // Look through array types while ignoring qualifiers.
10577   const Type *Ty = T->getBaseElementTypeUnsafe();
10578   IsContained = false;
10579 
10580   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10581   RD = RD ? RD->getDefinition() : nullptr;
10582   if (!RD || RD->isInvalidDecl())
10583     return nullptr;
10584 
10585   if (RD->isDynamicClass())
10586     return RD;
10587 
10588   // Check all the fields.  If any bases were dynamic, the class is dynamic.
10589   // It's impossible for a class to transitively contain itself by value, so
10590   // infinite recursion is impossible.
10591   for (auto *FD : RD->fields()) {
10592     bool SubContained;
10593     if (const CXXRecordDecl *ContainedRD =
10594             getContainedDynamicClass(FD->getType(), SubContained)) {
10595       IsContained = true;
10596       return ContainedRD;
10597     }
10598   }
10599 
10600   return nullptr;
10601 }
10602 
10603 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10604   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10605     if (Unary->getKind() == UETT_SizeOf)
10606       return Unary;
10607   return nullptr;
10608 }
10609 
10610 /// If E is a sizeof expression, returns its argument expression,
10611 /// otherwise returns NULL.
10612 static const Expr *getSizeOfExprArg(const Expr *E) {
10613   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10614     if (!SizeOf->isArgumentType())
10615       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10616   return nullptr;
10617 }
10618 
10619 /// If E is a sizeof expression, returns its argument type.
10620 static QualType getSizeOfArgType(const Expr *E) {
10621   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10622     return SizeOf->getTypeOfArgument();
10623   return QualType();
10624 }
10625 
10626 namespace {
10627 
10628 struct SearchNonTrivialToInitializeField
10629     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10630   using Super =
10631       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10632 
10633   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10634 
10635   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10636                      SourceLocation SL) {
10637     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10638       asDerived().visitArray(PDIK, AT, SL);
10639       return;
10640     }
10641 
10642     Super::visitWithKind(PDIK, FT, SL);
10643   }
10644 
10645   void visitARCStrong(QualType FT, SourceLocation SL) {
10646     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10647   }
10648   void visitARCWeak(QualType FT, SourceLocation SL) {
10649     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10650   }
10651   void visitStruct(QualType FT, SourceLocation SL) {
10652     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10653       visit(FD->getType(), FD->getLocation());
10654   }
10655   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10656                   const ArrayType *AT, SourceLocation SL) {
10657     visit(getContext().getBaseElementType(AT), SL);
10658   }
10659   void visitTrivial(QualType FT, SourceLocation SL) {}
10660 
10661   static void diag(QualType RT, const Expr *E, Sema &S) {
10662     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10663   }
10664 
10665   ASTContext &getContext() { return S.getASTContext(); }
10666 
10667   const Expr *E;
10668   Sema &S;
10669 };
10670 
10671 struct SearchNonTrivialToCopyField
10672     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10673   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10674 
10675   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10676 
10677   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10678                      SourceLocation SL) {
10679     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10680       asDerived().visitArray(PCK, AT, SL);
10681       return;
10682     }
10683 
10684     Super::visitWithKind(PCK, FT, SL);
10685   }
10686 
10687   void visitARCStrong(QualType FT, SourceLocation SL) {
10688     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10689   }
10690   void visitARCWeak(QualType FT, SourceLocation SL) {
10691     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10692   }
10693   void visitStruct(QualType FT, SourceLocation SL) {
10694     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10695       visit(FD->getType(), FD->getLocation());
10696   }
10697   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10698                   SourceLocation SL) {
10699     visit(getContext().getBaseElementType(AT), SL);
10700   }
10701   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10702                 SourceLocation SL) {}
10703   void visitTrivial(QualType FT, SourceLocation SL) {}
10704   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10705 
10706   static void diag(QualType RT, const Expr *E, Sema &S) {
10707     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10708   }
10709 
10710   ASTContext &getContext() { return S.getASTContext(); }
10711 
10712   const Expr *E;
10713   Sema &S;
10714 };
10715 
10716 }
10717 
10718 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10719 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10720   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10721 
10722   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10723     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10724       return false;
10725 
10726     return doesExprLikelyComputeSize(BO->getLHS()) ||
10727            doesExprLikelyComputeSize(BO->getRHS());
10728   }
10729 
10730   return getAsSizeOfExpr(SizeofExpr) != nullptr;
10731 }
10732 
10733 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10734 ///
10735 /// \code
10736 ///   #define MACRO 0
10737 ///   foo(MACRO);
10738 ///   foo(0);
10739 /// \endcode
10740 ///
10741 /// This should return true for the first call to foo, but not for the second
10742 /// (regardless of whether foo is a macro or function).
10743 static bool isArgumentExpandedFromMacro(SourceManager &SM,
10744                                         SourceLocation CallLoc,
10745                                         SourceLocation ArgLoc) {
10746   if (!CallLoc.isMacroID())
10747     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10748 
10749   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10750          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10751 }
10752 
10753 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10754 /// last two arguments transposed.
10755 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10756   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10757     return;
10758 
10759   const Expr *SizeArg =
10760     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10761 
10762   auto isLiteralZero = [](const Expr *E) {
10763     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10764   };
10765 
10766   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10767   SourceLocation CallLoc = Call->getRParenLoc();
10768   SourceManager &SM = S.getSourceManager();
10769   if (isLiteralZero(SizeArg) &&
10770       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10771 
10772     SourceLocation DiagLoc = SizeArg->getExprLoc();
10773 
10774     // Some platforms #define bzero to __builtin_memset. See if this is the
10775     // case, and if so, emit a better diagnostic.
10776     if (BId == Builtin::BIbzero ||
10777         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10778                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
10779       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10780       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10781     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10782       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10783       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10784     }
10785     return;
10786   }
10787 
10788   // If the second argument to a memset is a sizeof expression and the third
10789   // isn't, this is also likely an error. This should catch
10790   // 'memset(buf, sizeof(buf), 0xff)'.
10791   if (BId == Builtin::BImemset &&
10792       doesExprLikelyComputeSize(Call->getArg(1)) &&
10793       !doesExprLikelyComputeSize(Call->getArg(2))) {
10794     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10795     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10796     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10797     return;
10798   }
10799 }
10800 
10801 /// Check for dangerous or invalid arguments to memset().
10802 ///
10803 /// This issues warnings on known problematic, dangerous or unspecified
10804 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10805 /// function calls.
10806 ///
10807 /// \param Call The call expression to diagnose.
10808 void Sema::CheckMemaccessArguments(const CallExpr *Call,
10809                                    unsigned BId,
10810                                    IdentifierInfo *FnName) {
10811   assert(BId != 0);
10812 
10813   // It is possible to have a non-standard definition of memset.  Validate
10814   // we have enough arguments, and if not, abort further checking.
10815   unsigned ExpectedNumArgs =
10816       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10817   if (Call->getNumArgs() < ExpectedNumArgs)
10818     return;
10819 
10820   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10821                       BId == Builtin::BIstrndup ? 1 : 2);
10822   unsigned LenArg =
10823       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10824   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10825 
10826   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10827                                      Call->getBeginLoc(), Call->getRParenLoc()))
10828     return;
10829 
10830   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10831   CheckMemaccessSize(*this, BId, Call);
10832 
10833   // We have special checking when the length is a sizeof expression.
10834   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10835   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10836   llvm::FoldingSetNodeID SizeOfArgID;
10837 
10838   // Although widely used, 'bzero' is not a standard function. Be more strict
10839   // with the argument types before allowing diagnostics and only allow the
10840   // form bzero(ptr, sizeof(...)).
10841   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10842   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10843     return;
10844 
10845   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10846     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10847     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10848 
10849     QualType DestTy = Dest->getType();
10850     QualType PointeeTy;
10851     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10852       PointeeTy = DestPtrTy->getPointeeType();
10853 
10854       // Never warn about void type pointers. This can be used to suppress
10855       // false positives.
10856       if (PointeeTy->isVoidType())
10857         continue;
10858 
10859       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10860       // actually comparing the expressions for equality. Because computing the
10861       // expression IDs can be expensive, we only do this if the diagnostic is
10862       // enabled.
10863       if (SizeOfArg &&
10864           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10865                            SizeOfArg->getExprLoc())) {
10866         // We only compute IDs for expressions if the warning is enabled, and
10867         // cache the sizeof arg's ID.
10868         if (SizeOfArgID == llvm::FoldingSetNodeID())
10869           SizeOfArg->Profile(SizeOfArgID, Context, true);
10870         llvm::FoldingSetNodeID DestID;
10871         Dest->Profile(DestID, Context, true);
10872         if (DestID == SizeOfArgID) {
10873           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10874           //       over sizeof(src) as well.
10875           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10876           StringRef ReadableName = FnName->getName();
10877 
10878           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10879             if (UnaryOp->getOpcode() == UO_AddrOf)
10880               ActionIdx = 1; // If its an address-of operator, just remove it.
10881           if (!PointeeTy->isIncompleteType() &&
10882               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10883             ActionIdx = 2; // If the pointee's size is sizeof(char),
10884                            // suggest an explicit length.
10885 
10886           // If the function is defined as a builtin macro, do not show macro
10887           // expansion.
10888           SourceLocation SL = SizeOfArg->getExprLoc();
10889           SourceRange DSR = Dest->getSourceRange();
10890           SourceRange SSR = SizeOfArg->getSourceRange();
10891           SourceManager &SM = getSourceManager();
10892 
10893           if (SM.isMacroArgExpansion(SL)) {
10894             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10895             SL = SM.getSpellingLoc(SL);
10896             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10897                              SM.getSpellingLoc(DSR.getEnd()));
10898             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10899                              SM.getSpellingLoc(SSR.getEnd()));
10900           }
10901 
10902           DiagRuntimeBehavior(SL, SizeOfArg,
10903                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10904                                 << ReadableName
10905                                 << PointeeTy
10906                                 << DestTy
10907                                 << DSR
10908                                 << SSR);
10909           DiagRuntimeBehavior(SL, SizeOfArg,
10910                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10911                                 << ActionIdx
10912                                 << SSR);
10913 
10914           break;
10915         }
10916       }
10917 
10918       // Also check for cases where the sizeof argument is the exact same
10919       // type as the memory argument, and where it points to a user-defined
10920       // record type.
10921       if (SizeOfArgTy != QualType()) {
10922         if (PointeeTy->isRecordType() &&
10923             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10924           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10925                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
10926                                 << FnName << SizeOfArgTy << ArgIdx
10927                                 << PointeeTy << Dest->getSourceRange()
10928                                 << LenExpr->getSourceRange());
10929           break;
10930         }
10931       }
10932     } else if (DestTy->isArrayType()) {
10933       PointeeTy = DestTy;
10934     }
10935 
10936     if (PointeeTy == QualType())
10937       continue;
10938 
10939     // Always complain about dynamic classes.
10940     bool IsContained;
10941     if (const CXXRecordDecl *ContainedRD =
10942             getContainedDynamicClass(PointeeTy, IsContained)) {
10943 
10944       unsigned OperationType = 0;
10945       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10946       // "overwritten" if we're warning about the destination for any call
10947       // but memcmp; otherwise a verb appropriate to the call.
10948       if (ArgIdx != 0 || IsCmp) {
10949         if (BId == Builtin::BImemcpy)
10950           OperationType = 1;
10951         else if(BId == Builtin::BImemmove)
10952           OperationType = 2;
10953         else if (IsCmp)
10954           OperationType = 3;
10955       }
10956 
10957       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10958                           PDiag(diag::warn_dyn_class_memaccess)
10959                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10960                               << IsContained << ContainedRD << OperationType
10961                               << Call->getCallee()->getSourceRange());
10962     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10963              BId != Builtin::BImemset)
10964       DiagRuntimeBehavior(
10965         Dest->getExprLoc(), Dest,
10966         PDiag(diag::warn_arc_object_memaccess)
10967           << ArgIdx << FnName << PointeeTy
10968           << Call->getCallee()->getSourceRange());
10969     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10970       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10971           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10972         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10973                             PDiag(diag::warn_cstruct_memaccess)
10974                                 << ArgIdx << FnName << PointeeTy << 0);
10975         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10976       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10977                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10978         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10979                             PDiag(diag::warn_cstruct_memaccess)
10980                                 << ArgIdx << FnName << PointeeTy << 1);
10981         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10982       } else {
10983         continue;
10984       }
10985     } else
10986       continue;
10987 
10988     DiagRuntimeBehavior(
10989       Dest->getExprLoc(), Dest,
10990       PDiag(diag::note_bad_memaccess_silence)
10991         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10992     break;
10993   }
10994 }
10995 
10996 // A little helper routine: ignore addition and subtraction of integer literals.
10997 // This intentionally does not ignore all integer constant expressions because
10998 // we don't want to remove sizeof().
10999 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
11000   Ex = Ex->IgnoreParenCasts();
11001 
11002   while (true) {
11003     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
11004     if (!BO || !BO->isAdditiveOp())
11005       break;
11006 
11007     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
11008     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
11009 
11010     if (isa<IntegerLiteral>(RHS))
11011       Ex = LHS;
11012     else if (isa<IntegerLiteral>(LHS))
11013       Ex = RHS;
11014     else
11015       break;
11016   }
11017 
11018   return Ex;
11019 }
11020 
11021 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
11022                                                       ASTContext &Context) {
11023   // Only handle constant-sized or VLAs, but not flexible members.
11024   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
11025     // Only issue the FIXIT for arrays of size > 1.
11026     if (CAT->getSize().getSExtValue() <= 1)
11027       return false;
11028   } else if (!Ty->isVariableArrayType()) {
11029     return false;
11030   }
11031   return true;
11032 }
11033 
11034 // Warn if the user has made the 'size' argument to strlcpy or strlcat
11035 // be the size of the source, instead of the destination.
11036 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
11037                                     IdentifierInfo *FnName) {
11038 
11039   // Don't crash if the user has the wrong number of arguments
11040   unsigned NumArgs = Call->getNumArgs();
11041   if ((NumArgs != 3) && (NumArgs != 4))
11042     return;
11043 
11044   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
11045   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
11046   const Expr *CompareWithSrc = nullptr;
11047 
11048   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
11049                                      Call->getBeginLoc(), Call->getRParenLoc()))
11050     return;
11051 
11052   // Look for 'strlcpy(dst, x, sizeof(x))'
11053   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
11054     CompareWithSrc = Ex;
11055   else {
11056     // Look for 'strlcpy(dst, x, strlen(x))'
11057     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
11058       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
11059           SizeCall->getNumArgs() == 1)
11060         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
11061     }
11062   }
11063 
11064   if (!CompareWithSrc)
11065     return;
11066 
11067   // Determine if the argument to sizeof/strlen is equal to the source
11068   // argument.  In principle there's all kinds of things you could do
11069   // here, for instance creating an == expression and evaluating it with
11070   // EvaluateAsBooleanCondition, but this uses a more direct technique:
11071   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
11072   if (!SrcArgDRE)
11073     return;
11074 
11075   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
11076   if (!CompareWithSrcDRE ||
11077       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
11078     return;
11079 
11080   const Expr *OriginalSizeArg = Call->getArg(2);
11081   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
11082       << OriginalSizeArg->getSourceRange() << FnName;
11083 
11084   // Output a FIXIT hint if the destination is an array (rather than a
11085   // pointer to an array).  This could be enhanced to handle some
11086   // pointers if we know the actual size, like if DstArg is 'array+2'
11087   // we could say 'sizeof(array)-2'.
11088   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
11089   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
11090     return;
11091 
11092   SmallString<128> sizeString;
11093   llvm::raw_svector_ostream OS(sizeString);
11094   OS << "sizeof(";
11095   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11096   OS << ")";
11097 
11098   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
11099       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
11100                                       OS.str());
11101 }
11102 
11103 /// Check if two expressions refer to the same declaration.
11104 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
11105   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
11106     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
11107       return D1->getDecl() == D2->getDecl();
11108   return false;
11109 }
11110 
11111 static const Expr *getStrlenExprArg(const Expr *E) {
11112   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11113     const FunctionDecl *FD = CE->getDirectCallee();
11114     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
11115       return nullptr;
11116     return CE->getArg(0)->IgnoreParenCasts();
11117   }
11118   return nullptr;
11119 }
11120 
11121 // Warn on anti-patterns as the 'size' argument to strncat.
11122 // The correct size argument should look like following:
11123 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
11124 void Sema::CheckStrncatArguments(const CallExpr *CE,
11125                                  IdentifierInfo *FnName) {
11126   // Don't crash if the user has the wrong number of arguments.
11127   if (CE->getNumArgs() < 3)
11128     return;
11129   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
11130   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
11131   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
11132 
11133   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
11134                                      CE->getRParenLoc()))
11135     return;
11136 
11137   // Identify common expressions, which are wrongly used as the size argument
11138   // to strncat and may lead to buffer overflows.
11139   unsigned PatternType = 0;
11140   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
11141     // - sizeof(dst)
11142     if (referToTheSameDecl(SizeOfArg, DstArg))
11143       PatternType = 1;
11144     // - sizeof(src)
11145     else if (referToTheSameDecl(SizeOfArg, SrcArg))
11146       PatternType = 2;
11147   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
11148     if (BE->getOpcode() == BO_Sub) {
11149       const Expr *L = BE->getLHS()->IgnoreParenCasts();
11150       const Expr *R = BE->getRHS()->IgnoreParenCasts();
11151       // - sizeof(dst) - strlen(dst)
11152       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
11153           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
11154         PatternType = 1;
11155       // - sizeof(src) - (anything)
11156       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
11157         PatternType = 2;
11158     }
11159   }
11160 
11161   if (PatternType == 0)
11162     return;
11163 
11164   // Generate the diagnostic.
11165   SourceLocation SL = LenArg->getBeginLoc();
11166   SourceRange SR = LenArg->getSourceRange();
11167   SourceManager &SM = getSourceManager();
11168 
11169   // If the function is defined as a builtin macro, do not show macro expansion.
11170   if (SM.isMacroArgExpansion(SL)) {
11171     SL = SM.getSpellingLoc(SL);
11172     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
11173                      SM.getSpellingLoc(SR.getEnd()));
11174   }
11175 
11176   // Check if the destination is an array (rather than a pointer to an array).
11177   QualType DstTy = DstArg->getType();
11178   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
11179                                                                     Context);
11180   if (!isKnownSizeArray) {
11181     if (PatternType == 1)
11182       Diag(SL, diag::warn_strncat_wrong_size) << SR;
11183     else
11184       Diag(SL, diag::warn_strncat_src_size) << SR;
11185     return;
11186   }
11187 
11188   if (PatternType == 1)
11189     Diag(SL, diag::warn_strncat_large_size) << SR;
11190   else
11191     Diag(SL, diag::warn_strncat_src_size) << SR;
11192 
11193   SmallString<128> sizeString;
11194   llvm::raw_svector_ostream OS(sizeString);
11195   OS << "sizeof(";
11196   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11197   OS << ") - ";
11198   OS << "strlen(";
11199   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11200   OS << ") - 1";
11201 
11202   Diag(SL, diag::note_strncat_wrong_size)
11203     << FixItHint::CreateReplacement(SR, OS.str());
11204 }
11205 
11206 namespace {
11207 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
11208                                 const UnaryOperator *UnaryExpr, const Decl *D) {
11209   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
11210     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
11211         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
11212     return;
11213   }
11214 }
11215 
11216 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
11217                                  const UnaryOperator *UnaryExpr) {
11218   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
11219     const Decl *D = Lvalue->getDecl();
11220     if (isa<DeclaratorDecl>(D))
11221       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
11222         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
11223   }
11224 
11225   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
11226     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
11227                                       Lvalue->getMemberDecl());
11228 }
11229 
11230 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
11231                             const UnaryOperator *UnaryExpr) {
11232   const auto *Lambda = dyn_cast<LambdaExpr>(
11233       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
11234   if (!Lambda)
11235     return;
11236 
11237   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11238       << CalleeName << 2 /*object: lambda expression*/;
11239 }
11240 
11241 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11242                                   const DeclRefExpr *Lvalue) {
11243   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11244   if (Var == nullptr)
11245     return;
11246 
11247   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11248       << CalleeName << 0 /*object: */ << Var;
11249 }
11250 
11251 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11252                             const CastExpr *Cast) {
11253   SmallString<128> SizeString;
11254   llvm::raw_svector_ostream OS(SizeString);
11255 
11256   clang::CastKind Kind = Cast->getCastKind();
11257   if (Kind == clang::CK_BitCast &&
11258       !Cast->getSubExpr()->getType()->isFunctionPointerType())
11259     return;
11260   if (Kind == clang::CK_IntegralToPointer &&
11261       !isa<IntegerLiteral>(
11262           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11263     return;
11264 
11265   switch (Cast->getCastKind()) {
11266   case clang::CK_BitCast:
11267   case clang::CK_IntegralToPointer:
11268   case clang::CK_FunctionToPointerDecay:
11269     OS << '\'';
11270     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11271     OS << '\'';
11272     break;
11273   default:
11274     return;
11275   }
11276 
11277   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11278       << CalleeName << 0 /*object: */ << OS.str();
11279 }
11280 } // namespace
11281 
11282 /// Alerts the user that they are attempting to free a non-malloc'd object.
11283 void Sema::CheckFreeArguments(const CallExpr *E) {
11284   const std::string CalleeName =
11285       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11286 
11287   { // Prefer something that doesn't involve a cast to make things simpler.
11288     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11289     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11290       switch (UnaryExpr->getOpcode()) {
11291       case UnaryOperator::Opcode::UO_AddrOf:
11292         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11293       case UnaryOperator::Opcode::UO_Plus:
11294         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11295       default:
11296         break;
11297       }
11298 
11299     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11300       if (Lvalue->getType()->isArrayType())
11301         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11302 
11303     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11304       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11305           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11306       return;
11307     }
11308 
11309     if (isa<BlockExpr>(Arg)) {
11310       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11311           << CalleeName << 1 /*object: block*/;
11312       return;
11313     }
11314   }
11315   // Maybe the cast was important, check after the other cases.
11316   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11317     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11318 }
11319 
11320 void
11321 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11322                          SourceLocation ReturnLoc,
11323                          bool isObjCMethod,
11324                          const AttrVec *Attrs,
11325                          const FunctionDecl *FD) {
11326   // Check if the return value is null but should not be.
11327   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11328        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11329       CheckNonNullExpr(*this, RetValExp))
11330     Diag(ReturnLoc, diag::warn_null_ret)
11331       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11332 
11333   // C++11 [basic.stc.dynamic.allocation]p4:
11334   //   If an allocation function declared with a non-throwing
11335   //   exception-specification fails to allocate storage, it shall return
11336   //   a null pointer. Any other allocation function that fails to allocate
11337   //   storage shall indicate failure only by throwing an exception [...]
11338   if (FD) {
11339     OverloadedOperatorKind Op = FD->getOverloadedOperator();
11340     if (Op == OO_New || Op == OO_Array_New) {
11341       const FunctionProtoType *Proto
11342         = FD->getType()->castAs<FunctionProtoType>();
11343       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11344           CheckNonNullExpr(*this, RetValExp))
11345         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11346           << FD << getLangOpts().CPlusPlus11;
11347     }
11348   }
11349 
11350   // PPC MMA non-pointer types are not allowed as return type. Checking the type
11351   // here prevent the user from using a PPC MMA type as trailing return type.
11352   if (Context.getTargetInfo().getTriple().isPPC64())
11353     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11354 }
11355 
11356 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
11357 
11358 /// Check for comparisons of floating point operands using != and ==.
11359 /// Issue a warning if these are no self-comparisons, as they are not likely
11360 /// to do what the programmer intended.
11361 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
11362   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11363   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11364 
11365   // Special case: check for x == x (which is OK).
11366   // Do not emit warnings for such cases.
11367   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11368     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11369       if (DRL->getDecl() == DRR->getDecl())
11370         return;
11371 
11372   // Special case: check for comparisons against literals that can be exactly
11373   //  represented by APFloat.  In such cases, do not emit a warning.  This
11374   //  is a heuristic: often comparison against such literals are used to
11375   //  detect if a value in a variable has not changed.  This clearly can
11376   //  lead to false negatives.
11377   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11378     if (FLL->isExact())
11379       return;
11380   } else
11381     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11382       if (FLR->isExact())
11383         return;
11384 
11385   // Check for comparisons with builtin types.
11386   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11387     if (CL->getBuiltinCallee())
11388       return;
11389 
11390   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11391     if (CR->getBuiltinCallee())
11392       return;
11393 
11394   // Emit the diagnostic.
11395   Diag(Loc, diag::warn_floatingpoint_eq)
11396     << LHS->getSourceRange() << RHS->getSourceRange();
11397 }
11398 
11399 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11400 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11401 
11402 namespace {
11403 
11404 /// Structure recording the 'active' range of an integer-valued
11405 /// expression.
11406 struct IntRange {
11407   /// The number of bits active in the int. Note that this includes exactly one
11408   /// sign bit if !NonNegative.
11409   unsigned Width;
11410 
11411   /// True if the int is known not to have negative values. If so, all leading
11412   /// bits before Width are known zero, otherwise they are known to be the
11413   /// same as the MSB within Width.
11414   bool NonNegative;
11415 
11416   IntRange(unsigned Width, bool NonNegative)
11417       : Width(Width), NonNegative(NonNegative) {}
11418 
11419   /// Number of bits excluding the sign bit.
11420   unsigned valueBits() const {
11421     return NonNegative ? Width : Width - 1;
11422   }
11423 
11424   /// Returns the range of the bool type.
11425   static IntRange forBoolType() {
11426     return IntRange(1, true);
11427   }
11428 
11429   /// Returns the range of an opaque value of the given integral type.
11430   static IntRange forValueOfType(ASTContext &C, QualType T) {
11431     return forValueOfCanonicalType(C,
11432                           T->getCanonicalTypeInternal().getTypePtr());
11433   }
11434 
11435   /// Returns the range of an opaque value of a canonical integral type.
11436   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11437     assert(T->isCanonicalUnqualified());
11438 
11439     if (const VectorType *VT = dyn_cast<VectorType>(T))
11440       T = VT->getElementType().getTypePtr();
11441     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11442       T = CT->getElementType().getTypePtr();
11443     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11444       T = AT->getValueType().getTypePtr();
11445 
11446     if (!C.getLangOpts().CPlusPlus) {
11447       // For enum types in C code, use the underlying datatype.
11448       if (const EnumType *ET = dyn_cast<EnumType>(T))
11449         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11450     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11451       // For enum types in C++, use the known bit width of the enumerators.
11452       EnumDecl *Enum = ET->getDecl();
11453       // In C++11, enums can have a fixed underlying type. Use this type to
11454       // compute the range.
11455       if (Enum->isFixed()) {
11456         return IntRange(C.getIntWidth(QualType(T, 0)),
11457                         !ET->isSignedIntegerOrEnumerationType());
11458       }
11459 
11460       unsigned NumPositive = Enum->getNumPositiveBits();
11461       unsigned NumNegative = Enum->getNumNegativeBits();
11462 
11463       if (NumNegative == 0)
11464         return IntRange(NumPositive, true/*NonNegative*/);
11465       else
11466         return IntRange(std::max(NumPositive + 1, NumNegative),
11467                         false/*NonNegative*/);
11468     }
11469 
11470     if (const auto *EIT = dyn_cast<BitIntType>(T))
11471       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11472 
11473     const BuiltinType *BT = cast<BuiltinType>(T);
11474     assert(BT->isInteger());
11475 
11476     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11477   }
11478 
11479   /// Returns the "target" range of a canonical integral type, i.e.
11480   /// the range of values expressible in the type.
11481   ///
11482   /// This matches forValueOfCanonicalType except that enums have the
11483   /// full range of their type, not the range of their enumerators.
11484   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11485     assert(T->isCanonicalUnqualified());
11486 
11487     if (const VectorType *VT = dyn_cast<VectorType>(T))
11488       T = VT->getElementType().getTypePtr();
11489     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11490       T = CT->getElementType().getTypePtr();
11491     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11492       T = AT->getValueType().getTypePtr();
11493     if (const EnumType *ET = dyn_cast<EnumType>(T))
11494       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11495 
11496     if (const auto *EIT = dyn_cast<BitIntType>(T))
11497       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11498 
11499     const BuiltinType *BT = cast<BuiltinType>(T);
11500     assert(BT->isInteger());
11501 
11502     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11503   }
11504 
11505   /// Returns the supremum of two ranges: i.e. their conservative merge.
11506   static IntRange join(IntRange L, IntRange R) {
11507     bool Unsigned = L.NonNegative && R.NonNegative;
11508     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11509                     L.NonNegative && R.NonNegative);
11510   }
11511 
11512   /// Return the range of a bitwise-AND of the two ranges.
11513   static IntRange bit_and(IntRange L, IntRange R) {
11514     unsigned Bits = std::max(L.Width, R.Width);
11515     bool NonNegative = false;
11516     if (L.NonNegative) {
11517       Bits = std::min(Bits, L.Width);
11518       NonNegative = true;
11519     }
11520     if (R.NonNegative) {
11521       Bits = std::min(Bits, R.Width);
11522       NonNegative = true;
11523     }
11524     return IntRange(Bits, NonNegative);
11525   }
11526 
11527   /// Return the range of a sum of the two ranges.
11528   static IntRange sum(IntRange L, IntRange R) {
11529     bool Unsigned = L.NonNegative && R.NonNegative;
11530     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11531                     Unsigned);
11532   }
11533 
11534   /// Return the range of a difference of the two ranges.
11535   static IntRange difference(IntRange L, IntRange R) {
11536     // We need a 1-bit-wider range if:
11537     //   1) LHS can be negative: least value can be reduced.
11538     //   2) RHS can be negative: greatest value can be increased.
11539     bool CanWiden = !L.NonNegative || !R.NonNegative;
11540     bool Unsigned = L.NonNegative && R.Width == 0;
11541     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11542                         !Unsigned,
11543                     Unsigned);
11544   }
11545 
11546   /// Return the range of a product of the two ranges.
11547   static IntRange product(IntRange L, IntRange R) {
11548     // If both LHS and RHS can be negative, we can form
11549     //   -2^L * -2^R = 2^(L + R)
11550     // which requires L + R + 1 value bits to represent.
11551     bool CanWiden = !L.NonNegative && !R.NonNegative;
11552     bool Unsigned = L.NonNegative && R.NonNegative;
11553     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11554                     Unsigned);
11555   }
11556 
11557   /// Return the range of a remainder operation between the two ranges.
11558   static IntRange rem(IntRange L, IntRange R) {
11559     // The result of a remainder can't be larger than the result of
11560     // either side. The sign of the result is the sign of the LHS.
11561     bool Unsigned = L.NonNegative;
11562     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11563                     Unsigned);
11564   }
11565 };
11566 
11567 } // namespace
11568 
11569 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11570                               unsigned MaxWidth) {
11571   if (value.isSigned() && value.isNegative())
11572     return IntRange(value.getMinSignedBits(), false);
11573 
11574   if (value.getBitWidth() > MaxWidth)
11575     value = value.trunc(MaxWidth);
11576 
11577   // isNonNegative() just checks the sign bit without considering
11578   // signedness.
11579   return IntRange(value.getActiveBits(), true);
11580 }
11581 
11582 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11583                               unsigned MaxWidth) {
11584   if (result.isInt())
11585     return GetValueRange(C, result.getInt(), MaxWidth);
11586 
11587   if (result.isVector()) {
11588     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11589     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11590       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11591       R = IntRange::join(R, El);
11592     }
11593     return R;
11594   }
11595 
11596   if (result.isComplexInt()) {
11597     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11598     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11599     return IntRange::join(R, I);
11600   }
11601 
11602   // This can happen with lossless casts to intptr_t of "based" lvalues.
11603   // Assume it might use arbitrary bits.
11604   // FIXME: The only reason we need to pass the type in here is to get
11605   // the sign right on this one case.  It would be nice if APValue
11606   // preserved this.
11607   assert(result.isLValue() || result.isAddrLabelDiff());
11608   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11609 }
11610 
11611 static QualType GetExprType(const Expr *E) {
11612   QualType Ty = E->getType();
11613   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11614     Ty = AtomicRHS->getValueType();
11615   return Ty;
11616 }
11617 
11618 /// Pseudo-evaluate the given integer expression, estimating the
11619 /// range of values it might take.
11620 ///
11621 /// \param MaxWidth The width to which the value will be truncated.
11622 /// \param Approximate If \c true, return a likely range for the result: in
11623 ///        particular, assume that arithmetic on narrower types doesn't leave
11624 ///        those types. If \c false, return a range including all possible
11625 ///        result values.
11626 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11627                              bool InConstantContext, bool Approximate) {
11628   E = E->IgnoreParens();
11629 
11630   // Try a full evaluation first.
11631   Expr::EvalResult result;
11632   if (E->EvaluateAsRValue(result, C, InConstantContext))
11633     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11634 
11635   // I think we only want to look through implicit casts here; if the
11636   // user has an explicit widening cast, we should treat the value as
11637   // being of the new, wider type.
11638   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11639     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11640       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11641                           Approximate);
11642 
11643     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11644 
11645     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11646                          CE->getCastKind() == CK_BooleanToSignedIntegral;
11647 
11648     // Assume that non-integer casts can span the full range of the type.
11649     if (!isIntegerCast)
11650       return OutputTypeRange;
11651 
11652     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11653                                      std::min(MaxWidth, OutputTypeRange.Width),
11654                                      InConstantContext, Approximate);
11655 
11656     // Bail out if the subexpr's range is as wide as the cast type.
11657     if (SubRange.Width >= OutputTypeRange.Width)
11658       return OutputTypeRange;
11659 
11660     // Otherwise, we take the smaller width, and we're non-negative if
11661     // either the output type or the subexpr is.
11662     return IntRange(SubRange.Width,
11663                     SubRange.NonNegative || OutputTypeRange.NonNegative);
11664   }
11665 
11666   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11667     // If we can fold the condition, just take that operand.
11668     bool CondResult;
11669     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11670       return GetExprRange(C,
11671                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11672                           MaxWidth, InConstantContext, Approximate);
11673 
11674     // Otherwise, conservatively merge.
11675     // GetExprRange requires an integer expression, but a throw expression
11676     // results in a void type.
11677     Expr *E = CO->getTrueExpr();
11678     IntRange L = E->getType()->isVoidType()
11679                      ? IntRange{0, true}
11680                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11681     E = CO->getFalseExpr();
11682     IntRange R = E->getType()->isVoidType()
11683                      ? IntRange{0, true}
11684                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11685     return IntRange::join(L, R);
11686   }
11687 
11688   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11689     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11690 
11691     switch (BO->getOpcode()) {
11692     case BO_Cmp:
11693       llvm_unreachable("builtin <=> should have class type");
11694 
11695     // Boolean-valued operations are single-bit and positive.
11696     case BO_LAnd:
11697     case BO_LOr:
11698     case BO_LT:
11699     case BO_GT:
11700     case BO_LE:
11701     case BO_GE:
11702     case BO_EQ:
11703     case BO_NE:
11704       return IntRange::forBoolType();
11705 
11706     // The type of the assignments is the type of the LHS, so the RHS
11707     // is not necessarily the same type.
11708     case BO_MulAssign:
11709     case BO_DivAssign:
11710     case BO_RemAssign:
11711     case BO_AddAssign:
11712     case BO_SubAssign:
11713     case BO_XorAssign:
11714     case BO_OrAssign:
11715       // TODO: bitfields?
11716       return IntRange::forValueOfType(C, GetExprType(E));
11717 
11718     // Simple assignments just pass through the RHS, which will have
11719     // been coerced to the LHS type.
11720     case BO_Assign:
11721       // TODO: bitfields?
11722       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11723                           Approximate);
11724 
11725     // Operations with opaque sources are black-listed.
11726     case BO_PtrMemD:
11727     case BO_PtrMemI:
11728       return IntRange::forValueOfType(C, GetExprType(E));
11729 
11730     // Bitwise-and uses the *infinum* of the two source ranges.
11731     case BO_And:
11732     case BO_AndAssign:
11733       Combine = IntRange::bit_and;
11734       break;
11735 
11736     // Left shift gets black-listed based on a judgement call.
11737     case BO_Shl:
11738       // ...except that we want to treat '1 << (blah)' as logically
11739       // positive.  It's an important idiom.
11740       if (IntegerLiteral *I
11741             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11742         if (I->getValue() == 1) {
11743           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11744           return IntRange(R.Width, /*NonNegative*/ true);
11745         }
11746       }
11747       LLVM_FALLTHROUGH;
11748 
11749     case BO_ShlAssign:
11750       return IntRange::forValueOfType(C, GetExprType(E));
11751 
11752     // Right shift by a constant can narrow its left argument.
11753     case BO_Shr:
11754     case BO_ShrAssign: {
11755       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11756                                 Approximate);
11757 
11758       // If the shift amount is a positive constant, drop the width by
11759       // that much.
11760       if (Optional<llvm::APSInt> shift =
11761               BO->getRHS()->getIntegerConstantExpr(C)) {
11762         if (shift->isNonNegative()) {
11763           unsigned zext = shift->getZExtValue();
11764           if (zext >= L.Width)
11765             L.Width = (L.NonNegative ? 0 : 1);
11766           else
11767             L.Width -= zext;
11768         }
11769       }
11770 
11771       return L;
11772     }
11773 
11774     // Comma acts as its right operand.
11775     case BO_Comma:
11776       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11777                           Approximate);
11778 
11779     case BO_Add:
11780       if (!Approximate)
11781         Combine = IntRange::sum;
11782       break;
11783 
11784     case BO_Sub:
11785       if (BO->getLHS()->getType()->isPointerType())
11786         return IntRange::forValueOfType(C, GetExprType(E));
11787       if (!Approximate)
11788         Combine = IntRange::difference;
11789       break;
11790 
11791     case BO_Mul:
11792       if (!Approximate)
11793         Combine = IntRange::product;
11794       break;
11795 
11796     // The width of a division result is mostly determined by the size
11797     // of the LHS.
11798     case BO_Div: {
11799       // Don't 'pre-truncate' the operands.
11800       unsigned opWidth = C.getIntWidth(GetExprType(E));
11801       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11802                                 Approximate);
11803 
11804       // If the divisor is constant, use that.
11805       if (Optional<llvm::APSInt> divisor =
11806               BO->getRHS()->getIntegerConstantExpr(C)) {
11807         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11808         if (log2 >= L.Width)
11809           L.Width = (L.NonNegative ? 0 : 1);
11810         else
11811           L.Width = std::min(L.Width - log2, MaxWidth);
11812         return L;
11813       }
11814 
11815       // Otherwise, just use the LHS's width.
11816       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11817       // could be -1.
11818       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11819                                 Approximate);
11820       return IntRange(L.Width, L.NonNegative && R.NonNegative);
11821     }
11822 
11823     case BO_Rem:
11824       Combine = IntRange::rem;
11825       break;
11826 
11827     // The default behavior is okay for these.
11828     case BO_Xor:
11829     case BO_Or:
11830       break;
11831     }
11832 
11833     // Combine the two ranges, but limit the result to the type in which we
11834     // performed the computation.
11835     QualType T = GetExprType(E);
11836     unsigned opWidth = C.getIntWidth(T);
11837     IntRange L =
11838         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11839     IntRange R =
11840         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11841     IntRange C = Combine(L, R);
11842     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11843     C.Width = std::min(C.Width, MaxWidth);
11844     return C;
11845   }
11846 
11847   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11848     switch (UO->getOpcode()) {
11849     // Boolean-valued operations are white-listed.
11850     case UO_LNot:
11851       return IntRange::forBoolType();
11852 
11853     // Operations with opaque sources are black-listed.
11854     case UO_Deref:
11855     case UO_AddrOf: // should be impossible
11856       return IntRange::forValueOfType(C, GetExprType(E));
11857 
11858     default:
11859       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11860                           Approximate);
11861     }
11862   }
11863 
11864   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11865     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11866                         Approximate);
11867 
11868   if (const auto *BitField = E->getSourceBitField())
11869     return IntRange(BitField->getBitWidthValue(C),
11870                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
11871 
11872   return IntRange::forValueOfType(C, GetExprType(E));
11873 }
11874 
11875 static IntRange GetExprRange(ASTContext &C, const Expr *E,
11876                              bool InConstantContext, bool Approximate) {
11877   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11878                       Approximate);
11879 }
11880 
11881 /// Checks whether the given value, which currently has the given
11882 /// source semantics, has the same value when coerced through the
11883 /// target semantics.
11884 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11885                                  const llvm::fltSemantics &Src,
11886                                  const llvm::fltSemantics &Tgt) {
11887   llvm::APFloat truncated = value;
11888 
11889   bool ignored;
11890   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11891   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11892 
11893   return truncated.bitwiseIsEqual(value);
11894 }
11895 
11896 /// Checks whether the given value, which currently has the given
11897 /// source semantics, has the same value when coerced through the
11898 /// target semantics.
11899 ///
11900 /// The value might be a vector of floats (or a complex number).
11901 static bool IsSameFloatAfterCast(const APValue &value,
11902                                  const llvm::fltSemantics &Src,
11903                                  const llvm::fltSemantics &Tgt) {
11904   if (value.isFloat())
11905     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11906 
11907   if (value.isVector()) {
11908     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11909       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11910         return false;
11911     return true;
11912   }
11913 
11914   assert(value.isComplexFloat());
11915   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11916           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11917 }
11918 
11919 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11920                                        bool IsListInit = false);
11921 
11922 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11923   // Suppress cases where we are comparing against an enum constant.
11924   if (const DeclRefExpr *DR =
11925       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11926     if (isa<EnumConstantDecl>(DR->getDecl()))
11927       return true;
11928 
11929   // Suppress cases where the value is expanded from a macro, unless that macro
11930   // is how a language represents a boolean literal. This is the case in both C
11931   // and Objective-C.
11932   SourceLocation BeginLoc = E->getBeginLoc();
11933   if (BeginLoc.isMacroID()) {
11934     StringRef MacroName = Lexer::getImmediateMacroName(
11935         BeginLoc, S.getSourceManager(), S.getLangOpts());
11936     return MacroName != "YES" && MacroName != "NO" &&
11937            MacroName != "true" && MacroName != "false";
11938   }
11939 
11940   return false;
11941 }
11942 
11943 static bool isKnownToHaveUnsignedValue(Expr *E) {
11944   return E->getType()->isIntegerType() &&
11945          (!E->getType()->isSignedIntegerType() ||
11946           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11947 }
11948 
11949 namespace {
11950 /// The promoted range of values of a type. In general this has the
11951 /// following structure:
11952 ///
11953 ///     |-----------| . . . |-----------|
11954 ///     ^           ^       ^           ^
11955 ///    Min       HoleMin  HoleMax      Max
11956 ///
11957 /// ... where there is only a hole if a signed type is promoted to unsigned
11958 /// (in which case Min and Max are the smallest and largest representable
11959 /// values).
11960 struct PromotedRange {
11961   // Min, or HoleMax if there is a hole.
11962   llvm::APSInt PromotedMin;
11963   // Max, or HoleMin if there is a hole.
11964   llvm::APSInt PromotedMax;
11965 
11966   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11967     if (R.Width == 0)
11968       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11969     else if (R.Width >= BitWidth && !Unsigned) {
11970       // Promotion made the type *narrower*. This happens when promoting
11971       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11972       // Treat all values of 'signed int' as being in range for now.
11973       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11974       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11975     } else {
11976       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11977                         .extOrTrunc(BitWidth);
11978       PromotedMin.setIsUnsigned(Unsigned);
11979 
11980       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11981                         .extOrTrunc(BitWidth);
11982       PromotedMax.setIsUnsigned(Unsigned);
11983     }
11984   }
11985 
11986   // Determine whether this range is contiguous (has no hole).
11987   bool isContiguous() const { return PromotedMin <= PromotedMax; }
11988 
11989   // Where a constant value is within the range.
11990   enum ComparisonResult {
11991     LT = 0x1,
11992     LE = 0x2,
11993     GT = 0x4,
11994     GE = 0x8,
11995     EQ = 0x10,
11996     NE = 0x20,
11997     InRangeFlag = 0x40,
11998 
11999     Less = LE | LT | NE,
12000     Min = LE | InRangeFlag,
12001     InRange = InRangeFlag,
12002     Max = GE | InRangeFlag,
12003     Greater = GE | GT | NE,
12004 
12005     OnlyValue = LE | GE | EQ | InRangeFlag,
12006     InHole = NE
12007   };
12008 
12009   ComparisonResult compare(const llvm::APSInt &Value) const {
12010     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
12011            Value.isUnsigned() == PromotedMin.isUnsigned());
12012     if (!isContiguous()) {
12013       assert(Value.isUnsigned() && "discontiguous range for signed compare");
12014       if (Value.isMinValue()) return Min;
12015       if (Value.isMaxValue()) return Max;
12016       if (Value >= PromotedMin) return InRange;
12017       if (Value <= PromotedMax) return InRange;
12018       return InHole;
12019     }
12020 
12021     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
12022     case -1: return Less;
12023     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
12024     case 1:
12025       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
12026       case -1: return InRange;
12027       case 0: return Max;
12028       case 1: return Greater;
12029       }
12030     }
12031 
12032     llvm_unreachable("impossible compare result");
12033   }
12034 
12035   static llvm::Optional<StringRef>
12036   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
12037     if (Op == BO_Cmp) {
12038       ComparisonResult LTFlag = LT, GTFlag = GT;
12039       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
12040 
12041       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
12042       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
12043       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
12044       return llvm::None;
12045     }
12046 
12047     ComparisonResult TrueFlag, FalseFlag;
12048     if (Op == BO_EQ) {
12049       TrueFlag = EQ;
12050       FalseFlag = NE;
12051     } else if (Op == BO_NE) {
12052       TrueFlag = NE;
12053       FalseFlag = EQ;
12054     } else {
12055       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
12056         TrueFlag = LT;
12057         FalseFlag = GE;
12058       } else {
12059         TrueFlag = GT;
12060         FalseFlag = LE;
12061       }
12062       if (Op == BO_GE || Op == BO_LE)
12063         std::swap(TrueFlag, FalseFlag);
12064     }
12065     if (R & TrueFlag)
12066       return StringRef("true");
12067     if (R & FalseFlag)
12068       return StringRef("false");
12069     return llvm::None;
12070   }
12071 };
12072 }
12073 
12074 static bool HasEnumType(Expr *E) {
12075   // Strip off implicit integral promotions.
12076   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12077     if (ICE->getCastKind() != CK_IntegralCast &&
12078         ICE->getCastKind() != CK_NoOp)
12079       break;
12080     E = ICE->getSubExpr();
12081   }
12082 
12083   return E->getType()->isEnumeralType();
12084 }
12085 
12086 static int classifyConstantValue(Expr *Constant) {
12087   // The values of this enumeration are used in the diagnostics
12088   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
12089   enum ConstantValueKind {
12090     Miscellaneous = 0,
12091     LiteralTrue,
12092     LiteralFalse
12093   };
12094   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
12095     return BL->getValue() ? ConstantValueKind::LiteralTrue
12096                           : ConstantValueKind::LiteralFalse;
12097   return ConstantValueKind::Miscellaneous;
12098 }
12099 
12100 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
12101                                         Expr *Constant, Expr *Other,
12102                                         const llvm::APSInt &Value,
12103                                         bool RhsConstant) {
12104   if (S.inTemplateInstantiation())
12105     return false;
12106 
12107   Expr *OriginalOther = Other;
12108 
12109   Constant = Constant->IgnoreParenImpCasts();
12110   Other = Other->IgnoreParenImpCasts();
12111 
12112   // Suppress warnings on tautological comparisons between values of the same
12113   // enumeration type. There are only two ways we could warn on this:
12114   //  - If the constant is outside the range of representable values of
12115   //    the enumeration. In such a case, we should warn about the cast
12116   //    to enumeration type, not about the comparison.
12117   //  - If the constant is the maximum / minimum in-range value. For an
12118   //    enumeratin type, such comparisons can be meaningful and useful.
12119   if (Constant->getType()->isEnumeralType() &&
12120       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
12121     return false;
12122 
12123   IntRange OtherValueRange = GetExprRange(
12124       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
12125 
12126   QualType OtherT = Other->getType();
12127   if (const auto *AT = OtherT->getAs<AtomicType>())
12128     OtherT = AT->getValueType();
12129   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
12130 
12131   // Special case for ObjC BOOL on targets where its a typedef for a signed char
12132   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
12133   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
12134                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
12135                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
12136 
12137   // Whether we're treating Other as being a bool because of the form of
12138   // expression despite it having another type (typically 'int' in C).
12139   bool OtherIsBooleanDespiteType =
12140       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
12141   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
12142     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
12143 
12144   // Check if all values in the range of possible values of this expression
12145   // lead to the same comparison outcome.
12146   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
12147                                         Value.isUnsigned());
12148   auto Cmp = OtherPromotedValueRange.compare(Value);
12149   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
12150   if (!Result)
12151     return false;
12152 
12153   // Also consider the range determined by the type alone. This allows us to
12154   // classify the warning under the proper diagnostic group.
12155   bool TautologicalTypeCompare = false;
12156   {
12157     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
12158                                          Value.isUnsigned());
12159     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
12160     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
12161                                                        RhsConstant)) {
12162       TautologicalTypeCompare = true;
12163       Cmp = TypeCmp;
12164       Result = TypeResult;
12165     }
12166   }
12167 
12168   // Don't warn if the non-constant operand actually always evaluates to the
12169   // same value.
12170   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
12171     return false;
12172 
12173   // Suppress the diagnostic for an in-range comparison if the constant comes
12174   // from a macro or enumerator. We don't want to diagnose
12175   //
12176   //   some_long_value <= INT_MAX
12177   //
12178   // when sizeof(int) == sizeof(long).
12179   bool InRange = Cmp & PromotedRange::InRangeFlag;
12180   if (InRange && IsEnumConstOrFromMacro(S, Constant))
12181     return false;
12182 
12183   // A comparison of an unsigned bit-field against 0 is really a type problem,
12184   // even though at the type level the bit-field might promote to 'signed int'.
12185   if (Other->refersToBitField() && InRange && Value == 0 &&
12186       Other->getType()->isUnsignedIntegerOrEnumerationType())
12187     TautologicalTypeCompare = true;
12188 
12189   // If this is a comparison to an enum constant, include that
12190   // constant in the diagnostic.
12191   const EnumConstantDecl *ED = nullptr;
12192   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
12193     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
12194 
12195   // Should be enough for uint128 (39 decimal digits)
12196   SmallString<64> PrettySourceValue;
12197   llvm::raw_svector_ostream OS(PrettySourceValue);
12198   if (ED) {
12199     OS << '\'' << *ED << "' (" << Value << ")";
12200   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
12201                Constant->IgnoreParenImpCasts())) {
12202     OS << (BL->getValue() ? "YES" : "NO");
12203   } else {
12204     OS << Value;
12205   }
12206 
12207   if (!TautologicalTypeCompare) {
12208     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
12209         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
12210         << E->getOpcodeStr() << OS.str() << *Result
12211         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12212     return true;
12213   }
12214 
12215   if (IsObjCSignedCharBool) {
12216     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12217                           S.PDiag(diag::warn_tautological_compare_objc_bool)
12218                               << OS.str() << *Result);
12219     return true;
12220   }
12221 
12222   // FIXME: We use a somewhat different formatting for the in-range cases and
12223   // cases involving boolean values for historical reasons. We should pick a
12224   // consistent way of presenting these diagnostics.
12225   if (!InRange || Other->isKnownToHaveBooleanValue()) {
12226 
12227     S.DiagRuntimeBehavior(
12228         E->getOperatorLoc(), E,
12229         S.PDiag(!InRange ? diag::warn_out_of_range_compare
12230                          : diag::warn_tautological_bool_compare)
12231             << OS.str() << classifyConstantValue(Constant) << OtherT
12232             << OtherIsBooleanDespiteType << *Result
12233             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
12234   } else {
12235     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
12236     unsigned Diag =
12237         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12238             ? (HasEnumType(OriginalOther)
12239                    ? diag::warn_unsigned_enum_always_true_comparison
12240                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12241                               : diag::warn_unsigned_always_true_comparison)
12242             : diag::warn_tautological_constant_compare;
12243 
12244     S.Diag(E->getOperatorLoc(), Diag)
12245         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12246         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12247   }
12248 
12249   return true;
12250 }
12251 
12252 /// Analyze the operands of the given comparison.  Implements the
12253 /// fallback case from AnalyzeComparison.
12254 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12255   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12256   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12257 }
12258 
12259 /// Implements -Wsign-compare.
12260 ///
12261 /// \param E the binary operator to check for warnings
12262 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12263   // The type the comparison is being performed in.
12264   QualType T = E->getLHS()->getType();
12265 
12266   // Only analyze comparison operators where both sides have been converted to
12267   // the same type.
12268   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12269     return AnalyzeImpConvsInComparison(S, E);
12270 
12271   // Don't analyze value-dependent comparisons directly.
12272   if (E->isValueDependent())
12273     return AnalyzeImpConvsInComparison(S, E);
12274 
12275   Expr *LHS = E->getLHS();
12276   Expr *RHS = E->getRHS();
12277 
12278   if (T->isIntegralType(S.Context)) {
12279     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12280     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12281 
12282     // We don't care about expressions whose result is a constant.
12283     if (RHSValue && LHSValue)
12284       return AnalyzeImpConvsInComparison(S, E);
12285 
12286     // We only care about expressions where just one side is literal
12287     if ((bool)RHSValue ^ (bool)LHSValue) {
12288       // Is the constant on the RHS or LHS?
12289       const bool RhsConstant = (bool)RHSValue;
12290       Expr *Const = RhsConstant ? RHS : LHS;
12291       Expr *Other = RhsConstant ? LHS : RHS;
12292       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12293 
12294       // Check whether an integer constant comparison results in a value
12295       // of 'true' or 'false'.
12296       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12297         return AnalyzeImpConvsInComparison(S, E);
12298     }
12299   }
12300 
12301   if (!T->hasUnsignedIntegerRepresentation()) {
12302     // We don't do anything special if this isn't an unsigned integral
12303     // comparison:  we're only interested in integral comparisons, and
12304     // signed comparisons only happen in cases we don't care to warn about.
12305     return AnalyzeImpConvsInComparison(S, E);
12306   }
12307 
12308   LHS = LHS->IgnoreParenImpCasts();
12309   RHS = RHS->IgnoreParenImpCasts();
12310 
12311   if (!S.getLangOpts().CPlusPlus) {
12312     // Avoid warning about comparison of integers with different signs when
12313     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12314     // the type of `E`.
12315     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12316       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12317     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12318       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12319   }
12320 
12321   // Check to see if one of the (unmodified) operands is of different
12322   // signedness.
12323   Expr *signedOperand, *unsignedOperand;
12324   if (LHS->getType()->hasSignedIntegerRepresentation()) {
12325     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12326            "unsigned comparison between two signed integer expressions?");
12327     signedOperand = LHS;
12328     unsignedOperand = RHS;
12329   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12330     signedOperand = RHS;
12331     unsignedOperand = LHS;
12332   } else {
12333     return AnalyzeImpConvsInComparison(S, E);
12334   }
12335 
12336   // Otherwise, calculate the effective range of the signed operand.
12337   IntRange signedRange = GetExprRange(
12338       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12339 
12340   // Go ahead and analyze implicit conversions in the operands.  Note
12341   // that we skip the implicit conversions on both sides.
12342   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12343   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12344 
12345   // If the signed range is non-negative, -Wsign-compare won't fire.
12346   if (signedRange.NonNegative)
12347     return;
12348 
12349   // For (in)equality comparisons, if the unsigned operand is a
12350   // constant which cannot collide with a overflowed signed operand,
12351   // then reinterpreting the signed operand as unsigned will not
12352   // change the result of the comparison.
12353   if (E->isEqualityOp()) {
12354     unsigned comparisonWidth = S.Context.getIntWidth(T);
12355     IntRange unsignedRange =
12356         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12357                      /*Approximate*/ true);
12358 
12359     // We should never be unable to prove that the unsigned operand is
12360     // non-negative.
12361     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12362 
12363     if (unsignedRange.Width < comparisonWidth)
12364       return;
12365   }
12366 
12367   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12368                         S.PDiag(diag::warn_mixed_sign_comparison)
12369                             << LHS->getType() << RHS->getType()
12370                             << LHS->getSourceRange() << RHS->getSourceRange());
12371 }
12372 
12373 /// Analyzes an attempt to assign the given value to a bitfield.
12374 ///
12375 /// Returns true if there was something fishy about the attempt.
12376 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12377                                       SourceLocation InitLoc) {
12378   assert(Bitfield->isBitField());
12379   if (Bitfield->isInvalidDecl())
12380     return false;
12381 
12382   // White-list bool bitfields.
12383   QualType BitfieldType = Bitfield->getType();
12384   if (BitfieldType->isBooleanType())
12385      return false;
12386 
12387   if (BitfieldType->isEnumeralType()) {
12388     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12389     // If the underlying enum type was not explicitly specified as an unsigned
12390     // type and the enum contain only positive values, MSVC++ will cause an
12391     // inconsistency by storing this as a signed type.
12392     if (S.getLangOpts().CPlusPlus11 &&
12393         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12394         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12395         BitfieldEnumDecl->getNumNegativeBits() == 0) {
12396       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12397           << BitfieldEnumDecl;
12398     }
12399   }
12400 
12401   if (Bitfield->getType()->isBooleanType())
12402     return false;
12403 
12404   // Ignore value- or type-dependent expressions.
12405   if (Bitfield->getBitWidth()->isValueDependent() ||
12406       Bitfield->getBitWidth()->isTypeDependent() ||
12407       Init->isValueDependent() ||
12408       Init->isTypeDependent())
12409     return false;
12410 
12411   Expr *OriginalInit = Init->IgnoreParenImpCasts();
12412   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12413 
12414   Expr::EvalResult Result;
12415   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12416                                    Expr::SE_AllowSideEffects)) {
12417     // The RHS is not constant.  If the RHS has an enum type, make sure the
12418     // bitfield is wide enough to hold all the values of the enum without
12419     // truncation.
12420     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12421       EnumDecl *ED = EnumTy->getDecl();
12422       bool SignedBitfield = BitfieldType->isSignedIntegerType();
12423 
12424       // Enum types are implicitly signed on Windows, so check if there are any
12425       // negative enumerators to see if the enum was intended to be signed or
12426       // not.
12427       bool SignedEnum = ED->getNumNegativeBits() > 0;
12428 
12429       // Check for surprising sign changes when assigning enum values to a
12430       // bitfield of different signedness.  If the bitfield is signed and we
12431       // have exactly the right number of bits to store this unsigned enum,
12432       // suggest changing the enum to an unsigned type. This typically happens
12433       // on Windows where unfixed enums always use an underlying type of 'int'.
12434       unsigned DiagID = 0;
12435       if (SignedEnum && !SignedBitfield) {
12436         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12437       } else if (SignedBitfield && !SignedEnum &&
12438                  ED->getNumPositiveBits() == FieldWidth) {
12439         DiagID = diag::warn_signed_bitfield_enum_conversion;
12440       }
12441 
12442       if (DiagID) {
12443         S.Diag(InitLoc, DiagID) << Bitfield << ED;
12444         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12445         SourceRange TypeRange =
12446             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12447         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12448             << SignedEnum << TypeRange;
12449       }
12450 
12451       // Compute the required bitwidth. If the enum has negative values, we need
12452       // one more bit than the normal number of positive bits to represent the
12453       // sign bit.
12454       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12455                                                   ED->getNumNegativeBits())
12456                                        : ED->getNumPositiveBits();
12457 
12458       // Check the bitwidth.
12459       if (BitsNeeded > FieldWidth) {
12460         Expr *WidthExpr = Bitfield->getBitWidth();
12461         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12462             << Bitfield << ED;
12463         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12464             << BitsNeeded << ED << WidthExpr->getSourceRange();
12465       }
12466     }
12467 
12468     return false;
12469   }
12470 
12471   llvm::APSInt Value = Result.Val.getInt();
12472 
12473   unsigned OriginalWidth = Value.getBitWidth();
12474 
12475   if (!Value.isSigned() || Value.isNegative())
12476     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12477       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12478         OriginalWidth = Value.getMinSignedBits();
12479 
12480   if (OriginalWidth <= FieldWidth)
12481     return false;
12482 
12483   // Compute the value which the bitfield will contain.
12484   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12485   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12486 
12487   // Check whether the stored value is equal to the original value.
12488   TruncatedValue = TruncatedValue.extend(OriginalWidth);
12489   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12490     return false;
12491 
12492   // Special-case bitfields of width 1: booleans are naturally 0/1, and
12493   // therefore don't strictly fit into a signed bitfield of width 1.
12494   if (FieldWidth == 1 && Value == 1)
12495     return false;
12496 
12497   std::string PrettyValue = toString(Value, 10);
12498   std::string PrettyTrunc = toString(TruncatedValue, 10);
12499 
12500   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12501     << PrettyValue << PrettyTrunc << OriginalInit->getType()
12502     << Init->getSourceRange();
12503 
12504   return true;
12505 }
12506 
12507 /// Analyze the given simple or compound assignment for warning-worthy
12508 /// operations.
12509 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12510   // Just recurse on the LHS.
12511   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12512 
12513   // We want to recurse on the RHS as normal unless we're assigning to
12514   // a bitfield.
12515   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12516     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12517                                   E->getOperatorLoc())) {
12518       // Recurse, ignoring any implicit conversions on the RHS.
12519       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12520                                         E->getOperatorLoc());
12521     }
12522   }
12523 
12524   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12525 
12526   // Diagnose implicitly sequentially-consistent atomic assignment.
12527   if (E->getLHS()->getType()->isAtomicType())
12528     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12529 }
12530 
12531 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12532 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12533                             SourceLocation CContext, unsigned diag,
12534                             bool pruneControlFlow = false) {
12535   if (pruneControlFlow) {
12536     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12537                           S.PDiag(diag)
12538                               << SourceType << T << E->getSourceRange()
12539                               << SourceRange(CContext));
12540     return;
12541   }
12542   S.Diag(E->getExprLoc(), diag)
12543     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12544 }
12545 
12546 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12547 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12548                             SourceLocation CContext,
12549                             unsigned diag, bool pruneControlFlow = false) {
12550   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12551 }
12552 
12553 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12554   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12555       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12556 }
12557 
12558 static void adornObjCBoolConversionDiagWithTernaryFixit(
12559     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12560   Expr *Ignored = SourceExpr->IgnoreImplicit();
12561   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12562     Ignored = OVE->getSourceExpr();
12563   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12564                      isa<BinaryOperator>(Ignored) ||
12565                      isa<CXXOperatorCallExpr>(Ignored);
12566   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12567   if (NeedsParens)
12568     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12569             << FixItHint::CreateInsertion(EndLoc, ")");
12570   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12571 }
12572 
12573 /// Diagnose an implicit cast from a floating point value to an integer value.
12574 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12575                                     SourceLocation CContext) {
12576   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12577   const bool PruneWarnings = S.inTemplateInstantiation();
12578 
12579   Expr *InnerE = E->IgnoreParenImpCasts();
12580   // We also want to warn on, e.g., "int i = -1.234"
12581   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12582     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12583       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12584 
12585   const bool IsLiteral =
12586       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12587 
12588   llvm::APFloat Value(0.0);
12589   bool IsConstant =
12590     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12591   if (!IsConstant) {
12592     if (isObjCSignedCharBool(S, T)) {
12593       return adornObjCBoolConversionDiagWithTernaryFixit(
12594           S, E,
12595           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12596               << E->getType());
12597     }
12598 
12599     return DiagnoseImpCast(S, E, T, CContext,
12600                            diag::warn_impcast_float_integer, PruneWarnings);
12601   }
12602 
12603   bool isExact = false;
12604 
12605   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12606                             T->hasUnsignedIntegerRepresentation());
12607   llvm::APFloat::opStatus Result = Value.convertToInteger(
12608       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12609 
12610   // FIXME: Force the precision of the source value down so we don't print
12611   // digits which are usually useless (we don't really care here if we
12612   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
12613   // would automatically print the shortest representation, but it's a bit
12614   // tricky to implement.
12615   SmallString<16> PrettySourceValue;
12616   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12617   precision = (precision * 59 + 195) / 196;
12618   Value.toString(PrettySourceValue, precision);
12619 
12620   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12621     return adornObjCBoolConversionDiagWithTernaryFixit(
12622         S, E,
12623         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12624             << PrettySourceValue);
12625   }
12626 
12627   if (Result == llvm::APFloat::opOK && isExact) {
12628     if (IsLiteral) return;
12629     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12630                            PruneWarnings);
12631   }
12632 
12633   // Conversion of a floating-point value to a non-bool integer where the
12634   // integral part cannot be represented by the integer type is undefined.
12635   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12636     return DiagnoseImpCast(
12637         S, E, T, CContext,
12638         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12639                   : diag::warn_impcast_float_to_integer_out_of_range,
12640         PruneWarnings);
12641 
12642   unsigned DiagID = 0;
12643   if (IsLiteral) {
12644     // Warn on floating point literal to integer.
12645     DiagID = diag::warn_impcast_literal_float_to_integer;
12646   } else if (IntegerValue == 0) {
12647     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
12648       return DiagnoseImpCast(S, E, T, CContext,
12649                              diag::warn_impcast_float_integer, PruneWarnings);
12650     }
12651     // Warn on non-zero to zero conversion.
12652     DiagID = diag::warn_impcast_float_to_integer_zero;
12653   } else {
12654     if (IntegerValue.isUnsigned()) {
12655       if (!IntegerValue.isMaxValue()) {
12656         return DiagnoseImpCast(S, E, T, CContext,
12657                                diag::warn_impcast_float_integer, PruneWarnings);
12658       }
12659     } else {  // IntegerValue.isSigned()
12660       if (!IntegerValue.isMaxSignedValue() &&
12661           !IntegerValue.isMinSignedValue()) {
12662         return DiagnoseImpCast(S, E, T, CContext,
12663                                diag::warn_impcast_float_integer, PruneWarnings);
12664       }
12665     }
12666     // Warn on evaluatable floating point expression to integer conversion.
12667     DiagID = diag::warn_impcast_float_to_integer;
12668   }
12669 
12670   SmallString<16> PrettyTargetValue;
12671   if (IsBool)
12672     PrettyTargetValue = Value.isZero() ? "false" : "true";
12673   else
12674     IntegerValue.toString(PrettyTargetValue);
12675 
12676   if (PruneWarnings) {
12677     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12678                           S.PDiag(DiagID)
12679                               << E->getType() << T.getUnqualifiedType()
12680                               << PrettySourceValue << PrettyTargetValue
12681                               << E->getSourceRange() << SourceRange(CContext));
12682   } else {
12683     S.Diag(E->getExprLoc(), DiagID)
12684         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12685         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12686   }
12687 }
12688 
12689 /// Analyze the given compound assignment for the possible losing of
12690 /// floating-point precision.
12691 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12692   assert(isa<CompoundAssignOperator>(E) &&
12693          "Must be compound assignment operation");
12694   // Recurse on the LHS and RHS in here
12695   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12696   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12697 
12698   if (E->getLHS()->getType()->isAtomicType())
12699     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12700 
12701   // Now check the outermost expression
12702   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12703   const auto *RBT = cast<CompoundAssignOperator>(E)
12704                         ->getComputationResultType()
12705                         ->getAs<BuiltinType>();
12706 
12707   // The below checks assume source is floating point.
12708   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12709 
12710   // If source is floating point but target is an integer.
12711   if (ResultBT->isInteger())
12712     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12713                            E->getExprLoc(), diag::warn_impcast_float_integer);
12714 
12715   if (!ResultBT->isFloatingPoint())
12716     return;
12717 
12718   // If both source and target are floating points, warn about losing precision.
12719   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12720       QualType(ResultBT, 0), QualType(RBT, 0));
12721   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12722     // warn about dropping FP rank.
12723     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12724                     diag::warn_impcast_float_result_precision);
12725 }
12726 
12727 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12728                                       IntRange Range) {
12729   if (!Range.Width) return "0";
12730 
12731   llvm::APSInt ValueInRange = Value;
12732   ValueInRange.setIsSigned(!Range.NonNegative);
12733   ValueInRange = ValueInRange.trunc(Range.Width);
12734   return toString(ValueInRange, 10);
12735 }
12736 
12737 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12738   if (!isa<ImplicitCastExpr>(Ex))
12739     return false;
12740 
12741   Expr *InnerE = Ex->IgnoreParenImpCasts();
12742   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12743   const Type *Source =
12744     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12745   if (Target->isDependentType())
12746     return false;
12747 
12748   const BuiltinType *FloatCandidateBT =
12749     dyn_cast<BuiltinType>(ToBool ? Source : Target);
12750   const Type *BoolCandidateType = ToBool ? Target : Source;
12751 
12752   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12753           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12754 }
12755 
12756 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12757                                              SourceLocation CC) {
12758   unsigned NumArgs = TheCall->getNumArgs();
12759   for (unsigned i = 0; i < NumArgs; ++i) {
12760     Expr *CurrA = TheCall->getArg(i);
12761     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12762       continue;
12763 
12764     bool IsSwapped = ((i > 0) &&
12765         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12766     IsSwapped |= ((i < (NumArgs - 1)) &&
12767         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12768     if (IsSwapped) {
12769       // Warn on this floating-point to bool conversion.
12770       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12771                       CurrA->getType(), CC,
12772                       diag::warn_impcast_floating_point_to_bool);
12773     }
12774   }
12775 }
12776 
12777 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12778                                    SourceLocation CC) {
12779   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12780                         E->getExprLoc()))
12781     return;
12782 
12783   // Don't warn on functions which have return type nullptr_t.
12784   if (isa<CallExpr>(E))
12785     return;
12786 
12787   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12788   const Expr::NullPointerConstantKind NullKind =
12789       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12790   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12791     return;
12792 
12793   // Return if target type is a safe conversion.
12794   if (T->isAnyPointerType() || T->isBlockPointerType() ||
12795       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12796     return;
12797 
12798   SourceLocation Loc = E->getSourceRange().getBegin();
12799 
12800   // Venture through the macro stacks to get to the source of macro arguments.
12801   // The new location is a better location than the complete location that was
12802   // passed in.
12803   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12804   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12805 
12806   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
12807   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12808     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12809         Loc, S.SourceMgr, S.getLangOpts());
12810     if (MacroName == "NULL")
12811       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12812   }
12813 
12814   // Only warn if the null and context location are in the same macro expansion.
12815   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12816     return;
12817 
12818   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12819       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12820       << FixItHint::CreateReplacement(Loc,
12821                                       S.getFixItZeroLiteralForType(T, Loc));
12822 }
12823 
12824 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12825                                   ObjCArrayLiteral *ArrayLiteral);
12826 
12827 static void
12828 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12829                            ObjCDictionaryLiteral *DictionaryLiteral);
12830 
12831 /// Check a single element within a collection literal against the
12832 /// target element type.
12833 static void checkObjCCollectionLiteralElement(Sema &S,
12834                                               QualType TargetElementType,
12835                                               Expr *Element,
12836                                               unsigned ElementKind) {
12837   // Skip a bitcast to 'id' or qualified 'id'.
12838   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12839     if (ICE->getCastKind() == CK_BitCast &&
12840         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12841       Element = ICE->getSubExpr();
12842   }
12843 
12844   QualType ElementType = Element->getType();
12845   ExprResult ElementResult(Element);
12846   if (ElementType->getAs<ObjCObjectPointerType>() &&
12847       S.CheckSingleAssignmentConstraints(TargetElementType,
12848                                          ElementResult,
12849                                          false, false)
12850         != Sema::Compatible) {
12851     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12852         << ElementType << ElementKind << TargetElementType
12853         << Element->getSourceRange();
12854   }
12855 
12856   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12857     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12858   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12859     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12860 }
12861 
12862 /// Check an Objective-C array literal being converted to the given
12863 /// target type.
12864 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12865                                   ObjCArrayLiteral *ArrayLiteral) {
12866   if (!S.NSArrayDecl)
12867     return;
12868 
12869   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12870   if (!TargetObjCPtr)
12871     return;
12872 
12873   if (TargetObjCPtr->isUnspecialized() ||
12874       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12875         != S.NSArrayDecl->getCanonicalDecl())
12876     return;
12877 
12878   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12879   if (TypeArgs.size() != 1)
12880     return;
12881 
12882   QualType TargetElementType = TypeArgs[0];
12883   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12884     checkObjCCollectionLiteralElement(S, TargetElementType,
12885                                       ArrayLiteral->getElement(I),
12886                                       0);
12887   }
12888 }
12889 
12890 /// Check an Objective-C dictionary literal being converted to the given
12891 /// target type.
12892 static void
12893 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12894                            ObjCDictionaryLiteral *DictionaryLiteral) {
12895   if (!S.NSDictionaryDecl)
12896     return;
12897 
12898   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12899   if (!TargetObjCPtr)
12900     return;
12901 
12902   if (TargetObjCPtr->isUnspecialized() ||
12903       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12904         != S.NSDictionaryDecl->getCanonicalDecl())
12905     return;
12906 
12907   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12908   if (TypeArgs.size() != 2)
12909     return;
12910 
12911   QualType TargetKeyType = TypeArgs[0];
12912   QualType TargetObjectType = TypeArgs[1];
12913   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12914     auto Element = DictionaryLiteral->getKeyValueElement(I);
12915     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12916     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12917   }
12918 }
12919 
12920 // Helper function to filter out cases for constant width constant conversion.
12921 // Don't warn on char array initialization or for non-decimal values.
12922 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12923                                           SourceLocation CC) {
12924   // If initializing from a constant, and the constant starts with '0',
12925   // then it is a binary, octal, or hexadecimal.  Allow these constants
12926   // to fill all the bits, even if there is a sign change.
12927   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12928     const char FirstLiteralCharacter =
12929         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12930     if (FirstLiteralCharacter == '0')
12931       return false;
12932   }
12933 
12934   // If the CC location points to a '{', and the type is char, then assume
12935   // assume it is an array initialization.
12936   if (CC.isValid() && T->isCharType()) {
12937     const char FirstContextCharacter =
12938         S.getSourceManager().getCharacterData(CC)[0];
12939     if (FirstContextCharacter == '{')
12940       return false;
12941   }
12942 
12943   return true;
12944 }
12945 
12946 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12947   const auto *IL = dyn_cast<IntegerLiteral>(E);
12948   if (!IL) {
12949     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12950       if (UO->getOpcode() == UO_Minus)
12951         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12952     }
12953   }
12954 
12955   return IL;
12956 }
12957 
12958 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12959   E = E->IgnoreParenImpCasts();
12960   SourceLocation ExprLoc = E->getExprLoc();
12961 
12962   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12963     BinaryOperator::Opcode Opc = BO->getOpcode();
12964     Expr::EvalResult Result;
12965     // Do not diagnose unsigned shifts.
12966     if (Opc == BO_Shl) {
12967       const auto *LHS = getIntegerLiteral(BO->getLHS());
12968       const auto *RHS = getIntegerLiteral(BO->getRHS());
12969       if (LHS && LHS->getValue() == 0)
12970         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12971       else if (!E->isValueDependent() && LHS && RHS &&
12972                RHS->getValue().isNonNegative() &&
12973                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12974         S.Diag(ExprLoc, diag::warn_left_shift_always)
12975             << (Result.Val.getInt() != 0);
12976       else if (E->getType()->isSignedIntegerType())
12977         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12978     }
12979   }
12980 
12981   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12982     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12983     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12984     if (!LHS || !RHS)
12985       return;
12986     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12987         (RHS->getValue() == 0 || RHS->getValue() == 1))
12988       // Do not diagnose common idioms.
12989       return;
12990     if (LHS->getValue() != 0 && RHS->getValue() != 0)
12991       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12992   }
12993 }
12994 
12995 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12996                                     SourceLocation CC,
12997                                     bool *ICContext = nullptr,
12998                                     bool IsListInit = false) {
12999   if (E->isTypeDependent() || E->isValueDependent()) return;
13000 
13001   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
13002   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
13003   if (Source == Target) return;
13004   if (Target->isDependentType()) return;
13005 
13006   // If the conversion context location is invalid don't complain. We also
13007   // don't want to emit a warning if the issue occurs from the expansion of
13008   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
13009   // delay this check as long as possible. Once we detect we are in that
13010   // scenario, we just return.
13011   if (CC.isInvalid())
13012     return;
13013 
13014   if (Source->isAtomicType())
13015     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
13016 
13017   // Diagnose implicit casts to bool.
13018   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
13019     if (isa<StringLiteral>(E))
13020       // Warn on string literal to bool.  Checks for string literals in logical
13021       // and expressions, for instance, assert(0 && "error here"), are
13022       // prevented by a check in AnalyzeImplicitConversions().
13023       return DiagnoseImpCast(S, E, T, CC,
13024                              diag::warn_impcast_string_literal_to_bool);
13025     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
13026         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
13027       // This covers the literal expressions that evaluate to Objective-C
13028       // objects.
13029       return DiagnoseImpCast(S, E, T, CC,
13030                              diag::warn_impcast_objective_c_literal_to_bool);
13031     }
13032     if (Source->isPointerType() || Source->canDecayToPointerType()) {
13033       // Warn on pointer to bool conversion that is always true.
13034       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
13035                                      SourceRange(CC));
13036     }
13037   }
13038 
13039   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
13040   // is a typedef for signed char (macOS), then that constant value has to be 1
13041   // or 0.
13042   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
13043     Expr::EvalResult Result;
13044     if (E->EvaluateAsInt(Result, S.getASTContext(),
13045                          Expr::SE_AllowSideEffects)) {
13046       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
13047         adornObjCBoolConversionDiagWithTernaryFixit(
13048             S, E,
13049             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
13050                 << toString(Result.Val.getInt(), 10));
13051       }
13052       return;
13053     }
13054   }
13055 
13056   // Check implicit casts from Objective-C collection literals to specialized
13057   // collection types, e.g., NSArray<NSString *> *.
13058   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
13059     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
13060   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
13061     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
13062 
13063   // Strip vector types.
13064   if (isa<VectorType>(Source)) {
13065     if (Target->isVLSTBuiltinType() &&
13066         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
13067                                          QualType(Source, 0)) ||
13068          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
13069                                             QualType(Source, 0))))
13070       return;
13071 
13072     if (!isa<VectorType>(Target)) {
13073       if (S.SourceMgr.isInSystemMacro(CC))
13074         return;
13075       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
13076     }
13077 
13078     // If the vector cast is cast between two vectors of the same size, it is
13079     // a bitcast, not a conversion.
13080     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13081       return;
13082 
13083     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
13084     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
13085   }
13086   if (auto VecTy = dyn_cast<VectorType>(Target))
13087     Target = VecTy->getElementType().getTypePtr();
13088 
13089   // Strip complex types.
13090   if (isa<ComplexType>(Source)) {
13091     if (!isa<ComplexType>(Target)) {
13092       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
13093         return;
13094 
13095       return DiagnoseImpCast(S, E, T, CC,
13096                              S.getLangOpts().CPlusPlus
13097                                  ? diag::err_impcast_complex_scalar
13098                                  : diag::warn_impcast_complex_scalar);
13099     }
13100 
13101     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
13102     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
13103   }
13104 
13105   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
13106   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
13107 
13108   // If the source is floating point...
13109   if (SourceBT && SourceBT->isFloatingPoint()) {
13110     // ...and the target is floating point...
13111     if (TargetBT && TargetBT->isFloatingPoint()) {
13112       // ...then warn if we're dropping FP rank.
13113 
13114       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13115           QualType(SourceBT, 0), QualType(TargetBT, 0));
13116       if (Order > 0) {
13117         // Don't warn about float constants that are precisely
13118         // representable in the target type.
13119         Expr::EvalResult result;
13120         if (E->EvaluateAsRValue(result, S.Context)) {
13121           // Value might be a float, a float vector, or a float complex.
13122           if (IsSameFloatAfterCast(result.Val,
13123                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
13124                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
13125             return;
13126         }
13127 
13128         if (S.SourceMgr.isInSystemMacro(CC))
13129           return;
13130 
13131         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
13132       }
13133       // ... or possibly if we're increasing rank, too
13134       else if (Order < 0) {
13135         if (S.SourceMgr.isInSystemMacro(CC))
13136           return;
13137 
13138         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
13139       }
13140       return;
13141     }
13142 
13143     // If the target is integral, always warn.
13144     if (TargetBT && TargetBT->isInteger()) {
13145       if (S.SourceMgr.isInSystemMacro(CC))
13146         return;
13147 
13148       DiagnoseFloatingImpCast(S, E, T, CC);
13149     }
13150 
13151     // Detect the case where a call result is converted from floating-point to
13152     // to bool, and the final argument to the call is converted from bool, to
13153     // discover this typo:
13154     //
13155     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
13156     //
13157     // FIXME: This is an incredibly special case; is there some more general
13158     // way to detect this class of misplaced-parentheses bug?
13159     if (Target->isBooleanType() && isa<CallExpr>(E)) {
13160       // Check last argument of function call to see if it is an
13161       // implicit cast from a type matching the type the result
13162       // is being cast to.
13163       CallExpr *CEx = cast<CallExpr>(E);
13164       if (unsigned NumArgs = CEx->getNumArgs()) {
13165         Expr *LastA = CEx->getArg(NumArgs - 1);
13166         Expr *InnerE = LastA->IgnoreParenImpCasts();
13167         if (isa<ImplicitCastExpr>(LastA) &&
13168             InnerE->getType()->isBooleanType()) {
13169           // Warn on this floating-point to bool conversion
13170           DiagnoseImpCast(S, E, T, CC,
13171                           diag::warn_impcast_floating_point_to_bool);
13172         }
13173       }
13174     }
13175     return;
13176   }
13177 
13178   // Valid casts involving fixed point types should be accounted for here.
13179   if (Source->isFixedPointType()) {
13180     if (Target->isUnsaturatedFixedPointType()) {
13181       Expr::EvalResult Result;
13182       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
13183                                   S.isConstantEvaluated())) {
13184         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
13185         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
13186         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
13187         if (Value > MaxVal || Value < MinVal) {
13188           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13189                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13190                                     << Value.toString() << T
13191                                     << E->getSourceRange()
13192                                     << clang::SourceRange(CC));
13193           return;
13194         }
13195       }
13196     } else if (Target->isIntegerType()) {
13197       Expr::EvalResult Result;
13198       if (!S.isConstantEvaluated() &&
13199           E->EvaluateAsFixedPoint(Result, S.Context,
13200                                   Expr::SE_AllowSideEffects)) {
13201         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
13202 
13203         bool Overflowed;
13204         llvm::APSInt IntResult = FXResult.convertToInt(
13205             S.Context.getIntWidth(T),
13206             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
13207 
13208         if (Overflowed) {
13209           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13210                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13211                                     << FXResult.toString() << T
13212                                     << E->getSourceRange()
13213                                     << clang::SourceRange(CC));
13214           return;
13215         }
13216       }
13217     }
13218   } else if (Target->isUnsaturatedFixedPointType()) {
13219     if (Source->isIntegerType()) {
13220       Expr::EvalResult Result;
13221       if (!S.isConstantEvaluated() &&
13222           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
13223         llvm::APSInt Value = Result.Val.getInt();
13224 
13225         bool Overflowed;
13226         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
13227             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
13228 
13229         if (Overflowed) {
13230           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13231                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13232                                     << toString(Value, /*Radix=*/10) << T
13233                                     << E->getSourceRange()
13234                                     << clang::SourceRange(CC));
13235           return;
13236         }
13237       }
13238     }
13239   }
13240 
13241   // If we are casting an integer type to a floating point type without
13242   // initialization-list syntax, we might lose accuracy if the floating
13243   // point type has a narrower significand than the integer type.
13244   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13245       TargetBT->isFloatingType() && !IsListInit) {
13246     // Determine the number of precision bits in the source integer type.
13247     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13248                                         /*Approximate*/ true);
13249     unsigned int SourcePrecision = SourceRange.Width;
13250 
13251     // Determine the number of precision bits in the
13252     // target floating point type.
13253     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13254         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13255 
13256     if (SourcePrecision > 0 && TargetPrecision > 0 &&
13257         SourcePrecision > TargetPrecision) {
13258 
13259       if (Optional<llvm::APSInt> SourceInt =
13260               E->getIntegerConstantExpr(S.Context)) {
13261         // If the source integer is a constant, convert it to the target
13262         // floating point type. Issue a warning if the value changes
13263         // during the whole conversion.
13264         llvm::APFloat TargetFloatValue(
13265             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13266         llvm::APFloat::opStatus ConversionStatus =
13267             TargetFloatValue.convertFromAPInt(
13268                 *SourceInt, SourceBT->isSignedInteger(),
13269                 llvm::APFloat::rmNearestTiesToEven);
13270 
13271         if (ConversionStatus != llvm::APFloat::opOK) {
13272           SmallString<32> PrettySourceValue;
13273           SourceInt->toString(PrettySourceValue, 10);
13274           SmallString<32> PrettyTargetValue;
13275           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13276 
13277           S.DiagRuntimeBehavior(
13278               E->getExprLoc(), E,
13279               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13280                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
13281                   << E->getSourceRange() << clang::SourceRange(CC));
13282         }
13283       } else {
13284         // Otherwise, the implicit conversion may lose precision.
13285         DiagnoseImpCast(S, E, T, CC,
13286                         diag::warn_impcast_integer_float_precision);
13287       }
13288     }
13289   }
13290 
13291   DiagnoseNullConversion(S, E, T, CC);
13292 
13293   S.DiscardMisalignedMemberAddress(Target, E);
13294 
13295   if (Target->isBooleanType())
13296     DiagnoseIntInBoolContext(S, E);
13297 
13298   if (!Source->isIntegerType() || !Target->isIntegerType())
13299     return;
13300 
13301   // TODO: remove this early return once the false positives for constant->bool
13302   // in templates, macros, etc, are reduced or removed.
13303   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13304     return;
13305 
13306   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13307       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13308     return adornObjCBoolConversionDiagWithTernaryFixit(
13309         S, E,
13310         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13311             << E->getType());
13312   }
13313 
13314   IntRange SourceTypeRange =
13315       IntRange::forTargetOfCanonicalType(S.Context, Source);
13316   IntRange LikelySourceRange =
13317       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13318   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13319 
13320   if (LikelySourceRange.Width > TargetRange.Width) {
13321     // If the source is a constant, use a default-on diagnostic.
13322     // TODO: this should happen for bitfield stores, too.
13323     Expr::EvalResult Result;
13324     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13325                          S.isConstantEvaluated())) {
13326       llvm::APSInt Value(32);
13327       Value = Result.Val.getInt();
13328 
13329       if (S.SourceMgr.isInSystemMacro(CC))
13330         return;
13331 
13332       std::string PrettySourceValue = toString(Value, 10);
13333       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13334 
13335       S.DiagRuntimeBehavior(
13336           E->getExprLoc(), E,
13337           S.PDiag(diag::warn_impcast_integer_precision_constant)
13338               << PrettySourceValue << PrettyTargetValue << E->getType() << T
13339               << E->getSourceRange() << SourceRange(CC));
13340       return;
13341     }
13342 
13343     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13344     if (S.SourceMgr.isInSystemMacro(CC))
13345       return;
13346 
13347     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13348       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13349                              /* pruneControlFlow */ true);
13350     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13351   }
13352 
13353   if (TargetRange.Width > SourceTypeRange.Width) {
13354     if (auto *UO = dyn_cast<UnaryOperator>(E))
13355       if (UO->getOpcode() == UO_Minus)
13356         if (Source->isUnsignedIntegerType()) {
13357           if (Target->isUnsignedIntegerType())
13358             return DiagnoseImpCast(S, E, T, CC,
13359                                    diag::warn_impcast_high_order_zero_bits);
13360           if (Target->isSignedIntegerType())
13361             return DiagnoseImpCast(S, E, T, CC,
13362                                    diag::warn_impcast_nonnegative_result);
13363         }
13364   }
13365 
13366   if (TargetRange.Width == LikelySourceRange.Width &&
13367       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13368       Source->isSignedIntegerType()) {
13369     // Warn when doing a signed to signed conversion, warn if the positive
13370     // source value is exactly the width of the target type, which will
13371     // cause a negative value to be stored.
13372 
13373     Expr::EvalResult Result;
13374     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13375         !S.SourceMgr.isInSystemMacro(CC)) {
13376       llvm::APSInt Value = Result.Val.getInt();
13377       if (isSameWidthConstantConversion(S, E, T, CC)) {
13378         std::string PrettySourceValue = toString(Value, 10);
13379         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13380 
13381         S.DiagRuntimeBehavior(
13382             E->getExprLoc(), E,
13383             S.PDiag(diag::warn_impcast_integer_precision_constant)
13384                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13385                 << E->getSourceRange() << SourceRange(CC));
13386         return;
13387       }
13388     }
13389 
13390     // Fall through for non-constants to give a sign conversion warning.
13391   }
13392 
13393   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13394       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13395        LikelySourceRange.Width == TargetRange.Width)) {
13396     if (S.SourceMgr.isInSystemMacro(CC))
13397       return;
13398 
13399     unsigned DiagID = diag::warn_impcast_integer_sign;
13400 
13401     // Traditionally, gcc has warned about this under -Wsign-compare.
13402     // We also want to warn about it in -Wconversion.
13403     // So if -Wconversion is off, use a completely identical diagnostic
13404     // in the sign-compare group.
13405     // The conditional-checking code will
13406     if (ICContext) {
13407       DiagID = diag::warn_impcast_integer_sign_conditional;
13408       *ICContext = true;
13409     }
13410 
13411     return DiagnoseImpCast(S, E, T, CC, DiagID);
13412   }
13413 
13414   // Diagnose conversions between different enumeration types.
13415   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13416   // type, to give us better diagnostics.
13417   QualType SourceType = E->getType();
13418   if (!S.getLangOpts().CPlusPlus) {
13419     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13420       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13421         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13422         SourceType = S.Context.getTypeDeclType(Enum);
13423         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13424       }
13425   }
13426 
13427   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13428     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13429       if (SourceEnum->getDecl()->hasNameForLinkage() &&
13430           TargetEnum->getDecl()->hasNameForLinkage() &&
13431           SourceEnum != TargetEnum) {
13432         if (S.SourceMgr.isInSystemMacro(CC))
13433           return;
13434 
13435         return DiagnoseImpCast(S, E, SourceType, T, CC,
13436                                diag::warn_impcast_different_enum_types);
13437       }
13438 }
13439 
13440 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13441                                      SourceLocation CC, QualType T);
13442 
13443 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13444                                     SourceLocation CC, bool &ICContext) {
13445   E = E->IgnoreParenImpCasts();
13446 
13447   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13448     return CheckConditionalOperator(S, CO, CC, T);
13449 
13450   AnalyzeImplicitConversions(S, E, CC);
13451   if (E->getType() != T)
13452     return CheckImplicitConversion(S, E, T, CC, &ICContext);
13453 }
13454 
13455 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13456                                      SourceLocation CC, QualType T) {
13457   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13458 
13459   Expr *TrueExpr = E->getTrueExpr();
13460   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13461     TrueExpr = BCO->getCommon();
13462 
13463   bool Suspicious = false;
13464   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13465   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13466 
13467   if (T->isBooleanType())
13468     DiagnoseIntInBoolContext(S, E);
13469 
13470   // If -Wconversion would have warned about either of the candidates
13471   // for a signedness conversion to the context type...
13472   if (!Suspicious) return;
13473 
13474   // ...but it's currently ignored...
13475   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13476     return;
13477 
13478   // ...then check whether it would have warned about either of the
13479   // candidates for a signedness conversion to the condition type.
13480   if (E->getType() == T) return;
13481 
13482   Suspicious = false;
13483   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13484                           E->getType(), CC, &Suspicious);
13485   if (!Suspicious)
13486     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13487                             E->getType(), CC, &Suspicious);
13488 }
13489 
13490 /// Check conversion of given expression to boolean.
13491 /// Input argument E is a logical expression.
13492 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13493   if (S.getLangOpts().Bool)
13494     return;
13495   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13496     return;
13497   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13498 }
13499 
13500 namespace {
13501 struct AnalyzeImplicitConversionsWorkItem {
13502   Expr *E;
13503   SourceLocation CC;
13504   bool IsListInit;
13505 };
13506 }
13507 
13508 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13509 /// that should be visited are added to WorkList.
13510 static void AnalyzeImplicitConversions(
13511     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13512     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13513   Expr *OrigE = Item.E;
13514   SourceLocation CC = Item.CC;
13515 
13516   QualType T = OrigE->getType();
13517   Expr *E = OrigE->IgnoreParenImpCasts();
13518 
13519   // Propagate whether we are in a C++ list initialization expression.
13520   // If so, we do not issue warnings for implicit int-float conversion
13521   // precision loss, because C++11 narrowing already handles it.
13522   bool IsListInit = Item.IsListInit ||
13523                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13524 
13525   if (E->isTypeDependent() || E->isValueDependent())
13526     return;
13527 
13528   Expr *SourceExpr = E;
13529   // Examine, but don't traverse into the source expression of an
13530   // OpaqueValueExpr, since it may have multiple parents and we don't want to
13531   // emit duplicate diagnostics. Its fine to examine the form or attempt to
13532   // evaluate it in the context of checking the specific conversion to T though.
13533   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13534     if (auto *Src = OVE->getSourceExpr())
13535       SourceExpr = Src;
13536 
13537   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13538     if (UO->getOpcode() == UO_Not &&
13539         UO->getSubExpr()->isKnownToHaveBooleanValue())
13540       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13541           << OrigE->getSourceRange() << T->isBooleanType()
13542           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13543 
13544   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
13545     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
13546         BO->getLHS()->isKnownToHaveBooleanValue() &&
13547         BO->getRHS()->isKnownToHaveBooleanValue() &&
13548         BO->getLHS()->HasSideEffects(S.Context) &&
13549         BO->getRHS()->HasSideEffects(S.Context)) {
13550       S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
13551           << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
13552           << FixItHint::CreateReplacement(
13553                  BO->getOperatorLoc(),
13554                  (BO->getOpcode() == BO_And ? "&&" : "||"));
13555       S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
13556     }
13557 
13558   // For conditional operators, we analyze the arguments as if they
13559   // were being fed directly into the output.
13560   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13561     CheckConditionalOperator(S, CO, CC, T);
13562     return;
13563   }
13564 
13565   // Check implicit argument conversions for function calls.
13566   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13567     CheckImplicitArgumentConversions(S, Call, CC);
13568 
13569   // Go ahead and check any implicit conversions we might have skipped.
13570   // The non-canonical typecheck is just an optimization;
13571   // CheckImplicitConversion will filter out dead implicit conversions.
13572   if (SourceExpr->getType() != T)
13573     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13574 
13575   // Now continue drilling into this expression.
13576 
13577   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13578     // The bound subexpressions in a PseudoObjectExpr are not reachable
13579     // as transitive children.
13580     // FIXME: Use a more uniform representation for this.
13581     for (auto *SE : POE->semantics())
13582       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13583         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13584   }
13585 
13586   // Skip past explicit casts.
13587   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13588     E = CE->getSubExpr()->IgnoreParenImpCasts();
13589     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13590       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13591     WorkList.push_back({E, CC, IsListInit});
13592     return;
13593   }
13594 
13595   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13596     // Do a somewhat different check with comparison operators.
13597     if (BO->isComparisonOp())
13598       return AnalyzeComparison(S, BO);
13599 
13600     // And with simple assignments.
13601     if (BO->getOpcode() == BO_Assign)
13602       return AnalyzeAssignment(S, BO);
13603     // And with compound assignments.
13604     if (BO->isAssignmentOp())
13605       return AnalyzeCompoundAssignment(S, BO);
13606   }
13607 
13608   // These break the otherwise-useful invariant below.  Fortunately,
13609   // we don't really need to recurse into them, because any internal
13610   // expressions should have been analyzed already when they were
13611   // built into statements.
13612   if (isa<StmtExpr>(E)) return;
13613 
13614   // Don't descend into unevaluated contexts.
13615   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13616 
13617   // Now just recurse over the expression's children.
13618   CC = E->getExprLoc();
13619   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13620   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13621   for (Stmt *SubStmt : E->children()) {
13622     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13623     if (!ChildExpr)
13624       continue;
13625 
13626     if (IsLogicalAndOperator &&
13627         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13628       // Ignore checking string literals that are in logical and operators.
13629       // This is a common pattern for asserts.
13630       continue;
13631     WorkList.push_back({ChildExpr, CC, IsListInit});
13632   }
13633 
13634   if (BO && BO->isLogicalOp()) {
13635     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13636     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13637       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13638 
13639     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13640     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13641       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13642   }
13643 
13644   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13645     if (U->getOpcode() == UO_LNot) {
13646       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13647     } else if (U->getOpcode() != UO_AddrOf) {
13648       if (U->getSubExpr()->getType()->isAtomicType())
13649         S.Diag(U->getSubExpr()->getBeginLoc(),
13650                diag::warn_atomic_implicit_seq_cst);
13651     }
13652   }
13653 }
13654 
13655 /// AnalyzeImplicitConversions - Find and report any interesting
13656 /// implicit conversions in the given expression.  There are a couple
13657 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
13658 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13659                                        bool IsListInit/*= false*/) {
13660   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13661   WorkList.push_back({OrigE, CC, IsListInit});
13662   while (!WorkList.empty())
13663     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13664 }
13665 
13666 /// Diagnose integer type and any valid implicit conversion to it.
13667 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13668   // Taking into account implicit conversions,
13669   // allow any integer.
13670   if (!E->getType()->isIntegerType()) {
13671     S.Diag(E->getBeginLoc(),
13672            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13673     return true;
13674   }
13675   // Potentially emit standard warnings for implicit conversions if enabled
13676   // using -Wconversion.
13677   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13678   return false;
13679 }
13680 
13681 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13682 // Returns true when emitting a warning about taking the address of a reference.
13683 static bool CheckForReference(Sema &SemaRef, const Expr *E,
13684                               const PartialDiagnostic &PD) {
13685   E = E->IgnoreParenImpCasts();
13686 
13687   const FunctionDecl *FD = nullptr;
13688 
13689   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13690     if (!DRE->getDecl()->getType()->isReferenceType())
13691       return false;
13692   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13693     if (!M->getMemberDecl()->getType()->isReferenceType())
13694       return false;
13695   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13696     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13697       return false;
13698     FD = Call->getDirectCallee();
13699   } else {
13700     return false;
13701   }
13702 
13703   SemaRef.Diag(E->getExprLoc(), PD);
13704 
13705   // If possible, point to location of function.
13706   if (FD) {
13707     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13708   }
13709 
13710   return true;
13711 }
13712 
13713 // Returns true if the SourceLocation is expanded from any macro body.
13714 // Returns false if the SourceLocation is invalid, is from not in a macro
13715 // expansion, or is from expanded from a top-level macro argument.
13716 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13717   if (Loc.isInvalid())
13718     return false;
13719 
13720   while (Loc.isMacroID()) {
13721     if (SM.isMacroBodyExpansion(Loc))
13722       return true;
13723     Loc = SM.getImmediateMacroCallerLoc(Loc);
13724   }
13725 
13726   return false;
13727 }
13728 
13729 /// Diagnose pointers that are always non-null.
13730 /// \param E the expression containing the pointer
13731 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13732 /// compared to a null pointer
13733 /// \param IsEqual True when the comparison is equal to a null pointer
13734 /// \param Range Extra SourceRange to highlight in the diagnostic
13735 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13736                                         Expr::NullPointerConstantKind NullKind,
13737                                         bool IsEqual, SourceRange Range) {
13738   if (!E)
13739     return;
13740 
13741   // Don't warn inside macros.
13742   if (E->getExprLoc().isMacroID()) {
13743     const SourceManager &SM = getSourceManager();
13744     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13745         IsInAnyMacroBody(SM, Range.getBegin()))
13746       return;
13747   }
13748   E = E->IgnoreImpCasts();
13749 
13750   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13751 
13752   if (isa<CXXThisExpr>(E)) {
13753     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13754                                 : diag::warn_this_bool_conversion;
13755     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13756     return;
13757   }
13758 
13759   bool IsAddressOf = false;
13760 
13761   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13762     if (UO->getOpcode() != UO_AddrOf)
13763       return;
13764     IsAddressOf = true;
13765     E = UO->getSubExpr();
13766   }
13767 
13768   if (IsAddressOf) {
13769     unsigned DiagID = IsCompare
13770                           ? diag::warn_address_of_reference_null_compare
13771                           : diag::warn_address_of_reference_bool_conversion;
13772     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13773                                          << IsEqual;
13774     if (CheckForReference(*this, E, PD)) {
13775       return;
13776     }
13777   }
13778 
13779   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13780     bool IsParam = isa<NonNullAttr>(NonnullAttr);
13781     std::string Str;
13782     llvm::raw_string_ostream S(Str);
13783     E->printPretty(S, nullptr, getPrintingPolicy());
13784     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13785                                 : diag::warn_cast_nonnull_to_bool;
13786     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13787       << E->getSourceRange() << Range << IsEqual;
13788     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13789   };
13790 
13791   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13792   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13793     if (auto *Callee = Call->getDirectCallee()) {
13794       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13795         ComplainAboutNonnullParamOrCall(A);
13796         return;
13797       }
13798     }
13799   }
13800 
13801   // Expect to find a single Decl.  Skip anything more complicated.
13802   ValueDecl *D = nullptr;
13803   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13804     D = R->getDecl();
13805   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13806     D = M->getMemberDecl();
13807   }
13808 
13809   // Weak Decls can be null.
13810   if (!D || D->isWeak())
13811     return;
13812 
13813   // Check for parameter decl with nonnull attribute
13814   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13815     if (getCurFunction() &&
13816         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13817       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13818         ComplainAboutNonnullParamOrCall(A);
13819         return;
13820       }
13821 
13822       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13823         // Skip function template not specialized yet.
13824         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13825           return;
13826         auto ParamIter = llvm::find(FD->parameters(), PV);
13827         assert(ParamIter != FD->param_end());
13828         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13829 
13830         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13831           if (!NonNull->args_size()) {
13832               ComplainAboutNonnullParamOrCall(NonNull);
13833               return;
13834           }
13835 
13836           for (const ParamIdx &ArgNo : NonNull->args()) {
13837             if (ArgNo.getASTIndex() == ParamNo) {
13838               ComplainAboutNonnullParamOrCall(NonNull);
13839               return;
13840             }
13841           }
13842         }
13843       }
13844     }
13845   }
13846 
13847   QualType T = D->getType();
13848   const bool IsArray = T->isArrayType();
13849   const bool IsFunction = T->isFunctionType();
13850 
13851   // Address of function is used to silence the function warning.
13852   if (IsAddressOf && IsFunction) {
13853     return;
13854   }
13855 
13856   // Found nothing.
13857   if (!IsAddressOf && !IsFunction && !IsArray)
13858     return;
13859 
13860   // Pretty print the expression for the diagnostic.
13861   std::string Str;
13862   llvm::raw_string_ostream S(Str);
13863   E->printPretty(S, nullptr, getPrintingPolicy());
13864 
13865   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13866                               : diag::warn_impcast_pointer_to_bool;
13867   enum {
13868     AddressOf,
13869     FunctionPointer,
13870     ArrayPointer
13871   } DiagType;
13872   if (IsAddressOf)
13873     DiagType = AddressOf;
13874   else if (IsFunction)
13875     DiagType = FunctionPointer;
13876   else if (IsArray)
13877     DiagType = ArrayPointer;
13878   else
13879     llvm_unreachable("Could not determine diagnostic.");
13880   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13881                                 << Range << IsEqual;
13882 
13883   if (!IsFunction)
13884     return;
13885 
13886   // Suggest '&' to silence the function warning.
13887   Diag(E->getExprLoc(), diag::note_function_warning_silence)
13888       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13889 
13890   // Check to see if '()' fixit should be emitted.
13891   QualType ReturnType;
13892   UnresolvedSet<4> NonTemplateOverloads;
13893   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13894   if (ReturnType.isNull())
13895     return;
13896 
13897   if (IsCompare) {
13898     // There are two cases here.  If there is null constant, the only suggest
13899     // for a pointer return type.  If the null is 0, then suggest if the return
13900     // type is a pointer or an integer type.
13901     if (!ReturnType->isPointerType()) {
13902       if (NullKind == Expr::NPCK_ZeroExpression ||
13903           NullKind == Expr::NPCK_ZeroLiteral) {
13904         if (!ReturnType->isIntegerType())
13905           return;
13906       } else {
13907         return;
13908       }
13909     }
13910   } else { // !IsCompare
13911     // For function to bool, only suggest if the function pointer has bool
13912     // return type.
13913     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13914       return;
13915   }
13916   Diag(E->getExprLoc(), diag::note_function_to_function_call)
13917       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13918 }
13919 
13920 /// Diagnoses "dangerous" implicit conversions within the given
13921 /// expression (which is a full expression).  Implements -Wconversion
13922 /// and -Wsign-compare.
13923 ///
13924 /// \param CC the "context" location of the implicit conversion, i.e.
13925 ///   the most location of the syntactic entity requiring the implicit
13926 ///   conversion
13927 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13928   // Don't diagnose in unevaluated contexts.
13929   if (isUnevaluatedContext())
13930     return;
13931 
13932   // Don't diagnose for value- or type-dependent expressions.
13933   if (E->isTypeDependent() || E->isValueDependent())
13934     return;
13935 
13936   // Check for array bounds violations in cases where the check isn't triggered
13937   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13938   // ArraySubscriptExpr is on the RHS of a variable initialization.
13939   CheckArrayAccess(E);
13940 
13941   // This is not the right CC for (e.g.) a variable initialization.
13942   AnalyzeImplicitConversions(*this, E, CC);
13943 }
13944 
13945 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13946 /// Input argument E is a logical expression.
13947 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13948   ::CheckBoolLikeConversion(*this, E, CC);
13949 }
13950 
13951 /// Diagnose when expression is an integer constant expression and its evaluation
13952 /// results in integer overflow
13953 void Sema::CheckForIntOverflow (Expr *E) {
13954   // Use a work list to deal with nested struct initializers.
13955   SmallVector<Expr *, 2> Exprs(1, E);
13956 
13957   do {
13958     Expr *OriginalE = Exprs.pop_back_val();
13959     Expr *E = OriginalE->IgnoreParenCasts();
13960 
13961     if (isa<BinaryOperator>(E)) {
13962       E->EvaluateForOverflow(Context);
13963       continue;
13964     }
13965 
13966     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13967       Exprs.append(InitList->inits().begin(), InitList->inits().end());
13968     else if (isa<ObjCBoxedExpr>(OriginalE))
13969       E->EvaluateForOverflow(Context);
13970     else if (auto Call = dyn_cast<CallExpr>(E))
13971       Exprs.append(Call->arg_begin(), Call->arg_end());
13972     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13973       Exprs.append(Message->arg_begin(), Message->arg_end());
13974   } while (!Exprs.empty());
13975 }
13976 
13977 namespace {
13978 
13979 /// Visitor for expressions which looks for unsequenced operations on the
13980 /// same object.
13981 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13982   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13983 
13984   /// A tree of sequenced regions within an expression. Two regions are
13985   /// unsequenced if one is an ancestor or a descendent of the other. When we
13986   /// finish processing an expression with sequencing, such as a comma
13987   /// expression, we fold its tree nodes into its parent, since they are
13988   /// unsequenced with respect to nodes we will visit later.
13989   class SequenceTree {
13990     struct Value {
13991       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13992       unsigned Parent : 31;
13993       unsigned Merged : 1;
13994     };
13995     SmallVector<Value, 8> Values;
13996 
13997   public:
13998     /// A region within an expression which may be sequenced with respect
13999     /// to some other region.
14000     class Seq {
14001       friend class SequenceTree;
14002 
14003       unsigned Index;
14004 
14005       explicit Seq(unsigned N) : Index(N) {}
14006 
14007     public:
14008       Seq() : Index(0) {}
14009     };
14010 
14011     SequenceTree() { Values.push_back(Value(0)); }
14012     Seq root() const { return Seq(0); }
14013 
14014     /// Create a new sequence of operations, which is an unsequenced
14015     /// subset of \p Parent. This sequence of operations is sequenced with
14016     /// respect to other children of \p Parent.
14017     Seq allocate(Seq Parent) {
14018       Values.push_back(Value(Parent.Index));
14019       return Seq(Values.size() - 1);
14020     }
14021 
14022     /// Merge a sequence of operations into its parent.
14023     void merge(Seq S) {
14024       Values[S.Index].Merged = true;
14025     }
14026 
14027     /// Determine whether two operations are unsequenced. This operation
14028     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
14029     /// should have been merged into its parent as appropriate.
14030     bool isUnsequenced(Seq Cur, Seq Old) {
14031       unsigned C = representative(Cur.Index);
14032       unsigned Target = representative(Old.Index);
14033       while (C >= Target) {
14034         if (C == Target)
14035           return true;
14036         C = Values[C].Parent;
14037       }
14038       return false;
14039     }
14040 
14041   private:
14042     /// Pick a representative for a sequence.
14043     unsigned representative(unsigned K) {
14044       if (Values[K].Merged)
14045         // Perform path compression as we go.
14046         return Values[K].Parent = representative(Values[K].Parent);
14047       return K;
14048     }
14049   };
14050 
14051   /// An object for which we can track unsequenced uses.
14052   using Object = const NamedDecl *;
14053 
14054   /// Different flavors of object usage which we track. We only track the
14055   /// least-sequenced usage of each kind.
14056   enum UsageKind {
14057     /// A read of an object. Multiple unsequenced reads are OK.
14058     UK_Use,
14059 
14060     /// A modification of an object which is sequenced before the value
14061     /// computation of the expression, such as ++n in C++.
14062     UK_ModAsValue,
14063 
14064     /// A modification of an object which is not sequenced before the value
14065     /// computation of the expression, such as n++.
14066     UK_ModAsSideEffect,
14067 
14068     UK_Count = UK_ModAsSideEffect + 1
14069   };
14070 
14071   /// Bundle together a sequencing region and the expression corresponding
14072   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
14073   struct Usage {
14074     const Expr *UsageExpr;
14075     SequenceTree::Seq Seq;
14076 
14077     Usage() : UsageExpr(nullptr) {}
14078   };
14079 
14080   struct UsageInfo {
14081     Usage Uses[UK_Count];
14082 
14083     /// Have we issued a diagnostic for this object already?
14084     bool Diagnosed;
14085 
14086     UsageInfo() : Diagnosed(false) {}
14087   };
14088   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
14089 
14090   Sema &SemaRef;
14091 
14092   /// Sequenced regions within the expression.
14093   SequenceTree Tree;
14094 
14095   /// Declaration modifications and references which we have seen.
14096   UsageInfoMap UsageMap;
14097 
14098   /// The region we are currently within.
14099   SequenceTree::Seq Region;
14100 
14101   /// Filled in with declarations which were modified as a side-effect
14102   /// (that is, post-increment operations).
14103   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
14104 
14105   /// Expressions to check later. We defer checking these to reduce
14106   /// stack usage.
14107   SmallVectorImpl<const Expr *> &WorkList;
14108 
14109   /// RAII object wrapping the visitation of a sequenced subexpression of an
14110   /// expression. At the end of this process, the side-effects of the evaluation
14111   /// become sequenced with respect to the value computation of the result, so
14112   /// we downgrade any UK_ModAsSideEffect within the evaluation to
14113   /// UK_ModAsValue.
14114   struct SequencedSubexpression {
14115     SequencedSubexpression(SequenceChecker &Self)
14116       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
14117       Self.ModAsSideEffect = &ModAsSideEffect;
14118     }
14119 
14120     ~SequencedSubexpression() {
14121       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
14122         // Add a new usage with usage kind UK_ModAsValue, and then restore
14123         // the previous usage with UK_ModAsSideEffect (thus clearing it if
14124         // the previous one was empty).
14125         UsageInfo &UI = Self.UsageMap[M.first];
14126         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
14127         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
14128         SideEffectUsage = M.second;
14129       }
14130       Self.ModAsSideEffect = OldModAsSideEffect;
14131     }
14132 
14133     SequenceChecker &Self;
14134     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
14135     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
14136   };
14137 
14138   /// RAII object wrapping the visitation of a subexpression which we might
14139   /// choose to evaluate as a constant. If any subexpression is evaluated and
14140   /// found to be non-constant, this allows us to suppress the evaluation of
14141   /// the outer expression.
14142   class EvaluationTracker {
14143   public:
14144     EvaluationTracker(SequenceChecker &Self)
14145         : Self(Self), Prev(Self.EvalTracker) {
14146       Self.EvalTracker = this;
14147     }
14148 
14149     ~EvaluationTracker() {
14150       Self.EvalTracker = Prev;
14151       if (Prev)
14152         Prev->EvalOK &= EvalOK;
14153     }
14154 
14155     bool evaluate(const Expr *E, bool &Result) {
14156       if (!EvalOK || E->isValueDependent())
14157         return false;
14158       EvalOK = E->EvaluateAsBooleanCondition(
14159           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
14160       return EvalOK;
14161     }
14162 
14163   private:
14164     SequenceChecker &Self;
14165     EvaluationTracker *Prev;
14166     bool EvalOK = true;
14167   } *EvalTracker = nullptr;
14168 
14169   /// Find the object which is produced by the specified expression,
14170   /// if any.
14171   Object getObject(const Expr *E, bool Mod) const {
14172     E = E->IgnoreParenCasts();
14173     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14174       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
14175         return getObject(UO->getSubExpr(), Mod);
14176     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14177       if (BO->getOpcode() == BO_Comma)
14178         return getObject(BO->getRHS(), Mod);
14179       if (Mod && BO->isAssignmentOp())
14180         return getObject(BO->getLHS(), Mod);
14181     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14182       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
14183       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
14184         return ME->getMemberDecl();
14185     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14186       // FIXME: If this is a reference, map through to its value.
14187       return DRE->getDecl();
14188     return nullptr;
14189   }
14190 
14191   /// Note that an object \p O was modified or used by an expression
14192   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
14193   /// the object \p O as obtained via the \p UsageMap.
14194   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
14195     // Get the old usage for the given object and usage kind.
14196     Usage &U = UI.Uses[UK];
14197     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
14198       // If we have a modification as side effect and are in a sequenced
14199       // subexpression, save the old Usage so that we can restore it later
14200       // in SequencedSubexpression::~SequencedSubexpression.
14201       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
14202         ModAsSideEffect->push_back(std::make_pair(O, U));
14203       // Then record the new usage with the current sequencing region.
14204       U.UsageExpr = UsageExpr;
14205       U.Seq = Region;
14206     }
14207   }
14208 
14209   /// Check whether a modification or use of an object \p O in an expression
14210   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
14211   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
14212   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
14213   /// usage and false we are checking for a mod-use unsequenced usage.
14214   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
14215                   UsageKind OtherKind, bool IsModMod) {
14216     if (UI.Diagnosed)
14217       return;
14218 
14219     const Usage &U = UI.Uses[OtherKind];
14220     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
14221       return;
14222 
14223     const Expr *Mod = U.UsageExpr;
14224     const Expr *ModOrUse = UsageExpr;
14225     if (OtherKind == UK_Use)
14226       std::swap(Mod, ModOrUse);
14227 
14228     SemaRef.DiagRuntimeBehavior(
14229         Mod->getExprLoc(), {Mod, ModOrUse},
14230         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
14231                                : diag::warn_unsequenced_mod_use)
14232             << O << SourceRange(ModOrUse->getExprLoc()));
14233     UI.Diagnosed = true;
14234   }
14235 
14236   // A note on note{Pre, Post}{Use, Mod}:
14237   //
14238   // (It helps to follow the algorithm with an expression such as
14239   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14240   //  operations before C++17 and both are well-defined in C++17).
14241   //
14242   // When visiting a node which uses/modify an object we first call notePreUse
14243   // or notePreMod before visiting its sub-expression(s). At this point the
14244   // children of the current node have not yet been visited and so the eventual
14245   // uses/modifications resulting from the children of the current node have not
14246   // been recorded yet.
14247   //
14248   // We then visit the children of the current node. After that notePostUse or
14249   // notePostMod is called. These will 1) detect an unsequenced modification
14250   // as side effect (as in "k++ + k") and 2) add a new usage with the
14251   // appropriate usage kind.
14252   //
14253   // We also have to be careful that some operation sequences modification as
14254   // side effect as well (for example: || or ,). To account for this we wrap
14255   // the visitation of such a sub-expression (for example: the LHS of || or ,)
14256   // with SequencedSubexpression. SequencedSubexpression is an RAII object
14257   // which record usages which are modifications as side effect, and then
14258   // downgrade them (or more accurately restore the previous usage which was a
14259   // modification as side effect) when exiting the scope of the sequenced
14260   // subexpression.
14261 
14262   void notePreUse(Object O, const Expr *UseExpr) {
14263     UsageInfo &UI = UsageMap[O];
14264     // Uses conflict with other modifications.
14265     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14266   }
14267 
14268   void notePostUse(Object O, const Expr *UseExpr) {
14269     UsageInfo &UI = UsageMap[O];
14270     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14271                /*IsModMod=*/false);
14272     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14273   }
14274 
14275   void notePreMod(Object O, const Expr *ModExpr) {
14276     UsageInfo &UI = UsageMap[O];
14277     // Modifications conflict with other modifications and with uses.
14278     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14279     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14280   }
14281 
14282   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14283     UsageInfo &UI = UsageMap[O];
14284     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14285                /*IsModMod=*/true);
14286     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14287   }
14288 
14289 public:
14290   SequenceChecker(Sema &S, const Expr *E,
14291                   SmallVectorImpl<const Expr *> &WorkList)
14292       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14293     Visit(E);
14294     // Silence a -Wunused-private-field since WorkList is now unused.
14295     // TODO: Evaluate if it can be used, and if not remove it.
14296     (void)this->WorkList;
14297   }
14298 
14299   void VisitStmt(const Stmt *S) {
14300     // Skip all statements which aren't expressions for now.
14301   }
14302 
14303   void VisitExpr(const Expr *E) {
14304     // By default, just recurse to evaluated subexpressions.
14305     Base::VisitStmt(E);
14306   }
14307 
14308   void VisitCastExpr(const CastExpr *E) {
14309     Object O = Object();
14310     if (E->getCastKind() == CK_LValueToRValue)
14311       O = getObject(E->getSubExpr(), false);
14312 
14313     if (O)
14314       notePreUse(O, E);
14315     VisitExpr(E);
14316     if (O)
14317       notePostUse(O, E);
14318   }
14319 
14320   void VisitSequencedExpressions(const Expr *SequencedBefore,
14321                                  const Expr *SequencedAfter) {
14322     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14323     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14324     SequenceTree::Seq OldRegion = Region;
14325 
14326     {
14327       SequencedSubexpression SeqBefore(*this);
14328       Region = BeforeRegion;
14329       Visit(SequencedBefore);
14330     }
14331 
14332     Region = AfterRegion;
14333     Visit(SequencedAfter);
14334 
14335     Region = OldRegion;
14336 
14337     Tree.merge(BeforeRegion);
14338     Tree.merge(AfterRegion);
14339   }
14340 
14341   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14342     // C++17 [expr.sub]p1:
14343     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14344     //   expression E1 is sequenced before the expression E2.
14345     if (SemaRef.getLangOpts().CPlusPlus17)
14346       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14347     else {
14348       Visit(ASE->getLHS());
14349       Visit(ASE->getRHS());
14350     }
14351   }
14352 
14353   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14354   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14355   void VisitBinPtrMem(const BinaryOperator *BO) {
14356     // C++17 [expr.mptr.oper]p4:
14357     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14358     //  the expression E1 is sequenced before the expression E2.
14359     if (SemaRef.getLangOpts().CPlusPlus17)
14360       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14361     else {
14362       Visit(BO->getLHS());
14363       Visit(BO->getRHS());
14364     }
14365   }
14366 
14367   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14368   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14369   void VisitBinShlShr(const BinaryOperator *BO) {
14370     // C++17 [expr.shift]p4:
14371     //  The expression E1 is sequenced before the expression E2.
14372     if (SemaRef.getLangOpts().CPlusPlus17)
14373       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14374     else {
14375       Visit(BO->getLHS());
14376       Visit(BO->getRHS());
14377     }
14378   }
14379 
14380   void VisitBinComma(const BinaryOperator *BO) {
14381     // C++11 [expr.comma]p1:
14382     //   Every value computation and side effect associated with the left
14383     //   expression is sequenced before every value computation and side
14384     //   effect associated with the right expression.
14385     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14386   }
14387 
14388   void VisitBinAssign(const BinaryOperator *BO) {
14389     SequenceTree::Seq RHSRegion;
14390     SequenceTree::Seq LHSRegion;
14391     if (SemaRef.getLangOpts().CPlusPlus17) {
14392       RHSRegion = Tree.allocate(Region);
14393       LHSRegion = Tree.allocate(Region);
14394     } else {
14395       RHSRegion = Region;
14396       LHSRegion = Region;
14397     }
14398     SequenceTree::Seq OldRegion = Region;
14399 
14400     // C++11 [expr.ass]p1:
14401     //  [...] the assignment is sequenced after the value computation
14402     //  of the right and left operands, [...]
14403     //
14404     // so check it before inspecting the operands and update the
14405     // map afterwards.
14406     Object O = getObject(BO->getLHS(), /*Mod=*/true);
14407     if (O)
14408       notePreMod(O, BO);
14409 
14410     if (SemaRef.getLangOpts().CPlusPlus17) {
14411       // C++17 [expr.ass]p1:
14412       //  [...] The right operand is sequenced before the left operand. [...]
14413       {
14414         SequencedSubexpression SeqBefore(*this);
14415         Region = RHSRegion;
14416         Visit(BO->getRHS());
14417       }
14418 
14419       Region = LHSRegion;
14420       Visit(BO->getLHS());
14421 
14422       if (O && isa<CompoundAssignOperator>(BO))
14423         notePostUse(O, BO);
14424 
14425     } else {
14426       // C++11 does not specify any sequencing between the LHS and RHS.
14427       Region = LHSRegion;
14428       Visit(BO->getLHS());
14429 
14430       if (O && isa<CompoundAssignOperator>(BO))
14431         notePostUse(O, BO);
14432 
14433       Region = RHSRegion;
14434       Visit(BO->getRHS());
14435     }
14436 
14437     // C++11 [expr.ass]p1:
14438     //  the assignment is sequenced [...] before the value computation of the
14439     //  assignment expression.
14440     // C11 6.5.16/3 has no such rule.
14441     Region = OldRegion;
14442     if (O)
14443       notePostMod(O, BO,
14444                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14445                                                   : UK_ModAsSideEffect);
14446     if (SemaRef.getLangOpts().CPlusPlus17) {
14447       Tree.merge(RHSRegion);
14448       Tree.merge(LHSRegion);
14449     }
14450   }
14451 
14452   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14453     VisitBinAssign(CAO);
14454   }
14455 
14456   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14457   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14458   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14459     Object O = getObject(UO->getSubExpr(), true);
14460     if (!O)
14461       return VisitExpr(UO);
14462 
14463     notePreMod(O, UO);
14464     Visit(UO->getSubExpr());
14465     // C++11 [expr.pre.incr]p1:
14466     //   the expression ++x is equivalent to x+=1
14467     notePostMod(O, UO,
14468                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14469                                                 : UK_ModAsSideEffect);
14470   }
14471 
14472   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14473   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14474   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14475     Object O = getObject(UO->getSubExpr(), true);
14476     if (!O)
14477       return VisitExpr(UO);
14478 
14479     notePreMod(O, UO);
14480     Visit(UO->getSubExpr());
14481     notePostMod(O, UO, UK_ModAsSideEffect);
14482   }
14483 
14484   void VisitBinLOr(const BinaryOperator *BO) {
14485     // C++11 [expr.log.or]p2:
14486     //  If the second expression is evaluated, every value computation and
14487     //  side effect associated with the first expression is sequenced before
14488     //  every value computation and side effect associated with the
14489     //  second expression.
14490     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14491     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14492     SequenceTree::Seq OldRegion = Region;
14493 
14494     EvaluationTracker Eval(*this);
14495     {
14496       SequencedSubexpression Sequenced(*this);
14497       Region = LHSRegion;
14498       Visit(BO->getLHS());
14499     }
14500 
14501     // C++11 [expr.log.or]p1:
14502     //  [...] the second operand is not evaluated if the first operand
14503     //  evaluates to true.
14504     bool EvalResult = false;
14505     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14506     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14507     if (ShouldVisitRHS) {
14508       Region = RHSRegion;
14509       Visit(BO->getRHS());
14510     }
14511 
14512     Region = OldRegion;
14513     Tree.merge(LHSRegion);
14514     Tree.merge(RHSRegion);
14515   }
14516 
14517   void VisitBinLAnd(const BinaryOperator *BO) {
14518     // C++11 [expr.log.and]p2:
14519     //  If the second expression is evaluated, every value computation and
14520     //  side effect associated with the first expression is sequenced before
14521     //  every value computation and side effect associated with the
14522     //  second expression.
14523     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14524     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14525     SequenceTree::Seq OldRegion = Region;
14526 
14527     EvaluationTracker Eval(*this);
14528     {
14529       SequencedSubexpression Sequenced(*this);
14530       Region = LHSRegion;
14531       Visit(BO->getLHS());
14532     }
14533 
14534     // C++11 [expr.log.and]p1:
14535     //  [...] the second operand is not evaluated if the first operand is false.
14536     bool EvalResult = false;
14537     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14538     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14539     if (ShouldVisitRHS) {
14540       Region = RHSRegion;
14541       Visit(BO->getRHS());
14542     }
14543 
14544     Region = OldRegion;
14545     Tree.merge(LHSRegion);
14546     Tree.merge(RHSRegion);
14547   }
14548 
14549   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14550     // C++11 [expr.cond]p1:
14551     //  [...] Every value computation and side effect associated with the first
14552     //  expression is sequenced before every value computation and side effect
14553     //  associated with the second or third expression.
14554     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14555 
14556     // No sequencing is specified between the true and false expression.
14557     // However since exactly one of both is going to be evaluated we can
14558     // consider them to be sequenced. This is needed to avoid warning on
14559     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14560     // both the true and false expressions because we can't evaluate x.
14561     // This will still allow us to detect an expression like (pre C++17)
14562     // "(x ? y += 1 : y += 2) = y".
14563     //
14564     // We don't wrap the visitation of the true and false expression with
14565     // SequencedSubexpression because we don't want to downgrade modifications
14566     // as side effect in the true and false expressions after the visition
14567     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14568     // not warn between the two "y++", but we should warn between the "y++"
14569     // and the "y".
14570     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14571     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14572     SequenceTree::Seq OldRegion = Region;
14573 
14574     EvaluationTracker Eval(*this);
14575     {
14576       SequencedSubexpression Sequenced(*this);
14577       Region = ConditionRegion;
14578       Visit(CO->getCond());
14579     }
14580 
14581     // C++11 [expr.cond]p1:
14582     // [...] The first expression is contextually converted to bool (Clause 4).
14583     // It is evaluated and if it is true, the result of the conditional
14584     // expression is the value of the second expression, otherwise that of the
14585     // third expression. Only one of the second and third expressions is
14586     // evaluated. [...]
14587     bool EvalResult = false;
14588     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14589     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14590     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14591     if (ShouldVisitTrueExpr) {
14592       Region = TrueRegion;
14593       Visit(CO->getTrueExpr());
14594     }
14595     if (ShouldVisitFalseExpr) {
14596       Region = FalseRegion;
14597       Visit(CO->getFalseExpr());
14598     }
14599 
14600     Region = OldRegion;
14601     Tree.merge(ConditionRegion);
14602     Tree.merge(TrueRegion);
14603     Tree.merge(FalseRegion);
14604   }
14605 
14606   void VisitCallExpr(const CallExpr *CE) {
14607     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14608 
14609     if (CE->isUnevaluatedBuiltinCall(Context))
14610       return;
14611 
14612     // C++11 [intro.execution]p15:
14613     //   When calling a function [...], every value computation and side effect
14614     //   associated with any argument expression, or with the postfix expression
14615     //   designating the called function, is sequenced before execution of every
14616     //   expression or statement in the body of the function [and thus before
14617     //   the value computation of its result].
14618     SequencedSubexpression Sequenced(*this);
14619     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14620       // C++17 [expr.call]p5
14621       //   The postfix-expression is sequenced before each expression in the
14622       //   expression-list and any default argument. [...]
14623       SequenceTree::Seq CalleeRegion;
14624       SequenceTree::Seq OtherRegion;
14625       if (SemaRef.getLangOpts().CPlusPlus17) {
14626         CalleeRegion = Tree.allocate(Region);
14627         OtherRegion = Tree.allocate(Region);
14628       } else {
14629         CalleeRegion = Region;
14630         OtherRegion = Region;
14631       }
14632       SequenceTree::Seq OldRegion = Region;
14633 
14634       // Visit the callee expression first.
14635       Region = CalleeRegion;
14636       if (SemaRef.getLangOpts().CPlusPlus17) {
14637         SequencedSubexpression Sequenced(*this);
14638         Visit(CE->getCallee());
14639       } else {
14640         Visit(CE->getCallee());
14641       }
14642 
14643       // Then visit the argument expressions.
14644       Region = OtherRegion;
14645       for (const Expr *Argument : CE->arguments())
14646         Visit(Argument);
14647 
14648       Region = OldRegion;
14649       if (SemaRef.getLangOpts().CPlusPlus17) {
14650         Tree.merge(CalleeRegion);
14651         Tree.merge(OtherRegion);
14652       }
14653     });
14654   }
14655 
14656   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14657     // C++17 [over.match.oper]p2:
14658     //   [...] the operator notation is first transformed to the equivalent
14659     //   function-call notation as summarized in Table 12 (where @ denotes one
14660     //   of the operators covered in the specified subclause). However, the
14661     //   operands are sequenced in the order prescribed for the built-in
14662     //   operator (Clause 8).
14663     //
14664     // From the above only overloaded binary operators and overloaded call
14665     // operators have sequencing rules in C++17 that we need to handle
14666     // separately.
14667     if (!SemaRef.getLangOpts().CPlusPlus17 ||
14668         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14669       return VisitCallExpr(CXXOCE);
14670 
14671     enum {
14672       NoSequencing,
14673       LHSBeforeRHS,
14674       RHSBeforeLHS,
14675       LHSBeforeRest
14676     } SequencingKind;
14677     switch (CXXOCE->getOperator()) {
14678     case OO_Equal:
14679     case OO_PlusEqual:
14680     case OO_MinusEqual:
14681     case OO_StarEqual:
14682     case OO_SlashEqual:
14683     case OO_PercentEqual:
14684     case OO_CaretEqual:
14685     case OO_AmpEqual:
14686     case OO_PipeEqual:
14687     case OO_LessLessEqual:
14688     case OO_GreaterGreaterEqual:
14689       SequencingKind = RHSBeforeLHS;
14690       break;
14691 
14692     case OO_LessLess:
14693     case OO_GreaterGreater:
14694     case OO_AmpAmp:
14695     case OO_PipePipe:
14696     case OO_Comma:
14697     case OO_ArrowStar:
14698     case OO_Subscript:
14699       SequencingKind = LHSBeforeRHS;
14700       break;
14701 
14702     case OO_Call:
14703       SequencingKind = LHSBeforeRest;
14704       break;
14705 
14706     default:
14707       SequencingKind = NoSequencing;
14708       break;
14709     }
14710 
14711     if (SequencingKind == NoSequencing)
14712       return VisitCallExpr(CXXOCE);
14713 
14714     // This is a call, so all subexpressions are sequenced before the result.
14715     SequencedSubexpression Sequenced(*this);
14716 
14717     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14718       assert(SemaRef.getLangOpts().CPlusPlus17 &&
14719              "Should only get there with C++17 and above!");
14720       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
14721              "Should only get there with an overloaded binary operator"
14722              " or an overloaded call operator!");
14723 
14724       if (SequencingKind == LHSBeforeRest) {
14725         assert(CXXOCE->getOperator() == OO_Call &&
14726                "We should only have an overloaded call operator here!");
14727 
14728         // This is very similar to VisitCallExpr, except that we only have the
14729         // C++17 case. The postfix-expression is the first argument of the
14730         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14731         // are in the following arguments.
14732         //
14733         // Note that we intentionally do not visit the callee expression since
14734         // it is just a decayed reference to a function.
14735         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14736         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14737         SequenceTree::Seq OldRegion = Region;
14738 
14739         assert(CXXOCE->getNumArgs() >= 1 &&
14740                "An overloaded call operator must have at least one argument"
14741                " for the postfix-expression!");
14742         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14743         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14744                                           CXXOCE->getNumArgs() - 1);
14745 
14746         // Visit the postfix-expression first.
14747         {
14748           Region = PostfixExprRegion;
14749           SequencedSubexpression Sequenced(*this);
14750           Visit(PostfixExpr);
14751         }
14752 
14753         // Then visit the argument expressions.
14754         Region = ArgsRegion;
14755         for (const Expr *Arg : Args)
14756           Visit(Arg);
14757 
14758         Region = OldRegion;
14759         Tree.merge(PostfixExprRegion);
14760         Tree.merge(ArgsRegion);
14761       } else {
14762         assert(CXXOCE->getNumArgs() == 2 &&
14763                "Should only have two arguments here!");
14764         assert((SequencingKind == LHSBeforeRHS ||
14765                 SequencingKind == RHSBeforeLHS) &&
14766                "Unexpected sequencing kind!");
14767 
14768         // We do not visit the callee expression since it is just a decayed
14769         // reference to a function.
14770         const Expr *E1 = CXXOCE->getArg(0);
14771         const Expr *E2 = CXXOCE->getArg(1);
14772         if (SequencingKind == RHSBeforeLHS)
14773           std::swap(E1, E2);
14774 
14775         return VisitSequencedExpressions(E1, E2);
14776       }
14777     });
14778   }
14779 
14780   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14781     // This is a call, so all subexpressions are sequenced before the result.
14782     SequencedSubexpression Sequenced(*this);
14783 
14784     if (!CCE->isListInitialization())
14785       return VisitExpr(CCE);
14786 
14787     // In C++11, list initializations are sequenced.
14788     SmallVector<SequenceTree::Seq, 32> Elts;
14789     SequenceTree::Seq Parent = Region;
14790     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14791                                               E = CCE->arg_end();
14792          I != E; ++I) {
14793       Region = Tree.allocate(Parent);
14794       Elts.push_back(Region);
14795       Visit(*I);
14796     }
14797 
14798     // Forget that the initializers are sequenced.
14799     Region = Parent;
14800     for (unsigned I = 0; I < Elts.size(); ++I)
14801       Tree.merge(Elts[I]);
14802   }
14803 
14804   void VisitInitListExpr(const InitListExpr *ILE) {
14805     if (!SemaRef.getLangOpts().CPlusPlus11)
14806       return VisitExpr(ILE);
14807 
14808     // In C++11, list initializations are sequenced.
14809     SmallVector<SequenceTree::Seq, 32> Elts;
14810     SequenceTree::Seq Parent = Region;
14811     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14812       const Expr *E = ILE->getInit(I);
14813       if (!E)
14814         continue;
14815       Region = Tree.allocate(Parent);
14816       Elts.push_back(Region);
14817       Visit(E);
14818     }
14819 
14820     // Forget that the initializers are sequenced.
14821     Region = Parent;
14822     for (unsigned I = 0; I < Elts.size(); ++I)
14823       Tree.merge(Elts[I]);
14824   }
14825 };
14826 
14827 } // namespace
14828 
14829 void Sema::CheckUnsequencedOperations(const Expr *E) {
14830   SmallVector<const Expr *, 8> WorkList;
14831   WorkList.push_back(E);
14832   while (!WorkList.empty()) {
14833     const Expr *Item = WorkList.pop_back_val();
14834     SequenceChecker(*this, Item, WorkList);
14835   }
14836 }
14837 
14838 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14839                               bool IsConstexpr) {
14840   llvm::SaveAndRestore<bool> ConstantContext(
14841       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14842   CheckImplicitConversions(E, CheckLoc);
14843   if (!E->isInstantiationDependent())
14844     CheckUnsequencedOperations(E);
14845   if (!IsConstexpr && !E->isValueDependent())
14846     CheckForIntOverflow(E);
14847   DiagnoseMisalignedMembers();
14848 }
14849 
14850 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14851                                        FieldDecl *BitField,
14852                                        Expr *Init) {
14853   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14854 }
14855 
14856 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14857                                          SourceLocation Loc) {
14858   if (!PType->isVariablyModifiedType())
14859     return;
14860   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14861     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14862     return;
14863   }
14864   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14865     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14866     return;
14867   }
14868   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14869     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14870     return;
14871   }
14872 
14873   const ArrayType *AT = S.Context.getAsArrayType(PType);
14874   if (!AT)
14875     return;
14876 
14877   if (AT->getSizeModifier() != ArrayType::Star) {
14878     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14879     return;
14880   }
14881 
14882   S.Diag(Loc, diag::err_array_star_in_function_definition);
14883 }
14884 
14885 /// CheckParmsForFunctionDef - Check that the parameters of the given
14886 /// function are appropriate for the definition of a function. This
14887 /// takes care of any checks that cannot be performed on the
14888 /// declaration itself, e.g., that the types of each of the function
14889 /// parameters are complete.
14890 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14891                                     bool CheckParameterNames) {
14892   bool HasInvalidParm = false;
14893   for (ParmVarDecl *Param : Parameters) {
14894     // C99 6.7.5.3p4: the parameters in a parameter type list in a
14895     // function declarator that is part of a function definition of
14896     // that function shall not have incomplete type.
14897     //
14898     // This is also C++ [dcl.fct]p6.
14899     if (!Param->isInvalidDecl() &&
14900         RequireCompleteType(Param->getLocation(), Param->getType(),
14901                             diag::err_typecheck_decl_incomplete_type)) {
14902       Param->setInvalidDecl();
14903       HasInvalidParm = true;
14904     }
14905 
14906     // C99 6.9.1p5: If the declarator includes a parameter type list, the
14907     // declaration of each parameter shall include an identifier.
14908     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14909         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14910       // Diagnose this as an extension in C17 and earlier.
14911       if (!getLangOpts().C2x)
14912         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14913     }
14914 
14915     // C99 6.7.5.3p12:
14916     //   If the function declarator is not part of a definition of that
14917     //   function, parameters may have incomplete type and may use the [*]
14918     //   notation in their sequences of declarator specifiers to specify
14919     //   variable length array types.
14920     QualType PType = Param->getOriginalType();
14921     // FIXME: This diagnostic should point the '[*]' if source-location
14922     // information is added for it.
14923     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14924 
14925     // If the parameter is a c++ class type and it has to be destructed in the
14926     // callee function, declare the destructor so that it can be called by the
14927     // callee function. Do not perform any direct access check on the dtor here.
14928     if (!Param->isInvalidDecl()) {
14929       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14930         if (!ClassDecl->isInvalidDecl() &&
14931             !ClassDecl->hasIrrelevantDestructor() &&
14932             !ClassDecl->isDependentContext() &&
14933             ClassDecl->isParamDestroyedInCallee()) {
14934           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14935           MarkFunctionReferenced(Param->getLocation(), Destructor);
14936           DiagnoseUseOfDecl(Destructor, Param->getLocation());
14937         }
14938       }
14939     }
14940 
14941     // Parameters with the pass_object_size attribute only need to be marked
14942     // constant at function definitions. Because we lack information about
14943     // whether we're on a declaration or definition when we're instantiating the
14944     // attribute, we need to check for constness here.
14945     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14946       if (!Param->getType().isConstQualified())
14947         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14948             << Attr->getSpelling() << 1;
14949 
14950     // Check for parameter names shadowing fields from the class.
14951     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14952       // The owning context for the parameter should be the function, but we
14953       // want to see if this function's declaration context is a record.
14954       DeclContext *DC = Param->getDeclContext();
14955       if (DC && DC->isFunctionOrMethod()) {
14956         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14957           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14958                                      RD, /*DeclIsField*/ false);
14959       }
14960     }
14961   }
14962 
14963   return HasInvalidParm;
14964 }
14965 
14966 Optional<std::pair<CharUnits, CharUnits>>
14967 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14968 
14969 /// Compute the alignment and offset of the base class object given the
14970 /// derived-to-base cast expression and the alignment and offset of the derived
14971 /// class object.
14972 static std::pair<CharUnits, CharUnits>
14973 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14974                                    CharUnits BaseAlignment, CharUnits Offset,
14975                                    ASTContext &Ctx) {
14976   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14977        ++PathI) {
14978     const CXXBaseSpecifier *Base = *PathI;
14979     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14980     if (Base->isVirtual()) {
14981       // The complete object may have a lower alignment than the non-virtual
14982       // alignment of the base, in which case the base may be misaligned. Choose
14983       // the smaller of the non-virtual alignment and BaseAlignment, which is a
14984       // conservative lower bound of the complete object alignment.
14985       CharUnits NonVirtualAlignment =
14986           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14987       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14988       Offset = CharUnits::Zero();
14989     } else {
14990       const ASTRecordLayout &RL =
14991           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14992       Offset += RL.getBaseClassOffset(BaseDecl);
14993     }
14994     DerivedType = Base->getType();
14995   }
14996 
14997   return std::make_pair(BaseAlignment, Offset);
14998 }
14999 
15000 /// Compute the alignment and offset of a binary additive operator.
15001 static Optional<std::pair<CharUnits, CharUnits>>
15002 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
15003                                      bool IsSub, ASTContext &Ctx) {
15004   QualType PointeeType = PtrE->getType()->getPointeeType();
15005 
15006   if (!PointeeType->isConstantSizeType())
15007     return llvm::None;
15008 
15009   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
15010 
15011   if (!P)
15012     return llvm::None;
15013 
15014   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
15015   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
15016     CharUnits Offset = EltSize * IdxRes->getExtValue();
15017     if (IsSub)
15018       Offset = -Offset;
15019     return std::make_pair(P->first, P->second + Offset);
15020   }
15021 
15022   // If the integer expression isn't a constant expression, compute the lower
15023   // bound of the alignment using the alignment and offset of the pointer
15024   // expression and the element size.
15025   return std::make_pair(
15026       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
15027       CharUnits::Zero());
15028 }
15029 
15030 /// This helper function takes an lvalue expression and returns the alignment of
15031 /// a VarDecl and a constant offset from the VarDecl.
15032 Optional<std::pair<CharUnits, CharUnits>>
15033 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
15034   E = E->IgnoreParens();
15035   switch (E->getStmtClass()) {
15036   default:
15037     break;
15038   case Stmt::CStyleCastExprClass:
15039   case Stmt::CXXStaticCastExprClass:
15040   case Stmt::ImplicitCastExprClass: {
15041     auto *CE = cast<CastExpr>(E);
15042     const Expr *From = CE->getSubExpr();
15043     switch (CE->getCastKind()) {
15044     default:
15045       break;
15046     case CK_NoOp:
15047       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15048     case CK_UncheckedDerivedToBase:
15049     case CK_DerivedToBase: {
15050       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15051       if (!P)
15052         break;
15053       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
15054                                                 P->second, Ctx);
15055     }
15056     }
15057     break;
15058   }
15059   case Stmt::ArraySubscriptExprClass: {
15060     auto *ASE = cast<ArraySubscriptExpr>(E);
15061     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
15062                                                 false, Ctx);
15063   }
15064   case Stmt::DeclRefExprClass: {
15065     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
15066       // FIXME: If VD is captured by copy or is an escaping __block variable,
15067       // use the alignment of VD's type.
15068       if (!VD->getType()->isReferenceType())
15069         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
15070       if (VD->hasInit())
15071         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
15072     }
15073     break;
15074   }
15075   case Stmt::MemberExprClass: {
15076     auto *ME = cast<MemberExpr>(E);
15077     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
15078     if (!FD || FD->getType()->isReferenceType() ||
15079         FD->getParent()->isInvalidDecl())
15080       break;
15081     Optional<std::pair<CharUnits, CharUnits>> P;
15082     if (ME->isArrow())
15083       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
15084     else
15085       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
15086     if (!P)
15087       break;
15088     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
15089     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
15090     return std::make_pair(P->first,
15091                           P->second + CharUnits::fromQuantity(Offset));
15092   }
15093   case Stmt::UnaryOperatorClass: {
15094     auto *UO = cast<UnaryOperator>(E);
15095     switch (UO->getOpcode()) {
15096     default:
15097       break;
15098     case UO_Deref:
15099       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
15100     }
15101     break;
15102   }
15103   case Stmt::BinaryOperatorClass: {
15104     auto *BO = cast<BinaryOperator>(E);
15105     auto Opcode = BO->getOpcode();
15106     switch (Opcode) {
15107     default:
15108       break;
15109     case BO_Comma:
15110       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
15111     }
15112     break;
15113   }
15114   }
15115   return llvm::None;
15116 }
15117 
15118 /// This helper function takes a pointer expression and returns the alignment of
15119 /// a VarDecl and a constant offset from the VarDecl.
15120 Optional<std::pair<CharUnits, CharUnits>>
15121 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
15122   E = E->IgnoreParens();
15123   switch (E->getStmtClass()) {
15124   default:
15125     break;
15126   case Stmt::CStyleCastExprClass:
15127   case Stmt::CXXStaticCastExprClass:
15128   case Stmt::ImplicitCastExprClass: {
15129     auto *CE = cast<CastExpr>(E);
15130     const Expr *From = CE->getSubExpr();
15131     switch (CE->getCastKind()) {
15132     default:
15133       break;
15134     case CK_NoOp:
15135       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15136     case CK_ArrayToPointerDecay:
15137       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15138     case CK_UncheckedDerivedToBase:
15139     case CK_DerivedToBase: {
15140       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15141       if (!P)
15142         break;
15143       return getDerivedToBaseAlignmentAndOffset(
15144           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
15145     }
15146     }
15147     break;
15148   }
15149   case Stmt::CXXThisExprClass: {
15150     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
15151     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
15152     return std::make_pair(Alignment, CharUnits::Zero());
15153   }
15154   case Stmt::UnaryOperatorClass: {
15155     auto *UO = cast<UnaryOperator>(E);
15156     if (UO->getOpcode() == UO_AddrOf)
15157       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
15158     break;
15159   }
15160   case Stmt::BinaryOperatorClass: {
15161     auto *BO = cast<BinaryOperator>(E);
15162     auto Opcode = BO->getOpcode();
15163     switch (Opcode) {
15164     default:
15165       break;
15166     case BO_Add:
15167     case BO_Sub: {
15168       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
15169       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
15170         std::swap(LHS, RHS);
15171       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
15172                                                   Ctx);
15173     }
15174     case BO_Comma:
15175       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
15176     }
15177     break;
15178   }
15179   }
15180   return llvm::None;
15181 }
15182 
15183 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
15184   // See if we can compute the alignment of a VarDecl and an offset from it.
15185   Optional<std::pair<CharUnits, CharUnits>> P =
15186       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
15187 
15188   if (P)
15189     return P->first.alignmentAtOffset(P->second);
15190 
15191   // If that failed, return the type's alignment.
15192   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
15193 }
15194 
15195 /// CheckCastAlign - Implements -Wcast-align, which warns when a
15196 /// pointer cast increases the alignment requirements.
15197 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
15198   // This is actually a lot of work to potentially be doing on every
15199   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
15200   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
15201     return;
15202 
15203   // Ignore dependent types.
15204   if (T->isDependentType() || Op->getType()->isDependentType())
15205     return;
15206 
15207   // Require that the destination be a pointer type.
15208   const PointerType *DestPtr = T->getAs<PointerType>();
15209   if (!DestPtr) return;
15210 
15211   // If the destination has alignment 1, we're done.
15212   QualType DestPointee = DestPtr->getPointeeType();
15213   if (DestPointee->isIncompleteType()) return;
15214   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
15215   if (DestAlign.isOne()) return;
15216 
15217   // Require that the source be a pointer type.
15218   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
15219   if (!SrcPtr) return;
15220   QualType SrcPointee = SrcPtr->getPointeeType();
15221 
15222   // Explicitly allow casts from cv void*.  We already implicitly
15223   // allowed casts to cv void*, since they have alignment 1.
15224   // Also allow casts involving incomplete types, which implicitly
15225   // includes 'void'.
15226   if (SrcPointee->isIncompleteType()) return;
15227 
15228   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
15229 
15230   if (SrcAlign >= DestAlign) return;
15231 
15232   Diag(TRange.getBegin(), diag::warn_cast_align)
15233     << Op->getType() << T
15234     << static_cast<unsigned>(SrcAlign.getQuantity())
15235     << static_cast<unsigned>(DestAlign.getQuantity())
15236     << TRange << Op->getSourceRange();
15237 }
15238 
15239 /// Check whether this array fits the idiom of a size-one tail padded
15240 /// array member of a struct.
15241 ///
15242 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
15243 /// commonly used to emulate flexible arrays in C89 code.
15244 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15245                                     const NamedDecl *ND) {
15246   if (Size != 1 || !ND) return false;
15247 
15248   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15249   if (!FD) return false;
15250 
15251   // Don't consider sizes resulting from macro expansions or template argument
15252   // substitution to form C89 tail-padded arrays.
15253 
15254   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15255   while (TInfo) {
15256     TypeLoc TL = TInfo->getTypeLoc();
15257     // Look through typedefs.
15258     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15259       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15260       TInfo = TDL->getTypeSourceInfo();
15261       continue;
15262     }
15263     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15264       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15265       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15266         return false;
15267     }
15268     break;
15269   }
15270 
15271   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15272   if (!RD) return false;
15273   if (RD->isUnion()) return false;
15274   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15275     if (!CRD->isStandardLayout()) return false;
15276   }
15277 
15278   // See if this is the last field decl in the record.
15279   const Decl *D = FD;
15280   while ((D = D->getNextDeclInContext()))
15281     if (isa<FieldDecl>(D))
15282       return false;
15283   return true;
15284 }
15285 
15286 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15287                             const ArraySubscriptExpr *ASE,
15288                             bool AllowOnePastEnd, bool IndexNegated) {
15289   // Already diagnosed by the constant evaluator.
15290   if (isConstantEvaluated())
15291     return;
15292 
15293   IndexExpr = IndexExpr->IgnoreParenImpCasts();
15294   if (IndexExpr->isValueDependent())
15295     return;
15296 
15297   const Type *EffectiveType =
15298       BaseExpr->getType()->getPointeeOrArrayElementType();
15299   BaseExpr = BaseExpr->IgnoreParenCasts();
15300   const ConstantArrayType *ArrayTy =
15301       Context.getAsConstantArrayType(BaseExpr->getType());
15302 
15303   const Type *BaseType =
15304       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15305   bool IsUnboundedArray = (BaseType == nullptr);
15306   if (EffectiveType->isDependentType() ||
15307       (!IsUnboundedArray && BaseType->isDependentType()))
15308     return;
15309 
15310   Expr::EvalResult Result;
15311   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15312     return;
15313 
15314   llvm::APSInt index = Result.Val.getInt();
15315   if (IndexNegated) {
15316     index.setIsUnsigned(false);
15317     index = -index;
15318   }
15319 
15320   const NamedDecl *ND = nullptr;
15321   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15322     ND = DRE->getDecl();
15323   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15324     ND = ME->getMemberDecl();
15325 
15326   if (IsUnboundedArray) {
15327     if (index.isUnsigned() || !index.isNegative()) {
15328       const auto &ASTC = getASTContext();
15329       unsigned AddrBits =
15330           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15331               EffectiveType->getCanonicalTypeInternal()));
15332       if (index.getBitWidth() < AddrBits)
15333         index = index.zext(AddrBits);
15334       Optional<CharUnits> ElemCharUnits =
15335           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15336       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15337       // pointer) bounds-checking isn't meaningful.
15338       if (!ElemCharUnits)
15339         return;
15340       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15341       // If index has more active bits than address space, we already know
15342       // we have a bounds violation to warn about.  Otherwise, compute
15343       // address of (index + 1)th element, and warn about bounds violation
15344       // only if that address exceeds address space.
15345       if (index.getActiveBits() <= AddrBits) {
15346         bool Overflow;
15347         llvm::APInt Product(index);
15348         Product += 1;
15349         Product = Product.umul_ov(ElemBytes, Overflow);
15350         if (!Overflow && Product.getActiveBits() <= AddrBits)
15351           return;
15352       }
15353 
15354       // Need to compute max possible elements in address space, since that
15355       // is included in diag message.
15356       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15357       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15358       MaxElems += 1;
15359       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15360       MaxElems = MaxElems.udiv(ElemBytes);
15361 
15362       unsigned DiagID =
15363           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15364               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15365 
15366       // Diag message shows element size in bits and in "bytes" (platform-
15367       // dependent CharUnits)
15368       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15369                           PDiag(DiagID)
15370                               << toString(index, 10, true) << AddrBits
15371                               << (unsigned)ASTC.toBits(*ElemCharUnits)
15372                               << toString(ElemBytes, 10, false)
15373                               << toString(MaxElems, 10, false)
15374                               << (unsigned)MaxElems.getLimitedValue(~0U)
15375                               << IndexExpr->getSourceRange());
15376 
15377       if (!ND) {
15378         // Try harder to find a NamedDecl to point at in the note.
15379         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15380           BaseExpr = ASE->getBase()->IgnoreParenCasts();
15381         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15382           ND = DRE->getDecl();
15383         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15384           ND = ME->getMemberDecl();
15385       }
15386 
15387       if (ND)
15388         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15389                             PDiag(diag::note_array_declared_here) << ND);
15390     }
15391     return;
15392   }
15393 
15394   if (index.isUnsigned() || !index.isNegative()) {
15395     // It is possible that the type of the base expression after
15396     // IgnoreParenCasts is incomplete, even though the type of the base
15397     // expression before IgnoreParenCasts is complete (see PR39746 for an
15398     // example). In this case we have no information about whether the array
15399     // access exceeds the array bounds. However we can still diagnose an array
15400     // access which precedes the array bounds.
15401     if (BaseType->isIncompleteType())
15402       return;
15403 
15404     llvm::APInt size = ArrayTy->getSize();
15405     if (!size.isStrictlyPositive())
15406       return;
15407 
15408     if (BaseType != EffectiveType) {
15409       // Make sure we're comparing apples to apples when comparing index to size
15410       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15411       uint64_t array_typesize = Context.getTypeSize(BaseType);
15412       // Handle ptrarith_typesize being zero, such as when casting to void*
15413       if (!ptrarith_typesize) ptrarith_typesize = 1;
15414       if (ptrarith_typesize != array_typesize) {
15415         // There's a cast to a different size type involved
15416         uint64_t ratio = array_typesize / ptrarith_typesize;
15417         // TODO: Be smarter about handling cases where array_typesize is not a
15418         // multiple of ptrarith_typesize
15419         if (ptrarith_typesize * ratio == array_typesize)
15420           size *= llvm::APInt(size.getBitWidth(), ratio);
15421       }
15422     }
15423 
15424     if (size.getBitWidth() > index.getBitWidth())
15425       index = index.zext(size.getBitWidth());
15426     else if (size.getBitWidth() < index.getBitWidth())
15427       size = size.zext(index.getBitWidth());
15428 
15429     // For array subscripting the index must be less than size, but for pointer
15430     // arithmetic also allow the index (offset) to be equal to size since
15431     // computing the next address after the end of the array is legal and
15432     // commonly done e.g. in C++ iterators and range-based for loops.
15433     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15434       return;
15435 
15436     // Also don't warn for arrays of size 1 which are members of some
15437     // structure. These are often used to approximate flexible arrays in C89
15438     // code.
15439     if (IsTailPaddedMemberArray(*this, size, ND))
15440       return;
15441 
15442     // Suppress the warning if the subscript expression (as identified by the
15443     // ']' location) and the index expression are both from macro expansions
15444     // within a system header.
15445     if (ASE) {
15446       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15447           ASE->getRBracketLoc());
15448       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15449         SourceLocation IndexLoc =
15450             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15451         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15452           return;
15453       }
15454     }
15455 
15456     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15457                           : diag::warn_ptr_arith_exceeds_bounds;
15458 
15459     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15460                         PDiag(DiagID) << toString(index, 10, true)
15461                                       << toString(size, 10, true)
15462                                       << (unsigned)size.getLimitedValue(~0U)
15463                                       << IndexExpr->getSourceRange());
15464   } else {
15465     unsigned DiagID = diag::warn_array_index_precedes_bounds;
15466     if (!ASE) {
15467       DiagID = diag::warn_ptr_arith_precedes_bounds;
15468       if (index.isNegative()) index = -index;
15469     }
15470 
15471     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15472                         PDiag(DiagID) << toString(index, 10, true)
15473                                       << IndexExpr->getSourceRange());
15474   }
15475 
15476   if (!ND) {
15477     // Try harder to find a NamedDecl to point at in the note.
15478     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15479       BaseExpr = ASE->getBase()->IgnoreParenCasts();
15480     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15481       ND = DRE->getDecl();
15482     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15483       ND = ME->getMemberDecl();
15484   }
15485 
15486   if (ND)
15487     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15488                         PDiag(diag::note_array_declared_here) << ND);
15489 }
15490 
15491 void Sema::CheckArrayAccess(const Expr *expr) {
15492   int AllowOnePastEnd = 0;
15493   while (expr) {
15494     expr = expr->IgnoreParenImpCasts();
15495     switch (expr->getStmtClass()) {
15496       case Stmt::ArraySubscriptExprClass: {
15497         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15498         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15499                          AllowOnePastEnd > 0);
15500         expr = ASE->getBase();
15501         break;
15502       }
15503       case Stmt::MemberExprClass: {
15504         expr = cast<MemberExpr>(expr)->getBase();
15505         break;
15506       }
15507       case Stmt::OMPArraySectionExprClass: {
15508         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15509         if (ASE->getLowerBound())
15510           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15511                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
15512         return;
15513       }
15514       case Stmt::UnaryOperatorClass: {
15515         // Only unwrap the * and & unary operators
15516         const UnaryOperator *UO = cast<UnaryOperator>(expr);
15517         expr = UO->getSubExpr();
15518         switch (UO->getOpcode()) {
15519           case UO_AddrOf:
15520             AllowOnePastEnd++;
15521             break;
15522           case UO_Deref:
15523             AllowOnePastEnd--;
15524             break;
15525           default:
15526             return;
15527         }
15528         break;
15529       }
15530       case Stmt::ConditionalOperatorClass: {
15531         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15532         if (const Expr *lhs = cond->getLHS())
15533           CheckArrayAccess(lhs);
15534         if (const Expr *rhs = cond->getRHS())
15535           CheckArrayAccess(rhs);
15536         return;
15537       }
15538       case Stmt::CXXOperatorCallExprClass: {
15539         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15540         for (const auto *Arg : OCE->arguments())
15541           CheckArrayAccess(Arg);
15542         return;
15543       }
15544       default:
15545         return;
15546     }
15547   }
15548 }
15549 
15550 //===--- CHECK: Objective-C retain cycles ----------------------------------//
15551 
15552 namespace {
15553 
15554 struct RetainCycleOwner {
15555   VarDecl *Variable = nullptr;
15556   SourceRange Range;
15557   SourceLocation Loc;
15558   bool Indirect = false;
15559 
15560   RetainCycleOwner() = default;
15561 
15562   void setLocsFrom(Expr *e) {
15563     Loc = e->getExprLoc();
15564     Range = e->getSourceRange();
15565   }
15566 };
15567 
15568 } // namespace
15569 
15570 /// Consider whether capturing the given variable can possibly lead to
15571 /// a retain cycle.
15572 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15573   // In ARC, it's captured strongly iff the variable has __strong
15574   // lifetime.  In MRR, it's captured strongly if the variable is
15575   // __block and has an appropriate type.
15576   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15577     return false;
15578 
15579   owner.Variable = var;
15580   if (ref)
15581     owner.setLocsFrom(ref);
15582   return true;
15583 }
15584 
15585 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15586   while (true) {
15587     e = e->IgnoreParens();
15588     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15589       switch (cast->getCastKind()) {
15590       case CK_BitCast:
15591       case CK_LValueBitCast:
15592       case CK_LValueToRValue:
15593       case CK_ARCReclaimReturnedObject:
15594         e = cast->getSubExpr();
15595         continue;
15596 
15597       default:
15598         return false;
15599       }
15600     }
15601 
15602     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15603       ObjCIvarDecl *ivar = ref->getDecl();
15604       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15605         return false;
15606 
15607       // Try to find a retain cycle in the base.
15608       if (!findRetainCycleOwner(S, ref->getBase(), owner))
15609         return false;
15610 
15611       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15612       owner.Indirect = true;
15613       return true;
15614     }
15615 
15616     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15617       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15618       if (!var) return false;
15619       return considerVariable(var, ref, owner);
15620     }
15621 
15622     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15623       if (member->isArrow()) return false;
15624 
15625       // Don't count this as an indirect ownership.
15626       e = member->getBase();
15627       continue;
15628     }
15629 
15630     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15631       // Only pay attention to pseudo-objects on property references.
15632       ObjCPropertyRefExpr *pre
15633         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15634                                               ->IgnoreParens());
15635       if (!pre) return false;
15636       if (pre->isImplicitProperty()) return false;
15637       ObjCPropertyDecl *property = pre->getExplicitProperty();
15638       if (!property->isRetaining() &&
15639           !(property->getPropertyIvarDecl() &&
15640             property->getPropertyIvarDecl()->getType()
15641               .getObjCLifetime() == Qualifiers::OCL_Strong))
15642           return false;
15643 
15644       owner.Indirect = true;
15645       if (pre->isSuperReceiver()) {
15646         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15647         if (!owner.Variable)
15648           return false;
15649         owner.Loc = pre->getLocation();
15650         owner.Range = pre->getSourceRange();
15651         return true;
15652       }
15653       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15654                               ->getSourceExpr());
15655       continue;
15656     }
15657 
15658     // Array ivars?
15659 
15660     return false;
15661   }
15662 }
15663 
15664 namespace {
15665 
15666   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15667     ASTContext &Context;
15668     VarDecl *Variable;
15669     Expr *Capturer = nullptr;
15670     bool VarWillBeReased = false;
15671 
15672     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15673         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15674           Context(Context), Variable(variable) {}
15675 
15676     void VisitDeclRefExpr(DeclRefExpr *ref) {
15677       if (ref->getDecl() == Variable && !Capturer)
15678         Capturer = ref;
15679     }
15680 
15681     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15682       if (Capturer) return;
15683       Visit(ref->getBase());
15684       if (Capturer && ref->isFreeIvar())
15685         Capturer = ref;
15686     }
15687 
15688     void VisitBlockExpr(BlockExpr *block) {
15689       // Look inside nested blocks
15690       if (block->getBlockDecl()->capturesVariable(Variable))
15691         Visit(block->getBlockDecl()->getBody());
15692     }
15693 
15694     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15695       if (Capturer) return;
15696       if (OVE->getSourceExpr())
15697         Visit(OVE->getSourceExpr());
15698     }
15699 
15700     void VisitBinaryOperator(BinaryOperator *BinOp) {
15701       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15702         return;
15703       Expr *LHS = BinOp->getLHS();
15704       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15705         if (DRE->getDecl() != Variable)
15706           return;
15707         if (Expr *RHS = BinOp->getRHS()) {
15708           RHS = RHS->IgnoreParenCasts();
15709           Optional<llvm::APSInt> Value;
15710           VarWillBeReased =
15711               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15712                *Value == 0);
15713         }
15714       }
15715     }
15716   };
15717 
15718 } // namespace
15719 
15720 /// Check whether the given argument is a block which captures a
15721 /// variable.
15722 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15723   assert(owner.Variable && owner.Loc.isValid());
15724 
15725   e = e->IgnoreParenCasts();
15726 
15727   // Look through [^{...} copy] and Block_copy(^{...}).
15728   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15729     Selector Cmd = ME->getSelector();
15730     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15731       e = ME->getInstanceReceiver();
15732       if (!e)
15733         return nullptr;
15734       e = e->IgnoreParenCasts();
15735     }
15736   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15737     if (CE->getNumArgs() == 1) {
15738       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15739       if (Fn) {
15740         const IdentifierInfo *FnI = Fn->getIdentifier();
15741         if (FnI && FnI->isStr("_Block_copy")) {
15742           e = CE->getArg(0)->IgnoreParenCasts();
15743         }
15744       }
15745     }
15746   }
15747 
15748   BlockExpr *block = dyn_cast<BlockExpr>(e);
15749   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15750     return nullptr;
15751 
15752   FindCaptureVisitor visitor(S.Context, owner.Variable);
15753   visitor.Visit(block->getBlockDecl()->getBody());
15754   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15755 }
15756 
15757 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15758                                 RetainCycleOwner &owner) {
15759   assert(capturer);
15760   assert(owner.Variable && owner.Loc.isValid());
15761 
15762   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15763     << owner.Variable << capturer->getSourceRange();
15764   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15765     << owner.Indirect << owner.Range;
15766 }
15767 
15768 /// Check for a keyword selector that starts with the word 'add' or
15769 /// 'set'.
15770 static bool isSetterLikeSelector(Selector sel) {
15771   if (sel.isUnarySelector()) return false;
15772 
15773   StringRef str = sel.getNameForSlot(0);
15774   while (!str.empty() && str.front() == '_') str = str.substr(1);
15775   if (str.startswith("set"))
15776     str = str.substr(3);
15777   else if (str.startswith("add")) {
15778     // Specially allow 'addOperationWithBlock:'.
15779     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15780       return false;
15781     str = str.substr(3);
15782   }
15783   else
15784     return false;
15785 
15786   if (str.empty()) return true;
15787   return !isLowercase(str.front());
15788 }
15789 
15790 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15791                                                     ObjCMessageExpr *Message) {
15792   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15793                                                 Message->getReceiverInterface(),
15794                                                 NSAPI::ClassId_NSMutableArray);
15795   if (!IsMutableArray) {
15796     return None;
15797   }
15798 
15799   Selector Sel = Message->getSelector();
15800 
15801   Optional<NSAPI::NSArrayMethodKind> MKOpt =
15802     S.NSAPIObj->getNSArrayMethodKind(Sel);
15803   if (!MKOpt) {
15804     return None;
15805   }
15806 
15807   NSAPI::NSArrayMethodKind MK = *MKOpt;
15808 
15809   switch (MK) {
15810     case NSAPI::NSMutableArr_addObject:
15811     case NSAPI::NSMutableArr_insertObjectAtIndex:
15812     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15813       return 0;
15814     case NSAPI::NSMutableArr_replaceObjectAtIndex:
15815       return 1;
15816 
15817     default:
15818       return None;
15819   }
15820 
15821   return None;
15822 }
15823 
15824 static
15825 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15826                                                   ObjCMessageExpr *Message) {
15827   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15828                                             Message->getReceiverInterface(),
15829                                             NSAPI::ClassId_NSMutableDictionary);
15830   if (!IsMutableDictionary) {
15831     return None;
15832   }
15833 
15834   Selector Sel = Message->getSelector();
15835 
15836   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15837     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15838   if (!MKOpt) {
15839     return None;
15840   }
15841 
15842   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15843 
15844   switch (MK) {
15845     case NSAPI::NSMutableDict_setObjectForKey:
15846     case NSAPI::NSMutableDict_setValueForKey:
15847     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15848       return 0;
15849 
15850     default:
15851       return None;
15852   }
15853 
15854   return None;
15855 }
15856 
15857 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15858   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15859                                                 Message->getReceiverInterface(),
15860                                                 NSAPI::ClassId_NSMutableSet);
15861 
15862   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15863                                             Message->getReceiverInterface(),
15864                                             NSAPI::ClassId_NSMutableOrderedSet);
15865   if (!IsMutableSet && !IsMutableOrderedSet) {
15866     return None;
15867   }
15868 
15869   Selector Sel = Message->getSelector();
15870 
15871   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15872   if (!MKOpt) {
15873     return None;
15874   }
15875 
15876   NSAPI::NSSetMethodKind MK = *MKOpt;
15877 
15878   switch (MK) {
15879     case NSAPI::NSMutableSet_addObject:
15880     case NSAPI::NSOrderedSet_setObjectAtIndex:
15881     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15882     case NSAPI::NSOrderedSet_insertObjectAtIndex:
15883       return 0;
15884     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15885       return 1;
15886   }
15887 
15888   return None;
15889 }
15890 
15891 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15892   if (!Message->isInstanceMessage()) {
15893     return;
15894   }
15895 
15896   Optional<int> ArgOpt;
15897 
15898   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15899       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15900       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15901     return;
15902   }
15903 
15904   int ArgIndex = *ArgOpt;
15905 
15906   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15907   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15908     Arg = OE->getSourceExpr()->IgnoreImpCasts();
15909   }
15910 
15911   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15912     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15913       if (ArgRE->isObjCSelfExpr()) {
15914         Diag(Message->getSourceRange().getBegin(),
15915              diag::warn_objc_circular_container)
15916           << ArgRE->getDecl() << StringRef("'super'");
15917       }
15918     }
15919   } else {
15920     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15921 
15922     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15923       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15924     }
15925 
15926     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15927       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15928         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15929           ValueDecl *Decl = ReceiverRE->getDecl();
15930           Diag(Message->getSourceRange().getBegin(),
15931                diag::warn_objc_circular_container)
15932             << Decl << Decl;
15933           if (!ArgRE->isObjCSelfExpr()) {
15934             Diag(Decl->getLocation(),
15935                  diag::note_objc_circular_container_declared_here)
15936               << Decl;
15937           }
15938         }
15939       }
15940     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15941       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15942         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15943           ObjCIvarDecl *Decl = IvarRE->getDecl();
15944           Diag(Message->getSourceRange().getBegin(),
15945                diag::warn_objc_circular_container)
15946             << Decl << Decl;
15947           Diag(Decl->getLocation(),
15948                diag::note_objc_circular_container_declared_here)
15949             << Decl;
15950         }
15951       }
15952     }
15953   }
15954 }
15955 
15956 /// Check a message send to see if it's likely to cause a retain cycle.
15957 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15958   // Only check instance methods whose selector looks like a setter.
15959   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15960     return;
15961 
15962   // Try to find a variable that the receiver is strongly owned by.
15963   RetainCycleOwner owner;
15964   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15965     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15966       return;
15967   } else {
15968     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
15969     owner.Variable = getCurMethodDecl()->getSelfDecl();
15970     owner.Loc = msg->getSuperLoc();
15971     owner.Range = msg->getSuperLoc();
15972   }
15973 
15974   // Check whether the receiver is captured by any of the arguments.
15975   const ObjCMethodDecl *MD = msg->getMethodDecl();
15976   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15977     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15978       // noescape blocks should not be retained by the method.
15979       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15980         continue;
15981       return diagnoseRetainCycle(*this, capturer, owner);
15982     }
15983   }
15984 }
15985 
15986 /// Check a property assign to see if it's likely to cause a retain cycle.
15987 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15988   RetainCycleOwner owner;
15989   if (!findRetainCycleOwner(*this, receiver, owner))
15990     return;
15991 
15992   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15993     diagnoseRetainCycle(*this, capturer, owner);
15994 }
15995 
15996 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15997   RetainCycleOwner Owner;
15998   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15999     return;
16000 
16001   // Because we don't have an expression for the variable, we have to set the
16002   // location explicitly here.
16003   Owner.Loc = Var->getLocation();
16004   Owner.Range = Var->getSourceRange();
16005 
16006   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
16007     diagnoseRetainCycle(*this, Capturer, Owner);
16008 }
16009 
16010 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
16011                                      Expr *RHS, bool isProperty) {
16012   // Check if RHS is an Objective-C object literal, which also can get
16013   // immediately zapped in a weak reference.  Note that we explicitly
16014   // allow ObjCStringLiterals, since those are designed to never really die.
16015   RHS = RHS->IgnoreParenImpCasts();
16016 
16017   // This enum needs to match with the 'select' in
16018   // warn_objc_arc_literal_assign (off-by-1).
16019   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
16020   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
16021     return false;
16022 
16023   S.Diag(Loc, diag::warn_arc_literal_assign)
16024     << (unsigned) Kind
16025     << (isProperty ? 0 : 1)
16026     << RHS->getSourceRange();
16027 
16028   return true;
16029 }
16030 
16031 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
16032                                     Qualifiers::ObjCLifetime LT,
16033                                     Expr *RHS, bool isProperty) {
16034   // Strip off any implicit cast added to get to the one ARC-specific.
16035   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16036     if (cast->getCastKind() == CK_ARCConsumeObject) {
16037       S.Diag(Loc, diag::warn_arc_retained_assign)
16038         << (LT == Qualifiers::OCL_ExplicitNone)
16039         << (isProperty ? 0 : 1)
16040         << RHS->getSourceRange();
16041       return true;
16042     }
16043     RHS = cast->getSubExpr();
16044   }
16045 
16046   if (LT == Qualifiers::OCL_Weak &&
16047       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
16048     return true;
16049 
16050   return false;
16051 }
16052 
16053 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
16054                               QualType LHS, Expr *RHS) {
16055   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
16056 
16057   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
16058     return false;
16059 
16060   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
16061     return true;
16062 
16063   return false;
16064 }
16065 
16066 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
16067                               Expr *LHS, Expr *RHS) {
16068   QualType LHSType;
16069   // PropertyRef on LHS type need be directly obtained from
16070   // its declaration as it has a PseudoType.
16071   ObjCPropertyRefExpr *PRE
16072     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
16073   if (PRE && !PRE->isImplicitProperty()) {
16074     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16075     if (PD)
16076       LHSType = PD->getType();
16077   }
16078 
16079   if (LHSType.isNull())
16080     LHSType = LHS->getType();
16081 
16082   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
16083 
16084   if (LT == Qualifiers::OCL_Weak) {
16085     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
16086       getCurFunction()->markSafeWeakUse(LHS);
16087   }
16088 
16089   if (checkUnsafeAssigns(Loc, LHSType, RHS))
16090     return;
16091 
16092   // FIXME. Check for other life times.
16093   if (LT != Qualifiers::OCL_None)
16094     return;
16095 
16096   if (PRE) {
16097     if (PRE->isImplicitProperty())
16098       return;
16099     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16100     if (!PD)
16101       return;
16102 
16103     unsigned Attributes = PD->getPropertyAttributes();
16104     if (Attributes & ObjCPropertyAttribute::kind_assign) {
16105       // when 'assign' attribute was not explicitly specified
16106       // by user, ignore it and rely on property type itself
16107       // for lifetime info.
16108       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
16109       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
16110           LHSType->isObjCRetainableType())
16111         return;
16112 
16113       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16114         if (cast->getCastKind() == CK_ARCConsumeObject) {
16115           Diag(Loc, diag::warn_arc_retained_property_assign)
16116           << RHS->getSourceRange();
16117           return;
16118         }
16119         RHS = cast->getSubExpr();
16120       }
16121     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
16122       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
16123         return;
16124     }
16125   }
16126 }
16127 
16128 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
16129 
16130 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
16131                                         SourceLocation StmtLoc,
16132                                         const NullStmt *Body) {
16133   // Do not warn if the body is a macro that expands to nothing, e.g:
16134   //
16135   // #define CALL(x)
16136   // if (condition)
16137   //   CALL(0);
16138   if (Body->hasLeadingEmptyMacro())
16139     return false;
16140 
16141   // Get line numbers of statement and body.
16142   bool StmtLineInvalid;
16143   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
16144                                                       &StmtLineInvalid);
16145   if (StmtLineInvalid)
16146     return false;
16147 
16148   bool BodyLineInvalid;
16149   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
16150                                                       &BodyLineInvalid);
16151   if (BodyLineInvalid)
16152     return false;
16153 
16154   // Warn if null statement and body are on the same line.
16155   if (StmtLine != BodyLine)
16156     return false;
16157 
16158   return true;
16159 }
16160 
16161 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
16162                                  const Stmt *Body,
16163                                  unsigned DiagID) {
16164   // Since this is a syntactic check, don't emit diagnostic for template
16165   // instantiations, this just adds noise.
16166   if (CurrentInstantiationScope)
16167     return;
16168 
16169   // The body should be a null statement.
16170   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16171   if (!NBody)
16172     return;
16173 
16174   // Do the usual checks.
16175   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16176     return;
16177 
16178   Diag(NBody->getSemiLoc(), DiagID);
16179   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16180 }
16181 
16182 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
16183                                  const Stmt *PossibleBody) {
16184   assert(!CurrentInstantiationScope); // Ensured by caller
16185 
16186   SourceLocation StmtLoc;
16187   const Stmt *Body;
16188   unsigned DiagID;
16189   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
16190     StmtLoc = FS->getRParenLoc();
16191     Body = FS->getBody();
16192     DiagID = diag::warn_empty_for_body;
16193   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
16194     StmtLoc = WS->getCond()->getSourceRange().getEnd();
16195     Body = WS->getBody();
16196     DiagID = diag::warn_empty_while_body;
16197   } else
16198     return; // Neither `for' nor `while'.
16199 
16200   // The body should be a null statement.
16201   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16202   if (!NBody)
16203     return;
16204 
16205   // Skip expensive checks if diagnostic is disabled.
16206   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
16207     return;
16208 
16209   // Do the usual checks.
16210   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16211     return;
16212 
16213   // `for(...);' and `while(...);' are popular idioms, so in order to keep
16214   // noise level low, emit diagnostics only if for/while is followed by a
16215   // CompoundStmt, e.g.:
16216   //    for (int i = 0; i < n; i++);
16217   //    {
16218   //      a(i);
16219   //    }
16220   // or if for/while is followed by a statement with more indentation
16221   // than for/while itself:
16222   //    for (int i = 0; i < n; i++);
16223   //      a(i);
16224   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
16225   if (!ProbableTypo) {
16226     bool BodyColInvalid;
16227     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
16228         PossibleBody->getBeginLoc(), &BodyColInvalid);
16229     if (BodyColInvalid)
16230       return;
16231 
16232     bool StmtColInvalid;
16233     unsigned StmtCol =
16234         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
16235     if (StmtColInvalid)
16236       return;
16237 
16238     if (BodyCol > StmtCol)
16239       ProbableTypo = true;
16240   }
16241 
16242   if (ProbableTypo) {
16243     Diag(NBody->getSemiLoc(), DiagID);
16244     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16245   }
16246 }
16247 
16248 //===--- CHECK: Warn on self move with std::move. -------------------------===//
16249 
16250 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
16251 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16252                              SourceLocation OpLoc) {
16253   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16254     return;
16255 
16256   if (inTemplateInstantiation())
16257     return;
16258 
16259   // Strip parens and casts away.
16260   LHSExpr = LHSExpr->IgnoreParenImpCasts();
16261   RHSExpr = RHSExpr->IgnoreParenImpCasts();
16262 
16263   // Check for a call expression
16264   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16265   if (!CE || CE->getNumArgs() != 1)
16266     return;
16267 
16268   // Check for a call to std::move
16269   if (!CE->isCallToStdMove())
16270     return;
16271 
16272   // Get argument from std::move
16273   RHSExpr = CE->getArg(0);
16274 
16275   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16276   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16277 
16278   // Two DeclRefExpr's, check that the decls are the same.
16279   if (LHSDeclRef && RHSDeclRef) {
16280     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16281       return;
16282     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16283         RHSDeclRef->getDecl()->getCanonicalDecl())
16284       return;
16285 
16286     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16287                                         << LHSExpr->getSourceRange()
16288                                         << RHSExpr->getSourceRange();
16289     return;
16290   }
16291 
16292   // Member variables require a different approach to check for self moves.
16293   // MemberExpr's are the same if every nested MemberExpr refers to the same
16294   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16295   // the base Expr's are CXXThisExpr's.
16296   const Expr *LHSBase = LHSExpr;
16297   const Expr *RHSBase = RHSExpr;
16298   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16299   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16300   if (!LHSME || !RHSME)
16301     return;
16302 
16303   while (LHSME && RHSME) {
16304     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16305         RHSME->getMemberDecl()->getCanonicalDecl())
16306       return;
16307 
16308     LHSBase = LHSME->getBase();
16309     RHSBase = RHSME->getBase();
16310     LHSME = dyn_cast<MemberExpr>(LHSBase);
16311     RHSME = dyn_cast<MemberExpr>(RHSBase);
16312   }
16313 
16314   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16315   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16316   if (LHSDeclRef && RHSDeclRef) {
16317     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16318       return;
16319     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16320         RHSDeclRef->getDecl()->getCanonicalDecl())
16321       return;
16322 
16323     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16324                                         << LHSExpr->getSourceRange()
16325                                         << RHSExpr->getSourceRange();
16326     return;
16327   }
16328 
16329   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16330     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16331                                         << LHSExpr->getSourceRange()
16332                                         << RHSExpr->getSourceRange();
16333 }
16334 
16335 //===--- Layout compatibility ----------------------------------------------//
16336 
16337 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16338 
16339 /// Check if two enumeration types are layout-compatible.
16340 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16341   // C++11 [dcl.enum] p8:
16342   // Two enumeration types are layout-compatible if they have the same
16343   // underlying type.
16344   return ED1->isComplete() && ED2->isComplete() &&
16345          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16346 }
16347 
16348 /// Check if two fields are layout-compatible.
16349 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16350                                FieldDecl *Field2) {
16351   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16352     return false;
16353 
16354   if (Field1->isBitField() != Field2->isBitField())
16355     return false;
16356 
16357   if (Field1->isBitField()) {
16358     // Make sure that the bit-fields are the same length.
16359     unsigned Bits1 = Field1->getBitWidthValue(C);
16360     unsigned Bits2 = Field2->getBitWidthValue(C);
16361 
16362     if (Bits1 != Bits2)
16363       return false;
16364   }
16365 
16366   return true;
16367 }
16368 
16369 /// Check if two standard-layout structs are layout-compatible.
16370 /// (C++11 [class.mem] p17)
16371 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16372                                      RecordDecl *RD2) {
16373   // If both records are C++ classes, check that base classes match.
16374   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16375     // If one of records is a CXXRecordDecl we are in C++ mode,
16376     // thus the other one is a CXXRecordDecl, too.
16377     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16378     // Check number of base classes.
16379     if (D1CXX->getNumBases() != D2CXX->getNumBases())
16380       return false;
16381 
16382     // Check the base classes.
16383     for (CXXRecordDecl::base_class_const_iterator
16384                Base1 = D1CXX->bases_begin(),
16385            BaseEnd1 = D1CXX->bases_end(),
16386               Base2 = D2CXX->bases_begin();
16387          Base1 != BaseEnd1;
16388          ++Base1, ++Base2) {
16389       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16390         return false;
16391     }
16392   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16393     // If only RD2 is a C++ class, it should have zero base classes.
16394     if (D2CXX->getNumBases() > 0)
16395       return false;
16396   }
16397 
16398   // Check the fields.
16399   RecordDecl::field_iterator Field2 = RD2->field_begin(),
16400                              Field2End = RD2->field_end(),
16401                              Field1 = RD1->field_begin(),
16402                              Field1End = RD1->field_end();
16403   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16404     if (!isLayoutCompatible(C, *Field1, *Field2))
16405       return false;
16406   }
16407   if (Field1 != Field1End || Field2 != Field2End)
16408     return false;
16409 
16410   return true;
16411 }
16412 
16413 /// Check if two standard-layout unions are layout-compatible.
16414 /// (C++11 [class.mem] p18)
16415 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16416                                     RecordDecl *RD2) {
16417   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16418   for (auto *Field2 : RD2->fields())
16419     UnmatchedFields.insert(Field2);
16420 
16421   for (auto *Field1 : RD1->fields()) {
16422     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16423         I = UnmatchedFields.begin(),
16424         E = UnmatchedFields.end();
16425 
16426     for ( ; I != E; ++I) {
16427       if (isLayoutCompatible(C, Field1, *I)) {
16428         bool Result = UnmatchedFields.erase(*I);
16429         (void) Result;
16430         assert(Result);
16431         break;
16432       }
16433     }
16434     if (I == E)
16435       return false;
16436   }
16437 
16438   return UnmatchedFields.empty();
16439 }
16440 
16441 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16442                                RecordDecl *RD2) {
16443   if (RD1->isUnion() != RD2->isUnion())
16444     return false;
16445 
16446   if (RD1->isUnion())
16447     return isLayoutCompatibleUnion(C, RD1, RD2);
16448   else
16449     return isLayoutCompatibleStruct(C, RD1, RD2);
16450 }
16451 
16452 /// Check if two types are layout-compatible in C++11 sense.
16453 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16454   if (T1.isNull() || T2.isNull())
16455     return false;
16456 
16457   // C++11 [basic.types] p11:
16458   // If two types T1 and T2 are the same type, then T1 and T2 are
16459   // layout-compatible types.
16460   if (C.hasSameType(T1, T2))
16461     return true;
16462 
16463   T1 = T1.getCanonicalType().getUnqualifiedType();
16464   T2 = T2.getCanonicalType().getUnqualifiedType();
16465 
16466   const Type::TypeClass TC1 = T1->getTypeClass();
16467   const Type::TypeClass TC2 = T2->getTypeClass();
16468 
16469   if (TC1 != TC2)
16470     return false;
16471 
16472   if (TC1 == Type::Enum) {
16473     return isLayoutCompatible(C,
16474                               cast<EnumType>(T1)->getDecl(),
16475                               cast<EnumType>(T2)->getDecl());
16476   } else if (TC1 == Type::Record) {
16477     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16478       return false;
16479 
16480     return isLayoutCompatible(C,
16481                               cast<RecordType>(T1)->getDecl(),
16482                               cast<RecordType>(T2)->getDecl());
16483   }
16484 
16485   return false;
16486 }
16487 
16488 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16489 
16490 /// Given a type tag expression find the type tag itself.
16491 ///
16492 /// \param TypeExpr Type tag expression, as it appears in user's code.
16493 ///
16494 /// \param VD Declaration of an identifier that appears in a type tag.
16495 ///
16496 /// \param MagicValue Type tag magic value.
16497 ///
16498 /// \param isConstantEvaluated whether the evalaution should be performed in
16499 
16500 /// constant context.
16501 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16502                             const ValueDecl **VD, uint64_t *MagicValue,
16503                             bool isConstantEvaluated) {
16504   while(true) {
16505     if (!TypeExpr)
16506       return false;
16507 
16508     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16509 
16510     switch (TypeExpr->getStmtClass()) {
16511     case Stmt::UnaryOperatorClass: {
16512       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16513       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16514         TypeExpr = UO->getSubExpr();
16515         continue;
16516       }
16517       return false;
16518     }
16519 
16520     case Stmt::DeclRefExprClass: {
16521       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16522       *VD = DRE->getDecl();
16523       return true;
16524     }
16525 
16526     case Stmt::IntegerLiteralClass: {
16527       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16528       llvm::APInt MagicValueAPInt = IL->getValue();
16529       if (MagicValueAPInt.getActiveBits() <= 64) {
16530         *MagicValue = MagicValueAPInt.getZExtValue();
16531         return true;
16532       } else
16533         return false;
16534     }
16535 
16536     case Stmt::BinaryConditionalOperatorClass:
16537     case Stmt::ConditionalOperatorClass: {
16538       const AbstractConditionalOperator *ACO =
16539           cast<AbstractConditionalOperator>(TypeExpr);
16540       bool Result;
16541       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16542                                                      isConstantEvaluated)) {
16543         if (Result)
16544           TypeExpr = ACO->getTrueExpr();
16545         else
16546           TypeExpr = ACO->getFalseExpr();
16547         continue;
16548       }
16549       return false;
16550     }
16551 
16552     case Stmt::BinaryOperatorClass: {
16553       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16554       if (BO->getOpcode() == BO_Comma) {
16555         TypeExpr = BO->getRHS();
16556         continue;
16557       }
16558       return false;
16559     }
16560 
16561     default:
16562       return false;
16563     }
16564   }
16565 }
16566 
16567 /// Retrieve the C type corresponding to type tag TypeExpr.
16568 ///
16569 /// \param TypeExpr Expression that specifies a type tag.
16570 ///
16571 /// \param MagicValues Registered magic values.
16572 ///
16573 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16574 ///        kind.
16575 ///
16576 /// \param TypeInfo Information about the corresponding C type.
16577 ///
16578 /// \param isConstantEvaluated whether the evalaution should be performed in
16579 /// constant context.
16580 ///
16581 /// \returns true if the corresponding C type was found.
16582 static bool GetMatchingCType(
16583     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16584     const ASTContext &Ctx,
16585     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16586         *MagicValues,
16587     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16588     bool isConstantEvaluated) {
16589   FoundWrongKind = false;
16590 
16591   // Variable declaration that has type_tag_for_datatype attribute.
16592   const ValueDecl *VD = nullptr;
16593 
16594   uint64_t MagicValue;
16595 
16596   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16597     return false;
16598 
16599   if (VD) {
16600     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16601       if (I->getArgumentKind() != ArgumentKind) {
16602         FoundWrongKind = true;
16603         return false;
16604       }
16605       TypeInfo.Type = I->getMatchingCType();
16606       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16607       TypeInfo.MustBeNull = I->getMustBeNull();
16608       return true;
16609     }
16610     return false;
16611   }
16612 
16613   if (!MagicValues)
16614     return false;
16615 
16616   llvm::DenseMap<Sema::TypeTagMagicValue,
16617                  Sema::TypeTagData>::const_iterator I =
16618       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16619   if (I == MagicValues->end())
16620     return false;
16621 
16622   TypeInfo = I->second;
16623   return true;
16624 }
16625 
16626 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16627                                       uint64_t MagicValue, QualType Type,
16628                                       bool LayoutCompatible,
16629                                       bool MustBeNull) {
16630   if (!TypeTagForDatatypeMagicValues)
16631     TypeTagForDatatypeMagicValues.reset(
16632         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16633 
16634   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16635   (*TypeTagForDatatypeMagicValues)[Magic] =
16636       TypeTagData(Type, LayoutCompatible, MustBeNull);
16637 }
16638 
16639 static bool IsSameCharType(QualType T1, QualType T2) {
16640   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16641   if (!BT1)
16642     return false;
16643 
16644   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16645   if (!BT2)
16646     return false;
16647 
16648   BuiltinType::Kind T1Kind = BT1->getKind();
16649   BuiltinType::Kind T2Kind = BT2->getKind();
16650 
16651   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
16652          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
16653          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16654          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16655 }
16656 
16657 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16658                                     const ArrayRef<const Expr *> ExprArgs,
16659                                     SourceLocation CallSiteLoc) {
16660   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16661   bool IsPointerAttr = Attr->getIsPointer();
16662 
16663   // Retrieve the argument representing the 'type_tag'.
16664   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16665   if (TypeTagIdxAST >= ExprArgs.size()) {
16666     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16667         << 0 << Attr->getTypeTagIdx().getSourceIndex();
16668     return;
16669   }
16670   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16671   bool FoundWrongKind;
16672   TypeTagData TypeInfo;
16673   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16674                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16675                         TypeInfo, isConstantEvaluated())) {
16676     if (FoundWrongKind)
16677       Diag(TypeTagExpr->getExprLoc(),
16678            diag::warn_type_tag_for_datatype_wrong_kind)
16679         << TypeTagExpr->getSourceRange();
16680     return;
16681   }
16682 
16683   // Retrieve the argument representing the 'arg_idx'.
16684   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16685   if (ArgumentIdxAST >= ExprArgs.size()) {
16686     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16687         << 1 << Attr->getArgumentIdx().getSourceIndex();
16688     return;
16689   }
16690   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16691   if (IsPointerAttr) {
16692     // Skip implicit cast of pointer to `void *' (as a function argument).
16693     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16694       if (ICE->getType()->isVoidPointerType() &&
16695           ICE->getCastKind() == CK_BitCast)
16696         ArgumentExpr = ICE->getSubExpr();
16697   }
16698   QualType ArgumentType = ArgumentExpr->getType();
16699 
16700   // Passing a `void*' pointer shouldn't trigger a warning.
16701   if (IsPointerAttr && ArgumentType->isVoidPointerType())
16702     return;
16703 
16704   if (TypeInfo.MustBeNull) {
16705     // Type tag with matching void type requires a null pointer.
16706     if (!ArgumentExpr->isNullPointerConstant(Context,
16707                                              Expr::NPC_ValueDependentIsNotNull)) {
16708       Diag(ArgumentExpr->getExprLoc(),
16709            diag::warn_type_safety_null_pointer_required)
16710           << ArgumentKind->getName()
16711           << ArgumentExpr->getSourceRange()
16712           << TypeTagExpr->getSourceRange();
16713     }
16714     return;
16715   }
16716 
16717   QualType RequiredType = TypeInfo.Type;
16718   if (IsPointerAttr)
16719     RequiredType = Context.getPointerType(RequiredType);
16720 
16721   bool mismatch = false;
16722   if (!TypeInfo.LayoutCompatible) {
16723     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16724 
16725     // C++11 [basic.fundamental] p1:
16726     // Plain char, signed char, and unsigned char are three distinct types.
16727     //
16728     // But we treat plain `char' as equivalent to `signed char' or `unsigned
16729     // char' depending on the current char signedness mode.
16730     if (mismatch)
16731       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16732                                            RequiredType->getPointeeType())) ||
16733           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16734         mismatch = false;
16735   } else
16736     if (IsPointerAttr)
16737       mismatch = !isLayoutCompatible(Context,
16738                                      ArgumentType->getPointeeType(),
16739                                      RequiredType->getPointeeType());
16740     else
16741       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16742 
16743   if (mismatch)
16744     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16745         << ArgumentType << ArgumentKind
16746         << TypeInfo.LayoutCompatible << RequiredType
16747         << ArgumentExpr->getSourceRange()
16748         << TypeTagExpr->getSourceRange();
16749 }
16750 
16751 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16752                                          CharUnits Alignment) {
16753   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16754 }
16755 
16756 void Sema::DiagnoseMisalignedMembers() {
16757   for (MisalignedMember &m : MisalignedMembers) {
16758     const NamedDecl *ND = m.RD;
16759     if (ND->getName().empty()) {
16760       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16761         ND = TD;
16762     }
16763     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16764         << m.MD << ND << m.E->getSourceRange();
16765   }
16766   MisalignedMembers.clear();
16767 }
16768 
16769 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16770   E = E->IgnoreParens();
16771   if (!T->isPointerType() && !T->isIntegerType())
16772     return;
16773   if (isa<UnaryOperator>(E) &&
16774       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16775     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16776     if (isa<MemberExpr>(Op)) {
16777       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16778       if (MA != MisalignedMembers.end() &&
16779           (T->isIntegerType() ||
16780            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16781                                    Context.getTypeAlignInChars(
16782                                        T->getPointeeType()) <= MA->Alignment))))
16783         MisalignedMembers.erase(MA);
16784     }
16785   }
16786 }
16787 
16788 void Sema::RefersToMemberWithReducedAlignment(
16789     Expr *E,
16790     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16791         Action) {
16792   const auto *ME = dyn_cast<MemberExpr>(E);
16793   if (!ME)
16794     return;
16795 
16796   // No need to check expressions with an __unaligned-qualified type.
16797   if (E->getType().getQualifiers().hasUnaligned())
16798     return;
16799 
16800   // For a chain of MemberExpr like "a.b.c.d" this list
16801   // will keep FieldDecl's like [d, c, b].
16802   SmallVector<FieldDecl *, 4> ReverseMemberChain;
16803   const MemberExpr *TopME = nullptr;
16804   bool AnyIsPacked = false;
16805   do {
16806     QualType BaseType = ME->getBase()->getType();
16807     if (BaseType->isDependentType())
16808       return;
16809     if (ME->isArrow())
16810       BaseType = BaseType->getPointeeType();
16811     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16812     if (RD->isInvalidDecl())
16813       return;
16814 
16815     ValueDecl *MD = ME->getMemberDecl();
16816     auto *FD = dyn_cast<FieldDecl>(MD);
16817     // We do not care about non-data members.
16818     if (!FD || FD->isInvalidDecl())
16819       return;
16820 
16821     AnyIsPacked =
16822         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16823     ReverseMemberChain.push_back(FD);
16824 
16825     TopME = ME;
16826     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16827   } while (ME);
16828   assert(TopME && "We did not compute a topmost MemberExpr!");
16829 
16830   // Not the scope of this diagnostic.
16831   if (!AnyIsPacked)
16832     return;
16833 
16834   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16835   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16836   // TODO: The innermost base of the member expression may be too complicated.
16837   // For now, just disregard these cases. This is left for future
16838   // improvement.
16839   if (!DRE && !isa<CXXThisExpr>(TopBase))
16840       return;
16841 
16842   // Alignment expected by the whole expression.
16843   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16844 
16845   // No need to do anything else with this case.
16846   if (ExpectedAlignment.isOne())
16847     return;
16848 
16849   // Synthesize offset of the whole access.
16850   CharUnits Offset;
16851   for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
16852     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
16853 
16854   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16855   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16856       ReverseMemberChain.back()->getParent()->getTypeForDecl());
16857 
16858   // The base expression of the innermost MemberExpr may give
16859   // stronger guarantees than the class containing the member.
16860   if (DRE && !TopME->isArrow()) {
16861     const ValueDecl *VD = DRE->getDecl();
16862     if (!VD->getType()->isReferenceType())
16863       CompleteObjectAlignment =
16864           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16865   }
16866 
16867   // Check if the synthesized offset fulfills the alignment.
16868   if (Offset % ExpectedAlignment != 0 ||
16869       // It may fulfill the offset it but the effective alignment may still be
16870       // lower than the expected expression alignment.
16871       CompleteObjectAlignment < ExpectedAlignment) {
16872     // If this happens, we want to determine a sensible culprit of this.
16873     // Intuitively, watching the chain of member expressions from right to
16874     // left, we start with the required alignment (as required by the field
16875     // type) but some packed attribute in that chain has reduced the alignment.
16876     // It may happen that another packed structure increases it again. But if
16877     // we are here such increase has not been enough. So pointing the first
16878     // FieldDecl that either is packed or else its RecordDecl is,
16879     // seems reasonable.
16880     FieldDecl *FD = nullptr;
16881     CharUnits Alignment;
16882     for (FieldDecl *FDI : ReverseMemberChain) {
16883       if (FDI->hasAttr<PackedAttr>() ||
16884           FDI->getParent()->hasAttr<PackedAttr>()) {
16885         FD = FDI;
16886         Alignment = std::min(
16887             Context.getTypeAlignInChars(FD->getType()),
16888             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16889         break;
16890       }
16891     }
16892     assert(FD && "We did not find a packed FieldDecl!");
16893     Action(E, FD->getParent(), FD, Alignment);
16894   }
16895 }
16896 
16897 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16898   using namespace std::placeholders;
16899 
16900   RefersToMemberWithReducedAlignment(
16901       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16902                      _2, _3, _4));
16903 }
16904 
16905 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
16906 // not a valid type, emit an error message and return true. Otherwise return
16907 // false.
16908 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
16909                                         QualType Ty) {
16910   if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
16911     S.Diag(Loc, diag::err_builtin_invalid_arg_type)
16912         << 1 << /* vector, integer or float ty*/ 0 << Ty;
16913     return true;
16914   }
16915   return false;
16916 }
16917 
16918 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
16919   if (checkArgCount(*this, TheCall, 1))
16920     return true;
16921 
16922   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16923   if (A.isInvalid())
16924     return true;
16925 
16926   TheCall->setArg(0, A.get());
16927   QualType TyA = A.get()->getType();
16928 
16929   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16930     return true;
16931 
16932   TheCall->setType(TyA);
16933   return false;
16934 }
16935 
16936 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
16937   if (checkArgCount(*this, TheCall, 2))
16938     return true;
16939 
16940   ExprResult A = TheCall->getArg(0);
16941   ExprResult B = TheCall->getArg(1);
16942   // Do standard promotions between the two arguments, returning their common
16943   // type.
16944   QualType Res =
16945       UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
16946   if (A.isInvalid() || B.isInvalid())
16947     return true;
16948 
16949   QualType TyA = A.get()->getType();
16950   QualType TyB = B.get()->getType();
16951 
16952   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
16953     return Diag(A.get()->getBeginLoc(),
16954                 diag::err_typecheck_call_different_arg_types)
16955            << TyA << TyB;
16956 
16957   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16958     return true;
16959 
16960   TheCall->setArg(0, A.get());
16961   TheCall->setArg(1, B.get());
16962   TheCall->setType(Res);
16963   return false;
16964 }
16965 
16966 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
16967   if (checkArgCount(*this, TheCall, 1))
16968     return true;
16969 
16970   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16971   if (A.isInvalid())
16972     return true;
16973 
16974   TheCall->setArg(0, A.get());
16975   return false;
16976 }
16977 
16978 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16979                                             ExprResult CallResult) {
16980   if (checkArgCount(*this, TheCall, 1))
16981     return ExprError();
16982 
16983   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16984   if (MatrixArg.isInvalid())
16985     return MatrixArg;
16986   Expr *Matrix = MatrixArg.get();
16987 
16988   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16989   if (!MType) {
16990     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
16991         << 1 << /* matrix ty*/ 1 << Matrix->getType();
16992     return ExprError();
16993   }
16994 
16995   // Create returned matrix type by swapping rows and columns of the argument
16996   // matrix type.
16997   QualType ResultType = Context.getConstantMatrixType(
16998       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16999 
17000   // Change the return type to the type of the returned matrix.
17001   TheCall->setType(ResultType);
17002 
17003   // Update call argument to use the possibly converted matrix argument.
17004   TheCall->setArg(0, Matrix);
17005   return CallResult;
17006 }
17007 
17008 // Get and verify the matrix dimensions.
17009 static llvm::Optional<unsigned>
17010 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
17011   SourceLocation ErrorPos;
17012   Optional<llvm::APSInt> Value =
17013       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
17014   if (!Value) {
17015     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
17016         << Name;
17017     return {};
17018   }
17019   uint64_t Dim = Value->getZExtValue();
17020   if (!ConstantMatrixType::isDimensionValid(Dim)) {
17021     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
17022         << Name << ConstantMatrixType::getMaxElementsPerDimension();
17023     return {};
17024   }
17025   return Dim;
17026 }
17027 
17028 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
17029                                                   ExprResult CallResult) {
17030   if (!getLangOpts().MatrixTypes) {
17031     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
17032     return ExprError();
17033   }
17034 
17035   if (checkArgCount(*this, TheCall, 4))
17036     return ExprError();
17037 
17038   unsigned PtrArgIdx = 0;
17039   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17040   Expr *RowsExpr = TheCall->getArg(1);
17041   Expr *ColumnsExpr = TheCall->getArg(2);
17042   Expr *StrideExpr = TheCall->getArg(3);
17043 
17044   bool ArgError = false;
17045 
17046   // Check pointer argument.
17047   {
17048     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17049     if (PtrConv.isInvalid())
17050       return PtrConv;
17051     PtrExpr = PtrConv.get();
17052     TheCall->setArg(0, PtrExpr);
17053     if (PtrExpr->isTypeDependent()) {
17054       TheCall->setType(Context.DependentTy);
17055       return TheCall;
17056     }
17057   }
17058 
17059   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17060   QualType ElementTy;
17061   if (!PtrTy) {
17062     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17063         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17064     ArgError = true;
17065   } else {
17066     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
17067 
17068     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
17069       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17070           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
17071           << PtrExpr->getType();
17072       ArgError = true;
17073     }
17074   }
17075 
17076   // Apply default Lvalue conversions and convert the expression to size_t.
17077   auto ApplyArgumentConversions = [this](Expr *E) {
17078     ExprResult Conv = DefaultLvalueConversion(E);
17079     if (Conv.isInvalid())
17080       return Conv;
17081 
17082     return tryConvertExprToType(Conv.get(), Context.getSizeType());
17083   };
17084 
17085   // Apply conversion to row and column expressions.
17086   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
17087   if (!RowsConv.isInvalid()) {
17088     RowsExpr = RowsConv.get();
17089     TheCall->setArg(1, RowsExpr);
17090   } else
17091     RowsExpr = nullptr;
17092 
17093   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
17094   if (!ColumnsConv.isInvalid()) {
17095     ColumnsExpr = ColumnsConv.get();
17096     TheCall->setArg(2, ColumnsExpr);
17097   } else
17098     ColumnsExpr = nullptr;
17099 
17100   // If any any part of the result matrix type is still pending, just use
17101   // Context.DependentTy, until all parts are resolved.
17102   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
17103       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
17104     TheCall->setType(Context.DependentTy);
17105     return CallResult;
17106   }
17107 
17108   // Check row and column dimensions.
17109   llvm::Optional<unsigned> MaybeRows;
17110   if (RowsExpr)
17111     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
17112 
17113   llvm::Optional<unsigned> MaybeColumns;
17114   if (ColumnsExpr)
17115     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
17116 
17117   // Check stride argument.
17118   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
17119   if (StrideConv.isInvalid())
17120     return ExprError();
17121   StrideExpr = StrideConv.get();
17122   TheCall->setArg(3, StrideExpr);
17123 
17124   if (MaybeRows) {
17125     if (Optional<llvm::APSInt> Value =
17126             StrideExpr->getIntegerConstantExpr(Context)) {
17127       uint64_t Stride = Value->getZExtValue();
17128       if (Stride < *MaybeRows) {
17129         Diag(StrideExpr->getBeginLoc(),
17130              diag::err_builtin_matrix_stride_too_small);
17131         ArgError = true;
17132       }
17133     }
17134   }
17135 
17136   if (ArgError || !MaybeRows || !MaybeColumns)
17137     return ExprError();
17138 
17139   TheCall->setType(
17140       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
17141   return CallResult;
17142 }
17143 
17144 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
17145                                                    ExprResult CallResult) {
17146   if (checkArgCount(*this, TheCall, 3))
17147     return ExprError();
17148 
17149   unsigned PtrArgIdx = 1;
17150   Expr *MatrixExpr = TheCall->getArg(0);
17151   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17152   Expr *StrideExpr = TheCall->getArg(2);
17153 
17154   bool ArgError = false;
17155 
17156   {
17157     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
17158     if (MatrixConv.isInvalid())
17159       return MatrixConv;
17160     MatrixExpr = MatrixConv.get();
17161     TheCall->setArg(0, MatrixExpr);
17162   }
17163   if (MatrixExpr->isTypeDependent()) {
17164     TheCall->setType(Context.DependentTy);
17165     return TheCall;
17166   }
17167 
17168   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
17169   if (!MatrixTy) {
17170     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17171         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
17172     ArgError = true;
17173   }
17174 
17175   {
17176     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17177     if (PtrConv.isInvalid())
17178       return PtrConv;
17179     PtrExpr = PtrConv.get();
17180     TheCall->setArg(1, PtrExpr);
17181     if (PtrExpr->isTypeDependent()) {
17182       TheCall->setType(Context.DependentTy);
17183       return TheCall;
17184     }
17185   }
17186 
17187   // Check pointer argument.
17188   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17189   if (!PtrTy) {
17190     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17191         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17192     ArgError = true;
17193   } else {
17194     QualType ElementTy = PtrTy->getPointeeType();
17195     if (ElementTy.isConstQualified()) {
17196       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
17197       ArgError = true;
17198     }
17199     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
17200     if (MatrixTy &&
17201         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
17202       Diag(PtrExpr->getBeginLoc(),
17203            diag::err_builtin_matrix_pointer_arg_mismatch)
17204           << ElementTy << MatrixTy->getElementType();
17205       ArgError = true;
17206     }
17207   }
17208 
17209   // Apply default Lvalue conversions and convert the stride expression to
17210   // size_t.
17211   {
17212     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
17213     if (StrideConv.isInvalid())
17214       return StrideConv;
17215 
17216     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
17217     if (StrideConv.isInvalid())
17218       return StrideConv;
17219     StrideExpr = StrideConv.get();
17220     TheCall->setArg(2, StrideExpr);
17221   }
17222 
17223   // Check stride argument.
17224   if (MatrixTy) {
17225     if (Optional<llvm::APSInt> Value =
17226             StrideExpr->getIntegerConstantExpr(Context)) {
17227       uint64_t Stride = Value->getZExtValue();
17228       if (Stride < MatrixTy->getNumRows()) {
17229         Diag(StrideExpr->getBeginLoc(),
17230              diag::err_builtin_matrix_stride_too_small);
17231         ArgError = true;
17232       }
17233     }
17234   }
17235 
17236   if (ArgError)
17237     return ExprError();
17238 
17239   return CallResult;
17240 }
17241 
17242 /// \brief Enforce the bounds of a TCB
17243 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
17244 /// directly calls other functions in the same TCB as marked by the enforce_tcb
17245 /// and enforce_tcb_leaf attributes.
17246 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
17247                                const FunctionDecl *Callee) {
17248   const FunctionDecl *Caller = getCurFunctionDecl();
17249 
17250   // Calls to builtins are not enforced.
17251   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
17252       Callee->getBuiltinID() != 0)
17253     return;
17254 
17255   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17256   // all TCBs the callee is a part of.
17257   llvm::StringSet<> CalleeTCBs;
17258   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
17259            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17260   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
17261            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17262 
17263   // Go through the TCBs the caller is a part of and emit warnings if Caller
17264   // is in a TCB that the Callee is not.
17265   for_each(
17266       Caller->specific_attrs<EnforceTCBAttr>(),
17267       [&](const auto *A) {
17268         StringRef CallerTCB = A->getTCBName();
17269         if (CalleeTCBs.count(CallerTCB) == 0) {
17270           this->Diag(TheCall->getExprLoc(),
17271                      diag::warn_tcb_enforcement_violation) << Callee
17272                                                            << CallerTCB;
17273         }
17274       });
17275 }
17276