1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/AST/UnresolvedSet.h"
38 #include "clang/Basic/AddressSpaces.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/OpenCLOptions.h"
45 #include "clang/Basic/OperatorKinds.h"
46 #include "clang/Basic/PartialDiagnostic.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/SyncScope.h"
51 #include "clang/Basic/TargetBuiltins.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/TypeTraits.h"
55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
56 #include "clang/Sema/Initialization.h"
57 #include "clang/Sema/Lookup.h"
58 #include "clang/Sema/Ownership.h"
59 #include "clang/Sema/Scope.h"
60 #include "clang/Sema/ScopeInfo.h"
61 #include "clang/Sema/Sema.h"
62 #include "clang/Sema/SemaInternal.h"
63 #include "llvm/ADT/APFloat.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/FoldingSet.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallBitVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallString.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/StringSwitch.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ConvertUTF.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/Format.h"
85 #include "llvm/Support/Locale.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstddef>
91 #include <cstdint>
92 #include <functional>
93 #include <limits>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 
98 using namespace clang;
99 using namespace sema;
100 
101 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
102                                                     unsigned ByteNo) const {
103   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
104                                Context.getTargetInfo());
105 }
106 
107 /// Checks that a call expression's argument count is the desired number.
108 /// This is useful when doing custom type-checking.  Returns true on error.
109 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
110   unsigned argCount = call->getNumArgs();
111   if (argCount == desiredArgCount) return false;
112 
113   if (argCount < desiredArgCount)
114     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
115            << 0 /*function call*/ << desiredArgCount << argCount
116            << call->getSourceRange();
117 
118   // Highlight all the excess arguments.
119   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
120                     call->getArg(argCount - 1)->getEndLoc());
121 
122   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
123     << 0 /*function call*/ << desiredArgCount << argCount
124     << call->getArg(1)->getSourceRange();
125 }
126 
127 /// Check that the first argument to __builtin_annotation is an integer
128 /// and the second argument is a non-wide string literal.
129 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
130   if (checkArgCount(S, TheCall, 2))
131     return true;
132 
133   // First argument should be an integer.
134   Expr *ValArg = TheCall->getArg(0);
135   QualType Ty = ValArg->getType();
136   if (!Ty->isIntegerType()) {
137     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
138         << ValArg->getSourceRange();
139     return true;
140   }
141 
142   // Second argument should be a constant string.
143   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
144   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
145   if (!Literal || !Literal->isAscii()) {
146     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
147         << StrArg->getSourceRange();
148     return true;
149   }
150 
151   TheCall->setType(Ty);
152   return false;
153 }
154 
155 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
156   // We need at least one argument.
157   if (TheCall->getNumArgs() < 1) {
158     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
159         << 0 << 1 << TheCall->getNumArgs()
160         << TheCall->getCallee()->getSourceRange();
161     return true;
162   }
163 
164   // All arguments should be wide string literals.
165   for (Expr *Arg : TheCall->arguments()) {
166     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
167     if (!Literal || !Literal->isWide()) {
168       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
169           << Arg->getSourceRange();
170       return true;
171     }
172   }
173 
174   return false;
175 }
176 
177 /// Check that the argument to __builtin_addressof is a glvalue, and set the
178 /// result type to the corresponding pointer type.
179 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
180   if (checkArgCount(S, TheCall, 1))
181     return true;
182 
183   ExprResult Arg(TheCall->getArg(0));
184   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
185   if (ResultType.isNull())
186     return true;
187 
188   TheCall->setArg(0, Arg.get());
189   TheCall->setType(ResultType);
190   return false;
191 }
192 
193 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
194   if (checkArgCount(S, TheCall, 3))
195     return true;
196 
197   // First two arguments should be integers.
198   for (unsigned I = 0; I < 2; ++I) {
199     ExprResult Arg = TheCall->getArg(I);
200     QualType Ty = Arg.get()->getType();
201     if (!Ty->isIntegerType()) {
202       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
203           << Ty << Arg.get()->getSourceRange();
204       return true;
205     }
206     InitializedEntity Entity = InitializedEntity::InitializeParameter(
207         S.getASTContext(), Ty, /*consume*/ false);
208     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
209     if (Arg.isInvalid())
210       return true;
211     TheCall->setArg(I, Arg.get());
212   }
213 
214   // Third argument should be a pointer to a non-const integer.
215   // IRGen correctly handles volatile, restrict, and address spaces, and
216   // the other qualifiers aren't possible.
217   {
218     ExprResult Arg = TheCall->getArg(2);
219     QualType Ty = Arg.get()->getType();
220     const auto *PtrTy = Ty->getAs<PointerType>();
221     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
222           !PtrTy->getPointeeType().isConstQualified())) {
223       S.Diag(Arg.get()->getBeginLoc(),
224              diag::err_overflow_builtin_must_be_ptr_int)
225           << Ty << Arg.get()->getSourceRange();
226       return true;
227     }
228     InitializedEntity Entity = InitializedEntity::InitializeParameter(
229         S.getASTContext(), Ty, /*consume*/ false);
230     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
231     if (Arg.isInvalid())
232       return true;
233     TheCall->setArg(2, Arg.get());
234   }
235   return false;
236 }
237 
238 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
239   if (checkArgCount(S, BuiltinCall, 2))
240     return true;
241 
242   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
243   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
244   Expr *Call = BuiltinCall->getArg(0);
245   Expr *Chain = BuiltinCall->getArg(1);
246 
247   if (Call->getStmtClass() != Stmt::CallExprClass) {
248     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
249         << Call->getSourceRange();
250     return true;
251   }
252 
253   auto CE = cast<CallExpr>(Call);
254   if (CE->getCallee()->getType()->isBlockPointerType()) {
255     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
256         << Call->getSourceRange();
257     return true;
258   }
259 
260   const Decl *TargetDecl = CE->getCalleeDecl();
261   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
262     if (FD->getBuiltinID()) {
263       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
264           << Call->getSourceRange();
265       return true;
266     }
267 
268   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
269     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
270         << Call->getSourceRange();
271     return true;
272   }
273 
274   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
275   if (ChainResult.isInvalid())
276     return true;
277   if (!ChainResult.get()->getType()->isPointerType()) {
278     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
279         << Chain->getSourceRange();
280     return true;
281   }
282 
283   QualType ReturnTy = CE->getCallReturnType(S.Context);
284   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
285   QualType BuiltinTy = S.Context.getFunctionType(
286       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
287   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
288 
289   Builtin =
290       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
291 
292   BuiltinCall->setType(CE->getType());
293   BuiltinCall->setValueKind(CE->getValueKind());
294   BuiltinCall->setObjectKind(CE->getObjectKind());
295   BuiltinCall->setCallee(Builtin);
296   BuiltinCall->setArg(1, ChainResult.get());
297 
298   return false;
299 }
300 
301 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
302 /// __builtin_*_chk function, then use the object size argument specified in the
303 /// source. Otherwise, infer the object size using __builtin_object_size.
304 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
305                                                CallExpr *TheCall) {
306   // FIXME: There are some more useful checks we could be doing here:
307   //  - Analyze the format string of sprintf to see how much of buffer is used.
308   //  - Evaluate strlen of strcpy arguments, use as object size.
309 
310   if (TheCall->isValueDependent() || TheCall->isTypeDependent())
311     return;
312 
313   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
314   if (!BuiltinID)
315     return;
316 
317   unsigned DiagID = 0;
318   bool IsChkVariant = false;
319   unsigned SizeIndex, ObjectIndex;
320   switch (BuiltinID) {
321   default:
322     return;
323   case Builtin::BI__builtin___memcpy_chk:
324   case Builtin::BI__builtin___memmove_chk:
325   case Builtin::BI__builtin___memset_chk:
326   case Builtin::BI__builtin___strlcat_chk:
327   case Builtin::BI__builtin___strlcpy_chk:
328   case Builtin::BI__builtin___strncat_chk:
329   case Builtin::BI__builtin___strncpy_chk:
330   case Builtin::BI__builtin___stpncpy_chk:
331   case Builtin::BI__builtin___memccpy_chk: {
332     DiagID = diag::warn_builtin_chk_overflow;
333     IsChkVariant = true;
334     SizeIndex = TheCall->getNumArgs() - 2;
335     ObjectIndex = TheCall->getNumArgs() - 1;
336     break;
337   }
338 
339   case Builtin::BI__builtin___snprintf_chk:
340   case Builtin::BI__builtin___vsnprintf_chk: {
341     DiagID = diag::warn_builtin_chk_overflow;
342     IsChkVariant = true;
343     SizeIndex = 1;
344     ObjectIndex = 3;
345     break;
346   }
347 
348   case Builtin::BIstrncat:
349   case Builtin::BI__builtin_strncat:
350   case Builtin::BIstrncpy:
351   case Builtin::BI__builtin_strncpy:
352   case Builtin::BIstpncpy:
353   case Builtin::BI__builtin_stpncpy: {
354     // Whether these functions overflow depends on the runtime strlen of the
355     // string, not just the buffer size, so emitting the "always overflow"
356     // diagnostic isn't quite right. We should still diagnose passing a buffer
357     // size larger than the destination buffer though; this is a runtime abort
358     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
359     DiagID = diag::warn_fortify_source_size_mismatch;
360     SizeIndex = TheCall->getNumArgs() - 1;
361     ObjectIndex = 0;
362     break;
363   }
364 
365   case Builtin::BImemcpy:
366   case Builtin::BI__builtin_memcpy:
367   case Builtin::BImemmove:
368   case Builtin::BI__builtin_memmove:
369   case Builtin::BImemset:
370   case Builtin::BI__builtin_memset: {
371     DiagID = diag::warn_fortify_source_overflow;
372     SizeIndex = TheCall->getNumArgs() - 1;
373     ObjectIndex = 0;
374     break;
375   }
376   case Builtin::BIsnprintf:
377   case Builtin::BI__builtin_snprintf:
378   case Builtin::BIvsnprintf:
379   case Builtin::BI__builtin_vsnprintf: {
380     DiagID = diag::warn_fortify_source_size_mismatch;
381     SizeIndex = 1;
382     ObjectIndex = 0;
383     break;
384   }
385   }
386 
387   llvm::APSInt ObjectSize;
388   // For __builtin___*_chk, the object size is explicitly provided by the caller
389   // (usually using __builtin_object_size). Use that value to check this call.
390   if (IsChkVariant) {
391     Expr::EvalResult Result;
392     Expr *SizeArg = TheCall->getArg(ObjectIndex);
393     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
394       return;
395     ObjectSize = Result.Val.getInt();
396 
397   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
398   } else {
399     // If the parameter has a pass_object_size attribute, then we should use its
400     // (potentially) more strict checking mode. Otherwise, conservatively assume
401     // type 0.
402     int BOSType = 0;
403     if (const auto *POS =
404             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
405       BOSType = POS->getType();
406 
407     Expr *ObjArg = TheCall->getArg(ObjectIndex);
408     uint64_t Result;
409     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
410       return;
411     // Get the object size in the target's size_t width.
412     const TargetInfo &TI = getASTContext().getTargetInfo();
413     unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
414     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
415   }
416 
417   // Evaluate the number of bytes of the object that this call will use.
418   Expr::EvalResult Result;
419   Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
420   if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
421     return;
422   llvm::APSInt UsedSize = Result.Val.getInt();
423 
424   if (UsedSize.ule(ObjectSize))
425     return;
426 
427   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
428   // Skim off the details of whichever builtin was called to produce a better
429   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
430   if (IsChkVariant) {
431     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
432     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
433   } else if (FunctionName.startswith("__builtin_")) {
434     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
435   }
436 
437   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
438                       PDiag(DiagID)
439                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
440                           << UsedSize.toString(/*Radix=*/10));
441 }
442 
443 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
444                                      Scope::ScopeFlags NeededScopeFlags,
445                                      unsigned DiagID) {
446   // Scopes aren't available during instantiation. Fortunately, builtin
447   // functions cannot be template args so they cannot be formed through template
448   // instantiation. Therefore checking once during the parse is sufficient.
449   if (SemaRef.inTemplateInstantiation())
450     return false;
451 
452   Scope *S = SemaRef.getCurScope();
453   while (S && !S->isSEHExceptScope())
454     S = S->getParent();
455   if (!S || !(S->getFlags() & NeededScopeFlags)) {
456     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
457     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
458         << DRE->getDecl()->getIdentifier();
459     return true;
460   }
461 
462   return false;
463 }
464 
465 static inline bool isBlockPointer(Expr *Arg) {
466   return Arg->getType()->isBlockPointerType();
467 }
468 
469 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
470 /// void*, which is a requirement of device side enqueue.
471 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
472   const BlockPointerType *BPT =
473       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
474   ArrayRef<QualType> Params =
475       BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes();
476   unsigned ArgCounter = 0;
477   bool IllegalParams = false;
478   // Iterate through the block parameters until either one is found that is not
479   // a local void*, or the block is valid.
480   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
481        I != E; ++I, ++ArgCounter) {
482     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
483         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
484             LangAS::opencl_local) {
485       // Get the location of the error. If a block literal has been passed
486       // (BlockExpr) then we can point straight to the offending argument,
487       // else we just point to the variable reference.
488       SourceLocation ErrorLoc;
489       if (isa<BlockExpr>(BlockArg)) {
490         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
491         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
492       } else if (isa<DeclRefExpr>(BlockArg)) {
493         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
494       }
495       S.Diag(ErrorLoc,
496              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
497       IllegalParams = true;
498     }
499   }
500 
501   return IllegalParams;
502 }
503 
504 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
505   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
506     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
507         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
508     return true;
509   }
510   return false;
511 }
512 
513 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
514   if (checkArgCount(S, TheCall, 2))
515     return true;
516 
517   if (checkOpenCLSubgroupExt(S, TheCall))
518     return true;
519 
520   // First argument is an ndrange_t type.
521   Expr *NDRangeArg = TheCall->getArg(0);
522   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
523     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
524         << TheCall->getDirectCallee() << "'ndrange_t'";
525     return true;
526   }
527 
528   Expr *BlockArg = TheCall->getArg(1);
529   if (!isBlockPointer(BlockArg)) {
530     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
531         << TheCall->getDirectCallee() << "block";
532     return true;
533   }
534   return checkOpenCLBlockArgs(S, BlockArg);
535 }
536 
537 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
538 /// get_kernel_work_group_size
539 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
540 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
541   if (checkArgCount(S, TheCall, 1))
542     return true;
543 
544   Expr *BlockArg = TheCall->getArg(0);
545   if (!isBlockPointer(BlockArg)) {
546     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
547         << TheCall->getDirectCallee() << "block";
548     return true;
549   }
550   return checkOpenCLBlockArgs(S, BlockArg);
551 }
552 
553 /// Diagnose integer type and any valid implicit conversion to it.
554 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
555                                       const QualType &IntType);
556 
557 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
558                                             unsigned Start, unsigned End) {
559   bool IllegalParams = false;
560   for (unsigned I = Start; I <= End; ++I)
561     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
562                                               S.Context.getSizeType());
563   return IllegalParams;
564 }
565 
566 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
567 /// 'local void*' parameter of passed block.
568 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
569                                            Expr *BlockArg,
570                                            unsigned NumNonVarArgs) {
571   const BlockPointerType *BPT =
572       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
573   unsigned NumBlockParams =
574       BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams();
575   unsigned TotalNumArgs = TheCall->getNumArgs();
576 
577   // For each argument passed to the block, a corresponding uint needs to
578   // be passed to describe the size of the local memory.
579   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
580     S.Diag(TheCall->getBeginLoc(),
581            diag::err_opencl_enqueue_kernel_local_size_args);
582     return true;
583   }
584 
585   // Check that the sizes of the local memory are specified by integers.
586   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
587                                          TotalNumArgs - 1);
588 }
589 
590 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
591 /// overload formats specified in Table 6.13.17.1.
592 /// int enqueue_kernel(queue_t queue,
593 ///                    kernel_enqueue_flags_t flags,
594 ///                    const ndrange_t ndrange,
595 ///                    void (^block)(void))
596 /// int enqueue_kernel(queue_t queue,
597 ///                    kernel_enqueue_flags_t flags,
598 ///                    const ndrange_t ndrange,
599 ///                    uint num_events_in_wait_list,
600 ///                    clk_event_t *event_wait_list,
601 ///                    clk_event_t *event_ret,
602 ///                    void (^block)(void))
603 /// int enqueue_kernel(queue_t queue,
604 ///                    kernel_enqueue_flags_t flags,
605 ///                    const ndrange_t ndrange,
606 ///                    void (^block)(local void*, ...),
607 ///                    uint size0, ...)
608 /// int enqueue_kernel(queue_t queue,
609 ///                    kernel_enqueue_flags_t flags,
610 ///                    const ndrange_t ndrange,
611 ///                    uint num_events_in_wait_list,
612 ///                    clk_event_t *event_wait_list,
613 ///                    clk_event_t *event_ret,
614 ///                    void (^block)(local void*, ...),
615 ///                    uint size0, ...)
616 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
617   unsigned NumArgs = TheCall->getNumArgs();
618 
619   if (NumArgs < 4) {
620     S.Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_few_args);
621     return true;
622   }
623 
624   Expr *Arg0 = TheCall->getArg(0);
625   Expr *Arg1 = TheCall->getArg(1);
626   Expr *Arg2 = TheCall->getArg(2);
627   Expr *Arg3 = TheCall->getArg(3);
628 
629   // First argument always needs to be a queue_t type.
630   if (!Arg0->getType()->isQueueT()) {
631     S.Diag(TheCall->getArg(0)->getBeginLoc(),
632            diag::err_opencl_builtin_expected_type)
633         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
634     return true;
635   }
636 
637   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
638   if (!Arg1->getType()->isIntegerType()) {
639     S.Diag(TheCall->getArg(1)->getBeginLoc(),
640            diag::err_opencl_builtin_expected_type)
641         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
642     return true;
643   }
644 
645   // Third argument is always an ndrange_t type.
646   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
647     S.Diag(TheCall->getArg(2)->getBeginLoc(),
648            diag::err_opencl_builtin_expected_type)
649         << TheCall->getDirectCallee() << "'ndrange_t'";
650     return true;
651   }
652 
653   // With four arguments, there is only one form that the function could be
654   // called in: no events and no variable arguments.
655   if (NumArgs == 4) {
656     // check that the last argument is the right block type.
657     if (!isBlockPointer(Arg3)) {
658       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
659           << TheCall->getDirectCallee() << "block";
660       return true;
661     }
662     // we have a block type, check the prototype
663     const BlockPointerType *BPT =
664         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
665     if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) {
666       S.Diag(Arg3->getBeginLoc(),
667              diag::err_opencl_enqueue_kernel_blocks_no_args);
668       return true;
669     }
670     return false;
671   }
672   // we can have block + varargs.
673   if (isBlockPointer(Arg3))
674     return (checkOpenCLBlockArgs(S, Arg3) ||
675             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
676   // last two cases with either exactly 7 args or 7 args and varargs.
677   if (NumArgs >= 7) {
678     // check common block argument.
679     Expr *Arg6 = TheCall->getArg(6);
680     if (!isBlockPointer(Arg6)) {
681       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
682           << TheCall->getDirectCallee() << "block";
683       return true;
684     }
685     if (checkOpenCLBlockArgs(S, Arg6))
686       return true;
687 
688     // Forth argument has to be any integer type.
689     if (!Arg3->getType()->isIntegerType()) {
690       S.Diag(TheCall->getArg(3)->getBeginLoc(),
691              diag::err_opencl_builtin_expected_type)
692           << TheCall->getDirectCallee() << "integer";
693       return true;
694     }
695     // check remaining common arguments.
696     Expr *Arg4 = TheCall->getArg(4);
697     Expr *Arg5 = TheCall->getArg(5);
698 
699     // Fifth argument is always passed as a pointer to clk_event_t.
700     if (!Arg4->isNullPointerConstant(S.Context,
701                                      Expr::NPC_ValueDependentIsNotNull) &&
702         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
703       S.Diag(TheCall->getArg(4)->getBeginLoc(),
704              diag::err_opencl_builtin_expected_type)
705           << TheCall->getDirectCallee()
706           << S.Context.getPointerType(S.Context.OCLClkEventTy);
707       return true;
708     }
709 
710     // Sixth argument is always passed as a pointer to clk_event_t.
711     if (!Arg5->isNullPointerConstant(S.Context,
712                                      Expr::NPC_ValueDependentIsNotNull) &&
713         !(Arg5->getType()->isPointerType() &&
714           Arg5->getType()->getPointeeType()->isClkEventT())) {
715       S.Diag(TheCall->getArg(5)->getBeginLoc(),
716              diag::err_opencl_builtin_expected_type)
717           << TheCall->getDirectCallee()
718           << S.Context.getPointerType(S.Context.OCLClkEventTy);
719       return true;
720     }
721 
722     if (NumArgs == 7)
723       return false;
724 
725     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
726   }
727 
728   // None of the specific case has been detected, give generic error
729   S.Diag(TheCall->getBeginLoc(),
730          diag::err_opencl_enqueue_kernel_incorrect_args);
731   return true;
732 }
733 
734 /// Returns OpenCL access qual.
735 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
736     return D->getAttr<OpenCLAccessAttr>();
737 }
738 
739 /// Returns true if pipe element type is different from the pointer.
740 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
741   const Expr *Arg0 = Call->getArg(0);
742   // First argument type should always be pipe.
743   if (!Arg0->getType()->isPipeType()) {
744     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
745         << Call->getDirectCallee() << Arg0->getSourceRange();
746     return true;
747   }
748   OpenCLAccessAttr *AccessQual =
749       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
750   // Validates the access qualifier is compatible with the call.
751   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
752   // read_only and write_only, and assumed to be read_only if no qualifier is
753   // specified.
754   switch (Call->getDirectCallee()->getBuiltinID()) {
755   case Builtin::BIread_pipe:
756   case Builtin::BIreserve_read_pipe:
757   case Builtin::BIcommit_read_pipe:
758   case Builtin::BIwork_group_reserve_read_pipe:
759   case Builtin::BIsub_group_reserve_read_pipe:
760   case Builtin::BIwork_group_commit_read_pipe:
761   case Builtin::BIsub_group_commit_read_pipe:
762     if (!(!AccessQual || AccessQual->isReadOnly())) {
763       S.Diag(Arg0->getBeginLoc(),
764              diag::err_opencl_builtin_pipe_invalid_access_modifier)
765           << "read_only" << Arg0->getSourceRange();
766       return true;
767     }
768     break;
769   case Builtin::BIwrite_pipe:
770   case Builtin::BIreserve_write_pipe:
771   case Builtin::BIcommit_write_pipe:
772   case Builtin::BIwork_group_reserve_write_pipe:
773   case Builtin::BIsub_group_reserve_write_pipe:
774   case Builtin::BIwork_group_commit_write_pipe:
775   case Builtin::BIsub_group_commit_write_pipe:
776     if (!(AccessQual && AccessQual->isWriteOnly())) {
777       S.Diag(Arg0->getBeginLoc(),
778              diag::err_opencl_builtin_pipe_invalid_access_modifier)
779           << "write_only" << Arg0->getSourceRange();
780       return true;
781     }
782     break;
783   default:
784     break;
785   }
786   return false;
787 }
788 
789 /// Returns true if pipe element type is different from the pointer.
790 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
791   const Expr *Arg0 = Call->getArg(0);
792   const Expr *ArgIdx = Call->getArg(Idx);
793   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
794   const QualType EltTy = PipeTy->getElementType();
795   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
796   // The Idx argument should be a pointer and the type of the pointer and
797   // the type of pipe element should also be the same.
798   if (!ArgTy ||
799       !S.Context.hasSameType(
800           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
801     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
802         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
803         << ArgIdx->getType() << ArgIdx->getSourceRange();
804     return true;
805   }
806   return false;
807 }
808 
809 // Performs semantic analysis for the read/write_pipe call.
810 // \param S Reference to the semantic analyzer.
811 // \param Call A pointer to the builtin call.
812 // \return True if a semantic error has been found, false otherwise.
813 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
814   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
815   // functions have two forms.
816   switch (Call->getNumArgs()) {
817   case 2:
818     if (checkOpenCLPipeArg(S, Call))
819       return true;
820     // The call with 2 arguments should be
821     // read/write_pipe(pipe T, T*).
822     // Check packet type T.
823     if (checkOpenCLPipePacketType(S, Call, 1))
824       return true;
825     break;
826 
827   case 4: {
828     if (checkOpenCLPipeArg(S, Call))
829       return true;
830     // The call with 4 arguments should be
831     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
832     // Check reserve_id_t.
833     if (!Call->getArg(1)->getType()->isReserveIDT()) {
834       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
835           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
836           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
837       return true;
838     }
839 
840     // Check the index.
841     const Expr *Arg2 = Call->getArg(2);
842     if (!Arg2->getType()->isIntegerType() &&
843         !Arg2->getType()->isUnsignedIntegerType()) {
844       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
845           << Call->getDirectCallee() << S.Context.UnsignedIntTy
846           << Arg2->getType() << Arg2->getSourceRange();
847       return true;
848     }
849 
850     // Check packet type T.
851     if (checkOpenCLPipePacketType(S, Call, 3))
852       return true;
853   } break;
854   default:
855     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
856         << Call->getDirectCallee() << Call->getSourceRange();
857     return true;
858   }
859 
860   return false;
861 }
862 
863 // Performs a semantic analysis on the {work_group_/sub_group_
864 //        /_}reserve_{read/write}_pipe
865 // \param S Reference to the semantic analyzer.
866 // \param Call The call to the builtin function to be analyzed.
867 // \return True if a semantic error was found, false otherwise.
868 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
869   if (checkArgCount(S, Call, 2))
870     return true;
871 
872   if (checkOpenCLPipeArg(S, Call))
873     return true;
874 
875   // Check the reserve size.
876   if (!Call->getArg(1)->getType()->isIntegerType() &&
877       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
878     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
879         << Call->getDirectCallee() << S.Context.UnsignedIntTy
880         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
881     return true;
882   }
883 
884   // Since return type of reserve_read/write_pipe built-in function is
885   // reserve_id_t, which is not defined in the builtin def file , we used int
886   // as return type and need to override the return type of these functions.
887   Call->setType(S.Context.OCLReserveIDTy);
888 
889   return false;
890 }
891 
892 // Performs a semantic analysis on {work_group_/sub_group_
893 //        /_}commit_{read/write}_pipe
894 // \param S Reference to the semantic analyzer.
895 // \param Call The call to the builtin function to be analyzed.
896 // \return True if a semantic error was found, false otherwise.
897 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
898   if (checkArgCount(S, Call, 2))
899     return true;
900 
901   if (checkOpenCLPipeArg(S, Call))
902     return true;
903 
904   // Check reserve_id_t.
905   if (!Call->getArg(1)->getType()->isReserveIDT()) {
906     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
907         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
908         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
909     return true;
910   }
911 
912   return false;
913 }
914 
915 // Performs a semantic analysis on the call to built-in Pipe
916 //        Query Functions.
917 // \param S Reference to the semantic analyzer.
918 // \param Call The call to the builtin function to be analyzed.
919 // \return True if a semantic error was found, false otherwise.
920 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
921   if (checkArgCount(S, Call, 1))
922     return true;
923 
924   if (!Call->getArg(0)->getType()->isPipeType()) {
925     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
926         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
927     return true;
928   }
929 
930   return false;
931 }
932 
933 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
934 // Performs semantic analysis for the to_global/local/private call.
935 // \param S Reference to the semantic analyzer.
936 // \param BuiltinID ID of the builtin function.
937 // \param Call A pointer to the builtin call.
938 // \return True if a semantic error has been found, false otherwise.
939 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
940                                     CallExpr *Call) {
941   if (Call->getNumArgs() != 1) {
942     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num)
943         << Call->getDirectCallee() << Call->getSourceRange();
944     return true;
945   }
946 
947   auto RT = Call->getArg(0)->getType();
948   if (!RT->isPointerType() || RT->getPointeeType()
949       .getAddressSpace() == LangAS::opencl_constant) {
950     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
951         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
952     return true;
953   }
954 
955   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
956     S.Diag(Call->getArg(0)->getBeginLoc(),
957            diag::warn_opencl_generic_address_space_arg)
958         << Call->getDirectCallee()->getNameInfo().getAsString()
959         << Call->getArg(0)->getSourceRange();
960   }
961 
962   RT = RT->getPointeeType();
963   auto Qual = RT.getQualifiers();
964   switch (BuiltinID) {
965   case Builtin::BIto_global:
966     Qual.setAddressSpace(LangAS::opencl_global);
967     break;
968   case Builtin::BIto_local:
969     Qual.setAddressSpace(LangAS::opencl_local);
970     break;
971   case Builtin::BIto_private:
972     Qual.setAddressSpace(LangAS::opencl_private);
973     break;
974   default:
975     llvm_unreachable("Invalid builtin function");
976   }
977   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
978       RT.getUnqualifiedType(), Qual)));
979 
980   return false;
981 }
982 
983 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
984   if (checkArgCount(S, TheCall, 1))
985     return ExprError();
986 
987   // Compute __builtin_launder's parameter type from the argument.
988   // The parameter type is:
989   //  * The type of the argument if it's not an array or function type,
990   //  Otherwise,
991   //  * The decayed argument type.
992   QualType ParamTy = [&]() {
993     QualType ArgTy = TheCall->getArg(0)->getType();
994     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
995       return S.Context.getPointerType(Ty->getElementType());
996     if (ArgTy->isFunctionType()) {
997       return S.Context.getPointerType(ArgTy);
998     }
999     return ArgTy;
1000   }();
1001 
1002   TheCall->setType(ParamTy);
1003 
1004   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1005     if (!ParamTy->isPointerType())
1006       return 0;
1007     if (ParamTy->isFunctionPointerType())
1008       return 1;
1009     if (ParamTy->isVoidPointerType())
1010       return 2;
1011     return llvm::Optional<unsigned>{};
1012   }();
1013   if (DiagSelect.hasValue()) {
1014     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1015         << DiagSelect.getValue() << TheCall->getSourceRange();
1016     return ExprError();
1017   }
1018 
1019   // We either have an incomplete class type, or we have a class template
1020   // whose instantiation has not been forced. Example:
1021   //
1022   //   template <class T> struct Foo { T value; };
1023   //   Foo<int> *p = nullptr;
1024   //   auto *d = __builtin_launder(p);
1025   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1026                             diag::err_incomplete_type))
1027     return ExprError();
1028 
1029   assert(ParamTy->getPointeeType()->isObjectType() &&
1030          "Unhandled non-object pointer case");
1031 
1032   InitializedEntity Entity =
1033       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1034   ExprResult Arg =
1035       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1036   if (Arg.isInvalid())
1037     return ExprError();
1038   TheCall->setArg(0, Arg.get());
1039 
1040   return TheCall;
1041 }
1042 
1043 // Emit an error and return true if the current architecture is not in the list
1044 // of supported architectures.
1045 static bool
1046 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1047                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1048   llvm::Triple::ArchType CurArch =
1049       S.getASTContext().getTargetInfo().getTriple().getArch();
1050   if (llvm::is_contained(SupportedArchs, CurArch))
1051     return false;
1052   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1053       << TheCall->getSourceRange();
1054   return true;
1055 }
1056 
1057 ExprResult
1058 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1059                                CallExpr *TheCall) {
1060   ExprResult TheCallResult(TheCall);
1061 
1062   // Find out if any arguments are required to be integer constant expressions.
1063   unsigned ICEArguments = 0;
1064   ASTContext::GetBuiltinTypeError Error;
1065   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1066   if (Error != ASTContext::GE_None)
1067     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1068 
1069   // If any arguments are required to be ICE's, check and diagnose.
1070   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1071     // Skip arguments not required to be ICE's.
1072     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1073 
1074     llvm::APSInt Result;
1075     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1076       return true;
1077     ICEArguments &= ~(1 << ArgNo);
1078   }
1079 
1080   switch (BuiltinID) {
1081   case Builtin::BI__builtin___CFStringMakeConstantString:
1082     assert(TheCall->getNumArgs() == 1 &&
1083            "Wrong # arguments to builtin CFStringMakeConstantString");
1084     if (CheckObjCString(TheCall->getArg(0)))
1085       return ExprError();
1086     break;
1087   case Builtin::BI__builtin_ms_va_start:
1088   case Builtin::BI__builtin_stdarg_start:
1089   case Builtin::BI__builtin_va_start:
1090     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1091       return ExprError();
1092     break;
1093   case Builtin::BI__va_start: {
1094     switch (Context.getTargetInfo().getTriple().getArch()) {
1095     case llvm::Triple::aarch64:
1096     case llvm::Triple::arm:
1097     case llvm::Triple::thumb:
1098       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1099         return ExprError();
1100       break;
1101     default:
1102       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1103         return ExprError();
1104       break;
1105     }
1106     break;
1107   }
1108 
1109   // The acquire, release, and no fence variants are ARM and AArch64 only.
1110   case Builtin::BI_interlockedbittestandset_acq:
1111   case Builtin::BI_interlockedbittestandset_rel:
1112   case Builtin::BI_interlockedbittestandset_nf:
1113   case Builtin::BI_interlockedbittestandreset_acq:
1114   case Builtin::BI_interlockedbittestandreset_rel:
1115   case Builtin::BI_interlockedbittestandreset_nf:
1116     if (CheckBuiltinTargetSupport(
1117             *this, BuiltinID, TheCall,
1118             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1119       return ExprError();
1120     break;
1121 
1122   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1123   case Builtin::BI_bittest64:
1124   case Builtin::BI_bittestandcomplement64:
1125   case Builtin::BI_bittestandreset64:
1126   case Builtin::BI_bittestandset64:
1127   case Builtin::BI_interlockedbittestandreset64:
1128   case Builtin::BI_interlockedbittestandset64:
1129     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1130                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1131                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1132       return ExprError();
1133     break;
1134 
1135   case Builtin::BI__builtin_isgreater:
1136   case Builtin::BI__builtin_isgreaterequal:
1137   case Builtin::BI__builtin_isless:
1138   case Builtin::BI__builtin_islessequal:
1139   case Builtin::BI__builtin_islessgreater:
1140   case Builtin::BI__builtin_isunordered:
1141     if (SemaBuiltinUnorderedCompare(TheCall))
1142       return ExprError();
1143     break;
1144   case Builtin::BI__builtin_fpclassify:
1145     if (SemaBuiltinFPClassification(TheCall, 6))
1146       return ExprError();
1147     break;
1148   case Builtin::BI__builtin_isfinite:
1149   case Builtin::BI__builtin_isinf:
1150   case Builtin::BI__builtin_isinf_sign:
1151   case Builtin::BI__builtin_isnan:
1152   case Builtin::BI__builtin_isnormal:
1153   case Builtin::BI__builtin_signbit:
1154   case Builtin::BI__builtin_signbitf:
1155   case Builtin::BI__builtin_signbitl:
1156     if (SemaBuiltinFPClassification(TheCall, 1))
1157       return ExprError();
1158     break;
1159   case Builtin::BI__builtin_shufflevector:
1160     return SemaBuiltinShuffleVector(TheCall);
1161     // TheCall will be freed by the smart pointer here, but that's fine, since
1162     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1163   case Builtin::BI__builtin_prefetch:
1164     if (SemaBuiltinPrefetch(TheCall))
1165       return ExprError();
1166     break;
1167   case Builtin::BI__builtin_alloca_with_align:
1168     if (SemaBuiltinAllocaWithAlign(TheCall))
1169       return ExprError();
1170     break;
1171   case Builtin::BI__assume:
1172   case Builtin::BI__builtin_assume:
1173     if (SemaBuiltinAssume(TheCall))
1174       return ExprError();
1175     break;
1176   case Builtin::BI__builtin_assume_aligned:
1177     if (SemaBuiltinAssumeAligned(TheCall))
1178       return ExprError();
1179     break;
1180   case Builtin::BI__builtin_dynamic_object_size:
1181   case Builtin::BI__builtin_object_size:
1182     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1183       return ExprError();
1184     break;
1185   case Builtin::BI__builtin_longjmp:
1186     if (SemaBuiltinLongjmp(TheCall))
1187       return ExprError();
1188     break;
1189   case Builtin::BI__builtin_setjmp:
1190     if (SemaBuiltinSetjmp(TheCall))
1191       return ExprError();
1192     break;
1193   case Builtin::BI_setjmp:
1194   case Builtin::BI_setjmpex:
1195     if (checkArgCount(*this, TheCall, 1))
1196       return true;
1197     break;
1198   case Builtin::BI__builtin_classify_type:
1199     if (checkArgCount(*this, TheCall, 1)) return true;
1200     TheCall->setType(Context.IntTy);
1201     break;
1202   case Builtin::BI__builtin_constant_p: {
1203     if (checkArgCount(*this, TheCall, 1)) return true;
1204     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1205     if (Arg.isInvalid()) return true;
1206     TheCall->setArg(0, Arg.get());
1207     TheCall->setType(Context.IntTy);
1208     break;
1209   }
1210   case Builtin::BI__builtin_launder:
1211     return SemaBuiltinLaunder(*this, TheCall);
1212   case Builtin::BI__sync_fetch_and_add:
1213   case Builtin::BI__sync_fetch_and_add_1:
1214   case Builtin::BI__sync_fetch_and_add_2:
1215   case Builtin::BI__sync_fetch_and_add_4:
1216   case Builtin::BI__sync_fetch_and_add_8:
1217   case Builtin::BI__sync_fetch_and_add_16:
1218   case Builtin::BI__sync_fetch_and_sub:
1219   case Builtin::BI__sync_fetch_and_sub_1:
1220   case Builtin::BI__sync_fetch_and_sub_2:
1221   case Builtin::BI__sync_fetch_and_sub_4:
1222   case Builtin::BI__sync_fetch_and_sub_8:
1223   case Builtin::BI__sync_fetch_and_sub_16:
1224   case Builtin::BI__sync_fetch_and_or:
1225   case Builtin::BI__sync_fetch_and_or_1:
1226   case Builtin::BI__sync_fetch_and_or_2:
1227   case Builtin::BI__sync_fetch_and_or_4:
1228   case Builtin::BI__sync_fetch_and_or_8:
1229   case Builtin::BI__sync_fetch_and_or_16:
1230   case Builtin::BI__sync_fetch_and_and:
1231   case Builtin::BI__sync_fetch_and_and_1:
1232   case Builtin::BI__sync_fetch_and_and_2:
1233   case Builtin::BI__sync_fetch_and_and_4:
1234   case Builtin::BI__sync_fetch_and_and_8:
1235   case Builtin::BI__sync_fetch_and_and_16:
1236   case Builtin::BI__sync_fetch_and_xor:
1237   case Builtin::BI__sync_fetch_and_xor_1:
1238   case Builtin::BI__sync_fetch_and_xor_2:
1239   case Builtin::BI__sync_fetch_and_xor_4:
1240   case Builtin::BI__sync_fetch_and_xor_8:
1241   case Builtin::BI__sync_fetch_and_xor_16:
1242   case Builtin::BI__sync_fetch_and_nand:
1243   case Builtin::BI__sync_fetch_and_nand_1:
1244   case Builtin::BI__sync_fetch_and_nand_2:
1245   case Builtin::BI__sync_fetch_and_nand_4:
1246   case Builtin::BI__sync_fetch_and_nand_8:
1247   case Builtin::BI__sync_fetch_and_nand_16:
1248   case Builtin::BI__sync_add_and_fetch:
1249   case Builtin::BI__sync_add_and_fetch_1:
1250   case Builtin::BI__sync_add_and_fetch_2:
1251   case Builtin::BI__sync_add_and_fetch_4:
1252   case Builtin::BI__sync_add_and_fetch_8:
1253   case Builtin::BI__sync_add_and_fetch_16:
1254   case Builtin::BI__sync_sub_and_fetch:
1255   case Builtin::BI__sync_sub_and_fetch_1:
1256   case Builtin::BI__sync_sub_and_fetch_2:
1257   case Builtin::BI__sync_sub_and_fetch_4:
1258   case Builtin::BI__sync_sub_and_fetch_8:
1259   case Builtin::BI__sync_sub_and_fetch_16:
1260   case Builtin::BI__sync_and_and_fetch:
1261   case Builtin::BI__sync_and_and_fetch_1:
1262   case Builtin::BI__sync_and_and_fetch_2:
1263   case Builtin::BI__sync_and_and_fetch_4:
1264   case Builtin::BI__sync_and_and_fetch_8:
1265   case Builtin::BI__sync_and_and_fetch_16:
1266   case Builtin::BI__sync_or_and_fetch:
1267   case Builtin::BI__sync_or_and_fetch_1:
1268   case Builtin::BI__sync_or_and_fetch_2:
1269   case Builtin::BI__sync_or_and_fetch_4:
1270   case Builtin::BI__sync_or_and_fetch_8:
1271   case Builtin::BI__sync_or_and_fetch_16:
1272   case Builtin::BI__sync_xor_and_fetch:
1273   case Builtin::BI__sync_xor_and_fetch_1:
1274   case Builtin::BI__sync_xor_and_fetch_2:
1275   case Builtin::BI__sync_xor_and_fetch_4:
1276   case Builtin::BI__sync_xor_and_fetch_8:
1277   case Builtin::BI__sync_xor_and_fetch_16:
1278   case Builtin::BI__sync_nand_and_fetch:
1279   case Builtin::BI__sync_nand_and_fetch_1:
1280   case Builtin::BI__sync_nand_and_fetch_2:
1281   case Builtin::BI__sync_nand_and_fetch_4:
1282   case Builtin::BI__sync_nand_and_fetch_8:
1283   case Builtin::BI__sync_nand_and_fetch_16:
1284   case Builtin::BI__sync_val_compare_and_swap:
1285   case Builtin::BI__sync_val_compare_and_swap_1:
1286   case Builtin::BI__sync_val_compare_and_swap_2:
1287   case Builtin::BI__sync_val_compare_and_swap_4:
1288   case Builtin::BI__sync_val_compare_and_swap_8:
1289   case Builtin::BI__sync_val_compare_and_swap_16:
1290   case Builtin::BI__sync_bool_compare_and_swap:
1291   case Builtin::BI__sync_bool_compare_and_swap_1:
1292   case Builtin::BI__sync_bool_compare_and_swap_2:
1293   case Builtin::BI__sync_bool_compare_and_swap_4:
1294   case Builtin::BI__sync_bool_compare_and_swap_8:
1295   case Builtin::BI__sync_bool_compare_and_swap_16:
1296   case Builtin::BI__sync_lock_test_and_set:
1297   case Builtin::BI__sync_lock_test_and_set_1:
1298   case Builtin::BI__sync_lock_test_and_set_2:
1299   case Builtin::BI__sync_lock_test_and_set_4:
1300   case Builtin::BI__sync_lock_test_and_set_8:
1301   case Builtin::BI__sync_lock_test_and_set_16:
1302   case Builtin::BI__sync_lock_release:
1303   case Builtin::BI__sync_lock_release_1:
1304   case Builtin::BI__sync_lock_release_2:
1305   case Builtin::BI__sync_lock_release_4:
1306   case Builtin::BI__sync_lock_release_8:
1307   case Builtin::BI__sync_lock_release_16:
1308   case Builtin::BI__sync_swap:
1309   case Builtin::BI__sync_swap_1:
1310   case Builtin::BI__sync_swap_2:
1311   case Builtin::BI__sync_swap_4:
1312   case Builtin::BI__sync_swap_8:
1313   case Builtin::BI__sync_swap_16:
1314     return SemaBuiltinAtomicOverloaded(TheCallResult);
1315   case Builtin::BI__sync_synchronize:
1316     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1317         << TheCall->getCallee()->getSourceRange();
1318     break;
1319   case Builtin::BI__builtin_nontemporal_load:
1320   case Builtin::BI__builtin_nontemporal_store:
1321     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1322 #define BUILTIN(ID, TYPE, ATTRS)
1323 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1324   case Builtin::BI##ID: \
1325     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1326 #include "clang/Basic/Builtins.def"
1327   case Builtin::BI__annotation:
1328     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1329       return ExprError();
1330     break;
1331   case Builtin::BI__builtin_annotation:
1332     if (SemaBuiltinAnnotation(*this, TheCall))
1333       return ExprError();
1334     break;
1335   case Builtin::BI__builtin_addressof:
1336     if (SemaBuiltinAddressof(*this, TheCall))
1337       return ExprError();
1338     break;
1339   case Builtin::BI__builtin_add_overflow:
1340   case Builtin::BI__builtin_sub_overflow:
1341   case Builtin::BI__builtin_mul_overflow:
1342     if (SemaBuiltinOverflow(*this, TheCall))
1343       return ExprError();
1344     break;
1345   case Builtin::BI__builtin_operator_new:
1346   case Builtin::BI__builtin_operator_delete: {
1347     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1348     ExprResult Res =
1349         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1350     if (Res.isInvalid())
1351       CorrectDelayedTyposInExpr(TheCallResult.get());
1352     return Res;
1353   }
1354   case Builtin::BI__builtin_dump_struct: {
1355     // We first want to ensure we are called with 2 arguments
1356     if (checkArgCount(*this, TheCall, 2))
1357       return ExprError();
1358     // Ensure that the first argument is of type 'struct XX *'
1359     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1360     const QualType PtrArgType = PtrArg->getType();
1361     if (!PtrArgType->isPointerType() ||
1362         !PtrArgType->getPointeeType()->isRecordType()) {
1363       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1364           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1365           << "structure pointer";
1366       return ExprError();
1367     }
1368 
1369     // Ensure that the second argument is of type 'FunctionType'
1370     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1371     const QualType FnPtrArgType = FnPtrArg->getType();
1372     if (!FnPtrArgType->isPointerType()) {
1373       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1374           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1375           << FnPtrArgType << "'int (*)(const char *, ...)'";
1376       return ExprError();
1377     }
1378 
1379     const auto *FuncType =
1380         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1381 
1382     if (!FuncType) {
1383       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1384           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1385           << FnPtrArgType << "'int (*)(const char *, ...)'";
1386       return ExprError();
1387     }
1388 
1389     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1390       if (!FT->getNumParams()) {
1391         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1392             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1393             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1394         return ExprError();
1395       }
1396       QualType PT = FT->getParamType(0);
1397       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1398           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1399           !PT->getPointeeType().isConstQualified()) {
1400         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1401             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1402             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1403         return ExprError();
1404       }
1405     }
1406 
1407     TheCall->setType(Context.IntTy);
1408     break;
1409   }
1410   case Builtin::BI__builtin_call_with_static_chain:
1411     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1412       return ExprError();
1413     break;
1414   case Builtin::BI__exception_code:
1415   case Builtin::BI_exception_code:
1416     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1417                                  diag::err_seh___except_block))
1418       return ExprError();
1419     break;
1420   case Builtin::BI__exception_info:
1421   case Builtin::BI_exception_info:
1422     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1423                                  diag::err_seh___except_filter))
1424       return ExprError();
1425     break;
1426   case Builtin::BI__GetExceptionInfo:
1427     if (checkArgCount(*this, TheCall, 1))
1428       return ExprError();
1429 
1430     if (CheckCXXThrowOperand(
1431             TheCall->getBeginLoc(),
1432             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1433             TheCall))
1434       return ExprError();
1435 
1436     TheCall->setType(Context.VoidPtrTy);
1437     break;
1438   // OpenCL v2.0, s6.13.16 - Pipe functions
1439   case Builtin::BIread_pipe:
1440   case Builtin::BIwrite_pipe:
1441     // Since those two functions are declared with var args, we need a semantic
1442     // check for the argument.
1443     if (SemaBuiltinRWPipe(*this, TheCall))
1444       return ExprError();
1445     break;
1446   case Builtin::BIreserve_read_pipe:
1447   case Builtin::BIreserve_write_pipe:
1448   case Builtin::BIwork_group_reserve_read_pipe:
1449   case Builtin::BIwork_group_reserve_write_pipe:
1450     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1451       return ExprError();
1452     break;
1453   case Builtin::BIsub_group_reserve_read_pipe:
1454   case Builtin::BIsub_group_reserve_write_pipe:
1455     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1456         SemaBuiltinReserveRWPipe(*this, TheCall))
1457       return ExprError();
1458     break;
1459   case Builtin::BIcommit_read_pipe:
1460   case Builtin::BIcommit_write_pipe:
1461   case Builtin::BIwork_group_commit_read_pipe:
1462   case Builtin::BIwork_group_commit_write_pipe:
1463     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1464       return ExprError();
1465     break;
1466   case Builtin::BIsub_group_commit_read_pipe:
1467   case Builtin::BIsub_group_commit_write_pipe:
1468     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1469         SemaBuiltinCommitRWPipe(*this, TheCall))
1470       return ExprError();
1471     break;
1472   case Builtin::BIget_pipe_num_packets:
1473   case Builtin::BIget_pipe_max_packets:
1474     if (SemaBuiltinPipePackets(*this, TheCall))
1475       return ExprError();
1476     break;
1477   case Builtin::BIto_global:
1478   case Builtin::BIto_local:
1479   case Builtin::BIto_private:
1480     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1481       return ExprError();
1482     break;
1483   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1484   case Builtin::BIenqueue_kernel:
1485     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1486       return ExprError();
1487     break;
1488   case Builtin::BIget_kernel_work_group_size:
1489   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1490     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1491       return ExprError();
1492     break;
1493   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1494   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1495     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1496       return ExprError();
1497     break;
1498   case Builtin::BI__builtin_os_log_format:
1499   case Builtin::BI__builtin_os_log_format_buffer_size:
1500     if (SemaBuiltinOSLogFormat(TheCall))
1501       return ExprError();
1502     break;
1503   }
1504 
1505   // Since the target specific builtins for each arch overlap, only check those
1506   // of the arch we are compiling for.
1507   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1508     switch (Context.getTargetInfo().getTriple().getArch()) {
1509       case llvm::Triple::arm:
1510       case llvm::Triple::armeb:
1511       case llvm::Triple::thumb:
1512       case llvm::Triple::thumbeb:
1513         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1514           return ExprError();
1515         break;
1516       case llvm::Triple::aarch64:
1517       case llvm::Triple::aarch64_be:
1518         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1519           return ExprError();
1520         break;
1521       case llvm::Triple::hexagon:
1522         if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall))
1523           return ExprError();
1524         break;
1525       case llvm::Triple::mips:
1526       case llvm::Triple::mipsel:
1527       case llvm::Triple::mips64:
1528       case llvm::Triple::mips64el:
1529         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1530           return ExprError();
1531         break;
1532       case llvm::Triple::systemz:
1533         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1534           return ExprError();
1535         break;
1536       case llvm::Triple::x86:
1537       case llvm::Triple::x86_64:
1538         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1539           return ExprError();
1540         break;
1541       case llvm::Triple::ppc:
1542       case llvm::Triple::ppc64:
1543       case llvm::Triple::ppc64le:
1544         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1545           return ExprError();
1546         break;
1547       default:
1548         break;
1549     }
1550   }
1551 
1552   return TheCallResult;
1553 }
1554 
1555 // Get the valid immediate range for the specified NEON type code.
1556 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1557   NeonTypeFlags Type(t);
1558   int IsQuad = ForceQuad ? true : Type.isQuad();
1559   switch (Type.getEltType()) {
1560   case NeonTypeFlags::Int8:
1561   case NeonTypeFlags::Poly8:
1562     return shift ? 7 : (8 << IsQuad) - 1;
1563   case NeonTypeFlags::Int16:
1564   case NeonTypeFlags::Poly16:
1565     return shift ? 15 : (4 << IsQuad) - 1;
1566   case NeonTypeFlags::Int32:
1567     return shift ? 31 : (2 << IsQuad) - 1;
1568   case NeonTypeFlags::Int64:
1569   case NeonTypeFlags::Poly64:
1570     return shift ? 63 : (1 << IsQuad) - 1;
1571   case NeonTypeFlags::Poly128:
1572     return shift ? 127 : (1 << IsQuad) - 1;
1573   case NeonTypeFlags::Float16:
1574     assert(!shift && "cannot shift float types!");
1575     return (4 << IsQuad) - 1;
1576   case NeonTypeFlags::Float32:
1577     assert(!shift && "cannot shift float types!");
1578     return (2 << IsQuad) - 1;
1579   case NeonTypeFlags::Float64:
1580     assert(!shift && "cannot shift float types!");
1581     return (1 << IsQuad) - 1;
1582   }
1583   llvm_unreachable("Invalid NeonTypeFlag!");
1584 }
1585 
1586 /// getNeonEltType - Return the QualType corresponding to the elements of
1587 /// the vector type specified by the NeonTypeFlags.  This is used to check
1588 /// the pointer arguments for Neon load/store intrinsics.
1589 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1590                                bool IsPolyUnsigned, bool IsInt64Long) {
1591   switch (Flags.getEltType()) {
1592   case NeonTypeFlags::Int8:
1593     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1594   case NeonTypeFlags::Int16:
1595     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1596   case NeonTypeFlags::Int32:
1597     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1598   case NeonTypeFlags::Int64:
1599     if (IsInt64Long)
1600       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1601     else
1602       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1603                                 : Context.LongLongTy;
1604   case NeonTypeFlags::Poly8:
1605     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1606   case NeonTypeFlags::Poly16:
1607     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1608   case NeonTypeFlags::Poly64:
1609     if (IsInt64Long)
1610       return Context.UnsignedLongTy;
1611     else
1612       return Context.UnsignedLongLongTy;
1613   case NeonTypeFlags::Poly128:
1614     break;
1615   case NeonTypeFlags::Float16:
1616     return Context.HalfTy;
1617   case NeonTypeFlags::Float32:
1618     return Context.FloatTy;
1619   case NeonTypeFlags::Float64:
1620     return Context.DoubleTy;
1621   }
1622   llvm_unreachable("Invalid NeonTypeFlag!");
1623 }
1624 
1625 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1626   llvm::APSInt Result;
1627   uint64_t mask = 0;
1628   unsigned TV = 0;
1629   int PtrArgNum = -1;
1630   bool HasConstPtr = false;
1631   switch (BuiltinID) {
1632 #define GET_NEON_OVERLOAD_CHECK
1633 #include "clang/Basic/arm_neon.inc"
1634 #include "clang/Basic/arm_fp16.inc"
1635 #undef GET_NEON_OVERLOAD_CHECK
1636   }
1637 
1638   // For NEON intrinsics which are overloaded on vector element type, validate
1639   // the immediate which specifies which variant to emit.
1640   unsigned ImmArg = TheCall->getNumArgs()-1;
1641   if (mask) {
1642     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1643       return true;
1644 
1645     TV = Result.getLimitedValue(64);
1646     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1647       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
1648              << TheCall->getArg(ImmArg)->getSourceRange();
1649   }
1650 
1651   if (PtrArgNum >= 0) {
1652     // Check that pointer arguments have the specified type.
1653     Expr *Arg = TheCall->getArg(PtrArgNum);
1654     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1655       Arg = ICE->getSubExpr();
1656     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1657     QualType RHSTy = RHS.get()->getType();
1658 
1659     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1660     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
1661                           Arch == llvm::Triple::aarch64_be;
1662     bool IsInt64Long =
1663         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1664     QualType EltTy =
1665         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1666     if (HasConstPtr)
1667       EltTy = EltTy.withConst();
1668     QualType LHSTy = Context.getPointerType(EltTy);
1669     AssignConvertType ConvTy;
1670     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1671     if (RHS.isInvalid())
1672       return true;
1673     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
1674                                  RHS.get(), AA_Assigning))
1675       return true;
1676   }
1677 
1678   // For NEON intrinsics which take an immediate value as part of the
1679   // instruction, range check them here.
1680   unsigned i = 0, l = 0, u = 0;
1681   switch (BuiltinID) {
1682   default:
1683     return false;
1684   #define GET_NEON_IMMEDIATE_CHECK
1685   #include "clang/Basic/arm_neon.inc"
1686   #include "clang/Basic/arm_fp16.inc"
1687   #undef GET_NEON_IMMEDIATE_CHECK
1688   }
1689 
1690   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1691 }
1692 
1693 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1694                                         unsigned MaxWidth) {
1695   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1696           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1697           BuiltinID == ARM::BI__builtin_arm_strex ||
1698           BuiltinID == ARM::BI__builtin_arm_stlex ||
1699           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1700           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1701           BuiltinID == AArch64::BI__builtin_arm_strex ||
1702           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1703          "unexpected ARM builtin");
1704   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1705                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1706                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1707                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1708 
1709   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1710 
1711   // Ensure that we have the proper number of arguments.
1712   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1713     return true;
1714 
1715   // Inspect the pointer argument of the atomic builtin.  This should always be
1716   // a pointer type, whose element is an integral scalar or pointer type.
1717   // Because it is a pointer type, we don't have to worry about any implicit
1718   // casts here.
1719   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1720   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1721   if (PointerArgRes.isInvalid())
1722     return true;
1723   PointerArg = PointerArgRes.get();
1724 
1725   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1726   if (!pointerType) {
1727     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
1728         << PointerArg->getType() << PointerArg->getSourceRange();
1729     return true;
1730   }
1731 
1732   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1733   // task is to insert the appropriate casts into the AST. First work out just
1734   // what the appropriate type is.
1735   QualType ValType = pointerType->getPointeeType();
1736   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1737   if (IsLdrex)
1738     AddrType.addConst();
1739 
1740   // Issue a warning if the cast is dodgy.
1741   CastKind CastNeeded = CK_NoOp;
1742   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1743     CastNeeded = CK_BitCast;
1744     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
1745         << PointerArg->getType() << Context.getPointerType(AddrType)
1746         << AA_Passing << PointerArg->getSourceRange();
1747   }
1748 
1749   // Finally, do the cast and replace the argument with the corrected version.
1750   AddrType = Context.getPointerType(AddrType);
1751   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1752   if (PointerArgRes.isInvalid())
1753     return true;
1754   PointerArg = PointerArgRes.get();
1755 
1756   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1757 
1758   // In general, we allow ints, floats and pointers to be loaded and stored.
1759   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1760       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1761     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1762         << PointerArg->getType() << PointerArg->getSourceRange();
1763     return true;
1764   }
1765 
1766   // But ARM doesn't have instructions to deal with 128-bit versions.
1767   if (Context.getTypeSize(ValType) > MaxWidth) {
1768     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1769     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
1770         << PointerArg->getType() << PointerArg->getSourceRange();
1771     return true;
1772   }
1773 
1774   switch (ValType.getObjCLifetime()) {
1775   case Qualifiers::OCL_None:
1776   case Qualifiers::OCL_ExplicitNone:
1777     // okay
1778     break;
1779 
1780   case Qualifiers::OCL_Weak:
1781   case Qualifiers::OCL_Strong:
1782   case Qualifiers::OCL_Autoreleasing:
1783     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
1784         << ValType << PointerArg->getSourceRange();
1785     return true;
1786   }
1787 
1788   if (IsLdrex) {
1789     TheCall->setType(ValType);
1790     return false;
1791   }
1792 
1793   // Initialize the argument to be stored.
1794   ExprResult ValArg = TheCall->getArg(0);
1795   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1796       Context, ValType, /*consume*/ false);
1797   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1798   if (ValArg.isInvalid())
1799     return true;
1800   TheCall->setArg(0, ValArg.get());
1801 
1802   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1803   // but the custom checker bypasses all default analysis.
1804   TheCall->setType(Context.IntTy);
1805   return false;
1806 }
1807 
1808 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1809   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1810       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1811       BuiltinID == ARM::BI__builtin_arm_strex ||
1812       BuiltinID == ARM::BI__builtin_arm_stlex) {
1813     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1814   }
1815 
1816   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1817     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1818       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1819   }
1820 
1821   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1822       BuiltinID == ARM::BI__builtin_arm_wsr64)
1823     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1824 
1825   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1826       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1827       BuiltinID == ARM::BI__builtin_arm_wsr ||
1828       BuiltinID == ARM::BI__builtin_arm_wsrp)
1829     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1830 
1831   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1832     return true;
1833 
1834   // For intrinsics which take an immediate value as part of the instruction,
1835   // range check them here.
1836   // FIXME: VFP Intrinsics should error if VFP not present.
1837   switch (BuiltinID) {
1838   default: return false;
1839   case ARM::BI__builtin_arm_ssat:
1840     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
1841   case ARM::BI__builtin_arm_usat:
1842     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
1843   case ARM::BI__builtin_arm_ssat16:
1844     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
1845   case ARM::BI__builtin_arm_usat16:
1846     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
1847   case ARM::BI__builtin_arm_vcvtr_f:
1848   case ARM::BI__builtin_arm_vcvtr_d:
1849     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
1850   case ARM::BI__builtin_arm_dmb:
1851   case ARM::BI__builtin_arm_dsb:
1852   case ARM::BI__builtin_arm_isb:
1853   case ARM::BI__builtin_arm_dbg:
1854     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
1855   }
1856 }
1857 
1858 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1859                                          CallExpr *TheCall) {
1860   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1861       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1862       BuiltinID == AArch64::BI__builtin_arm_strex ||
1863       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1864     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1865   }
1866 
1867   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1868     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1869       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1870       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1871       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
1872   }
1873 
1874   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1875       BuiltinID == AArch64::BI__builtin_arm_wsr64)
1876     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1877 
1878   // Memory Tagging Extensions (MTE) Intrinsics
1879   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
1880       BuiltinID == AArch64::BI__builtin_arm_addg ||
1881       BuiltinID == AArch64::BI__builtin_arm_gmi ||
1882       BuiltinID == AArch64::BI__builtin_arm_ldg ||
1883       BuiltinID == AArch64::BI__builtin_arm_stg ||
1884       BuiltinID == AArch64::BI__builtin_arm_subp) {
1885     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
1886   }
1887 
1888   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1889       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1890       BuiltinID == AArch64::BI__builtin_arm_wsr ||
1891       BuiltinID == AArch64::BI__builtin_arm_wsrp)
1892     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1893 
1894   // Only check the valid encoding range. Any constant in this range would be
1895   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
1896   // an exception for incorrect registers. This matches MSVC behavior.
1897   if (BuiltinID == AArch64::BI_ReadStatusReg ||
1898       BuiltinID == AArch64::BI_WriteStatusReg)
1899     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
1900 
1901   if (BuiltinID == AArch64::BI__getReg)
1902     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
1903 
1904   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1905     return true;
1906 
1907   // For intrinsics which take an immediate value as part of the instruction,
1908   // range check them here.
1909   unsigned i = 0, l = 0, u = 0;
1910   switch (BuiltinID) {
1911   default: return false;
1912   case AArch64::BI__builtin_arm_dmb:
1913   case AArch64::BI__builtin_arm_dsb:
1914   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1915   }
1916 
1917   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1918 }
1919 
1920 bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
1921   struct BuiltinAndString {
1922     unsigned BuiltinID;
1923     const char *Str;
1924   };
1925 
1926   static BuiltinAndString ValidCPU[] = {
1927     { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" },
1928     { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" },
1929     { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" },
1930     { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" },
1931     { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" },
1932     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" },
1933     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" },
1934     { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" },
1935     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" },
1936     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" },
1937     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" },
1938     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" },
1939     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" },
1940     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" },
1941     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" },
1942     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" },
1943     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" },
1944     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" },
1945     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" },
1946     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" },
1947     { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" },
1948     { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" },
1949     { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" },
1950   };
1951 
1952   static BuiltinAndString ValidHVX[] = {
1953     { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" },
1954     { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" },
1955     { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" },
1956     { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" },
1957     { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" },
1958     { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" },
1959     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" },
1960     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" },
1961     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" },
1962     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" },
1963     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" },
1964     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" },
1965     { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" },
1966     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" },
1967     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" },
1968     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" },
1969     { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" },
1970     { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" },
1971     { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" },
1972     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" },
1973     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" },
1974     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" },
1975     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" },
1976     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" },
1977     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" },
1978     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" },
1979     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" },
1980     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" },
1981     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" },
1982     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" },
1983     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" },
1984     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" },
1985     { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" },
1986     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" },
1987     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" },
1988     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" },
1989     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" },
1990     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" },
1991     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" },
1992     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" },
1993     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" },
1994     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" },
1995     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" },
1996     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" },
1997     { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" },
1998     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" },
1999     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" },
2000     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" },
2001     { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" },
2002     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" },
2003     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" },
2004     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" },
2005     { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" },
2006     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" },
2007     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" },
2008     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" },
2009     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" },
2010     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" },
2011     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" },
2012     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" },
2013     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" },
2014     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" },
2015     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" },
2016     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" },
2017     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" },
2018     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" },
2019     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" },
2020     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" },
2021     { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" },
2022     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" },
2023     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" },
2024     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" },
2025     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" },
2026     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" },
2027     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" },
2028     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" },
2029     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" },
2030     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" },
2031     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" },
2032     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" },
2033     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" },
2034     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" },
2035     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" },
2036     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" },
2037     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" },
2038     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" },
2039     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" },
2040     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" },
2041     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" },
2042     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" },
2043     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" },
2044     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" },
2045     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" },
2046     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" },
2047     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" },
2048     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" },
2049     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" },
2050     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" },
2051     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" },
2052     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" },
2053     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" },
2054     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" },
2055     { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" },
2056     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" },
2057     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" },
2058     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" },
2059     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" },
2060     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" },
2061     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" },
2062     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" },
2063     { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" },
2064     { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" },
2065     { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" },
2066     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" },
2067     { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" },
2068     { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" },
2069     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" },
2070     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" },
2071     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" },
2072     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" },
2073     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" },
2074     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" },
2075     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" },
2076     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" },
2077     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" },
2078     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" },
2079     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" },
2080     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" },
2081     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" },
2082     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" },
2083     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" },
2084     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" },
2085     { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" },
2086     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" },
2087     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" },
2088     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" },
2089     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" },
2090     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" },
2091     { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" },
2092     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" },
2093     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" },
2094     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" },
2095     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" },
2096     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" },
2097     { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" },
2098     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" },
2099     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" },
2100     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" },
2101     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" },
2102     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" },
2103     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" },
2104     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" },
2105     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" },
2106     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" },
2107     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" },
2108     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" },
2109     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" },
2110     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" },
2111     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" },
2112     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" },
2113     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" },
2114     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" },
2115     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" },
2116     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" },
2117     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" },
2118     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" },
2119     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" },
2120     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" },
2121     { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" },
2122     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" },
2123     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" },
2124     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" },
2125     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" },
2126     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" },
2127     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" },
2128     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" },
2129     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" },
2130     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" },
2131     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" },
2132     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" },
2133     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" },
2134     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" },
2135     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" },
2136     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" },
2137     { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" },
2138     { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" },
2139     { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" },
2140     { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" },
2141     { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" },
2142     { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" },
2143     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" },
2144     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" },
2145     { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" },
2146     { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" },
2147     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" },
2148     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" },
2149     { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" },
2150     { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" },
2151     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" },
2152     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" },
2153     { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" },
2154     { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" },
2155     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" },
2156     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" },
2157     { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" },
2158     { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" },
2159     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" },
2160     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" },
2161     { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" },
2162     { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" },
2163     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" },
2164     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" },
2165     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" },
2166     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" },
2167     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" },
2168     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" },
2169     { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" },
2170     { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" },
2171     { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" },
2172     { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" },
2173     { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" },
2174     { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" },
2175     { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" },
2176     { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" },
2177     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" },
2178     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" },
2179     { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" },
2180     { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" },
2181     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" },
2182     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" },
2183     { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" },
2184     { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" },
2185     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" },
2186     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" },
2187     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" },
2188     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" },
2189     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" },
2190     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" },
2191     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" },
2192     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" },
2193     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" },
2194     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" },
2195     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" },
2196     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" },
2197     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" },
2198     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" },
2199     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" },
2200     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" },
2201     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" },
2202     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" },
2203     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" },
2204     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" },
2205     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" },
2206     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" },
2207     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" },
2208     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" },
2209     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" },
2210     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" },
2211     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" },
2212     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" },
2213     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" },
2214     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" },
2215     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" },
2216     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" },
2217     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" },
2218     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" },
2219     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" },
2220     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" },
2221     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" },
2222     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" },
2223     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" },
2224     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" },
2225     { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" },
2226     { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" },
2227     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" },
2228     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" },
2229     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" },
2230     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" },
2231     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" },
2232     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" },
2233     { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" },
2234     { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" },
2235     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" },
2236     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" },
2237     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" },
2238     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" },
2239     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" },
2240     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" },
2241     { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" },
2242     { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" },
2243     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" },
2244     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" },
2245     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" },
2246     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" },
2247     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" },
2248     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" },
2249     { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" },
2250     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" },
2251     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" },
2252     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" },
2253     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" },
2254     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" },
2255     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" },
2256     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" },
2257     { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" },
2258     { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" },
2259     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" },
2260     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" },
2261     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" },
2262     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" },
2263     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" },
2264     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" },
2265     { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" },
2266     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" },
2267     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" },
2268     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" },
2269     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" },
2270     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" },
2271     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" },
2272     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" },
2273     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" },
2274     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" },
2275     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" },
2276     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" },
2277     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" },
2278     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" },
2279     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" },
2280     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" },
2281     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" },
2282     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" },
2283     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" },
2284     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" },
2285     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" },
2286     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" },
2287     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" },
2288     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" },
2289     { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" },
2290     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" },
2291     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" },
2292     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" },
2293     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" },
2294     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" },
2295     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" },
2296     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" },
2297     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" },
2298     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" },
2299     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" },
2300     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" },
2301     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" },
2302     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" },
2303     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" },
2304     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" },
2305     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" },
2306     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" },
2307     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" },
2308     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" },
2309     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" },
2310     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" },
2311     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" },
2312     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" },
2313     { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" },
2314     { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" },
2315     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" },
2316     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" },
2317     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" },
2318     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" },
2319     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" },
2320     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" },
2321     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" },
2322     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" },
2323     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" },
2324     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" },
2325     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" },
2326     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" },
2327     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" },
2328     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" },
2329     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" },
2330     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" },
2331     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" },
2332     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" },
2333     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" },
2334     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" },
2335     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" },
2336     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" },
2337     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" },
2338     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" },
2339     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" },
2340     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" },
2341     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" },
2342     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" },
2343     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" },
2344     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" },
2345     { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" },
2346     { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" },
2347     { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" },
2348     { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" },
2349     { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" },
2350     { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" },
2351     { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" },
2352     { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" },
2353     { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" },
2354     { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" },
2355     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" },
2356     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" },
2357     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" },
2358     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" },
2359     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" },
2360     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" },
2361     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" },
2362     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" },
2363     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" },
2364     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" },
2365     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" },
2366     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" },
2367     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" },
2368     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" },
2369     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" },
2370     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" },
2371     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" },
2372     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" },
2373     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" },
2374     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" },
2375     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" },
2376     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" },
2377     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" },
2378     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" },
2379     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" },
2380     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" },
2381     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" },
2382     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" },
2383     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" },
2384     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" },
2385     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" },
2386     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" },
2387     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" },
2388     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" },
2389     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" },
2390     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" },
2391     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" },
2392     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" },
2393     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" },
2394     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" },
2395     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" },
2396     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" },
2397     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" },
2398     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" },
2399     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" },
2400     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" },
2401     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" },
2402     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" },
2403     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" },
2404     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" },
2405     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" },
2406     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" },
2407     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" },
2408     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" },
2409     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" },
2410     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" },
2411     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" },
2412     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" },
2413     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" },
2414     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" },
2415     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" },
2416     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" },
2417     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" },
2418     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" },
2419     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" },
2420     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" },
2421     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" },
2422     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" },
2423     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" },
2424     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" },
2425     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" },
2426     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" },
2427     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" },
2428     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" },
2429     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" },
2430     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" },
2431     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" },
2432     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" },
2433     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" },
2434     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" },
2435     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" },
2436     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" },
2437     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" },
2438     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" },
2439     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" },
2440     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" },
2441     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" },
2442     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" },
2443     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" },
2444     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" },
2445     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" },
2446     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" },
2447     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" },
2448     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" },
2449     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" },
2450     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" },
2451     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" },
2452     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" },
2453     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" },
2454     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" },
2455     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" },
2456     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" },
2457     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" },
2458     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" },
2459     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" },
2460     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" },
2461     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" },
2462     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" },
2463     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" },
2464     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" },
2465     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" },
2466     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" },
2467     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" },
2468     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" },
2469     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" },
2470     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" },
2471     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" },
2472     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" },
2473     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" },
2474     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" },
2475     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" },
2476     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" },
2477     { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" },
2478     { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" },
2479     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" },
2480     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" },
2481     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" },
2482     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" },
2483     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" },
2484     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" },
2485     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" },
2486     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" },
2487     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" },
2488     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" },
2489     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" },
2490     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" },
2491     { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" },
2492     { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" },
2493     { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" },
2494     { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" },
2495     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" },
2496     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" },
2497     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" },
2498     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" },
2499     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" },
2500     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" },
2501     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" },
2502     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" },
2503     { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" },
2504     { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" },
2505     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" },
2506     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" },
2507     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" },
2508     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" },
2509     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" },
2510     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" },
2511     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" },
2512     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" },
2513     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" },
2514     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" },
2515     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" },
2516     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" },
2517     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" },
2518     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" },
2519     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" },
2520     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" },
2521     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" },
2522     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" },
2523     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" },
2524     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" },
2525     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" },
2526     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" },
2527     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" },
2528     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" },
2529     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" },
2530     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" },
2531     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" },
2532     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" },
2533     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" },
2534     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" },
2535     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" },
2536     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" },
2537     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" },
2538     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" },
2539     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" },
2540     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" },
2541     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" },
2542     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" },
2543     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" },
2544     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" },
2545     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" },
2546     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" },
2547     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" },
2548     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" },
2549     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" },
2550     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" },
2551     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" },
2552     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" },
2553     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" },
2554     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" },
2555     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" },
2556     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" },
2557     { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" },
2558     { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" },
2559     { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" },
2560     { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" },
2561     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" },
2562     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" },
2563     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" },
2564     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" },
2565     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" },
2566     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" },
2567     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" },
2568     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" },
2569     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" },
2570     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" },
2571     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" },
2572     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" },
2573     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" },
2574     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" },
2575     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" },
2576     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" },
2577     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" },
2578     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" },
2579     { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" },
2580     { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" },
2581     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" },
2582     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" },
2583     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" },
2584     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" },
2585     { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" },
2586     { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" },
2587     { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" },
2588     { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" },
2589     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" },
2590     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" },
2591     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" },
2592     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" },
2593     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" },
2594     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" },
2595     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" },
2596     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" },
2597     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" },
2598     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" },
2599     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" },
2600     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" },
2601     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" },
2602     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" },
2603     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" },
2604     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" },
2605     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" },
2606     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" },
2607     { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" },
2608     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" },
2609     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" },
2610     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" },
2611     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" },
2612     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" },
2613     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" },
2614     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" },
2615     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" },
2616     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" },
2617     { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" },
2618     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" },
2619     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" },
2620     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" },
2621     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" },
2622     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" },
2623     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" },
2624     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" },
2625     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" },
2626     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" },
2627     { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" },
2628     { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" },
2629     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" },
2630     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" },
2631     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" },
2632     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" },
2633     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" },
2634     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" },
2635     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" },
2636     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" },
2637     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" },
2638     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" },
2639     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" },
2640     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" },
2641     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" },
2642     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" },
2643     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" },
2644     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" },
2645     { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" },
2646     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" },
2647     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" },
2648     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" },
2649     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" },
2650     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" },
2651     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" },
2652     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" },
2653     { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" },
2654     { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" },
2655     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" },
2656     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" },
2657     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" },
2658     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" },
2659     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" },
2660     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" },
2661     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" },
2662     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" },
2663     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" },
2664     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" },
2665     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" },
2666     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" },
2667     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" },
2668     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" },
2669     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" },
2670     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" },
2671     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" },
2672     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" },
2673     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" },
2674     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" },
2675     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" },
2676     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" },
2677     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" },
2678     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" },
2679     { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" },
2680     { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" },
2681     { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" },
2682     { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" },
2683     { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" },
2684     { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" },
2685   };
2686 
2687   // Sort the tables on first execution so we can binary search them.
2688   auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) {
2689     return LHS.BuiltinID < RHS.BuiltinID;
2690   };
2691   static const bool SortOnce =
2692       (llvm::sort(ValidCPU, SortCmp),
2693        llvm::sort(ValidHVX, SortCmp), true);
2694   (void)SortOnce;
2695   auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) {
2696     return BI.BuiltinID < BuiltinID;
2697   };
2698 
2699   const TargetInfo &TI = Context.getTargetInfo();
2700 
2701   const BuiltinAndString *FC =
2702       std::lower_bound(std::begin(ValidCPU), std::end(ValidCPU), BuiltinID,
2703                        LowerBoundCmp);
2704   if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) {
2705     const TargetOptions &Opts = TI.getTargetOpts();
2706     StringRef CPU = Opts.CPU;
2707     if (!CPU.empty()) {
2708       assert(CPU.startswith("hexagon") && "Unexpected CPU name");
2709       CPU.consume_front("hexagon");
2710       SmallVector<StringRef, 3> CPUs;
2711       StringRef(FC->Str).split(CPUs, ',');
2712       if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; }))
2713         return Diag(TheCall->getBeginLoc(),
2714                     diag::err_hexagon_builtin_unsupported_cpu);
2715     }
2716   }
2717 
2718   const BuiltinAndString *FH =
2719       std::lower_bound(std::begin(ValidHVX), std::end(ValidHVX), BuiltinID,
2720                        LowerBoundCmp);
2721   if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) {
2722     if (!TI.hasFeature("hvx"))
2723       return Diag(TheCall->getBeginLoc(),
2724                   diag::err_hexagon_builtin_requires_hvx);
2725 
2726     SmallVector<StringRef, 3> HVXs;
2727     StringRef(FH->Str).split(HVXs, ',');
2728     bool IsValid = llvm::any_of(HVXs,
2729                                 [&TI] (StringRef V) {
2730                                   std::string F = "hvx" + V.str();
2731                                   return TI.hasFeature(F);
2732                                 });
2733     if (!IsValid)
2734       return Diag(TheCall->getBeginLoc(),
2735                   diag::err_hexagon_builtin_unsupported_hvx);
2736   }
2737 
2738   return false;
2739 }
2740 
2741 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2742   struct ArgInfo {
2743     uint8_t OpNum;
2744     bool IsSigned;
2745     uint8_t BitWidth;
2746     uint8_t Align;
2747   };
2748   struct BuiltinInfo {
2749     unsigned BuiltinID;
2750     ArgInfo Infos[2];
2751   };
2752 
2753   static BuiltinInfo Infos[] = {
2754     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2755     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2756     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2757     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  0 }} },
2758     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2759     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2760     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2761     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2762     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2763     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2764     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2765 
2766     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2767     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2768     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2769     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2770     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2771     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2772     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2774     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2775     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2776     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2777 
2778     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2782     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2785     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2788     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2797     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2798     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2830                                                       {{ 1, false, 6,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2838                                                       {{ 1, false, 5,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2845                                                        { 2, false, 5,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2847                                                        { 2, false, 6,  0 }} },
2848     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2849                                                        { 3, false, 5,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2851                                                        { 3, false, 6,  0 }} },
2852     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2867     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2868                                                       {{ 2, false, 4,  0 },
2869                                                        { 3, false, 5,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2871                                                       {{ 2, false, 4,  0 },
2872                                                        { 3, false, 5,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2874                                                       {{ 2, false, 4,  0 },
2875                                                        { 3, false, 5,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2877                                                       {{ 2, false, 4,  0 },
2878                                                        { 3, false, 5,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2882     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2890                                                        { 2, false, 5,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2892                                                        { 2, false, 6,  0 }} },
2893     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2900     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2902                                                       {{ 1, false, 4,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2905                                                       {{ 1, false, 4,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2911     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2912     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2913     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2914     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2915     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2916     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2917     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2918     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2919     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2921     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2922     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2923     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2924     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2925     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2926                                                       {{ 3, false, 1,  0 }} },
2927     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2928     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2929     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2930     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2931                                                       {{ 3, false, 1,  0 }} },
2932     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2933     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2934     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2936                                                       {{ 3, false, 1,  0 }} },
2937   };
2938 
2939   // Use a dynamically initialized static to sort the table exactly once on
2940   // first run.
2941   static const bool SortOnce =
2942       (llvm::sort(Infos,
2943                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2944                    return LHS.BuiltinID < RHS.BuiltinID;
2945                  }),
2946        true);
2947   (void)SortOnce;
2948 
2949   const BuiltinInfo *F =
2950       std::lower_bound(std::begin(Infos), std::end(Infos), BuiltinID,
2951                        [](const BuiltinInfo &BI, unsigned BuiltinID) {
2952                          return BI.BuiltinID < BuiltinID;
2953                        });
2954   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2955     return false;
2956 
2957   bool Error = false;
2958 
2959   for (const ArgInfo &A : F->Infos) {
2960     // Ignore empty ArgInfo elements.
2961     if (A.BitWidth == 0)
2962       continue;
2963 
2964     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2965     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2966     if (!A.Align) {
2967       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2968     } else {
2969       unsigned M = 1 << A.Align;
2970       Min *= M;
2971       Max *= M;
2972       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2973                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2974     }
2975   }
2976   return Error;
2977 }
2978 
2979 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2980                                            CallExpr *TheCall) {
2981   return CheckHexagonBuiltinCpu(BuiltinID, TheCall) ||
2982          CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2983 }
2984 
2985 
2986 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the
2987 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2988 // ordering for DSP is unspecified. MSA is ordered by the data format used
2989 // by the underlying instruction i.e., df/m, df/n and then by size.
2990 //
2991 // FIXME: The size tests here should instead be tablegen'd along with the
2992 //        definitions from include/clang/Basic/BuiltinsMips.def.
2993 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
2994 //        be too.
2995 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2996   unsigned i = 0, l = 0, u = 0, m = 0;
2997   switch (BuiltinID) {
2998   default: return false;
2999   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3000   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3001   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3002   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3003   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3004   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3005   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3006   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3007   // df/m field.
3008   // These intrinsics take an unsigned 3 bit immediate.
3009   case Mips::BI__builtin_msa_bclri_b:
3010   case Mips::BI__builtin_msa_bnegi_b:
3011   case Mips::BI__builtin_msa_bseti_b:
3012   case Mips::BI__builtin_msa_sat_s_b:
3013   case Mips::BI__builtin_msa_sat_u_b:
3014   case Mips::BI__builtin_msa_slli_b:
3015   case Mips::BI__builtin_msa_srai_b:
3016   case Mips::BI__builtin_msa_srari_b:
3017   case Mips::BI__builtin_msa_srli_b:
3018   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3019   case Mips::BI__builtin_msa_binsli_b:
3020   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3021   // These intrinsics take an unsigned 4 bit immediate.
3022   case Mips::BI__builtin_msa_bclri_h:
3023   case Mips::BI__builtin_msa_bnegi_h:
3024   case Mips::BI__builtin_msa_bseti_h:
3025   case Mips::BI__builtin_msa_sat_s_h:
3026   case Mips::BI__builtin_msa_sat_u_h:
3027   case Mips::BI__builtin_msa_slli_h:
3028   case Mips::BI__builtin_msa_srai_h:
3029   case Mips::BI__builtin_msa_srari_h:
3030   case Mips::BI__builtin_msa_srli_h:
3031   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3032   case Mips::BI__builtin_msa_binsli_h:
3033   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3034   // These intrinsics take an unsigned 5 bit immediate.
3035   // The first block of intrinsics actually have an unsigned 5 bit field,
3036   // not a df/n field.
3037   case Mips::BI__builtin_msa_cfcmsa:
3038   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3039   case Mips::BI__builtin_msa_clei_u_b:
3040   case Mips::BI__builtin_msa_clei_u_h:
3041   case Mips::BI__builtin_msa_clei_u_w:
3042   case Mips::BI__builtin_msa_clei_u_d:
3043   case Mips::BI__builtin_msa_clti_u_b:
3044   case Mips::BI__builtin_msa_clti_u_h:
3045   case Mips::BI__builtin_msa_clti_u_w:
3046   case Mips::BI__builtin_msa_clti_u_d:
3047   case Mips::BI__builtin_msa_maxi_u_b:
3048   case Mips::BI__builtin_msa_maxi_u_h:
3049   case Mips::BI__builtin_msa_maxi_u_w:
3050   case Mips::BI__builtin_msa_maxi_u_d:
3051   case Mips::BI__builtin_msa_mini_u_b:
3052   case Mips::BI__builtin_msa_mini_u_h:
3053   case Mips::BI__builtin_msa_mini_u_w:
3054   case Mips::BI__builtin_msa_mini_u_d:
3055   case Mips::BI__builtin_msa_addvi_b:
3056   case Mips::BI__builtin_msa_addvi_h:
3057   case Mips::BI__builtin_msa_addvi_w:
3058   case Mips::BI__builtin_msa_addvi_d:
3059   case Mips::BI__builtin_msa_bclri_w:
3060   case Mips::BI__builtin_msa_bnegi_w:
3061   case Mips::BI__builtin_msa_bseti_w:
3062   case Mips::BI__builtin_msa_sat_s_w:
3063   case Mips::BI__builtin_msa_sat_u_w:
3064   case Mips::BI__builtin_msa_slli_w:
3065   case Mips::BI__builtin_msa_srai_w:
3066   case Mips::BI__builtin_msa_srari_w:
3067   case Mips::BI__builtin_msa_srli_w:
3068   case Mips::BI__builtin_msa_srlri_w:
3069   case Mips::BI__builtin_msa_subvi_b:
3070   case Mips::BI__builtin_msa_subvi_h:
3071   case Mips::BI__builtin_msa_subvi_w:
3072   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3073   case Mips::BI__builtin_msa_binsli_w:
3074   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3075   // These intrinsics take an unsigned 6 bit immediate.
3076   case Mips::BI__builtin_msa_bclri_d:
3077   case Mips::BI__builtin_msa_bnegi_d:
3078   case Mips::BI__builtin_msa_bseti_d:
3079   case Mips::BI__builtin_msa_sat_s_d:
3080   case Mips::BI__builtin_msa_sat_u_d:
3081   case Mips::BI__builtin_msa_slli_d:
3082   case Mips::BI__builtin_msa_srai_d:
3083   case Mips::BI__builtin_msa_srari_d:
3084   case Mips::BI__builtin_msa_srli_d:
3085   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3086   case Mips::BI__builtin_msa_binsli_d:
3087   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3088   // These intrinsics take a signed 5 bit immediate.
3089   case Mips::BI__builtin_msa_ceqi_b:
3090   case Mips::BI__builtin_msa_ceqi_h:
3091   case Mips::BI__builtin_msa_ceqi_w:
3092   case Mips::BI__builtin_msa_ceqi_d:
3093   case Mips::BI__builtin_msa_clti_s_b:
3094   case Mips::BI__builtin_msa_clti_s_h:
3095   case Mips::BI__builtin_msa_clti_s_w:
3096   case Mips::BI__builtin_msa_clti_s_d:
3097   case Mips::BI__builtin_msa_clei_s_b:
3098   case Mips::BI__builtin_msa_clei_s_h:
3099   case Mips::BI__builtin_msa_clei_s_w:
3100   case Mips::BI__builtin_msa_clei_s_d:
3101   case Mips::BI__builtin_msa_maxi_s_b:
3102   case Mips::BI__builtin_msa_maxi_s_h:
3103   case Mips::BI__builtin_msa_maxi_s_w:
3104   case Mips::BI__builtin_msa_maxi_s_d:
3105   case Mips::BI__builtin_msa_mini_s_b:
3106   case Mips::BI__builtin_msa_mini_s_h:
3107   case Mips::BI__builtin_msa_mini_s_w:
3108   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3109   // These intrinsics take an unsigned 8 bit immediate.
3110   case Mips::BI__builtin_msa_andi_b:
3111   case Mips::BI__builtin_msa_nori_b:
3112   case Mips::BI__builtin_msa_ori_b:
3113   case Mips::BI__builtin_msa_shf_b:
3114   case Mips::BI__builtin_msa_shf_h:
3115   case Mips::BI__builtin_msa_shf_w:
3116   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3117   case Mips::BI__builtin_msa_bseli_b:
3118   case Mips::BI__builtin_msa_bmnzi_b:
3119   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3120   // df/n format
3121   // These intrinsics take an unsigned 4 bit immediate.
3122   case Mips::BI__builtin_msa_copy_s_b:
3123   case Mips::BI__builtin_msa_copy_u_b:
3124   case Mips::BI__builtin_msa_insve_b:
3125   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3126   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3127   // These intrinsics take an unsigned 3 bit immediate.
3128   case Mips::BI__builtin_msa_copy_s_h:
3129   case Mips::BI__builtin_msa_copy_u_h:
3130   case Mips::BI__builtin_msa_insve_h:
3131   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3132   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3133   // These intrinsics take an unsigned 2 bit immediate.
3134   case Mips::BI__builtin_msa_copy_s_w:
3135   case Mips::BI__builtin_msa_copy_u_w:
3136   case Mips::BI__builtin_msa_insve_w:
3137   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3138   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3139   // These intrinsics take an unsigned 1 bit immediate.
3140   case Mips::BI__builtin_msa_copy_s_d:
3141   case Mips::BI__builtin_msa_copy_u_d:
3142   case Mips::BI__builtin_msa_insve_d:
3143   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3144   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3145   // Memory offsets and immediate loads.
3146   // These intrinsics take a signed 10 bit immediate.
3147   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3148   case Mips::BI__builtin_msa_ldi_h:
3149   case Mips::BI__builtin_msa_ldi_w:
3150   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3151   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3152   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3153   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3154   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3155   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3156   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3157   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3158   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3159   }
3160 
3161   if (!m)
3162     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3163 
3164   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3165          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3166 }
3167 
3168 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3169   unsigned i = 0, l = 0, u = 0;
3170   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3171                       BuiltinID == PPC::BI__builtin_divdeu ||
3172                       BuiltinID == PPC::BI__builtin_bpermd;
3173   bool IsTarget64Bit = Context.getTargetInfo()
3174                               .getTypeWidth(Context
3175                                             .getTargetInfo()
3176                                             .getIntPtrType()) == 64;
3177   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3178                        BuiltinID == PPC::BI__builtin_divweu ||
3179                        BuiltinID == PPC::BI__builtin_divde ||
3180                        BuiltinID == PPC::BI__builtin_divdeu;
3181 
3182   if (Is64BitBltin && !IsTarget64Bit)
3183     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3184            << TheCall->getSourceRange();
3185 
3186   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
3187       (BuiltinID == PPC::BI__builtin_bpermd &&
3188        !Context.getTargetInfo().hasFeature("bpermd")))
3189     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3190            << TheCall->getSourceRange();
3191 
3192   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3193     if (!Context.getTargetInfo().hasFeature("vsx"))
3194       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3195              << TheCall->getSourceRange();
3196     return false;
3197   };
3198 
3199   switch (BuiltinID) {
3200   default: return false;
3201   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3202   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3203     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3204            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3205   case PPC::BI__builtin_tbegin:
3206   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3207   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3208   case PPC::BI__builtin_tabortwc:
3209   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3210   case PPC::BI__builtin_tabortwci:
3211   case PPC::BI__builtin_tabortdci:
3212     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3213            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3214   case PPC::BI__builtin_vsx_xxpermdi:
3215   case PPC::BI__builtin_vsx_xxsldwi:
3216     return SemaBuiltinVSX(TheCall);
3217   case PPC::BI__builtin_unpack_vector_int128:
3218     return SemaVSXCheck(TheCall) ||
3219            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3220   case PPC::BI__builtin_pack_vector_int128:
3221     return SemaVSXCheck(TheCall);
3222   }
3223   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3224 }
3225 
3226 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3227                                            CallExpr *TheCall) {
3228   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3229     Expr *Arg = TheCall->getArg(0);
3230     llvm::APSInt AbortCode(32);
3231     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
3232         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
3233       return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3234              << Arg->getSourceRange();
3235   }
3236 
3237   // For intrinsics which take an immediate value as part of the instruction,
3238   // range check them here.
3239   unsigned i = 0, l = 0, u = 0;
3240   switch (BuiltinID) {
3241   default: return false;
3242   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3243   case SystemZ::BI__builtin_s390_verimb:
3244   case SystemZ::BI__builtin_s390_verimh:
3245   case SystemZ::BI__builtin_s390_verimf:
3246   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3247   case SystemZ::BI__builtin_s390_vfaeb:
3248   case SystemZ::BI__builtin_s390_vfaeh:
3249   case SystemZ::BI__builtin_s390_vfaef:
3250   case SystemZ::BI__builtin_s390_vfaebs:
3251   case SystemZ::BI__builtin_s390_vfaehs:
3252   case SystemZ::BI__builtin_s390_vfaefs:
3253   case SystemZ::BI__builtin_s390_vfaezb:
3254   case SystemZ::BI__builtin_s390_vfaezh:
3255   case SystemZ::BI__builtin_s390_vfaezf:
3256   case SystemZ::BI__builtin_s390_vfaezbs:
3257   case SystemZ::BI__builtin_s390_vfaezhs:
3258   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3259   case SystemZ::BI__builtin_s390_vfisb:
3260   case SystemZ::BI__builtin_s390_vfidb:
3261     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3262            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3263   case SystemZ::BI__builtin_s390_vftcisb:
3264   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3265   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3266   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3267   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3268   case SystemZ::BI__builtin_s390_vstrcb:
3269   case SystemZ::BI__builtin_s390_vstrch:
3270   case SystemZ::BI__builtin_s390_vstrcf:
3271   case SystemZ::BI__builtin_s390_vstrczb:
3272   case SystemZ::BI__builtin_s390_vstrczh:
3273   case SystemZ::BI__builtin_s390_vstrczf:
3274   case SystemZ::BI__builtin_s390_vstrcbs:
3275   case SystemZ::BI__builtin_s390_vstrchs:
3276   case SystemZ::BI__builtin_s390_vstrcfs:
3277   case SystemZ::BI__builtin_s390_vstrczbs:
3278   case SystemZ::BI__builtin_s390_vstrczhs:
3279   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3280   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3281   case SystemZ::BI__builtin_s390_vfminsb:
3282   case SystemZ::BI__builtin_s390_vfmaxsb:
3283   case SystemZ::BI__builtin_s390_vfmindb:
3284   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3285   }
3286   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3287 }
3288 
3289 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3290 /// This checks that the target supports __builtin_cpu_supports and
3291 /// that the string argument is constant and valid.
3292 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
3293   Expr *Arg = TheCall->getArg(0);
3294 
3295   // Check if the argument is a string literal.
3296   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3297     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3298            << Arg->getSourceRange();
3299 
3300   // Check the contents of the string.
3301   StringRef Feature =
3302       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3303   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
3304     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3305            << Arg->getSourceRange();
3306   return false;
3307 }
3308 
3309 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3310 /// This checks that the target supports __builtin_cpu_is and
3311 /// that the string argument is constant and valid.
3312 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
3313   Expr *Arg = TheCall->getArg(0);
3314 
3315   // Check if the argument is a string literal.
3316   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3317     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3318            << Arg->getSourceRange();
3319 
3320   // Check the contents of the string.
3321   StringRef Feature =
3322       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3323   if (!S.Context.getTargetInfo().validateCpuIs(Feature))
3324     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3325            << Arg->getSourceRange();
3326   return false;
3327 }
3328 
3329 // Check if the rounding mode is legal.
3330 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3331   // Indicates if this instruction has rounding control or just SAE.
3332   bool HasRC = false;
3333 
3334   unsigned ArgNum = 0;
3335   switch (BuiltinID) {
3336   default:
3337     return false;
3338   case X86::BI__builtin_ia32_vcvttsd2si32:
3339   case X86::BI__builtin_ia32_vcvttsd2si64:
3340   case X86::BI__builtin_ia32_vcvttsd2usi32:
3341   case X86::BI__builtin_ia32_vcvttsd2usi64:
3342   case X86::BI__builtin_ia32_vcvttss2si32:
3343   case X86::BI__builtin_ia32_vcvttss2si64:
3344   case X86::BI__builtin_ia32_vcvttss2usi32:
3345   case X86::BI__builtin_ia32_vcvttss2usi64:
3346     ArgNum = 1;
3347     break;
3348   case X86::BI__builtin_ia32_maxpd512:
3349   case X86::BI__builtin_ia32_maxps512:
3350   case X86::BI__builtin_ia32_minpd512:
3351   case X86::BI__builtin_ia32_minps512:
3352     ArgNum = 2;
3353     break;
3354   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3355   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3356   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3357   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3358   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3359   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3360   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3361   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3362   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3363   case X86::BI__builtin_ia32_exp2pd_mask:
3364   case X86::BI__builtin_ia32_exp2ps_mask:
3365   case X86::BI__builtin_ia32_getexppd512_mask:
3366   case X86::BI__builtin_ia32_getexpps512_mask:
3367   case X86::BI__builtin_ia32_rcp28pd_mask:
3368   case X86::BI__builtin_ia32_rcp28ps_mask:
3369   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3370   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3371   case X86::BI__builtin_ia32_vcomisd:
3372   case X86::BI__builtin_ia32_vcomiss:
3373   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3374     ArgNum = 3;
3375     break;
3376   case X86::BI__builtin_ia32_cmppd512_mask:
3377   case X86::BI__builtin_ia32_cmpps512_mask:
3378   case X86::BI__builtin_ia32_cmpsd_mask:
3379   case X86::BI__builtin_ia32_cmpss_mask:
3380   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3381   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3382   case X86::BI__builtin_ia32_getexpss128_round_mask:
3383   case X86::BI__builtin_ia32_getmantpd512_mask:
3384   case X86::BI__builtin_ia32_getmantps512_mask:
3385   case X86::BI__builtin_ia32_maxsd_round_mask:
3386   case X86::BI__builtin_ia32_maxss_round_mask:
3387   case X86::BI__builtin_ia32_minsd_round_mask:
3388   case X86::BI__builtin_ia32_minss_round_mask:
3389   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3390   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3391   case X86::BI__builtin_ia32_reducepd512_mask:
3392   case X86::BI__builtin_ia32_reduceps512_mask:
3393   case X86::BI__builtin_ia32_rndscalepd_mask:
3394   case X86::BI__builtin_ia32_rndscaleps_mask:
3395   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3396   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3397     ArgNum = 4;
3398     break;
3399   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3400   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3401   case X86::BI__builtin_ia32_fixupimmps512_mask:
3402   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3403   case X86::BI__builtin_ia32_fixupimmsd_mask:
3404   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3405   case X86::BI__builtin_ia32_fixupimmss_mask:
3406   case X86::BI__builtin_ia32_fixupimmss_maskz:
3407   case X86::BI__builtin_ia32_getmantsd_round_mask:
3408   case X86::BI__builtin_ia32_getmantss_round_mask:
3409   case X86::BI__builtin_ia32_rangepd512_mask:
3410   case X86::BI__builtin_ia32_rangeps512_mask:
3411   case X86::BI__builtin_ia32_rangesd128_round_mask:
3412   case X86::BI__builtin_ia32_rangess128_round_mask:
3413   case X86::BI__builtin_ia32_reducesd_mask:
3414   case X86::BI__builtin_ia32_reducess_mask:
3415   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3416   case X86::BI__builtin_ia32_rndscaless_round_mask:
3417     ArgNum = 5;
3418     break;
3419   case X86::BI__builtin_ia32_vcvtsd2si64:
3420   case X86::BI__builtin_ia32_vcvtsd2si32:
3421   case X86::BI__builtin_ia32_vcvtsd2usi32:
3422   case X86::BI__builtin_ia32_vcvtsd2usi64:
3423   case X86::BI__builtin_ia32_vcvtss2si32:
3424   case X86::BI__builtin_ia32_vcvtss2si64:
3425   case X86::BI__builtin_ia32_vcvtss2usi32:
3426   case X86::BI__builtin_ia32_vcvtss2usi64:
3427   case X86::BI__builtin_ia32_sqrtpd512:
3428   case X86::BI__builtin_ia32_sqrtps512:
3429     ArgNum = 1;
3430     HasRC = true;
3431     break;
3432   case X86::BI__builtin_ia32_addpd512:
3433   case X86::BI__builtin_ia32_addps512:
3434   case X86::BI__builtin_ia32_divpd512:
3435   case X86::BI__builtin_ia32_divps512:
3436   case X86::BI__builtin_ia32_mulpd512:
3437   case X86::BI__builtin_ia32_mulps512:
3438   case X86::BI__builtin_ia32_subpd512:
3439   case X86::BI__builtin_ia32_subps512:
3440   case X86::BI__builtin_ia32_cvtsi2sd64:
3441   case X86::BI__builtin_ia32_cvtsi2ss32:
3442   case X86::BI__builtin_ia32_cvtsi2ss64:
3443   case X86::BI__builtin_ia32_cvtusi2sd64:
3444   case X86::BI__builtin_ia32_cvtusi2ss32:
3445   case X86::BI__builtin_ia32_cvtusi2ss64:
3446     ArgNum = 2;
3447     HasRC = true;
3448     break;
3449   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3450   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3451   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3452   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3453   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3454   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3455   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3456   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3457   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3458   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3459   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3460   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3461   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3462   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3463   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3464     ArgNum = 3;
3465     HasRC = true;
3466     break;
3467   case X86::BI__builtin_ia32_addss_round_mask:
3468   case X86::BI__builtin_ia32_addsd_round_mask:
3469   case X86::BI__builtin_ia32_divss_round_mask:
3470   case X86::BI__builtin_ia32_divsd_round_mask:
3471   case X86::BI__builtin_ia32_mulss_round_mask:
3472   case X86::BI__builtin_ia32_mulsd_round_mask:
3473   case X86::BI__builtin_ia32_subss_round_mask:
3474   case X86::BI__builtin_ia32_subsd_round_mask:
3475   case X86::BI__builtin_ia32_scalefpd512_mask:
3476   case X86::BI__builtin_ia32_scalefps512_mask:
3477   case X86::BI__builtin_ia32_scalefsd_round_mask:
3478   case X86::BI__builtin_ia32_scalefss_round_mask:
3479   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3480   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3481   case X86::BI__builtin_ia32_sqrtss_round_mask:
3482   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3483   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3484   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3485   case X86::BI__builtin_ia32_vfmaddss3_mask:
3486   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3487   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3488   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3489   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3490   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3491   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3492   case X86::BI__builtin_ia32_vfmaddps512_mask:
3493   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3494   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3495   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3496   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3497   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3498   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3499   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3500   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3501   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3502   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3503   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3504     ArgNum = 4;
3505     HasRC = true;
3506     break;
3507   }
3508 
3509   llvm::APSInt Result;
3510 
3511   // We can't check the value of a dependent argument.
3512   Expr *Arg = TheCall->getArg(ArgNum);
3513   if (Arg->isTypeDependent() || Arg->isValueDependent())
3514     return false;
3515 
3516   // Check constant-ness first.
3517   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3518     return true;
3519 
3520   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3521   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3522   // combined with ROUND_NO_EXC.
3523   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3524       Result == 8/*ROUND_NO_EXC*/ ||
3525       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3526     return false;
3527 
3528   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3529          << Arg->getSourceRange();
3530 }
3531 
3532 // Check if the gather/scatter scale is legal.
3533 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3534                                              CallExpr *TheCall) {
3535   unsigned ArgNum = 0;
3536   switch (BuiltinID) {
3537   default:
3538     return false;
3539   case X86::BI__builtin_ia32_gatherpfdpd:
3540   case X86::BI__builtin_ia32_gatherpfdps:
3541   case X86::BI__builtin_ia32_gatherpfqpd:
3542   case X86::BI__builtin_ia32_gatherpfqps:
3543   case X86::BI__builtin_ia32_scatterpfdpd:
3544   case X86::BI__builtin_ia32_scatterpfdps:
3545   case X86::BI__builtin_ia32_scatterpfqpd:
3546   case X86::BI__builtin_ia32_scatterpfqps:
3547     ArgNum = 3;
3548     break;
3549   case X86::BI__builtin_ia32_gatherd_pd:
3550   case X86::BI__builtin_ia32_gatherd_pd256:
3551   case X86::BI__builtin_ia32_gatherq_pd:
3552   case X86::BI__builtin_ia32_gatherq_pd256:
3553   case X86::BI__builtin_ia32_gatherd_ps:
3554   case X86::BI__builtin_ia32_gatherd_ps256:
3555   case X86::BI__builtin_ia32_gatherq_ps:
3556   case X86::BI__builtin_ia32_gatherq_ps256:
3557   case X86::BI__builtin_ia32_gatherd_q:
3558   case X86::BI__builtin_ia32_gatherd_q256:
3559   case X86::BI__builtin_ia32_gatherq_q:
3560   case X86::BI__builtin_ia32_gatherq_q256:
3561   case X86::BI__builtin_ia32_gatherd_d:
3562   case X86::BI__builtin_ia32_gatherd_d256:
3563   case X86::BI__builtin_ia32_gatherq_d:
3564   case X86::BI__builtin_ia32_gatherq_d256:
3565   case X86::BI__builtin_ia32_gather3div2df:
3566   case X86::BI__builtin_ia32_gather3div2di:
3567   case X86::BI__builtin_ia32_gather3div4df:
3568   case X86::BI__builtin_ia32_gather3div4di:
3569   case X86::BI__builtin_ia32_gather3div4sf:
3570   case X86::BI__builtin_ia32_gather3div4si:
3571   case X86::BI__builtin_ia32_gather3div8sf:
3572   case X86::BI__builtin_ia32_gather3div8si:
3573   case X86::BI__builtin_ia32_gather3siv2df:
3574   case X86::BI__builtin_ia32_gather3siv2di:
3575   case X86::BI__builtin_ia32_gather3siv4df:
3576   case X86::BI__builtin_ia32_gather3siv4di:
3577   case X86::BI__builtin_ia32_gather3siv4sf:
3578   case X86::BI__builtin_ia32_gather3siv4si:
3579   case X86::BI__builtin_ia32_gather3siv8sf:
3580   case X86::BI__builtin_ia32_gather3siv8si:
3581   case X86::BI__builtin_ia32_gathersiv8df:
3582   case X86::BI__builtin_ia32_gathersiv16sf:
3583   case X86::BI__builtin_ia32_gatherdiv8df:
3584   case X86::BI__builtin_ia32_gatherdiv16sf:
3585   case X86::BI__builtin_ia32_gathersiv8di:
3586   case X86::BI__builtin_ia32_gathersiv16si:
3587   case X86::BI__builtin_ia32_gatherdiv8di:
3588   case X86::BI__builtin_ia32_gatherdiv16si:
3589   case X86::BI__builtin_ia32_scatterdiv2df:
3590   case X86::BI__builtin_ia32_scatterdiv2di:
3591   case X86::BI__builtin_ia32_scatterdiv4df:
3592   case X86::BI__builtin_ia32_scatterdiv4di:
3593   case X86::BI__builtin_ia32_scatterdiv4sf:
3594   case X86::BI__builtin_ia32_scatterdiv4si:
3595   case X86::BI__builtin_ia32_scatterdiv8sf:
3596   case X86::BI__builtin_ia32_scatterdiv8si:
3597   case X86::BI__builtin_ia32_scattersiv2df:
3598   case X86::BI__builtin_ia32_scattersiv2di:
3599   case X86::BI__builtin_ia32_scattersiv4df:
3600   case X86::BI__builtin_ia32_scattersiv4di:
3601   case X86::BI__builtin_ia32_scattersiv4sf:
3602   case X86::BI__builtin_ia32_scattersiv4si:
3603   case X86::BI__builtin_ia32_scattersiv8sf:
3604   case X86::BI__builtin_ia32_scattersiv8si:
3605   case X86::BI__builtin_ia32_scattersiv8df:
3606   case X86::BI__builtin_ia32_scattersiv16sf:
3607   case X86::BI__builtin_ia32_scatterdiv8df:
3608   case X86::BI__builtin_ia32_scatterdiv16sf:
3609   case X86::BI__builtin_ia32_scattersiv8di:
3610   case X86::BI__builtin_ia32_scattersiv16si:
3611   case X86::BI__builtin_ia32_scatterdiv8di:
3612   case X86::BI__builtin_ia32_scatterdiv16si:
3613     ArgNum = 4;
3614     break;
3615   }
3616 
3617   llvm::APSInt Result;
3618 
3619   // We can't check the value of a dependent argument.
3620   Expr *Arg = TheCall->getArg(ArgNum);
3621   if (Arg->isTypeDependent() || Arg->isValueDependent())
3622     return false;
3623 
3624   // Check constant-ness first.
3625   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3626     return true;
3627 
3628   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3629     return false;
3630 
3631   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3632          << Arg->getSourceRange();
3633 }
3634 
3635 static bool isX86_32Builtin(unsigned BuiltinID) {
3636   // These builtins only work on x86-32 targets.
3637   switch (BuiltinID) {
3638   case X86::BI__builtin_ia32_readeflags_u32:
3639   case X86::BI__builtin_ia32_writeeflags_u32:
3640     return true;
3641   }
3642 
3643   return false;
3644 }
3645 
3646 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3647   if (BuiltinID == X86::BI__builtin_cpu_supports)
3648     return SemaBuiltinCpuSupports(*this, TheCall);
3649 
3650   if (BuiltinID == X86::BI__builtin_cpu_is)
3651     return SemaBuiltinCpuIs(*this, TheCall);
3652 
3653   // Check for 32-bit only builtins on a 64-bit target.
3654   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3655   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3656     return Diag(TheCall->getCallee()->getBeginLoc(),
3657                 diag::err_32_bit_builtin_64_bit_tgt);
3658 
3659   // If the intrinsic has rounding or SAE make sure its valid.
3660   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3661     return true;
3662 
3663   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3664   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3665     return true;
3666 
3667   // For intrinsics which take an immediate value as part of the instruction,
3668   // range check them here.
3669   int i = 0, l = 0, u = 0;
3670   switch (BuiltinID) {
3671   default:
3672     return false;
3673   case X86::BI__builtin_ia32_vec_ext_v2si:
3674   case X86::BI__builtin_ia32_vec_ext_v2di:
3675   case X86::BI__builtin_ia32_vextractf128_pd256:
3676   case X86::BI__builtin_ia32_vextractf128_ps256:
3677   case X86::BI__builtin_ia32_vextractf128_si256:
3678   case X86::BI__builtin_ia32_extract128i256:
3679   case X86::BI__builtin_ia32_extractf64x4_mask:
3680   case X86::BI__builtin_ia32_extracti64x4_mask:
3681   case X86::BI__builtin_ia32_extractf32x8_mask:
3682   case X86::BI__builtin_ia32_extracti32x8_mask:
3683   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3684   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3685   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3686   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3687     i = 1; l = 0; u = 1;
3688     break;
3689   case X86::BI__builtin_ia32_vec_set_v2di:
3690   case X86::BI__builtin_ia32_vinsertf128_pd256:
3691   case X86::BI__builtin_ia32_vinsertf128_ps256:
3692   case X86::BI__builtin_ia32_vinsertf128_si256:
3693   case X86::BI__builtin_ia32_insert128i256:
3694   case X86::BI__builtin_ia32_insertf32x8:
3695   case X86::BI__builtin_ia32_inserti32x8:
3696   case X86::BI__builtin_ia32_insertf64x4:
3697   case X86::BI__builtin_ia32_inserti64x4:
3698   case X86::BI__builtin_ia32_insertf64x2_256:
3699   case X86::BI__builtin_ia32_inserti64x2_256:
3700   case X86::BI__builtin_ia32_insertf32x4_256:
3701   case X86::BI__builtin_ia32_inserti32x4_256:
3702     i = 2; l = 0; u = 1;
3703     break;
3704   case X86::BI__builtin_ia32_vpermilpd:
3705   case X86::BI__builtin_ia32_vec_ext_v4hi:
3706   case X86::BI__builtin_ia32_vec_ext_v4si:
3707   case X86::BI__builtin_ia32_vec_ext_v4sf:
3708   case X86::BI__builtin_ia32_vec_ext_v4di:
3709   case X86::BI__builtin_ia32_extractf32x4_mask:
3710   case X86::BI__builtin_ia32_extracti32x4_mask:
3711   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3712   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3713     i = 1; l = 0; u = 3;
3714     break;
3715   case X86::BI_mm_prefetch:
3716   case X86::BI__builtin_ia32_vec_ext_v8hi:
3717   case X86::BI__builtin_ia32_vec_ext_v8si:
3718     i = 1; l = 0; u = 7;
3719     break;
3720   case X86::BI__builtin_ia32_sha1rnds4:
3721   case X86::BI__builtin_ia32_blendpd:
3722   case X86::BI__builtin_ia32_shufpd:
3723   case X86::BI__builtin_ia32_vec_set_v4hi:
3724   case X86::BI__builtin_ia32_vec_set_v4si:
3725   case X86::BI__builtin_ia32_vec_set_v4di:
3726   case X86::BI__builtin_ia32_shuf_f32x4_256:
3727   case X86::BI__builtin_ia32_shuf_f64x2_256:
3728   case X86::BI__builtin_ia32_shuf_i32x4_256:
3729   case X86::BI__builtin_ia32_shuf_i64x2_256:
3730   case X86::BI__builtin_ia32_insertf64x2_512:
3731   case X86::BI__builtin_ia32_inserti64x2_512:
3732   case X86::BI__builtin_ia32_insertf32x4:
3733   case X86::BI__builtin_ia32_inserti32x4:
3734     i = 2; l = 0; u = 3;
3735     break;
3736   case X86::BI__builtin_ia32_vpermil2pd:
3737   case X86::BI__builtin_ia32_vpermil2pd256:
3738   case X86::BI__builtin_ia32_vpermil2ps:
3739   case X86::BI__builtin_ia32_vpermil2ps256:
3740     i = 3; l = 0; u = 3;
3741     break;
3742   case X86::BI__builtin_ia32_cmpb128_mask:
3743   case X86::BI__builtin_ia32_cmpw128_mask:
3744   case X86::BI__builtin_ia32_cmpd128_mask:
3745   case X86::BI__builtin_ia32_cmpq128_mask:
3746   case X86::BI__builtin_ia32_cmpb256_mask:
3747   case X86::BI__builtin_ia32_cmpw256_mask:
3748   case X86::BI__builtin_ia32_cmpd256_mask:
3749   case X86::BI__builtin_ia32_cmpq256_mask:
3750   case X86::BI__builtin_ia32_cmpb512_mask:
3751   case X86::BI__builtin_ia32_cmpw512_mask:
3752   case X86::BI__builtin_ia32_cmpd512_mask:
3753   case X86::BI__builtin_ia32_cmpq512_mask:
3754   case X86::BI__builtin_ia32_ucmpb128_mask:
3755   case X86::BI__builtin_ia32_ucmpw128_mask:
3756   case X86::BI__builtin_ia32_ucmpd128_mask:
3757   case X86::BI__builtin_ia32_ucmpq128_mask:
3758   case X86::BI__builtin_ia32_ucmpb256_mask:
3759   case X86::BI__builtin_ia32_ucmpw256_mask:
3760   case X86::BI__builtin_ia32_ucmpd256_mask:
3761   case X86::BI__builtin_ia32_ucmpq256_mask:
3762   case X86::BI__builtin_ia32_ucmpb512_mask:
3763   case X86::BI__builtin_ia32_ucmpw512_mask:
3764   case X86::BI__builtin_ia32_ucmpd512_mask:
3765   case X86::BI__builtin_ia32_ucmpq512_mask:
3766   case X86::BI__builtin_ia32_vpcomub:
3767   case X86::BI__builtin_ia32_vpcomuw:
3768   case X86::BI__builtin_ia32_vpcomud:
3769   case X86::BI__builtin_ia32_vpcomuq:
3770   case X86::BI__builtin_ia32_vpcomb:
3771   case X86::BI__builtin_ia32_vpcomw:
3772   case X86::BI__builtin_ia32_vpcomd:
3773   case X86::BI__builtin_ia32_vpcomq:
3774   case X86::BI__builtin_ia32_vec_set_v8hi:
3775   case X86::BI__builtin_ia32_vec_set_v8si:
3776     i = 2; l = 0; u = 7;
3777     break;
3778   case X86::BI__builtin_ia32_vpermilpd256:
3779   case X86::BI__builtin_ia32_roundps:
3780   case X86::BI__builtin_ia32_roundpd:
3781   case X86::BI__builtin_ia32_roundps256:
3782   case X86::BI__builtin_ia32_roundpd256:
3783   case X86::BI__builtin_ia32_getmantpd128_mask:
3784   case X86::BI__builtin_ia32_getmantpd256_mask:
3785   case X86::BI__builtin_ia32_getmantps128_mask:
3786   case X86::BI__builtin_ia32_getmantps256_mask:
3787   case X86::BI__builtin_ia32_getmantpd512_mask:
3788   case X86::BI__builtin_ia32_getmantps512_mask:
3789   case X86::BI__builtin_ia32_vec_ext_v16qi:
3790   case X86::BI__builtin_ia32_vec_ext_v16hi:
3791     i = 1; l = 0; u = 15;
3792     break;
3793   case X86::BI__builtin_ia32_pblendd128:
3794   case X86::BI__builtin_ia32_blendps:
3795   case X86::BI__builtin_ia32_blendpd256:
3796   case X86::BI__builtin_ia32_shufpd256:
3797   case X86::BI__builtin_ia32_roundss:
3798   case X86::BI__builtin_ia32_roundsd:
3799   case X86::BI__builtin_ia32_rangepd128_mask:
3800   case X86::BI__builtin_ia32_rangepd256_mask:
3801   case X86::BI__builtin_ia32_rangepd512_mask:
3802   case X86::BI__builtin_ia32_rangeps128_mask:
3803   case X86::BI__builtin_ia32_rangeps256_mask:
3804   case X86::BI__builtin_ia32_rangeps512_mask:
3805   case X86::BI__builtin_ia32_getmantsd_round_mask:
3806   case X86::BI__builtin_ia32_getmantss_round_mask:
3807   case X86::BI__builtin_ia32_vec_set_v16qi:
3808   case X86::BI__builtin_ia32_vec_set_v16hi:
3809     i = 2; l = 0; u = 15;
3810     break;
3811   case X86::BI__builtin_ia32_vec_ext_v32qi:
3812     i = 1; l = 0; u = 31;
3813     break;
3814   case X86::BI__builtin_ia32_cmpps:
3815   case X86::BI__builtin_ia32_cmpss:
3816   case X86::BI__builtin_ia32_cmppd:
3817   case X86::BI__builtin_ia32_cmpsd:
3818   case X86::BI__builtin_ia32_cmpps256:
3819   case X86::BI__builtin_ia32_cmppd256:
3820   case X86::BI__builtin_ia32_cmpps128_mask:
3821   case X86::BI__builtin_ia32_cmppd128_mask:
3822   case X86::BI__builtin_ia32_cmpps256_mask:
3823   case X86::BI__builtin_ia32_cmppd256_mask:
3824   case X86::BI__builtin_ia32_cmpps512_mask:
3825   case X86::BI__builtin_ia32_cmppd512_mask:
3826   case X86::BI__builtin_ia32_cmpsd_mask:
3827   case X86::BI__builtin_ia32_cmpss_mask:
3828   case X86::BI__builtin_ia32_vec_set_v32qi:
3829     i = 2; l = 0; u = 31;
3830     break;
3831   case X86::BI__builtin_ia32_permdf256:
3832   case X86::BI__builtin_ia32_permdi256:
3833   case X86::BI__builtin_ia32_permdf512:
3834   case X86::BI__builtin_ia32_permdi512:
3835   case X86::BI__builtin_ia32_vpermilps:
3836   case X86::BI__builtin_ia32_vpermilps256:
3837   case X86::BI__builtin_ia32_vpermilpd512:
3838   case X86::BI__builtin_ia32_vpermilps512:
3839   case X86::BI__builtin_ia32_pshufd:
3840   case X86::BI__builtin_ia32_pshufd256:
3841   case X86::BI__builtin_ia32_pshufd512:
3842   case X86::BI__builtin_ia32_pshufhw:
3843   case X86::BI__builtin_ia32_pshufhw256:
3844   case X86::BI__builtin_ia32_pshufhw512:
3845   case X86::BI__builtin_ia32_pshuflw:
3846   case X86::BI__builtin_ia32_pshuflw256:
3847   case X86::BI__builtin_ia32_pshuflw512:
3848   case X86::BI__builtin_ia32_vcvtps2ph:
3849   case X86::BI__builtin_ia32_vcvtps2ph_mask:
3850   case X86::BI__builtin_ia32_vcvtps2ph256:
3851   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
3852   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
3853   case X86::BI__builtin_ia32_rndscaleps_128_mask:
3854   case X86::BI__builtin_ia32_rndscalepd_128_mask:
3855   case X86::BI__builtin_ia32_rndscaleps_256_mask:
3856   case X86::BI__builtin_ia32_rndscalepd_256_mask:
3857   case X86::BI__builtin_ia32_rndscaleps_mask:
3858   case X86::BI__builtin_ia32_rndscalepd_mask:
3859   case X86::BI__builtin_ia32_reducepd128_mask:
3860   case X86::BI__builtin_ia32_reducepd256_mask:
3861   case X86::BI__builtin_ia32_reducepd512_mask:
3862   case X86::BI__builtin_ia32_reduceps128_mask:
3863   case X86::BI__builtin_ia32_reduceps256_mask:
3864   case X86::BI__builtin_ia32_reduceps512_mask:
3865   case X86::BI__builtin_ia32_prold512:
3866   case X86::BI__builtin_ia32_prolq512:
3867   case X86::BI__builtin_ia32_prold128:
3868   case X86::BI__builtin_ia32_prold256:
3869   case X86::BI__builtin_ia32_prolq128:
3870   case X86::BI__builtin_ia32_prolq256:
3871   case X86::BI__builtin_ia32_prord512:
3872   case X86::BI__builtin_ia32_prorq512:
3873   case X86::BI__builtin_ia32_prord128:
3874   case X86::BI__builtin_ia32_prord256:
3875   case X86::BI__builtin_ia32_prorq128:
3876   case X86::BI__builtin_ia32_prorq256:
3877   case X86::BI__builtin_ia32_fpclasspd128_mask:
3878   case X86::BI__builtin_ia32_fpclasspd256_mask:
3879   case X86::BI__builtin_ia32_fpclassps128_mask:
3880   case X86::BI__builtin_ia32_fpclassps256_mask:
3881   case X86::BI__builtin_ia32_fpclassps512_mask:
3882   case X86::BI__builtin_ia32_fpclasspd512_mask:
3883   case X86::BI__builtin_ia32_fpclasssd_mask:
3884   case X86::BI__builtin_ia32_fpclassss_mask:
3885   case X86::BI__builtin_ia32_pslldqi128_byteshift:
3886   case X86::BI__builtin_ia32_pslldqi256_byteshift:
3887   case X86::BI__builtin_ia32_pslldqi512_byteshift:
3888   case X86::BI__builtin_ia32_psrldqi128_byteshift:
3889   case X86::BI__builtin_ia32_psrldqi256_byteshift:
3890   case X86::BI__builtin_ia32_psrldqi512_byteshift:
3891   case X86::BI__builtin_ia32_kshiftliqi:
3892   case X86::BI__builtin_ia32_kshiftlihi:
3893   case X86::BI__builtin_ia32_kshiftlisi:
3894   case X86::BI__builtin_ia32_kshiftlidi:
3895   case X86::BI__builtin_ia32_kshiftriqi:
3896   case X86::BI__builtin_ia32_kshiftrihi:
3897   case X86::BI__builtin_ia32_kshiftrisi:
3898   case X86::BI__builtin_ia32_kshiftridi:
3899     i = 1; l = 0; u = 255;
3900     break;
3901   case X86::BI__builtin_ia32_vperm2f128_pd256:
3902   case X86::BI__builtin_ia32_vperm2f128_ps256:
3903   case X86::BI__builtin_ia32_vperm2f128_si256:
3904   case X86::BI__builtin_ia32_permti256:
3905   case X86::BI__builtin_ia32_pblendw128:
3906   case X86::BI__builtin_ia32_pblendw256:
3907   case X86::BI__builtin_ia32_blendps256:
3908   case X86::BI__builtin_ia32_pblendd256:
3909   case X86::BI__builtin_ia32_palignr128:
3910   case X86::BI__builtin_ia32_palignr256:
3911   case X86::BI__builtin_ia32_palignr512:
3912   case X86::BI__builtin_ia32_alignq512:
3913   case X86::BI__builtin_ia32_alignd512:
3914   case X86::BI__builtin_ia32_alignd128:
3915   case X86::BI__builtin_ia32_alignd256:
3916   case X86::BI__builtin_ia32_alignq128:
3917   case X86::BI__builtin_ia32_alignq256:
3918   case X86::BI__builtin_ia32_vcomisd:
3919   case X86::BI__builtin_ia32_vcomiss:
3920   case X86::BI__builtin_ia32_shuf_f32x4:
3921   case X86::BI__builtin_ia32_shuf_f64x2:
3922   case X86::BI__builtin_ia32_shuf_i32x4:
3923   case X86::BI__builtin_ia32_shuf_i64x2:
3924   case X86::BI__builtin_ia32_shufpd512:
3925   case X86::BI__builtin_ia32_shufps:
3926   case X86::BI__builtin_ia32_shufps256:
3927   case X86::BI__builtin_ia32_shufps512:
3928   case X86::BI__builtin_ia32_dbpsadbw128:
3929   case X86::BI__builtin_ia32_dbpsadbw256:
3930   case X86::BI__builtin_ia32_dbpsadbw512:
3931   case X86::BI__builtin_ia32_vpshldd128:
3932   case X86::BI__builtin_ia32_vpshldd256:
3933   case X86::BI__builtin_ia32_vpshldd512:
3934   case X86::BI__builtin_ia32_vpshldq128:
3935   case X86::BI__builtin_ia32_vpshldq256:
3936   case X86::BI__builtin_ia32_vpshldq512:
3937   case X86::BI__builtin_ia32_vpshldw128:
3938   case X86::BI__builtin_ia32_vpshldw256:
3939   case X86::BI__builtin_ia32_vpshldw512:
3940   case X86::BI__builtin_ia32_vpshrdd128:
3941   case X86::BI__builtin_ia32_vpshrdd256:
3942   case X86::BI__builtin_ia32_vpshrdd512:
3943   case X86::BI__builtin_ia32_vpshrdq128:
3944   case X86::BI__builtin_ia32_vpshrdq256:
3945   case X86::BI__builtin_ia32_vpshrdq512:
3946   case X86::BI__builtin_ia32_vpshrdw128:
3947   case X86::BI__builtin_ia32_vpshrdw256:
3948   case X86::BI__builtin_ia32_vpshrdw512:
3949     i = 2; l = 0; u = 255;
3950     break;
3951   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3952   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3953   case X86::BI__builtin_ia32_fixupimmps512_mask:
3954   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3955   case X86::BI__builtin_ia32_fixupimmsd_mask:
3956   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3957   case X86::BI__builtin_ia32_fixupimmss_mask:
3958   case X86::BI__builtin_ia32_fixupimmss_maskz:
3959   case X86::BI__builtin_ia32_fixupimmpd128_mask:
3960   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
3961   case X86::BI__builtin_ia32_fixupimmpd256_mask:
3962   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
3963   case X86::BI__builtin_ia32_fixupimmps128_mask:
3964   case X86::BI__builtin_ia32_fixupimmps128_maskz:
3965   case X86::BI__builtin_ia32_fixupimmps256_mask:
3966   case X86::BI__builtin_ia32_fixupimmps256_maskz:
3967   case X86::BI__builtin_ia32_pternlogd512_mask:
3968   case X86::BI__builtin_ia32_pternlogd512_maskz:
3969   case X86::BI__builtin_ia32_pternlogq512_mask:
3970   case X86::BI__builtin_ia32_pternlogq512_maskz:
3971   case X86::BI__builtin_ia32_pternlogd128_mask:
3972   case X86::BI__builtin_ia32_pternlogd128_maskz:
3973   case X86::BI__builtin_ia32_pternlogd256_mask:
3974   case X86::BI__builtin_ia32_pternlogd256_maskz:
3975   case X86::BI__builtin_ia32_pternlogq128_mask:
3976   case X86::BI__builtin_ia32_pternlogq128_maskz:
3977   case X86::BI__builtin_ia32_pternlogq256_mask:
3978   case X86::BI__builtin_ia32_pternlogq256_maskz:
3979     i = 3; l = 0; u = 255;
3980     break;
3981   case X86::BI__builtin_ia32_gatherpfdpd:
3982   case X86::BI__builtin_ia32_gatherpfdps:
3983   case X86::BI__builtin_ia32_gatherpfqpd:
3984   case X86::BI__builtin_ia32_gatherpfqps:
3985   case X86::BI__builtin_ia32_scatterpfdpd:
3986   case X86::BI__builtin_ia32_scatterpfdps:
3987   case X86::BI__builtin_ia32_scatterpfqpd:
3988   case X86::BI__builtin_ia32_scatterpfqps:
3989     i = 4; l = 2; u = 3;
3990     break;
3991   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3992   case X86::BI__builtin_ia32_rndscaless_round_mask:
3993     i = 4; l = 0; u = 255;
3994     break;
3995   }
3996 
3997   // Note that we don't force a hard error on the range check here, allowing
3998   // template-generated or macro-generated dead code to potentially have out-of-
3999   // range values. These need to code generate, but don't need to necessarily
4000   // make any sense. We use a warning that defaults to an error.
4001   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4002 }
4003 
4004 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4005 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4006 /// Returns true when the format fits the function and the FormatStringInfo has
4007 /// been populated.
4008 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4009                                FormatStringInfo *FSI) {
4010   FSI->HasVAListArg = Format->getFirstArg() == 0;
4011   FSI->FormatIdx = Format->getFormatIdx() - 1;
4012   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4013 
4014   // The way the format attribute works in GCC, the implicit this argument
4015   // of member functions is counted. However, it doesn't appear in our own
4016   // lists, so decrement format_idx in that case.
4017   if (IsCXXMember) {
4018     if(FSI->FormatIdx == 0)
4019       return false;
4020     --FSI->FormatIdx;
4021     if (FSI->FirstDataArg != 0)
4022       --FSI->FirstDataArg;
4023   }
4024   return true;
4025 }
4026 
4027 /// Checks if a the given expression evaluates to null.
4028 ///
4029 /// Returns true if the value evaluates to null.
4030 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4031   // If the expression has non-null type, it doesn't evaluate to null.
4032   if (auto nullability
4033         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4034     if (*nullability == NullabilityKind::NonNull)
4035       return false;
4036   }
4037 
4038   // As a special case, transparent unions initialized with zero are
4039   // considered null for the purposes of the nonnull attribute.
4040   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4041     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4042       if (const CompoundLiteralExpr *CLE =
4043           dyn_cast<CompoundLiteralExpr>(Expr))
4044         if (const InitListExpr *ILE =
4045             dyn_cast<InitListExpr>(CLE->getInitializer()))
4046           Expr = ILE->getInit(0);
4047   }
4048 
4049   bool Result;
4050   return (!Expr->isValueDependent() &&
4051           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4052           !Result);
4053 }
4054 
4055 static void CheckNonNullArgument(Sema &S,
4056                                  const Expr *ArgExpr,
4057                                  SourceLocation CallSiteLoc) {
4058   if (CheckNonNullExpr(S, ArgExpr))
4059     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4060            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
4061 }
4062 
4063 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4064   FormatStringInfo FSI;
4065   if ((GetFormatStringType(Format) == FST_NSString) &&
4066       getFormatStringInfo(Format, false, &FSI)) {
4067     Idx = FSI.FormatIdx;
4068     return true;
4069   }
4070   return false;
4071 }
4072 
4073 /// Diagnose use of %s directive in an NSString which is being passed
4074 /// as formatting string to formatting method.
4075 static void
4076 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4077                                         const NamedDecl *FDecl,
4078                                         Expr **Args,
4079                                         unsigned NumArgs) {
4080   unsigned Idx = 0;
4081   bool Format = false;
4082   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4083   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4084     Idx = 2;
4085     Format = true;
4086   }
4087   else
4088     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4089       if (S.GetFormatNSStringIdx(I, Idx)) {
4090         Format = true;
4091         break;
4092       }
4093     }
4094   if (!Format || NumArgs <= Idx)
4095     return;
4096   const Expr *FormatExpr = Args[Idx];
4097   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4098     FormatExpr = CSCE->getSubExpr();
4099   const StringLiteral *FormatString;
4100   if (const ObjCStringLiteral *OSL =
4101       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4102     FormatString = OSL->getString();
4103   else
4104     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4105   if (!FormatString)
4106     return;
4107   if (S.FormatStringHasSArg(FormatString)) {
4108     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4109       << "%s" << 1 << 1;
4110     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4111       << FDecl->getDeclName();
4112   }
4113 }
4114 
4115 /// Determine whether the given type has a non-null nullability annotation.
4116 static bool isNonNullType(ASTContext &ctx, QualType type) {
4117   if (auto nullability = type->getNullability(ctx))
4118     return *nullability == NullabilityKind::NonNull;
4119 
4120   return false;
4121 }
4122 
4123 static void CheckNonNullArguments(Sema &S,
4124                                   const NamedDecl *FDecl,
4125                                   const FunctionProtoType *Proto,
4126                                   ArrayRef<const Expr *> Args,
4127                                   SourceLocation CallSiteLoc) {
4128   assert((FDecl || Proto) && "Need a function declaration or prototype");
4129 
4130   // Check the attributes attached to the method/function itself.
4131   llvm::SmallBitVector NonNullArgs;
4132   if (FDecl) {
4133     // Handle the nonnull attribute on the function/method declaration itself.
4134     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4135       if (!NonNull->args_size()) {
4136         // Easy case: all pointer arguments are nonnull.
4137         for (const auto *Arg : Args)
4138           if (S.isValidPointerAttrType(Arg->getType()))
4139             CheckNonNullArgument(S, Arg, CallSiteLoc);
4140         return;
4141       }
4142 
4143       for (const ParamIdx &Idx : NonNull->args()) {
4144         unsigned IdxAST = Idx.getASTIndex();
4145         if (IdxAST >= Args.size())
4146           continue;
4147         if (NonNullArgs.empty())
4148           NonNullArgs.resize(Args.size());
4149         NonNullArgs.set(IdxAST);
4150       }
4151     }
4152   }
4153 
4154   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4155     // Handle the nonnull attribute on the parameters of the
4156     // function/method.
4157     ArrayRef<ParmVarDecl*> parms;
4158     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4159       parms = FD->parameters();
4160     else
4161       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4162 
4163     unsigned ParamIndex = 0;
4164     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4165          I != E; ++I, ++ParamIndex) {
4166       const ParmVarDecl *PVD = *I;
4167       if (PVD->hasAttr<NonNullAttr>() ||
4168           isNonNullType(S.Context, PVD->getType())) {
4169         if (NonNullArgs.empty())
4170           NonNullArgs.resize(Args.size());
4171 
4172         NonNullArgs.set(ParamIndex);
4173       }
4174     }
4175   } else {
4176     // If we have a non-function, non-method declaration but no
4177     // function prototype, try to dig out the function prototype.
4178     if (!Proto) {
4179       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4180         QualType type = VD->getType().getNonReferenceType();
4181         if (auto pointerType = type->getAs<PointerType>())
4182           type = pointerType->getPointeeType();
4183         else if (auto blockType = type->getAs<BlockPointerType>())
4184           type = blockType->getPointeeType();
4185         // FIXME: data member pointers?
4186 
4187         // Dig out the function prototype, if there is one.
4188         Proto = type->getAs<FunctionProtoType>();
4189       }
4190     }
4191 
4192     // Fill in non-null argument information from the nullability
4193     // information on the parameter types (if we have them).
4194     if (Proto) {
4195       unsigned Index = 0;
4196       for (auto paramType : Proto->getParamTypes()) {
4197         if (isNonNullType(S.Context, paramType)) {
4198           if (NonNullArgs.empty())
4199             NonNullArgs.resize(Args.size());
4200 
4201           NonNullArgs.set(Index);
4202         }
4203 
4204         ++Index;
4205       }
4206     }
4207   }
4208 
4209   // Check for non-null arguments.
4210   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4211        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4212     if (NonNullArgs[ArgIndex])
4213       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4214   }
4215 }
4216 
4217 /// Handles the checks for format strings, non-POD arguments to vararg
4218 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4219 /// attributes.
4220 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4221                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4222                      bool IsMemberFunction, SourceLocation Loc,
4223                      SourceRange Range, VariadicCallType CallType) {
4224   // FIXME: We should check as much as we can in the template definition.
4225   if (CurContext->isDependentContext())
4226     return;
4227 
4228   // Printf and scanf checking.
4229   llvm::SmallBitVector CheckedVarArgs;
4230   if (FDecl) {
4231     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4232       // Only create vector if there are format attributes.
4233       CheckedVarArgs.resize(Args.size());
4234 
4235       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4236                            CheckedVarArgs);
4237     }
4238   }
4239 
4240   // Refuse POD arguments that weren't caught by the format string
4241   // checks above.
4242   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4243   if (CallType != VariadicDoesNotApply &&
4244       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4245     unsigned NumParams = Proto ? Proto->getNumParams()
4246                        : FDecl && isa<FunctionDecl>(FDecl)
4247                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4248                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4249                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4250                        : 0;
4251 
4252     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4253       // Args[ArgIdx] can be null in malformed code.
4254       if (const Expr *Arg = Args[ArgIdx]) {
4255         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4256           checkVariadicArgument(Arg, CallType);
4257       }
4258     }
4259   }
4260 
4261   if (FDecl || Proto) {
4262     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4263 
4264     // Type safety checking.
4265     if (FDecl) {
4266       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4267         CheckArgumentWithTypeTag(I, Args, Loc);
4268     }
4269   }
4270 
4271   if (FD)
4272     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4273 }
4274 
4275 /// CheckConstructorCall - Check a constructor call for correctness and safety
4276 /// properties not enforced by the C type system.
4277 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4278                                 ArrayRef<const Expr *> Args,
4279                                 const FunctionProtoType *Proto,
4280                                 SourceLocation Loc) {
4281   VariadicCallType CallType =
4282     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4283   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4284             Loc, SourceRange(), CallType);
4285 }
4286 
4287 /// CheckFunctionCall - Check a direct function call for various correctness
4288 /// and safety properties not strictly enforced by the C type system.
4289 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4290                              const FunctionProtoType *Proto) {
4291   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4292                               isa<CXXMethodDecl>(FDecl);
4293   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4294                           IsMemberOperatorCall;
4295   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4296                                                   TheCall->getCallee());
4297   Expr** Args = TheCall->getArgs();
4298   unsigned NumArgs = TheCall->getNumArgs();
4299 
4300   Expr *ImplicitThis = nullptr;
4301   if (IsMemberOperatorCall) {
4302     // If this is a call to a member operator, hide the first argument
4303     // from checkCall.
4304     // FIXME: Our choice of AST representation here is less than ideal.
4305     ImplicitThis = Args[0];
4306     ++Args;
4307     --NumArgs;
4308   } else if (IsMemberFunction)
4309     ImplicitThis =
4310         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4311 
4312   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4313             IsMemberFunction, TheCall->getRParenLoc(),
4314             TheCall->getCallee()->getSourceRange(), CallType);
4315 
4316   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4317   // None of the checks below are needed for functions that don't have
4318   // simple names (e.g., C++ conversion functions).
4319   if (!FnInfo)
4320     return false;
4321 
4322   CheckAbsoluteValueFunction(TheCall, FDecl);
4323   CheckMaxUnsignedZero(TheCall, FDecl);
4324 
4325   if (getLangOpts().ObjC)
4326     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4327 
4328   unsigned CMId = FDecl->getMemoryFunctionKind();
4329   if (CMId == 0)
4330     return false;
4331 
4332   // Handle memory setting and copying functions.
4333   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
4334     CheckStrlcpycatArguments(TheCall, FnInfo);
4335   else if (CMId == Builtin::BIstrncat)
4336     CheckStrncatArguments(TheCall, FnInfo);
4337   else
4338     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4339 
4340   return false;
4341 }
4342 
4343 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4344                                ArrayRef<const Expr *> Args) {
4345   VariadicCallType CallType =
4346       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4347 
4348   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4349             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4350             CallType);
4351 
4352   return false;
4353 }
4354 
4355 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4356                             const FunctionProtoType *Proto) {
4357   QualType Ty;
4358   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4359     Ty = V->getType().getNonReferenceType();
4360   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4361     Ty = F->getType().getNonReferenceType();
4362   else
4363     return false;
4364 
4365   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4366       !Ty->isFunctionProtoType())
4367     return false;
4368 
4369   VariadicCallType CallType;
4370   if (!Proto || !Proto->isVariadic()) {
4371     CallType = VariadicDoesNotApply;
4372   } else if (Ty->isBlockPointerType()) {
4373     CallType = VariadicBlock;
4374   } else { // Ty->isFunctionPointerType()
4375     CallType = VariadicFunction;
4376   }
4377 
4378   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4379             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4380             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4381             TheCall->getCallee()->getSourceRange(), CallType);
4382 
4383   return false;
4384 }
4385 
4386 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4387 /// such as function pointers returned from functions.
4388 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4389   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4390                                                   TheCall->getCallee());
4391   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4392             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4393             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4394             TheCall->getCallee()->getSourceRange(), CallType);
4395 
4396   return false;
4397 }
4398 
4399 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4400   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4401     return false;
4402 
4403   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4404   switch (Op) {
4405   case AtomicExpr::AO__c11_atomic_init:
4406   case AtomicExpr::AO__opencl_atomic_init:
4407     llvm_unreachable("There is no ordering argument for an init");
4408 
4409   case AtomicExpr::AO__c11_atomic_load:
4410   case AtomicExpr::AO__opencl_atomic_load:
4411   case AtomicExpr::AO__atomic_load_n:
4412   case AtomicExpr::AO__atomic_load:
4413     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4414            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4415 
4416   case AtomicExpr::AO__c11_atomic_store:
4417   case AtomicExpr::AO__opencl_atomic_store:
4418   case AtomicExpr::AO__atomic_store:
4419   case AtomicExpr::AO__atomic_store_n:
4420     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4421            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4422            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4423 
4424   default:
4425     return true;
4426   }
4427 }
4428 
4429 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4430                                          AtomicExpr::AtomicOp Op) {
4431   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4432   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4433 
4434   // All the non-OpenCL operations take one of the following forms.
4435   // The OpenCL operations take the __c11 forms with one extra argument for
4436   // synchronization scope.
4437   enum {
4438     // C    __c11_atomic_init(A *, C)
4439     Init,
4440 
4441     // C    __c11_atomic_load(A *, int)
4442     Load,
4443 
4444     // void __atomic_load(A *, CP, int)
4445     LoadCopy,
4446 
4447     // void __atomic_store(A *, CP, int)
4448     Copy,
4449 
4450     // C    __c11_atomic_add(A *, M, int)
4451     Arithmetic,
4452 
4453     // C    __atomic_exchange_n(A *, CP, int)
4454     Xchg,
4455 
4456     // void __atomic_exchange(A *, C *, CP, int)
4457     GNUXchg,
4458 
4459     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4460     C11CmpXchg,
4461 
4462     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4463     GNUCmpXchg
4464   } Form = Init;
4465 
4466   const unsigned NumForm = GNUCmpXchg + 1;
4467   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4468   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4469   // where:
4470   //   C is an appropriate type,
4471   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4472   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4473   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4474   //   the int parameters are for orderings.
4475 
4476   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4477       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4478       "need to update code for modified forms");
4479   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4480                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
4481                         AtomicExpr::AO__atomic_load,
4482                 "need to update code for modified C11 atomics");
4483   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4484                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4485   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4486                Op <= AtomicExpr::AO__c11_atomic_fetch_xor) ||
4487                IsOpenCL;
4488   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4489              Op == AtomicExpr::AO__atomic_store_n ||
4490              Op == AtomicExpr::AO__atomic_exchange_n ||
4491              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4492   bool IsAddSub = false;
4493   bool IsMinMax = false;
4494 
4495   switch (Op) {
4496   case AtomicExpr::AO__c11_atomic_init:
4497   case AtomicExpr::AO__opencl_atomic_init:
4498     Form = Init;
4499     break;
4500 
4501   case AtomicExpr::AO__c11_atomic_load:
4502   case AtomicExpr::AO__opencl_atomic_load:
4503   case AtomicExpr::AO__atomic_load_n:
4504     Form = Load;
4505     break;
4506 
4507   case AtomicExpr::AO__atomic_load:
4508     Form = LoadCopy;
4509     break;
4510 
4511   case AtomicExpr::AO__c11_atomic_store:
4512   case AtomicExpr::AO__opencl_atomic_store:
4513   case AtomicExpr::AO__atomic_store:
4514   case AtomicExpr::AO__atomic_store_n:
4515     Form = Copy;
4516     break;
4517 
4518   case AtomicExpr::AO__c11_atomic_fetch_add:
4519   case AtomicExpr::AO__c11_atomic_fetch_sub:
4520   case AtomicExpr::AO__opencl_atomic_fetch_add:
4521   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4522   case AtomicExpr::AO__opencl_atomic_fetch_min:
4523   case AtomicExpr::AO__opencl_atomic_fetch_max:
4524   case AtomicExpr::AO__atomic_fetch_add:
4525   case AtomicExpr::AO__atomic_fetch_sub:
4526   case AtomicExpr::AO__atomic_add_fetch:
4527   case AtomicExpr::AO__atomic_sub_fetch:
4528     IsAddSub = true;
4529     LLVM_FALLTHROUGH;
4530   case AtomicExpr::AO__c11_atomic_fetch_and:
4531   case AtomicExpr::AO__c11_atomic_fetch_or:
4532   case AtomicExpr::AO__c11_atomic_fetch_xor:
4533   case AtomicExpr::AO__opencl_atomic_fetch_and:
4534   case AtomicExpr::AO__opencl_atomic_fetch_or:
4535   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4536   case AtomicExpr::AO__atomic_fetch_and:
4537   case AtomicExpr::AO__atomic_fetch_or:
4538   case AtomicExpr::AO__atomic_fetch_xor:
4539   case AtomicExpr::AO__atomic_fetch_nand:
4540   case AtomicExpr::AO__atomic_and_fetch:
4541   case AtomicExpr::AO__atomic_or_fetch:
4542   case AtomicExpr::AO__atomic_xor_fetch:
4543   case AtomicExpr::AO__atomic_nand_fetch:
4544     Form = Arithmetic;
4545     break;
4546 
4547   case AtomicExpr::AO__atomic_fetch_min:
4548   case AtomicExpr::AO__atomic_fetch_max:
4549     IsMinMax = true;
4550     Form = Arithmetic;
4551     break;
4552 
4553   case AtomicExpr::AO__c11_atomic_exchange:
4554   case AtomicExpr::AO__opencl_atomic_exchange:
4555   case AtomicExpr::AO__atomic_exchange_n:
4556     Form = Xchg;
4557     break;
4558 
4559   case AtomicExpr::AO__atomic_exchange:
4560     Form = GNUXchg;
4561     break;
4562 
4563   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4564   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4565   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4566   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4567     Form = C11CmpXchg;
4568     break;
4569 
4570   case AtomicExpr::AO__atomic_compare_exchange:
4571   case AtomicExpr::AO__atomic_compare_exchange_n:
4572     Form = GNUCmpXchg;
4573     break;
4574   }
4575 
4576   unsigned AdjustedNumArgs = NumArgs[Form];
4577   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4578     ++AdjustedNumArgs;
4579   // Check we have the right number of arguments.
4580   if (TheCall->getNumArgs() < AdjustedNumArgs) {
4581     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
4582         << 0 << AdjustedNumArgs << TheCall->getNumArgs()
4583         << TheCall->getCallee()->getSourceRange();
4584     return ExprError();
4585   } else if (TheCall->getNumArgs() > AdjustedNumArgs) {
4586     Diag(TheCall->getArg(AdjustedNumArgs)->getBeginLoc(),
4587          diag::err_typecheck_call_too_many_args)
4588         << 0 << AdjustedNumArgs << TheCall->getNumArgs()
4589         << TheCall->getCallee()->getSourceRange();
4590     return ExprError();
4591   }
4592 
4593   // Inspect the first argument of the atomic operation.
4594   Expr *Ptr = TheCall->getArg(0);
4595   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4596   if (ConvertedPtr.isInvalid())
4597     return ExprError();
4598 
4599   Ptr = ConvertedPtr.get();
4600   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4601   if (!pointerType) {
4602     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4603         << Ptr->getType() << Ptr->getSourceRange();
4604     return ExprError();
4605   }
4606 
4607   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4608   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4609   QualType ValType = AtomTy; // 'C'
4610   if (IsC11) {
4611     if (!AtomTy->isAtomicType()) {
4612       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic)
4613           << Ptr->getType() << Ptr->getSourceRange();
4614       return ExprError();
4615     }
4616     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4617         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4618       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_atomic)
4619           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4620           << Ptr->getSourceRange();
4621       return ExprError();
4622     }
4623     ValType = AtomTy->getAs<AtomicType>()->getValueType();
4624   } else if (Form != Load && Form != LoadCopy) {
4625     if (ValType.isConstQualified()) {
4626       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_pointer)
4627           << Ptr->getType() << Ptr->getSourceRange();
4628       return ExprError();
4629     }
4630   }
4631 
4632   // For an arithmetic operation, the implied arithmetic must be well-formed.
4633   if (Form == Arithmetic) {
4634     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4635     if (IsAddSub && !ValType->isIntegerType()
4636         && !ValType->isPointerType()) {
4637       Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4638           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4639       return ExprError();
4640     }
4641     if (IsMinMax) {
4642       const BuiltinType *BT = ValType->getAs<BuiltinType>();
4643       if (!BT || (BT->getKind() != BuiltinType::Int &&
4644                   BT->getKind() != BuiltinType::UInt)) {
4645         Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_int32_or_ptr);
4646         return ExprError();
4647       }
4648     }
4649     if (!IsAddSub && !IsMinMax && !ValType->isIntegerType()) {
4650       Diag(DRE->getBeginLoc(), diag::err_atomic_op_bitwise_needs_atomic_int)
4651           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4652       return ExprError();
4653     }
4654     if (IsC11 && ValType->isPointerType() &&
4655         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4656                             diag::err_incomplete_type)) {
4657       return ExprError();
4658     }
4659   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4660     // For __atomic_*_n operations, the value type must be a scalar integral or
4661     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4662     Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4663         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4664     return ExprError();
4665   }
4666 
4667   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4668       !AtomTy->isScalarType()) {
4669     // For GNU atomics, require a trivially-copyable type. This is not part of
4670     // the GNU atomics specification, but we enforce it for sanity.
4671     Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_trivial_copy)
4672         << Ptr->getType() << Ptr->getSourceRange();
4673     return ExprError();
4674   }
4675 
4676   switch (ValType.getObjCLifetime()) {
4677   case Qualifiers::OCL_None:
4678   case Qualifiers::OCL_ExplicitNone:
4679     // okay
4680     break;
4681 
4682   case Qualifiers::OCL_Weak:
4683   case Qualifiers::OCL_Strong:
4684   case Qualifiers::OCL_Autoreleasing:
4685     // FIXME: Can this happen? By this point, ValType should be known
4686     // to be trivially copyable.
4687     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4688         << ValType << Ptr->getSourceRange();
4689     return ExprError();
4690   }
4691 
4692   // All atomic operations have an overload which takes a pointer to a volatile
4693   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4694   // into the result or the other operands. Similarly atomic_load takes a
4695   // pointer to a const 'A'.
4696   ValType.removeLocalVolatile();
4697   ValType.removeLocalConst();
4698   QualType ResultType = ValType;
4699   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4700       Form == Init)
4701     ResultType = Context.VoidTy;
4702   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4703     ResultType = Context.BoolTy;
4704 
4705   // The type of a parameter passed 'by value'. In the GNU atomics, such
4706   // arguments are actually passed as pointers.
4707   QualType ByValType = ValType; // 'CP'
4708   bool IsPassedByAddress = false;
4709   if (!IsC11 && !IsN) {
4710     ByValType = Ptr->getType();
4711     IsPassedByAddress = true;
4712   }
4713 
4714   // The first argument's non-CV pointer type is used to deduce the type of
4715   // subsequent arguments, except for:
4716   //  - weak flag (always converted to bool)
4717   //  - memory order (always converted to int)
4718   //  - scope  (always converted to int)
4719   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
4720     QualType Ty;
4721     if (i < NumVals[Form] + 1) {
4722       switch (i) {
4723       case 0:
4724         // The first argument is always a pointer. It has a fixed type.
4725         // It is always dereferenced, a nullptr is undefined.
4726         CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4727         // Nothing else to do: we already know all we want about this pointer.
4728         continue;
4729       case 1:
4730         // The second argument is the non-atomic operand. For arithmetic, this
4731         // is always passed by value, and for a compare_exchange it is always
4732         // passed by address. For the rest, GNU uses by-address and C11 uses
4733         // by-value.
4734         assert(Form != Load);
4735         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
4736           Ty = ValType;
4737         else if (Form == Copy || Form == Xchg) {
4738           if (IsPassedByAddress)
4739             // The value pointer is always dereferenced, a nullptr is undefined.
4740             CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4741           Ty = ByValType;
4742         } else if (Form == Arithmetic)
4743           Ty = Context.getPointerDiffType();
4744         else {
4745           Expr *ValArg = TheCall->getArg(i);
4746           // The value pointer is always dereferenced, a nullptr is undefined.
4747           CheckNonNullArgument(*this, ValArg, DRE->getBeginLoc());
4748           LangAS AS = LangAS::Default;
4749           // Keep address space of non-atomic pointer type.
4750           if (const PointerType *PtrTy =
4751                   ValArg->getType()->getAs<PointerType>()) {
4752             AS = PtrTy->getPointeeType().getAddressSpace();
4753           }
4754           Ty = Context.getPointerType(
4755               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
4756         }
4757         break;
4758       case 2:
4759         // The third argument to compare_exchange / GNU exchange is the desired
4760         // value, either by-value (for the C11 and *_n variant) or as a pointer.
4761         if (IsPassedByAddress)
4762           CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc());
4763         Ty = ByValType;
4764         break;
4765       case 3:
4766         // The fourth argument to GNU compare_exchange is a 'weak' flag.
4767         Ty = Context.BoolTy;
4768         break;
4769       }
4770     } else {
4771       // The order(s) and scope are always converted to int.
4772       Ty = Context.IntTy;
4773     }
4774 
4775     InitializedEntity Entity =
4776         InitializedEntity::InitializeParameter(Context, Ty, false);
4777     ExprResult Arg = TheCall->getArg(i);
4778     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4779     if (Arg.isInvalid())
4780       return true;
4781     TheCall->setArg(i, Arg.get());
4782   }
4783 
4784   // Permute the arguments into a 'consistent' order.
4785   SmallVector<Expr*, 5> SubExprs;
4786   SubExprs.push_back(Ptr);
4787   switch (Form) {
4788   case Init:
4789     // Note, AtomicExpr::getVal1() has a special case for this atomic.
4790     SubExprs.push_back(TheCall->getArg(1)); // Val1
4791     break;
4792   case Load:
4793     SubExprs.push_back(TheCall->getArg(1)); // Order
4794     break;
4795   case LoadCopy:
4796   case Copy:
4797   case Arithmetic:
4798   case Xchg:
4799     SubExprs.push_back(TheCall->getArg(2)); // Order
4800     SubExprs.push_back(TheCall->getArg(1)); // Val1
4801     break;
4802   case GNUXchg:
4803     // Note, AtomicExpr::getVal2() has a special case for this atomic.
4804     SubExprs.push_back(TheCall->getArg(3)); // Order
4805     SubExprs.push_back(TheCall->getArg(1)); // Val1
4806     SubExprs.push_back(TheCall->getArg(2)); // Val2
4807     break;
4808   case C11CmpXchg:
4809     SubExprs.push_back(TheCall->getArg(3)); // Order
4810     SubExprs.push_back(TheCall->getArg(1)); // Val1
4811     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
4812     SubExprs.push_back(TheCall->getArg(2)); // Val2
4813     break;
4814   case GNUCmpXchg:
4815     SubExprs.push_back(TheCall->getArg(4)); // Order
4816     SubExprs.push_back(TheCall->getArg(1)); // Val1
4817     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
4818     SubExprs.push_back(TheCall->getArg(2)); // Val2
4819     SubExprs.push_back(TheCall->getArg(3)); // Weak
4820     break;
4821   }
4822 
4823   if (SubExprs.size() >= 2 && Form != Init) {
4824     llvm::APSInt Result(32);
4825     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
4826         !isValidOrderingForOp(Result.getSExtValue(), Op))
4827       Diag(SubExprs[1]->getBeginLoc(),
4828            diag::warn_atomic_op_has_invalid_memory_order)
4829           << SubExprs[1]->getSourceRange();
4830   }
4831 
4832   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
4833     auto *Scope = TheCall->getArg(TheCall->getNumArgs() - 1);
4834     llvm::APSInt Result(32);
4835     if (Scope->isIntegerConstantExpr(Result, Context) &&
4836         !ScopeModel->isValid(Result.getZExtValue())) {
4837       Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
4838           << Scope->getSourceRange();
4839     }
4840     SubExprs.push_back(Scope);
4841   }
4842 
4843   AtomicExpr *AE =
4844       new (Context) AtomicExpr(TheCall->getCallee()->getBeginLoc(), SubExprs,
4845                                ResultType, Op, TheCall->getRParenLoc());
4846 
4847   if ((Op == AtomicExpr::AO__c11_atomic_load ||
4848        Op == AtomicExpr::AO__c11_atomic_store ||
4849        Op == AtomicExpr::AO__opencl_atomic_load ||
4850        Op == AtomicExpr::AO__opencl_atomic_store ) &&
4851       Context.AtomicUsesUnsupportedLibcall(AE))
4852     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
4853         << ((Op == AtomicExpr::AO__c11_atomic_load ||
4854              Op == AtomicExpr::AO__opencl_atomic_load)
4855                 ? 0
4856                 : 1);
4857 
4858   return AE;
4859 }
4860 
4861 /// checkBuiltinArgument - Given a call to a builtin function, perform
4862 /// normal type-checking on the given argument, updating the call in
4863 /// place.  This is useful when a builtin function requires custom
4864 /// type-checking for some of its arguments but not necessarily all of
4865 /// them.
4866 ///
4867 /// Returns true on error.
4868 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
4869   FunctionDecl *Fn = E->getDirectCallee();
4870   assert(Fn && "builtin call without direct callee!");
4871 
4872   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
4873   InitializedEntity Entity =
4874     InitializedEntity::InitializeParameter(S.Context, Param);
4875 
4876   ExprResult Arg = E->getArg(0);
4877   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
4878   if (Arg.isInvalid())
4879     return true;
4880 
4881   E->setArg(ArgIndex, Arg.get());
4882   return false;
4883 }
4884 
4885 /// We have a call to a function like __sync_fetch_and_add, which is an
4886 /// overloaded function based on the pointer type of its first argument.
4887 /// The main BuildCallExpr routines have already promoted the types of
4888 /// arguments because all of these calls are prototyped as void(...).
4889 ///
4890 /// This function goes through and does final semantic checking for these
4891 /// builtins, as well as generating any warnings.
4892 ExprResult
4893 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
4894   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
4895   Expr *Callee = TheCall->getCallee();
4896   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
4897   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4898 
4899   // Ensure that we have at least one argument to do type inference from.
4900   if (TheCall->getNumArgs() < 1) {
4901     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4902         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
4903     return ExprError();
4904   }
4905 
4906   // Inspect the first argument of the atomic builtin.  This should always be
4907   // a pointer type, whose element is an integral scalar or pointer type.
4908   // Because it is a pointer type, we don't have to worry about any implicit
4909   // casts here.
4910   // FIXME: We don't allow floating point scalars as input.
4911   Expr *FirstArg = TheCall->getArg(0);
4912   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
4913   if (FirstArgResult.isInvalid())
4914     return ExprError();
4915   FirstArg = FirstArgResult.get();
4916   TheCall->setArg(0, FirstArg);
4917 
4918   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
4919   if (!pointerType) {
4920     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4921         << FirstArg->getType() << FirstArg->getSourceRange();
4922     return ExprError();
4923   }
4924 
4925   QualType ValType = pointerType->getPointeeType();
4926   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4927       !ValType->isBlockPointerType()) {
4928     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
4929         << FirstArg->getType() << FirstArg->getSourceRange();
4930     return ExprError();
4931   }
4932 
4933   if (ValType.isConstQualified()) {
4934     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
4935         << FirstArg->getType() << FirstArg->getSourceRange();
4936     return ExprError();
4937   }
4938 
4939   switch (ValType.getObjCLifetime()) {
4940   case Qualifiers::OCL_None:
4941   case Qualifiers::OCL_ExplicitNone:
4942     // okay
4943     break;
4944 
4945   case Qualifiers::OCL_Weak:
4946   case Qualifiers::OCL_Strong:
4947   case Qualifiers::OCL_Autoreleasing:
4948     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4949         << ValType << FirstArg->getSourceRange();
4950     return ExprError();
4951   }
4952 
4953   // Strip any qualifiers off ValType.
4954   ValType = ValType.getUnqualifiedType();
4955 
4956   // The majority of builtins return a value, but a few have special return
4957   // types, so allow them to override appropriately below.
4958   QualType ResultType = ValType;
4959 
4960   // We need to figure out which concrete builtin this maps onto.  For example,
4961   // __sync_fetch_and_add with a 2 byte object turns into
4962   // __sync_fetch_and_add_2.
4963 #define BUILTIN_ROW(x) \
4964   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
4965     Builtin::BI##x##_8, Builtin::BI##x##_16 }
4966 
4967   static const unsigned BuiltinIndices[][5] = {
4968     BUILTIN_ROW(__sync_fetch_and_add),
4969     BUILTIN_ROW(__sync_fetch_and_sub),
4970     BUILTIN_ROW(__sync_fetch_and_or),
4971     BUILTIN_ROW(__sync_fetch_and_and),
4972     BUILTIN_ROW(__sync_fetch_and_xor),
4973     BUILTIN_ROW(__sync_fetch_and_nand),
4974 
4975     BUILTIN_ROW(__sync_add_and_fetch),
4976     BUILTIN_ROW(__sync_sub_and_fetch),
4977     BUILTIN_ROW(__sync_and_and_fetch),
4978     BUILTIN_ROW(__sync_or_and_fetch),
4979     BUILTIN_ROW(__sync_xor_and_fetch),
4980     BUILTIN_ROW(__sync_nand_and_fetch),
4981 
4982     BUILTIN_ROW(__sync_val_compare_and_swap),
4983     BUILTIN_ROW(__sync_bool_compare_and_swap),
4984     BUILTIN_ROW(__sync_lock_test_and_set),
4985     BUILTIN_ROW(__sync_lock_release),
4986     BUILTIN_ROW(__sync_swap)
4987   };
4988 #undef BUILTIN_ROW
4989 
4990   // Determine the index of the size.
4991   unsigned SizeIndex;
4992   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4993   case 1: SizeIndex = 0; break;
4994   case 2: SizeIndex = 1; break;
4995   case 4: SizeIndex = 2; break;
4996   case 8: SizeIndex = 3; break;
4997   case 16: SizeIndex = 4; break;
4998   default:
4999     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5000         << FirstArg->getType() << FirstArg->getSourceRange();
5001     return ExprError();
5002   }
5003 
5004   // Each of these builtins has one pointer argument, followed by some number of
5005   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5006   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5007   // as the number of fixed args.
5008   unsigned BuiltinID = FDecl->getBuiltinID();
5009   unsigned BuiltinIndex, NumFixed = 1;
5010   bool WarnAboutSemanticsChange = false;
5011   switch (BuiltinID) {
5012   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5013   case Builtin::BI__sync_fetch_and_add:
5014   case Builtin::BI__sync_fetch_and_add_1:
5015   case Builtin::BI__sync_fetch_and_add_2:
5016   case Builtin::BI__sync_fetch_and_add_4:
5017   case Builtin::BI__sync_fetch_and_add_8:
5018   case Builtin::BI__sync_fetch_and_add_16:
5019     BuiltinIndex = 0;
5020     break;
5021 
5022   case Builtin::BI__sync_fetch_and_sub:
5023   case Builtin::BI__sync_fetch_and_sub_1:
5024   case Builtin::BI__sync_fetch_and_sub_2:
5025   case Builtin::BI__sync_fetch_and_sub_4:
5026   case Builtin::BI__sync_fetch_and_sub_8:
5027   case Builtin::BI__sync_fetch_and_sub_16:
5028     BuiltinIndex = 1;
5029     break;
5030 
5031   case Builtin::BI__sync_fetch_and_or:
5032   case Builtin::BI__sync_fetch_and_or_1:
5033   case Builtin::BI__sync_fetch_and_or_2:
5034   case Builtin::BI__sync_fetch_and_or_4:
5035   case Builtin::BI__sync_fetch_and_or_8:
5036   case Builtin::BI__sync_fetch_and_or_16:
5037     BuiltinIndex = 2;
5038     break;
5039 
5040   case Builtin::BI__sync_fetch_and_and:
5041   case Builtin::BI__sync_fetch_and_and_1:
5042   case Builtin::BI__sync_fetch_and_and_2:
5043   case Builtin::BI__sync_fetch_and_and_4:
5044   case Builtin::BI__sync_fetch_and_and_8:
5045   case Builtin::BI__sync_fetch_and_and_16:
5046     BuiltinIndex = 3;
5047     break;
5048 
5049   case Builtin::BI__sync_fetch_and_xor:
5050   case Builtin::BI__sync_fetch_and_xor_1:
5051   case Builtin::BI__sync_fetch_and_xor_2:
5052   case Builtin::BI__sync_fetch_and_xor_4:
5053   case Builtin::BI__sync_fetch_and_xor_8:
5054   case Builtin::BI__sync_fetch_and_xor_16:
5055     BuiltinIndex = 4;
5056     break;
5057 
5058   case Builtin::BI__sync_fetch_and_nand:
5059   case Builtin::BI__sync_fetch_and_nand_1:
5060   case Builtin::BI__sync_fetch_and_nand_2:
5061   case Builtin::BI__sync_fetch_and_nand_4:
5062   case Builtin::BI__sync_fetch_and_nand_8:
5063   case Builtin::BI__sync_fetch_and_nand_16:
5064     BuiltinIndex = 5;
5065     WarnAboutSemanticsChange = true;
5066     break;
5067 
5068   case Builtin::BI__sync_add_and_fetch:
5069   case Builtin::BI__sync_add_and_fetch_1:
5070   case Builtin::BI__sync_add_and_fetch_2:
5071   case Builtin::BI__sync_add_and_fetch_4:
5072   case Builtin::BI__sync_add_and_fetch_8:
5073   case Builtin::BI__sync_add_and_fetch_16:
5074     BuiltinIndex = 6;
5075     break;
5076 
5077   case Builtin::BI__sync_sub_and_fetch:
5078   case Builtin::BI__sync_sub_and_fetch_1:
5079   case Builtin::BI__sync_sub_and_fetch_2:
5080   case Builtin::BI__sync_sub_and_fetch_4:
5081   case Builtin::BI__sync_sub_and_fetch_8:
5082   case Builtin::BI__sync_sub_and_fetch_16:
5083     BuiltinIndex = 7;
5084     break;
5085 
5086   case Builtin::BI__sync_and_and_fetch:
5087   case Builtin::BI__sync_and_and_fetch_1:
5088   case Builtin::BI__sync_and_and_fetch_2:
5089   case Builtin::BI__sync_and_and_fetch_4:
5090   case Builtin::BI__sync_and_and_fetch_8:
5091   case Builtin::BI__sync_and_and_fetch_16:
5092     BuiltinIndex = 8;
5093     break;
5094 
5095   case Builtin::BI__sync_or_and_fetch:
5096   case Builtin::BI__sync_or_and_fetch_1:
5097   case Builtin::BI__sync_or_and_fetch_2:
5098   case Builtin::BI__sync_or_and_fetch_4:
5099   case Builtin::BI__sync_or_and_fetch_8:
5100   case Builtin::BI__sync_or_and_fetch_16:
5101     BuiltinIndex = 9;
5102     break;
5103 
5104   case Builtin::BI__sync_xor_and_fetch:
5105   case Builtin::BI__sync_xor_and_fetch_1:
5106   case Builtin::BI__sync_xor_and_fetch_2:
5107   case Builtin::BI__sync_xor_and_fetch_4:
5108   case Builtin::BI__sync_xor_and_fetch_8:
5109   case Builtin::BI__sync_xor_and_fetch_16:
5110     BuiltinIndex = 10;
5111     break;
5112 
5113   case Builtin::BI__sync_nand_and_fetch:
5114   case Builtin::BI__sync_nand_and_fetch_1:
5115   case Builtin::BI__sync_nand_and_fetch_2:
5116   case Builtin::BI__sync_nand_and_fetch_4:
5117   case Builtin::BI__sync_nand_and_fetch_8:
5118   case Builtin::BI__sync_nand_and_fetch_16:
5119     BuiltinIndex = 11;
5120     WarnAboutSemanticsChange = true;
5121     break;
5122 
5123   case Builtin::BI__sync_val_compare_and_swap:
5124   case Builtin::BI__sync_val_compare_and_swap_1:
5125   case Builtin::BI__sync_val_compare_and_swap_2:
5126   case Builtin::BI__sync_val_compare_and_swap_4:
5127   case Builtin::BI__sync_val_compare_and_swap_8:
5128   case Builtin::BI__sync_val_compare_and_swap_16:
5129     BuiltinIndex = 12;
5130     NumFixed = 2;
5131     break;
5132 
5133   case Builtin::BI__sync_bool_compare_and_swap:
5134   case Builtin::BI__sync_bool_compare_and_swap_1:
5135   case Builtin::BI__sync_bool_compare_and_swap_2:
5136   case Builtin::BI__sync_bool_compare_and_swap_4:
5137   case Builtin::BI__sync_bool_compare_and_swap_8:
5138   case Builtin::BI__sync_bool_compare_and_swap_16:
5139     BuiltinIndex = 13;
5140     NumFixed = 2;
5141     ResultType = Context.BoolTy;
5142     break;
5143 
5144   case Builtin::BI__sync_lock_test_and_set:
5145   case Builtin::BI__sync_lock_test_and_set_1:
5146   case Builtin::BI__sync_lock_test_and_set_2:
5147   case Builtin::BI__sync_lock_test_and_set_4:
5148   case Builtin::BI__sync_lock_test_and_set_8:
5149   case Builtin::BI__sync_lock_test_and_set_16:
5150     BuiltinIndex = 14;
5151     break;
5152 
5153   case Builtin::BI__sync_lock_release:
5154   case Builtin::BI__sync_lock_release_1:
5155   case Builtin::BI__sync_lock_release_2:
5156   case Builtin::BI__sync_lock_release_4:
5157   case Builtin::BI__sync_lock_release_8:
5158   case Builtin::BI__sync_lock_release_16:
5159     BuiltinIndex = 15;
5160     NumFixed = 0;
5161     ResultType = Context.VoidTy;
5162     break;
5163 
5164   case Builtin::BI__sync_swap:
5165   case Builtin::BI__sync_swap_1:
5166   case Builtin::BI__sync_swap_2:
5167   case Builtin::BI__sync_swap_4:
5168   case Builtin::BI__sync_swap_8:
5169   case Builtin::BI__sync_swap_16:
5170     BuiltinIndex = 16;
5171     break;
5172   }
5173 
5174   // Now that we know how many fixed arguments we expect, first check that we
5175   // have at least that many.
5176   if (TheCall->getNumArgs() < 1+NumFixed) {
5177     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5178         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5179         << Callee->getSourceRange();
5180     return ExprError();
5181   }
5182 
5183   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5184       << Callee->getSourceRange();
5185 
5186   if (WarnAboutSemanticsChange) {
5187     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5188         << Callee->getSourceRange();
5189   }
5190 
5191   // Get the decl for the concrete builtin from this, we can tell what the
5192   // concrete integer type we should convert to is.
5193   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5194   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5195   FunctionDecl *NewBuiltinDecl;
5196   if (NewBuiltinID == BuiltinID)
5197     NewBuiltinDecl = FDecl;
5198   else {
5199     // Perform builtin lookup to avoid redeclaring it.
5200     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5201     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5202     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5203     assert(Res.getFoundDecl());
5204     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5205     if (!NewBuiltinDecl)
5206       return ExprError();
5207   }
5208 
5209   // The first argument --- the pointer --- has a fixed type; we
5210   // deduce the types of the rest of the arguments accordingly.  Walk
5211   // the remaining arguments, converting them to the deduced value type.
5212   for (unsigned i = 0; i != NumFixed; ++i) {
5213     ExprResult Arg = TheCall->getArg(i+1);
5214 
5215     // GCC does an implicit conversion to the pointer or integer ValType.  This
5216     // can fail in some cases (1i -> int**), check for this error case now.
5217     // Initialize the argument.
5218     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5219                                                    ValType, /*consume*/ false);
5220     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5221     if (Arg.isInvalid())
5222       return ExprError();
5223 
5224     // Okay, we have something that *can* be converted to the right type.  Check
5225     // to see if there is a potentially weird extension going on here.  This can
5226     // happen when you do an atomic operation on something like an char* and
5227     // pass in 42.  The 42 gets converted to char.  This is even more strange
5228     // for things like 45.123 -> char, etc.
5229     // FIXME: Do this check.
5230     TheCall->setArg(i+1, Arg.get());
5231   }
5232 
5233   // Create a new DeclRefExpr to refer to the new decl.
5234   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5235       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5236       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5237       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5238 
5239   // Set the callee in the CallExpr.
5240   // FIXME: This loses syntactic information.
5241   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5242   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5243                                               CK_BuiltinFnToFnPtr);
5244   TheCall->setCallee(PromotedCall.get());
5245 
5246   // Change the result type of the call to match the original value type. This
5247   // is arbitrary, but the codegen for these builtins ins design to handle it
5248   // gracefully.
5249   TheCall->setType(ResultType);
5250 
5251   return TheCallResult;
5252 }
5253 
5254 /// SemaBuiltinNontemporalOverloaded - We have a call to
5255 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5256 /// overloaded function based on the pointer type of its last argument.
5257 ///
5258 /// This function goes through and does final semantic checking for these
5259 /// builtins.
5260 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5261   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5262   DeclRefExpr *DRE =
5263       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5264   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5265   unsigned BuiltinID = FDecl->getBuiltinID();
5266   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5267           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5268          "Unexpected nontemporal load/store builtin!");
5269   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5270   unsigned numArgs = isStore ? 2 : 1;
5271 
5272   // Ensure that we have the proper number of arguments.
5273   if (checkArgCount(*this, TheCall, numArgs))
5274     return ExprError();
5275 
5276   // Inspect the last argument of the nontemporal builtin.  This should always
5277   // be a pointer type, from which we imply the type of the memory access.
5278   // Because it is a pointer type, we don't have to worry about any implicit
5279   // casts here.
5280   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5281   ExprResult PointerArgResult =
5282       DefaultFunctionArrayLvalueConversion(PointerArg);
5283 
5284   if (PointerArgResult.isInvalid())
5285     return ExprError();
5286   PointerArg = PointerArgResult.get();
5287   TheCall->setArg(numArgs - 1, PointerArg);
5288 
5289   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5290   if (!pointerType) {
5291     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5292         << PointerArg->getType() << PointerArg->getSourceRange();
5293     return ExprError();
5294   }
5295 
5296   QualType ValType = pointerType->getPointeeType();
5297 
5298   // Strip any qualifiers off ValType.
5299   ValType = ValType.getUnqualifiedType();
5300   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5301       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5302       !ValType->isVectorType()) {
5303     Diag(DRE->getBeginLoc(),
5304          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5305         << PointerArg->getType() << PointerArg->getSourceRange();
5306     return ExprError();
5307   }
5308 
5309   if (!isStore) {
5310     TheCall->setType(ValType);
5311     return TheCallResult;
5312   }
5313 
5314   ExprResult ValArg = TheCall->getArg(0);
5315   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5316       Context, ValType, /*consume*/ false);
5317   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5318   if (ValArg.isInvalid())
5319     return ExprError();
5320 
5321   TheCall->setArg(0, ValArg.get());
5322   TheCall->setType(Context.VoidTy);
5323   return TheCallResult;
5324 }
5325 
5326 /// CheckObjCString - Checks that the argument to the builtin
5327 /// CFString constructor is correct
5328 /// Note: It might also make sense to do the UTF-16 conversion here (would
5329 /// simplify the backend).
5330 bool Sema::CheckObjCString(Expr *Arg) {
5331   Arg = Arg->IgnoreParenCasts();
5332   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5333 
5334   if (!Literal || !Literal->isAscii()) {
5335     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5336         << Arg->getSourceRange();
5337     return true;
5338   }
5339 
5340   if (Literal->containsNonAsciiOrNull()) {
5341     StringRef String = Literal->getString();
5342     unsigned NumBytes = String.size();
5343     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5344     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5345     llvm::UTF16 *ToPtr = &ToBuf[0];
5346 
5347     llvm::ConversionResult Result =
5348         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5349                                  ToPtr + NumBytes, llvm::strictConversion);
5350     // Check for conversion failure.
5351     if (Result != llvm::conversionOK)
5352       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5353           << Arg->getSourceRange();
5354   }
5355   return false;
5356 }
5357 
5358 /// CheckObjCString - Checks that the format string argument to the os_log()
5359 /// and os_trace() functions is correct, and converts it to const char *.
5360 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5361   Arg = Arg->IgnoreParenCasts();
5362   auto *Literal = dyn_cast<StringLiteral>(Arg);
5363   if (!Literal) {
5364     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5365       Literal = ObjcLiteral->getString();
5366     }
5367   }
5368 
5369   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5370     return ExprError(
5371         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5372         << Arg->getSourceRange());
5373   }
5374 
5375   ExprResult Result(Literal);
5376   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5377   InitializedEntity Entity =
5378       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5379   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5380   return Result;
5381 }
5382 
5383 /// Check that the user is calling the appropriate va_start builtin for the
5384 /// target and calling convention.
5385 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5386   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5387   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5388   bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64;
5389   bool IsWindows = TT.isOSWindows();
5390   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5391   if (IsX64 || IsAArch64) {
5392     CallingConv CC = CC_C;
5393     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5394       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
5395     if (IsMSVAStart) {
5396       // Don't allow this in System V ABI functions.
5397       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5398         return S.Diag(Fn->getBeginLoc(),
5399                       diag::err_ms_va_start_used_in_sysv_function);
5400     } else {
5401       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5402       // On x64 Windows, don't allow this in System V ABI functions.
5403       // (Yes, that means there's no corresponding way to support variadic
5404       // System V ABI functions on Windows.)
5405       if ((IsWindows && CC == CC_X86_64SysV) ||
5406           (!IsWindows && CC == CC_Win64))
5407         return S.Diag(Fn->getBeginLoc(),
5408                       diag::err_va_start_used_in_wrong_abi_function)
5409                << !IsWindows;
5410     }
5411     return false;
5412   }
5413 
5414   if (IsMSVAStart)
5415     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5416   return false;
5417 }
5418 
5419 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5420                                              ParmVarDecl **LastParam = nullptr) {
5421   // Determine whether the current function, block, or obj-c method is variadic
5422   // and get its parameter list.
5423   bool IsVariadic = false;
5424   ArrayRef<ParmVarDecl *> Params;
5425   DeclContext *Caller = S.CurContext;
5426   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5427     IsVariadic = Block->isVariadic();
5428     Params = Block->parameters();
5429   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5430     IsVariadic = FD->isVariadic();
5431     Params = FD->parameters();
5432   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5433     IsVariadic = MD->isVariadic();
5434     // FIXME: This isn't correct for methods (results in bogus warning).
5435     Params = MD->parameters();
5436   } else if (isa<CapturedDecl>(Caller)) {
5437     // We don't support va_start in a CapturedDecl.
5438     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5439     return true;
5440   } else {
5441     // This must be some other declcontext that parses exprs.
5442     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5443     return true;
5444   }
5445 
5446   if (!IsVariadic) {
5447     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5448     return true;
5449   }
5450 
5451   if (LastParam)
5452     *LastParam = Params.empty() ? nullptr : Params.back();
5453 
5454   return false;
5455 }
5456 
5457 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5458 /// for validity.  Emit an error and return true on failure; return false
5459 /// on success.
5460 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5461   Expr *Fn = TheCall->getCallee();
5462 
5463   if (checkVAStartABI(*this, BuiltinID, Fn))
5464     return true;
5465 
5466   if (TheCall->getNumArgs() > 2) {
5467     Diag(TheCall->getArg(2)->getBeginLoc(),
5468          diag::err_typecheck_call_too_many_args)
5469         << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5470         << Fn->getSourceRange()
5471         << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5472                        (*(TheCall->arg_end() - 1))->getEndLoc());
5473     return true;
5474   }
5475 
5476   if (TheCall->getNumArgs() < 2) {
5477     return Diag(TheCall->getEndLoc(),
5478                 diag::err_typecheck_call_too_few_args_at_least)
5479            << 0 /*function call*/ << 2 << TheCall->getNumArgs();
5480   }
5481 
5482   // Type-check the first argument normally.
5483   if (checkBuiltinArgument(*this, TheCall, 0))
5484     return true;
5485 
5486   // Check that the current function is variadic, and get its last parameter.
5487   ParmVarDecl *LastParam;
5488   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5489     return true;
5490 
5491   // Verify that the second argument to the builtin is the last argument of the
5492   // current function or method.
5493   bool SecondArgIsLastNamedArgument = false;
5494   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5495 
5496   // These are valid if SecondArgIsLastNamedArgument is false after the next
5497   // block.
5498   QualType Type;
5499   SourceLocation ParamLoc;
5500   bool IsCRegister = false;
5501 
5502   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5503     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5504       SecondArgIsLastNamedArgument = PV == LastParam;
5505 
5506       Type = PV->getType();
5507       ParamLoc = PV->getLocation();
5508       IsCRegister =
5509           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5510     }
5511   }
5512 
5513   if (!SecondArgIsLastNamedArgument)
5514     Diag(TheCall->getArg(1)->getBeginLoc(),
5515          diag::warn_second_arg_of_va_start_not_last_named_param);
5516   else if (IsCRegister || Type->isReferenceType() ||
5517            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5518              // Promotable integers are UB, but enumerations need a bit of
5519              // extra checking to see what their promotable type actually is.
5520              if (!Type->isPromotableIntegerType())
5521                return false;
5522              if (!Type->isEnumeralType())
5523                return true;
5524              const EnumDecl *ED = Type->getAs<EnumType>()->getDecl();
5525              return !(ED &&
5526                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5527            }()) {
5528     unsigned Reason = 0;
5529     if (Type->isReferenceType())  Reason = 1;
5530     else if (IsCRegister)         Reason = 2;
5531     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5532     Diag(ParamLoc, diag::note_parameter_type) << Type;
5533   }
5534 
5535   TheCall->setType(Context.VoidTy);
5536   return false;
5537 }
5538 
5539 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5540   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5541   //                 const char *named_addr);
5542 
5543   Expr *Func = Call->getCallee();
5544 
5545   if (Call->getNumArgs() < 3)
5546     return Diag(Call->getEndLoc(),
5547                 diag::err_typecheck_call_too_few_args_at_least)
5548            << 0 /*function call*/ << 3 << Call->getNumArgs();
5549 
5550   // Type-check the first argument normally.
5551   if (checkBuiltinArgument(*this, Call, 0))
5552     return true;
5553 
5554   // Check that the current function is variadic.
5555   if (checkVAStartIsInVariadicFunction(*this, Func))
5556     return true;
5557 
5558   // __va_start on Windows does not validate the parameter qualifiers
5559 
5560   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5561   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5562 
5563   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5564   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5565 
5566   const QualType &ConstCharPtrTy =
5567       Context.getPointerType(Context.CharTy.withConst());
5568   if (!Arg1Ty->isPointerType() ||
5569       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5570     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5571         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5572         << 0                                      /* qualifier difference */
5573         << 3                                      /* parameter mismatch */
5574         << 2 << Arg1->getType() << ConstCharPtrTy;
5575 
5576   const QualType SizeTy = Context.getSizeType();
5577   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5578     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5579         << Arg2->getType() << SizeTy << 1 /* different class */
5580         << 0                              /* qualifier difference */
5581         << 3                              /* parameter mismatch */
5582         << 3 << Arg2->getType() << SizeTy;
5583 
5584   return false;
5585 }
5586 
5587 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5588 /// friends.  This is declared to take (...), so we have to check everything.
5589 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5590   if (TheCall->getNumArgs() < 2)
5591     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5592            << 0 << 2 << TheCall->getNumArgs() /*function call*/;
5593   if (TheCall->getNumArgs() > 2)
5594     return Diag(TheCall->getArg(2)->getBeginLoc(),
5595                 diag::err_typecheck_call_too_many_args)
5596            << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5597            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5598                           (*(TheCall->arg_end() - 1))->getEndLoc());
5599 
5600   ExprResult OrigArg0 = TheCall->getArg(0);
5601   ExprResult OrigArg1 = TheCall->getArg(1);
5602 
5603   // Do standard promotions between the two arguments, returning their common
5604   // type.
5605   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
5606   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5607     return true;
5608 
5609   // Make sure any conversions are pushed back into the call; this is
5610   // type safe since unordered compare builtins are declared as "_Bool
5611   // foo(...)".
5612   TheCall->setArg(0, OrigArg0.get());
5613   TheCall->setArg(1, OrigArg1.get());
5614 
5615   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5616     return false;
5617 
5618   // If the common type isn't a real floating type, then the arguments were
5619   // invalid for this operation.
5620   if (Res.isNull() || !Res->isRealFloatingType())
5621     return Diag(OrigArg0.get()->getBeginLoc(),
5622                 diag::err_typecheck_call_invalid_ordered_compare)
5623            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5624            << SourceRange(OrigArg0.get()->getBeginLoc(),
5625                           OrigArg1.get()->getEndLoc());
5626 
5627   return false;
5628 }
5629 
5630 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5631 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5632 /// to check everything. We expect the last argument to be a floating point
5633 /// value.
5634 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5635   if (TheCall->getNumArgs() < NumArgs)
5636     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5637            << 0 << NumArgs << TheCall->getNumArgs() /*function call*/;
5638   if (TheCall->getNumArgs() > NumArgs)
5639     return Diag(TheCall->getArg(NumArgs)->getBeginLoc(),
5640                 diag::err_typecheck_call_too_many_args)
5641            << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
5642            << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(),
5643                           (*(TheCall->arg_end() - 1))->getEndLoc());
5644 
5645   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5646 
5647   if (OrigArg->isTypeDependent())
5648     return false;
5649 
5650   // This operation requires a non-_Complex floating-point number.
5651   if (!OrigArg->getType()->isRealFloatingType())
5652     return Diag(OrigArg->getBeginLoc(),
5653                 diag::err_typecheck_call_invalid_unary_fp)
5654            << OrigArg->getType() << OrigArg->getSourceRange();
5655 
5656   // If this is an implicit conversion from float -> float, double, or
5657   // long double, remove it.
5658   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
5659     // Only remove standard FloatCasts, leaving other casts inplace
5660     if (Cast->getCastKind() == CK_FloatingCast) {
5661       Expr *CastArg = Cast->getSubExpr();
5662       if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
5663         assert(
5664             (Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) ||
5665              Cast->getType()->isSpecificBuiltinType(BuiltinType::Float) ||
5666              Cast->getType()->isSpecificBuiltinType(BuiltinType::LongDouble)) &&
5667             "promotion from float to either float, double, or long double is "
5668             "the only expected cast here");
5669         Cast->setSubExpr(nullptr);
5670         TheCall->setArg(NumArgs-1, CastArg);
5671       }
5672     }
5673   }
5674 
5675   return false;
5676 }
5677 
5678 // Customized Sema Checking for VSX builtins that have the following signature:
5679 // vector [...] builtinName(vector [...], vector [...], const int);
5680 // Which takes the same type of vectors (any legal vector type) for the first
5681 // two arguments and takes compile time constant for the third argument.
5682 // Example builtins are :
5683 // vector double vec_xxpermdi(vector double, vector double, int);
5684 // vector short vec_xxsldwi(vector short, vector short, int);
5685 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
5686   unsigned ExpectedNumArgs = 3;
5687   if (TheCall->getNumArgs() < ExpectedNumArgs)
5688     return Diag(TheCall->getEndLoc(),
5689                 diag::err_typecheck_call_too_few_args_at_least)
5690            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5691            << TheCall->getSourceRange();
5692 
5693   if (TheCall->getNumArgs() > ExpectedNumArgs)
5694     return Diag(TheCall->getEndLoc(),
5695                 diag::err_typecheck_call_too_many_args_at_most)
5696            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5697            << TheCall->getSourceRange();
5698 
5699   // Check the third argument is a compile time constant
5700   llvm::APSInt Value;
5701   if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
5702     return Diag(TheCall->getBeginLoc(),
5703                 diag::err_vsx_builtin_nonconstant_argument)
5704            << 3 /* argument index */ << TheCall->getDirectCallee()
5705            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5706                           TheCall->getArg(2)->getEndLoc());
5707 
5708   QualType Arg1Ty = TheCall->getArg(0)->getType();
5709   QualType Arg2Ty = TheCall->getArg(1)->getType();
5710 
5711   // Check the type of argument 1 and argument 2 are vectors.
5712   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
5713   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
5714       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
5715     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
5716            << TheCall->getDirectCallee()
5717            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5718                           TheCall->getArg(1)->getEndLoc());
5719   }
5720 
5721   // Check the first two arguments are the same type.
5722   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
5723     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
5724            << TheCall->getDirectCallee()
5725            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5726                           TheCall->getArg(1)->getEndLoc());
5727   }
5728 
5729   // When default clang type checking is turned off and the customized type
5730   // checking is used, the returning type of the function must be explicitly
5731   // set. Otherwise it is _Bool by default.
5732   TheCall->setType(Arg1Ty);
5733 
5734   return false;
5735 }
5736 
5737 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
5738 // This is declared to take (...), so we have to check everything.
5739 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
5740   if (TheCall->getNumArgs() < 2)
5741     return ExprError(Diag(TheCall->getEndLoc(),
5742                           diag::err_typecheck_call_too_few_args_at_least)
5743                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5744                      << TheCall->getSourceRange());
5745 
5746   // Determine which of the following types of shufflevector we're checking:
5747   // 1) unary, vector mask: (lhs, mask)
5748   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5749   QualType resType = TheCall->getArg(0)->getType();
5750   unsigned numElements = 0;
5751 
5752   if (!TheCall->getArg(0)->isTypeDependent() &&
5753       !TheCall->getArg(1)->isTypeDependent()) {
5754     QualType LHSType = TheCall->getArg(0)->getType();
5755     QualType RHSType = TheCall->getArg(1)->getType();
5756 
5757     if (!LHSType->isVectorType() || !RHSType->isVectorType())
5758       return ExprError(
5759           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5760           << TheCall->getDirectCallee()
5761           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5762                          TheCall->getArg(1)->getEndLoc()));
5763 
5764     numElements = LHSType->getAs<VectorType>()->getNumElements();
5765     unsigned numResElements = TheCall->getNumArgs() - 2;
5766 
5767     // Check to see if we have a call with 2 vector arguments, the unary shuffle
5768     // with mask.  If so, verify that RHS is an integer vector type with the
5769     // same number of elts as lhs.
5770     if (TheCall->getNumArgs() == 2) {
5771       if (!RHSType->hasIntegerRepresentation() ||
5772           RHSType->getAs<VectorType>()->getNumElements() != numElements)
5773         return ExprError(Diag(TheCall->getBeginLoc(),
5774                               diag::err_vec_builtin_incompatible_vector)
5775                          << TheCall->getDirectCallee()
5776                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
5777                                         TheCall->getArg(1)->getEndLoc()));
5778     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
5779       return ExprError(Diag(TheCall->getBeginLoc(),
5780                             diag::err_vec_builtin_incompatible_vector)
5781                        << TheCall->getDirectCallee()
5782                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5783                                       TheCall->getArg(1)->getEndLoc()));
5784     } else if (numElements != numResElements) {
5785       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
5786       resType = Context.getVectorType(eltType, numResElements,
5787                                       VectorType::GenericVector);
5788     }
5789   }
5790 
5791   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
5792     if (TheCall->getArg(i)->isTypeDependent() ||
5793         TheCall->getArg(i)->isValueDependent())
5794       continue;
5795 
5796     llvm::APSInt Result(32);
5797     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
5798       return ExprError(Diag(TheCall->getBeginLoc(),
5799                             diag::err_shufflevector_nonconstant_argument)
5800                        << TheCall->getArg(i)->getSourceRange());
5801 
5802     // Allow -1 which will be translated to undef in the IR.
5803     if (Result.isSigned() && Result.isAllOnesValue())
5804       continue;
5805 
5806     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
5807       return ExprError(Diag(TheCall->getBeginLoc(),
5808                             diag::err_shufflevector_argument_too_large)
5809                        << TheCall->getArg(i)->getSourceRange());
5810   }
5811 
5812   SmallVector<Expr*, 32> exprs;
5813 
5814   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
5815     exprs.push_back(TheCall->getArg(i));
5816     TheCall->setArg(i, nullptr);
5817   }
5818 
5819   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
5820                                          TheCall->getCallee()->getBeginLoc(),
5821                                          TheCall->getRParenLoc());
5822 }
5823 
5824 /// SemaConvertVectorExpr - Handle __builtin_convertvector
5825 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
5826                                        SourceLocation BuiltinLoc,
5827                                        SourceLocation RParenLoc) {
5828   ExprValueKind VK = VK_RValue;
5829   ExprObjectKind OK = OK_Ordinary;
5830   QualType DstTy = TInfo->getType();
5831   QualType SrcTy = E->getType();
5832 
5833   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
5834     return ExprError(Diag(BuiltinLoc,
5835                           diag::err_convertvector_non_vector)
5836                      << E->getSourceRange());
5837   if (!DstTy->isVectorType() && !DstTy->isDependentType())
5838     return ExprError(Diag(BuiltinLoc,
5839                           diag::err_convertvector_non_vector_type));
5840 
5841   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
5842     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
5843     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
5844     if (SrcElts != DstElts)
5845       return ExprError(Diag(BuiltinLoc,
5846                             diag::err_convertvector_incompatible_vector)
5847                        << E->getSourceRange());
5848   }
5849 
5850   return new (Context)
5851       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5852 }
5853 
5854 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
5855 // This is declared to take (const void*, ...) and can take two
5856 // optional constant int args.
5857 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
5858   unsigned NumArgs = TheCall->getNumArgs();
5859 
5860   if (NumArgs > 3)
5861     return Diag(TheCall->getEndLoc(),
5862                 diag::err_typecheck_call_too_many_args_at_most)
5863            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
5864 
5865   // Argument 0 is checked for us and the remaining arguments must be
5866   // constant integers.
5867   for (unsigned i = 1; i != NumArgs; ++i)
5868     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
5869       return true;
5870 
5871   return false;
5872 }
5873 
5874 /// SemaBuiltinAssume - Handle __assume (MS Extension).
5875 // __assume does not evaluate its arguments, and should warn if its argument
5876 // has side effects.
5877 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
5878   Expr *Arg = TheCall->getArg(0);
5879   if (Arg->isInstantiationDependent()) return false;
5880 
5881   if (Arg->HasSideEffects(Context))
5882     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
5883         << Arg->getSourceRange()
5884         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
5885 
5886   return false;
5887 }
5888 
5889 /// Handle __builtin_alloca_with_align. This is declared
5890 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
5891 /// than 8.
5892 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
5893   // The alignment must be a constant integer.
5894   Expr *Arg = TheCall->getArg(1);
5895 
5896   // We can't check the value of a dependent argument.
5897   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5898     if (const auto *UE =
5899             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
5900       if (UE->getKind() == UETT_AlignOf ||
5901           UE->getKind() == UETT_PreferredAlignOf)
5902         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
5903             << Arg->getSourceRange();
5904 
5905     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
5906 
5907     if (!Result.isPowerOf2())
5908       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5909              << Arg->getSourceRange();
5910 
5911     if (Result < Context.getCharWidth())
5912       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
5913              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
5914 
5915     if (Result > std::numeric_limits<int32_t>::max())
5916       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
5917              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
5918   }
5919 
5920   return false;
5921 }
5922 
5923 /// Handle __builtin_assume_aligned. This is declared
5924 /// as (const void*, size_t, ...) and can take one optional constant int arg.
5925 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
5926   unsigned NumArgs = TheCall->getNumArgs();
5927 
5928   if (NumArgs > 3)
5929     return Diag(TheCall->getEndLoc(),
5930                 diag::err_typecheck_call_too_many_args_at_most)
5931            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
5932 
5933   // The alignment must be a constant integer.
5934   Expr *Arg = TheCall->getArg(1);
5935 
5936   // We can't check the value of a dependent argument.
5937   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5938     llvm::APSInt Result;
5939     if (SemaBuiltinConstantArg(TheCall, 1, Result))
5940       return true;
5941 
5942     if (!Result.isPowerOf2())
5943       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5944              << Arg->getSourceRange();
5945   }
5946 
5947   if (NumArgs > 2) {
5948     ExprResult Arg(TheCall->getArg(2));
5949     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5950       Context.getSizeType(), false);
5951     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5952     if (Arg.isInvalid()) return true;
5953     TheCall->setArg(2, Arg.get());
5954   }
5955 
5956   return false;
5957 }
5958 
5959 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
5960   unsigned BuiltinID =
5961       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
5962   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
5963 
5964   unsigned NumArgs = TheCall->getNumArgs();
5965   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
5966   if (NumArgs < NumRequiredArgs) {
5967     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5968            << 0 /* function call */ << NumRequiredArgs << NumArgs
5969            << TheCall->getSourceRange();
5970   }
5971   if (NumArgs >= NumRequiredArgs + 0x100) {
5972     return Diag(TheCall->getEndLoc(),
5973                 diag::err_typecheck_call_too_many_args_at_most)
5974            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
5975            << TheCall->getSourceRange();
5976   }
5977   unsigned i = 0;
5978 
5979   // For formatting call, check buffer arg.
5980   if (!IsSizeCall) {
5981     ExprResult Arg(TheCall->getArg(i));
5982     InitializedEntity Entity = InitializedEntity::InitializeParameter(
5983         Context, Context.VoidPtrTy, false);
5984     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5985     if (Arg.isInvalid())
5986       return true;
5987     TheCall->setArg(i, Arg.get());
5988     i++;
5989   }
5990 
5991   // Check string literal arg.
5992   unsigned FormatIdx = i;
5993   {
5994     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
5995     if (Arg.isInvalid())
5996       return true;
5997     TheCall->setArg(i, Arg.get());
5998     i++;
5999   }
6000 
6001   // Make sure variadic args are scalar.
6002   unsigned FirstDataArg = i;
6003   while (i < NumArgs) {
6004     ExprResult Arg = DefaultVariadicArgumentPromotion(
6005         TheCall->getArg(i), VariadicFunction, nullptr);
6006     if (Arg.isInvalid())
6007       return true;
6008     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6009     if (ArgSize.getQuantity() >= 0x100) {
6010       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6011              << i << (int)ArgSize.getQuantity() << 0xff
6012              << TheCall->getSourceRange();
6013     }
6014     TheCall->setArg(i, Arg.get());
6015     i++;
6016   }
6017 
6018   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6019   // call to avoid duplicate diagnostics.
6020   if (!IsSizeCall) {
6021     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6022     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6023     bool Success = CheckFormatArguments(
6024         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6025         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6026         CheckedVarArgs);
6027     if (!Success)
6028       return true;
6029   }
6030 
6031   if (IsSizeCall) {
6032     TheCall->setType(Context.getSizeType());
6033   } else {
6034     TheCall->setType(Context.VoidPtrTy);
6035   }
6036   return false;
6037 }
6038 
6039 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6040 /// TheCall is a constant expression.
6041 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6042                                   llvm::APSInt &Result) {
6043   Expr *Arg = TheCall->getArg(ArgNum);
6044   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6045   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6046 
6047   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6048 
6049   if (!Arg->isIntegerConstantExpr(Result, Context))
6050     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6051            << FDecl->getDeclName() << Arg->getSourceRange();
6052 
6053   return false;
6054 }
6055 
6056 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6057 /// TheCall is a constant expression in the range [Low, High].
6058 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6059                                        int Low, int High, bool RangeIsError) {
6060   llvm::APSInt Result;
6061 
6062   // We can't check the value of a dependent argument.
6063   Expr *Arg = TheCall->getArg(ArgNum);
6064   if (Arg->isTypeDependent() || Arg->isValueDependent())
6065     return false;
6066 
6067   // Check constant-ness first.
6068   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6069     return true;
6070 
6071   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6072     if (RangeIsError)
6073       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6074              << Result.toString(10) << Low << High << Arg->getSourceRange();
6075     else
6076       // Defer the warning until we know if the code will be emitted so that
6077       // dead code can ignore this.
6078       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6079                           PDiag(diag::warn_argument_invalid_range)
6080                               << Result.toString(10) << Low << High
6081                               << Arg->getSourceRange());
6082   }
6083 
6084   return false;
6085 }
6086 
6087 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6088 /// TheCall is a constant expression is a multiple of Num..
6089 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6090                                           unsigned Num) {
6091   llvm::APSInt Result;
6092 
6093   // We can't check the value of a dependent argument.
6094   Expr *Arg = TheCall->getArg(ArgNum);
6095   if (Arg->isTypeDependent() || Arg->isValueDependent())
6096     return false;
6097 
6098   // Check constant-ness first.
6099   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6100     return true;
6101 
6102   if (Result.getSExtValue() % Num != 0)
6103     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6104            << Num << Arg->getSourceRange();
6105 
6106   return false;
6107 }
6108 
6109 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6110 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6111   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6112     if (checkArgCount(*this, TheCall, 2))
6113       return true;
6114     Expr *Arg0 = TheCall->getArg(0);
6115     Expr *Arg1 = TheCall->getArg(1);
6116 
6117     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6118     if (FirstArg.isInvalid())
6119       return true;
6120     QualType FirstArgType = FirstArg.get()->getType();
6121     if (!FirstArgType->isAnyPointerType())
6122       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6123                << "first" << FirstArgType << Arg0->getSourceRange();
6124     TheCall->setArg(0, FirstArg.get());
6125 
6126     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6127     if (SecArg.isInvalid())
6128       return true;
6129     QualType SecArgType = SecArg.get()->getType();
6130     if (!SecArgType->isIntegerType())
6131       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6132                << "second" << SecArgType << Arg1->getSourceRange();
6133 
6134     // Derive the return type from the pointer argument.
6135     TheCall->setType(FirstArgType);
6136     return false;
6137   }
6138 
6139   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6140     if (checkArgCount(*this, TheCall, 2))
6141       return true;
6142 
6143     Expr *Arg0 = TheCall->getArg(0);
6144     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6145     if (FirstArg.isInvalid())
6146       return true;
6147     QualType FirstArgType = FirstArg.get()->getType();
6148     if (!FirstArgType->isAnyPointerType())
6149       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6150                << "first" << FirstArgType << Arg0->getSourceRange();
6151     TheCall->setArg(0, FirstArg.get());
6152 
6153     // Derive the return type from the pointer argument.
6154     TheCall->setType(FirstArgType);
6155 
6156     // Second arg must be an constant in range [0,15]
6157     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6158   }
6159 
6160   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6161     if (checkArgCount(*this, TheCall, 2))
6162       return true;
6163     Expr *Arg0 = TheCall->getArg(0);
6164     Expr *Arg1 = TheCall->getArg(1);
6165 
6166     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6167     if (FirstArg.isInvalid())
6168       return true;
6169     QualType FirstArgType = FirstArg.get()->getType();
6170     if (!FirstArgType->isAnyPointerType())
6171       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6172                << "first" << FirstArgType << Arg0->getSourceRange();
6173 
6174     QualType SecArgType = Arg1->getType();
6175     if (!SecArgType->isIntegerType())
6176       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6177                << "second" << SecArgType << Arg1->getSourceRange();
6178     TheCall->setType(Context.IntTy);
6179     return false;
6180   }
6181 
6182   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6183       BuiltinID == AArch64::BI__builtin_arm_stg) {
6184     if (checkArgCount(*this, TheCall, 1))
6185       return true;
6186     Expr *Arg0 = TheCall->getArg(0);
6187     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6188     if (FirstArg.isInvalid())
6189       return true;
6190 
6191     QualType FirstArgType = FirstArg.get()->getType();
6192     if (!FirstArgType->isAnyPointerType())
6193       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6194                << "first" << FirstArgType << Arg0->getSourceRange();
6195     TheCall->setArg(0, FirstArg.get());
6196 
6197     // Derive the return type from the pointer argument.
6198     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6199       TheCall->setType(FirstArgType);
6200     return false;
6201   }
6202 
6203   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6204     Expr *ArgA = TheCall->getArg(0);
6205     Expr *ArgB = TheCall->getArg(1);
6206 
6207     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6208     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6209 
6210     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6211       return true;
6212 
6213     QualType ArgTypeA = ArgExprA.get()->getType();
6214     QualType ArgTypeB = ArgExprB.get()->getType();
6215 
6216     auto isNull = [&] (Expr *E) -> bool {
6217       return E->isNullPointerConstant(
6218                         Context, Expr::NPC_ValueDependentIsNotNull); };
6219 
6220     // argument should be either a pointer or null
6221     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6222       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6223         << "first" << ArgTypeA << ArgA->getSourceRange();
6224 
6225     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6226       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6227         << "second" << ArgTypeB << ArgB->getSourceRange();
6228 
6229     // Ensure Pointee types are compatible
6230     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6231         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6232       QualType pointeeA = ArgTypeA->getPointeeType();
6233       QualType pointeeB = ArgTypeB->getPointeeType();
6234       if (!Context.typesAreCompatible(
6235              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6236              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6237         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6238           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6239           << ArgB->getSourceRange();
6240       }
6241     }
6242 
6243     // at least one argument should be pointer type
6244     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6245       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6246         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6247 
6248     if (isNull(ArgA)) // adopt type of the other pointer
6249       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6250 
6251     if (isNull(ArgB))
6252       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6253 
6254     TheCall->setArg(0, ArgExprA.get());
6255     TheCall->setArg(1, ArgExprB.get());
6256     TheCall->setType(Context.LongLongTy);
6257     return false;
6258   }
6259   assert(false && "Unhandled ARM MTE intrinsic");
6260   return true;
6261 }
6262 
6263 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6264 /// TheCall is an ARM/AArch64 special register string literal.
6265 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6266                                     int ArgNum, unsigned ExpectedFieldNum,
6267                                     bool AllowName) {
6268   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6269                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6270                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6271                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6272                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6273                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6274   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6275                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6276                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6277                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6278                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6279                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6280   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6281 
6282   // We can't check the value of a dependent argument.
6283   Expr *Arg = TheCall->getArg(ArgNum);
6284   if (Arg->isTypeDependent() || Arg->isValueDependent())
6285     return false;
6286 
6287   // Check if the argument is a string literal.
6288   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6289     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6290            << Arg->getSourceRange();
6291 
6292   // Check the type of special register given.
6293   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6294   SmallVector<StringRef, 6> Fields;
6295   Reg.split(Fields, ":");
6296 
6297   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6298     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6299            << Arg->getSourceRange();
6300 
6301   // If the string is the name of a register then we cannot check that it is
6302   // valid here but if the string is of one the forms described in ACLE then we
6303   // can check that the supplied fields are integers and within the valid
6304   // ranges.
6305   if (Fields.size() > 1) {
6306     bool FiveFields = Fields.size() == 5;
6307 
6308     bool ValidString = true;
6309     if (IsARMBuiltin) {
6310       ValidString &= Fields[0].startswith_lower("cp") ||
6311                      Fields[0].startswith_lower("p");
6312       if (ValidString)
6313         Fields[0] =
6314           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6315 
6316       ValidString &= Fields[2].startswith_lower("c");
6317       if (ValidString)
6318         Fields[2] = Fields[2].drop_front(1);
6319 
6320       if (FiveFields) {
6321         ValidString &= Fields[3].startswith_lower("c");
6322         if (ValidString)
6323           Fields[3] = Fields[3].drop_front(1);
6324       }
6325     }
6326 
6327     SmallVector<int, 5> Ranges;
6328     if (FiveFields)
6329       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6330     else
6331       Ranges.append({15, 7, 15});
6332 
6333     for (unsigned i=0; i<Fields.size(); ++i) {
6334       int IntField;
6335       ValidString &= !Fields[i].getAsInteger(10, IntField);
6336       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6337     }
6338 
6339     if (!ValidString)
6340       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6341              << Arg->getSourceRange();
6342   } else if (IsAArch64Builtin && Fields.size() == 1) {
6343     // If the register name is one of those that appear in the condition below
6344     // and the special register builtin being used is one of the write builtins,
6345     // then we require that the argument provided for writing to the register
6346     // is an integer constant expression. This is because it will be lowered to
6347     // an MSR (immediate) instruction, so we need to know the immediate at
6348     // compile time.
6349     if (TheCall->getNumArgs() != 2)
6350       return false;
6351 
6352     std::string RegLower = Reg.lower();
6353     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6354         RegLower != "pan" && RegLower != "uao")
6355       return false;
6356 
6357     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6358   }
6359 
6360   return false;
6361 }
6362 
6363 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6364 /// This checks that the target supports __builtin_longjmp and
6365 /// that val is a constant 1.
6366 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6367   if (!Context.getTargetInfo().hasSjLjLowering())
6368     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6369            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6370 
6371   Expr *Arg = TheCall->getArg(1);
6372   llvm::APSInt Result;
6373 
6374   // TODO: This is less than ideal. Overload this to take a value.
6375   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6376     return true;
6377 
6378   if (Result != 1)
6379     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6380            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6381 
6382   return false;
6383 }
6384 
6385 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6386 /// This checks that the target supports __builtin_setjmp.
6387 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6388   if (!Context.getTargetInfo().hasSjLjLowering())
6389     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6390            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6391   return false;
6392 }
6393 
6394 namespace {
6395 
6396 class UncoveredArgHandler {
6397   enum { Unknown = -1, AllCovered = -2 };
6398 
6399   signed FirstUncoveredArg = Unknown;
6400   SmallVector<const Expr *, 4> DiagnosticExprs;
6401 
6402 public:
6403   UncoveredArgHandler() = default;
6404 
6405   bool hasUncoveredArg() const {
6406     return (FirstUncoveredArg >= 0);
6407   }
6408 
6409   unsigned getUncoveredArg() const {
6410     assert(hasUncoveredArg() && "no uncovered argument");
6411     return FirstUncoveredArg;
6412   }
6413 
6414   void setAllCovered() {
6415     // A string has been found with all arguments covered, so clear out
6416     // the diagnostics.
6417     DiagnosticExprs.clear();
6418     FirstUncoveredArg = AllCovered;
6419   }
6420 
6421   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6422     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6423 
6424     // Don't update if a previous string covers all arguments.
6425     if (FirstUncoveredArg == AllCovered)
6426       return;
6427 
6428     // UncoveredArgHandler tracks the highest uncovered argument index
6429     // and with it all the strings that match this index.
6430     if (NewFirstUncoveredArg == FirstUncoveredArg)
6431       DiagnosticExprs.push_back(StrExpr);
6432     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6433       DiagnosticExprs.clear();
6434       DiagnosticExprs.push_back(StrExpr);
6435       FirstUncoveredArg = NewFirstUncoveredArg;
6436     }
6437   }
6438 
6439   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6440 };
6441 
6442 enum StringLiteralCheckType {
6443   SLCT_NotALiteral,
6444   SLCT_UncheckedLiteral,
6445   SLCT_CheckedLiteral
6446 };
6447 
6448 } // namespace
6449 
6450 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6451                                      BinaryOperatorKind BinOpKind,
6452                                      bool AddendIsRight) {
6453   unsigned BitWidth = Offset.getBitWidth();
6454   unsigned AddendBitWidth = Addend.getBitWidth();
6455   // There might be negative interim results.
6456   if (Addend.isUnsigned()) {
6457     Addend = Addend.zext(++AddendBitWidth);
6458     Addend.setIsSigned(true);
6459   }
6460   // Adjust the bit width of the APSInts.
6461   if (AddendBitWidth > BitWidth) {
6462     Offset = Offset.sext(AddendBitWidth);
6463     BitWidth = AddendBitWidth;
6464   } else if (BitWidth > AddendBitWidth) {
6465     Addend = Addend.sext(BitWidth);
6466   }
6467 
6468   bool Ov = false;
6469   llvm::APSInt ResOffset = Offset;
6470   if (BinOpKind == BO_Add)
6471     ResOffset = Offset.sadd_ov(Addend, Ov);
6472   else {
6473     assert(AddendIsRight && BinOpKind == BO_Sub &&
6474            "operator must be add or sub with addend on the right");
6475     ResOffset = Offset.ssub_ov(Addend, Ov);
6476   }
6477 
6478   // We add an offset to a pointer here so we should support an offset as big as
6479   // possible.
6480   if (Ov) {
6481     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6482            "index (intermediate) result too big");
6483     Offset = Offset.sext(2 * BitWidth);
6484     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6485     return;
6486   }
6487 
6488   Offset = ResOffset;
6489 }
6490 
6491 namespace {
6492 
6493 // This is a wrapper class around StringLiteral to support offsetted string
6494 // literals as format strings. It takes the offset into account when returning
6495 // the string and its length or the source locations to display notes correctly.
6496 class FormatStringLiteral {
6497   const StringLiteral *FExpr;
6498   int64_t Offset;
6499 
6500  public:
6501   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
6502       : FExpr(fexpr), Offset(Offset) {}
6503 
6504   StringRef getString() const {
6505     return FExpr->getString().drop_front(Offset);
6506   }
6507 
6508   unsigned getByteLength() const {
6509     return FExpr->getByteLength() - getCharByteWidth() * Offset;
6510   }
6511 
6512   unsigned getLength() const { return FExpr->getLength() - Offset; }
6513   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
6514 
6515   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
6516 
6517   QualType getType() const { return FExpr->getType(); }
6518 
6519   bool isAscii() const { return FExpr->isAscii(); }
6520   bool isWide() const { return FExpr->isWide(); }
6521   bool isUTF8() const { return FExpr->isUTF8(); }
6522   bool isUTF16() const { return FExpr->isUTF16(); }
6523   bool isUTF32() const { return FExpr->isUTF32(); }
6524   bool isPascal() const { return FExpr->isPascal(); }
6525 
6526   SourceLocation getLocationOfByte(
6527       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
6528       const TargetInfo &Target, unsigned *StartToken = nullptr,
6529       unsigned *StartTokenByteOffset = nullptr) const {
6530     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
6531                                     StartToken, StartTokenByteOffset);
6532   }
6533 
6534   SourceLocation getBeginLoc() const LLVM_READONLY {
6535     return FExpr->getBeginLoc().getLocWithOffset(Offset);
6536   }
6537 
6538   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
6539 };
6540 
6541 }  // namespace
6542 
6543 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6544                               const Expr *OrigFormatExpr,
6545                               ArrayRef<const Expr *> Args,
6546                               bool HasVAListArg, unsigned format_idx,
6547                               unsigned firstDataArg,
6548                               Sema::FormatStringType Type,
6549                               bool inFunctionCall,
6550                               Sema::VariadicCallType CallType,
6551                               llvm::SmallBitVector &CheckedVarArgs,
6552                               UncoveredArgHandler &UncoveredArg);
6553 
6554 // Determine if an expression is a string literal or constant string.
6555 // If this function returns false on the arguments to a function expecting a
6556 // format string, we will usually need to emit a warning.
6557 // True string literals are then checked by CheckFormatString.
6558 static StringLiteralCheckType
6559 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
6560                       bool HasVAListArg, unsigned format_idx,
6561                       unsigned firstDataArg, Sema::FormatStringType Type,
6562                       Sema::VariadicCallType CallType, bool InFunctionCall,
6563                       llvm::SmallBitVector &CheckedVarArgs,
6564                       UncoveredArgHandler &UncoveredArg,
6565                       llvm::APSInt Offset) {
6566  tryAgain:
6567   assert(Offset.isSigned() && "invalid offset");
6568 
6569   if (E->isTypeDependent() || E->isValueDependent())
6570     return SLCT_NotALiteral;
6571 
6572   E = E->IgnoreParenCasts();
6573 
6574   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6575     // Technically -Wformat-nonliteral does not warn about this case.
6576     // The behavior of printf and friends in this case is implementation
6577     // dependent.  Ideally if the format string cannot be null then
6578     // it should have a 'nonnull' attribute in the function prototype.
6579     return SLCT_UncheckedLiteral;
6580 
6581   switch (E->getStmtClass()) {
6582   case Stmt::BinaryConditionalOperatorClass:
6583   case Stmt::ConditionalOperatorClass: {
6584     // The expression is a literal if both sub-expressions were, and it was
6585     // completely checked only if both sub-expressions were checked.
6586     const AbstractConditionalOperator *C =
6587         cast<AbstractConditionalOperator>(E);
6588 
6589     // Determine whether it is necessary to check both sub-expressions, for
6590     // example, because the condition expression is a constant that can be
6591     // evaluated at compile time.
6592     bool CheckLeft = true, CheckRight = true;
6593 
6594     bool Cond;
6595     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) {
6596       if (Cond)
6597         CheckRight = false;
6598       else
6599         CheckLeft = false;
6600     }
6601 
6602     // We need to maintain the offsets for the right and the left hand side
6603     // separately to check if every possible indexed expression is a valid
6604     // string literal. They might have different offsets for different string
6605     // literals in the end.
6606     StringLiteralCheckType Left;
6607     if (!CheckLeft)
6608       Left = SLCT_UncheckedLiteral;
6609     else {
6610       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
6611                                    HasVAListArg, format_idx, firstDataArg,
6612                                    Type, CallType, InFunctionCall,
6613                                    CheckedVarArgs, UncoveredArg, Offset);
6614       if (Left == SLCT_NotALiteral || !CheckRight) {
6615         return Left;
6616       }
6617     }
6618 
6619     StringLiteralCheckType Right =
6620         checkFormatStringExpr(S, C->getFalseExpr(), Args,
6621                               HasVAListArg, format_idx, firstDataArg,
6622                               Type, CallType, InFunctionCall, CheckedVarArgs,
6623                               UncoveredArg, Offset);
6624 
6625     return (CheckLeft && Left < Right) ? Left : Right;
6626   }
6627 
6628   case Stmt::ImplicitCastExprClass:
6629     E = cast<ImplicitCastExpr>(E)->getSubExpr();
6630     goto tryAgain;
6631 
6632   case Stmt::OpaqueValueExprClass:
6633     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
6634       E = src;
6635       goto tryAgain;
6636     }
6637     return SLCT_NotALiteral;
6638 
6639   case Stmt::PredefinedExprClass:
6640     // While __func__, etc., are technically not string literals, they
6641     // cannot contain format specifiers and thus are not a security
6642     // liability.
6643     return SLCT_UncheckedLiteral;
6644 
6645   case Stmt::DeclRefExprClass: {
6646     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
6647 
6648     // As an exception, do not flag errors for variables binding to
6649     // const string literals.
6650     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
6651       bool isConstant = false;
6652       QualType T = DR->getType();
6653 
6654       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
6655         isConstant = AT->getElementType().isConstant(S.Context);
6656       } else if (const PointerType *PT = T->getAs<PointerType>()) {
6657         isConstant = T.isConstant(S.Context) &&
6658                      PT->getPointeeType().isConstant(S.Context);
6659       } else if (T->isObjCObjectPointerType()) {
6660         // In ObjC, there is usually no "const ObjectPointer" type,
6661         // so don't check if the pointee type is constant.
6662         isConstant = T.isConstant(S.Context);
6663       }
6664 
6665       if (isConstant) {
6666         if (const Expr *Init = VD->getAnyInitializer()) {
6667           // Look through initializers like const char c[] = { "foo" }
6668           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
6669             if (InitList->isStringLiteralInit())
6670               Init = InitList->getInit(0)->IgnoreParenImpCasts();
6671           }
6672           return checkFormatStringExpr(S, Init, Args,
6673                                        HasVAListArg, format_idx,
6674                                        firstDataArg, Type, CallType,
6675                                        /*InFunctionCall*/ false, CheckedVarArgs,
6676                                        UncoveredArg, Offset);
6677         }
6678       }
6679 
6680       // For vprintf* functions (i.e., HasVAListArg==true), we add a
6681       // special check to see if the format string is a function parameter
6682       // of the function calling the printf function.  If the function
6683       // has an attribute indicating it is a printf-like function, then we
6684       // should suppress warnings concerning non-literals being used in a call
6685       // to a vprintf function.  For example:
6686       //
6687       // void
6688       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
6689       //      va_list ap;
6690       //      va_start(ap, fmt);
6691       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
6692       //      ...
6693       // }
6694       if (HasVAListArg) {
6695         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
6696           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
6697             int PVIndex = PV->getFunctionScopeIndex() + 1;
6698             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
6699               // adjust for implicit parameter
6700               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6701                 if (MD->isInstance())
6702                   ++PVIndex;
6703               // We also check if the formats are compatible.
6704               // We can't pass a 'scanf' string to a 'printf' function.
6705               if (PVIndex == PVFormat->getFormatIdx() &&
6706                   Type == S.GetFormatStringType(PVFormat))
6707                 return SLCT_UncheckedLiteral;
6708             }
6709           }
6710         }
6711       }
6712     }
6713 
6714     return SLCT_NotALiteral;
6715   }
6716 
6717   case Stmt::CallExprClass:
6718   case Stmt::CXXMemberCallExprClass: {
6719     const CallExpr *CE = cast<CallExpr>(E);
6720     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
6721       bool IsFirst = true;
6722       StringLiteralCheckType CommonResult;
6723       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
6724         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
6725         StringLiteralCheckType Result = checkFormatStringExpr(
6726             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
6727             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset);
6728         if (IsFirst) {
6729           CommonResult = Result;
6730           IsFirst = false;
6731         }
6732       }
6733       if (!IsFirst)
6734         return CommonResult;
6735 
6736       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
6737         unsigned BuiltinID = FD->getBuiltinID();
6738         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
6739             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
6740           const Expr *Arg = CE->getArg(0);
6741           return checkFormatStringExpr(S, Arg, Args,
6742                                        HasVAListArg, format_idx,
6743                                        firstDataArg, Type, CallType,
6744                                        InFunctionCall, CheckedVarArgs,
6745                                        UncoveredArg, Offset);
6746         }
6747       }
6748     }
6749 
6750     return SLCT_NotALiteral;
6751   }
6752   case Stmt::ObjCMessageExprClass: {
6753     const auto *ME = cast<ObjCMessageExpr>(E);
6754     if (const auto *ND = ME->getMethodDecl()) {
6755       if (const auto *FA = ND->getAttr<FormatArgAttr>()) {
6756         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
6757         return checkFormatStringExpr(
6758             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
6759             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset);
6760       }
6761     }
6762 
6763     return SLCT_NotALiteral;
6764   }
6765   case Stmt::ObjCStringLiteralClass:
6766   case Stmt::StringLiteralClass: {
6767     const StringLiteral *StrE = nullptr;
6768 
6769     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
6770       StrE = ObjCFExpr->getString();
6771     else
6772       StrE = cast<StringLiteral>(E);
6773 
6774     if (StrE) {
6775       if (Offset.isNegative() || Offset > StrE->getLength()) {
6776         // TODO: It would be better to have an explicit warning for out of
6777         // bounds literals.
6778         return SLCT_NotALiteral;
6779       }
6780       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
6781       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
6782                         firstDataArg, Type, InFunctionCall, CallType,
6783                         CheckedVarArgs, UncoveredArg);
6784       return SLCT_CheckedLiteral;
6785     }
6786 
6787     return SLCT_NotALiteral;
6788   }
6789   case Stmt::BinaryOperatorClass: {
6790     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
6791 
6792     // A string literal + an int offset is still a string literal.
6793     if (BinOp->isAdditiveOp()) {
6794       Expr::EvalResult LResult, RResult;
6795 
6796       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context);
6797       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context);
6798 
6799       if (LIsInt != RIsInt) {
6800         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
6801 
6802         if (LIsInt) {
6803           if (BinOpKind == BO_Add) {
6804             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
6805             E = BinOp->getRHS();
6806             goto tryAgain;
6807           }
6808         } else {
6809           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
6810           E = BinOp->getLHS();
6811           goto tryAgain;
6812         }
6813       }
6814     }
6815 
6816     return SLCT_NotALiteral;
6817   }
6818   case Stmt::UnaryOperatorClass: {
6819     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
6820     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
6821     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
6822       Expr::EvalResult IndexResult;
6823       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) {
6824         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
6825                    /*RHS is int*/ true);
6826         E = ASE->getBase();
6827         goto tryAgain;
6828       }
6829     }
6830 
6831     return SLCT_NotALiteral;
6832   }
6833 
6834   default:
6835     return SLCT_NotALiteral;
6836   }
6837 }
6838 
6839 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
6840   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
6841       .Case("scanf", FST_Scanf)
6842       .Cases("printf", "printf0", FST_Printf)
6843       .Cases("NSString", "CFString", FST_NSString)
6844       .Case("strftime", FST_Strftime)
6845       .Case("strfmon", FST_Strfmon)
6846       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
6847       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
6848       .Case("os_trace", FST_OSLog)
6849       .Case("os_log", FST_OSLog)
6850       .Default(FST_Unknown);
6851 }
6852 
6853 /// CheckFormatArguments - Check calls to printf and scanf (and similar
6854 /// functions) for correct use of format strings.
6855 /// Returns true if a format string has been fully checked.
6856 bool Sema::CheckFormatArguments(const FormatAttr *Format,
6857                                 ArrayRef<const Expr *> Args,
6858                                 bool IsCXXMember,
6859                                 VariadicCallType CallType,
6860                                 SourceLocation Loc, SourceRange Range,
6861                                 llvm::SmallBitVector &CheckedVarArgs) {
6862   FormatStringInfo FSI;
6863   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
6864     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
6865                                 FSI.FirstDataArg, GetFormatStringType(Format),
6866                                 CallType, Loc, Range, CheckedVarArgs);
6867   return false;
6868 }
6869 
6870 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
6871                                 bool HasVAListArg, unsigned format_idx,
6872                                 unsigned firstDataArg, FormatStringType Type,
6873                                 VariadicCallType CallType,
6874                                 SourceLocation Loc, SourceRange Range,
6875                                 llvm::SmallBitVector &CheckedVarArgs) {
6876   // CHECK: printf/scanf-like function is called with no format string.
6877   if (format_idx >= Args.size()) {
6878     Diag(Loc, diag::warn_missing_format_string) << Range;
6879     return false;
6880   }
6881 
6882   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
6883 
6884   // CHECK: format string is not a string literal.
6885   //
6886   // Dynamically generated format strings are difficult to
6887   // automatically vet at compile time.  Requiring that format strings
6888   // are string literals: (1) permits the checking of format strings by
6889   // the compiler and thereby (2) can practically remove the source of
6890   // many format string exploits.
6891 
6892   // Format string can be either ObjC string (e.g. @"%d") or
6893   // C string (e.g. "%d")
6894   // ObjC string uses the same format specifiers as C string, so we can use
6895   // the same format string checking logic for both ObjC and C strings.
6896   UncoveredArgHandler UncoveredArg;
6897   StringLiteralCheckType CT =
6898       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
6899                             format_idx, firstDataArg, Type, CallType,
6900                             /*IsFunctionCall*/ true, CheckedVarArgs,
6901                             UncoveredArg,
6902                             /*no string offset*/ llvm::APSInt(64, false) = 0);
6903 
6904   // Generate a diagnostic where an uncovered argument is detected.
6905   if (UncoveredArg.hasUncoveredArg()) {
6906     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
6907     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
6908     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
6909   }
6910 
6911   if (CT != SLCT_NotALiteral)
6912     // Literal format string found, check done!
6913     return CT == SLCT_CheckedLiteral;
6914 
6915   // Strftime is particular as it always uses a single 'time' argument,
6916   // so it is safe to pass a non-literal string.
6917   if (Type == FST_Strftime)
6918     return false;
6919 
6920   // Do not emit diag when the string param is a macro expansion and the
6921   // format is either NSString or CFString. This is a hack to prevent
6922   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
6923   // which are usually used in place of NS and CF string literals.
6924   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
6925   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
6926     return false;
6927 
6928   // If there are no arguments specified, warn with -Wformat-security, otherwise
6929   // warn only with -Wformat-nonliteral.
6930   if (Args.size() == firstDataArg) {
6931     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
6932       << OrigFormatExpr->getSourceRange();
6933     switch (Type) {
6934     default:
6935       break;
6936     case FST_Kprintf:
6937     case FST_FreeBSDKPrintf:
6938     case FST_Printf:
6939       Diag(FormatLoc, diag::note_format_security_fixit)
6940         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
6941       break;
6942     case FST_NSString:
6943       Diag(FormatLoc, diag::note_format_security_fixit)
6944         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
6945       break;
6946     }
6947   } else {
6948     Diag(FormatLoc, diag::warn_format_nonliteral)
6949       << OrigFormatExpr->getSourceRange();
6950   }
6951   return false;
6952 }
6953 
6954 namespace {
6955 
6956 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
6957 protected:
6958   Sema &S;
6959   const FormatStringLiteral *FExpr;
6960   const Expr *OrigFormatExpr;
6961   const Sema::FormatStringType FSType;
6962   const unsigned FirstDataArg;
6963   const unsigned NumDataArgs;
6964   const char *Beg; // Start of format string.
6965   const bool HasVAListArg;
6966   ArrayRef<const Expr *> Args;
6967   unsigned FormatIdx;
6968   llvm::SmallBitVector CoveredArgs;
6969   bool usesPositionalArgs = false;
6970   bool atFirstArg = true;
6971   bool inFunctionCall;
6972   Sema::VariadicCallType CallType;
6973   llvm::SmallBitVector &CheckedVarArgs;
6974   UncoveredArgHandler &UncoveredArg;
6975 
6976 public:
6977   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
6978                      const Expr *origFormatExpr,
6979                      const Sema::FormatStringType type, unsigned firstDataArg,
6980                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
6981                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6982                      bool inFunctionCall, Sema::VariadicCallType callType,
6983                      llvm::SmallBitVector &CheckedVarArgs,
6984                      UncoveredArgHandler &UncoveredArg)
6985       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
6986         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
6987         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
6988         inFunctionCall(inFunctionCall), CallType(callType),
6989         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
6990     CoveredArgs.resize(numDataArgs);
6991     CoveredArgs.reset();
6992   }
6993 
6994   void DoneProcessing();
6995 
6996   void HandleIncompleteSpecifier(const char *startSpecifier,
6997                                  unsigned specifierLen) override;
6998 
6999   void HandleInvalidLengthModifier(
7000                            const analyze_format_string::FormatSpecifier &FS,
7001                            const analyze_format_string::ConversionSpecifier &CS,
7002                            const char *startSpecifier, unsigned specifierLen,
7003                            unsigned DiagID);
7004 
7005   void HandleNonStandardLengthModifier(
7006                     const analyze_format_string::FormatSpecifier &FS,
7007                     const char *startSpecifier, unsigned specifierLen);
7008 
7009   void HandleNonStandardConversionSpecifier(
7010                     const analyze_format_string::ConversionSpecifier &CS,
7011                     const char *startSpecifier, unsigned specifierLen);
7012 
7013   void HandlePosition(const char *startPos, unsigned posLen) override;
7014 
7015   void HandleInvalidPosition(const char *startSpecifier,
7016                              unsigned specifierLen,
7017                              analyze_format_string::PositionContext p) override;
7018 
7019   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7020 
7021   void HandleNullChar(const char *nullCharacter) override;
7022 
7023   template <typename Range>
7024   static void
7025   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7026                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7027                        bool IsStringLocation, Range StringRange,
7028                        ArrayRef<FixItHint> Fixit = None);
7029 
7030 protected:
7031   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7032                                         const char *startSpec,
7033                                         unsigned specifierLen,
7034                                         const char *csStart, unsigned csLen);
7035 
7036   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7037                                          const char *startSpec,
7038                                          unsigned specifierLen);
7039 
7040   SourceRange getFormatStringRange();
7041   CharSourceRange getSpecifierRange(const char *startSpecifier,
7042                                     unsigned specifierLen);
7043   SourceLocation getLocationOfByte(const char *x);
7044 
7045   const Expr *getDataArg(unsigned i) const;
7046 
7047   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7048                     const analyze_format_string::ConversionSpecifier &CS,
7049                     const char *startSpecifier, unsigned specifierLen,
7050                     unsigned argIndex);
7051 
7052   template <typename Range>
7053   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7054                             bool IsStringLocation, Range StringRange,
7055                             ArrayRef<FixItHint> Fixit = None);
7056 };
7057 
7058 } // namespace
7059 
7060 SourceRange CheckFormatHandler::getFormatStringRange() {
7061   return OrigFormatExpr->getSourceRange();
7062 }
7063 
7064 CharSourceRange CheckFormatHandler::
7065 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7066   SourceLocation Start = getLocationOfByte(startSpecifier);
7067   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7068 
7069   // Advance the end SourceLocation by one due to half-open ranges.
7070   End = End.getLocWithOffset(1);
7071 
7072   return CharSourceRange::getCharRange(Start, End);
7073 }
7074 
7075 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7076   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7077                                   S.getLangOpts(), S.Context.getTargetInfo());
7078 }
7079 
7080 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7081                                                    unsigned specifierLen){
7082   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7083                        getLocationOfByte(startSpecifier),
7084                        /*IsStringLocation*/true,
7085                        getSpecifierRange(startSpecifier, specifierLen));
7086 }
7087 
7088 void CheckFormatHandler::HandleInvalidLengthModifier(
7089     const analyze_format_string::FormatSpecifier &FS,
7090     const analyze_format_string::ConversionSpecifier &CS,
7091     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7092   using namespace analyze_format_string;
7093 
7094   const LengthModifier &LM = FS.getLengthModifier();
7095   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7096 
7097   // See if we know how to fix this length modifier.
7098   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7099   if (FixedLM) {
7100     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7101                          getLocationOfByte(LM.getStart()),
7102                          /*IsStringLocation*/true,
7103                          getSpecifierRange(startSpecifier, specifierLen));
7104 
7105     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7106       << FixedLM->toString()
7107       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7108 
7109   } else {
7110     FixItHint Hint;
7111     if (DiagID == diag::warn_format_nonsensical_length)
7112       Hint = FixItHint::CreateRemoval(LMRange);
7113 
7114     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7115                          getLocationOfByte(LM.getStart()),
7116                          /*IsStringLocation*/true,
7117                          getSpecifierRange(startSpecifier, specifierLen),
7118                          Hint);
7119   }
7120 }
7121 
7122 void CheckFormatHandler::HandleNonStandardLengthModifier(
7123     const analyze_format_string::FormatSpecifier &FS,
7124     const char *startSpecifier, unsigned specifierLen) {
7125   using namespace analyze_format_string;
7126 
7127   const LengthModifier &LM = FS.getLengthModifier();
7128   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7129 
7130   // See if we know how to fix this length modifier.
7131   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7132   if (FixedLM) {
7133     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7134                            << LM.toString() << 0,
7135                          getLocationOfByte(LM.getStart()),
7136                          /*IsStringLocation*/true,
7137                          getSpecifierRange(startSpecifier, specifierLen));
7138 
7139     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7140       << FixedLM->toString()
7141       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7142 
7143   } else {
7144     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7145                            << LM.toString() << 0,
7146                          getLocationOfByte(LM.getStart()),
7147                          /*IsStringLocation*/true,
7148                          getSpecifierRange(startSpecifier, specifierLen));
7149   }
7150 }
7151 
7152 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7153     const analyze_format_string::ConversionSpecifier &CS,
7154     const char *startSpecifier, unsigned specifierLen) {
7155   using namespace analyze_format_string;
7156 
7157   // See if we know how to fix this conversion specifier.
7158   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7159   if (FixedCS) {
7160     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7161                           << CS.toString() << /*conversion specifier*/1,
7162                          getLocationOfByte(CS.getStart()),
7163                          /*IsStringLocation*/true,
7164                          getSpecifierRange(startSpecifier, specifierLen));
7165 
7166     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7167     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7168       << FixedCS->toString()
7169       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7170   } else {
7171     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7172                           << CS.toString() << /*conversion specifier*/1,
7173                          getLocationOfByte(CS.getStart()),
7174                          /*IsStringLocation*/true,
7175                          getSpecifierRange(startSpecifier, specifierLen));
7176   }
7177 }
7178 
7179 void CheckFormatHandler::HandlePosition(const char *startPos,
7180                                         unsigned posLen) {
7181   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7182                                getLocationOfByte(startPos),
7183                                /*IsStringLocation*/true,
7184                                getSpecifierRange(startPos, posLen));
7185 }
7186 
7187 void
7188 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7189                                      analyze_format_string::PositionContext p) {
7190   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7191                          << (unsigned) p,
7192                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7193                        getSpecifierRange(startPos, posLen));
7194 }
7195 
7196 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7197                                             unsigned posLen) {
7198   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7199                                getLocationOfByte(startPos),
7200                                /*IsStringLocation*/true,
7201                                getSpecifierRange(startPos, posLen));
7202 }
7203 
7204 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7205   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7206     // The presence of a null character is likely an error.
7207     EmitFormatDiagnostic(
7208       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7209       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7210       getFormatStringRange());
7211   }
7212 }
7213 
7214 // Note that this may return NULL if there was an error parsing or building
7215 // one of the argument expressions.
7216 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7217   return Args[FirstDataArg + i];
7218 }
7219 
7220 void CheckFormatHandler::DoneProcessing() {
7221   // Does the number of data arguments exceed the number of
7222   // format conversions in the format string?
7223   if (!HasVAListArg) {
7224       // Find any arguments that weren't covered.
7225     CoveredArgs.flip();
7226     signed notCoveredArg = CoveredArgs.find_first();
7227     if (notCoveredArg >= 0) {
7228       assert((unsigned)notCoveredArg < NumDataArgs);
7229       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7230     } else {
7231       UncoveredArg.setAllCovered();
7232     }
7233   }
7234 }
7235 
7236 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7237                                    const Expr *ArgExpr) {
7238   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7239          "Invalid state");
7240 
7241   if (!ArgExpr)
7242     return;
7243 
7244   SourceLocation Loc = ArgExpr->getBeginLoc();
7245 
7246   if (S.getSourceManager().isInSystemMacro(Loc))
7247     return;
7248 
7249   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7250   for (auto E : DiagnosticExprs)
7251     PDiag << E->getSourceRange();
7252 
7253   CheckFormatHandler::EmitFormatDiagnostic(
7254                                   S, IsFunctionCall, DiagnosticExprs[0],
7255                                   PDiag, Loc, /*IsStringLocation*/false,
7256                                   DiagnosticExprs[0]->getSourceRange());
7257 }
7258 
7259 bool
7260 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7261                                                      SourceLocation Loc,
7262                                                      const char *startSpec,
7263                                                      unsigned specifierLen,
7264                                                      const char *csStart,
7265                                                      unsigned csLen) {
7266   bool keepGoing = true;
7267   if (argIndex < NumDataArgs) {
7268     // Consider the argument coverered, even though the specifier doesn't
7269     // make sense.
7270     CoveredArgs.set(argIndex);
7271   }
7272   else {
7273     // If argIndex exceeds the number of data arguments we
7274     // don't issue a warning because that is just a cascade of warnings (and
7275     // they may have intended '%%' anyway). We don't want to continue processing
7276     // the format string after this point, however, as we will like just get
7277     // gibberish when trying to match arguments.
7278     keepGoing = false;
7279   }
7280 
7281   StringRef Specifier(csStart, csLen);
7282 
7283   // If the specifier in non-printable, it could be the first byte of a UTF-8
7284   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7285   // hex value.
7286   std::string CodePointStr;
7287   if (!llvm::sys::locale::isPrint(*csStart)) {
7288     llvm::UTF32 CodePoint;
7289     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7290     const llvm::UTF8 *E =
7291         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7292     llvm::ConversionResult Result =
7293         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7294 
7295     if (Result != llvm::conversionOK) {
7296       unsigned char FirstChar = *csStart;
7297       CodePoint = (llvm::UTF32)FirstChar;
7298     }
7299 
7300     llvm::raw_string_ostream OS(CodePointStr);
7301     if (CodePoint < 256)
7302       OS << "\\x" << llvm::format("%02x", CodePoint);
7303     else if (CodePoint <= 0xFFFF)
7304       OS << "\\u" << llvm::format("%04x", CodePoint);
7305     else
7306       OS << "\\U" << llvm::format("%08x", CodePoint);
7307     OS.flush();
7308     Specifier = CodePointStr;
7309   }
7310 
7311   EmitFormatDiagnostic(
7312       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7313       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7314 
7315   return keepGoing;
7316 }
7317 
7318 void
7319 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7320                                                       const char *startSpec,
7321                                                       unsigned specifierLen) {
7322   EmitFormatDiagnostic(
7323     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7324     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7325 }
7326 
7327 bool
7328 CheckFormatHandler::CheckNumArgs(
7329   const analyze_format_string::FormatSpecifier &FS,
7330   const analyze_format_string::ConversionSpecifier &CS,
7331   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7332 
7333   if (argIndex >= NumDataArgs) {
7334     PartialDiagnostic PDiag = FS.usesPositionalArg()
7335       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7336            << (argIndex+1) << NumDataArgs)
7337       : S.PDiag(diag::warn_printf_insufficient_data_args);
7338     EmitFormatDiagnostic(
7339       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7340       getSpecifierRange(startSpecifier, specifierLen));
7341 
7342     // Since more arguments than conversion tokens are given, by extension
7343     // all arguments are covered, so mark this as so.
7344     UncoveredArg.setAllCovered();
7345     return false;
7346   }
7347   return true;
7348 }
7349 
7350 template<typename Range>
7351 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7352                                               SourceLocation Loc,
7353                                               bool IsStringLocation,
7354                                               Range StringRange,
7355                                               ArrayRef<FixItHint> FixIt) {
7356   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7357                        Loc, IsStringLocation, StringRange, FixIt);
7358 }
7359 
7360 /// If the format string is not within the function call, emit a note
7361 /// so that the function call and string are in diagnostic messages.
7362 ///
7363 /// \param InFunctionCall if true, the format string is within the function
7364 /// call and only one diagnostic message will be produced.  Otherwise, an
7365 /// extra note will be emitted pointing to location of the format string.
7366 ///
7367 /// \param ArgumentExpr the expression that is passed as the format string
7368 /// argument in the function call.  Used for getting locations when two
7369 /// diagnostics are emitted.
7370 ///
7371 /// \param PDiag the callee should already have provided any strings for the
7372 /// diagnostic message.  This function only adds locations and fixits
7373 /// to diagnostics.
7374 ///
7375 /// \param Loc primary location for diagnostic.  If two diagnostics are
7376 /// required, one will be at Loc and a new SourceLocation will be created for
7377 /// the other one.
7378 ///
7379 /// \param IsStringLocation if true, Loc points to the format string should be
7380 /// used for the note.  Otherwise, Loc points to the argument list and will
7381 /// be used with PDiag.
7382 ///
7383 /// \param StringRange some or all of the string to highlight.  This is
7384 /// templated so it can accept either a CharSourceRange or a SourceRange.
7385 ///
7386 /// \param FixIt optional fix it hint for the format string.
7387 template <typename Range>
7388 void CheckFormatHandler::EmitFormatDiagnostic(
7389     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7390     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7391     Range StringRange, ArrayRef<FixItHint> FixIt) {
7392   if (InFunctionCall) {
7393     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7394     D << StringRange;
7395     D << FixIt;
7396   } else {
7397     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7398       << ArgumentExpr->getSourceRange();
7399 
7400     const Sema::SemaDiagnosticBuilder &Note =
7401       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7402              diag::note_format_string_defined);
7403 
7404     Note << StringRange;
7405     Note << FixIt;
7406   }
7407 }
7408 
7409 //===--- CHECK: Printf format string checking ------------------------------===//
7410 
7411 namespace {
7412 
7413 class CheckPrintfHandler : public CheckFormatHandler {
7414 public:
7415   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7416                      const Expr *origFormatExpr,
7417                      const Sema::FormatStringType type, unsigned firstDataArg,
7418                      unsigned numDataArgs, bool isObjC, const char *beg,
7419                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7420                      unsigned formatIdx, bool inFunctionCall,
7421                      Sema::VariadicCallType CallType,
7422                      llvm::SmallBitVector &CheckedVarArgs,
7423                      UncoveredArgHandler &UncoveredArg)
7424       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7425                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7426                            inFunctionCall, CallType, CheckedVarArgs,
7427                            UncoveredArg) {}
7428 
7429   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7430 
7431   /// Returns true if '%@' specifiers are allowed in the format string.
7432   bool allowsObjCArg() const {
7433     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7434            FSType == Sema::FST_OSTrace;
7435   }
7436 
7437   bool HandleInvalidPrintfConversionSpecifier(
7438                                       const analyze_printf::PrintfSpecifier &FS,
7439                                       const char *startSpecifier,
7440                                       unsigned specifierLen) override;
7441 
7442   void handleInvalidMaskType(StringRef MaskType) override;
7443 
7444   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7445                              const char *startSpecifier,
7446                              unsigned specifierLen) override;
7447   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7448                        const char *StartSpecifier,
7449                        unsigned SpecifierLen,
7450                        const Expr *E);
7451 
7452   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7453                     const char *startSpecifier, unsigned specifierLen);
7454   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7455                            const analyze_printf::OptionalAmount &Amt,
7456                            unsigned type,
7457                            const char *startSpecifier, unsigned specifierLen);
7458   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7459                   const analyze_printf::OptionalFlag &flag,
7460                   const char *startSpecifier, unsigned specifierLen);
7461   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7462                          const analyze_printf::OptionalFlag &ignoredFlag,
7463                          const analyze_printf::OptionalFlag &flag,
7464                          const char *startSpecifier, unsigned specifierLen);
7465   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7466                            const Expr *E);
7467 
7468   void HandleEmptyObjCModifierFlag(const char *startFlag,
7469                                    unsigned flagLen) override;
7470 
7471   void HandleInvalidObjCModifierFlag(const char *startFlag,
7472                                             unsigned flagLen) override;
7473 
7474   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
7475                                            const char *flagsEnd,
7476                                            const char *conversionPosition)
7477                                              override;
7478 };
7479 
7480 } // namespace
7481 
7482 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
7483                                       const analyze_printf::PrintfSpecifier &FS,
7484                                       const char *startSpecifier,
7485                                       unsigned specifierLen) {
7486   const analyze_printf::PrintfConversionSpecifier &CS =
7487     FS.getConversionSpecifier();
7488 
7489   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7490                                           getLocationOfByte(CS.getStart()),
7491                                           startSpecifier, specifierLen,
7492                                           CS.getStart(), CS.getLength());
7493 }
7494 
7495 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
7496   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
7497 }
7498 
7499 bool CheckPrintfHandler::HandleAmount(
7500                                const analyze_format_string::OptionalAmount &Amt,
7501                                unsigned k, const char *startSpecifier,
7502                                unsigned specifierLen) {
7503   if (Amt.hasDataArgument()) {
7504     if (!HasVAListArg) {
7505       unsigned argIndex = Amt.getArgIndex();
7506       if (argIndex >= NumDataArgs) {
7507         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
7508                                << k,
7509                              getLocationOfByte(Amt.getStart()),
7510                              /*IsStringLocation*/true,
7511                              getSpecifierRange(startSpecifier, specifierLen));
7512         // Don't do any more checking.  We will just emit
7513         // spurious errors.
7514         return false;
7515       }
7516 
7517       // Type check the data argument.  It should be an 'int'.
7518       // Although not in conformance with C99, we also allow the argument to be
7519       // an 'unsigned int' as that is a reasonably safe case.  GCC also
7520       // doesn't emit a warning for that case.
7521       CoveredArgs.set(argIndex);
7522       const Expr *Arg = getDataArg(argIndex);
7523       if (!Arg)
7524         return false;
7525 
7526       QualType T = Arg->getType();
7527 
7528       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
7529       assert(AT.isValid());
7530 
7531       if (!AT.matchesType(S.Context, T)) {
7532         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
7533                                << k << AT.getRepresentativeTypeName(S.Context)
7534                                << T << Arg->getSourceRange(),
7535                              getLocationOfByte(Amt.getStart()),
7536                              /*IsStringLocation*/true,
7537                              getSpecifierRange(startSpecifier, specifierLen));
7538         // Don't do any more checking.  We will just emit
7539         // spurious errors.
7540         return false;
7541       }
7542     }
7543   }
7544   return true;
7545 }
7546 
7547 void CheckPrintfHandler::HandleInvalidAmount(
7548                                       const analyze_printf::PrintfSpecifier &FS,
7549                                       const analyze_printf::OptionalAmount &Amt,
7550                                       unsigned type,
7551                                       const char *startSpecifier,
7552                                       unsigned specifierLen) {
7553   const analyze_printf::PrintfConversionSpecifier &CS =
7554     FS.getConversionSpecifier();
7555 
7556   FixItHint fixit =
7557     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
7558       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
7559                                  Amt.getConstantLength()))
7560       : FixItHint();
7561 
7562   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
7563                          << type << CS.toString(),
7564                        getLocationOfByte(Amt.getStart()),
7565                        /*IsStringLocation*/true,
7566                        getSpecifierRange(startSpecifier, specifierLen),
7567                        fixit);
7568 }
7569 
7570 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7571                                     const analyze_printf::OptionalFlag &flag,
7572                                     const char *startSpecifier,
7573                                     unsigned specifierLen) {
7574   // Warn about pointless flag with a fixit removal.
7575   const analyze_printf::PrintfConversionSpecifier &CS =
7576     FS.getConversionSpecifier();
7577   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
7578                          << flag.toString() << CS.toString(),
7579                        getLocationOfByte(flag.getPosition()),
7580                        /*IsStringLocation*/true,
7581                        getSpecifierRange(startSpecifier, specifierLen),
7582                        FixItHint::CreateRemoval(
7583                          getSpecifierRange(flag.getPosition(), 1)));
7584 }
7585 
7586 void CheckPrintfHandler::HandleIgnoredFlag(
7587                                 const analyze_printf::PrintfSpecifier &FS,
7588                                 const analyze_printf::OptionalFlag &ignoredFlag,
7589                                 const analyze_printf::OptionalFlag &flag,
7590                                 const char *startSpecifier,
7591                                 unsigned specifierLen) {
7592   // Warn about ignored flag with a fixit removal.
7593   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7594                          << ignoredFlag.toString() << flag.toString(),
7595                        getLocationOfByte(ignoredFlag.getPosition()),
7596                        /*IsStringLocation*/true,
7597                        getSpecifierRange(startSpecifier, specifierLen),
7598                        FixItHint::CreateRemoval(
7599                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
7600 }
7601 
7602 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7603                                                      unsigned flagLen) {
7604   // Warn about an empty flag.
7605   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7606                        getLocationOfByte(startFlag),
7607                        /*IsStringLocation*/true,
7608                        getSpecifierRange(startFlag, flagLen));
7609 }
7610 
7611 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7612                                                        unsigned flagLen) {
7613   // Warn about an invalid flag.
7614   auto Range = getSpecifierRange(startFlag, flagLen);
7615   StringRef flag(startFlag, flagLen);
7616   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7617                       getLocationOfByte(startFlag),
7618                       /*IsStringLocation*/true,
7619                       Range, FixItHint::CreateRemoval(Range));
7620 }
7621 
7622 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
7623     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
7624     // Warn about using '[...]' without a '@' conversion.
7625     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
7626     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
7627     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
7628                          getLocationOfByte(conversionPosition),
7629                          /*IsStringLocation*/true,
7630                          Range, FixItHint::CreateRemoval(Range));
7631 }
7632 
7633 // Determines if the specified is a C++ class or struct containing
7634 // a member with the specified name and kind (e.g. a CXXMethodDecl named
7635 // "c_str()").
7636 template<typename MemberKind>
7637 static llvm::SmallPtrSet<MemberKind*, 1>
7638 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
7639   const RecordType *RT = Ty->getAs<RecordType>();
7640   llvm::SmallPtrSet<MemberKind*, 1> Results;
7641 
7642   if (!RT)
7643     return Results;
7644   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
7645   if (!RD || !RD->getDefinition())
7646     return Results;
7647 
7648   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
7649                  Sema::LookupMemberName);
7650   R.suppressDiagnostics();
7651 
7652   // We just need to include all members of the right kind turned up by the
7653   // filter, at this point.
7654   if (S.LookupQualifiedName(R, RT->getDecl()))
7655     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7656       NamedDecl *decl = (*I)->getUnderlyingDecl();
7657       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
7658         Results.insert(FK);
7659     }
7660   return Results;
7661 }
7662 
7663 /// Check if we could call '.c_str()' on an object.
7664 ///
7665 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
7666 /// allow the call, or if it would be ambiguous).
7667 bool Sema::hasCStrMethod(const Expr *E) {
7668   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7669 
7670   MethodSet Results =
7671       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
7672   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7673        MI != ME; ++MI)
7674     if ((*MI)->getMinRequiredArguments() == 0)
7675       return true;
7676   return false;
7677 }
7678 
7679 // Check if a (w)string was passed when a (w)char* was needed, and offer a
7680 // better diagnostic if so. AT is assumed to be valid.
7681 // Returns true when a c_str() conversion method is found.
7682 bool CheckPrintfHandler::checkForCStrMembers(
7683     const analyze_printf::ArgType &AT, const Expr *E) {
7684   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7685 
7686   MethodSet Results =
7687       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
7688 
7689   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7690        MI != ME; ++MI) {
7691     const CXXMethodDecl *Method = *MI;
7692     if (Method->getMinRequiredArguments() == 0 &&
7693         AT.matchesType(S.Context, Method->getReturnType())) {
7694       // FIXME: Suggest parens if the expression needs them.
7695       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
7696       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
7697           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
7698       return true;
7699     }
7700   }
7701 
7702   return false;
7703 }
7704 
7705 bool
7706 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
7707                                             &FS,
7708                                           const char *startSpecifier,
7709                                           unsigned specifierLen) {
7710   using namespace analyze_format_string;
7711   using namespace analyze_printf;
7712 
7713   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
7714 
7715   if (FS.consumesDataArgument()) {
7716     if (atFirstArg) {
7717         atFirstArg = false;
7718         usesPositionalArgs = FS.usesPositionalArg();
7719     }
7720     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7721       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7722                                         startSpecifier, specifierLen);
7723       return false;
7724     }
7725   }
7726 
7727   // First check if the field width, precision, and conversion specifier
7728   // have matching data arguments.
7729   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
7730                     startSpecifier, specifierLen)) {
7731     return false;
7732   }
7733 
7734   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
7735                     startSpecifier, specifierLen)) {
7736     return false;
7737   }
7738 
7739   if (!CS.consumesDataArgument()) {
7740     // FIXME: Technically specifying a precision or field width here
7741     // makes no sense.  Worth issuing a warning at some point.
7742     return true;
7743   }
7744 
7745   // Consume the argument.
7746   unsigned argIndex = FS.getArgIndex();
7747   if (argIndex < NumDataArgs) {
7748     // The check to see if the argIndex is valid will come later.
7749     // We set the bit here because we may exit early from this
7750     // function if we encounter some other error.
7751     CoveredArgs.set(argIndex);
7752   }
7753 
7754   // FreeBSD kernel extensions.
7755   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
7756       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
7757     // We need at least two arguments.
7758     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
7759       return false;
7760 
7761     // Claim the second argument.
7762     CoveredArgs.set(argIndex + 1);
7763 
7764     // Type check the first argument (int for %b, pointer for %D)
7765     const Expr *Ex = getDataArg(argIndex);
7766     const analyze_printf::ArgType &AT =
7767       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
7768         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
7769     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
7770       EmitFormatDiagnostic(
7771           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7772               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
7773               << false << Ex->getSourceRange(),
7774           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7775           getSpecifierRange(startSpecifier, specifierLen));
7776 
7777     // Type check the second argument (char * for both %b and %D)
7778     Ex = getDataArg(argIndex + 1);
7779     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
7780     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
7781       EmitFormatDiagnostic(
7782           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7783               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
7784               << false << Ex->getSourceRange(),
7785           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7786           getSpecifierRange(startSpecifier, specifierLen));
7787 
7788      return true;
7789   }
7790 
7791   // Check for using an Objective-C specific conversion specifier
7792   // in a non-ObjC literal.
7793   if (!allowsObjCArg() && CS.isObjCArg()) {
7794     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7795                                                   specifierLen);
7796   }
7797 
7798   // %P can only be used with os_log.
7799   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
7800     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7801                                                   specifierLen);
7802   }
7803 
7804   // %n is not allowed with os_log.
7805   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
7806     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
7807                          getLocationOfByte(CS.getStart()),
7808                          /*IsStringLocation*/ false,
7809                          getSpecifierRange(startSpecifier, specifierLen));
7810 
7811     return true;
7812   }
7813 
7814   // Only scalars are allowed for os_trace.
7815   if (FSType == Sema::FST_OSTrace &&
7816       (CS.getKind() == ConversionSpecifier::PArg ||
7817        CS.getKind() == ConversionSpecifier::sArg ||
7818        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
7819     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7820                                                   specifierLen);
7821   }
7822 
7823   // Check for use of public/private annotation outside of os_log().
7824   if (FSType != Sema::FST_OSLog) {
7825     if (FS.isPublic().isSet()) {
7826       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7827                                << "public",
7828                            getLocationOfByte(FS.isPublic().getPosition()),
7829                            /*IsStringLocation*/ false,
7830                            getSpecifierRange(startSpecifier, specifierLen));
7831     }
7832     if (FS.isPrivate().isSet()) {
7833       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7834                                << "private",
7835                            getLocationOfByte(FS.isPrivate().getPosition()),
7836                            /*IsStringLocation*/ false,
7837                            getSpecifierRange(startSpecifier, specifierLen));
7838     }
7839   }
7840 
7841   // Check for invalid use of field width
7842   if (!FS.hasValidFieldWidth()) {
7843     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
7844         startSpecifier, specifierLen);
7845   }
7846 
7847   // Check for invalid use of precision
7848   if (!FS.hasValidPrecision()) {
7849     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
7850         startSpecifier, specifierLen);
7851   }
7852 
7853   // Precision is mandatory for %P specifier.
7854   if (CS.getKind() == ConversionSpecifier::PArg &&
7855       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
7856     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
7857                          getLocationOfByte(startSpecifier),
7858                          /*IsStringLocation*/ false,
7859                          getSpecifierRange(startSpecifier, specifierLen));
7860   }
7861 
7862   // Check each flag does not conflict with any other component.
7863   if (!FS.hasValidThousandsGroupingPrefix())
7864     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
7865   if (!FS.hasValidLeadingZeros())
7866     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
7867   if (!FS.hasValidPlusPrefix())
7868     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
7869   if (!FS.hasValidSpacePrefix())
7870     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
7871   if (!FS.hasValidAlternativeForm())
7872     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
7873   if (!FS.hasValidLeftJustified())
7874     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
7875 
7876   // Check that flags are not ignored by another flag
7877   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
7878     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
7879         startSpecifier, specifierLen);
7880   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
7881     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
7882             startSpecifier, specifierLen);
7883 
7884   // Check the length modifier is valid with the given conversion specifier.
7885   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7886                                  S.getLangOpts()))
7887     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7888                                 diag::warn_format_nonsensical_length);
7889   else if (!FS.hasStandardLengthModifier())
7890     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7891   else if (!FS.hasStandardLengthConversionCombination())
7892     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7893                                 diag::warn_format_non_standard_conversion_spec);
7894 
7895   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7896     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7897 
7898   // The remaining checks depend on the data arguments.
7899   if (HasVAListArg)
7900     return true;
7901 
7902   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7903     return false;
7904 
7905   const Expr *Arg = getDataArg(argIndex);
7906   if (!Arg)
7907     return true;
7908 
7909   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
7910 }
7911 
7912 static bool requiresParensToAddCast(const Expr *E) {
7913   // FIXME: We should have a general way to reason about operator
7914   // precedence and whether parens are actually needed here.
7915   // Take care of a few common cases where they aren't.
7916   const Expr *Inside = E->IgnoreImpCasts();
7917   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
7918     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
7919 
7920   switch (Inside->getStmtClass()) {
7921   case Stmt::ArraySubscriptExprClass:
7922   case Stmt::CallExprClass:
7923   case Stmt::CharacterLiteralClass:
7924   case Stmt::CXXBoolLiteralExprClass:
7925   case Stmt::DeclRefExprClass:
7926   case Stmt::FloatingLiteralClass:
7927   case Stmt::IntegerLiteralClass:
7928   case Stmt::MemberExprClass:
7929   case Stmt::ObjCArrayLiteralClass:
7930   case Stmt::ObjCBoolLiteralExprClass:
7931   case Stmt::ObjCBoxedExprClass:
7932   case Stmt::ObjCDictionaryLiteralClass:
7933   case Stmt::ObjCEncodeExprClass:
7934   case Stmt::ObjCIvarRefExprClass:
7935   case Stmt::ObjCMessageExprClass:
7936   case Stmt::ObjCPropertyRefExprClass:
7937   case Stmt::ObjCStringLiteralClass:
7938   case Stmt::ObjCSubscriptRefExprClass:
7939   case Stmt::ParenExprClass:
7940   case Stmt::StringLiteralClass:
7941   case Stmt::UnaryOperatorClass:
7942     return false;
7943   default:
7944     return true;
7945   }
7946 }
7947 
7948 static std::pair<QualType, StringRef>
7949 shouldNotPrintDirectly(const ASTContext &Context,
7950                        QualType IntendedTy,
7951                        const Expr *E) {
7952   // Use a 'while' to peel off layers of typedefs.
7953   QualType TyTy = IntendedTy;
7954   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
7955     StringRef Name = UserTy->getDecl()->getName();
7956     QualType CastTy = llvm::StringSwitch<QualType>(Name)
7957       .Case("CFIndex", Context.getNSIntegerType())
7958       .Case("NSInteger", Context.getNSIntegerType())
7959       .Case("NSUInteger", Context.getNSUIntegerType())
7960       .Case("SInt32", Context.IntTy)
7961       .Case("UInt32", Context.UnsignedIntTy)
7962       .Default(QualType());
7963 
7964     if (!CastTy.isNull())
7965       return std::make_pair(CastTy, Name);
7966 
7967     TyTy = UserTy->desugar();
7968   }
7969 
7970   // Strip parens if necessary.
7971   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
7972     return shouldNotPrintDirectly(Context,
7973                                   PE->getSubExpr()->getType(),
7974                                   PE->getSubExpr());
7975 
7976   // If this is a conditional expression, then its result type is constructed
7977   // via usual arithmetic conversions and thus there might be no necessary
7978   // typedef sugar there.  Recurse to operands to check for NSInteger &
7979   // Co. usage condition.
7980   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7981     QualType TrueTy, FalseTy;
7982     StringRef TrueName, FalseName;
7983 
7984     std::tie(TrueTy, TrueName) =
7985       shouldNotPrintDirectly(Context,
7986                              CO->getTrueExpr()->getType(),
7987                              CO->getTrueExpr());
7988     std::tie(FalseTy, FalseName) =
7989       shouldNotPrintDirectly(Context,
7990                              CO->getFalseExpr()->getType(),
7991                              CO->getFalseExpr());
7992 
7993     if (TrueTy == FalseTy)
7994       return std::make_pair(TrueTy, TrueName);
7995     else if (TrueTy.isNull())
7996       return std::make_pair(FalseTy, FalseName);
7997     else if (FalseTy.isNull())
7998       return std::make_pair(TrueTy, TrueName);
7999   }
8000 
8001   return std::make_pair(QualType(), StringRef());
8002 }
8003 
8004 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8005 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8006 /// type do not count.
8007 static bool
8008 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8009   QualType From = ICE->getSubExpr()->getType();
8010   QualType To = ICE->getType();
8011   // It's an integer promotion if the destination type is the promoted
8012   // source type.
8013   if (ICE->getCastKind() == CK_IntegralCast &&
8014       From->isPromotableIntegerType() &&
8015       S.Context.getPromotedIntegerType(From) == To)
8016     return true;
8017   // Look through vector types, since we do default argument promotion for
8018   // those in OpenCL.
8019   if (const auto *VecTy = From->getAs<ExtVectorType>())
8020     From = VecTy->getElementType();
8021   if (const auto *VecTy = To->getAs<ExtVectorType>())
8022     To = VecTy->getElementType();
8023   // It's a floating promotion if the source type is a lower rank.
8024   return ICE->getCastKind() == CK_FloatingCast &&
8025          S.Context.getFloatingTypeOrder(From, To) < 0;
8026 }
8027 
8028 bool
8029 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8030                                     const char *StartSpecifier,
8031                                     unsigned SpecifierLen,
8032                                     const Expr *E) {
8033   using namespace analyze_format_string;
8034   using namespace analyze_printf;
8035 
8036   // Now type check the data expression that matches the
8037   // format specifier.
8038   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8039   if (!AT.isValid())
8040     return true;
8041 
8042   QualType ExprTy = E->getType();
8043   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8044     ExprTy = TET->getUnderlyingExpr()->getType();
8045   }
8046 
8047   const analyze_printf::ArgType::MatchKind Match =
8048       AT.matchesType(S.Context, ExprTy);
8049   bool Pedantic = Match == analyze_printf::ArgType::NoMatchPedantic;
8050   if (Match == analyze_printf::ArgType::Match)
8051     return true;
8052 
8053   // Look through argument promotions for our error message's reported type.
8054   // This includes the integral and floating promotions, but excludes array
8055   // and function pointer decay (seeing that an argument intended to be a
8056   // string has type 'char [6]' is probably more confusing than 'char *') and
8057   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8058   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8059     if (isArithmeticArgumentPromotion(S, ICE)) {
8060       E = ICE->getSubExpr();
8061       ExprTy = E->getType();
8062 
8063       // Check if we didn't match because of an implicit cast from a 'char'
8064       // or 'short' to an 'int'.  This is done because printf is a varargs
8065       // function.
8066       if (ICE->getType() == S.Context.IntTy ||
8067           ICE->getType() == S.Context.UnsignedIntTy) {
8068         // All further checking is done on the subexpression.
8069         if (AT.matchesType(S.Context, ExprTy))
8070           return true;
8071       }
8072     }
8073   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8074     // Special case for 'a', which has type 'int' in C.
8075     // Note, however, that we do /not/ want to treat multibyte constants like
8076     // 'MooV' as characters! This form is deprecated but still exists.
8077     if (ExprTy == S.Context.IntTy)
8078       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8079         ExprTy = S.Context.CharTy;
8080   }
8081 
8082   // Look through enums to their underlying type.
8083   bool IsEnum = false;
8084   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8085     ExprTy = EnumTy->getDecl()->getIntegerType();
8086     IsEnum = true;
8087   }
8088 
8089   // %C in an Objective-C context prints a unichar, not a wchar_t.
8090   // If the argument is an integer of some kind, believe the %C and suggest
8091   // a cast instead of changing the conversion specifier.
8092   QualType IntendedTy = ExprTy;
8093   if (isObjCContext() &&
8094       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8095     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8096         !ExprTy->isCharType()) {
8097       // 'unichar' is defined as a typedef of unsigned short, but we should
8098       // prefer using the typedef if it is visible.
8099       IntendedTy = S.Context.UnsignedShortTy;
8100 
8101       // While we are here, check if the value is an IntegerLiteral that happens
8102       // to be within the valid range.
8103       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8104         const llvm::APInt &V = IL->getValue();
8105         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8106           return true;
8107       }
8108 
8109       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8110                           Sema::LookupOrdinaryName);
8111       if (S.LookupName(Result, S.getCurScope())) {
8112         NamedDecl *ND = Result.getFoundDecl();
8113         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8114           if (TD->getUnderlyingType() == IntendedTy)
8115             IntendedTy = S.Context.getTypedefType(TD);
8116       }
8117     }
8118   }
8119 
8120   // Special-case some of Darwin's platform-independence types by suggesting
8121   // casts to primitive types that are known to be large enough.
8122   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8123   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8124     QualType CastTy;
8125     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8126     if (!CastTy.isNull()) {
8127       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8128       // (long in ASTContext). Only complain to pedants.
8129       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8130           (AT.isSizeT() || AT.isPtrdiffT()) &&
8131           AT.matchesType(S.Context, CastTy))
8132         Pedantic = true;
8133       IntendedTy = CastTy;
8134       ShouldNotPrintDirectly = true;
8135     }
8136   }
8137 
8138   // We may be able to offer a FixItHint if it is a supported type.
8139   PrintfSpecifier fixedFS = FS;
8140   bool Success =
8141       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8142 
8143   if (Success) {
8144     // Get the fix string from the fixed format specifier
8145     SmallString<16> buf;
8146     llvm::raw_svector_ostream os(buf);
8147     fixedFS.toString(os);
8148 
8149     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8150 
8151     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8152       unsigned Diag =
8153           Pedantic
8154               ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8155               : diag::warn_format_conversion_argument_type_mismatch;
8156       // In this case, the specifier is wrong and should be changed to match
8157       // the argument.
8158       EmitFormatDiagnostic(S.PDiag(Diag)
8159                                << AT.getRepresentativeTypeName(S.Context)
8160                                << IntendedTy << IsEnum << E->getSourceRange(),
8161                            E->getBeginLoc(),
8162                            /*IsStringLocation*/ false, SpecRange,
8163                            FixItHint::CreateReplacement(SpecRange, os.str()));
8164     } else {
8165       // The canonical type for formatting this value is different from the
8166       // actual type of the expression. (This occurs, for example, with Darwin's
8167       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8168       // should be printed as 'long' for 64-bit compatibility.)
8169       // Rather than emitting a normal format/argument mismatch, we want to
8170       // add a cast to the recommended type (and correct the format string
8171       // if necessary).
8172       SmallString<16> CastBuf;
8173       llvm::raw_svector_ostream CastFix(CastBuf);
8174       CastFix << "(";
8175       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8176       CastFix << ")";
8177 
8178       SmallVector<FixItHint,4> Hints;
8179       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8180         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8181 
8182       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8183         // If there's already a cast present, just replace it.
8184         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8185         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8186 
8187       } else if (!requiresParensToAddCast(E)) {
8188         // If the expression has high enough precedence,
8189         // just write the C-style cast.
8190         Hints.push_back(
8191             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8192       } else {
8193         // Otherwise, add parens around the expression as well as the cast.
8194         CastFix << "(";
8195         Hints.push_back(
8196             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8197 
8198         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8199         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8200       }
8201 
8202       if (ShouldNotPrintDirectly) {
8203         // The expression has a type that should not be printed directly.
8204         // We extract the name from the typedef because we don't want to show
8205         // the underlying type in the diagnostic.
8206         StringRef Name;
8207         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8208           Name = TypedefTy->getDecl()->getName();
8209         else
8210           Name = CastTyName;
8211         unsigned Diag = Pedantic
8212                             ? diag::warn_format_argument_needs_cast_pedantic
8213                             : diag::warn_format_argument_needs_cast;
8214         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8215                                            << E->getSourceRange(),
8216                              E->getBeginLoc(), /*IsStringLocation=*/false,
8217                              SpecRange, Hints);
8218       } else {
8219         // In this case, the expression could be printed using a different
8220         // specifier, but we've decided that the specifier is probably correct
8221         // and we should cast instead. Just use the normal warning message.
8222         EmitFormatDiagnostic(
8223             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8224                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8225                 << E->getSourceRange(),
8226             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8227       }
8228     }
8229   } else {
8230     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8231                                                    SpecifierLen);
8232     // Since the warning for passing non-POD types to variadic functions
8233     // was deferred until now, we emit a warning for non-POD
8234     // arguments here.
8235     switch (S.isValidVarArgType(ExprTy)) {
8236     case Sema::VAK_Valid:
8237     case Sema::VAK_ValidInCXX11: {
8238       unsigned Diag =
8239           Pedantic
8240               ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8241               : diag::warn_format_conversion_argument_type_mismatch;
8242 
8243       EmitFormatDiagnostic(
8244           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8245                         << IsEnum << CSR << E->getSourceRange(),
8246           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8247       break;
8248     }
8249     case Sema::VAK_Undefined:
8250     case Sema::VAK_MSVCUndefined:
8251       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8252                                << S.getLangOpts().CPlusPlus11 << ExprTy
8253                                << CallType
8254                                << AT.getRepresentativeTypeName(S.Context) << CSR
8255                                << E->getSourceRange(),
8256                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8257       checkForCStrMembers(AT, E);
8258       break;
8259 
8260     case Sema::VAK_Invalid:
8261       if (ExprTy->isObjCObjectType())
8262         EmitFormatDiagnostic(
8263             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8264                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8265                 << AT.getRepresentativeTypeName(S.Context) << CSR
8266                 << E->getSourceRange(),
8267             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8268       else
8269         // FIXME: If this is an initializer list, suggest removing the braces
8270         // or inserting a cast to the target type.
8271         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8272             << isa<InitListExpr>(E) << ExprTy << CallType
8273             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8274       break;
8275     }
8276 
8277     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8278            "format string specifier index out of range");
8279     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8280   }
8281 
8282   return true;
8283 }
8284 
8285 //===--- CHECK: Scanf format string checking ------------------------------===//
8286 
8287 namespace {
8288 
8289 class CheckScanfHandler : public CheckFormatHandler {
8290 public:
8291   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8292                     const Expr *origFormatExpr, Sema::FormatStringType type,
8293                     unsigned firstDataArg, unsigned numDataArgs,
8294                     const char *beg, bool hasVAListArg,
8295                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8296                     bool inFunctionCall, Sema::VariadicCallType CallType,
8297                     llvm::SmallBitVector &CheckedVarArgs,
8298                     UncoveredArgHandler &UncoveredArg)
8299       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8300                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8301                            inFunctionCall, CallType, CheckedVarArgs,
8302                            UncoveredArg) {}
8303 
8304   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8305                             const char *startSpecifier,
8306                             unsigned specifierLen) override;
8307 
8308   bool HandleInvalidScanfConversionSpecifier(
8309           const analyze_scanf::ScanfSpecifier &FS,
8310           const char *startSpecifier,
8311           unsigned specifierLen) override;
8312 
8313   void HandleIncompleteScanList(const char *start, const char *end) override;
8314 };
8315 
8316 } // namespace
8317 
8318 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8319                                                  const char *end) {
8320   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8321                        getLocationOfByte(end), /*IsStringLocation*/true,
8322                        getSpecifierRange(start, end - start));
8323 }
8324 
8325 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8326                                         const analyze_scanf::ScanfSpecifier &FS,
8327                                         const char *startSpecifier,
8328                                         unsigned specifierLen) {
8329   const analyze_scanf::ScanfConversionSpecifier &CS =
8330     FS.getConversionSpecifier();
8331 
8332   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8333                                           getLocationOfByte(CS.getStart()),
8334                                           startSpecifier, specifierLen,
8335                                           CS.getStart(), CS.getLength());
8336 }
8337 
8338 bool CheckScanfHandler::HandleScanfSpecifier(
8339                                        const analyze_scanf::ScanfSpecifier &FS,
8340                                        const char *startSpecifier,
8341                                        unsigned specifierLen) {
8342   using namespace analyze_scanf;
8343   using namespace analyze_format_string;
8344 
8345   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8346 
8347   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8348   // be used to decide if we are using positional arguments consistently.
8349   if (FS.consumesDataArgument()) {
8350     if (atFirstArg) {
8351       atFirstArg = false;
8352       usesPositionalArgs = FS.usesPositionalArg();
8353     }
8354     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8355       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8356                                         startSpecifier, specifierLen);
8357       return false;
8358     }
8359   }
8360 
8361   // Check if the field with is non-zero.
8362   const OptionalAmount &Amt = FS.getFieldWidth();
8363   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8364     if (Amt.getConstantAmount() == 0) {
8365       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8366                                                    Amt.getConstantLength());
8367       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8368                            getLocationOfByte(Amt.getStart()),
8369                            /*IsStringLocation*/true, R,
8370                            FixItHint::CreateRemoval(R));
8371     }
8372   }
8373 
8374   if (!FS.consumesDataArgument()) {
8375     // FIXME: Technically specifying a precision or field width here
8376     // makes no sense.  Worth issuing a warning at some point.
8377     return true;
8378   }
8379 
8380   // Consume the argument.
8381   unsigned argIndex = FS.getArgIndex();
8382   if (argIndex < NumDataArgs) {
8383       // The check to see if the argIndex is valid will come later.
8384       // We set the bit here because we may exit early from this
8385       // function if we encounter some other error.
8386     CoveredArgs.set(argIndex);
8387   }
8388 
8389   // Check the length modifier is valid with the given conversion specifier.
8390   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8391                                  S.getLangOpts()))
8392     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8393                                 diag::warn_format_nonsensical_length);
8394   else if (!FS.hasStandardLengthModifier())
8395     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8396   else if (!FS.hasStandardLengthConversionCombination())
8397     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8398                                 diag::warn_format_non_standard_conversion_spec);
8399 
8400   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8401     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8402 
8403   // The remaining checks depend on the data arguments.
8404   if (HasVAListArg)
8405     return true;
8406 
8407   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8408     return false;
8409 
8410   // Check that the argument type matches the format specifier.
8411   const Expr *Ex = getDataArg(argIndex);
8412   if (!Ex)
8413     return true;
8414 
8415   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8416 
8417   if (!AT.isValid()) {
8418     return true;
8419   }
8420 
8421   analyze_format_string::ArgType::MatchKind Match =
8422       AT.matchesType(S.Context, Ex->getType());
8423   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8424   if (Match == analyze_format_string::ArgType::Match)
8425     return true;
8426 
8427   ScanfSpecifier fixedFS = FS;
8428   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8429                                  S.getLangOpts(), S.Context);
8430 
8431   unsigned Diag =
8432       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8433                : diag::warn_format_conversion_argument_type_mismatch;
8434 
8435   if (Success) {
8436     // Get the fix string from the fixed format specifier.
8437     SmallString<128> buf;
8438     llvm::raw_svector_ostream os(buf);
8439     fixedFS.toString(os);
8440 
8441     EmitFormatDiagnostic(
8442         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8443                       << Ex->getType() << false << Ex->getSourceRange(),
8444         Ex->getBeginLoc(),
8445         /*IsStringLocation*/ false,
8446         getSpecifierRange(startSpecifier, specifierLen),
8447         FixItHint::CreateReplacement(
8448             getSpecifierRange(startSpecifier, specifierLen), os.str()));
8449   } else {
8450     EmitFormatDiagnostic(S.PDiag(Diag)
8451                              << AT.getRepresentativeTypeName(S.Context)
8452                              << Ex->getType() << false << Ex->getSourceRange(),
8453                          Ex->getBeginLoc(),
8454                          /*IsStringLocation*/ false,
8455                          getSpecifierRange(startSpecifier, specifierLen));
8456   }
8457 
8458   return true;
8459 }
8460 
8461 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8462                               const Expr *OrigFormatExpr,
8463                               ArrayRef<const Expr *> Args,
8464                               bool HasVAListArg, unsigned format_idx,
8465                               unsigned firstDataArg,
8466                               Sema::FormatStringType Type,
8467                               bool inFunctionCall,
8468                               Sema::VariadicCallType CallType,
8469                               llvm::SmallBitVector &CheckedVarArgs,
8470                               UncoveredArgHandler &UncoveredArg) {
8471   // CHECK: is the format string a wide literal?
8472   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8473     CheckFormatHandler::EmitFormatDiagnostic(
8474         S, inFunctionCall, Args[format_idx],
8475         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8476         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8477     return;
8478   }
8479 
8480   // Str - The format string.  NOTE: this is NOT null-terminated!
8481   StringRef StrRef = FExpr->getString();
8482   const char *Str = StrRef.data();
8483   // Account for cases where the string literal is truncated in a declaration.
8484   const ConstantArrayType *T =
8485     S.Context.getAsConstantArrayType(FExpr->getType());
8486   assert(T && "String literal not of constant array type!");
8487   size_t TypeSize = T->getSize().getZExtValue();
8488   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8489   const unsigned numDataArgs = Args.size() - firstDataArg;
8490 
8491   // Emit a warning if the string literal is truncated and does not contain an
8492   // embedded null character.
8493   if (TypeSize <= StrRef.size() &&
8494       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
8495     CheckFormatHandler::EmitFormatDiagnostic(
8496         S, inFunctionCall, Args[format_idx],
8497         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8498         FExpr->getBeginLoc(),
8499         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8500     return;
8501   }
8502 
8503   // CHECK: empty format string?
8504   if (StrLen == 0 && numDataArgs > 0) {
8505     CheckFormatHandler::EmitFormatDiagnostic(
8506         S, inFunctionCall, Args[format_idx],
8507         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8508         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8509     return;
8510   }
8511 
8512   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8513       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8514       Type == Sema::FST_OSTrace) {
8515     CheckPrintfHandler H(
8516         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8517         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
8518         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
8519         CheckedVarArgs, UncoveredArg);
8520 
8521     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
8522                                                   S.getLangOpts(),
8523                                                   S.Context.getTargetInfo(),
8524                                             Type == Sema::FST_FreeBSDKPrintf))
8525       H.DoneProcessing();
8526   } else if (Type == Sema::FST_Scanf) {
8527     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8528                         numDataArgs, Str, HasVAListArg, Args, format_idx,
8529                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
8530 
8531     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
8532                                                  S.getLangOpts(),
8533                                                  S.Context.getTargetInfo()))
8534       H.DoneProcessing();
8535   } // TODO: handle other formats
8536 }
8537 
8538 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8539   // Str - The format string.  NOTE: this is NOT null-terminated!
8540   StringRef StrRef = FExpr->getString();
8541   const char *Str = StrRef.data();
8542   // Account for cases where the string literal is truncated in a declaration.
8543   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8544   assert(T && "String literal not of constant array type!");
8545   size_t TypeSize = T->getSize().getZExtValue();
8546   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8547   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8548                                                          getLangOpts(),
8549                                                          Context.getTargetInfo());
8550 }
8551 
8552 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8553 
8554 // Returns the related absolute value function that is larger, of 0 if one
8555 // does not exist.
8556 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8557   switch (AbsFunction) {
8558   default:
8559     return 0;
8560 
8561   case Builtin::BI__builtin_abs:
8562     return Builtin::BI__builtin_labs;
8563   case Builtin::BI__builtin_labs:
8564     return Builtin::BI__builtin_llabs;
8565   case Builtin::BI__builtin_llabs:
8566     return 0;
8567 
8568   case Builtin::BI__builtin_fabsf:
8569     return Builtin::BI__builtin_fabs;
8570   case Builtin::BI__builtin_fabs:
8571     return Builtin::BI__builtin_fabsl;
8572   case Builtin::BI__builtin_fabsl:
8573     return 0;
8574 
8575   case Builtin::BI__builtin_cabsf:
8576     return Builtin::BI__builtin_cabs;
8577   case Builtin::BI__builtin_cabs:
8578     return Builtin::BI__builtin_cabsl;
8579   case Builtin::BI__builtin_cabsl:
8580     return 0;
8581 
8582   case Builtin::BIabs:
8583     return Builtin::BIlabs;
8584   case Builtin::BIlabs:
8585     return Builtin::BIllabs;
8586   case Builtin::BIllabs:
8587     return 0;
8588 
8589   case Builtin::BIfabsf:
8590     return Builtin::BIfabs;
8591   case Builtin::BIfabs:
8592     return Builtin::BIfabsl;
8593   case Builtin::BIfabsl:
8594     return 0;
8595 
8596   case Builtin::BIcabsf:
8597    return Builtin::BIcabs;
8598   case Builtin::BIcabs:
8599     return Builtin::BIcabsl;
8600   case Builtin::BIcabsl:
8601     return 0;
8602   }
8603 }
8604 
8605 // Returns the argument type of the absolute value function.
8606 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
8607                                              unsigned AbsType) {
8608   if (AbsType == 0)
8609     return QualType();
8610 
8611   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
8612   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
8613   if (Error != ASTContext::GE_None)
8614     return QualType();
8615 
8616   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
8617   if (!FT)
8618     return QualType();
8619 
8620   if (FT->getNumParams() != 1)
8621     return QualType();
8622 
8623   return FT->getParamType(0);
8624 }
8625 
8626 // Returns the best absolute value function, or zero, based on type and
8627 // current absolute value function.
8628 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
8629                                    unsigned AbsFunctionKind) {
8630   unsigned BestKind = 0;
8631   uint64_t ArgSize = Context.getTypeSize(ArgType);
8632   for (unsigned Kind = AbsFunctionKind; Kind != 0;
8633        Kind = getLargerAbsoluteValueFunction(Kind)) {
8634     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
8635     if (Context.getTypeSize(ParamType) >= ArgSize) {
8636       if (BestKind == 0)
8637         BestKind = Kind;
8638       else if (Context.hasSameType(ParamType, ArgType)) {
8639         BestKind = Kind;
8640         break;
8641       }
8642     }
8643   }
8644   return BestKind;
8645 }
8646 
8647 enum AbsoluteValueKind {
8648   AVK_Integer,
8649   AVK_Floating,
8650   AVK_Complex
8651 };
8652 
8653 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
8654   if (T->isIntegralOrEnumerationType())
8655     return AVK_Integer;
8656   if (T->isRealFloatingType())
8657     return AVK_Floating;
8658   if (T->isAnyComplexType())
8659     return AVK_Complex;
8660 
8661   llvm_unreachable("Type not integer, floating, or complex");
8662 }
8663 
8664 // Changes the absolute value function to a different type.  Preserves whether
8665 // the function is a builtin.
8666 static unsigned changeAbsFunction(unsigned AbsKind,
8667                                   AbsoluteValueKind ValueKind) {
8668   switch (ValueKind) {
8669   case AVK_Integer:
8670     switch (AbsKind) {
8671     default:
8672       return 0;
8673     case Builtin::BI__builtin_fabsf:
8674     case Builtin::BI__builtin_fabs:
8675     case Builtin::BI__builtin_fabsl:
8676     case Builtin::BI__builtin_cabsf:
8677     case Builtin::BI__builtin_cabs:
8678     case Builtin::BI__builtin_cabsl:
8679       return Builtin::BI__builtin_abs;
8680     case Builtin::BIfabsf:
8681     case Builtin::BIfabs:
8682     case Builtin::BIfabsl:
8683     case Builtin::BIcabsf:
8684     case Builtin::BIcabs:
8685     case Builtin::BIcabsl:
8686       return Builtin::BIabs;
8687     }
8688   case AVK_Floating:
8689     switch (AbsKind) {
8690     default:
8691       return 0;
8692     case Builtin::BI__builtin_abs:
8693     case Builtin::BI__builtin_labs:
8694     case Builtin::BI__builtin_llabs:
8695     case Builtin::BI__builtin_cabsf:
8696     case Builtin::BI__builtin_cabs:
8697     case Builtin::BI__builtin_cabsl:
8698       return Builtin::BI__builtin_fabsf;
8699     case Builtin::BIabs:
8700     case Builtin::BIlabs:
8701     case Builtin::BIllabs:
8702     case Builtin::BIcabsf:
8703     case Builtin::BIcabs:
8704     case Builtin::BIcabsl:
8705       return Builtin::BIfabsf;
8706     }
8707   case AVK_Complex:
8708     switch (AbsKind) {
8709     default:
8710       return 0;
8711     case Builtin::BI__builtin_abs:
8712     case Builtin::BI__builtin_labs:
8713     case Builtin::BI__builtin_llabs:
8714     case Builtin::BI__builtin_fabsf:
8715     case Builtin::BI__builtin_fabs:
8716     case Builtin::BI__builtin_fabsl:
8717       return Builtin::BI__builtin_cabsf;
8718     case Builtin::BIabs:
8719     case Builtin::BIlabs:
8720     case Builtin::BIllabs:
8721     case Builtin::BIfabsf:
8722     case Builtin::BIfabs:
8723     case Builtin::BIfabsl:
8724       return Builtin::BIcabsf;
8725     }
8726   }
8727   llvm_unreachable("Unable to convert function");
8728 }
8729 
8730 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
8731   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
8732   if (!FnInfo)
8733     return 0;
8734 
8735   switch (FDecl->getBuiltinID()) {
8736   default:
8737     return 0;
8738   case Builtin::BI__builtin_abs:
8739   case Builtin::BI__builtin_fabs:
8740   case Builtin::BI__builtin_fabsf:
8741   case Builtin::BI__builtin_fabsl:
8742   case Builtin::BI__builtin_labs:
8743   case Builtin::BI__builtin_llabs:
8744   case Builtin::BI__builtin_cabs:
8745   case Builtin::BI__builtin_cabsf:
8746   case Builtin::BI__builtin_cabsl:
8747   case Builtin::BIabs:
8748   case Builtin::BIlabs:
8749   case Builtin::BIllabs:
8750   case Builtin::BIfabs:
8751   case Builtin::BIfabsf:
8752   case Builtin::BIfabsl:
8753   case Builtin::BIcabs:
8754   case Builtin::BIcabsf:
8755   case Builtin::BIcabsl:
8756     return FDecl->getBuiltinID();
8757   }
8758   llvm_unreachable("Unknown Builtin type");
8759 }
8760 
8761 // If the replacement is valid, emit a note with replacement function.
8762 // Additionally, suggest including the proper header if not already included.
8763 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
8764                             unsigned AbsKind, QualType ArgType) {
8765   bool EmitHeaderHint = true;
8766   const char *HeaderName = nullptr;
8767   const char *FunctionName = nullptr;
8768   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
8769     FunctionName = "std::abs";
8770     if (ArgType->isIntegralOrEnumerationType()) {
8771       HeaderName = "cstdlib";
8772     } else if (ArgType->isRealFloatingType()) {
8773       HeaderName = "cmath";
8774     } else {
8775       llvm_unreachable("Invalid Type");
8776     }
8777 
8778     // Lookup all std::abs
8779     if (NamespaceDecl *Std = S.getStdNamespace()) {
8780       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
8781       R.suppressDiagnostics();
8782       S.LookupQualifiedName(R, Std);
8783 
8784       for (const auto *I : R) {
8785         const FunctionDecl *FDecl = nullptr;
8786         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
8787           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
8788         } else {
8789           FDecl = dyn_cast<FunctionDecl>(I);
8790         }
8791         if (!FDecl)
8792           continue;
8793 
8794         // Found std::abs(), check that they are the right ones.
8795         if (FDecl->getNumParams() != 1)
8796           continue;
8797 
8798         // Check that the parameter type can handle the argument.
8799         QualType ParamType = FDecl->getParamDecl(0)->getType();
8800         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
8801             S.Context.getTypeSize(ArgType) <=
8802                 S.Context.getTypeSize(ParamType)) {
8803           // Found a function, don't need the header hint.
8804           EmitHeaderHint = false;
8805           break;
8806         }
8807       }
8808     }
8809   } else {
8810     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
8811     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
8812 
8813     if (HeaderName) {
8814       DeclarationName DN(&S.Context.Idents.get(FunctionName));
8815       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
8816       R.suppressDiagnostics();
8817       S.LookupName(R, S.getCurScope());
8818 
8819       if (R.isSingleResult()) {
8820         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
8821         if (FD && FD->getBuiltinID() == AbsKind) {
8822           EmitHeaderHint = false;
8823         } else {
8824           return;
8825         }
8826       } else if (!R.empty()) {
8827         return;
8828       }
8829     }
8830   }
8831 
8832   S.Diag(Loc, diag::note_replace_abs_function)
8833       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
8834 
8835   if (!HeaderName)
8836     return;
8837 
8838   if (!EmitHeaderHint)
8839     return;
8840 
8841   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
8842                                                     << FunctionName;
8843 }
8844 
8845 template <std::size_t StrLen>
8846 static bool IsStdFunction(const FunctionDecl *FDecl,
8847                           const char (&Str)[StrLen]) {
8848   if (!FDecl)
8849     return false;
8850   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
8851     return false;
8852   if (!FDecl->isInStdNamespace())
8853     return false;
8854 
8855   return true;
8856 }
8857 
8858 // Warn when using the wrong abs() function.
8859 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
8860                                       const FunctionDecl *FDecl) {
8861   if (Call->getNumArgs() != 1)
8862     return;
8863 
8864   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
8865   bool IsStdAbs = IsStdFunction(FDecl, "abs");
8866   if (AbsKind == 0 && !IsStdAbs)
8867     return;
8868 
8869   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8870   QualType ParamType = Call->getArg(0)->getType();
8871 
8872   // Unsigned types cannot be negative.  Suggest removing the absolute value
8873   // function call.
8874   if (ArgType->isUnsignedIntegerType()) {
8875     const char *FunctionName =
8876         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
8877     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
8878     Diag(Call->getExprLoc(), diag::note_remove_abs)
8879         << FunctionName
8880         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
8881     return;
8882   }
8883 
8884   // Taking the absolute value of a pointer is very suspicious, they probably
8885   // wanted to index into an array, dereference a pointer, call a function, etc.
8886   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
8887     unsigned DiagType = 0;
8888     if (ArgType->isFunctionType())
8889       DiagType = 1;
8890     else if (ArgType->isArrayType())
8891       DiagType = 2;
8892 
8893     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
8894     return;
8895   }
8896 
8897   // std::abs has overloads which prevent most of the absolute value problems
8898   // from occurring.
8899   if (IsStdAbs)
8900     return;
8901 
8902   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
8903   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
8904 
8905   // The argument and parameter are the same kind.  Check if they are the right
8906   // size.
8907   if (ArgValueKind == ParamValueKind) {
8908     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
8909       return;
8910 
8911     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
8912     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
8913         << FDecl << ArgType << ParamType;
8914 
8915     if (NewAbsKind == 0)
8916       return;
8917 
8918     emitReplacement(*this, Call->getExprLoc(),
8919                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8920     return;
8921   }
8922 
8923   // ArgValueKind != ParamValueKind
8924   // The wrong type of absolute value function was used.  Attempt to find the
8925   // proper one.
8926   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
8927   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
8928   if (NewAbsKind == 0)
8929     return;
8930 
8931   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
8932       << FDecl << ParamValueKind << ArgValueKind;
8933 
8934   emitReplacement(*this, Call->getExprLoc(),
8935                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8936 }
8937 
8938 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
8939 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
8940                                 const FunctionDecl *FDecl) {
8941   if (!Call || !FDecl) return;
8942 
8943   // Ignore template specializations and macros.
8944   if (inTemplateInstantiation()) return;
8945   if (Call->getExprLoc().isMacroID()) return;
8946 
8947   // Only care about the one template argument, two function parameter std::max
8948   if (Call->getNumArgs() != 2) return;
8949   if (!IsStdFunction(FDecl, "max")) return;
8950   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
8951   if (!ArgList) return;
8952   if (ArgList->size() != 1) return;
8953 
8954   // Check that template type argument is unsigned integer.
8955   const auto& TA = ArgList->get(0);
8956   if (TA.getKind() != TemplateArgument::Type) return;
8957   QualType ArgType = TA.getAsType();
8958   if (!ArgType->isUnsignedIntegerType()) return;
8959 
8960   // See if either argument is a literal zero.
8961   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
8962     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
8963     if (!MTE) return false;
8964     const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr());
8965     if (!Num) return false;
8966     if (Num->getValue() != 0) return false;
8967     return true;
8968   };
8969 
8970   const Expr *FirstArg = Call->getArg(0);
8971   const Expr *SecondArg = Call->getArg(1);
8972   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
8973   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
8974 
8975   // Only warn when exactly one argument is zero.
8976   if (IsFirstArgZero == IsSecondArgZero) return;
8977 
8978   SourceRange FirstRange = FirstArg->getSourceRange();
8979   SourceRange SecondRange = SecondArg->getSourceRange();
8980 
8981   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
8982 
8983   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
8984       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
8985 
8986   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
8987   SourceRange RemovalRange;
8988   if (IsFirstArgZero) {
8989     RemovalRange = SourceRange(FirstRange.getBegin(),
8990                                SecondRange.getBegin().getLocWithOffset(-1));
8991   } else {
8992     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
8993                                SecondRange.getEnd());
8994   }
8995 
8996   Diag(Call->getExprLoc(), diag::note_remove_max_call)
8997         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
8998         << FixItHint::CreateRemoval(RemovalRange);
8999 }
9000 
9001 //===--- CHECK: Standard memory functions ---------------------------------===//
9002 
9003 /// Takes the expression passed to the size_t parameter of functions
9004 /// such as memcmp, strncat, etc and warns if it's a comparison.
9005 ///
9006 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9007 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9008                                            IdentifierInfo *FnName,
9009                                            SourceLocation FnLoc,
9010                                            SourceLocation RParenLoc) {
9011   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9012   if (!Size)
9013     return false;
9014 
9015   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9016   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9017     return false;
9018 
9019   SourceRange SizeRange = Size->getSourceRange();
9020   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9021       << SizeRange << FnName;
9022   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9023       << FnName
9024       << FixItHint::CreateInsertion(
9025              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9026       << FixItHint::CreateRemoval(RParenLoc);
9027   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9028       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9029       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9030                                     ")");
9031 
9032   return true;
9033 }
9034 
9035 /// Determine whether the given type is or contains a dynamic class type
9036 /// (e.g., whether it has a vtable).
9037 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9038                                                      bool &IsContained) {
9039   // Look through array types while ignoring qualifiers.
9040   const Type *Ty = T->getBaseElementTypeUnsafe();
9041   IsContained = false;
9042 
9043   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9044   RD = RD ? RD->getDefinition() : nullptr;
9045   if (!RD || RD->isInvalidDecl())
9046     return nullptr;
9047 
9048   if (RD->isDynamicClass())
9049     return RD;
9050 
9051   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9052   // It's impossible for a class to transitively contain itself by value, so
9053   // infinite recursion is impossible.
9054   for (auto *FD : RD->fields()) {
9055     bool SubContained;
9056     if (const CXXRecordDecl *ContainedRD =
9057             getContainedDynamicClass(FD->getType(), SubContained)) {
9058       IsContained = true;
9059       return ContainedRD;
9060     }
9061   }
9062 
9063   return nullptr;
9064 }
9065 
9066 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9067   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9068     if (Unary->getKind() == UETT_SizeOf)
9069       return Unary;
9070   return nullptr;
9071 }
9072 
9073 /// If E is a sizeof expression, returns its argument expression,
9074 /// otherwise returns NULL.
9075 static const Expr *getSizeOfExprArg(const Expr *E) {
9076   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9077     if (!SizeOf->isArgumentType())
9078       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9079   return nullptr;
9080 }
9081 
9082 /// If E is a sizeof expression, returns its argument type.
9083 static QualType getSizeOfArgType(const Expr *E) {
9084   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9085     return SizeOf->getTypeOfArgument();
9086   return QualType();
9087 }
9088 
9089 namespace {
9090 
9091 struct SearchNonTrivialToInitializeField
9092     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9093   using Super =
9094       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9095 
9096   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9097 
9098   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9099                      SourceLocation SL) {
9100     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9101       asDerived().visitArray(PDIK, AT, SL);
9102       return;
9103     }
9104 
9105     Super::visitWithKind(PDIK, FT, SL);
9106   }
9107 
9108   void visitARCStrong(QualType FT, SourceLocation SL) {
9109     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9110   }
9111   void visitARCWeak(QualType FT, SourceLocation SL) {
9112     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9113   }
9114   void visitStruct(QualType FT, SourceLocation SL) {
9115     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9116       visit(FD->getType(), FD->getLocation());
9117   }
9118   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9119                   const ArrayType *AT, SourceLocation SL) {
9120     visit(getContext().getBaseElementType(AT), SL);
9121   }
9122   void visitTrivial(QualType FT, SourceLocation SL) {}
9123 
9124   static void diag(QualType RT, const Expr *E, Sema &S) {
9125     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9126   }
9127 
9128   ASTContext &getContext() { return S.getASTContext(); }
9129 
9130   const Expr *E;
9131   Sema &S;
9132 };
9133 
9134 struct SearchNonTrivialToCopyField
9135     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9136   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9137 
9138   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9139 
9140   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9141                      SourceLocation SL) {
9142     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9143       asDerived().visitArray(PCK, AT, SL);
9144       return;
9145     }
9146 
9147     Super::visitWithKind(PCK, FT, SL);
9148   }
9149 
9150   void visitARCStrong(QualType FT, SourceLocation SL) {
9151     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9152   }
9153   void visitARCWeak(QualType FT, SourceLocation SL) {
9154     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9155   }
9156   void visitStruct(QualType FT, SourceLocation SL) {
9157     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9158       visit(FD->getType(), FD->getLocation());
9159   }
9160   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9161                   SourceLocation SL) {
9162     visit(getContext().getBaseElementType(AT), SL);
9163   }
9164   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9165                 SourceLocation SL) {}
9166   void visitTrivial(QualType FT, SourceLocation SL) {}
9167   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9168 
9169   static void diag(QualType RT, const Expr *E, Sema &S) {
9170     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9171   }
9172 
9173   ASTContext &getContext() { return S.getASTContext(); }
9174 
9175   const Expr *E;
9176   Sema &S;
9177 };
9178 
9179 }
9180 
9181 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9182 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9183   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9184 
9185   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9186     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9187       return false;
9188 
9189     return doesExprLikelyComputeSize(BO->getLHS()) ||
9190            doesExprLikelyComputeSize(BO->getRHS());
9191   }
9192 
9193   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9194 }
9195 
9196 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9197 ///
9198 /// \code
9199 ///   #define MACRO 0
9200 ///   foo(MACRO);
9201 ///   foo(0);
9202 /// \endcode
9203 ///
9204 /// This should return true for the first call to foo, but not for the second
9205 /// (regardless of whether foo is a macro or function).
9206 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9207                                         SourceLocation CallLoc,
9208                                         SourceLocation ArgLoc) {
9209   if (!CallLoc.isMacroID())
9210     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9211 
9212   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9213          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9214 }
9215 
9216 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9217 /// last two arguments transposed.
9218 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9219   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9220     return;
9221 
9222   const Expr *SizeArg =
9223     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9224 
9225   auto isLiteralZero = [](const Expr *E) {
9226     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9227   };
9228 
9229   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9230   SourceLocation CallLoc = Call->getRParenLoc();
9231   SourceManager &SM = S.getSourceManager();
9232   if (isLiteralZero(SizeArg) &&
9233       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9234 
9235     SourceLocation DiagLoc = SizeArg->getExprLoc();
9236 
9237     // Some platforms #define bzero to __builtin_memset. See if this is the
9238     // case, and if so, emit a better diagnostic.
9239     if (BId == Builtin::BIbzero ||
9240         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9241                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9242       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9243       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9244     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9245       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9246       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9247     }
9248     return;
9249   }
9250 
9251   // If the second argument to a memset is a sizeof expression and the third
9252   // isn't, this is also likely an error. This should catch
9253   // 'memset(buf, sizeof(buf), 0xff)'.
9254   if (BId == Builtin::BImemset &&
9255       doesExprLikelyComputeSize(Call->getArg(1)) &&
9256       !doesExprLikelyComputeSize(Call->getArg(2))) {
9257     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9258     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9259     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9260     return;
9261   }
9262 }
9263 
9264 /// Check for dangerous or invalid arguments to memset().
9265 ///
9266 /// This issues warnings on known problematic, dangerous or unspecified
9267 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9268 /// function calls.
9269 ///
9270 /// \param Call The call expression to diagnose.
9271 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9272                                    unsigned BId,
9273                                    IdentifierInfo *FnName) {
9274   assert(BId != 0);
9275 
9276   // It is possible to have a non-standard definition of memset.  Validate
9277   // we have enough arguments, and if not, abort further checking.
9278   unsigned ExpectedNumArgs =
9279       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9280   if (Call->getNumArgs() < ExpectedNumArgs)
9281     return;
9282 
9283   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9284                       BId == Builtin::BIstrndup ? 1 : 2);
9285   unsigned LenArg =
9286       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9287   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9288 
9289   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9290                                      Call->getBeginLoc(), Call->getRParenLoc()))
9291     return;
9292 
9293   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9294   CheckMemaccessSize(*this, BId, Call);
9295 
9296   // We have special checking when the length is a sizeof expression.
9297   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9298   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9299   llvm::FoldingSetNodeID SizeOfArgID;
9300 
9301   // Although widely used, 'bzero' is not a standard function. Be more strict
9302   // with the argument types before allowing diagnostics and only allow the
9303   // form bzero(ptr, sizeof(...)).
9304   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9305   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9306     return;
9307 
9308   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9309     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9310     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9311 
9312     QualType DestTy = Dest->getType();
9313     QualType PointeeTy;
9314     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9315       PointeeTy = DestPtrTy->getPointeeType();
9316 
9317       // Never warn about void type pointers. This can be used to suppress
9318       // false positives.
9319       if (PointeeTy->isVoidType())
9320         continue;
9321 
9322       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9323       // actually comparing the expressions for equality. Because computing the
9324       // expression IDs can be expensive, we only do this if the diagnostic is
9325       // enabled.
9326       if (SizeOfArg &&
9327           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9328                            SizeOfArg->getExprLoc())) {
9329         // We only compute IDs for expressions if the warning is enabled, and
9330         // cache the sizeof arg's ID.
9331         if (SizeOfArgID == llvm::FoldingSetNodeID())
9332           SizeOfArg->Profile(SizeOfArgID, Context, true);
9333         llvm::FoldingSetNodeID DestID;
9334         Dest->Profile(DestID, Context, true);
9335         if (DestID == SizeOfArgID) {
9336           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9337           //       over sizeof(src) as well.
9338           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9339           StringRef ReadableName = FnName->getName();
9340 
9341           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9342             if (UnaryOp->getOpcode() == UO_AddrOf)
9343               ActionIdx = 1; // If its an address-of operator, just remove it.
9344           if (!PointeeTy->isIncompleteType() &&
9345               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9346             ActionIdx = 2; // If the pointee's size is sizeof(char),
9347                            // suggest an explicit length.
9348 
9349           // If the function is defined as a builtin macro, do not show macro
9350           // expansion.
9351           SourceLocation SL = SizeOfArg->getExprLoc();
9352           SourceRange DSR = Dest->getSourceRange();
9353           SourceRange SSR = SizeOfArg->getSourceRange();
9354           SourceManager &SM = getSourceManager();
9355 
9356           if (SM.isMacroArgExpansion(SL)) {
9357             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9358             SL = SM.getSpellingLoc(SL);
9359             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9360                              SM.getSpellingLoc(DSR.getEnd()));
9361             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9362                              SM.getSpellingLoc(SSR.getEnd()));
9363           }
9364 
9365           DiagRuntimeBehavior(SL, SizeOfArg,
9366                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9367                                 << ReadableName
9368                                 << PointeeTy
9369                                 << DestTy
9370                                 << DSR
9371                                 << SSR);
9372           DiagRuntimeBehavior(SL, SizeOfArg,
9373                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9374                                 << ActionIdx
9375                                 << SSR);
9376 
9377           break;
9378         }
9379       }
9380 
9381       // Also check for cases where the sizeof argument is the exact same
9382       // type as the memory argument, and where it points to a user-defined
9383       // record type.
9384       if (SizeOfArgTy != QualType()) {
9385         if (PointeeTy->isRecordType() &&
9386             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9387           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9388                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9389                                 << FnName << SizeOfArgTy << ArgIdx
9390                                 << PointeeTy << Dest->getSourceRange()
9391                                 << LenExpr->getSourceRange());
9392           break;
9393         }
9394       }
9395     } else if (DestTy->isArrayType()) {
9396       PointeeTy = DestTy;
9397     }
9398 
9399     if (PointeeTy == QualType())
9400       continue;
9401 
9402     // Always complain about dynamic classes.
9403     bool IsContained;
9404     if (const CXXRecordDecl *ContainedRD =
9405             getContainedDynamicClass(PointeeTy, IsContained)) {
9406 
9407       unsigned OperationType = 0;
9408       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9409       // "overwritten" if we're warning about the destination for any call
9410       // but memcmp; otherwise a verb appropriate to the call.
9411       if (ArgIdx != 0 || IsCmp) {
9412         if (BId == Builtin::BImemcpy)
9413           OperationType = 1;
9414         else if(BId == Builtin::BImemmove)
9415           OperationType = 2;
9416         else if (IsCmp)
9417           OperationType = 3;
9418       }
9419 
9420       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9421                           PDiag(diag::warn_dyn_class_memaccess)
9422                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9423                               << IsContained << ContainedRD << OperationType
9424                               << Call->getCallee()->getSourceRange());
9425     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9426              BId != Builtin::BImemset)
9427       DiagRuntimeBehavior(
9428         Dest->getExprLoc(), Dest,
9429         PDiag(diag::warn_arc_object_memaccess)
9430           << ArgIdx << FnName << PointeeTy
9431           << Call->getCallee()->getSourceRange());
9432     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9433       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9434           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9435         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9436                             PDiag(diag::warn_cstruct_memaccess)
9437                                 << ArgIdx << FnName << PointeeTy << 0);
9438         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9439       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9440                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9441         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9442                             PDiag(diag::warn_cstruct_memaccess)
9443                                 << ArgIdx << FnName << PointeeTy << 1);
9444         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9445       } else {
9446         continue;
9447       }
9448     } else
9449       continue;
9450 
9451     DiagRuntimeBehavior(
9452       Dest->getExprLoc(), Dest,
9453       PDiag(diag::note_bad_memaccess_silence)
9454         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9455     break;
9456   }
9457 }
9458 
9459 // A little helper routine: ignore addition and subtraction of integer literals.
9460 // This intentionally does not ignore all integer constant expressions because
9461 // we don't want to remove sizeof().
9462 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9463   Ex = Ex->IgnoreParenCasts();
9464 
9465   while (true) {
9466     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9467     if (!BO || !BO->isAdditiveOp())
9468       break;
9469 
9470     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9471     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9472 
9473     if (isa<IntegerLiteral>(RHS))
9474       Ex = LHS;
9475     else if (isa<IntegerLiteral>(LHS))
9476       Ex = RHS;
9477     else
9478       break;
9479   }
9480 
9481   return Ex;
9482 }
9483 
9484 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9485                                                       ASTContext &Context) {
9486   // Only handle constant-sized or VLAs, but not flexible members.
9487   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9488     // Only issue the FIXIT for arrays of size > 1.
9489     if (CAT->getSize().getSExtValue() <= 1)
9490       return false;
9491   } else if (!Ty->isVariableArrayType()) {
9492     return false;
9493   }
9494   return true;
9495 }
9496 
9497 // Warn if the user has made the 'size' argument to strlcpy or strlcat
9498 // be the size of the source, instead of the destination.
9499 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9500                                     IdentifierInfo *FnName) {
9501 
9502   // Don't crash if the user has the wrong number of arguments
9503   unsigned NumArgs = Call->getNumArgs();
9504   if ((NumArgs != 3) && (NumArgs != 4))
9505     return;
9506 
9507   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9508   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9509   const Expr *CompareWithSrc = nullptr;
9510 
9511   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9512                                      Call->getBeginLoc(), Call->getRParenLoc()))
9513     return;
9514 
9515   // Look for 'strlcpy(dst, x, sizeof(x))'
9516   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9517     CompareWithSrc = Ex;
9518   else {
9519     // Look for 'strlcpy(dst, x, strlen(x))'
9520     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9521       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9522           SizeCall->getNumArgs() == 1)
9523         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9524     }
9525   }
9526 
9527   if (!CompareWithSrc)
9528     return;
9529 
9530   // Determine if the argument to sizeof/strlen is equal to the source
9531   // argument.  In principle there's all kinds of things you could do
9532   // here, for instance creating an == expression and evaluating it with
9533   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9534   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9535   if (!SrcArgDRE)
9536     return;
9537 
9538   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9539   if (!CompareWithSrcDRE ||
9540       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9541     return;
9542 
9543   const Expr *OriginalSizeArg = Call->getArg(2);
9544   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9545       << OriginalSizeArg->getSourceRange() << FnName;
9546 
9547   // Output a FIXIT hint if the destination is an array (rather than a
9548   // pointer to an array).  This could be enhanced to handle some
9549   // pointers if we know the actual size, like if DstArg is 'array+2'
9550   // we could say 'sizeof(array)-2'.
9551   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9552   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9553     return;
9554 
9555   SmallString<128> sizeString;
9556   llvm::raw_svector_ostream OS(sizeString);
9557   OS << "sizeof(";
9558   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9559   OS << ")";
9560 
9561   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9562       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9563                                       OS.str());
9564 }
9565 
9566 /// Check if two expressions refer to the same declaration.
9567 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9568   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9569     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9570       return D1->getDecl() == D2->getDecl();
9571   return false;
9572 }
9573 
9574 static const Expr *getStrlenExprArg(const Expr *E) {
9575   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9576     const FunctionDecl *FD = CE->getDirectCallee();
9577     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
9578       return nullptr;
9579     return CE->getArg(0)->IgnoreParenCasts();
9580   }
9581   return nullptr;
9582 }
9583 
9584 // Warn on anti-patterns as the 'size' argument to strncat.
9585 // The correct size argument should look like following:
9586 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
9587 void Sema::CheckStrncatArguments(const CallExpr *CE,
9588                                  IdentifierInfo *FnName) {
9589   // Don't crash if the user has the wrong number of arguments.
9590   if (CE->getNumArgs() < 3)
9591     return;
9592   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
9593   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
9594   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
9595 
9596   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
9597                                      CE->getRParenLoc()))
9598     return;
9599 
9600   // Identify common expressions, which are wrongly used as the size argument
9601   // to strncat and may lead to buffer overflows.
9602   unsigned PatternType = 0;
9603   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
9604     // - sizeof(dst)
9605     if (referToTheSameDecl(SizeOfArg, DstArg))
9606       PatternType = 1;
9607     // - sizeof(src)
9608     else if (referToTheSameDecl(SizeOfArg, SrcArg))
9609       PatternType = 2;
9610   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
9611     if (BE->getOpcode() == BO_Sub) {
9612       const Expr *L = BE->getLHS()->IgnoreParenCasts();
9613       const Expr *R = BE->getRHS()->IgnoreParenCasts();
9614       // - sizeof(dst) - strlen(dst)
9615       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
9616           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
9617         PatternType = 1;
9618       // - sizeof(src) - (anything)
9619       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
9620         PatternType = 2;
9621     }
9622   }
9623 
9624   if (PatternType == 0)
9625     return;
9626 
9627   // Generate the diagnostic.
9628   SourceLocation SL = LenArg->getBeginLoc();
9629   SourceRange SR = LenArg->getSourceRange();
9630   SourceManager &SM = getSourceManager();
9631 
9632   // If the function is defined as a builtin macro, do not show macro expansion.
9633   if (SM.isMacroArgExpansion(SL)) {
9634     SL = SM.getSpellingLoc(SL);
9635     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
9636                      SM.getSpellingLoc(SR.getEnd()));
9637   }
9638 
9639   // Check if the destination is an array (rather than a pointer to an array).
9640   QualType DstTy = DstArg->getType();
9641   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
9642                                                                     Context);
9643   if (!isKnownSizeArray) {
9644     if (PatternType == 1)
9645       Diag(SL, diag::warn_strncat_wrong_size) << SR;
9646     else
9647       Diag(SL, diag::warn_strncat_src_size) << SR;
9648     return;
9649   }
9650 
9651   if (PatternType == 1)
9652     Diag(SL, diag::warn_strncat_large_size) << SR;
9653   else
9654     Diag(SL, diag::warn_strncat_src_size) << SR;
9655 
9656   SmallString<128> sizeString;
9657   llvm::raw_svector_ostream OS(sizeString);
9658   OS << "sizeof(";
9659   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9660   OS << ") - ";
9661   OS << "strlen(";
9662   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9663   OS << ") - 1";
9664 
9665   Diag(SL, diag::note_strncat_wrong_size)
9666     << FixItHint::CreateReplacement(SR, OS.str());
9667 }
9668 
9669 void
9670 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
9671                          SourceLocation ReturnLoc,
9672                          bool isObjCMethod,
9673                          const AttrVec *Attrs,
9674                          const FunctionDecl *FD) {
9675   // Check if the return value is null but should not be.
9676   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
9677        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
9678       CheckNonNullExpr(*this, RetValExp))
9679     Diag(ReturnLoc, diag::warn_null_ret)
9680       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
9681 
9682   // C++11 [basic.stc.dynamic.allocation]p4:
9683   //   If an allocation function declared with a non-throwing
9684   //   exception-specification fails to allocate storage, it shall return
9685   //   a null pointer. Any other allocation function that fails to allocate
9686   //   storage shall indicate failure only by throwing an exception [...]
9687   if (FD) {
9688     OverloadedOperatorKind Op = FD->getOverloadedOperator();
9689     if (Op == OO_New || Op == OO_Array_New) {
9690       const FunctionProtoType *Proto
9691         = FD->getType()->castAs<FunctionProtoType>();
9692       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
9693           CheckNonNullExpr(*this, RetValExp))
9694         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
9695           << FD << getLangOpts().CPlusPlus11;
9696     }
9697   }
9698 }
9699 
9700 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
9701 
9702 /// Check for comparisons of floating point operands using != and ==.
9703 /// Issue a warning if these are no self-comparisons, as they are not likely
9704 /// to do what the programmer intended.
9705 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
9706   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
9707   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
9708 
9709   // Special case: check for x == x (which is OK).
9710   // Do not emit warnings for such cases.
9711   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
9712     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
9713       if (DRL->getDecl() == DRR->getDecl())
9714         return;
9715 
9716   // Special case: check for comparisons against literals that can be exactly
9717   //  represented by APFloat.  In such cases, do not emit a warning.  This
9718   //  is a heuristic: often comparison against such literals are used to
9719   //  detect if a value in a variable has not changed.  This clearly can
9720   //  lead to false negatives.
9721   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
9722     if (FLL->isExact())
9723       return;
9724   } else
9725     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
9726       if (FLR->isExact())
9727         return;
9728 
9729   // Check for comparisons with builtin types.
9730   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
9731     if (CL->getBuiltinCallee())
9732       return;
9733 
9734   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
9735     if (CR->getBuiltinCallee())
9736       return;
9737 
9738   // Emit the diagnostic.
9739   Diag(Loc, diag::warn_floatingpoint_eq)
9740     << LHS->getSourceRange() << RHS->getSourceRange();
9741 }
9742 
9743 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
9744 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
9745 
9746 namespace {
9747 
9748 /// Structure recording the 'active' range of an integer-valued
9749 /// expression.
9750 struct IntRange {
9751   /// The number of bits active in the int.
9752   unsigned Width;
9753 
9754   /// True if the int is known not to have negative values.
9755   bool NonNegative;
9756 
9757   IntRange(unsigned Width, bool NonNegative)
9758       : Width(Width), NonNegative(NonNegative) {}
9759 
9760   /// Returns the range of the bool type.
9761   static IntRange forBoolType() {
9762     return IntRange(1, true);
9763   }
9764 
9765   /// Returns the range of an opaque value of the given integral type.
9766   static IntRange forValueOfType(ASTContext &C, QualType T) {
9767     return forValueOfCanonicalType(C,
9768                           T->getCanonicalTypeInternal().getTypePtr());
9769   }
9770 
9771   /// Returns the range of an opaque value of a canonical integral type.
9772   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
9773     assert(T->isCanonicalUnqualified());
9774 
9775     if (const VectorType *VT = dyn_cast<VectorType>(T))
9776       T = VT->getElementType().getTypePtr();
9777     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9778       T = CT->getElementType().getTypePtr();
9779     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9780       T = AT->getValueType().getTypePtr();
9781 
9782     if (!C.getLangOpts().CPlusPlus) {
9783       // For enum types in C code, use the underlying datatype.
9784       if (const EnumType *ET = dyn_cast<EnumType>(T))
9785         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
9786     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
9787       // For enum types in C++, use the known bit width of the enumerators.
9788       EnumDecl *Enum = ET->getDecl();
9789       // In C++11, enums can have a fixed underlying type. Use this type to
9790       // compute the range.
9791       if (Enum->isFixed()) {
9792         return IntRange(C.getIntWidth(QualType(T, 0)),
9793                         !ET->isSignedIntegerOrEnumerationType());
9794       }
9795 
9796       unsigned NumPositive = Enum->getNumPositiveBits();
9797       unsigned NumNegative = Enum->getNumNegativeBits();
9798 
9799       if (NumNegative == 0)
9800         return IntRange(NumPositive, true/*NonNegative*/);
9801       else
9802         return IntRange(std::max(NumPositive + 1, NumNegative),
9803                         false/*NonNegative*/);
9804     }
9805 
9806     const BuiltinType *BT = cast<BuiltinType>(T);
9807     assert(BT->isInteger());
9808 
9809     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9810   }
9811 
9812   /// Returns the "target" range of a canonical integral type, i.e.
9813   /// the range of values expressible in the type.
9814   ///
9815   /// This matches forValueOfCanonicalType except that enums have the
9816   /// full range of their type, not the range of their enumerators.
9817   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
9818     assert(T->isCanonicalUnqualified());
9819 
9820     if (const VectorType *VT = dyn_cast<VectorType>(T))
9821       T = VT->getElementType().getTypePtr();
9822     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9823       T = CT->getElementType().getTypePtr();
9824     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9825       T = AT->getValueType().getTypePtr();
9826     if (const EnumType *ET = dyn_cast<EnumType>(T))
9827       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
9828 
9829     const BuiltinType *BT = cast<BuiltinType>(T);
9830     assert(BT->isInteger());
9831 
9832     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9833   }
9834 
9835   /// Returns the supremum of two ranges: i.e. their conservative merge.
9836   static IntRange join(IntRange L, IntRange R) {
9837     return IntRange(std::max(L.Width, R.Width),
9838                     L.NonNegative && R.NonNegative);
9839   }
9840 
9841   /// Returns the infinum of two ranges: i.e. their aggressive merge.
9842   static IntRange meet(IntRange L, IntRange R) {
9843     return IntRange(std::min(L.Width, R.Width),
9844                     L.NonNegative || R.NonNegative);
9845   }
9846 };
9847 
9848 } // namespace
9849 
9850 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
9851                               unsigned MaxWidth) {
9852   if (value.isSigned() && value.isNegative())
9853     return IntRange(value.getMinSignedBits(), false);
9854 
9855   if (value.getBitWidth() > MaxWidth)
9856     value = value.trunc(MaxWidth);
9857 
9858   // isNonNegative() just checks the sign bit without considering
9859   // signedness.
9860   return IntRange(value.getActiveBits(), true);
9861 }
9862 
9863 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
9864                               unsigned MaxWidth) {
9865   if (result.isInt())
9866     return GetValueRange(C, result.getInt(), MaxWidth);
9867 
9868   if (result.isVector()) {
9869     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
9870     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
9871       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
9872       R = IntRange::join(R, El);
9873     }
9874     return R;
9875   }
9876 
9877   if (result.isComplexInt()) {
9878     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
9879     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
9880     return IntRange::join(R, I);
9881   }
9882 
9883   // This can happen with lossless casts to intptr_t of "based" lvalues.
9884   // Assume it might use arbitrary bits.
9885   // FIXME: The only reason we need to pass the type in here is to get
9886   // the sign right on this one case.  It would be nice if APValue
9887   // preserved this.
9888   assert(result.isLValue() || result.isAddrLabelDiff());
9889   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
9890 }
9891 
9892 static QualType GetExprType(const Expr *E) {
9893   QualType Ty = E->getType();
9894   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
9895     Ty = AtomicRHS->getValueType();
9896   return Ty;
9897 }
9898 
9899 /// Pseudo-evaluate the given integer expression, estimating the
9900 /// range of values it might take.
9901 ///
9902 /// \param MaxWidth - the width to which the value will be truncated
9903 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) {
9904   E = E->IgnoreParens();
9905 
9906   // Try a full evaluation first.
9907   Expr::EvalResult result;
9908   if (E->EvaluateAsRValue(result, C))
9909     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
9910 
9911   // I think we only want to look through implicit casts here; if the
9912   // user has an explicit widening cast, we should treat the value as
9913   // being of the new, wider type.
9914   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
9915     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
9916       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
9917 
9918     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
9919 
9920     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
9921                          CE->getCastKind() == CK_BooleanToSignedIntegral;
9922 
9923     // Assume that non-integer casts can span the full range of the type.
9924     if (!isIntegerCast)
9925       return OutputTypeRange;
9926 
9927     IntRange SubRange
9928       = GetExprRange(C, CE->getSubExpr(),
9929                      std::min(MaxWidth, OutputTypeRange.Width));
9930 
9931     // Bail out if the subexpr's range is as wide as the cast type.
9932     if (SubRange.Width >= OutputTypeRange.Width)
9933       return OutputTypeRange;
9934 
9935     // Otherwise, we take the smaller width, and we're non-negative if
9936     // either the output type or the subexpr is.
9937     return IntRange(SubRange.Width,
9938                     SubRange.NonNegative || OutputTypeRange.NonNegative);
9939   }
9940 
9941   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
9942     // If we can fold the condition, just take that operand.
9943     bool CondResult;
9944     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
9945       return GetExprRange(C, CondResult ? CO->getTrueExpr()
9946                                         : CO->getFalseExpr(),
9947                           MaxWidth);
9948 
9949     // Otherwise, conservatively merge.
9950     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
9951     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
9952     return IntRange::join(L, R);
9953   }
9954 
9955   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
9956     switch (BO->getOpcode()) {
9957     case BO_Cmp:
9958       llvm_unreachable("builtin <=> should have class type");
9959 
9960     // Boolean-valued operations are single-bit and positive.
9961     case BO_LAnd:
9962     case BO_LOr:
9963     case BO_LT:
9964     case BO_GT:
9965     case BO_LE:
9966     case BO_GE:
9967     case BO_EQ:
9968     case BO_NE:
9969       return IntRange::forBoolType();
9970 
9971     // The type of the assignments is the type of the LHS, so the RHS
9972     // is not necessarily the same type.
9973     case BO_MulAssign:
9974     case BO_DivAssign:
9975     case BO_RemAssign:
9976     case BO_AddAssign:
9977     case BO_SubAssign:
9978     case BO_XorAssign:
9979     case BO_OrAssign:
9980       // TODO: bitfields?
9981       return IntRange::forValueOfType(C, GetExprType(E));
9982 
9983     // Simple assignments just pass through the RHS, which will have
9984     // been coerced to the LHS type.
9985     case BO_Assign:
9986       // TODO: bitfields?
9987       return GetExprRange(C, BO->getRHS(), MaxWidth);
9988 
9989     // Operations with opaque sources are black-listed.
9990     case BO_PtrMemD:
9991     case BO_PtrMemI:
9992       return IntRange::forValueOfType(C, GetExprType(E));
9993 
9994     // Bitwise-and uses the *infinum* of the two source ranges.
9995     case BO_And:
9996     case BO_AndAssign:
9997       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
9998                             GetExprRange(C, BO->getRHS(), MaxWidth));
9999 
10000     // Left shift gets black-listed based on a judgement call.
10001     case BO_Shl:
10002       // ...except that we want to treat '1 << (blah)' as logically
10003       // positive.  It's an important idiom.
10004       if (IntegerLiteral *I
10005             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10006         if (I->getValue() == 1) {
10007           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10008           return IntRange(R.Width, /*NonNegative*/ true);
10009         }
10010       }
10011       LLVM_FALLTHROUGH;
10012 
10013     case BO_ShlAssign:
10014       return IntRange::forValueOfType(C, GetExprType(E));
10015 
10016     // Right shift by a constant can narrow its left argument.
10017     case BO_Shr:
10018     case BO_ShrAssign: {
10019       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
10020 
10021       // If the shift amount is a positive constant, drop the width by
10022       // that much.
10023       llvm::APSInt shift;
10024       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
10025           shift.isNonNegative()) {
10026         unsigned zext = shift.getZExtValue();
10027         if (zext >= L.Width)
10028           L.Width = (L.NonNegative ? 0 : 1);
10029         else
10030           L.Width -= zext;
10031       }
10032 
10033       return L;
10034     }
10035 
10036     // Comma acts as its right operand.
10037     case BO_Comma:
10038       return GetExprRange(C, BO->getRHS(), MaxWidth);
10039 
10040     // Black-list pointer subtractions.
10041     case BO_Sub:
10042       if (BO->getLHS()->getType()->isPointerType())
10043         return IntRange::forValueOfType(C, GetExprType(E));
10044       break;
10045 
10046     // The width of a division result is mostly determined by the size
10047     // of the LHS.
10048     case BO_Div: {
10049       // Don't 'pre-truncate' the operands.
10050       unsigned opWidth = C.getIntWidth(GetExprType(E));
10051       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
10052 
10053       // If the divisor is constant, use that.
10054       llvm::APSInt divisor;
10055       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
10056         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
10057         if (log2 >= L.Width)
10058           L.Width = (L.NonNegative ? 0 : 1);
10059         else
10060           L.Width = std::min(L.Width - log2, MaxWidth);
10061         return L;
10062       }
10063 
10064       // Otherwise, just use the LHS's width.
10065       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
10066       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10067     }
10068 
10069     // The result of a remainder can't be larger than the result of
10070     // either side.
10071     case BO_Rem: {
10072       // Don't 'pre-truncate' the operands.
10073       unsigned opWidth = C.getIntWidth(GetExprType(E));
10074       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
10075       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
10076 
10077       IntRange meet = IntRange::meet(L, R);
10078       meet.Width = std::min(meet.Width, MaxWidth);
10079       return meet;
10080     }
10081 
10082     // The default behavior is okay for these.
10083     case BO_Mul:
10084     case BO_Add:
10085     case BO_Xor:
10086     case BO_Or:
10087       break;
10088     }
10089 
10090     // The default case is to treat the operation as if it were closed
10091     // on the narrowest type that encompasses both operands.
10092     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
10093     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
10094     return IntRange::join(L, R);
10095   }
10096 
10097   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10098     switch (UO->getOpcode()) {
10099     // Boolean-valued operations are white-listed.
10100     case UO_LNot:
10101       return IntRange::forBoolType();
10102 
10103     // Operations with opaque sources are black-listed.
10104     case UO_Deref:
10105     case UO_AddrOf: // should be impossible
10106       return IntRange::forValueOfType(C, GetExprType(E));
10107 
10108     default:
10109       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
10110     }
10111   }
10112 
10113   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10114     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
10115 
10116   if (const auto *BitField = E->getSourceBitField())
10117     return IntRange(BitField->getBitWidthValue(C),
10118                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10119 
10120   return IntRange::forValueOfType(C, GetExprType(E));
10121 }
10122 
10123 static IntRange GetExprRange(ASTContext &C, const Expr *E) {
10124   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
10125 }
10126 
10127 /// Checks whether the given value, which currently has the given
10128 /// source semantics, has the same value when coerced through the
10129 /// target semantics.
10130 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10131                                  const llvm::fltSemantics &Src,
10132                                  const llvm::fltSemantics &Tgt) {
10133   llvm::APFloat truncated = value;
10134 
10135   bool ignored;
10136   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10137   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10138 
10139   return truncated.bitwiseIsEqual(value);
10140 }
10141 
10142 /// Checks whether the given value, which currently has the given
10143 /// source semantics, has the same value when coerced through the
10144 /// target semantics.
10145 ///
10146 /// The value might be a vector of floats (or a complex number).
10147 static bool IsSameFloatAfterCast(const APValue &value,
10148                                  const llvm::fltSemantics &Src,
10149                                  const llvm::fltSemantics &Tgt) {
10150   if (value.isFloat())
10151     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10152 
10153   if (value.isVector()) {
10154     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10155       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10156         return false;
10157     return true;
10158   }
10159 
10160   assert(value.isComplexFloat());
10161   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10162           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10163 }
10164 
10165 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
10166 
10167 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10168   // Suppress cases where we are comparing against an enum constant.
10169   if (const DeclRefExpr *DR =
10170       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10171     if (isa<EnumConstantDecl>(DR->getDecl()))
10172       return true;
10173 
10174   // Suppress cases where the '0' value is expanded from a macro.
10175   if (E->getBeginLoc().isMacroID())
10176     return true;
10177 
10178   return false;
10179 }
10180 
10181 static bool isKnownToHaveUnsignedValue(Expr *E) {
10182   return E->getType()->isIntegerType() &&
10183          (!E->getType()->isSignedIntegerType() ||
10184           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10185 }
10186 
10187 namespace {
10188 /// The promoted range of values of a type. In general this has the
10189 /// following structure:
10190 ///
10191 ///     |-----------| . . . |-----------|
10192 ///     ^           ^       ^           ^
10193 ///    Min       HoleMin  HoleMax      Max
10194 ///
10195 /// ... where there is only a hole if a signed type is promoted to unsigned
10196 /// (in which case Min and Max are the smallest and largest representable
10197 /// values).
10198 struct PromotedRange {
10199   // Min, or HoleMax if there is a hole.
10200   llvm::APSInt PromotedMin;
10201   // Max, or HoleMin if there is a hole.
10202   llvm::APSInt PromotedMax;
10203 
10204   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10205     if (R.Width == 0)
10206       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10207     else if (R.Width >= BitWidth && !Unsigned) {
10208       // Promotion made the type *narrower*. This happens when promoting
10209       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10210       // Treat all values of 'signed int' as being in range for now.
10211       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10212       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10213     } else {
10214       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10215                         .extOrTrunc(BitWidth);
10216       PromotedMin.setIsUnsigned(Unsigned);
10217 
10218       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10219                         .extOrTrunc(BitWidth);
10220       PromotedMax.setIsUnsigned(Unsigned);
10221     }
10222   }
10223 
10224   // Determine whether this range is contiguous (has no hole).
10225   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10226 
10227   // Where a constant value is within the range.
10228   enum ComparisonResult {
10229     LT = 0x1,
10230     LE = 0x2,
10231     GT = 0x4,
10232     GE = 0x8,
10233     EQ = 0x10,
10234     NE = 0x20,
10235     InRangeFlag = 0x40,
10236 
10237     Less = LE | LT | NE,
10238     Min = LE | InRangeFlag,
10239     InRange = InRangeFlag,
10240     Max = GE | InRangeFlag,
10241     Greater = GE | GT | NE,
10242 
10243     OnlyValue = LE | GE | EQ | InRangeFlag,
10244     InHole = NE
10245   };
10246 
10247   ComparisonResult compare(const llvm::APSInt &Value) const {
10248     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10249            Value.isUnsigned() == PromotedMin.isUnsigned());
10250     if (!isContiguous()) {
10251       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10252       if (Value.isMinValue()) return Min;
10253       if (Value.isMaxValue()) return Max;
10254       if (Value >= PromotedMin) return InRange;
10255       if (Value <= PromotedMax) return InRange;
10256       return InHole;
10257     }
10258 
10259     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10260     case -1: return Less;
10261     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10262     case 1:
10263       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10264       case -1: return InRange;
10265       case 0: return Max;
10266       case 1: return Greater;
10267       }
10268     }
10269 
10270     llvm_unreachable("impossible compare result");
10271   }
10272 
10273   static llvm::Optional<StringRef>
10274   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10275     if (Op == BO_Cmp) {
10276       ComparisonResult LTFlag = LT, GTFlag = GT;
10277       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10278 
10279       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10280       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10281       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10282       return llvm::None;
10283     }
10284 
10285     ComparisonResult TrueFlag, FalseFlag;
10286     if (Op == BO_EQ) {
10287       TrueFlag = EQ;
10288       FalseFlag = NE;
10289     } else if (Op == BO_NE) {
10290       TrueFlag = NE;
10291       FalseFlag = EQ;
10292     } else {
10293       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10294         TrueFlag = LT;
10295         FalseFlag = GE;
10296       } else {
10297         TrueFlag = GT;
10298         FalseFlag = LE;
10299       }
10300       if (Op == BO_GE || Op == BO_LE)
10301         std::swap(TrueFlag, FalseFlag);
10302     }
10303     if (R & TrueFlag)
10304       return StringRef("true");
10305     if (R & FalseFlag)
10306       return StringRef("false");
10307     return llvm::None;
10308   }
10309 };
10310 }
10311 
10312 static bool HasEnumType(Expr *E) {
10313   // Strip off implicit integral promotions.
10314   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10315     if (ICE->getCastKind() != CK_IntegralCast &&
10316         ICE->getCastKind() != CK_NoOp)
10317       break;
10318     E = ICE->getSubExpr();
10319   }
10320 
10321   return E->getType()->isEnumeralType();
10322 }
10323 
10324 static int classifyConstantValue(Expr *Constant) {
10325   // The values of this enumeration are used in the diagnostics
10326   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10327   enum ConstantValueKind {
10328     Miscellaneous = 0,
10329     LiteralTrue,
10330     LiteralFalse
10331   };
10332   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10333     return BL->getValue() ? ConstantValueKind::LiteralTrue
10334                           : ConstantValueKind::LiteralFalse;
10335   return ConstantValueKind::Miscellaneous;
10336 }
10337 
10338 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10339                                         Expr *Constant, Expr *Other,
10340                                         const llvm::APSInt &Value,
10341                                         bool RhsConstant) {
10342   if (S.inTemplateInstantiation())
10343     return false;
10344 
10345   Expr *OriginalOther = Other;
10346 
10347   Constant = Constant->IgnoreParenImpCasts();
10348   Other = Other->IgnoreParenImpCasts();
10349 
10350   // Suppress warnings on tautological comparisons between values of the same
10351   // enumeration type. There are only two ways we could warn on this:
10352   //  - If the constant is outside the range of representable values of
10353   //    the enumeration. In such a case, we should warn about the cast
10354   //    to enumeration type, not about the comparison.
10355   //  - If the constant is the maximum / minimum in-range value. For an
10356   //    enumeratin type, such comparisons can be meaningful and useful.
10357   if (Constant->getType()->isEnumeralType() &&
10358       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10359     return false;
10360 
10361   // TODO: Investigate using GetExprRange() to get tighter bounds
10362   // on the bit ranges.
10363   QualType OtherT = Other->getType();
10364   if (const auto *AT = OtherT->getAs<AtomicType>())
10365     OtherT = AT->getValueType();
10366   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
10367 
10368   // Whether we're treating Other as being a bool because of the form of
10369   // expression despite it having another type (typically 'int' in C).
10370   bool OtherIsBooleanDespiteType =
10371       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10372   if (OtherIsBooleanDespiteType)
10373     OtherRange = IntRange::forBoolType();
10374 
10375   // Determine the promoted range of the other type and see if a comparison of
10376   // the constant against that range is tautological.
10377   PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
10378                                    Value.isUnsigned());
10379   auto Cmp = OtherPromotedRange.compare(Value);
10380   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10381   if (!Result)
10382     return false;
10383 
10384   // Suppress the diagnostic for an in-range comparison if the constant comes
10385   // from a macro or enumerator. We don't want to diagnose
10386   //
10387   //   some_long_value <= INT_MAX
10388   //
10389   // when sizeof(int) == sizeof(long).
10390   bool InRange = Cmp & PromotedRange::InRangeFlag;
10391   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10392     return false;
10393 
10394   // If this is a comparison to an enum constant, include that
10395   // constant in the diagnostic.
10396   const EnumConstantDecl *ED = nullptr;
10397   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10398     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10399 
10400   // Should be enough for uint128 (39 decimal digits)
10401   SmallString<64> PrettySourceValue;
10402   llvm::raw_svector_ostream OS(PrettySourceValue);
10403   if (ED)
10404     OS << '\'' << *ED << "' (" << Value << ")";
10405   else
10406     OS << Value;
10407 
10408   // FIXME: We use a somewhat different formatting for the in-range cases and
10409   // cases involving boolean values for historical reasons. We should pick a
10410   // consistent way of presenting these diagnostics.
10411   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10412     S.DiagRuntimeBehavior(
10413       E->getOperatorLoc(), E,
10414       S.PDiag(!InRange ? diag::warn_out_of_range_compare
10415                        : diag::warn_tautological_bool_compare)
10416           << OS.str() << classifyConstantValue(Constant)
10417           << OtherT << OtherIsBooleanDespiteType << *Result
10418           << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10419   } else {
10420     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10421                         ? (HasEnumType(OriginalOther)
10422                                ? diag::warn_unsigned_enum_always_true_comparison
10423                                : diag::warn_unsigned_always_true_comparison)
10424                         : diag::warn_tautological_constant_compare;
10425 
10426     S.Diag(E->getOperatorLoc(), Diag)
10427         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10428         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10429   }
10430 
10431   return true;
10432 }
10433 
10434 /// Analyze the operands of the given comparison.  Implements the
10435 /// fallback case from AnalyzeComparison.
10436 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10437   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10438   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10439 }
10440 
10441 /// Implements -Wsign-compare.
10442 ///
10443 /// \param E the binary operator to check for warnings
10444 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10445   // The type the comparison is being performed in.
10446   QualType T = E->getLHS()->getType();
10447 
10448   // Only analyze comparison operators where both sides have been converted to
10449   // the same type.
10450   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10451     return AnalyzeImpConvsInComparison(S, E);
10452 
10453   // Don't analyze value-dependent comparisons directly.
10454   if (E->isValueDependent())
10455     return AnalyzeImpConvsInComparison(S, E);
10456 
10457   Expr *LHS = E->getLHS();
10458   Expr *RHS = E->getRHS();
10459 
10460   if (T->isIntegralType(S.Context)) {
10461     llvm::APSInt RHSValue;
10462     llvm::APSInt LHSValue;
10463 
10464     bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
10465     bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
10466 
10467     // We don't care about expressions whose result is a constant.
10468     if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
10469       return AnalyzeImpConvsInComparison(S, E);
10470 
10471     // We only care about expressions where just one side is literal
10472     if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
10473       // Is the constant on the RHS or LHS?
10474       const bool RhsConstant = IsRHSIntegralLiteral;
10475       Expr *Const = RhsConstant ? RHS : LHS;
10476       Expr *Other = RhsConstant ? LHS : RHS;
10477       const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
10478 
10479       // Check whether an integer constant comparison results in a value
10480       // of 'true' or 'false'.
10481       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10482         return AnalyzeImpConvsInComparison(S, E);
10483     }
10484   }
10485 
10486   if (!T->hasUnsignedIntegerRepresentation()) {
10487     // We don't do anything special if this isn't an unsigned integral
10488     // comparison:  we're only interested in integral comparisons, and
10489     // signed comparisons only happen in cases we don't care to warn about.
10490     return AnalyzeImpConvsInComparison(S, E);
10491   }
10492 
10493   LHS = LHS->IgnoreParenImpCasts();
10494   RHS = RHS->IgnoreParenImpCasts();
10495 
10496   if (!S.getLangOpts().CPlusPlus) {
10497     // Avoid warning about comparison of integers with different signs when
10498     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10499     // the type of `E`.
10500     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10501       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10502     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10503       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10504   }
10505 
10506   // Check to see if one of the (unmodified) operands is of different
10507   // signedness.
10508   Expr *signedOperand, *unsignedOperand;
10509   if (LHS->getType()->hasSignedIntegerRepresentation()) {
10510     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10511            "unsigned comparison between two signed integer expressions?");
10512     signedOperand = LHS;
10513     unsignedOperand = RHS;
10514   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10515     signedOperand = RHS;
10516     unsignedOperand = LHS;
10517   } else {
10518     return AnalyzeImpConvsInComparison(S, E);
10519   }
10520 
10521   // Otherwise, calculate the effective range of the signed operand.
10522   IntRange signedRange = GetExprRange(S.Context, signedOperand);
10523 
10524   // Go ahead and analyze implicit conversions in the operands.  Note
10525   // that we skip the implicit conversions on both sides.
10526   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10527   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10528 
10529   // If the signed range is non-negative, -Wsign-compare won't fire.
10530   if (signedRange.NonNegative)
10531     return;
10532 
10533   // For (in)equality comparisons, if the unsigned operand is a
10534   // constant which cannot collide with a overflowed signed operand,
10535   // then reinterpreting the signed operand as unsigned will not
10536   // change the result of the comparison.
10537   if (E->isEqualityOp()) {
10538     unsigned comparisonWidth = S.Context.getIntWidth(T);
10539     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
10540 
10541     // We should never be unable to prove that the unsigned operand is
10542     // non-negative.
10543     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
10544 
10545     if (unsignedRange.Width < comparisonWidth)
10546       return;
10547   }
10548 
10549   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10550     S.PDiag(diag::warn_mixed_sign_comparison)
10551       << LHS->getType() << RHS->getType()
10552       << LHS->getSourceRange() << RHS->getSourceRange());
10553 }
10554 
10555 /// Analyzes an attempt to assign the given value to a bitfield.
10556 ///
10557 /// Returns true if there was something fishy about the attempt.
10558 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
10559                                       SourceLocation InitLoc) {
10560   assert(Bitfield->isBitField());
10561   if (Bitfield->isInvalidDecl())
10562     return false;
10563 
10564   // White-list bool bitfields.
10565   QualType BitfieldType = Bitfield->getType();
10566   if (BitfieldType->isBooleanType())
10567      return false;
10568 
10569   if (BitfieldType->isEnumeralType()) {
10570     EnumDecl *BitfieldEnumDecl = BitfieldType->getAs<EnumType>()->getDecl();
10571     // If the underlying enum type was not explicitly specified as an unsigned
10572     // type and the enum contain only positive values, MSVC++ will cause an
10573     // inconsistency by storing this as a signed type.
10574     if (S.getLangOpts().CPlusPlus11 &&
10575         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
10576         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
10577         BitfieldEnumDecl->getNumNegativeBits() == 0) {
10578       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
10579         << BitfieldEnumDecl->getNameAsString();
10580     }
10581   }
10582 
10583   if (Bitfield->getType()->isBooleanType())
10584     return false;
10585 
10586   // Ignore value- or type-dependent expressions.
10587   if (Bitfield->getBitWidth()->isValueDependent() ||
10588       Bitfield->getBitWidth()->isTypeDependent() ||
10589       Init->isValueDependent() ||
10590       Init->isTypeDependent())
10591     return false;
10592 
10593   Expr *OriginalInit = Init->IgnoreParenImpCasts();
10594   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
10595 
10596   Expr::EvalResult Result;
10597   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
10598                                    Expr::SE_AllowSideEffects)) {
10599     // The RHS is not constant.  If the RHS has an enum type, make sure the
10600     // bitfield is wide enough to hold all the values of the enum without
10601     // truncation.
10602     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
10603       EnumDecl *ED = EnumTy->getDecl();
10604       bool SignedBitfield = BitfieldType->isSignedIntegerType();
10605 
10606       // Enum types are implicitly signed on Windows, so check if there are any
10607       // negative enumerators to see if the enum was intended to be signed or
10608       // not.
10609       bool SignedEnum = ED->getNumNegativeBits() > 0;
10610 
10611       // Check for surprising sign changes when assigning enum values to a
10612       // bitfield of different signedness.  If the bitfield is signed and we
10613       // have exactly the right number of bits to store this unsigned enum,
10614       // suggest changing the enum to an unsigned type. This typically happens
10615       // on Windows where unfixed enums always use an underlying type of 'int'.
10616       unsigned DiagID = 0;
10617       if (SignedEnum && !SignedBitfield) {
10618         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
10619       } else if (SignedBitfield && !SignedEnum &&
10620                  ED->getNumPositiveBits() == FieldWidth) {
10621         DiagID = diag::warn_signed_bitfield_enum_conversion;
10622       }
10623 
10624       if (DiagID) {
10625         S.Diag(InitLoc, DiagID) << Bitfield << ED;
10626         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
10627         SourceRange TypeRange =
10628             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
10629         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
10630             << SignedEnum << TypeRange;
10631       }
10632 
10633       // Compute the required bitwidth. If the enum has negative values, we need
10634       // one more bit than the normal number of positive bits to represent the
10635       // sign bit.
10636       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
10637                                                   ED->getNumNegativeBits())
10638                                        : ED->getNumPositiveBits();
10639 
10640       // Check the bitwidth.
10641       if (BitsNeeded > FieldWidth) {
10642         Expr *WidthExpr = Bitfield->getBitWidth();
10643         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
10644             << Bitfield << ED;
10645         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
10646             << BitsNeeded << ED << WidthExpr->getSourceRange();
10647       }
10648     }
10649 
10650     return false;
10651   }
10652 
10653   llvm::APSInt Value = Result.Val.getInt();
10654 
10655   unsigned OriginalWidth = Value.getBitWidth();
10656 
10657   if (!Value.isSigned() || Value.isNegative())
10658     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
10659       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
10660         OriginalWidth = Value.getMinSignedBits();
10661 
10662   if (OriginalWidth <= FieldWidth)
10663     return false;
10664 
10665   // Compute the value which the bitfield will contain.
10666   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
10667   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
10668 
10669   // Check whether the stored value is equal to the original value.
10670   TruncatedValue = TruncatedValue.extend(OriginalWidth);
10671   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
10672     return false;
10673 
10674   // Special-case bitfields of width 1: booleans are naturally 0/1, and
10675   // therefore don't strictly fit into a signed bitfield of width 1.
10676   if (FieldWidth == 1 && Value == 1)
10677     return false;
10678 
10679   std::string PrettyValue = Value.toString(10);
10680   std::string PrettyTrunc = TruncatedValue.toString(10);
10681 
10682   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
10683     << PrettyValue << PrettyTrunc << OriginalInit->getType()
10684     << Init->getSourceRange();
10685 
10686   return true;
10687 }
10688 
10689 /// Analyze the given simple or compound assignment for warning-worthy
10690 /// operations.
10691 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
10692   // Just recurse on the LHS.
10693   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10694 
10695   // We want to recurse on the RHS as normal unless we're assigning to
10696   // a bitfield.
10697   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
10698     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
10699                                   E->getOperatorLoc())) {
10700       // Recurse, ignoring any implicit conversions on the RHS.
10701       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
10702                                         E->getOperatorLoc());
10703     }
10704   }
10705 
10706   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10707 
10708   // Diagnose implicitly sequentially-consistent atomic assignment.
10709   if (E->getLHS()->getType()->isAtomicType())
10710     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
10711 }
10712 
10713 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10714 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
10715                             SourceLocation CContext, unsigned diag,
10716                             bool pruneControlFlow = false) {
10717   if (pruneControlFlow) {
10718     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10719                           S.PDiag(diag)
10720                             << SourceType << T << E->getSourceRange()
10721                             << SourceRange(CContext));
10722     return;
10723   }
10724   S.Diag(E->getExprLoc(), diag)
10725     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
10726 }
10727 
10728 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10729 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
10730                             SourceLocation CContext,
10731                             unsigned diag, bool pruneControlFlow = false) {
10732   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
10733 }
10734 
10735 /// Diagnose an implicit cast from a floating point value to an integer value.
10736 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
10737                                     SourceLocation CContext) {
10738   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
10739   const bool PruneWarnings = S.inTemplateInstantiation();
10740 
10741   Expr *InnerE = E->IgnoreParenImpCasts();
10742   // We also want to warn on, e.g., "int i = -1.234"
10743   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
10744     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
10745       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
10746 
10747   const bool IsLiteral =
10748       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
10749 
10750   llvm::APFloat Value(0.0);
10751   bool IsConstant =
10752     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
10753   if (!IsConstant) {
10754     return DiagnoseImpCast(S, E, T, CContext,
10755                            diag::warn_impcast_float_integer, PruneWarnings);
10756   }
10757 
10758   bool isExact = false;
10759 
10760   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
10761                             T->hasUnsignedIntegerRepresentation());
10762   llvm::APFloat::opStatus Result = Value.convertToInteger(
10763       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
10764 
10765   if (Result == llvm::APFloat::opOK && isExact) {
10766     if (IsLiteral) return;
10767     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
10768                            PruneWarnings);
10769   }
10770 
10771   // Conversion of a floating-point value to a non-bool integer where the
10772   // integral part cannot be represented by the integer type is undefined.
10773   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
10774     return DiagnoseImpCast(
10775         S, E, T, CContext,
10776         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
10777                   : diag::warn_impcast_float_to_integer_out_of_range,
10778         PruneWarnings);
10779 
10780   unsigned DiagID = 0;
10781   if (IsLiteral) {
10782     // Warn on floating point literal to integer.
10783     DiagID = diag::warn_impcast_literal_float_to_integer;
10784   } else if (IntegerValue == 0) {
10785     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
10786       return DiagnoseImpCast(S, E, T, CContext,
10787                              diag::warn_impcast_float_integer, PruneWarnings);
10788     }
10789     // Warn on non-zero to zero conversion.
10790     DiagID = diag::warn_impcast_float_to_integer_zero;
10791   } else {
10792     if (IntegerValue.isUnsigned()) {
10793       if (!IntegerValue.isMaxValue()) {
10794         return DiagnoseImpCast(S, E, T, CContext,
10795                                diag::warn_impcast_float_integer, PruneWarnings);
10796       }
10797     } else {  // IntegerValue.isSigned()
10798       if (!IntegerValue.isMaxSignedValue() &&
10799           !IntegerValue.isMinSignedValue()) {
10800         return DiagnoseImpCast(S, E, T, CContext,
10801                                diag::warn_impcast_float_integer, PruneWarnings);
10802       }
10803     }
10804     // Warn on evaluatable floating point expression to integer conversion.
10805     DiagID = diag::warn_impcast_float_to_integer;
10806   }
10807 
10808   // FIXME: Force the precision of the source value down so we don't print
10809   // digits which are usually useless (we don't really care here if we
10810   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
10811   // would automatically print the shortest representation, but it's a bit
10812   // tricky to implement.
10813   SmallString<16> PrettySourceValue;
10814   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
10815   precision = (precision * 59 + 195) / 196;
10816   Value.toString(PrettySourceValue, precision);
10817 
10818   SmallString<16> PrettyTargetValue;
10819   if (IsBool)
10820     PrettyTargetValue = Value.isZero() ? "false" : "true";
10821   else
10822     IntegerValue.toString(PrettyTargetValue);
10823 
10824   if (PruneWarnings) {
10825     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10826                           S.PDiag(DiagID)
10827                               << E->getType() << T.getUnqualifiedType()
10828                               << PrettySourceValue << PrettyTargetValue
10829                               << E->getSourceRange() << SourceRange(CContext));
10830   } else {
10831     S.Diag(E->getExprLoc(), DiagID)
10832         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
10833         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
10834   }
10835 }
10836 
10837 /// Analyze the given compound assignment for the possible losing of
10838 /// floating-point precision.
10839 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
10840   assert(isa<CompoundAssignOperator>(E) &&
10841          "Must be compound assignment operation");
10842   // Recurse on the LHS and RHS in here
10843   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10844   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10845 
10846   if (E->getLHS()->getType()->isAtomicType())
10847     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
10848 
10849   // Now check the outermost expression
10850   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
10851   const auto *RBT = cast<CompoundAssignOperator>(E)
10852                         ->getComputationResultType()
10853                         ->getAs<BuiltinType>();
10854 
10855   // The below checks assume source is floating point.
10856   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
10857 
10858   // If source is floating point but target is an integer.
10859   if (ResultBT->isInteger())
10860     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
10861                            E->getExprLoc(), diag::warn_impcast_float_integer);
10862 
10863   if (!ResultBT->isFloatingPoint())
10864     return;
10865 
10866   // If both source and target are floating points, warn about losing precision.
10867   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
10868       QualType(ResultBT, 0), QualType(RBT, 0));
10869   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
10870     // warn about dropping FP rank.
10871     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
10872                     diag::warn_impcast_float_result_precision);
10873 }
10874 
10875 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
10876                                       IntRange Range) {
10877   if (!Range.Width) return "0";
10878 
10879   llvm::APSInt ValueInRange = Value;
10880   ValueInRange.setIsSigned(!Range.NonNegative);
10881   ValueInRange = ValueInRange.trunc(Range.Width);
10882   return ValueInRange.toString(10);
10883 }
10884 
10885 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
10886   if (!isa<ImplicitCastExpr>(Ex))
10887     return false;
10888 
10889   Expr *InnerE = Ex->IgnoreParenImpCasts();
10890   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
10891   const Type *Source =
10892     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
10893   if (Target->isDependentType())
10894     return false;
10895 
10896   const BuiltinType *FloatCandidateBT =
10897     dyn_cast<BuiltinType>(ToBool ? Source : Target);
10898   const Type *BoolCandidateType = ToBool ? Target : Source;
10899 
10900   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
10901           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
10902 }
10903 
10904 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
10905                                              SourceLocation CC) {
10906   unsigned NumArgs = TheCall->getNumArgs();
10907   for (unsigned i = 0; i < NumArgs; ++i) {
10908     Expr *CurrA = TheCall->getArg(i);
10909     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
10910       continue;
10911 
10912     bool IsSwapped = ((i > 0) &&
10913         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
10914     IsSwapped |= ((i < (NumArgs - 1)) &&
10915         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
10916     if (IsSwapped) {
10917       // Warn on this floating-point to bool conversion.
10918       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
10919                       CurrA->getType(), CC,
10920                       diag::warn_impcast_floating_point_to_bool);
10921     }
10922   }
10923 }
10924 
10925 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
10926                                    SourceLocation CC) {
10927   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
10928                         E->getExprLoc()))
10929     return;
10930 
10931   // Don't warn on functions which have return type nullptr_t.
10932   if (isa<CallExpr>(E))
10933     return;
10934 
10935   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
10936   const Expr::NullPointerConstantKind NullKind =
10937       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
10938   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
10939     return;
10940 
10941   // Return if target type is a safe conversion.
10942   if (T->isAnyPointerType() || T->isBlockPointerType() ||
10943       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
10944     return;
10945 
10946   SourceLocation Loc = E->getSourceRange().getBegin();
10947 
10948   // Venture through the macro stacks to get to the source of macro arguments.
10949   // The new location is a better location than the complete location that was
10950   // passed in.
10951   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
10952   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
10953 
10954   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
10955   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
10956     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
10957         Loc, S.SourceMgr, S.getLangOpts());
10958     if (MacroName == "NULL")
10959       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
10960   }
10961 
10962   // Only warn if the null and context location are in the same macro expansion.
10963   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
10964     return;
10965 
10966   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
10967       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
10968       << FixItHint::CreateReplacement(Loc,
10969                                       S.getFixItZeroLiteralForType(T, Loc));
10970 }
10971 
10972 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
10973                                   ObjCArrayLiteral *ArrayLiteral);
10974 
10975 static void
10976 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
10977                            ObjCDictionaryLiteral *DictionaryLiteral);
10978 
10979 /// Check a single element within a collection literal against the
10980 /// target element type.
10981 static void checkObjCCollectionLiteralElement(Sema &S,
10982                                               QualType TargetElementType,
10983                                               Expr *Element,
10984                                               unsigned ElementKind) {
10985   // Skip a bitcast to 'id' or qualified 'id'.
10986   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
10987     if (ICE->getCastKind() == CK_BitCast &&
10988         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
10989       Element = ICE->getSubExpr();
10990   }
10991 
10992   QualType ElementType = Element->getType();
10993   ExprResult ElementResult(Element);
10994   if (ElementType->getAs<ObjCObjectPointerType>() &&
10995       S.CheckSingleAssignmentConstraints(TargetElementType,
10996                                          ElementResult,
10997                                          false, false)
10998         != Sema::Compatible) {
10999     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11000         << ElementType << ElementKind << TargetElementType
11001         << Element->getSourceRange();
11002   }
11003 
11004   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11005     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11006   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11007     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11008 }
11009 
11010 /// Check an Objective-C array literal being converted to the given
11011 /// target type.
11012 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11013                                   ObjCArrayLiteral *ArrayLiteral) {
11014   if (!S.NSArrayDecl)
11015     return;
11016 
11017   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11018   if (!TargetObjCPtr)
11019     return;
11020 
11021   if (TargetObjCPtr->isUnspecialized() ||
11022       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11023         != S.NSArrayDecl->getCanonicalDecl())
11024     return;
11025 
11026   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11027   if (TypeArgs.size() != 1)
11028     return;
11029 
11030   QualType TargetElementType = TypeArgs[0];
11031   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11032     checkObjCCollectionLiteralElement(S, TargetElementType,
11033                                       ArrayLiteral->getElement(I),
11034                                       0);
11035   }
11036 }
11037 
11038 /// Check an Objective-C dictionary literal being converted to the given
11039 /// target type.
11040 static void
11041 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11042                            ObjCDictionaryLiteral *DictionaryLiteral) {
11043   if (!S.NSDictionaryDecl)
11044     return;
11045 
11046   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11047   if (!TargetObjCPtr)
11048     return;
11049 
11050   if (TargetObjCPtr->isUnspecialized() ||
11051       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11052         != S.NSDictionaryDecl->getCanonicalDecl())
11053     return;
11054 
11055   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11056   if (TypeArgs.size() != 2)
11057     return;
11058 
11059   QualType TargetKeyType = TypeArgs[0];
11060   QualType TargetObjectType = TypeArgs[1];
11061   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11062     auto Element = DictionaryLiteral->getKeyValueElement(I);
11063     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11064     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11065   }
11066 }
11067 
11068 // Helper function to filter out cases for constant width constant conversion.
11069 // Don't warn on char array initialization or for non-decimal values.
11070 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11071                                           SourceLocation CC) {
11072   // If initializing from a constant, and the constant starts with '0',
11073   // then it is a binary, octal, or hexadecimal.  Allow these constants
11074   // to fill all the bits, even if there is a sign change.
11075   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11076     const char FirstLiteralCharacter =
11077         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11078     if (FirstLiteralCharacter == '0')
11079       return false;
11080   }
11081 
11082   // If the CC location points to a '{', and the type is char, then assume
11083   // assume it is an array initialization.
11084   if (CC.isValid() && T->isCharType()) {
11085     const char FirstContextCharacter =
11086         S.getSourceManager().getCharacterData(CC)[0];
11087     if (FirstContextCharacter == '{')
11088       return false;
11089   }
11090 
11091   return true;
11092 }
11093 
11094 static void
11095 CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC,
11096                         bool *ICContext = nullptr) {
11097   if (E->isTypeDependent() || E->isValueDependent()) return;
11098 
11099   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11100   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11101   if (Source == Target) return;
11102   if (Target->isDependentType()) return;
11103 
11104   // If the conversion context location is invalid don't complain. We also
11105   // don't want to emit a warning if the issue occurs from the expansion of
11106   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11107   // delay this check as long as possible. Once we detect we are in that
11108   // scenario, we just return.
11109   if (CC.isInvalid())
11110     return;
11111 
11112   if (Source->isAtomicType())
11113     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11114 
11115   // Diagnose implicit casts to bool.
11116   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11117     if (isa<StringLiteral>(E))
11118       // Warn on string literal to bool.  Checks for string literals in logical
11119       // and expressions, for instance, assert(0 && "error here"), are
11120       // prevented by a check in AnalyzeImplicitConversions().
11121       return DiagnoseImpCast(S, E, T, CC,
11122                              diag::warn_impcast_string_literal_to_bool);
11123     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11124         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11125       // This covers the literal expressions that evaluate to Objective-C
11126       // objects.
11127       return DiagnoseImpCast(S, E, T, CC,
11128                              diag::warn_impcast_objective_c_literal_to_bool);
11129     }
11130     if (Source->isPointerType() || Source->canDecayToPointerType()) {
11131       // Warn on pointer to bool conversion that is always true.
11132       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11133                                      SourceRange(CC));
11134     }
11135   }
11136 
11137   // Check implicit casts from Objective-C collection literals to specialized
11138   // collection types, e.g., NSArray<NSString *> *.
11139   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11140     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
11141   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11142     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
11143 
11144   // Strip vector types.
11145   if (isa<VectorType>(Source)) {
11146     if (!isa<VectorType>(Target)) {
11147       if (S.SourceMgr.isInSystemMacro(CC))
11148         return;
11149       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
11150     }
11151 
11152     // If the vector cast is cast between two vectors of the same size, it is
11153     // a bitcast, not a conversion.
11154     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
11155       return;
11156 
11157     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11158     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11159   }
11160   if (auto VecTy = dyn_cast<VectorType>(Target))
11161     Target = VecTy->getElementType().getTypePtr();
11162 
11163   // Strip complex types.
11164   if (isa<ComplexType>(Source)) {
11165     if (!isa<ComplexType>(Target)) {
11166       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11167         return;
11168 
11169       return DiagnoseImpCast(S, E, T, CC,
11170                              S.getLangOpts().CPlusPlus
11171                                  ? diag::err_impcast_complex_scalar
11172                                  : diag::warn_impcast_complex_scalar);
11173     }
11174 
11175     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11176     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11177   }
11178 
11179   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11180   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11181 
11182   // If the source is floating point...
11183   if (SourceBT && SourceBT->isFloatingPoint()) {
11184     // ...and the target is floating point...
11185     if (TargetBT && TargetBT->isFloatingPoint()) {
11186       // ...then warn if we're dropping FP rank.
11187 
11188       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11189           QualType(SourceBT, 0), QualType(TargetBT, 0));
11190       if (Order > 0) {
11191         // Don't warn about float constants that are precisely
11192         // representable in the target type.
11193         Expr::EvalResult result;
11194         if (E->EvaluateAsRValue(result, S.Context)) {
11195           // Value might be a float, a float vector, or a float complex.
11196           if (IsSameFloatAfterCast(result.Val,
11197                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11198                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11199             return;
11200         }
11201 
11202         if (S.SourceMgr.isInSystemMacro(CC))
11203           return;
11204 
11205         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
11206       }
11207       // ... or possibly if we're increasing rank, too
11208       else if (Order < 0) {
11209         if (S.SourceMgr.isInSystemMacro(CC))
11210           return;
11211 
11212         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
11213       }
11214       return;
11215     }
11216 
11217     // If the target is integral, always warn.
11218     if (TargetBT && TargetBT->isInteger()) {
11219       if (S.SourceMgr.isInSystemMacro(CC))
11220         return;
11221 
11222       DiagnoseFloatingImpCast(S, E, T, CC);
11223     }
11224 
11225     // Detect the case where a call result is converted from floating-point to
11226     // to bool, and the final argument to the call is converted from bool, to
11227     // discover this typo:
11228     //
11229     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11230     //
11231     // FIXME: This is an incredibly special case; is there some more general
11232     // way to detect this class of misplaced-parentheses bug?
11233     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11234       // Check last argument of function call to see if it is an
11235       // implicit cast from a type matching the type the result
11236       // is being cast to.
11237       CallExpr *CEx = cast<CallExpr>(E);
11238       if (unsigned NumArgs = CEx->getNumArgs()) {
11239         Expr *LastA = CEx->getArg(NumArgs - 1);
11240         Expr *InnerE = LastA->IgnoreParenImpCasts();
11241         if (isa<ImplicitCastExpr>(LastA) &&
11242             InnerE->getType()->isBooleanType()) {
11243           // Warn on this floating-point to bool conversion
11244           DiagnoseImpCast(S, E, T, CC,
11245                           diag::warn_impcast_floating_point_to_bool);
11246         }
11247       }
11248     }
11249     return;
11250   }
11251 
11252   // Valid casts involving fixed point types should be accounted for here.
11253   if (Source->isFixedPointType()) {
11254     if (Target->isUnsaturatedFixedPointType()) {
11255       Expr::EvalResult Result;
11256       if (E->EvaluateAsFixedPoint(Result, S.Context,
11257                                   Expr::SE_AllowSideEffects)) {
11258         APFixedPoint Value = Result.Val.getFixedPoint();
11259         APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
11260         APFixedPoint MinVal = S.Context.getFixedPointMin(T);
11261         if (Value > MaxVal || Value < MinVal) {
11262           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11263                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11264                                     << Value.toString() << T
11265                                     << E->getSourceRange()
11266                                     << clang::SourceRange(CC));
11267           return;
11268         }
11269       }
11270     } else if (Target->isIntegerType()) {
11271       Expr::EvalResult Result;
11272       if (E->EvaluateAsFixedPoint(Result, S.Context,
11273                                   Expr::SE_AllowSideEffects)) {
11274         APFixedPoint FXResult = Result.Val.getFixedPoint();
11275 
11276         bool Overflowed;
11277         llvm::APSInt IntResult = FXResult.convertToInt(
11278             S.Context.getIntWidth(T),
11279             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
11280 
11281         if (Overflowed) {
11282           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11283                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11284                                     << FXResult.toString() << T
11285                                     << E->getSourceRange()
11286                                     << clang::SourceRange(CC));
11287           return;
11288         }
11289       }
11290     }
11291   } else if (Target->isUnsaturatedFixedPointType()) {
11292     if (Source->isIntegerType()) {
11293       Expr::EvalResult Result;
11294       if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11295         llvm::APSInt Value = Result.Val.getInt();
11296 
11297         bool Overflowed;
11298         APFixedPoint IntResult = APFixedPoint::getFromIntValue(
11299             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
11300 
11301         if (Overflowed) {
11302           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11303                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11304                                     << Value.toString(/*radix=*/10) << T
11305                                     << E->getSourceRange()
11306                                     << clang::SourceRange(CC));
11307           return;
11308         }
11309       }
11310     }
11311   }
11312 
11313   DiagnoseNullConversion(S, E, T, CC);
11314 
11315   S.DiscardMisalignedMemberAddress(Target, E);
11316 
11317   if (!Source->isIntegerType() || !Target->isIntegerType())
11318     return;
11319 
11320   // TODO: remove this early return once the false positives for constant->bool
11321   // in templates, macros, etc, are reduced or removed.
11322   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11323     return;
11324 
11325   IntRange SourceRange = GetExprRange(S.Context, E);
11326   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
11327 
11328   if (SourceRange.Width > TargetRange.Width) {
11329     // If the source is a constant, use a default-on diagnostic.
11330     // TODO: this should happen for bitfield stores, too.
11331     Expr::EvalResult Result;
11332     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11333       llvm::APSInt Value(32);
11334       Value = Result.Val.getInt();
11335 
11336       if (S.SourceMgr.isInSystemMacro(CC))
11337         return;
11338 
11339       std::string PrettySourceValue = Value.toString(10);
11340       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11341 
11342       S.DiagRuntimeBehavior(E->getExprLoc(), E,
11343         S.PDiag(diag::warn_impcast_integer_precision_constant)
11344             << PrettySourceValue << PrettyTargetValue
11345             << E->getType() << T << E->getSourceRange()
11346             << clang::SourceRange(CC));
11347       return;
11348     }
11349 
11350     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11351     if (S.SourceMgr.isInSystemMacro(CC))
11352       return;
11353 
11354     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
11355       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
11356                              /* pruneControlFlow */ true);
11357     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
11358   }
11359 
11360   if (TargetRange.Width > SourceRange.Width) {
11361     if (auto *UO = dyn_cast<UnaryOperator>(E))
11362       if (UO->getOpcode() == UO_Minus)
11363         if (Source->isUnsignedIntegerType()) {
11364           if (Target->isUnsignedIntegerType())
11365             return DiagnoseImpCast(S, E, T, CC,
11366                                    diag::warn_impcast_high_order_zero_bits);
11367           if (Target->isSignedIntegerType())
11368             return DiagnoseImpCast(S, E, T, CC,
11369                                    diag::warn_impcast_nonnegative_result);
11370         }
11371   }
11372 
11373   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
11374       SourceRange.NonNegative && Source->isSignedIntegerType()) {
11375     // Warn when doing a signed to signed conversion, warn if the positive
11376     // source value is exactly the width of the target type, which will
11377     // cause a negative value to be stored.
11378 
11379     Expr::EvalResult Result;
11380     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
11381         !S.SourceMgr.isInSystemMacro(CC)) {
11382       llvm::APSInt Value = Result.Val.getInt();
11383       if (isSameWidthConstantConversion(S, E, T, CC)) {
11384         std::string PrettySourceValue = Value.toString(10);
11385         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11386 
11387         S.DiagRuntimeBehavior(
11388             E->getExprLoc(), E,
11389             S.PDiag(diag::warn_impcast_integer_precision_constant)
11390                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
11391                 << E->getSourceRange() << clang::SourceRange(CC));
11392         return;
11393       }
11394     }
11395 
11396     // Fall through for non-constants to give a sign conversion warning.
11397   }
11398 
11399   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
11400       (!TargetRange.NonNegative && SourceRange.NonNegative &&
11401        SourceRange.Width == TargetRange.Width)) {
11402     if (S.SourceMgr.isInSystemMacro(CC))
11403       return;
11404 
11405     unsigned DiagID = diag::warn_impcast_integer_sign;
11406 
11407     // Traditionally, gcc has warned about this under -Wsign-compare.
11408     // We also want to warn about it in -Wconversion.
11409     // So if -Wconversion is off, use a completely identical diagnostic
11410     // in the sign-compare group.
11411     // The conditional-checking code will
11412     if (ICContext) {
11413       DiagID = diag::warn_impcast_integer_sign_conditional;
11414       *ICContext = true;
11415     }
11416 
11417     return DiagnoseImpCast(S, E, T, CC, DiagID);
11418   }
11419 
11420   // Diagnose conversions between different enumeration types.
11421   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
11422   // type, to give us better diagnostics.
11423   QualType SourceType = E->getType();
11424   if (!S.getLangOpts().CPlusPlus) {
11425     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11426       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
11427         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
11428         SourceType = S.Context.getTypeDeclType(Enum);
11429         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
11430       }
11431   }
11432 
11433   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
11434     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
11435       if (SourceEnum->getDecl()->hasNameForLinkage() &&
11436           TargetEnum->getDecl()->hasNameForLinkage() &&
11437           SourceEnum != TargetEnum) {
11438         if (S.SourceMgr.isInSystemMacro(CC))
11439           return;
11440 
11441         return DiagnoseImpCast(S, E, SourceType, T, CC,
11442                                diag::warn_impcast_different_enum_types);
11443       }
11444 }
11445 
11446 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
11447                                      SourceLocation CC, QualType T);
11448 
11449 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
11450                                     SourceLocation CC, bool &ICContext) {
11451   E = E->IgnoreParenImpCasts();
11452 
11453   if (isa<ConditionalOperator>(E))
11454     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
11455 
11456   AnalyzeImplicitConversions(S, E, CC);
11457   if (E->getType() != T)
11458     return CheckImplicitConversion(S, E, T, CC, &ICContext);
11459 }
11460 
11461 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
11462                                      SourceLocation CC, QualType T) {
11463   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
11464 
11465   bool Suspicious = false;
11466   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
11467   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
11468 
11469   // If -Wconversion would have warned about either of the candidates
11470   // for a signedness conversion to the context type...
11471   if (!Suspicious) return;
11472 
11473   // ...but it's currently ignored...
11474   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
11475     return;
11476 
11477   // ...then check whether it would have warned about either of the
11478   // candidates for a signedness conversion to the condition type.
11479   if (E->getType() == T) return;
11480 
11481   Suspicious = false;
11482   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
11483                           E->getType(), CC, &Suspicious);
11484   if (!Suspicious)
11485     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
11486                             E->getType(), CC, &Suspicious);
11487 }
11488 
11489 /// Check conversion of given expression to boolean.
11490 /// Input argument E is a logical expression.
11491 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
11492   if (S.getLangOpts().Bool)
11493     return;
11494   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
11495     return;
11496   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
11497 }
11498 
11499 /// AnalyzeImplicitConversions - Find and report any interesting
11500 /// implicit conversions in the given expression.  There are a couple
11501 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
11502 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE,
11503                                        SourceLocation CC) {
11504   QualType T = OrigE->getType();
11505   Expr *E = OrigE->IgnoreParenImpCasts();
11506 
11507   if (E->isTypeDependent() || E->isValueDependent())
11508     return;
11509 
11510   // For conditional operators, we analyze the arguments as if they
11511   // were being fed directly into the output.
11512   if (isa<ConditionalOperator>(E)) {
11513     ConditionalOperator *CO = cast<ConditionalOperator>(E);
11514     CheckConditionalOperator(S, CO, CC, T);
11515     return;
11516   }
11517 
11518   // Check implicit argument conversions for function calls.
11519   if (CallExpr *Call = dyn_cast<CallExpr>(E))
11520     CheckImplicitArgumentConversions(S, Call, CC);
11521 
11522   // Go ahead and check any implicit conversions we might have skipped.
11523   // The non-canonical typecheck is just an optimization;
11524   // CheckImplicitConversion will filter out dead implicit conversions.
11525   if (E->getType() != T)
11526     CheckImplicitConversion(S, E, T, CC);
11527 
11528   // Now continue drilling into this expression.
11529 
11530   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
11531     // The bound subexpressions in a PseudoObjectExpr are not reachable
11532     // as transitive children.
11533     // FIXME: Use a more uniform representation for this.
11534     for (auto *SE : POE->semantics())
11535       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
11536         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
11537   }
11538 
11539   // Skip past explicit casts.
11540   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
11541     E = CE->getSubExpr()->IgnoreParenImpCasts();
11542     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
11543       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11544     return AnalyzeImplicitConversions(S, E, CC);
11545   }
11546 
11547   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11548     // Do a somewhat different check with comparison operators.
11549     if (BO->isComparisonOp())
11550       return AnalyzeComparison(S, BO);
11551 
11552     // And with simple assignments.
11553     if (BO->getOpcode() == BO_Assign)
11554       return AnalyzeAssignment(S, BO);
11555     // And with compound assignments.
11556     if (BO->isAssignmentOp())
11557       return AnalyzeCompoundAssignment(S, BO);
11558   }
11559 
11560   // These break the otherwise-useful invariant below.  Fortunately,
11561   // we don't really need to recurse into them, because any internal
11562   // expressions should have been analyzed already when they were
11563   // built into statements.
11564   if (isa<StmtExpr>(E)) return;
11565 
11566   // Don't descend into unevaluated contexts.
11567   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
11568 
11569   // Now just recurse over the expression's children.
11570   CC = E->getExprLoc();
11571   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
11572   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
11573   for (Stmt *SubStmt : E->children()) {
11574     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
11575     if (!ChildExpr)
11576       continue;
11577 
11578     if (IsLogicalAndOperator &&
11579         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
11580       // Ignore checking string literals that are in logical and operators.
11581       // This is a common pattern for asserts.
11582       continue;
11583     AnalyzeImplicitConversions(S, ChildExpr, CC);
11584   }
11585 
11586   if (BO && BO->isLogicalOp()) {
11587     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
11588     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11589       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11590 
11591     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
11592     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11593       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11594   }
11595 
11596   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
11597     if (U->getOpcode() == UO_LNot) {
11598       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
11599     } else if (U->getOpcode() != UO_AddrOf) {
11600       if (U->getSubExpr()->getType()->isAtomicType())
11601         S.Diag(U->getSubExpr()->getBeginLoc(),
11602                diag::warn_atomic_implicit_seq_cst);
11603     }
11604   }
11605 }
11606 
11607 /// Diagnose integer type and any valid implicit conversion to it.
11608 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
11609   // Taking into account implicit conversions,
11610   // allow any integer.
11611   if (!E->getType()->isIntegerType()) {
11612     S.Diag(E->getBeginLoc(),
11613            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
11614     return true;
11615   }
11616   // Potentially emit standard warnings for implicit conversions if enabled
11617   // using -Wconversion.
11618   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
11619   return false;
11620 }
11621 
11622 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
11623 // Returns true when emitting a warning about taking the address of a reference.
11624 static bool CheckForReference(Sema &SemaRef, const Expr *E,
11625                               const PartialDiagnostic &PD) {
11626   E = E->IgnoreParenImpCasts();
11627 
11628   const FunctionDecl *FD = nullptr;
11629 
11630   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11631     if (!DRE->getDecl()->getType()->isReferenceType())
11632       return false;
11633   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11634     if (!M->getMemberDecl()->getType()->isReferenceType())
11635       return false;
11636   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
11637     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
11638       return false;
11639     FD = Call->getDirectCallee();
11640   } else {
11641     return false;
11642   }
11643 
11644   SemaRef.Diag(E->getExprLoc(), PD);
11645 
11646   // If possible, point to location of function.
11647   if (FD) {
11648     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
11649   }
11650 
11651   return true;
11652 }
11653 
11654 // Returns true if the SourceLocation is expanded from any macro body.
11655 // Returns false if the SourceLocation is invalid, is from not in a macro
11656 // expansion, or is from expanded from a top-level macro argument.
11657 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
11658   if (Loc.isInvalid())
11659     return false;
11660 
11661   while (Loc.isMacroID()) {
11662     if (SM.isMacroBodyExpansion(Loc))
11663       return true;
11664     Loc = SM.getImmediateMacroCallerLoc(Loc);
11665   }
11666 
11667   return false;
11668 }
11669 
11670 /// Diagnose pointers that are always non-null.
11671 /// \param E the expression containing the pointer
11672 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
11673 /// compared to a null pointer
11674 /// \param IsEqual True when the comparison is equal to a null pointer
11675 /// \param Range Extra SourceRange to highlight in the diagnostic
11676 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
11677                                         Expr::NullPointerConstantKind NullKind,
11678                                         bool IsEqual, SourceRange Range) {
11679   if (!E)
11680     return;
11681 
11682   // Don't warn inside macros.
11683   if (E->getExprLoc().isMacroID()) {
11684     const SourceManager &SM = getSourceManager();
11685     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
11686         IsInAnyMacroBody(SM, Range.getBegin()))
11687       return;
11688   }
11689   E = E->IgnoreImpCasts();
11690 
11691   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
11692 
11693   if (isa<CXXThisExpr>(E)) {
11694     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
11695                                 : diag::warn_this_bool_conversion;
11696     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
11697     return;
11698   }
11699 
11700   bool IsAddressOf = false;
11701 
11702   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
11703     if (UO->getOpcode() != UO_AddrOf)
11704       return;
11705     IsAddressOf = true;
11706     E = UO->getSubExpr();
11707   }
11708 
11709   if (IsAddressOf) {
11710     unsigned DiagID = IsCompare
11711                           ? diag::warn_address_of_reference_null_compare
11712                           : diag::warn_address_of_reference_bool_conversion;
11713     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
11714                                          << IsEqual;
11715     if (CheckForReference(*this, E, PD)) {
11716       return;
11717     }
11718   }
11719 
11720   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
11721     bool IsParam = isa<NonNullAttr>(NonnullAttr);
11722     std::string Str;
11723     llvm::raw_string_ostream S(Str);
11724     E->printPretty(S, nullptr, getPrintingPolicy());
11725     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
11726                                 : diag::warn_cast_nonnull_to_bool;
11727     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
11728       << E->getSourceRange() << Range << IsEqual;
11729     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
11730   };
11731 
11732   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
11733   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
11734     if (auto *Callee = Call->getDirectCallee()) {
11735       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
11736         ComplainAboutNonnullParamOrCall(A);
11737         return;
11738       }
11739     }
11740   }
11741 
11742   // Expect to find a single Decl.  Skip anything more complicated.
11743   ValueDecl *D = nullptr;
11744   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
11745     D = R->getDecl();
11746   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11747     D = M->getMemberDecl();
11748   }
11749 
11750   // Weak Decls can be null.
11751   if (!D || D->isWeak())
11752     return;
11753 
11754   // Check for parameter decl with nonnull attribute
11755   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
11756     if (getCurFunction() &&
11757         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
11758       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
11759         ComplainAboutNonnullParamOrCall(A);
11760         return;
11761       }
11762 
11763       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
11764         // Skip function template not specialized yet.
11765         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11766           return;
11767         auto ParamIter = llvm::find(FD->parameters(), PV);
11768         assert(ParamIter != FD->param_end());
11769         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
11770 
11771         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
11772           if (!NonNull->args_size()) {
11773               ComplainAboutNonnullParamOrCall(NonNull);
11774               return;
11775           }
11776 
11777           for (const ParamIdx &ArgNo : NonNull->args()) {
11778             if (ArgNo.getASTIndex() == ParamNo) {
11779               ComplainAboutNonnullParamOrCall(NonNull);
11780               return;
11781             }
11782           }
11783         }
11784       }
11785     }
11786   }
11787 
11788   QualType T = D->getType();
11789   const bool IsArray = T->isArrayType();
11790   const bool IsFunction = T->isFunctionType();
11791 
11792   // Address of function is used to silence the function warning.
11793   if (IsAddressOf && IsFunction) {
11794     return;
11795   }
11796 
11797   // Found nothing.
11798   if (!IsAddressOf && !IsFunction && !IsArray)
11799     return;
11800 
11801   // Pretty print the expression for the diagnostic.
11802   std::string Str;
11803   llvm::raw_string_ostream S(Str);
11804   E->printPretty(S, nullptr, getPrintingPolicy());
11805 
11806   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
11807                               : diag::warn_impcast_pointer_to_bool;
11808   enum {
11809     AddressOf,
11810     FunctionPointer,
11811     ArrayPointer
11812   } DiagType;
11813   if (IsAddressOf)
11814     DiagType = AddressOf;
11815   else if (IsFunction)
11816     DiagType = FunctionPointer;
11817   else if (IsArray)
11818     DiagType = ArrayPointer;
11819   else
11820     llvm_unreachable("Could not determine diagnostic.");
11821   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
11822                                 << Range << IsEqual;
11823 
11824   if (!IsFunction)
11825     return;
11826 
11827   // Suggest '&' to silence the function warning.
11828   Diag(E->getExprLoc(), diag::note_function_warning_silence)
11829       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
11830 
11831   // Check to see if '()' fixit should be emitted.
11832   QualType ReturnType;
11833   UnresolvedSet<4> NonTemplateOverloads;
11834   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
11835   if (ReturnType.isNull())
11836     return;
11837 
11838   if (IsCompare) {
11839     // There are two cases here.  If there is null constant, the only suggest
11840     // for a pointer return type.  If the null is 0, then suggest if the return
11841     // type is a pointer or an integer type.
11842     if (!ReturnType->isPointerType()) {
11843       if (NullKind == Expr::NPCK_ZeroExpression ||
11844           NullKind == Expr::NPCK_ZeroLiteral) {
11845         if (!ReturnType->isIntegerType())
11846           return;
11847       } else {
11848         return;
11849       }
11850     }
11851   } else { // !IsCompare
11852     // For function to bool, only suggest if the function pointer has bool
11853     // return type.
11854     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
11855       return;
11856   }
11857   Diag(E->getExprLoc(), diag::note_function_to_function_call)
11858       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
11859 }
11860 
11861 /// Diagnoses "dangerous" implicit conversions within the given
11862 /// expression (which is a full expression).  Implements -Wconversion
11863 /// and -Wsign-compare.
11864 ///
11865 /// \param CC the "context" location of the implicit conversion, i.e.
11866 ///   the most location of the syntactic entity requiring the implicit
11867 ///   conversion
11868 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
11869   // Don't diagnose in unevaluated contexts.
11870   if (isUnevaluatedContext())
11871     return;
11872 
11873   // Don't diagnose for value- or type-dependent expressions.
11874   if (E->isTypeDependent() || E->isValueDependent())
11875     return;
11876 
11877   // Check for array bounds violations in cases where the check isn't triggered
11878   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
11879   // ArraySubscriptExpr is on the RHS of a variable initialization.
11880   CheckArrayAccess(E);
11881 
11882   // This is not the right CC for (e.g.) a variable initialization.
11883   AnalyzeImplicitConversions(*this, E, CC);
11884 }
11885 
11886 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
11887 /// Input argument E is a logical expression.
11888 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
11889   ::CheckBoolLikeConversion(*this, E, CC);
11890 }
11891 
11892 /// Diagnose when expression is an integer constant expression and its evaluation
11893 /// results in integer overflow
11894 void Sema::CheckForIntOverflow (Expr *E) {
11895   // Use a work list to deal with nested struct initializers.
11896   SmallVector<Expr *, 2> Exprs(1, E);
11897 
11898   do {
11899     Expr *OriginalE = Exprs.pop_back_val();
11900     Expr *E = OriginalE->IgnoreParenCasts();
11901 
11902     if (isa<BinaryOperator>(E)) {
11903       E->EvaluateForOverflow(Context);
11904       continue;
11905     }
11906 
11907     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
11908       Exprs.append(InitList->inits().begin(), InitList->inits().end());
11909     else if (isa<ObjCBoxedExpr>(OriginalE))
11910       E->EvaluateForOverflow(Context);
11911     else if (auto Call = dyn_cast<CallExpr>(E))
11912       Exprs.append(Call->arg_begin(), Call->arg_end());
11913     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
11914       Exprs.append(Message->arg_begin(), Message->arg_end());
11915   } while (!Exprs.empty());
11916 }
11917 
11918 namespace {
11919 
11920 /// Visitor for expressions which looks for unsequenced operations on the
11921 /// same object.
11922 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
11923   using Base = EvaluatedExprVisitor<SequenceChecker>;
11924 
11925   /// A tree of sequenced regions within an expression. Two regions are
11926   /// unsequenced if one is an ancestor or a descendent of the other. When we
11927   /// finish processing an expression with sequencing, such as a comma
11928   /// expression, we fold its tree nodes into its parent, since they are
11929   /// unsequenced with respect to nodes we will visit later.
11930   class SequenceTree {
11931     struct Value {
11932       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
11933       unsigned Parent : 31;
11934       unsigned Merged : 1;
11935     };
11936     SmallVector<Value, 8> Values;
11937 
11938   public:
11939     /// A region within an expression which may be sequenced with respect
11940     /// to some other region.
11941     class Seq {
11942       friend class SequenceTree;
11943 
11944       unsigned Index;
11945 
11946       explicit Seq(unsigned N) : Index(N) {}
11947 
11948     public:
11949       Seq() : Index(0) {}
11950     };
11951 
11952     SequenceTree() { Values.push_back(Value(0)); }
11953     Seq root() const { return Seq(0); }
11954 
11955     /// Create a new sequence of operations, which is an unsequenced
11956     /// subset of \p Parent. This sequence of operations is sequenced with
11957     /// respect to other children of \p Parent.
11958     Seq allocate(Seq Parent) {
11959       Values.push_back(Value(Parent.Index));
11960       return Seq(Values.size() - 1);
11961     }
11962 
11963     /// Merge a sequence of operations into its parent.
11964     void merge(Seq S) {
11965       Values[S.Index].Merged = true;
11966     }
11967 
11968     /// Determine whether two operations are unsequenced. This operation
11969     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
11970     /// should have been merged into its parent as appropriate.
11971     bool isUnsequenced(Seq Cur, Seq Old) {
11972       unsigned C = representative(Cur.Index);
11973       unsigned Target = representative(Old.Index);
11974       while (C >= Target) {
11975         if (C == Target)
11976           return true;
11977         C = Values[C].Parent;
11978       }
11979       return false;
11980     }
11981 
11982   private:
11983     /// Pick a representative for a sequence.
11984     unsigned representative(unsigned K) {
11985       if (Values[K].Merged)
11986         // Perform path compression as we go.
11987         return Values[K].Parent = representative(Values[K].Parent);
11988       return K;
11989     }
11990   };
11991 
11992   /// An object for which we can track unsequenced uses.
11993   using Object = NamedDecl *;
11994 
11995   /// Different flavors of object usage which we track. We only track the
11996   /// least-sequenced usage of each kind.
11997   enum UsageKind {
11998     /// A read of an object. Multiple unsequenced reads are OK.
11999     UK_Use,
12000 
12001     /// A modification of an object which is sequenced before the value
12002     /// computation of the expression, such as ++n in C++.
12003     UK_ModAsValue,
12004 
12005     /// A modification of an object which is not sequenced before the value
12006     /// computation of the expression, such as n++.
12007     UK_ModAsSideEffect,
12008 
12009     UK_Count = UK_ModAsSideEffect + 1
12010   };
12011 
12012   struct Usage {
12013     Expr *Use;
12014     SequenceTree::Seq Seq;
12015 
12016     Usage() : Use(nullptr), Seq() {}
12017   };
12018 
12019   struct UsageInfo {
12020     Usage Uses[UK_Count];
12021 
12022     /// Have we issued a diagnostic for this variable already?
12023     bool Diagnosed;
12024 
12025     UsageInfo() : Uses(), Diagnosed(false) {}
12026   };
12027   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12028 
12029   Sema &SemaRef;
12030 
12031   /// Sequenced regions within the expression.
12032   SequenceTree Tree;
12033 
12034   /// Declaration modifications and references which we have seen.
12035   UsageInfoMap UsageMap;
12036 
12037   /// The region we are currently within.
12038   SequenceTree::Seq Region;
12039 
12040   /// Filled in with declarations which were modified as a side-effect
12041   /// (that is, post-increment operations).
12042   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12043 
12044   /// Expressions to check later. We defer checking these to reduce
12045   /// stack usage.
12046   SmallVectorImpl<Expr *> &WorkList;
12047 
12048   /// RAII object wrapping the visitation of a sequenced subexpression of an
12049   /// expression. At the end of this process, the side-effects of the evaluation
12050   /// become sequenced with respect to the value computation of the result, so
12051   /// we downgrade any UK_ModAsSideEffect within the evaluation to
12052   /// UK_ModAsValue.
12053   struct SequencedSubexpression {
12054     SequencedSubexpression(SequenceChecker &Self)
12055       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12056       Self.ModAsSideEffect = &ModAsSideEffect;
12057     }
12058 
12059     ~SequencedSubexpression() {
12060       for (auto &M : llvm::reverse(ModAsSideEffect)) {
12061         UsageInfo &U = Self.UsageMap[M.first];
12062         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
12063         Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue);
12064         SideEffectUsage = M.second;
12065       }
12066       Self.ModAsSideEffect = OldModAsSideEffect;
12067     }
12068 
12069     SequenceChecker &Self;
12070     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12071     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12072   };
12073 
12074   /// RAII object wrapping the visitation of a subexpression which we might
12075   /// choose to evaluate as a constant. If any subexpression is evaluated and
12076   /// found to be non-constant, this allows us to suppress the evaluation of
12077   /// the outer expression.
12078   class EvaluationTracker {
12079   public:
12080     EvaluationTracker(SequenceChecker &Self)
12081         : Self(Self), Prev(Self.EvalTracker) {
12082       Self.EvalTracker = this;
12083     }
12084 
12085     ~EvaluationTracker() {
12086       Self.EvalTracker = Prev;
12087       if (Prev)
12088         Prev->EvalOK &= EvalOK;
12089     }
12090 
12091     bool evaluate(const Expr *E, bool &Result) {
12092       if (!EvalOK || E->isValueDependent())
12093         return false;
12094       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
12095       return EvalOK;
12096     }
12097 
12098   private:
12099     SequenceChecker &Self;
12100     EvaluationTracker *Prev;
12101     bool EvalOK = true;
12102   } *EvalTracker = nullptr;
12103 
12104   /// Find the object which is produced by the specified expression,
12105   /// if any.
12106   Object getObject(Expr *E, bool Mod) const {
12107     E = E->IgnoreParenCasts();
12108     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12109       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12110         return getObject(UO->getSubExpr(), Mod);
12111     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12112       if (BO->getOpcode() == BO_Comma)
12113         return getObject(BO->getRHS(), Mod);
12114       if (Mod && BO->isAssignmentOp())
12115         return getObject(BO->getLHS(), Mod);
12116     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12117       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12118       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12119         return ME->getMemberDecl();
12120     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12121       // FIXME: If this is a reference, map through to its value.
12122       return DRE->getDecl();
12123     return nullptr;
12124   }
12125 
12126   /// Note that an object was modified or used by an expression.
12127   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
12128     Usage &U = UI.Uses[UK];
12129     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
12130       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12131         ModAsSideEffect->push_back(std::make_pair(O, U));
12132       U.Use = Ref;
12133       U.Seq = Region;
12134     }
12135   }
12136 
12137   /// Check whether a modification or use conflicts with a prior usage.
12138   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
12139                   bool IsModMod) {
12140     if (UI.Diagnosed)
12141       return;
12142 
12143     const Usage &U = UI.Uses[OtherKind];
12144     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
12145       return;
12146 
12147     Expr *Mod = U.Use;
12148     Expr *ModOrUse = Ref;
12149     if (OtherKind == UK_Use)
12150       std::swap(Mod, ModOrUse);
12151 
12152     SemaRef.DiagRuntimeBehavior(
12153         Mod->getExprLoc(), {Mod, ModOrUse},
12154         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12155                                : diag::warn_unsequenced_mod_use)
12156             << O << SourceRange(ModOrUse->getExprLoc()));
12157     UI.Diagnosed = true;
12158   }
12159 
12160   void notePreUse(Object O, Expr *Use) {
12161     UsageInfo &U = UsageMap[O];
12162     // Uses conflict with other modifications.
12163     checkUsage(O, U, Use, UK_ModAsValue, false);
12164   }
12165 
12166   void notePostUse(Object O, Expr *Use) {
12167     UsageInfo &U = UsageMap[O];
12168     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
12169     addUsage(U, O, Use, UK_Use);
12170   }
12171 
12172   void notePreMod(Object O, Expr *Mod) {
12173     UsageInfo &U = UsageMap[O];
12174     // Modifications conflict with other modifications and with uses.
12175     checkUsage(O, U, Mod, UK_ModAsValue, true);
12176     checkUsage(O, U, Mod, UK_Use, false);
12177   }
12178 
12179   void notePostMod(Object O, Expr *Use, UsageKind UK) {
12180     UsageInfo &U = UsageMap[O];
12181     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
12182     addUsage(U, O, Use, UK);
12183   }
12184 
12185 public:
12186   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
12187       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12188     Visit(E);
12189   }
12190 
12191   void VisitStmt(Stmt *S) {
12192     // Skip all statements which aren't expressions for now.
12193   }
12194 
12195   void VisitExpr(Expr *E) {
12196     // By default, just recurse to evaluated subexpressions.
12197     Base::VisitStmt(E);
12198   }
12199 
12200   void VisitCastExpr(CastExpr *E) {
12201     Object O = Object();
12202     if (E->getCastKind() == CK_LValueToRValue)
12203       O = getObject(E->getSubExpr(), false);
12204 
12205     if (O)
12206       notePreUse(O, E);
12207     VisitExpr(E);
12208     if (O)
12209       notePostUse(O, E);
12210   }
12211 
12212   void VisitSequencedExpressions(Expr *SequencedBefore, Expr *SequencedAfter) {
12213     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12214     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12215     SequenceTree::Seq OldRegion = Region;
12216 
12217     {
12218       SequencedSubexpression SeqBefore(*this);
12219       Region = BeforeRegion;
12220       Visit(SequencedBefore);
12221     }
12222 
12223     Region = AfterRegion;
12224     Visit(SequencedAfter);
12225 
12226     Region = OldRegion;
12227 
12228     Tree.merge(BeforeRegion);
12229     Tree.merge(AfterRegion);
12230   }
12231 
12232   void VisitArraySubscriptExpr(ArraySubscriptExpr *ASE) {
12233     // C++17 [expr.sub]p1:
12234     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12235     //   expression E1 is sequenced before the expression E2.
12236     if (SemaRef.getLangOpts().CPlusPlus17)
12237       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12238     else
12239       Base::VisitStmt(ASE);
12240   }
12241 
12242   void VisitBinComma(BinaryOperator *BO) {
12243     // C++11 [expr.comma]p1:
12244     //   Every value computation and side effect associated with the left
12245     //   expression is sequenced before every value computation and side
12246     //   effect associated with the right expression.
12247     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12248   }
12249 
12250   void VisitBinAssign(BinaryOperator *BO) {
12251     // The modification is sequenced after the value computation of the LHS
12252     // and RHS, so check it before inspecting the operands and update the
12253     // map afterwards.
12254     Object O = getObject(BO->getLHS(), true);
12255     if (!O)
12256       return VisitExpr(BO);
12257 
12258     notePreMod(O, BO);
12259 
12260     // C++11 [expr.ass]p7:
12261     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
12262     //   only once.
12263     //
12264     // Therefore, for a compound assignment operator, O is considered used
12265     // everywhere except within the evaluation of E1 itself.
12266     if (isa<CompoundAssignOperator>(BO))
12267       notePreUse(O, BO);
12268 
12269     Visit(BO->getLHS());
12270 
12271     if (isa<CompoundAssignOperator>(BO))
12272       notePostUse(O, BO);
12273 
12274     Visit(BO->getRHS());
12275 
12276     // C++11 [expr.ass]p1:
12277     //   the assignment is sequenced [...] before the value computation of the
12278     //   assignment expression.
12279     // C11 6.5.16/3 has no such rule.
12280     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12281                                                        : UK_ModAsSideEffect);
12282   }
12283 
12284   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
12285     VisitBinAssign(CAO);
12286   }
12287 
12288   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12289   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12290   void VisitUnaryPreIncDec(UnaryOperator *UO) {
12291     Object O = getObject(UO->getSubExpr(), true);
12292     if (!O)
12293       return VisitExpr(UO);
12294 
12295     notePreMod(O, UO);
12296     Visit(UO->getSubExpr());
12297     // C++11 [expr.pre.incr]p1:
12298     //   the expression ++x is equivalent to x+=1
12299     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12300                                                        : UK_ModAsSideEffect);
12301   }
12302 
12303   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12304   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12305   void VisitUnaryPostIncDec(UnaryOperator *UO) {
12306     Object O = getObject(UO->getSubExpr(), true);
12307     if (!O)
12308       return VisitExpr(UO);
12309 
12310     notePreMod(O, UO);
12311     Visit(UO->getSubExpr());
12312     notePostMod(O, UO, UK_ModAsSideEffect);
12313   }
12314 
12315   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
12316   void VisitBinLOr(BinaryOperator *BO) {
12317     // The side-effects of the LHS of an '&&' are sequenced before the
12318     // value computation of the RHS, and hence before the value computation
12319     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
12320     // as if they were unconditionally sequenced.
12321     EvaluationTracker Eval(*this);
12322     {
12323       SequencedSubexpression Sequenced(*this);
12324       Visit(BO->getLHS());
12325     }
12326 
12327     bool Result;
12328     if (Eval.evaluate(BO->getLHS(), Result)) {
12329       if (!Result)
12330         Visit(BO->getRHS());
12331     } else {
12332       // Check for unsequenced operations in the RHS, treating it as an
12333       // entirely separate evaluation.
12334       //
12335       // FIXME: If there are operations in the RHS which are unsequenced
12336       // with respect to operations outside the RHS, and those operations
12337       // are unconditionally evaluated, diagnose them.
12338       WorkList.push_back(BO->getRHS());
12339     }
12340   }
12341   void VisitBinLAnd(BinaryOperator *BO) {
12342     EvaluationTracker Eval(*this);
12343     {
12344       SequencedSubexpression Sequenced(*this);
12345       Visit(BO->getLHS());
12346     }
12347 
12348     bool Result;
12349     if (Eval.evaluate(BO->getLHS(), Result)) {
12350       if (Result)
12351         Visit(BO->getRHS());
12352     } else {
12353       WorkList.push_back(BO->getRHS());
12354     }
12355   }
12356 
12357   // Only visit the condition, unless we can be sure which subexpression will
12358   // be chosen.
12359   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
12360     EvaluationTracker Eval(*this);
12361     {
12362       SequencedSubexpression Sequenced(*this);
12363       Visit(CO->getCond());
12364     }
12365 
12366     bool Result;
12367     if (Eval.evaluate(CO->getCond(), Result))
12368       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
12369     else {
12370       WorkList.push_back(CO->getTrueExpr());
12371       WorkList.push_back(CO->getFalseExpr());
12372     }
12373   }
12374 
12375   void VisitCallExpr(CallExpr *CE) {
12376     // C++11 [intro.execution]p15:
12377     //   When calling a function [...], every value computation and side effect
12378     //   associated with any argument expression, or with the postfix expression
12379     //   designating the called function, is sequenced before execution of every
12380     //   expression or statement in the body of the function [and thus before
12381     //   the value computation of its result].
12382     SequencedSubexpression Sequenced(*this);
12383     Base::VisitCallExpr(CE);
12384 
12385     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
12386   }
12387 
12388   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
12389     // This is a call, so all subexpressions are sequenced before the result.
12390     SequencedSubexpression Sequenced(*this);
12391 
12392     if (!CCE->isListInitialization())
12393       return VisitExpr(CCE);
12394 
12395     // In C++11, list initializations are sequenced.
12396     SmallVector<SequenceTree::Seq, 32> Elts;
12397     SequenceTree::Seq Parent = Region;
12398     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
12399                                         E = CCE->arg_end();
12400          I != E; ++I) {
12401       Region = Tree.allocate(Parent);
12402       Elts.push_back(Region);
12403       Visit(*I);
12404     }
12405 
12406     // Forget that the initializers are sequenced.
12407     Region = Parent;
12408     for (unsigned I = 0; I < Elts.size(); ++I)
12409       Tree.merge(Elts[I]);
12410   }
12411 
12412   void VisitInitListExpr(InitListExpr *ILE) {
12413     if (!SemaRef.getLangOpts().CPlusPlus11)
12414       return VisitExpr(ILE);
12415 
12416     // In C++11, list initializations are sequenced.
12417     SmallVector<SequenceTree::Seq, 32> Elts;
12418     SequenceTree::Seq Parent = Region;
12419     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
12420       Expr *E = ILE->getInit(I);
12421       if (!E) continue;
12422       Region = Tree.allocate(Parent);
12423       Elts.push_back(Region);
12424       Visit(E);
12425     }
12426 
12427     // Forget that the initializers are sequenced.
12428     Region = Parent;
12429     for (unsigned I = 0; I < Elts.size(); ++I)
12430       Tree.merge(Elts[I]);
12431   }
12432 };
12433 
12434 } // namespace
12435 
12436 void Sema::CheckUnsequencedOperations(Expr *E) {
12437   SmallVector<Expr *, 8> WorkList;
12438   WorkList.push_back(E);
12439   while (!WorkList.empty()) {
12440     Expr *Item = WorkList.pop_back_val();
12441     SequenceChecker(*this, Item, WorkList);
12442   }
12443 }
12444 
12445 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
12446                               bool IsConstexpr) {
12447   CheckImplicitConversions(E, CheckLoc);
12448   if (!E->isInstantiationDependent())
12449     CheckUnsequencedOperations(E);
12450   if (!IsConstexpr && !E->isValueDependent())
12451     CheckForIntOverflow(E);
12452   DiagnoseMisalignedMembers();
12453 }
12454 
12455 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
12456                                        FieldDecl *BitField,
12457                                        Expr *Init) {
12458   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
12459 }
12460 
12461 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
12462                                          SourceLocation Loc) {
12463   if (!PType->isVariablyModifiedType())
12464     return;
12465   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
12466     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
12467     return;
12468   }
12469   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
12470     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
12471     return;
12472   }
12473   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
12474     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
12475     return;
12476   }
12477 
12478   const ArrayType *AT = S.Context.getAsArrayType(PType);
12479   if (!AT)
12480     return;
12481 
12482   if (AT->getSizeModifier() != ArrayType::Star) {
12483     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
12484     return;
12485   }
12486 
12487   S.Diag(Loc, diag::err_array_star_in_function_definition);
12488 }
12489 
12490 /// CheckParmsForFunctionDef - Check that the parameters of the given
12491 /// function are appropriate for the definition of a function. This
12492 /// takes care of any checks that cannot be performed on the
12493 /// declaration itself, e.g., that the types of each of the function
12494 /// parameters are complete.
12495 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
12496                                     bool CheckParameterNames) {
12497   bool HasInvalidParm = false;
12498   for (ParmVarDecl *Param : Parameters) {
12499     // C99 6.7.5.3p4: the parameters in a parameter type list in a
12500     // function declarator that is part of a function definition of
12501     // that function shall not have incomplete type.
12502     //
12503     // This is also C++ [dcl.fct]p6.
12504     if (!Param->isInvalidDecl() &&
12505         RequireCompleteType(Param->getLocation(), Param->getType(),
12506                             diag::err_typecheck_decl_incomplete_type)) {
12507       Param->setInvalidDecl();
12508       HasInvalidParm = true;
12509     }
12510 
12511     // C99 6.9.1p5: If the declarator includes a parameter type list, the
12512     // declaration of each parameter shall include an identifier.
12513     if (CheckParameterNames &&
12514         Param->getIdentifier() == nullptr &&
12515         !Param->isImplicit() &&
12516         !getLangOpts().CPlusPlus)
12517       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
12518 
12519     // C99 6.7.5.3p12:
12520     //   If the function declarator is not part of a definition of that
12521     //   function, parameters may have incomplete type and may use the [*]
12522     //   notation in their sequences of declarator specifiers to specify
12523     //   variable length array types.
12524     QualType PType = Param->getOriginalType();
12525     // FIXME: This diagnostic should point the '[*]' if source-location
12526     // information is added for it.
12527     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
12528 
12529     // If the parameter is a c++ class type and it has to be destructed in the
12530     // callee function, declare the destructor so that it can be called by the
12531     // callee function. Do not perform any direct access check on the dtor here.
12532     if (!Param->isInvalidDecl()) {
12533       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
12534         if (!ClassDecl->isInvalidDecl() &&
12535             !ClassDecl->hasIrrelevantDestructor() &&
12536             !ClassDecl->isDependentContext() &&
12537             ClassDecl->isParamDestroyedInCallee()) {
12538           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
12539           MarkFunctionReferenced(Param->getLocation(), Destructor);
12540           DiagnoseUseOfDecl(Destructor, Param->getLocation());
12541         }
12542       }
12543     }
12544 
12545     // Parameters with the pass_object_size attribute only need to be marked
12546     // constant at function definitions. Because we lack information about
12547     // whether we're on a declaration or definition when we're instantiating the
12548     // attribute, we need to check for constness here.
12549     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
12550       if (!Param->getType().isConstQualified())
12551         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
12552             << Attr->getSpelling() << 1;
12553 
12554     // Check for parameter names shadowing fields from the class.
12555     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
12556       // The owning context for the parameter should be the function, but we
12557       // want to see if this function's declaration context is a record.
12558       DeclContext *DC = Param->getDeclContext();
12559       if (DC && DC->isFunctionOrMethod()) {
12560         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
12561           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
12562                                      RD, /*DeclIsField*/ false);
12563       }
12564     }
12565   }
12566 
12567   return HasInvalidParm;
12568 }
12569 
12570 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr
12571 /// or MemberExpr.
12572 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
12573                               ASTContext &Context) {
12574   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
12575     return Context.getDeclAlign(DRE->getDecl());
12576 
12577   if (const auto *ME = dyn_cast<MemberExpr>(E))
12578     return Context.getDeclAlign(ME->getMemberDecl());
12579 
12580   return TypeAlign;
12581 }
12582 
12583 /// CheckCastAlign - Implements -Wcast-align, which warns when a
12584 /// pointer cast increases the alignment requirements.
12585 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
12586   // This is actually a lot of work to potentially be doing on every
12587   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
12588   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
12589     return;
12590 
12591   // Ignore dependent types.
12592   if (T->isDependentType() || Op->getType()->isDependentType())
12593     return;
12594 
12595   // Require that the destination be a pointer type.
12596   const PointerType *DestPtr = T->getAs<PointerType>();
12597   if (!DestPtr) return;
12598 
12599   // If the destination has alignment 1, we're done.
12600   QualType DestPointee = DestPtr->getPointeeType();
12601   if (DestPointee->isIncompleteType()) return;
12602   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
12603   if (DestAlign.isOne()) return;
12604 
12605   // Require that the source be a pointer type.
12606   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
12607   if (!SrcPtr) return;
12608   QualType SrcPointee = SrcPtr->getPointeeType();
12609 
12610   // Whitelist casts from cv void*.  We already implicitly
12611   // whitelisted casts to cv void*, since they have alignment 1.
12612   // Also whitelist casts involving incomplete types, which implicitly
12613   // includes 'void'.
12614   if (SrcPointee->isIncompleteType()) return;
12615 
12616   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
12617 
12618   if (auto *CE = dyn_cast<CastExpr>(Op)) {
12619     if (CE->getCastKind() == CK_ArrayToPointerDecay)
12620       SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
12621   } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
12622     if (UO->getOpcode() == UO_AddrOf)
12623       SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
12624   }
12625 
12626   if (SrcAlign >= DestAlign) return;
12627 
12628   Diag(TRange.getBegin(), diag::warn_cast_align)
12629     << Op->getType() << T
12630     << static_cast<unsigned>(SrcAlign.getQuantity())
12631     << static_cast<unsigned>(DestAlign.getQuantity())
12632     << TRange << Op->getSourceRange();
12633 }
12634 
12635 /// Check whether this array fits the idiom of a size-one tail padded
12636 /// array member of a struct.
12637 ///
12638 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
12639 /// commonly used to emulate flexible arrays in C89 code.
12640 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
12641                                     const NamedDecl *ND) {
12642   if (Size != 1 || !ND) return false;
12643 
12644   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
12645   if (!FD) return false;
12646 
12647   // Don't consider sizes resulting from macro expansions or template argument
12648   // substitution to form C89 tail-padded arrays.
12649 
12650   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
12651   while (TInfo) {
12652     TypeLoc TL = TInfo->getTypeLoc();
12653     // Look through typedefs.
12654     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
12655       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
12656       TInfo = TDL->getTypeSourceInfo();
12657       continue;
12658     }
12659     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
12660       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
12661       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
12662         return false;
12663     }
12664     break;
12665   }
12666 
12667   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
12668   if (!RD) return false;
12669   if (RD->isUnion()) return false;
12670   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
12671     if (!CRD->isStandardLayout()) return false;
12672   }
12673 
12674   // See if this is the last field decl in the record.
12675   const Decl *D = FD;
12676   while ((D = D->getNextDeclInContext()))
12677     if (isa<FieldDecl>(D))
12678       return false;
12679   return true;
12680 }
12681 
12682 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12683                             const ArraySubscriptExpr *ASE,
12684                             bool AllowOnePastEnd, bool IndexNegated) {
12685   IndexExpr = IndexExpr->IgnoreParenImpCasts();
12686   if (IndexExpr->isValueDependent())
12687     return;
12688 
12689   const Type *EffectiveType =
12690       BaseExpr->getType()->getPointeeOrArrayElementType();
12691   BaseExpr = BaseExpr->IgnoreParenCasts();
12692   const ConstantArrayType *ArrayTy =
12693       Context.getAsConstantArrayType(BaseExpr->getType());
12694 
12695   if (!ArrayTy)
12696     return;
12697 
12698   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
12699   if (EffectiveType->isDependentType() || BaseType->isDependentType())
12700     return;
12701 
12702   Expr::EvalResult Result;
12703   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
12704     return;
12705 
12706   llvm::APSInt index = Result.Val.getInt();
12707   if (IndexNegated)
12708     index = -index;
12709 
12710   const NamedDecl *ND = nullptr;
12711   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
12712     ND = DRE->getDecl();
12713   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
12714     ND = ME->getMemberDecl();
12715 
12716   if (index.isUnsigned() || !index.isNegative()) {
12717     // It is possible that the type of the base expression after
12718     // IgnoreParenCasts is incomplete, even though the type of the base
12719     // expression before IgnoreParenCasts is complete (see PR39746 for an
12720     // example). In this case we have no information about whether the array
12721     // access exceeds the array bounds. However we can still diagnose an array
12722     // access which precedes the array bounds.
12723     if (BaseType->isIncompleteType())
12724       return;
12725 
12726     llvm::APInt size = ArrayTy->getSize();
12727     if (!size.isStrictlyPositive())
12728       return;
12729 
12730     if (BaseType != EffectiveType) {
12731       // Make sure we're comparing apples to apples when comparing index to size
12732       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
12733       uint64_t array_typesize = Context.getTypeSize(BaseType);
12734       // Handle ptrarith_typesize being zero, such as when casting to void*
12735       if (!ptrarith_typesize) ptrarith_typesize = 1;
12736       if (ptrarith_typesize != array_typesize) {
12737         // There's a cast to a different size type involved
12738         uint64_t ratio = array_typesize / ptrarith_typesize;
12739         // TODO: Be smarter about handling cases where array_typesize is not a
12740         // multiple of ptrarith_typesize
12741         if (ptrarith_typesize * ratio == array_typesize)
12742           size *= llvm::APInt(size.getBitWidth(), ratio);
12743       }
12744     }
12745 
12746     if (size.getBitWidth() > index.getBitWidth())
12747       index = index.zext(size.getBitWidth());
12748     else if (size.getBitWidth() < index.getBitWidth())
12749       size = size.zext(index.getBitWidth());
12750 
12751     // For array subscripting the index must be less than size, but for pointer
12752     // arithmetic also allow the index (offset) to be equal to size since
12753     // computing the next address after the end of the array is legal and
12754     // commonly done e.g. in C++ iterators and range-based for loops.
12755     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
12756       return;
12757 
12758     // Also don't warn for arrays of size 1 which are members of some
12759     // structure. These are often used to approximate flexible arrays in C89
12760     // code.
12761     if (IsTailPaddedMemberArray(*this, size, ND))
12762       return;
12763 
12764     // Suppress the warning if the subscript expression (as identified by the
12765     // ']' location) and the index expression are both from macro expansions
12766     // within a system header.
12767     if (ASE) {
12768       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
12769           ASE->getRBracketLoc());
12770       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
12771         SourceLocation IndexLoc =
12772             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
12773         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
12774           return;
12775       }
12776     }
12777 
12778     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
12779     if (ASE)
12780       DiagID = diag::warn_array_index_exceeds_bounds;
12781 
12782     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
12783                         PDiag(DiagID) << index.toString(10, true)
12784                                       << size.toString(10, true)
12785                                       << (unsigned)size.getLimitedValue(~0U)
12786                                       << IndexExpr->getSourceRange());
12787   } else {
12788     unsigned DiagID = diag::warn_array_index_precedes_bounds;
12789     if (!ASE) {
12790       DiagID = diag::warn_ptr_arith_precedes_bounds;
12791       if (index.isNegative()) index = -index;
12792     }
12793 
12794     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
12795                         PDiag(DiagID) << index.toString(10, true)
12796                                       << IndexExpr->getSourceRange());
12797   }
12798 
12799   if (!ND) {
12800     // Try harder to find a NamedDecl to point at in the note.
12801     while (const ArraySubscriptExpr *ASE =
12802            dyn_cast<ArraySubscriptExpr>(BaseExpr))
12803       BaseExpr = ASE->getBase()->IgnoreParenCasts();
12804     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
12805       ND = DRE->getDecl();
12806     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
12807       ND = ME->getMemberDecl();
12808   }
12809 
12810   if (ND)
12811     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
12812                         PDiag(diag::note_array_index_out_of_bounds)
12813                             << ND->getDeclName());
12814 }
12815 
12816 void Sema::CheckArrayAccess(const Expr *expr) {
12817   int AllowOnePastEnd = 0;
12818   while (expr) {
12819     expr = expr->IgnoreParenImpCasts();
12820     switch (expr->getStmtClass()) {
12821       case Stmt::ArraySubscriptExprClass: {
12822         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
12823         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
12824                          AllowOnePastEnd > 0);
12825         expr = ASE->getBase();
12826         break;
12827       }
12828       case Stmt::MemberExprClass: {
12829         expr = cast<MemberExpr>(expr)->getBase();
12830         break;
12831       }
12832       case Stmt::OMPArraySectionExprClass: {
12833         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
12834         if (ASE->getLowerBound())
12835           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
12836                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
12837         return;
12838       }
12839       case Stmt::UnaryOperatorClass: {
12840         // Only unwrap the * and & unary operators
12841         const UnaryOperator *UO = cast<UnaryOperator>(expr);
12842         expr = UO->getSubExpr();
12843         switch (UO->getOpcode()) {
12844           case UO_AddrOf:
12845             AllowOnePastEnd++;
12846             break;
12847           case UO_Deref:
12848             AllowOnePastEnd--;
12849             break;
12850           default:
12851             return;
12852         }
12853         break;
12854       }
12855       case Stmt::ConditionalOperatorClass: {
12856         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
12857         if (const Expr *lhs = cond->getLHS())
12858           CheckArrayAccess(lhs);
12859         if (const Expr *rhs = cond->getRHS())
12860           CheckArrayAccess(rhs);
12861         return;
12862       }
12863       case Stmt::CXXOperatorCallExprClass: {
12864         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
12865         for (const auto *Arg : OCE->arguments())
12866           CheckArrayAccess(Arg);
12867         return;
12868       }
12869       default:
12870         return;
12871     }
12872   }
12873 }
12874 
12875 //===--- CHECK: Objective-C retain cycles ----------------------------------//
12876 
12877 namespace {
12878 
12879 struct RetainCycleOwner {
12880   VarDecl *Variable = nullptr;
12881   SourceRange Range;
12882   SourceLocation Loc;
12883   bool Indirect = false;
12884 
12885   RetainCycleOwner() = default;
12886 
12887   void setLocsFrom(Expr *e) {
12888     Loc = e->getExprLoc();
12889     Range = e->getSourceRange();
12890   }
12891 };
12892 
12893 } // namespace
12894 
12895 /// Consider whether capturing the given variable can possibly lead to
12896 /// a retain cycle.
12897 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
12898   // In ARC, it's captured strongly iff the variable has __strong
12899   // lifetime.  In MRR, it's captured strongly if the variable is
12900   // __block and has an appropriate type.
12901   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
12902     return false;
12903 
12904   owner.Variable = var;
12905   if (ref)
12906     owner.setLocsFrom(ref);
12907   return true;
12908 }
12909 
12910 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
12911   while (true) {
12912     e = e->IgnoreParens();
12913     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
12914       switch (cast->getCastKind()) {
12915       case CK_BitCast:
12916       case CK_LValueBitCast:
12917       case CK_LValueToRValue:
12918       case CK_ARCReclaimReturnedObject:
12919         e = cast->getSubExpr();
12920         continue;
12921 
12922       default:
12923         return false;
12924       }
12925     }
12926 
12927     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
12928       ObjCIvarDecl *ivar = ref->getDecl();
12929       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
12930         return false;
12931 
12932       // Try to find a retain cycle in the base.
12933       if (!findRetainCycleOwner(S, ref->getBase(), owner))
12934         return false;
12935 
12936       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
12937       owner.Indirect = true;
12938       return true;
12939     }
12940 
12941     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
12942       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
12943       if (!var) return false;
12944       return considerVariable(var, ref, owner);
12945     }
12946 
12947     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
12948       if (member->isArrow()) return false;
12949 
12950       // Don't count this as an indirect ownership.
12951       e = member->getBase();
12952       continue;
12953     }
12954 
12955     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
12956       // Only pay attention to pseudo-objects on property references.
12957       ObjCPropertyRefExpr *pre
12958         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
12959                                               ->IgnoreParens());
12960       if (!pre) return false;
12961       if (pre->isImplicitProperty()) return false;
12962       ObjCPropertyDecl *property = pre->getExplicitProperty();
12963       if (!property->isRetaining() &&
12964           !(property->getPropertyIvarDecl() &&
12965             property->getPropertyIvarDecl()->getType()
12966               .getObjCLifetime() == Qualifiers::OCL_Strong))
12967           return false;
12968 
12969       owner.Indirect = true;
12970       if (pre->isSuperReceiver()) {
12971         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
12972         if (!owner.Variable)
12973           return false;
12974         owner.Loc = pre->getLocation();
12975         owner.Range = pre->getSourceRange();
12976         return true;
12977       }
12978       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
12979                               ->getSourceExpr());
12980       continue;
12981     }
12982 
12983     // Array ivars?
12984 
12985     return false;
12986   }
12987 }
12988 
12989 namespace {
12990 
12991   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
12992     ASTContext &Context;
12993     VarDecl *Variable;
12994     Expr *Capturer = nullptr;
12995     bool VarWillBeReased = false;
12996 
12997     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
12998         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
12999           Context(Context), Variable(variable) {}
13000 
13001     void VisitDeclRefExpr(DeclRefExpr *ref) {
13002       if (ref->getDecl() == Variable && !Capturer)
13003         Capturer = ref;
13004     }
13005 
13006     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
13007       if (Capturer) return;
13008       Visit(ref->getBase());
13009       if (Capturer && ref->isFreeIvar())
13010         Capturer = ref;
13011     }
13012 
13013     void VisitBlockExpr(BlockExpr *block) {
13014       // Look inside nested blocks
13015       if (block->getBlockDecl()->capturesVariable(Variable))
13016         Visit(block->getBlockDecl()->getBody());
13017     }
13018 
13019     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
13020       if (Capturer) return;
13021       if (OVE->getSourceExpr())
13022         Visit(OVE->getSourceExpr());
13023     }
13024 
13025     void VisitBinaryOperator(BinaryOperator *BinOp) {
13026       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
13027         return;
13028       Expr *LHS = BinOp->getLHS();
13029       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
13030         if (DRE->getDecl() != Variable)
13031           return;
13032         if (Expr *RHS = BinOp->getRHS()) {
13033           RHS = RHS->IgnoreParenCasts();
13034           llvm::APSInt Value;
13035           VarWillBeReased =
13036             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
13037         }
13038       }
13039     }
13040   };
13041 
13042 } // namespace
13043 
13044 /// Check whether the given argument is a block which captures a
13045 /// variable.
13046 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
13047   assert(owner.Variable && owner.Loc.isValid());
13048 
13049   e = e->IgnoreParenCasts();
13050 
13051   // Look through [^{...} copy] and Block_copy(^{...}).
13052   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
13053     Selector Cmd = ME->getSelector();
13054     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
13055       e = ME->getInstanceReceiver();
13056       if (!e)
13057         return nullptr;
13058       e = e->IgnoreParenCasts();
13059     }
13060   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
13061     if (CE->getNumArgs() == 1) {
13062       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
13063       if (Fn) {
13064         const IdentifierInfo *FnI = Fn->getIdentifier();
13065         if (FnI && FnI->isStr("_Block_copy")) {
13066           e = CE->getArg(0)->IgnoreParenCasts();
13067         }
13068       }
13069     }
13070   }
13071 
13072   BlockExpr *block = dyn_cast<BlockExpr>(e);
13073   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
13074     return nullptr;
13075 
13076   FindCaptureVisitor visitor(S.Context, owner.Variable);
13077   visitor.Visit(block->getBlockDecl()->getBody());
13078   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
13079 }
13080 
13081 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
13082                                 RetainCycleOwner &owner) {
13083   assert(capturer);
13084   assert(owner.Variable && owner.Loc.isValid());
13085 
13086   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
13087     << owner.Variable << capturer->getSourceRange();
13088   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
13089     << owner.Indirect << owner.Range;
13090 }
13091 
13092 /// Check for a keyword selector that starts with the word 'add' or
13093 /// 'set'.
13094 static bool isSetterLikeSelector(Selector sel) {
13095   if (sel.isUnarySelector()) return false;
13096 
13097   StringRef str = sel.getNameForSlot(0);
13098   while (!str.empty() && str.front() == '_') str = str.substr(1);
13099   if (str.startswith("set"))
13100     str = str.substr(3);
13101   else if (str.startswith("add")) {
13102     // Specially whitelist 'addOperationWithBlock:'.
13103     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
13104       return false;
13105     str = str.substr(3);
13106   }
13107   else
13108     return false;
13109 
13110   if (str.empty()) return true;
13111   return !isLowercase(str.front());
13112 }
13113 
13114 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
13115                                                     ObjCMessageExpr *Message) {
13116   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
13117                                                 Message->getReceiverInterface(),
13118                                                 NSAPI::ClassId_NSMutableArray);
13119   if (!IsMutableArray) {
13120     return None;
13121   }
13122 
13123   Selector Sel = Message->getSelector();
13124 
13125   Optional<NSAPI::NSArrayMethodKind> MKOpt =
13126     S.NSAPIObj->getNSArrayMethodKind(Sel);
13127   if (!MKOpt) {
13128     return None;
13129   }
13130 
13131   NSAPI::NSArrayMethodKind MK = *MKOpt;
13132 
13133   switch (MK) {
13134     case NSAPI::NSMutableArr_addObject:
13135     case NSAPI::NSMutableArr_insertObjectAtIndex:
13136     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
13137       return 0;
13138     case NSAPI::NSMutableArr_replaceObjectAtIndex:
13139       return 1;
13140 
13141     default:
13142       return None;
13143   }
13144 
13145   return None;
13146 }
13147 
13148 static
13149 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
13150                                                   ObjCMessageExpr *Message) {
13151   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
13152                                             Message->getReceiverInterface(),
13153                                             NSAPI::ClassId_NSMutableDictionary);
13154   if (!IsMutableDictionary) {
13155     return None;
13156   }
13157 
13158   Selector Sel = Message->getSelector();
13159 
13160   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
13161     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
13162   if (!MKOpt) {
13163     return None;
13164   }
13165 
13166   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
13167 
13168   switch (MK) {
13169     case NSAPI::NSMutableDict_setObjectForKey:
13170     case NSAPI::NSMutableDict_setValueForKey:
13171     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
13172       return 0;
13173 
13174     default:
13175       return None;
13176   }
13177 
13178   return None;
13179 }
13180 
13181 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
13182   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
13183                                                 Message->getReceiverInterface(),
13184                                                 NSAPI::ClassId_NSMutableSet);
13185 
13186   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
13187                                             Message->getReceiverInterface(),
13188                                             NSAPI::ClassId_NSMutableOrderedSet);
13189   if (!IsMutableSet && !IsMutableOrderedSet) {
13190     return None;
13191   }
13192 
13193   Selector Sel = Message->getSelector();
13194 
13195   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
13196   if (!MKOpt) {
13197     return None;
13198   }
13199 
13200   NSAPI::NSSetMethodKind MK = *MKOpt;
13201 
13202   switch (MK) {
13203     case NSAPI::NSMutableSet_addObject:
13204     case NSAPI::NSOrderedSet_setObjectAtIndex:
13205     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
13206     case NSAPI::NSOrderedSet_insertObjectAtIndex:
13207       return 0;
13208     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
13209       return 1;
13210   }
13211 
13212   return None;
13213 }
13214 
13215 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
13216   if (!Message->isInstanceMessage()) {
13217     return;
13218   }
13219 
13220   Optional<int> ArgOpt;
13221 
13222   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
13223       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
13224       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
13225     return;
13226   }
13227 
13228   int ArgIndex = *ArgOpt;
13229 
13230   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
13231   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
13232     Arg = OE->getSourceExpr()->IgnoreImpCasts();
13233   }
13234 
13235   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
13236     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
13237       if (ArgRE->isObjCSelfExpr()) {
13238         Diag(Message->getSourceRange().getBegin(),
13239              diag::warn_objc_circular_container)
13240           << ArgRE->getDecl() << StringRef("'super'");
13241       }
13242     }
13243   } else {
13244     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
13245 
13246     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
13247       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
13248     }
13249 
13250     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
13251       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
13252         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
13253           ValueDecl *Decl = ReceiverRE->getDecl();
13254           Diag(Message->getSourceRange().getBegin(),
13255                diag::warn_objc_circular_container)
13256             << Decl << Decl;
13257           if (!ArgRE->isObjCSelfExpr()) {
13258             Diag(Decl->getLocation(),
13259                  diag::note_objc_circular_container_declared_here)
13260               << Decl;
13261           }
13262         }
13263       }
13264     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
13265       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
13266         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
13267           ObjCIvarDecl *Decl = IvarRE->getDecl();
13268           Diag(Message->getSourceRange().getBegin(),
13269                diag::warn_objc_circular_container)
13270             << Decl << Decl;
13271           Diag(Decl->getLocation(),
13272                diag::note_objc_circular_container_declared_here)
13273             << Decl;
13274         }
13275       }
13276     }
13277   }
13278 }
13279 
13280 /// Check a message send to see if it's likely to cause a retain cycle.
13281 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
13282   // Only check instance methods whose selector looks like a setter.
13283   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
13284     return;
13285 
13286   // Try to find a variable that the receiver is strongly owned by.
13287   RetainCycleOwner owner;
13288   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
13289     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
13290       return;
13291   } else {
13292     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
13293     owner.Variable = getCurMethodDecl()->getSelfDecl();
13294     owner.Loc = msg->getSuperLoc();
13295     owner.Range = msg->getSuperLoc();
13296   }
13297 
13298   // Check whether the receiver is captured by any of the arguments.
13299   const ObjCMethodDecl *MD = msg->getMethodDecl();
13300   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
13301     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
13302       // noescape blocks should not be retained by the method.
13303       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
13304         continue;
13305       return diagnoseRetainCycle(*this, capturer, owner);
13306     }
13307   }
13308 }
13309 
13310 /// Check a property assign to see if it's likely to cause a retain cycle.
13311 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
13312   RetainCycleOwner owner;
13313   if (!findRetainCycleOwner(*this, receiver, owner))
13314     return;
13315 
13316   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
13317     diagnoseRetainCycle(*this, capturer, owner);
13318 }
13319 
13320 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
13321   RetainCycleOwner Owner;
13322   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
13323     return;
13324 
13325   // Because we don't have an expression for the variable, we have to set the
13326   // location explicitly here.
13327   Owner.Loc = Var->getLocation();
13328   Owner.Range = Var->getSourceRange();
13329 
13330   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
13331     diagnoseRetainCycle(*this, Capturer, Owner);
13332 }
13333 
13334 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
13335                                      Expr *RHS, bool isProperty) {
13336   // Check if RHS is an Objective-C object literal, which also can get
13337   // immediately zapped in a weak reference.  Note that we explicitly
13338   // allow ObjCStringLiterals, since those are designed to never really die.
13339   RHS = RHS->IgnoreParenImpCasts();
13340 
13341   // This enum needs to match with the 'select' in
13342   // warn_objc_arc_literal_assign (off-by-1).
13343   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
13344   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
13345     return false;
13346 
13347   S.Diag(Loc, diag::warn_arc_literal_assign)
13348     << (unsigned) Kind
13349     << (isProperty ? 0 : 1)
13350     << RHS->getSourceRange();
13351 
13352   return true;
13353 }
13354 
13355 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
13356                                     Qualifiers::ObjCLifetime LT,
13357                                     Expr *RHS, bool isProperty) {
13358   // Strip off any implicit cast added to get to the one ARC-specific.
13359   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13360     if (cast->getCastKind() == CK_ARCConsumeObject) {
13361       S.Diag(Loc, diag::warn_arc_retained_assign)
13362         << (LT == Qualifiers::OCL_ExplicitNone)
13363         << (isProperty ? 0 : 1)
13364         << RHS->getSourceRange();
13365       return true;
13366     }
13367     RHS = cast->getSubExpr();
13368   }
13369 
13370   if (LT == Qualifiers::OCL_Weak &&
13371       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
13372     return true;
13373 
13374   return false;
13375 }
13376 
13377 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
13378                               QualType LHS, Expr *RHS) {
13379   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
13380 
13381   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
13382     return false;
13383 
13384   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
13385     return true;
13386 
13387   return false;
13388 }
13389 
13390 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
13391                               Expr *LHS, Expr *RHS) {
13392   QualType LHSType;
13393   // PropertyRef on LHS type need be directly obtained from
13394   // its declaration as it has a PseudoType.
13395   ObjCPropertyRefExpr *PRE
13396     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
13397   if (PRE && !PRE->isImplicitProperty()) {
13398     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13399     if (PD)
13400       LHSType = PD->getType();
13401   }
13402 
13403   if (LHSType.isNull())
13404     LHSType = LHS->getType();
13405 
13406   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
13407 
13408   if (LT == Qualifiers::OCL_Weak) {
13409     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
13410       getCurFunction()->markSafeWeakUse(LHS);
13411   }
13412 
13413   if (checkUnsafeAssigns(Loc, LHSType, RHS))
13414     return;
13415 
13416   // FIXME. Check for other life times.
13417   if (LT != Qualifiers::OCL_None)
13418     return;
13419 
13420   if (PRE) {
13421     if (PRE->isImplicitProperty())
13422       return;
13423     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13424     if (!PD)
13425       return;
13426 
13427     unsigned Attributes = PD->getPropertyAttributes();
13428     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
13429       // when 'assign' attribute was not explicitly specified
13430       // by user, ignore it and rely on property type itself
13431       // for lifetime info.
13432       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
13433       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
13434           LHSType->isObjCRetainableType())
13435         return;
13436 
13437       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13438         if (cast->getCastKind() == CK_ARCConsumeObject) {
13439           Diag(Loc, diag::warn_arc_retained_property_assign)
13440           << RHS->getSourceRange();
13441           return;
13442         }
13443         RHS = cast->getSubExpr();
13444       }
13445     }
13446     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
13447       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
13448         return;
13449     }
13450   }
13451 }
13452 
13453 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
13454 
13455 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
13456                                         SourceLocation StmtLoc,
13457                                         const NullStmt *Body) {
13458   // Do not warn if the body is a macro that expands to nothing, e.g:
13459   //
13460   // #define CALL(x)
13461   // if (condition)
13462   //   CALL(0);
13463   if (Body->hasLeadingEmptyMacro())
13464     return false;
13465 
13466   // Get line numbers of statement and body.
13467   bool StmtLineInvalid;
13468   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
13469                                                       &StmtLineInvalid);
13470   if (StmtLineInvalid)
13471     return false;
13472 
13473   bool BodyLineInvalid;
13474   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
13475                                                       &BodyLineInvalid);
13476   if (BodyLineInvalid)
13477     return false;
13478 
13479   // Warn if null statement and body are on the same line.
13480   if (StmtLine != BodyLine)
13481     return false;
13482 
13483   return true;
13484 }
13485 
13486 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
13487                                  const Stmt *Body,
13488                                  unsigned DiagID) {
13489   // Since this is a syntactic check, don't emit diagnostic for template
13490   // instantiations, this just adds noise.
13491   if (CurrentInstantiationScope)
13492     return;
13493 
13494   // The body should be a null statement.
13495   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13496   if (!NBody)
13497     return;
13498 
13499   // Do the usual checks.
13500   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13501     return;
13502 
13503   Diag(NBody->getSemiLoc(), DiagID);
13504   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13505 }
13506 
13507 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
13508                                  const Stmt *PossibleBody) {
13509   assert(!CurrentInstantiationScope); // Ensured by caller
13510 
13511   SourceLocation StmtLoc;
13512   const Stmt *Body;
13513   unsigned DiagID;
13514   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
13515     StmtLoc = FS->getRParenLoc();
13516     Body = FS->getBody();
13517     DiagID = diag::warn_empty_for_body;
13518   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
13519     StmtLoc = WS->getCond()->getSourceRange().getEnd();
13520     Body = WS->getBody();
13521     DiagID = diag::warn_empty_while_body;
13522   } else
13523     return; // Neither `for' nor `while'.
13524 
13525   // The body should be a null statement.
13526   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13527   if (!NBody)
13528     return;
13529 
13530   // Skip expensive checks if diagnostic is disabled.
13531   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
13532     return;
13533 
13534   // Do the usual checks.
13535   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13536     return;
13537 
13538   // `for(...);' and `while(...);' are popular idioms, so in order to keep
13539   // noise level low, emit diagnostics only if for/while is followed by a
13540   // CompoundStmt, e.g.:
13541   //    for (int i = 0; i < n; i++);
13542   //    {
13543   //      a(i);
13544   //    }
13545   // or if for/while is followed by a statement with more indentation
13546   // than for/while itself:
13547   //    for (int i = 0; i < n; i++);
13548   //      a(i);
13549   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
13550   if (!ProbableTypo) {
13551     bool BodyColInvalid;
13552     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
13553         PossibleBody->getBeginLoc(), &BodyColInvalid);
13554     if (BodyColInvalid)
13555       return;
13556 
13557     bool StmtColInvalid;
13558     unsigned StmtCol =
13559         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
13560     if (StmtColInvalid)
13561       return;
13562 
13563     if (BodyCol > StmtCol)
13564       ProbableTypo = true;
13565   }
13566 
13567   if (ProbableTypo) {
13568     Diag(NBody->getSemiLoc(), DiagID);
13569     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13570   }
13571 }
13572 
13573 //===--- CHECK: Warn on self move with std::move. -------------------------===//
13574 
13575 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
13576 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
13577                              SourceLocation OpLoc) {
13578   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
13579     return;
13580 
13581   if (inTemplateInstantiation())
13582     return;
13583 
13584   // Strip parens and casts away.
13585   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13586   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13587 
13588   // Check for a call expression
13589   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
13590   if (!CE || CE->getNumArgs() != 1)
13591     return;
13592 
13593   // Check for a call to std::move
13594   if (!CE->isCallToStdMove())
13595     return;
13596 
13597   // Get argument from std::move
13598   RHSExpr = CE->getArg(0);
13599 
13600   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13601   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13602 
13603   // Two DeclRefExpr's, check that the decls are the same.
13604   if (LHSDeclRef && RHSDeclRef) {
13605     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13606       return;
13607     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13608         RHSDeclRef->getDecl()->getCanonicalDecl())
13609       return;
13610 
13611     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13612                                         << LHSExpr->getSourceRange()
13613                                         << RHSExpr->getSourceRange();
13614     return;
13615   }
13616 
13617   // Member variables require a different approach to check for self moves.
13618   // MemberExpr's are the same if every nested MemberExpr refers to the same
13619   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
13620   // the base Expr's are CXXThisExpr's.
13621   const Expr *LHSBase = LHSExpr;
13622   const Expr *RHSBase = RHSExpr;
13623   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
13624   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
13625   if (!LHSME || !RHSME)
13626     return;
13627 
13628   while (LHSME && RHSME) {
13629     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
13630         RHSME->getMemberDecl()->getCanonicalDecl())
13631       return;
13632 
13633     LHSBase = LHSME->getBase();
13634     RHSBase = RHSME->getBase();
13635     LHSME = dyn_cast<MemberExpr>(LHSBase);
13636     RHSME = dyn_cast<MemberExpr>(RHSBase);
13637   }
13638 
13639   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
13640   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
13641   if (LHSDeclRef && RHSDeclRef) {
13642     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13643       return;
13644     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13645         RHSDeclRef->getDecl()->getCanonicalDecl())
13646       return;
13647 
13648     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13649                                         << LHSExpr->getSourceRange()
13650                                         << RHSExpr->getSourceRange();
13651     return;
13652   }
13653 
13654   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
13655     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
13656                                         << LHSExpr->getSourceRange()
13657                                         << RHSExpr->getSourceRange();
13658 }
13659 
13660 //===--- Layout compatibility ----------------------------------------------//
13661 
13662 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
13663 
13664 /// Check if two enumeration types are layout-compatible.
13665 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
13666   // C++11 [dcl.enum] p8:
13667   // Two enumeration types are layout-compatible if they have the same
13668   // underlying type.
13669   return ED1->isComplete() && ED2->isComplete() &&
13670          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
13671 }
13672 
13673 /// Check if two fields are layout-compatible.
13674 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
13675                                FieldDecl *Field2) {
13676   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
13677     return false;
13678 
13679   if (Field1->isBitField() != Field2->isBitField())
13680     return false;
13681 
13682   if (Field1->isBitField()) {
13683     // Make sure that the bit-fields are the same length.
13684     unsigned Bits1 = Field1->getBitWidthValue(C);
13685     unsigned Bits2 = Field2->getBitWidthValue(C);
13686 
13687     if (Bits1 != Bits2)
13688       return false;
13689   }
13690 
13691   return true;
13692 }
13693 
13694 /// Check if two standard-layout structs are layout-compatible.
13695 /// (C++11 [class.mem] p17)
13696 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
13697                                      RecordDecl *RD2) {
13698   // If both records are C++ classes, check that base classes match.
13699   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
13700     // If one of records is a CXXRecordDecl we are in C++ mode,
13701     // thus the other one is a CXXRecordDecl, too.
13702     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
13703     // Check number of base classes.
13704     if (D1CXX->getNumBases() != D2CXX->getNumBases())
13705       return false;
13706 
13707     // Check the base classes.
13708     for (CXXRecordDecl::base_class_const_iterator
13709                Base1 = D1CXX->bases_begin(),
13710            BaseEnd1 = D1CXX->bases_end(),
13711               Base2 = D2CXX->bases_begin();
13712          Base1 != BaseEnd1;
13713          ++Base1, ++Base2) {
13714       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
13715         return false;
13716     }
13717   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
13718     // If only RD2 is a C++ class, it should have zero base classes.
13719     if (D2CXX->getNumBases() > 0)
13720       return false;
13721   }
13722 
13723   // Check the fields.
13724   RecordDecl::field_iterator Field2 = RD2->field_begin(),
13725                              Field2End = RD2->field_end(),
13726                              Field1 = RD1->field_begin(),
13727                              Field1End = RD1->field_end();
13728   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
13729     if (!isLayoutCompatible(C, *Field1, *Field2))
13730       return false;
13731   }
13732   if (Field1 != Field1End || Field2 != Field2End)
13733     return false;
13734 
13735   return true;
13736 }
13737 
13738 /// Check if two standard-layout unions are layout-compatible.
13739 /// (C++11 [class.mem] p18)
13740 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
13741                                     RecordDecl *RD2) {
13742   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
13743   for (auto *Field2 : RD2->fields())
13744     UnmatchedFields.insert(Field2);
13745 
13746   for (auto *Field1 : RD1->fields()) {
13747     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
13748         I = UnmatchedFields.begin(),
13749         E = UnmatchedFields.end();
13750 
13751     for ( ; I != E; ++I) {
13752       if (isLayoutCompatible(C, Field1, *I)) {
13753         bool Result = UnmatchedFields.erase(*I);
13754         (void) Result;
13755         assert(Result);
13756         break;
13757       }
13758     }
13759     if (I == E)
13760       return false;
13761   }
13762 
13763   return UnmatchedFields.empty();
13764 }
13765 
13766 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
13767                                RecordDecl *RD2) {
13768   if (RD1->isUnion() != RD2->isUnion())
13769     return false;
13770 
13771   if (RD1->isUnion())
13772     return isLayoutCompatibleUnion(C, RD1, RD2);
13773   else
13774     return isLayoutCompatibleStruct(C, RD1, RD2);
13775 }
13776 
13777 /// Check if two types are layout-compatible in C++11 sense.
13778 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
13779   if (T1.isNull() || T2.isNull())
13780     return false;
13781 
13782   // C++11 [basic.types] p11:
13783   // If two types T1 and T2 are the same type, then T1 and T2 are
13784   // layout-compatible types.
13785   if (C.hasSameType(T1, T2))
13786     return true;
13787 
13788   T1 = T1.getCanonicalType().getUnqualifiedType();
13789   T2 = T2.getCanonicalType().getUnqualifiedType();
13790 
13791   const Type::TypeClass TC1 = T1->getTypeClass();
13792   const Type::TypeClass TC2 = T2->getTypeClass();
13793 
13794   if (TC1 != TC2)
13795     return false;
13796 
13797   if (TC1 == Type::Enum) {
13798     return isLayoutCompatible(C,
13799                               cast<EnumType>(T1)->getDecl(),
13800                               cast<EnumType>(T2)->getDecl());
13801   } else if (TC1 == Type::Record) {
13802     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
13803       return false;
13804 
13805     return isLayoutCompatible(C,
13806                               cast<RecordType>(T1)->getDecl(),
13807                               cast<RecordType>(T2)->getDecl());
13808   }
13809 
13810   return false;
13811 }
13812 
13813 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
13814 
13815 /// Given a type tag expression find the type tag itself.
13816 ///
13817 /// \param TypeExpr Type tag expression, as it appears in user's code.
13818 ///
13819 /// \param VD Declaration of an identifier that appears in a type tag.
13820 ///
13821 /// \param MagicValue Type tag magic value.
13822 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
13823                             const ValueDecl **VD, uint64_t *MagicValue) {
13824   while(true) {
13825     if (!TypeExpr)
13826       return false;
13827 
13828     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
13829 
13830     switch (TypeExpr->getStmtClass()) {
13831     case Stmt::UnaryOperatorClass: {
13832       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
13833       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
13834         TypeExpr = UO->getSubExpr();
13835         continue;
13836       }
13837       return false;
13838     }
13839 
13840     case Stmt::DeclRefExprClass: {
13841       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
13842       *VD = DRE->getDecl();
13843       return true;
13844     }
13845 
13846     case Stmt::IntegerLiteralClass: {
13847       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
13848       llvm::APInt MagicValueAPInt = IL->getValue();
13849       if (MagicValueAPInt.getActiveBits() <= 64) {
13850         *MagicValue = MagicValueAPInt.getZExtValue();
13851         return true;
13852       } else
13853         return false;
13854     }
13855 
13856     case Stmt::BinaryConditionalOperatorClass:
13857     case Stmt::ConditionalOperatorClass: {
13858       const AbstractConditionalOperator *ACO =
13859           cast<AbstractConditionalOperator>(TypeExpr);
13860       bool Result;
13861       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
13862         if (Result)
13863           TypeExpr = ACO->getTrueExpr();
13864         else
13865           TypeExpr = ACO->getFalseExpr();
13866         continue;
13867       }
13868       return false;
13869     }
13870 
13871     case Stmt::BinaryOperatorClass: {
13872       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
13873       if (BO->getOpcode() == BO_Comma) {
13874         TypeExpr = BO->getRHS();
13875         continue;
13876       }
13877       return false;
13878     }
13879 
13880     default:
13881       return false;
13882     }
13883   }
13884 }
13885 
13886 /// Retrieve the C type corresponding to type tag TypeExpr.
13887 ///
13888 /// \param TypeExpr Expression that specifies a type tag.
13889 ///
13890 /// \param MagicValues Registered magic values.
13891 ///
13892 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
13893 ///        kind.
13894 ///
13895 /// \param TypeInfo Information about the corresponding C type.
13896 ///
13897 /// \returns true if the corresponding C type was found.
13898 static bool GetMatchingCType(
13899         const IdentifierInfo *ArgumentKind,
13900         const Expr *TypeExpr, const ASTContext &Ctx,
13901         const llvm::DenseMap<Sema::TypeTagMagicValue,
13902                              Sema::TypeTagData> *MagicValues,
13903         bool &FoundWrongKind,
13904         Sema::TypeTagData &TypeInfo) {
13905   FoundWrongKind = false;
13906 
13907   // Variable declaration that has type_tag_for_datatype attribute.
13908   const ValueDecl *VD = nullptr;
13909 
13910   uint64_t MagicValue;
13911 
13912   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
13913     return false;
13914 
13915   if (VD) {
13916     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
13917       if (I->getArgumentKind() != ArgumentKind) {
13918         FoundWrongKind = true;
13919         return false;
13920       }
13921       TypeInfo.Type = I->getMatchingCType();
13922       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
13923       TypeInfo.MustBeNull = I->getMustBeNull();
13924       return true;
13925     }
13926     return false;
13927   }
13928 
13929   if (!MagicValues)
13930     return false;
13931 
13932   llvm::DenseMap<Sema::TypeTagMagicValue,
13933                  Sema::TypeTagData>::const_iterator I =
13934       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
13935   if (I == MagicValues->end())
13936     return false;
13937 
13938   TypeInfo = I->second;
13939   return true;
13940 }
13941 
13942 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
13943                                       uint64_t MagicValue, QualType Type,
13944                                       bool LayoutCompatible,
13945                                       bool MustBeNull) {
13946   if (!TypeTagForDatatypeMagicValues)
13947     TypeTagForDatatypeMagicValues.reset(
13948         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
13949 
13950   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
13951   (*TypeTagForDatatypeMagicValues)[Magic] =
13952       TypeTagData(Type, LayoutCompatible, MustBeNull);
13953 }
13954 
13955 static bool IsSameCharType(QualType T1, QualType T2) {
13956   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
13957   if (!BT1)
13958     return false;
13959 
13960   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
13961   if (!BT2)
13962     return false;
13963 
13964   BuiltinType::Kind T1Kind = BT1->getKind();
13965   BuiltinType::Kind T2Kind = BT2->getKind();
13966 
13967   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
13968          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
13969          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
13970          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
13971 }
13972 
13973 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
13974                                     const ArrayRef<const Expr *> ExprArgs,
13975                                     SourceLocation CallSiteLoc) {
13976   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
13977   bool IsPointerAttr = Attr->getIsPointer();
13978 
13979   // Retrieve the argument representing the 'type_tag'.
13980   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
13981   if (TypeTagIdxAST >= ExprArgs.size()) {
13982     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
13983         << 0 << Attr->getTypeTagIdx().getSourceIndex();
13984     return;
13985   }
13986   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
13987   bool FoundWrongKind;
13988   TypeTagData TypeInfo;
13989   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
13990                         TypeTagForDatatypeMagicValues.get(),
13991                         FoundWrongKind, TypeInfo)) {
13992     if (FoundWrongKind)
13993       Diag(TypeTagExpr->getExprLoc(),
13994            diag::warn_type_tag_for_datatype_wrong_kind)
13995         << TypeTagExpr->getSourceRange();
13996     return;
13997   }
13998 
13999   // Retrieve the argument representing the 'arg_idx'.
14000   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14001   if (ArgumentIdxAST >= ExprArgs.size()) {
14002     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14003         << 1 << Attr->getArgumentIdx().getSourceIndex();
14004     return;
14005   }
14006   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14007   if (IsPointerAttr) {
14008     // Skip implicit cast of pointer to `void *' (as a function argument).
14009     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14010       if (ICE->getType()->isVoidPointerType() &&
14011           ICE->getCastKind() == CK_BitCast)
14012         ArgumentExpr = ICE->getSubExpr();
14013   }
14014   QualType ArgumentType = ArgumentExpr->getType();
14015 
14016   // Passing a `void*' pointer shouldn't trigger a warning.
14017   if (IsPointerAttr && ArgumentType->isVoidPointerType())
14018     return;
14019 
14020   if (TypeInfo.MustBeNull) {
14021     // Type tag with matching void type requires a null pointer.
14022     if (!ArgumentExpr->isNullPointerConstant(Context,
14023                                              Expr::NPC_ValueDependentIsNotNull)) {
14024       Diag(ArgumentExpr->getExprLoc(),
14025            diag::warn_type_safety_null_pointer_required)
14026           << ArgumentKind->getName()
14027           << ArgumentExpr->getSourceRange()
14028           << TypeTagExpr->getSourceRange();
14029     }
14030     return;
14031   }
14032 
14033   QualType RequiredType = TypeInfo.Type;
14034   if (IsPointerAttr)
14035     RequiredType = Context.getPointerType(RequiredType);
14036 
14037   bool mismatch = false;
14038   if (!TypeInfo.LayoutCompatible) {
14039     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14040 
14041     // C++11 [basic.fundamental] p1:
14042     // Plain char, signed char, and unsigned char are three distinct types.
14043     //
14044     // But we treat plain `char' as equivalent to `signed char' or `unsigned
14045     // char' depending on the current char signedness mode.
14046     if (mismatch)
14047       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14048                                            RequiredType->getPointeeType())) ||
14049           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14050         mismatch = false;
14051   } else
14052     if (IsPointerAttr)
14053       mismatch = !isLayoutCompatible(Context,
14054                                      ArgumentType->getPointeeType(),
14055                                      RequiredType->getPointeeType());
14056     else
14057       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14058 
14059   if (mismatch)
14060     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14061         << ArgumentType << ArgumentKind
14062         << TypeInfo.LayoutCompatible << RequiredType
14063         << ArgumentExpr->getSourceRange()
14064         << TypeTagExpr->getSourceRange();
14065 }
14066 
14067 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14068                                          CharUnits Alignment) {
14069   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14070 }
14071 
14072 void Sema::DiagnoseMisalignedMembers() {
14073   for (MisalignedMember &m : MisalignedMembers) {
14074     const NamedDecl *ND = m.RD;
14075     if (ND->getName().empty()) {
14076       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14077         ND = TD;
14078     }
14079     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14080         << m.MD << ND << m.E->getSourceRange();
14081   }
14082   MisalignedMembers.clear();
14083 }
14084 
14085 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14086   E = E->IgnoreParens();
14087   if (!T->isPointerType() && !T->isIntegerType())
14088     return;
14089   if (isa<UnaryOperator>(E) &&
14090       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14091     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14092     if (isa<MemberExpr>(Op)) {
14093       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14094       if (MA != MisalignedMembers.end() &&
14095           (T->isIntegerType() ||
14096            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14097                                    Context.getTypeAlignInChars(
14098                                        T->getPointeeType()) <= MA->Alignment))))
14099         MisalignedMembers.erase(MA);
14100     }
14101   }
14102 }
14103 
14104 void Sema::RefersToMemberWithReducedAlignment(
14105     Expr *E,
14106     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14107         Action) {
14108   const auto *ME = dyn_cast<MemberExpr>(E);
14109   if (!ME)
14110     return;
14111 
14112   // No need to check expressions with an __unaligned-qualified type.
14113   if (E->getType().getQualifiers().hasUnaligned())
14114     return;
14115 
14116   // For a chain of MemberExpr like "a.b.c.d" this list
14117   // will keep FieldDecl's like [d, c, b].
14118   SmallVector<FieldDecl *, 4> ReverseMemberChain;
14119   const MemberExpr *TopME = nullptr;
14120   bool AnyIsPacked = false;
14121   do {
14122     QualType BaseType = ME->getBase()->getType();
14123     if (ME->isArrow())
14124       BaseType = BaseType->getPointeeType();
14125     RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl();
14126     if (RD->isInvalidDecl())
14127       return;
14128 
14129     ValueDecl *MD = ME->getMemberDecl();
14130     auto *FD = dyn_cast<FieldDecl>(MD);
14131     // We do not care about non-data members.
14132     if (!FD || FD->isInvalidDecl())
14133       return;
14134 
14135     AnyIsPacked =
14136         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14137     ReverseMemberChain.push_back(FD);
14138 
14139     TopME = ME;
14140     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14141   } while (ME);
14142   assert(TopME && "We did not compute a topmost MemberExpr!");
14143 
14144   // Not the scope of this diagnostic.
14145   if (!AnyIsPacked)
14146     return;
14147 
14148   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14149   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14150   // TODO: The innermost base of the member expression may be too complicated.
14151   // For now, just disregard these cases. This is left for future
14152   // improvement.
14153   if (!DRE && !isa<CXXThisExpr>(TopBase))
14154       return;
14155 
14156   // Alignment expected by the whole expression.
14157   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14158 
14159   // No need to do anything else with this case.
14160   if (ExpectedAlignment.isOne())
14161     return;
14162 
14163   // Synthesize offset of the whole access.
14164   CharUnits Offset;
14165   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
14166        I++) {
14167     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
14168   }
14169 
14170   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14171   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
14172       ReverseMemberChain.back()->getParent()->getTypeForDecl());
14173 
14174   // The base expression of the innermost MemberExpr may give
14175   // stronger guarantees than the class containing the member.
14176   if (DRE && !TopME->isArrow()) {
14177     const ValueDecl *VD = DRE->getDecl();
14178     if (!VD->getType()->isReferenceType())
14179       CompleteObjectAlignment =
14180           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
14181   }
14182 
14183   // Check if the synthesized offset fulfills the alignment.
14184   if (Offset % ExpectedAlignment != 0 ||
14185       // It may fulfill the offset it but the effective alignment may still be
14186       // lower than the expected expression alignment.
14187       CompleteObjectAlignment < ExpectedAlignment) {
14188     // If this happens, we want to determine a sensible culprit of this.
14189     // Intuitively, watching the chain of member expressions from right to
14190     // left, we start with the required alignment (as required by the field
14191     // type) but some packed attribute in that chain has reduced the alignment.
14192     // It may happen that another packed structure increases it again. But if
14193     // we are here such increase has not been enough. So pointing the first
14194     // FieldDecl that either is packed or else its RecordDecl is,
14195     // seems reasonable.
14196     FieldDecl *FD = nullptr;
14197     CharUnits Alignment;
14198     for (FieldDecl *FDI : ReverseMemberChain) {
14199       if (FDI->hasAttr<PackedAttr>() ||
14200           FDI->getParent()->hasAttr<PackedAttr>()) {
14201         FD = FDI;
14202         Alignment = std::min(
14203             Context.getTypeAlignInChars(FD->getType()),
14204             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
14205         break;
14206       }
14207     }
14208     assert(FD && "We did not find a packed FieldDecl!");
14209     Action(E, FD->getParent(), FD, Alignment);
14210   }
14211 }
14212 
14213 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
14214   using namespace std::placeholders;
14215 
14216   RefersToMemberWithReducedAlignment(
14217       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
14218                      _2, _3, _4));
14219 }
14220