1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 /// Checks that a call expression's argument count is the desired number.
113 /// This is useful when doing custom type-checking.  Returns true on error.
114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115   unsigned argCount = call->getNumArgs();
116   if (argCount == desiredArgCount) return false;
117 
118   if (argCount < desiredArgCount)
119     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120            << 0 /*function call*/ << desiredArgCount << argCount
121            << call->getSourceRange();
122 
123   // Highlight all the excess arguments.
124   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125                     call->getArg(argCount - 1)->getEndLoc());
126 
127   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128     << 0 /*function call*/ << desiredArgCount << argCount
129     << call->getArg(1)->getSourceRange();
130 }
131 
132 /// Check that the first argument to __builtin_annotation is an integer
133 /// and the second argument is a non-wide string literal.
134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135   if (checkArgCount(S, TheCall, 2))
136     return true;
137 
138   // First argument should be an integer.
139   Expr *ValArg = TheCall->getArg(0);
140   QualType Ty = ValArg->getType();
141   if (!Ty->isIntegerType()) {
142     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143         << ValArg->getSourceRange();
144     return true;
145   }
146 
147   // Second argument should be a constant string.
148   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150   if (!Literal || !Literal->isAscii()) {
151     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152         << StrArg->getSourceRange();
153     return true;
154   }
155 
156   TheCall->setType(Ty);
157   return false;
158 }
159 
160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161   // We need at least one argument.
162   if (TheCall->getNumArgs() < 1) {
163     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164         << 0 << 1 << TheCall->getNumArgs()
165         << TheCall->getCallee()->getSourceRange();
166     return true;
167   }
168 
169   // All arguments should be wide string literals.
170   for (Expr *Arg : TheCall->arguments()) {
171     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172     if (!Literal || !Literal->isWide()) {
173       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174           << Arg->getSourceRange();
175       return true;
176     }
177   }
178 
179   return false;
180 }
181 
182 /// Check that the argument to __builtin_addressof is a glvalue, and set the
183 /// result type to the corresponding pointer type.
184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185   if (checkArgCount(S, TheCall, 1))
186     return true;
187 
188   ExprResult Arg(TheCall->getArg(0));
189   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190   if (ResultType.isNull())
191     return true;
192 
193   TheCall->setArg(0, Arg.get());
194   TheCall->setType(ResultType);
195   return false;
196 }
197 
198 /// Check the number of arguments and set the result type to
199 /// the argument type.
200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
201   if (checkArgCount(S, TheCall, 1))
202     return true;
203 
204   TheCall->setType(TheCall->getArg(0)->getType());
205   return false;
206 }
207 
208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
210 /// type (but not a function pointer) and that the alignment is a power-of-two.
211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
212   if (checkArgCount(S, TheCall, 2))
213     return true;
214 
215   clang::Expr *Source = TheCall->getArg(0);
216   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
217 
218   auto IsValidIntegerType = [](QualType Ty) {
219     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
220   };
221   QualType SrcTy = Source->getType();
222   // We should also be able to use it with arrays (but not functions!).
223   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
224     SrcTy = S.Context.getDecayedType(SrcTy);
225   }
226   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
227       SrcTy->isFunctionPointerType()) {
228     // FIXME: this is not quite the right error message since we don't allow
229     // floating point types, or member pointers.
230     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
231         << SrcTy;
232     return true;
233   }
234 
235   clang::Expr *AlignOp = TheCall->getArg(1);
236   if (!IsValidIntegerType(AlignOp->getType())) {
237     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
238         << AlignOp->getType();
239     return true;
240   }
241   Expr::EvalResult AlignResult;
242   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
243   // We can't check validity of alignment if it is value dependent.
244   if (!AlignOp->isValueDependent() &&
245       AlignOp->EvaluateAsInt(AlignResult, S.Context,
246                              Expr::SE_AllowSideEffects)) {
247     llvm::APSInt AlignValue = AlignResult.Val.getInt();
248     llvm::APSInt MaxValue(
249         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
250     if (AlignValue < 1) {
251       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
252       return true;
253     }
254     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
255       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
256           << toString(MaxValue, 10);
257       return true;
258     }
259     if (!AlignValue.isPowerOf2()) {
260       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
261       return true;
262     }
263     if (AlignValue == 1) {
264       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
265           << IsBooleanAlignBuiltin;
266     }
267   }
268 
269   ExprResult SrcArg = S.PerformCopyInitialization(
270       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
271       SourceLocation(), Source);
272   if (SrcArg.isInvalid())
273     return true;
274   TheCall->setArg(0, SrcArg.get());
275   ExprResult AlignArg =
276       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
277                                       S.Context, AlignOp->getType(), false),
278                                   SourceLocation(), AlignOp);
279   if (AlignArg.isInvalid())
280     return true;
281   TheCall->setArg(1, AlignArg.get());
282   // For align_up/align_down, the return type is the same as the (potentially
283   // decayed) argument type including qualifiers. For is_aligned(), the result
284   // is always bool.
285   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
286   return false;
287 }
288 
289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
290                                 unsigned BuiltinID) {
291   if (checkArgCount(S, TheCall, 3))
292     return true;
293 
294   // First two arguments should be integers.
295   for (unsigned I = 0; I < 2; ++I) {
296     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
297     if (Arg.isInvalid()) return true;
298     TheCall->setArg(I, Arg.get());
299 
300     QualType Ty = Arg.get()->getType();
301     if (!Ty->isIntegerType()) {
302       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
303           << Ty << Arg.get()->getSourceRange();
304       return true;
305     }
306   }
307 
308   // Third argument should be a pointer to a non-const integer.
309   // IRGen correctly handles volatile, restrict, and address spaces, and
310   // the other qualifiers aren't possible.
311   {
312     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
313     if (Arg.isInvalid()) return true;
314     TheCall->setArg(2, Arg.get());
315 
316     QualType Ty = Arg.get()->getType();
317     const auto *PtrTy = Ty->getAs<PointerType>();
318     if (!PtrTy ||
319         !PtrTy->getPointeeType()->isIntegerType() ||
320         PtrTy->getPointeeType().isConstQualified()) {
321       S.Diag(Arg.get()->getBeginLoc(),
322              diag::err_overflow_builtin_must_be_ptr_int)
323         << Ty << Arg.get()->getSourceRange();
324       return true;
325     }
326   }
327 
328   // Disallow signed ExtIntType args larger than 128 bits to mul function until
329   // we improve backend support.
330   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
331     for (unsigned I = 0; I < 3; ++I) {
332       const auto Arg = TheCall->getArg(I);
333       // Third argument will be a pointer.
334       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
335       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
336           S.getASTContext().getIntWidth(Ty) > 128)
337         return S.Diag(Arg->getBeginLoc(),
338                       diag::err_overflow_builtin_ext_int_max_size)
339                << 128;
340     }
341   }
342 
343   return false;
344 }
345 
346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
347   if (checkArgCount(S, BuiltinCall, 2))
348     return true;
349 
350   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
351   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
352   Expr *Call = BuiltinCall->getArg(0);
353   Expr *Chain = BuiltinCall->getArg(1);
354 
355   if (Call->getStmtClass() != Stmt::CallExprClass) {
356     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
357         << Call->getSourceRange();
358     return true;
359   }
360 
361   auto CE = cast<CallExpr>(Call);
362   if (CE->getCallee()->getType()->isBlockPointerType()) {
363     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
364         << Call->getSourceRange();
365     return true;
366   }
367 
368   const Decl *TargetDecl = CE->getCalleeDecl();
369   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
370     if (FD->getBuiltinID()) {
371       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
372           << Call->getSourceRange();
373       return true;
374     }
375 
376   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
377     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
378         << Call->getSourceRange();
379     return true;
380   }
381 
382   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
383   if (ChainResult.isInvalid())
384     return true;
385   if (!ChainResult.get()->getType()->isPointerType()) {
386     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
387         << Chain->getSourceRange();
388     return true;
389   }
390 
391   QualType ReturnTy = CE->getCallReturnType(S.Context);
392   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
393   QualType BuiltinTy = S.Context.getFunctionType(
394       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
395   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
396 
397   Builtin =
398       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
399 
400   BuiltinCall->setType(CE->getType());
401   BuiltinCall->setValueKind(CE->getValueKind());
402   BuiltinCall->setObjectKind(CE->getObjectKind());
403   BuiltinCall->setCallee(Builtin);
404   BuiltinCall->setArg(1, ChainResult.get());
405 
406   return false;
407 }
408 
409 namespace {
410 
411 class EstimateSizeFormatHandler
412     : public analyze_format_string::FormatStringHandler {
413   size_t Size;
414 
415 public:
416   EstimateSizeFormatHandler(StringRef Format)
417       : Size(std::min(Format.find(0), Format.size()) +
418              1 /* null byte always written by sprintf */) {}
419 
420   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
421                              const char *, unsigned SpecifierLen) override {
422 
423     const size_t FieldWidth = computeFieldWidth(FS);
424     const size_t Precision = computePrecision(FS);
425 
426     // The actual format.
427     switch (FS.getConversionSpecifier().getKind()) {
428     // Just a char.
429     case analyze_format_string::ConversionSpecifier::cArg:
430     case analyze_format_string::ConversionSpecifier::CArg:
431       Size += std::max(FieldWidth, (size_t)1);
432       break;
433     // Just an integer.
434     case analyze_format_string::ConversionSpecifier::dArg:
435     case analyze_format_string::ConversionSpecifier::DArg:
436     case analyze_format_string::ConversionSpecifier::iArg:
437     case analyze_format_string::ConversionSpecifier::oArg:
438     case analyze_format_string::ConversionSpecifier::OArg:
439     case analyze_format_string::ConversionSpecifier::uArg:
440     case analyze_format_string::ConversionSpecifier::UArg:
441     case analyze_format_string::ConversionSpecifier::xArg:
442     case analyze_format_string::ConversionSpecifier::XArg:
443       Size += std::max(FieldWidth, Precision);
444       break;
445 
446     // %g style conversion switches between %f or %e style dynamically.
447     // %f always takes less space, so default to it.
448     case analyze_format_string::ConversionSpecifier::gArg:
449     case analyze_format_string::ConversionSpecifier::GArg:
450 
451     // Floating point number in the form '[+]ddd.ddd'.
452     case analyze_format_string::ConversionSpecifier::fArg:
453     case analyze_format_string::ConversionSpecifier::FArg:
454       Size += std::max(FieldWidth, 1 /* integer part */ +
455                                        (Precision ? 1 + Precision
456                                                   : 0) /* period + decimal */);
457       break;
458 
459     // Floating point number in the form '[-]d.ddde[+-]dd'.
460     case analyze_format_string::ConversionSpecifier::eArg:
461     case analyze_format_string::ConversionSpecifier::EArg:
462       Size +=
463           std::max(FieldWidth,
464                    1 /* integer part */ +
465                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
466                        1 /* e or E letter */ + 2 /* exponent */);
467       break;
468 
469     // Floating point number in the form '[-]0xh.hhhhp±dd'.
470     case analyze_format_string::ConversionSpecifier::aArg:
471     case analyze_format_string::ConversionSpecifier::AArg:
472       Size +=
473           std::max(FieldWidth,
474                    2 /* 0x */ + 1 /* integer part */ +
475                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
476                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
477       break;
478 
479     // Just a string.
480     case analyze_format_string::ConversionSpecifier::sArg:
481     case analyze_format_string::ConversionSpecifier::SArg:
482       Size += FieldWidth;
483       break;
484 
485     // Just a pointer in the form '0xddd'.
486     case analyze_format_string::ConversionSpecifier::pArg:
487       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
488       break;
489 
490     // A plain percent.
491     case analyze_format_string::ConversionSpecifier::PercentArg:
492       Size += 1;
493       break;
494 
495     default:
496       break;
497     }
498 
499     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
500 
501     if (FS.hasAlternativeForm()) {
502       switch (FS.getConversionSpecifier().getKind()) {
503       default:
504         break;
505       // Force a leading '0'.
506       case analyze_format_string::ConversionSpecifier::oArg:
507         Size += 1;
508         break;
509       // Force a leading '0x'.
510       case analyze_format_string::ConversionSpecifier::xArg:
511       case analyze_format_string::ConversionSpecifier::XArg:
512         Size += 2;
513         break;
514       // Force a period '.' before decimal, even if precision is 0.
515       case analyze_format_string::ConversionSpecifier::aArg:
516       case analyze_format_string::ConversionSpecifier::AArg:
517       case analyze_format_string::ConversionSpecifier::eArg:
518       case analyze_format_string::ConversionSpecifier::EArg:
519       case analyze_format_string::ConversionSpecifier::fArg:
520       case analyze_format_string::ConversionSpecifier::FArg:
521       case analyze_format_string::ConversionSpecifier::gArg:
522       case analyze_format_string::ConversionSpecifier::GArg:
523         Size += (Precision ? 0 : 1);
524         break;
525       }
526     }
527     assert(SpecifierLen <= Size && "no underflow");
528     Size -= SpecifierLen;
529     return true;
530   }
531 
532   size_t getSizeLowerBound() const { return Size; }
533 
534 private:
535   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
536     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
537     size_t FieldWidth = 0;
538     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
539       FieldWidth = FW.getConstantAmount();
540     return FieldWidth;
541   }
542 
543   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
544     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
545     size_t Precision = 0;
546 
547     // See man 3 printf for default precision value based on the specifier.
548     switch (FW.getHowSpecified()) {
549     case analyze_format_string::OptionalAmount::NotSpecified:
550       switch (FS.getConversionSpecifier().getKind()) {
551       default:
552         break;
553       case analyze_format_string::ConversionSpecifier::dArg: // %d
554       case analyze_format_string::ConversionSpecifier::DArg: // %D
555       case analyze_format_string::ConversionSpecifier::iArg: // %i
556         Precision = 1;
557         break;
558       case analyze_format_string::ConversionSpecifier::oArg: // %d
559       case analyze_format_string::ConversionSpecifier::OArg: // %D
560       case analyze_format_string::ConversionSpecifier::uArg: // %d
561       case analyze_format_string::ConversionSpecifier::UArg: // %D
562       case analyze_format_string::ConversionSpecifier::xArg: // %d
563       case analyze_format_string::ConversionSpecifier::XArg: // %D
564         Precision = 1;
565         break;
566       case analyze_format_string::ConversionSpecifier::fArg: // %f
567       case analyze_format_string::ConversionSpecifier::FArg: // %F
568       case analyze_format_string::ConversionSpecifier::eArg: // %e
569       case analyze_format_string::ConversionSpecifier::EArg: // %E
570       case analyze_format_string::ConversionSpecifier::gArg: // %g
571       case analyze_format_string::ConversionSpecifier::GArg: // %G
572         Precision = 6;
573         break;
574       case analyze_format_string::ConversionSpecifier::pArg: // %d
575         Precision = 1;
576         break;
577       }
578       break;
579     case analyze_format_string::OptionalAmount::Constant:
580       Precision = FW.getConstantAmount();
581       break;
582     default:
583       break;
584     }
585     return Precision;
586   }
587 };
588 
589 } // namespace
590 
591 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
592                                                CallExpr *TheCall) {
593   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
594       isConstantEvaluated())
595     return;
596 
597   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
598   if (!BuiltinID)
599     return;
600 
601   const TargetInfo &TI = getASTContext().getTargetInfo();
602   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
603 
604   auto ComputeExplicitObjectSizeArgument =
605       [&](unsigned Index) -> Optional<llvm::APSInt> {
606     Expr::EvalResult Result;
607     Expr *SizeArg = TheCall->getArg(Index);
608     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
609       return llvm::None;
610     return Result.Val.getInt();
611   };
612 
613   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
614     // If the parameter has a pass_object_size attribute, then we should use its
615     // (potentially) more strict checking mode. Otherwise, conservatively assume
616     // type 0.
617     int BOSType = 0;
618     if (const auto *POS =
619             FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
620       BOSType = POS->getType();
621 
622     const Expr *ObjArg = TheCall->getArg(Index);
623     uint64_t Result;
624     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
625       return llvm::None;
626 
627     // Get the object size in the target's size_t width.
628     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
629   };
630 
631   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
632     Expr *ObjArg = TheCall->getArg(Index);
633     uint64_t Result;
634     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
635       return llvm::None;
636     // Add 1 for null byte.
637     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
638   };
639 
640   Optional<llvm::APSInt> SourceSize;
641   Optional<llvm::APSInt> DestinationSize;
642   unsigned DiagID = 0;
643   bool IsChkVariant = false;
644 
645   switch (BuiltinID) {
646   default:
647     return;
648   case Builtin::BI__builtin_strcpy:
649   case Builtin::BIstrcpy: {
650     DiagID = diag::warn_fortify_strlen_overflow;
651     SourceSize = ComputeStrLenArgument(1);
652     DestinationSize = ComputeSizeArgument(0);
653     break;
654   }
655 
656   case Builtin::BI__builtin___strcpy_chk: {
657     DiagID = diag::warn_fortify_strlen_overflow;
658     SourceSize = ComputeStrLenArgument(1);
659     DestinationSize = ComputeExplicitObjectSizeArgument(2);
660     IsChkVariant = true;
661     break;
662   }
663 
664   case Builtin::BIsprintf:
665   case Builtin::BI__builtin___sprintf_chk: {
666     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
667     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
668 
669     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
670 
671       if (!Format->isAscii() && !Format->isUTF8())
672         return;
673 
674       StringRef FormatStrRef = Format->getString();
675       EstimateSizeFormatHandler H(FormatStrRef);
676       const char *FormatBytes = FormatStrRef.data();
677       const ConstantArrayType *T =
678           Context.getAsConstantArrayType(Format->getType());
679       assert(T && "String literal not of constant array type!");
680       size_t TypeSize = T->getSize().getZExtValue();
681 
682       // In case there's a null byte somewhere.
683       size_t StrLen =
684           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
685       if (!analyze_format_string::ParsePrintfString(
686               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
687               Context.getTargetInfo(), false)) {
688         DiagID = diag::warn_fortify_source_format_overflow;
689         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
690                          .extOrTrunc(SizeTypeWidth);
691         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
692           DestinationSize = ComputeExplicitObjectSizeArgument(2);
693           IsChkVariant = true;
694         } else {
695           DestinationSize = ComputeSizeArgument(0);
696         }
697         break;
698       }
699     }
700     return;
701   }
702   case Builtin::BI__builtin___memcpy_chk:
703   case Builtin::BI__builtin___memmove_chk:
704   case Builtin::BI__builtin___memset_chk:
705   case Builtin::BI__builtin___strlcat_chk:
706   case Builtin::BI__builtin___strlcpy_chk:
707   case Builtin::BI__builtin___strncat_chk:
708   case Builtin::BI__builtin___strncpy_chk:
709   case Builtin::BI__builtin___stpncpy_chk:
710   case Builtin::BI__builtin___memccpy_chk:
711   case Builtin::BI__builtin___mempcpy_chk: {
712     DiagID = diag::warn_builtin_chk_overflow;
713     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
714     DestinationSize =
715         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
716     IsChkVariant = true;
717     break;
718   }
719 
720   case Builtin::BI__builtin___snprintf_chk:
721   case Builtin::BI__builtin___vsnprintf_chk: {
722     DiagID = diag::warn_builtin_chk_overflow;
723     SourceSize = ComputeExplicitObjectSizeArgument(1);
724     DestinationSize = ComputeExplicitObjectSizeArgument(3);
725     IsChkVariant = true;
726     break;
727   }
728 
729   case Builtin::BIstrncat:
730   case Builtin::BI__builtin_strncat:
731   case Builtin::BIstrncpy:
732   case Builtin::BI__builtin_strncpy:
733   case Builtin::BIstpncpy:
734   case Builtin::BI__builtin_stpncpy: {
735     // Whether these functions overflow depends on the runtime strlen of the
736     // string, not just the buffer size, so emitting the "always overflow"
737     // diagnostic isn't quite right. We should still diagnose passing a buffer
738     // size larger than the destination buffer though; this is a runtime abort
739     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
740     DiagID = diag::warn_fortify_source_size_mismatch;
741     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
742     DestinationSize = ComputeSizeArgument(0);
743     break;
744   }
745 
746   case Builtin::BImemcpy:
747   case Builtin::BI__builtin_memcpy:
748   case Builtin::BImemmove:
749   case Builtin::BI__builtin_memmove:
750   case Builtin::BImemset:
751   case Builtin::BI__builtin_memset:
752   case Builtin::BImempcpy:
753   case Builtin::BI__builtin_mempcpy: {
754     DiagID = diag::warn_fortify_source_overflow;
755     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
756     DestinationSize = ComputeSizeArgument(0);
757     break;
758   }
759   case Builtin::BIsnprintf:
760   case Builtin::BI__builtin_snprintf:
761   case Builtin::BIvsnprintf:
762   case Builtin::BI__builtin_vsnprintf: {
763     DiagID = diag::warn_fortify_source_size_mismatch;
764     SourceSize = ComputeExplicitObjectSizeArgument(1);
765     DestinationSize = ComputeSizeArgument(0);
766     break;
767   }
768   }
769 
770   if (!SourceSize || !DestinationSize ||
771       SourceSize.getValue().ule(DestinationSize.getValue()))
772     return;
773 
774   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
775   // Skim off the details of whichever builtin was called to produce a better
776   // diagnostic, as it's unlikely that the user wrote the __builtin explicitly.
777   if (IsChkVariant) {
778     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
779     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
780   } else if (FunctionName.startswith("__builtin_")) {
781     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
782   }
783 
784   SmallString<16> DestinationStr;
785   SmallString<16> SourceStr;
786   DestinationSize->toString(DestinationStr, /*Radix=*/10);
787   SourceSize->toString(SourceStr, /*Radix=*/10);
788   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
789                       PDiag(DiagID)
790                           << FunctionName << DestinationStr << SourceStr);
791 }
792 
793 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
794                                      Scope::ScopeFlags NeededScopeFlags,
795                                      unsigned DiagID) {
796   // Scopes aren't available during instantiation. Fortunately, builtin
797   // functions cannot be template args so they cannot be formed through template
798   // instantiation. Therefore checking once during the parse is sufficient.
799   if (SemaRef.inTemplateInstantiation())
800     return false;
801 
802   Scope *S = SemaRef.getCurScope();
803   while (S && !S->isSEHExceptScope())
804     S = S->getParent();
805   if (!S || !(S->getFlags() & NeededScopeFlags)) {
806     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
807     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
808         << DRE->getDecl()->getIdentifier();
809     return true;
810   }
811 
812   return false;
813 }
814 
815 static inline bool isBlockPointer(Expr *Arg) {
816   return Arg->getType()->isBlockPointerType();
817 }
818 
819 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
820 /// void*, which is a requirement of device side enqueue.
821 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
822   const BlockPointerType *BPT =
823       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
824   ArrayRef<QualType> Params =
825       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
826   unsigned ArgCounter = 0;
827   bool IllegalParams = false;
828   // Iterate through the block parameters until either one is found that is not
829   // a local void*, or the block is valid.
830   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
831        I != E; ++I, ++ArgCounter) {
832     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
833         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
834             LangAS::opencl_local) {
835       // Get the location of the error. If a block literal has been passed
836       // (BlockExpr) then we can point straight to the offending argument,
837       // else we just point to the variable reference.
838       SourceLocation ErrorLoc;
839       if (isa<BlockExpr>(BlockArg)) {
840         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
841         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
842       } else if (isa<DeclRefExpr>(BlockArg)) {
843         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
844       }
845       S.Diag(ErrorLoc,
846              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
847       IllegalParams = true;
848     }
849   }
850 
851   return IllegalParams;
852 }
853 
854 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
855   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
856     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
857         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
858     return true;
859   }
860   return false;
861 }
862 
863 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
864   if (checkArgCount(S, TheCall, 2))
865     return true;
866 
867   if (checkOpenCLSubgroupExt(S, TheCall))
868     return true;
869 
870   // First argument is an ndrange_t type.
871   Expr *NDRangeArg = TheCall->getArg(0);
872   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
873     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
874         << TheCall->getDirectCallee() << "'ndrange_t'";
875     return true;
876   }
877 
878   Expr *BlockArg = TheCall->getArg(1);
879   if (!isBlockPointer(BlockArg)) {
880     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
881         << TheCall->getDirectCallee() << "block";
882     return true;
883   }
884   return checkOpenCLBlockArgs(S, BlockArg);
885 }
886 
887 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
888 /// get_kernel_work_group_size
889 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
890 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
891   if (checkArgCount(S, TheCall, 1))
892     return true;
893 
894   Expr *BlockArg = TheCall->getArg(0);
895   if (!isBlockPointer(BlockArg)) {
896     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
897         << TheCall->getDirectCallee() << "block";
898     return true;
899   }
900   return checkOpenCLBlockArgs(S, BlockArg);
901 }
902 
903 /// Diagnose integer type and any valid implicit conversion to it.
904 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
905                                       const QualType &IntType);
906 
907 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
908                                             unsigned Start, unsigned End) {
909   bool IllegalParams = false;
910   for (unsigned I = Start; I <= End; ++I)
911     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
912                                               S.Context.getSizeType());
913   return IllegalParams;
914 }
915 
916 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
917 /// 'local void*' parameter of passed block.
918 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
919                                            Expr *BlockArg,
920                                            unsigned NumNonVarArgs) {
921   const BlockPointerType *BPT =
922       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
923   unsigned NumBlockParams =
924       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
925   unsigned TotalNumArgs = TheCall->getNumArgs();
926 
927   // For each argument passed to the block, a corresponding uint needs to
928   // be passed to describe the size of the local memory.
929   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
930     S.Diag(TheCall->getBeginLoc(),
931            diag::err_opencl_enqueue_kernel_local_size_args);
932     return true;
933   }
934 
935   // Check that the sizes of the local memory are specified by integers.
936   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
937                                          TotalNumArgs - 1);
938 }
939 
940 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
941 /// overload formats specified in Table 6.13.17.1.
942 /// int enqueue_kernel(queue_t queue,
943 ///                    kernel_enqueue_flags_t flags,
944 ///                    const ndrange_t ndrange,
945 ///                    void (^block)(void))
946 /// int enqueue_kernel(queue_t queue,
947 ///                    kernel_enqueue_flags_t flags,
948 ///                    const ndrange_t ndrange,
949 ///                    uint num_events_in_wait_list,
950 ///                    clk_event_t *event_wait_list,
951 ///                    clk_event_t *event_ret,
952 ///                    void (^block)(void))
953 /// int enqueue_kernel(queue_t queue,
954 ///                    kernel_enqueue_flags_t flags,
955 ///                    const ndrange_t ndrange,
956 ///                    void (^block)(local void*, ...),
957 ///                    uint size0, ...)
958 /// int enqueue_kernel(queue_t queue,
959 ///                    kernel_enqueue_flags_t flags,
960 ///                    const ndrange_t ndrange,
961 ///                    uint num_events_in_wait_list,
962 ///                    clk_event_t *event_wait_list,
963 ///                    clk_event_t *event_ret,
964 ///                    void (^block)(local void*, ...),
965 ///                    uint size0, ...)
966 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
967   unsigned NumArgs = TheCall->getNumArgs();
968 
969   if (NumArgs < 4) {
970     S.Diag(TheCall->getBeginLoc(),
971            diag::err_typecheck_call_too_few_args_at_least)
972         << 0 << 4 << NumArgs;
973     return true;
974   }
975 
976   Expr *Arg0 = TheCall->getArg(0);
977   Expr *Arg1 = TheCall->getArg(1);
978   Expr *Arg2 = TheCall->getArg(2);
979   Expr *Arg3 = TheCall->getArg(3);
980 
981   // First argument always needs to be a queue_t type.
982   if (!Arg0->getType()->isQueueT()) {
983     S.Diag(TheCall->getArg(0)->getBeginLoc(),
984            diag::err_opencl_builtin_expected_type)
985         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
986     return true;
987   }
988 
989   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
990   if (!Arg1->getType()->isIntegerType()) {
991     S.Diag(TheCall->getArg(1)->getBeginLoc(),
992            diag::err_opencl_builtin_expected_type)
993         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
994     return true;
995   }
996 
997   // Third argument is always an ndrange_t type.
998   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
999     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1000            diag::err_opencl_builtin_expected_type)
1001         << TheCall->getDirectCallee() << "'ndrange_t'";
1002     return true;
1003   }
1004 
1005   // With four arguments, there is only one form that the function could be
1006   // called in: no events and no variable arguments.
1007   if (NumArgs == 4) {
1008     // check that the last argument is the right block type.
1009     if (!isBlockPointer(Arg3)) {
1010       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1011           << TheCall->getDirectCallee() << "block";
1012       return true;
1013     }
1014     // we have a block type, check the prototype
1015     const BlockPointerType *BPT =
1016         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1017     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1018       S.Diag(Arg3->getBeginLoc(),
1019              diag::err_opencl_enqueue_kernel_blocks_no_args);
1020       return true;
1021     }
1022     return false;
1023   }
1024   // we can have block + varargs.
1025   if (isBlockPointer(Arg3))
1026     return (checkOpenCLBlockArgs(S, Arg3) ||
1027             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1028   // last two cases with either exactly 7 args or 7 args and varargs.
1029   if (NumArgs >= 7) {
1030     // check common block argument.
1031     Expr *Arg6 = TheCall->getArg(6);
1032     if (!isBlockPointer(Arg6)) {
1033       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1034           << TheCall->getDirectCallee() << "block";
1035       return true;
1036     }
1037     if (checkOpenCLBlockArgs(S, Arg6))
1038       return true;
1039 
1040     // Forth argument has to be any integer type.
1041     if (!Arg3->getType()->isIntegerType()) {
1042       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1043              diag::err_opencl_builtin_expected_type)
1044           << TheCall->getDirectCallee() << "integer";
1045       return true;
1046     }
1047     // check remaining common arguments.
1048     Expr *Arg4 = TheCall->getArg(4);
1049     Expr *Arg5 = TheCall->getArg(5);
1050 
1051     // Fifth argument is always passed as a pointer to clk_event_t.
1052     if (!Arg4->isNullPointerConstant(S.Context,
1053                                      Expr::NPC_ValueDependentIsNotNull) &&
1054         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1055       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1056              diag::err_opencl_builtin_expected_type)
1057           << TheCall->getDirectCallee()
1058           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1059       return true;
1060     }
1061 
1062     // Sixth argument is always passed as a pointer to clk_event_t.
1063     if (!Arg5->isNullPointerConstant(S.Context,
1064                                      Expr::NPC_ValueDependentIsNotNull) &&
1065         !(Arg5->getType()->isPointerType() &&
1066           Arg5->getType()->getPointeeType()->isClkEventT())) {
1067       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1068              diag::err_opencl_builtin_expected_type)
1069           << TheCall->getDirectCallee()
1070           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1071       return true;
1072     }
1073 
1074     if (NumArgs == 7)
1075       return false;
1076 
1077     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1078   }
1079 
1080   // None of the specific case has been detected, give generic error
1081   S.Diag(TheCall->getBeginLoc(),
1082          diag::err_opencl_enqueue_kernel_incorrect_args);
1083   return true;
1084 }
1085 
1086 /// Returns OpenCL access qual.
1087 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1088     return D->getAttr<OpenCLAccessAttr>();
1089 }
1090 
1091 /// Returns true if pipe element type is different from the pointer.
1092 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1093   const Expr *Arg0 = Call->getArg(0);
1094   // First argument type should always be pipe.
1095   if (!Arg0->getType()->isPipeType()) {
1096     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1097         << Call->getDirectCallee() << Arg0->getSourceRange();
1098     return true;
1099   }
1100   OpenCLAccessAttr *AccessQual =
1101       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1102   // Validates the access qualifier is compatible with the call.
1103   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1104   // read_only and write_only, and assumed to be read_only if no qualifier is
1105   // specified.
1106   switch (Call->getDirectCallee()->getBuiltinID()) {
1107   case Builtin::BIread_pipe:
1108   case Builtin::BIreserve_read_pipe:
1109   case Builtin::BIcommit_read_pipe:
1110   case Builtin::BIwork_group_reserve_read_pipe:
1111   case Builtin::BIsub_group_reserve_read_pipe:
1112   case Builtin::BIwork_group_commit_read_pipe:
1113   case Builtin::BIsub_group_commit_read_pipe:
1114     if (!(!AccessQual || AccessQual->isReadOnly())) {
1115       S.Diag(Arg0->getBeginLoc(),
1116              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1117           << "read_only" << Arg0->getSourceRange();
1118       return true;
1119     }
1120     break;
1121   case Builtin::BIwrite_pipe:
1122   case Builtin::BIreserve_write_pipe:
1123   case Builtin::BIcommit_write_pipe:
1124   case Builtin::BIwork_group_reserve_write_pipe:
1125   case Builtin::BIsub_group_reserve_write_pipe:
1126   case Builtin::BIwork_group_commit_write_pipe:
1127   case Builtin::BIsub_group_commit_write_pipe:
1128     if (!(AccessQual && AccessQual->isWriteOnly())) {
1129       S.Diag(Arg0->getBeginLoc(),
1130              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1131           << "write_only" << Arg0->getSourceRange();
1132       return true;
1133     }
1134     break;
1135   default:
1136     break;
1137   }
1138   return false;
1139 }
1140 
1141 /// Returns true if pipe element type is different from the pointer.
1142 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1143   const Expr *Arg0 = Call->getArg(0);
1144   const Expr *ArgIdx = Call->getArg(Idx);
1145   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1146   const QualType EltTy = PipeTy->getElementType();
1147   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1148   // The Idx argument should be a pointer and the type of the pointer and
1149   // the type of pipe element should also be the same.
1150   if (!ArgTy ||
1151       !S.Context.hasSameType(
1152           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1153     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1154         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1155         << ArgIdx->getType() << ArgIdx->getSourceRange();
1156     return true;
1157   }
1158   return false;
1159 }
1160 
1161 // Performs semantic analysis for the read/write_pipe call.
1162 // \param S Reference to the semantic analyzer.
1163 // \param Call A pointer to the builtin call.
1164 // \return True if a semantic error has been found, false otherwise.
1165 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1166   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1167   // functions have two forms.
1168   switch (Call->getNumArgs()) {
1169   case 2:
1170     if (checkOpenCLPipeArg(S, Call))
1171       return true;
1172     // The call with 2 arguments should be
1173     // read/write_pipe(pipe T, T*).
1174     // Check packet type T.
1175     if (checkOpenCLPipePacketType(S, Call, 1))
1176       return true;
1177     break;
1178 
1179   case 4: {
1180     if (checkOpenCLPipeArg(S, Call))
1181       return true;
1182     // The call with 4 arguments should be
1183     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1184     // Check reserve_id_t.
1185     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1186       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1187           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1188           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1189       return true;
1190     }
1191 
1192     // Check the index.
1193     const Expr *Arg2 = Call->getArg(2);
1194     if (!Arg2->getType()->isIntegerType() &&
1195         !Arg2->getType()->isUnsignedIntegerType()) {
1196       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1197           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1198           << Arg2->getType() << Arg2->getSourceRange();
1199       return true;
1200     }
1201 
1202     // Check packet type T.
1203     if (checkOpenCLPipePacketType(S, Call, 3))
1204       return true;
1205   } break;
1206   default:
1207     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1208         << Call->getDirectCallee() << Call->getSourceRange();
1209     return true;
1210   }
1211 
1212   return false;
1213 }
1214 
1215 // Performs a semantic analysis on the {work_group_/sub_group_
1216 //        /_}reserve_{read/write}_pipe
1217 // \param S Reference to the semantic analyzer.
1218 // \param Call The call to the builtin function to be analyzed.
1219 // \return True if a semantic error was found, false otherwise.
1220 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1221   if (checkArgCount(S, Call, 2))
1222     return true;
1223 
1224   if (checkOpenCLPipeArg(S, Call))
1225     return true;
1226 
1227   // Check the reserve size.
1228   if (!Call->getArg(1)->getType()->isIntegerType() &&
1229       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1230     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1231         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1232         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1233     return true;
1234   }
1235 
1236   // Since return type of reserve_read/write_pipe built-in function is
1237   // reserve_id_t, which is not defined in the builtin def file , we used int
1238   // as return type and need to override the return type of these functions.
1239   Call->setType(S.Context.OCLReserveIDTy);
1240 
1241   return false;
1242 }
1243 
1244 // Performs a semantic analysis on {work_group_/sub_group_
1245 //        /_}commit_{read/write}_pipe
1246 // \param S Reference to the semantic analyzer.
1247 // \param Call The call to the builtin function to be analyzed.
1248 // \return True if a semantic error was found, false otherwise.
1249 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1250   if (checkArgCount(S, Call, 2))
1251     return true;
1252 
1253   if (checkOpenCLPipeArg(S, Call))
1254     return true;
1255 
1256   // Check reserve_id_t.
1257   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1258     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1259         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1260         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1261     return true;
1262   }
1263 
1264   return false;
1265 }
1266 
1267 // Performs a semantic analysis on the call to built-in Pipe
1268 //        Query Functions.
1269 // \param S Reference to the semantic analyzer.
1270 // \param Call The call to the builtin function to be analyzed.
1271 // \return True if a semantic error was found, false otherwise.
1272 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1273   if (checkArgCount(S, Call, 1))
1274     return true;
1275 
1276   if (!Call->getArg(0)->getType()->isPipeType()) {
1277     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1278         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1279     return true;
1280   }
1281 
1282   return false;
1283 }
1284 
1285 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1286 // Performs semantic analysis for the to_global/local/private call.
1287 // \param S Reference to the semantic analyzer.
1288 // \param BuiltinID ID of the builtin function.
1289 // \param Call A pointer to the builtin call.
1290 // \return True if a semantic error has been found, false otherwise.
1291 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1292                                     CallExpr *Call) {
1293   if (checkArgCount(S, Call, 1))
1294     return true;
1295 
1296   auto RT = Call->getArg(0)->getType();
1297   if (!RT->isPointerType() || RT->getPointeeType()
1298       .getAddressSpace() == LangAS::opencl_constant) {
1299     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1300         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1301     return true;
1302   }
1303 
1304   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1305     S.Diag(Call->getArg(0)->getBeginLoc(),
1306            diag::warn_opencl_generic_address_space_arg)
1307         << Call->getDirectCallee()->getNameInfo().getAsString()
1308         << Call->getArg(0)->getSourceRange();
1309   }
1310 
1311   RT = RT->getPointeeType();
1312   auto Qual = RT.getQualifiers();
1313   switch (BuiltinID) {
1314   case Builtin::BIto_global:
1315     Qual.setAddressSpace(LangAS::opencl_global);
1316     break;
1317   case Builtin::BIto_local:
1318     Qual.setAddressSpace(LangAS::opencl_local);
1319     break;
1320   case Builtin::BIto_private:
1321     Qual.setAddressSpace(LangAS::opencl_private);
1322     break;
1323   default:
1324     llvm_unreachable("Invalid builtin function");
1325   }
1326   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1327       RT.getUnqualifiedType(), Qual)));
1328 
1329   return false;
1330 }
1331 
1332 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1333   if (checkArgCount(S, TheCall, 1))
1334     return ExprError();
1335 
1336   // Compute __builtin_launder's parameter type from the argument.
1337   // The parameter type is:
1338   //  * The type of the argument if it's not an array or function type,
1339   //  Otherwise,
1340   //  * The decayed argument type.
1341   QualType ParamTy = [&]() {
1342     QualType ArgTy = TheCall->getArg(0)->getType();
1343     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1344       return S.Context.getPointerType(Ty->getElementType());
1345     if (ArgTy->isFunctionType()) {
1346       return S.Context.getPointerType(ArgTy);
1347     }
1348     return ArgTy;
1349   }();
1350 
1351   TheCall->setType(ParamTy);
1352 
1353   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1354     if (!ParamTy->isPointerType())
1355       return 0;
1356     if (ParamTy->isFunctionPointerType())
1357       return 1;
1358     if (ParamTy->isVoidPointerType())
1359       return 2;
1360     return llvm::Optional<unsigned>{};
1361   }();
1362   if (DiagSelect.hasValue()) {
1363     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1364         << DiagSelect.getValue() << TheCall->getSourceRange();
1365     return ExprError();
1366   }
1367 
1368   // We either have an incomplete class type, or we have a class template
1369   // whose instantiation has not been forced. Example:
1370   //
1371   //   template <class T> struct Foo { T value; };
1372   //   Foo<int> *p = nullptr;
1373   //   auto *d = __builtin_launder(p);
1374   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1375                             diag::err_incomplete_type))
1376     return ExprError();
1377 
1378   assert(ParamTy->getPointeeType()->isObjectType() &&
1379          "Unhandled non-object pointer case");
1380 
1381   InitializedEntity Entity =
1382       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1383   ExprResult Arg =
1384       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1385   if (Arg.isInvalid())
1386     return ExprError();
1387   TheCall->setArg(0, Arg.get());
1388 
1389   return TheCall;
1390 }
1391 
1392 // Emit an error and return true if the current architecture is not in the list
1393 // of supported architectures.
1394 static bool
1395 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1396                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1397   llvm::Triple::ArchType CurArch =
1398       S.getASTContext().getTargetInfo().getTriple().getArch();
1399   if (llvm::is_contained(SupportedArchs, CurArch))
1400     return false;
1401   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1402       << TheCall->getSourceRange();
1403   return true;
1404 }
1405 
1406 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1407                                  SourceLocation CallSiteLoc);
1408 
1409 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1410                                       CallExpr *TheCall) {
1411   switch (TI.getTriple().getArch()) {
1412   default:
1413     // Some builtins don't require additional checking, so just consider these
1414     // acceptable.
1415     return false;
1416   case llvm::Triple::arm:
1417   case llvm::Triple::armeb:
1418   case llvm::Triple::thumb:
1419   case llvm::Triple::thumbeb:
1420     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1421   case llvm::Triple::aarch64:
1422   case llvm::Triple::aarch64_32:
1423   case llvm::Triple::aarch64_be:
1424     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425   case llvm::Triple::bpfeb:
1426   case llvm::Triple::bpfel:
1427     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1428   case llvm::Triple::hexagon:
1429     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1430   case llvm::Triple::mips:
1431   case llvm::Triple::mipsel:
1432   case llvm::Triple::mips64:
1433   case llvm::Triple::mips64el:
1434     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1435   case llvm::Triple::systemz:
1436     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1437   case llvm::Triple::x86:
1438   case llvm::Triple::x86_64:
1439     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1440   case llvm::Triple::ppc:
1441   case llvm::Triple::ppcle:
1442   case llvm::Triple::ppc64:
1443   case llvm::Triple::ppc64le:
1444     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1445   case llvm::Triple::amdgcn:
1446     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1447   case llvm::Triple::riscv32:
1448   case llvm::Triple::riscv64:
1449     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1450   }
1451 }
1452 
1453 ExprResult
1454 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1455                                CallExpr *TheCall) {
1456   ExprResult TheCallResult(TheCall);
1457 
1458   // Find out if any arguments are required to be integer constant expressions.
1459   unsigned ICEArguments = 0;
1460   ASTContext::GetBuiltinTypeError Error;
1461   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1462   if (Error != ASTContext::GE_None)
1463     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1464 
1465   // If any arguments are required to be ICE's, check and diagnose.
1466   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1467     // Skip arguments not required to be ICE's.
1468     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1469 
1470     llvm::APSInt Result;
1471     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1472       return true;
1473     ICEArguments &= ~(1 << ArgNo);
1474   }
1475 
1476   switch (BuiltinID) {
1477   case Builtin::BI__builtin___CFStringMakeConstantString:
1478     assert(TheCall->getNumArgs() == 1 &&
1479            "Wrong # arguments to builtin CFStringMakeConstantString");
1480     if (CheckObjCString(TheCall->getArg(0)))
1481       return ExprError();
1482     break;
1483   case Builtin::BI__builtin_ms_va_start:
1484   case Builtin::BI__builtin_stdarg_start:
1485   case Builtin::BI__builtin_va_start:
1486     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1487       return ExprError();
1488     break;
1489   case Builtin::BI__va_start: {
1490     switch (Context.getTargetInfo().getTriple().getArch()) {
1491     case llvm::Triple::aarch64:
1492     case llvm::Triple::arm:
1493     case llvm::Triple::thumb:
1494       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1495         return ExprError();
1496       break;
1497     default:
1498       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1499         return ExprError();
1500       break;
1501     }
1502     break;
1503   }
1504 
1505   // The acquire, release, and no fence variants are ARM and AArch64 only.
1506   case Builtin::BI_interlockedbittestandset_acq:
1507   case Builtin::BI_interlockedbittestandset_rel:
1508   case Builtin::BI_interlockedbittestandset_nf:
1509   case Builtin::BI_interlockedbittestandreset_acq:
1510   case Builtin::BI_interlockedbittestandreset_rel:
1511   case Builtin::BI_interlockedbittestandreset_nf:
1512     if (CheckBuiltinTargetSupport(
1513             *this, BuiltinID, TheCall,
1514             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1515       return ExprError();
1516     break;
1517 
1518   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1519   case Builtin::BI_bittest64:
1520   case Builtin::BI_bittestandcomplement64:
1521   case Builtin::BI_bittestandreset64:
1522   case Builtin::BI_bittestandset64:
1523   case Builtin::BI_interlockedbittestandreset64:
1524   case Builtin::BI_interlockedbittestandset64:
1525     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1526                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1527                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1528       return ExprError();
1529     break;
1530 
1531   case Builtin::BI__builtin_isgreater:
1532   case Builtin::BI__builtin_isgreaterequal:
1533   case Builtin::BI__builtin_isless:
1534   case Builtin::BI__builtin_islessequal:
1535   case Builtin::BI__builtin_islessgreater:
1536   case Builtin::BI__builtin_isunordered:
1537     if (SemaBuiltinUnorderedCompare(TheCall))
1538       return ExprError();
1539     break;
1540   case Builtin::BI__builtin_fpclassify:
1541     if (SemaBuiltinFPClassification(TheCall, 6))
1542       return ExprError();
1543     break;
1544   case Builtin::BI__builtin_isfinite:
1545   case Builtin::BI__builtin_isinf:
1546   case Builtin::BI__builtin_isinf_sign:
1547   case Builtin::BI__builtin_isnan:
1548   case Builtin::BI__builtin_isnormal:
1549   case Builtin::BI__builtin_signbit:
1550   case Builtin::BI__builtin_signbitf:
1551   case Builtin::BI__builtin_signbitl:
1552     if (SemaBuiltinFPClassification(TheCall, 1))
1553       return ExprError();
1554     break;
1555   case Builtin::BI__builtin_shufflevector:
1556     return SemaBuiltinShuffleVector(TheCall);
1557     // TheCall will be freed by the smart pointer here, but that's fine, since
1558     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1559   case Builtin::BI__builtin_prefetch:
1560     if (SemaBuiltinPrefetch(TheCall))
1561       return ExprError();
1562     break;
1563   case Builtin::BI__builtin_alloca_with_align:
1564     if (SemaBuiltinAllocaWithAlign(TheCall))
1565       return ExprError();
1566     LLVM_FALLTHROUGH;
1567   case Builtin::BI__builtin_alloca:
1568     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1569         << TheCall->getDirectCallee();
1570     break;
1571   case Builtin::BI__arithmetic_fence:
1572     if (SemaBuiltinArithmeticFence(TheCall))
1573       return ExprError();
1574     break;
1575   case Builtin::BI__assume:
1576   case Builtin::BI__builtin_assume:
1577     if (SemaBuiltinAssume(TheCall))
1578       return ExprError();
1579     break;
1580   case Builtin::BI__builtin_assume_aligned:
1581     if (SemaBuiltinAssumeAligned(TheCall))
1582       return ExprError();
1583     break;
1584   case Builtin::BI__builtin_dynamic_object_size:
1585   case Builtin::BI__builtin_object_size:
1586     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1587       return ExprError();
1588     break;
1589   case Builtin::BI__builtin_longjmp:
1590     if (SemaBuiltinLongjmp(TheCall))
1591       return ExprError();
1592     break;
1593   case Builtin::BI__builtin_setjmp:
1594     if (SemaBuiltinSetjmp(TheCall))
1595       return ExprError();
1596     break;
1597   case Builtin::BI__builtin_classify_type:
1598     if (checkArgCount(*this, TheCall, 1)) return true;
1599     TheCall->setType(Context.IntTy);
1600     break;
1601   case Builtin::BI__builtin_complex:
1602     if (SemaBuiltinComplex(TheCall))
1603       return ExprError();
1604     break;
1605   case Builtin::BI__builtin_constant_p: {
1606     if (checkArgCount(*this, TheCall, 1)) return true;
1607     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1608     if (Arg.isInvalid()) return true;
1609     TheCall->setArg(0, Arg.get());
1610     TheCall->setType(Context.IntTy);
1611     break;
1612   }
1613   case Builtin::BI__builtin_launder:
1614     return SemaBuiltinLaunder(*this, TheCall);
1615   case Builtin::BI__sync_fetch_and_add:
1616   case Builtin::BI__sync_fetch_and_add_1:
1617   case Builtin::BI__sync_fetch_and_add_2:
1618   case Builtin::BI__sync_fetch_and_add_4:
1619   case Builtin::BI__sync_fetch_and_add_8:
1620   case Builtin::BI__sync_fetch_and_add_16:
1621   case Builtin::BI__sync_fetch_and_sub:
1622   case Builtin::BI__sync_fetch_and_sub_1:
1623   case Builtin::BI__sync_fetch_and_sub_2:
1624   case Builtin::BI__sync_fetch_and_sub_4:
1625   case Builtin::BI__sync_fetch_and_sub_8:
1626   case Builtin::BI__sync_fetch_and_sub_16:
1627   case Builtin::BI__sync_fetch_and_or:
1628   case Builtin::BI__sync_fetch_and_or_1:
1629   case Builtin::BI__sync_fetch_and_or_2:
1630   case Builtin::BI__sync_fetch_and_or_4:
1631   case Builtin::BI__sync_fetch_and_or_8:
1632   case Builtin::BI__sync_fetch_and_or_16:
1633   case Builtin::BI__sync_fetch_and_and:
1634   case Builtin::BI__sync_fetch_and_and_1:
1635   case Builtin::BI__sync_fetch_and_and_2:
1636   case Builtin::BI__sync_fetch_and_and_4:
1637   case Builtin::BI__sync_fetch_and_and_8:
1638   case Builtin::BI__sync_fetch_and_and_16:
1639   case Builtin::BI__sync_fetch_and_xor:
1640   case Builtin::BI__sync_fetch_and_xor_1:
1641   case Builtin::BI__sync_fetch_and_xor_2:
1642   case Builtin::BI__sync_fetch_and_xor_4:
1643   case Builtin::BI__sync_fetch_and_xor_8:
1644   case Builtin::BI__sync_fetch_and_xor_16:
1645   case Builtin::BI__sync_fetch_and_nand:
1646   case Builtin::BI__sync_fetch_and_nand_1:
1647   case Builtin::BI__sync_fetch_and_nand_2:
1648   case Builtin::BI__sync_fetch_and_nand_4:
1649   case Builtin::BI__sync_fetch_and_nand_8:
1650   case Builtin::BI__sync_fetch_and_nand_16:
1651   case Builtin::BI__sync_add_and_fetch:
1652   case Builtin::BI__sync_add_and_fetch_1:
1653   case Builtin::BI__sync_add_and_fetch_2:
1654   case Builtin::BI__sync_add_and_fetch_4:
1655   case Builtin::BI__sync_add_and_fetch_8:
1656   case Builtin::BI__sync_add_and_fetch_16:
1657   case Builtin::BI__sync_sub_and_fetch:
1658   case Builtin::BI__sync_sub_and_fetch_1:
1659   case Builtin::BI__sync_sub_and_fetch_2:
1660   case Builtin::BI__sync_sub_and_fetch_4:
1661   case Builtin::BI__sync_sub_and_fetch_8:
1662   case Builtin::BI__sync_sub_and_fetch_16:
1663   case Builtin::BI__sync_and_and_fetch:
1664   case Builtin::BI__sync_and_and_fetch_1:
1665   case Builtin::BI__sync_and_and_fetch_2:
1666   case Builtin::BI__sync_and_and_fetch_4:
1667   case Builtin::BI__sync_and_and_fetch_8:
1668   case Builtin::BI__sync_and_and_fetch_16:
1669   case Builtin::BI__sync_or_and_fetch:
1670   case Builtin::BI__sync_or_and_fetch_1:
1671   case Builtin::BI__sync_or_and_fetch_2:
1672   case Builtin::BI__sync_or_and_fetch_4:
1673   case Builtin::BI__sync_or_and_fetch_8:
1674   case Builtin::BI__sync_or_and_fetch_16:
1675   case Builtin::BI__sync_xor_and_fetch:
1676   case Builtin::BI__sync_xor_and_fetch_1:
1677   case Builtin::BI__sync_xor_and_fetch_2:
1678   case Builtin::BI__sync_xor_and_fetch_4:
1679   case Builtin::BI__sync_xor_and_fetch_8:
1680   case Builtin::BI__sync_xor_and_fetch_16:
1681   case Builtin::BI__sync_nand_and_fetch:
1682   case Builtin::BI__sync_nand_and_fetch_1:
1683   case Builtin::BI__sync_nand_and_fetch_2:
1684   case Builtin::BI__sync_nand_and_fetch_4:
1685   case Builtin::BI__sync_nand_and_fetch_8:
1686   case Builtin::BI__sync_nand_and_fetch_16:
1687   case Builtin::BI__sync_val_compare_and_swap:
1688   case Builtin::BI__sync_val_compare_and_swap_1:
1689   case Builtin::BI__sync_val_compare_and_swap_2:
1690   case Builtin::BI__sync_val_compare_and_swap_4:
1691   case Builtin::BI__sync_val_compare_and_swap_8:
1692   case Builtin::BI__sync_val_compare_and_swap_16:
1693   case Builtin::BI__sync_bool_compare_and_swap:
1694   case Builtin::BI__sync_bool_compare_and_swap_1:
1695   case Builtin::BI__sync_bool_compare_and_swap_2:
1696   case Builtin::BI__sync_bool_compare_and_swap_4:
1697   case Builtin::BI__sync_bool_compare_and_swap_8:
1698   case Builtin::BI__sync_bool_compare_and_swap_16:
1699   case Builtin::BI__sync_lock_test_and_set:
1700   case Builtin::BI__sync_lock_test_and_set_1:
1701   case Builtin::BI__sync_lock_test_and_set_2:
1702   case Builtin::BI__sync_lock_test_and_set_4:
1703   case Builtin::BI__sync_lock_test_and_set_8:
1704   case Builtin::BI__sync_lock_test_and_set_16:
1705   case Builtin::BI__sync_lock_release:
1706   case Builtin::BI__sync_lock_release_1:
1707   case Builtin::BI__sync_lock_release_2:
1708   case Builtin::BI__sync_lock_release_4:
1709   case Builtin::BI__sync_lock_release_8:
1710   case Builtin::BI__sync_lock_release_16:
1711   case Builtin::BI__sync_swap:
1712   case Builtin::BI__sync_swap_1:
1713   case Builtin::BI__sync_swap_2:
1714   case Builtin::BI__sync_swap_4:
1715   case Builtin::BI__sync_swap_8:
1716   case Builtin::BI__sync_swap_16:
1717     return SemaBuiltinAtomicOverloaded(TheCallResult);
1718   case Builtin::BI__sync_synchronize:
1719     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1720         << TheCall->getCallee()->getSourceRange();
1721     break;
1722   case Builtin::BI__builtin_nontemporal_load:
1723   case Builtin::BI__builtin_nontemporal_store:
1724     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1725   case Builtin::BI__builtin_memcpy_inline: {
1726     clang::Expr *SizeOp = TheCall->getArg(2);
1727     // We warn about copying to or from `nullptr` pointers when `size` is
1728     // greater than 0. When `size` is value dependent we cannot evaluate its
1729     // value so we bail out.
1730     if (SizeOp->isValueDependent())
1731       break;
1732     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1733       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1734       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1735     }
1736     break;
1737   }
1738 #define BUILTIN(ID, TYPE, ATTRS)
1739 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1740   case Builtin::BI##ID: \
1741     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1742 #include "clang/Basic/Builtins.def"
1743   case Builtin::BI__annotation:
1744     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1745       return ExprError();
1746     break;
1747   case Builtin::BI__builtin_annotation:
1748     if (SemaBuiltinAnnotation(*this, TheCall))
1749       return ExprError();
1750     break;
1751   case Builtin::BI__builtin_addressof:
1752     if (SemaBuiltinAddressof(*this, TheCall))
1753       return ExprError();
1754     break;
1755   case Builtin::BI__builtin_is_aligned:
1756   case Builtin::BI__builtin_align_up:
1757   case Builtin::BI__builtin_align_down:
1758     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1759       return ExprError();
1760     break;
1761   case Builtin::BI__builtin_add_overflow:
1762   case Builtin::BI__builtin_sub_overflow:
1763   case Builtin::BI__builtin_mul_overflow:
1764     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1765       return ExprError();
1766     break;
1767   case Builtin::BI__builtin_operator_new:
1768   case Builtin::BI__builtin_operator_delete: {
1769     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1770     ExprResult Res =
1771         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1772     if (Res.isInvalid())
1773       CorrectDelayedTyposInExpr(TheCallResult.get());
1774     return Res;
1775   }
1776   case Builtin::BI__builtin_dump_struct: {
1777     // We first want to ensure we are called with 2 arguments
1778     if (checkArgCount(*this, TheCall, 2))
1779       return ExprError();
1780     // Ensure that the first argument is of type 'struct XX *'
1781     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1782     const QualType PtrArgType = PtrArg->getType();
1783     if (!PtrArgType->isPointerType() ||
1784         !PtrArgType->getPointeeType()->isRecordType()) {
1785       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1786           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1787           << "structure pointer";
1788       return ExprError();
1789     }
1790 
1791     // Ensure that the second argument is of type 'FunctionType'
1792     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1793     const QualType FnPtrArgType = FnPtrArg->getType();
1794     if (!FnPtrArgType->isPointerType()) {
1795       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1796           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1797           << FnPtrArgType << "'int (*)(const char *, ...)'";
1798       return ExprError();
1799     }
1800 
1801     const auto *FuncType =
1802         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1803 
1804     if (!FuncType) {
1805       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1806           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1807           << FnPtrArgType << "'int (*)(const char *, ...)'";
1808       return ExprError();
1809     }
1810 
1811     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1812       if (!FT->getNumParams()) {
1813         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1814             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1815             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1816         return ExprError();
1817       }
1818       QualType PT = FT->getParamType(0);
1819       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1820           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1821           !PT->getPointeeType().isConstQualified()) {
1822         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1823             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1824             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1825         return ExprError();
1826       }
1827     }
1828 
1829     TheCall->setType(Context.IntTy);
1830     break;
1831   }
1832   case Builtin::BI__builtin_expect_with_probability: {
1833     // We first want to ensure we are called with 3 arguments
1834     if (checkArgCount(*this, TheCall, 3))
1835       return ExprError();
1836     // then check probability is constant float in range [0.0, 1.0]
1837     const Expr *ProbArg = TheCall->getArg(2);
1838     SmallVector<PartialDiagnosticAt, 8> Notes;
1839     Expr::EvalResult Eval;
1840     Eval.Diag = &Notes;
1841     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1842         !Eval.Val.isFloat()) {
1843       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1844           << ProbArg->getSourceRange();
1845       for (const PartialDiagnosticAt &PDiag : Notes)
1846         Diag(PDiag.first, PDiag.second);
1847       return ExprError();
1848     }
1849     llvm::APFloat Probability = Eval.Val.getFloat();
1850     bool LoseInfo = false;
1851     Probability.convert(llvm::APFloat::IEEEdouble(),
1852                         llvm::RoundingMode::Dynamic, &LoseInfo);
1853     if (!(Probability >= llvm::APFloat(0.0) &&
1854           Probability <= llvm::APFloat(1.0))) {
1855       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1856           << ProbArg->getSourceRange();
1857       return ExprError();
1858     }
1859     break;
1860   }
1861   case Builtin::BI__builtin_preserve_access_index:
1862     if (SemaBuiltinPreserveAI(*this, TheCall))
1863       return ExprError();
1864     break;
1865   case Builtin::BI__builtin_call_with_static_chain:
1866     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1867       return ExprError();
1868     break;
1869   case Builtin::BI__exception_code:
1870   case Builtin::BI_exception_code:
1871     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1872                                  diag::err_seh___except_block))
1873       return ExprError();
1874     break;
1875   case Builtin::BI__exception_info:
1876   case Builtin::BI_exception_info:
1877     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1878                                  diag::err_seh___except_filter))
1879       return ExprError();
1880     break;
1881   case Builtin::BI__GetExceptionInfo:
1882     if (checkArgCount(*this, TheCall, 1))
1883       return ExprError();
1884 
1885     if (CheckCXXThrowOperand(
1886             TheCall->getBeginLoc(),
1887             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1888             TheCall))
1889       return ExprError();
1890 
1891     TheCall->setType(Context.VoidPtrTy);
1892     break;
1893   // OpenCL v2.0, s6.13.16 - Pipe functions
1894   case Builtin::BIread_pipe:
1895   case Builtin::BIwrite_pipe:
1896     // Since those two functions are declared with var args, we need a semantic
1897     // check for the argument.
1898     if (SemaBuiltinRWPipe(*this, TheCall))
1899       return ExprError();
1900     break;
1901   case Builtin::BIreserve_read_pipe:
1902   case Builtin::BIreserve_write_pipe:
1903   case Builtin::BIwork_group_reserve_read_pipe:
1904   case Builtin::BIwork_group_reserve_write_pipe:
1905     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1906       return ExprError();
1907     break;
1908   case Builtin::BIsub_group_reserve_read_pipe:
1909   case Builtin::BIsub_group_reserve_write_pipe:
1910     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1911         SemaBuiltinReserveRWPipe(*this, TheCall))
1912       return ExprError();
1913     break;
1914   case Builtin::BIcommit_read_pipe:
1915   case Builtin::BIcommit_write_pipe:
1916   case Builtin::BIwork_group_commit_read_pipe:
1917   case Builtin::BIwork_group_commit_write_pipe:
1918     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1919       return ExprError();
1920     break;
1921   case Builtin::BIsub_group_commit_read_pipe:
1922   case Builtin::BIsub_group_commit_write_pipe:
1923     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1924         SemaBuiltinCommitRWPipe(*this, TheCall))
1925       return ExprError();
1926     break;
1927   case Builtin::BIget_pipe_num_packets:
1928   case Builtin::BIget_pipe_max_packets:
1929     if (SemaBuiltinPipePackets(*this, TheCall))
1930       return ExprError();
1931     break;
1932   case Builtin::BIto_global:
1933   case Builtin::BIto_local:
1934   case Builtin::BIto_private:
1935     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1936       return ExprError();
1937     break;
1938   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1939   case Builtin::BIenqueue_kernel:
1940     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1941       return ExprError();
1942     break;
1943   case Builtin::BIget_kernel_work_group_size:
1944   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1945     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1946       return ExprError();
1947     break;
1948   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1949   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1950     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1951       return ExprError();
1952     break;
1953   case Builtin::BI__builtin_os_log_format:
1954     Cleanup.setExprNeedsCleanups(true);
1955     LLVM_FALLTHROUGH;
1956   case Builtin::BI__builtin_os_log_format_buffer_size:
1957     if (SemaBuiltinOSLogFormat(TheCall))
1958       return ExprError();
1959     break;
1960   case Builtin::BI__builtin_frame_address:
1961   case Builtin::BI__builtin_return_address: {
1962     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1963       return ExprError();
1964 
1965     // -Wframe-address warning if non-zero passed to builtin
1966     // return/frame address.
1967     Expr::EvalResult Result;
1968     if (!TheCall->getArg(0)->isValueDependent() &&
1969         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1970         Result.Val.getInt() != 0)
1971       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1972           << ((BuiltinID == Builtin::BI__builtin_return_address)
1973                   ? "__builtin_return_address"
1974                   : "__builtin_frame_address")
1975           << TheCall->getSourceRange();
1976     break;
1977   }
1978 
1979   case Builtin::BI__builtin_matrix_transpose:
1980     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1981 
1982   case Builtin::BI__builtin_matrix_column_major_load:
1983     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1984 
1985   case Builtin::BI__builtin_matrix_column_major_store:
1986     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1987 
1988   case Builtin::BI__builtin_get_device_side_mangled_name: {
1989     auto Check = [](CallExpr *TheCall) {
1990       if (TheCall->getNumArgs() != 1)
1991         return false;
1992       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
1993       if (!DRE)
1994         return false;
1995       auto *D = DRE->getDecl();
1996       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
1997         return false;
1998       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
1999              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2000     };
2001     if (!Check(TheCall)) {
2002       Diag(TheCall->getBeginLoc(),
2003            diag::err_hip_invalid_args_builtin_mangled_name);
2004       return ExprError();
2005     }
2006   }
2007   }
2008 
2009   // Since the target specific builtins for each arch overlap, only check those
2010   // of the arch we are compiling for.
2011   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2012     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2013       assert(Context.getAuxTargetInfo() &&
2014              "Aux Target Builtin, but not an aux target?");
2015 
2016       if (CheckTSBuiltinFunctionCall(
2017               *Context.getAuxTargetInfo(),
2018               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2019         return ExprError();
2020     } else {
2021       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2022                                      TheCall))
2023         return ExprError();
2024     }
2025   }
2026 
2027   return TheCallResult;
2028 }
2029 
2030 // Get the valid immediate range for the specified NEON type code.
2031 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2032   NeonTypeFlags Type(t);
2033   int IsQuad = ForceQuad ? true : Type.isQuad();
2034   switch (Type.getEltType()) {
2035   case NeonTypeFlags::Int8:
2036   case NeonTypeFlags::Poly8:
2037     return shift ? 7 : (8 << IsQuad) - 1;
2038   case NeonTypeFlags::Int16:
2039   case NeonTypeFlags::Poly16:
2040     return shift ? 15 : (4 << IsQuad) - 1;
2041   case NeonTypeFlags::Int32:
2042     return shift ? 31 : (2 << IsQuad) - 1;
2043   case NeonTypeFlags::Int64:
2044   case NeonTypeFlags::Poly64:
2045     return shift ? 63 : (1 << IsQuad) - 1;
2046   case NeonTypeFlags::Poly128:
2047     return shift ? 127 : (1 << IsQuad) - 1;
2048   case NeonTypeFlags::Float16:
2049     assert(!shift && "cannot shift float types!");
2050     return (4 << IsQuad) - 1;
2051   case NeonTypeFlags::Float32:
2052     assert(!shift && "cannot shift float types!");
2053     return (2 << IsQuad) - 1;
2054   case NeonTypeFlags::Float64:
2055     assert(!shift && "cannot shift float types!");
2056     return (1 << IsQuad) - 1;
2057   case NeonTypeFlags::BFloat16:
2058     assert(!shift && "cannot shift float types!");
2059     return (4 << IsQuad) - 1;
2060   }
2061   llvm_unreachable("Invalid NeonTypeFlag!");
2062 }
2063 
2064 /// getNeonEltType - Return the QualType corresponding to the elements of
2065 /// the vector type specified by the NeonTypeFlags.  This is used to check
2066 /// the pointer arguments for Neon load/store intrinsics.
2067 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2068                                bool IsPolyUnsigned, bool IsInt64Long) {
2069   switch (Flags.getEltType()) {
2070   case NeonTypeFlags::Int8:
2071     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2072   case NeonTypeFlags::Int16:
2073     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2074   case NeonTypeFlags::Int32:
2075     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2076   case NeonTypeFlags::Int64:
2077     if (IsInt64Long)
2078       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2079     else
2080       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2081                                 : Context.LongLongTy;
2082   case NeonTypeFlags::Poly8:
2083     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2084   case NeonTypeFlags::Poly16:
2085     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2086   case NeonTypeFlags::Poly64:
2087     if (IsInt64Long)
2088       return Context.UnsignedLongTy;
2089     else
2090       return Context.UnsignedLongLongTy;
2091   case NeonTypeFlags::Poly128:
2092     break;
2093   case NeonTypeFlags::Float16:
2094     return Context.HalfTy;
2095   case NeonTypeFlags::Float32:
2096     return Context.FloatTy;
2097   case NeonTypeFlags::Float64:
2098     return Context.DoubleTy;
2099   case NeonTypeFlags::BFloat16:
2100     return Context.BFloat16Ty;
2101   }
2102   llvm_unreachable("Invalid NeonTypeFlag!");
2103 }
2104 
2105 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2106   // Range check SVE intrinsics that take immediate values.
2107   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2108 
2109   switch (BuiltinID) {
2110   default:
2111     return false;
2112 #define GET_SVE_IMMEDIATE_CHECK
2113 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2114 #undef GET_SVE_IMMEDIATE_CHECK
2115   }
2116 
2117   // Perform all the immediate checks for this builtin call.
2118   bool HasError = false;
2119   for (auto &I : ImmChecks) {
2120     int ArgNum, CheckTy, ElementSizeInBits;
2121     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2122 
2123     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2124 
2125     // Function that checks whether the operand (ArgNum) is an immediate
2126     // that is one of the predefined values.
2127     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2128                                    int ErrDiag) -> bool {
2129       // We can't check the value of a dependent argument.
2130       Expr *Arg = TheCall->getArg(ArgNum);
2131       if (Arg->isTypeDependent() || Arg->isValueDependent())
2132         return false;
2133 
2134       // Check constant-ness first.
2135       llvm::APSInt Imm;
2136       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2137         return true;
2138 
2139       if (!CheckImm(Imm.getSExtValue()))
2140         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2141       return false;
2142     };
2143 
2144     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2145     case SVETypeFlags::ImmCheck0_31:
2146       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2147         HasError = true;
2148       break;
2149     case SVETypeFlags::ImmCheck0_13:
2150       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2151         HasError = true;
2152       break;
2153     case SVETypeFlags::ImmCheck1_16:
2154       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2155         HasError = true;
2156       break;
2157     case SVETypeFlags::ImmCheck0_7:
2158       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2159         HasError = true;
2160       break;
2161     case SVETypeFlags::ImmCheckExtract:
2162       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2163                                       (2048 / ElementSizeInBits) - 1))
2164         HasError = true;
2165       break;
2166     case SVETypeFlags::ImmCheckShiftRight:
2167       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2168         HasError = true;
2169       break;
2170     case SVETypeFlags::ImmCheckShiftRightNarrow:
2171       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2172                                       ElementSizeInBits / 2))
2173         HasError = true;
2174       break;
2175     case SVETypeFlags::ImmCheckShiftLeft:
2176       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2177                                       ElementSizeInBits - 1))
2178         HasError = true;
2179       break;
2180     case SVETypeFlags::ImmCheckLaneIndex:
2181       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2182                                       (128 / (1 * ElementSizeInBits)) - 1))
2183         HasError = true;
2184       break;
2185     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2186       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2187                                       (128 / (2 * ElementSizeInBits)) - 1))
2188         HasError = true;
2189       break;
2190     case SVETypeFlags::ImmCheckLaneIndexDot:
2191       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2192                                       (128 / (4 * ElementSizeInBits)) - 1))
2193         HasError = true;
2194       break;
2195     case SVETypeFlags::ImmCheckComplexRot90_270:
2196       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2197                               diag::err_rotation_argument_to_cadd))
2198         HasError = true;
2199       break;
2200     case SVETypeFlags::ImmCheckComplexRotAll90:
2201       if (CheckImmediateInSet(
2202               [](int64_t V) {
2203                 return V == 0 || V == 90 || V == 180 || V == 270;
2204               },
2205               diag::err_rotation_argument_to_cmla))
2206         HasError = true;
2207       break;
2208     case SVETypeFlags::ImmCheck0_1:
2209       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2210         HasError = true;
2211       break;
2212     case SVETypeFlags::ImmCheck0_2:
2213       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2214         HasError = true;
2215       break;
2216     case SVETypeFlags::ImmCheck0_3:
2217       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2218         HasError = true;
2219       break;
2220     }
2221   }
2222 
2223   return HasError;
2224 }
2225 
2226 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2227                                         unsigned BuiltinID, CallExpr *TheCall) {
2228   llvm::APSInt Result;
2229   uint64_t mask = 0;
2230   unsigned TV = 0;
2231   int PtrArgNum = -1;
2232   bool HasConstPtr = false;
2233   switch (BuiltinID) {
2234 #define GET_NEON_OVERLOAD_CHECK
2235 #include "clang/Basic/arm_neon.inc"
2236 #include "clang/Basic/arm_fp16.inc"
2237 #undef GET_NEON_OVERLOAD_CHECK
2238   }
2239 
2240   // For NEON intrinsics which are overloaded on vector element type, validate
2241   // the immediate which specifies which variant to emit.
2242   unsigned ImmArg = TheCall->getNumArgs()-1;
2243   if (mask) {
2244     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2245       return true;
2246 
2247     TV = Result.getLimitedValue(64);
2248     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2249       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2250              << TheCall->getArg(ImmArg)->getSourceRange();
2251   }
2252 
2253   if (PtrArgNum >= 0) {
2254     // Check that pointer arguments have the specified type.
2255     Expr *Arg = TheCall->getArg(PtrArgNum);
2256     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2257       Arg = ICE->getSubExpr();
2258     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2259     QualType RHSTy = RHS.get()->getType();
2260 
2261     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2262     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2263                           Arch == llvm::Triple::aarch64_32 ||
2264                           Arch == llvm::Triple::aarch64_be;
2265     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2266     QualType EltTy =
2267         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2268     if (HasConstPtr)
2269       EltTy = EltTy.withConst();
2270     QualType LHSTy = Context.getPointerType(EltTy);
2271     AssignConvertType ConvTy;
2272     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2273     if (RHS.isInvalid())
2274       return true;
2275     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2276                                  RHS.get(), AA_Assigning))
2277       return true;
2278   }
2279 
2280   // For NEON intrinsics which take an immediate value as part of the
2281   // instruction, range check them here.
2282   unsigned i = 0, l = 0, u = 0;
2283   switch (BuiltinID) {
2284   default:
2285     return false;
2286   #define GET_NEON_IMMEDIATE_CHECK
2287   #include "clang/Basic/arm_neon.inc"
2288   #include "clang/Basic/arm_fp16.inc"
2289   #undef GET_NEON_IMMEDIATE_CHECK
2290   }
2291 
2292   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2293 }
2294 
2295 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2296   switch (BuiltinID) {
2297   default:
2298     return false;
2299   #include "clang/Basic/arm_mve_builtin_sema.inc"
2300   }
2301 }
2302 
2303 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2304                                        CallExpr *TheCall) {
2305   bool Err = false;
2306   switch (BuiltinID) {
2307   default:
2308     return false;
2309 #include "clang/Basic/arm_cde_builtin_sema.inc"
2310   }
2311 
2312   if (Err)
2313     return true;
2314 
2315   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2316 }
2317 
2318 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2319                                         const Expr *CoprocArg, bool WantCDE) {
2320   if (isConstantEvaluated())
2321     return false;
2322 
2323   // We can't check the value of a dependent argument.
2324   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2325     return false;
2326 
2327   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2328   int64_t CoprocNo = CoprocNoAP.getExtValue();
2329   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2330 
2331   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2332   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2333 
2334   if (IsCDECoproc != WantCDE)
2335     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2336            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2337 
2338   return false;
2339 }
2340 
2341 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2342                                         unsigned MaxWidth) {
2343   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2344           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2345           BuiltinID == ARM::BI__builtin_arm_strex ||
2346           BuiltinID == ARM::BI__builtin_arm_stlex ||
2347           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2348           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2349           BuiltinID == AArch64::BI__builtin_arm_strex ||
2350           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2351          "unexpected ARM builtin");
2352   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2353                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2354                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2355                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2356 
2357   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2358 
2359   // Ensure that we have the proper number of arguments.
2360   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2361     return true;
2362 
2363   // Inspect the pointer argument of the atomic builtin.  This should always be
2364   // a pointer type, whose element is an integral scalar or pointer type.
2365   // Because it is a pointer type, we don't have to worry about any implicit
2366   // casts here.
2367   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2368   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2369   if (PointerArgRes.isInvalid())
2370     return true;
2371   PointerArg = PointerArgRes.get();
2372 
2373   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2374   if (!pointerType) {
2375     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2376         << PointerArg->getType() << PointerArg->getSourceRange();
2377     return true;
2378   }
2379 
2380   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2381   // task is to insert the appropriate casts into the AST. First work out just
2382   // what the appropriate type is.
2383   QualType ValType = pointerType->getPointeeType();
2384   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2385   if (IsLdrex)
2386     AddrType.addConst();
2387 
2388   // Issue a warning if the cast is dodgy.
2389   CastKind CastNeeded = CK_NoOp;
2390   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2391     CastNeeded = CK_BitCast;
2392     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2393         << PointerArg->getType() << Context.getPointerType(AddrType)
2394         << AA_Passing << PointerArg->getSourceRange();
2395   }
2396 
2397   // Finally, do the cast and replace the argument with the corrected version.
2398   AddrType = Context.getPointerType(AddrType);
2399   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2400   if (PointerArgRes.isInvalid())
2401     return true;
2402   PointerArg = PointerArgRes.get();
2403 
2404   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2405 
2406   // In general, we allow ints, floats and pointers to be loaded and stored.
2407   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2408       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2409     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2410         << PointerArg->getType() << PointerArg->getSourceRange();
2411     return true;
2412   }
2413 
2414   // But ARM doesn't have instructions to deal with 128-bit versions.
2415   if (Context.getTypeSize(ValType) > MaxWidth) {
2416     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2417     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2418         << PointerArg->getType() << PointerArg->getSourceRange();
2419     return true;
2420   }
2421 
2422   switch (ValType.getObjCLifetime()) {
2423   case Qualifiers::OCL_None:
2424   case Qualifiers::OCL_ExplicitNone:
2425     // okay
2426     break;
2427 
2428   case Qualifiers::OCL_Weak:
2429   case Qualifiers::OCL_Strong:
2430   case Qualifiers::OCL_Autoreleasing:
2431     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2432         << ValType << PointerArg->getSourceRange();
2433     return true;
2434   }
2435 
2436   if (IsLdrex) {
2437     TheCall->setType(ValType);
2438     return false;
2439   }
2440 
2441   // Initialize the argument to be stored.
2442   ExprResult ValArg = TheCall->getArg(0);
2443   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2444       Context, ValType, /*consume*/ false);
2445   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2446   if (ValArg.isInvalid())
2447     return true;
2448   TheCall->setArg(0, ValArg.get());
2449 
2450   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2451   // but the custom checker bypasses all default analysis.
2452   TheCall->setType(Context.IntTy);
2453   return false;
2454 }
2455 
2456 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2457                                        CallExpr *TheCall) {
2458   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2459       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2460       BuiltinID == ARM::BI__builtin_arm_strex ||
2461       BuiltinID == ARM::BI__builtin_arm_stlex) {
2462     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2463   }
2464 
2465   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2466     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2467       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2468   }
2469 
2470   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2471       BuiltinID == ARM::BI__builtin_arm_wsr64)
2472     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2473 
2474   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2475       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2476       BuiltinID == ARM::BI__builtin_arm_wsr ||
2477       BuiltinID == ARM::BI__builtin_arm_wsrp)
2478     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2479 
2480   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2481     return true;
2482   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2483     return true;
2484   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2485     return true;
2486 
2487   // For intrinsics which take an immediate value as part of the instruction,
2488   // range check them here.
2489   // FIXME: VFP Intrinsics should error if VFP not present.
2490   switch (BuiltinID) {
2491   default: return false;
2492   case ARM::BI__builtin_arm_ssat:
2493     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2494   case ARM::BI__builtin_arm_usat:
2495     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2496   case ARM::BI__builtin_arm_ssat16:
2497     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2498   case ARM::BI__builtin_arm_usat16:
2499     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2500   case ARM::BI__builtin_arm_vcvtr_f:
2501   case ARM::BI__builtin_arm_vcvtr_d:
2502     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2503   case ARM::BI__builtin_arm_dmb:
2504   case ARM::BI__builtin_arm_dsb:
2505   case ARM::BI__builtin_arm_isb:
2506   case ARM::BI__builtin_arm_dbg:
2507     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2508   case ARM::BI__builtin_arm_cdp:
2509   case ARM::BI__builtin_arm_cdp2:
2510   case ARM::BI__builtin_arm_mcr:
2511   case ARM::BI__builtin_arm_mcr2:
2512   case ARM::BI__builtin_arm_mrc:
2513   case ARM::BI__builtin_arm_mrc2:
2514   case ARM::BI__builtin_arm_mcrr:
2515   case ARM::BI__builtin_arm_mcrr2:
2516   case ARM::BI__builtin_arm_mrrc:
2517   case ARM::BI__builtin_arm_mrrc2:
2518   case ARM::BI__builtin_arm_ldc:
2519   case ARM::BI__builtin_arm_ldcl:
2520   case ARM::BI__builtin_arm_ldc2:
2521   case ARM::BI__builtin_arm_ldc2l:
2522   case ARM::BI__builtin_arm_stc:
2523   case ARM::BI__builtin_arm_stcl:
2524   case ARM::BI__builtin_arm_stc2:
2525   case ARM::BI__builtin_arm_stc2l:
2526     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2527            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2528                                         /*WantCDE*/ false);
2529   }
2530 }
2531 
2532 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2533                                            unsigned BuiltinID,
2534                                            CallExpr *TheCall) {
2535   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2536       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2537       BuiltinID == AArch64::BI__builtin_arm_strex ||
2538       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2539     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2540   }
2541 
2542   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2543     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2544       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2545       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2546       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2547   }
2548 
2549   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2550       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2551     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2552 
2553   // Memory Tagging Extensions (MTE) Intrinsics
2554   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2555       BuiltinID == AArch64::BI__builtin_arm_addg ||
2556       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2557       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2558       BuiltinID == AArch64::BI__builtin_arm_stg ||
2559       BuiltinID == AArch64::BI__builtin_arm_subp) {
2560     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2561   }
2562 
2563   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2564       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2565       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2566       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2567     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2568 
2569   // Only check the valid encoding range. Any constant in this range would be
2570   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2571   // an exception for incorrect registers. This matches MSVC behavior.
2572   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2573       BuiltinID == AArch64::BI_WriteStatusReg)
2574     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2575 
2576   if (BuiltinID == AArch64::BI__getReg)
2577     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2578 
2579   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2580     return true;
2581 
2582   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2583     return true;
2584 
2585   // For intrinsics which take an immediate value as part of the instruction,
2586   // range check them here.
2587   unsigned i = 0, l = 0, u = 0;
2588   switch (BuiltinID) {
2589   default: return false;
2590   case AArch64::BI__builtin_arm_dmb:
2591   case AArch64::BI__builtin_arm_dsb:
2592   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2593   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2594   }
2595 
2596   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2597 }
2598 
2599 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2600   if (Arg->getType()->getAsPlaceholderType())
2601     return false;
2602 
2603   // The first argument needs to be a record field access.
2604   // If it is an array element access, we delay decision
2605   // to BPF backend to check whether the access is a
2606   // field access or not.
2607   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2608           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2609           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2610 }
2611 
2612 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2613                             QualType VectorTy, QualType EltTy) {
2614   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2615   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2616     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2617         << Call->getSourceRange() << VectorEltTy << EltTy;
2618     return false;
2619   }
2620   return true;
2621 }
2622 
2623 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2624   QualType ArgType = Arg->getType();
2625   if (ArgType->getAsPlaceholderType())
2626     return false;
2627 
2628   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2629   // format:
2630   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2631   //   2. <type> var;
2632   //      __builtin_preserve_type_info(var, flag);
2633   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2634       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2635     return false;
2636 
2637   // Typedef type.
2638   if (ArgType->getAs<TypedefType>())
2639     return true;
2640 
2641   // Record type or Enum type.
2642   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2643   if (const auto *RT = Ty->getAs<RecordType>()) {
2644     if (!RT->getDecl()->getDeclName().isEmpty())
2645       return true;
2646   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2647     if (!ET->getDecl()->getDeclName().isEmpty())
2648       return true;
2649   }
2650 
2651   return false;
2652 }
2653 
2654 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2655   QualType ArgType = Arg->getType();
2656   if (ArgType->getAsPlaceholderType())
2657     return false;
2658 
2659   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2660   // format:
2661   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2662   //                                 flag);
2663   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2664   if (!UO)
2665     return false;
2666 
2667   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2668   if (!CE)
2669     return false;
2670   if (CE->getCastKind() != CK_IntegralToPointer &&
2671       CE->getCastKind() != CK_NullToPointer)
2672     return false;
2673 
2674   // The integer must be from an EnumConstantDecl.
2675   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2676   if (!DR)
2677     return false;
2678 
2679   const EnumConstantDecl *Enumerator =
2680       dyn_cast<EnumConstantDecl>(DR->getDecl());
2681   if (!Enumerator)
2682     return false;
2683 
2684   // The type must be EnumType.
2685   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2686   const auto *ET = Ty->getAs<EnumType>();
2687   if (!ET)
2688     return false;
2689 
2690   // The enum value must be supported.
2691   for (auto *EDI : ET->getDecl()->enumerators()) {
2692     if (EDI == Enumerator)
2693       return true;
2694   }
2695 
2696   return false;
2697 }
2698 
2699 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2700                                        CallExpr *TheCall) {
2701   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2702           BuiltinID == BPF::BI__builtin_btf_type_id ||
2703           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2704           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2705          "unexpected BPF builtin");
2706 
2707   if (checkArgCount(*this, TheCall, 2))
2708     return true;
2709 
2710   // The second argument needs to be a constant int
2711   Expr *Arg = TheCall->getArg(1);
2712   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2713   diag::kind kind;
2714   if (!Value) {
2715     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2716       kind = diag::err_preserve_field_info_not_const;
2717     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2718       kind = diag::err_btf_type_id_not_const;
2719     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2720       kind = diag::err_preserve_type_info_not_const;
2721     else
2722       kind = diag::err_preserve_enum_value_not_const;
2723     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2724     return true;
2725   }
2726 
2727   // The first argument
2728   Arg = TheCall->getArg(0);
2729   bool InvalidArg = false;
2730   bool ReturnUnsignedInt = true;
2731   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2732     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2733       InvalidArg = true;
2734       kind = diag::err_preserve_field_info_not_field;
2735     }
2736   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2737     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2738       InvalidArg = true;
2739       kind = diag::err_preserve_type_info_invalid;
2740     }
2741   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2742     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2743       InvalidArg = true;
2744       kind = diag::err_preserve_enum_value_invalid;
2745     }
2746     ReturnUnsignedInt = false;
2747   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2748     ReturnUnsignedInt = false;
2749   }
2750 
2751   if (InvalidArg) {
2752     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2753     return true;
2754   }
2755 
2756   if (ReturnUnsignedInt)
2757     TheCall->setType(Context.UnsignedIntTy);
2758   else
2759     TheCall->setType(Context.UnsignedLongTy);
2760   return false;
2761 }
2762 
2763 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2764   struct ArgInfo {
2765     uint8_t OpNum;
2766     bool IsSigned;
2767     uint8_t BitWidth;
2768     uint8_t Align;
2769   };
2770   struct BuiltinInfo {
2771     unsigned BuiltinID;
2772     ArgInfo Infos[2];
2773   };
2774 
2775   static BuiltinInfo Infos[] = {
2776     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2777     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2778     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2779     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2780     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2781     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2782     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2783     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2784     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2785     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2786     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2787 
2788     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2791     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2792     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2793     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2797     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2799 
2800     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2845     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2848     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2849     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2851     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2852                                                       {{ 1, false, 6,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2860                                                       {{ 1, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2867                                                        { 2, false, 5,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2869                                                        { 2, false, 6,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2871                                                        { 3, false, 5,  0 }} },
2872     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2873                                                        { 3, false, 6,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2882     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2890                                                       {{ 2, false, 4,  0 },
2891                                                        { 3, false, 5,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2893                                                       {{ 2, false, 4,  0 },
2894                                                        { 3, false, 5,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2896                                                       {{ 2, false, 4,  0 },
2897                                                        { 3, false, 5,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2899                                                       {{ 2, false, 4,  0 },
2900                                                        { 3, false, 5,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2905     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2911     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2912                                                        { 2, false, 5,  0 }} },
2913     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2914                                                        { 2, false, 6,  0 }} },
2915     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2916     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2917     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2918     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2919     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2920     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2921     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2922     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2923     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2924                                                       {{ 1, false, 4,  0 }} },
2925     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2926     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2927                                                       {{ 1, false, 4,  0 }} },
2928     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2929     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2930     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2931     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2932     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2933     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2934     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2936     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2937     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2938     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2939     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2940     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2941     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2942     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2943     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2944     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2945     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2946     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2947     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2948                                                       {{ 3, false, 1,  0 }} },
2949     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2950     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2951     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2952     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2953                                                       {{ 3, false, 1,  0 }} },
2954     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2955     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2956     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2957     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2958                                                       {{ 3, false, 1,  0 }} },
2959   };
2960 
2961   // Use a dynamically initialized static to sort the table exactly once on
2962   // first run.
2963   static const bool SortOnce =
2964       (llvm::sort(Infos,
2965                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2966                    return LHS.BuiltinID < RHS.BuiltinID;
2967                  }),
2968        true);
2969   (void)SortOnce;
2970 
2971   const BuiltinInfo *F = llvm::partition_point(
2972       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2973   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2974     return false;
2975 
2976   bool Error = false;
2977 
2978   for (const ArgInfo &A : F->Infos) {
2979     // Ignore empty ArgInfo elements.
2980     if (A.BitWidth == 0)
2981       continue;
2982 
2983     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2984     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2985     if (!A.Align) {
2986       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2987     } else {
2988       unsigned M = 1 << A.Align;
2989       Min *= M;
2990       Max *= M;
2991       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2992                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2993     }
2994   }
2995   return Error;
2996 }
2997 
2998 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2999                                            CallExpr *TheCall) {
3000   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3001 }
3002 
3003 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3004                                         unsigned BuiltinID, CallExpr *TheCall) {
3005   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3006          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3007 }
3008 
3009 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3010                                CallExpr *TheCall) {
3011 
3012   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3013       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3014     if (!TI.hasFeature("dsp"))
3015       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3016   }
3017 
3018   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3019       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3020     if (!TI.hasFeature("dspr2"))
3021       return Diag(TheCall->getBeginLoc(),
3022                   diag::err_mips_builtin_requires_dspr2);
3023   }
3024 
3025   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3026       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3027     if (!TI.hasFeature("msa"))
3028       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3029   }
3030 
3031   return false;
3032 }
3033 
3034 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3035 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3036 // ordering for DSP is unspecified. MSA is ordered by the data format used
3037 // by the underlying instruction i.e., df/m, df/n and then by size.
3038 //
3039 // FIXME: The size tests here should instead be tablegen'd along with the
3040 //        definitions from include/clang/Basic/BuiltinsMips.def.
3041 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3042 //        be too.
3043 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3044   unsigned i = 0, l = 0, u = 0, m = 0;
3045   switch (BuiltinID) {
3046   default: return false;
3047   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3048   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3049   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3050   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3051   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3052   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3053   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3054   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3055   // df/m field.
3056   // These intrinsics take an unsigned 3 bit immediate.
3057   case Mips::BI__builtin_msa_bclri_b:
3058   case Mips::BI__builtin_msa_bnegi_b:
3059   case Mips::BI__builtin_msa_bseti_b:
3060   case Mips::BI__builtin_msa_sat_s_b:
3061   case Mips::BI__builtin_msa_sat_u_b:
3062   case Mips::BI__builtin_msa_slli_b:
3063   case Mips::BI__builtin_msa_srai_b:
3064   case Mips::BI__builtin_msa_srari_b:
3065   case Mips::BI__builtin_msa_srli_b:
3066   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3067   case Mips::BI__builtin_msa_binsli_b:
3068   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3069   // These intrinsics take an unsigned 4 bit immediate.
3070   case Mips::BI__builtin_msa_bclri_h:
3071   case Mips::BI__builtin_msa_bnegi_h:
3072   case Mips::BI__builtin_msa_bseti_h:
3073   case Mips::BI__builtin_msa_sat_s_h:
3074   case Mips::BI__builtin_msa_sat_u_h:
3075   case Mips::BI__builtin_msa_slli_h:
3076   case Mips::BI__builtin_msa_srai_h:
3077   case Mips::BI__builtin_msa_srari_h:
3078   case Mips::BI__builtin_msa_srli_h:
3079   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3080   case Mips::BI__builtin_msa_binsli_h:
3081   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3082   // These intrinsics take an unsigned 5 bit immediate.
3083   // The first block of intrinsics actually have an unsigned 5 bit field,
3084   // not a df/n field.
3085   case Mips::BI__builtin_msa_cfcmsa:
3086   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3087   case Mips::BI__builtin_msa_clei_u_b:
3088   case Mips::BI__builtin_msa_clei_u_h:
3089   case Mips::BI__builtin_msa_clei_u_w:
3090   case Mips::BI__builtin_msa_clei_u_d:
3091   case Mips::BI__builtin_msa_clti_u_b:
3092   case Mips::BI__builtin_msa_clti_u_h:
3093   case Mips::BI__builtin_msa_clti_u_w:
3094   case Mips::BI__builtin_msa_clti_u_d:
3095   case Mips::BI__builtin_msa_maxi_u_b:
3096   case Mips::BI__builtin_msa_maxi_u_h:
3097   case Mips::BI__builtin_msa_maxi_u_w:
3098   case Mips::BI__builtin_msa_maxi_u_d:
3099   case Mips::BI__builtin_msa_mini_u_b:
3100   case Mips::BI__builtin_msa_mini_u_h:
3101   case Mips::BI__builtin_msa_mini_u_w:
3102   case Mips::BI__builtin_msa_mini_u_d:
3103   case Mips::BI__builtin_msa_addvi_b:
3104   case Mips::BI__builtin_msa_addvi_h:
3105   case Mips::BI__builtin_msa_addvi_w:
3106   case Mips::BI__builtin_msa_addvi_d:
3107   case Mips::BI__builtin_msa_bclri_w:
3108   case Mips::BI__builtin_msa_bnegi_w:
3109   case Mips::BI__builtin_msa_bseti_w:
3110   case Mips::BI__builtin_msa_sat_s_w:
3111   case Mips::BI__builtin_msa_sat_u_w:
3112   case Mips::BI__builtin_msa_slli_w:
3113   case Mips::BI__builtin_msa_srai_w:
3114   case Mips::BI__builtin_msa_srari_w:
3115   case Mips::BI__builtin_msa_srli_w:
3116   case Mips::BI__builtin_msa_srlri_w:
3117   case Mips::BI__builtin_msa_subvi_b:
3118   case Mips::BI__builtin_msa_subvi_h:
3119   case Mips::BI__builtin_msa_subvi_w:
3120   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3121   case Mips::BI__builtin_msa_binsli_w:
3122   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3123   // These intrinsics take an unsigned 6 bit immediate.
3124   case Mips::BI__builtin_msa_bclri_d:
3125   case Mips::BI__builtin_msa_bnegi_d:
3126   case Mips::BI__builtin_msa_bseti_d:
3127   case Mips::BI__builtin_msa_sat_s_d:
3128   case Mips::BI__builtin_msa_sat_u_d:
3129   case Mips::BI__builtin_msa_slli_d:
3130   case Mips::BI__builtin_msa_srai_d:
3131   case Mips::BI__builtin_msa_srari_d:
3132   case Mips::BI__builtin_msa_srli_d:
3133   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3134   case Mips::BI__builtin_msa_binsli_d:
3135   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3136   // These intrinsics take a signed 5 bit immediate.
3137   case Mips::BI__builtin_msa_ceqi_b:
3138   case Mips::BI__builtin_msa_ceqi_h:
3139   case Mips::BI__builtin_msa_ceqi_w:
3140   case Mips::BI__builtin_msa_ceqi_d:
3141   case Mips::BI__builtin_msa_clti_s_b:
3142   case Mips::BI__builtin_msa_clti_s_h:
3143   case Mips::BI__builtin_msa_clti_s_w:
3144   case Mips::BI__builtin_msa_clti_s_d:
3145   case Mips::BI__builtin_msa_clei_s_b:
3146   case Mips::BI__builtin_msa_clei_s_h:
3147   case Mips::BI__builtin_msa_clei_s_w:
3148   case Mips::BI__builtin_msa_clei_s_d:
3149   case Mips::BI__builtin_msa_maxi_s_b:
3150   case Mips::BI__builtin_msa_maxi_s_h:
3151   case Mips::BI__builtin_msa_maxi_s_w:
3152   case Mips::BI__builtin_msa_maxi_s_d:
3153   case Mips::BI__builtin_msa_mini_s_b:
3154   case Mips::BI__builtin_msa_mini_s_h:
3155   case Mips::BI__builtin_msa_mini_s_w:
3156   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3157   // These intrinsics take an unsigned 8 bit immediate.
3158   case Mips::BI__builtin_msa_andi_b:
3159   case Mips::BI__builtin_msa_nori_b:
3160   case Mips::BI__builtin_msa_ori_b:
3161   case Mips::BI__builtin_msa_shf_b:
3162   case Mips::BI__builtin_msa_shf_h:
3163   case Mips::BI__builtin_msa_shf_w:
3164   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3165   case Mips::BI__builtin_msa_bseli_b:
3166   case Mips::BI__builtin_msa_bmnzi_b:
3167   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3168   // df/n format
3169   // These intrinsics take an unsigned 4 bit immediate.
3170   case Mips::BI__builtin_msa_copy_s_b:
3171   case Mips::BI__builtin_msa_copy_u_b:
3172   case Mips::BI__builtin_msa_insve_b:
3173   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3174   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3175   // These intrinsics take an unsigned 3 bit immediate.
3176   case Mips::BI__builtin_msa_copy_s_h:
3177   case Mips::BI__builtin_msa_copy_u_h:
3178   case Mips::BI__builtin_msa_insve_h:
3179   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3180   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3181   // These intrinsics take an unsigned 2 bit immediate.
3182   case Mips::BI__builtin_msa_copy_s_w:
3183   case Mips::BI__builtin_msa_copy_u_w:
3184   case Mips::BI__builtin_msa_insve_w:
3185   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3186   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3187   // These intrinsics take an unsigned 1 bit immediate.
3188   case Mips::BI__builtin_msa_copy_s_d:
3189   case Mips::BI__builtin_msa_copy_u_d:
3190   case Mips::BI__builtin_msa_insve_d:
3191   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3192   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3193   // Memory offsets and immediate loads.
3194   // These intrinsics take a signed 10 bit immediate.
3195   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3196   case Mips::BI__builtin_msa_ldi_h:
3197   case Mips::BI__builtin_msa_ldi_w:
3198   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3199   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3200   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3201   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3202   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3203   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3204   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3205   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3206   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3207   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3208   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3209   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3210   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3211   }
3212 
3213   if (!m)
3214     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3215 
3216   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3217          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3218 }
3219 
3220 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3221 /// advancing the pointer over the consumed characters. The decoded type is
3222 /// returned. If the decoded type represents a constant integer with a
3223 /// constraint on its value then Mask is set to that value. The type descriptors
3224 /// used in Str are specific to PPC MMA builtins and are documented in the file
3225 /// defining the PPC builtins.
3226 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3227                                         unsigned &Mask) {
3228   bool RequireICE = false;
3229   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3230   switch (*Str++) {
3231   case 'V':
3232     return Context.getVectorType(Context.UnsignedCharTy, 16,
3233                                  VectorType::VectorKind::AltiVecVector);
3234   case 'i': {
3235     char *End;
3236     unsigned size = strtoul(Str, &End, 10);
3237     assert(End != Str && "Missing constant parameter constraint");
3238     Str = End;
3239     Mask = size;
3240     return Context.IntTy;
3241   }
3242   case 'W': {
3243     char *End;
3244     unsigned size = strtoul(Str, &End, 10);
3245     assert(End != Str && "Missing PowerPC MMA type size");
3246     Str = End;
3247     QualType Type;
3248     switch (size) {
3249   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3250     case size: Type = Context.Id##Ty; break;
3251   #include "clang/Basic/PPCTypes.def"
3252     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3253     }
3254     bool CheckVectorArgs = false;
3255     while (!CheckVectorArgs) {
3256       switch (*Str++) {
3257       case '*':
3258         Type = Context.getPointerType(Type);
3259         break;
3260       case 'C':
3261         Type = Type.withConst();
3262         break;
3263       default:
3264         CheckVectorArgs = true;
3265         --Str;
3266         break;
3267       }
3268     }
3269     return Type;
3270   }
3271   default:
3272     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3273   }
3274 }
3275 
3276 static bool isPPC_64Builtin(unsigned BuiltinID) {
3277   // These builtins only work on PPC 64bit targets.
3278   switch (BuiltinID) {
3279   case PPC::BI__builtin_divde:
3280   case PPC::BI__builtin_divdeu:
3281   case PPC::BI__builtin_bpermd:
3282   case PPC::BI__builtin_ppc_ldarx:
3283   case PPC::BI__builtin_ppc_stdcx:
3284   case PPC::BI__builtin_ppc_tdw:
3285   case PPC::BI__builtin_ppc_trapd:
3286   case PPC::BI__builtin_ppc_cmpeqb:
3287   case PPC::BI__builtin_ppc_setb:
3288   case PPC::BI__builtin_ppc_mulhd:
3289   case PPC::BI__builtin_ppc_mulhdu:
3290   case PPC::BI__builtin_ppc_maddhd:
3291   case PPC::BI__builtin_ppc_maddhdu:
3292   case PPC::BI__builtin_ppc_maddld:
3293   case PPC::BI__builtin_ppc_load8r:
3294   case PPC::BI__builtin_ppc_store8r:
3295   case PPC::BI__builtin_ppc_insert_exp:
3296   case PPC::BI__builtin_ppc_extract_sig:
3297   case PPC::BI__builtin_ppc_addex:
3298   case PPC::BI__builtin_darn:
3299   case PPC::BI__builtin_darn_raw:
3300     return true;
3301   }
3302   return false;
3303 }
3304 
3305 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3306                              StringRef FeatureToCheck, unsigned DiagID,
3307                              StringRef DiagArg = "") {
3308   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3309     return false;
3310 
3311   if (DiagArg.empty())
3312     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3313   else
3314     S.Diag(TheCall->getBeginLoc(), DiagID)
3315         << DiagArg << TheCall->getSourceRange();
3316 
3317   return true;
3318 }
3319 
3320 /// Returns true if the argument consists of one contiguous run of 1s with any
3321 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3322 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3323 /// since all 1s are not contiguous.
3324 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3325   llvm::APSInt Result;
3326   // We can't check the value of a dependent argument.
3327   Expr *Arg = TheCall->getArg(ArgNum);
3328   if (Arg->isTypeDependent() || Arg->isValueDependent())
3329     return false;
3330 
3331   // Check constant-ness first.
3332   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3333     return true;
3334 
3335   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3336   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3337     return false;
3338 
3339   return Diag(TheCall->getBeginLoc(),
3340               diag::err_argument_not_contiguous_bit_field)
3341          << ArgNum << Arg->getSourceRange();
3342 }
3343 
3344 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3345                                        CallExpr *TheCall) {
3346   unsigned i = 0, l = 0, u = 0;
3347   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3348   llvm::APSInt Result;
3349 
3350   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3351     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3352            << TheCall->getSourceRange();
3353 
3354   switch (BuiltinID) {
3355   default: return false;
3356   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3357   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3358     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3359            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3360   case PPC::BI__builtin_altivec_dss:
3361     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3362   case PPC::BI__builtin_tbegin:
3363   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3364   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3365   case PPC::BI__builtin_tabortwc:
3366   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3367   case PPC::BI__builtin_tabortwci:
3368   case PPC::BI__builtin_tabortdci:
3369     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3370            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3371   case PPC::BI__builtin_altivec_dst:
3372   case PPC::BI__builtin_altivec_dstt:
3373   case PPC::BI__builtin_altivec_dstst:
3374   case PPC::BI__builtin_altivec_dststt:
3375     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3376   case PPC::BI__builtin_vsx_xxpermdi:
3377   case PPC::BI__builtin_vsx_xxsldwi:
3378     return SemaBuiltinVSX(TheCall);
3379   case PPC::BI__builtin_divwe:
3380   case PPC::BI__builtin_divweu:
3381   case PPC::BI__builtin_divde:
3382   case PPC::BI__builtin_divdeu:
3383     return SemaFeatureCheck(*this, TheCall, "extdiv",
3384                             diag::err_ppc_builtin_only_on_arch, "7");
3385   case PPC::BI__builtin_bpermd:
3386     return SemaFeatureCheck(*this, TheCall, "bpermd",
3387                             diag::err_ppc_builtin_only_on_arch, "7");
3388   case PPC::BI__builtin_unpack_vector_int128:
3389     return SemaFeatureCheck(*this, TheCall, "vsx",
3390                             diag::err_ppc_builtin_only_on_arch, "7") ||
3391            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3392   case PPC::BI__builtin_pack_vector_int128:
3393     return SemaFeatureCheck(*this, TheCall, "vsx",
3394                             diag::err_ppc_builtin_only_on_arch, "7");
3395   case PPC::BI__builtin_altivec_vgnb:
3396      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3397   case PPC::BI__builtin_altivec_vec_replace_elt:
3398   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3399     QualType VecTy = TheCall->getArg(0)->getType();
3400     QualType EltTy = TheCall->getArg(1)->getType();
3401     unsigned Width = Context.getIntWidth(EltTy);
3402     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3403            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3404   }
3405   case PPC::BI__builtin_vsx_xxeval:
3406      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3407   case PPC::BI__builtin_altivec_vsldbi:
3408      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3409   case PPC::BI__builtin_altivec_vsrdbi:
3410      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3411   case PPC::BI__builtin_vsx_xxpermx:
3412      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3413   case PPC::BI__builtin_ppc_tw:
3414   case PPC::BI__builtin_ppc_tdw:
3415     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3416   case PPC::BI__builtin_ppc_cmpeqb:
3417   case PPC::BI__builtin_ppc_setb:
3418   case PPC::BI__builtin_ppc_maddhd:
3419   case PPC::BI__builtin_ppc_maddhdu:
3420   case PPC::BI__builtin_ppc_maddld:
3421     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3422                             diag::err_ppc_builtin_only_on_arch, "9");
3423   case PPC::BI__builtin_ppc_cmprb:
3424     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3425                             diag::err_ppc_builtin_only_on_arch, "9") ||
3426            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3427   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3428   // be a constant that represents a contiguous bit field.
3429   case PPC::BI__builtin_ppc_rlwnm:
3430     return SemaBuiltinConstantArg(TheCall, 1, Result) ||
3431            SemaValueIsRunOfOnes(TheCall, 2);
3432   case PPC::BI__builtin_ppc_rlwimi:
3433   case PPC::BI__builtin_ppc_rldimi:
3434     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3435            SemaValueIsRunOfOnes(TheCall, 3);
3436   case PPC::BI__builtin_ppc_extract_exp:
3437   case PPC::BI__builtin_ppc_extract_sig:
3438   case PPC::BI__builtin_ppc_insert_exp:
3439     return SemaFeatureCheck(*this, TheCall, "power9-vector",
3440                             diag::err_ppc_builtin_only_on_arch, "9");
3441   case PPC::BI__builtin_ppc_addex: {
3442     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3443                          diag::err_ppc_builtin_only_on_arch, "9") ||
3444         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3445       return true;
3446     // Output warning for reserved values 1 to 3.
3447     int ArgValue =
3448         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3449     if (ArgValue != 0)
3450       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3451           << ArgValue;
3452     return false;
3453   }
3454   case PPC::BI__builtin_ppc_mtfsb0:
3455   case PPC::BI__builtin_ppc_mtfsb1:
3456     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3457   case PPC::BI__builtin_ppc_mtfsf:
3458     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3459   case PPC::BI__builtin_ppc_mtfsfi:
3460     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3461            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3462   case PPC::BI__builtin_ppc_alignx:
3463     return SemaBuiltinConstantArgPower2(TheCall, 0);
3464   case PPC::BI__builtin_ppc_rdlam:
3465     return SemaValueIsRunOfOnes(TheCall, 2);
3466   case PPC::BI__builtin_ppc_icbt:
3467   case PPC::BI__builtin_ppc_sthcx:
3468   case PPC::BI__builtin_ppc_stbcx:
3469   case PPC::BI__builtin_ppc_lharx:
3470   case PPC::BI__builtin_ppc_lbarx:
3471     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3472                             diag::err_ppc_builtin_only_on_arch, "8");
3473   case PPC::BI__builtin_vsx_ldrmb:
3474   case PPC::BI__builtin_vsx_strmb:
3475     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3476                             diag::err_ppc_builtin_only_on_arch, "8") ||
3477            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3478   case PPC::BI__builtin_altivec_vcntmbb:
3479   case PPC::BI__builtin_altivec_vcntmbh:
3480   case PPC::BI__builtin_altivec_vcntmbw:
3481   case PPC::BI__builtin_altivec_vcntmbd:
3482     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3483   case PPC::BI__builtin_darn:
3484   case PPC::BI__builtin_darn_raw:
3485   case PPC::BI__builtin_darn_32:
3486     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3487                             diag::err_ppc_builtin_only_on_arch, "9");
3488   case PPC::BI__builtin_vsx_xxgenpcvbm:
3489   case PPC::BI__builtin_vsx_xxgenpcvhm:
3490   case PPC::BI__builtin_vsx_xxgenpcvwm:
3491   case PPC::BI__builtin_vsx_xxgenpcvdm:
3492     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3493   case PPC::BI__builtin_ppc_compare_exp_uo:
3494   case PPC::BI__builtin_ppc_compare_exp_lt:
3495   case PPC::BI__builtin_ppc_compare_exp_gt:
3496   case PPC::BI__builtin_ppc_compare_exp_eq:
3497     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3498                             diag::err_ppc_builtin_only_on_arch, "9") ||
3499            SemaFeatureCheck(*this, TheCall, "vsx",
3500                             diag::err_ppc_builtin_requires_vsx);
3501   case PPC::BI__builtin_ppc_test_data_class: {
3502     // Check if the first argument of the __builtin_ppc_test_data_class call is
3503     // valid. The argument must be either a 'float' or a 'double'.
3504     QualType ArgType = TheCall->getArg(0)->getType();
3505     if (ArgType != QualType(Context.FloatTy) &&
3506         ArgType != QualType(Context.DoubleTy))
3507       return Diag(TheCall->getBeginLoc(),
3508                   diag::err_ppc_invalid_test_data_class_type);
3509     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3510                             diag::err_ppc_builtin_only_on_arch, "9") ||
3511            SemaFeatureCheck(*this, TheCall, "vsx",
3512                             diag::err_ppc_builtin_requires_vsx) ||
3513            SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
3514   }
3515   case PPC::BI__builtin_ppc_load8r:
3516   case PPC::BI__builtin_ppc_store8r:
3517     return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
3518                             diag::err_ppc_builtin_only_on_arch, "7");
3519 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
3520   case PPC::BI__builtin_##Name: \
3521     return SemaBuiltinPPCMMACall(TheCall, Types);
3522 #include "clang/Basic/BuiltinsPPC.def"
3523   }
3524   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3525 }
3526 
3527 // Check if the given type is a non-pointer PPC MMA type. This function is used
3528 // in Sema to prevent invalid uses of restricted PPC MMA types.
3529 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3530   if (Type->isPointerType() || Type->isArrayType())
3531     return false;
3532 
3533   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3534 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3535   if (false
3536 #include "clang/Basic/PPCTypes.def"
3537      ) {
3538     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3539     return true;
3540   }
3541   return false;
3542 }
3543 
3544 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3545                                           CallExpr *TheCall) {
3546   // position of memory order and scope arguments in the builtin
3547   unsigned OrderIndex, ScopeIndex;
3548   switch (BuiltinID) {
3549   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3550   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3551   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3552   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3553     OrderIndex = 2;
3554     ScopeIndex = 3;
3555     break;
3556   case AMDGPU::BI__builtin_amdgcn_fence:
3557     OrderIndex = 0;
3558     ScopeIndex = 1;
3559     break;
3560   default:
3561     return false;
3562   }
3563 
3564   ExprResult Arg = TheCall->getArg(OrderIndex);
3565   auto ArgExpr = Arg.get();
3566   Expr::EvalResult ArgResult;
3567 
3568   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3569     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3570            << ArgExpr->getType();
3571   auto Ord = ArgResult.Val.getInt().getZExtValue();
3572 
3573   // Check validity of memory ordering as per C11 / C++11's memody model.
3574   // Only fence needs check. Atomic dec/inc allow all memory orders.
3575   if (!llvm::isValidAtomicOrderingCABI(Ord))
3576     return Diag(ArgExpr->getBeginLoc(),
3577                 diag::warn_atomic_op_has_invalid_memory_order)
3578            << ArgExpr->getSourceRange();
3579   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3580   case llvm::AtomicOrderingCABI::relaxed:
3581   case llvm::AtomicOrderingCABI::consume:
3582     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3583       return Diag(ArgExpr->getBeginLoc(),
3584                   diag::warn_atomic_op_has_invalid_memory_order)
3585              << ArgExpr->getSourceRange();
3586     break;
3587   case llvm::AtomicOrderingCABI::acquire:
3588   case llvm::AtomicOrderingCABI::release:
3589   case llvm::AtomicOrderingCABI::acq_rel:
3590   case llvm::AtomicOrderingCABI::seq_cst:
3591     break;
3592   }
3593 
3594   Arg = TheCall->getArg(ScopeIndex);
3595   ArgExpr = Arg.get();
3596   Expr::EvalResult ArgResult1;
3597   // Check that sync scope is a constant literal
3598   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3599     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3600            << ArgExpr->getType();
3601 
3602   return false;
3603 }
3604 
3605 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3606   llvm::APSInt Result;
3607 
3608   // We can't check the value of a dependent argument.
3609   Expr *Arg = TheCall->getArg(ArgNum);
3610   if (Arg->isTypeDependent() || Arg->isValueDependent())
3611     return false;
3612 
3613   // Check constant-ness first.
3614   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3615     return true;
3616 
3617   int64_t Val = Result.getSExtValue();
3618   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3619     return false;
3620 
3621   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3622          << Arg->getSourceRange();
3623 }
3624 
3625 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3626                                          unsigned BuiltinID,
3627                                          CallExpr *TheCall) {
3628   // CodeGenFunction can also detect this, but this gives a better error
3629   // message.
3630   bool FeatureMissing = false;
3631   SmallVector<StringRef> ReqFeatures;
3632   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3633   Features.split(ReqFeatures, ',');
3634 
3635   // Check if each required feature is included
3636   for (StringRef F : ReqFeatures) {
3637     if (TI.hasFeature(F))
3638       continue;
3639 
3640     // If the feature is 64bit, alter the string so it will print better in
3641     // the diagnostic.
3642     if (F == "64bit")
3643       F = "RV64";
3644 
3645     // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3646     F.consume_front("experimental-");
3647     std::string FeatureStr = F.str();
3648     FeatureStr[0] = std::toupper(FeatureStr[0]);
3649 
3650     // Error message
3651     FeatureMissing = true;
3652     Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
3653         << TheCall->getSourceRange() << StringRef(FeatureStr);
3654   }
3655 
3656   if (FeatureMissing)
3657     return true;
3658 
3659   switch (BuiltinID) {
3660   case RISCV::BI__builtin_rvv_vsetvli:
3661     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
3662            CheckRISCVLMUL(TheCall, 2);
3663   case RISCV::BI__builtin_rvv_vsetvlimax:
3664     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
3665            CheckRISCVLMUL(TheCall, 1);
3666   case RISCV::BI__builtin_rvv_vget_v_i8m2_i8m1:
3667   case RISCV::BI__builtin_rvv_vget_v_i16m2_i16m1:
3668   case RISCV::BI__builtin_rvv_vget_v_i32m2_i32m1:
3669   case RISCV::BI__builtin_rvv_vget_v_i64m2_i64m1:
3670   case RISCV::BI__builtin_rvv_vget_v_f32m2_f32m1:
3671   case RISCV::BI__builtin_rvv_vget_v_f64m2_f64m1:
3672   case RISCV::BI__builtin_rvv_vget_v_u8m2_u8m1:
3673   case RISCV::BI__builtin_rvv_vget_v_u16m2_u16m1:
3674   case RISCV::BI__builtin_rvv_vget_v_u32m2_u32m1:
3675   case RISCV::BI__builtin_rvv_vget_v_u64m2_u64m1:
3676   case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m2:
3677   case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m2:
3678   case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m2:
3679   case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m2:
3680   case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m2:
3681   case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m2:
3682   case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m2:
3683   case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m2:
3684   case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m2:
3685   case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m2:
3686   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m4:
3687   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m4:
3688   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m4:
3689   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m4:
3690   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m4:
3691   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m4:
3692   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m4:
3693   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m4:
3694   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m4:
3695   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m4:
3696     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3697   case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m1:
3698   case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m1:
3699   case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m1:
3700   case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m1:
3701   case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m1:
3702   case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m1:
3703   case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m1:
3704   case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m1:
3705   case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m1:
3706   case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m1:
3707   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m2:
3708   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m2:
3709   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m2:
3710   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m2:
3711   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m2:
3712   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m2:
3713   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m2:
3714   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m2:
3715   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m2:
3716   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m2:
3717     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3718   case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m1:
3719   case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m1:
3720   case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m1:
3721   case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m1:
3722   case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m1:
3723   case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m1:
3724   case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m1:
3725   case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m1:
3726   case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m1:
3727   case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m1:
3728     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3729   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m2:
3730   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m2:
3731   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m2:
3732   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m2:
3733   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m2:
3734   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m2:
3735   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m2:
3736   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m2:
3737   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m2:
3738   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m2:
3739   case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m4:
3740   case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m4:
3741   case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m4:
3742   case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m4:
3743   case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m4:
3744   case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m4:
3745   case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m4:
3746   case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m4:
3747   case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m4:
3748   case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m4:
3749   case RISCV::BI__builtin_rvv_vset_v_i8m4_i8m8:
3750   case RISCV::BI__builtin_rvv_vset_v_i16m4_i16m8:
3751   case RISCV::BI__builtin_rvv_vset_v_i32m4_i32m8:
3752   case RISCV::BI__builtin_rvv_vset_v_i64m4_i64m8:
3753   case RISCV::BI__builtin_rvv_vset_v_f32m4_f32m8:
3754   case RISCV::BI__builtin_rvv_vset_v_f64m4_f64m8:
3755   case RISCV::BI__builtin_rvv_vset_v_u8m4_u8m8:
3756   case RISCV::BI__builtin_rvv_vset_v_u16m4_u16m8:
3757   case RISCV::BI__builtin_rvv_vset_v_u32m4_u32m8:
3758   case RISCV::BI__builtin_rvv_vset_v_u64m4_u64m8:
3759     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3760   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m4:
3761   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m4:
3762   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m4:
3763   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m4:
3764   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m4:
3765   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m4:
3766   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m4:
3767   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m4:
3768   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m4:
3769   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m4:
3770   case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m8:
3771   case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m8:
3772   case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m8:
3773   case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m8:
3774   case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m8:
3775   case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m8:
3776   case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m8:
3777   case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m8:
3778   case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m8:
3779   case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m8:
3780     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3781   case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m8:
3782   case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m8:
3783   case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m8:
3784   case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m8:
3785   case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m8:
3786   case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m8:
3787   case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m8:
3788   case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m8:
3789   case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m8:
3790   case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m8:
3791     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3792   }
3793 
3794   return false;
3795 }
3796 
3797 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3798                                            CallExpr *TheCall) {
3799   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3800     Expr *Arg = TheCall->getArg(0);
3801     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3802       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3803         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3804                << Arg->getSourceRange();
3805   }
3806 
3807   // For intrinsics which take an immediate value as part of the instruction,
3808   // range check them here.
3809   unsigned i = 0, l = 0, u = 0;
3810   switch (BuiltinID) {
3811   default: return false;
3812   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3813   case SystemZ::BI__builtin_s390_verimb:
3814   case SystemZ::BI__builtin_s390_verimh:
3815   case SystemZ::BI__builtin_s390_verimf:
3816   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3817   case SystemZ::BI__builtin_s390_vfaeb:
3818   case SystemZ::BI__builtin_s390_vfaeh:
3819   case SystemZ::BI__builtin_s390_vfaef:
3820   case SystemZ::BI__builtin_s390_vfaebs:
3821   case SystemZ::BI__builtin_s390_vfaehs:
3822   case SystemZ::BI__builtin_s390_vfaefs:
3823   case SystemZ::BI__builtin_s390_vfaezb:
3824   case SystemZ::BI__builtin_s390_vfaezh:
3825   case SystemZ::BI__builtin_s390_vfaezf:
3826   case SystemZ::BI__builtin_s390_vfaezbs:
3827   case SystemZ::BI__builtin_s390_vfaezhs:
3828   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3829   case SystemZ::BI__builtin_s390_vfisb:
3830   case SystemZ::BI__builtin_s390_vfidb:
3831     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3832            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3833   case SystemZ::BI__builtin_s390_vftcisb:
3834   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3835   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3836   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3837   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3838   case SystemZ::BI__builtin_s390_vstrcb:
3839   case SystemZ::BI__builtin_s390_vstrch:
3840   case SystemZ::BI__builtin_s390_vstrcf:
3841   case SystemZ::BI__builtin_s390_vstrczb:
3842   case SystemZ::BI__builtin_s390_vstrczh:
3843   case SystemZ::BI__builtin_s390_vstrczf:
3844   case SystemZ::BI__builtin_s390_vstrcbs:
3845   case SystemZ::BI__builtin_s390_vstrchs:
3846   case SystemZ::BI__builtin_s390_vstrcfs:
3847   case SystemZ::BI__builtin_s390_vstrczbs:
3848   case SystemZ::BI__builtin_s390_vstrczhs:
3849   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3850   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3851   case SystemZ::BI__builtin_s390_vfminsb:
3852   case SystemZ::BI__builtin_s390_vfmaxsb:
3853   case SystemZ::BI__builtin_s390_vfmindb:
3854   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3855   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3856   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3857   case SystemZ::BI__builtin_s390_vclfnhs:
3858   case SystemZ::BI__builtin_s390_vclfnls:
3859   case SystemZ::BI__builtin_s390_vcfn:
3860   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
3861   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
3862   }
3863   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3864 }
3865 
3866 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3867 /// This checks that the target supports __builtin_cpu_supports and
3868 /// that the string argument is constant and valid.
3869 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3870                                    CallExpr *TheCall) {
3871   Expr *Arg = TheCall->getArg(0);
3872 
3873   // Check if the argument is a string literal.
3874   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3875     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3876            << Arg->getSourceRange();
3877 
3878   // Check the contents of the string.
3879   StringRef Feature =
3880       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3881   if (!TI.validateCpuSupports(Feature))
3882     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3883            << Arg->getSourceRange();
3884   return false;
3885 }
3886 
3887 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3888 /// This checks that the target supports __builtin_cpu_is and
3889 /// that the string argument is constant and valid.
3890 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3891   Expr *Arg = TheCall->getArg(0);
3892 
3893   // Check if the argument is a string literal.
3894   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3895     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3896            << Arg->getSourceRange();
3897 
3898   // Check the contents of the string.
3899   StringRef Feature =
3900       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3901   if (!TI.validateCpuIs(Feature))
3902     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3903            << Arg->getSourceRange();
3904   return false;
3905 }
3906 
3907 // Check if the rounding mode is legal.
3908 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3909   // Indicates if this instruction has rounding control or just SAE.
3910   bool HasRC = false;
3911 
3912   unsigned ArgNum = 0;
3913   switch (BuiltinID) {
3914   default:
3915     return false;
3916   case X86::BI__builtin_ia32_vcvttsd2si32:
3917   case X86::BI__builtin_ia32_vcvttsd2si64:
3918   case X86::BI__builtin_ia32_vcvttsd2usi32:
3919   case X86::BI__builtin_ia32_vcvttsd2usi64:
3920   case X86::BI__builtin_ia32_vcvttss2si32:
3921   case X86::BI__builtin_ia32_vcvttss2si64:
3922   case X86::BI__builtin_ia32_vcvttss2usi32:
3923   case X86::BI__builtin_ia32_vcvttss2usi64:
3924   case X86::BI__builtin_ia32_vcvttsh2si32:
3925   case X86::BI__builtin_ia32_vcvttsh2si64:
3926   case X86::BI__builtin_ia32_vcvttsh2usi32:
3927   case X86::BI__builtin_ia32_vcvttsh2usi64:
3928     ArgNum = 1;
3929     break;
3930   case X86::BI__builtin_ia32_maxpd512:
3931   case X86::BI__builtin_ia32_maxps512:
3932   case X86::BI__builtin_ia32_minpd512:
3933   case X86::BI__builtin_ia32_minps512:
3934   case X86::BI__builtin_ia32_maxph512:
3935   case X86::BI__builtin_ia32_minph512:
3936     ArgNum = 2;
3937     break;
3938   case X86::BI__builtin_ia32_vcvtph2pd512_mask:
3939   case X86::BI__builtin_ia32_vcvtph2psx512_mask:
3940   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3941   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3942   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3943   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3944   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3945   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3946   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3947   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3948   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3949   case X86::BI__builtin_ia32_vcvttph2w512_mask:
3950   case X86::BI__builtin_ia32_vcvttph2uw512_mask:
3951   case X86::BI__builtin_ia32_vcvttph2dq512_mask:
3952   case X86::BI__builtin_ia32_vcvttph2udq512_mask:
3953   case X86::BI__builtin_ia32_vcvttph2qq512_mask:
3954   case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
3955   case X86::BI__builtin_ia32_exp2pd_mask:
3956   case X86::BI__builtin_ia32_exp2ps_mask:
3957   case X86::BI__builtin_ia32_getexppd512_mask:
3958   case X86::BI__builtin_ia32_getexpps512_mask:
3959   case X86::BI__builtin_ia32_getexpph512_mask:
3960   case X86::BI__builtin_ia32_rcp28pd_mask:
3961   case X86::BI__builtin_ia32_rcp28ps_mask:
3962   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3963   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3964   case X86::BI__builtin_ia32_vcomisd:
3965   case X86::BI__builtin_ia32_vcomiss:
3966   case X86::BI__builtin_ia32_vcomish:
3967   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3968     ArgNum = 3;
3969     break;
3970   case X86::BI__builtin_ia32_cmppd512_mask:
3971   case X86::BI__builtin_ia32_cmpps512_mask:
3972   case X86::BI__builtin_ia32_cmpsd_mask:
3973   case X86::BI__builtin_ia32_cmpss_mask:
3974   case X86::BI__builtin_ia32_cmpsh_mask:
3975   case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
3976   case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
3977   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3978   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3979   case X86::BI__builtin_ia32_getexpss128_round_mask:
3980   case X86::BI__builtin_ia32_getexpsh128_round_mask:
3981   case X86::BI__builtin_ia32_getmantpd512_mask:
3982   case X86::BI__builtin_ia32_getmantps512_mask:
3983   case X86::BI__builtin_ia32_getmantph512_mask:
3984   case X86::BI__builtin_ia32_maxsd_round_mask:
3985   case X86::BI__builtin_ia32_maxss_round_mask:
3986   case X86::BI__builtin_ia32_maxsh_round_mask:
3987   case X86::BI__builtin_ia32_minsd_round_mask:
3988   case X86::BI__builtin_ia32_minss_round_mask:
3989   case X86::BI__builtin_ia32_minsh_round_mask:
3990   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3991   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3992   case X86::BI__builtin_ia32_reducepd512_mask:
3993   case X86::BI__builtin_ia32_reduceps512_mask:
3994   case X86::BI__builtin_ia32_reduceph512_mask:
3995   case X86::BI__builtin_ia32_rndscalepd_mask:
3996   case X86::BI__builtin_ia32_rndscaleps_mask:
3997   case X86::BI__builtin_ia32_rndscaleph_mask:
3998   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3999   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4000     ArgNum = 4;
4001     break;
4002   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4003   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4004   case X86::BI__builtin_ia32_fixupimmps512_mask:
4005   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4006   case X86::BI__builtin_ia32_fixupimmsd_mask:
4007   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4008   case X86::BI__builtin_ia32_fixupimmss_mask:
4009   case X86::BI__builtin_ia32_fixupimmss_maskz:
4010   case X86::BI__builtin_ia32_getmantsd_round_mask:
4011   case X86::BI__builtin_ia32_getmantss_round_mask:
4012   case X86::BI__builtin_ia32_getmantsh_round_mask:
4013   case X86::BI__builtin_ia32_rangepd512_mask:
4014   case X86::BI__builtin_ia32_rangeps512_mask:
4015   case X86::BI__builtin_ia32_rangesd128_round_mask:
4016   case X86::BI__builtin_ia32_rangess128_round_mask:
4017   case X86::BI__builtin_ia32_reducesd_mask:
4018   case X86::BI__builtin_ia32_reducess_mask:
4019   case X86::BI__builtin_ia32_reducesh_mask:
4020   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4021   case X86::BI__builtin_ia32_rndscaless_round_mask:
4022   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4023     ArgNum = 5;
4024     break;
4025   case X86::BI__builtin_ia32_vcvtsd2si64:
4026   case X86::BI__builtin_ia32_vcvtsd2si32:
4027   case X86::BI__builtin_ia32_vcvtsd2usi32:
4028   case X86::BI__builtin_ia32_vcvtsd2usi64:
4029   case X86::BI__builtin_ia32_vcvtss2si32:
4030   case X86::BI__builtin_ia32_vcvtss2si64:
4031   case X86::BI__builtin_ia32_vcvtss2usi32:
4032   case X86::BI__builtin_ia32_vcvtss2usi64:
4033   case X86::BI__builtin_ia32_vcvtsh2si32:
4034   case X86::BI__builtin_ia32_vcvtsh2si64:
4035   case X86::BI__builtin_ia32_vcvtsh2usi32:
4036   case X86::BI__builtin_ia32_vcvtsh2usi64:
4037   case X86::BI__builtin_ia32_sqrtpd512:
4038   case X86::BI__builtin_ia32_sqrtps512:
4039   case X86::BI__builtin_ia32_sqrtph512:
4040     ArgNum = 1;
4041     HasRC = true;
4042     break;
4043   case X86::BI__builtin_ia32_addph512:
4044   case X86::BI__builtin_ia32_divph512:
4045   case X86::BI__builtin_ia32_mulph512:
4046   case X86::BI__builtin_ia32_subph512:
4047   case X86::BI__builtin_ia32_addpd512:
4048   case X86::BI__builtin_ia32_addps512:
4049   case X86::BI__builtin_ia32_divpd512:
4050   case X86::BI__builtin_ia32_divps512:
4051   case X86::BI__builtin_ia32_mulpd512:
4052   case X86::BI__builtin_ia32_mulps512:
4053   case X86::BI__builtin_ia32_subpd512:
4054   case X86::BI__builtin_ia32_subps512:
4055   case X86::BI__builtin_ia32_cvtsi2sd64:
4056   case X86::BI__builtin_ia32_cvtsi2ss32:
4057   case X86::BI__builtin_ia32_cvtsi2ss64:
4058   case X86::BI__builtin_ia32_cvtusi2sd64:
4059   case X86::BI__builtin_ia32_cvtusi2ss32:
4060   case X86::BI__builtin_ia32_cvtusi2ss64:
4061   case X86::BI__builtin_ia32_vcvtusi2sh:
4062   case X86::BI__builtin_ia32_vcvtusi642sh:
4063   case X86::BI__builtin_ia32_vcvtsi2sh:
4064   case X86::BI__builtin_ia32_vcvtsi642sh:
4065     ArgNum = 2;
4066     HasRC = true;
4067     break;
4068   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4069   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4070   case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4071   case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4072   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4073   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4074   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4075   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4076   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4077   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4078   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4079   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4080   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4081   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4082   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4083   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4084   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4085   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4086   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4087   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4088   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4089   case X86::BI__builtin_ia32_vcvtph2w512_mask:
4090   case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4091   case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4092   case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4093   case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4094   case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4095   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4096   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4097     ArgNum = 3;
4098     HasRC = true;
4099     break;
4100   case X86::BI__builtin_ia32_addsh_round_mask:
4101   case X86::BI__builtin_ia32_addss_round_mask:
4102   case X86::BI__builtin_ia32_addsd_round_mask:
4103   case X86::BI__builtin_ia32_divsh_round_mask:
4104   case X86::BI__builtin_ia32_divss_round_mask:
4105   case X86::BI__builtin_ia32_divsd_round_mask:
4106   case X86::BI__builtin_ia32_mulsh_round_mask:
4107   case X86::BI__builtin_ia32_mulss_round_mask:
4108   case X86::BI__builtin_ia32_mulsd_round_mask:
4109   case X86::BI__builtin_ia32_subsh_round_mask:
4110   case X86::BI__builtin_ia32_subss_round_mask:
4111   case X86::BI__builtin_ia32_subsd_round_mask:
4112   case X86::BI__builtin_ia32_scalefph512_mask:
4113   case X86::BI__builtin_ia32_scalefpd512_mask:
4114   case X86::BI__builtin_ia32_scalefps512_mask:
4115   case X86::BI__builtin_ia32_scalefsd_round_mask:
4116   case X86::BI__builtin_ia32_scalefss_round_mask:
4117   case X86::BI__builtin_ia32_scalefsh_round_mask:
4118   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4119   case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4120   case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4121   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4122   case X86::BI__builtin_ia32_sqrtss_round_mask:
4123   case X86::BI__builtin_ia32_sqrtsh_round_mask:
4124   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4125   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4126   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4127   case X86::BI__builtin_ia32_vfmaddss3_mask:
4128   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4129   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4130   case X86::BI__builtin_ia32_vfmaddsh3_mask:
4131   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4132   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4133   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4134   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4135   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4136   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4137   case X86::BI__builtin_ia32_vfmaddps512_mask:
4138   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4139   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4140   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4141   case X86::BI__builtin_ia32_vfmaddph512_mask:
4142   case X86::BI__builtin_ia32_vfmaddph512_maskz:
4143   case X86::BI__builtin_ia32_vfmaddph512_mask3:
4144   case X86::BI__builtin_ia32_vfmsubph512_mask3:
4145   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4146   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4147   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4148   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4149   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4150   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4151   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4152   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4153   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4154   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4155   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4156   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4157   case X86::BI__builtin_ia32_vfmaddcsh_mask:
4158   case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4159   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4160   case X86::BI__builtin_ia32_vfmaddcph512_mask:
4161   case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4162   case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4163   case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4164   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4165   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4166   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4167   case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4168   case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4169   case X86::BI__builtin_ia32_vfmulcsh_mask:
4170   case X86::BI__builtin_ia32_vfmulcph512_mask:
4171   case X86::BI__builtin_ia32_vfcmulcsh_mask:
4172   case X86::BI__builtin_ia32_vfcmulcph512_mask:
4173     ArgNum = 4;
4174     HasRC = true;
4175     break;
4176   }
4177 
4178   llvm::APSInt Result;
4179 
4180   // We can't check the value of a dependent argument.
4181   Expr *Arg = TheCall->getArg(ArgNum);
4182   if (Arg->isTypeDependent() || Arg->isValueDependent())
4183     return false;
4184 
4185   // Check constant-ness first.
4186   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4187     return true;
4188 
4189   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4190   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4191   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4192   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4193   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4194       Result == 8/*ROUND_NO_EXC*/ ||
4195       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4196       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4197     return false;
4198 
4199   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4200          << Arg->getSourceRange();
4201 }
4202 
4203 // Check if the gather/scatter scale is legal.
4204 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4205                                              CallExpr *TheCall) {
4206   unsigned ArgNum = 0;
4207   switch (BuiltinID) {
4208   default:
4209     return false;
4210   case X86::BI__builtin_ia32_gatherpfdpd:
4211   case X86::BI__builtin_ia32_gatherpfdps:
4212   case X86::BI__builtin_ia32_gatherpfqpd:
4213   case X86::BI__builtin_ia32_gatherpfqps:
4214   case X86::BI__builtin_ia32_scatterpfdpd:
4215   case X86::BI__builtin_ia32_scatterpfdps:
4216   case X86::BI__builtin_ia32_scatterpfqpd:
4217   case X86::BI__builtin_ia32_scatterpfqps:
4218     ArgNum = 3;
4219     break;
4220   case X86::BI__builtin_ia32_gatherd_pd:
4221   case X86::BI__builtin_ia32_gatherd_pd256:
4222   case X86::BI__builtin_ia32_gatherq_pd:
4223   case X86::BI__builtin_ia32_gatherq_pd256:
4224   case X86::BI__builtin_ia32_gatherd_ps:
4225   case X86::BI__builtin_ia32_gatherd_ps256:
4226   case X86::BI__builtin_ia32_gatherq_ps:
4227   case X86::BI__builtin_ia32_gatherq_ps256:
4228   case X86::BI__builtin_ia32_gatherd_q:
4229   case X86::BI__builtin_ia32_gatherd_q256:
4230   case X86::BI__builtin_ia32_gatherq_q:
4231   case X86::BI__builtin_ia32_gatherq_q256:
4232   case X86::BI__builtin_ia32_gatherd_d:
4233   case X86::BI__builtin_ia32_gatherd_d256:
4234   case X86::BI__builtin_ia32_gatherq_d:
4235   case X86::BI__builtin_ia32_gatherq_d256:
4236   case X86::BI__builtin_ia32_gather3div2df:
4237   case X86::BI__builtin_ia32_gather3div2di:
4238   case X86::BI__builtin_ia32_gather3div4df:
4239   case X86::BI__builtin_ia32_gather3div4di:
4240   case X86::BI__builtin_ia32_gather3div4sf:
4241   case X86::BI__builtin_ia32_gather3div4si:
4242   case X86::BI__builtin_ia32_gather3div8sf:
4243   case X86::BI__builtin_ia32_gather3div8si:
4244   case X86::BI__builtin_ia32_gather3siv2df:
4245   case X86::BI__builtin_ia32_gather3siv2di:
4246   case X86::BI__builtin_ia32_gather3siv4df:
4247   case X86::BI__builtin_ia32_gather3siv4di:
4248   case X86::BI__builtin_ia32_gather3siv4sf:
4249   case X86::BI__builtin_ia32_gather3siv4si:
4250   case X86::BI__builtin_ia32_gather3siv8sf:
4251   case X86::BI__builtin_ia32_gather3siv8si:
4252   case X86::BI__builtin_ia32_gathersiv8df:
4253   case X86::BI__builtin_ia32_gathersiv16sf:
4254   case X86::BI__builtin_ia32_gatherdiv8df:
4255   case X86::BI__builtin_ia32_gatherdiv16sf:
4256   case X86::BI__builtin_ia32_gathersiv8di:
4257   case X86::BI__builtin_ia32_gathersiv16si:
4258   case X86::BI__builtin_ia32_gatherdiv8di:
4259   case X86::BI__builtin_ia32_gatherdiv16si:
4260   case X86::BI__builtin_ia32_scatterdiv2df:
4261   case X86::BI__builtin_ia32_scatterdiv2di:
4262   case X86::BI__builtin_ia32_scatterdiv4df:
4263   case X86::BI__builtin_ia32_scatterdiv4di:
4264   case X86::BI__builtin_ia32_scatterdiv4sf:
4265   case X86::BI__builtin_ia32_scatterdiv4si:
4266   case X86::BI__builtin_ia32_scatterdiv8sf:
4267   case X86::BI__builtin_ia32_scatterdiv8si:
4268   case X86::BI__builtin_ia32_scattersiv2df:
4269   case X86::BI__builtin_ia32_scattersiv2di:
4270   case X86::BI__builtin_ia32_scattersiv4df:
4271   case X86::BI__builtin_ia32_scattersiv4di:
4272   case X86::BI__builtin_ia32_scattersiv4sf:
4273   case X86::BI__builtin_ia32_scattersiv4si:
4274   case X86::BI__builtin_ia32_scattersiv8sf:
4275   case X86::BI__builtin_ia32_scattersiv8si:
4276   case X86::BI__builtin_ia32_scattersiv8df:
4277   case X86::BI__builtin_ia32_scattersiv16sf:
4278   case X86::BI__builtin_ia32_scatterdiv8df:
4279   case X86::BI__builtin_ia32_scatterdiv16sf:
4280   case X86::BI__builtin_ia32_scattersiv8di:
4281   case X86::BI__builtin_ia32_scattersiv16si:
4282   case X86::BI__builtin_ia32_scatterdiv8di:
4283   case X86::BI__builtin_ia32_scatterdiv16si:
4284     ArgNum = 4;
4285     break;
4286   }
4287 
4288   llvm::APSInt Result;
4289 
4290   // We can't check the value of a dependent argument.
4291   Expr *Arg = TheCall->getArg(ArgNum);
4292   if (Arg->isTypeDependent() || Arg->isValueDependent())
4293     return false;
4294 
4295   // Check constant-ness first.
4296   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4297     return true;
4298 
4299   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4300     return false;
4301 
4302   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4303          << Arg->getSourceRange();
4304 }
4305 
4306 enum { TileRegLow = 0, TileRegHigh = 7 };
4307 
4308 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4309                                              ArrayRef<int> ArgNums) {
4310   for (int ArgNum : ArgNums) {
4311     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4312       return true;
4313   }
4314   return false;
4315 }
4316 
4317 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4318                                         ArrayRef<int> ArgNums) {
4319   // Because the max number of tile register is TileRegHigh + 1, so here we use
4320   // each bit to represent the usage of them in bitset.
4321   std::bitset<TileRegHigh + 1> ArgValues;
4322   for (int ArgNum : ArgNums) {
4323     Expr *Arg = TheCall->getArg(ArgNum);
4324     if (Arg->isTypeDependent() || Arg->isValueDependent())
4325       continue;
4326 
4327     llvm::APSInt Result;
4328     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4329       return true;
4330     int ArgExtValue = Result.getExtValue();
4331     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4332            "Incorrect tile register num.");
4333     if (ArgValues.test(ArgExtValue))
4334       return Diag(TheCall->getBeginLoc(),
4335                   diag::err_x86_builtin_tile_arg_duplicate)
4336              << TheCall->getArg(ArgNum)->getSourceRange();
4337     ArgValues.set(ArgExtValue);
4338   }
4339   return false;
4340 }
4341 
4342 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4343                                                 ArrayRef<int> ArgNums) {
4344   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4345          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4346 }
4347 
4348 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4349   switch (BuiltinID) {
4350   default:
4351     return false;
4352   case X86::BI__builtin_ia32_tileloadd64:
4353   case X86::BI__builtin_ia32_tileloaddt164:
4354   case X86::BI__builtin_ia32_tilestored64:
4355   case X86::BI__builtin_ia32_tilezero:
4356     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4357   case X86::BI__builtin_ia32_tdpbssd:
4358   case X86::BI__builtin_ia32_tdpbsud:
4359   case X86::BI__builtin_ia32_tdpbusd:
4360   case X86::BI__builtin_ia32_tdpbuud:
4361   case X86::BI__builtin_ia32_tdpbf16ps:
4362     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4363   }
4364 }
4365 static bool isX86_32Builtin(unsigned BuiltinID) {
4366   // These builtins only work on x86-32 targets.
4367   switch (BuiltinID) {
4368   case X86::BI__builtin_ia32_readeflags_u32:
4369   case X86::BI__builtin_ia32_writeeflags_u32:
4370     return true;
4371   }
4372 
4373   return false;
4374 }
4375 
4376 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4377                                        CallExpr *TheCall) {
4378   if (BuiltinID == X86::BI__builtin_cpu_supports)
4379     return SemaBuiltinCpuSupports(*this, TI, TheCall);
4380 
4381   if (BuiltinID == X86::BI__builtin_cpu_is)
4382     return SemaBuiltinCpuIs(*this, TI, TheCall);
4383 
4384   // Check for 32-bit only builtins on a 64-bit target.
4385   const llvm::Triple &TT = TI.getTriple();
4386   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4387     return Diag(TheCall->getCallee()->getBeginLoc(),
4388                 diag::err_32_bit_builtin_64_bit_tgt);
4389 
4390   // If the intrinsic has rounding or SAE make sure its valid.
4391   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4392     return true;
4393 
4394   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4395   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4396     return true;
4397 
4398   // If the intrinsic has a tile arguments, make sure they are valid.
4399   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4400     return true;
4401 
4402   // For intrinsics which take an immediate value as part of the instruction,
4403   // range check them here.
4404   int i = 0, l = 0, u = 0;
4405   switch (BuiltinID) {
4406   default:
4407     return false;
4408   case X86::BI__builtin_ia32_vec_ext_v2si:
4409   case X86::BI__builtin_ia32_vec_ext_v2di:
4410   case X86::BI__builtin_ia32_vextractf128_pd256:
4411   case X86::BI__builtin_ia32_vextractf128_ps256:
4412   case X86::BI__builtin_ia32_vextractf128_si256:
4413   case X86::BI__builtin_ia32_extract128i256:
4414   case X86::BI__builtin_ia32_extractf64x4_mask:
4415   case X86::BI__builtin_ia32_extracti64x4_mask:
4416   case X86::BI__builtin_ia32_extractf32x8_mask:
4417   case X86::BI__builtin_ia32_extracti32x8_mask:
4418   case X86::BI__builtin_ia32_extractf64x2_256_mask:
4419   case X86::BI__builtin_ia32_extracti64x2_256_mask:
4420   case X86::BI__builtin_ia32_extractf32x4_256_mask:
4421   case X86::BI__builtin_ia32_extracti32x4_256_mask:
4422     i = 1; l = 0; u = 1;
4423     break;
4424   case X86::BI__builtin_ia32_vec_set_v2di:
4425   case X86::BI__builtin_ia32_vinsertf128_pd256:
4426   case X86::BI__builtin_ia32_vinsertf128_ps256:
4427   case X86::BI__builtin_ia32_vinsertf128_si256:
4428   case X86::BI__builtin_ia32_insert128i256:
4429   case X86::BI__builtin_ia32_insertf32x8:
4430   case X86::BI__builtin_ia32_inserti32x8:
4431   case X86::BI__builtin_ia32_insertf64x4:
4432   case X86::BI__builtin_ia32_inserti64x4:
4433   case X86::BI__builtin_ia32_insertf64x2_256:
4434   case X86::BI__builtin_ia32_inserti64x2_256:
4435   case X86::BI__builtin_ia32_insertf32x4_256:
4436   case X86::BI__builtin_ia32_inserti32x4_256:
4437     i = 2; l = 0; u = 1;
4438     break;
4439   case X86::BI__builtin_ia32_vpermilpd:
4440   case X86::BI__builtin_ia32_vec_ext_v4hi:
4441   case X86::BI__builtin_ia32_vec_ext_v4si:
4442   case X86::BI__builtin_ia32_vec_ext_v4sf:
4443   case X86::BI__builtin_ia32_vec_ext_v4di:
4444   case X86::BI__builtin_ia32_extractf32x4_mask:
4445   case X86::BI__builtin_ia32_extracti32x4_mask:
4446   case X86::BI__builtin_ia32_extractf64x2_512_mask:
4447   case X86::BI__builtin_ia32_extracti64x2_512_mask:
4448     i = 1; l = 0; u = 3;
4449     break;
4450   case X86::BI_mm_prefetch:
4451   case X86::BI__builtin_ia32_vec_ext_v8hi:
4452   case X86::BI__builtin_ia32_vec_ext_v8si:
4453     i = 1; l = 0; u = 7;
4454     break;
4455   case X86::BI__builtin_ia32_sha1rnds4:
4456   case X86::BI__builtin_ia32_blendpd:
4457   case X86::BI__builtin_ia32_shufpd:
4458   case X86::BI__builtin_ia32_vec_set_v4hi:
4459   case X86::BI__builtin_ia32_vec_set_v4si:
4460   case X86::BI__builtin_ia32_vec_set_v4di:
4461   case X86::BI__builtin_ia32_shuf_f32x4_256:
4462   case X86::BI__builtin_ia32_shuf_f64x2_256:
4463   case X86::BI__builtin_ia32_shuf_i32x4_256:
4464   case X86::BI__builtin_ia32_shuf_i64x2_256:
4465   case X86::BI__builtin_ia32_insertf64x2_512:
4466   case X86::BI__builtin_ia32_inserti64x2_512:
4467   case X86::BI__builtin_ia32_insertf32x4:
4468   case X86::BI__builtin_ia32_inserti32x4:
4469     i = 2; l = 0; u = 3;
4470     break;
4471   case X86::BI__builtin_ia32_vpermil2pd:
4472   case X86::BI__builtin_ia32_vpermil2pd256:
4473   case X86::BI__builtin_ia32_vpermil2ps:
4474   case X86::BI__builtin_ia32_vpermil2ps256:
4475     i = 3; l = 0; u = 3;
4476     break;
4477   case X86::BI__builtin_ia32_cmpb128_mask:
4478   case X86::BI__builtin_ia32_cmpw128_mask:
4479   case X86::BI__builtin_ia32_cmpd128_mask:
4480   case X86::BI__builtin_ia32_cmpq128_mask:
4481   case X86::BI__builtin_ia32_cmpb256_mask:
4482   case X86::BI__builtin_ia32_cmpw256_mask:
4483   case X86::BI__builtin_ia32_cmpd256_mask:
4484   case X86::BI__builtin_ia32_cmpq256_mask:
4485   case X86::BI__builtin_ia32_cmpb512_mask:
4486   case X86::BI__builtin_ia32_cmpw512_mask:
4487   case X86::BI__builtin_ia32_cmpd512_mask:
4488   case X86::BI__builtin_ia32_cmpq512_mask:
4489   case X86::BI__builtin_ia32_ucmpb128_mask:
4490   case X86::BI__builtin_ia32_ucmpw128_mask:
4491   case X86::BI__builtin_ia32_ucmpd128_mask:
4492   case X86::BI__builtin_ia32_ucmpq128_mask:
4493   case X86::BI__builtin_ia32_ucmpb256_mask:
4494   case X86::BI__builtin_ia32_ucmpw256_mask:
4495   case X86::BI__builtin_ia32_ucmpd256_mask:
4496   case X86::BI__builtin_ia32_ucmpq256_mask:
4497   case X86::BI__builtin_ia32_ucmpb512_mask:
4498   case X86::BI__builtin_ia32_ucmpw512_mask:
4499   case X86::BI__builtin_ia32_ucmpd512_mask:
4500   case X86::BI__builtin_ia32_ucmpq512_mask:
4501   case X86::BI__builtin_ia32_vpcomub:
4502   case X86::BI__builtin_ia32_vpcomuw:
4503   case X86::BI__builtin_ia32_vpcomud:
4504   case X86::BI__builtin_ia32_vpcomuq:
4505   case X86::BI__builtin_ia32_vpcomb:
4506   case X86::BI__builtin_ia32_vpcomw:
4507   case X86::BI__builtin_ia32_vpcomd:
4508   case X86::BI__builtin_ia32_vpcomq:
4509   case X86::BI__builtin_ia32_vec_set_v8hi:
4510   case X86::BI__builtin_ia32_vec_set_v8si:
4511     i = 2; l = 0; u = 7;
4512     break;
4513   case X86::BI__builtin_ia32_vpermilpd256:
4514   case X86::BI__builtin_ia32_roundps:
4515   case X86::BI__builtin_ia32_roundpd:
4516   case X86::BI__builtin_ia32_roundps256:
4517   case X86::BI__builtin_ia32_roundpd256:
4518   case X86::BI__builtin_ia32_getmantpd128_mask:
4519   case X86::BI__builtin_ia32_getmantpd256_mask:
4520   case X86::BI__builtin_ia32_getmantps128_mask:
4521   case X86::BI__builtin_ia32_getmantps256_mask:
4522   case X86::BI__builtin_ia32_getmantpd512_mask:
4523   case X86::BI__builtin_ia32_getmantps512_mask:
4524   case X86::BI__builtin_ia32_getmantph128_mask:
4525   case X86::BI__builtin_ia32_getmantph256_mask:
4526   case X86::BI__builtin_ia32_getmantph512_mask:
4527   case X86::BI__builtin_ia32_vec_ext_v16qi:
4528   case X86::BI__builtin_ia32_vec_ext_v16hi:
4529     i = 1; l = 0; u = 15;
4530     break;
4531   case X86::BI__builtin_ia32_pblendd128:
4532   case X86::BI__builtin_ia32_blendps:
4533   case X86::BI__builtin_ia32_blendpd256:
4534   case X86::BI__builtin_ia32_shufpd256:
4535   case X86::BI__builtin_ia32_roundss:
4536   case X86::BI__builtin_ia32_roundsd:
4537   case X86::BI__builtin_ia32_rangepd128_mask:
4538   case X86::BI__builtin_ia32_rangepd256_mask:
4539   case X86::BI__builtin_ia32_rangepd512_mask:
4540   case X86::BI__builtin_ia32_rangeps128_mask:
4541   case X86::BI__builtin_ia32_rangeps256_mask:
4542   case X86::BI__builtin_ia32_rangeps512_mask:
4543   case X86::BI__builtin_ia32_getmantsd_round_mask:
4544   case X86::BI__builtin_ia32_getmantss_round_mask:
4545   case X86::BI__builtin_ia32_getmantsh_round_mask:
4546   case X86::BI__builtin_ia32_vec_set_v16qi:
4547   case X86::BI__builtin_ia32_vec_set_v16hi:
4548     i = 2; l = 0; u = 15;
4549     break;
4550   case X86::BI__builtin_ia32_vec_ext_v32qi:
4551     i = 1; l = 0; u = 31;
4552     break;
4553   case X86::BI__builtin_ia32_cmpps:
4554   case X86::BI__builtin_ia32_cmpss:
4555   case X86::BI__builtin_ia32_cmppd:
4556   case X86::BI__builtin_ia32_cmpsd:
4557   case X86::BI__builtin_ia32_cmpps256:
4558   case X86::BI__builtin_ia32_cmppd256:
4559   case X86::BI__builtin_ia32_cmpps128_mask:
4560   case X86::BI__builtin_ia32_cmppd128_mask:
4561   case X86::BI__builtin_ia32_cmpps256_mask:
4562   case X86::BI__builtin_ia32_cmppd256_mask:
4563   case X86::BI__builtin_ia32_cmpps512_mask:
4564   case X86::BI__builtin_ia32_cmppd512_mask:
4565   case X86::BI__builtin_ia32_cmpsd_mask:
4566   case X86::BI__builtin_ia32_cmpss_mask:
4567   case X86::BI__builtin_ia32_vec_set_v32qi:
4568     i = 2; l = 0; u = 31;
4569     break;
4570   case X86::BI__builtin_ia32_permdf256:
4571   case X86::BI__builtin_ia32_permdi256:
4572   case X86::BI__builtin_ia32_permdf512:
4573   case X86::BI__builtin_ia32_permdi512:
4574   case X86::BI__builtin_ia32_vpermilps:
4575   case X86::BI__builtin_ia32_vpermilps256:
4576   case X86::BI__builtin_ia32_vpermilpd512:
4577   case X86::BI__builtin_ia32_vpermilps512:
4578   case X86::BI__builtin_ia32_pshufd:
4579   case X86::BI__builtin_ia32_pshufd256:
4580   case X86::BI__builtin_ia32_pshufd512:
4581   case X86::BI__builtin_ia32_pshufhw:
4582   case X86::BI__builtin_ia32_pshufhw256:
4583   case X86::BI__builtin_ia32_pshufhw512:
4584   case X86::BI__builtin_ia32_pshuflw:
4585   case X86::BI__builtin_ia32_pshuflw256:
4586   case X86::BI__builtin_ia32_pshuflw512:
4587   case X86::BI__builtin_ia32_vcvtps2ph:
4588   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4589   case X86::BI__builtin_ia32_vcvtps2ph256:
4590   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4591   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4592   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4593   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4594   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4595   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4596   case X86::BI__builtin_ia32_rndscaleps_mask:
4597   case X86::BI__builtin_ia32_rndscalepd_mask:
4598   case X86::BI__builtin_ia32_rndscaleph_mask:
4599   case X86::BI__builtin_ia32_reducepd128_mask:
4600   case X86::BI__builtin_ia32_reducepd256_mask:
4601   case X86::BI__builtin_ia32_reducepd512_mask:
4602   case X86::BI__builtin_ia32_reduceps128_mask:
4603   case X86::BI__builtin_ia32_reduceps256_mask:
4604   case X86::BI__builtin_ia32_reduceps512_mask:
4605   case X86::BI__builtin_ia32_reduceph128_mask:
4606   case X86::BI__builtin_ia32_reduceph256_mask:
4607   case X86::BI__builtin_ia32_reduceph512_mask:
4608   case X86::BI__builtin_ia32_prold512:
4609   case X86::BI__builtin_ia32_prolq512:
4610   case X86::BI__builtin_ia32_prold128:
4611   case X86::BI__builtin_ia32_prold256:
4612   case X86::BI__builtin_ia32_prolq128:
4613   case X86::BI__builtin_ia32_prolq256:
4614   case X86::BI__builtin_ia32_prord512:
4615   case X86::BI__builtin_ia32_prorq512:
4616   case X86::BI__builtin_ia32_prord128:
4617   case X86::BI__builtin_ia32_prord256:
4618   case X86::BI__builtin_ia32_prorq128:
4619   case X86::BI__builtin_ia32_prorq256:
4620   case X86::BI__builtin_ia32_fpclasspd128_mask:
4621   case X86::BI__builtin_ia32_fpclasspd256_mask:
4622   case X86::BI__builtin_ia32_fpclassps128_mask:
4623   case X86::BI__builtin_ia32_fpclassps256_mask:
4624   case X86::BI__builtin_ia32_fpclassps512_mask:
4625   case X86::BI__builtin_ia32_fpclasspd512_mask:
4626   case X86::BI__builtin_ia32_fpclassph128_mask:
4627   case X86::BI__builtin_ia32_fpclassph256_mask:
4628   case X86::BI__builtin_ia32_fpclassph512_mask:
4629   case X86::BI__builtin_ia32_fpclasssd_mask:
4630   case X86::BI__builtin_ia32_fpclassss_mask:
4631   case X86::BI__builtin_ia32_fpclasssh_mask:
4632   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4633   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4634   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4635   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4636   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4637   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4638   case X86::BI__builtin_ia32_kshiftliqi:
4639   case X86::BI__builtin_ia32_kshiftlihi:
4640   case X86::BI__builtin_ia32_kshiftlisi:
4641   case X86::BI__builtin_ia32_kshiftlidi:
4642   case X86::BI__builtin_ia32_kshiftriqi:
4643   case X86::BI__builtin_ia32_kshiftrihi:
4644   case X86::BI__builtin_ia32_kshiftrisi:
4645   case X86::BI__builtin_ia32_kshiftridi:
4646     i = 1; l = 0; u = 255;
4647     break;
4648   case X86::BI__builtin_ia32_vperm2f128_pd256:
4649   case X86::BI__builtin_ia32_vperm2f128_ps256:
4650   case X86::BI__builtin_ia32_vperm2f128_si256:
4651   case X86::BI__builtin_ia32_permti256:
4652   case X86::BI__builtin_ia32_pblendw128:
4653   case X86::BI__builtin_ia32_pblendw256:
4654   case X86::BI__builtin_ia32_blendps256:
4655   case X86::BI__builtin_ia32_pblendd256:
4656   case X86::BI__builtin_ia32_palignr128:
4657   case X86::BI__builtin_ia32_palignr256:
4658   case X86::BI__builtin_ia32_palignr512:
4659   case X86::BI__builtin_ia32_alignq512:
4660   case X86::BI__builtin_ia32_alignd512:
4661   case X86::BI__builtin_ia32_alignd128:
4662   case X86::BI__builtin_ia32_alignd256:
4663   case X86::BI__builtin_ia32_alignq128:
4664   case X86::BI__builtin_ia32_alignq256:
4665   case X86::BI__builtin_ia32_vcomisd:
4666   case X86::BI__builtin_ia32_vcomiss:
4667   case X86::BI__builtin_ia32_shuf_f32x4:
4668   case X86::BI__builtin_ia32_shuf_f64x2:
4669   case X86::BI__builtin_ia32_shuf_i32x4:
4670   case X86::BI__builtin_ia32_shuf_i64x2:
4671   case X86::BI__builtin_ia32_shufpd512:
4672   case X86::BI__builtin_ia32_shufps:
4673   case X86::BI__builtin_ia32_shufps256:
4674   case X86::BI__builtin_ia32_shufps512:
4675   case X86::BI__builtin_ia32_dbpsadbw128:
4676   case X86::BI__builtin_ia32_dbpsadbw256:
4677   case X86::BI__builtin_ia32_dbpsadbw512:
4678   case X86::BI__builtin_ia32_vpshldd128:
4679   case X86::BI__builtin_ia32_vpshldd256:
4680   case X86::BI__builtin_ia32_vpshldd512:
4681   case X86::BI__builtin_ia32_vpshldq128:
4682   case X86::BI__builtin_ia32_vpshldq256:
4683   case X86::BI__builtin_ia32_vpshldq512:
4684   case X86::BI__builtin_ia32_vpshldw128:
4685   case X86::BI__builtin_ia32_vpshldw256:
4686   case X86::BI__builtin_ia32_vpshldw512:
4687   case X86::BI__builtin_ia32_vpshrdd128:
4688   case X86::BI__builtin_ia32_vpshrdd256:
4689   case X86::BI__builtin_ia32_vpshrdd512:
4690   case X86::BI__builtin_ia32_vpshrdq128:
4691   case X86::BI__builtin_ia32_vpshrdq256:
4692   case X86::BI__builtin_ia32_vpshrdq512:
4693   case X86::BI__builtin_ia32_vpshrdw128:
4694   case X86::BI__builtin_ia32_vpshrdw256:
4695   case X86::BI__builtin_ia32_vpshrdw512:
4696     i = 2; l = 0; u = 255;
4697     break;
4698   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4699   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4700   case X86::BI__builtin_ia32_fixupimmps512_mask:
4701   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4702   case X86::BI__builtin_ia32_fixupimmsd_mask:
4703   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4704   case X86::BI__builtin_ia32_fixupimmss_mask:
4705   case X86::BI__builtin_ia32_fixupimmss_maskz:
4706   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4707   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4708   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4709   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4710   case X86::BI__builtin_ia32_fixupimmps128_mask:
4711   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4712   case X86::BI__builtin_ia32_fixupimmps256_mask:
4713   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4714   case X86::BI__builtin_ia32_pternlogd512_mask:
4715   case X86::BI__builtin_ia32_pternlogd512_maskz:
4716   case X86::BI__builtin_ia32_pternlogq512_mask:
4717   case X86::BI__builtin_ia32_pternlogq512_maskz:
4718   case X86::BI__builtin_ia32_pternlogd128_mask:
4719   case X86::BI__builtin_ia32_pternlogd128_maskz:
4720   case X86::BI__builtin_ia32_pternlogd256_mask:
4721   case X86::BI__builtin_ia32_pternlogd256_maskz:
4722   case X86::BI__builtin_ia32_pternlogq128_mask:
4723   case X86::BI__builtin_ia32_pternlogq128_maskz:
4724   case X86::BI__builtin_ia32_pternlogq256_mask:
4725   case X86::BI__builtin_ia32_pternlogq256_maskz:
4726     i = 3; l = 0; u = 255;
4727     break;
4728   case X86::BI__builtin_ia32_gatherpfdpd:
4729   case X86::BI__builtin_ia32_gatherpfdps:
4730   case X86::BI__builtin_ia32_gatherpfqpd:
4731   case X86::BI__builtin_ia32_gatherpfqps:
4732   case X86::BI__builtin_ia32_scatterpfdpd:
4733   case X86::BI__builtin_ia32_scatterpfdps:
4734   case X86::BI__builtin_ia32_scatterpfqpd:
4735   case X86::BI__builtin_ia32_scatterpfqps:
4736     i = 4; l = 2; u = 3;
4737     break;
4738   case X86::BI__builtin_ia32_reducesd_mask:
4739   case X86::BI__builtin_ia32_reducess_mask:
4740   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4741   case X86::BI__builtin_ia32_rndscaless_round_mask:
4742   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4743   case X86::BI__builtin_ia32_reducesh_mask:
4744     i = 4; l = 0; u = 255;
4745     break;
4746   }
4747 
4748   // Note that we don't force a hard error on the range check here, allowing
4749   // template-generated or macro-generated dead code to potentially have out-of-
4750   // range values. These need to code generate, but don't need to necessarily
4751   // make any sense. We use a warning that defaults to an error.
4752   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4753 }
4754 
4755 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4756 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4757 /// Returns true when the format fits the function and the FormatStringInfo has
4758 /// been populated.
4759 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4760                                FormatStringInfo *FSI) {
4761   FSI->HasVAListArg = Format->getFirstArg() == 0;
4762   FSI->FormatIdx = Format->getFormatIdx() - 1;
4763   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4764 
4765   // The way the format attribute works in GCC, the implicit this argument
4766   // of member functions is counted. However, it doesn't appear in our own
4767   // lists, so decrement format_idx in that case.
4768   if (IsCXXMember) {
4769     if(FSI->FormatIdx == 0)
4770       return false;
4771     --FSI->FormatIdx;
4772     if (FSI->FirstDataArg != 0)
4773       --FSI->FirstDataArg;
4774   }
4775   return true;
4776 }
4777 
4778 /// Checks if a the given expression evaluates to null.
4779 ///
4780 /// Returns true if the value evaluates to null.
4781 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4782   // If the expression has non-null type, it doesn't evaluate to null.
4783   if (auto nullability
4784         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4785     if (*nullability == NullabilityKind::NonNull)
4786       return false;
4787   }
4788 
4789   // As a special case, transparent unions initialized with zero are
4790   // considered null for the purposes of the nonnull attribute.
4791   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4792     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4793       if (const CompoundLiteralExpr *CLE =
4794           dyn_cast<CompoundLiteralExpr>(Expr))
4795         if (const InitListExpr *ILE =
4796             dyn_cast<InitListExpr>(CLE->getInitializer()))
4797           Expr = ILE->getInit(0);
4798   }
4799 
4800   bool Result;
4801   return (!Expr->isValueDependent() &&
4802           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4803           !Result);
4804 }
4805 
4806 static void CheckNonNullArgument(Sema &S,
4807                                  const Expr *ArgExpr,
4808                                  SourceLocation CallSiteLoc) {
4809   if (CheckNonNullExpr(S, ArgExpr))
4810     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4811                           S.PDiag(diag::warn_null_arg)
4812                               << ArgExpr->getSourceRange());
4813 }
4814 
4815 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4816   FormatStringInfo FSI;
4817   if ((GetFormatStringType(Format) == FST_NSString) &&
4818       getFormatStringInfo(Format, false, &FSI)) {
4819     Idx = FSI.FormatIdx;
4820     return true;
4821   }
4822   return false;
4823 }
4824 
4825 /// Diagnose use of %s directive in an NSString which is being passed
4826 /// as formatting string to formatting method.
4827 static void
4828 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4829                                         const NamedDecl *FDecl,
4830                                         Expr **Args,
4831                                         unsigned NumArgs) {
4832   unsigned Idx = 0;
4833   bool Format = false;
4834   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4835   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4836     Idx = 2;
4837     Format = true;
4838   }
4839   else
4840     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4841       if (S.GetFormatNSStringIdx(I, Idx)) {
4842         Format = true;
4843         break;
4844       }
4845     }
4846   if (!Format || NumArgs <= Idx)
4847     return;
4848   const Expr *FormatExpr = Args[Idx];
4849   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4850     FormatExpr = CSCE->getSubExpr();
4851   const StringLiteral *FormatString;
4852   if (const ObjCStringLiteral *OSL =
4853       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4854     FormatString = OSL->getString();
4855   else
4856     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4857   if (!FormatString)
4858     return;
4859   if (S.FormatStringHasSArg(FormatString)) {
4860     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4861       << "%s" << 1 << 1;
4862     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4863       << FDecl->getDeclName();
4864   }
4865 }
4866 
4867 /// Determine whether the given type has a non-null nullability annotation.
4868 static bool isNonNullType(ASTContext &ctx, QualType type) {
4869   if (auto nullability = type->getNullability(ctx))
4870     return *nullability == NullabilityKind::NonNull;
4871 
4872   return false;
4873 }
4874 
4875 static void CheckNonNullArguments(Sema &S,
4876                                   const NamedDecl *FDecl,
4877                                   const FunctionProtoType *Proto,
4878                                   ArrayRef<const Expr *> Args,
4879                                   SourceLocation CallSiteLoc) {
4880   assert((FDecl || Proto) && "Need a function declaration or prototype");
4881 
4882   // Already checked by by constant evaluator.
4883   if (S.isConstantEvaluated())
4884     return;
4885   // Check the attributes attached to the method/function itself.
4886   llvm::SmallBitVector NonNullArgs;
4887   if (FDecl) {
4888     // Handle the nonnull attribute on the function/method declaration itself.
4889     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4890       if (!NonNull->args_size()) {
4891         // Easy case: all pointer arguments are nonnull.
4892         for (const auto *Arg : Args)
4893           if (S.isValidPointerAttrType(Arg->getType()))
4894             CheckNonNullArgument(S, Arg, CallSiteLoc);
4895         return;
4896       }
4897 
4898       for (const ParamIdx &Idx : NonNull->args()) {
4899         unsigned IdxAST = Idx.getASTIndex();
4900         if (IdxAST >= Args.size())
4901           continue;
4902         if (NonNullArgs.empty())
4903           NonNullArgs.resize(Args.size());
4904         NonNullArgs.set(IdxAST);
4905       }
4906     }
4907   }
4908 
4909   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4910     // Handle the nonnull attribute on the parameters of the
4911     // function/method.
4912     ArrayRef<ParmVarDecl*> parms;
4913     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4914       parms = FD->parameters();
4915     else
4916       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4917 
4918     unsigned ParamIndex = 0;
4919     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4920          I != E; ++I, ++ParamIndex) {
4921       const ParmVarDecl *PVD = *I;
4922       if (PVD->hasAttr<NonNullAttr>() ||
4923           isNonNullType(S.Context, PVD->getType())) {
4924         if (NonNullArgs.empty())
4925           NonNullArgs.resize(Args.size());
4926 
4927         NonNullArgs.set(ParamIndex);
4928       }
4929     }
4930   } else {
4931     // If we have a non-function, non-method declaration but no
4932     // function prototype, try to dig out the function prototype.
4933     if (!Proto) {
4934       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4935         QualType type = VD->getType().getNonReferenceType();
4936         if (auto pointerType = type->getAs<PointerType>())
4937           type = pointerType->getPointeeType();
4938         else if (auto blockType = type->getAs<BlockPointerType>())
4939           type = blockType->getPointeeType();
4940         // FIXME: data member pointers?
4941 
4942         // Dig out the function prototype, if there is one.
4943         Proto = type->getAs<FunctionProtoType>();
4944       }
4945     }
4946 
4947     // Fill in non-null argument information from the nullability
4948     // information on the parameter types (if we have them).
4949     if (Proto) {
4950       unsigned Index = 0;
4951       for (auto paramType : Proto->getParamTypes()) {
4952         if (isNonNullType(S.Context, paramType)) {
4953           if (NonNullArgs.empty())
4954             NonNullArgs.resize(Args.size());
4955 
4956           NonNullArgs.set(Index);
4957         }
4958 
4959         ++Index;
4960       }
4961     }
4962   }
4963 
4964   // Check for non-null arguments.
4965   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4966        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4967     if (NonNullArgs[ArgIndex])
4968       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4969   }
4970 }
4971 
4972 /// Warn if a pointer or reference argument passed to a function points to an
4973 /// object that is less aligned than the parameter. This can happen when
4974 /// creating a typedef with a lower alignment than the original type and then
4975 /// calling functions defined in terms of the original type.
4976 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
4977                              StringRef ParamName, QualType ArgTy,
4978                              QualType ParamTy) {
4979 
4980   // If a function accepts a pointer or reference type
4981   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
4982     return;
4983 
4984   // If the parameter is a pointer type, get the pointee type for the
4985   // argument too. If the parameter is a reference type, don't try to get
4986   // the pointee type for the argument.
4987   if (ParamTy->isPointerType())
4988     ArgTy = ArgTy->getPointeeType();
4989 
4990   // Remove reference or pointer
4991   ParamTy = ParamTy->getPointeeType();
4992 
4993   // Find expected alignment, and the actual alignment of the passed object.
4994   // getTypeAlignInChars requires complete types
4995   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
4996       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
4997       ArgTy->isUndeducedType())
4998     return;
4999 
5000   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5001   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5002 
5003   // If the argument is less aligned than the parameter, there is a
5004   // potential alignment issue.
5005   if (ArgAlign < ParamAlign)
5006     Diag(Loc, diag::warn_param_mismatched_alignment)
5007         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5008         << ParamName << FDecl;
5009 }
5010 
5011 /// Handles the checks for format strings, non-POD arguments to vararg
5012 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5013 /// attributes.
5014 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5015                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
5016                      bool IsMemberFunction, SourceLocation Loc,
5017                      SourceRange Range, VariadicCallType CallType) {
5018   // FIXME: We should check as much as we can in the template definition.
5019   if (CurContext->isDependentContext())
5020     return;
5021 
5022   // Printf and scanf checking.
5023   llvm::SmallBitVector CheckedVarArgs;
5024   if (FDecl) {
5025     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5026       // Only create vector if there are format attributes.
5027       CheckedVarArgs.resize(Args.size());
5028 
5029       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5030                            CheckedVarArgs);
5031     }
5032   }
5033 
5034   // Refuse POD arguments that weren't caught by the format string
5035   // checks above.
5036   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5037   if (CallType != VariadicDoesNotApply &&
5038       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5039     unsigned NumParams = Proto ? Proto->getNumParams()
5040                        : FDecl && isa<FunctionDecl>(FDecl)
5041                            ? cast<FunctionDecl>(FDecl)->getNumParams()
5042                        : FDecl && isa<ObjCMethodDecl>(FDecl)
5043                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
5044                        : 0;
5045 
5046     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5047       // Args[ArgIdx] can be null in malformed code.
5048       if (const Expr *Arg = Args[ArgIdx]) {
5049         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5050           checkVariadicArgument(Arg, CallType);
5051       }
5052     }
5053   }
5054 
5055   if (FDecl || Proto) {
5056     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5057 
5058     // Type safety checking.
5059     if (FDecl) {
5060       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5061         CheckArgumentWithTypeTag(I, Args, Loc);
5062     }
5063   }
5064 
5065   // Check that passed arguments match the alignment of original arguments.
5066   // Try to get the missing prototype from the declaration.
5067   if (!Proto && FDecl) {
5068     const auto *FT = FDecl->getFunctionType();
5069     if (isa_and_nonnull<FunctionProtoType>(FT))
5070       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5071   }
5072   if (Proto) {
5073     // For variadic functions, we may have more args than parameters.
5074     // For some K&R functions, we may have less args than parameters.
5075     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5076     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5077       // Args[ArgIdx] can be null in malformed code.
5078       if (const Expr *Arg = Args[ArgIdx]) {
5079         if (Arg->containsErrors())
5080           continue;
5081 
5082         QualType ParamTy = Proto->getParamType(ArgIdx);
5083         QualType ArgTy = Arg->getType();
5084         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5085                           ArgTy, ParamTy);
5086       }
5087     }
5088   }
5089 
5090   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5091     auto *AA = FDecl->getAttr<AllocAlignAttr>();
5092     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5093     if (!Arg->isValueDependent()) {
5094       Expr::EvalResult Align;
5095       if (Arg->EvaluateAsInt(Align, Context)) {
5096         const llvm::APSInt &I = Align.Val.getInt();
5097         if (!I.isPowerOf2())
5098           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5099               << Arg->getSourceRange();
5100 
5101         if (I > Sema::MaximumAlignment)
5102           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5103               << Arg->getSourceRange() << Sema::MaximumAlignment;
5104       }
5105     }
5106   }
5107 
5108   if (FD)
5109     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5110 }
5111 
5112 /// CheckConstructorCall - Check a constructor call for correctness and safety
5113 /// properties not enforced by the C type system.
5114 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5115                                 ArrayRef<const Expr *> Args,
5116                                 const FunctionProtoType *Proto,
5117                                 SourceLocation Loc) {
5118   VariadicCallType CallType =
5119       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5120 
5121   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5122   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5123                     Context.getPointerType(Ctor->getThisObjectType()));
5124 
5125   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5126             Loc, SourceRange(), CallType);
5127 }
5128 
5129 /// CheckFunctionCall - Check a direct function call for various correctness
5130 /// and safety properties not strictly enforced by the C type system.
5131 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5132                              const FunctionProtoType *Proto) {
5133   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5134                               isa<CXXMethodDecl>(FDecl);
5135   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5136                           IsMemberOperatorCall;
5137   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5138                                                   TheCall->getCallee());
5139   Expr** Args = TheCall->getArgs();
5140   unsigned NumArgs = TheCall->getNumArgs();
5141 
5142   Expr *ImplicitThis = nullptr;
5143   if (IsMemberOperatorCall) {
5144     // If this is a call to a member operator, hide the first argument
5145     // from checkCall.
5146     // FIXME: Our choice of AST representation here is less than ideal.
5147     ImplicitThis = Args[0];
5148     ++Args;
5149     --NumArgs;
5150   } else if (IsMemberFunction)
5151     ImplicitThis =
5152         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5153 
5154   if (ImplicitThis) {
5155     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5156     // used.
5157     QualType ThisType = ImplicitThis->getType();
5158     if (!ThisType->isPointerType()) {
5159       assert(!ThisType->isReferenceType());
5160       ThisType = Context.getPointerType(ThisType);
5161     }
5162 
5163     QualType ThisTypeFromDecl =
5164         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5165 
5166     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5167                       ThisTypeFromDecl);
5168   }
5169 
5170   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5171             IsMemberFunction, TheCall->getRParenLoc(),
5172             TheCall->getCallee()->getSourceRange(), CallType);
5173 
5174   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5175   // None of the checks below are needed for functions that don't have
5176   // simple names (e.g., C++ conversion functions).
5177   if (!FnInfo)
5178     return false;
5179 
5180   CheckTCBEnforcement(TheCall, FDecl);
5181 
5182   CheckAbsoluteValueFunction(TheCall, FDecl);
5183   CheckMaxUnsignedZero(TheCall, FDecl);
5184 
5185   if (getLangOpts().ObjC)
5186     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5187 
5188   unsigned CMId = FDecl->getMemoryFunctionKind();
5189 
5190   // Handle memory setting and copying functions.
5191   switch (CMId) {
5192   case 0:
5193     return false;
5194   case Builtin::BIstrlcpy: // fallthrough
5195   case Builtin::BIstrlcat:
5196     CheckStrlcpycatArguments(TheCall, FnInfo);
5197     break;
5198   case Builtin::BIstrncat:
5199     CheckStrncatArguments(TheCall, FnInfo);
5200     break;
5201   case Builtin::BIfree:
5202     CheckFreeArguments(TheCall);
5203     break;
5204   default:
5205     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5206   }
5207 
5208   return false;
5209 }
5210 
5211 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5212                                ArrayRef<const Expr *> Args) {
5213   VariadicCallType CallType =
5214       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5215 
5216   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5217             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5218             CallType);
5219 
5220   return false;
5221 }
5222 
5223 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5224                             const FunctionProtoType *Proto) {
5225   QualType Ty;
5226   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5227     Ty = V->getType().getNonReferenceType();
5228   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5229     Ty = F->getType().getNonReferenceType();
5230   else
5231     return false;
5232 
5233   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5234       !Ty->isFunctionProtoType())
5235     return false;
5236 
5237   VariadicCallType CallType;
5238   if (!Proto || !Proto->isVariadic()) {
5239     CallType = VariadicDoesNotApply;
5240   } else if (Ty->isBlockPointerType()) {
5241     CallType = VariadicBlock;
5242   } else { // Ty->isFunctionPointerType()
5243     CallType = VariadicFunction;
5244   }
5245 
5246   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5247             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5248             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5249             TheCall->getCallee()->getSourceRange(), CallType);
5250 
5251   return false;
5252 }
5253 
5254 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5255 /// such as function pointers returned from functions.
5256 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5257   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5258                                                   TheCall->getCallee());
5259   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5260             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5261             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5262             TheCall->getCallee()->getSourceRange(), CallType);
5263 
5264   return false;
5265 }
5266 
5267 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5268   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5269     return false;
5270 
5271   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5272   switch (Op) {
5273   case AtomicExpr::AO__c11_atomic_init:
5274   case AtomicExpr::AO__opencl_atomic_init:
5275     llvm_unreachable("There is no ordering argument for an init");
5276 
5277   case AtomicExpr::AO__c11_atomic_load:
5278   case AtomicExpr::AO__opencl_atomic_load:
5279   case AtomicExpr::AO__atomic_load_n:
5280   case AtomicExpr::AO__atomic_load:
5281     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5282            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5283 
5284   case AtomicExpr::AO__c11_atomic_store:
5285   case AtomicExpr::AO__opencl_atomic_store:
5286   case AtomicExpr::AO__atomic_store:
5287   case AtomicExpr::AO__atomic_store_n:
5288     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5289            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5290            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5291 
5292   default:
5293     return true;
5294   }
5295 }
5296 
5297 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5298                                          AtomicExpr::AtomicOp Op) {
5299   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5300   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5301   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5302   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5303                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5304                          Op);
5305 }
5306 
5307 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5308                                  SourceLocation RParenLoc, MultiExprArg Args,
5309                                  AtomicExpr::AtomicOp Op,
5310                                  AtomicArgumentOrder ArgOrder) {
5311   // All the non-OpenCL operations take one of the following forms.
5312   // The OpenCL operations take the __c11 forms with one extra argument for
5313   // synchronization scope.
5314   enum {
5315     // C    __c11_atomic_init(A *, C)
5316     Init,
5317 
5318     // C    __c11_atomic_load(A *, int)
5319     Load,
5320 
5321     // void __atomic_load(A *, CP, int)
5322     LoadCopy,
5323 
5324     // void __atomic_store(A *, CP, int)
5325     Copy,
5326 
5327     // C    __c11_atomic_add(A *, M, int)
5328     Arithmetic,
5329 
5330     // C    __atomic_exchange_n(A *, CP, int)
5331     Xchg,
5332 
5333     // void __atomic_exchange(A *, C *, CP, int)
5334     GNUXchg,
5335 
5336     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5337     C11CmpXchg,
5338 
5339     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5340     GNUCmpXchg
5341   } Form = Init;
5342 
5343   const unsigned NumForm = GNUCmpXchg + 1;
5344   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5345   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5346   // where:
5347   //   C is an appropriate type,
5348   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5349   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5350   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5351   //   the int parameters are for orderings.
5352 
5353   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5354       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5355       "need to update code for modified forms");
5356   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5357                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5358                         AtomicExpr::AO__atomic_load,
5359                 "need to update code for modified C11 atomics");
5360   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5361                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5362   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5363                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5364                IsOpenCL;
5365   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5366              Op == AtomicExpr::AO__atomic_store_n ||
5367              Op == AtomicExpr::AO__atomic_exchange_n ||
5368              Op == AtomicExpr::AO__atomic_compare_exchange_n;
5369   bool IsAddSub = false;
5370 
5371   switch (Op) {
5372   case AtomicExpr::AO__c11_atomic_init:
5373   case AtomicExpr::AO__opencl_atomic_init:
5374     Form = Init;
5375     break;
5376 
5377   case AtomicExpr::AO__c11_atomic_load:
5378   case AtomicExpr::AO__opencl_atomic_load:
5379   case AtomicExpr::AO__atomic_load_n:
5380     Form = Load;
5381     break;
5382 
5383   case AtomicExpr::AO__atomic_load:
5384     Form = LoadCopy;
5385     break;
5386 
5387   case AtomicExpr::AO__c11_atomic_store:
5388   case AtomicExpr::AO__opencl_atomic_store:
5389   case AtomicExpr::AO__atomic_store:
5390   case AtomicExpr::AO__atomic_store_n:
5391     Form = Copy;
5392     break;
5393 
5394   case AtomicExpr::AO__c11_atomic_fetch_add:
5395   case AtomicExpr::AO__c11_atomic_fetch_sub:
5396   case AtomicExpr::AO__opencl_atomic_fetch_add:
5397   case AtomicExpr::AO__opencl_atomic_fetch_sub:
5398   case AtomicExpr::AO__atomic_fetch_add:
5399   case AtomicExpr::AO__atomic_fetch_sub:
5400   case AtomicExpr::AO__atomic_add_fetch:
5401   case AtomicExpr::AO__atomic_sub_fetch:
5402     IsAddSub = true;
5403     Form = Arithmetic;
5404     break;
5405   case AtomicExpr::AO__c11_atomic_fetch_and:
5406   case AtomicExpr::AO__c11_atomic_fetch_or:
5407   case AtomicExpr::AO__c11_atomic_fetch_xor:
5408   case AtomicExpr::AO__opencl_atomic_fetch_and:
5409   case AtomicExpr::AO__opencl_atomic_fetch_or:
5410   case AtomicExpr::AO__opencl_atomic_fetch_xor:
5411   case AtomicExpr::AO__atomic_fetch_and:
5412   case AtomicExpr::AO__atomic_fetch_or:
5413   case AtomicExpr::AO__atomic_fetch_xor:
5414   case AtomicExpr::AO__atomic_fetch_nand:
5415   case AtomicExpr::AO__atomic_and_fetch:
5416   case AtomicExpr::AO__atomic_or_fetch:
5417   case AtomicExpr::AO__atomic_xor_fetch:
5418   case AtomicExpr::AO__atomic_nand_fetch:
5419     Form = Arithmetic;
5420     break;
5421   case AtomicExpr::AO__c11_atomic_fetch_min:
5422   case AtomicExpr::AO__c11_atomic_fetch_max:
5423   case AtomicExpr::AO__opencl_atomic_fetch_min:
5424   case AtomicExpr::AO__opencl_atomic_fetch_max:
5425   case AtomicExpr::AO__atomic_min_fetch:
5426   case AtomicExpr::AO__atomic_max_fetch:
5427   case AtomicExpr::AO__atomic_fetch_min:
5428   case AtomicExpr::AO__atomic_fetch_max:
5429     Form = Arithmetic;
5430     break;
5431 
5432   case AtomicExpr::AO__c11_atomic_exchange:
5433   case AtomicExpr::AO__opencl_atomic_exchange:
5434   case AtomicExpr::AO__atomic_exchange_n:
5435     Form = Xchg;
5436     break;
5437 
5438   case AtomicExpr::AO__atomic_exchange:
5439     Form = GNUXchg;
5440     break;
5441 
5442   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5443   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5444   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5445   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5446     Form = C11CmpXchg;
5447     break;
5448 
5449   case AtomicExpr::AO__atomic_compare_exchange:
5450   case AtomicExpr::AO__atomic_compare_exchange_n:
5451     Form = GNUCmpXchg;
5452     break;
5453   }
5454 
5455   unsigned AdjustedNumArgs = NumArgs[Form];
5456   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
5457     ++AdjustedNumArgs;
5458   // Check we have the right number of arguments.
5459   if (Args.size() < AdjustedNumArgs) {
5460     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5461         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5462         << ExprRange;
5463     return ExprError();
5464   } else if (Args.size() > AdjustedNumArgs) {
5465     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5466          diag::err_typecheck_call_too_many_args)
5467         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5468         << ExprRange;
5469     return ExprError();
5470   }
5471 
5472   // Inspect the first argument of the atomic operation.
5473   Expr *Ptr = Args[0];
5474   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5475   if (ConvertedPtr.isInvalid())
5476     return ExprError();
5477 
5478   Ptr = ConvertedPtr.get();
5479   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5480   if (!pointerType) {
5481     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5482         << Ptr->getType() << Ptr->getSourceRange();
5483     return ExprError();
5484   }
5485 
5486   // For a __c11 builtin, this should be a pointer to an _Atomic type.
5487   QualType AtomTy = pointerType->getPointeeType(); // 'A'
5488   QualType ValType = AtomTy; // 'C'
5489   if (IsC11) {
5490     if (!AtomTy->isAtomicType()) {
5491       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5492           << Ptr->getType() << Ptr->getSourceRange();
5493       return ExprError();
5494     }
5495     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5496         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5497       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5498           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5499           << Ptr->getSourceRange();
5500       return ExprError();
5501     }
5502     ValType = AtomTy->castAs<AtomicType>()->getValueType();
5503   } else if (Form != Load && Form != LoadCopy) {
5504     if (ValType.isConstQualified()) {
5505       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5506           << Ptr->getType() << Ptr->getSourceRange();
5507       return ExprError();
5508     }
5509   }
5510 
5511   // For an arithmetic operation, the implied arithmetic must be well-formed.
5512   if (Form == Arithmetic) {
5513     // gcc does not enforce these rules for GNU atomics, but we do so for
5514     // sanity.
5515     auto IsAllowedValueType = [&](QualType ValType) {
5516       if (ValType->isIntegerType())
5517         return true;
5518       if (ValType->isPointerType())
5519         return true;
5520       if (!ValType->isFloatingType())
5521         return false;
5522       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5523       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5524           &Context.getTargetInfo().getLongDoubleFormat() ==
5525               &llvm::APFloat::x87DoubleExtended())
5526         return false;
5527       return true;
5528     };
5529     if (IsAddSub && !IsAllowedValueType(ValType)) {
5530       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5531           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5532       return ExprError();
5533     }
5534     if (!IsAddSub && !ValType->isIntegerType()) {
5535       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5536           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5537       return ExprError();
5538     }
5539     if (IsC11 && ValType->isPointerType() &&
5540         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5541                             diag::err_incomplete_type)) {
5542       return ExprError();
5543     }
5544   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5545     // For __atomic_*_n operations, the value type must be a scalar integral or
5546     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5547     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5548         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5549     return ExprError();
5550   }
5551 
5552   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5553       !AtomTy->isScalarType()) {
5554     // For GNU atomics, require a trivially-copyable type. This is not part of
5555     // the GNU atomics specification, but we enforce it for sanity.
5556     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5557         << Ptr->getType() << Ptr->getSourceRange();
5558     return ExprError();
5559   }
5560 
5561   switch (ValType.getObjCLifetime()) {
5562   case Qualifiers::OCL_None:
5563   case Qualifiers::OCL_ExplicitNone:
5564     // okay
5565     break;
5566 
5567   case Qualifiers::OCL_Weak:
5568   case Qualifiers::OCL_Strong:
5569   case Qualifiers::OCL_Autoreleasing:
5570     // FIXME: Can this happen? By this point, ValType should be known
5571     // to be trivially copyable.
5572     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5573         << ValType << Ptr->getSourceRange();
5574     return ExprError();
5575   }
5576 
5577   // All atomic operations have an overload which takes a pointer to a volatile
5578   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
5579   // into the result or the other operands. Similarly atomic_load takes a
5580   // pointer to a const 'A'.
5581   ValType.removeLocalVolatile();
5582   ValType.removeLocalConst();
5583   QualType ResultType = ValType;
5584   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5585       Form == Init)
5586     ResultType = Context.VoidTy;
5587   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5588     ResultType = Context.BoolTy;
5589 
5590   // The type of a parameter passed 'by value'. In the GNU atomics, such
5591   // arguments are actually passed as pointers.
5592   QualType ByValType = ValType; // 'CP'
5593   bool IsPassedByAddress = false;
5594   if (!IsC11 && !IsN) {
5595     ByValType = Ptr->getType();
5596     IsPassedByAddress = true;
5597   }
5598 
5599   SmallVector<Expr *, 5> APIOrderedArgs;
5600   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5601     APIOrderedArgs.push_back(Args[0]);
5602     switch (Form) {
5603     case Init:
5604     case Load:
5605       APIOrderedArgs.push_back(Args[1]); // Val1/Order
5606       break;
5607     case LoadCopy:
5608     case Copy:
5609     case Arithmetic:
5610     case Xchg:
5611       APIOrderedArgs.push_back(Args[2]); // Val1
5612       APIOrderedArgs.push_back(Args[1]); // Order
5613       break;
5614     case GNUXchg:
5615       APIOrderedArgs.push_back(Args[2]); // Val1
5616       APIOrderedArgs.push_back(Args[3]); // Val2
5617       APIOrderedArgs.push_back(Args[1]); // Order
5618       break;
5619     case C11CmpXchg:
5620       APIOrderedArgs.push_back(Args[2]); // Val1
5621       APIOrderedArgs.push_back(Args[4]); // Val2
5622       APIOrderedArgs.push_back(Args[1]); // Order
5623       APIOrderedArgs.push_back(Args[3]); // OrderFail
5624       break;
5625     case GNUCmpXchg:
5626       APIOrderedArgs.push_back(Args[2]); // Val1
5627       APIOrderedArgs.push_back(Args[4]); // Val2
5628       APIOrderedArgs.push_back(Args[5]); // Weak
5629       APIOrderedArgs.push_back(Args[1]); // Order
5630       APIOrderedArgs.push_back(Args[3]); // OrderFail
5631       break;
5632     }
5633   } else
5634     APIOrderedArgs.append(Args.begin(), Args.end());
5635 
5636   // The first argument's non-CV pointer type is used to deduce the type of
5637   // subsequent arguments, except for:
5638   //  - weak flag (always converted to bool)
5639   //  - memory order (always converted to int)
5640   //  - scope  (always converted to int)
5641   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5642     QualType Ty;
5643     if (i < NumVals[Form] + 1) {
5644       switch (i) {
5645       case 0:
5646         // The first argument is always a pointer. It has a fixed type.
5647         // It is always dereferenced, a nullptr is undefined.
5648         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5649         // Nothing else to do: we already know all we want about this pointer.
5650         continue;
5651       case 1:
5652         // The second argument is the non-atomic operand. For arithmetic, this
5653         // is always passed by value, and for a compare_exchange it is always
5654         // passed by address. For the rest, GNU uses by-address and C11 uses
5655         // by-value.
5656         assert(Form != Load);
5657         if (Form == Arithmetic && ValType->isPointerType())
5658           Ty = Context.getPointerDiffType();
5659         else if (Form == Init || Form == Arithmetic)
5660           Ty = ValType;
5661         else if (Form == Copy || Form == Xchg) {
5662           if (IsPassedByAddress) {
5663             // The value pointer is always dereferenced, a nullptr is undefined.
5664             CheckNonNullArgument(*this, APIOrderedArgs[i],
5665                                  ExprRange.getBegin());
5666           }
5667           Ty = ByValType;
5668         } else {
5669           Expr *ValArg = APIOrderedArgs[i];
5670           // The value pointer is always dereferenced, a nullptr is undefined.
5671           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5672           LangAS AS = LangAS::Default;
5673           // Keep address space of non-atomic pointer type.
5674           if (const PointerType *PtrTy =
5675                   ValArg->getType()->getAs<PointerType>()) {
5676             AS = PtrTy->getPointeeType().getAddressSpace();
5677           }
5678           Ty = Context.getPointerType(
5679               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5680         }
5681         break;
5682       case 2:
5683         // The third argument to compare_exchange / GNU exchange is the desired
5684         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5685         if (IsPassedByAddress)
5686           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5687         Ty = ByValType;
5688         break;
5689       case 3:
5690         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5691         Ty = Context.BoolTy;
5692         break;
5693       }
5694     } else {
5695       // The order(s) and scope are always converted to int.
5696       Ty = Context.IntTy;
5697     }
5698 
5699     InitializedEntity Entity =
5700         InitializedEntity::InitializeParameter(Context, Ty, false);
5701     ExprResult Arg = APIOrderedArgs[i];
5702     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5703     if (Arg.isInvalid())
5704       return true;
5705     APIOrderedArgs[i] = Arg.get();
5706   }
5707 
5708   // Permute the arguments into a 'consistent' order.
5709   SmallVector<Expr*, 5> SubExprs;
5710   SubExprs.push_back(Ptr);
5711   switch (Form) {
5712   case Init:
5713     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5714     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5715     break;
5716   case Load:
5717     SubExprs.push_back(APIOrderedArgs[1]); // Order
5718     break;
5719   case LoadCopy:
5720   case Copy:
5721   case Arithmetic:
5722   case Xchg:
5723     SubExprs.push_back(APIOrderedArgs[2]); // Order
5724     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5725     break;
5726   case GNUXchg:
5727     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5728     SubExprs.push_back(APIOrderedArgs[3]); // Order
5729     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5730     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5731     break;
5732   case C11CmpXchg:
5733     SubExprs.push_back(APIOrderedArgs[3]); // Order
5734     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5735     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5736     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5737     break;
5738   case GNUCmpXchg:
5739     SubExprs.push_back(APIOrderedArgs[4]); // Order
5740     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5741     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5742     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5743     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5744     break;
5745   }
5746 
5747   if (SubExprs.size() >= 2 && Form != Init) {
5748     if (Optional<llvm::APSInt> Result =
5749             SubExprs[1]->getIntegerConstantExpr(Context))
5750       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5751         Diag(SubExprs[1]->getBeginLoc(),
5752              diag::warn_atomic_op_has_invalid_memory_order)
5753             << SubExprs[1]->getSourceRange();
5754   }
5755 
5756   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5757     auto *Scope = Args[Args.size() - 1];
5758     if (Optional<llvm::APSInt> Result =
5759             Scope->getIntegerConstantExpr(Context)) {
5760       if (!ScopeModel->isValid(Result->getZExtValue()))
5761         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5762             << Scope->getSourceRange();
5763     }
5764     SubExprs.push_back(Scope);
5765   }
5766 
5767   AtomicExpr *AE = new (Context)
5768       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5769 
5770   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5771        Op == AtomicExpr::AO__c11_atomic_store ||
5772        Op == AtomicExpr::AO__opencl_atomic_load ||
5773        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5774       Context.AtomicUsesUnsupportedLibcall(AE))
5775     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5776         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5777              Op == AtomicExpr::AO__opencl_atomic_load)
5778                 ? 0
5779                 : 1);
5780 
5781   if (ValType->isExtIntType()) {
5782     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5783     return ExprError();
5784   }
5785 
5786   return AE;
5787 }
5788 
5789 /// checkBuiltinArgument - Given a call to a builtin function, perform
5790 /// normal type-checking on the given argument, updating the call in
5791 /// place.  This is useful when a builtin function requires custom
5792 /// type-checking for some of its arguments but not necessarily all of
5793 /// them.
5794 ///
5795 /// Returns true on error.
5796 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5797   FunctionDecl *Fn = E->getDirectCallee();
5798   assert(Fn && "builtin call without direct callee!");
5799 
5800   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5801   InitializedEntity Entity =
5802     InitializedEntity::InitializeParameter(S.Context, Param);
5803 
5804   ExprResult Arg = E->getArg(0);
5805   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5806   if (Arg.isInvalid())
5807     return true;
5808 
5809   E->setArg(ArgIndex, Arg.get());
5810   return false;
5811 }
5812 
5813 /// We have a call to a function like __sync_fetch_and_add, which is an
5814 /// overloaded function based on the pointer type of its first argument.
5815 /// The main BuildCallExpr routines have already promoted the types of
5816 /// arguments because all of these calls are prototyped as void(...).
5817 ///
5818 /// This function goes through and does final semantic checking for these
5819 /// builtins, as well as generating any warnings.
5820 ExprResult
5821 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5822   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5823   Expr *Callee = TheCall->getCallee();
5824   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5825   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5826 
5827   // Ensure that we have at least one argument to do type inference from.
5828   if (TheCall->getNumArgs() < 1) {
5829     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5830         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5831     return ExprError();
5832   }
5833 
5834   // Inspect the first argument of the atomic builtin.  This should always be
5835   // a pointer type, whose element is an integral scalar or pointer type.
5836   // Because it is a pointer type, we don't have to worry about any implicit
5837   // casts here.
5838   // FIXME: We don't allow floating point scalars as input.
5839   Expr *FirstArg = TheCall->getArg(0);
5840   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5841   if (FirstArgResult.isInvalid())
5842     return ExprError();
5843   FirstArg = FirstArgResult.get();
5844   TheCall->setArg(0, FirstArg);
5845 
5846   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5847   if (!pointerType) {
5848     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5849         << FirstArg->getType() << FirstArg->getSourceRange();
5850     return ExprError();
5851   }
5852 
5853   QualType ValType = pointerType->getPointeeType();
5854   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5855       !ValType->isBlockPointerType()) {
5856     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5857         << FirstArg->getType() << FirstArg->getSourceRange();
5858     return ExprError();
5859   }
5860 
5861   if (ValType.isConstQualified()) {
5862     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5863         << FirstArg->getType() << FirstArg->getSourceRange();
5864     return ExprError();
5865   }
5866 
5867   switch (ValType.getObjCLifetime()) {
5868   case Qualifiers::OCL_None:
5869   case Qualifiers::OCL_ExplicitNone:
5870     // okay
5871     break;
5872 
5873   case Qualifiers::OCL_Weak:
5874   case Qualifiers::OCL_Strong:
5875   case Qualifiers::OCL_Autoreleasing:
5876     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5877         << ValType << FirstArg->getSourceRange();
5878     return ExprError();
5879   }
5880 
5881   // Strip any qualifiers off ValType.
5882   ValType = ValType.getUnqualifiedType();
5883 
5884   // The majority of builtins return a value, but a few have special return
5885   // types, so allow them to override appropriately below.
5886   QualType ResultType = ValType;
5887 
5888   // We need to figure out which concrete builtin this maps onto.  For example,
5889   // __sync_fetch_and_add with a 2 byte object turns into
5890   // __sync_fetch_and_add_2.
5891 #define BUILTIN_ROW(x) \
5892   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5893     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5894 
5895   static const unsigned BuiltinIndices[][5] = {
5896     BUILTIN_ROW(__sync_fetch_and_add),
5897     BUILTIN_ROW(__sync_fetch_and_sub),
5898     BUILTIN_ROW(__sync_fetch_and_or),
5899     BUILTIN_ROW(__sync_fetch_and_and),
5900     BUILTIN_ROW(__sync_fetch_and_xor),
5901     BUILTIN_ROW(__sync_fetch_and_nand),
5902 
5903     BUILTIN_ROW(__sync_add_and_fetch),
5904     BUILTIN_ROW(__sync_sub_and_fetch),
5905     BUILTIN_ROW(__sync_and_and_fetch),
5906     BUILTIN_ROW(__sync_or_and_fetch),
5907     BUILTIN_ROW(__sync_xor_and_fetch),
5908     BUILTIN_ROW(__sync_nand_and_fetch),
5909 
5910     BUILTIN_ROW(__sync_val_compare_and_swap),
5911     BUILTIN_ROW(__sync_bool_compare_and_swap),
5912     BUILTIN_ROW(__sync_lock_test_and_set),
5913     BUILTIN_ROW(__sync_lock_release),
5914     BUILTIN_ROW(__sync_swap)
5915   };
5916 #undef BUILTIN_ROW
5917 
5918   // Determine the index of the size.
5919   unsigned SizeIndex;
5920   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5921   case 1: SizeIndex = 0; break;
5922   case 2: SizeIndex = 1; break;
5923   case 4: SizeIndex = 2; break;
5924   case 8: SizeIndex = 3; break;
5925   case 16: SizeIndex = 4; break;
5926   default:
5927     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5928         << FirstArg->getType() << FirstArg->getSourceRange();
5929     return ExprError();
5930   }
5931 
5932   // Each of these builtins has one pointer argument, followed by some number of
5933   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5934   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5935   // as the number of fixed args.
5936   unsigned BuiltinID = FDecl->getBuiltinID();
5937   unsigned BuiltinIndex, NumFixed = 1;
5938   bool WarnAboutSemanticsChange = false;
5939   switch (BuiltinID) {
5940   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5941   case Builtin::BI__sync_fetch_and_add:
5942   case Builtin::BI__sync_fetch_and_add_1:
5943   case Builtin::BI__sync_fetch_and_add_2:
5944   case Builtin::BI__sync_fetch_and_add_4:
5945   case Builtin::BI__sync_fetch_and_add_8:
5946   case Builtin::BI__sync_fetch_and_add_16:
5947     BuiltinIndex = 0;
5948     break;
5949 
5950   case Builtin::BI__sync_fetch_and_sub:
5951   case Builtin::BI__sync_fetch_and_sub_1:
5952   case Builtin::BI__sync_fetch_and_sub_2:
5953   case Builtin::BI__sync_fetch_and_sub_4:
5954   case Builtin::BI__sync_fetch_and_sub_8:
5955   case Builtin::BI__sync_fetch_and_sub_16:
5956     BuiltinIndex = 1;
5957     break;
5958 
5959   case Builtin::BI__sync_fetch_and_or:
5960   case Builtin::BI__sync_fetch_and_or_1:
5961   case Builtin::BI__sync_fetch_and_or_2:
5962   case Builtin::BI__sync_fetch_and_or_4:
5963   case Builtin::BI__sync_fetch_and_or_8:
5964   case Builtin::BI__sync_fetch_and_or_16:
5965     BuiltinIndex = 2;
5966     break;
5967 
5968   case Builtin::BI__sync_fetch_and_and:
5969   case Builtin::BI__sync_fetch_and_and_1:
5970   case Builtin::BI__sync_fetch_and_and_2:
5971   case Builtin::BI__sync_fetch_and_and_4:
5972   case Builtin::BI__sync_fetch_and_and_8:
5973   case Builtin::BI__sync_fetch_and_and_16:
5974     BuiltinIndex = 3;
5975     break;
5976 
5977   case Builtin::BI__sync_fetch_and_xor:
5978   case Builtin::BI__sync_fetch_and_xor_1:
5979   case Builtin::BI__sync_fetch_and_xor_2:
5980   case Builtin::BI__sync_fetch_and_xor_4:
5981   case Builtin::BI__sync_fetch_and_xor_8:
5982   case Builtin::BI__sync_fetch_and_xor_16:
5983     BuiltinIndex = 4;
5984     break;
5985 
5986   case Builtin::BI__sync_fetch_and_nand:
5987   case Builtin::BI__sync_fetch_and_nand_1:
5988   case Builtin::BI__sync_fetch_and_nand_2:
5989   case Builtin::BI__sync_fetch_and_nand_4:
5990   case Builtin::BI__sync_fetch_and_nand_8:
5991   case Builtin::BI__sync_fetch_and_nand_16:
5992     BuiltinIndex = 5;
5993     WarnAboutSemanticsChange = true;
5994     break;
5995 
5996   case Builtin::BI__sync_add_and_fetch:
5997   case Builtin::BI__sync_add_and_fetch_1:
5998   case Builtin::BI__sync_add_and_fetch_2:
5999   case Builtin::BI__sync_add_and_fetch_4:
6000   case Builtin::BI__sync_add_and_fetch_8:
6001   case Builtin::BI__sync_add_and_fetch_16:
6002     BuiltinIndex = 6;
6003     break;
6004 
6005   case Builtin::BI__sync_sub_and_fetch:
6006   case Builtin::BI__sync_sub_and_fetch_1:
6007   case Builtin::BI__sync_sub_and_fetch_2:
6008   case Builtin::BI__sync_sub_and_fetch_4:
6009   case Builtin::BI__sync_sub_and_fetch_8:
6010   case Builtin::BI__sync_sub_and_fetch_16:
6011     BuiltinIndex = 7;
6012     break;
6013 
6014   case Builtin::BI__sync_and_and_fetch:
6015   case Builtin::BI__sync_and_and_fetch_1:
6016   case Builtin::BI__sync_and_and_fetch_2:
6017   case Builtin::BI__sync_and_and_fetch_4:
6018   case Builtin::BI__sync_and_and_fetch_8:
6019   case Builtin::BI__sync_and_and_fetch_16:
6020     BuiltinIndex = 8;
6021     break;
6022 
6023   case Builtin::BI__sync_or_and_fetch:
6024   case Builtin::BI__sync_or_and_fetch_1:
6025   case Builtin::BI__sync_or_and_fetch_2:
6026   case Builtin::BI__sync_or_and_fetch_4:
6027   case Builtin::BI__sync_or_and_fetch_8:
6028   case Builtin::BI__sync_or_and_fetch_16:
6029     BuiltinIndex = 9;
6030     break;
6031 
6032   case Builtin::BI__sync_xor_and_fetch:
6033   case Builtin::BI__sync_xor_and_fetch_1:
6034   case Builtin::BI__sync_xor_and_fetch_2:
6035   case Builtin::BI__sync_xor_and_fetch_4:
6036   case Builtin::BI__sync_xor_and_fetch_8:
6037   case Builtin::BI__sync_xor_and_fetch_16:
6038     BuiltinIndex = 10;
6039     break;
6040 
6041   case Builtin::BI__sync_nand_and_fetch:
6042   case Builtin::BI__sync_nand_and_fetch_1:
6043   case Builtin::BI__sync_nand_and_fetch_2:
6044   case Builtin::BI__sync_nand_and_fetch_4:
6045   case Builtin::BI__sync_nand_and_fetch_8:
6046   case Builtin::BI__sync_nand_and_fetch_16:
6047     BuiltinIndex = 11;
6048     WarnAboutSemanticsChange = true;
6049     break;
6050 
6051   case Builtin::BI__sync_val_compare_and_swap:
6052   case Builtin::BI__sync_val_compare_and_swap_1:
6053   case Builtin::BI__sync_val_compare_and_swap_2:
6054   case Builtin::BI__sync_val_compare_and_swap_4:
6055   case Builtin::BI__sync_val_compare_and_swap_8:
6056   case Builtin::BI__sync_val_compare_and_swap_16:
6057     BuiltinIndex = 12;
6058     NumFixed = 2;
6059     break;
6060 
6061   case Builtin::BI__sync_bool_compare_and_swap:
6062   case Builtin::BI__sync_bool_compare_and_swap_1:
6063   case Builtin::BI__sync_bool_compare_and_swap_2:
6064   case Builtin::BI__sync_bool_compare_and_swap_4:
6065   case Builtin::BI__sync_bool_compare_and_swap_8:
6066   case Builtin::BI__sync_bool_compare_and_swap_16:
6067     BuiltinIndex = 13;
6068     NumFixed = 2;
6069     ResultType = Context.BoolTy;
6070     break;
6071 
6072   case Builtin::BI__sync_lock_test_and_set:
6073   case Builtin::BI__sync_lock_test_and_set_1:
6074   case Builtin::BI__sync_lock_test_and_set_2:
6075   case Builtin::BI__sync_lock_test_and_set_4:
6076   case Builtin::BI__sync_lock_test_and_set_8:
6077   case Builtin::BI__sync_lock_test_and_set_16:
6078     BuiltinIndex = 14;
6079     break;
6080 
6081   case Builtin::BI__sync_lock_release:
6082   case Builtin::BI__sync_lock_release_1:
6083   case Builtin::BI__sync_lock_release_2:
6084   case Builtin::BI__sync_lock_release_4:
6085   case Builtin::BI__sync_lock_release_8:
6086   case Builtin::BI__sync_lock_release_16:
6087     BuiltinIndex = 15;
6088     NumFixed = 0;
6089     ResultType = Context.VoidTy;
6090     break;
6091 
6092   case Builtin::BI__sync_swap:
6093   case Builtin::BI__sync_swap_1:
6094   case Builtin::BI__sync_swap_2:
6095   case Builtin::BI__sync_swap_4:
6096   case Builtin::BI__sync_swap_8:
6097   case Builtin::BI__sync_swap_16:
6098     BuiltinIndex = 16;
6099     break;
6100   }
6101 
6102   // Now that we know how many fixed arguments we expect, first check that we
6103   // have at least that many.
6104   if (TheCall->getNumArgs() < 1+NumFixed) {
6105     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6106         << 0 << 1 + NumFixed << TheCall->getNumArgs()
6107         << Callee->getSourceRange();
6108     return ExprError();
6109   }
6110 
6111   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6112       << Callee->getSourceRange();
6113 
6114   if (WarnAboutSemanticsChange) {
6115     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6116         << Callee->getSourceRange();
6117   }
6118 
6119   // Get the decl for the concrete builtin from this, we can tell what the
6120   // concrete integer type we should convert to is.
6121   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6122   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6123   FunctionDecl *NewBuiltinDecl;
6124   if (NewBuiltinID == BuiltinID)
6125     NewBuiltinDecl = FDecl;
6126   else {
6127     // Perform builtin lookup to avoid redeclaring it.
6128     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6129     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6130     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6131     assert(Res.getFoundDecl());
6132     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6133     if (!NewBuiltinDecl)
6134       return ExprError();
6135   }
6136 
6137   // The first argument --- the pointer --- has a fixed type; we
6138   // deduce the types of the rest of the arguments accordingly.  Walk
6139   // the remaining arguments, converting them to the deduced value type.
6140   for (unsigned i = 0; i != NumFixed; ++i) {
6141     ExprResult Arg = TheCall->getArg(i+1);
6142 
6143     // GCC does an implicit conversion to the pointer or integer ValType.  This
6144     // can fail in some cases (1i -> int**), check for this error case now.
6145     // Initialize the argument.
6146     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6147                                                    ValType, /*consume*/ false);
6148     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6149     if (Arg.isInvalid())
6150       return ExprError();
6151 
6152     // Okay, we have something that *can* be converted to the right type.  Check
6153     // to see if there is a potentially weird extension going on here.  This can
6154     // happen when you do an atomic operation on something like an char* and
6155     // pass in 42.  The 42 gets converted to char.  This is even more strange
6156     // for things like 45.123 -> char, etc.
6157     // FIXME: Do this check.
6158     TheCall->setArg(i+1, Arg.get());
6159   }
6160 
6161   // Create a new DeclRefExpr to refer to the new decl.
6162   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6163       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6164       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6165       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6166 
6167   // Set the callee in the CallExpr.
6168   // FIXME: This loses syntactic information.
6169   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6170   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6171                                               CK_BuiltinFnToFnPtr);
6172   TheCall->setCallee(PromotedCall.get());
6173 
6174   // Change the result type of the call to match the original value type. This
6175   // is arbitrary, but the codegen for these builtins ins design to handle it
6176   // gracefully.
6177   TheCall->setType(ResultType);
6178 
6179   // Prohibit use of _ExtInt with atomic builtins.
6180   // The arguments would have already been converted to the first argument's
6181   // type, so only need to check the first argument.
6182   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
6183   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
6184     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6185     return ExprError();
6186   }
6187 
6188   return TheCallResult;
6189 }
6190 
6191 /// SemaBuiltinNontemporalOverloaded - We have a call to
6192 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6193 /// overloaded function based on the pointer type of its last argument.
6194 ///
6195 /// This function goes through and does final semantic checking for these
6196 /// builtins.
6197 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6198   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6199   DeclRefExpr *DRE =
6200       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6201   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6202   unsigned BuiltinID = FDecl->getBuiltinID();
6203   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6204           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6205          "Unexpected nontemporal load/store builtin!");
6206   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6207   unsigned numArgs = isStore ? 2 : 1;
6208 
6209   // Ensure that we have the proper number of arguments.
6210   if (checkArgCount(*this, TheCall, numArgs))
6211     return ExprError();
6212 
6213   // Inspect the last argument of the nontemporal builtin.  This should always
6214   // be a pointer type, from which we imply the type of the memory access.
6215   // Because it is a pointer type, we don't have to worry about any implicit
6216   // casts here.
6217   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6218   ExprResult PointerArgResult =
6219       DefaultFunctionArrayLvalueConversion(PointerArg);
6220 
6221   if (PointerArgResult.isInvalid())
6222     return ExprError();
6223   PointerArg = PointerArgResult.get();
6224   TheCall->setArg(numArgs - 1, PointerArg);
6225 
6226   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6227   if (!pointerType) {
6228     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6229         << PointerArg->getType() << PointerArg->getSourceRange();
6230     return ExprError();
6231   }
6232 
6233   QualType ValType = pointerType->getPointeeType();
6234 
6235   // Strip any qualifiers off ValType.
6236   ValType = ValType.getUnqualifiedType();
6237   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6238       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6239       !ValType->isVectorType()) {
6240     Diag(DRE->getBeginLoc(),
6241          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6242         << PointerArg->getType() << PointerArg->getSourceRange();
6243     return ExprError();
6244   }
6245 
6246   if (!isStore) {
6247     TheCall->setType(ValType);
6248     return TheCallResult;
6249   }
6250 
6251   ExprResult ValArg = TheCall->getArg(0);
6252   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6253       Context, ValType, /*consume*/ false);
6254   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6255   if (ValArg.isInvalid())
6256     return ExprError();
6257 
6258   TheCall->setArg(0, ValArg.get());
6259   TheCall->setType(Context.VoidTy);
6260   return TheCallResult;
6261 }
6262 
6263 /// CheckObjCString - Checks that the argument to the builtin
6264 /// CFString constructor is correct
6265 /// Note: It might also make sense to do the UTF-16 conversion here (would
6266 /// simplify the backend).
6267 bool Sema::CheckObjCString(Expr *Arg) {
6268   Arg = Arg->IgnoreParenCasts();
6269   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6270 
6271   if (!Literal || !Literal->isAscii()) {
6272     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6273         << Arg->getSourceRange();
6274     return true;
6275   }
6276 
6277   if (Literal->containsNonAsciiOrNull()) {
6278     StringRef String = Literal->getString();
6279     unsigned NumBytes = String.size();
6280     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6281     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6282     llvm::UTF16 *ToPtr = &ToBuf[0];
6283 
6284     llvm::ConversionResult Result =
6285         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6286                                  ToPtr + NumBytes, llvm::strictConversion);
6287     // Check for conversion failure.
6288     if (Result != llvm::conversionOK)
6289       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6290           << Arg->getSourceRange();
6291   }
6292   return false;
6293 }
6294 
6295 /// CheckObjCString - Checks that the format string argument to the os_log()
6296 /// and os_trace() functions is correct, and converts it to const char *.
6297 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6298   Arg = Arg->IgnoreParenCasts();
6299   auto *Literal = dyn_cast<StringLiteral>(Arg);
6300   if (!Literal) {
6301     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6302       Literal = ObjcLiteral->getString();
6303     }
6304   }
6305 
6306   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6307     return ExprError(
6308         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6309         << Arg->getSourceRange());
6310   }
6311 
6312   ExprResult Result(Literal);
6313   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6314   InitializedEntity Entity =
6315       InitializedEntity::InitializeParameter(Context, ResultTy, false);
6316   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6317   return Result;
6318 }
6319 
6320 /// Check that the user is calling the appropriate va_start builtin for the
6321 /// target and calling convention.
6322 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6323   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6324   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6325   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6326                     TT.getArch() == llvm::Triple::aarch64_32);
6327   bool IsWindows = TT.isOSWindows();
6328   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6329   if (IsX64 || IsAArch64) {
6330     CallingConv CC = CC_C;
6331     if (const FunctionDecl *FD = S.getCurFunctionDecl())
6332       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6333     if (IsMSVAStart) {
6334       // Don't allow this in System V ABI functions.
6335       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6336         return S.Diag(Fn->getBeginLoc(),
6337                       diag::err_ms_va_start_used_in_sysv_function);
6338     } else {
6339       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6340       // On x64 Windows, don't allow this in System V ABI functions.
6341       // (Yes, that means there's no corresponding way to support variadic
6342       // System V ABI functions on Windows.)
6343       if ((IsWindows && CC == CC_X86_64SysV) ||
6344           (!IsWindows && CC == CC_Win64))
6345         return S.Diag(Fn->getBeginLoc(),
6346                       diag::err_va_start_used_in_wrong_abi_function)
6347                << !IsWindows;
6348     }
6349     return false;
6350   }
6351 
6352   if (IsMSVAStart)
6353     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6354   return false;
6355 }
6356 
6357 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6358                                              ParmVarDecl **LastParam = nullptr) {
6359   // Determine whether the current function, block, or obj-c method is variadic
6360   // and get its parameter list.
6361   bool IsVariadic = false;
6362   ArrayRef<ParmVarDecl *> Params;
6363   DeclContext *Caller = S.CurContext;
6364   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6365     IsVariadic = Block->isVariadic();
6366     Params = Block->parameters();
6367   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6368     IsVariadic = FD->isVariadic();
6369     Params = FD->parameters();
6370   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6371     IsVariadic = MD->isVariadic();
6372     // FIXME: This isn't correct for methods (results in bogus warning).
6373     Params = MD->parameters();
6374   } else if (isa<CapturedDecl>(Caller)) {
6375     // We don't support va_start in a CapturedDecl.
6376     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6377     return true;
6378   } else {
6379     // This must be some other declcontext that parses exprs.
6380     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6381     return true;
6382   }
6383 
6384   if (!IsVariadic) {
6385     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6386     return true;
6387   }
6388 
6389   if (LastParam)
6390     *LastParam = Params.empty() ? nullptr : Params.back();
6391 
6392   return false;
6393 }
6394 
6395 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6396 /// for validity.  Emit an error and return true on failure; return false
6397 /// on success.
6398 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6399   Expr *Fn = TheCall->getCallee();
6400 
6401   if (checkVAStartABI(*this, BuiltinID, Fn))
6402     return true;
6403 
6404   if (checkArgCount(*this, TheCall, 2))
6405     return true;
6406 
6407   // Type-check the first argument normally.
6408   if (checkBuiltinArgument(*this, TheCall, 0))
6409     return true;
6410 
6411   // Check that the current function is variadic, and get its last parameter.
6412   ParmVarDecl *LastParam;
6413   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6414     return true;
6415 
6416   // Verify that the second argument to the builtin is the last argument of the
6417   // current function or method.
6418   bool SecondArgIsLastNamedArgument = false;
6419   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6420 
6421   // These are valid if SecondArgIsLastNamedArgument is false after the next
6422   // block.
6423   QualType Type;
6424   SourceLocation ParamLoc;
6425   bool IsCRegister = false;
6426 
6427   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6428     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6429       SecondArgIsLastNamedArgument = PV == LastParam;
6430 
6431       Type = PV->getType();
6432       ParamLoc = PV->getLocation();
6433       IsCRegister =
6434           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6435     }
6436   }
6437 
6438   if (!SecondArgIsLastNamedArgument)
6439     Diag(TheCall->getArg(1)->getBeginLoc(),
6440          diag::warn_second_arg_of_va_start_not_last_named_param);
6441   else if (IsCRegister || Type->isReferenceType() ||
6442            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6443              // Promotable integers are UB, but enumerations need a bit of
6444              // extra checking to see what their promotable type actually is.
6445              if (!Type->isPromotableIntegerType())
6446                return false;
6447              if (!Type->isEnumeralType())
6448                return true;
6449              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6450              return !(ED &&
6451                       Context.typesAreCompatible(ED->getPromotionType(), Type));
6452            }()) {
6453     unsigned Reason = 0;
6454     if (Type->isReferenceType())  Reason = 1;
6455     else if (IsCRegister)         Reason = 2;
6456     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6457     Diag(ParamLoc, diag::note_parameter_type) << Type;
6458   }
6459 
6460   TheCall->setType(Context.VoidTy);
6461   return false;
6462 }
6463 
6464 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6465   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
6466     const LangOptions &LO = getLangOpts();
6467 
6468     if (LO.CPlusPlus)
6469       return Arg->getType()
6470                  .getCanonicalType()
6471                  .getTypePtr()
6472                  ->getPointeeType()
6473                  .withoutLocalFastQualifiers() == Context.CharTy;
6474 
6475     // In C, allow aliasing through `char *`, this is required for AArch64 at
6476     // least.
6477     return true;
6478   };
6479 
6480   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6481   //                 const char *named_addr);
6482 
6483   Expr *Func = Call->getCallee();
6484 
6485   if (Call->getNumArgs() < 3)
6486     return Diag(Call->getEndLoc(),
6487                 diag::err_typecheck_call_too_few_args_at_least)
6488            << 0 /*function call*/ << 3 << Call->getNumArgs();
6489 
6490   // Type-check the first argument normally.
6491   if (checkBuiltinArgument(*this, Call, 0))
6492     return true;
6493 
6494   // Check that the current function is variadic.
6495   if (checkVAStartIsInVariadicFunction(*this, Func))
6496     return true;
6497 
6498   // __va_start on Windows does not validate the parameter qualifiers
6499 
6500   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6501   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6502 
6503   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6504   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6505 
6506   const QualType &ConstCharPtrTy =
6507       Context.getPointerType(Context.CharTy.withConst());
6508   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
6509     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6510         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6511         << 0                                      /* qualifier difference */
6512         << 3                                      /* parameter mismatch */
6513         << 2 << Arg1->getType() << ConstCharPtrTy;
6514 
6515   const QualType SizeTy = Context.getSizeType();
6516   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6517     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6518         << Arg2->getType() << SizeTy << 1 /* different class */
6519         << 0                              /* qualifier difference */
6520         << 3                              /* parameter mismatch */
6521         << 3 << Arg2->getType() << SizeTy;
6522 
6523   return false;
6524 }
6525 
6526 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6527 /// friends.  This is declared to take (...), so we have to check everything.
6528 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6529   if (checkArgCount(*this, TheCall, 2))
6530     return true;
6531 
6532   ExprResult OrigArg0 = TheCall->getArg(0);
6533   ExprResult OrigArg1 = TheCall->getArg(1);
6534 
6535   // Do standard promotions between the two arguments, returning their common
6536   // type.
6537   QualType Res = UsualArithmeticConversions(
6538       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6539   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6540     return true;
6541 
6542   // Make sure any conversions are pushed back into the call; this is
6543   // type safe since unordered compare builtins are declared as "_Bool
6544   // foo(...)".
6545   TheCall->setArg(0, OrigArg0.get());
6546   TheCall->setArg(1, OrigArg1.get());
6547 
6548   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6549     return false;
6550 
6551   // If the common type isn't a real floating type, then the arguments were
6552   // invalid for this operation.
6553   if (Res.isNull() || !Res->isRealFloatingType())
6554     return Diag(OrigArg0.get()->getBeginLoc(),
6555                 diag::err_typecheck_call_invalid_ordered_compare)
6556            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6557            << SourceRange(OrigArg0.get()->getBeginLoc(),
6558                           OrigArg1.get()->getEndLoc());
6559 
6560   return false;
6561 }
6562 
6563 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6564 /// __builtin_isnan and friends.  This is declared to take (...), so we have
6565 /// to check everything. We expect the last argument to be a floating point
6566 /// value.
6567 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6568   if (checkArgCount(*this, TheCall, NumArgs))
6569     return true;
6570 
6571   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6572   // on all preceding parameters just being int.  Try all of those.
6573   for (unsigned i = 0; i < NumArgs - 1; ++i) {
6574     Expr *Arg = TheCall->getArg(i);
6575 
6576     if (Arg->isTypeDependent())
6577       return false;
6578 
6579     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6580 
6581     if (Res.isInvalid())
6582       return true;
6583     TheCall->setArg(i, Res.get());
6584   }
6585 
6586   Expr *OrigArg = TheCall->getArg(NumArgs-1);
6587 
6588   if (OrigArg->isTypeDependent())
6589     return false;
6590 
6591   // Usual Unary Conversions will convert half to float, which we want for
6592   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6593   // type how it is, but do normal L->Rvalue conversions.
6594   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6595     OrigArg = UsualUnaryConversions(OrigArg).get();
6596   else
6597     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6598   TheCall->setArg(NumArgs - 1, OrigArg);
6599 
6600   // This operation requires a non-_Complex floating-point number.
6601   if (!OrigArg->getType()->isRealFloatingType())
6602     return Diag(OrigArg->getBeginLoc(),
6603                 diag::err_typecheck_call_invalid_unary_fp)
6604            << OrigArg->getType() << OrigArg->getSourceRange();
6605 
6606   return false;
6607 }
6608 
6609 /// Perform semantic analysis for a call to __builtin_complex.
6610 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6611   if (checkArgCount(*this, TheCall, 2))
6612     return true;
6613 
6614   bool Dependent = false;
6615   for (unsigned I = 0; I != 2; ++I) {
6616     Expr *Arg = TheCall->getArg(I);
6617     QualType T = Arg->getType();
6618     if (T->isDependentType()) {
6619       Dependent = true;
6620       continue;
6621     }
6622 
6623     // Despite supporting _Complex int, GCC requires a real floating point type
6624     // for the operands of __builtin_complex.
6625     if (!T->isRealFloatingType()) {
6626       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6627              << Arg->getType() << Arg->getSourceRange();
6628     }
6629 
6630     ExprResult Converted = DefaultLvalueConversion(Arg);
6631     if (Converted.isInvalid())
6632       return true;
6633     TheCall->setArg(I, Converted.get());
6634   }
6635 
6636   if (Dependent) {
6637     TheCall->setType(Context.DependentTy);
6638     return false;
6639   }
6640 
6641   Expr *Real = TheCall->getArg(0);
6642   Expr *Imag = TheCall->getArg(1);
6643   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6644     return Diag(Real->getBeginLoc(),
6645                 diag::err_typecheck_call_different_arg_types)
6646            << Real->getType() << Imag->getType()
6647            << Real->getSourceRange() << Imag->getSourceRange();
6648   }
6649 
6650   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6651   // don't allow this builtin to form those types either.
6652   // FIXME: Should we allow these types?
6653   if (Real->getType()->isFloat16Type())
6654     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6655            << "_Float16";
6656   if (Real->getType()->isHalfType())
6657     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6658            << "half";
6659 
6660   TheCall->setType(Context.getComplexType(Real->getType()));
6661   return false;
6662 }
6663 
6664 // Customized Sema Checking for VSX builtins that have the following signature:
6665 // vector [...] builtinName(vector [...], vector [...], const int);
6666 // Which takes the same type of vectors (any legal vector type) for the first
6667 // two arguments and takes compile time constant for the third argument.
6668 // Example builtins are :
6669 // vector double vec_xxpermdi(vector double, vector double, int);
6670 // vector short vec_xxsldwi(vector short, vector short, int);
6671 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6672   unsigned ExpectedNumArgs = 3;
6673   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6674     return true;
6675 
6676   // Check the third argument is a compile time constant
6677   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6678     return Diag(TheCall->getBeginLoc(),
6679                 diag::err_vsx_builtin_nonconstant_argument)
6680            << 3 /* argument index */ << TheCall->getDirectCallee()
6681            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6682                           TheCall->getArg(2)->getEndLoc());
6683 
6684   QualType Arg1Ty = TheCall->getArg(0)->getType();
6685   QualType Arg2Ty = TheCall->getArg(1)->getType();
6686 
6687   // Check the type of argument 1 and argument 2 are vectors.
6688   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6689   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6690       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6691     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6692            << TheCall->getDirectCallee()
6693            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6694                           TheCall->getArg(1)->getEndLoc());
6695   }
6696 
6697   // Check the first two arguments are the same type.
6698   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6699     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6700            << TheCall->getDirectCallee()
6701            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6702                           TheCall->getArg(1)->getEndLoc());
6703   }
6704 
6705   // When default clang type checking is turned off and the customized type
6706   // checking is used, the returning type of the function must be explicitly
6707   // set. Otherwise it is _Bool by default.
6708   TheCall->setType(Arg1Ty);
6709 
6710   return false;
6711 }
6712 
6713 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6714 // This is declared to take (...), so we have to check everything.
6715 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6716   if (TheCall->getNumArgs() < 2)
6717     return ExprError(Diag(TheCall->getEndLoc(),
6718                           diag::err_typecheck_call_too_few_args_at_least)
6719                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6720                      << TheCall->getSourceRange());
6721 
6722   // Determine which of the following types of shufflevector we're checking:
6723   // 1) unary, vector mask: (lhs, mask)
6724   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6725   QualType resType = TheCall->getArg(0)->getType();
6726   unsigned numElements = 0;
6727 
6728   if (!TheCall->getArg(0)->isTypeDependent() &&
6729       !TheCall->getArg(1)->isTypeDependent()) {
6730     QualType LHSType = TheCall->getArg(0)->getType();
6731     QualType RHSType = TheCall->getArg(1)->getType();
6732 
6733     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6734       return ExprError(
6735           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6736           << TheCall->getDirectCallee()
6737           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6738                          TheCall->getArg(1)->getEndLoc()));
6739 
6740     numElements = LHSType->castAs<VectorType>()->getNumElements();
6741     unsigned numResElements = TheCall->getNumArgs() - 2;
6742 
6743     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6744     // with mask.  If so, verify that RHS is an integer vector type with the
6745     // same number of elts as lhs.
6746     if (TheCall->getNumArgs() == 2) {
6747       if (!RHSType->hasIntegerRepresentation() ||
6748           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6749         return ExprError(Diag(TheCall->getBeginLoc(),
6750                               diag::err_vec_builtin_incompatible_vector)
6751                          << TheCall->getDirectCallee()
6752                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6753                                         TheCall->getArg(1)->getEndLoc()));
6754     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6755       return ExprError(Diag(TheCall->getBeginLoc(),
6756                             diag::err_vec_builtin_incompatible_vector)
6757                        << TheCall->getDirectCallee()
6758                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6759                                       TheCall->getArg(1)->getEndLoc()));
6760     } else if (numElements != numResElements) {
6761       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6762       resType = Context.getVectorType(eltType, numResElements,
6763                                       VectorType::GenericVector);
6764     }
6765   }
6766 
6767   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6768     if (TheCall->getArg(i)->isTypeDependent() ||
6769         TheCall->getArg(i)->isValueDependent())
6770       continue;
6771 
6772     Optional<llvm::APSInt> Result;
6773     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6774       return ExprError(Diag(TheCall->getBeginLoc(),
6775                             diag::err_shufflevector_nonconstant_argument)
6776                        << TheCall->getArg(i)->getSourceRange());
6777 
6778     // Allow -1 which will be translated to undef in the IR.
6779     if (Result->isSigned() && Result->isAllOnesValue())
6780       continue;
6781 
6782     if (Result->getActiveBits() > 64 ||
6783         Result->getZExtValue() >= numElements * 2)
6784       return ExprError(Diag(TheCall->getBeginLoc(),
6785                             diag::err_shufflevector_argument_too_large)
6786                        << TheCall->getArg(i)->getSourceRange());
6787   }
6788 
6789   SmallVector<Expr*, 32> exprs;
6790 
6791   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6792     exprs.push_back(TheCall->getArg(i));
6793     TheCall->setArg(i, nullptr);
6794   }
6795 
6796   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6797                                          TheCall->getCallee()->getBeginLoc(),
6798                                          TheCall->getRParenLoc());
6799 }
6800 
6801 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6802 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6803                                        SourceLocation BuiltinLoc,
6804                                        SourceLocation RParenLoc) {
6805   ExprValueKind VK = VK_PRValue;
6806   ExprObjectKind OK = OK_Ordinary;
6807   QualType DstTy = TInfo->getType();
6808   QualType SrcTy = E->getType();
6809 
6810   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6811     return ExprError(Diag(BuiltinLoc,
6812                           diag::err_convertvector_non_vector)
6813                      << E->getSourceRange());
6814   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6815     return ExprError(Diag(BuiltinLoc,
6816                           diag::err_convertvector_non_vector_type));
6817 
6818   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6819     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6820     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6821     if (SrcElts != DstElts)
6822       return ExprError(Diag(BuiltinLoc,
6823                             diag::err_convertvector_incompatible_vector)
6824                        << E->getSourceRange());
6825   }
6826 
6827   return new (Context)
6828       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6829 }
6830 
6831 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6832 // This is declared to take (const void*, ...) and can take two
6833 // optional constant int args.
6834 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6835   unsigned NumArgs = TheCall->getNumArgs();
6836 
6837   if (NumArgs > 3)
6838     return Diag(TheCall->getEndLoc(),
6839                 diag::err_typecheck_call_too_many_args_at_most)
6840            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6841 
6842   // Argument 0 is checked for us and the remaining arguments must be
6843   // constant integers.
6844   for (unsigned i = 1; i != NumArgs; ++i)
6845     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6846       return true;
6847 
6848   return false;
6849 }
6850 
6851 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
6852 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
6853   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
6854     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
6855            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6856   if (checkArgCount(*this, TheCall, 1))
6857     return true;
6858   Expr *Arg = TheCall->getArg(0);
6859   if (Arg->isInstantiationDependent())
6860     return false;
6861 
6862   QualType ArgTy = Arg->getType();
6863   if (!ArgTy->hasFloatingRepresentation())
6864     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
6865            << ArgTy;
6866   if (Arg->isLValue()) {
6867     ExprResult FirstArg = DefaultLvalueConversion(Arg);
6868     TheCall->setArg(0, FirstArg.get());
6869   }
6870   TheCall->setType(TheCall->getArg(0)->getType());
6871   return false;
6872 }
6873 
6874 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6875 // __assume does not evaluate its arguments, and should warn if its argument
6876 // has side effects.
6877 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6878   Expr *Arg = TheCall->getArg(0);
6879   if (Arg->isInstantiationDependent()) return false;
6880 
6881   if (Arg->HasSideEffects(Context))
6882     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6883         << Arg->getSourceRange()
6884         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6885 
6886   return false;
6887 }
6888 
6889 /// Handle __builtin_alloca_with_align. This is declared
6890 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6891 /// than 8.
6892 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6893   // The alignment must be a constant integer.
6894   Expr *Arg = TheCall->getArg(1);
6895 
6896   // We can't check the value of a dependent argument.
6897   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6898     if (const auto *UE =
6899             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6900       if (UE->getKind() == UETT_AlignOf ||
6901           UE->getKind() == UETT_PreferredAlignOf)
6902         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6903             << Arg->getSourceRange();
6904 
6905     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6906 
6907     if (!Result.isPowerOf2())
6908       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6909              << Arg->getSourceRange();
6910 
6911     if (Result < Context.getCharWidth())
6912       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6913              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6914 
6915     if (Result > std::numeric_limits<int32_t>::max())
6916       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6917              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6918   }
6919 
6920   return false;
6921 }
6922 
6923 /// Handle __builtin_assume_aligned. This is declared
6924 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6925 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6926   unsigned NumArgs = TheCall->getNumArgs();
6927 
6928   if (NumArgs > 3)
6929     return Diag(TheCall->getEndLoc(),
6930                 diag::err_typecheck_call_too_many_args_at_most)
6931            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6932 
6933   // The alignment must be a constant integer.
6934   Expr *Arg = TheCall->getArg(1);
6935 
6936   // We can't check the value of a dependent argument.
6937   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6938     llvm::APSInt Result;
6939     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6940       return true;
6941 
6942     if (!Result.isPowerOf2())
6943       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6944              << Arg->getSourceRange();
6945 
6946     if (Result > Sema::MaximumAlignment)
6947       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6948           << Arg->getSourceRange() << Sema::MaximumAlignment;
6949   }
6950 
6951   if (NumArgs > 2) {
6952     ExprResult Arg(TheCall->getArg(2));
6953     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6954       Context.getSizeType(), false);
6955     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6956     if (Arg.isInvalid()) return true;
6957     TheCall->setArg(2, Arg.get());
6958   }
6959 
6960   return false;
6961 }
6962 
6963 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6964   unsigned BuiltinID =
6965       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6966   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6967 
6968   unsigned NumArgs = TheCall->getNumArgs();
6969   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6970   if (NumArgs < NumRequiredArgs) {
6971     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6972            << 0 /* function call */ << NumRequiredArgs << NumArgs
6973            << TheCall->getSourceRange();
6974   }
6975   if (NumArgs >= NumRequiredArgs + 0x100) {
6976     return Diag(TheCall->getEndLoc(),
6977                 diag::err_typecheck_call_too_many_args_at_most)
6978            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6979            << TheCall->getSourceRange();
6980   }
6981   unsigned i = 0;
6982 
6983   // For formatting call, check buffer arg.
6984   if (!IsSizeCall) {
6985     ExprResult Arg(TheCall->getArg(i));
6986     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6987         Context, Context.VoidPtrTy, false);
6988     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6989     if (Arg.isInvalid())
6990       return true;
6991     TheCall->setArg(i, Arg.get());
6992     i++;
6993   }
6994 
6995   // Check string literal arg.
6996   unsigned FormatIdx = i;
6997   {
6998     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6999     if (Arg.isInvalid())
7000       return true;
7001     TheCall->setArg(i, Arg.get());
7002     i++;
7003   }
7004 
7005   // Make sure variadic args are scalar.
7006   unsigned FirstDataArg = i;
7007   while (i < NumArgs) {
7008     ExprResult Arg = DefaultVariadicArgumentPromotion(
7009         TheCall->getArg(i), VariadicFunction, nullptr);
7010     if (Arg.isInvalid())
7011       return true;
7012     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7013     if (ArgSize.getQuantity() >= 0x100) {
7014       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7015              << i << (int)ArgSize.getQuantity() << 0xff
7016              << TheCall->getSourceRange();
7017     }
7018     TheCall->setArg(i, Arg.get());
7019     i++;
7020   }
7021 
7022   // Check formatting specifiers. NOTE: We're only doing this for the non-size
7023   // call to avoid duplicate diagnostics.
7024   if (!IsSizeCall) {
7025     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7026     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7027     bool Success = CheckFormatArguments(
7028         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
7029         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7030         CheckedVarArgs);
7031     if (!Success)
7032       return true;
7033   }
7034 
7035   if (IsSizeCall) {
7036     TheCall->setType(Context.getSizeType());
7037   } else {
7038     TheCall->setType(Context.VoidPtrTy);
7039   }
7040   return false;
7041 }
7042 
7043 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7044 /// TheCall is a constant expression.
7045 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7046                                   llvm::APSInt &Result) {
7047   Expr *Arg = TheCall->getArg(ArgNum);
7048   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7049   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7050 
7051   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7052 
7053   Optional<llvm::APSInt> R;
7054   if (!(R = Arg->getIntegerConstantExpr(Context)))
7055     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7056            << FDecl->getDeclName() << Arg->getSourceRange();
7057   Result = *R;
7058   return false;
7059 }
7060 
7061 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7062 /// TheCall is a constant expression in the range [Low, High].
7063 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7064                                        int Low, int High, bool RangeIsError) {
7065   if (isConstantEvaluated())
7066     return false;
7067   llvm::APSInt Result;
7068 
7069   // We can't check the value of a dependent argument.
7070   Expr *Arg = TheCall->getArg(ArgNum);
7071   if (Arg->isTypeDependent() || Arg->isValueDependent())
7072     return false;
7073 
7074   // Check constant-ness first.
7075   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7076     return true;
7077 
7078   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7079     if (RangeIsError)
7080       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7081              << toString(Result, 10) << Low << High << Arg->getSourceRange();
7082     else
7083       // Defer the warning until we know if the code will be emitted so that
7084       // dead code can ignore this.
7085       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7086                           PDiag(diag::warn_argument_invalid_range)
7087                               << toString(Result, 10) << Low << High
7088                               << Arg->getSourceRange());
7089   }
7090 
7091   return false;
7092 }
7093 
7094 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7095 /// TheCall is a constant expression is a multiple of Num..
7096 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7097                                           unsigned Num) {
7098   llvm::APSInt Result;
7099 
7100   // We can't check the value of a dependent argument.
7101   Expr *Arg = TheCall->getArg(ArgNum);
7102   if (Arg->isTypeDependent() || Arg->isValueDependent())
7103     return false;
7104 
7105   // Check constant-ness first.
7106   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7107     return true;
7108 
7109   if (Result.getSExtValue() % Num != 0)
7110     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7111            << Num << Arg->getSourceRange();
7112 
7113   return false;
7114 }
7115 
7116 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7117 /// constant expression representing a power of 2.
7118 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7119   llvm::APSInt Result;
7120 
7121   // We can't check the value of a dependent argument.
7122   Expr *Arg = TheCall->getArg(ArgNum);
7123   if (Arg->isTypeDependent() || Arg->isValueDependent())
7124     return false;
7125 
7126   // Check constant-ness first.
7127   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7128     return true;
7129 
7130   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7131   // and only if x is a power of 2.
7132   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7133     return false;
7134 
7135   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7136          << Arg->getSourceRange();
7137 }
7138 
7139 static bool IsShiftedByte(llvm::APSInt Value) {
7140   if (Value.isNegative())
7141     return false;
7142 
7143   // Check if it's a shifted byte, by shifting it down
7144   while (true) {
7145     // If the value fits in the bottom byte, the check passes.
7146     if (Value < 0x100)
7147       return true;
7148 
7149     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7150     // fails.
7151     if ((Value & 0xFF) != 0)
7152       return false;
7153 
7154     // If the bottom 8 bits are all 0, but something above that is nonzero,
7155     // then shifting the value right by 8 bits won't affect whether it's a
7156     // shifted byte or not. So do that, and go round again.
7157     Value >>= 8;
7158   }
7159 }
7160 
7161 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7162 /// a constant expression representing an arbitrary byte value shifted left by
7163 /// a multiple of 8 bits.
7164 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7165                                              unsigned ArgBits) {
7166   llvm::APSInt Result;
7167 
7168   // We can't check the value of a dependent argument.
7169   Expr *Arg = TheCall->getArg(ArgNum);
7170   if (Arg->isTypeDependent() || Arg->isValueDependent())
7171     return false;
7172 
7173   // Check constant-ness first.
7174   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7175     return true;
7176 
7177   // Truncate to the given size.
7178   Result = Result.getLoBits(ArgBits);
7179   Result.setIsUnsigned(true);
7180 
7181   if (IsShiftedByte(Result))
7182     return false;
7183 
7184   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7185          << Arg->getSourceRange();
7186 }
7187 
7188 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7189 /// TheCall is a constant expression representing either a shifted byte value,
7190 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7191 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7192 /// Arm MVE intrinsics.
7193 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7194                                                    int ArgNum,
7195                                                    unsigned ArgBits) {
7196   llvm::APSInt Result;
7197 
7198   // We can't check the value of a dependent argument.
7199   Expr *Arg = TheCall->getArg(ArgNum);
7200   if (Arg->isTypeDependent() || Arg->isValueDependent())
7201     return false;
7202 
7203   // Check constant-ness first.
7204   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7205     return true;
7206 
7207   // Truncate to the given size.
7208   Result = Result.getLoBits(ArgBits);
7209   Result.setIsUnsigned(true);
7210 
7211   // Check to see if it's in either of the required forms.
7212   if (IsShiftedByte(Result) ||
7213       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7214     return false;
7215 
7216   return Diag(TheCall->getBeginLoc(),
7217               diag::err_argument_not_shifted_byte_or_xxff)
7218          << Arg->getSourceRange();
7219 }
7220 
7221 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7222 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7223   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7224     if (checkArgCount(*this, TheCall, 2))
7225       return true;
7226     Expr *Arg0 = TheCall->getArg(0);
7227     Expr *Arg1 = TheCall->getArg(1);
7228 
7229     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7230     if (FirstArg.isInvalid())
7231       return true;
7232     QualType FirstArgType = FirstArg.get()->getType();
7233     if (!FirstArgType->isAnyPointerType())
7234       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7235                << "first" << FirstArgType << Arg0->getSourceRange();
7236     TheCall->setArg(0, FirstArg.get());
7237 
7238     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7239     if (SecArg.isInvalid())
7240       return true;
7241     QualType SecArgType = SecArg.get()->getType();
7242     if (!SecArgType->isIntegerType())
7243       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7244                << "second" << SecArgType << Arg1->getSourceRange();
7245 
7246     // Derive the return type from the pointer argument.
7247     TheCall->setType(FirstArgType);
7248     return false;
7249   }
7250 
7251   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7252     if (checkArgCount(*this, TheCall, 2))
7253       return true;
7254 
7255     Expr *Arg0 = TheCall->getArg(0);
7256     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7257     if (FirstArg.isInvalid())
7258       return true;
7259     QualType FirstArgType = FirstArg.get()->getType();
7260     if (!FirstArgType->isAnyPointerType())
7261       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7262                << "first" << FirstArgType << Arg0->getSourceRange();
7263     TheCall->setArg(0, FirstArg.get());
7264 
7265     // Derive the return type from the pointer argument.
7266     TheCall->setType(FirstArgType);
7267 
7268     // Second arg must be an constant in range [0,15]
7269     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7270   }
7271 
7272   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7273     if (checkArgCount(*this, TheCall, 2))
7274       return true;
7275     Expr *Arg0 = TheCall->getArg(0);
7276     Expr *Arg1 = TheCall->getArg(1);
7277 
7278     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7279     if (FirstArg.isInvalid())
7280       return true;
7281     QualType FirstArgType = FirstArg.get()->getType();
7282     if (!FirstArgType->isAnyPointerType())
7283       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7284                << "first" << FirstArgType << Arg0->getSourceRange();
7285 
7286     QualType SecArgType = Arg1->getType();
7287     if (!SecArgType->isIntegerType())
7288       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7289                << "second" << SecArgType << Arg1->getSourceRange();
7290     TheCall->setType(Context.IntTy);
7291     return false;
7292   }
7293 
7294   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7295       BuiltinID == AArch64::BI__builtin_arm_stg) {
7296     if (checkArgCount(*this, TheCall, 1))
7297       return true;
7298     Expr *Arg0 = TheCall->getArg(0);
7299     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7300     if (FirstArg.isInvalid())
7301       return true;
7302 
7303     QualType FirstArgType = FirstArg.get()->getType();
7304     if (!FirstArgType->isAnyPointerType())
7305       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7306                << "first" << FirstArgType << Arg0->getSourceRange();
7307     TheCall->setArg(0, FirstArg.get());
7308 
7309     // Derive the return type from the pointer argument.
7310     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7311       TheCall->setType(FirstArgType);
7312     return false;
7313   }
7314 
7315   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7316     Expr *ArgA = TheCall->getArg(0);
7317     Expr *ArgB = TheCall->getArg(1);
7318 
7319     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7320     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7321 
7322     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7323       return true;
7324 
7325     QualType ArgTypeA = ArgExprA.get()->getType();
7326     QualType ArgTypeB = ArgExprB.get()->getType();
7327 
7328     auto isNull = [&] (Expr *E) -> bool {
7329       return E->isNullPointerConstant(
7330                         Context, Expr::NPC_ValueDependentIsNotNull); };
7331 
7332     // argument should be either a pointer or null
7333     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7334       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7335         << "first" << ArgTypeA << ArgA->getSourceRange();
7336 
7337     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7338       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7339         << "second" << ArgTypeB << ArgB->getSourceRange();
7340 
7341     // Ensure Pointee types are compatible
7342     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7343         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7344       QualType pointeeA = ArgTypeA->getPointeeType();
7345       QualType pointeeB = ArgTypeB->getPointeeType();
7346       if (!Context.typesAreCompatible(
7347              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7348              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7349         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7350           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
7351           << ArgB->getSourceRange();
7352       }
7353     }
7354 
7355     // at least one argument should be pointer type
7356     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7357       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7358         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7359 
7360     if (isNull(ArgA)) // adopt type of the other pointer
7361       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7362 
7363     if (isNull(ArgB))
7364       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7365 
7366     TheCall->setArg(0, ArgExprA.get());
7367     TheCall->setArg(1, ArgExprB.get());
7368     TheCall->setType(Context.LongLongTy);
7369     return false;
7370   }
7371   assert(false && "Unhandled ARM MTE intrinsic");
7372   return true;
7373 }
7374 
7375 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7376 /// TheCall is an ARM/AArch64 special register string literal.
7377 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7378                                     int ArgNum, unsigned ExpectedFieldNum,
7379                                     bool AllowName) {
7380   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7381                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7382                       BuiltinID == ARM::BI__builtin_arm_rsr ||
7383                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7384                       BuiltinID == ARM::BI__builtin_arm_wsr ||
7385                       BuiltinID == ARM::BI__builtin_arm_wsrp;
7386   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7387                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7388                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
7389                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7390                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
7391                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
7392   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
7393 
7394   // We can't check the value of a dependent argument.
7395   Expr *Arg = TheCall->getArg(ArgNum);
7396   if (Arg->isTypeDependent() || Arg->isValueDependent())
7397     return false;
7398 
7399   // Check if the argument is a string literal.
7400   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7401     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7402            << Arg->getSourceRange();
7403 
7404   // Check the type of special register given.
7405   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7406   SmallVector<StringRef, 6> Fields;
7407   Reg.split(Fields, ":");
7408 
7409   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7410     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7411            << Arg->getSourceRange();
7412 
7413   // If the string is the name of a register then we cannot check that it is
7414   // valid here but if the string is of one the forms described in ACLE then we
7415   // can check that the supplied fields are integers and within the valid
7416   // ranges.
7417   if (Fields.size() > 1) {
7418     bool FiveFields = Fields.size() == 5;
7419 
7420     bool ValidString = true;
7421     if (IsARMBuiltin) {
7422       ValidString &= Fields[0].startswith_insensitive("cp") ||
7423                      Fields[0].startswith_insensitive("p");
7424       if (ValidString)
7425         Fields[0] = Fields[0].drop_front(
7426             Fields[0].startswith_insensitive("cp") ? 2 : 1);
7427 
7428       ValidString &= Fields[2].startswith_insensitive("c");
7429       if (ValidString)
7430         Fields[2] = Fields[2].drop_front(1);
7431 
7432       if (FiveFields) {
7433         ValidString &= Fields[3].startswith_insensitive("c");
7434         if (ValidString)
7435           Fields[3] = Fields[3].drop_front(1);
7436       }
7437     }
7438 
7439     SmallVector<int, 5> Ranges;
7440     if (FiveFields)
7441       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7442     else
7443       Ranges.append({15, 7, 15});
7444 
7445     for (unsigned i=0; i<Fields.size(); ++i) {
7446       int IntField;
7447       ValidString &= !Fields[i].getAsInteger(10, IntField);
7448       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7449     }
7450 
7451     if (!ValidString)
7452       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7453              << Arg->getSourceRange();
7454   } else if (IsAArch64Builtin && Fields.size() == 1) {
7455     // If the register name is one of those that appear in the condition below
7456     // and the special register builtin being used is one of the write builtins,
7457     // then we require that the argument provided for writing to the register
7458     // is an integer constant expression. This is because it will be lowered to
7459     // an MSR (immediate) instruction, so we need to know the immediate at
7460     // compile time.
7461     if (TheCall->getNumArgs() != 2)
7462       return false;
7463 
7464     std::string RegLower = Reg.lower();
7465     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7466         RegLower != "pan" && RegLower != "uao")
7467       return false;
7468 
7469     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7470   }
7471 
7472   return false;
7473 }
7474 
7475 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7476 /// Emit an error and return true on failure; return false on success.
7477 /// TypeStr is a string containing the type descriptor of the value returned by
7478 /// the builtin and the descriptors of the expected type of the arguments.
7479 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
7480 
7481   assert((TypeStr[0] != '\0') &&
7482          "Invalid types in PPC MMA builtin declaration");
7483 
7484   unsigned Mask = 0;
7485   unsigned ArgNum = 0;
7486 
7487   // The first type in TypeStr is the type of the value returned by the
7488   // builtin. So we first read that type and change the type of TheCall.
7489   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7490   TheCall->setType(type);
7491 
7492   while (*TypeStr != '\0') {
7493     Mask = 0;
7494     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7495     if (ArgNum >= TheCall->getNumArgs()) {
7496       ArgNum++;
7497       break;
7498     }
7499 
7500     Expr *Arg = TheCall->getArg(ArgNum);
7501     QualType ArgType = Arg->getType();
7502 
7503     if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
7504         (!ExpectedType->isVoidPointerType() &&
7505            ArgType.getCanonicalType() != ExpectedType))
7506       return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7507              << ArgType << ExpectedType << 1 << 0 << 0;
7508 
7509     // If the value of the Mask is not 0, we have a constraint in the size of
7510     // the integer argument so here we ensure the argument is a constant that
7511     // is in the valid range.
7512     if (Mask != 0 &&
7513         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7514       return true;
7515 
7516     ArgNum++;
7517   }
7518 
7519   // In case we exited early from the previous loop, there are other types to
7520   // read from TypeStr. So we need to read them all to ensure we have the right
7521   // number of arguments in TheCall and if it is not the case, to display a
7522   // better error message.
7523   while (*TypeStr != '\0') {
7524     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7525     ArgNum++;
7526   }
7527   if (checkArgCount(*this, TheCall, ArgNum))
7528     return true;
7529 
7530   return false;
7531 }
7532 
7533 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7534 /// This checks that the target supports __builtin_longjmp and
7535 /// that val is a constant 1.
7536 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7537   if (!Context.getTargetInfo().hasSjLjLowering())
7538     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7539            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7540 
7541   Expr *Arg = TheCall->getArg(1);
7542   llvm::APSInt Result;
7543 
7544   // TODO: This is less than ideal. Overload this to take a value.
7545   if (SemaBuiltinConstantArg(TheCall, 1, Result))
7546     return true;
7547 
7548   if (Result != 1)
7549     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7550            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7551 
7552   return false;
7553 }
7554 
7555 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7556 /// This checks that the target supports __builtin_setjmp.
7557 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7558   if (!Context.getTargetInfo().hasSjLjLowering())
7559     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7560            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7561   return false;
7562 }
7563 
7564 namespace {
7565 
7566 class UncoveredArgHandler {
7567   enum { Unknown = -1, AllCovered = -2 };
7568 
7569   signed FirstUncoveredArg = Unknown;
7570   SmallVector<const Expr *, 4> DiagnosticExprs;
7571 
7572 public:
7573   UncoveredArgHandler() = default;
7574 
7575   bool hasUncoveredArg() const {
7576     return (FirstUncoveredArg >= 0);
7577   }
7578 
7579   unsigned getUncoveredArg() const {
7580     assert(hasUncoveredArg() && "no uncovered argument");
7581     return FirstUncoveredArg;
7582   }
7583 
7584   void setAllCovered() {
7585     // A string has been found with all arguments covered, so clear out
7586     // the diagnostics.
7587     DiagnosticExprs.clear();
7588     FirstUncoveredArg = AllCovered;
7589   }
7590 
7591   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7592     assert(NewFirstUncoveredArg >= 0 && "Outside range");
7593 
7594     // Don't update if a previous string covers all arguments.
7595     if (FirstUncoveredArg == AllCovered)
7596       return;
7597 
7598     // UncoveredArgHandler tracks the highest uncovered argument index
7599     // and with it all the strings that match this index.
7600     if (NewFirstUncoveredArg == FirstUncoveredArg)
7601       DiagnosticExprs.push_back(StrExpr);
7602     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7603       DiagnosticExprs.clear();
7604       DiagnosticExprs.push_back(StrExpr);
7605       FirstUncoveredArg = NewFirstUncoveredArg;
7606     }
7607   }
7608 
7609   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7610 };
7611 
7612 enum StringLiteralCheckType {
7613   SLCT_NotALiteral,
7614   SLCT_UncheckedLiteral,
7615   SLCT_CheckedLiteral
7616 };
7617 
7618 } // namespace
7619 
7620 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7621                                      BinaryOperatorKind BinOpKind,
7622                                      bool AddendIsRight) {
7623   unsigned BitWidth = Offset.getBitWidth();
7624   unsigned AddendBitWidth = Addend.getBitWidth();
7625   // There might be negative interim results.
7626   if (Addend.isUnsigned()) {
7627     Addend = Addend.zext(++AddendBitWidth);
7628     Addend.setIsSigned(true);
7629   }
7630   // Adjust the bit width of the APSInts.
7631   if (AddendBitWidth > BitWidth) {
7632     Offset = Offset.sext(AddendBitWidth);
7633     BitWidth = AddendBitWidth;
7634   } else if (BitWidth > AddendBitWidth) {
7635     Addend = Addend.sext(BitWidth);
7636   }
7637 
7638   bool Ov = false;
7639   llvm::APSInt ResOffset = Offset;
7640   if (BinOpKind == BO_Add)
7641     ResOffset = Offset.sadd_ov(Addend, Ov);
7642   else {
7643     assert(AddendIsRight && BinOpKind == BO_Sub &&
7644            "operator must be add or sub with addend on the right");
7645     ResOffset = Offset.ssub_ov(Addend, Ov);
7646   }
7647 
7648   // We add an offset to a pointer here so we should support an offset as big as
7649   // possible.
7650   if (Ov) {
7651     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
7652            "index (intermediate) result too big");
7653     Offset = Offset.sext(2 * BitWidth);
7654     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7655     return;
7656   }
7657 
7658   Offset = ResOffset;
7659 }
7660 
7661 namespace {
7662 
7663 // This is a wrapper class around StringLiteral to support offsetted string
7664 // literals as format strings. It takes the offset into account when returning
7665 // the string and its length or the source locations to display notes correctly.
7666 class FormatStringLiteral {
7667   const StringLiteral *FExpr;
7668   int64_t Offset;
7669 
7670  public:
7671   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7672       : FExpr(fexpr), Offset(Offset) {}
7673 
7674   StringRef getString() const {
7675     return FExpr->getString().drop_front(Offset);
7676   }
7677 
7678   unsigned getByteLength() const {
7679     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7680   }
7681 
7682   unsigned getLength() const { return FExpr->getLength() - Offset; }
7683   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7684 
7685   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7686 
7687   QualType getType() const { return FExpr->getType(); }
7688 
7689   bool isAscii() const { return FExpr->isAscii(); }
7690   bool isWide() const { return FExpr->isWide(); }
7691   bool isUTF8() const { return FExpr->isUTF8(); }
7692   bool isUTF16() const { return FExpr->isUTF16(); }
7693   bool isUTF32() const { return FExpr->isUTF32(); }
7694   bool isPascal() const { return FExpr->isPascal(); }
7695 
7696   SourceLocation getLocationOfByte(
7697       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7698       const TargetInfo &Target, unsigned *StartToken = nullptr,
7699       unsigned *StartTokenByteOffset = nullptr) const {
7700     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7701                                     StartToken, StartTokenByteOffset);
7702   }
7703 
7704   SourceLocation getBeginLoc() const LLVM_READONLY {
7705     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7706   }
7707 
7708   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7709 };
7710 
7711 }  // namespace
7712 
7713 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7714                               const Expr *OrigFormatExpr,
7715                               ArrayRef<const Expr *> Args,
7716                               bool HasVAListArg, unsigned format_idx,
7717                               unsigned firstDataArg,
7718                               Sema::FormatStringType Type,
7719                               bool inFunctionCall,
7720                               Sema::VariadicCallType CallType,
7721                               llvm::SmallBitVector &CheckedVarArgs,
7722                               UncoveredArgHandler &UncoveredArg,
7723                               bool IgnoreStringsWithoutSpecifiers);
7724 
7725 // Determine if an expression is a string literal or constant string.
7726 // If this function returns false on the arguments to a function expecting a
7727 // format string, we will usually need to emit a warning.
7728 // True string literals are then checked by CheckFormatString.
7729 static StringLiteralCheckType
7730 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7731                       bool HasVAListArg, unsigned format_idx,
7732                       unsigned firstDataArg, Sema::FormatStringType Type,
7733                       Sema::VariadicCallType CallType, bool InFunctionCall,
7734                       llvm::SmallBitVector &CheckedVarArgs,
7735                       UncoveredArgHandler &UncoveredArg,
7736                       llvm::APSInt Offset,
7737                       bool IgnoreStringsWithoutSpecifiers = false) {
7738   if (S.isConstantEvaluated())
7739     return SLCT_NotALiteral;
7740  tryAgain:
7741   assert(Offset.isSigned() && "invalid offset");
7742 
7743   if (E->isTypeDependent() || E->isValueDependent())
7744     return SLCT_NotALiteral;
7745 
7746   E = E->IgnoreParenCasts();
7747 
7748   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7749     // Technically -Wformat-nonliteral does not warn about this case.
7750     // The behavior of printf and friends in this case is implementation
7751     // dependent.  Ideally if the format string cannot be null then
7752     // it should have a 'nonnull' attribute in the function prototype.
7753     return SLCT_UncheckedLiteral;
7754 
7755   switch (E->getStmtClass()) {
7756   case Stmt::BinaryConditionalOperatorClass:
7757   case Stmt::ConditionalOperatorClass: {
7758     // The expression is a literal if both sub-expressions were, and it was
7759     // completely checked only if both sub-expressions were checked.
7760     const AbstractConditionalOperator *C =
7761         cast<AbstractConditionalOperator>(E);
7762 
7763     // Determine whether it is necessary to check both sub-expressions, for
7764     // example, because the condition expression is a constant that can be
7765     // evaluated at compile time.
7766     bool CheckLeft = true, CheckRight = true;
7767 
7768     bool Cond;
7769     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7770                                                  S.isConstantEvaluated())) {
7771       if (Cond)
7772         CheckRight = false;
7773       else
7774         CheckLeft = false;
7775     }
7776 
7777     // We need to maintain the offsets for the right and the left hand side
7778     // separately to check if every possible indexed expression is a valid
7779     // string literal. They might have different offsets for different string
7780     // literals in the end.
7781     StringLiteralCheckType Left;
7782     if (!CheckLeft)
7783       Left = SLCT_UncheckedLiteral;
7784     else {
7785       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7786                                    HasVAListArg, format_idx, firstDataArg,
7787                                    Type, CallType, InFunctionCall,
7788                                    CheckedVarArgs, UncoveredArg, Offset,
7789                                    IgnoreStringsWithoutSpecifiers);
7790       if (Left == SLCT_NotALiteral || !CheckRight) {
7791         return Left;
7792       }
7793     }
7794 
7795     StringLiteralCheckType Right = checkFormatStringExpr(
7796         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7797         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7798         IgnoreStringsWithoutSpecifiers);
7799 
7800     return (CheckLeft && Left < Right) ? Left : Right;
7801   }
7802 
7803   case Stmt::ImplicitCastExprClass:
7804     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7805     goto tryAgain;
7806 
7807   case Stmt::OpaqueValueExprClass:
7808     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7809       E = src;
7810       goto tryAgain;
7811     }
7812     return SLCT_NotALiteral;
7813 
7814   case Stmt::PredefinedExprClass:
7815     // While __func__, etc., are technically not string literals, they
7816     // cannot contain format specifiers and thus are not a security
7817     // liability.
7818     return SLCT_UncheckedLiteral;
7819 
7820   case Stmt::DeclRefExprClass: {
7821     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7822 
7823     // As an exception, do not flag errors for variables binding to
7824     // const string literals.
7825     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7826       bool isConstant = false;
7827       QualType T = DR->getType();
7828 
7829       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7830         isConstant = AT->getElementType().isConstant(S.Context);
7831       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7832         isConstant = T.isConstant(S.Context) &&
7833                      PT->getPointeeType().isConstant(S.Context);
7834       } else if (T->isObjCObjectPointerType()) {
7835         // In ObjC, there is usually no "const ObjectPointer" type,
7836         // so don't check if the pointee type is constant.
7837         isConstant = T.isConstant(S.Context);
7838       }
7839 
7840       if (isConstant) {
7841         if (const Expr *Init = VD->getAnyInitializer()) {
7842           // Look through initializers like const char c[] = { "foo" }
7843           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7844             if (InitList->isStringLiteralInit())
7845               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7846           }
7847           return checkFormatStringExpr(S, Init, Args,
7848                                        HasVAListArg, format_idx,
7849                                        firstDataArg, Type, CallType,
7850                                        /*InFunctionCall*/ false, CheckedVarArgs,
7851                                        UncoveredArg, Offset);
7852         }
7853       }
7854 
7855       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7856       // special check to see if the format string is a function parameter
7857       // of the function calling the printf function.  If the function
7858       // has an attribute indicating it is a printf-like function, then we
7859       // should suppress warnings concerning non-literals being used in a call
7860       // to a vprintf function.  For example:
7861       //
7862       // void
7863       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7864       //      va_list ap;
7865       //      va_start(ap, fmt);
7866       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7867       //      ...
7868       // }
7869       if (HasVAListArg) {
7870         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7871           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7872             int PVIndex = PV->getFunctionScopeIndex() + 1;
7873             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7874               // adjust for implicit parameter
7875               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7876                 if (MD->isInstance())
7877                   ++PVIndex;
7878               // We also check if the formats are compatible.
7879               // We can't pass a 'scanf' string to a 'printf' function.
7880               if (PVIndex == PVFormat->getFormatIdx() &&
7881                   Type == S.GetFormatStringType(PVFormat))
7882                 return SLCT_UncheckedLiteral;
7883             }
7884           }
7885         }
7886       }
7887     }
7888 
7889     return SLCT_NotALiteral;
7890   }
7891 
7892   case Stmt::CallExprClass:
7893   case Stmt::CXXMemberCallExprClass: {
7894     const CallExpr *CE = cast<CallExpr>(E);
7895     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7896       bool IsFirst = true;
7897       StringLiteralCheckType CommonResult;
7898       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7899         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7900         StringLiteralCheckType Result = checkFormatStringExpr(
7901             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7902             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7903             IgnoreStringsWithoutSpecifiers);
7904         if (IsFirst) {
7905           CommonResult = Result;
7906           IsFirst = false;
7907         }
7908       }
7909       if (!IsFirst)
7910         return CommonResult;
7911 
7912       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7913         unsigned BuiltinID = FD->getBuiltinID();
7914         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7915             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7916           const Expr *Arg = CE->getArg(0);
7917           return checkFormatStringExpr(S, Arg, Args,
7918                                        HasVAListArg, format_idx,
7919                                        firstDataArg, Type, CallType,
7920                                        InFunctionCall, CheckedVarArgs,
7921                                        UncoveredArg, Offset,
7922                                        IgnoreStringsWithoutSpecifiers);
7923         }
7924       }
7925     }
7926 
7927     return SLCT_NotALiteral;
7928   }
7929   case Stmt::ObjCMessageExprClass: {
7930     const auto *ME = cast<ObjCMessageExpr>(E);
7931     if (const auto *MD = ME->getMethodDecl()) {
7932       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7933         // As a special case heuristic, if we're using the method -[NSBundle
7934         // localizedStringForKey:value:table:], ignore any key strings that lack
7935         // format specifiers. The idea is that if the key doesn't have any
7936         // format specifiers then its probably just a key to map to the
7937         // localized strings. If it does have format specifiers though, then its
7938         // likely that the text of the key is the format string in the
7939         // programmer's language, and should be checked.
7940         const ObjCInterfaceDecl *IFace;
7941         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7942             IFace->getIdentifier()->isStr("NSBundle") &&
7943             MD->getSelector().isKeywordSelector(
7944                 {"localizedStringForKey", "value", "table"})) {
7945           IgnoreStringsWithoutSpecifiers = true;
7946         }
7947 
7948         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7949         return checkFormatStringExpr(
7950             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7951             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7952             IgnoreStringsWithoutSpecifiers);
7953       }
7954     }
7955 
7956     return SLCT_NotALiteral;
7957   }
7958   case Stmt::ObjCStringLiteralClass:
7959   case Stmt::StringLiteralClass: {
7960     const StringLiteral *StrE = nullptr;
7961 
7962     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7963       StrE = ObjCFExpr->getString();
7964     else
7965       StrE = cast<StringLiteral>(E);
7966 
7967     if (StrE) {
7968       if (Offset.isNegative() || Offset > StrE->getLength()) {
7969         // TODO: It would be better to have an explicit warning for out of
7970         // bounds literals.
7971         return SLCT_NotALiteral;
7972       }
7973       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7974       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7975                         firstDataArg, Type, InFunctionCall, CallType,
7976                         CheckedVarArgs, UncoveredArg,
7977                         IgnoreStringsWithoutSpecifiers);
7978       return SLCT_CheckedLiteral;
7979     }
7980 
7981     return SLCT_NotALiteral;
7982   }
7983   case Stmt::BinaryOperatorClass: {
7984     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7985 
7986     // A string literal + an int offset is still a string literal.
7987     if (BinOp->isAdditiveOp()) {
7988       Expr::EvalResult LResult, RResult;
7989 
7990       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7991           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7992       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7993           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7994 
7995       if (LIsInt != RIsInt) {
7996         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7997 
7998         if (LIsInt) {
7999           if (BinOpKind == BO_Add) {
8000             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8001             E = BinOp->getRHS();
8002             goto tryAgain;
8003           }
8004         } else {
8005           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8006           E = BinOp->getLHS();
8007           goto tryAgain;
8008         }
8009       }
8010     }
8011 
8012     return SLCT_NotALiteral;
8013   }
8014   case Stmt::UnaryOperatorClass: {
8015     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8016     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8017     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8018       Expr::EvalResult IndexResult;
8019       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8020                                        Expr::SE_NoSideEffects,
8021                                        S.isConstantEvaluated())) {
8022         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8023                    /*RHS is int*/ true);
8024         E = ASE->getBase();
8025         goto tryAgain;
8026       }
8027     }
8028 
8029     return SLCT_NotALiteral;
8030   }
8031 
8032   default:
8033     return SLCT_NotALiteral;
8034   }
8035 }
8036 
8037 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8038   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8039       .Case("scanf", FST_Scanf)
8040       .Cases("printf", "printf0", FST_Printf)
8041       .Cases("NSString", "CFString", FST_NSString)
8042       .Case("strftime", FST_Strftime)
8043       .Case("strfmon", FST_Strfmon)
8044       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8045       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8046       .Case("os_trace", FST_OSLog)
8047       .Case("os_log", FST_OSLog)
8048       .Default(FST_Unknown);
8049 }
8050 
8051 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8052 /// functions) for correct use of format strings.
8053 /// Returns true if a format string has been fully checked.
8054 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8055                                 ArrayRef<const Expr *> Args,
8056                                 bool IsCXXMember,
8057                                 VariadicCallType CallType,
8058                                 SourceLocation Loc, SourceRange Range,
8059                                 llvm::SmallBitVector &CheckedVarArgs) {
8060   FormatStringInfo FSI;
8061   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
8062     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
8063                                 FSI.FirstDataArg, GetFormatStringType(Format),
8064                                 CallType, Loc, Range, CheckedVarArgs);
8065   return false;
8066 }
8067 
8068 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8069                                 bool HasVAListArg, unsigned format_idx,
8070                                 unsigned firstDataArg, FormatStringType Type,
8071                                 VariadicCallType CallType,
8072                                 SourceLocation Loc, SourceRange Range,
8073                                 llvm::SmallBitVector &CheckedVarArgs) {
8074   // CHECK: printf/scanf-like function is called with no format string.
8075   if (format_idx >= Args.size()) {
8076     Diag(Loc, diag::warn_missing_format_string) << Range;
8077     return false;
8078   }
8079 
8080   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8081 
8082   // CHECK: format string is not a string literal.
8083   //
8084   // Dynamically generated format strings are difficult to
8085   // automatically vet at compile time.  Requiring that format strings
8086   // are string literals: (1) permits the checking of format strings by
8087   // the compiler and thereby (2) can practically remove the source of
8088   // many format string exploits.
8089 
8090   // Format string can be either ObjC string (e.g. @"%d") or
8091   // C string (e.g. "%d")
8092   // ObjC string uses the same format specifiers as C string, so we can use
8093   // the same format string checking logic for both ObjC and C strings.
8094   UncoveredArgHandler UncoveredArg;
8095   StringLiteralCheckType CT =
8096       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8097                             format_idx, firstDataArg, Type, CallType,
8098                             /*IsFunctionCall*/ true, CheckedVarArgs,
8099                             UncoveredArg,
8100                             /*no string offset*/ llvm::APSInt(64, false) = 0);
8101 
8102   // Generate a diagnostic where an uncovered argument is detected.
8103   if (UncoveredArg.hasUncoveredArg()) {
8104     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8105     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8106     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8107   }
8108 
8109   if (CT != SLCT_NotALiteral)
8110     // Literal format string found, check done!
8111     return CT == SLCT_CheckedLiteral;
8112 
8113   // Strftime is particular as it always uses a single 'time' argument,
8114   // so it is safe to pass a non-literal string.
8115   if (Type == FST_Strftime)
8116     return false;
8117 
8118   // Do not emit diag when the string param is a macro expansion and the
8119   // format is either NSString or CFString. This is a hack to prevent
8120   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8121   // which are usually used in place of NS and CF string literals.
8122   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8123   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8124     return false;
8125 
8126   // If there are no arguments specified, warn with -Wformat-security, otherwise
8127   // warn only with -Wformat-nonliteral.
8128   if (Args.size() == firstDataArg) {
8129     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8130       << OrigFormatExpr->getSourceRange();
8131     switch (Type) {
8132     default:
8133       break;
8134     case FST_Kprintf:
8135     case FST_FreeBSDKPrintf:
8136     case FST_Printf:
8137       Diag(FormatLoc, diag::note_format_security_fixit)
8138         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8139       break;
8140     case FST_NSString:
8141       Diag(FormatLoc, diag::note_format_security_fixit)
8142         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8143       break;
8144     }
8145   } else {
8146     Diag(FormatLoc, diag::warn_format_nonliteral)
8147       << OrigFormatExpr->getSourceRange();
8148   }
8149   return false;
8150 }
8151 
8152 namespace {
8153 
8154 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8155 protected:
8156   Sema &S;
8157   const FormatStringLiteral *FExpr;
8158   const Expr *OrigFormatExpr;
8159   const Sema::FormatStringType FSType;
8160   const unsigned FirstDataArg;
8161   const unsigned NumDataArgs;
8162   const char *Beg; // Start of format string.
8163   const bool HasVAListArg;
8164   ArrayRef<const Expr *> Args;
8165   unsigned FormatIdx;
8166   llvm::SmallBitVector CoveredArgs;
8167   bool usesPositionalArgs = false;
8168   bool atFirstArg = true;
8169   bool inFunctionCall;
8170   Sema::VariadicCallType CallType;
8171   llvm::SmallBitVector &CheckedVarArgs;
8172   UncoveredArgHandler &UncoveredArg;
8173 
8174 public:
8175   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8176                      const Expr *origFormatExpr,
8177                      const Sema::FormatStringType type, unsigned firstDataArg,
8178                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
8179                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8180                      bool inFunctionCall, Sema::VariadicCallType callType,
8181                      llvm::SmallBitVector &CheckedVarArgs,
8182                      UncoveredArgHandler &UncoveredArg)
8183       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8184         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8185         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8186         inFunctionCall(inFunctionCall), CallType(callType),
8187         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8188     CoveredArgs.resize(numDataArgs);
8189     CoveredArgs.reset();
8190   }
8191 
8192   void DoneProcessing();
8193 
8194   void HandleIncompleteSpecifier(const char *startSpecifier,
8195                                  unsigned specifierLen) override;
8196 
8197   void HandleInvalidLengthModifier(
8198                            const analyze_format_string::FormatSpecifier &FS,
8199                            const analyze_format_string::ConversionSpecifier &CS,
8200                            const char *startSpecifier, unsigned specifierLen,
8201                            unsigned DiagID);
8202 
8203   void HandleNonStandardLengthModifier(
8204                     const analyze_format_string::FormatSpecifier &FS,
8205                     const char *startSpecifier, unsigned specifierLen);
8206 
8207   void HandleNonStandardConversionSpecifier(
8208                     const analyze_format_string::ConversionSpecifier &CS,
8209                     const char *startSpecifier, unsigned specifierLen);
8210 
8211   void HandlePosition(const char *startPos, unsigned posLen) override;
8212 
8213   void HandleInvalidPosition(const char *startSpecifier,
8214                              unsigned specifierLen,
8215                              analyze_format_string::PositionContext p) override;
8216 
8217   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8218 
8219   void HandleNullChar(const char *nullCharacter) override;
8220 
8221   template <typename Range>
8222   static void
8223   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8224                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8225                        bool IsStringLocation, Range StringRange,
8226                        ArrayRef<FixItHint> Fixit = None);
8227 
8228 protected:
8229   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8230                                         const char *startSpec,
8231                                         unsigned specifierLen,
8232                                         const char *csStart, unsigned csLen);
8233 
8234   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8235                                          const char *startSpec,
8236                                          unsigned specifierLen);
8237 
8238   SourceRange getFormatStringRange();
8239   CharSourceRange getSpecifierRange(const char *startSpecifier,
8240                                     unsigned specifierLen);
8241   SourceLocation getLocationOfByte(const char *x);
8242 
8243   const Expr *getDataArg(unsigned i) const;
8244 
8245   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8246                     const analyze_format_string::ConversionSpecifier &CS,
8247                     const char *startSpecifier, unsigned specifierLen,
8248                     unsigned argIndex);
8249 
8250   template <typename Range>
8251   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8252                             bool IsStringLocation, Range StringRange,
8253                             ArrayRef<FixItHint> Fixit = None);
8254 };
8255 
8256 } // namespace
8257 
8258 SourceRange CheckFormatHandler::getFormatStringRange() {
8259   return OrigFormatExpr->getSourceRange();
8260 }
8261 
8262 CharSourceRange CheckFormatHandler::
8263 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8264   SourceLocation Start = getLocationOfByte(startSpecifier);
8265   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
8266 
8267   // Advance the end SourceLocation by one due to half-open ranges.
8268   End = End.getLocWithOffset(1);
8269 
8270   return CharSourceRange::getCharRange(Start, End);
8271 }
8272 
8273 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8274   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8275                                   S.getLangOpts(), S.Context.getTargetInfo());
8276 }
8277 
8278 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8279                                                    unsigned specifierLen){
8280   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8281                        getLocationOfByte(startSpecifier),
8282                        /*IsStringLocation*/true,
8283                        getSpecifierRange(startSpecifier, specifierLen));
8284 }
8285 
8286 void CheckFormatHandler::HandleInvalidLengthModifier(
8287     const analyze_format_string::FormatSpecifier &FS,
8288     const analyze_format_string::ConversionSpecifier &CS,
8289     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8290   using namespace analyze_format_string;
8291 
8292   const LengthModifier &LM = FS.getLengthModifier();
8293   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8294 
8295   // See if we know how to fix this length modifier.
8296   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8297   if (FixedLM) {
8298     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8299                          getLocationOfByte(LM.getStart()),
8300                          /*IsStringLocation*/true,
8301                          getSpecifierRange(startSpecifier, specifierLen));
8302 
8303     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8304       << FixedLM->toString()
8305       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8306 
8307   } else {
8308     FixItHint Hint;
8309     if (DiagID == diag::warn_format_nonsensical_length)
8310       Hint = FixItHint::CreateRemoval(LMRange);
8311 
8312     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8313                          getLocationOfByte(LM.getStart()),
8314                          /*IsStringLocation*/true,
8315                          getSpecifierRange(startSpecifier, specifierLen),
8316                          Hint);
8317   }
8318 }
8319 
8320 void CheckFormatHandler::HandleNonStandardLengthModifier(
8321     const analyze_format_string::FormatSpecifier &FS,
8322     const char *startSpecifier, unsigned specifierLen) {
8323   using namespace analyze_format_string;
8324 
8325   const LengthModifier &LM = FS.getLengthModifier();
8326   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8327 
8328   // See if we know how to fix this length modifier.
8329   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8330   if (FixedLM) {
8331     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8332                            << LM.toString() << 0,
8333                          getLocationOfByte(LM.getStart()),
8334                          /*IsStringLocation*/true,
8335                          getSpecifierRange(startSpecifier, specifierLen));
8336 
8337     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8338       << FixedLM->toString()
8339       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8340 
8341   } else {
8342     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8343                            << LM.toString() << 0,
8344                          getLocationOfByte(LM.getStart()),
8345                          /*IsStringLocation*/true,
8346                          getSpecifierRange(startSpecifier, specifierLen));
8347   }
8348 }
8349 
8350 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8351     const analyze_format_string::ConversionSpecifier &CS,
8352     const char *startSpecifier, unsigned specifierLen) {
8353   using namespace analyze_format_string;
8354 
8355   // See if we know how to fix this conversion specifier.
8356   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8357   if (FixedCS) {
8358     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8359                           << CS.toString() << /*conversion specifier*/1,
8360                          getLocationOfByte(CS.getStart()),
8361                          /*IsStringLocation*/true,
8362                          getSpecifierRange(startSpecifier, specifierLen));
8363 
8364     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8365     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8366       << FixedCS->toString()
8367       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8368   } else {
8369     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8370                           << CS.toString() << /*conversion specifier*/1,
8371                          getLocationOfByte(CS.getStart()),
8372                          /*IsStringLocation*/true,
8373                          getSpecifierRange(startSpecifier, specifierLen));
8374   }
8375 }
8376 
8377 void CheckFormatHandler::HandlePosition(const char *startPos,
8378                                         unsigned posLen) {
8379   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8380                                getLocationOfByte(startPos),
8381                                /*IsStringLocation*/true,
8382                                getSpecifierRange(startPos, posLen));
8383 }
8384 
8385 void
8386 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8387                                      analyze_format_string::PositionContext p) {
8388   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8389                          << (unsigned) p,
8390                        getLocationOfByte(startPos), /*IsStringLocation*/true,
8391                        getSpecifierRange(startPos, posLen));
8392 }
8393 
8394 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8395                                             unsigned posLen) {
8396   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8397                                getLocationOfByte(startPos),
8398                                /*IsStringLocation*/true,
8399                                getSpecifierRange(startPos, posLen));
8400 }
8401 
8402 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8403   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8404     // The presence of a null character is likely an error.
8405     EmitFormatDiagnostic(
8406       S.PDiag(diag::warn_printf_format_string_contains_null_char),
8407       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8408       getFormatStringRange());
8409   }
8410 }
8411 
8412 // Note that this may return NULL if there was an error parsing or building
8413 // one of the argument expressions.
8414 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8415   return Args[FirstDataArg + i];
8416 }
8417 
8418 void CheckFormatHandler::DoneProcessing() {
8419   // Does the number of data arguments exceed the number of
8420   // format conversions in the format string?
8421   if (!HasVAListArg) {
8422       // Find any arguments that weren't covered.
8423     CoveredArgs.flip();
8424     signed notCoveredArg = CoveredArgs.find_first();
8425     if (notCoveredArg >= 0) {
8426       assert((unsigned)notCoveredArg < NumDataArgs);
8427       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8428     } else {
8429       UncoveredArg.setAllCovered();
8430     }
8431   }
8432 }
8433 
8434 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8435                                    const Expr *ArgExpr) {
8436   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
8437          "Invalid state");
8438 
8439   if (!ArgExpr)
8440     return;
8441 
8442   SourceLocation Loc = ArgExpr->getBeginLoc();
8443 
8444   if (S.getSourceManager().isInSystemMacro(Loc))
8445     return;
8446 
8447   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8448   for (auto E : DiagnosticExprs)
8449     PDiag << E->getSourceRange();
8450 
8451   CheckFormatHandler::EmitFormatDiagnostic(
8452                                   S, IsFunctionCall, DiagnosticExprs[0],
8453                                   PDiag, Loc, /*IsStringLocation*/false,
8454                                   DiagnosticExprs[0]->getSourceRange());
8455 }
8456 
8457 bool
8458 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8459                                                      SourceLocation Loc,
8460                                                      const char *startSpec,
8461                                                      unsigned specifierLen,
8462                                                      const char *csStart,
8463                                                      unsigned csLen) {
8464   bool keepGoing = true;
8465   if (argIndex < NumDataArgs) {
8466     // Consider the argument coverered, even though the specifier doesn't
8467     // make sense.
8468     CoveredArgs.set(argIndex);
8469   }
8470   else {
8471     // If argIndex exceeds the number of data arguments we
8472     // don't issue a warning because that is just a cascade of warnings (and
8473     // they may have intended '%%' anyway). We don't want to continue processing
8474     // the format string after this point, however, as we will like just get
8475     // gibberish when trying to match arguments.
8476     keepGoing = false;
8477   }
8478 
8479   StringRef Specifier(csStart, csLen);
8480 
8481   // If the specifier in non-printable, it could be the first byte of a UTF-8
8482   // sequence. In that case, print the UTF-8 code point. If not, print the byte
8483   // hex value.
8484   std::string CodePointStr;
8485   if (!llvm::sys::locale::isPrint(*csStart)) {
8486     llvm::UTF32 CodePoint;
8487     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8488     const llvm::UTF8 *E =
8489         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8490     llvm::ConversionResult Result =
8491         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8492 
8493     if (Result != llvm::conversionOK) {
8494       unsigned char FirstChar = *csStart;
8495       CodePoint = (llvm::UTF32)FirstChar;
8496     }
8497 
8498     llvm::raw_string_ostream OS(CodePointStr);
8499     if (CodePoint < 256)
8500       OS << "\\x" << llvm::format("%02x", CodePoint);
8501     else if (CodePoint <= 0xFFFF)
8502       OS << "\\u" << llvm::format("%04x", CodePoint);
8503     else
8504       OS << "\\U" << llvm::format("%08x", CodePoint);
8505     OS.flush();
8506     Specifier = CodePointStr;
8507   }
8508 
8509   EmitFormatDiagnostic(
8510       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8511       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8512 
8513   return keepGoing;
8514 }
8515 
8516 void
8517 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8518                                                       const char *startSpec,
8519                                                       unsigned specifierLen) {
8520   EmitFormatDiagnostic(
8521     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8522     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8523 }
8524 
8525 bool
8526 CheckFormatHandler::CheckNumArgs(
8527   const analyze_format_string::FormatSpecifier &FS,
8528   const analyze_format_string::ConversionSpecifier &CS,
8529   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8530 
8531   if (argIndex >= NumDataArgs) {
8532     PartialDiagnostic PDiag = FS.usesPositionalArg()
8533       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8534            << (argIndex+1) << NumDataArgs)
8535       : S.PDiag(diag::warn_printf_insufficient_data_args);
8536     EmitFormatDiagnostic(
8537       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8538       getSpecifierRange(startSpecifier, specifierLen));
8539 
8540     // Since more arguments than conversion tokens are given, by extension
8541     // all arguments are covered, so mark this as so.
8542     UncoveredArg.setAllCovered();
8543     return false;
8544   }
8545   return true;
8546 }
8547 
8548 template<typename Range>
8549 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8550                                               SourceLocation Loc,
8551                                               bool IsStringLocation,
8552                                               Range StringRange,
8553                                               ArrayRef<FixItHint> FixIt) {
8554   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8555                        Loc, IsStringLocation, StringRange, FixIt);
8556 }
8557 
8558 /// If the format string is not within the function call, emit a note
8559 /// so that the function call and string are in diagnostic messages.
8560 ///
8561 /// \param InFunctionCall if true, the format string is within the function
8562 /// call and only one diagnostic message will be produced.  Otherwise, an
8563 /// extra note will be emitted pointing to location of the format string.
8564 ///
8565 /// \param ArgumentExpr the expression that is passed as the format string
8566 /// argument in the function call.  Used for getting locations when two
8567 /// diagnostics are emitted.
8568 ///
8569 /// \param PDiag the callee should already have provided any strings for the
8570 /// diagnostic message.  This function only adds locations and fixits
8571 /// to diagnostics.
8572 ///
8573 /// \param Loc primary location for diagnostic.  If two diagnostics are
8574 /// required, one will be at Loc and a new SourceLocation will be created for
8575 /// the other one.
8576 ///
8577 /// \param IsStringLocation if true, Loc points to the format string should be
8578 /// used for the note.  Otherwise, Loc points to the argument list and will
8579 /// be used with PDiag.
8580 ///
8581 /// \param StringRange some or all of the string to highlight.  This is
8582 /// templated so it can accept either a CharSourceRange or a SourceRange.
8583 ///
8584 /// \param FixIt optional fix it hint for the format string.
8585 template <typename Range>
8586 void CheckFormatHandler::EmitFormatDiagnostic(
8587     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8588     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8589     Range StringRange, ArrayRef<FixItHint> FixIt) {
8590   if (InFunctionCall) {
8591     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8592     D << StringRange;
8593     D << FixIt;
8594   } else {
8595     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8596       << ArgumentExpr->getSourceRange();
8597 
8598     const Sema::SemaDiagnosticBuilder &Note =
8599       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8600              diag::note_format_string_defined);
8601 
8602     Note << StringRange;
8603     Note << FixIt;
8604   }
8605 }
8606 
8607 //===--- CHECK: Printf format string checking ------------------------------===//
8608 
8609 namespace {
8610 
8611 class CheckPrintfHandler : public CheckFormatHandler {
8612 public:
8613   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8614                      const Expr *origFormatExpr,
8615                      const Sema::FormatStringType type, unsigned firstDataArg,
8616                      unsigned numDataArgs, bool isObjC, const char *beg,
8617                      bool hasVAListArg, ArrayRef<const Expr *> Args,
8618                      unsigned formatIdx, bool inFunctionCall,
8619                      Sema::VariadicCallType CallType,
8620                      llvm::SmallBitVector &CheckedVarArgs,
8621                      UncoveredArgHandler &UncoveredArg)
8622       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8623                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8624                            inFunctionCall, CallType, CheckedVarArgs,
8625                            UncoveredArg) {}
8626 
8627   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8628 
8629   /// Returns true if '%@' specifiers are allowed in the format string.
8630   bool allowsObjCArg() const {
8631     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8632            FSType == Sema::FST_OSTrace;
8633   }
8634 
8635   bool HandleInvalidPrintfConversionSpecifier(
8636                                       const analyze_printf::PrintfSpecifier &FS,
8637                                       const char *startSpecifier,
8638                                       unsigned specifierLen) override;
8639 
8640   void handleInvalidMaskType(StringRef MaskType) override;
8641 
8642   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8643                              const char *startSpecifier,
8644                              unsigned specifierLen) override;
8645   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8646                        const char *StartSpecifier,
8647                        unsigned SpecifierLen,
8648                        const Expr *E);
8649 
8650   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8651                     const char *startSpecifier, unsigned specifierLen);
8652   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8653                            const analyze_printf::OptionalAmount &Amt,
8654                            unsigned type,
8655                            const char *startSpecifier, unsigned specifierLen);
8656   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8657                   const analyze_printf::OptionalFlag &flag,
8658                   const char *startSpecifier, unsigned specifierLen);
8659   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8660                          const analyze_printf::OptionalFlag &ignoredFlag,
8661                          const analyze_printf::OptionalFlag &flag,
8662                          const char *startSpecifier, unsigned specifierLen);
8663   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8664                            const Expr *E);
8665 
8666   void HandleEmptyObjCModifierFlag(const char *startFlag,
8667                                    unsigned flagLen) override;
8668 
8669   void HandleInvalidObjCModifierFlag(const char *startFlag,
8670                                             unsigned flagLen) override;
8671 
8672   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8673                                            const char *flagsEnd,
8674                                            const char *conversionPosition)
8675                                              override;
8676 };
8677 
8678 } // namespace
8679 
8680 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8681                                       const analyze_printf::PrintfSpecifier &FS,
8682                                       const char *startSpecifier,
8683                                       unsigned specifierLen) {
8684   const analyze_printf::PrintfConversionSpecifier &CS =
8685     FS.getConversionSpecifier();
8686 
8687   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8688                                           getLocationOfByte(CS.getStart()),
8689                                           startSpecifier, specifierLen,
8690                                           CS.getStart(), CS.getLength());
8691 }
8692 
8693 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8694   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8695 }
8696 
8697 bool CheckPrintfHandler::HandleAmount(
8698                                const analyze_format_string::OptionalAmount &Amt,
8699                                unsigned k, const char *startSpecifier,
8700                                unsigned specifierLen) {
8701   if (Amt.hasDataArgument()) {
8702     if (!HasVAListArg) {
8703       unsigned argIndex = Amt.getArgIndex();
8704       if (argIndex >= NumDataArgs) {
8705         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8706                                << k,
8707                              getLocationOfByte(Amt.getStart()),
8708                              /*IsStringLocation*/true,
8709                              getSpecifierRange(startSpecifier, specifierLen));
8710         // Don't do any more checking.  We will just emit
8711         // spurious errors.
8712         return false;
8713       }
8714 
8715       // Type check the data argument.  It should be an 'int'.
8716       // Although not in conformance with C99, we also allow the argument to be
8717       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8718       // doesn't emit a warning for that case.
8719       CoveredArgs.set(argIndex);
8720       const Expr *Arg = getDataArg(argIndex);
8721       if (!Arg)
8722         return false;
8723 
8724       QualType T = Arg->getType();
8725 
8726       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8727       assert(AT.isValid());
8728 
8729       if (!AT.matchesType(S.Context, T)) {
8730         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8731                                << k << AT.getRepresentativeTypeName(S.Context)
8732                                << T << Arg->getSourceRange(),
8733                              getLocationOfByte(Amt.getStart()),
8734                              /*IsStringLocation*/true,
8735                              getSpecifierRange(startSpecifier, specifierLen));
8736         // Don't do any more checking.  We will just emit
8737         // spurious errors.
8738         return false;
8739       }
8740     }
8741   }
8742   return true;
8743 }
8744 
8745 void CheckPrintfHandler::HandleInvalidAmount(
8746                                       const analyze_printf::PrintfSpecifier &FS,
8747                                       const analyze_printf::OptionalAmount &Amt,
8748                                       unsigned type,
8749                                       const char *startSpecifier,
8750                                       unsigned specifierLen) {
8751   const analyze_printf::PrintfConversionSpecifier &CS =
8752     FS.getConversionSpecifier();
8753 
8754   FixItHint fixit =
8755     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8756       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8757                                  Amt.getConstantLength()))
8758       : FixItHint();
8759 
8760   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8761                          << type << CS.toString(),
8762                        getLocationOfByte(Amt.getStart()),
8763                        /*IsStringLocation*/true,
8764                        getSpecifierRange(startSpecifier, specifierLen),
8765                        fixit);
8766 }
8767 
8768 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8769                                     const analyze_printf::OptionalFlag &flag,
8770                                     const char *startSpecifier,
8771                                     unsigned specifierLen) {
8772   // Warn about pointless flag with a fixit removal.
8773   const analyze_printf::PrintfConversionSpecifier &CS =
8774     FS.getConversionSpecifier();
8775   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8776                          << flag.toString() << CS.toString(),
8777                        getLocationOfByte(flag.getPosition()),
8778                        /*IsStringLocation*/true,
8779                        getSpecifierRange(startSpecifier, specifierLen),
8780                        FixItHint::CreateRemoval(
8781                          getSpecifierRange(flag.getPosition(), 1)));
8782 }
8783 
8784 void CheckPrintfHandler::HandleIgnoredFlag(
8785                                 const analyze_printf::PrintfSpecifier &FS,
8786                                 const analyze_printf::OptionalFlag &ignoredFlag,
8787                                 const analyze_printf::OptionalFlag &flag,
8788                                 const char *startSpecifier,
8789                                 unsigned specifierLen) {
8790   // Warn about ignored flag with a fixit removal.
8791   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8792                          << ignoredFlag.toString() << flag.toString(),
8793                        getLocationOfByte(ignoredFlag.getPosition()),
8794                        /*IsStringLocation*/true,
8795                        getSpecifierRange(startSpecifier, specifierLen),
8796                        FixItHint::CreateRemoval(
8797                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8798 }
8799 
8800 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8801                                                      unsigned flagLen) {
8802   // Warn about an empty flag.
8803   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8804                        getLocationOfByte(startFlag),
8805                        /*IsStringLocation*/true,
8806                        getSpecifierRange(startFlag, flagLen));
8807 }
8808 
8809 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8810                                                        unsigned flagLen) {
8811   // Warn about an invalid flag.
8812   auto Range = getSpecifierRange(startFlag, flagLen);
8813   StringRef flag(startFlag, flagLen);
8814   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8815                       getLocationOfByte(startFlag),
8816                       /*IsStringLocation*/true,
8817                       Range, FixItHint::CreateRemoval(Range));
8818 }
8819 
8820 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8821     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8822     // Warn about using '[...]' without a '@' conversion.
8823     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8824     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8825     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8826                          getLocationOfByte(conversionPosition),
8827                          /*IsStringLocation*/true,
8828                          Range, FixItHint::CreateRemoval(Range));
8829 }
8830 
8831 // Determines if the specified is a C++ class or struct containing
8832 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8833 // "c_str()").
8834 template<typename MemberKind>
8835 static llvm::SmallPtrSet<MemberKind*, 1>
8836 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8837   const RecordType *RT = Ty->getAs<RecordType>();
8838   llvm::SmallPtrSet<MemberKind*, 1> Results;
8839 
8840   if (!RT)
8841     return Results;
8842   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8843   if (!RD || !RD->getDefinition())
8844     return Results;
8845 
8846   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8847                  Sema::LookupMemberName);
8848   R.suppressDiagnostics();
8849 
8850   // We just need to include all members of the right kind turned up by the
8851   // filter, at this point.
8852   if (S.LookupQualifiedName(R, RT->getDecl()))
8853     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8854       NamedDecl *decl = (*I)->getUnderlyingDecl();
8855       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8856         Results.insert(FK);
8857     }
8858   return Results;
8859 }
8860 
8861 /// Check if we could call '.c_str()' on an object.
8862 ///
8863 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8864 /// allow the call, or if it would be ambiguous).
8865 bool Sema::hasCStrMethod(const Expr *E) {
8866   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8867 
8868   MethodSet Results =
8869       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8870   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8871        MI != ME; ++MI)
8872     if ((*MI)->getMinRequiredArguments() == 0)
8873       return true;
8874   return false;
8875 }
8876 
8877 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8878 // better diagnostic if so. AT is assumed to be valid.
8879 // Returns true when a c_str() conversion method is found.
8880 bool CheckPrintfHandler::checkForCStrMembers(
8881     const analyze_printf::ArgType &AT, const Expr *E) {
8882   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8883 
8884   MethodSet Results =
8885       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8886 
8887   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8888        MI != ME; ++MI) {
8889     const CXXMethodDecl *Method = *MI;
8890     if (Method->getMinRequiredArguments() == 0 &&
8891         AT.matchesType(S.Context, Method->getReturnType())) {
8892       // FIXME: Suggest parens if the expression needs them.
8893       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8894       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8895           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8896       return true;
8897     }
8898   }
8899 
8900   return false;
8901 }
8902 
8903 bool
8904 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8905                                             &FS,
8906                                           const char *startSpecifier,
8907                                           unsigned specifierLen) {
8908   using namespace analyze_format_string;
8909   using namespace analyze_printf;
8910 
8911   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8912 
8913   if (FS.consumesDataArgument()) {
8914     if (atFirstArg) {
8915         atFirstArg = false;
8916         usesPositionalArgs = FS.usesPositionalArg();
8917     }
8918     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8919       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8920                                         startSpecifier, specifierLen);
8921       return false;
8922     }
8923   }
8924 
8925   // First check if the field width, precision, and conversion specifier
8926   // have matching data arguments.
8927   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8928                     startSpecifier, specifierLen)) {
8929     return false;
8930   }
8931 
8932   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8933                     startSpecifier, specifierLen)) {
8934     return false;
8935   }
8936 
8937   if (!CS.consumesDataArgument()) {
8938     // FIXME: Technically specifying a precision or field width here
8939     // makes no sense.  Worth issuing a warning at some point.
8940     return true;
8941   }
8942 
8943   // Consume the argument.
8944   unsigned argIndex = FS.getArgIndex();
8945   if (argIndex < NumDataArgs) {
8946     // The check to see if the argIndex is valid will come later.
8947     // We set the bit here because we may exit early from this
8948     // function if we encounter some other error.
8949     CoveredArgs.set(argIndex);
8950   }
8951 
8952   // FreeBSD kernel extensions.
8953   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8954       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8955     // We need at least two arguments.
8956     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8957       return false;
8958 
8959     // Claim the second argument.
8960     CoveredArgs.set(argIndex + 1);
8961 
8962     // Type check the first argument (int for %b, pointer for %D)
8963     const Expr *Ex = getDataArg(argIndex);
8964     const analyze_printf::ArgType &AT =
8965       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8966         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8967     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8968       EmitFormatDiagnostic(
8969           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8970               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8971               << false << Ex->getSourceRange(),
8972           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8973           getSpecifierRange(startSpecifier, specifierLen));
8974 
8975     // Type check the second argument (char * for both %b and %D)
8976     Ex = getDataArg(argIndex + 1);
8977     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8978     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8979       EmitFormatDiagnostic(
8980           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8981               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8982               << false << Ex->getSourceRange(),
8983           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8984           getSpecifierRange(startSpecifier, specifierLen));
8985 
8986      return true;
8987   }
8988 
8989   // Check for using an Objective-C specific conversion specifier
8990   // in a non-ObjC literal.
8991   if (!allowsObjCArg() && CS.isObjCArg()) {
8992     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8993                                                   specifierLen);
8994   }
8995 
8996   // %P can only be used with os_log.
8997   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8998     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8999                                                   specifierLen);
9000   }
9001 
9002   // %n is not allowed with os_log.
9003   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9004     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9005                          getLocationOfByte(CS.getStart()),
9006                          /*IsStringLocation*/ false,
9007                          getSpecifierRange(startSpecifier, specifierLen));
9008 
9009     return true;
9010   }
9011 
9012   // Only scalars are allowed for os_trace.
9013   if (FSType == Sema::FST_OSTrace &&
9014       (CS.getKind() == ConversionSpecifier::PArg ||
9015        CS.getKind() == ConversionSpecifier::sArg ||
9016        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9017     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9018                                                   specifierLen);
9019   }
9020 
9021   // Check for use of public/private annotation outside of os_log().
9022   if (FSType != Sema::FST_OSLog) {
9023     if (FS.isPublic().isSet()) {
9024       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9025                                << "public",
9026                            getLocationOfByte(FS.isPublic().getPosition()),
9027                            /*IsStringLocation*/ false,
9028                            getSpecifierRange(startSpecifier, specifierLen));
9029     }
9030     if (FS.isPrivate().isSet()) {
9031       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9032                                << "private",
9033                            getLocationOfByte(FS.isPrivate().getPosition()),
9034                            /*IsStringLocation*/ false,
9035                            getSpecifierRange(startSpecifier, specifierLen));
9036     }
9037   }
9038 
9039   // Check for invalid use of field width
9040   if (!FS.hasValidFieldWidth()) {
9041     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9042         startSpecifier, specifierLen);
9043   }
9044 
9045   // Check for invalid use of precision
9046   if (!FS.hasValidPrecision()) {
9047     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9048         startSpecifier, specifierLen);
9049   }
9050 
9051   // Precision is mandatory for %P specifier.
9052   if (CS.getKind() == ConversionSpecifier::PArg &&
9053       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9054     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9055                          getLocationOfByte(startSpecifier),
9056                          /*IsStringLocation*/ false,
9057                          getSpecifierRange(startSpecifier, specifierLen));
9058   }
9059 
9060   // Check each flag does not conflict with any other component.
9061   if (!FS.hasValidThousandsGroupingPrefix())
9062     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9063   if (!FS.hasValidLeadingZeros())
9064     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9065   if (!FS.hasValidPlusPrefix())
9066     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9067   if (!FS.hasValidSpacePrefix())
9068     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9069   if (!FS.hasValidAlternativeForm())
9070     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9071   if (!FS.hasValidLeftJustified())
9072     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9073 
9074   // Check that flags are not ignored by another flag
9075   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9076     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9077         startSpecifier, specifierLen);
9078   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9079     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9080             startSpecifier, specifierLen);
9081 
9082   // Check the length modifier is valid with the given conversion specifier.
9083   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9084                                  S.getLangOpts()))
9085     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9086                                 diag::warn_format_nonsensical_length);
9087   else if (!FS.hasStandardLengthModifier())
9088     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9089   else if (!FS.hasStandardLengthConversionCombination())
9090     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9091                                 diag::warn_format_non_standard_conversion_spec);
9092 
9093   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9094     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9095 
9096   // The remaining checks depend on the data arguments.
9097   if (HasVAListArg)
9098     return true;
9099 
9100   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9101     return false;
9102 
9103   const Expr *Arg = getDataArg(argIndex);
9104   if (!Arg)
9105     return true;
9106 
9107   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9108 }
9109 
9110 static bool requiresParensToAddCast(const Expr *E) {
9111   // FIXME: We should have a general way to reason about operator
9112   // precedence and whether parens are actually needed here.
9113   // Take care of a few common cases where they aren't.
9114   const Expr *Inside = E->IgnoreImpCasts();
9115   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9116     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9117 
9118   switch (Inside->getStmtClass()) {
9119   case Stmt::ArraySubscriptExprClass:
9120   case Stmt::CallExprClass:
9121   case Stmt::CharacterLiteralClass:
9122   case Stmt::CXXBoolLiteralExprClass:
9123   case Stmt::DeclRefExprClass:
9124   case Stmt::FloatingLiteralClass:
9125   case Stmt::IntegerLiteralClass:
9126   case Stmt::MemberExprClass:
9127   case Stmt::ObjCArrayLiteralClass:
9128   case Stmt::ObjCBoolLiteralExprClass:
9129   case Stmt::ObjCBoxedExprClass:
9130   case Stmt::ObjCDictionaryLiteralClass:
9131   case Stmt::ObjCEncodeExprClass:
9132   case Stmt::ObjCIvarRefExprClass:
9133   case Stmt::ObjCMessageExprClass:
9134   case Stmt::ObjCPropertyRefExprClass:
9135   case Stmt::ObjCStringLiteralClass:
9136   case Stmt::ObjCSubscriptRefExprClass:
9137   case Stmt::ParenExprClass:
9138   case Stmt::StringLiteralClass:
9139   case Stmt::UnaryOperatorClass:
9140     return false;
9141   default:
9142     return true;
9143   }
9144 }
9145 
9146 static std::pair<QualType, StringRef>
9147 shouldNotPrintDirectly(const ASTContext &Context,
9148                        QualType IntendedTy,
9149                        const Expr *E) {
9150   // Use a 'while' to peel off layers of typedefs.
9151   QualType TyTy = IntendedTy;
9152   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9153     StringRef Name = UserTy->getDecl()->getName();
9154     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9155       .Case("CFIndex", Context.getNSIntegerType())
9156       .Case("NSInteger", Context.getNSIntegerType())
9157       .Case("NSUInteger", Context.getNSUIntegerType())
9158       .Case("SInt32", Context.IntTy)
9159       .Case("UInt32", Context.UnsignedIntTy)
9160       .Default(QualType());
9161 
9162     if (!CastTy.isNull())
9163       return std::make_pair(CastTy, Name);
9164 
9165     TyTy = UserTy->desugar();
9166   }
9167 
9168   // Strip parens if necessary.
9169   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9170     return shouldNotPrintDirectly(Context,
9171                                   PE->getSubExpr()->getType(),
9172                                   PE->getSubExpr());
9173 
9174   // If this is a conditional expression, then its result type is constructed
9175   // via usual arithmetic conversions and thus there might be no necessary
9176   // typedef sugar there.  Recurse to operands to check for NSInteger &
9177   // Co. usage condition.
9178   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9179     QualType TrueTy, FalseTy;
9180     StringRef TrueName, FalseName;
9181 
9182     std::tie(TrueTy, TrueName) =
9183       shouldNotPrintDirectly(Context,
9184                              CO->getTrueExpr()->getType(),
9185                              CO->getTrueExpr());
9186     std::tie(FalseTy, FalseName) =
9187       shouldNotPrintDirectly(Context,
9188                              CO->getFalseExpr()->getType(),
9189                              CO->getFalseExpr());
9190 
9191     if (TrueTy == FalseTy)
9192       return std::make_pair(TrueTy, TrueName);
9193     else if (TrueTy.isNull())
9194       return std::make_pair(FalseTy, FalseName);
9195     else if (FalseTy.isNull())
9196       return std::make_pair(TrueTy, TrueName);
9197   }
9198 
9199   return std::make_pair(QualType(), StringRef());
9200 }
9201 
9202 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9203 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9204 /// type do not count.
9205 static bool
9206 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9207   QualType From = ICE->getSubExpr()->getType();
9208   QualType To = ICE->getType();
9209   // It's an integer promotion if the destination type is the promoted
9210   // source type.
9211   if (ICE->getCastKind() == CK_IntegralCast &&
9212       From->isPromotableIntegerType() &&
9213       S.Context.getPromotedIntegerType(From) == To)
9214     return true;
9215   // Look through vector types, since we do default argument promotion for
9216   // those in OpenCL.
9217   if (const auto *VecTy = From->getAs<ExtVectorType>())
9218     From = VecTy->getElementType();
9219   if (const auto *VecTy = To->getAs<ExtVectorType>())
9220     To = VecTy->getElementType();
9221   // It's a floating promotion if the source type is a lower rank.
9222   return ICE->getCastKind() == CK_FloatingCast &&
9223          S.Context.getFloatingTypeOrder(From, To) < 0;
9224 }
9225 
9226 bool
9227 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9228                                     const char *StartSpecifier,
9229                                     unsigned SpecifierLen,
9230                                     const Expr *E) {
9231   using namespace analyze_format_string;
9232   using namespace analyze_printf;
9233 
9234   // Now type check the data expression that matches the
9235   // format specifier.
9236   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9237   if (!AT.isValid())
9238     return true;
9239 
9240   QualType ExprTy = E->getType();
9241   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9242     ExprTy = TET->getUnderlyingExpr()->getType();
9243   }
9244 
9245   // Diagnose attempts to print a boolean value as a character. Unlike other
9246   // -Wformat diagnostics, this is fine from a type perspective, but it still
9247   // doesn't make sense.
9248   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9249       E->isKnownToHaveBooleanValue()) {
9250     const CharSourceRange &CSR =
9251         getSpecifierRange(StartSpecifier, SpecifierLen);
9252     SmallString<4> FSString;
9253     llvm::raw_svector_ostream os(FSString);
9254     FS.toString(os);
9255     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9256                              << FSString,
9257                          E->getExprLoc(), false, CSR);
9258     return true;
9259   }
9260 
9261   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9262   if (Match == analyze_printf::ArgType::Match)
9263     return true;
9264 
9265   // Look through argument promotions for our error message's reported type.
9266   // This includes the integral and floating promotions, but excludes array
9267   // and function pointer decay (seeing that an argument intended to be a
9268   // string has type 'char [6]' is probably more confusing than 'char *') and
9269   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9270   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9271     if (isArithmeticArgumentPromotion(S, ICE)) {
9272       E = ICE->getSubExpr();
9273       ExprTy = E->getType();
9274 
9275       // Check if we didn't match because of an implicit cast from a 'char'
9276       // or 'short' to an 'int'.  This is done because printf is a varargs
9277       // function.
9278       if (ICE->getType() == S.Context.IntTy ||
9279           ICE->getType() == S.Context.UnsignedIntTy) {
9280         // All further checking is done on the subexpression
9281         const analyze_printf::ArgType::MatchKind ImplicitMatch =
9282             AT.matchesType(S.Context, ExprTy);
9283         if (ImplicitMatch == analyze_printf::ArgType::Match)
9284           return true;
9285         if (ImplicitMatch == ArgType::NoMatchPedantic ||
9286             ImplicitMatch == ArgType::NoMatchTypeConfusion)
9287           Match = ImplicitMatch;
9288       }
9289     }
9290   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9291     // Special case for 'a', which has type 'int' in C.
9292     // Note, however, that we do /not/ want to treat multibyte constants like
9293     // 'MooV' as characters! This form is deprecated but still exists. In
9294     // addition, don't treat expressions as of type 'char' if one byte length
9295     // modifier is provided.
9296     if (ExprTy == S.Context.IntTy &&
9297         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9298       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9299         ExprTy = S.Context.CharTy;
9300   }
9301 
9302   // Look through enums to their underlying type.
9303   bool IsEnum = false;
9304   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9305     ExprTy = EnumTy->getDecl()->getIntegerType();
9306     IsEnum = true;
9307   }
9308 
9309   // %C in an Objective-C context prints a unichar, not a wchar_t.
9310   // If the argument is an integer of some kind, believe the %C and suggest
9311   // a cast instead of changing the conversion specifier.
9312   QualType IntendedTy = ExprTy;
9313   if (isObjCContext() &&
9314       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9315     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9316         !ExprTy->isCharType()) {
9317       // 'unichar' is defined as a typedef of unsigned short, but we should
9318       // prefer using the typedef if it is visible.
9319       IntendedTy = S.Context.UnsignedShortTy;
9320 
9321       // While we are here, check if the value is an IntegerLiteral that happens
9322       // to be within the valid range.
9323       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9324         const llvm::APInt &V = IL->getValue();
9325         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9326           return true;
9327       }
9328 
9329       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9330                           Sema::LookupOrdinaryName);
9331       if (S.LookupName(Result, S.getCurScope())) {
9332         NamedDecl *ND = Result.getFoundDecl();
9333         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9334           if (TD->getUnderlyingType() == IntendedTy)
9335             IntendedTy = S.Context.getTypedefType(TD);
9336       }
9337     }
9338   }
9339 
9340   // Special-case some of Darwin's platform-independence types by suggesting
9341   // casts to primitive types that are known to be large enough.
9342   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9343   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9344     QualType CastTy;
9345     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9346     if (!CastTy.isNull()) {
9347       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9348       // (long in ASTContext). Only complain to pedants.
9349       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9350           (AT.isSizeT() || AT.isPtrdiffT()) &&
9351           AT.matchesType(S.Context, CastTy))
9352         Match = ArgType::NoMatchPedantic;
9353       IntendedTy = CastTy;
9354       ShouldNotPrintDirectly = true;
9355     }
9356   }
9357 
9358   // We may be able to offer a FixItHint if it is a supported type.
9359   PrintfSpecifier fixedFS = FS;
9360   bool Success =
9361       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9362 
9363   if (Success) {
9364     // Get the fix string from the fixed format specifier
9365     SmallString<16> buf;
9366     llvm::raw_svector_ostream os(buf);
9367     fixedFS.toString(os);
9368 
9369     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9370 
9371     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9372       unsigned Diag;
9373       switch (Match) {
9374       case ArgType::Match: llvm_unreachable("expected non-matching");
9375       case ArgType::NoMatchPedantic:
9376         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9377         break;
9378       case ArgType::NoMatchTypeConfusion:
9379         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9380         break;
9381       case ArgType::NoMatch:
9382         Diag = diag::warn_format_conversion_argument_type_mismatch;
9383         break;
9384       }
9385 
9386       // In this case, the specifier is wrong and should be changed to match
9387       // the argument.
9388       EmitFormatDiagnostic(S.PDiag(Diag)
9389                                << AT.getRepresentativeTypeName(S.Context)
9390                                << IntendedTy << IsEnum << E->getSourceRange(),
9391                            E->getBeginLoc(),
9392                            /*IsStringLocation*/ false, SpecRange,
9393                            FixItHint::CreateReplacement(SpecRange, os.str()));
9394     } else {
9395       // The canonical type for formatting this value is different from the
9396       // actual type of the expression. (This occurs, for example, with Darwin's
9397       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9398       // should be printed as 'long' for 64-bit compatibility.)
9399       // Rather than emitting a normal format/argument mismatch, we want to
9400       // add a cast to the recommended type (and correct the format string
9401       // if necessary).
9402       SmallString<16> CastBuf;
9403       llvm::raw_svector_ostream CastFix(CastBuf);
9404       CastFix << "(";
9405       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9406       CastFix << ")";
9407 
9408       SmallVector<FixItHint,4> Hints;
9409       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9410         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9411 
9412       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9413         // If there's already a cast present, just replace it.
9414         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9415         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9416 
9417       } else if (!requiresParensToAddCast(E)) {
9418         // If the expression has high enough precedence,
9419         // just write the C-style cast.
9420         Hints.push_back(
9421             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9422       } else {
9423         // Otherwise, add parens around the expression as well as the cast.
9424         CastFix << "(";
9425         Hints.push_back(
9426             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9427 
9428         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9429         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9430       }
9431 
9432       if (ShouldNotPrintDirectly) {
9433         // The expression has a type that should not be printed directly.
9434         // We extract the name from the typedef because we don't want to show
9435         // the underlying type in the diagnostic.
9436         StringRef Name;
9437         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9438           Name = TypedefTy->getDecl()->getName();
9439         else
9440           Name = CastTyName;
9441         unsigned Diag = Match == ArgType::NoMatchPedantic
9442                             ? diag::warn_format_argument_needs_cast_pedantic
9443                             : diag::warn_format_argument_needs_cast;
9444         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9445                                            << E->getSourceRange(),
9446                              E->getBeginLoc(), /*IsStringLocation=*/false,
9447                              SpecRange, Hints);
9448       } else {
9449         // In this case, the expression could be printed using a different
9450         // specifier, but we've decided that the specifier is probably correct
9451         // and we should cast instead. Just use the normal warning message.
9452         EmitFormatDiagnostic(
9453             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9454                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9455                 << E->getSourceRange(),
9456             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9457       }
9458     }
9459   } else {
9460     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9461                                                    SpecifierLen);
9462     // Since the warning for passing non-POD types to variadic functions
9463     // was deferred until now, we emit a warning for non-POD
9464     // arguments here.
9465     switch (S.isValidVarArgType(ExprTy)) {
9466     case Sema::VAK_Valid:
9467     case Sema::VAK_ValidInCXX11: {
9468       unsigned Diag;
9469       switch (Match) {
9470       case ArgType::Match: llvm_unreachable("expected non-matching");
9471       case ArgType::NoMatchPedantic:
9472         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9473         break;
9474       case ArgType::NoMatchTypeConfusion:
9475         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9476         break;
9477       case ArgType::NoMatch:
9478         Diag = diag::warn_format_conversion_argument_type_mismatch;
9479         break;
9480       }
9481 
9482       EmitFormatDiagnostic(
9483           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9484                         << IsEnum << CSR << E->getSourceRange(),
9485           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9486       break;
9487     }
9488     case Sema::VAK_Undefined:
9489     case Sema::VAK_MSVCUndefined:
9490       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9491                                << S.getLangOpts().CPlusPlus11 << ExprTy
9492                                << CallType
9493                                << AT.getRepresentativeTypeName(S.Context) << CSR
9494                                << E->getSourceRange(),
9495                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9496       checkForCStrMembers(AT, E);
9497       break;
9498 
9499     case Sema::VAK_Invalid:
9500       if (ExprTy->isObjCObjectType())
9501         EmitFormatDiagnostic(
9502             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9503                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9504                 << AT.getRepresentativeTypeName(S.Context) << CSR
9505                 << E->getSourceRange(),
9506             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9507       else
9508         // FIXME: If this is an initializer list, suggest removing the braces
9509         // or inserting a cast to the target type.
9510         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9511             << isa<InitListExpr>(E) << ExprTy << CallType
9512             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9513       break;
9514     }
9515 
9516     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
9517            "format string specifier index out of range");
9518     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9519   }
9520 
9521   return true;
9522 }
9523 
9524 //===--- CHECK: Scanf format string checking ------------------------------===//
9525 
9526 namespace {
9527 
9528 class CheckScanfHandler : public CheckFormatHandler {
9529 public:
9530   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9531                     const Expr *origFormatExpr, Sema::FormatStringType type,
9532                     unsigned firstDataArg, unsigned numDataArgs,
9533                     const char *beg, bool hasVAListArg,
9534                     ArrayRef<const Expr *> Args, unsigned formatIdx,
9535                     bool inFunctionCall, Sema::VariadicCallType CallType,
9536                     llvm::SmallBitVector &CheckedVarArgs,
9537                     UncoveredArgHandler &UncoveredArg)
9538       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9539                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
9540                            inFunctionCall, CallType, CheckedVarArgs,
9541                            UncoveredArg) {}
9542 
9543   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9544                             const char *startSpecifier,
9545                             unsigned specifierLen) override;
9546 
9547   bool HandleInvalidScanfConversionSpecifier(
9548           const analyze_scanf::ScanfSpecifier &FS,
9549           const char *startSpecifier,
9550           unsigned specifierLen) override;
9551 
9552   void HandleIncompleteScanList(const char *start, const char *end) override;
9553 };
9554 
9555 } // namespace
9556 
9557 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9558                                                  const char *end) {
9559   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9560                        getLocationOfByte(end), /*IsStringLocation*/true,
9561                        getSpecifierRange(start, end - start));
9562 }
9563 
9564 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9565                                         const analyze_scanf::ScanfSpecifier &FS,
9566                                         const char *startSpecifier,
9567                                         unsigned specifierLen) {
9568   const analyze_scanf::ScanfConversionSpecifier &CS =
9569     FS.getConversionSpecifier();
9570 
9571   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9572                                           getLocationOfByte(CS.getStart()),
9573                                           startSpecifier, specifierLen,
9574                                           CS.getStart(), CS.getLength());
9575 }
9576 
9577 bool CheckScanfHandler::HandleScanfSpecifier(
9578                                        const analyze_scanf::ScanfSpecifier &FS,
9579                                        const char *startSpecifier,
9580                                        unsigned specifierLen) {
9581   using namespace analyze_scanf;
9582   using namespace analyze_format_string;
9583 
9584   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9585 
9586   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
9587   // be used to decide if we are using positional arguments consistently.
9588   if (FS.consumesDataArgument()) {
9589     if (atFirstArg) {
9590       atFirstArg = false;
9591       usesPositionalArgs = FS.usesPositionalArg();
9592     }
9593     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9594       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9595                                         startSpecifier, specifierLen);
9596       return false;
9597     }
9598   }
9599 
9600   // Check if the field with is non-zero.
9601   const OptionalAmount &Amt = FS.getFieldWidth();
9602   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9603     if (Amt.getConstantAmount() == 0) {
9604       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9605                                                    Amt.getConstantLength());
9606       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9607                            getLocationOfByte(Amt.getStart()),
9608                            /*IsStringLocation*/true, R,
9609                            FixItHint::CreateRemoval(R));
9610     }
9611   }
9612 
9613   if (!FS.consumesDataArgument()) {
9614     // FIXME: Technically specifying a precision or field width here
9615     // makes no sense.  Worth issuing a warning at some point.
9616     return true;
9617   }
9618 
9619   // Consume the argument.
9620   unsigned argIndex = FS.getArgIndex();
9621   if (argIndex < NumDataArgs) {
9622       // The check to see if the argIndex is valid will come later.
9623       // We set the bit here because we may exit early from this
9624       // function if we encounter some other error.
9625     CoveredArgs.set(argIndex);
9626   }
9627 
9628   // Check the length modifier is valid with the given conversion specifier.
9629   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9630                                  S.getLangOpts()))
9631     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9632                                 diag::warn_format_nonsensical_length);
9633   else if (!FS.hasStandardLengthModifier())
9634     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9635   else if (!FS.hasStandardLengthConversionCombination())
9636     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9637                                 diag::warn_format_non_standard_conversion_spec);
9638 
9639   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9640     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9641 
9642   // The remaining checks depend on the data arguments.
9643   if (HasVAListArg)
9644     return true;
9645 
9646   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9647     return false;
9648 
9649   // Check that the argument type matches the format specifier.
9650   const Expr *Ex = getDataArg(argIndex);
9651   if (!Ex)
9652     return true;
9653 
9654   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9655 
9656   if (!AT.isValid()) {
9657     return true;
9658   }
9659 
9660   analyze_format_string::ArgType::MatchKind Match =
9661       AT.matchesType(S.Context, Ex->getType());
9662   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9663   if (Match == analyze_format_string::ArgType::Match)
9664     return true;
9665 
9666   ScanfSpecifier fixedFS = FS;
9667   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9668                                  S.getLangOpts(), S.Context);
9669 
9670   unsigned Diag =
9671       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9672                : diag::warn_format_conversion_argument_type_mismatch;
9673 
9674   if (Success) {
9675     // Get the fix string from the fixed format specifier.
9676     SmallString<128> buf;
9677     llvm::raw_svector_ostream os(buf);
9678     fixedFS.toString(os);
9679 
9680     EmitFormatDiagnostic(
9681         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9682                       << Ex->getType() << false << Ex->getSourceRange(),
9683         Ex->getBeginLoc(),
9684         /*IsStringLocation*/ false,
9685         getSpecifierRange(startSpecifier, specifierLen),
9686         FixItHint::CreateReplacement(
9687             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9688   } else {
9689     EmitFormatDiagnostic(S.PDiag(Diag)
9690                              << AT.getRepresentativeTypeName(S.Context)
9691                              << Ex->getType() << false << Ex->getSourceRange(),
9692                          Ex->getBeginLoc(),
9693                          /*IsStringLocation*/ false,
9694                          getSpecifierRange(startSpecifier, specifierLen));
9695   }
9696 
9697   return true;
9698 }
9699 
9700 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9701                               const Expr *OrigFormatExpr,
9702                               ArrayRef<const Expr *> Args,
9703                               bool HasVAListArg, unsigned format_idx,
9704                               unsigned firstDataArg,
9705                               Sema::FormatStringType Type,
9706                               bool inFunctionCall,
9707                               Sema::VariadicCallType CallType,
9708                               llvm::SmallBitVector &CheckedVarArgs,
9709                               UncoveredArgHandler &UncoveredArg,
9710                               bool IgnoreStringsWithoutSpecifiers) {
9711   // CHECK: is the format string a wide literal?
9712   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9713     CheckFormatHandler::EmitFormatDiagnostic(
9714         S, inFunctionCall, Args[format_idx],
9715         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9716         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9717     return;
9718   }
9719 
9720   // Str - The format string.  NOTE: this is NOT null-terminated!
9721   StringRef StrRef = FExpr->getString();
9722   const char *Str = StrRef.data();
9723   // Account for cases where the string literal is truncated in a declaration.
9724   const ConstantArrayType *T =
9725     S.Context.getAsConstantArrayType(FExpr->getType());
9726   assert(T && "String literal not of constant array type!");
9727   size_t TypeSize = T->getSize().getZExtValue();
9728   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9729   const unsigned numDataArgs = Args.size() - firstDataArg;
9730 
9731   if (IgnoreStringsWithoutSpecifiers &&
9732       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9733           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9734     return;
9735 
9736   // Emit a warning if the string literal is truncated and does not contain an
9737   // embedded null character.
9738   if (TypeSize <= StrRef.size() &&
9739       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9740     CheckFormatHandler::EmitFormatDiagnostic(
9741         S, inFunctionCall, Args[format_idx],
9742         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9743         FExpr->getBeginLoc(),
9744         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9745     return;
9746   }
9747 
9748   // CHECK: empty format string?
9749   if (StrLen == 0 && numDataArgs > 0) {
9750     CheckFormatHandler::EmitFormatDiagnostic(
9751         S, inFunctionCall, Args[format_idx],
9752         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9753         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9754     return;
9755   }
9756 
9757   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9758       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9759       Type == Sema::FST_OSTrace) {
9760     CheckPrintfHandler H(
9761         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9762         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9763         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9764         CheckedVarArgs, UncoveredArg);
9765 
9766     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9767                                                   S.getLangOpts(),
9768                                                   S.Context.getTargetInfo(),
9769                                             Type == Sema::FST_FreeBSDKPrintf))
9770       H.DoneProcessing();
9771   } else if (Type == Sema::FST_Scanf) {
9772     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9773                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9774                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9775 
9776     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9777                                                  S.getLangOpts(),
9778                                                  S.Context.getTargetInfo()))
9779       H.DoneProcessing();
9780   } // TODO: handle other formats
9781 }
9782 
9783 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9784   // Str - The format string.  NOTE: this is NOT null-terminated!
9785   StringRef StrRef = FExpr->getString();
9786   const char *Str = StrRef.data();
9787   // Account for cases where the string literal is truncated in a declaration.
9788   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9789   assert(T && "String literal not of constant array type!");
9790   size_t TypeSize = T->getSize().getZExtValue();
9791   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9792   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9793                                                          getLangOpts(),
9794                                                          Context.getTargetInfo());
9795 }
9796 
9797 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9798 
9799 // Returns the related absolute value function that is larger, of 0 if one
9800 // does not exist.
9801 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9802   switch (AbsFunction) {
9803   default:
9804     return 0;
9805 
9806   case Builtin::BI__builtin_abs:
9807     return Builtin::BI__builtin_labs;
9808   case Builtin::BI__builtin_labs:
9809     return Builtin::BI__builtin_llabs;
9810   case Builtin::BI__builtin_llabs:
9811     return 0;
9812 
9813   case Builtin::BI__builtin_fabsf:
9814     return Builtin::BI__builtin_fabs;
9815   case Builtin::BI__builtin_fabs:
9816     return Builtin::BI__builtin_fabsl;
9817   case Builtin::BI__builtin_fabsl:
9818     return 0;
9819 
9820   case Builtin::BI__builtin_cabsf:
9821     return Builtin::BI__builtin_cabs;
9822   case Builtin::BI__builtin_cabs:
9823     return Builtin::BI__builtin_cabsl;
9824   case Builtin::BI__builtin_cabsl:
9825     return 0;
9826 
9827   case Builtin::BIabs:
9828     return Builtin::BIlabs;
9829   case Builtin::BIlabs:
9830     return Builtin::BIllabs;
9831   case Builtin::BIllabs:
9832     return 0;
9833 
9834   case Builtin::BIfabsf:
9835     return Builtin::BIfabs;
9836   case Builtin::BIfabs:
9837     return Builtin::BIfabsl;
9838   case Builtin::BIfabsl:
9839     return 0;
9840 
9841   case Builtin::BIcabsf:
9842    return Builtin::BIcabs;
9843   case Builtin::BIcabs:
9844     return Builtin::BIcabsl;
9845   case Builtin::BIcabsl:
9846     return 0;
9847   }
9848 }
9849 
9850 // Returns the argument type of the absolute value function.
9851 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9852                                              unsigned AbsType) {
9853   if (AbsType == 0)
9854     return QualType();
9855 
9856   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9857   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9858   if (Error != ASTContext::GE_None)
9859     return QualType();
9860 
9861   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9862   if (!FT)
9863     return QualType();
9864 
9865   if (FT->getNumParams() != 1)
9866     return QualType();
9867 
9868   return FT->getParamType(0);
9869 }
9870 
9871 // Returns the best absolute value function, or zero, based on type and
9872 // current absolute value function.
9873 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9874                                    unsigned AbsFunctionKind) {
9875   unsigned BestKind = 0;
9876   uint64_t ArgSize = Context.getTypeSize(ArgType);
9877   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9878        Kind = getLargerAbsoluteValueFunction(Kind)) {
9879     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9880     if (Context.getTypeSize(ParamType) >= ArgSize) {
9881       if (BestKind == 0)
9882         BestKind = Kind;
9883       else if (Context.hasSameType(ParamType, ArgType)) {
9884         BestKind = Kind;
9885         break;
9886       }
9887     }
9888   }
9889   return BestKind;
9890 }
9891 
9892 enum AbsoluteValueKind {
9893   AVK_Integer,
9894   AVK_Floating,
9895   AVK_Complex
9896 };
9897 
9898 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9899   if (T->isIntegralOrEnumerationType())
9900     return AVK_Integer;
9901   if (T->isRealFloatingType())
9902     return AVK_Floating;
9903   if (T->isAnyComplexType())
9904     return AVK_Complex;
9905 
9906   llvm_unreachable("Type not integer, floating, or complex");
9907 }
9908 
9909 // Changes the absolute value function to a different type.  Preserves whether
9910 // the function is a builtin.
9911 static unsigned changeAbsFunction(unsigned AbsKind,
9912                                   AbsoluteValueKind ValueKind) {
9913   switch (ValueKind) {
9914   case AVK_Integer:
9915     switch (AbsKind) {
9916     default:
9917       return 0;
9918     case Builtin::BI__builtin_fabsf:
9919     case Builtin::BI__builtin_fabs:
9920     case Builtin::BI__builtin_fabsl:
9921     case Builtin::BI__builtin_cabsf:
9922     case Builtin::BI__builtin_cabs:
9923     case Builtin::BI__builtin_cabsl:
9924       return Builtin::BI__builtin_abs;
9925     case Builtin::BIfabsf:
9926     case Builtin::BIfabs:
9927     case Builtin::BIfabsl:
9928     case Builtin::BIcabsf:
9929     case Builtin::BIcabs:
9930     case Builtin::BIcabsl:
9931       return Builtin::BIabs;
9932     }
9933   case AVK_Floating:
9934     switch (AbsKind) {
9935     default:
9936       return 0;
9937     case Builtin::BI__builtin_abs:
9938     case Builtin::BI__builtin_labs:
9939     case Builtin::BI__builtin_llabs:
9940     case Builtin::BI__builtin_cabsf:
9941     case Builtin::BI__builtin_cabs:
9942     case Builtin::BI__builtin_cabsl:
9943       return Builtin::BI__builtin_fabsf;
9944     case Builtin::BIabs:
9945     case Builtin::BIlabs:
9946     case Builtin::BIllabs:
9947     case Builtin::BIcabsf:
9948     case Builtin::BIcabs:
9949     case Builtin::BIcabsl:
9950       return Builtin::BIfabsf;
9951     }
9952   case AVK_Complex:
9953     switch (AbsKind) {
9954     default:
9955       return 0;
9956     case Builtin::BI__builtin_abs:
9957     case Builtin::BI__builtin_labs:
9958     case Builtin::BI__builtin_llabs:
9959     case Builtin::BI__builtin_fabsf:
9960     case Builtin::BI__builtin_fabs:
9961     case Builtin::BI__builtin_fabsl:
9962       return Builtin::BI__builtin_cabsf;
9963     case Builtin::BIabs:
9964     case Builtin::BIlabs:
9965     case Builtin::BIllabs:
9966     case Builtin::BIfabsf:
9967     case Builtin::BIfabs:
9968     case Builtin::BIfabsl:
9969       return Builtin::BIcabsf;
9970     }
9971   }
9972   llvm_unreachable("Unable to convert function");
9973 }
9974 
9975 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9976   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9977   if (!FnInfo)
9978     return 0;
9979 
9980   switch (FDecl->getBuiltinID()) {
9981   default:
9982     return 0;
9983   case Builtin::BI__builtin_abs:
9984   case Builtin::BI__builtin_fabs:
9985   case Builtin::BI__builtin_fabsf:
9986   case Builtin::BI__builtin_fabsl:
9987   case Builtin::BI__builtin_labs:
9988   case Builtin::BI__builtin_llabs:
9989   case Builtin::BI__builtin_cabs:
9990   case Builtin::BI__builtin_cabsf:
9991   case Builtin::BI__builtin_cabsl:
9992   case Builtin::BIabs:
9993   case Builtin::BIlabs:
9994   case Builtin::BIllabs:
9995   case Builtin::BIfabs:
9996   case Builtin::BIfabsf:
9997   case Builtin::BIfabsl:
9998   case Builtin::BIcabs:
9999   case Builtin::BIcabsf:
10000   case Builtin::BIcabsl:
10001     return FDecl->getBuiltinID();
10002   }
10003   llvm_unreachable("Unknown Builtin type");
10004 }
10005 
10006 // If the replacement is valid, emit a note with replacement function.
10007 // Additionally, suggest including the proper header if not already included.
10008 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10009                             unsigned AbsKind, QualType ArgType) {
10010   bool EmitHeaderHint = true;
10011   const char *HeaderName = nullptr;
10012   const char *FunctionName = nullptr;
10013   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10014     FunctionName = "std::abs";
10015     if (ArgType->isIntegralOrEnumerationType()) {
10016       HeaderName = "cstdlib";
10017     } else if (ArgType->isRealFloatingType()) {
10018       HeaderName = "cmath";
10019     } else {
10020       llvm_unreachable("Invalid Type");
10021     }
10022 
10023     // Lookup all std::abs
10024     if (NamespaceDecl *Std = S.getStdNamespace()) {
10025       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10026       R.suppressDiagnostics();
10027       S.LookupQualifiedName(R, Std);
10028 
10029       for (const auto *I : R) {
10030         const FunctionDecl *FDecl = nullptr;
10031         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10032           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10033         } else {
10034           FDecl = dyn_cast<FunctionDecl>(I);
10035         }
10036         if (!FDecl)
10037           continue;
10038 
10039         // Found std::abs(), check that they are the right ones.
10040         if (FDecl->getNumParams() != 1)
10041           continue;
10042 
10043         // Check that the parameter type can handle the argument.
10044         QualType ParamType = FDecl->getParamDecl(0)->getType();
10045         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10046             S.Context.getTypeSize(ArgType) <=
10047                 S.Context.getTypeSize(ParamType)) {
10048           // Found a function, don't need the header hint.
10049           EmitHeaderHint = false;
10050           break;
10051         }
10052       }
10053     }
10054   } else {
10055     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10056     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10057 
10058     if (HeaderName) {
10059       DeclarationName DN(&S.Context.Idents.get(FunctionName));
10060       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10061       R.suppressDiagnostics();
10062       S.LookupName(R, S.getCurScope());
10063 
10064       if (R.isSingleResult()) {
10065         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10066         if (FD && FD->getBuiltinID() == AbsKind) {
10067           EmitHeaderHint = false;
10068         } else {
10069           return;
10070         }
10071       } else if (!R.empty()) {
10072         return;
10073       }
10074     }
10075   }
10076 
10077   S.Diag(Loc, diag::note_replace_abs_function)
10078       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10079 
10080   if (!HeaderName)
10081     return;
10082 
10083   if (!EmitHeaderHint)
10084     return;
10085 
10086   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10087                                                     << FunctionName;
10088 }
10089 
10090 template <std::size_t StrLen>
10091 static bool IsStdFunction(const FunctionDecl *FDecl,
10092                           const char (&Str)[StrLen]) {
10093   if (!FDecl)
10094     return false;
10095   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10096     return false;
10097   if (!FDecl->isInStdNamespace())
10098     return false;
10099 
10100   return true;
10101 }
10102 
10103 // Warn when using the wrong abs() function.
10104 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10105                                       const FunctionDecl *FDecl) {
10106   if (Call->getNumArgs() != 1)
10107     return;
10108 
10109   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10110   bool IsStdAbs = IsStdFunction(FDecl, "abs");
10111   if (AbsKind == 0 && !IsStdAbs)
10112     return;
10113 
10114   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10115   QualType ParamType = Call->getArg(0)->getType();
10116 
10117   // Unsigned types cannot be negative.  Suggest removing the absolute value
10118   // function call.
10119   if (ArgType->isUnsignedIntegerType()) {
10120     const char *FunctionName =
10121         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10122     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10123     Diag(Call->getExprLoc(), diag::note_remove_abs)
10124         << FunctionName
10125         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10126     return;
10127   }
10128 
10129   // Taking the absolute value of a pointer is very suspicious, they probably
10130   // wanted to index into an array, dereference a pointer, call a function, etc.
10131   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10132     unsigned DiagType = 0;
10133     if (ArgType->isFunctionType())
10134       DiagType = 1;
10135     else if (ArgType->isArrayType())
10136       DiagType = 2;
10137 
10138     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10139     return;
10140   }
10141 
10142   // std::abs has overloads which prevent most of the absolute value problems
10143   // from occurring.
10144   if (IsStdAbs)
10145     return;
10146 
10147   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10148   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10149 
10150   // The argument and parameter are the same kind.  Check if they are the right
10151   // size.
10152   if (ArgValueKind == ParamValueKind) {
10153     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10154       return;
10155 
10156     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10157     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10158         << FDecl << ArgType << ParamType;
10159 
10160     if (NewAbsKind == 0)
10161       return;
10162 
10163     emitReplacement(*this, Call->getExprLoc(),
10164                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10165     return;
10166   }
10167 
10168   // ArgValueKind != ParamValueKind
10169   // The wrong type of absolute value function was used.  Attempt to find the
10170   // proper one.
10171   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10172   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10173   if (NewAbsKind == 0)
10174     return;
10175 
10176   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10177       << FDecl << ParamValueKind << ArgValueKind;
10178 
10179   emitReplacement(*this, Call->getExprLoc(),
10180                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10181 }
10182 
10183 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10184 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10185                                 const FunctionDecl *FDecl) {
10186   if (!Call || !FDecl) return;
10187 
10188   // Ignore template specializations and macros.
10189   if (inTemplateInstantiation()) return;
10190   if (Call->getExprLoc().isMacroID()) return;
10191 
10192   // Only care about the one template argument, two function parameter std::max
10193   if (Call->getNumArgs() != 2) return;
10194   if (!IsStdFunction(FDecl, "max")) return;
10195   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10196   if (!ArgList) return;
10197   if (ArgList->size() != 1) return;
10198 
10199   // Check that template type argument is unsigned integer.
10200   const auto& TA = ArgList->get(0);
10201   if (TA.getKind() != TemplateArgument::Type) return;
10202   QualType ArgType = TA.getAsType();
10203   if (!ArgType->isUnsignedIntegerType()) return;
10204 
10205   // See if either argument is a literal zero.
10206   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10207     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10208     if (!MTE) return false;
10209     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10210     if (!Num) return false;
10211     if (Num->getValue() != 0) return false;
10212     return true;
10213   };
10214 
10215   const Expr *FirstArg = Call->getArg(0);
10216   const Expr *SecondArg = Call->getArg(1);
10217   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10218   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10219 
10220   // Only warn when exactly one argument is zero.
10221   if (IsFirstArgZero == IsSecondArgZero) return;
10222 
10223   SourceRange FirstRange = FirstArg->getSourceRange();
10224   SourceRange SecondRange = SecondArg->getSourceRange();
10225 
10226   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10227 
10228   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10229       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10230 
10231   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10232   SourceRange RemovalRange;
10233   if (IsFirstArgZero) {
10234     RemovalRange = SourceRange(FirstRange.getBegin(),
10235                                SecondRange.getBegin().getLocWithOffset(-1));
10236   } else {
10237     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10238                                SecondRange.getEnd());
10239   }
10240 
10241   Diag(Call->getExprLoc(), diag::note_remove_max_call)
10242         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10243         << FixItHint::CreateRemoval(RemovalRange);
10244 }
10245 
10246 //===--- CHECK: Standard memory functions ---------------------------------===//
10247 
10248 /// Takes the expression passed to the size_t parameter of functions
10249 /// such as memcmp, strncat, etc and warns if it's a comparison.
10250 ///
10251 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10252 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10253                                            IdentifierInfo *FnName,
10254                                            SourceLocation FnLoc,
10255                                            SourceLocation RParenLoc) {
10256   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10257   if (!Size)
10258     return false;
10259 
10260   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10261   if (!Size->isComparisonOp() && !Size->isLogicalOp())
10262     return false;
10263 
10264   SourceRange SizeRange = Size->getSourceRange();
10265   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10266       << SizeRange << FnName;
10267   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10268       << FnName
10269       << FixItHint::CreateInsertion(
10270              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10271       << FixItHint::CreateRemoval(RParenLoc);
10272   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10273       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10274       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10275                                     ")");
10276 
10277   return true;
10278 }
10279 
10280 /// Determine whether the given type is or contains a dynamic class type
10281 /// (e.g., whether it has a vtable).
10282 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10283                                                      bool &IsContained) {
10284   // Look through array types while ignoring qualifiers.
10285   const Type *Ty = T->getBaseElementTypeUnsafe();
10286   IsContained = false;
10287 
10288   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10289   RD = RD ? RD->getDefinition() : nullptr;
10290   if (!RD || RD->isInvalidDecl())
10291     return nullptr;
10292 
10293   if (RD->isDynamicClass())
10294     return RD;
10295 
10296   // Check all the fields.  If any bases were dynamic, the class is dynamic.
10297   // It's impossible for a class to transitively contain itself by value, so
10298   // infinite recursion is impossible.
10299   for (auto *FD : RD->fields()) {
10300     bool SubContained;
10301     if (const CXXRecordDecl *ContainedRD =
10302             getContainedDynamicClass(FD->getType(), SubContained)) {
10303       IsContained = true;
10304       return ContainedRD;
10305     }
10306   }
10307 
10308   return nullptr;
10309 }
10310 
10311 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10312   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10313     if (Unary->getKind() == UETT_SizeOf)
10314       return Unary;
10315   return nullptr;
10316 }
10317 
10318 /// If E is a sizeof expression, returns its argument expression,
10319 /// otherwise returns NULL.
10320 static const Expr *getSizeOfExprArg(const Expr *E) {
10321   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10322     if (!SizeOf->isArgumentType())
10323       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10324   return nullptr;
10325 }
10326 
10327 /// If E is a sizeof expression, returns its argument type.
10328 static QualType getSizeOfArgType(const Expr *E) {
10329   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10330     return SizeOf->getTypeOfArgument();
10331   return QualType();
10332 }
10333 
10334 namespace {
10335 
10336 struct SearchNonTrivialToInitializeField
10337     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10338   using Super =
10339       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10340 
10341   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10342 
10343   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10344                      SourceLocation SL) {
10345     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10346       asDerived().visitArray(PDIK, AT, SL);
10347       return;
10348     }
10349 
10350     Super::visitWithKind(PDIK, FT, SL);
10351   }
10352 
10353   void visitARCStrong(QualType FT, SourceLocation SL) {
10354     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10355   }
10356   void visitARCWeak(QualType FT, SourceLocation SL) {
10357     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10358   }
10359   void visitStruct(QualType FT, SourceLocation SL) {
10360     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10361       visit(FD->getType(), FD->getLocation());
10362   }
10363   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10364                   const ArrayType *AT, SourceLocation SL) {
10365     visit(getContext().getBaseElementType(AT), SL);
10366   }
10367   void visitTrivial(QualType FT, SourceLocation SL) {}
10368 
10369   static void diag(QualType RT, const Expr *E, Sema &S) {
10370     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10371   }
10372 
10373   ASTContext &getContext() { return S.getASTContext(); }
10374 
10375   const Expr *E;
10376   Sema &S;
10377 };
10378 
10379 struct SearchNonTrivialToCopyField
10380     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10381   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10382 
10383   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10384 
10385   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10386                      SourceLocation SL) {
10387     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10388       asDerived().visitArray(PCK, AT, SL);
10389       return;
10390     }
10391 
10392     Super::visitWithKind(PCK, FT, SL);
10393   }
10394 
10395   void visitARCStrong(QualType FT, SourceLocation SL) {
10396     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10397   }
10398   void visitARCWeak(QualType FT, SourceLocation SL) {
10399     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10400   }
10401   void visitStruct(QualType FT, SourceLocation SL) {
10402     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10403       visit(FD->getType(), FD->getLocation());
10404   }
10405   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10406                   SourceLocation SL) {
10407     visit(getContext().getBaseElementType(AT), SL);
10408   }
10409   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10410                 SourceLocation SL) {}
10411   void visitTrivial(QualType FT, SourceLocation SL) {}
10412   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10413 
10414   static void diag(QualType RT, const Expr *E, Sema &S) {
10415     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10416   }
10417 
10418   ASTContext &getContext() { return S.getASTContext(); }
10419 
10420   const Expr *E;
10421   Sema &S;
10422 };
10423 
10424 }
10425 
10426 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10427 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10428   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10429 
10430   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10431     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10432       return false;
10433 
10434     return doesExprLikelyComputeSize(BO->getLHS()) ||
10435            doesExprLikelyComputeSize(BO->getRHS());
10436   }
10437 
10438   return getAsSizeOfExpr(SizeofExpr) != nullptr;
10439 }
10440 
10441 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10442 ///
10443 /// \code
10444 ///   #define MACRO 0
10445 ///   foo(MACRO);
10446 ///   foo(0);
10447 /// \endcode
10448 ///
10449 /// This should return true for the first call to foo, but not for the second
10450 /// (regardless of whether foo is a macro or function).
10451 static bool isArgumentExpandedFromMacro(SourceManager &SM,
10452                                         SourceLocation CallLoc,
10453                                         SourceLocation ArgLoc) {
10454   if (!CallLoc.isMacroID())
10455     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10456 
10457   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10458          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10459 }
10460 
10461 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10462 /// last two arguments transposed.
10463 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10464   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10465     return;
10466 
10467   const Expr *SizeArg =
10468     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10469 
10470   auto isLiteralZero = [](const Expr *E) {
10471     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10472   };
10473 
10474   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10475   SourceLocation CallLoc = Call->getRParenLoc();
10476   SourceManager &SM = S.getSourceManager();
10477   if (isLiteralZero(SizeArg) &&
10478       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10479 
10480     SourceLocation DiagLoc = SizeArg->getExprLoc();
10481 
10482     // Some platforms #define bzero to __builtin_memset. See if this is the
10483     // case, and if so, emit a better diagnostic.
10484     if (BId == Builtin::BIbzero ||
10485         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10486                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
10487       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10488       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10489     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10490       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10491       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10492     }
10493     return;
10494   }
10495 
10496   // If the second argument to a memset is a sizeof expression and the third
10497   // isn't, this is also likely an error. This should catch
10498   // 'memset(buf, sizeof(buf), 0xff)'.
10499   if (BId == Builtin::BImemset &&
10500       doesExprLikelyComputeSize(Call->getArg(1)) &&
10501       !doesExprLikelyComputeSize(Call->getArg(2))) {
10502     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10503     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10504     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10505     return;
10506   }
10507 }
10508 
10509 /// Check for dangerous or invalid arguments to memset().
10510 ///
10511 /// This issues warnings on known problematic, dangerous or unspecified
10512 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10513 /// function calls.
10514 ///
10515 /// \param Call The call expression to diagnose.
10516 void Sema::CheckMemaccessArguments(const CallExpr *Call,
10517                                    unsigned BId,
10518                                    IdentifierInfo *FnName) {
10519   assert(BId != 0);
10520 
10521   // It is possible to have a non-standard definition of memset.  Validate
10522   // we have enough arguments, and if not, abort further checking.
10523   unsigned ExpectedNumArgs =
10524       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10525   if (Call->getNumArgs() < ExpectedNumArgs)
10526     return;
10527 
10528   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10529                       BId == Builtin::BIstrndup ? 1 : 2);
10530   unsigned LenArg =
10531       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10532   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10533 
10534   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10535                                      Call->getBeginLoc(), Call->getRParenLoc()))
10536     return;
10537 
10538   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10539   CheckMemaccessSize(*this, BId, Call);
10540 
10541   // We have special checking when the length is a sizeof expression.
10542   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10543   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10544   llvm::FoldingSetNodeID SizeOfArgID;
10545 
10546   // Although widely used, 'bzero' is not a standard function. Be more strict
10547   // with the argument types before allowing diagnostics and only allow the
10548   // form bzero(ptr, sizeof(...)).
10549   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10550   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10551     return;
10552 
10553   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10554     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10555     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10556 
10557     QualType DestTy = Dest->getType();
10558     QualType PointeeTy;
10559     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10560       PointeeTy = DestPtrTy->getPointeeType();
10561 
10562       // Never warn about void type pointers. This can be used to suppress
10563       // false positives.
10564       if (PointeeTy->isVoidType())
10565         continue;
10566 
10567       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10568       // actually comparing the expressions for equality. Because computing the
10569       // expression IDs can be expensive, we only do this if the diagnostic is
10570       // enabled.
10571       if (SizeOfArg &&
10572           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10573                            SizeOfArg->getExprLoc())) {
10574         // We only compute IDs for expressions if the warning is enabled, and
10575         // cache the sizeof arg's ID.
10576         if (SizeOfArgID == llvm::FoldingSetNodeID())
10577           SizeOfArg->Profile(SizeOfArgID, Context, true);
10578         llvm::FoldingSetNodeID DestID;
10579         Dest->Profile(DestID, Context, true);
10580         if (DestID == SizeOfArgID) {
10581           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10582           //       over sizeof(src) as well.
10583           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10584           StringRef ReadableName = FnName->getName();
10585 
10586           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10587             if (UnaryOp->getOpcode() == UO_AddrOf)
10588               ActionIdx = 1; // If its an address-of operator, just remove it.
10589           if (!PointeeTy->isIncompleteType() &&
10590               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10591             ActionIdx = 2; // If the pointee's size is sizeof(char),
10592                            // suggest an explicit length.
10593 
10594           // If the function is defined as a builtin macro, do not show macro
10595           // expansion.
10596           SourceLocation SL = SizeOfArg->getExprLoc();
10597           SourceRange DSR = Dest->getSourceRange();
10598           SourceRange SSR = SizeOfArg->getSourceRange();
10599           SourceManager &SM = getSourceManager();
10600 
10601           if (SM.isMacroArgExpansion(SL)) {
10602             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10603             SL = SM.getSpellingLoc(SL);
10604             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10605                              SM.getSpellingLoc(DSR.getEnd()));
10606             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10607                              SM.getSpellingLoc(SSR.getEnd()));
10608           }
10609 
10610           DiagRuntimeBehavior(SL, SizeOfArg,
10611                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10612                                 << ReadableName
10613                                 << PointeeTy
10614                                 << DestTy
10615                                 << DSR
10616                                 << SSR);
10617           DiagRuntimeBehavior(SL, SizeOfArg,
10618                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10619                                 << ActionIdx
10620                                 << SSR);
10621 
10622           break;
10623         }
10624       }
10625 
10626       // Also check for cases where the sizeof argument is the exact same
10627       // type as the memory argument, and where it points to a user-defined
10628       // record type.
10629       if (SizeOfArgTy != QualType()) {
10630         if (PointeeTy->isRecordType() &&
10631             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10632           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10633                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
10634                                 << FnName << SizeOfArgTy << ArgIdx
10635                                 << PointeeTy << Dest->getSourceRange()
10636                                 << LenExpr->getSourceRange());
10637           break;
10638         }
10639       }
10640     } else if (DestTy->isArrayType()) {
10641       PointeeTy = DestTy;
10642     }
10643 
10644     if (PointeeTy == QualType())
10645       continue;
10646 
10647     // Always complain about dynamic classes.
10648     bool IsContained;
10649     if (const CXXRecordDecl *ContainedRD =
10650             getContainedDynamicClass(PointeeTy, IsContained)) {
10651 
10652       unsigned OperationType = 0;
10653       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10654       // "overwritten" if we're warning about the destination for any call
10655       // but memcmp; otherwise a verb appropriate to the call.
10656       if (ArgIdx != 0 || IsCmp) {
10657         if (BId == Builtin::BImemcpy)
10658           OperationType = 1;
10659         else if(BId == Builtin::BImemmove)
10660           OperationType = 2;
10661         else if (IsCmp)
10662           OperationType = 3;
10663       }
10664 
10665       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10666                           PDiag(diag::warn_dyn_class_memaccess)
10667                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10668                               << IsContained << ContainedRD << OperationType
10669                               << Call->getCallee()->getSourceRange());
10670     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10671              BId != Builtin::BImemset)
10672       DiagRuntimeBehavior(
10673         Dest->getExprLoc(), Dest,
10674         PDiag(diag::warn_arc_object_memaccess)
10675           << ArgIdx << FnName << PointeeTy
10676           << Call->getCallee()->getSourceRange());
10677     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10678       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10679           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10680         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10681                             PDiag(diag::warn_cstruct_memaccess)
10682                                 << ArgIdx << FnName << PointeeTy << 0);
10683         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10684       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10685                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10686         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10687                             PDiag(diag::warn_cstruct_memaccess)
10688                                 << ArgIdx << FnName << PointeeTy << 1);
10689         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10690       } else {
10691         continue;
10692       }
10693     } else
10694       continue;
10695 
10696     DiagRuntimeBehavior(
10697       Dest->getExprLoc(), Dest,
10698       PDiag(diag::note_bad_memaccess_silence)
10699         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10700     break;
10701   }
10702 }
10703 
10704 // A little helper routine: ignore addition and subtraction of integer literals.
10705 // This intentionally does not ignore all integer constant expressions because
10706 // we don't want to remove sizeof().
10707 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10708   Ex = Ex->IgnoreParenCasts();
10709 
10710   while (true) {
10711     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10712     if (!BO || !BO->isAdditiveOp())
10713       break;
10714 
10715     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10716     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10717 
10718     if (isa<IntegerLiteral>(RHS))
10719       Ex = LHS;
10720     else if (isa<IntegerLiteral>(LHS))
10721       Ex = RHS;
10722     else
10723       break;
10724   }
10725 
10726   return Ex;
10727 }
10728 
10729 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10730                                                       ASTContext &Context) {
10731   // Only handle constant-sized or VLAs, but not flexible members.
10732   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10733     // Only issue the FIXIT for arrays of size > 1.
10734     if (CAT->getSize().getSExtValue() <= 1)
10735       return false;
10736   } else if (!Ty->isVariableArrayType()) {
10737     return false;
10738   }
10739   return true;
10740 }
10741 
10742 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10743 // be the size of the source, instead of the destination.
10744 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10745                                     IdentifierInfo *FnName) {
10746 
10747   // Don't crash if the user has the wrong number of arguments
10748   unsigned NumArgs = Call->getNumArgs();
10749   if ((NumArgs != 3) && (NumArgs != 4))
10750     return;
10751 
10752   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10753   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10754   const Expr *CompareWithSrc = nullptr;
10755 
10756   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10757                                      Call->getBeginLoc(), Call->getRParenLoc()))
10758     return;
10759 
10760   // Look for 'strlcpy(dst, x, sizeof(x))'
10761   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10762     CompareWithSrc = Ex;
10763   else {
10764     // Look for 'strlcpy(dst, x, strlen(x))'
10765     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10766       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10767           SizeCall->getNumArgs() == 1)
10768         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10769     }
10770   }
10771 
10772   if (!CompareWithSrc)
10773     return;
10774 
10775   // Determine if the argument to sizeof/strlen is equal to the source
10776   // argument.  In principle there's all kinds of things you could do
10777   // here, for instance creating an == expression and evaluating it with
10778   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10779   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10780   if (!SrcArgDRE)
10781     return;
10782 
10783   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10784   if (!CompareWithSrcDRE ||
10785       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10786     return;
10787 
10788   const Expr *OriginalSizeArg = Call->getArg(2);
10789   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10790       << OriginalSizeArg->getSourceRange() << FnName;
10791 
10792   // Output a FIXIT hint if the destination is an array (rather than a
10793   // pointer to an array).  This could be enhanced to handle some
10794   // pointers if we know the actual size, like if DstArg is 'array+2'
10795   // we could say 'sizeof(array)-2'.
10796   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10797   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10798     return;
10799 
10800   SmallString<128> sizeString;
10801   llvm::raw_svector_ostream OS(sizeString);
10802   OS << "sizeof(";
10803   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10804   OS << ")";
10805 
10806   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10807       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10808                                       OS.str());
10809 }
10810 
10811 /// Check if two expressions refer to the same declaration.
10812 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10813   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10814     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10815       return D1->getDecl() == D2->getDecl();
10816   return false;
10817 }
10818 
10819 static const Expr *getStrlenExprArg(const Expr *E) {
10820   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10821     const FunctionDecl *FD = CE->getDirectCallee();
10822     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10823       return nullptr;
10824     return CE->getArg(0)->IgnoreParenCasts();
10825   }
10826   return nullptr;
10827 }
10828 
10829 // Warn on anti-patterns as the 'size' argument to strncat.
10830 // The correct size argument should look like following:
10831 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10832 void Sema::CheckStrncatArguments(const CallExpr *CE,
10833                                  IdentifierInfo *FnName) {
10834   // Don't crash if the user has the wrong number of arguments.
10835   if (CE->getNumArgs() < 3)
10836     return;
10837   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10838   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10839   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10840 
10841   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10842                                      CE->getRParenLoc()))
10843     return;
10844 
10845   // Identify common expressions, which are wrongly used as the size argument
10846   // to strncat and may lead to buffer overflows.
10847   unsigned PatternType = 0;
10848   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10849     // - sizeof(dst)
10850     if (referToTheSameDecl(SizeOfArg, DstArg))
10851       PatternType = 1;
10852     // - sizeof(src)
10853     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10854       PatternType = 2;
10855   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10856     if (BE->getOpcode() == BO_Sub) {
10857       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10858       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10859       // - sizeof(dst) - strlen(dst)
10860       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10861           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10862         PatternType = 1;
10863       // - sizeof(src) - (anything)
10864       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10865         PatternType = 2;
10866     }
10867   }
10868 
10869   if (PatternType == 0)
10870     return;
10871 
10872   // Generate the diagnostic.
10873   SourceLocation SL = LenArg->getBeginLoc();
10874   SourceRange SR = LenArg->getSourceRange();
10875   SourceManager &SM = getSourceManager();
10876 
10877   // If the function is defined as a builtin macro, do not show macro expansion.
10878   if (SM.isMacroArgExpansion(SL)) {
10879     SL = SM.getSpellingLoc(SL);
10880     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10881                      SM.getSpellingLoc(SR.getEnd()));
10882   }
10883 
10884   // Check if the destination is an array (rather than a pointer to an array).
10885   QualType DstTy = DstArg->getType();
10886   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10887                                                                     Context);
10888   if (!isKnownSizeArray) {
10889     if (PatternType == 1)
10890       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10891     else
10892       Diag(SL, diag::warn_strncat_src_size) << SR;
10893     return;
10894   }
10895 
10896   if (PatternType == 1)
10897     Diag(SL, diag::warn_strncat_large_size) << SR;
10898   else
10899     Diag(SL, diag::warn_strncat_src_size) << SR;
10900 
10901   SmallString<128> sizeString;
10902   llvm::raw_svector_ostream OS(sizeString);
10903   OS << "sizeof(";
10904   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10905   OS << ") - ";
10906   OS << "strlen(";
10907   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10908   OS << ") - 1";
10909 
10910   Diag(SL, diag::note_strncat_wrong_size)
10911     << FixItHint::CreateReplacement(SR, OS.str());
10912 }
10913 
10914 namespace {
10915 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10916                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10917   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
10918     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10919         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
10920     return;
10921   }
10922 }
10923 
10924 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10925                                  const UnaryOperator *UnaryExpr) {
10926   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
10927     const Decl *D = Lvalue->getDecl();
10928     if (isa<DeclaratorDecl>(D))
10929       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
10930         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
10931   }
10932 
10933   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10934     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10935                                       Lvalue->getMemberDecl());
10936 }
10937 
10938 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
10939                             const UnaryOperator *UnaryExpr) {
10940   const auto *Lambda = dyn_cast<LambdaExpr>(
10941       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
10942   if (!Lambda)
10943     return;
10944 
10945   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
10946       << CalleeName << 2 /*object: lambda expression*/;
10947 }
10948 
10949 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10950                                   const DeclRefExpr *Lvalue) {
10951   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10952   if (Var == nullptr)
10953     return;
10954 
10955   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10956       << CalleeName << 0 /*object: */ << Var;
10957 }
10958 
10959 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
10960                             const CastExpr *Cast) {
10961   SmallString<128> SizeString;
10962   llvm::raw_svector_ostream OS(SizeString);
10963 
10964   clang::CastKind Kind = Cast->getCastKind();
10965   if (Kind == clang::CK_BitCast &&
10966       !Cast->getSubExpr()->getType()->isFunctionPointerType())
10967     return;
10968   if (Kind == clang::CK_IntegralToPointer &&
10969       !isa<IntegerLiteral>(
10970           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
10971     return;
10972 
10973   switch (Cast->getCastKind()) {
10974   case clang::CK_BitCast:
10975   case clang::CK_IntegralToPointer:
10976   case clang::CK_FunctionToPointerDecay:
10977     OS << '\'';
10978     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
10979     OS << '\'';
10980     break;
10981   default:
10982     return;
10983   }
10984 
10985   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
10986       << CalleeName << 0 /*object: */ << OS.str();
10987 }
10988 } // namespace
10989 
10990 /// Alerts the user that they are attempting to free a non-malloc'd object.
10991 void Sema::CheckFreeArguments(const CallExpr *E) {
10992   const std::string CalleeName =
10993       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10994 
10995   { // Prefer something that doesn't involve a cast to make things simpler.
10996     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10997     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10998       switch (UnaryExpr->getOpcode()) {
10999       case UnaryOperator::Opcode::UO_AddrOf:
11000         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11001       case UnaryOperator::Opcode::UO_Plus:
11002         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11003       default:
11004         break;
11005       }
11006 
11007     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11008       if (Lvalue->getType()->isArrayType())
11009         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11010 
11011     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11012       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11013           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11014       return;
11015     }
11016 
11017     if (isa<BlockExpr>(Arg)) {
11018       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11019           << CalleeName << 1 /*object: block*/;
11020       return;
11021     }
11022   }
11023   // Maybe the cast was important, check after the other cases.
11024   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11025     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11026 }
11027 
11028 void
11029 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11030                          SourceLocation ReturnLoc,
11031                          bool isObjCMethod,
11032                          const AttrVec *Attrs,
11033                          const FunctionDecl *FD) {
11034   // Check if the return value is null but should not be.
11035   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11036        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11037       CheckNonNullExpr(*this, RetValExp))
11038     Diag(ReturnLoc, diag::warn_null_ret)
11039       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11040 
11041   // C++11 [basic.stc.dynamic.allocation]p4:
11042   //   If an allocation function declared with a non-throwing
11043   //   exception-specification fails to allocate storage, it shall return
11044   //   a null pointer. Any other allocation function that fails to allocate
11045   //   storage shall indicate failure only by throwing an exception [...]
11046   if (FD) {
11047     OverloadedOperatorKind Op = FD->getOverloadedOperator();
11048     if (Op == OO_New || Op == OO_Array_New) {
11049       const FunctionProtoType *Proto
11050         = FD->getType()->castAs<FunctionProtoType>();
11051       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11052           CheckNonNullExpr(*this, RetValExp))
11053         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11054           << FD << getLangOpts().CPlusPlus11;
11055     }
11056   }
11057 
11058   // PPC MMA non-pointer types are not allowed as return type. Checking the type
11059   // here prevent the user from using a PPC MMA type as trailing return type.
11060   if (Context.getTargetInfo().getTriple().isPPC64())
11061     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11062 }
11063 
11064 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
11065 
11066 /// Check for comparisons of floating point operands using != and ==.
11067 /// Issue a warning if these are no self-comparisons, as they are not likely
11068 /// to do what the programmer intended.
11069 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
11070   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11071   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11072 
11073   // Special case: check for x == x (which is OK).
11074   // Do not emit warnings for such cases.
11075   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11076     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11077       if (DRL->getDecl() == DRR->getDecl())
11078         return;
11079 
11080   // Special case: check for comparisons against literals that can be exactly
11081   //  represented by APFloat.  In such cases, do not emit a warning.  This
11082   //  is a heuristic: often comparison against such literals are used to
11083   //  detect if a value in a variable has not changed.  This clearly can
11084   //  lead to false negatives.
11085   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11086     if (FLL->isExact())
11087       return;
11088   } else
11089     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11090       if (FLR->isExact())
11091         return;
11092 
11093   // Check for comparisons with builtin types.
11094   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11095     if (CL->getBuiltinCallee())
11096       return;
11097 
11098   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11099     if (CR->getBuiltinCallee())
11100       return;
11101 
11102   // Emit the diagnostic.
11103   Diag(Loc, diag::warn_floatingpoint_eq)
11104     << LHS->getSourceRange() << RHS->getSourceRange();
11105 }
11106 
11107 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11108 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11109 
11110 namespace {
11111 
11112 /// Structure recording the 'active' range of an integer-valued
11113 /// expression.
11114 struct IntRange {
11115   /// The number of bits active in the int. Note that this includes exactly one
11116   /// sign bit if !NonNegative.
11117   unsigned Width;
11118 
11119   /// True if the int is known not to have negative values. If so, all leading
11120   /// bits before Width are known zero, otherwise they are known to be the
11121   /// same as the MSB within Width.
11122   bool NonNegative;
11123 
11124   IntRange(unsigned Width, bool NonNegative)
11125       : Width(Width), NonNegative(NonNegative) {}
11126 
11127   /// Number of bits excluding the sign bit.
11128   unsigned valueBits() const {
11129     return NonNegative ? Width : Width - 1;
11130   }
11131 
11132   /// Returns the range of the bool type.
11133   static IntRange forBoolType() {
11134     return IntRange(1, true);
11135   }
11136 
11137   /// Returns the range of an opaque value of the given integral type.
11138   static IntRange forValueOfType(ASTContext &C, QualType T) {
11139     return forValueOfCanonicalType(C,
11140                           T->getCanonicalTypeInternal().getTypePtr());
11141   }
11142 
11143   /// Returns the range of an opaque value of a canonical integral type.
11144   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11145     assert(T->isCanonicalUnqualified());
11146 
11147     if (const VectorType *VT = dyn_cast<VectorType>(T))
11148       T = VT->getElementType().getTypePtr();
11149     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11150       T = CT->getElementType().getTypePtr();
11151     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11152       T = AT->getValueType().getTypePtr();
11153 
11154     if (!C.getLangOpts().CPlusPlus) {
11155       // For enum types in C code, use the underlying datatype.
11156       if (const EnumType *ET = dyn_cast<EnumType>(T))
11157         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11158     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11159       // For enum types in C++, use the known bit width of the enumerators.
11160       EnumDecl *Enum = ET->getDecl();
11161       // In C++11, enums can have a fixed underlying type. Use this type to
11162       // compute the range.
11163       if (Enum->isFixed()) {
11164         return IntRange(C.getIntWidth(QualType(T, 0)),
11165                         !ET->isSignedIntegerOrEnumerationType());
11166       }
11167 
11168       unsigned NumPositive = Enum->getNumPositiveBits();
11169       unsigned NumNegative = Enum->getNumNegativeBits();
11170 
11171       if (NumNegative == 0)
11172         return IntRange(NumPositive, true/*NonNegative*/);
11173       else
11174         return IntRange(std::max(NumPositive + 1, NumNegative),
11175                         false/*NonNegative*/);
11176     }
11177 
11178     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11179       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11180 
11181     const BuiltinType *BT = cast<BuiltinType>(T);
11182     assert(BT->isInteger());
11183 
11184     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11185   }
11186 
11187   /// Returns the "target" range of a canonical integral type, i.e.
11188   /// the range of values expressible in the type.
11189   ///
11190   /// This matches forValueOfCanonicalType except that enums have the
11191   /// full range of their type, not the range of their enumerators.
11192   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11193     assert(T->isCanonicalUnqualified());
11194 
11195     if (const VectorType *VT = dyn_cast<VectorType>(T))
11196       T = VT->getElementType().getTypePtr();
11197     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11198       T = CT->getElementType().getTypePtr();
11199     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11200       T = AT->getValueType().getTypePtr();
11201     if (const EnumType *ET = dyn_cast<EnumType>(T))
11202       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11203 
11204     if (const auto *EIT = dyn_cast<ExtIntType>(T))
11205       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11206 
11207     const BuiltinType *BT = cast<BuiltinType>(T);
11208     assert(BT->isInteger());
11209 
11210     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11211   }
11212 
11213   /// Returns the supremum of two ranges: i.e. their conservative merge.
11214   static IntRange join(IntRange L, IntRange R) {
11215     bool Unsigned = L.NonNegative && R.NonNegative;
11216     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11217                     L.NonNegative && R.NonNegative);
11218   }
11219 
11220   /// Return the range of a bitwise-AND of the two ranges.
11221   static IntRange bit_and(IntRange L, IntRange R) {
11222     unsigned Bits = std::max(L.Width, R.Width);
11223     bool NonNegative = false;
11224     if (L.NonNegative) {
11225       Bits = std::min(Bits, L.Width);
11226       NonNegative = true;
11227     }
11228     if (R.NonNegative) {
11229       Bits = std::min(Bits, R.Width);
11230       NonNegative = true;
11231     }
11232     return IntRange(Bits, NonNegative);
11233   }
11234 
11235   /// Return the range of a sum of the two ranges.
11236   static IntRange sum(IntRange L, IntRange R) {
11237     bool Unsigned = L.NonNegative && R.NonNegative;
11238     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11239                     Unsigned);
11240   }
11241 
11242   /// Return the range of a difference of the two ranges.
11243   static IntRange difference(IntRange L, IntRange R) {
11244     // We need a 1-bit-wider range if:
11245     //   1) LHS can be negative: least value can be reduced.
11246     //   2) RHS can be negative: greatest value can be increased.
11247     bool CanWiden = !L.NonNegative || !R.NonNegative;
11248     bool Unsigned = L.NonNegative && R.Width == 0;
11249     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11250                         !Unsigned,
11251                     Unsigned);
11252   }
11253 
11254   /// Return the range of a product of the two ranges.
11255   static IntRange product(IntRange L, IntRange R) {
11256     // If both LHS and RHS can be negative, we can form
11257     //   -2^L * -2^R = 2^(L + R)
11258     // which requires L + R + 1 value bits to represent.
11259     bool CanWiden = !L.NonNegative && !R.NonNegative;
11260     bool Unsigned = L.NonNegative && R.NonNegative;
11261     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11262                     Unsigned);
11263   }
11264 
11265   /// Return the range of a remainder operation between the two ranges.
11266   static IntRange rem(IntRange L, IntRange R) {
11267     // The result of a remainder can't be larger than the result of
11268     // either side. The sign of the result is the sign of the LHS.
11269     bool Unsigned = L.NonNegative;
11270     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11271                     Unsigned);
11272   }
11273 };
11274 
11275 } // namespace
11276 
11277 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11278                               unsigned MaxWidth) {
11279   if (value.isSigned() && value.isNegative())
11280     return IntRange(value.getMinSignedBits(), false);
11281 
11282   if (value.getBitWidth() > MaxWidth)
11283     value = value.trunc(MaxWidth);
11284 
11285   // isNonNegative() just checks the sign bit without considering
11286   // signedness.
11287   return IntRange(value.getActiveBits(), true);
11288 }
11289 
11290 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11291                               unsigned MaxWidth) {
11292   if (result.isInt())
11293     return GetValueRange(C, result.getInt(), MaxWidth);
11294 
11295   if (result.isVector()) {
11296     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11297     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11298       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11299       R = IntRange::join(R, El);
11300     }
11301     return R;
11302   }
11303 
11304   if (result.isComplexInt()) {
11305     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11306     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11307     return IntRange::join(R, I);
11308   }
11309 
11310   // This can happen with lossless casts to intptr_t of "based" lvalues.
11311   // Assume it might use arbitrary bits.
11312   // FIXME: The only reason we need to pass the type in here is to get
11313   // the sign right on this one case.  It would be nice if APValue
11314   // preserved this.
11315   assert(result.isLValue() || result.isAddrLabelDiff());
11316   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11317 }
11318 
11319 static QualType GetExprType(const Expr *E) {
11320   QualType Ty = E->getType();
11321   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11322     Ty = AtomicRHS->getValueType();
11323   return Ty;
11324 }
11325 
11326 /// Pseudo-evaluate the given integer expression, estimating the
11327 /// range of values it might take.
11328 ///
11329 /// \param MaxWidth The width to which the value will be truncated.
11330 /// \param Approximate If \c true, return a likely range for the result: in
11331 ///        particular, assume that arithmetic on narrower types doesn't leave
11332 ///        those types. If \c false, return a range including all possible
11333 ///        result values.
11334 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11335                              bool InConstantContext, bool Approximate) {
11336   E = E->IgnoreParens();
11337 
11338   // Try a full evaluation first.
11339   Expr::EvalResult result;
11340   if (E->EvaluateAsRValue(result, C, InConstantContext))
11341     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11342 
11343   // I think we only want to look through implicit casts here; if the
11344   // user has an explicit widening cast, we should treat the value as
11345   // being of the new, wider type.
11346   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11347     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11348       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11349                           Approximate);
11350 
11351     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11352 
11353     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11354                          CE->getCastKind() == CK_BooleanToSignedIntegral;
11355 
11356     // Assume that non-integer casts can span the full range of the type.
11357     if (!isIntegerCast)
11358       return OutputTypeRange;
11359 
11360     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11361                                      std::min(MaxWidth, OutputTypeRange.Width),
11362                                      InConstantContext, Approximate);
11363 
11364     // Bail out if the subexpr's range is as wide as the cast type.
11365     if (SubRange.Width >= OutputTypeRange.Width)
11366       return OutputTypeRange;
11367 
11368     // Otherwise, we take the smaller width, and we're non-negative if
11369     // either the output type or the subexpr is.
11370     return IntRange(SubRange.Width,
11371                     SubRange.NonNegative || OutputTypeRange.NonNegative);
11372   }
11373 
11374   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11375     // If we can fold the condition, just take that operand.
11376     bool CondResult;
11377     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11378       return GetExprRange(C,
11379                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11380                           MaxWidth, InConstantContext, Approximate);
11381 
11382     // Otherwise, conservatively merge.
11383     // GetExprRange requires an integer expression, but a throw expression
11384     // results in a void type.
11385     Expr *E = CO->getTrueExpr();
11386     IntRange L = E->getType()->isVoidType()
11387                      ? IntRange{0, true}
11388                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11389     E = CO->getFalseExpr();
11390     IntRange R = E->getType()->isVoidType()
11391                      ? IntRange{0, true}
11392                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11393     return IntRange::join(L, R);
11394   }
11395 
11396   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11397     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11398 
11399     switch (BO->getOpcode()) {
11400     case BO_Cmp:
11401       llvm_unreachable("builtin <=> should have class type");
11402 
11403     // Boolean-valued operations are single-bit and positive.
11404     case BO_LAnd:
11405     case BO_LOr:
11406     case BO_LT:
11407     case BO_GT:
11408     case BO_LE:
11409     case BO_GE:
11410     case BO_EQ:
11411     case BO_NE:
11412       return IntRange::forBoolType();
11413 
11414     // The type of the assignments is the type of the LHS, so the RHS
11415     // is not necessarily the same type.
11416     case BO_MulAssign:
11417     case BO_DivAssign:
11418     case BO_RemAssign:
11419     case BO_AddAssign:
11420     case BO_SubAssign:
11421     case BO_XorAssign:
11422     case BO_OrAssign:
11423       // TODO: bitfields?
11424       return IntRange::forValueOfType(C, GetExprType(E));
11425 
11426     // Simple assignments just pass through the RHS, which will have
11427     // been coerced to the LHS type.
11428     case BO_Assign:
11429       // TODO: bitfields?
11430       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11431                           Approximate);
11432 
11433     // Operations with opaque sources are black-listed.
11434     case BO_PtrMemD:
11435     case BO_PtrMemI:
11436       return IntRange::forValueOfType(C, GetExprType(E));
11437 
11438     // Bitwise-and uses the *infinum* of the two source ranges.
11439     case BO_And:
11440     case BO_AndAssign:
11441       Combine = IntRange::bit_and;
11442       break;
11443 
11444     // Left shift gets black-listed based on a judgement call.
11445     case BO_Shl:
11446       // ...except that we want to treat '1 << (blah)' as logically
11447       // positive.  It's an important idiom.
11448       if (IntegerLiteral *I
11449             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11450         if (I->getValue() == 1) {
11451           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11452           return IntRange(R.Width, /*NonNegative*/ true);
11453         }
11454       }
11455       LLVM_FALLTHROUGH;
11456 
11457     case BO_ShlAssign:
11458       return IntRange::forValueOfType(C, GetExprType(E));
11459 
11460     // Right shift by a constant can narrow its left argument.
11461     case BO_Shr:
11462     case BO_ShrAssign: {
11463       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11464                                 Approximate);
11465 
11466       // If the shift amount is a positive constant, drop the width by
11467       // that much.
11468       if (Optional<llvm::APSInt> shift =
11469               BO->getRHS()->getIntegerConstantExpr(C)) {
11470         if (shift->isNonNegative()) {
11471           unsigned zext = shift->getZExtValue();
11472           if (zext >= L.Width)
11473             L.Width = (L.NonNegative ? 0 : 1);
11474           else
11475             L.Width -= zext;
11476         }
11477       }
11478 
11479       return L;
11480     }
11481 
11482     // Comma acts as its right operand.
11483     case BO_Comma:
11484       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11485                           Approximate);
11486 
11487     case BO_Add:
11488       if (!Approximate)
11489         Combine = IntRange::sum;
11490       break;
11491 
11492     case BO_Sub:
11493       if (BO->getLHS()->getType()->isPointerType())
11494         return IntRange::forValueOfType(C, GetExprType(E));
11495       if (!Approximate)
11496         Combine = IntRange::difference;
11497       break;
11498 
11499     case BO_Mul:
11500       if (!Approximate)
11501         Combine = IntRange::product;
11502       break;
11503 
11504     // The width of a division result is mostly determined by the size
11505     // of the LHS.
11506     case BO_Div: {
11507       // Don't 'pre-truncate' the operands.
11508       unsigned opWidth = C.getIntWidth(GetExprType(E));
11509       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11510                                 Approximate);
11511 
11512       // If the divisor is constant, use that.
11513       if (Optional<llvm::APSInt> divisor =
11514               BO->getRHS()->getIntegerConstantExpr(C)) {
11515         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11516         if (log2 >= L.Width)
11517           L.Width = (L.NonNegative ? 0 : 1);
11518         else
11519           L.Width = std::min(L.Width - log2, MaxWidth);
11520         return L;
11521       }
11522 
11523       // Otherwise, just use the LHS's width.
11524       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11525       // could be -1.
11526       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11527                                 Approximate);
11528       return IntRange(L.Width, L.NonNegative && R.NonNegative);
11529     }
11530 
11531     case BO_Rem:
11532       Combine = IntRange::rem;
11533       break;
11534 
11535     // The default behavior is okay for these.
11536     case BO_Xor:
11537     case BO_Or:
11538       break;
11539     }
11540 
11541     // Combine the two ranges, but limit the result to the type in which we
11542     // performed the computation.
11543     QualType T = GetExprType(E);
11544     unsigned opWidth = C.getIntWidth(T);
11545     IntRange L =
11546         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11547     IntRange R =
11548         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11549     IntRange C = Combine(L, R);
11550     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11551     C.Width = std::min(C.Width, MaxWidth);
11552     return C;
11553   }
11554 
11555   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11556     switch (UO->getOpcode()) {
11557     // Boolean-valued operations are white-listed.
11558     case UO_LNot:
11559       return IntRange::forBoolType();
11560 
11561     // Operations with opaque sources are black-listed.
11562     case UO_Deref:
11563     case UO_AddrOf: // should be impossible
11564       return IntRange::forValueOfType(C, GetExprType(E));
11565 
11566     default:
11567       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11568                           Approximate);
11569     }
11570   }
11571 
11572   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11573     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11574                         Approximate);
11575 
11576   if (const auto *BitField = E->getSourceBitField())
11577     return IntRange(BitField->getBitWidthValue(C),
11578                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
11579 
11580   return IntRange::forValueOfType(C, GetExprType(E));
11581 }
11582 
11583 static IntRange GetExprRange(ASTContext &C, const Expr *E,
11584                              bool InConstantContext, bool Approximate) {
11585   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11586                       Approximate);
11587 }
11588 
11589 /// Checks whether the given value, which currently has the given
11590 /// source semantics, has the same value when coerced through the
11591 /// target semantics.
11592 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11593                                  const llvm::fltSemantics &Src,
11594                                  const llvm::fltSemantics &Tgt) {
11595   llvm::APFloat truncated = value;
11596 
11597   bool ignored;
11598   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11599   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11600 
11601   return truncated.bitwiseIsEqual(value);
11602 }
11603 
11604 /// Checks whether the given value, which currently has the given
11605 /// source semantics, has the same value when coerced through the
11606 /// target semantics.
11607 ///
11608 /// The value might be a vector of floats (or a complex number).
11609 static bool IsSameFloatAfterCast(const APValue &value,
11610                                  const llvm::fltSemantics &Src,
11611                                  const llvm::fltSemantics &Tgt) {
11612   if (value.isFloat())
11613     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11614 
11615   if (value.isVector()) {
11616     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11617       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11618         return false;
11619     return true;
11620   }
11621 
11622   assert(value.isComplexFloat());
11623   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11624           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11625 }
11626 
11627 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11628                                        bool IsListInit = false);
11629 
11630 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11631   // Suppress cases where we are comparing against an enum constant.
11632   if (const DeclRefExpr *DR =
11633       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11634     if (isa<EnumConstantDecl>(DR->getDecl()))
11635       return true;
11636 
11637   // Suppress cases where the value is expanded from a macro, unless that macro
11638   // is how a language represents a boolean literal. This is the case in both C
11639   // and Objective-C.
11640   SourceLocation BeginLoc = E->getBeginLoc();
11641   if (BeginLoc.isMacroID()) {
11642     StringRef MacroName = Lexer::getImmediateMacroName(
11643         BeginLoc, S.getSourceManager(), S.getLangOpts());
11644     return MacroName != "YES" && MacroName != "NO" &&
11645            MacroName != "true" && MacroName != "false";
11646   }
11647 
11648   return false;
11649 }
11650 
11651 static bool isKnownToHaveUnsignedValue(Expr *E) {
11652   return E->getType()->isIntegerType() &&
11653          (!E->getType()->isSignedIntegerType() ||
11654           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11655 }
11656 
11657 namespace {
11658 /// The promoted range of values of a type. In general this has the
11659 /// following structure:
11660 ///
11661 ///     |-----------| . . . |-----------|
11662 ///     ^           ^       ^           ^
11663 ///    Min       HoleMin  HoleMax      Max
11664 ///
11665 /// ... where there is only a hole if a signed type is promoted to unsigned
11666 /// (in which case Min and Max are the smallest and largest representable
11667 /// values).
11668 struct PromotedRange {
11669   // Min, or HoleMax if there is a hole.
11670   llvm::APSInt PromotedMin;
11671   // Max, or HoleMin if there is a hole.
11672   llvm::APSInt PromotedMax;
11673 
11674   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11675     if (R.Width == 0)
11676       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11677     else if (R.Width >= BitWidth && !Unsigned) {
11678       // Promotion made the type *narrower*. This happens when promoting
11679       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11680       // Treat all values of 'signed int' as being in range for now.
11681       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11682       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11683     } else {
11684       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11685                         .extOrTrunc(BitWidth);
11686       PromotedMin.setIsUnsigned(Unsigned);
11687 
11688       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11689                         .extOrTrunc(BitWidth);
11690       PromotedMax.setIsUnsigned(Unsigned);
11691     }
11692   }
11693 
11694   // Determine whether this range is contiguous (has no hole).
11695   bool isContiguous() const { return PromotedMin <= PromotedMax; }
11696 
11697   // Where a constant value is within the range.
11698   enum ComparisonResult {
11699     LT = 0x1,
11700     LE = 0x2,
11701     GT = 0x4,
11702     GE = 0x8,
11703     EQ = 0x10,
11704     NE = 0x20,
11705     InRangeFlag = 0x40,
11706 
11707     Less = LE | LT | NE,
11708     Min = LE | InRangeFlag,
11709     InRange = InRangeFlag,
11710     Max = GE | InRangeFlag,
11711     Greater = GE | GT | NE,
11712 
11713     OnlyValue = LE | GE | EQ | InRangeFlag,
11714     InHole = NE
11715   };
11716 
11717   ComparisonResult compare(const llvm::APSInt &Value) const {
11718     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11719            Value.isUnsigned() == PromotedMin.isUnsigned());
11720     if (!isContiguous()) {
11721       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11722       if (Value.isMinValue()) return Min;
11723       if (Value.isMaxValue()) return Max;
11724       if (Value >= PromotedMin) return InRange;
11725       if (Value <= PromotedMax) return InRange;
11726       return InHole;
11727     }
11728 
11729     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11730     case -1: return Less;
11731     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11732     case 1:
11733       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11734       case -1: return InRange;
11735       case 0: return Max;
11736       case 1: return Greater;
11737       }
11738     }
11739 
11740     llvm_unreachable("impossible compare result");
11741   }
11742 
11743   static llvm::Optional<StringRef>
11744   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11745     if (Op == BO_Cmp) {
11746       ComparisonResult LTFlag = LT, GTFlag = GT;
11747       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11748 
11749       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11750       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11751       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11752       return llvm::None;
11753     }
11754 
11755     ComparisonResult TrueFlag, FalseFlag;
11756     if (Op == BO_EQ) {
11757       TrueFlag = EQ;
11758       FalseFlag = NE;
11759     } else if (Op == BO_NE) {
11760       TrueFlag = NE;
11761       FalseFlag = EQ;
11762     } else {
11763       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11764         TrueFlag = LT;
11765         FalseFlag = GE;
11766       } else {
11767         TrueFlag = GT;
11768         FalseFlag = LE;
11769       }
11770       if (Op == BO_GE || Op == BO_LE)
11771         std::swap(TrueFlag, FalseFlag);
11772     }
11773     if (R & TrueFlag)
11774       return StringRef("true");
11775     if (R & FalseFlag)
11776       return StringRef("false");
11777     return llvm::None;
11778   }
11779 };
11780 }
11781 
11782 static bool HasEnumType(Expr *E) {
11783   // Strip off implicit integral promotions.
11784   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11785     if (ICE->getCastKind() != CK_IntegralCast &&
11786         ICE->getCastKind() != CK_NoOp)
11787       break;
11788     E = ICE->getSubExpr();
11789   }
11790 
11791   return E->getType()->isEnumeralType();
11792 }
11793 
11794 static int classifyConstantValue(Expr *Constant) {
11795   // The values of this enumeration are used in the diagnostics
11796   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11797   enum ConstantValueKind {
11798     Miscellaneous = 0,
11799     LiteralTrue,
11800     LiteralFalse
11801   };
11802   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11803     return BL->getValue() ? ConstantValueKind::LiteralTrue
11804                           : ConstantValueKind::LiteralFalse;
11805   return ConstantValueKind::Miscellaneous;
11806 }
11807 
11808 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11809                                         Expr *Constant, Expr *Other,
11810                                         const llvm::APSInt &Value,
11811                                         bool RhsConstant) {
11812   if (S.inTemplateInstantiation())
11813     return false;
11814 
11815   Expr *OriginalOther = Other;
11816 
11817   Constant = Constant->IgnoreParenImpCasts();
11818   Other = Other->IgnoreParenImpCasts();
11819 
11820   // Suppress warnings on tautological comparisons between values of the same
11821   // enumeration type. There are only two ways we could warn on this:
11822   //  - If the constant is outside the range of representable values of
11823   //    the enumeration. In such a case, we should warn about the cast
11824   //    to enumeration type, not about the comparison.
11825   //  - If the constant is the maximum / minimum in-range value. For an
11826   //    enumeratin type, such comparisons can be meaningful and useful.
11827   if (Constant->getType()->isEnumeralType() &&
11828       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11829     return false;
11830 
11831   IntRange OtherValueRange = GetExprRange(
11832       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11833 
11834   QualType OtherT = Other->getType();
11835   if (const auto *AT = OtherT->getAs<AtomicType>())
11836     OtherT = AT->getValueType();
11837   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11838 
11839   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11840   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11841   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11842                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11843                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11844 
11845   // Whether we're treating Other as being a bool because of the form of
11846   // expression despite it having another type (typically 'int' in C).
11847   bool OtherIsBooleanDespiteType =
11848       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11849   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11850     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11851 
11852   // Check if all values in the range of possible values of this expression
11853   // lead to the same comparison outcome.
11854   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11855                                         Value.isUnsigned());
11856   auto Cmp = OtherPromotedValueRange.compare(Value);
11857   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11858   if (!Result)
11859     return false;
11860 
11861   // Also consider the range determined by the type alone. This allows us to
11862   // classify the warning under the proper diagnostic group.
11863   bool TautologicalTypeCompare = false;
11864   {
11865     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11866                                          Value.isUnsigned());
11867     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11868     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11869                                                        RhsConstant)) {
11870       TautologicalTypeCompare = true;
11871       Cmp = TypeCmp;
11872       Result = TypeResult;
11873     }
11874   }
11875 
11876   // Don't warn if the non-constant operand actually always evaluates to the
11877   // same value.
11878   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11879     return false;
11880 
11881   // Suppress the diagnostic for an in-range comparison if the constant comes
11882   // from a macro or enumerator. We don't want to diagnose
11883   //
11884   //   some_long_value <= INT_MAX
11885   //
11886   // when sizeof(int) == sizeof(long).
11887   bool InRange = Cmp & PromotedRange::InRangeFlag;
11888   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11889     return false;
11890 
11891   // A comparison of an unsigned bit-field against 0 is really a type problem,
11892   // even though at the type level the bit-field might promote to 'signed int'.
11893   if (Other->refersToBitField() && InRange && Value == 0 &&
11894       Other->getType()->isUnsignedIntegerOrEnumerationType())
11895     TautologicalTypeCompare = true;
11896 
11897   // If this is a comparison to an enum constant, include that
11898   // constant in the diagnostic.
11899   const EnumConstantDecl *ED = nullptr;
11900   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11901     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11902 
11903   // Should be enough for uint128 (39 decimal digits)
11904   SmallString<64> PrettySourceValue;
11905   llvm::raw_svector_ostream OS(PrettySourceValue);
11906   if (ED) {
11907     OS << '\'' << *ED << "' (" << Value << ")";
11908   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11909                Constant->IgnoreParenImpCasts())) {
11910     OS << (BL->getValue() ? "YES" : "NO");
11911   } else {
11912     OS << Value;
11913   }
11914 
11915   if (!TautologicalTypeCompare) {
11916     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11917         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11918         << E->getOpcodeStr() << OS.str() << *Result
11919         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11920     return true;
11921   }
11922 
11923   if (IsObjCSignedCharBool) {
11924     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11925                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11926                               << OS.str() << *Result);
11927     return true;
11928   }
11929 
11930   // FIXME: We use a somewhat different formatting for the in-range cases and
11931   // cases involving boolean values for historical reasons. We should pick a
11932   // consistent way of presenting these diagnostics.
11933   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11934 
11935     S.DiagRuntimeBehavior(
11936         E->getOperatorLoc(), E,
11937         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11938                          : diag::warn_tautological_bool_compare)
11939             << OS.str() << classifyConstantValue(Constant) << OtherT
11940             << OtherIsBooleanDespiteType << *Result
11941             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11942   } else {
11943     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
11944     unsigned Diag =
11945         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11946             ? (HasEnumType(OriginalOther)
11947                    ? diag::warn_unsigned_enum_always_true_comparison
11948                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
11949                               : diag::warn_unsigned_always_true_comparison)
11950             : diag::warn_tautological_constant_compare;
11951 
11952     S.Diag(E->getOperatorLoc(), Diag)
11953         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11954         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11955   }
11956 
11957   return true;
11958 }
11959 
11960 /// Analyze the operands of the given comparison.  Implements the
11961 /// fallback case from AnalyzeComparison.
11962 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11963   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11964   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11965 }
11966 
11967 /// Implements -Wsign-compare.
11968 ///
11969 /// \param E the binary operator to check for warnings
11970 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11971   // The type the comparison is being performed in.
11972   QualType T = E->getLHS()->getType();
11973 
11974   // Only analyze comparison operators where both sides have been converted to
11975   // the same type.
11976   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11977     return AnalyzeImpConvsInComparison(S, E);
11978 
11979   // Don't analyze value-dependent comparisons directly.
11980   if (E->isValueDependent())
11981     return AnalyzeImpConvsInComparison(S, E);
11982 
11983   Expr *LHS = E->getLHS();
11984   Expr *RHS = E->getRHS();
11985 
11986   if (T->isIntegralType(S.Context)) {
11987     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11988     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11989 
11990     // We don't care about expressions whose result is a constant.
11991     if (RHSValue && LHSValue)
11992       return AnalyzeImpConvsInComparison(S, E);
11993 
11994     // We only care about expressions where just one side is literal
11995     if ((bool)RHSValue ^ (bool)LHSValue) {
11996       // Is the constant on the RHS or LHS?
11997       const bool RhsConstant = (bool)RHSValue;
11998       Expr *Const = RhsConstant ? RHS : LHS;
11999       Expr *Other = RhsConstant ? LHS : RHS;
12000       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12001 
12002       // Check whether an integer constant comparison results in a value
12003       // of 'true' or 'false'.
12004       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12005         return AnalyzeImpConvsInComparison(S, E);
12006     }
12007   }
12008 
12009   if (!T->hasUnsignedIntegerRepresentation()) {
12010     // We don't do anything special if this isn't an unsigned integral
12011     // comparison:  we're only interested in integral comparisons, and
12012     // signed comparisons only happen in cases we don't care to warn about.
12013     return AnalyzeImpConvsInComparison(S, E);
12014   }
12015 
12016   LHS = LHS->IgnoreParenImpCasts();
12017   RHS = RHS->IgnoreParenImpCasts();
12018 
12019   if (!S.getLangOpts().CPlusPlus) {
12020     // Avoid warning about comparison of integers with different signs when
12021     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12022     // the type of `E`.
12023     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12024       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12025     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12026       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12027   }
12028 
12029   // Check to see if one of the (unmodified) operands is of different
12030   // signedness.
12031   Expr *signedOperand, *unsignedOperand;
12032   if (LHS->getType()->hasSignedIntegerRepresentation()) {
12033     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12034            "unsigned comparison between two signed integer expressions?");
12035     signedOperand = LHS;
12036     unsignedOperand = RHS;
12037   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12038     signedOperand = RHS;
12039     unsignedOperand = LHS;
12040   } else {
12041     return AnalyzeImpConvsInComparison(S, E);
12042   }
12043 
12044   // Otherwise, calculate the effective range of the signed operand.
12045   IntRange signedRange = GetExprRange(
12046       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12047 
12048   // Go ahead and analyze implicit conversions in the operands.  Note
12049   // that we skip the implicit conversions on both sides.
12050   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12051   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12052 
12053   // If the signed range is non-negative, -Wsign-compare won't fire.
12054   if (signedRange.NonNegative)
12055     return;
12056 
12057   // For (in)equality comparisons, if the unsigned operand is a
12058   // constant which cannot collide with a overflowed signed operand,
12059   // then reinterpreting the signed operand as unsigned will not
12060   // change the result of the comparison.
12061   if (E->isEqualityOp()) {
12062     unsigned comparisonWidth = S.Context.getIntWidth(T);
12063     IntRange unsignedRange =
12064         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12065                      /*Approximate*/ true);
12066 
12067     // We should never be unable to prove that the unsigned operand is
12068     // non-negative.
12069     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12070 
12071     if (unsignedRange.Width < comparisonWidth)
12072       return;
12073   }
12074 
12075   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12076                         S.PDiag(diag::warn_mixed_sign_comparison)
12077                             << LHS->getType() << RHS->getType()
12078                             << LHS->getSourceRange() << RHS->getSourceRange());
12079 }
12080 
12081 /// Analyzes an attempt to assign the given value to a bitfield.
12082 ///
12083 /// Returns true if there was something fishy about the attempt.
12084 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12085                                       SourceLocation InitLoc) {
12086   assert(Bitfield->isBitField());
12087   if (Bitfield->isInvalidDecl())
12088     return false;
12089 
12090   // White-list bool bitfields.
12091   QualType BitfieldType = Bitfield->getType();
12092   if (BitfieldType->isBooleanType())
12093      return false;
12094 
12095   if (BitfieldType->isEnumeralType()) {
12096     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12097     // If the underlying enum type was not explicitly specified as an unsigned
12098     // type and the enum contain only positive values, MSVC++ will cause an
12099     // inconsistency by storing this as a signed type.
12100     if (S.getLangOpts().CPlusPlus11 &&
12101         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12102         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12103         BitfieldEnumDecl->getNumNegativeBits() == 0) {
12104       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12105           << BitfieldEnumDecl;
12106     }
12107   }
12108 
12109   if (Bitfield->getType()->isBooleanType())
12110     return false;
12111 
12112   // Ignore value- or type-dependent expressions.
12113   if (Bitfield->getBitWidth()->isValueDependent() ||
12114       Bitfield->getBitWidth()->isTypeDependent() ||
12115       Init->isValueDependent() ||
12116       Init->isTypeDependent())
12117     return false;
12118 
12119   Expr *OriginalInit = Init->IgnoreParenImpCasts();
12120   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12121 
12122   Expr::EvalResult Result;
12123   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12124                                    Expr::SE_AllowSideEffects)) {
12125     // The RHS is not constant.  If the RHS has an enum type, make sure the
12126     // bitfield is wide enough to hold all the values of the enum without
12127     // truncation.
12128     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12129       EnumDecl *ED = EnumTy->getDecl();
12130       bool SignedBitfield = BitfieldType->isSignedIntegerType();
12131 
12132       // Enum types are implicitly signed on Windows, so check if there are any
12133       // negative enumerators to see if the enum was intended to be signed or
12134       // not.
12135       bool SignedEnum = ED->getNumNegativeBits() > 0;
12136 
12137       // Check for surprising sign changes when assigning enum values to a
12138       // bitfield of different signedness.  If the bitfield is signed and we
12139       // have exactly the right number of bits to store this unsigned enum,
12140       // suggest changing the enum to an unsigned type. This typically happens
12141       // on Windows where unfixed enums always use an underlying type of 'int'.
12142       unsigned DiagID = 0;
12143       if (SignedEnum && !SignedBitfield) {
12144         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12145       } else if (SignedBitfield && !SignedEnum &&
12146                  ED->getNumPositiveBits() == FieldWidth) {
12147         DiagID = diag::warn_signed_bitfield_enum_conversion;
12148       }
12149 
12150       if (DiagID) {
12151         S.Diag(InitLoc, DiagID) << Bitfield << ED;
12152         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12153         SourceRange TypeRange =
12154             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12155         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12156             << SignedEnum << TypeRange;
12157       }
12158 
12159       // Compute the required bitwidth. If the enum has negative values, we need
12160       // one more bit than the normal number of positive bits to represent the
12161       // sign bit.
12162       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12163                                                   ED->getNumNegativeBits())
12164                                        : ED->getNumPositiveBits();
12165 
12166       // Check the bitwidth.
12167       if (BitsNeeded > FieldWidth) {
12168         Expr *WidthExpr = Bitfield->getBitWidth();
12169         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12170             << Bitfield << ED;
12171         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12172             << BitsNeeded << ED << WidthExpr->getSourceRange();
12173       }
12174     }
12175 
12176     return false;
12177   }
12178 
12179   llvm::APSInt Value = Result.Val.getInt();
12180 
12181   unsigned OriginalWidth = Value.getBitWidth();
12182 
12183   if (!Value.isSigned() || Value.isNegative())
12184     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12185       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12186         OriginalWidth = Value.getMinSignedBits();
12187 
12188   if (OriginalWidth <= FieldWidth)
12189     return false;
12190 
12191   // Compute the value which the bitfield will contain.
12192   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12193   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12194 
12195   // Check whether the stored value is equal to the original value.
12196   TruncatedValue = TruncatedValue.extend(OriginalWidth);
12197   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12198     return false;
12199 
12200   // Special-case bitfields of width 1: booleans are naturally 0/1, and
12201   // therefore don't strictly fit into a signed bitfield of width 1.
12202   if (FieldWidth == 1 && Value == 1)
12203     return false;
12204 
12205   std::string PrettyValue = toString(Value, 10);
12206   std::string PrettyTrunc = toString(TruncatedValue, 10);
12207 
12208   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12209     << PrettyValue << PrettyTrunc << OriginalInit->getType()
12210     << Init->getSourceRange();
12211 
12212   return true;
12213 }
12214 
12215 /// Analyze the given simple or compound assignment for warning-worthy
12216 /// operations.
12217 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12218   // Just recurse on the LHS.
12219   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12220 
12221   // We want to recurse on the RHS as normal unless we're assigning to
12222   // a bitfield.
12223   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12224     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12225                                   E->getOperatorLoc())) {
12226       // Recurse, ignoring any implicit conversions on the RHS.
12227       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12228                                         E->getOperatorLoc());
12229     }
12230   }
12231 
12232   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12233 
12234   // Diagnose implicitly sequentially-consistent atomic assignment.
12235   if (E->getLHS()->getType()->isAtomicType())
12236     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12237 }
12238 
12239 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12240 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12241                             SourceLocation CContext, unsigned diag,
12242                             bool pruneControlFlow = false) {
12243   if (pruneControlFlow) {
12244     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12245                           S.PDiag(diag)
12246                               << SourceType << T << E->getSourceRange()
12247                               << SourceRange(CContext));
12248     return;
12249   }
12250   S.Diag(E->getExprLoc(), diag)
12251     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12252 }
12253 
12254 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
12255 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12256                             SourceLocation CContext,
12257                             unsigned diag, bool pruneControlFlow = false) {
12258   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12259 }
12260 
12261 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12262   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12263       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12264 }
12265 
12266 static void adornObjCBoolConversionDiagWithTernaryFixit(
12267     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12268   Expr *Ignored = SourceExpr->IgnoreImplicit();
12269   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12270     Ignored = OVE->getSourceExpr();
12271   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12272                      isa<BinaryOperator>(Ignored) ||
12273                      isa<CXXOperatorCallExpr>(Ignored);
12274   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12275   if (NeedsParens)
12276     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12277             << FixItHint::CreateInsertion(EndLoc, ")");
12278   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12279 }
12280 
12281 /// Diagnose an implicit cast from a floating point value to an integer value.
12282 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12283                                     SourceLocation CContext) {
12284   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12285   const bool PruneWarnings = S.inTemplateInstantiation();
12286 
12287   Expr *InnerE = E->IgnoreParenImpCasts();
12288   // We also want to warn on, e.g., "int i = -1.234"
12289   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12290     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12291       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12292 
12293   const bool IsLiteral =
12294       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12295 
12296   llvm::APFloat Value(0.0);
12297   bool IsConstant =
12298     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12299   if (!IsConstant) {
12300     if (isObjCSignedCharBool(S, T)) {
12301       return adornObjCBoolConversionDiagWithTernaryFixit(
12302           S, E,
12303           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12304               << E->getType());
12305     }
12306 
12307     return DiagnoseImpCast(S, E, T, CContext,
12308                            diag::warn_impcast_float_integer, PruneWarnings);
12309   }
12310 
12311   bool isExact = false;
12312 
12313   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12314                             T->hasUnsignedIntegerRepresentation());
12315   llvm::APFloat::opStatus Result = Value.convertToInteger(
12316       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12317 
12318   // FIXME: Force the precision of the source value down so we don't print
12319   // digits which are usually useless (we don't really care here if we
12320   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
12321   // would automatically print the shortest representation, but it's a bit
12322   // tricky to implement.
12323   SmallString<16> PrettySourceValue;
12324   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12325   precision = (precision * 59 + 195) / 196;
12326   Value.toString(PrettySourceValue, precision);
12327 
12328   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12329     return adornObjCBoolConversionDiagWithTernaryFixit(
12330         S, E,
12331         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12332             << PrettySourceValue);
12333   }
12334 
12335   if (Result == llvm::APFloat::opOK && isExact) {
12336     if (IsLiteral) return;
12337     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12338                            PruneWarnings);
12339   }
12340 
12341   // Conversion of a floating-point value to a non-bool integer where the
12342   // integral part cannot be represented by the integer type is undefined.
12343   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12344     return DiagnoseImpCast(
12345         S, E, T, CContext,
12346         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12347                   : diag::warn_impcast_float_to_integer_out_of_range,
12348         PruneWarnings);
12349 
12350   unsigned DiagID = 0;
12351   if (IsLiteral) {
12352     // Warn on floating point literal to integer.
12353     DiagID = diag::warn_impcast_literal_float_to_integer;
12354   } else if (IntegerValue == 0) {
12355     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
12356       return DiagnoseImpCast(S, E, T, CContext,
12357                              diag::warn_impcast_float_integer, PruneWarnings);
12358     }
12359     // Warn on non-zero to zero conversion.
12360     DiagID = diag::warn_impcast_float_to_integer_zero;
12361   } else {
12362     if (IntegerValue.isUnsigned()) {
12363       if (!IntegerValue.isMaxValue()) {
12364         return DiagnoseImpCast(S, E, T, CContext,
12365                                diag::warn_impcast_float_integer, PruneWarnings);
12366       }
12367     } else {  // IntegerValue.isSigned()
12368       if (!IntegerValue.isMaxSignedValue() &&
12369           !IntegerValue.isMinSignedValue()) {
12370         return DiagnoseImpCast(S, E, T, CContext,
12371                                diag::warn_impcast_float_integer, PruneWarnings);
12372       }
12373     }
12374     // Warn on evaluatable floating point expression to integer conversion.
12375     DiagID = diag::warn_impcast_float_to_integer;
12376   }
12377 
12378   SmallString<16> PrettyTargetValue;
12379   if (IsBool)
12380     PrettyTargetValue = Value.isZero() ? "false" : "true";
12381   else
12382     IntegerValue.toString(PrettyTargetValue);
12383 
12384   if (PruneWarnings) {
12385     S.DiagRuntimeBehavior(E->getExprLoc(), E,
12386                           S.PDiag(DiagID)
12387                               << E->getType() << T.getUnqualifiedType()
12388                               << PrettySourceValue << PrettyTargetValue
12389                               << E->getSourceRange() << SourceRange(CContext));
12390   } else {
12391     S.Diag(E->getExprLoc(), DiagID)
12392         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12393         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12394   }
12395 }
12396 
12397 /// Analyze the given compound assignment for the possible losing of
12398 /// floating-point precision.
12399 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12400   assert(isa<CompoundAssignOperator>(E) &&
12401          "Must be compound assignment operation");
12402   // Recurse on the LHS and RHS in here
12403   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12404   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12405 
12406   if (E->getLHS()->getType()->isAtomicType())
12407     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12408 
12409   // Now check the outermost expression
12410   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12411   const auto *RBT = cast<CompoundAssignOperator>(E)
12412                         ->getComputationResultType()
12413                         ->getAs<BuiltinType>();
12414 
12415   // The below checks assume source is floating point.
12416   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12417 
12418   // If source is floating point but target is an integer.
12419   if (ResultBT->isInteger())
12420     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12421                            E->getExprLoc(), diag::warn_impcast_float_integer);
12422 
12423   if (!ResultBT->isFloatingPoint())
12424     return;
12425 
12426   // If both source and target are floating points, warn about losing precision.
12427   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12428       QualType(ResultBT, 0), QualType(RBT, 0));
12429   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12430     // warn about dropping FP rank.
12431     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12432                     diag::warn_impcast_float_result_precision);
12433 }
12434 
12435 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12436                                       IntRange Range) {
12437   if (!Range.Width) return "0";
12438 
12439   llvm::APSInt ValueInRange = Value;
12440   ValueInRange.setIsSigned(!Range.NonNegative);
12441   ValueInRange = ValueInRange.trunc(Range.Width);
12442   return toString(ValueInRange, 10);
12443 }
12444 
12445 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12446   if (!isa<ImplicitCastExpr>(Ex))
12447     return false;
12448 
12449   Expr *InnerE = Ex->IgnoreParenImpCasts();
12450   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12451   const Type *Source =
12452     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12453   if (Target->isDependentType())
12454     return false;
12455 
12456   const BuiltinType *FloatCandidateBT =
12457     dyn_cast<BuiltinType>(ToBool ? Source : Target);
12458   const Type *BoolCandidateType = ToBool ? Target : Source;
12459 
12460   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12461           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12462 }
12463 
12464 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12465                                              SourceLocation CC) {
12466   unsigned NumArgs = TheCall->getNumArgs();
12467   for (unsigned i = 0; i < NumArgs; ++i) {
12468     Expr *CurrA = TheCall->getArg(i);
12469     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12470       continue;
12471 
12472     bool IsSwapped = ((i > 0) &&
12473         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12474     IsSwapped |= ((i < (NumArgs - 1)) &&
12475         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12476     if (IsSwapped) {
12477       // Warn on this floating-point to bool conversion.
12478       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12479                       CurrA->getType(), CC,
12480                       diag::warn_impcast_floating_point_to_bool);
12481     }
12482   }
12483 }
12484 
12485 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12486                                    SourceLocation CC) {
12487   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12488                         E->getExprLoc()))
12489     return;
12490 
12491   // Don't warn on functions which have return type nullptr_t.
12492   if (isa<CallExpr>(E))
12493     return;
12494 
12495   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12496   const Expr::NullPointerConstantKind NullKind =
12497       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12498   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12499     return;
12500 
12501   // Return if target type is a safe conversion.
12502   if (T->isAnyPointerType() || T->isBlockPointerType() ||
12503       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12504     return;
12505 
12506   SourceLocation Loc = E->getSourceRange().getBegin();
12507 
12508   // Venture through the macro stacks to get to the source of macro arguments.
12509   // The new location is a better location than the complete location that was
12510   // passed in.
12511   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12512   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12513 
12514   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
12515   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12516     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12517         Loc, S.SourceMgr, S.getLangOpts());
12518     if (MacroName == "NULL")
12519       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12520   }
12521 
12522   // Only warn if the null and context location are in the same macro expansion.
12523   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12524     return;
12525 
12526   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12527       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12528       << FixItHint::CreateReplacement(Loc,
12529                                       S.getFixItZeroLiteralForType(T, Loc));
12530 }
12531 
12532 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12533                                   ObjCArrayLiteral *ArrayLiteral);
12534 
12535 static void
12536 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12537                            ObjCDictionaryLiteral *DictionaryLiteral);
12538 
12539 /// Check a single element within a collection literal against the
12540 /// target element type.
12541 static void checkObjCCollectionLiteralElement(Sema &S,
12542                                               QualType TargetElementType,
12543                                               Expr *Element,
12544                                               unsigned ElementKind) {
12545   // Skip a bitcast to 'id' or qualified 'id'.
12546   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12547     if (ICE->getCastKind() == CK_BitCast &&
12548         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12549       Element = ICE->getSubExpr();
12550   }
12551 
12552   QualType ElementType = Element->getType();
12553   ExprResult ElementResult(Element);
12554   if (ElementType->getAs<ObjCObjectPointerType>() &&
12555       S.CheckSingleAssignmentConstraints(TargetElementType,
12556                                          ElementResult,
12557                                          false, false)
12558         != Sema::Compatible) {
12559     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12560         << ElementType << ElementKind << TargetElementType
12561         << Element->getSourceRange();
12562   }
12563 
12564   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12565     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12566   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12567     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12568 }
12569 
12570 /// Check an Objective-C array literal being converted to the given
12571 /// target type.
12572 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12573                                   ObjCArrayLiteral *ArrayLiteral) {
12574   if (!S.NSArrayDecl)
12575     return;
12576 
12577   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12578   if (!TargetObjCPtr)
12579     return;
12580 
12581   if (TargetObjCPtr->isUnspecialized() ||
12582       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12583         != S.NSArrayDecl->getCanonicalDecl())
12584     return;
12585 
12586   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12587   if (TypeArgs.size() != 1)
12588     return;
12589 
12590   QualType TargetElementType = TypeArgs[0];
12591   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12592     checkObjCCollectionLiteralElement(S, TargetElementType,
12593                                       ArrayLiteral->getElement(I),
12594                                       0);
12595   }
12596 }
12597 
12598 /// Check an Objective-C dictionary literal being converted to the given
12599 /// target type.
12600 static void
12601 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12602                            ObjCDictionaryLiteral *DictionaryLiteral) {
12603   if (!S.NSDictionaryDecl)
12604     return;
12605 
12606   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12607   if (!TargetObjCPtr)
12608     return;
12609 
12610   if (TargetObjCPtr->isUnspecialized() ||
12611       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12612         != S.NSDictionaryDecl->getCanonicalDecl())
12613     return;
12614 
12615   auto TypeArgs = TargetObjCPtr->getTypeArgs();
12616   if (TypeArgs.size() != 2)
12617     return;
12618 
12619   QualType TargetKeyType = TypeArgs[0];
12620   QualType TargetObjectType = TypeArgs[1];
12621   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12622     auto Element = DictionaryLiteral->getKeyValueElement(I);
12623     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12624     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12625   }
12626 }
12627 
12628 // Helper function to filter out cases for constant width constant conversion.
12629 // Don't warn on char array initialization or for non-decimal values.
12630 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12631                                           SourceLocation CC) {
12632   // If initializing from a constant, and the constant starts with '0',
12633   // then it is a binary, octal, or hexadecimal.  Allow these constants
12634   // to fill all the bits, even if there is a sign change.
12635   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12636     const char FirstLiteralCharacter =
12637         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12638     if (FirstLiteralCharacter == '0')
12639       return false;
12640   }
12641 
12642   // If the CC location points to a '{', and the type is char, then assume
12643   // assume it is an array initialization.
12644   if (CC.isValid() && T->isCharType()) {
12645     const char FirstContextCharacter =
12646         S.getSourceManager().getCharacterData(CC)[0];
12647     if (FirstContextCharacter == '{')
12648       return false;
12649   }
12650 
12651   return true;
12652 }
12653 
12654 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12655   const auto *IL = dyn_cast<IntegerLiteral>(E);
12656   if (!IL) {
12657     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12658       if (UO->getOpcode() == UO_Minus)
12659         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12660     }
12661   }
12662 
12663   return IL;
12664 }
12665 
12666 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12667   E = E->IgnoreParenImpCasts();
12668   SourceLocation ExprLoc = E->getExprLoc();
12669 
12670   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12671     BinaryOperator::Opcode Opc = BO->getOpcode();
12672     Expr::EvalResult Result;
12673     // Do not diagnose unsigned shifts.
12674     if (Opc == BO_Shl) {
12675       const auto *LHS = getIntegerLiteral(BO->getLHS());
12676       const auto *RHS = getIntegerLiteral(BO->getRHS());
12677       if (LHS && LHS->getValue() == 0)
12678         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12679       else if (!E->isValueDependent() && LHS && RHS &&
12680                RHS->getValue().isNonNegative() &&
12681                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12682         S.Diag(ExprLoc, diag::warn_left_shift_always)
12683             << (Result.Val.getInt() != 0);
12684       else if (E->getType()->isSignedIntegerType())
12685         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12686     }
12687   }
12688 
12689   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12690     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12691     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12692     if (!LHS || !RHS)
12693       return;
12694     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12695         (RHS->getValue() == 0 || RHS->getValue() == 1))
12696       // Do not diagnose common idioms.
12697       return;
12698     if (LHS->getValue() != 0 && RHS->getValue() != 0)
12699       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12700   }
12701 }
12702 
12703 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12704                                     SourceLocation CC,
12705                                     bool *ICContext = nullptr,
12706                                     bool IsListInit = false) {
12707   if (E->isTypeDependent() || E->isValueDependent()) return;
12708 
12709   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
12710   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
12711   if (Source == Target) return;
12712   if (Target->isDependentType()) return;
12713 
12714   // If the conversion context location is invalid don't complain. We also
12715   // don't want to emit a warning if the issue occurs from the expansion of
12716   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12717   // delay this check as long as possible. Once we detect we are in that
12718   // scenario, we just return.
12719   if (CC.isInvalid())
12720     return;
12721 
12722   if (Source->isAtomicType())
12723     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12724 
12725   // Diagnose implicit casts to bool.
12726   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12727     if (isa<StringLiteral>(E))
12728       // Warn on string literal to bool.  Checks for string literals in logical
12729       // and expressions, for instance, assert(0 && "error here"), are
12730       // prevented by a check in AnalyzeImplicitConversions().
12731       return DiagnoseImpCast(S, E, T, CC,
12732                              diag::warn_impcast_string_literal_to_bool);
12733     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12734         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12735       // This covers the literal expressions that evaluate to Objective-C
12736       // objects.
12737       return DiagnoseImpCast(S, E, T, CC,
12738                              diag::warn_impcast_objective_c_literal_to_bool);
12739     }
12740     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12741       // Warn on pointer to bool conversion that is always true.
12742       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12743                                      SourceRange(CC));
12744     }
12745   }
12746 
12747   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12748   // is a typedef for signed char (macOS), then that constant value has to be 1
12749   // or 0.
12750   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12751     Expr::EvalResult Result;
12752     if (E->EvaluateAsInt(Result, S.getASTContext(),
12753                          Expr::SE_AllowSideEffects)) {
12754       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12755         adornObjCBoolConversionDiagWithTernaryFixit(
12756             S, E,
12757             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12758                 << toString(Result.Val.getInt(), 10));
12759       }
12760       return;
12761     }
12762   }
12763 
12764   // Check implicit casts from Objective-C collection literals to specialized
12765   // collection types, e.g., NSArray<NSString *> *.
12766   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12767     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12768   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12769     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12770 
12771   // Strip vector types.
12772   if (isa<VectorType>(Source)) {
12773     if (Target->isVLSTBuiltinType() &&
12774         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
12775                                          QualType(Source, 0)) ||
12776          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
12777                                             QualType(Source, 0))))
12778       return;
12779 
12780     if (!isa<VectorType>(Target)) {
12781       if (S.SourceMgr.isInSystemMacro(CC))
12782         return;
12783       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12784     }
12785 
12786     // If the vector cast is cast between two vectors of the same size, it is
12787     // a bitcast, not a conversion.
12788     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12789       return;
12790 
12791     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12792     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12793   }
12794   if (auto VecTy = dyn_cast<VectorType>(Target))
12795     Target = VecTy->getElementType().getTypePtr();
12796 
12797   // Strip complex types.
12798   if (isa<ComplexType>(Source)) {
12799     if (!isa<ComplexType>(Target)) {
12800       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12801         return;
12802 
12803       return DiagnoseImpCast(S, E, T, CC,
12804                              S.getLangOpts().CPlusPlus
12805                                  ? diag::err_impcast_complex_scalar
12806                                  : diag::warn_impcast_complex_scalar);
12807     }
12808 
12809     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12810     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12811   }
12812 
12813   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12814   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12815 
12816   // If the source is floating point...
12817   if (SourceBT && SourceBT->isFloatingPoint()) {
12818     // ...and the target is floating point...
12819     if (TargetBT && TargetBT->isFloatingPoint()) {
12820       // ...then warn if we're dropping FP rank.
12821 
12822       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12823           QualType(SourceBT, 0), QualType(TargetBT, 0));
12824       if (Order > 0) {
12825         // Don't warn about float constants that are precisely
12826         // representable in the target type.
12827         Expr::EvalResult result;
12828         if (E->EvaluateAsRValue(result, S.Context)) {
12829           // Value might be a float, a float vector, or a float complex.
12830           if (IsSameFloatAfterCast(result.Val,
12831                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12832                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12833             return;
12834         }
12835 
12836         if (S.SourceMgr.isInSystemMacro(CC))
12837           return;
12838 
12839         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12840       }
12841       // ... or possibly if we're increasing rank, too
12842       else if (Order < 0) {
12843         if (S.SourceMgr.isInSystemMacro(CC))
12844           return;
12845 
12846         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12847       }
12848       return;
12849     }
12850 
12851     // If the target is integral, always warn.
12852     if (TargetBT && TargetBT->isInteger()) {
12853       if (S.SourceMgr.isInSystemMacro(CC))
12854         return;
12855 
12856       DiagnoseFloatingImpCast(S, E, T, CC);
12857     }
12858 
12859     // Detect the case where a call result is converted from floating-point to
12860     // to bool, and the final argument to the call is converted from bool, to
12861     // discover this typo:
12862     //
12863     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12864     //
12865     // FIXME: This is an incredibly special case; is there some more general
12866     // way to detect this class of misplaced-parentheses bug?
12867     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12868       // Check last argument of function call to see if it is an
12869       // implicit cast from a type matching the type the result
12870       // is being cast to.
12871       CallExpr *CEx = cast<CallExpr>(E);
12872       if (unsigned NumArgs = CEx->getNumArgs()) {
12873         Expr *LastA = CEx->getArg(NumArgs - 1);
12874         Expr *InnerE = LastA->IgnoreParenImpCasts();
12875         if (isa<ImplicitCastExpr>(LastA) &&
12876             InnerE->getType()->isBooleanType()) {
12877           // Warn on this floating-point to bool conversion
12878           DiagnoseImpCast(S, E, T, CC,
12879                           diag::warn_impcast_floating_point_to_bool);
12880         }
12881       }
12882     }
12883     return;
12884   }
12885 
12886   // Valid casts involving fixed point types should be accounted for here.
12887   if (Source->isFixedPointType()) {
12888     if (Target->isUnsaturatedFixedPointType()) {
12889       Expr::EvalResult Result;
12890       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12891                                   S.isConstantEvaluated())) {
12892         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12893         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12894         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12895         if (Value > MaxVal || Value < MinVal) {
12896           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12897                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12898                                     << Value.toString() << T
12899                                     << E->getSourceRange()
12900                                     << clang::SourceRange(CC));
12901           return;
12902         }
12903       }
12904     } else if (Target->isIntegerType()) {
12905       Expr::EvalResult Result;
12906       if (!S.isConstantEvaluated() &&
12907           E->EvaluateAsFixedPoint(Result, S.Context,
12908                                   Expr::SE_AllowSideEffects)) {
12909         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12910 
12911         bool Overflowed;
12912         llvm::APSInt IntResult = FXResult.convertToInt(
12913             S.Context.getIntWidth(T),
12914             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12915 
12916         if (Overflowed) {
12917           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12918                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12919                                     << FXResult.toString() << T
12920                                     << E->getSourceRange()
12921                                     << clang::SourceRange(CC));
12922           return;
12923         }
12924       }
12925     }
12926   } else if (Target->isUnsaturatedFixedPointType()) {
12927     if (Source->isIntegerType()) {
12928       Expr::EvalResult Result;
12929       if (!S.isConstantEvaluated() &&
12930           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12931         llvm::APSInt Value = Result.Val.getInt();
12932 
12933         bool Overflowed;
12934         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12935             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12936 
12937         if (Overflowed) {
12938           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12939                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12940                                     << toString(Value, /*Radix=*/10) << T
12941                                     << E->getSourceRange()
12942                                     << clang::SourceRange(CC));
12943           return;
12944         }
12945       }
12946     }
12947   }
12948 
12949   // If we are casting an integer type to a floating point type without
12950   // initialization-list syntax, we might lose accuracy if the floating
12951   // point type has a narrower significand than the integer type.
12952   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12953       TargetBT->isFloatingType() && !IsListInit) {
12954     // Determine the number of precision bits in the source integer type.
12955     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12956                                         /*Approximate*/ true);
12957     unsigned int SourcePrecision = SourceRange.Width;
12958 
12959     // Determine the number of precision bits in the
12960     // target floating point type.
12961     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12962         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12963 
12964     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12965         SourcePrecision > TargetPrecision) {
12966 
12967       if (Optional<llvm::APSInt> SourceInt =
12968               E->getIntegerConstantExpr(S.Context)) {
12969         // If the source integer is a constant, convert it to the target
12970         // floating point type. Issue a warning if the value changes
12971         // during the whole conversion.
12972         llvm::APFloat TargetFloatValue(
12973             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12974         llvm::APFloat::opStatus ConversionStatus =
12975             TargetFloatValue.convertFromAPInt(
12976                 *SourceInt, SourceBT->isSignedInteger(),
12977                 llvm::APFloat::rmNearestTiesToEven);
12978 
12979         if (ConversionStatus != llvm::APFloat::opOK) {
12980           SmallString<32> PrettySourceValue;
12981           SourceInt->toString(PrettySourceValue, 10);
12982           SmallString<32> PrettyTargetValue;
12983           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12984 
12985           S.DiagRuntimeBehavior(
12986               E->getExprLoc(), E,
12987               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12988                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12989                   << E->getSourceRange() << clang::SourceRange(CC));
12990         }
12991       } else {
12992         // Otherwise, the implicit conversion may lose precision.
12993         DiagnoseImpCast(S, E, T, CC,
12994                         diag::warn_impcast_integer_float_precision);
12995       }
12996     }
12997   }
12998 
12999   DiagnoseNullConversion(S, E, T, CC);
13000 
13001   S.DiscardMisalignedMemberAddress(Target, E);
13002 
13003   if (Target->isBooleanType())
13004     DiagnoseIntInBoolContext(S, E);
13005 
13006   if (!Source->isIntegerType() || !Target->isIntegerType())
13007     return;
13008 
13009   // TODO: remove this early return once the false positives for constant->bool
13010   // in templates, macros, etc, are reduced or removed.
13011   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13012     return;
13013 
13014   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13015       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13016     return adornObjCBoolConversionDiagWithTernaryFixit(
13017         S, E,
13018         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13019             << E->getType());
13020   }
13021 
13022   IntRange SourceTypeRange =
13023       IntRange::forTargetOfCanonicalType(S.Context, Source);
13024   IntRange LikelySourceRange =
13025       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13026   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13027 
13028   if (LikelySourceRange.Width > TargetRange.Width) {
13029     // If the source is a constant, use a default-on diagnostic.
13030     // TODO: this should happen for bitfield stores, too.
13031     Expr::EvalResult Result;
13032     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13033                          S.isConstantEvaluated())) {
13034       llvm::APSInt Value(32);
13035       Value = Result.Val.getInt();
13036 
13037       if (S.SourceMgr.isInSystemMacro(CC))
13038         return;
13039 
13040       std::string PrettySourceValue = toString(Value, 10);
13041       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13042 
13043       S.DiagRuntimeBehavior(
13044           E->getExprLoc(), E,
13045           S.PDiag(diag::warn_impcast_integer_precision_constant)
13046               << PrettySourceValue << PrettyTargetValue << E->getType() << T
13047               << E->getSourceRange() << SourceRange(CC));
13048       return;
13049     }
13050 
13051     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13052     if (S.SourceMgr.isInSystemMacro(CC))
13053       return;
13054 
13055     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13056       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13057                              /* pruneControlFlow */ true);
13058     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13059   }
13060 
13061   if (TargetRange.Width > SourceTypeRange.Width) {
13062     if (auto *UO = dyn_cast<UnaryOperator>(E))
13063       if (UO->getOpcode() == UO_Minus)
13064         if (Source->isUnsignedIntegerType()) {
13065           if (Target->isUnsignedIntegerType())
13066             return DiagnoseImpCast(S, E, T, CC,
13067                                    diag::warn_impcast_high_order_zero_bits);
13068           if (Target->isSignedIntegerType())
13069             return DiagnoseImpCast(S, E, T, CC,
13070                                    diag::warn_impcast_nonnegative_result);
13071         }
13072   }
13073 
13074   if (TargetRange.Width == LikelySourceRange.Width &&
13075       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13076       Source->isSignedIntegerType()) {
13077     // Warn when doing a signed to signed conversion, warn if the positive
13078     // source value is exactly the width of the target type, which will
13079     // cause a negative value to be stored.
13080 
13081     Expr::EvalResult Result;
13082     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13083         !S.SourceMgr.isInSystemMacro(CC)) {
13084       llvm::APSInt Value = Result.Val.getInt();
13085       if (isSameWidthConstantConversion(S, E, T, CC)) {
13086         std::string PrettySourceValue = toString(Value, 10);
13087         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13088 
13089         S.DiagRuntimeBehavior(
13090             E->getExprLoc(), E,
13091             S.PDiag(diag::warn_impcast_integer_precision_constant)
13092                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13093                 << E->getSourceRange() << SourceRange(CC));
13094         return;
13095       }
13096     }
13097 
13098     // Fall through for non-constants to give a sign conversion warning.
13099   }
13100 
13101   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13102       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13103        LikelySourceRange.Width == TargetRange.Width)) {
13104     if (S.SourceMgr.isInSystemMacro(CC))
13105       return;
13106 
13107     unsigned DiagID = diag::warn_impcast_integer_sign;
13108 
13109     // Traditionally, gcc has warned about this under -Wsign-compare.
13110     // We also want to warn about it in -Wconversion.
13111     // So if -Wconversion is off, use a completely identical diagnostic
13112     // in the sign-compare group.
13113     // The conditional-checking code will
13114     if (ICContext) {
13115       DiagID = diag::warn_impcast_integer_sign_conditional;
13116       *ICContext = true;
13117     }
13118 
13119     return DiagnoseImpCast(S, E, T, CC, DiagID);
13120   }
13121 
13122   // Diagnose conversions between different enumeration types.
13123   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13124   // type, to give us better diagnostics.
13125   QualType SourceType = E->getType();
13126   if (!S.getLangOpts().CPlusPlus) {
13127     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13128       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13129         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13130         SourceType = S.Context.getTypeDeclType(Enum);
13131         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13132       }
13133   }
13134 
13135   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13136     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13137       if (SourceEnum->getDecl()->hasNameForLinkage() &&
13138           TargetEnum->getDecl()->hasNameForLinkage() &&
13139           SourceEnum != TargetEnum) {
13140         if (S.SourceMgr.isInSystemMacro(CC))
13141           return;
13142 
13143         return DiagnoseImpCast(S, E, SourceType, T, CC,
13144                                diag::warn_impcast_different_enum_types);
13145       }
13146 }
13147 
13148 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13149                                      SourceLocation CC, QualType T);
13150 
13151 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13152                                     SourceLocation CC, bool &ICContext) {
13153   E = E->IgnoreParenImpCasts();
13154 
13155   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13156     return CheckConditionalOperator(S, CO, CC, T);
13157 
13158   AnalyzeImplicitConversions(S, E, CC);
13159   if (E->getType() != T)
13160     return CheckImplicitConversion(S, E, T, CC, &ICContext);
13161 }
13162 
13163 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13164                                      SourceLocation CC, QualType T) {
13165   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13166 
13167   Expr *TrueExpr = E->getTrueExpr();
13168   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13169     TrueExpr = BCO->getCommon();
13170 
13171   bool Suspicious = false;
13172   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13173   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13174 
13175   if (T->isBooleanType())
13176     DiagnoseIntInBoolContext(S, E);
13177 
13178   // If -Wconversion would have warned about either of the candidates
13179   // for a signedness conversion to the context type...
13180   if (!Suspicious) return;
13181 
13182   // ...but it's currently ignored...
13183   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13184     return;
13185 
13186   // ...then check whether it would have warned about either of the
13187   // candidates for a signedness conversion to the condition type.
13188   if (E->getType() == T) return;
13189 
13190   Suspicious = false;
13191   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13192                           E->getType(), CC, &Suspicious);
13193   if (!Suspicious)
13194     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13195                             E->getType(), CC, &Suspicious);
13196 }
13197 
13198 /// Check conversion of given expression to boolean.
13199 /// Input argument E is a logical expression.
13200 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13201   if (S.getLangOpts().Bool)
13202     return;
13203   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13204     return;
13205   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13206 }
13207 
13208 namespace {
13209 struct AnalyzeImplicitConversionsWorkItem {
13210   Expr *E;
13211   SourceLocation CC;
13212   bool IsListInit;
13213 };
13214 }
13215 
13216 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13217 /// that should be visited are added to WorkList.
13218 static void AnalyzeImplicitConversions(
13219     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13220     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13221   Expr *OrigE = Item.E;
13222   SourceLocation CC = Item.CC;
13223 
13224   QualType T = OrigE->getType();
13225   Expr *E = OrigE->IgnoreParenImpCasts();
13226 
13227   // Propagate whether we are in a C++ list initialization expression.
13228   // If so, we do not issue warnings for implicit int-float conversion
13229   // precision loss, because C++11 narrowing already handles it.
13230   bool IsListInit = Item.IsListInit ||
13231                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13232 
13233   if (E->isTypeDependent() || E->isValueDependent())
13234     return;
13235 
13236   Expr *SourceExpr = E;
13237   // Examine, but don't traverse into the source expression of an
13238   // OpaqueValueExpr, since it may have multiple parents and we don't want to
13239   // emit duplicate diagnostics. Its fine to examine the form or attempt to
13240   // evaluate it in the context of checking the specific conversion to T though.
13241   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13242     if (auto *Src = OVE->getSourceExpr())
13243       SourceExpr = Src;
13244 
13245   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13246     if (UO->getOpcode() == UO_Not &&
13247         UO->getSubExpr()->isKnownToHaveBooleanValue())
13248       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13249           << OrigE->getSourceRange() << T->isBooleanType()
13250           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13251 
13252   // For conditional operators, we analyze the arguments as if they
13253   // were being fed directly into the output.
13254   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13255     CheckConditionalOperator(S, CO, CC, T);
13256     return;
13257   }
13258 
13259   // Check implicit argument conversions for function calls.
13260   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13261     CheckImplicitArgumentConversions(S, Call, CC);
13262 
13263   // Go ahead and check any implicit conversions we might have skipped.
13264   // The non-canonical typecheck is just an optimization;
13265   // CheckImplicitConversion will filter out dead implicit conversions.
13266   if (SourceExpr->getType() != T)
13267     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13268 
13269   // Now continue drilling into this expression.
13270 
13271   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13272     // The bound subexpressions in a PseudoObjectExpr are not reachable
13273     // as transitive children.
13274     // FIXME: Use a more uniform representation for this.
13275     for (auto *SE : POE->semantics())
13276       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13277         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13278   }
13279 
13280   // Skip past explicit casts.
13281   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13282     E = CE->getSubExpr()->IgnoreParenImpCasts();
13283     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13284       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13285     WorkList.push_back({E, CC, IsListInit});
13286     return;
13287   }
13288 
13289   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13290     // Do a somewhat different check with comparison operators.
13291     if (BO->isComparisonOp())
13292       return AnalyzeComparison(S, BO);
13293 
13294     // And with simple assignments.
13295     if (BO->getOpcode() == BO_Assign)
13296       return AnalyzeAssignment(S, BO);
13297     // And with compound assignments.
13298     if (BO->isAssignmentOp())
13299       return AnalyzeCompoundAssignment(S, BO);
13300   }
13301 
13302   // These break the otherwise-useful invariant below.  Fortunately,
13303   // we don't really need to recurse into them, because any internal
13304   // expressions should have been analyzed already when they were
13305   // built into statements.
13306   if (isa<StmtExpr>(E)) return;
13307 
13308   // Don't descend into unevaluated contexts.
13309   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13310 
13311   // Now just recurse over the expression's children.
13312   CC = E->getExprLoc();
13313   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13314   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13315   for (Stmt *SubStmt : E->children()) {
13316     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13317     if (!ChildExpr)
13318       continue;
13319 
13320     if (IsLogicalAndOperator &&
13321         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13322       // Ignore checking string literals that are in logical and operators.
13323       // This is a common pattern for asserts.
13324       continue;
13325     WorkList.push_back({ChildExpr, CC, IsListInit});
13326   }
13327 
13328   if (BO && BO->isLogicalOp()) {
13329     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13330     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13331       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13332 
13333     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13334     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13335       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13336   }
13337 
13338   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13339     if (U->getOpcode() == UO_LNot) {
13340       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13341     } else if (U->getOpcode() != UO_AddrOf) {
13342       if (U->getSubExpr()->getType()->isAtomicType())
13343         S.Diag(U->getSubExpr()->getBeginLoc(),
13344                diag::warn_atomic_implicit_seq_cst);
13345     }
13346   }
13347 }
13348 
13349 /// AnalyzeImplicitConversions - Find and report any interesting
13350 /// implicit conversions in the given expression.  There are a couple
13351 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
13352 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13353                                        bool IsListInit/*= false*/) {
13354   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13355   WorkList.push_back({OrigE, CC, IsListInit});
13356   while (!WorkList.empty())
13357     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13358 }
13359 
13360 /// Diagnose integer type and any valid implicit conversion to it.
13361 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13362   // Taking into account implicit conversions,
13363   // allow any integer.
13364   if (!E->getType()->isIntegerType()) {
13365     S.Diag(E->getBeginLoc(),
13366            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13367     return true;
13368   }
13369   // Potentially emit standard warnings for implicit conversions if enabled
13370   // using -Wconversion.
13371   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13372   return false;
13373 }
13374 
13375 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13376 // Returns true when emitting a warning about taking the address of a reference.
13377 static bool CheckForReference(Sema &SemaRef, const Expr *E,
13378                               const PartialDiagnostic &PD) {
13379   E = E->IgnoreParenImpCasts();
13380 
13381   const FunctionDecl *FD = nullptr;
13382 
13383   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13384     if (!DRE->getDecl()->getType()->isReferenceType())
13385       return false;
13386   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13387     if (!M->getMemberDecl()->getType()->isReferenceType())
13388       return false;
13389   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13390     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13391       return false;
13392     FD = Call->getDirectCallee();
13393   } else {
13394     return false;
13395   }
13396 
13397   SemaRef.Diag(E->getExprLoc(), PD);
13398 
13399   // If possible, point to location of function.
13400   if (FD) {
13401     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13402   }
13403 
13404   return true;
13405 }
13406 
13407 // Returns true if the SourceLocation is expanded from any macro body.
13408 // Returns false if the SourceLocation is invalid, is from not in a macro
13409 // expansion, or is from expanded from a top-level macro argument.
13410 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13411   if (Loc.isInvalid())
13412     return false;
13413 
13414   while (Loc.isMacroID()) {
13415     if (SM.isMacroBodyExpansion(Loc))
13416       return true;
13417     Loc = SM.getImmediateMacroCallerLoc(Loc);
13418   }
13419 
13420   return false;
13421 }
13422 
13423 /// Diagnose pointers that are always non-null.
13424 /// \param E the expression containing the pointer
13425 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13426 /// compared to a null pointer
13427 /// \param IsEqual True when the comparison is equal to a null pointer
13428 /// \param Range Extra SourceRange to highlight in the diagnostic
13429 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13430                                         Expr::NullPointerConstantKind NullKind,
13431                                         bool IsEqual, SourceRange Range) {
13432   if (!E)
13433     return;
13434 
13435   // Don't warn inside macros.
13436   if (E->getExprLoc().isMacroID()) {
13437     const SourceManager &SM = getSourceManager();
13438     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13439         IsInAnyMacroBody(SM, Range.getBegin()))
13440       return;
13441   }
13442   E = E->IgnoreImpCasts();
13443 
13444   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13445 
13446   if (isa<CXXThisExpr>(E)) {
13447     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13448                                 : diag::warn_this_bool_conversion;
13449     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13450     return;
13451   }
13452 
13453   bool IsAddressOf = false;
13454 
13455   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13456     if (UO->getOpcode() != UO_AddrOf)
13457       return;
13458     IsAddressOf = true;
13459     E = UO->getSubExpr();
13460   }
13461 
13462   if (IsAddressOf) {
13463     unsigned DiagID = IsCompare
13464                           ? diag::warn_address_of_reference_null_compare
13465                           : diag::warn_address_of_reference_bool_conversion;
13466     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13467                                          << IsEqual;
13468     if (CheckForReference(*this, E, PD)) {
13469       return;
13470     }
13471   }
13472 
13473   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13474     bool IsParam = isa<NonNullAttr>(NonnullAttr);
13475     std::string Str;
13476     llvm::raw_string_ostream S(Str);
13477     E->printPretty(S, nullptr, getPrintingPolicy());
13478     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13479                                 : diag::warn_cast_nonnull_to_bool;
13480     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13481       << E->getSourceRange() << Range << IsEqual;
13482     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13483   };
13484 
13485   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13486   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13487     if (auto *Callee = Call->getDirectCallee()) {
13488       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13489         ComplainAboutNonnullParamOrCall(A);
13490         return;
13491       }
13492     }
13493   }
13494 
13495   // Expect to find a single Decl.  Skip anything more complicated.
13496   ValueDecl *D = nullptr;
13497   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13498     D = R->getDecl();
13499   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13500     D = M->getMemberDecl();
13501   }
13502 
13503   // Weak Decls can be null.
13504   if (!D || D->isWeak())
13505     return;
13506 
13507   // Check for parameter decl with nonnull attribute
13508   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13509     if (getCurFunction() &&
13510         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13511       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13512         ComplainAboutNonnullParamOrCall(A);
13513         return;
13514       }
13515 
13516       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13517         // Skip function template not specialized yet.
13518         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13519           return;
13520         auto ParamIter = llvm::find(FD->parameters(), PV);
13521         assert(ParamIter != FD->param_end());
13522         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13523 
13524         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13525           if (!NonNull->args_size()) {
13526               ComplainAboutNonnullParamOrCall(NonNull);
13527               return;
13528           }
13529 
13530           for (const ParamIdx &ArgNo : NonNull->args()) {
13531             if (ArgNo.getASTIndex() == ParamNo) {
13532               ComplainAboutNonnullParamOrCall(NonNull);
13533               return;
13534             }
13535           }
13536         }
13537       }
13538     }
13539   }
13540 
13541   QualType T = D->getType();
13542   const bool IsArray = T->isArrayType();
13543   const bool IsFunction = T->isFunctionType();
13544 
13545   // Address of function is used to silence the function warning.
13546   if (IsAddressOf && IsFunction) {
13547     return;
13548   }
13549 
13550   // Found nothing.
13551   if (!IsAddressOf && !IsFunction && !IsArray)
13552     return;
13553 
13554   // Pretty print the expression for the diagnostic.
13555   std::string Str;
13556   llvm::raw_string_ostream S(Str);
13557   E->printPretty(S, nullptr, getPrintingPolicy());
13558 
13559   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13560                               : diag::warn_impcast_pointer_to_bool;
13561   enum {
13562     AddressOf,
13563     FunctionPointer,
13564     ArrayPointer
13565   } DiagType;
13566   if (IsAddressOf)
13567     DiagType = AddressOf;
13568   else if (IsFunction)
13569     DiagType = FunctionPointer;
13570   else if (IsArray)
13571     DiagType = ArrayPointer;
13572   else
13573     llvm_unreachable("Could not determine diagnostic.");
13574   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13575                                 << Range << IsEqual;
13576 
13577   if (!IsFunction)
13578     return;
13579 
13580   // Suggest '&' to silence the function warning.
13581   Diag(E->getExprLoc(), diag::note_function_warning_silence)
13582       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13583 
13584   // Check to see if '()' fixit should be emitted.
13585   QualType ReturnType;
13586   UnresolvedSet<4> NonTemplateOverloads;
13587   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13588   if (ReturnType.isNull())
13589     return;
13590 
13591   if (IsCompare) {
13592     // There are two cases here.  If there is null constant, the only suggest
13593     // for a pointer return type.  If the null is 0, then suggest if the return
13594     // type is a pointer or an integer type.
13595     if (!ReturnType->isPointerType()) {
13596       if (NullKind == Expr::NPCK_ZeroExpression ||
13597           NullKind == Expr::NPCK_ZeroLiteral) {
13598         if (!ReturnType->isIntegerType())
13599           return;
13600       } else {
13601         return;
13602       }
13603     }
13604   } else { // !IsCompare
13605     // For function to bool, only suggest if the function pointer has bool
13606     // return type.
13607     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13608       return;
13609   }
13610   Diag(E->getExprLoc(), diag::note_function_to_function_call)
13611       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13612 }
13613 
13614 /// Diagnoses "dangerous" implicit conversions within the given
13615 /// expression (which is a full expression).  Implements -Wconversion
13616 /// and -Wsign-compare.
13617 ///
13618 /// \param CC the "context" location of the implicit conversion, i.e.
13619 ///   the most location of the syntactic entity requiring the implicit
13620 ///   conversion
13621 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13622   // Don't diagnose in unevaluated contexts.
13623   if (isUnevaluatedContext())
13624     return;
13625 
13626   // Don't diagnose for value- or type-dependent expressions.
13627   if (E->isTypeDependent() || E->isValueDependent())
13628     return;
13629 
13630   // Check for array bounds violations in cases where the check isn't triggered
13631   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13632   // ArraySubscriptExpr is on the RHS of a variable initialization.
13633   CheckArrayAccess(E);
13634 
13635   // This is not the right CC for (e.g.) a variable initialization.
13636   AnalyzeImplicitConversions(*this, E, CC);
13637 }
13638 
13639 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13640 /// Input argument E is a logical expression.
13641 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13642   ::CheckBoolLikeConversion(*this, E, CC);
13643 }
13644 
13645 /// Diagnose when expression is an integer constant expression and its evaluation
13646 /// results in integer overflow
13647 void Sema::CheckForIntOverflow (Expr *E) {
13648   // Use a work list to deal with nested struct initializers.
13649   SmallVector<Expr *, 2> Exprs(1, E);
13650 
13651   do {
13652     Expr *OriginalE = Exprs.pop_back_val();
13653     Expr *E = OriginalE->IgnoreParenCasts();
13654 
13655     if (isa<BinaryOperator>(E)) {
13656       E->EvaluateForOverflow(Context);
13657       continue;
13658     }
13659 
13660     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13661       Exprs.append(InitList->inits().begin(), InitList->inits().end());
13662     else if (isa<ObjCBoxedExpr>(OriginalE))
13663       E->EvaluateForOverflow(Context);
13664     else if (auto Call = dyn_cast<CallExpr>(E))
13665       Exprs.append(Call->arg_begin(), Call->arg_end());
13666     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13667       Exprs.append(Message->arg_begin(), Message->arg_end());
13668   } while (!Exprs.empty());
13669 }
13670 
13671 namespace {
13672 
13673 /// Visitor for expressions which looks for unsequenced operations on the
13674 /// same object.
13675 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13676   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13677 
13678   /// A tree of sequenced regions within an expression. Two regions are
13679   /// unsequenced if one is an ancestor or a descendent of the other. When we
13680   /// finish processing an expression with sequencing, such as a comma
13681   /// expression, we fold its tree nodes into its parent, since they are
13682   /// unsequenced with respect to nodes we will visit later.
13683   class SequenceTree {
13684     struct Value {
13685       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13686       unsigned Parent : 31;
13687       unsigned Merged : 1;
13688     };
13689     SmallVector<Value, 8> Values;
13690 
13691   public:
13692     /// A region within an expression which may be sequenced with respect
13693     /// to some other region.
13694     class Seq {
13695       friend class SequenceTree;
13696 
13697       unsigned Index;
13698 
13699       explicit Seq(unsigned N) : Index(N) {}
13700 
13701     public:
13702       Seq() : Index(0) {}
13703     };
13704 
13705     SequenceTree() { Values.push_back(Value(0)); }
13706     Seq root() const { return Seq(0); }
13707 
13708     /// Create a new sequence of operations, which is an unsequenced
13709     /// subset of \p Parent. This sequence of operations is sequenced with
13710     /// respect to other children of \p Parent.
13711     Seq allocate(Seq Parent) {
13712       Values.push_back(Value(Parent.Index));
13713       return Seq(Values.size() - 1);
13714     }
13715 
13716     /// Merge a sequence of operations into its parent.
13717     void merge(Seq S) {
13718       Values[S.Index].Merged = true;
13719     }
13720 
13721     /// Determine whether two operations are unsequenced. This operation
13722     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13723     /// should have been merged into its parent as appropriate.
13724     bool isUnsequenced(Seq Cur, Seq Old) {
13725       unsigned C = representative(Cur.Index);
13726       unsigned Target = representative(Old.Index);
13727       while (C >= Target) {
13728         if (C == Target)
13729           return true;
13730         C = Values[C].Parent;
13731       }
13732       return false;
13733     }
13734 
13735   private:
13736     /// Pick a representative for a sequence.
13737     unsigned representative(unsigned K) {
13738       if (Values[K].Merged)
13739         // Perform path compression as we go.
13740         return Values[K].Parent = representative(Values[K].Parent);
13741       return K;
13742     }
13743   };
13744 
13745   /// An object for which we can track unsequenced uses.
13746   using Object = const NamedDecl *;
13747 
13748   /// Different flavors of object usage which we track. We only track the
13749   /// least-sequenced usage of each kind.
13750   enum UsageKind {
13751     /// A read of an object. Multiple unsequenced reads are OK.
13752     UK_Use,
13753 
13754     /// A modification of an object which is sequenced before the value
13755     /// computation of the expression, such as ++n in C++.
13756     UK_ModAsValue,
13757 
13758     /// A modification of an object which is not sequenced before the value
13759     /// computation of the expression, such as n++.
13760     UK_ModAsSideEffect,
13761 
13762     UK_Count = UK_ModAsSideEffect + 1
13763   };
13764 
13765   /// Bundle together a sequencing region and the expression corresponding
13766   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13767   struct Usage {
13768     const Expr *UsageExpr;
13769     SequenceTree::Seq Seq;
13770 
13771     Usage() : UsageExpr(nullptr), Seq() {}
13772   };
13773 
13774   struct UsageInfo {
13775     Usage Uses[UK_Count];
13776 
13777     /// Have we issued a diagnostic for this object already?
13778     bool Diagnosed;
13779 
13780     UsageInfo() : Uses(), Diagnosed(false) {}
13781   };
13782   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13783 
13784   Sema &SemaRef;
13785 
13786   /// Sequenced regions within the expression.
13787   SequenceTree Tree;
13788 
13789   /// Declaration modifications and references which we have seen.
13790   UsageInfoMap UsageMap;
13791 
13792   /// The region we are currently within.
13793   SequenceTree::Seq Region;
13794 
13795   /// Filled in with declarations which were modified as a side-effect
13796   /// (that is, post-increment operations).
13797   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13798 
13799   /// Expressions to check later. We defer checking these to reduce
13800   /// stack usage.
13801   SmallVectorImpl<const Expr *> &WorkList;
13802 
13803   /// RAII object wrapping the visitation of a sequenced subexpression of an
13804   /// expression. At the end of this process, the side-effects of the evaluation
13805   /// become sequenced with respect to the value computation of the result, so
13806   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13807   /// UK_ModAsValue.
13808   struct SequencedSubexpression {
13809     SequencedSubexpression(SequenceChecker &Self)
13810       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13811       Self.ModAsSideEffect = &ModAsSideEffect;
13812     }
13813 
13814     ~SequencedSubexpression() {
13815       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13816         // Add a new usage with usage kind UK_ModAsValue, and then restore
13817         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13818         // the previous one was empty).
13819         UsageInfo &UI = Self.UsageMap[M.first];
13820         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13821         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13822         SideEffectUsage = M.second;
13823       }
13824       Self.ModAsSideEffect = OldModAsSideEffect;
13825     }
13826 
13827     SequenceChecker &Self;
13828     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13829     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13830   };
13831 
13832   /// RAII object wrapping the visitation of a subexpression which we might
13833   /// choose to evaluate as a constant. If any subexpression is evaluated and
13834   /// found to be non-constant, this allows us to suppress the evaluation of
13835   /// the outer expression.
13836   class EvaluationTracker {
13837   public:
13838     EvaluationTracker(SequenceChecker &Self)
13839         : Self(Self), Prev(Self.EvalTracker) {
13840       Self.EvalTracker = this;
13841     }
13842 
13843     ~EvaluationTracker() {
13844       Self.EvalTracker = Prev;
13845       if (Prev)
13846         Prev->EvalOK &= EvalOK;
13847     }
13848 
13849     bool evaluate(const Expr *E, bool &Result) {
13850       if (!EvalOK || E->isValueDependent())
13851         return false;
13852       EvalOK = E->EvaluateAsBooleanCondition(
13853           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13854       return EvalOK;
13855     }
13856 
13857   private:
13858     SequenceChecker &Self;
13859     EvaluationTracker *Prev;
13860     bool EvalOK = true;
13861   } *EvalTracker = nullptr;
13862 
13863   /// Find the object which is produced by the specified expression,
13864   /// if any.
13865   Object getObject(const Expr *E, bool Mod) const {
13866     E = E->IgnoreParenCasts();
13867     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13868       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13869         return getObject(UO->getSubExpr(), Mod);
13870     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13871       if (BO->getOpcode() == BO_Comma)
13872         return getObject(BO->getRHS(), Mod);
13873       if (Mod && BO->isAssignmentOp())
13874         return getObject(BO->getLHS(), Mod);
13875     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13876       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13877       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13878         return ME->getMemberDecl();
13879     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13880       // FIXME: If this is a reference, map through to its value.
13881       return DRE->getDecl();
13882     return nullptr;
13883   }
13884 
13885   /// Note that an object \p O was modified or used by an expression
13886   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13887   /// the object \p O as obtained via the \p UsageMap.
13888   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13889     // Get the old usage for the given object and usage kind.
13890     Usage &U = UI.Uses[UK];
13891     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13892       // If we have a modification as side effect and are in a sequenced
13893       // subexpression, save the old Usage so that we can restore it later
13894       // in SequencedSubexpression::~SequencedSubexpression.
13895       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13896         ModAsSideEffect->push_back(std::make_pair(O, U));
13897       // Then record the new usage with the current sequencing region.
13898       U.UsageExpr = UsageExpr;
13899       U.Seq = Region;
13900     }
13901   }
13902 
13903   /// Check whether a modification or use of an object \p O in an expression
13904   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13905   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13906   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13907   /// usage and false we are checking for a mod-use unsequenced usage.
13908   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13909                   UsageKind OtherKind, bool IsModMod) {
13910     if (UI.Diagnosed)
13911       return;
13912 
13913     const Usage &U = UI.Uses[OtherKind];
13914     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13915       return;
13916 
13917     const Expr *Mod = U.UsageExpr;
13918     const Expr *ModOrUse = UsageExpr;
13919     if (OtherKind == UK_Use)
13920       std::swap(Mod, ModOrUse);
13921 
13922     SemaRef.DiagRuntimeBehavior(
13923         Mod->getExprLoc(), {Mod, ModOrUse},
13924         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13925                                : diag::warn_unsequenced_mod_use)
13926             << O << SourceRange(ModOrUse->getExprLoc()));
13927     UI.Diagnosed = true;
13928   }
13929 
13930   // A note on note{Pre, Post}{Use, Mod}:
13931   //
13932   // (It helps to follow the algorithm with an expression such as
13933   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13934   //  operations before C++17 and both are well-defined in C++17).
13935   //
13936   // When visiting a node which uses/modify an object we first call notePreUse
13937   // or notePreMod before visiting its sub-expression(s). At this point the
13938   // children of the current node have not yet been visited and so the eventual
13939   // uses/modifications resulting from the children of the current node have not
13940   // been recorded yet.
13941   //
13942   // We then visit the children of the current node. After that notePostUse or
13943   // notePostMod is called. These will 1) detect an unsequenced modification
13944   // as side effect (as in "k++ + k") and 2) add a new usage with the
13945   // appropriate usage kind.
13946   //
13947   // We also have to be careful that some operation sequences modification as
13948   // side effect as well (for example: || or ,). To account for this we wrap
13949   // the visitation of such a sub-expression (for example: the LHS of || or ,)
13950   // with SequencedSubexpression. SequencedSubexpression is an RAII object
13951   // which record usages which are modifications as side effect, and then
13952   // downgrade them (or more accurately restore the previous usage which was a
13953   // modification as side effect) when exiting the scope of the sequenced
13954   // subexpression.
13955 
13956   void notePreUse(Object O, const Expr *UseExpr) {
13957     UsageInfo &UI = UsageMap[O];
13958     // Uses conflict with other modifications.
13959     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13960   }
13961 
13962   void notePostUse(Object O, const Expr *UseExpr) {
13963     UsageInfo &UI = UsageMap[O];
13964     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13965                /*IsModMod=*/false);
13966     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13967   }
13968 
13969   void notePreMod(Object O, const Expr *ModExpr) {
13970     UsageInfo &UI = UsageMap[O];
13971     // Modifications conflict with other modifications and with uses.
13972     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13973     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13974   }
13975 
13976   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13977     UsageInfo &UI = UsageMap[O];
13978     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13979                /*IsModMod=*/true);
13980     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13981   }
13982 
13983 public:
13984   SequenceChecker(Sema &S, const Expr *E,
13985                   SmallVectorImpl<const Expr *> &WorkList)
13986       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13987     Visit(E);
13988     // Silence a -Wunused-private-field since WorkList is now unused.
13989     // TODO: Evaluate if it can be used, and if not remove it.
13990     (void)this->WorkList;
13991   }
13992 
13993   void VisitStmt(const Stmt *S) {
13994     // Skip all statements which aren't expressions for now.
13995   }
13996 
13997   void VisitExpr(const Expr *E) {
13998     // By default, just recurse to evaluated subexpressions.
13999     Base::VisitStmt(E);
14000   }
14001 
14002   void VisitCastExpr(const CastExpr *E) {
14003     Object O = Object();
14004     if (E->getCastKind() == CK_LValueToRValue)
14005       O = getObject(E->getSubExpr(), false);
14006 
14007     if (O)
14008       notePreUse(O, E);
14009     VisitExpr(E);
14010     if (O)
14011       notePostUse(O, E);
14012   }
14013 
14014   void VisitSequencedExpressions(const Expr *SequencedBefore,
14015                                  const Expr *SequencedAfter) {
14016     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14017     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14018     SequenceTree::Seq OldRegion = Region;
14019 
14020     {
14021       SequencedSubexpression SeqBefore(*this);
14022       Region = BeforeRegion;
14023       Visit(SequencedBefore);
14024     }
14025 
14026     Region = AfterRegion;
14027     Visit(SequencedAfter);
14028 
14029     Region = OldRegion;
14030 
14031     Tree.merge(BeforeRegion);
14032     Tree.merge(AfterRegion);
14033   }
14034 
14035   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14036     // C++17 [expr.sub]p1:
14037     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14038     //   expression E1 is sequenced before the expression E2.
14039     if (SemaRef.getLangOpts().CPlusPlus17)
14040       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14041     else {
14042       Visit(ASE->getLHS());
14043       Visit(ASE->getRHS());
14044     }
14045   }
14046 
14047   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14048   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14049   void VisitBinPtrMem(const BinaryOperator *BO) {
14050     // C++17 [expr.mptr.oper]p4:
14051     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14052     //  the expression E1 is sequenced before the expression E2.
14053     if (SemaRef.getLangOpts().CPlusPlus17)
14054       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14055     else {
14056       Visit(BO->getLHS());
14057       Visit(BO->getRHS());
14058     }
14059   }
14060 
14061   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14062   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14063   void VisitBinShlShr(const BinaryOperator *BO) {
14064     // C++17 [expr.shift]p4:
14065     //  The expression E1 is sequenced before the expression E2.
14066     if (SemaRef.getLangOpts().CPlusPlus17)
14067       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14068     else {
14069       Visit(BO->getLHS());
14070       Visit(BO->getRHS());
14071     }
14072   }
14073 
14074   void VisitBinComma(const BinaryOperator *BO) {
14075     // C++11 [expr.comma]p1:
14076     //   Every value computation and side effect associated with the left
14077     //   expression is sequenced before every value computation and side
14078     //   effect associated with the right expression.
14079     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14080   }
14081 
14082   void VisitBinAssign(const BinaryOperator *BO) {
14083     SequenceTree::Seq RHSRegion;
14084     SequenceTree::Seq LHSRegion;
14085     if (SemaRef.getLangOpts().CPlusPlus17) {
14086       RHSRegion = Tree.allocate(Region);
14087       LHSRegion = Tree.allocate(Region);
14088     } else {
14089       RHSRegion = Region;
14090       LHSRegion = Region;
14091     }
14092     SequenceTree::Seq OldRegion = Region;
14093 
14094     // C++11 [expr.ass]p1:
14095     //  [...] the assignment is sequenced after the value computation
14096     //  of the right and left operands, [...]
14097     //
14098     // so check it before inspecting the operands and update the
14099     // map afterwards.
14100     Object O = getObject(BO->getLHS(), /*Mod=*/true);
14101     if (O)
14102       notePreMod(O, BO);
14103 
14104     if (SemaRef.getLangOpts().CPlusPlus17) {
14105       // C++17 [expr.ass]p1:
14106       //  [...] The right operand is sequenced before the left operand. [...]
14107       {
14108         SequencedSubexpression SeqBefore(*this);
14109         Region = RHSRegion;
14110         Visit(BO->getRHS());
14111       }
14112 
14113       Region = LHSRegion;
14114       Visit(BO->getLHS());
14115 
14116       if (O && isa<CompoundAssignOperator>(BO))
14117         notePostUse(O, BO);
14118 
14119     } else {
14120       // C++11 does not specify any sequencing between the LHS and RHS.
14121       Region = LHSRegion;
14122       Visit(BO->getLHS());
14123 
14124       if (O && isa<CompoundAssignOperator>(BO))
14125         notePostUse(O, BO);
14126 
14127       Region = RHSRegion;
14128       Visit(BO->getRHS());
14129     }
14130 
14131     // C++11 [expr.ass]p1:
14132     //  the assignment is sequenced [...] before the value computation of the
14133     //  assignment expression.
14134     // C11 6.5.16/3 has no such rule.
14135     Region = OldRegion;
14136     if (O)
14137       notePostMod(O, BO,
14138                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14139                                                   : UK_ModAsSideEffect);
14140     if (SemaRef.getLangOpts().CPlusPlus17) {
14141       Tree.merge(RHSRegion);
14142       Tree.merge(LHSRegion);
14143     }
14144   }
14145 
14146   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14147     VisitBinAssign(CAO);
14148   }
14149 
14150   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14151   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14152   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14153     Object O = getObject(UO->getSubExpr(), true);
14154     if (!O)
14155       return VisitExpr(UO);
14156 
14157     notePreMod(O, UO);
14158     Visit(UO->getSubExpr());
14159     // C++11 [expr.pre.incr]p1:
14160     //   the expression ++x is equivalent to x+=1
14161     notePostMod(O, UO,
14162                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14163                                                 : UK_ModAsSideEffect);
14164   }
14165 
14166   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14167   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14168   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14169     Object O = getObject(UO->getSubExpr(), true);
14170     if (!O)
14171       return VisitExpr(UO);
14172 
14173     notePreMod(O, UO);
14174     Visit(UO->getSubExpr());
14175     notePostMod(O, UO, UK_ModAsSideEffect);
14176   }
14177 
14178   void VisitBinLOr(const BinaryOperator *BO) {
14179     // C++11 [expr.log.or]p2:
14180     //  If the second expression is evaluated, every value computation and
14181     //  side effect associated with the first expression is sequenced before
14182     //  every value computation and side effect associated with the
14183     //  second expression.
14184     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14185     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14186     SequenceTree::Seq OldRegion = Region;
14187 
14188     EvaluationTracker Eval(*this);
14189     {
14190       SequencedSubexpression Sequenced(*this);
14191       Region = LHSRegion;
14192       Visit(BO->getLHS());
14193     }
14194 
14195     // C++11 [expr.log.or]p1:
14196     //  [...] the second operand is not evaluated if the first operand
14197     //  evaluates to true.
14198     bool EvalResult = false;
14199     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14200     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14201     if (ShouldVisitRHS) {
14202       Region = RHSRegion;
14203       Visit(BO->getRHS());
14204     }
14205 
14206     Region = OldRegion;
14207     Tree.merge(LHSRegion);
14208     Tree.merge(RHSRegion);
14209   }
14210 
14211   void VisitBinLAnd(const BinaryOperator *BO) {
14212     // C++11 [expr.log.and]p2:
14213     //  If the second expression is evaluated, every value computation and
14214     //  side effect associated with the first expression is sequenced before
14215     //  every value computation and side effect associated with the
14216     //  second expression.
14217     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14218     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14219     SequenceTree::Seq OldRegion = Region;
14220 
14221     EvaluationTracker Eval(*this);
14222     {
14223       SequencedSubexpression Sequenced(*this);
14224       Region = LHSRegion;
14225       Visit(BO->getLHS());
14226     }
14227 
14228     // C++11 [expr.log.and]p1:
14229     //  [...] the second operand is not evaluated if the first operand is false.
14230     bool EvalResult = false;
14231     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14232     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14233     if (ShouldVisitRHS) {
14234       Region = RHSRegion;
14235       Visit(BO->getRHS());
14236     }
14237 
14238     Region = OldRegion;
14239     Tree.merge(LHSRegion);
14240     Tree.merge(RHSRegion);
14241   }
14242 
14243   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14244     // C++11 [expr.cond]p1:
14245     //  [...] Every value computation and side effect associated with the first
14246     //  expression is sequenced before every value computation and side effect
14247     //  associated with the second or third expression.
14248     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14249 
14250     // No sequencing is specified between the true and false expression.
14251     // However since exactly one of both is going to be evaluated we can
14252     // consider them to be sequenced. This is needed to avoid warning on
14253     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14254     // both the true and false expressions because we can't evaluate x.
14255     // This will still allow us to detect an expression like (pre C++17)
14256     // "(x ? y += 1 : y += 2) = y".
14257     //
14258     // We don't wrap the visitation of the true and false expression with
14259     // SequencedSubexpression because we don't want to downgrade modifications
14260     // as side effect in the true and false expressions after the visition
14261     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14262     // not warn between the two "y++", but we should warn between the "y++"
14263     // and the "y".
14264     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14265     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14266     SequenceTree::Seq OldRegion = Region;
14267 
14268     EvaluationTracker Eval(*this);
14269     {
14270       SequencedSubexpression Sequenced(*this);
14271       Region = ConditionRegion;
14272       Visit(CO->getCond());
14273     }
14274 
14275     // C++11 [expr.cond]p1:
14276     // [...] The first expression is contextually converted to bool (Clause 4).
14277     // It is evaluated and if it is true, the result of the conditional
14278     // expression is the value of the second expression, otherwise that of the
14279     // third expression. Only one of the second and third expressions is
14280     // evaluated. [...]
14281     bool EvalResult = false;
14282     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14283     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14284     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14285     if (ShouldVisitTrueExpr) {
14286       Region = TrueRegion;
14287       Visit(CO->getTrueExpr());
14288     }
14289     if (ShouldVisitFalseExpr) {
14290       Region = FalseRegion;
14291       Visit(CO->getFalseExpr());
14292     }
14293 
14294     Region = OldRegion;
14295     Tree.merge(ConditionRegion);
14296     Tree.merge(TrueRegion);
14297     Tree.merge(FalseRegion);
14298   }
14299 
14300   void VisitCallExpr(const CallExpr *CE) {
14301     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14302 
14303     if (CE->isUnevaluatedBuiltinCall(Context))
14304       return;
14305 
14306     // C++11 [intro.execution]p15:
14307     //   When calling a function [...], every value computation and side effect
14308     //   associated with any argument expression, or with the postfix expression
14309     //   designating the called function, is sequenced before execution of every
14310     //   expression or statement in the body of the function [and thus before
14311     //   the value computation of its result].
14312     SequencedSubexpression Sequenced(*this);
14313     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14314       // C++17 [expr.call]p5
14315       //   The postfix-expression is sequenced before each expression in the
14316       //   expression-list and any default argument. [...]
14317       SequenceTree::Seq CalleeRegion;
14318       SequenceTree::Seq OtherRegion;
14319       if (SemaRef.getLangOpts().CPlusPlus17) {
14320         CalleeRegion = Tree.allocate(Region);
14321         OtherRegion = Tree.allocate(Region);
14322       } else {
14323         CalleeRegion = Region;
14324         OtherRegion = Region;
14325       }
14326       SequenceTree::Seq OldRegion = Region;
14327 
14328       // Visit the callee expression first.
14329       Region = CalleeRegion;
14330       if (SemaRef.getLangOpts().CPlusPlus17) {
14331         SequencedSubexpression Sequenced(*this);
14332         Visit(CE->getCallee());
14333       } else {
14334         Visit(CE->getCallee());
14335       }
14336 
14337       // Then visit the argument expressions.
14338       Region = OtherRegion;
14339       for (const Expr *Argument : CE->arguments())
14340         Visit(Argument);
14341 
14342       Region = OldRegion;
14343       if (SemaRef.getLangOpts().CPlusPlus17) {
14344         Tree.merge(CalleeRegion);
14345         Tree.merge(OtherRegion);
14346       }
14347     });
14348   }
14349 
14350   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14351     // C++17 [over.match.oper]p2:
14352     //   [...] the operator notation is first transformed to the equivalent
14353     //   function-call notation as summarized in Table 12 (where @ denotes one
14354     //   of the operators covered in the specified subclause). However, the
14355     //   operands are sequenced in the order prescribed for the built-in
14356     //   operator (Clause 8).
14357     //
14358     // From the above only overloaded binary operators and overloaded call
14359     // operators have sequencing rules in C++17 that we need to handle
14360     // separately.
14361     if (!SemaRef.getLangOpts().CPlusPlus17 ||
14362         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14363       return VisitCallExpr(CXXOCE);
14364 
14365     enum {
14366       NoSequencing,
14367       LHSBeforeRHS,
14368       RHSBeforeLHS,
14369       LHSBeforeRest
14370     } SequencingKind;
14371     switch (CXXOCE->getOperator()) {
14372     case OO_Equal:
14373     case OO_PlusEqual:
14374     case OO_MinusEqual:
14375     case OO_StarEqual:
14376     case OO_SlashEqual:
14377     case OO_PercentEqual:
14378     case OO_CaretEqual:
14379     case OO_AmpEqual:
14380     case OO_PipeEqual:
14381     case OO_LessLessEqual:
14382     case OO_GreaterGreaterEqual:
14383       SequencingKind = RHSBeforeLHS;
14384       break;
14385 
14386     case OO_LessLess:
14387     case OO_GreaterGreater:
14388     case OO_AmpAmp:
14389     case OO_PipePipe:
14390     case OO_Comma:
14391     case OO_ArrowStar:
14392     case OO_Subscript:
14393       SequencingKind = LHSBeforeRHS;
14394       break;
14395 
14396     case OO_Call:
14397       SequencingKind = LHSBeforeRest;
14398       break;
14399 
14400     default:
14401       SequencingKind = NoSequencing;
14402       break;
14403     }
14404 
14405     if (SequencingKind == NoSequencing)
14406       return VisitCallExpr(CXXOCE);
14407 
14408     // This is a call, so all subexpressions are sequenced before the result.
14409     SequencedSubexpression Sequenced(*this);
14410 
14411     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14412       assert(SemaRef.getLangOpts().CPlusPlus17 &&
14413              "Should only get there with C++17 and above!");
14414       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
14415              "Should only get there with an overloaded binary operator"
14416              " or an overloaded call operator!");
14417 
14418       if (SequencingKind == LHSBeforeRest) {
14419         assert(CXXOCE->getOperator() == OO_Call &&
14420                "We should only have an overloaded call operator here!");
14421 
14422         // This is very similar to VisitCallExpr, except that we only have the
14423         // C++17 case. The postfix-expression is the first argument of the
14424         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14425         // are in the following arguments.
14426         //
14427         // Note that we intentionally do not visit the callee expression since
14428         // it is just a decayed reference to a function.
14429         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14430         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14431         SequenceTree::Seq OldRegion = Region;
14432 
14433         assert(CXXOCE->getNumArgs() >= 1 &&
14434                "An overloaded call operator must have at least one argument"
14435                " for the postfix-expression!");
14436         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14437         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14438                                           CXXOCE->getNumArgs() - 1);
14439 
14440         // Visit the postfix-expression first.
14441         {
14442           Region = PostfixExprRegion;
14443           SequencedSubexpression Sequenced(*this);
14444           Visit(PostfixExpr);
14445         }
14446 
14447         // Then visit the argument expressions.
14448         Region = ArgsRegion;
14449         for (const Expr *Arg : Args)
14450           Visit(Arg);
14451 
14452         Region = OldRegion;
14453         Tree.merge(PostfixExprRegion);
14454         Tree.merge(ArgsRegion);
14455       } else {
14456         assert(CXXOCE->getNumArgs() == 2 &&
14457                "Should only have two arguments here!");
14458         assert((SequencingKind == LHSBeforeRHS ||
14459                 SequencingKind == RHSBeforeLHS) &&
14460                "Unexpected sequencing kind!");
14461 
14462         // We do not visit the callee expression since it is just a decayed
14463         // reference to a function.
14464         const Expr *E1 = CXXOCE->getArg(0);
14465         const Expr *E2 = CXXOCE->getArg(1);
14466         if (SequencingKind == RHSBeforeLHS)
14467           std::swap(E1, E2);
14468 
14469         return VisitSequencedExpressions(E1, E2);
14470       }
14471     });
14472   }
14473 
14474   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14475     // This is a call, so all subexpressions are sequenced before the result.
14476     SequencedSubexpression Sequenced(*this);
14477 
14478     if (!CCE->isListInitialization())
14479       return VisitExpr(CCE);
14480 
14481     // In C++11, list initializations are sequenced.
14482     SmallVector<SequenceTree::Seq, 32> Elts;
14483     SequenceTree::Seq Parent = Region;
14484     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14485                                               E = CCE->arg_end();
14486          I != E; ++I) {
14487       Region = Tree.allocate(Parent);
14488       Elts.push_back(Region);
14489       Visit(*I);
14490     }
14491 
14492     // Forget that the initializers are sequenced.
14493     Region = Parent;
14494     for (unsigned I = 0; I < Elts.size(); ++I)
14495       Tree.merge(Elts[I]);
14496   }
14497 
14498   void VisitInitListExpr(const InitListExpr *ILE) {
14499     if (!SemaRef.getLangOpts().CPlusPlus11)
14500       return VisitExpr(ILE);
14501 
14502     // In C++11, list initializations are sequenced.
14503     SmallVector<SequenceTree::Seq, 32> Elts;
14504     SequenceTree::Seq Parent = Region;
14505     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14506       const Expr *E = ILE->getInit(I);
14507       if (!E)
14508         continue;
14509       Region = Tree.allocate(Parent);
14510       Elts.push_back(Region);
14511       Visit(E);
14512     }
14513 
14514     // Forget that the initializers are sequenced.
14515     Region = Parent;
14516     for (unsigned I = 0; I < Elts.size(); ++I)
14517       Tree.merge(Elts[I]);
14518   }
14519 };
14520 
14521 } // namespace
14522 
14523 void Sema::CheckUnsequencedOperations(const Expr *E) {
14524   SmallVector<const Expr *, 8> WorkList;
14525   WorkList.push_back(E);
14526   while (!WorkList.empty()) {
14527     const Expr *Item = WorkList.pop_back_val();
14528     SequenceChecker(*this, Item, WorkList);
14529   }
14530 }
14531 
14532 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14533                               bool IsConstexpr) {
14534   llvm::SaveAndRestore<bool> ConstantContext(
14535       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14536   CheckImplicitConversions(E, CheckLoc);
14537   if (!E->isInstantiationDependent())
14538     CheckUnsequencedOperations(E);
14539   if (!IsConstexpr && !E->isValueDependent())
14540     CheckForIntOverflow(E);
14541   DiagnoseMisalignedMembers();
14542 }
14543 
14544 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14545                                        FieldDecl *BitField,
14546                                        Expr *Init) {
14547   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14548 }
14549 
14550 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14551                                          SourceLocation Loc) {
14552   if (!PType->isVariablyModifiedType())
14553     return;
14554   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14555     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14556     return;
14557   }
14558   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14559     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14560     return;
14561   }
14562   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14563     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14564     return;
14565   }
14566 
14567   const ArrayType *AT = S.Context.getAsArrayType(PType);
14568   if (!AT)
14569     return;
14570 
14571   if (AT->getSizeModifier() != ArrayType::Star) {
14572     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14573     return;
14574   }
14575 
14576   S.Diag(Loc, diag::err_array_star_in_function_definition);
14577 }
14578 
14579 /// CheckParmsForFunctionDef - Check that the parameters of the given
14580 /// function are appropriate for the definition of a function. This
14581 /// takes care of any checks that cannot be performed on the
14582 /// declaration itself, e.g., that the types of each of the function
14583 /// parameters are complete.
14584 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14585                                     bool CheckParameterNames) {
14586   bool HasInvalidParm = false;
14587   for (ParmVarDecl *Param : Parameters) {
14588     // C99 6.7.5.3p4: the parameters in a parameter type list in a
14589     // function declarator that is part of a function definition of
14590     // that function shall not have incomplete type.
14591     //
14592     // This is also C++ [dcl.fct]p6.
14593     if (!Param->isInvalidDecl() &&
14594         RequireCompleteType(Param->getLocation(), Param->getType(),
14595                             diag::err_typecheck_decl_incomplete_type)) {
14596       Param->setInvalidDecl();
14597       HasInvalidParm = true;
14598     }
14599 
14600     // C99 6.9.1p5: If the declarator includes a parameter type list, the
14601     // declaration of each parameter shall include an identifier.
14602     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14603         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14604       // Diagnose this as an extension in C17 and earlier.
14605       if (!getLangOpts().C2x)
14606         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14607     }
14608 
14609     // C99 6.7.5.3p12:
14610     //   If the function declarator is not part of a definition of that
14611     //   function, parameters may have incomplete type and may use the [*]
14612     //   notation in their sequences of declarator specifiers to specify
14613     //   variable length array types.
14614     QualType PType = Param->getOriginalType();
14615     // FIXME: This diagnostic should point the '[*]' if source-location
14616     // information is added for it.
14617     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14618 
14619     // If the parameter is a c++ class type and it has to be destructed in the
14620     // callee function, declare the destructor so that it can be called by the
14621     // callee function. Do not perform any direct access check on the dtor here.
14622     if (!Param->isInvalidDecl()) {
14623       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14624         if (!ClassDecl->isInvalidDecl() &&
14625             !ClassDecl->hasIrrelevantDestructor() &&
14626             !ClassDecl->isDependentContext() &&
14627             ClassDecl->isParamDestroyedInCallee()) {
14628           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14629           MarkFunctionReferenced(Param->getLocation(), Destructor);
14630           DiagnoseUseOfDecl(Destructor, Param->getLocation());
14631         }
14632       }
14633     }
14634 
14635     // Parameters with the pass_object_size attribute only need to be marked
14636     // constant at function definitions. Because we lack information about
14637     // whether we're on a declaration or definition when we're instantiating the
14638     // attribute, we need to check for constness here.
14639     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14640       if (!Param->getType().isConstQualified())
14641         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14642             << Attr->getSpelling() << 1;
14643 
14644     // Check for parameter names shadowing fields from the class.
14645     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14646       // The owning context for the parameter should be the function, but we
14647       // want to see if this function's declaration context is a record.
14648       DeclContext *DC = Param->getDeclContext();
14649       if (DC && DC->isFunctionOrMethod()) {
14650         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14651           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14652                                      RD, /*DeclIsField*/ false);
14653       }
14654     }
14655   }
14656 
14657   return HasInvalidParm;
14658 }
14659 
14660 Optional<std::pair<CharUnits, CharUnits>>
14661 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14662 
14663 /// Compute the alignment and offset of the base class object given the
14664 /// derived-to-base cast expression and the alignment and offset of the derived
14665 /// class object.
14666 static std::pair<CharUnits, CharUnits>
14667 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14668                                    CharUnits BaseAlignment, CharUnits Offset,
14669                                    ASTContext &Ctx) {
14670   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14671        ++PathI) {
14672     const CXXBaseSpecifier *Base = *PathI;
14673     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14674     if (Base->isVirtual()) {
14675       // The complete object may have a lower alignment than the non-virtual
14676       // alignment of the base, in which case the base may be misaligned. Choose
14677       // the smaller of the non-virtual alignment and BaseAlignment, which is a
14678       // conservative lower bound of the complete object alignment.
14679       CharUnits NonVirtualAlignment =
14680           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14681       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14682       Offset = CharUnits::Zero();
14683     } else {
14684       const ASTRecordLayout &RL =
14685           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14686       Offset += RL.getBaseClassOffset(BaseDecl);
14687     }
14688     DerivedType = Base->getType();
14689   }
14690 
14691   return std::make_pair(BaseAlignment, Offset);
14692 }
14693 
14694 /// Compute the alignment and offset of a binary additive operator.
14695 static Optional<std::pair<CharUnits, CharUnits>>
14696 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
14697                                      bool IsSub, ASTContext &Ctx) {
14698   QualType PointeeType = PtrE->getType()->getPointeeType();
14699 
14700   if (!PointeeType->isConstantSizeType())
14701     return llvm::None;
14702 
14703   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
14704 
14705   if (!P)
14706     return llvm::None;
14707 
14708   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
14709   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
14710     CharUnits Offset = EltSize * IdxRes->getExtValue();
14711     if (IsSub)
14712       Offset = -Offset;
14713     return std::make_pair(P->first, P->second + Offset);
14714   }
14715 
14716   // If the integer expression isn't a constant expression, compute the lower
14717   // bound of the alignment using the alignment and offset of the pointer
14718   // expression and the element size.
14719   return std::make_pair(
14720       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
14721       CharUnits::Zero());
14722 }
14723 
14724 /// This helper function takes an lvalue expression and returns the alignment of
14725 /// a VarDecl and a constant offset from the VarDecl.
14726 Optional<std::pair<CharUnits, CharUnits>>
14727 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14728   E = E->IgnoreParens();
14729   switch (E->getStmtClass()) {
14730   default:
14731     break;
14732   case Stmt::CStyleCastExprClass:
14733   case Stmt::CXXStaticCastExprClass:
14734   case Stmt::ImplicitCastExprClass: {
14735     auto *CE = cast<CastExpr>(E);
14736     const Expr *From = CE->getSubExpr();
14737     switch (CE->getCastKind()) {
14738     default:
14739       break;
14740     case CK_NoOp:
14741       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14742     case CK_UncheckedDerivedToBase:
14743     case CK_DerivedToBase: {
14744       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14745       if (!P)
14746         break;
14747       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14748                                                 P->second, Ctx);
14749     }
14750     }
14751     break;
14752   }
14753   case Stmt::ArraySubscriptExprClass: {
14754     auto *ASE = cast<ArraySubscriptExpr>(E);
14755     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14756                                                 false, Ctx);
14757   }
14758   case Stmt::DeclRefExprClass: {
14759     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14760       // FIXME: If VD is captured by copy or is an escaping __block variable,
14761       // use the alignment of VD's type.
14762       if (!VD->getType()->isReferenceType())
14763         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14764       if (VD->hasInit())
14765         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14766     }
14767     break;
14768   }
14769   case Stmt::MemberExprClass: {
14770     auto *ME = cast<MemberExpr>(E);
14771     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14772     if (!FD || FD->getType()->isReferenceType() ||
14773         FD->getParent()->isInvalidDecl())
14774       break;
14775     Optional<std::pair<CharUnits, CharUnits>> P;
14776     if (ME->isArrow())
14777       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14778     else
14779       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14780     if (!P)
14781       break;
14782     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14783     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14784     return std::make_pair(P->first,
14785                           P->second + CharUnits::fromQuantity(Offset));
14786   }
14787   case Stmt::UnaryOperatorClass: {
14788     auto *UO = cast<UnaryOperator>(E);
14789     switch (UO->getOpcode()) {
14790     default:
14791       break;
14792     case UO_Deref:
14793       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14794     }
14795     break;
14796   }
14797   case Stmt::BinaryOperatorClass: {
14798     auto *BO = cast<BinaryOperator>(E);
14799     auto Opcode = BO->getOpcode();
14800     switch (Opcode) {
14801     default:
14802       break;
14803     case BO_Comma:
14804       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14805     }
14806     break;
14807   }
14808   }
14809   return llvm::None;
14810 }
14811 
14812 /// This helper function takes a pointer expression and returns the alignment of
14813 /// a VarDecl and a constant offset from the VarDecl.
14814 Optional<std::pair<CharUnits, CharUnits>>
14815 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14816   E = E->IgnoreParens();
14817   switch (E->getStmtClass()) {
14818   default:
14819     break;
14820   case Stmt::CStyleCastExprClass:
14821   case Stmt::CXXStaticCastExprClass:
14822   case Stmt::ImplicitCastExprClass: {
14823     auto *CE = cast<CastExpr>(E);
14824     const Expr *From = CE->getSubExpr();
14825     switch (CE->getCastKind()) {
14826     default:
14827       break;
14828     case CK_NoOp:
14829       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14830     case CK_ArrayToPointerDecay:
14831       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14832     case CK_UncheckedDerivedToBase:
14833     case CK_DerivedToBase: {
14834       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14835       if (!P)
14836         break;
14837       return getDerivedToBaseAlignmentAndOffset(
14838           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14839     }
14840     }
14841     break;
14842   }
14843   case Stmt::CXXThisExprClass: {
14844     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14845     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14846     return std::make_pair(Alignment, CharUnits::Zero());
14847   }
14848   case Stmt::UnaryOperatorClass: {
14849     auto *UO = cast<UnaryOperator>(E);
14850     if (UO->getOpcode() == UO_AddrOf)
14851       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14852     break;
14853   }
14854   case Stmt::BinaryOperatorClass: {
14855     auto *BO = cast<BinaryOperator>(E);
14856     auto Opcode = BO->getOpcode();
14857     switch (Opcode) {
14858     default:
14859       break;
14860     case BO_Add:
14861     case BO_Sub: {
14862       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14863       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14864         std::swap(LHS, RHS);
14865       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14866                                                   Ctx);
14867     }
14868     case BO_Comma:
14869       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14870     }
14871     break;
14872   }
14873   }
14874   return llvm::None;
14875 }
14876 
14877 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14878   // See if we can compute the alignment of a VarDecl and an offset from it.
14879   Optional<std::pair<CharUnits, CharUnits>> P =
14880       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14881 
14882   if (P)
14883     return P->first.alignmentAtOffset(P->second);
14884 
14885   // If that failed, return the type's alignment.
14886   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14887 }
14888 
14889 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14890 /// pointer cast increases the alignment requirements.
14891 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14892   // This is actually a lot of work to potentially be doing on every
14893   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14894   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14895     return;
14896 
14897   // Ignore dependent types.
14898   if (T->isDependentType() || Op->getType()->isDependentType())
14899     return;
14900 
14901   // Require that the destination be a pointer type.
14902   const PointerType *DestPtr = T->getAs<PointerType>();
14903   if (!DestPtr) return;
14904 
14905   // If the destination has alignment 1, we're done.
14906   QualType DestPointee = DestPtr->getPointeeType();
14907   if (DestPointee->isIncompleteType()) return;
14908   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14909   if (DestAlign.isOne()) return;
14910 
14911   // Require that the source be a pointer type.
14912   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14913   if (!SrcPtr) return;
14914   QualType SrcPointee = SrcPtr->getPointeeType();
14915 
14916   // Explicitly allow casts from cv void*.  We already implicitly
14917   // allowed casts to cv void*, since they have alignment 1.
14918   // Also allow casts involving incomplete types, which implicitly
14919   // includes 'void'.
14920   if (SrcPointee->isIncompleteType()) return;
14921 
14922   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14923 
14924   if (SrcAlign >= DestAlign) return;
14925 
14926   Diag(TRange.getBegin(), diag::warn_cast_align)
14927     << Op->getType() << T
14928     << static_cast<unsigned>(SrcAlign.getQuantity())
14929     << static_cast<unsigned>(DestAlign.getQuantity())
14930     << TRange << Op->getSourceRange();
14931 }
14932 
14933 /// Check whether this array fits the idiom of a size-one tail padded
14934 /// array member of a struct.
14935 ///
14936 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14937 /// commonly used to emulate flexible arrays in C89 code.
14938 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14939                                     const NamedDecl *ND) {
14940   if (Size != 1 || !ND) return false;
14941 
14942   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14943   if (!FD) return false;
14944 
14945   // Don't consider sizes resulting from macro expansions or template argument
14946   // substitution to form C89 tail-padded arrays.
14947 
14948   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14949   while (TInfo) {
14950     TypeLoc TL = TInfo->getTypeLoc();
14951     // Look through typedefs.
14952     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14953       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14954       TInfo = TDL->getTypeSourceInfo();
14955       continue;
14956     }
14957     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14958       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14959       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14960         return false;
14961     }
14962     break;
14963   }
14964 
14965   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14966   if (!RD) return false;
14967   if (RD->isUnion()) return false;
14968   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14969     if (!CRD->isStandardLayout()) return false;
14970   }
14971 
14972   // See if this is the last field decl in the record.
14973   const Decl *D = FD;
14974   while ((D = D->getNextDeclInContext()))
14975     if (isa<FieldDecl>(D))
14976       return false;
14977   return true;
14978 }
14979 
14980 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14981                             const ArraySubscriptExpr *ASE,
14982                             bool AllowOnePastEnd, bool IndexNegated) {
14983   // Already diagnosed by the constant evaluator.
14984   if (isConstantEvaluated())
14985     return;
14986 
14987   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14988   if (IndexExpr->isValueDependent())
14989     return;
14990 
14991   const Type *EffectiveType =
14992       BaseExpr->getType()->getPointeeOrArrayElementType();
14993   BaseExpr = BaseExpr->IgnoreParenCasts();
14994   const ConstantArrayType *ArrayTy =
14995       Context.getAsConstantArrayType(BaseExpr->getType());
14996 
14997   const Type *BaseType =
14998       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
14999   bool IsUnboundedArray = (BaseType == nullptr);
15000   if (EffectiveType->isDependentType() ||
15001       (!IsUnboundedArray && BaseType->isDependentType()))
15002     return;
15003 
15004   Expr::EvalResult Result;
15005   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15006     return;
15007 
15008   llvm::APSInt index = Result.Val.getInt();
15009   if (IndexNegated) {
15010     index.setIsUnsigned(false);
15011     index = -index;
15012   }
15013 
15014   const NamedDecl *ND = nullptr;
15015   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15016     ND = DRE->getDecl();
15017   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15018     ND = ME->getMemberDecl();
15019 
15020   if (IsUnboundedArray) {
15021     if (index.isUnsigned() || !index.isNegative()) {
15022       const auto &ASTC = getASTContext();
15023       unsigned AddrBits =
15024           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15025               EffectiveType->getCanonicalTypeInternal()));
15026       if (index.getBitWidth() < AddrBits)
15027         index = index.zext(AddrBits);
15028       Optional<CharUnits> ElemCharUnits =
15029           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15030       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15031       // pointer) bounds-checking isn't meaningful.
15032       if (!ElemCharUnits)
15033         return;
15034       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15035       // If index has more active bits than address space, we already know
15036       // we have a bounds violation to warn about.  Otherwise, compute
15037       // address of (index + 1)th element, and warn about bounds violation
15038       // only if that address exceeds address space.
15039       if (index.getActiveBits() <= AddrBits) {
15040         bool Overflow;
15041         llvm::APInt Product(index);
15042         Product += 1;
15043         Product = Product.umul_ov(ElemBytes, Overflow);
15044         if (!Overflow && Product.getActiveBits() <= AddrBits)
15045           return;
15046       }
15047 
15048       // Need to compute max possible elements in address space, since that
15049       // is included in diag message.
15050       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15051       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15052       MaxElems += 1;
15053       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15054       MaxElems = MaxElems.udiv(ElemBytes);
15055 
15056       unsigned DiagID =
15057           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15058               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15059 
15060       // Diag message shows element size in bits and in "bytes" (platform-
15061       // dependent CharUnits)
15062       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15063                           PDiag(DiagID)
15064                               << toString(index, 10, true) << AddrBits
15065                               << (unsigned)ASTC.toBits(*ElemCharUnits)
15066                               << toString(ElemBytes, 10, false)
15067                               << toString(MaxElems, 10, false)
15068                               << (unsigned)MaxElems.getLimitedValue(~0U)
15069                               << IndexExpr->getSourceRange());
15070 
15071       if (!ND) {
15072         // Try harder to find a NamedDecl to point at in the note.
15073         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15074           BaseExpr = ASE->getBase()->IgnoreParenCasts();
15075         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15076           ND = DRE->getDecl();
15077         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15078           ND = ME->getMemberDecl();
15079       }
15080 
15081       if (ND)
15082         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15083                             PDiag(diag::note_array_declared_here) << ND);
15084     }
15085     return;
15086   }
15087 
15088   if (index.isUnsigned() || !index.isNegative()) {
15089     // It is possible that the type of the base expression after
15090     // IgnoreParenCasts is incomplete, even though the type of the base
15091     // expression before IgnoreParenCasts is complete (see PR39746 for an
15092     // example). In this case we have no information about whether the array
15093     // access exceeds the array bounds. However we can still diagnose an array
15094     // access which precedes the array bounds.
15095     if (BaseType->isIncompleteType())
15096       return;
15097 
15098     llvm::APInt size = ArrayTy->getSize();
15099     if (!size.isStrictlyPositive())
15100       return;
15101 
15102     if (BaseType != EffectiveType) {
15103       // Make sure we're comparing apples to apples when comparing index to size
15104       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15105       uint64_t array_typesize = Context.getTypeSize(BaseType);
15106       // Handle ptrarith_typesize being zero, such as when casting to void*
15107       if (!ptrarith_typesize) ptrarith_typesize = 1;
15108       if (ptrarith_typesize != array_typesize) {
15109         // There's a cast to a different size type involved
15110         uint64_t ratio = array_typesize / ptrarith_typesize;
15111         // TODO: Be smarter about handling cases where array_typesize is not a
15112         // multiple of ptrarith_typesize
15113         if (ptrarith_typesize * ratio == array_typesize)
15114           size *= llvm::APInt(size.getBitWidth(), ratio);
15115       }
15116     }
15117 
15118     if (size.getBitWidth() > index.getBitWidth())
15119       index = index.zext(size.getBitWidth());
15120     else if (size.getBitWidth() < index.getBitWidth())
15121       size = size.zext(index.getBitWidth());
15122 
15123     // For array subscripting the index must be less than size, but for pointer
15124     // arithmetic also allow the index (offset) to be equal to size since
15125     // computing the next address after the end of the array is legal and
15126     // commonly done e.g. in C++ iterators and range-based for loops.
15127     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15128       return;
15129 
15130     // Also don't warn for arrays of size 1 which are members of some
15131     // structure. These are often used to approximate flexible arrays in C89
15132     // code.
15133     if (IsTailPaddedMemberArray(*this, size, ND))
15134       return;
15135 
15136     // Suppress the warning if the subscript expression (as identified by the
15137     // ']' location) and the index expression are both from macro expansions
15138     // within a system header.
15139     if (ASE) {
15140       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15141           ASE->getRBracketLoc());
15142       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15143         SourceLocation IndexLoc =
15144             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15145         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15146           return;
15147       }
15148     }
15149 
15150     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15151                           : diag::warn_ptr_arith_exceeds_bounds;
15152 
15153     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15154                         PDiag(DiagID) << toString(index, 10, true)
15155                                       << toString(size, 10, true)
15156                                       << (unsigned)size.getLimitedValue(~0U)
15157                                       << IndexExpr->getSourceRange());
15158   } else {
15159     unsigned DiagID = diag::warn_array_index_precedes_bounds;
15160     if (!ASE) {
15161       DiagID = diag::warn_ptr_arith_precedes_bounds;
15162       if (index.isNegative()) index = -index;
15163     }
15164 
15165     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15166                         PDiag(DiagID) << toString(index, 10, true)
15167                                       << IndexExpr->getSourceRange());
15168   }
15169 
15170   if (!ND) {
15171     // Try harder to find a NamedDecl to point at in the note.
15172     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15173       BaseExpr = ASE->getBase()->IgnoreParenCasts();
15174     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15175       ND = DRE->getDecl();
15176     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15177       ND = ME->getMemberDecl();
15178   }
15179 
15180   if (ND)
15181     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15182                         PDiag(diag::note_array_declared_here) << ND);
15183 }
15184 
15185 void Sema::CheckArrayAccess(const Expr *expr) {
15186   int AllowOnePastEnd = 0;
15187   while (expr) {
15188     expr = expr->IgnoreParenImpCasts();
15189     switch (expr->getStmtClass()) {
15190       case Stmt::ArraySubscriptExprClass: {
15191         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15192         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15193                          AllowOnePastEnd > 0);
15194         expr = ASE->getBase();
15195         break;
15196       }
15197       case Stmt::MemberExprClass: {
15198         expr = cast<MemberExpr>(expr)->getBase();
15199         break;
15200       }
15201       case Stmt::OMPArraySectionExprClass: {
15202         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15203         if (ASE->getLowerBound())
15204           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15205                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
15206         return;
15207       }
15208       case Stmt::UnaryOperatorClass: {
15209         // Only unwrap the * and & unary operators
15210         const UnaryOperator *UO = cast<UnaryOperator>(expr);
15211         expr = UO->getSubExpr();
15212         switch (UO->getOpcode()) {
15213           case UO_AddrOf:
15214             AllowOnePastEnd++;
15215             break;
15216           case UO_Deref:
15217             AllowOnePastEnd--;
15218             break;
15219           default:
15220             return;
15221         }
15222         break;
15223       }
15224       case Stmt::ConditionalOperatorClass: {
15225         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15226         if (const Expr *lhs = cond->getLHS())
15227           CheckArrayAccess(lhs);
15228         if (const Expr *rhs = cond->getRHS())
15229           CheckArrayAccess(rhs);
15230         return;
15231       }
15232       case Stmt::CXXOperatorCallExprClass: {
15233         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15234         for (const auto *Arg : OCE->arguments())
15235           CheckArrayAccess(Arg);
15236         return;
15237       }
15238       default:
15239         return;
15240     }
15241   }
15242 }
15243 
15244 //===--- CHECK: Objective-C retain cycles ----------------------------------//
15245 
15246 namespace {
15247 
15248 struct RetainCycleOwner {
15249   VarDecl *Variable = nullptr;
15250   SourceRange Range;
15251   SourceLocation Loc;
15252   bool Indirect = false;
15253 
15254   RetainCycleOwner() = default;
15255 
15256   void setLocsFrom(Expr *e) {
15257     Loc = e->getExprLoc();
15258     Range = e->getSourceRange();
15259   }
15260 };
15261 
15262 } // namespace
15263 
15264 /// Consider whether capturing the given variable can possibly lead to
15265 /// a retain cycle.
15266 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15267   // In ARC, it's captured strongly iff the variable has __strong
15268   // lifetime.  In MRR, it's captured strongly if the variable is
15269   // __block and has an appropriate type.
15270   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15271     return false;
15272 
15273   owner.Variable = var;
15274   if (ref)
15275     owner.setLocsFrom(ref);
15276   return true;
15277 }
15278 
15279 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15280   while (true) {
15281     e = e->IgnoreParens();
15282     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15283       switch (cast->getCastKind()) {
15284       case CK_BitCast:
15285       case CK_LValueBitCast:
15286       case CK_LValueToRValue:
15287       case CK_ARCReclaimReturnedObject:
15288         e = cast->getSubExpr();
15289         continue;
15290 
15291       default:
15292         return false;
15293       }
15294     }
15295 
15296     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15297       ObjCIvarDecl *ivar = ref->getDecl();
15298       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15299         return false;
15300 
15301       // Try to find a retain cycle in the base.
15302       if (!findRetainCycleOwner(S, ref->getBase(), owner))
15303         return false;
15304 
15305       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15306       owner.Indirect = true;
15307       return true;
15308     }
15309 
15310     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15311       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15312       if (!var) return false;
15313       return considerVariable(var, ref, owner);
15314     }
15315 
15316     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15317       if (member->isArrow()) return false;
15318 
15319       // Don't count this as an indirect ownership.
15320       e = member->getBase();
15321       continue;
15322     }
15323 
15324     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15325       // Only pay attention to pseudo-objects on property references.
15326       ObjCPropertyRefExpr *pre
15327         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15328                                               ->IgnoreParens());
15329       if (!pre) return false;
15330       if (pre->isImplicitProperty()) return false;
15331       ObjCPropertyDecl *property = pre->getExplicitProperty();
15332       if (!property->isRetaining() &&
15333           !(property->getPropertyIvarDecl() &&
15334             property->getPropertyIvarDecl()->getType()
15335               .getObjCLifetime() == Qualifiers::OCL_Strong))
15336           return false;
15337 
15338       owner.Indirect = true;
15339       if (pre->isSuperReceiver()) {
15340         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15341         if (!owner.Variable)
15342           return false;
15343         owner.Loc = pre->getLocation();
15344         owner.Range = pre->getSourceRange();
15345         return true;
15346       }
15347       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15348                               ->getSourceExpr());
15349       continue;
15350     }
15351 
15352     // Array ivars?
15353 
15354     return false;
15355   }
15356 }
15357 
15358 namespace {
15359 
15360   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15361     ASTContext &Context;
15362     VarDecl *Variable;
15363     Expr *Capturer = nullptr;
15364     bool VarWillBeReased = false;
15365 
15366     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15367         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15368           Context(Context), Variable(variable) {}
15369 
15370     void VisitDeclRefExpr(DeclRefExpr *ref) {
15371       if (ref->getDecl() == Variable && !Capturer)
15372         Capturer = ref;
15373     }
15374 
15375     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15376       if (Capturer) return;
15377       Visit(ref->getBase());
15378       if (Capturer && ref->isFreeIvar())
15379         Capturer = ref;
15380     }
15381 
15382     void VisitBlockExpr(BlockExpr *block) {
15383       // Look inside nested blocks
15384       if (block->getBlockDecl()->capturesVariable(Variable))
15385         Visit(block->getBlockDecl()->getBody());
15386     }
15387 
15388     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15389       if (Capturer) return;
15390       if (OVE->getSourceExpr())
15391         Visit(OVE->getSourceExpr());
15392     }
15393 
15394     void VisitBinaryOperator(BinaryOperator *BinOp) {
15395       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15396         return;
15397       Expr *LHS = BinOp->getLHS();
15398       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15399         if (DRE->getDecl() != Variable)
15400           return;
15401         if (Expr *RHS = BinOp->getRHS()) {
15402           RHS = RHS->IgnoreParenCasts();
15403           Optional<llvm::APSInt> Value;
15404           VarWillBeReased =
15405               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15406                *Value == 0);
15407         }
15408       }
15409     }
15410   };
15411 
15412 } // namespace
15413 
15414 /// Check whether the given argument is a block which captures a
15415 /// variable.
15416 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15417   assert(owner.Variable && owner.Loc.isValid());
15418 
15419   e = e->IgnoreParenCasts();
15420 
15421   // Look through [^{...} copy] and Block_copy(^{...}).
15422   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15423     Selector Cmd = ME->getSelector();
15424     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15425       e = ME->getInstanceReceiver();
15426       if (!e)
15427         return nullptr;
15428       e = e->IgnoreParenCasts();
15429     }
15430   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15431     if (CE->getNumArgs() == 1) {
15432       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15433       if (Fn) {
15434         const IdentifierInfo *FnI = Fn->getIdentifier();
15435         if (FnI && FnI->isStr("_Block_copy")) {
15436           e = CE->getArg(0)->IgnoreParenCasts();
15437         }
15438       }
15439     }
15440   }
15441 
15442   BlockExpr *block = dyn_cast<BlockExpr>(e);
15443   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15444     return nullptr;
15445 
15446   FindCaptureVisitor visitor(S.Context, owner.Variable);
15447   visitor.Visit(block->getBlockDecl()->getBody());
15448   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15449 }
15450 
15451 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15452                                 RetainCycleOwner &owner) {
15453   assert(capturer);
15454   assert(owner.Variable && owner.Loc.isValid());
15455 
15456   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15457     << owner.Variable << capturer->getSourceRange();
15458   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15459     << owner.Indirect << owner.Range;
15460 }
15461 
15462 /// Check for a keyword selector that starts with the word 'add' or
15463 /// 'set'.
15464 static bool isSetterLikeSelector(Selector sel) {
15465   if (sel.isUnarySelector()) return false;
15466 
15467   StringRef str = sel.getNameForSlot(0);
15468   while (!str.empty() && str.front() == '_') str = str.substr(1);
15469   if (str.startswith("set"))
15470     str = str.substr(3);
15471   else if (str.startswith("add")) {
15472     // Specially allow 'addOperationWithBlock:'.
15473     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15474       return false;
15475     str = str.substr(3);
15476   }
15477   else
15478     return false;
15479 
15480   if (str.empty()) return true;
15481   return !isLowercase(str.front());
15482 }
15483 
15484 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15485                                                     ObjCMessageExpr *Message) {
15486   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15487                                                 Message->getReceiverInterface(),
15488                                                 NSAPI::ClassId_NSMutableArray);
15489   if (!IsMutableArray) {
15490     return None;
15491   }
15492 
15493   Selector Sel = Message->getSelector();
15494 
15495   Optional<NSAPI::NSArrayMethodKind> MKOpt =
15496     S.NSAPIObj->getNSArrayMethodKind(Sel);
15497   if (!MKOpt) {
15498     return None;
15499   }
15500 
15501   NSAPI::NSArrayMethodKind MK = *MKOpt;
15502 
15503   switch (MK) {
15504     case NSAPI::NSMutableArr_addObject:
15505     case NSAPI::NSMutableArr_insertObjectAtIndex:
15506     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15507       return 0;
15508     case NSAPI::NSMutableArr_replaceObjectAtIndex:
15509       return 1;
15510 
15511     default:
15512       return None;
15513   }
15514 
15515   return None;
15516 }
15517 
15518 static
15519 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15520                                                   ObjCMessageExpr *Message) {
15521   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15522                                             Message->getReceiverInterface(),
15523                                             NSAPI::ClassId_NSMutableDictionary);
15524   if (!IsMutableDictionary) {
15525     return None;
15526   }
15527 
15528   Selector Sel = Message->getSelector();
15529 
15530   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15531     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15532   if (!MKOpt) {
15533     return None;
15534   }
15535 
15536   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15537 
15538   switch (MK) {
15539     case NSAPI::NSMutableDict_setObjectForKey:
15540     case NSAPI::NSMutableDict_setValueForKey:
15541     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15542       return 0;
15543 
15544     default:
15545       return None;
15546   }
15547 
15548   return None;
15549 }
15550 
15551 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15552   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15553                                                 Message->getReceiverInterface(),
15554                                                 NSAPI::ClassId_NSMutableSet);
15555 
15556   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15557                                             Message->getReceiverInterface(),
15558                                             NSAPI::ClassId_NSMutableOrderedSet);
15559   if (!IsMutableSet && !IsMutableOrderedSet) {
15560     return None;
15561   }
15562 
15563   Selector Sel = Message->getSelector();
15564 
15565   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15566   if (!MKOpt) {
15567     return None;
15568   }
15569 
15570   NSAPI::NSSetMethodKind MK = *MKOpt;
15571 
15572   switch (MK) {
15573     case NSAPI::NSMutableSet_addObject:
15574     case NSAPI::NSOrderedSet_setObjectAtIndex:
15575     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15576     case NSAPI::NSOrderedSet_insertObjectAtIndex:
15577       return 0;
15578     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15579       return 1;
15580   }
15581 
15582   return None;
15583 }
15584 
15585 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15586   if (!Message->isInstanceMessage()) {
15587     return;
15588   }
15589 
15590   Optional<int> ArgOpt;
15591 
15592   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15593       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15594       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15595     return;
15596   }
15597 
15598   int ArgIndex = *ArgOpt;
15599 
15600   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15601   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15602     Arg = OE->getSourceExpr()->IgnoreImpCasts();
15603   }
15604 
15605   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15606     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15607       if (ArgRE->isObjCSelfExpr()) {
15608         Diag(Message->getSourceRange().getBegin(),
15609              diag::warn_objc_circular_container)
15610           << ArgRE->getDecl() << StringRef("'super'");
15611       }
15612     }
15613   } else {
15614     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15615 
15616     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15617       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15618     }
15619 
15620     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15621       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15622         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15623           ValueDecl *Decl = ReceiverRE->getDecl();
15624           Diag(Message->getSourceRange().getBegin(),
15625                diag::warn_objc_circular_container)
15626             << Decl << Decl;
15627           if (!ArgRE->isObjCSelfExpr()) {
15628             Diag(Decl->getLocation(),
15629                  diag::note_objc_circular_container_declared_here)
15630               << Decl;
15631           }
15632         }
15633       }
15634     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15635       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15636         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15637           ObjCIvarDecl *Decl = IvarRE->getDecl();
15638           Diag(Message->getSourceRange().getBegin(),
15639                diag::warn_objc_circular_container)
15640             << Decl << Decl;
15641           Diag(Decl->getLocation(),
15642                diag::note_objc_circular_container_declared_here)
15643             << Decl;
15644         }
15645       }
15646     }
15647   }
15648 }
15649 
15650 /// Check a message send to see if it's likely to cause a retain cycle.
15651 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15652   // Only check instance methods whose selector looks like a setter.
15653   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15654     return;
15655 
15656   // Try to find a variable that the receiver is strongly owned by.
15657   RetainCycleOwner owner;
15658   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15659     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15660       return;
15661   } else {
15662     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
15663     owner.Variable = getCurMethodDecl()->getSelfDecl();
15664     owner.Loc = msg->getSuperLoc();
15665     owner.Range = msg->getSuperLoc();
15666   }
15667 
15668   // Check whether the receiver is captured by any of the arguments.
15669   const ObjCMethodDecl *MD = msg->getMethodDecl();
15670   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15671     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15672       // noescape blocks should not be retained by the method.
15673       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15674         continue;
15675       return diagnoseRetainCycle(*this, capturer, owner);
15676     }
15677   }
15678 }
15679 
15680 /// Check a property assign to see if it's likely to cause a retain cycle.
15681 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15682   RetainCycleOwner owner;
15683   if (!findRetainCycleOwner(*this, receiver, owner))
15684     return;
15685 
15686   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15687     diagnoseRetainCycle(*this, capturer, owner);
15688 }
15689 
15690 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15691   RetainCycleOwner Owner;
15692   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15693     return;
15694 
15695   // Because we don't have an expression for the variable, we have to set the
15696   // location explicitly here.
15697   Owner.Loc = Var->getLocation();
15698   Owner.Range = Var->getSourceRange();
15699 
15700   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
15701     diagnoseRetainCycle(*this, Capturer, Owner);
15702 }
15703 
15704 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
15705                                      Expr *RHS, bool isProperty) {
15706   // Check if RHS is an Objective-C object literal, which also can get
15707   // immediately zapped in a weak reference.  Note that we explicitly
15708   // allow ObjCStringLiterals, since those are designed to never really die.
15709   RHS = RHS->IgnoreParenImpCasts();
15710 
15711   // This enum needs to match with the 'select' in
15712   // warn_objc_arc_literal_assign (off-by-1).
15713   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
15714   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
15715     return false;
15716 
15717   S.Diag(Loc, diag::warn_arc_literal_assign)
15718     << (unsigned) Kind
15719     << (isProperty ? 0 : 1)
15720     << RHS->getSourceRange();
15721 
15722   return true;
15723 }
15724 
15725 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
15726                                     Qualifiers::ObjCLifetime LT,
15727                                     Expr *RHS, bool isProperty) {
15728   // Strip off any implicit cast added to get to the one ARC-specific.
15729   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15730     if (cast->getCastKind() == CK_ARCConsumeObject) {
15731       S.Diag(Loc, diag::warn_arc_retained_assign)
15732         << (LT == Qualifiers::OCL_ExplicitNone)
15733         << (isProperty ? 0 : 1)
15734         << RHS->getSourceRange();
15735       return true;
15736     }
15737     RHS = cast->getSubExpr();
15738   }
15739 
15740   if (LT == Qualifiers::OCL_Weak &&
15741       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
15742     return true;
15743 
15744   return false;
15745 }
15746 
15747 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
15748                               QualType LHS, Expr *RHS) {
15749   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
15750 
15751   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
15752     return false;
15753 
15754   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
15755     return true;
15756 
15757   return false;
15758 }
15759 
15760 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
15761                               Expr *LHS, Expr *RHS) {
15762   QualType LHSType;
15763   // PropertyRef on LHS type need be directly obtained from
15764   // its declaration as it has a PseudoType.
15765   ObjCPropertyRefExpr *PRE
15766     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
15767   if (PRE && !PRE->isImplicitProperty()) {
15768     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15769     if (PD)
15770       LHSType = PD->getType();
15771   }
15772 
15773   if (LHSType.isNull())
15774     LHSType = LHS->getType();
15775 
15776   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
15777 
15778   if (LT == Qualifiers::OCL_Weak) {
15779     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
15780       getCurFunction()->markSafeWeakUse(LHS);
15781   }
15782 
15783   if (checkUnsafeAssigns(Loc, LHSType, RHS))
15784     return;
15785 
15786   // FIXME. Check for other life times.
15787   if (LT != Qualifiers::OCL_None)
15788     return;
15789 
15790   if (PRE) {
15791     if (PRE->isImplicitProperty())
15792       return;
15793     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15794     if (!PD)
15795       return;
15796 
15797     unsigned Attributes = PD->getPropertyAttributes();
15798     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15799       // when 'assign' attribute was not explicitly specified
15800       // by user, ignore it and rely on property type itself
15801       // for lifetime info.
15802       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15803       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15804           LHSType->isObjCRetainableType())
15805         return;
15806 
15807       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15808         if (cast->getCastKind() == CK_ARCConsumeObject) {
15809           Diag(Loc, diag::warn_arc_retained_property_assign)
15810           << RHS->getSourceRange();
15811           return;
15812         }
15813         RHS = cast->getSubExpr();
15814       }
15815     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15816       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15817         return;
15818     }
15819   }
15820 }
15821 
15822 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15823 
15824 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15825                                         SourceLocation StmtLoc,
15826                                         const NullStmt *Body) {
15827   // Do not warn if the body is a macro that expands to nothing, e.g:
15828   //
15829   // #define CALL(x)
15830   // if (condition)
15831   //   CALL(0);
15832   if (Body->hasLeadingEmptyMacro())
15833     return false;
15834 
15835   // Get line numbers of statement and body.
15836   bool StmtLineInvalid;
15837   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15838                                                       &StmtLineInvalid);
15839   if (StmtLineInvalid)
15840     return false;
15841 
15842   bool BodyLineInvalid;
15843   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15844                                                       &BodyLineInvalid);
15845   if (BodyLineInvalid)
15846     return false;
15847 
15848   // Warn if null statement and body are on the same line.
15849   if (StmtLine != BodyLine)
15850     return false;
15851 
15852   return true;
15853 }
15854 
15855 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15856                                  const Stmt *Body,
15857                                  unsigned DiagID) {
15858   // Since this is a syntactic check, don't emit diagnostic for template
15859   // instantiations, this just adds noise.
15860   if (CurrentInstantiationScope)
15861     return;
15862 
15863   // The body should be a null statement.
15864   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15865   if (!NBody)
15866     return;
15867 
15868   // Do the usual checks.
15869   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15870     return;
15871 
15872   Diag(NBody->getSemiLoc(), DiagID);
15873   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15874 }
15875 
15876 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15877                                  const Stmt *PossibleBody) {
15878   assert(!CurrentInstantiationScope); // Ensured by caller
15879 
15880   SourceLocation StmtLoc;
15881   const Stmt *Body;
15882   unsigned DiagID;
15883   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15884     StmtLoc = FS->getRParenLoc();
15885     Body = FS->getBody();
15886     DiagID = diag::warn_empty_for_body;
15887   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15888     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15889     Body = WS->getBody();
15890     DiagID = diag::warn_empty_while_body;
15891   } else
15892     return; // Neither `for' nor `while'.
15893 
15894   // The body should be a null statement.
15895   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15896   if (!NBody)
15897     return;
15898 
15899   // Skip expensive checks if diagnostic is disabled.
15900   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15901     return;
15902 
15903   // Do the usual checks.
15904   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15905     return;
15906 
15907   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15908   // noise level low, emit diagnostics only if for/while is followed by a
15909   // CompoundStmt, e.g.:
15910   //    for (int i = 0; i < n; i++);
15911   //    {
15912   //      a(i);
15913   //    }
15914   // or if for/while is followed by a statement with more indentation
15915   // than for/while itself:
15916   //    for (int i = 0; i < n; i++);
15917   //      a(i);
15918   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15919   if (!ProbableTypo) {
15920     bool BodyColInvalid;
15921     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15922         PossibleBody->getBeginLoc(), &BodyColInvalid);
15923     if (BodyColInvalid)
15924       return;
15925 
15926     bool StmtColInvalid;
15927     unsigned StmtCol =
15928         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15929     if (StmtColInvalid)
15930       return;
15931 
15932     if (BodyCol > StmtCol)
15933       ProbableTypo = true;
15934   }
15935 
15936   if (ProbableTypo) {
15937     Diag(NBody->getSemiLoc(), DiagID);
15938     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15939   }
15940 }
15941 
15942 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15943 
15944 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15945 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15946                              SourceLocation OpLoc) {
15947   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15948     return;
15949 
15950   if (inTemplateInstantiation())
15951     return;
15952 
15953   // Strip parens and casts away.
15954   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15955   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15956 
15957   // Check for a call expression
15958   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15959   if (!CE || CE->getNumArgs() != 1)
15960     return;
15961 
15962   // Check for a call to std::move
15963   if (!CE->isCallToStdMove())
15964     return;
15965 
15966   // Get argument from std::move
15967   RHSExpr = CE->getArg(0);
15968 
15969   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15970   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15971 
15972   // Two DeclRefExpr's, check that the decls are the same.
15973   if (LHSDeclRef && RHSDeclRef) {
15974     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15975       return;
15976     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15977         RHSDeclRef->getDecl()->getCanonicalDecl())
15978       return;
15979 
15980     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15981                                         << LHSExpr->getSourceRange()
15982                                         << RHSExpr->getSourceRange();
15983     return;
15984   }
15985 
15986   // Member variables require a different approach to check for self moves.
15987   // MemberExpr's are the same if every nested MemberExpr refers to the same
15988   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15989   // the base Expr's are CXXThisExpr's.
15990   const Expr *LHSBase = LHSExpr;
15991   const Expr *RHSBase = RHSExpr;
15992   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15993   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15994   if (!LHSME || !RHSME)
15995     return;
15996 
15997   while (LHSME && RHSME) {
15998     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15999         RHSME->getMemberDecl()->getCanonicalDecl())
16000       return;
16001 
16002     LHSBase = LHSME->getBase();
16003     RHSBase = RHSME->getBase();
16004     LHSME = dyn_cast<MemberExpr>(LHSBase);
16005     RHSME = dyn_cast<MemberExpr>(RHSBase);
16006   }
16007 
16008   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16009   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16010   if (LHSDeclRef && RHSDeclRef) {
16011     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16012       return;
16013     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16014         RHSDeclRef->getDecl()->getCanonicalDecl())
16015       return;
16016 
16017     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16018                                         << LHSExpr->getSourceRange()
16019                                         << RHSExpr->getSourceRange();
16020     return;
16021   }
16022 
16023   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16024     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16025                                         << LHSExpr->getSourceRange()
16026                                         << RHSExpr->getSourceRange();
16027 }
16028 
16029 //===--- Layout compatibility ----------------------------------------------//
16030 
16031 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16032 
16033 /// Check if two enumeration types are layout-compatible.
16034 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16035   // C++11 [dcl.enum] p8:
16036   // Two enumeration types are layout-compatible if they have the same
16037   // underlying type.
16038   return ED1->isComplete() && ED2->isComplete() &&
16039          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16040 }
16041 
16042 /// Check if two fields are layout-compatible.
16043 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16044                                FieldDecl *Field2) {
16045   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16046     return false;
16047 
16048   if (Field1->isBitField() != Field2->isBitField())
16049     return false;
16050 
16051   if (Field1->isBitField()) {
16052     // Make sure that the bit-fields are the same length.
16053     unsigned Bits1 = Field1->getBitWidthValue(C);
16054     unsigned Bits2 = Field2->getBitWidthValue(C);
16055 
16056     if (Bits1 != Bits2)
16057       return false;
16058   }
16059 
16060   return true;
16061 }
16062 
16063 /// Check if two standard-layout structs are layout-compatible.
16064 /// (C++11 [class.mem] p17)
16065 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16066                                      RecordDecl *RD2) {
16067   // If both records are C++ classes, check that base classes match.
16068   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16069     // If one of records is a CXXRecordDecl we are in C++ mode,
16070     // thus the other one is a CXXRecordDecl, too.
16071     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16072     // Check number of base classes.
16073     if (D1CXX->getNumBases() != D2CXX->getNumBases())
16074       return false;
16075 
16076     // Check the base classes.
16077     for (CXXRecordDecl::base_class_const_iterator
16078                Base1 = D1CXX->bases_begin(),
16079            BaseEnd1 = D1CXX->bases_end(),
16080               Base2 = D2CXX->bases_begin();
16081          Base1 != BaseEnd1;
16082          ++Base1, ++Base2) {
16083       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16084         return false;
16085     }
16086   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16087     // If only RD2 is a C++ class, it should have zero base classes.
16088     if (D2CXX->getNumBases() > 0)
16089       return false;
16090   }
16091 
16092   // Check the fields.
16093   RecordDecl::field_iterator Field2 = RD2->field_begin(),
16094                              Field2End = RD2->field_end(),
16095                              Field1 = RD1->field_begin(),
16096                              Field1End = RD1->field_end();
16097   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16098     if (!isLayoutCompatible(C, *Field1, *Field2))
16099       return false;
16100   }
16101   if (Field1 != Field1End || Field2 != Field2End)
16102     return false;
16103 
16104   return true;
16105 }
16106 
16107 /// Check if two standard-layout unions are layout-compatible.
16108 /// (C++11 [class.mem] p18)
16109 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16110                                     RecordDecl *RD2) {
16111   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16112   for (auto *Field2 : RD2->fields())
16113     UnmatchedFields.insert(Field2);
16114 
16115   for (auto *Field1 : RD1->fields()) {
16116     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16117         I = UnmatchedFields.begin(),
16118         E = UnmatchedFields.end();
16119 
16120     for ( ; I != E; ++I) {
16121       if (isLayoutCompatible(C, Field1, *I)) {
16122         bool Result = UnmatchedFields.erase(*I);
16123         (void) Result;
16124         assert(Result);
16125         break;
16126       }
16127     }
16128     if (I == E)
16129       return false;
16130   }
16131 
16132   return UnmatchedFields.empty();
16133 }
16134 
16135 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16136                                RecordDecl *RD2) {
16137   if (RD1->isUnion() != RD2->isUnion())
16138     return false;
16139 
16140   if (RD1->isUnion())
16141     return isLayoutCompatibleUnion(C, RD1, RD2);
16142   else
16143     return isLayoutCompatibleStruct(C, RD1, RD2);
16144 }
16145 
16146 /// Check if two types are layout-compatible in C++11 sense.
16147 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16148   if (T1.isNull() || T2.isNull())
16149     return false;
16150 
16151   // C++11 [basic.types] p11:
16152   // If two types T1 and T2 are the same type, then T1 and T2 are
16153   // layout-compatible types.
16154   if (C.hasSameType(T1, T2))
16155     return true;
16156 
16157   T1 = T1.getCanonicalType().getUnqualifiedType();
16158   T2 = T2.getCanonicalType().getUnqualifiedType();
16159 
16160   const Type::TypeClass TC1 = T1->getTypeClass();
16161   const Type::TypeClass TC2 = T2->getTypeClass();
16162 
16163   if (TC1 != TC2)
16164     return false;
16165 
16166   if (TC1 == Type::Enum) {
16167     return isLayoutCompatible(C,
16168                               cast<EnumType>(T1)->getDecl(),
16169                               cast<EnumType>(T2)->getDecl());
16170   } else if (TC1 == Type::Record) {
16171     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16172       return false;
16173 
16174     return isLayoutCompatible(C,
16175                               cast<RecordType>(T1)->getDecl(),
16176                               cast<RecordType>(T2)->getDecl());
16177   }
16178 
16179   return false;
16180 }
16181 
16182 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16183 
16184 /// Given a type tag expression find the type tag itself.
16185 ///
16186 /// \param TypeExpr Type tag expression, as it appears in user's code.
16187 ///
16188 /// \param VD Declaration of an identifier that appears in a type tag.
16189 ///
16190 /// \param MagicValue Type tag magic value.
16191 ///
16192 /// \param isConstantEvaluated whether the evalaution should be performed in
16193 
16194 /// constant context.
16195 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16196                             const ValueDecl **VD, uint64_t *MagicValue,
16197                             bool isConstantEvaluated) {
16198   while(true) {
16199     if (!TypeExpr)
16200       return false;
16201 
16202     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16203 
16204     switch (TypeExpr->getStmtClass()) {
16205     case Stmt::UnaryOperatorClass: {
16206       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16207       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16208         TypeExpr = UO->getSubExpr();
16209         continue;
16210       }
16211       return false;
16212     }
16213 
16214     case Stmt::DeclRefExprClass: {
16215       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16216       *VD = DRE->getDecl();
16217       return true;
16218     }
16219 
16220     case Stmt::IntegerLiteralClass: {
16221       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16222       llvm::APInt MagicValueAPInt = IL->getValue();
16223       if (MagicValueAPInt.getActiveBits() <= 64) {
16224         *MagicValue = MagicValueAPInt.getZExtValue();
16225         return true;
16226       } else
16227         return false;
16228     }
16229 
16230     case Stmt::BinaryConditionalOperatorClass:
16231     case Stmt::ConditionalOperatorClass: {
16232       const AbstractConditionalOperator *ACO =
16233           cast<AbstractConditionalOperator>(TypeExpr);
16234       bool Result;
16235       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16236                                                      isConstantEvaluated)) {
16237         if (Result)
16238           TypeExpr = ACO->getTrueExpr();
16239         else
16240           TypeExpr = ACO->getFalseExpr();
16241         continue;
16242       }
16243       return false;
16244     }
16245 
16246     case Stmt::BinaryOperatorClass: {
16247       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16248       if (BO->getOpcode() == BO_Comma) {
16249         TypeExpr = BO->getRHS();
16250         continue;
16251       }
16252       return false;
16253     }
16254 
16255     default:
16256       return false;
16257     }
16258   }
16259 }
16260 
16261 /// Retrieve the C type corresponding to type tag TypeExpr.
16262 ///
16263 /// \param TypeExpr Expression that specifies a type tag.
16264 ///
16265 /// \param MagicValues Registered magic values.
16266 ///
16267 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16268 ///        kind.
16269 ///
16270 /// \param TypeInfo Information about the corresponding C type.
16271 ///
16272 /// \param isConstantEvaluated whether the evalaution should be performed in
16273 /// constant context.
16274 ///
16275 /// \returns true if the corresponding C type was found.
16276 static bool GetMatchingCType(
16277     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16278     const ASTContext &Ctx,
16279     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16280         *MagicValues,
16281     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16282     bool isConstantEvaluated) {
16283   FoundWrongKind = false;
16284 
16285   // Variable declaration that has type_tag_for_datatype attribute.
16286   const ValueDecl *VD = nullptr;
16287 
16288   uint64_t MagicValue;
16289 
16290   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16291     return false;
16292 
16293   if (VD) {
16294     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16295       if (I->getArgumentKind() != ArgumentKind) {
16296         FoundWrongKind = true;
16297         return false;
16298       }
16299       TypeInfo.Type = I->getMatchingCType();
16300       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16301       TypeInfo.MustBeNull = I->getMustBeNull();
16302       return true;
16303     }
16304     return false;
16305   }
16306 
16307   if (!MagicValues)
16308     return false;
16309 
16310   llvm::DenseMap<Sema::TypeTagMagicValue,
16311                  Sema::TypeTagData>::const_iterator I =
16312       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16313   if (I == MagicValues->end())
16314     return false;
16315 
16316   TypeInfo = I->second;
16317   return true;
16318 }
16319 
16320 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16321                                       uint64_t MagicValue, QualType Type,
16322                                       bool LayoutCompatible,
16323                                       bool MustBeNull) {
16324   if (!TypeTagForDatatypeMagicValues)
16325     TypeTagForDatatypeMagicValues.reset(
16326         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16327 
16328   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16329   (*TypeTagForDatatypeMagicValues)[Magic] =
16330       TypeTagData(Type, LayoutCompatible, MustBeNull);
16331 }
16332 
16333 static bool IsSameCharType(QualType T1, QualType T2) {
16334   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16335   if (!BT1)
16336     return false;
16337 
16338   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16339   if (!BT2)
16340     return false;
16341 
16342   BuiltinType::Kind T1Kind = BT1->getKind();
16343   BuiltinType::Kind T2Kind = BT2->getKind();
16344 
16345   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
16346          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
16347          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16348          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16349 }
16350 
16351 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16352                                     const ArrayRef<const Expr *> ExprArgs,
16353                                     SourceLocation CallSiteLoc) {
16354   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16355   bool IsPointerAttr = Attr->getIsPointer();
16356 
16357   // Retrieve the argument representing the 'type_tag'.
16358   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16359   if (TypeTagIdxAST >= ExprArgs.size()) {
16360     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16361         << 0 << Attr->getTypeTagIdx().getSourceIndex();
16362     return;
16363   }
16364   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16365   bool FoundWrongKind;
16366   TypeTagData TypeInfo;
16367   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16368                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16369                         TypeInfo, isConstantEvaluated())) {
16370     if (FoundWrongKind)
16371       Diag(TypeTagExpr->getExprLoc(),
16372            diag::warn_type_tag_for_datatype_wrong_kind)
16373         << TypeTagExpr->getSourceRange();
16374     return;
16375   }
16376 
16377   // Retrieve the argument representing the 'arg_idx'.
16378   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16379   if (ArgumentIdxAST >= ExprArgs.size()) {
16380     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16381         << 1 << Attr->getArgumentIdx().getSourceIndex();
16382     return;
16383   }
16384   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16385   if (IsPointerAttr) {
16386     // Skip implicit cast of pointer to `void *' (as a function argument).
16387     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16388       if (ICE->getType()->isVoidPointerType() &&
16389           ICE->getCastKind() == CK_BitCast)
16390         ArgumentExpr = ICE->getSubExpr();
16391   }
16392   QualType ArgumentType = ArgumentExpr->getType();
16393 
16394   // Passing a `void*' pointer shouldn't trigger a warning.
16395   if (IsPointerAttr && ArgumentType->isVoidPointerType())
16396     return;
16397 
16398   if (TypeInfo.MustBeNull) {
16399     // Type tag with matching void type requires a null pointer.
16400     if (!ArgumentExpr->isNullPointerConstant(Context,
16401                                              Expr::NPC_ValueDependentIsNotNull)) {
16402       Diag(ArgumentExpr->getExprLoc(),
16403            diag::warn_type_safety_null_pointer_required)
16404           << ArgumentKind->getName()
16405           << ArgumentExpr->getSourceRange()
16406           << TypeTagExpr->getSourceRange();
16407     }
16408     return;
16409   }
16410 
16411   QualType RequiredType = TypeInfo.Type;
16412   if (IsPointerAttr)
16413     RequiredType = Context.getPointerType(RequiredType);
16414 
16415   bool mismatch = false;
16416   if (!TypeInfo.LayoutCompatible) {
16417     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16418 
16419     // C++11 [basic.fundamental] p1:
16420     // Plain char, signed char, and unsigned char are three distinct types.
16421     //
16422     // But we treat plain `char' as equivalent to `signed char' or `unsigned
16423     // char' depending on the current char signedness mode.
16424     if (mismatch)
16425       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16426                                            RequiredType->getPointeeType())) ||
16427           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16428         mismatch = false;
16429   } else
16430     if (IsPointerAttr)
16431       mismatch = !isLayoutCompatible(Context,
16432                                      ArgumentType->getPointeeType(),
16433                                      RequiredType->getPointeeType());
16434     else
16435       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16436 
16437   if (mismatch)
16438     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16439         << ArgumentType << ArgumentKind
16440         << TypeInfo.LayoutCompatible << RequiredType
16441         << ArgumentExpr->getSourceRange()
16442         << TypeTagExpr->getSourceRange();
16443 }
16444 
16445 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16446                                          CharUnits Alignment) {
16447   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16448 }
16449 
16450 void Sema::DiagnoseMisalignedMembers() {
16451   for (MisalignedMember &m : MisalignedMembers) {
16452     const NamedDecl *ND = m.RD;
16453     if (ND->getName().empty()) {
16454       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16455         ND = TD;
16456     }
16457     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16458         << m.MD << ND << m.E->getSourceRange();
16459   }
16460   MisalignedMembers.clear();
16461 }
16462 
16463 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16464   E = E->IgnoreParens();
16465   if (!T->isPointerType() && !T->isIntegerType())
16466     return;
16467   if (isa<UnaryOperator>(E) &&
16468       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16469     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16470     if (isa<MemberExpr>(Op)) {
16471       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16472       if (MA != MisalignedMembers.end() &&
16473           (T->isIntegerType() ||
16474            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16475                                    Context.getTypeAlignInChars(
16476                                        T->getPointeeType()) <= MA->Alignment))))
16477         MisalignedMembers.erase(MA);
16478     }
16479   }
16480 }
16481 
16482 void Sema::RefersToMemberWithReducedAlignment(
16483     Expr *E,
16484     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16485         Action) {
16486   const auto *ME = dyn_cast<MemberExpr>(E);
16487   if (!ME)
16488     return;
16489 
16490   // No need to check expressions with an __unaligned-qualified type.
16491   if (E->getType().getQualifiers().hasUnaligned())
16492     return;
16493 
16494   // For a chain of MemberExpr like "a.b.c.d" this list
16495   // will keep FieldDecl's like [d, c, b].
16496   SmallVector<FieldDecl *, 4> ReverseMemberChain;
16497   const MemberExpr *TopME = nullptr;
16498   bool AnyIsPacked = false;
16499   do {
16500     QualType BaseType = ME->getBase()->getType();
16501     if (BaseType->isDependentType())
16502       return;
16503     if (ME->isArrow())
16504       BaseType = BaseType->getPointeeType();
16505     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16506     if (RD->isInvalidDecl())
16507       return;
16508 
16509     ValueDecl *MD = ME->getMemberDecl();
16510     auto *FD = dyn_cast<FieldDecl>(MD);
16511     // We do not care about non-data members.
16512     if (!FD || FD->isInvalidDecl())
16513       return;
16514 
16515     AnyIsPacked =
16516         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16517     ReverseMemberChain.push_back(FD);
16518 
16519     TopME = ME;
16520     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16521   } while (ME);
16522   assert(TopME && "We did not compute a topmost MemberExpr!");
16523 
16524   // Not the scope of this diagnostic.
16525   if (!AnyIsPacked)
16526     return;
16527 
16528   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16529   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16530   // TODO: The innermost base of the member expression may be too complicated.
16531   // For now, just disregard these cases. This is left for future
16532   // improvement.
16533   if (!DRE && !isa<CXXThisExpr>(TopBase))
16534       return;
16535 
16536   // Alignment expected by the whole expression.
16537   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16538 
16539   // No need to do anything else with this case.
16540   if (ExpectedAlignment.isOne())
16541     return;
16542 
16543   // Synthesize offset of the whole access.
16544   CharUnits Offset;
16545   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
16546        I++) {
16547     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
16548   }
16549 
16550   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16551   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16552       ReverseMemberChain.back()->getParent()->getTypeForDecl());
16553 
16554   // The base expression of the innermost MemberExpr may give
16555   // stronger guarantees than the class containing the member.
16556   if (DRE && !TopME->isArrow()) {
16557     const ValueDecl *VD = DRE->getDecl();
16558     if (!VD->getType()->isReferenceType())
16559       CompleteObjectAlignment =
16560           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16561   }
16562 
16563   // Check if the synthesized offset fulfills the alignment.
16564   if (Offset % ExpectedAlignment != 0 ||
16565       // It may fulfill the offset it but the effective alignment may still be
16566       // lower than the expected expression alignment.
16567       CompleteObjectAlignment < ExpectedAlignment) {
16568     // If this happens, we want to determine a sensible culprit of this.
16569     // Intuitively, watching the chain of member expressions from right to
16570     // left, we start with the required alignment (as required by the field
16571     // type) but some packed attribute in that chain has reduced the alignment.
16572     // It may happen that another packed structure increases it again. But if
16573     // we are here such increase has not been enough. So pointing the first
16574     // FieldDecl that either is packed or else its RecordDecl is,
16575     // seems reasonable.
16576     FieldDecl *FD = nullptr;
16577     CharUnits Alignment;
16578     for (FieldDecl *FDI : ReverseMemberChain) {
16579       if (FDI->hasAttr<PackedAttr>() ||
16580           FDI->getParent()->hasAttr<PackedAttr>()) {
16581         FD = FDI;
16582         Alignment = std::min(
16583             Context.getTypeAlignInChars(FD->getType()),
16584             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16585         break;
16586       }
16587     }
16588     assert(FD && "We did not find a packed FieldDecl!");
16589     Action(E, FD->getParent(), FD, Alignment);
16590   }
16591 }
16592 
16593 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16594   using namespace std::placeholders;
16595 
16596   RefersToMemberWithReducedAlignment(
16597       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16598                      _2, _3, _4));
16599 }
16600 
16601 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16602                                             ExprResult CallResult) {
16603   if (checkArgCount(*this, TheCall, 1))
16604     return ExprError();
16605 
16606   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16607   if (MatrixArg.isInvalid())
16608     return MatrixArg;
16609   Expr *Matrix = MatrixArg.get();
16610 
16611   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16612   if (!MType) {
16613     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
16614     return ExprError();
16615   }
16616 
16617   // Create returned matrix type by swapping rows and columns of the argument
16618   // matrix type.
16619   QualType ResultType = Context.getConstantMatrixType(
16620       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16621 
16622   // Change the return type to the type of the returned matrix.
16623   TheCall->setType(ResultType);
16624 
16625   // Update call argument to use the possibly converted matrix argument.
16626   TheCall->setArg(0, Matrix);
16627   return CallResult;
16628 }
16629 
16630 // Get and verify the matrix dimensions.
16631 static llvm::Optional<unsigned>
16632 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
16633   SourceLocation ErrorPos;
16634   Optional<llvm::APSInt> Value =
16635       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
16636   if (!Value) {
16637     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
16638         << Name;
16639     return {};
16640   }
16641   uint64_t Dim = Value->getZExtValue();
16642   if (!ConstantMatrixType::isDimensionValid(Dim)) {
16643     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
16644         << Name << ConstantMatrixType::getMaxElementsPerDimension();
16645     return {};
16646   }
16647   return Dim;
16648 }
16649 
16650 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
16651                                                   ExprResult CallResult) {
16652   if (!getLangOpts().MatrixTypes) {
16653     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
16654     return ExprError();
16655   }
16656 
16657   if (checkArgCount(*this, TheCall, 4))
16658     return ExprError();
16659 
16660   unsigned PtrArgIdx = 0;
16661   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16662   Expr *RowsExpr = TheCall->getArg(1);
16663   Expr *ColumnsExpr = TheCall->getArg(2);
16664   Expr *StrideExpr = TheCall->getArg(3);
16665 
16666   bool ArgError = false;
16667 
16668   // Check pointer argument.
16669   {
16670     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16671     if (PtrConv.isInvalid())
16672       return PtrConv;
16673     PtrExpr = PtrConv.get();
16674     TheCall->setArg(0, PtrExpr);
16675     if (PtrExpr->isTypeDependent()) {
16676       TheCall->setType(Context.DependentTy);
16677       return TheCall;
16678     }
16679   }
16680 
16681   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16682   QualType ElementTy;
16683   if (!PtrTy) {
16684     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16685         << PtrArgIdx + 1;
16686     ArgError = true;
16687   } else {
16688     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
16689 
16690     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
16691       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16692           << PtrArgIdx + 1;
16693       ArgError = true;
16694     }
16695   }
16696 
16697   // Apply default Lvalue conversions and convert the expression to size_t.
16698   auto ApplyArgumentConversions = [this](Expr *E) {
16699     ExprResult Conv = DefaultLvalueConversion(E);
16700     if (Conv.isInvalid())
16701       return Conv;
16702 
16703     return tryConvertExprToType(Conv.get(), Context.getSizeType());
16704   };
16705 
16706   // Apply conversion to row and column expressions.
16707   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
16708   if (!RowsConv.isInvalid()) {
16709     RowsExpr = RowsConv.get();
16710     TheCall->setArg(1, RowsExpr);
16711   } else
16712     RowsExpr = nullptr;
16713 
16714   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
16715   if (!ColumnsConv.isInvalid()) {
16716     ColumnsExpr = ColumnsConv.get();
16717     TheCall->setArg(2, ColumnsExpr);
16718   } else
16719     ColumnsExpr = nullptr;
16720 
16721   // If any any part of the result matrix type is still pending, just use
16722   // Context.DependentTy, until all parts are resolved.
16723   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
16724       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
16725     TheCall->setType(Context.DependentTy);
16726     return CallResult;
16727   }
16728 
16729   // Check row and column dimensions.
16730   llvm::Optional<unsigned> MaybeRows;
16731   if (RowsExpr)
16732     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
16733 
16734   llvm::Optional<unsigned> MaybeColumns;
16735   if (ColumnsExpr)
16736     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
16737 
16738   // Check stride argument.
16739   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
16740   if (StrideConv.isInvalid())
16741     return ExprError();
16742   StrideExpr = StrideConv.get();
16743   TheCall->setArg(3, StrideExpr);
16744 
16745   if (MaybeRows) {
16746     if (Optional<llvm::APSInt> Value =
16747             StrideExpr->getIntegerConstantExpr(Context)) {
16748       uint64_t Stride = Value->getZExtValue();
16749       if (Stride < *MaybeRows) {
16750         Diag(StrideExpr->getBeginLoc(),
16751              diag::err_builtin_matrix_stride_too_small);
16752         ArgError = true;
16753       }
16754     }
16755   }
16756 
16757   if (ArgError || !MaybeRows || !MaybeColumns)
16758     return ExprError();
16759 
16760   TheCall->setType(
16761       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
16762   return CallResult;
16763 }
16764 
16765 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
16766                                                    ExprResult CallResult) {
16767   if (checkArgCount(*this, TheCall, 3))
16768     return ExprError();
16769 
16770   unsigned PtrArgIdx = 1;
16771   Expr *MatrixExpr = TheCall->getArg(0);
16772   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16773   Expr *StrideExpr = TheCall->getArg(2);
16774 
16775   bool ArgError = false;
16776 
16777   {
16778     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
16779     if (MatrixConv.isInvalid())
16780       return MatrixConv;
16781     MatrixExpr = MatrixConv.get();
16782     TheCall->setArg(0, MatrixExpr);
16783   }
16784   if (MatrixExpr->isTypeDependent()) {
16785     TheCall->setType(Context.DependentTy);
16786     return TheCall;
16787   }
16788 
16789   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
16790   if (!MatrixTy) {
16791     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
16792     ArgError = true;
16793   }
16794 
16795   {
16796     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16797     if (PtrConv.isInvalid())
16798       return PtrConv;
16799     PtrExpr = PtrConv.get();
16800     TheCall->setArg(1, PtrExpr);
16801     if (PtrExpr->isTypeDependent()) {
16802       TheCall->setType(Context.DependentTy);
16803       return TheCall;
16804     }
16805   }
16806 
16807   // Check pointer argument.
16808   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16809   if (!PtrTy) {
16810     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16811         << PtrArgIdx + 1;
16812     ArgError = true;
16813   } else {
16814     QualType ElementTy = PtrTy->getPointeeType();
16815     if (ElementTy.isConstQualified()) {
16816       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16817       ArgError = true;
16818     }
16819     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16820     if (MatrixTy &&
16821         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16822       Diag(PtrExpr->getBeginLoc(),
16823            diag::err_builtin_matrix_pointer_arg_mismatch)
16824           << ElementTy << MatrixTy->getElementType();
16825       ArgError = true;
16826     }
16827   }
16828 
16829   // Apply default Lvalue conversions and convert the stride expression to
16830   // size_t.
16831   {
16832     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16833     if (StrideConv.isInvalid())
16834       return StrideConv;
16835 
16836     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16837     if (StrideConv.isInvalid())
16838       return StrideConv;
16839     StrideExpr = StrideConv.get();
16840     TheCall->setArg(2, StrideExpr);
16841   }
16842 
16843   // Check stride argument.
16844   if (MatrixTy) {
16845     if (Optional<llvm::APSInt> Value =
16846             StrideExpr->getIntegerConstantExpr(Context)) {
16847       uint64_t Stride = Value->getZExtValue();
16848       if (Stride < MatrixTy->getNumRows()) {
16849         Diag(StrideExpr->getBeginLoc(),
16850              diag::err_builtin_matrix_stride_too_small);
16851         ArgError = true;
16852       }
16853     }
16854   }
16855 
16856   if (ArgError)
16857     return ExprError();
16858 
16859   return CallResult;
16860 }
16861 
16862 /// \brief Enforce the bounds of a TCB
16863 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
16864 /// directly calls other functions in the same TCB as marked by the enforce_tcb
16865 /// and enforce_tcb_leaf attributes.
16866 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16867                                const FunctionDecl *Callee) {
16868   const FunctionDecl *Caller = getCurFunctionDecl();
16869 
16870   // Calls to builtins are not enforced.
16871   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16872       Callee->getBuiltinID() != 0)
16873     return;
16874 
16875   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16876   // all TCBs the callee is a part of.
16877   llvm::StringSet<> CalleeTCBs;
16878   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16879            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16880   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16881            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16882 
16883   // Go through the TCBs the caller is a part of and emit warnings if Caller
16884   // is in a TCB that the Callee is not.
16885   for_each(
16886       Caller->specific_attrs<EnforceTCBAttr>(),
16887       [&](const auto *A) {
16888         StringRef CallerTCB = A->getTCBName();
16889         if (CalleeTCBs.count(CallerTCB) == 0) {
16890           this->Diag(TheCall->getExprLoc(),
16891                      diag::warn_tcb_enforcement_violation) << Callee
16892                                                            << CallerTCB;
16893         }
16894       });
16895 }
16896